1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
19 #include "ToolChains/CrossWindows.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIPAMD.h"
27 #include "ToolChains/HIPSPV.h"
28 #include "ToolChains/Haiku.h"
29 #include "ToolChains/Hexagon.h"
30 #include "ToolChains/Hurd.h"
31 #include "ToolChains/Lanai.h"
32 #include "ToolChains/Linux.h"
33 #include "ToolChains/MSP430.h"
34 #include "ToolChains/MSVC.h"
35 #include "ToolChains/MinGW.h"
36 #include "ToolChains/Minix.h"
37 #include "ToolChains/MipsLinux.h"
38 #include "ToolChains/Myriad.h"
39 #include "ToolChains/NaCl.h"
40 #include "ToolChains/NetBSD.h"
41 #include "ToolChains/OpenBSD.h"
42 #include "ToolChains/PPCFreeBSD.h"
43 #include "ToolChains/PPCLinux.h"
44 #include "ToolChains/PS4CPU.h"
45 #include "ToolChains/RISCVToolchain.h"
46 #include "ToolChains/SPIRV.h"
47 #include "ToolChains/Solaris.h"
48 #include "ToolChains/TCE.h"
49 #include "ToolChains/VEToolchain.h"
50 #include "ToolChains/WebAssembly.h"
51 #include "ToolChains/XCore.h"
52 #include "ToolChains/ZOS.h"
53 #include "clang/Basic/TargetID.h"
54 #include "clang/Basic/Version.h"
55 #include "clang/Config/config.h"
56 #include "clang/Driver/Action.h"
57 #include "clang/Driver/Compilation.h"
58 #include "clang/Driver/DriverDiagnostic.h"
59 #include "clang/Driver/InputInfo.h"
60 #include "clang/Driver/Job.h"
61 #include "clang/Driver/Options.h"
62 #include "clang/Driver/SanitizerArgs.h"
63 #include "clang/Driver/Tool.h"
64 #include "clang/Driver/ToolChain.h"
65 #include "clang/Driver/Types.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/SmallSet.h"
69 #include "llvm/ADT/StringExtras.h"
70 #include "llvm/ADT/StringRef.h"
71 #include "llvm/ADT/StringSet.h"
72 #include "llvm/ADT/StringSwitch.h"
73 #include "llvm/Config/llvm-config.h"
74 #include "llvm/MC/TargetRegistry.h"
75 #include "llvm/Option/Arg.h"
76 #include "llvm/Option/ArgList.h"
77 #include "llvm/Option/OptSpecifier.h"
78 #include "llvm/Option/OptTable.h"
79 #include "llvm/Option/Option.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/ExitCodes.h"
83 #include "llvm/Support/FileSystem.h"
84 #include "llvm/Support/FormatVariadic.h"
85 #include "llvm/Support/Host.h"
86 #include "llvm/Support/MD5.h"
87 #include "llvm/Support/Path.h"
88 #include "llvm/Support/PrettyStackTrace.h"
89 #include "llvm/Support/Process.h"
90 #include "llvm/Support/Program.h"
91 #include "llvm/Support/StringSaver.h"
92 #include "llvm/Support/VirtualFileSystem.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include <map>
95 #include <memory>
96 #include <utility>
97 #if LLVM_ON_UNIX
98 #include <unistd.h> // getpid
99 #endif
100 
101 using namespace clang::driver;
102 using namespace clang;
103 using namespace llvm::opt;
104 
105 static llvm::Optional<llvm::Triple>
106 getOffloadTargetTriple(const Driver &D, const ArgList &Args) {
107   auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
108   // Offload compilation flow does not support multiple targets for now. We
109   // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
110   // to support multiple tool chains first.
111   switch (OffloadTargets.size()) {
112   default:
113     D.Diag(diag::err_drv_only_one_offload_target_supported);
114     return llvm::None;
115   case 0:
116     D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
117     return llvm::None;
118   case 1:
119     break;
120   }
121   return llvm::Triple(OffloadTargets[0]);
122 }
123 
124 static llvm::Optional<llvm::Triple>
125 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
126                              const llvm::Triple &HostTriple) {
127   if (!Args.hasArg(options::OPT_offload_EQ)) {
128     return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
129                                                  : "nvptx-nvidia-cuda");
130   }
131   auto TT = getOffloadTargetTriple(D, Args);
132   if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
133              TT->getArch() == llvm::Triple::spirv64)) {
134     if (Args.hasArg(options::OPT_emit_llvm))
135       return TT;
136     D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
137     return llvm::None;
138   }
139   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
140   return llvm::None;
141 }
142 static llvm::Optional<llvm::Triple>
143 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
144   if (!Args.hasArg(options::OPT_offload_EQ)) {
145     return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
146   }
147   auto TT = getOffloadTargetTriple(D, Args);
148   if (!TT)
149     return llvm::None;
150   if (TT->getArch() == llvm::Triple::amdgcn &&
151       TT->getVendor() == llvm::Triple::AMD &&
152       TT->getOS() == llvm::Triple::AMDHSA)
153     return TT;
154   if (TT->getArch() == llvm::Triple::spirv64)
155     return TT;
156   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
157   return llvm::None;
158 }
159 
160 // static
161 std::string Driver::GetResourcesPath(StringRef BinaryPath,
162                                      StringRef CustomResourceDir) {
163   // Since the resource directory is embedded in the module hash, it's important
164   // that all places that need it call this function, so that they get the
165   // exact same string ("a/../b/" and "b/" get different hashes, for example).
166 
167   // Dir is bin/ or lib/, depending on where BinaryPath is.
168   std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
169 
170   SmallString<128> P(Dir);
171   if (CustomResourceDir != "") {
172     llvm::sys::path::append(P, CustomResourceDir);
173   } else {
174     // On Windows, libclang.dll is in bin/.
175     // On non-Windows, libclang.so/.dylib is in lib/.
176     // With a static-library build of libclang, LibClangPath will contain the
177     // path of the embedding binary, which for LLVM binaries will be in bin/.
178     // ../lib gets us to lib/ in both cases.
179     P = llvm::sys::path::parent_path(Dir);
180     llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
181                             CLANG_VERSION_STRING);
182   }
183 
184   return std::string(P.str());
185 }
186 
187 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
188                DiagnosticsEngine &Diags, std::string Title,
189                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
190     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
191       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
192       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
193       DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
194       CCPrintHeaders(false), CCLogDiagnostics(false), CCGenDiagnostics(false),
195       CCPrintProcessStats(false), TargetTriple(TargetTriple), Saver(Alloc),
196       CheckInputsExist(true), GenReproducer(false),
197       SuppressMissingInputWarning(false) {
198   // Provide a sane fallback if no VFS is specified.
199   if (!this->VFS)
200     this->VFS = llvm::vfs::getRealFileSystem();
201 
202   Name = std::string(llvm::sys::path::filename(ClangExecutable));
203   Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
204   InstalledDir = Dir; // Provide a sensible default installed dir.
205 
206   if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
207     // Prepend InstalledDir if SysRoot is relative
208     SmallString<128> P(InstalledDir);
209     llvm::sys::path::append(P, SysRoot);
210     SysRoot = std::string(P);
211   }
212 
213 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
214   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
215 #endif
216 #if defined(CLANG_CONFIG_FILE_USER_DIR)
217   UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
218 #endif
219 
220   // Compute the path to the resource directory.
221   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
222 }
223 
224 void Driver::setDriverMode(StringRef Value) {
225   static const std::string OptName =
226       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
227   if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
228                    .Case("gcc", GCCMode)
229                    .Case("g++", GXXMode)
230                    .Case("cpp", CPPMode)
231                    .Case("cl", CLMode)
232                    .Case("flang", FlangMode)
233                    .Default(None))
234     Mode = *M;
235   else
236     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
237 }
238 
239 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
240                                      bool IsClCompatMode,
241                                      bool &ContainsError) {
242   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
243   ContainsError = false;
244 
245   unsigned IncludedFlagsBitmask;
246   unsigned ExcludedFlagsBitmask;
247   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
248       getIncludeExcludeOptionFlagMasks(IsClCompatMode);
249 
250   // Make sure that Flang-only options don't pollute the Clang output
251   // TODO: Make sure that Clang-only options don't pollute Flang output
252   if (!IsFlangMode())
253     ExcludedFlagsBitmask |= options::FlangOnlyOption;
254 
255   unsigned MissingArgIndex, MissingArgCount;
256   InputArgList Args =
257       getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
258                           IncludedFlagsBitmask, ExcludedFlagsBitmask);
259 
260   // Check for missing argument error.
261   if (MissingArgCount) {
262     Diag(diag::err_drv_missing_argument)
263         << Args.getArgString(MissingArgIndex) << MissingArgCount;
264     ContainsError |=
265         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
266                                  SourceLocation()) > DiagnosticsEngine::Warning;
267   }
268 
269   // Check for unsupported options.
270   for (const Arg *A : Args) {
271     if (A->getOption().hasFlag(options::Unsupported)) {
272       unsigned DiagID;
273       auto ArgString = A->getAsString(Args);
274       std::string Nearest;
275       if (getOpts().findNearest(
276             ArgString, Nearest, IncludedFlagsBitmask,
277             ExcludedFlagsBitmask | options::Unsupported) > 1) {
278         DiagID = diag::err_drv_unsupported_opt;
279         Diag(DiagID) << ArgString;
280       } else {
281         DiagID = diag::err_drv_unsupported_opt_with_suggestion;
282         Diag(DiagID) << ArgString << Nearest;
283       }
284       ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
285                        DiagnosticsEngine::Warning;
286       continue;
287     }
288 
289     // Warn about -mcpu= without an argument.
290     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
291       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
292       ContainsError |= Diags.getDiagnosticLevel(
293                            diag::warn_drv_empty_joined_argument,
294                            SourceLocation()) > DiagnosticsEngine::Warning;
295     }
296   }
297 
298   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
299     unsigned DiagID;
300     auto ArgString = A->getAsString(Args);
301     std::string Nearest;
302     if (getOpts().findNearest(
303           ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
304       DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
305                           : diag::err_drv_unknown_argument;
306       Diags.Report(DiagID) << ArgString;
307     } else {
308       DiagID = IsCLMode()
309                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
310                    : diag::err_drv_unknown_argument_with_suggestion;
311       Diags.Report(DiagID) << ArgString << Nearest;
312     }
313     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
314                      DiagnosticsEngine::Warning;
315   }
316 
317   return Args;
318 }
319 
320 // Determine which compilation mode we are in. We look for options which
321 // affect the phase, starting with the earliest phases, and record which
322 // option we used to determine the final phase.
323 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
324                                  Arg **FinalPhaseArg) const {
325   Arg *PhaseArg = nullptr;
326   phases::ID FinalPhase;
327 
328   // -{E,EP,P,M,MM} only run the preprocessor.
329   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
330       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
331       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
332       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
333       CCGenDiagnostics) {
334     FinalPhase = phases::Preprocess;
335 
336   // --precompile only runs up to precompilation.
337   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
338     FinalPhase = phases::Precompile;
339 
340   // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
341   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
342              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
343              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
344              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
345              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
346              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
347              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
348              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
349              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast)) ||
350              (PhaseArg = DAL.getLastArg(options::OPT_extract_api))) {
351     FinalPhase = phases::Compile;
352 
353   // -S only runs up to the backend.
354   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
355     FinalPhase = phases::Backend;
356 
357   // -c compilation only runs up to the assembler.
358   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
359     FinalPhase = phases::Assemble;
360 
361   } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
362     FinalPhase = phases::IfsMerge;
363 
364   // Otherwise do everything.
365   } else
366     FinalPhase = phases::Link;
367 
368   if (FinalPhaseArg)
369     *FinalPhaseArg = PhaseArg;
370 
371   return FinalPhase;
372 }
373 
374 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
375                          StringRef Value, bool Claim = true) {
376   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
377                    Args.getBaseArgs().MakeIndex(Value), Value.data());
378   Args.AddSynthesizedArg(A);
379   if (Claim)
380     A->claim();
381   return A;
382 }
383 
384 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
385   const llvm::opt::OptTable &Opts = getOpts();
386   DerivedArgList *DAL = new DerivedArgList(Args);
387 
388   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
389   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
390   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
391   bool IgnoreUnused = false;
392   for (Arg *A : Args) {
393     if (IgnoreUnused)
394       A->claim();
395 
396     if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
397       IgnoreUnused = true;
398       continue;
399     }
400     if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
401       IgnoreUnused = false;
402       continue;
403     }
404 
405     // Unfortunately, we have to parse some forwarding options (-Xassembler,
406     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
407     // (assembler and preprocessor), or bypass a previous driver ('collect2').
408 
409     // Rewrite linker options, to replace --no-demangle with a custom internal
410     // option.
411     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
412          A->getOption().matches(options::OPT_Xlinker)) &&
413         A->containsValue("--no-demangle")) {
414       // Add the rewritten no-demangle argument.
415       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
416 
417       // Add the remaining values as Xlinker arguments.
418       for (StringRef Val : A->getValues())
419         if (Val != "--no-demangle")
420           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
421 
422       continue;
423     }
424 
425     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
426     // some build systems. We don't try to be complete here because we don't
427     // care to encourage this usage model.
428     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
429         (A->getValue(0) == StringRef("-MD") ||
430          A->getValue(0) == StringRef("-MMD"))) {
431       // Rewrite to -MD/-MMD along with -MF.
432       if (A->getValue(0) == StringRef("-MD"))
433         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
434       else
435         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
436       if (A->getNumValues() == 2)
437         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
438       continue;
439     }
440 
441     // Rewrite reserved library names.
442     if (A->getOption().matches(options::OPT_l)) {
443       StringRef Value = A->getValue();
444 
445       // Rewrite unless -nostdlib is present.
446       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
447           Value == "stdc++") {
448         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
449         continue;
450       }
451 
452       // Rewrite unconditionally.
453       if (Value == "cc_kext") {
454         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
455         continue;
456       }
457     }
458 
459     // Pick up inputs via the -- option.
460     if (A->getOption().matches(options::OPT__DASH_DASH)) {
461       A->claim();
462       for (StringRef Val : A->getValues())
463         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
464       continue;
465     }
466 
467     DAL->append(A);
468   }
469 
470   // Enforce -static if -miamcu is present.
471   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
472     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
473 
474 // Add a default value of -mlinker-version=, if one was given and the user
475 // didn't specify one.
476 #if defined(HOST_LINK_VERSION)
477   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
478       strlen(HOST_LINK_VERSION) > 0) {
479     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
480                       HOST_LINK_VERSION);
481     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
482   }
483 #endif
484 
485   return DAL;
486 }
487 
488 /// Compute target triple from args.
489 ///
490 /// This routine provides the logic to compute a target triple from various
491 /// args passed to the driver and the default triple string.
492 static llvm::Triple computeTargetTriple(const Driver &D,
493                                         StringRef TargetTriple,
494                                         const ArgList &Args,
495                                         StringRef DarwinArchName = "") {
496   // FIXME: Already done in Compilation *Driver::BuildCompilation
497   if (const Arg *A = Args.getLastArg(options::OPT_target))
498     TargetTriple = A->getValue();
499 
500   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
501 
502   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
503   // -gnu* only, and we can not change this, so we have to detect that case as
504   // being the Hurd OS.
505   if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
506     Target.setOSName("hurd");
507 
508   // Handle Apple-specific options available here.
509   if (Target.isOSBinFormatMachO()) {
510     // If an explicit Darwin arch name is given, that trumps all.
511     if (!DarwinArchName.empty()) {
512       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
513       return Target;
514     }
515 
516     // Handle the Darwin '-arch' flag.
517     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
518       StringRef ArchName = A->getValue();
519       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
520     }
521   }
522 
523   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
524   // '-mbig-endian'/'-EB'.
525   if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
526                                options::OPT_mbig_endian)) {
527     if (A->getOption().matches(options::OPT_mlittle_endian)) {
528       llvm::Triple LE = Target.getLittleEndianArchVariant();
529       if (LE.getArch() != llvm::Triple::UnknownArch)
530         Target = std::move(LE);
531     } else {
532       llvm::Triple BE = Target.getBigEndianArchVariant();
533       if (BE.getArch() != llvm::Triple::UnknownArch)
534         Target = std::move(BE);
535     }
536   }
537 
538   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
539   if (Target.getArch() == llvm::Triple::tce ||
540       Target.getOS() == llvm::Triple::Minix)
541     return Target;
542 
543   // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
544   if (Target.isOSAIX()) {
545     if (Optional<std::string> ObjectModeValue =
546             llvm::sys::Process::GetEnv("OBJECT_MODE")) {
547       StringRef ObjectMode = *ObjectModeValue;
548       llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
549 
550       if (ObjectMode.equals("64")) {
551         AT = Target.get64BitArchVariant().getArch();
552       } else if (ObjectMode.equals("32")) {
553         AT = Target.get32BitArchVariant().getArch();
554       } else {
555         D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
556       }
557 
558       if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
559         Target.setArch(AT);
560     }
561   }
562 
563   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
564   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
565                            options::OPT_m32, options::OPT_m16);
566   if (A) {
567     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
568 
569     if (A->getOption().matches(options::OPT_m64)) {
570       AT = Target.get64BitArchVariant().getArch();
571       if (Target.getEnvironment() == llvm::Triple::GNUX32)
572         Target.setEnvironment(llvm::Triple::GNU);
573       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
574         Target.setEnvironment(llvm::Triple::Musl);
575     } else if (A->getOption().matches(options::OPT_mx32) &&
576                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
577       AT = llvm::Triple::x86_64;
578       if (Target.getEnvironment() == llvm::Triple::Musl)
579         Target.setEnvironment(llvm::Triple::MuslX32);
580       else
581         Target.setEnvironment(llvm::Triple::GNUX32);
582     } else if (A->getOption().matches(options::OPT_m32)) {
583       AT = Target.get32BitArchVariant().getArch();
584       if (Target.getEnvironment() == llvm::Triple::GNUX32)
585         Target.setEnvironment(llvm::Triple::GNU);
586       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
587         Target.setEnvironment(llvm::Triple::Musl);
588     } else if (A->getOption().matches(options::OPT_m16) &&
589                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
590       AT = llvm::Triple::x86;
591       Target.setEnvironment(llvm::Triple::CODE16);
592     }
593 
594     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
595       Target.setArch(AT);
596       if (Target.isWindowsGNUEnvironment())
597         toolchains::MinGW::fixTripleArch(D, Target, Args);
598     }
599   }
600 
601   // Handle -miamcu flag.
602   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
603     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
604       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
605                                                        << Target.str();
606 
607     if (A && !A->getOption().matches(options::OPT_m32))
608       D.Diag(diag::err_drv_argument_not_allowed_with)
609           << "-miamcu" << A->getBaseArg().getAsString(Args);
610 
611     Target.setArch(llvm::Triple::x86);
612     Target.setArchName("i586");
613     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
614     Target.setEnvironmentName("");
615     Target.setOS(llvm::Triple::ELFIAMCU);
616     Target.setVendor(llvm::Triple::UnknownVendor);
617     Target.setVendorName("intel");
618   }
619 
620   // If target is MIPS adjust the target triple
621   // accordingly to provided ABI name.
622   A = Args.getLastArg(options::OPT_mabi_EQ);
623   if (A && Target.isMIPS()) {
624     StringRef ABIName = A->getValue();
625     if (ABIName == "32") {
626       Target = Target.get32BitArchVariant();
627       if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
628           Target.getEnvironment() == llvm::Triple::GNUABIN32)
629         Target.setEnvironment(llvm::Triple::GNU);
630     } else if (ABIName == "n32") {
631       Target = Target.get64BitArchVariant();
632       if (Target.getEnvironment() == llvm::Triple::GNU ||
633           Target.getEnvironment() == llvm::Triple::GNUABI64)
634         Target.setEnvironment(llvm::Triple::GNUABIN32);
635     } else if (ABIName == "64") {
636       Target = Target.get64BitArchVariant();
637       if (Target.getEnvironment() == llvm::Triple::GNU ||
638           Target.getEnvironment() == llvm::Triple::GNUABIN32)
639         Target.setEnvironment(llvm::Triple::GNUABI64);
640     }
641   }
642 
643   // If target is RISC-V adjust the target triple according to
644   // provided architecture name
645   A = Args.getLastArg(options::OPT_march_EQ);
646   if (A && Target.isRISCV()) {
647     StringRef ArchName = A->getValue();
648     if (ArchName.startswith_insensitive("rv32"))
649       Target.setArch(llvm::Triple::riscv32);
650     else if (ArchName.startswith_insensitive("rv64"))
651       Target.setArch(llvm::Triple::riscv64);
652   }
653 
654   return Target;
655 }
656 
657 // Parse the LTO options and record the type of LTO compilation
658 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
659 // option occurs last.
660 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
661                                     OptSpecifier OptEq, OptSpecifier OptNeg) {
662   if (!Args.hasFlag(OptEq, OptNeg, false))
663     return LTOK_None;
664 
665   const Arg *A = Args.getLastArg(OptEq);
666   StringRef LTOName = A->getValue();
667 
668   driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
669                                 .Case("full", LTOK_Full)
670                                 .Case("thin", LTOK_Thin)
671                                 .Default(LTOK_Unknown);
672 
673   if (LTOMode == LTOK_Unknown) {
674     D.Diag(diag::err_drv_unsupported_option_argument)
675         << A->getOption().getName() << A->getValue();
676     return LTOK_None;
677   }
678   return LTOMode;
679 }
680 
681 // Parse the LTO options.
682 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
683   LTOMode =
684       parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
685 
686   OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
687                                 options::OPT_fno_offload_lto);
688 }
689 
690 /// Compute the desired OpenMP runtime from the flags provided.
691 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
692   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
693 
694   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
695   if (A)
696     RuntimeName = A->getValue();
697 
698   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
699                 .Case("libomp", OMPRT_OMP)
700                 .Case("libgomp", OMPRT_GOMP)
701                 .Case("libiomp5", OMPRT_IOMP5)
702                 .Default(OMPRT_Unknown);
703 
704   if (RT == OMPRT_Unknown) {
705     if (A)
706       Diag(diag::err_drv_unsupported_option_argument)
707           << A->getOption().getName() << A->getValue();
708     else
709       // FIXME: We could use a nicer diagnostic here.
710       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
711   }
712 
713   return RT;
714 }
715 
716 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
717                                               InputList &Inputs) {
718 
719   //
720   // CUDA/HIP
721   //
722   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
723   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
724   bool IsCuda =
725       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
726         return types::isCuda(I.first);
727       });
728   bool IsHIP =
729       llvm::any_of(Inputs,
730                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
731                      return types::isHIP(I.first);
732                    }) ||
733       C.getInputArgs().hasArg(options::OPT_hip_link);
734   if (IsCuda && IsHIP) {
735     Diag(clang::diag::err_drv_mix_cuda_hip);
736     return;
737   }
738   if (IsCuda) {
739     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
740     const llvm::Triple &HostTriple = HostTC->getTriple();
741     auto OFK = Action::OFK_Cuda;
742     auto CudaTriple =
743         getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
744     if (!CudaTriple)
745       return;
746     // Use the CUDA and host triples as the key into the ToolChains map,
747     // because the device toolchain we create depends on both.
748     auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
749     if (!CudaTC) {
750       CudaTC = std::make_unique<toolchains::CudaToolChain>(
751           *this, *CudaTriple, *HostTC, C.getInputArgs(), OFK);
752     }
753     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
754   } else if (IsHIP) {
755     if (auto *OMPTargetArg =
756             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
757       Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
758           << OMPTargetArg->getSpelling() << "HIP";
759       return;
760     }
761     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
762     auto OFK = Action::OFK_HIP;
763     auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
764     if (!HIPTriple)
765       return;
766     auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
767                                                 *HostTC, OFK);
768     assert(HIPTC && "Could not create offloading device tool chain.");
769     C.addOffloadDeviceToolChain(HIPTC, OFK);
770   }
771 
772   //
773   // OpenMP
774   //
775   // We need to generate an OpenMP toolchain if the user specified targets with
776   // the -fopenmp-targets option.
