1 //===--- Macros.h - Format C++ code -----------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file contains the main building blocks of macro support in
11 /// clang-format.
12 ///
13 /// In order to not violate the requirement that clang-format can format files
14 /// in isolation, clang-format's macro support uses expansions users provide
15 /// as part of clang-format's style configuration.
16 ///
17 /// Macro definitions are of the form "MACRO(p1, p2)=p1 + p2", but only support
18 /// one level of expansion (\see MacroExpander for a full description of what
19 /// is supported).
20 ///
21 /// As part of parsing, clang-format uses the MacroExpander to expand the
22 /// spelled token streams into expanded token streams when it encounters a
23 /// macro call. The UnwrappedLineParser continues to parse UnwrappedLines
24 /// from the expanded token stream.
25 /// After the expanded unwrapped lines are parsed, the MacroCallReconstructor
26 /// matches the spelled token stream into unwrapped lines that best resemble the
27 /// structure of the expanded unwrapped lines. These reconstructed unwrapped
28 /// lines are aliasing the tokens in the expanded token stream, so that token
29 /// annotations will be reused when formatting the spelled macro calls.
30 ///
31 /// When formatting, clang-format annotates and formats the expanded unwrapped
32 /// lines first, determining the token types. Next, it formats the spelled
33 /// unwrapped lines, keeping the token types fixed, while allowing other
34 /// formatting decisions to change.
35 ///
36 //===----------------------------------------------------------------------===//
37 
38 #ifndef CLANG_LIB_FORMAT_MACROS_H
39 #define CLANG_LIB_FORMAT_MACROS_H
40 
41 #include <list>
42 #include <map>
43 #include <string>
44 #include <vector>
45 
46 #include "FormatToken.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/StringRef.h"
51 
52 namespace clang {
53 namespace format {
54 
55 struct UnwrappedLine;
56 struct UnwrappedLineNode;
57 
58 /// Takes a set of macro definitions as strings and allows expanding calls to
59 /// those macros.
60 ///
61 /// For example:
62 /// Definition: A(x, y)=x + y
63 /// Call      : A(int a = 1, 2)
64 /// Expansion : int a = 1 + 2
65 ///
66 /// Expansion does not check arity of the definition.
67 /// If fewer arguments than expected are provided, the remaining parameters
68 /// are considered empty:
69 /// Call     : A(a)
70 /// Expansion: a +
71 /// If more arguments than expected are provided, they will be discarded.
72 ///
73 /// The expander does not support:
74 /// - recursive expansion
75 /// - stringification
76 /// - concatenation
77 /// - variadic macros
78 ///
79 /// Furthermore, only a single expansion of each macro argument is supported,
80 /// so that we cannot get conflicting formatting decisions from different
81 /// expansions.
82 /// Definition: A(x)=x+x
83 /// Call      : A(id)
84 /// Expansion : id+x
85 ///
86 class MacroExpander {
87 public:
88   using ArgsList = llvm::ArrayRef<llvm::SmallVector<FormatToken *, 8>>;
89 
90   /// Construct a macro expander from a set of macro definitions.
91   /// Macro definitions must be encoded as UTF-8.
92   ///
93   /// Each entry in \p Macros must conform to the following simple
94   /// macro-definition language:
95   /// <definition> ::= <id> <expansion> | <id> "(" <params> ")" <expansion>
96   /// <params>     ::= <id-list> | ""
97   /// <id-list>    ::= <id> | <id> "," <params>
98   /// <expansion>  ::= "=" <tail> | <eof>
99   /// <tail>       ::= <tok> <tail> | <eof>
100   ///
101   /// Macros that cannot be parsed will be silently discarded.
102   ///
103   MacroExpander(const std::vector<std::string> &Macros,
104                 clang::SourceManager &SourceMgr, const FormatStyle &Style,
105                 llvm::SpecificBumpPtrAllocator<FormatToken> &Allocator,
106                 IdentifierTable &IdentTable);
107   ~MacroExpander();
108 
109   /// Returns whether a macro \p Name is defined.
110   bool defined(llvm::StringRef Name) const;
111 
112   /// Returns whether the macro has no arguments and should not consume
113   /// subsequent parentheses.
114   bool objectLike(llvm::StringRef Name) const;
115 
116   /// Returns the expanded stream of format tokens for \p ID, where
117   /// each element in \p Args is a positional argument to the macro call.
118   llvm::SmallVector<FormatToken *, 8> expand(FormatToken *ID,
119                                              ArgsList Args) const;
120 
121 private:
122   struct Definition;
123   class DefinitionParser;
124 
125   void parseDefinition(const std::string &Macro);
126 
127   clang::SourceManager &SourceMgr;
128   const FormatStyle &Style;
129   llvm::SpecificBumpPtrAllocator<FormatToken> &Allocator;
130   IdentifierTable &IdentTable;
131   SmallVector<std::unique_ptr<llvm::MemoryBuffer>> Buffers;
132   llvm::StringMap<Definition> Definitions;
133 };
134 
135 /// Converts a sequence of UnwrappedLines containing expanded macros into a
136 /// single UnwrappedLine containing the macro calls.  This UnwrappedLine may be
137 /// broken into child lines, in a way that best conveys the structure of the
138 /// expanded code.
