1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the top level handling of macro expansion for the
10 // preprocessor.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Basic/AttributeCommonInfo.h"
15 #include "clang/Basic/Attributes.h"
16 #include "clang/Basic/Builtins.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/IdentifierTable.h"
19 #include "clang/Basic/LLVM.h"
20 #include "clang/Basic/LangOptions.h"
21 #include "clang/Basic/ObjCRuntime.h"
22 #include "clang/Basic/SourceLocation.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Lex/CodeCompletionHandler.h"
25 #include "clang/Lex/DirectoryLookup.h"
26 #include "clang/Lex/ExternalPreprocessorSource.h"
27 #include "clang/Lex/HeaderSearch.h"
28 #include "clang/Lex/LexDiagnostic.h"
29 #include "clang/Lex/LiteralSupport.h"
30 #include "clang/Lex/MacroArgs.h"
31 #include "clang/Lex/MacroInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Lex/PreprocessorLexer.h"
34 #include "clang/Lex/PreprocessorOptions.h"
35 #include "clang/Lex/Token.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseSet.h"
39 #include "llvm/ADT/FoldingSet.h"
40 #include "llvm/ADT/None.h"
41 #include "llvm/ADT/Optional.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/ADT/StringSwitch.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/Path.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstddef>
55 #include <cstring>
56 #include <ctime>
57 #include <string>
58 #include <tuple>
59 #include <utility>
60 
61 using namespace clang;
62 
63 MacroDirective *
64 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
65   if (!II->hadMacroDefinition())
66     return nullptr;
67   auto Pos = CurSubmoduleState->Macros.find(II);
68   return Pos == CurSubmoduleState->Macros.end() ? nullptr
69                                                 : Pos->second.getLatest();
70 }
71 
72 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
73   assert(MD && "MacroDirective should be non-zero!");
74   assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
75 
76   MacroState &StoredMD = CurSubmoduleState->Macros[II];
77   auto *OldMD = StoredMD.getLatest();
78   MD->setPrevious(OldMD);
79   StoredMD.setLatest(MD);
80   StoredMD.overrideActiveModuleMacros(*this, II);
81 
82   if (needModuleMacros()) {
83     // Track that we created a new macro directive, so we know we should
84     // consider building a ModuleMacro for it when we get to the end of
85     // the module.
86     PendingModuleMacroNames.push_back(II);
87   }
88 
89   // Set up the identifier as having associated macro history.
90   II->setHasMacroDefinition(true);
91   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
92     II->setHasMacroDefinition(false);
93   if (II->isFromAST())
94     II->setChangedSinceDeserialization();
95 }
96 
97 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
98                                            MacroDirective *ED,
99                                            MacroDirective *MD) {
100   // Normally, when a macro is defined, it goes through appendMacroDirective()
101   // above, which chains a macro to previous defines, undefs, etc.
102   // However, in a pch, the whole macro history up to the end of the pch is
103   // stored, so ASTReader goes through this function instead.
104   // However, built-in macros are already registered in the Preprocessor
105   // ctor, and ASTWriter stops writing the macro chain at built-in macros,
106   // so in that case the chain from the pch needs to be spliced to the existing
107   // built-in.
108 
109   assert(II && MD);
110   MacroState &StoredMD = CurSubmoduleState->Macros[II];
111 
112   if (auto *OldMD = StoredMD.getLatest()) {
113     // shouldIgnoreMacro() in ASTWriter also stops at macros from the
114     // predefines buffer in module builds. However, in module builds, modules
115     // are loaded completely before predefines are processed, so StoredMD
116     // will be nullptr for them when they're loaded. StoredMD should only be
117     // non-nullptr for builtins read from a pch file.
118     assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
119            "only built-ins should have an entry here");
120     assert(!OldMD->getPrevious() && "builtin should only have a single entry");
121     ED->setPrevious(OldMD);
122     StoredMD.setLatest(MD);
123   } else {
124     StoredMD = MD;
125   }
126 
127   // Setup the identifier as having associated macro history.
128   II->setHasMacroDefinition(true);
129   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
130     II->setHasMacroDefinition(false);
131 }
132 
133 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
134                                           MacroInfo *Macro,
135                                           ArrayRef<ModuleMacro *> Overrides,
136                                           bool &New) {
137   llvm::FoldingSetNodeID ID;
138   ModuleMacro::Profile(ID, Mod, II);
139 
140   void *InsertPos;
141   if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
142     New = false;
143     return MM;
144   }
145 
146   auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
147   ModuleMacros.InsertNode(MM, InsertPos);
148 
149   // Each overridden macro is now overridden by one more macro.
150   bool HidAny = false;
151   for (auto *O : Overrides) {
152     HidAny |= (O->NumOverriddenBy == 0);
153     ++O->NumOverriddenBy;
154   }
155 
156   // If we were the first overrider for any macro, it's no longer a leaf.
157   auto &LeafMacros = LeafModuleMacros[II];
158   if (HidAny) {
159     llvm::erase_if(LeafMacros,
160                    [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; });
161   }
162 
163   // The new macro is always a leaf macro.
164   LeafMacros.push_back(MM);
165   // The identifier now has defined macros (that may or may not be visible).
166   II->setHasMacroDefinition(true);
167 
168   New = true;
169   return MM;
170 }
171 
172 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod,
173                                           const IdentifierInfo *II) {
174   llvm::FoldingSetNodeID ID;
175   ModuleMacro::Profile(ID, Mod, II);
176 
177   void *InsertPos;
178   return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
179 }
180 
181 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
182                                          ModuleMacroInfo &Info) {
183   assert(Info.ActiveModuleMacrosGeneration !=
184              CurSubmoduleState->VisibleModules.getGeneration() &&
185          "don't need to update this macro name info");
186   Info.ActiveModuleMacrosGeneration =
187       CurSubmoduleState->VisibleModules.getGeneration();
188 
189   auto Leaf = LeafModuleMacros.find(II);
190   if (Leaf == LeafModuleMacros.end()) {
191     // No imported macros at all: nothing to do.
192     return;
193   }
194 
195   Info.ActiveModuleMacros.clear();
196 
197   // Every macro that's locally overridden is overridden by a visible macro.
198   llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
199   for (auto *O : Info.OverriddenMacros)
200     NumHiddenOverrides[O] = -1;
201 
202   // Collect all macros that are not overridden by a visible macro.
203   llvm::SmallVector<ModuleMacro *, 16> Worklist;
204   for (auto *LeafMM : Leaf->second) {
205     assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
206     if (NumHiddenOverrides.lookup(LeafMM) == 0)
207       Worklist.push_back(LeafMM);
208   }
209   while (!Worklist.empty()) {
210     auto *MM = Worklist.pop_back_val();
211     if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
212       // We only care about collecting definitions; undefinitions only act
213       // to override other definitions.