777   if (Arg *OpenMPTargets =
778           C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
779     if (OpenMPTargets->getNumValues()) {
780       // We expect that -fopenmp-targets is always used in conjunction with the
781       // option -fopenmp specifying a valid runtime with offloading support,
782       // i.e. libomp or libiomp.
783       bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
784           options::OPT_fopenmp, options::OPT_fopenmp_EQ,
785           options::OPT_fno_openmp, false);
786       if (HasValidOpenMPRuntime) {
787         OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
788         HasValidOpenMPRuntime =
789             OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
790       }
791 
792       if (HasValidOpenMPRuntime) {
793         llvm::StringMap<const char *> FoundNormalizedTriples;
794         for (const char *Val : OpenMPTargets->getValues()) {
795           llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
796           std::string NormalizedName = TT.normalize();
797 
798           // Make sure we don't have a duplicate triple.
799           auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
800           if (Duplicate != FoundNormalizedTriples.end()) {
801             Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
802                 << Val << Duplicate->second;
803             continue;
804           }
805 
806           // Store the current triple so that we can check for duplicates in the
807           // following iterations.
808           FoundNormalizedTriples[NormalizedName] = Val;
809 
810           // If the specified target is invalid, emit a diagnostic.
811           if (TT.getArch() == llvm::Triple::UnknownArch)
812             Diag(clang::diag::err_drv_invalid_omp_target) << Val;
813           else {
814             const ToolChain *TC;
815             // Device toolchains have to be selected differently. They pair host
816             // and device in their implementation.
817             if (TT.isNVPTX() || TT.isAMDGCN()) {
818               const ToolChain *HostTC =
819                   C.getSingleOffloadToolChain<Action::OFK_Host>();
820               assert(HostTC && "Host toolchain should be always defined.");
821               auto &DeviceTC =
822                   ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
823               if (!DeviceTC) {
824                 if (TT.isNVPTX())
825                   DeviceTC = std::make_unique<toolchains::CudaToolChain>(
826                       *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
827                 else if (TT.isAMDGCN())
828                   DeviceTC =
829                       std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
830                           *this, TT, *HostTC, C.getInputArgs());
831                 else
832                   assert(DeviceTC && "Device toolchain not defined.");
833               }
834 
835               TC = DeviceTC.get();
836             } else
837               TC = &getToolChain(C.getInputArgs(), TT);
838             C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
839           }
840         }
841       } else
842         Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
843     } else
844       Diag(clang::diag::warn_drv_empty_joined_argument)
845           << OpenMPTargets->getAsString(C.getInputArgs());
846   }
847 
848   //
849   // TODO: Add support for other offloading programming models here.
850   //
851 }
852 
853 /// Looks the given directories for the specified file.
854 ///
855 /// \param[out] FilePath File path, if the file was found.
856 /// \param[in]  Dirs Directories used for the search.
857 /// \param[in]  FileName Name of the file to search for.
858 /// \return True if file was found.
859 ///
860 /// Looks for file specified by FileName sequentially in directories specified
861 /// by Dirs.
862 ///
863 static bool searchForFile(SmallVectorImpl<char> &FilePath,
864                           ArrayRef<StringRef> Dirs, StringRef FileName) {
865   SmallString<128> WPath;
866   for (const StringRef &Dir : Dirs) {
867     if (Dir.empty())
868       continue;
869     WPath.clear();
870     llvm::sys::path::append(WPath, Dir, FileName);
871     llvm::sys::path::native(WPath);
872     if (llvm::sys::fs::is_regular_file(WPath)) {
873       FilePath = std::move(WPath);
874       return true;
875     }
876   }
877   return false;
878 }
879 
880 bool Driver::readConfigFile(StringRef FileName) {
881   // Try reading the given file.
882   SmallVector<const char *, 32> NewCfgArgs;
883   if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
884     Diag(diag::err_drv_cannot_read_config_file) << FileName;
885     return true;
886   }
887 
888   // Read options from config file.
889   llvm::SmallString<128> CfgFileName(FileName);
890   llvm::sys::path::native(CfgFileName);
891   ConfigFile = std::string(CfgFileName);
892   bool ContainErrors;
893   CfgOptions = std::make_unique<InputArgList>(
894       ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
895   if (ContainErrors) {
896     CfgOptions.reset();
897     return true;
898   }
899 
900   if (CfgOptions->hasArg(options::OPT_config)) {
901     CfgOptions.reset();
902     Diag(diag::err_drv_nested_config_file);
903     return true;
904   }
905 
906   // Claim all arguments that come from a configuration file so that the driver
907   // does not warn on any that is unused.
908   for (Arg *A : *CfgOptions)
909     A->claim();
910   return false;
911 }
912 
913 bool Driver::loadConfigFile() {
914   std::string CfgFileName;
915   bool FileSpecifiedExplicitly = false;
916 
917   // Process options that change search path for config files.
918   if (CLOptions) {
919     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
920       SmallString<128> CfgDir;
921       CfgDir.append(
922           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
923       if (!CfgDir.empty()) {
924         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
925           SystemConfigDir.clear();
926         else
927           SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
928       }
929     }
930     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
931       SmallString<128> CfgDir;
932       CfgDir.append(
933           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
934       if (!CfgDir.empty()) {
935         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
936           UserConfigDir.clear();
937         else
938           UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
939       }
940     }
941   }
942 
943   // First try to find config file specified in command line.
944   if (CLOptions) {
945     std::vector<std::string> ConfigFiles =
946         CLOptions->getAllArgValues(options::OPT_config);
947     if (ConfigFiles.size() > 1) {
948       if (!llvm::all_of(ConfigFiles, [ConfigFiles](const std::string &s) {
949             return s == ConfigFiles[0];
950           })) {
951         Diag(diag::err_drv_duplicate_config);
952         return true;
953       }
954     }
955 
956     if (!ConfigFiles.empty()) {
957       CfgFileName = ConfigFiles.front();
958       assert(!CfgFileName.empty());
959 
960       // If argument contains directory separator, treat it as a path to
961       // configuration file.
962       if (llvm::sys::path::has_parent_path(CfgFileName)) {
963         SmallString<128> CfgFilePath;
964         if (llvm::sys::path::is_relative(CfgFileName))
965           llvm::sys::fs::current_path(CfgFilePath);
966         llvm::sys::path::append(CfgFilePath, CfgFileName);
967         if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
968           Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
969           return true;
970         }
971         return readConfigFile(CfgFilePath);
972       }
973 
974       FileSpecifiedExplicitly = true;
975     }
976   }
977 
978   // If config file is not specified explicitly, try to deduce configuration
979   // from executable name. For instance, an executable 'armv7l-clang' will
980   // search for config file 'armv7l-clang.cfg'.
981   if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
982     CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
983 
984   if (CfgFileName.empty())
985     return false;
986 
987   // Determine architecture part of the file name, if it is present.
988   StringRef CfgFileArch = CfgFileName;
989   size_t ArchPrefixLen = CfgFileArch.find('-');
990   if (ArchPrefixLen == StringRef::npos)
991     ArchPrefixLen = CfgFileArch.size();
992   llvm::Triple CfgTriple;
993   CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
994   CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
995   if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
996     ArchPrefixLen = 0;
997 
998   if (!StringRef(CfgFileName).endswith(".cfg"))
999     CfgFileName += ".cfg";
1000 
1001   // If config file starts with architecture name and command line options
1002   // redefine architecture (with options like -m32 -LE etc), try finding new
1003   // config file with that architecture.
1004   SmallString<128> FixedConfigFile;
1005   size_t FixedArchPrefixLen = 0;
1006   if (ArchPrefixLen) {
1007     // Get architecture name from config file name like 'i386.cfg' or
1008     // 'armv7l-clang.cfg'.
1009     // Check if command line options changes effective triple.
1010     llvm::Triple EffectiveTriple = computeTargetTriple(*this,
1011                                              CfgTriple.getTriple(), *CLOptions);
1012     if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
1013       FixedConfigFile = EffectiveTriple.getArchName();
1014       FixedArchPrefixLen = FixedConfigFile.size();
1015       // Append the rest of original file name so that file name transforms
1016       // like: i386-clang.cfg -> x86_64-clang.cfg.
1017       if (ArchPrefixLen < CfgFileName.size())
1018         FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
1019     }
1020   }
1021 
1022   // Prepare list of directories where config file is searched for.
1023   StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1024 
1025   // Try to find config file. First try file with corrected architecture.
1026   llvm::SmallString<128> CfgFilePath;
1027   if (!FixedConfigFile.empty()) {
1028     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
1029       return readConfigFile(CfgFilePath);
1030     // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
1031     FixedConfigFile.resize(FixedArchPrefixLen);
1032     FixedConfigFile.append(".cfg");
1033     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
1034       return readConfigFile(CfgFilePath);
1035   }
1036 
1037   // Then try original file name.
1038   if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1039     return readConfigFile(CfgFilePath);
1040 
1041   // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
1042   if (!ClangNameParts.ModeSuffix.empty() &&
1043       !ClangNameParts.TargetPrefix.empty()) {
1044     CfgFileName.assign(ClangNameParts.TargetPrefix);
1045     CfgFileName.append(".cfg");
1046     if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1047       return readConfigFile(CfgFilePath);
1048   }
1049 
1050   // Report error but only if config file was specified explicitly, by option
1051   // --config. If it was deduced from executable name, it is not an error.
1052   if (FileSpecifiedExplicitly) {
1053     Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1054     for (const StringRef &SearchDir : CfgFileSearchDirs)
1055       if (!SearchDir.empty())
1056         Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1057     return true;
1058   }
1059 
1060   return false;
1061 }
1062 
1063 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1064   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1065 
1066   // FIXME: Handle environment options which affect driver behavior, somewhere
1067   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1068 
1069   // We look for the driver mode option early, because the mode can affect
1070   // how other options are parsed.
1071 
1072   auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1073   if (!DriverMode.empty())
1074     setDriverMode(DriverMode);
1075 
1076   // FIXME: What are we going to do with -V and -b?
1077 
1078   // Arguments specified in command line.
1079   bool ContainsError;
1080   CLOptions = std::make_unique<InputArgList>(
1081       ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1082 
1083   // Try parsing configuration file.
1084   if (!ContainsError)
1085     ContainsError = loadConfigFile();
1086   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1087 
1088   // All arguments, from both config file and command line.
1089   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1090                                               : std::move(*CLOptions));
1091 
1092   // The args for config files or /clang: flags belong to different InputArgList
1093   // objects than Args. This copies an Arg from one of those other InputArgLists
1094   // to the ownership of Args.
1095   auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1096     unsigned Index = Args.MakeIndex(Opt->getSpelling());
1097     Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
1098                                    Index, BaseArg);
1099     Copy->getValues() = Opt->getValues();
1100     if (Opt->isClaimed())
1101       Copy->claim();
1102     Copy->setOwnsValues(Opt->getOwnsValues());
1103     Opt->setOwnsValues(false);
1104     Args.append(Copy);
1105   };
1106 
1107   if (HasConfigFile)
1108     for (auto *Opt : *CLOptions) {
1109       if (Opt->getOption().matches(options::OPT_config))
1110         continue;
1111       const Arg *BaseArg = &Opt->getBaseArg();
1112       if (BaseArg == Opt)
1113         BaseArg = nullptr;
1114       appendOneArg(Opt, BaseArg);
1115     }
1116 
1117   // In CL mode, look for any pass-through arguments
1118   if (IsCLMode() && !ContainsError) {
1119     SmallVector<const char *, 16> CLModePassThroughArgList;
1120     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1121       A->claim();
1122       CLModePassThroughArgList.push_back(A->getValue());
1123     }
1124 
1125     if (!CLModePassThroughArgList.empty()) {
1126       // Parse any pass through args using default clang processing rather
1127       // than clang-cl processing.
1128       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1129           ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1130 
1131       if (!ContainsError)
1132         for (auto *Opt : *CLModePassThroughOptions) {
1133           appendOneArg(Opt, nullptr);
1134         }
1135     }
1136   }
1137 
1138   // Check for working directory option before accessing any files
1139   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1140     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1141       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1142 
1143   // FIXME: This stuff needs to go into the Compilation, not the driver.
1144   bool CCCPrintPhases;
1145 
1146   // Silence driver warnings if requested
1147   Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1148 
1149   // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1150   Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1151   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1152 
1153   // f(no-)integated-cc1 is also used very early in main.
1154   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1155   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1156 
1157   // Ignore -pipe.
1158   Args.ClaimAllArgs(options::OPT_pipe);
1159 
1160   // Extract -ccc args.
1161   //
1162   // FIXME: We need to figure out where this behavior should live. Most of it
1163   // should be outside in the client; the parts that aren't should have proper
1164   // options, either by introducing new ones or by overloading gcc ones like -V
1165   // or -b.
1166   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1167   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1168   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1169     CCCGenericGCCName = A->getValue();
1170   GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1171                                options::OPT_fno_crash_diagnostics,
1172                                !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1173 
1174   // Process -fproc-stat-report options.
1175   if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1176     CCPrintProcessStats = true;
1177     CCPrintStatReportFilename = A->getValue();
1178   }
1179   if (Args.hasArg(options::OPT_fproc_stat_report))
1180     CCPrintProcessStats = true;
1181 
1182   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1183   // and getToolChain is const.
1184   if (IsCLMode()) {
1185     // clang-cl targets MSVC-style Win32.
1186     llvm::Triple T(TargetTriple);
1187     T.setOS(llvm::Triple::Win32);
1188     T.setVendor(llvm::Triple::PC);
1189     T.setEnvironment(llvm::Triple::MSVC);
1190     T.setObjectFormat(llvm::Triple::COFF);
1191     TargetTriple = T.str();
1192   }
1193   if (const Arg *A = Args.getLastArg(options::OPT_target))
1194     TargetTriple = A->getValue();
1195   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1196     Dir = InstalledDir = A->getValue();
1197   for (const Arg *A : Args.filtered(options::OPT_B)) {
1198     A->claim();
1199     PrefixDirs.push_back(A->getValue(0));
1200   }
1201   if (Optional<std::string> CompilerPathValue =
1202           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1203     StringRef CompilerPath = *CompilerPathValue;
1204     while (!CompilerPath.empty()) {
1205       std::pair<StringRef, StringRef> Split =
1206           CompilerPath.split(llvm::sys::EnvPathSeparator);
1207       PrefixDirs.push_back(std::string(Split.first));
1208       CompilerPath = Split.second;
1209     }
1210   }
1211   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1212     SysRoot = A->getValue();
1213   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1214     DyldPrefix = A->getValue();
1215 
1216   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1217     ResourceDir = A->getValue();
1218 
1219   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1220     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1221                     .Case("cwd", SaveTempsCwd)
1222                     .Case("obj", SaveTempsObj)
1223                     .Default(SaveTempsCwd);
1224   }
1225 
1226   setLTOMode(Args);
1227 
1228   // Process -fembed-bitcode= flags.
1229   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1230     StringRef Name = A->getValue();
1231     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1232         .Case("off", EmbedNone)
1233         .Case("all", EmbedBitcode)
1234         .Case("bitcode", EmbedBitcode)
1235         .Case("marker", EmbedMarker)
1236         .Default(~0U);
1237     if (Model == ~0U) {
1238       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1239                                                 << Name;
1240     } else
1241       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1242   }
1243 
1244   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1245       std::make_unique<InputArgList>(std::move(Args));
1246 
1247   // Perform the default argument translations.
1248   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1249 
1250   // Owned by the host.
1251   const ToolChain &TC = getToolChain(
1252       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1253 
1254   // The compilation takes ownership of Args.
1255   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1256                                    ContainsError);
1257 
1258   if (!HandleImmediateArgs(*C))
1259     return C;
1260 
1261   // Construct the list of inputs.
1262   InputList Inputs;
1263   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1264 
1265   // Populate the tool chains for the offloading devices, if any.
1266   CreateOffloadingDeviceToolChains(*C, Inputs);
1267 
1268   // Construct the list of abstract actions to perform for this compilation. On
1269   // MachO targets this uses the driver-driver and universal actions.
1270   if (TC.getTriple().isOSBinFormatMachO())
1271     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1272   else
1273     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1274 
1275   if (CCCPrintPhases) {
1276     PrintActions(*C);
1277     return C;
1278   }
1279 
1280   BuildJobs(*C);
1281 
1282   return C;
1283 }
1284 
1285 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1286   llvm::opt::ArgStringList ASL;
1287   for (const auto *A : Args) {
1288     // Use user's original spelling of flags. For example, use
1289     // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1290     // wrote the former.
1291     while (A->getAlias())
1292       A = A->getAlias();
1293     A->render(Args, ASL);
1294   }
1295 
1296   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1297     if (I != ASL.begin())
1298       OS << ' ';
1299     llvm::sys::printArg(OS, *I, true);
1300   }
1301   OS << '\n';
1302 }
1303 
1304 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1305                                     SmallString<128> &CrashDiagDir) {
1306   using namespace llvm::sys;
1307   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1308          "Only knows about .crash files on Darwin");
1309 
1310   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1311   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1312   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1313   path::home_directory(CrashDiagDir);
1314   if (CrashDiagDir.startswith("/var/root"))
1315     CrashDiagDir = "/";
1316   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1317   int PID =
1318 #if LLVM_ON_UNIX
1319       getpid();
1320 #else
1321       0;
1322 #endif
1323   std::error_code EC;
1324   fs::file_status FileStatus;
1325   TimePoint<> LastAccessTime;
1326   SmallString<128> CrashFilePath;
1327   // Lookup the .crash files and get the one generated by a subprocess spawned
1328   // by this driver invocation.
1329   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1330        File != FileEnd && !EC; File.increment(EC)) {
1331     StringRef FileName = path::filename(File->path());
1332     if (!FileName.startswith(Name))
1333       continue;
1334     if (fs::status(File->path(), FileStatus))
1335       continue;
1336     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1337         llvm::MemoryBuffer::getFile(File->path());
1338     if (!CrashFile)
1339       continue;
1340     // The first line should start with "Process:", otherwise this isn't a real
1341     // .crash file.
1342     StringRef Data = CrashFile.get()->getBuffer();
1343     if (!Data.startswith("Process:"))
1344       continue;
1345     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1346     size_t ParentProcPos = Data.find("Parent Process:");
1347     if (ParentProcPos == StringRef::npos)
1348       continue;
1349     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1350     if (LineEnd == StringRef::npos)
1351       continue;
1352     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1353     int OpenBracket = -1, CloseBracket = -1;
1354     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1355       if (ParentProcess[i] == '[')
1356         OpenBracket = i;
1357       if (ParentProcess[i] == ']')
1358         CloseBracket = i;
1359     }
1360     // Extract the parent process PID from the .crash file and check whether
1361     // it matches this driver invocation pid.
1362     int CrashPID;
1363     if (OpenBracket < 0 || CloseBracket < 0 ||
1364         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1365             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1366       continue;
1367     }
1368 
1369     // Found a .crash file matching the driver pid. To avoid getting an older
1370     // and misleading crash file, continue looking for the most recent.
1371     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1372     // multiple crashes poiting to the same parent process. Since the driver
1373     // does not collect pid information for the dispatched invocation there's
1374     // currently no way to distinguish among them.
1375     const auto FileAccessTime = FileStatus.getLastModificationTime();
1376     if (FileAccessTime > LastAccessTime) {
1377       CrashFilePath.assign(File->path());
1378       LastAccessTime = FileAccessTime;
1379     }
1380   }
1381 
1382   // If found, copy it over to the location of other reproducer files.
1383   if (!CrashFilePath.empty()) {
1384     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1385     if (EC)
1386       return false;
1387     return true;
1388   }
1389 
1390   return false;
1391 }
1392 
1393 // When clang crashes, produce diagnostic information including the fully
1394 // preprocessed source file(s).  Request that the developer attach the
1395 // diagnostic information to a bug report.
1396 void Driver::generateCompilationDiagnostics(
1397     Compilation &C, const Command &FailingCommand,
1398     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1399   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1400     return;
1401 
1402   // Don't try to generate diagnostics for link or dsymutil jobs.
1403   if (FailingCommand.getCreator().isLinkJob() ||
1404       FailingCommand.getCreator().isDsymutilJob())
1405     return;
1406 
1407   // Print the version of the compiler.
1408   PrintVersion(C, llvm::errs());
1409 
1410   // Suppress driver output and emit preprocessor output to temp file.
1411   CCGenDiagnostics = true;
1412 
1413   // Save the original job command(s).
1414   Command Cmd = FailingCommand;
1415 
1416   // Keep track of whether we produce any errors while trying to produce
1417   // preprocessed sources.
1418   DiagnosticErrorTrap Trap(Diags);
1419 
1420   // Suppress tool output.
1421   C.initCompilationForDiagnostics();
1422 
1423   // Construct the list of inputs.
1424   InputList Inputs;
1425   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1426 
1427   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1428     bool IgnoreInput = false;
1429 
1430     // Ignore input from stdin or any inputs that cannot be preprocessed.
1431     // Check type first as not all linker inputs have a value.
1432     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1433       IgnoreInput = true;
1434     } else if (!strcmp(it->second->getValue(), "-")) {
1435       Diag(clang::diag::note_drv_command_failed_diag_msg)
1436           << "Error generating preprocessed source(s) - "
1437              "ignoring input from stdin.";
1438       IgnoreInput = true;
1439     }
1440 
1441     if (IgnoreInput) {
1442       it = Inputs.erase(it);
1443       ie = Inputs.end();
1444     } else {
1445       ++it;
1446     }
1447   }
1448 
1449   if (Inputs.empty()) {
1450     Diag(clang::diag::note_drv_command_failed_diag_msg)
1451         << "Error generating preprocessed source(s) - "
1452            "no preprocessable inputs.";
1453     return;
1454   }
1455 
1456   // Don't attempt to generate preprocessed files if multiple -arch options are
1457   // used, unless they're all duplicates.
1458   llvm::StringSet<> ArchNames;
1459   for (const Arg *A : C.getArgs()) {
1460     if (A->getOption().matches(options::OPT_arch)) {
1461       StringRef ArchName = A->getValue();
1462       ArchNames.insert(ArchName);
1463     }
1464   }
1465   if (ArchNames.size() > 1) {
1466     Diag(clang::diag::note_drv_command_failed_diag_msg)
1467         << "Error generating preprocessed source(s) - cannot generate "
1468            "preprocessed source with multiple -arch options.";
1469     return;
1470   }
1471 
1472   // Construct the list of abstract actions to perform for this compilation. On
1473   // Darwin OSes this uses the driver-driver and builds universal actions.
1474   const ToolChain &TC = C.getDefaultToolChain();
1475   if (TC.getTriple().isOSBinFormatMachO())
1476     BuildUniversalActions(C, TC, Inputs);
1477   else
1478     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1479 
1480   BuildJobs(C);
1481 
1482   // If there were errors building the compilation, quit now.
1483   if (Trap.hasErrorOccurred()) {
1484     Diag(clang::diag::note_drv_command_failed_diag_msg)
1485         << "Error generating preprocessed source(s).";
1486     return;
1487   }
1488 
1489   // Generate preprocessed output.
1490   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1491   C.ExecuteJobs(C.getJobs(), FailingCommands);
1492 
1493   // If any of the preprocessing commands failed, clean up and exit.
1494   if (!FailingCommands.empty()) {
1495     Diag(clang::diag::note_drv_command_failed_diag_msg)
1496         << "Error generating preprocessed source(s).";
1497     return;
1498   }
1499 
1500   const ArgStringList &TempFiles = C.getTempFiles();
1501   if (TempFiles.empty()) {
1502     Diag(clang::diag::note_drv_command_failed_diag_msg)
1503         << "Error generating preprocessed source(s).";
1504     return;
1505   }
1506 
1507   Diag(clang::diag::note_drv_command_failed_diag_msg)
1508       << "\n********************\n\n"
1509          "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1510          "Preprocessed source(s) and associated run script(s) are located at:";
1511 
1512   SmallString<128> VFS;
1513   SmallString<128> ReproCrashFilename;
1514   for (const char *TempFile : TempFiles) {
1515     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1516     if (Report)
1517       Report->TemporaryFiles.push_back(TempFile);
1518     if (ReproCrashFilename.empty()) {
1519       ReproCrashFilename = TempFile;
1520       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1521     }
1522     if (StringRef(TempFile).endswith(".cache")) {
1523       // In some cases (modules) we'll dump extra data to help with reproducing
1524       // the crash into a directory next to the output.