139 ///
140 /// In the simplest case, a spelled UnwrappedLine contains one macro, and after
141 /// expanding it we have one expanded UnwrappedLine.  In general, macro
142 /// expansions can span UnwrappedLines, and multiple macros can contribute
143 /// tokens to the same line.  We keep consuming expanded lines until:
144 /// *   all expansions that started have finished (we're not chopping any macros
145 ///     in half)
146 /// *   *and* we've reached the end of a *spelled* unwrapped line.
147 ///
148 /// A single UnwrappedLine represents this chunk of code.
149 ///
150 /// After this point, the state of the spelled/expanded stream is "in sync"
151 /// (both at the start of an UnwrappedLine, with no macros open), so the
152 /// Unexpander can be thrown away and parsing can continue.
153 ///
154 /// Given a mapping from the macro name identifier token in the macro call
155 /// to the tokens of the macro call, for example:
156 /// CLASSA -> CLASSA({public: void x();})
157 ///
158 /// When getting the formatted lines of the expansion via the \c addLine method
159 /// (each '->' specifies a call to \c addLine ):
160 /// -> class A {
161 /// -> public:
162 /// ->   void x();
163 /// -> };
164 ///
165 /// Creates the tree of unwrapped lines containing the macro call tokens so that
166 /// the macro call tokens fit the semantic structure of the expanded formatted
167 /// lines:
168 /// -> CLASSA({
169 /// -> public:
170 /// ->   void x();
171 /// -> })
172 class MacroCallReconstructor {
173 public:
174   /// Create an Reconstructor whose resulting \p UnwrappedLine will start at
175   /// \p Level, using the map from name identifier token to the corresponding
176   /// tokens of the spelled macro call.
177   MacroCallReconstructor(
178       unsigned Level,
179       const llvm::DenseMap<FormatToken *, std::unique_ptr<UnwrappedLine>>
180           &ActiveExpansions);
181 
182   /// For the given \p Line, match all occurences of tokens expanded from a
183   /// macro to unwrapped lines in the spelled macro call so that the resulting
184   /// tree of unwrapped lines best resembles the structure of unwrapped lines
185   /// passed in via \c addLine.
186   void addLine(const UnwrappedLine &Line);
187 
188   /// Check whether at the current state there is no open macro expansion
189   /// that needs to be processed to finish an macro call.
190   /// Only when \c finished() is true, \c takeResult() can be called to retrieve
191   /// the resulting \c UnwrappedLine.
192   /// If there are multiple subsequent macro calls within an unwrapped line in
193   /// the spelled token stream, the calling code may also continue to call
194   /// \c addLine() when \c finished() is true.
195   bool finished() const { return ActiveExpansions.empty(); }
196 
197   /// Retrieve the formatted \c UnwrappedLine containing the orginal
198   /// macro calls, formatted according to the expanded token stream received
199   /// via \c addLine().
200   /// Generally, this line tries to have the same structure as the expanded,
201   /// formatted unwrapped lines handed in via \c addLine(), with the exception
202   /// that for multiple top-level lines, each subsequent line will be the
203   /// child of the last token in its predecessor. This representation is chosen
204   /// because it is a precondition to the formatter that we get what looks like
205   /// a single statement in a single \c UnwrappedLine (i.e. matching parens).
206   ///
207   /// If a token in a macro argument is a child of a token in the expansion,
208   /// the parent will be the corresponding token in the macro call.
209   /// For example:
210   ///   #define C(a, b) class C { a b
211   ///   C(int x;, int y;)
212   /// would expand to
213   ///   class C { int x; int y;
214   /// where in a formatted line "int x;" and "int y;" would both be new separate
215   /// lines.
216   ///
217   /// In the result, "int x;" will be a child of the opening parenthesis in "C("
218   /// and "int y;" will be a child of the "," token:
219   ///   C (
220   ///     \- int x;
221   ///     ,
222   ///     \- int y;
223   ///     )
224   UnwrappedLine takeResult() &&;
225 
226 private:
227   void add(FormatToken *Token, FormatToken *ExpandedParent, bool First);
228   void prepareParent(FormatToken *ExpandedParent, bool First);
229   FormatToken *getParentInResult(FormatToken *Parent);
230   void reconstruct(FormatToken *Token);
231   void startReconstruction(FormatToken *Token);
232   bool reconstructActiveCallUntil(FormatToken *Token);
233   void endReconstruction(FormatToken *Token);
234   bool processNextReconstructed();
235   void finalize();
236 
237   struct ReconstructedLine;
238 
239   void appendToken(FormatToken *Token, ReconstructedLine *L = nullptr);
240   UnwrappedLine createUnwrappedLine(const ReconstructedLine &Line, int Level);
241   void debug(const ReconstructedLine &Line, int Level);
242   ReconstructedLine &parentLine();
243   ReconstructedLine *currentLine();
244   void debugParentMap() const;
245 
246 #ifndef NDEBUG
247   enum ReconstructorState {
248     Start,      // No macro expansion was found in the input yet.
249     InProgress, // During a macro reconstruction.
250     Finalized,  // Past macro reconstruction, the result is finalized.
251   };
252   ReconstructorState State = Start;
253 #endif
254 
255   // Node in which we build up the resulting unwrapped line; this type is
256   // analogous to UnwrappedLineNode.