214       if (MM->getMacroInfo())
215         Info.ActiveModuleMacros.push_back(MM);
216     } else {
217       for (auto *O : MM->overrides())
218         if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
219           Worklist.push_back(O);
220     }
221   }
222   // Our reverse postorder walk found the macros in reverse order.
223   std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
224 
225   // Determine whether the macro name is ambiguous.
226   MacroInfo *MI = nullptr;
227   bool IsSystemMacro = true;
228   bool IsAmbiguous = false;
229   if (auto *MD = Info.MD) {
230     while (MD && isa<VisibilityMacroDirective>(MD))
231       MD = MD->getPrevious();
232     if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
233       MI = DMD->getInfo();
234       IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
235     }
236   }
237   for (auto *Active : Info.ActiveModuleMacros) {
238     auto *NewMI = Active->getMacroInfo();
239 
240     // Before marking the macro as ambiguous, check if this is a case where
241     // both macros are in system headers. If so, we trust that the system
242     // did not get it wrong. This also handles cases where Clang's own
243     // headers have a different spelling of certain system macros:
244     //   #define LONG_MAX __LONG_MAX__ (clang's limits.h)
245     //   #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
246     //
247     // FIXME: Remove the defined-in-system-headers check. clang's limits.h
248     // overrides the system limits.h's macros, so there's no conflict here.
249     if (MI && NewMI != MI &&
250         !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
251       IsAmbiguous = true;
252     IsSystemMacro &= Active->getOwningModule()->IsSystem ||
253                      SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
254     MI = NewMI;
255   }
256   Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
257 }
258 
259 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
260   ArrayRef<ModuleMacro*> Leaf;
261   auto LeafIt = LeafModuleMacros.find(II);
262   if (LeafIt != LeafModuleMacros.end())
263     Leaf = LeafIt->second;
264   const MacroState *State = nullptr;
265   auto Pos = CurSubmoduleState->Macros.find(II);
266   if (Pos != CurSubmoduleState->Macros.end())
267     State = &Pos->second;
268 
269   llvm::errs() << "MacroState " << State << " " << II->getNameStart();
270   if (State && State->isAmbiguous(*this, II))
271     llvm::errs() << " ambiguous";
272   if (State && !State->getOverriddenMacros().empty()) {
273     llvm::errs() << " overrides";
274     for (auto *O : State->getOverriddenMacros())
275       llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
276   }
277   llvm::errs() << "\n";
278 
279   // Dump local macro directives.
280   for (auto *MD = State ? State->getLatest() : nullptr; MD;
281        MD = MD->getPrevious()) {
282     llvm::errs() << " ";
283     MD->dump();
284   }
285 
286   // Dump module macros.
287   llvm::DenseSet<ModuleMacro*> Active;
288   for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
289     Active.insert(MM);
290   llvm::DenseSet<ModuleMacro*> Visited;
291   llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
292   while (!Worklist.empty()) {
293     auto *MM = Worklist.pop_back_val();
294     llvm::errs() << " ModuleMacro " << MM << " "
295                  << MM->getOwningModule()->getFullModuleName();
296     if (!MM->getMacroInfo())
297       llvm::errs() << " undef";
298 
299     if (Active.count(MM))
300       llvm::errs() << " active";
301     else if (!CurSubmoduleState->VisibleModules.isVisible(
302                  MM->getOwningModule()))
303       llvm::errs() << " hidden";
304     else if (MM->getMacroInfo())
305       llvm::errs() << " overridden";
306 
307     if (!MM->overrides().empty()) {
308       llvm::errs() << " overrides";
309       for (auto *O : MM->overrides()) {
310         llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
311         if (Visited.insert(O).second)
312           Worklist.push_back(O);
313       }
314     }
315     llvm::errs() << "\n";
316     if (auto *MI = MM->getMacroInfo()) {
317       llvm::errs() << "  ";
318       MI->dump();
319       llvm::errs() << "\n";
320     }
321   }
322 }
323 
324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
325 /// table and mark it as a builtin macro to be expanded.
326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
327   // Get the identifier.
328   IdentifierInfo *Id = PP.getIdentifierInfo(Name);
329 
330   // Mark it as being a macro that is builtin.
331   MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
332   MI->setIsBuiltinMacro();
333   PP.appendDefMacroDirective(Id, MI);
334   return Id;
335 }
336 
337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
338 /// identifier table.
339 void Preprocessor::RegisterBuiltinMacros() {
340   Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
341   Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
342   Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
343   Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
344   Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
345   Ident_Pragma  = RegisterBuiltinMacro(*this, "_Pragma");
346   Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__");
347 
348   // C++ Standing Document Extensions.
349   if (getLangOpts().CPlusPlus)
350     Ident__has_cpp_attribute =
351         RegisterBuiltinMacro(*this, "__has_cpp_attribute");
352   else
353     Ident__has_cpp_attribute = nullptr;
354 
355   // GCC Extensions.
356   Ident__BASE_FILE__     = RegisterBuiltinMacro(*this, "__BASE_FILE__");
357   Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
358   Ident__TIMESTAMP__     = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
359 
360   // Microsoft Extensions.
361   if (getLangOpts().MicrosoftExt) {
362     Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
363     Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
364   } else {
365     Ident__identifier = nullptr;
366     Ident__pragma = nullptr;
367   }
368 
369   // Clang Extensions.
370   Ident__FILE_NAME__      = RegisterBuiltinMacro(*this, "__FILE_NAME__");
371   Ident__has_feature      = RegisterBuiltinMacro(*this, "__has_feature");
372   Ident__has_extension    = RegisterBuiltinMacro(*this, "__has_extension");
373   Ident__has_builtin      = RegisterBuiltinMacro(*this, "__has_builtin");
374   Ident__has_attribute    = RegisterBuiltinMacro(*this, "__has_attribute");
375   if (!getLangOpts().CPlusPlus)
376     Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute");
377   else
378     Ident__has_c_attribute = nullptr;
379 
380   Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
381   Ident__has_include      = RegisterBuiltinMacro(*this, "__has_include");
382   Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
383   Ident__has_warning      = RegisterBuiltinMacro(*this, "__has_warning");
384   Ident__is_identifier    = RegisterBuiltinMacro(*this, "__is_identifier");
385   Ident__is_target_arch   = RegisterBuiltinMacro(*this, "__is_target_arch");
386   Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
387   Ident__is_target_os     = RegisterBuiltinMacro(*this, "__is_target_os");
388   Ident__is_target_environment =
389       RegisterBuiltinMacro(*this, "__is_target_environment");
390 
391   // Modules.
392   Ident__building_module  = RegisterBuiltinMacro(*this, "__building_module");
393   if (!getLangOpts().CurrentModule.empty())
394     Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
395   else
396     Ident__MODULE__ = nullptr;
397 }
398 
399 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
400 /// in its expansion, currently expands to that token literally.
401 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
402                                           const IdentifierInfo *MacroIdent,
403                                           Preprocessor &PP) {
404   IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
405 
406   // If the token isn't an identifier, it's always literally expanded.