1525       VFS = llvm::sys::path::filename(TempFile);
1526       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1527     }
1528   }
1529 
1530   // Assume associated files are based off of the first temporary file.
1531   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1532 
1533   llvm::SmallString<128> Script(CrashInfo.Filename);
1534   llvm::sys::path::replace_extension(Script, "sh");
1535   std::error_code EC;
1536   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1537                                 llvm::sys::fs::FA_Write,
1538                                 llvm::sys::fs::OF_Text);
1539   if (EC) {
1540     Diag(clang::diag::note_drv_command_failed_diag_msg)
1541         << "Error generating run script: " << Script << " " << EC.message();
1542   } else {
1543     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1544              << "# Driver args: ";
1545     printArgList(ScriptOS, C.getInputArgs());
1546     ScriptOS << "# Original command: ";
1547     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1548     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1549     if (!AdditionalInformation.empty())
1550       ScriptOS << "\n# Additional information: " << AdditionalInformation
1551                << "\n";
1552     if (Report)
1553       Report->TemporaryFiles.push_back(std::string(Script.str()));
1554     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1555   }
1556 
1557   // On darwin, provide information about the .crash diagnostic report.
1558   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1559     SmallString<128> CrashDiagDir;
1560     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1561       Diag(clang::diag::note_drv_command_failed_diag_msg)
1562           << ReproCrashFilename.str();
1563     } else { // Suggest a directory for the user to look for .crash files.
1564       llvm::sys::path::append(CrashDiagDir, Name);
1565       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1566       Diag(clang::diag::note_drv_command_failed_diag_msg)
1567           << "Crash backtrace is located in";
1568       Diag(clang::diag::note_drv_command_failed_diag_msg)
1569           << CrashDiagDir.str();
1570       Diag(clang::diag::note_drv_command_failed_diag_msg)
1571           << "(choose the .crash file that corresponds to your crash)";
1572     }
1573   }
1574 
1575   for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1576     Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1577 
1578   Diag(clang::diag::note_drv_command_failed_diag_msg)
1579       << "\n\n********************";
1580 }
1581 
1582 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1583   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1584   // capacity if the tool does not support response files, there is a chance/
1585   // that things will just work without a response file, so we silently just
1586   // skip it.
1587   if (Cmd.getResponseFileSupport().ResponseKind ==
1588           ResponseFileSupport::RF_None ||
1589       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1590                                                    Cmd.getArguments()))
1591     return;
1592 
1593   std::string TmpName = GetTemporaryPath("response", "txt");
1594   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1595 }
1596 
1597 int Driver::ExecuteCompilation(
1598     Compilation &C,
1599     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1600   // Just print if -### was present.
1601   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1602     C.getJobs().Print(llvm::errs(), "\n", true);
1603     return 0;
1604   }
1605 
1606   // If there were errors building the compilation, quit now.
1607   if (Diags.hasErrorOccurred())
1608     return 1;
1609 
1610   // Set up response file names for each command, if necessary.
1611   for (auto &Job : C.getJobs())
1612     setUpResponseFiles(C, Job);
1613 
1614   C.ExecuteJobs(C.getJobs(), FailingCommands);
1615 
1616   // If the command succeeded, we are done.
1617   if (FailingCommands.empty())
1618     return 0;
1619 
1620   // Otherwise, remove result files and print extra information about abnormal
1621   // failures.
1622   int Res = 0;
1623   for (const auto &CmdPair : FailingCommands) {
1624     int CommandRes = CmdPair.first;
1625     const Command *FailingCommand = CmdPair.second;
1626 
1627     // Remove result files if we're not saving temps.
1628     if (!isSaveTempsEnabled()) {
1629       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1630       C.CleanupFileMap(C.getResultFiles(), JA, true);
1631 
1632       // Failure result files are valid unless we crashed.
1633       if (CommandRes < 0)
1634         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1635     }
1636 
1637 #if LLVM_ON_UNIX
1638     // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1639     // for SIGPIPE. Do not print diagnostics for this case.
1640     if (CommandRes == EX_IOERR) {
1641       Res = CommandRes;
1642       continue;
1643     }
1644 #endif
1645 
1646     // Print extra information about abnormal failures, if possible.
1647     //
1648     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1649     // status was 1, assume the command failed normally. In particular, if it
1650     // was the compiler then assume it gave a reasonable error code. Failures
1651     // in other tools are less common, and they generally have worse
1652     // diagnostics, so always print the diagnostic there.
1653     const Tool &FailingTool = FailingCommand->getCreator();
1654 
1655     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1656       // FIXME: See FIXME above regarding result code interpretation.
1657       if (CommandRes < 0)
1658         Diag(clang::diag::err_drv_command_signalled)
1659             << FailingTool.getShortName();
1660       else
1661         Diag(clang::diag::err_drv_command_failed)
1662             << FailingTool.getShortName() << CommandRes;
1663     }
1664   }
1665   return Res;
1666 }
1667 
1668 void Driver::PrintHelp(bool ShowHidden) const {
1669   unsigned IncludedFlagsBitmask;
1670   unsigned ExcludedFlagsBitmask;
1671   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1672       getIncludeExcludeOptionFlagMasks(IsCLMode());
1673 
1674   ExcludedFlagsBitmask |= options::NoDriverOption;
1675   if (!ShowHidden)
1676     ExcludedFlagsBitmask |= HelpHidden;
1677 
1678   if (IsFlangMode())
1679     IncludedFlagsBitmask |= options::FlangOption;
1680   else
1681     ExcludedFlagsBitmask |= options::FlangOnlyOption;
1682 
1683   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1684   getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1685                       IncludedFlagsBitmask, ExcludedFlagsBitmask,
1686                       /*ShowAllAliases=*/false);
1687 }
1688 
1689 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1690   if (IsFlangMode()) {
1691     OS << getClangToolFullVersion("flang-new") << '\n';
1692   } else {
1693     // FIXME: The following handlers should use a callback mechanism, we don't
1694     // know what the client would like to do.
1695     OS << getClangFullVersion() << '\n';
1696   }
1697   const ToolChain &TC = C.getDefaultToolChain();
1698   OS << "Target: " << TC.getTripleString() << '\n';
1699 
1700   // Print the threading model.
1701   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1702     // Don't print if the ToolChain would have barfed on it already
1703     if (TC.isThreadModelSupported(A->getValue()))
1704       OS << "Thread model: " << A->getValue();
1705   } else
1706     OS << "Thread model: " << TC.getThreadModel();
1707   OS << '\n';
1708 
1709   // Print out the install directory.
1710   OS << "InstalledDir: " << InstalledDir << '\n';
1711 
1712   // If configuration file was used, print its path.
1713   if (!ConfigFile.empty())
1714     OS << "Configuration file: " << ConfigFile << '\n';
1715 }
1716 
1717 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1718 /// option.
1719 static void PrintDiagnosticCategories(raw_ostream &OS) {
1720   // Skip the empty category.
1721   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1722        ++i)
1723     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1724 }
1725 
1726 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1727   if (PassedFlags == "")
1728     return;
1729   // Print out all options that start with a given argument. This is used for
1730   // shell autocompletion.
1731   std::vector<std::string> SuggestedCompletions;
1732   std::vector<std::string> Flags;
1733 
1734   unsigned int DisableFlags =
1735       options::NoDriverOption | options::Unsupported | options::Ignored;
1736 
1737   // Make sure that Flang-only options don't pollute the Clang output
1738   // TODO: Make sure that Clang-only options don't pollute Flang output
1739   if (!IsFlangMode())
1740     DisableFlags |= options::FlangOnlyOption;
1741 
1742   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1743   // because the latter indicates that the user put space before pushing tab
1744   // which should end up in a file completion.
1745   const bool HasSpace = PassedFlags.endswith(",");
1746 
1747   // Parse PassedFlags by "," as all the command-line flags are passed to this
1748   // function separated by ","
1749   StringRef TargetFlags = PassedFlags;
1750   while (TargetFlags != "") {
1751     StringRef CurFlag;
1752     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1753     Flags.push_back(std::string(CurFlag));
1754   }
1755 
1756   // We want to show cc1-only options only when clang is invoked with -cc1 or
1757   // -Xclang.
1758   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1759     DisableFlags &= ~options::NoDriverOption;
1760 
1761   const llvm::opt::OptTable &Opts = getOpts();
1762   StringRef Cur;
1763   Cur = Flags.at(Flags.size() - 1);
1764   StringRef Prev;
1765   if (Flags.size() >= 2) {
1766     Prev = Flags.at(Flags.size() - 2);
1767     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1768   }
1769 
1770   if (SuggestedCompletions.empty())
1771     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1772 
1773   // If Flags were empty, it means the user typed `clang [tab]` where we should
1774   // list all possible flags. If there was no value completion and the user
1775   // pressed tab after a space, we should fall back to a file completion.
1776   // We're printing a newline to be consistent with what we print at the end of
1777   // this function.
1778   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1779     llvm::outs() << '\n';
1780     return;
1781   }
1782 
1783   // When flag ends with '=' and there was no value completion, return empty
1784   // string and fall back to the file autocompletion.
1785   if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1786     // If the flag is in the form of "--autocomplete=-foo",
1787     // we were requested to print out all option names that start with "-foo".
1788     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1789     SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1790 
1791     // We have to query the -W flags manually as they're not in the OptTable.
1792     // TODO: Find a good way to add them to OptTable instead and them remove
1793     // this code.
1794     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1795       if (S.startswith(Cur))
1796         SuggestedCompletions.push_back(std::string(S));
1797   }
1798 
1799   // Sort the autocomplete candidates so that shells print them out in a
1800   // deterministic order. We could sort in any way, but we chose
1801   // case-insensitive sorting for consistency with the -help option
1802   // which prints out options in the case-insensitive alphabetical order.
1803   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1804     if (int X = A.compare_insensitive(B))
1805       return X < 0;
1806     return A.compare(B) > 0;
1807   });
1808 
1809   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1810 }
1811 
1812 bool Driver::HandleImmediateArgs(const Compilation &C) {
1813   // The order these options are handled in gcc is all over the place, but we
1814   // don't expect inconsistencies w.r.t. that to matter in practice.
1815 
1816   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1817     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1818     return false;
1819   }
1820 
1821   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1822     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1823     // return an answer which matches our definition of __VERSION__.
1824     llvm::outs() << CLANG_VERSION_STRING << "\n";
1825     return false;
1826   }
1827 
1828   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1829     PrintDiagnosticCategories(llvm::outs());
1830     return false;
1831   }
1832 
1833   if (C.getArgs().hasArg(options::OPT_help) ||
1834       C.getArgs().hasArg(options::OPT__help_hidden)) {
1835     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1836     return false;
1837   }
1838 
1839   if (C.getArgs().hasArg(options::OPT__version)) {
1840     // Follow gcc behavior and use stdout for --version and stderr for -v.
1841     PrintVersion(C, llvm::outs());
1842     return false;
1843   }
1844 
1845   if (C.getArgs().hasArg(options::OPT_v) ||
1846       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1847       C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1848     PrintVersion(C, llvm::errs());
1849     SuppressMissingInputWarning = true;
1850   }
1851 
1852   if (C.getArgs().hasArg(options::OPT_v)) {
1853     if (!SystemConfigDir.empty())
1854       llvm::errs() << "System configuration file directory: "
1855                    << SystemConfigDir << "\n";
1856     if (!UserConfigDir.empty())
1857       llvm::errs() << "User configuration file directory: "
1858                    << UserConfigDir << "\n";
1859   }
1860 
1861   const ToolChain &TC = C.getDefaultToolChain();
1862 
1863   if (C.getArgs().hasArg(options::OPT_v))
1864     TC.printVerboseInfo(llvm::errs());
1865 
1866   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1867     llvm::outs() << ResourceDir << '\n';
1868     return false;
1869   }
1870 
1871   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1872     llvm::outs() << "programs: =";
1873     bool separator = false;
1874     // Print -B and COMPILER_PATH.
1875     for (const std::string &Path : PrefixDirs) {
1876       if (separator)
1877         llvm::outs() << llvm::sys::EnvPathSeparator;
1878       llvm::outs() << Path;
1879       separator = true;
1880     }
1881     for (const std::string &Path : TC.getProgramPaths()) {
1882       if (separator)
1883         llvm::outs() << llvm::sys::EnvPathSeparator;
1884       llvm::outs() << Path;
1885       separator = true;
1886     }
1887     llvm::outs() << "\n";
1888     llvm::outs() << "libraries: =" << ResourceDir;
1889 
1890     StringRef sysroot = C.getSysRoot();
1891 
1892     for (const std::string &Path : TC.getFilePaths()) {
1893       // Always print a separator. ResourceDir was the first item shown.
1894       llvm::outs() << llvm::sys::EnvPathSeparator;
1895       // Interpretation of leading '=' is needed only for NetBSD.
1896       if (Path[0] == '=')
1897         llvm::outs() << sysroot << Path.substr(1);
1898       else
1899         llvm::outs() << Path;
1900     }
1901     llvm::outs() << "\n";
1902     return false;
1903   }
1904 
1905   if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
1906     std::string RuntimePath;
1907     // Get the first existing path, if any.
1908     for (auto Path : TC.getRuntimePaths()) {
1909       if (getVFS().exists(Path)) {
1910         RuntimePath = Path;
1911         break;
1912       }
1913     }
1914     if (!RuntimePath.empty())
1915       llvm::outs() << RuntimePath << '\n';
1916     else
1917       llvm::outs() << TC.getCompilerRTPath() << '\n';
1918     return false;
1919   }
1920 
1921   // FIXME: The following handlers should use a callback mechanism, we don't
1922   // know what the client would like to do.
1923   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1924     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1925     return false;
1926   }
1927 
1928   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1929     StringRef ProgName = A->getValue();
1930 
1931     // Null program name cannot have a path.
1932     if (! ProgName.empty())
1933       llvm::outs() << GetProgramPath(ProgName, TC);
1934 
1935     llvm::outs() << "\n";
1936     return false;
1937   }
1938 
1939   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1940     StringRef PassedFlags = A->getValue();
1941     HandleAutocompletions(PassedFlags);
1942     return false;
1943   }
1944 
1945   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1946     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1947     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1948     RegisterEffectiveTriple TripleRAII(TC, Triple);
1949     switch (RLT) {
1950     case ToolChain::RLT_CompilerRT:
1951       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1952       break;
1953     case ToolChain::RLT_Libgcc:
1954       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1955       break;
1956     }
1957     return false;
1958   }
1959 
1960   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1961     for (const Multilib &Multilib : TC.getMultilibs())
1962       llvm::outs() << Multilib << "\n";
1963     return false;
1964   }
1965 
1966   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1967     const Multilib &Multilib = TC.getMultilib();
1968     if (Multilib.gccSuffix().empty())
1969       llvm::outs() << ".\n";
1970     else {
1971       StringRef Suffix(Multilib.gccSuffix());
1972       assert(Suffix.front() == '/');
1973       llvm::outs() << Suffix.substr(1) << "\n";
1974     }
1975     return false;
1976   }
1977 
1978   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1979     llvm::outs() << TC.getTripleString() << "\n";
1980     return false;
1981   }
1982 
1983   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1984     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1985     llvm::outs() << Triple.getTriple() << "\n";
1986     return false;
1987   }
1988 
1989   if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
1990     llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
1991                  << "\n";
1992     return false;
1993   }
1994 
1995   if (C.getArgs().hasArg(options::OPT_print_targets)) {
1996     llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
1997     return false;
1998   }
1999 
2000   return true;
2001 }
2002 
2003 enum {
2004   TopLevelAction = 0,
2005   HeadSibAction = 1,
2006   OtherSibAction = 2,
2007 };
2008 
2009 // Display an action graph human-readably.  Action A is the "sink" node
2010 // and latest-occuring action. Traversal is in pre-order, visiting the
2011 // inputs to each action before printing the action itself.
2012 static unsigned PrintActions1(const Compilation &C, Action *A,
2013                               std::map<Action *, unsigned> &Ids,
2014                               Twine Indent = {}, int Kind = TopLevelAction) {
2015   if (Ids.count(A)) // A was already visited.
2016     return Ids[A];
2017 
2018   std::string str;
2019   llvm::raw_string_ostream os(str);
2020 
2021   auto getSibIndent = [](int K) -> Twine {
2022     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
2023   };
2024 
2025   Twine SibIndent = Indent + getSibIndent(Kind);
2026   int SibKind = HeadSibAction;
2027   os << Action::getClassName(A->getKind()) << ", ";
2028   if (InputAction *IA = dyn_cast<InputAction>(A)) {
2029     os << "\"" << IA->getInputArg().getValue() << "\"";
2030   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2031     os << '"' << BIA->getArchName() << '"' << ", {"
2032        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2033   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2034     bool IsFirst = true;
2035     OA->doOnEachDependence(
2036         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2037           assert(TC && "Unknown host toolchain");
2038           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2039           // sm_35 this will generate:
2040           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2041           // (nvptx64-nvidia-cuda:sm_35) {#ID}
2042           if (!IsFirst)
2043             os << ", ";
2044           os << '"';
2045           os << A->getOffloadingKindPrefix();
2046           os << " (";
2047           os << TC->getTriple().normalize();
2048           if (BoundArch)
2049             os << ":" << BoundArch;
2050           os << ")";
2051           os << '"';
2052           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2053           IsFirst = false;
2054           SibKind = OtherSibAction;
2055         });
2056   } else {
2057     const ActionList *AL = &A->getInputs();
2058 
2059     if (AL->size()) {
2060       const char *Prefix = "{";
2061       for (Action *PreRequisite : *AL) {
2062         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2063         Prefix = ", ";
2064         SibKind = OtherSibAction;
2065       }
2066       os << "}";
2067     } else
2068       os << "{}";
2069   }
2070 
2071   // Append offload info for all options other than the offloading action
2072   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2073   std::string offload_str;
2074   llvm::raw_string_ostream offload_os(offload_str);
2075   if (!isa<OffloadAction>(A)) {
2076     auto S = A->getOffloadingKindPrefix();
2077     if (!S.empty()) {
2078       offload_os << ", (" << S;
2079       if (A->getOffloadingArch())
2080         offload_os << ", " << A->getOffloadingArch();
2081       offload_os << ")";
2082     }
2083   }
2084 
2085   auto getSelfIndent = [](int K) -> Twine {
2086     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2087   };
2088 
2089   unsigned Id = Ids.size();
2090   Ids[A] = Id;
2091   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2092                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2093 
2094   return Id;
2095 }
2096 
2097 // Print the action graphs in a compilation C.
2098 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2099 void Driver::PrintActions(const Compilation &C) const {
2100   std::map<Action *, unsigned> Ids;
2101   for (Action *A : C.getActions())
2102     PrintActions1(C, A, Ids);
2103 }
2104 
2105 /// Check whether the given input tree contains any compilation or
2106 /// assembly actions.
2107 static bool ContainsCompileOrAssembleAction(const Action *A) {
2108   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2109       isa<AssembleJobAction>(A))
2110     return true;
2111 
2112   return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2113 }
2114 
2115 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2116                                    const InputList &BAInputs) const {
2117   DerivedArgList &Args = C.getArgs();
2118   ActionList &Actions = C.getActions();
2119   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2120   // Collect the list of architectures. Duplicates are allowed, but should only
2121   // be handled once (in the order seen).
2122   llvm::StringSet<> ArchNames;
2123   SmallVector<const char *, 4> Archs;
2124   for (Arg *A : Args) {
2125     if (A->getOption().matches(options::OPT_arch)) {
2126       // Validate the option here; we don't save the type here because its
2127       // particular spelling may participate in other driver choices.
2128       llvm::Triple::ArchType Arch =
2129           tools::darwin::getArchTypeForMachOArchName(A->getValue());
2130       if (Arch == llvm::Triple::UnknownArch) {
2131         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2132         continue;
2133       }
2134 
2135       A->claim();
2136       if (ArchNames.insert(A->getValue()).second)
2137         Archs.push_back(A->getValue());
2138     }
2139   }
2140 
2141   // When there is no explicit arch for this platform, make sure we still bind
2142   // the architecture (to the default) so that -Xarch_ is handled correctly.
2143   if (!Archs.size())
2144     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2145 
2146   ActionList SingleActions;
2147   BuildActions(C, Args, BAInputs, SingleActions);
2148 
2149   // Add in arch bindings for every top level action, as well as lipo and
2150   // dsymutil steps if needed.
2151   for (Action* Act : SingleActions) {
2152     // Make sure we can lipo this kind of output. If not (and it is an actual
2153     // output) then we disallow, since we can't create an output file with the
2154     // right name without overwriting it. We could remove this oddity by just
2155     // changing the output names to include the arch, which would also fix
2156     // -save-temps. Compatibility wins for now.
2157 
2158     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2159       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2160           << types::getTypeName(Act->getType());
2161 
2162     ActionList Inputs;
2163     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2164       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2165 
2166     // Lipo if necessary, we do it this way because we need to set the arch flag
2167     // so that -Xarch_ gets overwritten.
2168     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2169       Actions.append(Inputs.begin(), Inputs.end());
2170     else
2171       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2172 
2173     // Handle debug info queries.
2174     Arg *A = Args.getLastArg(options::OPT_g_Group);
2175     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2176                             !A->getOption().matches(options::OPT_gstabs);
2177     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2178         ContainsCompileOrAssembleAction(Actions.back())) {
2179 
2180       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2181       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2182       // because the debug info will refer to a temporary object file which
2183       // will be removed at the end of the compilation process.
2184       if (Act->getType() == types::TY_Image) {
2185         ActionList Inputs;
2186         Inputs.push_back(Actions.back());
2187         Actions.pop_back();
2188         Actions.push_back(
2189             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2190       }
2191 
2192       // Verify the debug info output.
2193       if (Args.hasArg(options::OPT_verify_debug_info)) {
2194         Action* LastAction = Actions.back();
2195         Actions.pop_back();
2196         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2197             LastAction, types::TY_Nothing));
2198       }
2199     }
2200   }
2201 }
2202 
2203 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2204                                     types::ID Ty, bool TypoCorrect) const {
2205   if (!getCheckInputsExist())
2206     return true;
2207 
2208   // stdin always exists.
2209   if (Value == "-")
2210     return true;
2211 
2212   if (getVFS().exists(Value))
2213     return true;
2214 
2215   if (TypoCorrect) {
2216     // Check if the filename is a typo for an option flag. OptTable thinks
2217     // that all args that are not known options and that start with / are
2218     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2219     // the option `/diagnostics:caret` than a reference to a file in the root
2220     // directory.
2221     unsigned IncludedFlagsBitmask;
2222     unsigned ExcludedFlagsBitmask;
2223     std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2224         getIncludeExcludeOptionFlagMasks(IsCLMode());
2225     std::string Nearest;
2226     if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2227                               ExcludedFlagsBitmask) <= 1) {
2228       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2229           << Value << Nearest;
2230       return false;
2231     }
2232   }
2233 
2234   // In CL mode, don't error on apparently non-existent linker inputs, because
2235   // they can be influenced by linker flags the clang driver might not
2236   // understand.
2237   // Examples:
2238   // - `clang-cl main.cc ole32.lib` in a a non-MSVC shell will make the driver
2239   //   module look for an MSVC installation in the registry. (We could ask
2240   //   the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2241   //   look in the registry might move into lld-link in the future so that
2242   //   lld-link invocations in non-MSVC shells just work too.)
2243   // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2244   //   including /libpath:, which is used to find .lib and .obj files.
2245   // So do not diagnose this on the driver level. Rely on the linker diagnosing
2246   // it. (If we don't end up invoking the linker, this means we'll emit a
2247   // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2248   // of an error.)
2249   //
2250   // Only do this skip after the typo correction step above. `/Brepo` is treated
2251   // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2252   // an error if we have a flag that's within an edit distance of 1 from a
2253   // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2254   // driver in the unlikely case they run into this.)