257   struct LineNode {
258     LineNode() = default;
259     LineNode(FormatToken *Tok) : Tok(Tok) {}
260     FormatToken *Tok = nullptr;
261     llvm::SmallVector<std::unique_ptr<ReconstructedLine>> Children;
262   };
263 
264   // Line in which we build up the resulting unwrapped line.
265   // FIXME: Investigate changing UnwrappedLine to a pointer type and using it
266   // instead of rolling our own type.
267   struct ReconstructedLine {
268     llvm::SmallVector<std::unique_ptr<LineNode>> Tokens;
269   };
270 
271   // The line in which we collect the resulting reconstructed output.
272   // To reduce special cases in the algorithm, the first level of the line
273   // contains a single null token that has the reconstructed incoming
274   // lines as children.
275   // In the end, we stich the lines together so that each subsequent line
276   // is a child of the last token of the previous line. This is necessary
277   // in order to format the overall expression as a single logical line -
278   // if we created separate lines, we'd format them with their own top-level
279   // indent depending on the semantic structure, which is not desired.
280   ReconstructedLine Result;
281 
282   // Stack of currently "open" lines, where each line's predecessor's last
283   // token is the parent token for that line.
284   llvm::SmallVector<ReconstructedLine *> ActiveReconstructedLines;
285 
286   // Maps from the expanded token to the token that takes its place in the
287   // reconstructed token stream in terms of parent-child relationships.
288   // Note that it might take multiple steps to arrive at the correct
289   // parent in the output.
290   // Given: #define C(a, b) []() { a; b; }
291   // And a call: C(f(), g())
292   // The structure in the incoming formatted unwrapped line will be:
293   // []() {
294   //      |- f();
295   //      \- g();
296   // }
297   // with f and g being children of the opening brace.
298   // In the reconstructed call:
299   // C(f(), g())
300   //  \- f()
301   //      \- g()
302   // We want f to be a child of the opening parenthesis and g to be a child
303   // of the comma token in the macro call.
304   // Thus, we map
305   // { -> (
306   // and add
307   // ( -> ,
308   // once we're past the comma in the reconstruction.
309   llvm::DenseMap<FormatToken *, FormatToken *>
310       SpelledParentToReconstructedParent;
311 
312   // Keeps track of a single expansion while we're reconstructing tokens it
313   // generated.
314   struct Expansion {
315     // The identifier token of the macro call.
316     FormatToken *ID;
317     // Our current position in the reconstruction.
318     std::list<UnwrappedLineNode>::iterator SpelledI;
319     // The end of the reconstructed token sequence.
320     std::list<UnwrappedLineNode>::iterator SpelledE;
321   };
322 
323   // Stack of macro calls for which we're in the middle of an expansion.
324   llvm::SmallVector<Expansion> ActiveExpansions;
325 
326   struct MacroCallState {
327     MacroCallState(ReconstructedLine *Line, FormatToken *ParentLastToken,
328                    FormatToken *MacroCallLParen);
329 
330     ReconstructedLine *Line;
331 
332     // The last token in the parent line or expansion, or nullptr if the macro
333     // expansion is on a top-level line.
334     //
335     // For example, in the macro call:
336     //   auto f = []() { ID(1); };
337     // The MacroCallState for ID will have '{' as ParentLastToken.
338     //
339     // In the macro call:
340     //   ID(ID(void f()));
341     // The MacroCallState of the outer ID will have nullptr as ParentLastToken,
342     // while the MacroCallState for the inner ID will have the '(' of the outer
343     // ID as ParentLastToken.
344     //
345     // In the macro call:
346     //   ID2(a, ID(b));
347     // The MacroCallState of ID will have ',' as ParentLastToken.
348     FormatToken *ParentLastToken;
349 
350     // The l_paren of this MacroCallState's macro call.
351     FormatToken *MacroCallLParen;
352   };
353 
354   // Keeps track of the lines into which the opening brace/parenthesis &
355   // argument separating commas for each level in the macro call go in order to
356   // put the corresponding closing brace/parenthesis into the same line in the
357   // output and keep track of which parents in the expanded token stream map to
358   // which tokens in the reconstructed stream.
359   // When an opening brace/parenthesis has children, we want the structure of
360   // the output line to be:
361   // |- MACRO
362   // |- (
363   // |  \- <argument>
364   // |- ,
365   // |  \- <argument>
366   // \- )
367   llvm::SmallVector<MacroCallState> MacroCallStructure;
368 
369   // Level the generated UnwrappedLine will be at.
370   const unsigned Level;
371 
372   // Maps from identifier of the macro call to an unwrapped line containing
373   // all tokens of the macro call.
374   const llvm::DenseMap<FormatToken *, std::unique_ptr<UnwrappedLine>>
375       &IdToReconstructed;
376 };
377 
378 } // namespace format
379 } // namespace clang
380 
381 #endif
382