407   if (!II) return true;
408 
409   // If the information about this identifier is out of date, update it from
410   // the external source.
411   if (II->isOutOfDate())
412     PP.getExternalSource()->updateOutOfDateIdentifier(*II);
413 
414   // If the identifier is a macro, and if that macro is enabled, it may be
415   // expanded so it's not a trivial expansion.
416   if (auto *ExpansionMI = PP.getMacroInfo(II))
417     if (ExpansionMI->isEnabled() &&
418         // Fast expanding "#define X X" is ok, because X would be disabled.
419         II != MacroIdent)
420       return false;
421 
422   // If this is an object-like macro invocation, it is safe to trivially expand
423   // it.
424   if (MI->isObjectLike()) return true;
425 
426   // If this is a function-like macro invocation, it's safe to trivially expand
427   // as long as the identifier is not a macro argument.
428   return !llvm::is_contained(MI->params(), II);
429 }
430 
431 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
432 /// lexed is a '('.  If so, consume the token and return true, if not, this
433 /// method should have no observable side-effect on the lexed tokens.
434 bool Preprocessor::isNextPPTokenLParen() {
435   // Do some quick tests for rejection cases.
436   unsigned Val;
437   if (CurLexer)
438     Val = CurLexer->isNextPPTokenLParen();
439   else
440     Val = CurTokenLexer->isNextTokenLParen();
441 
442   if (Val == 2) {
443     // We have run off the end.  If it's a source file we don't
444     // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
445     // macro stack.
446     if (CurPPLexer)
447       return false;
448     for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
449       if (Entry.TheLexer)
450         Val = Entry.TheLexer->isNextPPTokenLParen();
451       else
452         Val = Entry.TheTokenLexer->isNextTokenLParen();
453 
454       if (Val != 2)
455         break;
456 
457       // Ran off the end of a source file?
458       if (Entry.ThePPLexer)
459         return false;
460     }
461   }
462 
463   // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
464   // have found something that isn't a '(' or we found the end of the
465   // translation unit.  In either case, return false.
466   return Val == 1;
467 }
468 
469 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
470 /// expanded as a macro, handle it and return the next token as 'Identifier'.
471 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
472                                                  const MacroDefinition &M) {
473   emitMacroExpansionWarnings(Identifier);
474 
475   MacroInfo *MI = M.getMacroInfo();
476 
477   // If this is a macro expansion in the "#if !defined(x)" line for the file,
478   // then the macro could expand to different things in other contexts, we need
479   // to disable the optimization in this case.
480   if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
481 
482   // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
483   if (MI->isBuiltinMacro()) {
484     if (Callbacks)
485       Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
486                               /*Args=*/nullptr);
487     ExpandBuiltinMacro(Identifier);
488     return true;
489   }
490 
491   /// Args - If this is a function-like macro expansion, this contains,
492   /// for each macro argument, the list of tokens that were provided to the
493   /// invocation.
494   MacroArgs *Args = nullptr;
495 
496   // Remember where the end of the expansion occurred.  For an object-like
497   // macro, this is the identifier.  For a function-like macro, this is the ')'.
498   SourceLocation ExpansionEnd = Identifier.getLocation();
499 
500   // If this is a function-like macro, read the arguments.
501   if (MI->isFunctionLike()) {
502     // Remember that we are now parsing the arguments to a macro invocation.
503     // Preprocessor directives used inside macro arguments are not portable, and
504     // this enables the warning.
505     InMacroArgs = true;
506     ArgMacro = &Identifier;
507 
508     Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
509 
510     // Finished parsing args.
511     InMacroArgs = false;
512     ArgMacro = nullptr;
513 
514     // If there was an error parsing the arguments, bail out.
515     if (!Args) return true;
516 
517     ++NumFnMacroExpanded;
518   } else {
519     ++NumMacroExpanded;
520   }
521 
522   // Notice that this macro has been used.
523   markMacroAsUsed(MI);
524 
525   // Remember where the token is expanded.
526   SourceLocation ExpandLoc = Identifier.getLocation();
527   SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
528 
529   if (Callbacks) {
530     if (InMacroArgs) {
531       // We can have macro expansion inside a conditional directive while
532       // reading the function macro arguments. To ensure, in that case, that
533       // MacroExpands callbacks still happen in source order, queue this
534       // callback to have it happen after the function macro callback.
535       DelayedMacroExpandsCallbacks.push_back(
536           MacroExpandsInfo(Identifier, M, ExpansionRange));
537     } else {
538       Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
539       if (!DelayedMacroExpandsCallbacks.empty()) {
540         for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
541           // FIXME: We lose macro args info with delayed callback.
542           Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
543                                   /*Args=*/nullptr);
544         }
545         DelayedMacroExpandsCallbacks.clear();
546       }
547     }
548   }
549 
550   // If the macro definition is ambiguous, complain.
551   if (M.isAmbiguous()) {
552     Diag(Identifier, diag::warn_pp_ambiguous_macro)
553       << Identifier.getIdentifierInfo();
554     Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
555       << Identifier.getIdentifierInfo();
556     M.forAllDefinitions([&](const MacroInfo *OtherMI) {
557       if (OtherMI != MI)
558         Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
559           << Identifier.getIdentifierInfo();
560     });
561   }
562 
563   // If we started lexing a macro, enter the macro expansion body.
564 
565   // If this macro expands to no tokens, don't bother to push it onto the
566   // expansion stack, only to take it right back off.
567   if (MI->getNumTokens() == 0) {
568     // No need for arg info.
569     if (Args) Args->destroy(*this);
570 
571     // Propagate whitespace info as if we had pushed, then popped,
572     // a macro context.
573     Identifier.setFlag(Token::LeadingEmptyMacro);
574     PropagateLineStartLeadingSpaceInfo(Identifier);
575     ++NumFastMacroExpanded;
576     return false;
577   } else if (MI->getNumTokens() == 1 &&
578              isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
579                                            *this)) {
580     // Otherwise, if this macro expands into a single trivially-expanded
581     // token: expand it now.  This handles common cases like
582     // "#define VAL 42".
583 
584     // No need for arg info.
585     if (Args) Args->destroy(*this);
586 
587     // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
588     // identifier to the expanded token.
589     bool isAtStartOfLine = Identifier.isAtStartOfLine();
590     bool hasLeadingSpace = Identifier.hasLeadingSpace();
591 
592     // Replace the result token.
593     Identifier = MI->getReplacementToken(0);
594 
595     // Restore the StartOfLine/LeadingSpace markers.
596     Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
597     Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
598 
599     // Update the tokens location to include both its expansion and physical
600     // locations.
601     SourceLocation Loc =
602       SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
603                                    ExpansionEnd,Identifier.getLength());
604     Identifier.setLocation(Loc);
605 
606     // If this is a disabled macro or #define X X, we must mark the result as
607     // unexpandable.