2255   //
2256   // Don't do this for inputs that start with a '/', else we'd pass options
2257   // like /libpath: through to the linker silently.
2258   //
2259   // Emitting an error for linker inputs can also cause incorrect diagnostics
2260   // with the gcc driver. The command
2261   //     clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2262   // will make lld look for some/dir/file.o, while we will diagnose here that
2263   // `/file.o` does not exist. However, configure scripts check if
2264   // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2265   // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2266   // in cc mode. (We can in cl mode because cl.exe itself only warns on
2267   // unknown flags.)
2268   if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/"))
2269     return true;
2270 
2271   Diag(clang::diag::err_drv_no_such_file) << Value;
2272   return false;
2273 }
2274 
2275 // Construct a the list of inputs and their types.
2276 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2277                          InputList &Inputs) const {
2278   const llvm::opt::OptTable &Opts = getOpts();
2279   // Track the current user specified (-x) input. We also explicitly track the
2280   // argument used to set the type; we only want to claim the type when we
2281   // actually use it, so we warn about unused -x arguments.
2282   types::ID InputType = types::TY_Nothing;
2283   Arg *InputTypeArg = nullptr;
2284 
2285   // The last /TC or /TP option sets the input type to C or C++ globally.
2286   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2287                                          options::OPT__SLASH_TP)) {
2288     InputTypeArg = TCTP;
2289     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2290                     ? types::TY_C
2291                     : types::TY_CXX;
2292 
2293     Arg *Previous = nullptr;
2294     bool ShowNote = false;
2295     for (Arg *A :
2296          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2297       if (Previous) {
2298         Diag(clang::diag::warn_drv_overriding_flag_option)
2299           << Previous->getSpelling() << A->getSpelling();
2300         ShowNote = true;
2301       }
2302       Previous = A;
2303     }
2304     if (ShowNote)
2305       Diag(clang::diag::note_drv_t_option_is_global);
2306 
2307     // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2308     assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2309   }
2310 
2311   for (Arg *A : Args) {
2312     if (A->getOption().getKind() == Option::InputClass) {
2313       const char *Value = A->getValue();
2314       types::ID Ty = types::TY_INVALID;
2315 
2316       // Infer the input type if necessary.
2317       if (InputType == types::TY_Nothing) {
2318         // If there was an explicit arg for this, claim it.
2319         if (InputTypeArg)
2320           InputTypeArg->claim();
2321 
2322         // stdin must be handled specially.
2323         if (memcmp(Value, "-", 2) == 0) {
2324           if (IsFlangMode()) {
2325             Ty = types::TY_Fortran;
2326           } else {
2327             // If running with -E, treat as a C input (this changes the
2328             // builtin macros, for example). This may be overridden by -ObjC
2329             // below.
2330             //
2331             // Otherwise emit an error but still use a valid type to avoid
2332             // spurious errors (e.g., no inputs).
2333             assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2334             if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2335               Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2336                               : clang::diag::err_drv_unknown_stdin_type);
2337             Ty = types::TY_C;
2338           }
2339         } else {
2340           // Otherwise lookup by extension.
2341           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2342           // clang-cl /E, or Object otherwise.
2343           // We use a host hook here because Darwin at least has its own
2344           // idea of what .s is.
2345           if (const char *Ext = strrchr(Value, '.'))
2346             Ty = TC.LookupTypeForExtension(Ext + 1);
2347 
2348           if (Ty == types::TY_INVALID) {
2349             if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2350               Ty = types::TY_CXX;
2351             else if (CCCIsCPP() || CCGenDiagnostics)
2352               Ty = types::TY_C;
2353             else
2354               Ty = types::TY_Object;
2355           }
2356 
2357           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2358           // should autodetect some input files as C++ for g++ compatibility.
2359           if (CCCIsCXX()) {
2360             types::ID OldTy = Ty;
2361             Ty = types::lookupCXXTypeForCType(Ty);
2362 
2363             if (Ty != OldTy)
2364               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2365                   << getTypeName(OldTy) << getTypeName(Ty);
2366           }
2367 
2368           // If running with -fthinlto-index=, extensions that normally identify
2369           // native object files actually identify LLVM bitcode files.
2370           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2371               Ty == types::TY_Object)
2372             Ty = types::TY_LLVM_BC;
2373         }
2374 
2375         // -ObjC and -ObjC++ override the default language, but only for "source
2376         // files". We just treat everything that isn't a linker input as a
2377         // source file.
2378         //
2379         // FIXME: Clean this up if we move the phase sequence into the type.
2380         if (Ty != types::TY_Object) {
2381           if (Args.hasArg(options::OPT_ObjC))
2382             Ty = types::TY_ObjC;
2383           else if (Args.hasArg(options::OPT_ObjCXX))
2384             Ty = types::TY_ObjCXX;
2385         }
2386       } else {
2387         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2388         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2389           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2390           // object files.
2391           const char *Ext = strrchr(Value, '.');
2392           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2393             Ty = types::TY_Object;
2394         }
2395         if (Ty == types::TY_INVALID) {
2396           Ty = InputType;
2397           InputTypeArg->claim();
2398         }
2399       }
2400 
2401       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2402         Inputs.push_back(std::make_pair(Ty, A));
2403 
2404     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2405       StringRef Value = A->getValue();
2406       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2407                                  /*TypoCorrect=*/false)) {
2408         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2409         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2410       }
2411       A->claim();
2412     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2413       StringRef Value = A->getValue();
2414       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2415                                  /*TypoCorrect=*/false)) {
2416         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2417         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2418       }
2419       A->claim();
2420     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2421       // Just treat as object type, we could make a special type for this if
2422       // necessary.
2423       Inputs.push_back(std::make_pair(types::TY_Object, A));
2424 
2425     } else if (A->getOption().matches(options::OPT_x)) {
2426       InputTypeArg = A;
2427       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2428       A->claim();
2429 
2430       // Follow gcc behavior and treat as linker input for invalid -x
2431       // options. Its not clear why we shouldn't just revert to unknown; but
2432       // this isn't very important, we might as well be bug compatible.
2433       if (!InputType) {
2434         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2435         InputType = types::TY_Object;
2436       }
2437     } else if (A->getOption().getID() == options::OPT_U) {
2438       assert(A->getNumValues() == 1 && "The /U option has one value.");
2439       StringRef Val = A->getValue(0);
2440       if (Val.find_first_of("/\\") != StringRef::npos) {
2441         // Warn about e.g. "/Users/me/myfile.c".
2442         Diag(diag::warn_slash_u_filename) << Val;
2443         Diag(diag::note_use_dashdash);
2444       }
2445     }
2446   }
2447   if (CCCIsCPP() && Inputs.empty()) {
2448     // If called as standalone preprocessor, stdin is processed
2449     // if no other input is present.
2450     Arg *A = MakeInputArg(Args, Opts, "-");
2451     Inputs.push_back(std::make_pair(types::TY_C, A));
2452   }
2453 }
2454 
2455 namespace {
2456 /// Provides a convenient interface for different programming models to generate
2457 /// the required device actions.
2458 class OffloadingActionBuilder final {
2459   /// Flag used to trace errors in the builder.
2460   bool IsValid = false;
2461 
2462   /// The compilation that is using this builder.
2463   Compilation &C;
2464 
2465   /// Map between an input argument and the offload kinds used to process it.
2466   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2467 
2468   /// Builder interface. It doesn't build anything or keep any state.
2469   class DeviceActionBuilder {
2470   public:
2471     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2472 
2473     enum ActionBuilderReturnCode {
2474       // The builder acted successfully on the current action.
2475       ABRT_Success,
2476       // The builder didn't have to act on the current action.
2477       ABRT_Inactive,
2478       // The builder was successful and requested the host action to not be
2479       // generated.
2480       ABRT_Ignore_Host,
2481     };
2482 
2483   protected:
2484     /// Compilation associated with this builder.
2485     Compilation &C;
2486 
2487     /// Tool chains associated with this builder. The same programming
2488     /// model may have associated one or more tool chains.
2489     SmallVector<const ToolChain *, 2> ToolChains;
2490 
2491     /// The derived arguments associated with this builder.
2492     DerivedArgList &Args;
2493 
2494     /// The inputs associated with this builder.
2495     const Driver::InputList &Inputs;
2496 
2497     /// The associated offload kind.
2498     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2499 
2500   public:
2501     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2502                         const Driver::InputList &Inputs,
2503                         Action::OffloadKind AssociatedOffloadKind)
2504         : C(C), Args(Args), Inputs(Inputs),
2505           AssociatedOffloadKind(AssociatedOffloadKind) {}
2506     virtual ~DeviceActionBuilder() {}
2507 
2508     /// Fill up the array \a DA with all the device dependences that should be
2509     /// added to the provided host action \a HostAction. By default it is
2510     /// inactive.
2511     virtual ActionBuilderReturnCode
2512     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2513                          phases::ID CurPhase, phases::ID FinalPhase,
2514                          PhasesTy &Phases) {
2515       return ABRT_Inactive;
2516     }
2517 
2518     /// Update the state to include the provided host action \a HostAction as a
2519     /// dependency of the current device action. By default it is inactive.
2520     virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2521       return ABRT_Inactive;
2522     }
2523 
2524     /// Append top level actions generated by the builder.
2525     virtual void appendTopLevelActions(ActionList &AL) {}
2526 
2527     /// Append linker device actions generated by the builder.
2528     virtual void appendLinkDeviceActions(ActionList &AL) {}
2529 
2530     /// Append linker host action generated by the builder.
2531     virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2532 
2533     /// Append linker actions generated by the builder.
2534     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2535 
2536     /// Initialize the builder. Return true if any initialization errors are
2537     /// found.
2538     virtual bool initialize() { return false; }
2539 
2540     /// Return true if the builder can use bundling/unbundling.
2541     virtual bool canUseBundlerUnbundler() const { return false; }
2542 
2543     /// Return true if this builder is valid. We have a valid builder if we have
2544     /// associated device tool chains.
2545     bool isValid() { return !ToolChains.empty(); }
2546 
2547     /// Return the associated offload kind.
2548     Action::OffloadKind getAssociatedOffloadKind() {
2549       return AssociatedOffloadKind;
2550     }
2551   };
2552 
2553   /// Base class for CUDA/HIP action builder. It injects device code in
2554   /// the host backend action.
2555   class CudaActionBuilderBase : public DeviceActionBuilder {
2556   protected:
2557     /// Flags to signal if the user requested host-only or device-only
2558     /// compilation.
2559     bool CompileHostOnly = false;
2560     bool CompileDeviceOnly = false;
2561     bool EmitLLVM = false;
2562     bool EmitAsm = false;
2563 
2564     /// ID to identify each device compilation. For CUDA it is simply the
2565     /// GPU arch string. For HIP it is either the GPU arch string or GPU
2566     /// arch string plus feature strings delimited by a plus sign, e.g.
2567     /// gfx906+xnack.
2568     struct TargetID {
2569       /// Target ID string which is persistent throughout the compilation.
2570       const char *ID;
2571       TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2572       TargetID(const char *ID) : ID(ID) {}
2573       operator const char *() { return ID; }
2574       operator StringRef() { return StringRef(ID); }
2575     };
2576     /// List of GPU architectures to use in this compilation.
2577     SmallVector<TargetID, 4> GpuArchList;
2578 
2579     /// The CUDA actions for the current input.
2580     ActionList CudaDeviceActions;
2581 
2582     /// The CUDA fat binary if it was generated for the current input.
2583     Action *CudaFatBinary = nullptr;
2584 
2585     /// Flag that is set to true if this builder acted on the current input.
2586     bool IsActive = false;
2587 
2588     /// Flag for -fgpu-rdc.
2589     bool Relocatable = false;
2590 
2591     /// Default GPU architecture if there's no one specified.
2592     CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2593 
2594     /// Method to generate compilation unit ID specified by option
2595     /// '-fuse-cuid='.
2596     enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2597     UseCUIDKind UseCUID = CUID_Hash;
2598 
2599     /// Compilation unit ID specified by option '-cuid='.
2600     StringRef FixedCUID;
2601 
2602   public:
2603     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2604                           const Driver::InputList &Inputs,
2605                           Action::OffloadKind OFKind)
2606         : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2607 
2608     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2609       // While generating code for CUDA, we only depend on the host input action
2610       // to trigger the creation of all the CUDA device actions.
2611 
2612       // If we are dealing with an input action, replicate it for each GPU
2613       // architecture. If we are in host-only mode we return 'success' so that
2614       // the host uses the CUDA offload kind.
2615       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2616         assert(!GpuArchList.empty() &&
2617                "We should have at least one GPU architecture.");
2618 
2619         // If the host input is not CUDA or HIP, we don't need to bother about
2620         // this input.
2621         if (!(IA->getType() == types::TY_CUDA ||
2622               IA->getType() == types::TY_HIP ||
2623               IA->getType() == types::TY_PP_HIP)) {
2624           // The builder will ignore this input.
2625           IsActive = false;
2626           return ABRT_Inactive;
2627         }
2628 
2629         // Set the flag to true, so that the builder acts on the current input.
2630         IsActive = true;
2631 
2632         if (CompileHostOnly)
2633           return ABRT_Success;
2634 
2635         // Replicate inputs for each GPU architecture.
2636         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2637                                                  : types::TY_CUDA_DEVICE;
2638         std::string CUID = FixedCUID.str();
2639         if (CUID.empty()) {
2640           if (UseCUID == CUID_Random)
2641             CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2642                                    /*LowerCase=*/true);
2643           else if (UseCUID == CUID_Hash) {
2644             llvm::MD5 Hasher;
2645             llvm::MD5::MD5Result Hash;
2646             SmallString<256> RealPath;
2647             llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2648                                      /*expand_tilde=*/true);
2649             Hasher.update(RealPath);
2650             for (auto *A : Args) {
2651               if (A->getOption().matches(options::OPT_INPUT))
2652                 continue;
2653               Hasher.update(A->getAsString(Args));
2654             }
2655             Hasher.final(Hash);
2656             CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2657           }
2658         }
2659         IA->setId(CUID);
2660 
2661         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2662           CudaDeviceActions.push_back(
2663               C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2664         }
2665 
2666         return ABRT_Success;
2667       }
2668 
2669       // If this is an unbundling action use it as is for each CUDA toolchain.
2670       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2671 
2672         // If -fgpu-rdc is disabled, should not unbundle since there is no
2673         // device code to link.
2674         if (UA->getType() == types::TY_Object && !Relocatable)
2675           return ABRT_Inactive;
2676 
2677         CudaDeviceActions.clear();
2678         auto *IA = cast<InputAction>(UA->getInputs().back());
2679         std::string FileName = IA->getInputArg().getAsString(Args);
2680         // Check if the type of the file is the same as the action. Do not
2681         // unbundle it if it is not. Do not unbundle .so files, for example,
2682         // which are not object files.
2683         if (IA->getType() == types::TY_Object &&
2684             (!llvm::sys::path::has_extension(FileName) ||
2685              types::lookupTypeForExtension(
2686                  llvm::sys::path::extension(FileName).drop_front()) !=
2687                  types::TY_Object))
2688           return ABRT_Inactive;
2689 
2690         for (auto Arch : GpuArchList) {
2691           CudaDeviceActions.push_back(UA);
2692           UA->registerDependentActionInfo(ToolChains[0], Arch,
2693                                           AssociatedOffloadKind);
2694         }
2695         return ABRT_Success;
2696       }
2697 
2698       return IsActive ? ABRT_Success : ABRT_Inactive;
2699     }
2700 
2701     void appendTopLevelActions(ActionList &AL) override {
2702       // Utility to append actions to the top level list.
2703       auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2704         OffloadAction::DeviceDependences Dep;
2705         Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2706         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2707       };
2708 
2709       // If we have a fat binary, add it to the list.
2710       if (CudaFatBinary) {
2711         AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
2712         CudaDeviceActions.clear();
2713         CudaFatBinary = nullptr;
2714         return;
2715       }
2716 
2717       if (CudaDeviceActions.empty())
2718         return;
2719 
2720       // If we have CUDA actions at this point, that's because we have a have
2721       // partial compilation, so we should have an action for each GPU
2722       // architecture.
2723       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2724              "Expecting one action per GPU architecture.");
2725       assert(ToolChains.size() == 1 &&
2726              "Expecting to have a single CUDA toolchain.");
2727       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2728         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2729 
2730       CudaDeviceActions.clear();
2731     }
2732 
2733     /// Get canonicalized offload arch option. \returns empty StringRef if the
2734     /// option is invalid.
2735     virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2736 
2737     virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2738     getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2739 
2740     bool initialize() override {
2741       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2742              AssociatedOffloadKind == Action::OFK_HIP);
2743 
2744       // We don't need to support CUDA.
2745       if (AssociatedOffloadKind == Action::OFK_Cuda &&
2746           !C.hasOffloadToolChain<Action::OFK_Cuda>())
2747         return false;
2748 
2749       // We don't need to support HIP.
2750       if (AssociatedOffloadKind == Action::OFK_HIP &&
2751           !C.hasOffloadToolChain<Action::OFK_HIP>())
2752         return false;
2753 
2754       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2755           options::OPT_fno_gpu_rdc, /*Default=*/false);
2756 
2757       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2758       assert(HostTC && "No toolchain for host compilation.");
2759       if (HostTC->getTriple().isNVPTX() ||
2760           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2761         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2762         // an error and abort pipeline construction early so we don't trip
2763         // asserts that assume device-side compilation.
2764         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2765             << HostTC->getTriple().getArchName();
2766         return true;
2767       }
2768 
2769       ToolChains.push_back(
2770           AssociatedOffloadKind == Action::OFK_Cuda
2771               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2772               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2773 
2774       Arg *PartialCompilationArg = Args.getLastArg(
2775           options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2776           options::OPT_cuda_compile_host_device);
2777       CompileHostOnly = PartialCompilationArg &&
2778                         PartialCompilationArg->getOption().matches(
2779                             options::OPT_cuda_host_only);
2780       CompileDeviceOnly = PartialCompilationArg &&
2781                           PartialCompilationArg->getOption().matches(
2782                               options::OPT_cuda_device_only);
2783       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2784       EmitAsm = Args.getLastArg(options::OPT_S);
2785       FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
2786       if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
2787         StringRef UseCUIDStr = A->getValue();
2788         UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
2789                       .Case("hash", CUID_Hash)
2790                       .Case("random", CUID_Random)
2791                       .Case("none", CUID_None)
2792                       .Default(CUID_Invalid);
2793         if (UseCUID == CUID_Invalid) {
2794           C.getDriver().Diag(diag::err_drv_invalid_value)
2795               << A->getAsString(Args) << UseCUIDStr;
2796           C.setContainsError();
2797           return true;
2798         }
2799       }
2800 
2801       // --offload and --offload-arch options are mutually exclusive.
2802       if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
2803           Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
2804                              options::OPT_no_offload_arch_EQ)) {
2805         C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
2806                                                              << "--offload";
2807       }
2808 
2809       // Collect all cuda_gpu_arch parameters, removing duplicates.
2810       std::set<StringRef> GpuArchs;
2811       bool Error = false;
2812       for (Arg *A : Args) {
2813         if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2814               A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2815           continue;
2816         A->claim();
2817 
2818         StringRef ArchStr = A->getValue();
2819         if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2820             ArchStr == "all") {
2821           GpuArchs.clear();
2822           continue;
2823         }
2824         ArchStr = getCanonicalOffloadArch(ArchStr);
2825         if (ArchStr.empty()) {
2826           Error = true;
2827         } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2828           GpuArchs.insert(ArchStr);
2829         else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2830           GpuArchs.erase(ArchStr);
2831         else
2832           llvm_unreachable("Unexpected option.");
2833       }
2834 
2835       auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
2836       if (ConflictingArchs) {
2837         C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
2838             << ConflictingArchs.getValue().first
2839             << ConflictingArchs.getValue().second;
2840         C.setContainsError();
2841         return true;
2842       }
2843 
2844       // Collect list of GPUs remaining in the set.
2845       for (auto Arch : GpuArchs)
2846         GpuArchList.push_back(Arch.data());
2847 
2848       // Default to sm_20 which is the lowest common denominator for
2849       // supported GPUs.  sm_20 code should work correctly, if
2850       // suboptimally, on all newer GPUs.
2851       if (GpuArchList.empty()) {
2852         if (ToolChains.front()->getTriple().isSPIRV())
2853           GpuArchList.push_back(CudaArch::Generic);
2854         else
2855           GpuArchList.push_back(DefaultCudaArch);
2856       }
2857 
2858       return Error;
2859     }
2860   };
2861 
2862   /// \brief CUDA action builder. It injects device code in the host backend
2863   /// action.
2864   class CudaActionBuilder final : public CudaActionBuilderBase {
2865   public:
2866     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2867                       const Driver::InputList &Inputs)
2868         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2869       DefaultCudaArch = CudaArch::SM_35;
2870     }
2871 
2872     StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
2873       CudaArch Arch = StringToCudaArch(ArchStr);
2874       if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
2875         C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2876         return StringRef();
2877       }
2878       return CudaArchToString(Arch);
2879     }
2880 
2881     llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2882     getConflictOffloadArchCombination(
2883         const std::set<StringRef> &GpuArchs) override {
2884       return llvm::None;
2885     }
2886 
2887     ActionBuilderReturnCode
2888     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2889                          phases::ID CurPhase, phases::ID FinalPhase,
2890                          PhasesTy &Phases) override {
2891       if (!IsActive)
2892         return ABRT_Inactive;
2893 
2894       // If we don't have more CUDA actions, we don't have any dependences to
2895       // create for the host.
2896       if (CudaDeviceActions.empty())
2897         return ABRT_Success;
2898 
2899       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2900              "Expecting one action per GPU architecture.");
2901       assert(!CompileHostOnly &&
2902              "Not expecting CUDA actions in host-only compilation.");
2903 
2904       // If we are generating code for the device or we are in a backend phase,
2905       // we attempt to generate the fat binary. We compile each arch to ptx and
2906       // assemble to cubin, then feed the cubin *and* the ptx into a device
2907       // "link" action, which uses fatbinary to combine these cubins into one
2908       // fatbin.  The fatbin is then an input to the host action if not in
2909       // device-only mode.
2910       if (CompileDeviceOnly || CurPhase == phases::Backend) {
2911         ActionList DeviceActions;
2912         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2913           // Produce the device action from the current phase up to the assemble
2914           // phase.
2915           for (auto Ph : Phases) {
2916             // Skip the phases that were already dealt with.
2917             if (Ph < CurPhase)
2918               continue;
2919             // We have to be consistent with the host final phase.
2920             if (Ph > FinalPhase)
2921               break;
2922 
2923             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2924                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2925 
2926             if (Ph == phases::Assemble)
2927               break;
2928           }
2929 
2930           // If we didn't reach the assemble phase, we can't generate the fat
2931           // binary. We don't need to generate the fat binary if we are not in
2932           // device-only mode.
2933           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2934               CompileDeviceOnly)
2935             continue;
2936 
2937           Action *AssembleAction = CudaDeviceActions[I];
2938           assert(AssembleAction->getType() == types::TY_Object);
2939           assert(AssembleAction->getInputs().size() == 1);
2940 
2941           Action *BackendAction = AssembleAction->getInputs()[0];
2942           assert(BackendAction->getType() == types::TY_PP_Asm);
2943 
2944           for (auto &A : {AssembleAction, BackendAction}) {
2945             OffloadAction::DeviceDependences DDep;
2946             DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
2947             DeviceActions.push_back(
2948                 C.MakeAction<OffloadAction>(DDep, A->getType()));
2949           }
2950         }
2951 
2952         // We generate the fat binary if we have device input actions.
2953         if (!DeviceActions.empty()) {
2954           CudaFatBinary =
2955               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2956 
2957           if (!CompileDeviceOnly) {
2958             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2959                    Action::OFK_Cuda);
2960             // Clear the fat binary, it is already a dependence to an host
2961             // action.
2962             CudaFatBinary = nullptr;
2963           }
2964 
2965           // Remove the CUDA actions as they are already connected to an host
2966           // action or fat binary.