608     if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
609       if (MacroInfo *NewMI = getMacroInfo(NewII))
610         if (!NewMI->isEnabled() || NewMI == MI) {
611           Identifier.setFlag(Token::DisableExpand);
612           // Don't warn for "#define X X" like "#define bool bool" from
613           // stdbool.h.
614           if (NewMI != MI || MI->isFunctionLike())
615             Diag(Identifier, diag::pp_disabled_macro_expansion);
616         }
617     }
618 
619     // Since this is not an identifier token, it can't be macro expanded, so
620     // we're done.
621     ++NumFastMacroExpanded;
622     return true;
623   }
624 
625   // Start expanding the macro.
626   EnterMacro(Identifier, ExpansionEnd, MI, Args);
627   return false;
628 }
629 
630 enum Bracket {
631   Brace,
632   Paren
633 };
634 
635 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
636 /// token vector are properly nested.
637 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
638   SmallVector<Bracket, 8> Brackets;
639   for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
640                                               E = Tokens.end();
641        I != E; ++I) {
642     if (I->is(tok::l_paren)) {
643       Brackets.push_back(Paren);
644     } else if (I->is(tok::r_paren)) {
645       if (Brackets.empty() || Brackets.back() == Brace)
646         return false;
647       Brackets.pop_back();
648     } else if (I->is(tok::l_brace)) {
649       Brackets.push_back(Brace);
650     } else if (I->is(tok::r_brace)) {
651       if (Brackets.empty() || Brackets.back() == Paren)
652         return false;
653       Brackets.pop_back();
654     }
655   }
656   return Brackets.empty();
657 }
658 
659 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
660 /// vector of tokens in NewTokens.  The new number of arguments will be placed
661 /// in NumArgs and the ranges which need to surrounded in parentheses will be
662 /// in ParenHints.
663 /// Returns false if the token stream cannot be changed.  If this is because
664 /// of an initializer list starting a macro argument, the range of those
665 /// initializer lists will be place in InitLists.
666 static bool GenerateNewArgTokens(Preprocessor &PP,
667                                  SmallVectorImpl<Token> &OldTokens,
668                                  SmallVectorImpl<Token> &NewTokens,
669                                  unsigned &NumArgs,
670                                  SmallVectorImpl<SourceRange> &ParenHints,
671                                  SmallVectorImpl<SourceRange> &InitLists) {
672   if (!CheckMatchedBrackets(OldTokens))
673     return false;
674 
675   // Once it is known that the brackets are matched, only a simple count of the
676   // braces is needed.
677   unsigned Braces = 0;
678 
679   // First token of a new macro argument.
680   SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
681 
682   // First closing brace in a new macro argument.  Used to generate
683   // SourceRanges for InitLists.
684   SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
685   NumArgs = 0;
686   Token TempToken;
687   // Set to true when a macro separator token is found inside a braced list.
688   // If true, the fixed argument spans multiple old arguments and ParenHints
689   // will be updated.
690   bool FoundSeparatorToken = false;
691   for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
692                                         E = OldTokens.end();
693        I != E; ++I) {
694     if (I->is(tok::l_brace)) {
695       ++Braces;
696     } else if (I->is(tok::r_brace)) {
697       --Braces;
698       if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
699         ClosingBrace = I;
700     } else if (I->is(tok::eof)) {
701       // EOF token is used to separate macro arguments
702       if (Braces != 0) {
703         // Assume comma separator is actually braced list separator and change
704         // it back to a comma.
705         FoundSeparatorToken = true;
706         I->setKind(tok::comma);
707         I->setLength(1);
708       } else { // Braces == 0
709         // Separator token still separates arguments.
710         ++NumArgs;
711 
712         // If the argument starts with a brace, it can't be fixed with
713         // parentheses.  A different diagnostic will be given.
714         if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
715           InitLists.push_back(
716               SourceRange(ArgStartIterator->getLocation(),
717                           PP.getLocForEndOfToken(ClosingBrace->getLocation())));
718           ClosingBrace = E;
719         }
720 
721         // Add left paren
722         if (FoundSeparatorToken) {
723           TempToken.startToken();
724           TempToken.setKind(tok::l_paren);
725           TempToken.setLocation(ArgStartIterator->getLocation());
726           TempToken.setLength(0);
727           NewTokens.push_back(TempToken);
728         }
729 
730         // Copy over argument tokens
731         NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
732 
733         // Add right paren and store the paren locations in ParenHints
734         if (FoundSeparatorToken) {
735           SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
736           TempToken.startToken();
737           TempToken.setKind(tok::r_paren);
738           TempToken.setLocation(Loc);
739           TempToken.setLength(0);
740           NewTokens.push_back(TempToken);
741           ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
742                                            Loc));
743         }
744 
745         // Copy separator token
746         NewTokens.push_back(*I);
747 
748         // Reset values
749         ArgStartIterator = I + 1;
750         FoundSeparatorToken = false;
751       }
752     }
753   }
754 
755   return !ParenHints.empty() && InitLists.empty();
756 }
757 
758 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
759 /// token is the '(' of the macro, this method is invoked to read all of the
760 /// actual arguments specified for the macro invocation.  This returns null on
761 /// error.
762 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
763                                                    MacroInfo *MI,
764                                                    SourceLocation &MacroEnd) {
765   // The number of fixed arguments to parse.
766   unsigned NumFixedArgsLeft = MI->getNumParams();
767   bool isVariadic = MI->isVariadic();
768 
769   // Outer loop, while there are more arguments, keep reading them.
770   Token Tok;
771 
772   // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
773   // an argument value in a macro could expand to ',' or '(' or ')'.
774   LexUnexpandedToken(Tok);
775   assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
776 
777   // ArgTokens - Build up a list of tokens that make up each argument.  Each
778   // argument is separated by an EOF token.  Use a SmallVector so we can avoid
779   // heap allocations in the common case.
780   SmallVector<Token, 64> ArgTokens;
781   bool ContainsCodeCompletionTok = false;
782   bool FoundElidedComma = false;
783 
784   SourceLocation TooManyArgsLoc;
785 
786   unsigned NumActuals = 0;
787   while (Tok.isNot(tok::r_paren)) {
788     if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
789       break;
790 
791     assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
792            "only expect argument separators here");
793 
794     size_t ArgTokenStart = ArgTokens.size();
795     SourceLocation ArgStartLoc = Tok.getLocation();
796 
797     // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
798     // that we already consumed the first one.
799     unsigned NumParens = 0;
800 
801     while (true) {
802       // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
803       // an argument value in a macro could expand to ',' or '(' or ')'.
804       LexUnexpandedToken(Tok);
805 
806       if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
807         if (!ContainsCodeCompletionTok) {
808           Diag(MacroName, diag::err_unterm_macro_invoc);
809           Diag(MI->getDefinitionLoc(), diag::note_macro_here)
810             << MacroName.getIdentifierInfo();
811           // Do not lose the EOF/EOD.  Return it to the client.
812           MacroName = Tok;
813           return nullptr;
814         }
815         // Do not lose the EOF/EOD.