2967           CudaDeviceActions.clear();
2968         }
2969 
2970         // We avoid creating host action in device-only mode.
2971         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2972       } else if (CurPhase > phases::Backend) {
2973         // If we are past the backend phase and still have a device action, we
2974         // don't have to do anything as this action is already a device
2975         // top-level action.
2976         return ABRT_Success;
2977       }
2978 
2979       assert(CurPhase < phases::Backend && "Generating single CUDA "
2980                                            "instructions should only occur "
2981                                            "before the backend phase!");
2982 
2983       // By default, we produce an action for each device arch.
2984       for (Action *&A : CudaDeviceActions)
2985         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2986 
2987       return ABRT_Success;
2988     }
2989   };
2990   /// \brief HIP action builder. It injects device code in the host backend
2991   /// action.
2992   class HIPActionBuilder final : public CudaActionBuilderBase {
2993     /// The linker inputs obtained for each device arch.
2994     SmallVector<ActionList, 8> DeviceLinkerInputs;
2995     // The default bundling behavior depends on the type of output, therefore
2996     // BundleOutput needs to be tri-value: None, true, or false.
2997     // Bundle code objects except --no-gpu-output is specified for device
2998     // only compilation. Bundle other type of output files only if
2999     // --gpu-bundle-output is specified for device only compilation.
3000     Optional<bool> BundleOutput;
3001 
3002   public:
3003     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3004                      const Driver::InputList &Inputs)
3005         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3006       DefaultCudaArch = CudaArch::GFX803;
3007       if (Args.hasArg(options::OPT_gpu_bundle_output,
3008                       options::OPT_no_gpu_bundle_output))
3009         BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3010                                     options::OPT_no_gpu_bundle_output);
3011     }
3012 
3013     bool canUseBundlerUnbundler() const override { return true; }
3014 
3015     StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3016       llvm::StringMap<bool> Features;
3017       // getHIPOffloadTargetTriple() is known to return valid value as it has
3018       // been called successfully in the CreateOffloadingDeviceToolChains().
3019       auto ArchStr = parseTargetID(
3020           *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3021           &Features);
3022       if (!ArchStr) {
3023         C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3024         C.setContainsError();
3025         return StringRef();
3026       }
3027       auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
3028       return Args.MakeArgStringRef(CanId);
3029     };
3030 
3031     llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
3032     getConflictOffloadArchCombination(
3033         const std::set<StringRef> &GpuArchs) override {
3034       return getConflictTargetIDCombination(GpuArchs);
3035     }
3036 
3037     ActionBuilderReturnCode
3038     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3039                          phases::ID CurPhase, phases::ID FinalPhase,
3040                          PhasesTy &Phases) override {
3041       // amdgcn does not support linking of object files, therefore we skip
3042       // backend and assemble phases to output LLVM IR. Except for generating
3043       // non-relocatable device coee, where we generate fat binary for device
3044       // code and pass to host in Backend phase.
3045       if (CudaDeviceActions.empty())
3046         return ABRT_Success;
3047 
3048       assert(((CurPhase == phases::Link && Relocatable) ||
3049               CudaDeviceActions.size() == GpuArchList.size()) &&
3050              "Expecting one action per GPU architecture.");
3051       assert(!CompileHostOnly &&
3052              "Not expecting CUDA actions in host-only compilation.");
3053 
3054       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3055           !EmitAsm) {
3056         // If we are in backend phase, we attempt to generate the fat binary.
3057         // We compile each arch to IR and use a link action to generate code
3058         // object containing ISA. Then we use a special "link" action to create
3059         // a fat binary containing all the code objects for different GPU's.
3060         // The fat binary is then an input to the host action.
3061         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3062           if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3063             // When LTO is enabled, skip the backend and assemble phases and
3064             // use lld to link the bitcode.
3065             ActionList AL;
3066             AL.push_back(CudaDeviceActions[I]);
3067             // Create a link action to link device IR with device library
3068             // and generate ISA.
3069             CudaDeviceActions[I] =
3070                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3071           } else {
3072             // When LTO is not enabled, we follow the conventional
3073             // compiler phases, including backend and assemble phases.
3074             ActionList AL;
3075             Action *BackendAction = nullptr;
3076             if (ToolChains.front()->getTriple().isSPIRV()) {
3077               // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3078               // (HIPSPVToolChain) runs post-link LLVM IR passes.
3079               types::ID Output = Args.hasArg(options::OPT_S)
3080                                      ? types::TY_LLVM_IR
3081                                      : types::TY_LLVM_BC;
3082               BackendAction =
3083                   C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3084             } else
3085               BackendAction = C.getDriver().ConstructPhaseAction(
3086                   C, Args, phases::Backend, CudaDeviceActions[I],
3087                   AssociatedOffloadKind);
3088             auto AssembleAction = C.getDriver().ConstructPhaseAction(
3089                 C, Args, phases::Assemble, BackendAction,
3090                 AssociatedOffloadKind);
3091             AL.push_back(AssembleAction);
3092             // Create a link action to link device IR with device library
3093             // and generate ISA.
3094             CudaDeviceActions[I] =
3095                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3096           }
3097 
3098           // OffloadingActionBuilder propagates device arch until an offload
3099           // action. Since the next action for creating fatbin does
3100           // not have device arch, whereas the above link action and its input
3101           // have device arch, an offload action is needed to stop the null
3102           // device arch of the next action being propagated to the above link
3103           // action.
3104           OffloadAction::DeviceDependences DDep;
3105           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3106                    AssociatedOffloadKind);
3107           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3108               DDep, CudaDeviceActions[I]->getType());
3109         }
3110 
3111         if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
3112             BundleOutput.getValue()) {
3113           // Create HIP fat binary with a special "link" action.
3114           CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3115                                                       types::TY_HIP_FATBIN);
3116 
3117           if (!CompileDeviceOnly) {
3118             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3119                    AssociatedOffloadKind);
3120             // Clear the fat binary, it is already a dependence to an host
3121             // action.
3122             CudaFatBinary = nullptr;
3123           }
3124 
3125           // Remove the CUDA actions as they are already connected to an host
3126           // action or fat binary.
3127           CudaDeviceActions.clear();
3128         }
3129 
3130         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3131       } else if (CurPhase == phases::Link) {
3132         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3133         // This happens to each device action originated from each input file.
3134         // Later on, device actions in DeviceLinkerInputs are used to create
3135         // device link actions in appendLinkDependences and the created device
3136         // link actions are passed to the offload action as device dependence.
3137         DeviceLinkerInputs.resize(CudaDeviceActions.size());
3138         auto LI = DeviceLinkerInputs.begin();
3139         for (auto *A : CudaDeviceActions) {
3140           LI->push_back(A);
3141           ++LI;
3142         }
3143 
3144         // We will pass the device action as a host dependence, so we don't
3145         // need to do anything else with them.
3146         CudaDeviceActions.clear();
3147         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3148       }
3149 
3150       // By default, we produce an action for each device arch.
3151       for (Action *&A : CudaDeviceActions)
3152         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3153                                                AssociatedOffloadKind);
3154 
3155       if (CompileDeviceOnly && CurPhase == FinalPhase &&
3156           BundleOutput.hasValue() && BundleOutput.getValue()) {
3157         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3158           OffloadAction::DeviceDependences DDep;
3159           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3160                    AssociatedOffloadKind);
3161           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3162               DDep, CudaDeviceActions[I]->getType());
3163         }
3164         CudaFatBinary =
3165             C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3166         CudaDeviceActions.clear();
3167       }
3168 
3169       return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3170                                                            : ABRT_Success;
3171     }
3172 
3173     void appendLinkDeviceActions(ActionList &AL) override {
3174       if (DeviceLinkerInputs.size() == 0)
3175         return;
3176 
3177       assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3178              "Linker inputs and GPU arch list sizes do not match.");
3179 
3180       ActionList Actions;
3181       // Append a new link action for each device.
3182       unsigned I = 0;
3183       for (auto &LI : DeviceLinkerInputs) {
3184         // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3185         auto *DeviceLinkAction =
3186             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3187         // Linking all inputs for the current GPU arch.
3188         // LI contains all the inputs for the linker.
3189         OffloadAction::DeviceDependences DeviceLinkDeps;
3190         DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3191             GpuArchList[I], AssociatedOffloadKind);
3192         Actions.push_back(C.MakeAction<OffloadAction>(
3193             DeviceLinkDeps, DeviceLinkAction->getType()));
3194         ++I;
3195       }
3196       DeviceLinkerInputs.clear();
3197 
3198       // Create a host object from all the device images by embedding them
3199       // in a fat binary for mixed host-device compilation. For device-only
3200       // compilation, creates a fat binary.
3201       OffloadAction::DeviceDependences DDeps;
3202       if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
3203           BundleOutput.getValue()) {
3204         auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3205             Actions,
3206             CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3207         DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3208                   AssociatedOffloadKind);
3209         // Offload the host object to the host linker.
3210         AL.push_back(
3211             C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3212       } else {
3213         AL.append(Actions);
3214       }
3215     }
3216 
3217     Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3218 
3219     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3220   };
3221 
3222   /// OpenMP action builder. The host bitcode is passed to the device frontend
3223   /// and all the device linked images are passed to the host link phase.
3224   class OpenMPActionBuilder final : public DeviceActionBuilder {
3225     /// The OpenMP actions for the current input.
3226     ActionList OpenMPDeviceActions;
3227 
3228     /// The linker inputs obtained for each toolchain.
3229     SmallVector<ActionList, 8> DeviceLinkerInputs;
3230 
3231   public:
3232     OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
3233                         const Driver::InputList &Inputs)
3234         : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
3235 
3236     ActionBuilderReturnCode
3237     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3238                          phases::ID CurPhase, phases::ID FinalPhase,
3239                          PhasesTy &Phases) override {
3240       if (OpenMPDeviceActions.empty())
3241         return ABRT_Inactive;
3242 
3243       // We should always have an action for each input.
3244       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3245              "Number of OpenMP actions and toolchains do not match.");
3246 
3247       // The host only depends on device action in the linking phase, when all
3248       // the device images have to be embedded in the host image.
3249       if (CurPhase == phases::Link) {
3250         assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3251                "Toolchains and linker inputs sizes do not match.");
3252         auto LI = DeviceLinkerInputs.begin();
3253         for (auto *A : OpenMPDeviceActions) {
3254           LI->push_back(A);
3255           ++LI;
3256         }
3257 
3258         // We passed the device action as a host dependence, so we don't need to
3259         // do anything else with them.
3260         OpenMPDeviceActions.clear();
3261         return ABRT_Success;
3262       }
3263 
3264       // By default, we produce an action for each device arch.
3265       for (Action *&A : OpenMPDeviceActions)
3266         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3267 
3268       return ABRT_Success;
3269     }
3270 
3271     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
3272 
3273       // If this is an input action replicate it for each OpenMP toolchain.
3274       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3275         OpenMPDeviceActions.clear();
3276         for (unsigned I = 0; I < ToolChains.size(); ++I)
3277           OpenMPDeviceActions.push_back(
3278               C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
3279         return ABRT_Success;
3280       }
3281 
3282       // If this is an unbundling action use it as is for each OpenMP toolchain.
3283       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3284         OpenMPDeviceActions.clear();
3285         auto *IA = cast<InputAction>(UA->getInputs().back());
3286         std::string FileName = IA->getInputArg().getAsString(Args);
3287         // Check if the type of the file is the same as the action. Do not
3288         // unbundle it if it is not. Do not unbundle .so files, for example,
3289         // which are not object files.
3290         if (IA->getType() == types::TY_Object &&
3291             (!llvm::sys::path::has_extension(FileName) ||
3292              types::lookupTypeForExtension(
3293                  llvm::sys::path::extension(FileName).drop_front()) !=
3294                  types::TY_Object))
3295           return ABRT_Inactive;
3296         for (unsigned I = 0; I < ToolChains.size(); ++I) {
3297           OpenMPDeviceActions.push_back(UA);
3298           UA->registerDependentActionInfo(
3299               ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3300         }
3301         return ABRT_Success;
3302       }
3303 
3304       // When generating code for OpenMP we use the host compile phase result as
3305       // a dependence to the device compile phase so that it can learn what
3306       // declarations should be emitted. However, this is not the only use for
3307       // the host action, so we prevent it from being collapsed.
3308       if (isa<CompileJobAction>(HostAction)) {
3309         HostAction->setCannotBeCollapsedWithNextDependentAction();
3310         assert(ToolChains.size() == OpenMPDeviceActions.size() &&
3311                "Toolchains and device action sizes do not match.");
3312         OffloadAction::HostDependence HDep(
3313             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3314             /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3315         auto TC = ToolChains.begin();
3316         for (Action *&A : OpenMPDeviceActions) {
3317           assert(isa<CompileJobAction>(A));
3318           OffloadAction::DeviceDependences DDep;
3319           DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3320           A = C.MakeAction<OffloadAction>(HDep, DDep);
3321           ++TC;
3322         }
3323       }
3324       return ABRT_Success;
3325     }
3326 
3327     void appendTopLevelActions(ActionList &AL) override {
3328       if (OpenMPDeviceActions.empty())
3329         return;
3330 
3331       // We should always have an action for each input.
3332       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3333              "Number of OpenMP actions and toolchains do not match.");
3334 
3335       // Append all device actions followed by the proper offload action.
3336       auto TI = ToolChains.begin();
3337       for (auto *A : OpenMPDeviceActions) {
3338         OffloadAction::DeviceDependences Dep;
3339         Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3340         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3341         ++TI;
3342       }
3343       // We no longer need the action stored in this builder.
3344       OpenMPDeviceActions.clear();
3345     }
3346 
3347     void appendLinkDeviceActions(ActionList &AL) override {
3348       assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3349              "Toolchains and linker inputs sizes do not match.");
3350 
3351       // Append a new link action for each device.
3352       auto TC = ToolChains.begin();
3353       for (auto &LI : DeviceLinkerInputs) {
3354         auto *DeviceLinkAction =
3355             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3356         OffloadAction::DeviceDependences DeviceLinkDeps;
3357         DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3358 		        Action::OFK_OpenMP);
3359         AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3360             DeviceLinkAction->getType()));
3361         ++TC;
3362       }
3363       DeviceLinkerInputs.clear();
3364     }
3365 
3366     Action* appendLinkHostActions(ActionList &AL) override {
3367       // Create wrapper bitcode from the result of device link actions and compile
3368       // it to an object which will be added to the host link command.
3369       auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3370       auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3371       return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3372     }
3373 
3374     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3375 
3376     bool initialize() override {
3377       // Get the OpenMP toolchains. If we don't get any, the action builder will
3378       // know there is nothing to do related to OpenMP offloading.
3379       auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3380       for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3381            ++TI)
3382         ToolChains.push_back(TI->second);
3383 
3384       DeviceLinkerInputs.resize(ToolChains.size());
3385       return false;
3386     }
3387 
3388     bool canUseBundlerUnbundler() const override {
3389       // OpenMP should use bundled files whenever possible.
3390       return true;
3391     }
3392   };
3393 
3394   ///
3395   /// TODO: Add the implementation for other specialized builders here.
3396   ///
3397 
3398   /// Specialized builders being used by this offloading action builder.
3399   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3400 
3401   /// Flag set to true if all valid builders allow file bundling/unbundling.
3402   bool CanUseBundler;
3403 
3404 public:
3405   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3406                           const Driver::InputList &Inputs)
3407       : C(C) {
3408     // Create a specialized builder for each device toolchain.
3409 
3410     IsValid = true;
3411 
3412     // Create a specialized builder for CUDA.
3413     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3414 
3415     // Create a specialized builder for HIP.
3416     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3417 
3418     // Create a specialized builder for OpenMP.
3419     SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3420 
3421     //
3422     // TODO: Build other specialized builders here.
3423     //
3424 
3425     // Initialize all the builders, keeping track of errors. If all valid
3426     // builders agree that we can use bundling, set the flag to true.
3427     unsigned ValidBuilders = 0u;
3428     unsigned ValidBuildersSupportingBundling = 0u;
3429     for (auto *SB : SpecializedBuilders) {
3430       IsValid = IsValid && !SB->initialize();
3431 
3432       // Update the counters if the builder is valid.
3433       if (SB->isValid()) {
3434         ++ValidBuilders;
3435         if (SB->canUseBundlerUnbundler())
3436           ++ValidBuildersSupportingBundling;
3437       }
3438     }
3439     CanUseBundler =
3440         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3441   }
3442 
3443   ~OffloadingActionBuilder() {
3444     for (auto *SB : SpecializedBuilders)
3445       delete SB;
3446   }
3447 
3448   /// Generate an action that adds device dependences (if any) to a host action.
3449   /// If no device dependence actions exist, just return the host action \a
3450   /// HostAction. If an error is found or if no builder requires the host action
3451   /// to be generated, return nullptr.
3452   Action *
3453   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3454                                    phases::ID CurPhase, phases::ID FinalPhase,
3455                                    DeviceActionBuilder::PhasesTy &Phases) {
3456     if (!IsValid)
3457       return nullptr;
3458 
3459     if (SpecializedBuilders.empty())
3460       return HostAction;
3461 
3462     assert(HostAction && "Invalid host action!");
3463 
3464     OffloadAction::DeviceDependences DDeps;
3465     // Check if all the programming models agree we should not emit the host
3466     // action. Also, keep track of the offloading kinds employed.
3467     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3468     unsigned InactiveBuilders = 0u;
3469     unsigned IgnoringBuilders = 0u;
3470     for (auto *SB : SpecializedBuilders) {
3471       if (!SB->isValid()) {
3472         ++InactiveBuilders;
3473         continue;
3474       }
3475 
3476       auto RetCode =
3477           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3478 
3479       // If the builder explicitly says the host action should be ignored,
3480       // we need to increment the variable that tracks the builders that request
3481       // the host object to be ignored.
3482       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3483         ++IgnoringBuilders;
3484 
3485       // Unless the builder was inactive for this action, we have to record the
3486       // offload kind because the host will have to use it.
3487       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3488         OffloadKind |= SB->getAssociatedOffloadKind();
3489     }
3490 
3491     // If all builders agree that the host object should be ignored, just return
3492     // nullptr.
3493     if (IgnoringBuilders &&
3494         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3495       return nullptr;
3496 
3497     if (DDeps.getActions().empty())
3498       return HostAction;
3499 
3500     // We have dependences we need to bundle together. We use an offload action
3501     // for that.
3502     OffloadAction::HostDependence HDep(
3503         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3504         /*BoundArch=*/nullptr, DDeps);
3505     return C.MakeAction<OffloadAction>(HDep, DDeps);
3506   }
3507 
3508   /// Generate an action that adds a host dependence to a device action. The
3509   /// results will be kept in this action builder. Return true if an error was
3510   /// found.
3511   bool addHostDependenceToDeviceActions(Action *&HostAction,
3512                                         const Arg *InputArg) {
3513     if (!IsValid)
3514       return true;
3515 
3516     // If we are supporting bundling/unbundling and the current action is an
3517     // input action of non-source file, we replace the host action by the
3518     // unbundling action. The bundler tool has the logic to detect if an input
3519     // is a bundle or not and if the input is not a bundle it assumes it is a
3520     // host file. Therefore it is safe to create an unbundling action even if
3521     // the input is not a bundle.
3522     if (CanUseBundler && isa<InputAction>(HostAction) &&
3523         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3524         (!types::isSrcFile(HostAction->getType()) ||
3525          HostAction->getType() == types::TY_PP_HIP)) {
3526       auto UnbundlingHostAction =
3527           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3528       UnbundlingHostAction->registerDependentActionInfo(
3529           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3530           /*BoundArch=*/StringRef(), Action::OFK_Host);
3531       HostAction = UnbundlingHostAction;
3532     }
3533 
3534     assert(HostAction && "Invalid host action!");
3535 
3536     // Register the offload kinds that are used.
3537     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3538     for (auto *SB : SpecializedBuilders) {
3539       if (!SB->isValid())
3540         continue;
3541 
3542       auto RetCode = SB->addDeviceDepences(HostAction);
3543 
3544       // Host dependences for device actions are not compatible with that same
3545       // action being ignored.
3546       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3547              "Host dependence not expected to be ignored.!");
3548 
3549       // Unless the builder was inactive for this action, we have to record the
3550       // offload kind because the host will have to use it.
3551       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3552         OffloadKind |= SB->getAssociatedOffloadKind();
3553     }
3554 
3555     // Do not use unbundler if the Host does not depend on device action.
3556     if (OffloadKind == Action::OFK_None && CanUseBundler)
3557       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3558         HostAction = UA->getInputs().back();
3559 
3560     return false;
3561   }
3562 
3563   /// Add the offloading top level actions to the provided action list. This
3564   /// function can replace the host action by a bundling action if the
3565   /// programming models allow it.
3566   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3567                              const Arg *InputArg) {
3568     // Get the device actions to be appended.
3569     ActionList OffloadAL;
3570     for (auto *SB : SpecializedBuilders) {
3571       if (!SB->isValid())
3572         continue;
3573       SB->appendTopLevelActions(OffloadAL);
3574     }
3575 
3576     // If we can use the bundler, replace the host action by the bundling one in
3577     // the resulting list. Otherwise, just append the device actions. For
3578     // device only compilation, HostAction is a null pointer, therefore only do
3579     // this when HostAction is not a null pointer.
3580     if (CanUseBundler && HostAction &&
3581         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3582       // Add the host action to the list in order to create the bundling action.
3583       OffloadAL.push_back(HostAction);
3584 
3585       // We expect that the host action was just appended to the action list
3586       // before this method was called.
3587       assert(HostAction == AL.back() && "Host action not in the list??");
3588       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3589       AL.back() = HostAction;
3590     } else
3591       AL.append(OffloadAL.begin(), OffloadAL.end());
3592 
3593     // Propagate to the current host action (if any) the offload information
3594     // associated with the current input.
3595     if (HostAction)
3596       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3597                                            /*BoundArch=*/nullptr);
3598     return false;
3599   }
3600 
3601   void appendDeviceLinkActions(ActionList &AL) {
3602     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3603       if (!SB->isValid())
3604         continue;
3605       SB->appendLinkDeviceActions(AL);
3606     }
3607   }
3608 
3609   Action *makeHostLinkAction() {
3610     // Build a list of device linking actions.
3611     ActionList DeviceAL;
3612     appendDeviceLinkActions(DeviceAL);
3613     if (DeviceAL.empty())
3614       return nullptr;
3615 
3616     // Let builders add host linking actions.
3617     Action* HA = nullptr;
3618     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3619       if (!SB->isValid())
3620         continue;
3621       HA = SB->appendLinkHostActions(DeviceAL);
3622     }
3623     return HA;
3624   }
3625 
3626   /// Processes the host linker action. This currently consists of replacing it
3627   /// with an offload action if there are device link objects and propagate to
3628   /// the host action all the offload kinds used in the current compilation. The
3629   /// resulting action is returned.
3630   Action *processHostLinkAction(Action *HostAction) {
3631     // Add all the dependences from the device linking actions.
3632     OffloadAction::DeviceDependences DDeps;
3633     for (auto *SB : SpecializedBuilders) {
3634       if (!SB->isValid())
3635         continue;
3636 
3637       SB->appendLinkDependences(DDeps);
3638     }
3639 
3640     // Calculate all the offload kinds used in the current compilation.
3641     unsigned ActiveOffloadKinds = 0u;
3642     for (auto &I : InputArgToOffloadKindMap)
3643       ActiveOffloadKinds |= I.second;
3644 
3645     // If we don't have device dependencies, we don't have to create an offload
3646     // action.
3647     if (DDeps.getActions().empty()) {
3648       // Propagate all the active kinds to host action. Given that it is a link
3649       // action it is assumed to depend on all actions generated so far.
3650       HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3651                                            /*BoundArch=*/nullptr);
3652       return HostAction;
3653     }
3654 
3655     // Create the offload action with all dependences. When an offload action
3656     // is created the kinds are propagated to the host action, so we don't have
3657     // to do that explicitly here.