816         auto Toks = std::make_unique<Token[]>(1);
817         Toks[0] = Tok;
818         EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
819         break;
820       } else if (Tok.is(tok::r_paren)) {
821         // If we found the ) token, the macro arg list is done.
822         if (NumParens-- == 0) {
823           MacroEnd = Tok.getLocation();
824           if (!ArgTokens.empty() &&
825               ArgTokens.back().commaAfterElided()) {
826             FoundElidedComma = true;
827           }
828           break;
829         }
830       } else if (Tok.is(tok::l_paren)) {
831         ++NumParens;
832       } else if (Tok.is(tok::comma)) {
833         // In Microsoft-compatibility mode, single commas from nested macro
834         // expansions should not be considered as argument separators. We test
835         // for this with the IgnoredComma token flag.
836         if (Tok.getFlags() & Token::IgnoredComma) {
837           // However, in MSVC's preprocessor, subsequent expansions do treat
838           // these commas as argument separators. This leads to a common
839           // workaround used in macros that need to work in both MSVC and
840           // compliant preprocessors. Therefore, the IgnoredComma flag can only
841           // apply once to any given token.
842           Tok.clearFlag(Token::IgnoredComma);
843         } else if (NumParens == 0) {
844           // Comma ends this argument if there are more fixed arguments
845           // expected. However, if this is a variadic macro, and this is part of
846           // the variadic part, then the comma is just an argument token.
847           if (!isVariadic)
848             break;
849           if (NumFixedArgsLeft > 1)
850             break;
851         }
852       } else if (Tok.is(tok::comment) && !KeepMacroComments) {
853         // If this is a comment token in the argument list and we're just in
854         // -C mode (not -CC mode), discard the comment.
855         continue;
856       } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
857         // Reading macro arguments can cause macros that we are currently
858         // expanding from to be popped off the expansion stack.  Doing so causes
859         // them to be reenabled for expansion.  Here we record whether any
860         // identifiers we lex as macro arguments correspond to disabled macros.
861         // If so, we mark the token as noexpand.  This is a subtle aspect of
862         // C99 6.10.3.4p2.
863         if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
864           if (!MI->isEnabled())
865             Tok.setFlag(Token::DisableExpand);
866       } else if (Tok.is(tok::code_completion)) {
867         ContainsCodeCompletionTok = true;
868         if (CodeComplete)
869           CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
870                                                   MI, NumActuals);
871         // Don't mark that we reached the code-completion point because the
872         // parser is going to handle the token and there will be another
873         // code-completion callback.
874       }
875 
876       ArgTokens.push_back(Tok);
877     }
878 
879     // If this was an empty argument list foo(), don't add this as an empty
880     // argument.
881     if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
882       break;
883 
884     // If this is not a variadic macro, and too many args were specified, emit
885     // an error.
886     if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
887       if (ArgTokens.size() != ArgTokenStart)
888         TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
889       else
890         TooManyArgsLoc = ArgStartLoc;
891     }
892 
893     // Empty arguments are standard in C99 and C++0x, and are supported as an
894     // extension in other modes.
895     if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99)
896       Diag(Tok, getLangOpts().CPlusPlus11
897                     ? diag::warn_cxx98_compat_empty_fnmacro_arg
898                     : diag::ext_empty_fnmacro_arg);
899 
900     // Add a marker EOF token to the end of the token list for this argument.
901     Token EOFTok;
902     EOFTok.startToken();
903     EOFTok.setKind(tok::eof);
904     EOFTok.setLocation(Tok.getLocation());
905     EOFTok.setLength(0);
906     ArgTokens.push_back(EOFTok);
907     ++NumActuals;
908     if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
909       --NumFixedArgsLeft;
910   }
911 
912   // Okay, we either found the r_paren.  Check to see if we parsed too few
913   // arguments.
914   unsigned MinArgsExpected = MI->getNumParams();
915 
916   // If this is not a variadic macro, and too many args were specified, emit
917   // an error.
918   if (!isVariadic && NumActuals > MinArgsExpected &&
919       !ContainsCodeCompletionTok) {
920     // Emit the diagnostic at the macro name in case there is a missing ).
921     // Emitting it at the , could be far away from the macro name.
922     Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
923     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
924       << MacroName.getIdentifierInfo();
925 
926     // Commas from braced initializer lists will be treated as argument
927     // separators inside macros.  Attempt to correct for this with parentheses.
928     // TODO: See if this can be generalized to angle brackets for templates
929     // inside macro arguments.
930 
931     SmallVector<Token, 4> FixedArgTokens;
932     unsigned FixedNumArgs = 0;
933     SmallVector<SourceRange, 4> ParenHints, InitLists;
934     if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
935                               ParenHints, InitLists)) {
936       if (!InitLists.empty()) {
937         DiagnosticBuilder DB =
938             Diag(MacroName,
939                  diag::note_init_list_at_beginning_of_macro_argument);
940         for (SourceRange Range : InitLists)
941           DB << Range;
942       }
943       return nullptr;
944     }
945     if (FixedNumArgs != MinArgsExpected)
946       return nullptr;
947 
948     DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
949     for (SourceRange ParenLocation : ParenHints) {
950       DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
951       DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
952     }
953     ArgTokens.swap(FixedArgTokens);
954     NumActuals = FixedNumArgs;
955   }
956 
957   // See MacroArgs instance var for description of this.
958   bool isVarargsElided = false;
959 
960   if (ContainsCodeCompletionTok) {
961     // Recover from not-fully-formed macro invocation during code-completion.
962     Token EOFTok;
963     EOFTok.startToken();
964     EOFTok.setKind(tok::eof);
965     EOFTok.setLocation(Tok.getLocation());
966     EOFTok.setLength(0);
967     for (; NumActuals < MinArgsExpected; ++NumActuals)
968       ArgTokens.push_back(EOFTok);
969   }
970 
971   if (NumActuals < MinArgsExpected) {
972     // There are several cases where too few arguments is ok, handle them now.
973     if (NumActuals == 0 && MinArgsExpected == 1) {
974       // #define A(X)  or  #define A(...)   ---> A()
975 
976       // If there is exactly one argument, and that argument is missing,
977       // then we have an empty "()" argument empty list.  This is fine, even if
978       // the macro expects one argument (the argument is just empty).
979       isVarargsElided = MI->isVariadic();
980     } else if ((FoundElidedComma || MI->isVariadic()) &&
981                (NumActuals+1 == MinArgsExpected ||  // A(x, ...) -> A(X)
982                 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
983       // Varargs where the named vararg parameter is missing: OK as extension.
984       //   #define A(x, ...)
985       //   A("blah")
986       //
987       // If the macro contains the comma pasting extension, the diagnostic
988       // is suppressed; we know we'll get another diagnostic later.
989       if (!MI->hasCommaPasting()) {
990         // C++20 allows this construct, but standards before C++20 and all C
991         // standards do not allow the construct (we allow it as an extension).
992         Diag(Tok, getLangOpts().CPlusPlus20
993                       ? diag::warn_cxx17_compat_missing_varargs_arg
994                       : diag::ext_missing_varargs_arg);
995         Diag(MI->getDefinitionLoc(), diag::note_macro_here)
996           << MacroName.getIdentifierInfo();
997       }
998 
999       // Remember this occurred, allowing us to elide the comma when used for
1000       // cases like:
1001       //   #define A(x, foo...) blah(a, ## foo)
1002       //   #define B(x, ...) blah(a, ## __VA_ARGS__)
1003       //   #define C(...) blah(a, ## __VA_ARGS__)
1004       //  A(x) B(x) C()
1005       isVarargsElided = true;
1006     } else if (!ContainsCodeCompletionTok) {
1007       // Otherwise, emit the error.
1008       Diag(Tok, diag::err_too_few_args_in_macro_invoc);
1009       Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1010         << MacroName.getIdentifierInfo();
1011       return nullptr;
1012     }
1013 
1014     // Add a marker EOF token to the end of the token list for this argument.
1015     SourceLocation EndLoc = Tok.getLocation();
1016     Tok.startToken();
1017     Tok.setKind(tok::eof);
1018     Tok.setLocation(EndLoc);
1019     Tok.setLength(0);
1020     ArgTokens.push_back(Tok);
1021 
1022     // If we expect two arguments, add both as empty.
1023     if (NumActuals == 0 && MinArgsExpected == 2)
1024       ArgTokens.push_back(Tok);
1025 
1026   } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
1027              !ContainsCodeCompletionTok) {
1028     // Emit the diagnostic at the macro name in case there is a missing ).
1029     // Emitting it at the , could be far away from the macro name.
1030     Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
1031     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1032       << MacroName.getIdentifierInfo();
1033     return nullptr;
1034   }
1035 
1036   return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
1037 }
1038 
1039 /// Keeps macro expanded tokens for TokenLexers.
1040 //
1041 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1042 /// going to lex in the cache and when it finishes the tokens are removed
1043 /// from the end of the cache.
1044 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
1045                                               ArrayRef<Token> tokens) {
1046   assert(tokLexer);
1047   if (tokens.empty())
1048     return nullptr;
1049 
1050   size_t newIndex = MacroExpandedTokens.size();
1051   bool cacheNeedsToGrow = tokens.size() >
1052                       MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
1053   MacroExpandedTokens.append(tokens.begin(), tokens.end());
1054 
1055   if (cacheNeedsToGrow) {
1056     // Go through all the TokenLexers whose 'Tokens' pointer points in the
1057     // buffer and update the pointers to the (potential) new buffer array.
1058     for (const auto &Lexer : MacroExpandingLexersStack) {
1059       TokenLexer *prevLexer;
1060       size_t tokIndex;
1061       std::tie(prevLexer, tokIndex) = Lexer;
1062       prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
1063     }
1064   }
1065 
1066   MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
1067   return MacroExpandedTokens.data() + newIndex;
1068 }
1069 
1070 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1071   assert(!MacroExpandingLexersStack.empty());
1072   size_t tokIndex = MacroExpandingLexersStack.back().second;
1073   assert(tokIndex < MacroExpandedTokens.size());
1074   // Pop the cached macro expanded tokens from the end.
1075   MacroExpandedTokens.resize(tokIndex);
1076   MacroExpandingLexersStack.pop_back();
1077 }
1078 
1079 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1080 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1081 /// the identifier tokens inserted.
1082 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1083                              Preprocessor &PP) {
1084   time_t TT = time(nullptr);
1085   struct tm *TM = localtime(&TT);
1086 
1087   static const char * const Months[] = {
1088     "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1089   };
1090 
1091   {
1092     SmallString<32> TmpBuffer;
1093     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1094     TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1095                               TM->tm_mday, TM->tm_year + 1900);
1096     Token TmpTok;
1097     TmpTok.startToken();
1098     PP.CreateString(TmpStream.str(), TmpTok);
1099     DATELoc = TmpTok.getLocation();
1100   }
1101 
1102   {
1103     SmallString<32> TmpBuffer;
1104     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1105     TmpStream << llvm::format("\"%02d:%02d:%02d\"",
1106                               TM->tm_hour, TM->tm_min, TM->tm_sec);
1107     Token TmpTok;
1108     TmpTok.startToken();
1109     PP.CreateString(TmpStream.str(), TmpTok);
1110     TIMELoc = TmpTok.getLocation();
1111   }
1112 }
1113 
1114 /// HasFeature - Return true if we recognize and implement the feature
1115 /// specified by the identifier as a standard language feature.
1116 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1117   const LangOptions &LangOpts = PP.getLangOpts();
1118 
1119   // Normalize the feature name, __foo__ becomes foo.
1120   if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1121     Feature = Feature.substr(2, Feature.size() - 4);
1122 
1123 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1124   return llvm::StringSwitch<bool>(Feature)
1125 #include "clang/Basic/Features.def"
1126       .Default(false);
1127 #undef FEATURE
1128 }
1129 
1130 /// HasExtension - Return true if we recognize and implement the feature
1131 /// specified by the identifier, either as an extension or a standard language
1132 /// feature.
1133 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1134   if (HasFeature(PP, Extension))
1135     return true;
1136 
1137   // If the use of an extension results in an error diagnostic, extensions are
1138   // effectively unavailable, so just return false here.
1139   if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1140       diag::Severity::Error)
1141     return false;
1142 
1143   const LangOptions &LangOpts = PP.getLangOpts();
1144 
1145   // Normalize the extension name, __foo__ becomes foo.
1146   if (Extension.startswith("__") && Extension.endswith("__") &&
1147       Extension.size() >= 4)
1148     Extension = Extension.substr(2, Extension.size() - 4);
1149 
1150     // Because we inherit the feature list from HasFeature, this string switch
1151     // must be less restrictive than HasFeature's.
1152 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1153   return llvm::StringSwitch<bool>(Extension)
1154 #include "clang/Basic/Features.def"
1155       .Default(false);
1156 #undef EXTENSION
1157 }
1158 
1159 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1160 /// or '__has_include_next("path")' expression.
1161 /// Returns true if successful.
1162 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II,
1163                                      Preprocessor &PP,
1164                                      ConstSearchDirIterator LookupFrom,
1165                                      const FileEntry *LookupFromFile) {
1166   // Save the location of the current token.  If a '(' is later found, use
1167   // that location.  If not, use the end of this location instead.
1168   SourceLocation LParenLoc = Tok.getLocation();
1169 
1170   // These expressions are only allowed within a preprocessor directive.
1171   if (!PP.isParsingIfOrElifDirective()) {
1172     PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
1173     // Return a valid identifier token.
1174     assert(Tok.is(tok::identifier));
1175     Tok.setIdentifierInfo(II);
1176     return false;
1177   }
1178 
1179   // Get '('. If we don't have a '(', try to form a header-name token.