3658     OffloadAction::HostDependence HDep(
3659         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3660         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3661     return C.MakeAction<OffloadAction>(HDep, DDeps);
3662   }
3663 };
3664 } // anonymous namespace.
3665 
3666 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3667                              const InputList &Inputs,
3668                              ActionList &Actions) const {
3669 
3670   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3671   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3672   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3673   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3674     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3675     Args.eraseArg(options::OPT__SLASH_Yc);
3676     Args.eraseArg(options::OPT__SLASH_Yu);
3677     YcArg = YuArg = nullptr;
3678   }
3679   if (YcArg && Inputs.size() > 1) {
3680     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3681     Args.eraseArg(options::OPT__SLASH_Yc);
3682     YcArg = nullptr;
3683   }
3684 
3685   Arg *FinalPhaseArg;
3686   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3687 
3688   if (FinalPhase == phases::Link) {
3689     if (Args.hasArg(options::OPT_emit_llvm))
3690       Diag(clang::diag::err_drv_emit_llvm_link);
3691     if (IsCLMode() && LTOMode != LTOK_None &&
3692         !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3693              .equals_insensitive("lld"))
3694       Diag(clang::diag::err_drv_lto_without_lld);
3695   }
3696 
3697   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3698     // If only preprocessing or /Y- is used, all pch handling is disabled.
3699     // Rather than check for it everywhere, just remove clang-cl pch-related
3700     // flags here.
3701     Args.eraseArg(options::OPT__SLASH_Fp);
3702     Args.eraseArg(options::OPT__SLASH_Yc);
3703     Args.eraseArg(options::OPT__SLASH_Yu);
3704     YcArg = YuArg = nullptr;
3705   }
3706 
3707   unsigned LastPLSize = 0;
3708   for (auto &I : Inputs) {
3709     types::ID InputType = I.first;
3710     const Arg *InputArg = I.second;
3711 
3712     auto PL = types::getCompilationPhases(InputType);
3713     LastPLSize = PL.size();
3714 
3715     // If the first step comes after the final phase we are doing as part of
3716     // this compilation, warn the user about it.
3717     phases::ID InitialPhase = PL[0];
3718     if (InitialPhase > FinalPhase) {
3719       if (InputArg->isClaimed())
3720         continue;
3721 
3722       // Claim here to avoid the more general unused warning.
3723       InputArg->claim();
3724 
3725       // Suppress all unused style warnings with -Qunused-arguments
3726       if (Args.hasArg(options::OPT_Qunused_arguments))
3727         continue;
3728 
3729       // Special case when final phase determined by binary name, rather than
3730       // by a command-line argument with a corresponding Arg.
3731       if (CCCIsCPP())
3732         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3733             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3734       // Special case '-E' warning on a previously preprocessed file to make
3735       // more sense.
3736       else if (InitialPhase == phases::Compile &&
3737                (Args.getLastArg(options::OPT__SLASH_EP,
3738                                 options::OPT__SLASH_P) ||
3739                 Args.getLastArg(options::OPT_E) ||
3740                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3741                getPreprocessedType(InputType) == types::TY_INVALID)
3742         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3743             << InputArg->getAsString(Args) << !!FinalPhaseArg
3744             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3745       else
3746         Diag(clang::diag::warn_drv_input_file_unused)
3747             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3748             << !!FinalPhaseArg
3749             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3750       continue;
3751     }
3752 
3753     if (YcArg) {
3754       // Add a separate precompile phase for the compile phase.
3755       if (FinalPhase >= phases::Compile) {
3756         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3757         // Build the pipeline for the pch file.
3758         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3759         for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3760           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3761         assert(ClangClPch);
3762         Actions.push_back(ClangClPch);
3763         // The driver currently exits after the first failed command.  This
3764         // relies on that behavior, to make sure if the pch generation fails,
3765         // the main compilation won't run.
3766         // FIXME: If the main compilation fails, the PCH generation should
3767         // probably not be considered successful either.
3768       }
3769     }
3770   }
3771 
3772   // If we are linking, claim any options which are obviously only used for
3773   // compilation.
3774   // FIXME: Understand why the last Phase List length is used here.
3775   if (FinalPhase == phases::Link && LastPLSize == 1) {
3776     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3777     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3778   }
3779 }
3780 
3781 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3782                           const InputList &Inputs, ActionList &Actions) const {
3783   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3784 
3785   if (!SuppressMissingInputWarning && Inputs.empty()) {
3786     Diag(clang::diag::err_drv_no_input_files);
3787     return;
3788   }
3789 
3790   // Reject -Z* at the top level, these options should never have been exposed
3791   // by gcc.
3792   if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3793     Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3794 
3795   // Diagnose misuse of /Fo.
3796   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3797     StringRef V = A->getValue();
3798     if (Inputs.size() > 1 && !V.empty() &&
3799         !llvm::sys::path::is_separator(V.back())) {
3800       // Check whether /Fo tries to name an output file for multiple inputs.
3801       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3802           << A->getSpelling() << V;
3803       Args.eraseArg(options::OPT__SLASH_Fo);
3804     }
3805   }
3806 
3807   // Diagnose misuse of /Fa.
3808   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3809     StringRef V = A->getValue();
3810     if (Inputs.size() > 1 && !V.empty() &&
3811         !llvm::sys::path::is_separator(V.back())) {
3812       // Check whether /Fa tries to name an asm file for multiple inputs.
3813       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3814           << A->getSpelling() << V;
3815       Args.eraseArg(options::OPT__SLASH_Fa);
3816     }
3817   }
3818 
3819   // Diagnose misuse of /o.
3820   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3821     if (A->getValue()[0] == '\0') {
3822       // It has to have a value.
3823       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3824       Args.eraseArg(options::OPT__SLASH_o);
3825     }
3826   }
3827 
3828   handleArguments(C, Args, Inputs, Actions);
3829 
3830   // Builder to be used to build offloading actions.
3831   OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3832 
3833   // Offload kinds active for this compilation.
3834   unsigned OffloadKinds = Action::OFK_None;
3835   if (C.hasOffloadToolChain<Action::OFK_OpenMP>())
3836     OffloadKinds |= Action::OFK_OpenMP;
3837 
3838   // Construct the actions to perform.
3839   HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3840   ActionList LinkerInputs;
3841   ActionList MergerInputs;
3842 
3843   for (auto &I : Inputs) {
3844     types::ID InputType = I.first;
3845     const Arg *InputArg = I.second;
3846 
3847     auto PL = types::getCompilationPhases(*this, Args, InputType);
3848     if (PL.empty())
3849       continue;
3850 
3851     auto FullPL = types::getCompilationPhases(InputType);
3852 
3853     // Build the pipeline for this file.
3854     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3855 
3856     // Use the current host action in any of the offloading actions, if
3857     // required.
3858     if (!Args.hasArg(options::OPT_fopenmp_new_driver))
3859       if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3860         break;
3861 
3862     for (phases::ID Phase : PL) {
3863 
3864       // Add any offload action the host action depends on.
3865       if (!Args.hasArg(options::OPT_fopenmp_new_driver))
3866         Current = OffloadBuilder.addDeviceDependencesToHostAction(
3867             Current, InputArg, Phase, PL.back(), FullPL);
3868       if (!Current)
3869         break;
3870 
3871       // Queue linker inputs.
3872       if (Phase == phases::Link) {
3873         assert(Phase == PL.back() && "linking must be final compilation step.");
3874         LinkerInputs.push_back(Current);
3875         Current = nullptr;
3876         break;
3877       }
3878 
3879       // TODO: Consider removing this because the merged may not end up being
3880       // the final Phase in the pipeline. Perhaps the merged could just merge
3881       // and then pass an artifact of some sort to the Link Phase.
3882       // Queue merger inputs.
3883       if (Phase == phases::IfsMerge) {
3884         assert(Phase == PL.back() && "merging must be final compilation step.");
3885         MergerInputs.push_back(Current);
3886         Current = nullptr;
3887         break;
3888       }
3889 
3890       // Each precompiled header file after a module file action is a module
3891       // header of that same module file, rather than being compiled to a
3892       // separate PCH.
3893       if (Phase == phases::Precompile && HeaderModuleAction &&
3894           getPrecompiledType(InputType) == types::TY_PCH) {
3895         HeaderModuleAction->addModuleHeaderInput(Current);
3896         Current = nullptr;
3897         break;
3898       }
3899 
3900       // Try to build the offloading actions and add the result as a dependency
3901       // to the host.
3902       if (Args.hasArg(options::OPT_fopenmp_new_driver))
3903         Current = BuildOffloadingActions(C, Args, I, Current);
3904 
3905       // FIXME: Should we include any prior module file outputs as inputs of
3906       // later actions in the same command line?
3907 
3908       // Otherwise construct the appropriate action.
3909       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3910 
3911       // We didn't create a new action, so we will just move to the next phase.
3912       if (NewCurrent == Current)
3913         continue;
3914 
3915       if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3916         HeaderModuleAction = HMA;
3917 
3918       Current = NewCurrent;
3919 
3920       // Use the current host action in any of the offloading actions, if
3921       // required.
3922       if (!Args.hasArg(options::OPT_fopenmp_new_driver))
3923         if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3924           break;
3925 
3926       if (Current->getType() == types::TY_Nothing)
3927         break;
3928     }
3929 
3930     // If we ended with something, add to the output list.
3931     if (Current)
3932       Actions.push_back(Current);
3933 
3934     // Add any top level actions generated for offloading.
3935     if (!Args.hasArg(options::OPT_fopenmp_new_driver))
3936       OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3937     else if (Current)
3938       Current->propagateHostOffloadInfo(OffloadKinds,
3939                                         /*BoundArch=*/nullptr);
3940   }
3941 
3942   // Add a link action if necessary.
3943 
3944   if (LinkerInputs.empty()) {
3945     Arg *FinalPhaseArg;
3946     if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
3947       OffloadBuilder.appendDeviceLinkActions(Actions);
3948   }
3949 
3950   if (!LinkerInputs.empty()) {
3951     if (!Args.hasArg(options::OPT_fopenmp_new_driver))
3952       if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3953         LinkerInputs.push_back(Wrapper);
3954     Action *LA;
3955     // Check if this Linker Job should emit a static library.
3956     if (ShouldEmitStaticLibrary(Args)) {
3957       LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
3958     } else if (Args.hasArg(options::OPT_fopenmp_new_driver) &&
3959                OffloadKinds != Action::OFK_None) {
3960       LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
3961       LA->propagateHostOffloadInfo(OffloadKinds,
3962                                    /*BoundArch=*/nullptr);
3963     } else {
3964       LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3965     }
3966     if (!Args.hasArg(options::OPT_fopenmp_new_driver))
3967       LA = OffloadBuilder.processHostLinkAction(LA);
3968     Actions.push_back(LA);
3969   }
3970 
3971   // Add an interface stubs merge action if necessary.
3972   if (!MergerInputs.empty())
3973     Actions.push_back(
3974         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3975 
3976   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3977     auto PhaseList = types::getCompilationPhases(
3978         types::TY_IFS_CPP,
3979         Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
3980 
3981     ActionList MergerInputs;
3982 
3983     for (auto &I : Inputs) {
3984       types::ID InputType = I.first;
3985       const Arg *InputArg = I.second;
3986 
3987       // Currently clang and the llvm assembler do not support generating symbol
3988       // stubs from assembly, so we skip the input on asm files. For ifs files
3989       // we rely on the normal pipeline setup in the pipeline setup code above.
3990       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3991           InputType == types::TY_Asm)
3992         continue;
3993 
3994       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3995 
3996       for (auto Phase : PhaseList) {
3997         switch (Phase) {
3998         default:
3999           llvm_unreachable(
4000               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4001         case phases::Compile: {
4002           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4003           // files where the .o file is located. The compile action can not
4004           // handle this.
4005           if (InputType == types::TY_Object)
4006             break;
4007 
4008           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4009           break;
4010         }
4011         case phases::IfsMerge: {
4012           assert(Phase == PhaseList.back() &&
4013                  "merging must be final compilation step.");
4014           MergerInputs.push_back(Current);
4015           Current = nullptr;
4016           break;
4017         }
4018         }
4019       }
4020 
4021       // If we ended with something, add to the output list.
4022       if (Current)
4023         Actions.push_back(Current);
4024     }
4025 
4026     // Add an interface stubs merge action if necessary.
4027     if (!MergerInputs.empty())
4028       Actions.push_back(
4029           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4030   }
4031 
4032   // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
4033   // Compile phase that prints out supported cpu models and quits.
4034   if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
4035     // Use the -mcpu=? flag as the dummy input to cc1.
4036     Actions.clear();
4037     Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4038     Actions.push_back(
4039         C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4040     for (auto &I : Inputs)
4041       I.second->claim();
4042   }
4043 
4044   // Claim ignored clang-cl options.
4045   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4046 
4047   // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
4048   // to non-CUDA compilations and should not trigger warnings there.
4049   Args.ClaimAllArgs(options::OPT_cuda_host_only);
4050   Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
4051 }
4052 
4053 Action *Driver::BuildOffloadingActions(Compilation &C,
4054                                        llvm::opt::DerivedArgList &Args,
4055                                        const InputTy &Input,
4056                                        Action *HostAction) const {
4057   if (!isa<CompileJobAction>(HostAction))
4058     return HostAction;
4059 
4060   SmallVector<const ToolChain *, 2> ToolChains;
4061   ActionList DeviceActions;
4062 
4063   types::ID InputType = Input.first;
4064   const Arg *InputArg = Input.second;
4065 
4066   auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
4067   for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; ++TI)
4068     ToolChains.push_back(TI->second);
4069 
4070   for (unsigned I = 0; I < ToolChains.size(); ++I)
4071     DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4072 
4073   if (DeviceActions.empty())
4074     return HostAction;
4075 
4076   auto PL = types::getCompilationPhases(*this, Args, InputType);
4077 
4078   for (phases::ID Phase : PL) {
4079     if (Phase == phases::Link) {
4080       assert(Phase == PL.back() && "linking must be final compilation step.");
4081       break;
4082     }
4083 
4084     auto TC = ToolChains.begin();
4085     for (Action *&A : DeviceActions) {
4086       A = ConstructPhaseAction(C, Args, Phase, A, Action::OFK_OpenMP);
4087 
4088       if (isa<CompileJobAction>(A)) {
4089         HostAction->setCannotBeCollapsedWithNextDependentAction();
4090         OffloadAction::HostDependence HDep(
4091             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4092             /*BourdArch=*/nullptr, Action::OFK_OpenMP);
4093         OffloadAction::DeviceDependences DDep;
4094         DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
4095         A = C.MakeAction<OffloadAction>(HDep, DDep);
4096       }
4097       ++TC;
4098     }
4099   }
4100 
4101   OffloadAction::DeviceDependences DDeps;
4102 
4103   auto TC = ToolChains.begin();
4104   for (Action *A : DeviceActions) {
4105     DDeps.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
4106     TC++;
4107   }
4108 
4109   OffloadAction::HostDependence HDep(
4110       *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4111       /*BoundArch=*/nullptr, DDeps);
4112   return C.MakeAction<OffloadAction>(HDep, DDeps);
4113 }
4114 
4115 Action *Driver::ConstructPhaseAction(
4116     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4117     Action::OffloadKind TargetDeviceOffloadKind) const {
4118   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4119 
4120   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4121   // encode this in the steps because the intermediate type depends on
4122   // arguments. Just special case here.
4123   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4124     return Input;
4125 
4126   // Build the appropriate action.
4127   switch (Phase) {
4128   case phases::Link:
4129     llvm_unreachable("link action invalid here.");
4130   case phases::IfsMerge:
4131     llvm_unreachable("ifsmerge action invalid here.");
4132   case phases::Preprocess: {
4133     types::ID OutputTy;
4134     // -M and -MM specify the dependency file name by altering the output type,
4135     // -if -MD and -MMD are not specified.
4136     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4137         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4138       OutputTy = types::TY_Dependencies;
4139     } else {
4140       OutputTy = Input->getType();
4141       if (!Args.hasFlag(options::OPT_frewrite_includes,
4142                         options::OPT_fno_rewrite_includes, false) &&
4143           !Args.hasFlag(options::OPT_frewrite_imports,
4144                         options::OPT_fno_rewrite_imports, false) &&
4145           !CCGenDiagnostics)
4146         OutputTy = types::getPreprocessedType(OutputTy);
4147       assert(OutputTy != types::TY_INVALID &&
4148              "Cannot preprocess this input type!");
4149     }
4150     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4151   }
4152   case phases::Precompile: {
4153     types::ID OutputTy = getPrecompiledType(Input->getType());
4154     assert(OutputTy != types::TY_INVALID &&
4155            "Cannot precompile this input type!");
4156 
4157     // If we're given a module name, precompile header file inputs as a
4158     // module, not as a precompiled header.
4159     const char *ModName = nullptr;
4160     if (OutputTy == types::TY_PCH) {
4161       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4162         ModName = A->getValue();
4163       if (ModName)
4164         OutputTy = types::TY_ModuleFile;
4165     }
4166 
4167     if (Args.hasArg(options::OPT_fsyntax_only) ||
4168         Args.hasArg(options::OPT_extract_api)) {
4169       // Syntax checks should not emit a PCH file
4170       OutputTy = types::TY_Nothing;
4171     }
4172 
4173     if (ModName)
4174       return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
4175                                                            ModName);
4176     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4177   }
4178   case phases::Compile: {
4179     if (Args.hasArg(options::OPT_fsyntax_only))
4180       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4181     if (Args.hasArg(options::OPT_rewrite_objc))
4182       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4183     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4184       return C.MakeAction<CompileJobAction>(Input,
4185                                             types::TY_RewrittenLegacyObjC);
4186     if (Args.hasArg(options::OPT__analyze))
4187       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4188     if (Args.hasArg(options::OPT__migrate))
4189       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4190     if (Args.hasArg(options::OPT_emit_ast))
4191       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4192     if (Args.hasArg(options::OPT_module_file_info))
4193       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4194     if (Args.hasArg(options::OPT_verify_pch))
4195       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4196     if (Args.hasArg(options::OPT_extract_api))
4197       return C.MakeAction<CompileJobAction>(Input, types::TY_API_INFO);
4198     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4199   }
4200   case phases::Backend: {
4201     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4202       types::ID Output =
4203           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4204       return C.MakeAction<BackendJobAction>(Input, Output);
4205     }
4206     if (isUsingLTO(/* IsOffload */ true) &&
4207         TargetDeviceOffloadKind == Action::OFK_OpenMP) {
4208       types::ID Output =
4209           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4210       return C.MakeAction<BackendJobAction>(Input, Output);
4211     }
4212     if (Args.hasArg(options::OPT_emit_llvm) ||
4213         (TargetDeviceOffloadKind == Action::OFK_HIP &&
4214          Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4215                       false))) {
4216       types::ID Output =
4217           Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
4218       return C.MakeAction<BackendJobAction>(Input, Output);
4219     }
4220     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4221   }
4222   case phases::Assemble:
4223     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4224   }
4225 
4226   llvm_unreachable("invalid phase in ConstructPhaseAction");
4227 }
4228 
4229 void Driver::BuildJobs(Compilation &C) const {
4230   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4231 
4232   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4233 
4234   // It is an error to provide a -o option if we are making multiple output
4235   // files. There are exceptions:
4236   //
4237   // IfsMergeJob: when generating interface stubs enabled we want to be able to
4238   // generate the stub file at the same time that we generate the real
4239   // library/a.out. So when a .o, .so, etc are the output, with clang interface
4240   // stubs there will also be a .ifs and .ifso at the same location.
4241   //
4242   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4243   // and -c is passed, we still want to be able to generate a .ifs file while
4244   // we are also generating .o files. So we allow more than one output file in
4245   // this case as well.
4246   //
4247   if (FinalOutput) {
4248     unsigned NumOutputs = 0;
4249     unsigned NumIfsOutputs = 0;
4250     for (const Action *A : C.getActions())
4251       if (A->getType() != types::TY_Nothing &&
4252           !(A->getKind() == Action::IfsMergeJobClass ||
4253             (A->getType() == clang::driver::types::TY_IFS_CPP &&
4254              A->getKind() == clang::driver::Action::CompileJobClass &&
4255              0 == NumIfsOutputs++) ||
4256             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4257              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4258         ++NumOutputs;
4259 
4260     if (NumOutputs > 1) {
4261       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4262       FinalOutput = nullptr;
4263     }
4264   }
4265 
4266   const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4267   if (RawTriple.isOSAIX()) {
4268     if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4269       Diag(diag::err_drv_unsupported_opt_for_target)
4270           << A->getSpelling() << RawTriple.str();
4271     if (LTOMode == LTOK_Thin)
4272       Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4273   }
4274 
4275   // Collect the list of architectures.
4276   llvm::StringSet<> ArchNames;
4277   if (RawTriple.isOSBinFormatMachO())
4278     for (const Arg *A : C.getArgs())
4279       if (A->getOption().matches(options::OPT_arch))
4280         ArchNames.insert(A->getValue());
4281 
4282   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4283   std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4284   for (Action *A : C.getActions()) {
4285     // If we are linking an image for multiple archs then the linker wants
4286     // -arch_multiple and -final_output <final image name>. Unfortunately, this
4287     // doesn't fit in cleanly because we have to pass this information down.
4288     //
4289     // FIXME: This is a hack; find a cleaner way to integrate this into the
4290     // process.
4291     const char *LinkingOutput = nullptr;
4292     if (isa<LipoJobAction>(A)) {
4293       if (FinalOutput)
4294         LinkingOutput = FinalOutput->getValue();
4295       else
4296         LinkingOutput = getDefaultImageName();
4297     }
4298 
4299     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4300                        /*BoundArch*/ StringRef(),
4301                        /*AtTopLevel*/ true,
4302                        /*MultipleArchs*/ ArchNames.size() > 1,
4303                        /*LinkingOutput*/ LinkingOutput, CachedResults,
4304                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
4305   }
4306 
4307   // If we have more than one job, then disable integrated-cc1 for now. Do this
4308   // also when we need to report process execution statistics.
4309   if (C.getJobs().size() > 1 || CCPrintProcessStats)
4310     for (auto &J : C.getJobs())
4311       J.InProcess = false;
4312 
4313   if (CCPrintProcessStats) {
4314     C.setPostCallback([=](const Command &Cmd, int Res) {
4315       Optional<llvm::sys::ProcessStatistics> ProcStat =
4316           Cmd.getProcessStatistics();
4317       if (!ProcStat)
4318         return;
4319 
4320       const char *LinkingOutput = nullptr;
4321       if (FinalOutput)
4322         LinkingOutput = FinalOutput->getValue();
4323       else if (!Cmd.getOutputFilenames().empty())
4324         LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4325       else
4326         LinkingOutput = getDefaultImageName();
4327 
4328       if (CCPrintStatReportFilename.empty()) {
4329         using namespace llvm;
4330         // Human readable output.
4331         outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4332                << "output=" << LinkingOutput;
4333         outs() << ", total="
4334                << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4335                << ", user="
4336                << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4337                << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4338       } else {
4339         // CSV format.
4340         std::string Buffer;
4341         llvm::raw_string_ostream Out(Buffer);
4342         llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4343                             /*Quote*/ true);
4344         Out << ',';
4345         llvm::sys::printArg(Out, LinkingOutput, true);
4346         Out << ',' << ProcStat->TotalTime.count() << ','
4347             << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4348             << '\n';
4349         Out.flush();
4350         std::error_code EC;
4351         llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4352                                 llvm::sys::fs::OF_Append |
4353                                     llvm::sys::fs::OF_Text);
4354         if (EC)
4355           return;
4356         auto L = OS.lock();
4357         if (!L) {
4358           llvm::errs() << "ERROR: Cannot lock file "
4359                        << CCPrintStatReportFilename << ": "
4360                        << toString(L.takeError()) << "\n";
4361           return;
4362         }
4363         OS << Buffer;
4364         OS.flush();
4365       }
4366     });
4367   }
4368 
4369   // If the user passed -Qunused-arguments or there were errors, don't warn
4370   // about any unused arguments.
4371   if (Diags.hasErrorOccurred() ||
4372       C.getArgs().hasArg(options::OPT_Qunused_arguments))
4373     return;
4374 
4375   // Claim -### here.
4376   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4377 
4378   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4379   (void)C.getArgs().hasArg(options::OPT_driver_mode);
4380   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4381 
4382   for (Arg *A : C.getArgs()) {
4383     // FIXME: It would be nice to be able to send the argument to the
4384     // DiagnosticsEngine, so that extra values, position, and so on could be
4385     // printed.
4386     if (!A->isClaimed()) {
4387       if (A->getOption().hasFlag(options::NoArgumentUnused))
4388         continue;
4389 
4390       // Suppress the warning automatically if this is just a flag, and it is an
4391       // instance of an argument we already claimed.
4392       const Option &Opt = A->getOption();
4393       if (Opt.getKind() == Option::FlagClass) {
4394         bool DuplicateClaimed = false;
4395 
4396         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4397           if (AA->isClaimed()) {
4398             DuplicateClaimed = true;
4399             break;
4400           }
4401         }
4402 
4403         if (DuplicateClaimed)
4404           continue;
4405       }
4406 
4407       // In clang-cl, don't mention unknown arguments here since they have
4408       // already been warned about.
4409       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4410         Diag(clang::diag::warn_drv_unused_argument)
4411             << A->getAsString(C.getArgs());
4412     }
4413   }
4414 }
4415 
4416 namespace {
4417 /// Utility class to control the collapse of dependent actions and select the
4418 /// tools accordingly.
4419 class ToolSelector final {
4420   /// The tool chain this selector refers to.
4421   const ToolChain &TC;
4422 
4423   /// The compilation this selector refers to.
4424   const Compilation &C;
4425 
4426   /// The base action this selector refers to.
4427   const JobAction *BaseAction;
4428 
4429   /// Set to true if the current toolchain refers to host actions.
4430   bool IsHostSelector;
4431 
4432   /// Set to true if save-temps and embed-bitcode functionalities are active.
4433   bool SaveTemps;
4434   bool EmbedBitcode;
4435 
4436   /// Get previous dependent action or null if that does not exist. If
4437   /// \a CanBeCollapsed is false, that action must be legal to collapse or
4438   /// null will be returned.
4439   const JobAction *getPrevDependentAction(const ActionList &Inputs,
4440                                           ActionList &SavedOffloadAction,
4441                                           bool CanBeCollapsed = true) {
4442     // An option can be collapsed only if it has a single input.
4443     if (Inputs.size() != 1)
4444       return nullptr;
4445 
4446     Action *CurAction = *Inputs.begin();
4447     if (CanBeCollapsed &&
4448         !CurAction->isCollapsingWithNextDependentActionLegal())
4449       return nullptr;
4450 
4451     // If the input action is an offload action. Look through it and save any
4452     // offload action that can be dropped in the event of a collapse.
4453     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4454       // If the dependent action is a device action, we will attempt to collapse
4455       // only with other device actions. Otherwise, we would do the same but
4456       // with host actions only.
4457       if (!IsHostSelector) {
4458         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4459           CurAction =
4460               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4461           if (CanBeCollapsed &&
4462               !CurAction->isCollapsingWithNextDependentActionLegal())
4463             return nullptr;
4464           SavedOffloadAction.push_back(OA);
4465           return dyn_cast<JobAction>(CurAction);
4466         }
4467       } else if (OA->hasHostDependence()) {
4468         CurAction = OA->getHostDependence();
4469         if (CanBeCollapsed &&
4470             !CurAction->isCollapsingWithNextDependentActionLegal())
4471           return nullptr;
4472         SavedOffloadAction.push_back(OA);
4473         return dyn_cast<JobAction>(CurAction);
4474       }
4475       return nullptr;
4476     }
4477 
4478     return dyn_cast<JobAction>(CurAction);
4479   }
4480 
4481   /// Return true if an assemble action can be collapsed.
4482   bool canCollapseAssembleAction() const {
4483     return TC.useIntegratedAs() && !SaveTemps &&
4484            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4485            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4486            !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4487   }
4488 
4489   /// Return true if a preprocessor action can be collapsed.
4490   bool canCollapsePreprocessorAction() const {
4491     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4492            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4493            !C.getArgs().hasArg(options::OPT_rewrite_objc);
4494   }
4495 
4496   /// Struct that relates an action with the offload actions that would be
4497   /// collapsed with it.
4498   struct JobActionInfo final {
4499     /// The action this info refers to.
4500     const JobAction *JA = nullptr;
4501     /// The offload actions we need to take care off if this action is
4502     /// collapsed.
4503     ActionList SavedOffloadAction;
4504   };
4505 
4506   /// Append collapsed offload actions from the give nnumber of elements in the
4507   /// action info array.
4508   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4509                                            ArrayRef<JobActionInfo> &ActionInfo,
4510                                            unsigned ElementNum) {
4511     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4512     for (unsigned I = 0; I < ElementNum; ++I)
4513       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4514                                     ActionInfo[I].SavedOffloadAction.end());
4515   }
4516 
4517   /// Functions that attempt to perform the combining. They detect if that is
4518   /// legal, and if so they update the inputs \a Inputs and the offload action
4519   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4520   /// the combined action is returned. If the combining is not legal or if the
4521   /// tool does not exist, null is returned.
4522   /// Currently three kinds of collapsing are supported:
4523   ///  - Assemble + Backend + Compile;
4524   ///  - Assemble + Backend ;
4525   ///  - Backend + Compile.
4526   const Tool *
4527   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4528                                 ActionList &Inputs,
4529                                 ActionList &CollapsedOffloadAction) {
4530     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4531       return nullptr;
4532     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4533     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4534     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4535     if (!AJ || !BJ || !CJ)
4536       return nullptr;
4537 
4538     // Get compiler tool.
4539     const Tool *T = TC.SelectTool(*CJ);
4540     if (!T)
4541       return nullptr;
4542 
4543     // Can't collapse if we don't have codegen support unless we are
4544     // emitting LLVM IR.
4545     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
4546     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
4547       return nullptr;
4548 
4549     // When using -fembed-bitcode, it is required to have the same tool (clang)
4550     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4551     if (EmbedBitcode) {
4552       const Tool *BT = TC.SelectTool(*BJ);
4553       if (BT == T)
4554         return nullptr;
4555     }
4556 
4557     if (!T->hasIntegratedAssembler())
4558       return nullptr;
4559 
4560     Inputs = CJ->getInputs();
4561     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4562                                  /*NumElements=*/3);
4563     return T;
4564   }
4565   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4566                                      ActionList &Inputs,
4567                                      ActionList &CollapsedOffloadAction) {
4568     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4569       return nullptr;
4570     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4571     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4572     if (!AJ || !BJ)
4573       return nullptr;
4574 
4575     // Get backend tool.
4576     const Tool *T = TC.SelectTool(*BJ);
4577     if (!T)
4578       return nullptr;
4579 
4580     if (!T->hasIntegratedAssembler())
4581       return nullptr;
4582 
4583     Inputs = BJ->getInputs();
4584     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4585                                  /*NumElements=*/2);
4586     return T;
4587   }
4588   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4589                                     ActionList &Inputs,
4590                                     ActionList &CollapsedOffloadAction) {
4591     if (ActionInfo.size() < 2)
4592       return nullptr;
4593     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4594     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4595     if (!BJ || !CJ)
4596       return nullptr;
4597 
4598     // Check if the initial input (to the compile job or its predessor if one
4599     // exists) is LLVM bitcode. In that case, no preprocessor step is required
4600     // and we can still collapse the compile and backend jobs when we have
4601     // -save-temps. I.e. there is no need for a separate compile job just to
4602     // emit unoptimized bitcode.
4603     bool InputIsBitcode = true;
4604     for (size_t i = 1; i < ActionInfo.size(); i++)
4605       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4606           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4607         InputIsBitcode = false;
4608         break;
4609       }
4610     if (!InputIsBitcode && !canCollapsePreprocessorAction())
4611       return nullptr;
4612 
4613     // Get compiler tool.
4614     const Tool *T = TC.SelectTool(*CJ);
4615     if (!T)
4616       return nullptr;
4617 
4618     // Can't collapse if we don't have codegen support unless we are
4619     // emitting LLVM IR.
4620     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
4621     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
4622       return nullptr;
4623 
4624     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4625       return nullptr;
4626 
4627     Inputs = CJ->getInputs();
4628     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4629                                  /*NumElements=*/2);
4630     return T;
4631   }
4632 
4633   /// Updates the inputs if the obtained tool supports combining with
4634   /// preprocessor action, and the current input is indeed a preprocessor
4635   /// action. If combining results in the collapse of offloading actions, those
4636   /// are appended to \a CollapsedOffloadAction.
4637   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4638                                ActionList &CollapsedOffloadAction) {
4639     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4640       return;
4641 
4642     // Attempt to get a preprocessor action dependence.
4643     ActionList PreprocessJobOffloadActions;
4644     ActionList NewInputs;
4645     for (Action *A : Inputs) {
4646       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4647       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4648         NewInputs.push_back(A);
4649         continue;
4650       }
4651 
4652       // This is legal to combine. Append any offload action we found and add the
4653       // current input to preprocessor inputs.
4654       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4655                                     PreprocessJobOffloadActions.end());
4656       NewInputs.append(PJ->input_begin(), PJ->input_end());
4657     }
4658     Inputs = NewInputs;
4659   }
4660 
4661 public:
4662   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4663                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4664       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4665         EmbedBitcode(EmbedBitcode) {
4666     assert(BaseAction && "Invalid base action.");
4667     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4668   }
4669 
4670   /// Check if a chain of actions can be combined and return the tool that can
4671   /// handle the combination of actions. The pointer to the current inputs \a
4672   /// Inputs and the list of offload actions \a CollapsedOffloadActions
4673   /// connected to collapsed actions are updated accordingly. The latter enables
4674   /// the caller of the selector to process them afterwards instead of just
4675   /// dropping them. If no suitable tool is found, null will be returned.
4676   const Tool *getTool(ActionList &Inputs,
4677                       ActionList &CollapsedOffloadAction) {
4678     //
4679     // Get the largest chain of actions that we could combine.
4680     //
4681 
4682     SmallVector<JobActionInfo, 5> ActionChain(1);
4683     ActionChain.back().JA = BaseAction;
4684     while (ActionChain.back().JA) {
4685       const Action *CurAction = ActionChain.back().JA;
4686 
4687       // Grow the chain by one element.
4688       ActionChain.resize(ActionChain.size() + 1);
4689       JobActionInfo &AI = ActionChain.back();
4690 
4691       // Attempt to fill it with the
4692       AI.JA =
4693           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4694     }
4695 
4696     // Pop the last action info as it could not be filled.
4697     ActionChain.pop_back();
4698 
4699     //
4700     // Attempt to combine actions. If all combining attempts failed, just return
4701     // the tool of the provided action. At the end we attempt to combine the
4702     // action with any preprocessor action it may depend on.
4703     //
4704 
4705     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4706                                                   CollapsedOffloadAction);
4707     if (!T)
4708       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4709     if (!T)
4710       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4711     if (!T) {
4712       Inputs = BaseAction->getInputs();
4713       T = TC.SelectTool(*BaseAction);
4714     }
4715 
4716     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4717     return T;
4718   }
4719 };
4720 }
4721 
4722 /// Return a string that uniquely identifies the result of a job. The bound arch
4723 /// is not necessarily represented in the toolchain's triple -- for example,
4724 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
4725 /// Also, we need to add the offloading device kind, as the same tool chain can
4726 /// be used for host and device for some programming models, e.g. OpenMP.
4727 static std::string GetTriplePlusArchString(const ToolChain *TC,
4728                                            StringRef BoundArch,
4729                                            Action::OffloadKind OffloadKind) {
4730   std::string TriplePlusArch = TC->getTriple().normalize();
4731   if (!BoundArch.empty()) {
4732     TriplePlusArch += "-";
4733     TriplePlusArch += BoundArch;
4734   }
4735   TriplePlusArch += "-";
4736   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4737   return TriplePlusArch;
4738 }
4739 
4740 InputInfoList Driver::BuildJobsForAction(
4741     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4742     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4743     std::map<std::pair<const Action *, std::string>, InputInfoList>
4744         &CachedResults,
4745     Action::OffloadKind TargetDeviceOffloadKind) const {
4746   std::pair<const Action *, std::string> ActionTC = {
4747       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4748   auto CachedResult = CachedResults.find(ActionTC);
4749   if (CachedResult != CachedResults.end()) {
4750     return CachedResult->second;
4751   }
4752   InputInfoList Result = BuildJobsForActionNoCache(
4753       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4754       CachedResults, TargetDeviceOffloadKind);
4755   CachedResults[ActionTC] = Result;
4756   return Result;
4757 }
4758 
4759 InputInfoList Driver::BuildJobsForActionNoCache(
4760     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4761     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4762     std::map<std::pair<const Action *, std::string>, InputInfoList>
4763         &CachedResults,
4764     Action::OffloadKind TargetDeviceOffloadKind) const {
4765   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4766 
4767   InputInfoList OffloadDependencesInputInfo;
4768   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4769   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4770     // The 'Darwin' toolchain is initialized only when its arguments are
4771     // computed. Get the default arguments for OFK_None to ensure that
4772     // initialization is performed before processing the offload action.
4773     // FIXME: Remove when darwin's toolchain is initialized during construction.
4774     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4775 
4776     // The offload action is expected to be used in four different situations.
4777     //
4778     // a) Set a toolchain/architecture/kind for a host action:
4779     //    Host Action 1 -> OffloadAction -> Host Action 2
4780     //
4781     // b) Set a toolchain/architecture/kind for a device action;
4782     //    Device Action 1 -> OffloadAction -> Device Action 2
4783     //
4784     // c) Specify a device dependence to a host action;
4785     //    Device Action 1  _
4786     //                      \
4787     //      Host Action 1  ---> OffloadAction -> Host Action 2
4788     //
4789     // d) Specify a host dependence to a device action.
4790     //      Host Action 1  _
4791     //                      \
4792     //    Device Action 1  ---> OffloadAction -> Device Action 2
4793     //
4794     // For a) and b), we just return the job generated for the dependence. For
4795     // c) and d) we override the current action with the host/device dependence
4796     // if the current toolchain is host/device and set the offload dependences
4797     // info with the jobs obtained from the device/host dependence(s).
4798 
4799     // If there is a single device option, just generate the job for it.
4800     if (OA->hasSingleDeviceDependence()) {
4801       InputInfoList DevA;
4802       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4803                                        const char *DepBoundArch) {
4804         DevA =
4805             BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4806                                /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4807                                CachedResults, DepA->getOffloadingDeviceKind());
4808       });
4809       return DevA;
4810     }
4811 
4812     // If 'Action 2' is host, we generate jobs for the device dependences and
4813     // override the current action with the host dependence. Otherwise, we
4814     // generate the host dependences and override the action with the device
4815     // dependence. The dependences can't therefore be a top-level action.
4816     OA->doOnEachDependence(
4817         /*IsHostDependence=*/BuildingForOffloadDevice,
4818         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4819           OffloadDependencesInputInfo.append(BuildJobsForAction(
4820               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4821               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4822               DepA->getOffloadingDeviceKind()));
4823         });
4824 
4825     A = BuildingForOffloadDevice
4826             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4827             : OA->getHostDependence();
4828 
4829     // We may have already built this action as a part of the offloading
4830     // toolchain, return the cached input if so.
4831     std::pair<const Action *, std::string> ActionTC = {
4832         OA->getHostDependence(),
4833         GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4834     if (CachedResults.find(ActionTC) != CachedResults.end()) {
4835       InputInfoList Inputs = CachedResults[ActionTC];
4836       Inputs.append(OffloadDependencesInputInfo);
4837       return Inputs;
4838     }
4839   }
4840 
4841   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4842     // FIXME: It would be nice to not claim this here; maybe the old scheme of
4843     // just using Args was better?
4844     const Arg &Input = IA->getInputArg();
4845     Input.claim();
4846     if (Input.getOption().matches(options::OPT_INPUT)) {
4847       const char *Name = Input.getValue();
4848       return {InputInfo(A, Name, /* _BaseInput = */ Name)};
4849     }
4850     return {InputInfo(A, &Input, /* _BaseInput = */ "")};
4851   }
4852 
4853   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4854     const ToolChain *TC;
4855     StringRef ArchName = BAA->getArchName();
4856 
4857     if (!ArchName.empty())
4858       TC = &getToolChain(C.getArgs(),
4859                          computeTargetTriple(*this, TargetTriple,
4860                                              C.getArgs(), ArchName));
4861     else
4862       TC = &C.getDefaultToolChain();
4863 
4864     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4865                               MultipleArchs, LinkingOutput, CachedResults,
4866                               TargetDeviceOffloadKind);
4867   }
4868 
4869 
4870   ActionList Inputs = A->getInputs();
4871 
4872   const JobAction *JA = cast<JobAction>(A);
4873   ActionList CollapsedOffloadActions;
4874 
4875   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4876                   embedBitcodeInObject() && !isUsingLTO());
4877   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4878 
4879   if (!T)
4880     return {InputInfo()};
4881 
4882   if (BuildingForOffloadDevice &&
4883       A->getOffloadingDeviceKind() == Action::OFK_OpenMP) {
4884     if (TC->getTriple().isAMDGCN()) {
4885       // AMDGCN treats backend and assemble actions as no-op because
4886       // linker does not support object files.
4887       if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
4888         return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
4889                                   AtTopLevel, MultipleArchs, LinkingOutput,
4890                                   CachedResults, TargetDeviceOffloadKind);
4891       }
4892 
4893       if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
4894         return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
4895                                   AtTopLevel, MultipleArchs, LinkingOutput,
4896                                   CachedResults, TargetDeviceOffloadKind);
4897       }
4898     }
4899   }
4900 
4901   // If we've collapsed action list that contained OffloadAction we
4902   // need to build jobs for host/device-side inputs it may have held.
4903   for (const auto *OA : CollapsedOffloadActions)
4904     cast<OffloadAction>(OA)->doOnEachDependence(
4905         /*IsHostDependence=*/BuildingForOffloadDevice,
4906         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4907           OffloadDependencesInputInfo.append(BuildJobsForAction(
4908               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4909               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4910               DepA->getOffloadingDeviceKind()));
4911         });
4912 
4913   // Only use pipes when there is exactly one input.
4914   InputInfoList InputInfos;
4915   for (const Action *Input : Inputs) {
4916     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4917     // shouldn't get temporary output names.
4918     // FIXME: Clean this up.
4919     bool SubJobAtTopLevel =
4920         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4921     InputInfos.append(BuildJobsForAction(
4922         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4923         CachedResults, A->getOffloadingDeviceKind()));
4924   }
4925 
4926   // Always use the first file input as the base input.
4927   const char *BaseInput = InputInfos[0].getBaseInput();
4928   for (auto &Info : InputInfos) {
4929     if (Info.isFilename()) {
4930       BaseInput = Info.getBaseInput();
4931       break;
4932     }
4933   }
4934 
4935   // ... except dsymutil actions, which use their actual input as the base
4936   // input.
4937   if (JA->getType() == types::TY_dSYM)
4938     BaseInput = InputInfos[0].getFilename();
4939 
4940   // ... and in header module compilations, which use the module name.
4941   if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4942     BaseInput = ModuleJA->getModuleName();
4943 
4944   // Append outputs of offload device jobs to the input list
4945   if (!OffloadDependencesInputInfo.empty())
4946     InputInfos.append(OffloadDependencesInputInfo.begin(),
4947                       OffloadDependencesInputInfo.end());
4948 
4949   // Set the effective triple of the toolchain for the duration of this job.
4950   llvm::Triple EffectiveTriple;
4951   const ToolChain &ToolTC = T->getToolChain();
4952   const ArgList &Args =
4953       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4954   if (InputInfos.size() != 1) {
4955     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4956   } else {
4957     // Pass along the input type if it can be unambiguously determined.
4958     EffectiveTriple = llvm::Triple(
4959         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4960   }
4961   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4962 
4963   // Determine the place to write output to, if any.
4964   InputInfo Result;
4965   InputInfoList UnbundlingResults;
4966   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4967     // If we have an unbundling job, we need to create results for all the
4968     // outputs. We also update the results cache so that other actions using
4969     // this unbundling action can get the right results.
4970     for (auto &UI : UA->getDependentActionsInfo()) {
4971       assert(UI.DependentOffloadKind != Action::OFK_None &&
4972              "Unbundling with no offloading??");
4973 
4974       // Unbundling actions are never at the top level. When we generate the
4975       // offloading prefix, we also do that for the host file because the
4976       // unbundling action does not change the type of the output which can
4977       // cause a overwrite.
4978       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4979           UI.DependentOffloadKind,
4980           UI.DependentToolChain->getTriple().normalize(),
4981           /*CreatePrefixForHost=*/true);
4982       auto CurI = InputInfo(
4983           UA,
4984           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4985                              /*AtTopLevel=*/false,
4986                              MultipleArchs ||
4987                                  UI.DependentOffloadKind == Action::OFK_HIP,
4988                              OffloadingPrefix),
4989           BaseInput);
4990       // Save the unbundling result.
4991       UnbundlingResults.push_back(CurI);
4992 
4993       // Get the unique string identifier for this dependence and cache the
4994       // result.
4995       StringRef Arch;
4996       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4997         if (UI.DependentOffloadKind == Action::OFK_Host)
4998           Arch = StringRef();
4999         else
5000           Arch = UI.DependentBoundArch;
5001       } else
5002         Arch = BoundArch;
5003 
5004       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5005                                                 UI.DependentOffloadKind)}] = {
5006           CurI};
5007     }
5008 
5009     // Now that we have all the results generated, select the one that should be
5010     // returned for the current depending action.
5011     std::pair<const Action *, std::string> ActionTC = {
5012         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5013     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5014            "Result does not exist??");
5015     Result = CachedResults[ActionTC].front();
5016   } else if (JA->getType() == types::TY_Nothing)
5017     Result = {InputInfo(A, BaseInput)};
5018   else {
5019     // We only have to generate a prefix for the host if this is not a top-level
5020     // action.
5021     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5022         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5023         /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
5024             !AtTopLevel);
5025     if (isa<OffloadWrapperJobAction>(JA)) {
5026       if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5027         BaseInput = FinalOutput->getValue();
5028       else
5029         BaseInput = getDefaultImageName();
5030       BaseInput =
5031           C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
5032     }
5033     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5034                                              AtTopLevel, MultipleArchs,
5035                                              OffloadingPrefix),
5036                        BaseInput);
5037   }
5038 
5039   if (CCCPrintBindings && !CCGenDiagnostics) {
5040     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5041                  << " - \"" << T->getName() << "\", inputs: [";
5042     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5043       llvm::errs() << InputInfos[i].getAsString();
5044       if (i + 1 != e)
5045         llvm::errs() << ", ";
5046     }
5047     if (UnbundlingResults.empty())
5048       llvm::errs() << "], output: " << Result.getAsString() << "\n";
5049     else {
5050       llvm::errs() << "], outputs: [";
5051       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5052         llvm::errs() << UnbundlingResults[i].getAsString();
5053         if (i + 1 != e)
5054           llvm::errs() << ", ";
5055       }
5056       llvm::errs() << "] \n";
5057     }
5058   } else {
5059     if (UnbundlingResults.empty())
5060       T->ConstructJob(
5061           C, *JA, Result, InputInfos,
5062           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5063           LinkingOutput);
5064     else
5065       T->ConstructJobMultipleOutputs(
5066           C, *JA, UnbundlingResults, InputInfos,
5067           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5068           LinkingOutput);
5069   }
5070   return {Result};
5071 }
5072 
5073 const char *Driver::getDefaultImageName() const {
5074   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5075   return Target.isOSWindows() ? "a.exe" : "a.out";
5076 }
5077 
5078 /// Create output filename based on ArgValue, which could either be a
5079 /// full filename, filename without extension, or a directory. If ArgValue
5080 /// does not provide a filename, then use BaseName, and use the extension
5081 /// suitable for FileType.