1180   do {
1181     if (PP.LexHeaderName(Tok))
1182       return false;
1183   } while (Tok.getKind() == tok::comment);
1184 
1185   // Ensure we have a '('.
1186   if (Tok.isNot(tok::l_paren)) {
1187     // No '(', use end of last token.
1188     LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1189     PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1190     // If the next token looks like a filename or the start of one,
1191     // assume it is and process it as such.
1192     if (Tok.isNot(tok::header_name))
1193       return false;
1194   } else {
1195     // Save '(' location for possible missing ')' message.
1196     LParenLoc = Tok.getLocation();
1197     if (PP.LexHeaderName(Tok))
1198       return false;
1199   }
1200 
1201   if (Tok.isNot(tok::header_name)) {
1202     PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1203     return false;
1204   }
1205 
1206   // Reserve a buffer to get the spelling.
1207   SmallString<128> FilenameBuffer;
1208   bool Invalid = false;
1209   StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1210   if (Invalid)
1211     return false;
1212 
1213   SourceLocation FilenameLoc = Tok.getLocation();
1214 
1215   // Get ')'.
1216   PP.LexNonComment(Tok);
1217 
1218   // Ensure we have a trailing ).
1219   if (Tok.isNot(tok::r_paren)) {
1220     PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1221         << II << tok::r_paren;
1222     PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1223     return false;
1224   }
1225 
1226   bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1227   // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1228   // error.
1229   if (Filename.empty())
1230     return false;
1231 
1232   // Search include directories.
1233   Optional<FileEntryRef> File =
1234       PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1235                     nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
1236 
1237   if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
1238     SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
1239     if (File)
1240       FileType =
1241           PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry());
1242     Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
1243   }
1244 
1245   // Get the result value.  A result of true means the file exists.
1246   return File.has_value();
1247 }
1248 
1249 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) {
1250   return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr);
1251 }
1252 
1253 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) {
1254   ConstSearchDirIterator Lookup = nullptr;
1255   const FileEntry *LookupFromFile;
1256   std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok);
1257 
1258   return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile);
1259 }
1260 
1261 /// Process single-argument builtin feature-like macros that return
1262 /// integer values.
1263 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1264                                             Token &Tok, IdentifierInfo *II,
1265                                             Preprocessor &PP, bool ExpandArgs,
1266                                             llvm::function_ref<
1267                                               int(Token &Tok,
1268                                                   bool &HasLexedNextTok)> Op) {
1269   // Parse the initial '('.
1270   PP.LexUnexpandedToken(Tok);
1271   if (Tok.isNot(tok::l_paren)) {
1272     PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1273                                                             << tok::l_paren;
1274 
1275     // Provide a dummy '0' value on output stream to elide further errors.
1276     if (!Tok.isOneOf(tok::eof, tok::eod)) {
1277       OS << 0;
1278       Tok.setKind(tok::numeric_constant);
1279     }
1280     return;
1281   }
1282 
1283   unsigned ParenDepth = 1;
1284   SourceLocation LParenLoc = Tok.getLocation();
1285   llvm::Optional<int> Result;
1286 
1287   Token ResultTok;
1288   bool SuppressDiagnostic = false;
1289   while (true) {
1290     // Parse next token.
1291     if (ExpandArgs)
1292       PP.Lex(Tok);
1293     else
1294       PP.LexUnexpandedToken(Tok);
1295 
1296 already_lexed:
1297     switch (Tok.getKind()) {
1298       case tok::eof:
1299       case tok::eod:
1300         // Don't provide even a dummy value if the eod or eof marker is
1301         // reached.  Simply provide a diagnostic.
1302         PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1303         return;
1304 
1305       case tok::comma:
1306         if (!SuppressDiagnostic) {
1307           PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1308           SuppressDiagnostic = true;
1309         }
1310         continue;
1311 
1312       case tok::l_paren:
1313         ++ParenDepth;
1314         if (Result)
1315           break;
1316         if (!SuppressDiagnostic) {
1317           PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1318           SuppressDiagnostic = true;
1319         }
1320         continue;
1321 
1322       case tok::r_paren:
1323         if (--ParenDepth > 0)
1324           continue;
1325 
1326         // The last ')' has been reached; return the value if one found or
1327         // a diagnostic and a dummy value.
1328         if (Result) {
1329           OS << Result.value();
1330           // For strict conformance to __has_cpp_attribute rules, use 'L'
1331           // suffix for dated literals.
1332           if (Result.value() > 1)
1333             OS << 'L';
1334         } else {
1335           OS << 0;
1336           if (!SuppressDiagnostic)
1337             PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1338         }
1339         Tok.setKind(tok::numeric_constant);
1340         return;
1341 
1342       default: {
1343         // Parse the macro argument, if one not found so far.
1344         if (Result)
1345           break;
1346 
1347         bool HasLexedNextToken = false;
1348         Result = Op(Tok, HasLexedNextToken);
1349         ResultTok = Tok;
1350         if (HasLexedNextToken)
1351           goto already_lexed;
1352         continue;
1353       }
1354     }
1355 
1356     // Diagnose missing ')'.
1357     if (!SuppressDiagnostic) {
1358       if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1359         if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1360           Diag << LastII;
1361         else
1362           Diag << ResultTok.getKind();
1363         Diag << tok::r_paren << ResultTok.getLocation();
1364       }
1365       PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1366       SuppressDiagnostic = true;
1367     }
1368   }
1369 }
1370 
1371 /// Helper function to return the IdentifierInfo structure of a Token
1372 /// or generate a diagnostic if none available.
1373 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1374                                                    Preprocessor &PP,
1375                                                    signed DiagID) {
1376   IdentifierInfo *II;
1377   if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1378     return II;
1379 
1380   PP.Diag(Tok.getLocation(), DiagID);
1381   return nullptr;
1382 }
1383 
1384 /// Implements the __is_target_arch builtin macro.
1385 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
1386   std::string ArchName = II->getName().lower() + "--";
1387   llvm::Triple Arch(ArchName);
1388   const llvm::Triple &TT = TI.getTriple();
1389   if (TT.isThumb()) {
1390     // arm matches thumb or thumbv7. armv7 matches thumbv7.
1391     if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
1392          Arch.getSubArch() == TT.getSubArch()) &&
1393         ((TT.getArch() == llvm::Triple::thumb &&
1394           Arch.getArch() == llvm::Triple::arm) ||
1395          (TT.getArch() == llvm::Triple::thumbeb &&
1396           Arch.getArch() == llvm::Triple::armeb)))
1397       return true;
1398   }
1399   // Check the parsed arch when it has no sub arch to allow Clang to
1400   // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1401   return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
1402           Arch.getSubArch() == TT.getSubArch()) &&
1403          Arch.getArch() == TT.getArch();
1404 }
1405 
1406 /// Implements the __is_target_vendor builtin macro.