5082 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5083                                         StringRef BaseName,
5084                                         types::ID FileType) {
5085   SmallString<128> Filename = ArgValue;
5086 
5087   if (ArgValue.empty()) {
5088     // If the argument is empty, output to BaseName in the current dir.
5089     Filename = BaseName;
5090   } else if (llvm::sys::path::is_separator(Filename.back())) {
5091     // If the argument is a directory, output to BaseName in that dir.
5092     llvm::sys::path::append(Filename, BaseName);
5093   }
5094 
5095   if (!llvm::sys::path::has_extension(ArgValue)) {
5096     // If the argument didn't provide an extension, then set it.
5097     const char *Extension = types::getTypeTempSuffix(FileType, true);
5098 
5099     if (FileType == types::TY_Image &&
5100         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5101       // The output file is a dll.
5102       Extension = "dll";
5103     }
5104 
5105     llvm::sys::path::replace_extension(Filename, Extension);
5106   }
5107 
5108   return Args.MakeArgString(Filename.c_str());
5109 }
5110 
5111 static bool HasPreprocessOutput(const Action &JA) {
5112   if (isa<PreprocessJobAction>(JA))
5113     return true;
5114   if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5115     return true;
5116   if (isa<OffloadBundlingJobAction>(JA) &&
5117       HasPreprocessOutput(*(JA.getInputs()[0])))
5118     return true;
5119   return false;
5120 }
5121 
5122 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5123                                        const char *BaseInput,
5124                                        StringRef OrigBoundArch, bool AtTopLevel,
5125                                        bool MultipleArchs,
5126                                        StringRef OffloadingPrefix) const {
5127   std::string BoundArch = OrigBoundArch.str();
5128   if (is_style_windows(llvm::sys::path::Style::native)) {
5129     // BoundArch may contains ':', which is invalid in file names on Windows,
5130     // therefore replace it with '%'.
5131     std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5132   }
5133 
5134   llvm::PrettyStackTraceString CrashInfo("Computing output path");
5135   // Output to a user requested destination?
5136   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5137     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5138       return C.addResultFile(FinalOutput->getValue(), &JA);
5139   }
5140 
5141   // For /P, preprocess to file named after BaseInput.
5142   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5143     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5144     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5145     StringRef NameArg;
5146     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5147       NameArg = A->getValue();
5148     return C.addResultFile(
5149         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5150         &JA);
5151   }
5152 
5153   // Default to writing to stdout?
5154   if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5155     return "-";
5156   }
5157 
5158   if (JA.getType() == types::TY_ModuleFile &&
5159       C.getArgs().getLastArg(options::OPT_module_file_info)) {
5160     return "-";
5161   }
5162 
5163   // Is this the assembly listing for /FA?
5164   if (JA.getType() == types::TY_PP_Asm &&
5165       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5166        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5167     // Use /Fa and the input filename to determine the asm file name.
5168     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5169     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5170     return C.addResultFile(
5171         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5172         &JA);
5173   }
5174 
5175   // Output to a temporary file?
5176   if ((!AtTopLevel && !isSaveTempsEnabled() &&
5177        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5178       CCGenDiagnostics) {
5179     StringRef Name = llvm::sys::path::filename(BaseInput);
5180     std::pair<StringRef, StringRef> Split = Name.split('.');
5181     SmallString<128> TmpName;
5182     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5183     Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5184     if (CCGenDiagnostics && A) {
5185       SmallString<128> CrashDirectory(A->getValue());
5186       if (!getVFS().exists(CrashDirectory))
5187         llvm::sys::fs::create_directories(CrashDirectory);
5188       llvm::sys::path::append(CrashDirectory, Split.first);
5189       const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
5190       std::error_code EC = llvm::sys::fs::createUniqueFile(
5191           CrashDirectory + Middle + Suffix, TmpName);
5192       if (EC) {
5193         Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5194         return "";
5195       }
5196     } else {
5197       if (MultipleArchs && !BoundArch.empty()) {
5198         TmpName = GetTemporaryDirectory(Split.first);
5199         llvm::sys::path::append(TmpName,
5200                                 Split.first + "-" + BoundArch + "." + Suffix);
5201       } else {
5202         TmpName = GetTemporaryPath(Split.first, Suffix);
5203       }
5204     }
5205     return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5206   }
5207 
5208   SmallString<128> BasePath(BaseInput);
5209   SmallString<128> ExternalPath("");
5210   StringRef BaseName;
5211 
5212   // Dsymutil actions should use the full path.
5213   if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5214     ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5215     // We use posix style here because the tests (specifically
5216     // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5217     // even on Windows and if we don't then the similar test covering this
5218     // fails.
5219     llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5220                             llvm::sys::path::filename(BasePath));
5221     BaseName = ExternalPath;
5222   } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5223     BaseName = BasePath;
5224   else
5225     BaseName = llvm::sys::path::filename(BasePath);
5226 
5227   // Determine what the derived output name should be.
5228   const char *NamedOutput;
5229 
5230   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5231       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5232     // The /Fo or /o flag decides the object filename.
5233     StringRef Val =
5234         C.getArgs()
5235             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5236             ->getValue();
5237     NamedOutput =
5238         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5239   } else if (JA.getType() == types::TY_Image &&
5240              C.getArgs().hasArg(options::OPT__SLASH_Fe,
5241                                 options::OPT__SLASH_o)) {
5242     // The /Fe or /o flag names the linked file.
5243     StringRef Val =
5244         C.getArgs()
5245             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5246             ->getValue();
5247     NamedOutput =
5248         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5249   } else if (JA.getType() == types::TY_Image) {
5250     if (IsCLMode()) {
5251       // clang-cl uses BaseName for the executable name.
5252       NamedOutput =
5253           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5254     } else {
5255       SmallString<128> Output(getDefaultImageName());
5256       // HIP image for device compilation with -fno-gpu-rdc is per compilation
5257       // unit.
5258       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5259                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5260                                              options::OPT_fno_gpu_rdc, false);
5261       if (IsHIPNoRDC) {
5262         Output = BaseName;
5263         llvm::sys::path::replace_extension(Output, "");
5264       }
5265       Output += OffloadingPrefix;
5266       if (MultipleArchs && !BoundArch.empty()) {
5267         Output += "-";
5268         Output.append(BoundArch);
5269       }
5270       if (IsHIPNoRDC)
5271         Output += ".out";
5272       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5273     }
5274   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5275     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5276   } else {
5277     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5278     assert(Suffix && "All types used for output should have a suffix.");
5279 
5280     std::string::size_type End = std::string::npos;
5281     if (!types::appendSuffixForType(JA.getType()))
5282       End = BaseName.rfind('.');
5283     SmallString<128> Suffixed(BaseName.substr(0, End));
5284     Suffixed += OffloadingPrefix;
5285     if (MultipleArchs && !BoundArch.empty()) {
5286       Suffixed += "-";
5287       Suffixed.append(BoundArch);
5288     }
5289     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5290     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5291     // optimized bitcode output.
5292     auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
5293                                      const llvm::opt::DerivedArgList &Args) {
5294       // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5295       // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5296       // phase.)
5297       return isa<CompileJobAction>(JA) &&
5298              JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5299              Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5300                           false);
5301     };
5302     if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5303         (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5304          IsHIPRDCInCompilePhase(JA, C.getArgs())))
5305       Suffixed += ".tmp";
5306     Suffixed += '.';
5307     Suffixed += Suffix;
5308     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5309   }
5310 
5311   // Prepend object file path if -save-temps=obj
5312   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5313       JA.getType() != types::TY_PCH) {
5314     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5315     SmallString<128> TempPath(FinalOutput->getValue());
5316     llvm::sys::path::remove_filename(TempPath);
5317     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5318     llvm::sys::path::append(TempPath, OutputFileName);
5319     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5320   }
5321 
5322   // If we're saving temps and the temp file conflicts with the input file,
5323   // then avoid overwriting input file.
5324   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5325     bool SameFile = false;
5326     SmallString<256> Result;
5327     llvm::sys::fs::current_path(Result);
5328     llvm::sys::path::append(Result, BaseName);
5329     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5330     // Must share the same path to conflict.
5331     if (SameFile) {
5332       StringRef Name = llvm::sys::path::filename(BaseInput);
5333       std::pair<StringRef, StringRef> Split = Name.split('.');
5334       std::string TmpName = GetTemporaryPath(
5335           Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
5336       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5337     }
5338   }
5339 
5340   // As an annoying special case, PCH generation doesn't strip the pathname.
5341   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5342     llvm::sys::path::remove_filename(BasePath);
5343     if (BasePath.empty())
5344       BasePath = NamedOutput;
5345     else
5346       llvm::sys::path::append(BasePath, NamedOutput);
5347     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5348   } else {
5349     return C.addResultFile(NamedOutput, &JA);
5350   }
5351 }
5352 
5353 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5354   // Search for Name in a list of paths.
5355   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5356       -> llvm::Optional<std::string> {
5357     // Respect a limited subset of the '-Bprefix' functionality in GCC by
5358     // attempting to use this prefix when looking for file paths.
5359     for (const auto &Dir : P) {
5360       if (Dir.empty())
5361         continue;
5362       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5363       llvm::sys::path::append(P, Name);
5364       if (llvm::sys::fs::exists(Twine(P)))
5365         return std::string(P);
5366     }
5367     return None;
5368   };
5369 
5370   if (auto P = SearchPaths(PrefixDirs))
5371     return *P;
5372 
5373   SmallString<128> R(ResourceDir);
5374   llvm::sys::path::append(R, Name);
5375   if (llvm::sys::fs::exists(Twine(R)))
5376     return std::string(R.str());
5377 
5378   SmallString<128> P(TC.getCompilerRTPath());
5379   llvm::sys::path::append(P, Name);
5380   if (llvm::sys::fs::exists(Twine(P)))
5381     return std::string(P.str());
5382 
5383   SmallString<128> D(Dir);
5384   llvm::sys::path::append(D, "..", Name);
5385   if (llvm::sys::fs::exists(Twine(D)))
5386     return std::string(D.str());
5387 
5388   if (auto P = SearchPaths(TC.getLibraryPaths()))
5389     return *P;
5390 
5391   if (auto P = SearchPaths(TC.getFilePaths()))
5392     return *P;
5393 
5394   return std::string(Name);
5395 }
5396 
5397 void Driver::generatePrefixedToolNames(
5398     StringRef Tool, const ToolChain &TC,
5399     SmallVectorImpl<std::string> &Names) const {
5400   // FIXME: Needs a better variable than TargetTriple
5401   Names.emplace_back((TargetTriple + "-" + Tool).str());
5402   Names.emplace_back(Tool);
5403 }
5404 
5405 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5406   llvm::sys::path::append(Dir, Name);
5407   if (llvm::sys::fs::can_execute(Twine(Dir)))
5408     return true;
5409   llvm::sys::path::remove_filename(Dir);
5410   return false;
5411 }
5412 
5413 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5414   SmallVector<std::string, 2> TargetSpecificExecutables;
5415   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5416 
5417   // Respect a limited subset of the '-Bprefix' functionality in GCC by
5418   // attempting to use this prefix when looking for program paths.
5419   for (const auto &PrefixDir : PrefixDirs) {
5420     if (llvm::sys::fs::is_directory(PrefixDir)) {
5421       SmallString<128> P(PrefixDir);
5422       if (ScanDirForExecutable(P, Name))
5423         return std::string(P.str());
5424     } else {
5425       SmallString<128> P((PrefixDir + Name).str());
5426       if (llvm::sys::fs::can_execute(Twine(P)))
5427         return std::string(P.str());
5428     }
5429   }
5430 
5431   const ToolChain::path_list &List = TC.getProgramPaths();
5432   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5433     // For each possible name of the tool look for it in
5434     // program paths first, then the path.
5435     // Higher priority names will be first, meaning that
5436     // a higher priority name in the path will be found
5437     // instead of a lower priority name in the program path.
5438     // E.g. <triple>-gcc on the path will be found instead
5439     // of gcc in the program path
5440     for (const auto &Path : List) {
5441       SmallString<128> P(Path);
5442       if (ScanDirForExecutable(P, TargetSpecificExecutable))
5443         return std::string(P.str());
5444     }
5445 
5446     // Fall back to the path
5447     if (llvm::ErrorOr<std::string> P =
5448             llvm::sys::findProgramByName(TargetSpecificExecutable))
5449       return *P;
5450   }
5451 
5452   return std::string(Name);
5453 }
5454 
5455 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5456   SmallString<128> Path;
5457   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5458   if (EC) {
5459     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5460     return "";
5461   }
5462 
5463   return std::string(Path.str());
5464 }
5465 
5466 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
5467   SmallString<128> Path;
5468   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5469   if (EC) {
5470     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5471     return "";
5472   }
5473 
5474   return std::string(Path.str());
5475 }
5476 
5477 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
5478   SmallString<128> Output;
5479   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
5480     // FIXME: If anybody needs it, implement this obscure rule:
5481     // "If you specify a directory without a file name, the default file name
5482     // is VCx0.pch., where x is the major version of Visual C++ in use."
5483     Output = FpArg->getValue();
5484 
5485     // "If you do not specify an extension as part of the path name, an
5486     // extension of .pch is assumed. "
5487     if (!llvm::sys::path::has_extension(Output))
5488       Output += ".pch";
5489   } else {
5490     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
5491       Output = YcArg->getValue();
5492     if (Output.empty())
5493       Output = BaseName;
5494     llvm::sys::path::replace_extension(Output, ".pch");
5495   }
5496   return std::string(Output.str());
5497 }
5498 
5499 const ToolChain &Driver::getToolChain(const ArgList &Args,
5500                                       const llvm::Triple &Target) const {
5501 
5502   auto &TC = ToolChains[Target.str()];
5503   if (!TC) {
5504     switch (Target.getOS()) {
5505     case llvm::Triple::AIX:
5506       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
5507       break;
5508     case llvm::Triple::Haiku:
5509       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
5510       break;
5511     case llvm::Triple::Ananas:
5512       TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
5513       break;
5514     case llvm::Triple::CloudABI:
5515       TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
5516       break;
5517     case llvm::Triple::Darwin:
5518     case llvm::Triple::MacOSX:
5519     case llvm::Triple::IOS:
5520     case llvm::Triple::TvOS:
5521     case llvm::Triple::WatchOS:
5522       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
5523       break;
5524     case llvm::Triple::DragonFly:
5525       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
5526       break;
5527     case llvm::Triple::OpenBSD:
5528       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
5529       break;
5530     case llvm::Triple::NetBSD:
5531       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5532       break;
5533     case llvm::Triple::FreeBSD:
5534       if (Target.isPPC())
5535         TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
5536                                                                Args);
5537       else
5538         TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5539       break;
5540     case llvm::Triple::Minix:
5541       TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5542       break;
5543     case llvm::Triple::Linux:
5544     case llvm::Triple::ELFIAMCU:
5545       if (Target.getArch() == llvm::Triple::hexagon)
5546         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5547                                                              Args);
5548       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5549                !Target.hasEnvironment())
5550         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5551                                                               Args);
5552       else if (Target.isPPC())
5553         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5554                                                               Args);
5555       else if (Target.getArch() == llvm::Triple::ve)
5556         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5557 
5558       else
5559         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
5560       break;
5561     case llvm::Triple::NaCl:
5562       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
5563       break;
5564     case llvm::Triple::Fuchsia:
5565       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
5566       break;
5567     case llvm::Triple::Solaris:
5568       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
5569       break;
5570     case llvm::Triple::AMDHSA:
5571       TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
5572       break;
5573     case llvm::Triple::AMDPAL:
5574     case llvm::Triple::Mesa3D:
5575       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
5576       break;
5577     case llvm::Triple::Win32:
5578       switch (Target.getEnvironment()) {
5579       default:
5580         if (Target.isOSBinFormatELF())
5581           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5582         else if (Target.isOSBinFormatMachO())
5583           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5584         else
5585           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5586         break;
5587       case llvm::Triple::GNU:
5588         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
5589         break;
5590       case llvm::Triple::Itanium:
5591         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
5592                                                                   Args);
5593         break;
5594       case llvm::Triple::MSVC:
5595       case llvm::Triple::UnknownEnvironment:
5596         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
5597                 .startswith_insensitive("bfd"))
5598           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
5599               *this, Target, Args);
5600         else
5601           TC =
5602               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
5603         break;
5604       }
5605       break;
5606     case llvm::Triple::PS4:
5607       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
5608       break;
5609     case llvm::Triple::Contiki:
5610       TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
5611       break;
5612     case llvm::Triple::Hurd:
5613       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
5614       break;
5615     case llvm::Triple::ZOS:
5616       TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
5617       break;
5618     default:
5619       // Of these targets, Hexagon is the only one that might have
5620       // an OS of Linux, in which case it got handled above already.
5621       switch (Target.getArch()) {
5622       case llvm::Triple::tce:
5623         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
5624         break;
5625       case llvm::Triple::tcele:
5626         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
5627         break;
5628       case llvm::Triple::hexagon:
5629         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5630                                                              Args);
5631         break;
5632       case llvm::Triple::lanai:
5633         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
5634         break;
5635       case llvm::Triple::xcore:
5636         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
5637         break;
5638       case llvm::Triple::wasm32:
5639       case llvm::Triple::wasm64:
5640         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
5641         break;
5642       case llvm::Triple::avr:
5643         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
5644         break;
5645       case llvm::Triple::msp430:
5646         TC =
5647             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
5648         break;
5649       case llvm::Triple::riscv32:
5650       case llvm::Triple::riscv64:
5651         if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
5652           TC =
5653               std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
5654         else
5655           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5656         break;
5657       case llvm::Triple::ve:
5658         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5659         break;
5660       case llvm::Triple::spirv32:
5661       case llvm::Triple::spirv64:
5662         TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
5663         break;
5664       default:
5665         if (Target.getVendor() == llvm::Triple::Myriad)
5666           TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
5667                                                               Args);
5668         else if (toolchains::BareMetal::handlesTarget(Target))
5669           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5670         else if (Target.isOSBinFormatELF())
5671           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5672         else if (Target.isOSBinFormatMachO())
5673           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5674         else
5675           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5676       }
5677     }
5678   }
5679 
5680   // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
5681   // compiles always need two toolchains, the CUDA toolchain and the host
5682   // toolchain.  So the only valid way to create a CUDA toolchain is via
5683   // CreateOffloadingDeviceToolChains.
5684 
5685   return *TC;
5686 }
5687 
5688 const ToolChain &Driver::getOffloadingDeviceToolChain(
5689     const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
5690     const Action::OffloadKind &TargetDeviceOffloadKind) const {
5691   // Use device / host triples as the key into the ToolChains map because the
5692   // device ToolChain we create depends on both.
5693   auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
5694   if (!TC) {
5695     // Categorized by offload kind > arch rather than OS > arch like
5696     // the normal getToolChain call, as it seems a reasonable way to categorize
5697     // things.
5698     switch (TargetDeviceOffloadKind) {
5699     case Action::OFK_HIP: {
5700       if (Target.getArch() == llvm::Triple::amdgcn &&
5701           Target.getVendor() == llvm::Triple::AMD &&
5702           Target.getOS() == llvm::Triple::AMDHSA)
5703         TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
5704                                                            HostTC, Args);
5705       else if (Target.getArch() == llvm::Triple::spirv64 &&
5706                Target.getVendor() == llvm::Triple::UnknownVendor &&
5707                Target.getOS() == llvm::Triple::UnknownOS)
5708         TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
5709                                                            HostTC, Args);
5710       break;
5711     }
5712     default:
5713       break;
5714     }
5715   }
5716 
5717   return *TC;
5718 }
5719 
5720 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
5721   // Say "no" if there is not exactly one input of a type clang understands.
5722   if (JA.size() != 1 ||
5723       !types::isAcceptedByClang((*JA.input_begin())->getType()))
5724     return false;
5725 
5726   // And say "no" if this is not a kind of action clang understands.
5727   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
5728       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5729     return false;
5730 
5731   return true;
5732 }
5733 
5734 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
5735   // Say "no" if there is not exactly one input of a type flang understands.
5736   if (JA.size() != 1 ||
5737       !types::isFortran((*JA.input_begin())->getType()))
5738     return false;
5739 
5740   // And say "no" if this is not a kind of action flang understands.
5741   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5742     return false;
5743 
5744   return true;
5745 }
5746 
5747 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
5748   // Only emit static library if the flag is set explicitly.
5749   if (Args.hasArg(options::OPT_emit_static_lib))
5750     return true;
5751   return false;
5752 }
5753 
5754 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
5755 /// grouped values as integers. Numbers which are not provided are set to 0.
5756 ///
5757 /// \return True if the entire string was parsed (9.2), or all groups were
5758 /// parsed (10.3.5extrastuff).
5759 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
5760                                unsigned &Micro, bool &HadExtra) {
5761   HadExtra = false;
5762 
5763   Major = Minor = Micro = 0;
5764   if (Str.empty())
5765     return false;
5766 
5767   if (Str.consumeInteger(10, Major))
5768     return false;
5769   if (Str.empty())
5770     return true;
5771   if (Str[0] != '.')
5772     return false;
5773 
5774   Str = Str.drop_front(1);
5775 
5776   if (Str.consumeInteger(10, Minor))
5777     return false;
5778   if (Str.empty())
5779     return true;
5780   if (Str[0] != '.')
5781     return false;
5782   Str = Str.drop_front(1);
5783 
5784   if (Str.consumeInteger(10, Micro))
5785     return false;
5786   if (!Str.empty())
5787     HadExtra = true;
5788   return true;
5789 }
5790 
5791 /// Parse digits from a string \p Str and fulfill \p Digits with
5792 /// the parsed numbers. This method assumes that the max number of
5793 /// digits to look for is equal to Digits.size().
5794 ///
5795 /// \return True if the entire string was parsed and there are
5796 /// no extra characters remaining at the end.
5797 bool Driver::GetReleaseVersion(StringRef Str,
5798                                MutableArrayRef<unsigned> Digits) {
5799   if (Str.empty())
5800     return false;
5801 
5802   unsigned CurDigit = 0;
5803   while (CurDigit < Digits.size()) {
5804     unsigned Digit;
5805     if (Str.consumeInteger(10, Digit))
5806       return false;
5807     Digits[CurDigit] = Digit;
5808     if (Str.empty())
5809       return true;
5810     if (Str[0] != '.')
5811       return false;
5812     Str = Str.drop_front(1);
5813     CurDigit++;
5814   }
5815 
5816   // More digits than requested, bail out...
5817   return false;
5818 }
5819 
5820 std::pair<unsigned, unsigned>
5821 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5822   unsigned IncludedFlagsBitmask = 0;
5823   unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5824 
5825   if (IsClCompatMode) {
5826     // Include CL and Core options.
5827     IncludedFlagsBitmask |= options::CLOption;
5828     IncludedFlagsBitmask |= options::CoreOption;
5829   } else {
5830     ExcludedFlagsBitmask |= options::CLOption;
5831   }
5832 
5833   return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5834 }
5835 
5836 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5837   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5838 }
5839 
5840 bool clang::driver::willEmitRemarks(const ArgList &Args) {
5841   // -fsave-optimization-record enables it.
5842   if (Args.hasFlag(options::OPT_fsave_optimization_record,
5843                    options::OPT_fno_save_optimization_record, false))
5844     return true;
5845 
5846   // -fsave-optimization-record=<format> enables it as well.
5847   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5848                    options::OPT_fno_save_optimization_record, false))
5849     return true;
5850 
5851   // -foptimization-record-file alone enables it too.
5852   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5853                    options::OPT_fno_save_optimization_record, false))
5854     return true;
5855 
5856   // -foptimization-record-passes alone enables it too.
5857   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5858                    options::OPT_fno_save_optimization_record, false))
5859     return true;
5860   return false;
5861 }
5862 
5863 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
5864                                              ArrayRef<const char *> Args) {
5865   static const std::string OptName =
5866       getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
5867   llvm::StringRef Opt;
5868   for (StringRef Arg : Args) {
5869     if (!Arg.startswith(OptName))
5870       continue;
5871     Opt = Arg;
5872   }
5873   if (Opt.empty())
5874     Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
5875   return Opt.consume_front(OptName) ? Opt : "";
5876 }
5877 
5878 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
5879