1407 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
1408   StringRef VendorName = TI.getTriple().getVendorName();
1409   if (VendorName.empty())
1410     VendorName = "unknown";
1411   return VendorName.equals_insensitive(II->getName());
1412 }
1413 
1414 /// Implements the __is_target_os builtin macro.
1415 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
1416   std::string OSName =
1417       (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1418   llvm::Triple OS(OSName);
1419   if (OS.getOS() == llvm::Triple::Darwin) {
1420     // Darwin matches macos, ios, etc.
1421     return TI.getTriple().isOSDarwin();
1422   }
1423   return TI.getTriple().getOS() == OS.getOS();
1424 }
1425 
1426 /// Implements the __is_target_environment builtin macro.
1427 static bool isTargetEnvironment(const TargetInfo &TI,
1428                                 const IdentifierInfo *II) {
1429   std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1430   llvm::Triple Env(EnvName);
1431   return TI.getTriple().getEnvironment() == Env.getEnvironment();
1432 }
1433 
1434 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1435 /// as a builtin macro, handle it and return the next token as 'Tok'.
1436 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1437   // Figure out which token this is.
1438   IdentifierInfo *II = Tok.getIdentifierInfo();
1439   assert(II && "Can't be a macro without id info!");
1440 
1441   // If this is an _Pragma or Microsoft __pragma directive, expand it,
1442   // invoke the pragma handler, then lex the token after it.
1443   if (II == Ident_Pragma)
1444     return Handle_Pragma(Tok);
1445   else if (II == Ident__pragma) // in non-MS mode this is null
1446     return HandleMicrosoft__pragma(Tok);
1447 
1448   ++NumBuiltinMacroExpanded;
1449 
1450   SmallString<128> TmpBuffer;
1451   llvm::raw_svector_ostream OS(TmpBuffer);
1452 
1453   // Set up the return result.
1454   Tok.setIdentifierInfo(nullptr);
1455   Tok.clearFlag(Token::NeedsCleaning);
1456   bool IsAtStartOfLine = Tok.isAtStartOfLine();
1457   bool HasLeadingSpace = Tok.hasLeadingSpace();
1458 
1459   if (II == Ident__LINE__) {
1460     // C99 6.10.8: "__LINE__: The presumed line number (within the current
1461     // source file) of the current source line (an integer constant)".  This can
1462     // be affected by #line.
1463     SourceLocation Loc = Tok.getLocation();
1464 
1465     // Advance to the location of the first _, this might not be the first byte
1466     // of the token if it starts with an escaped newline.
1467     Loc = AdvanceToTokenCharacter(Loc, 0);
1468 
1469     // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1470     // a macro expansion.  This doesn't matter for object-like macros, but
1471     // can matter for a function-like macro that expands to contain __LINE__.
1472     // Skip down through expansion points until we find a file loc for the
1473     // end of the expansion history.
1474     Loc = SourceMgr.getExpansionRange(Loc).getEnd();
1475     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1476 
1477     // __LINE__ expands to a simple numeric value.
1478     OS << (PLoc.isValid()? PLoc.getLine() : 1);
1479     Tok.setKind(tok::numeric_constant);
1480   } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
1481              II == Ident__FILE_NAME__) {
1482     // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1483     // character string literal)". This can be affected by #line.
1484     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1485 
1486     // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1487     // #include stack instead of the current file.
1488     if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1489       SourceLocation NextLoc = PLoc.getIncludeLoc();
1490       while (NextLoc.isValid()) {
1491         PLoc = SourceMgr.getPresumedLoc(NextLoc);
1492         if (PLoc.isInvalid())
1493           break;
1494 
1495         NextLoc = PLoc.getIncludeLoc();
1496       }
1497     }
1498 
1499     // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
1500     SmallString<256> FN;
1501     if (PLoc.isValid()) {
1502       // __FILE_NAME__ is a Clang-specific extension that expands to the
1503       // the last part of __FILE__.
1504       if (II == Ident__FILE_NAME__) {
1505         // Try to get the last path component, failing that return the original
1506         // presumed location.
1507         StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
1508         if (PLFileName != "")
1509           FN += PLFileName;
1510         else
1511           FN += PLoc.getFilename();
1512       } else {
1513         FN += PLoc.getFilename();
1514       }
1515       processPathForFileMacro(FN, getLangOpts(), getTargetInfo());
1516       Lexer::Stringify(FN);
1517       OS << '"' << FN << '"';
1518     }
1519     Tok.setKind(tok::string_literal);
1520   } else if (II == Ident__DATE__) {
1521     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1522     if (!DATELoc.isValid())
1523       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1524     Tok.setKind(tok::string_literal);
1525     Tok.setLength(strlen("\"Mmm dd yyyy\""));
1526     Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1527                                                  Tok.getLocation(),
1528                                                  Tok.getLength()));
1529     return;
1530   } else if (II == Ident__TIME__) {
1531     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1532     if (!TIMELoc.isValid())
1533       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1534     Tok.setKind(tok::string_literal);
1535     Tok.setLength(strlen("\"hh:mm:ss\""));
1536     Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1537                                                  Tok.getLocation(),
1538                                                  Tok.getLength()));
1539     return;
1540   } else if (II == Ident__INCLUDE_LEVEL__) {
1541     // Compute the presumed include depth of this token.  This can be affected
1542     // by GNU line markers.
1543     unsigned Depth = 0;
1544 
1545     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1546     if (PLoc.isValid()) {
1547       PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1548       for (; PLoc.isValid(); ++Depth)
1549         PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1550     }
1551 
1552     // __INCLUDE_LEVEL__ expands to a simple numeric value.
1553     OS << Depth;
1554     Tok.setKind(tok::numeric_constant);
1555   } else if (II == Ident__TIMESTAMP__) {
1556     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1557     // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
1558     // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1559 
1560     // Get the file that we are lexing out of.  If we're currently lexing from
1561     // a macro, dig into the include stack.
1562     const FileEntry *CurFile = nullptr;
1563     PreprocessorLexer *TheLexer = getCurrentFileLexer();
1564 
1565     if (TheLexer)
1566       CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1567 
1568     const char *Result;
1569     if (CurFile) {
1570       time_t TT = CurFile->getModificationTime();
1571       struct tm *TM = localtime(&TT);
1572       Result = asctime(TM);
1573     } else {
1574       Result = "??? ??? ?? ??:??:?? ????\n";
1575     }
1576     // Surround the string with " and strip the trailing newline.
1577     OS << '"' << StringRef(Result).drop_back() << '"';
1578     Tok.setKind(tok::string_literal);
1579   } else if (II == Ident__FLT_EVAL_METHOD__) {
1580     // __FLT_EVAL_METHOD__ is set to the default value.
1581     if (getTUFPEvalMethod() ==
1582         LangOptions::FPEvalMethodKind::FEM_Indeterminable) {
1583       // This is possible if `AllowFPReassoc` or `AllowReciprocal` is enabled.
1584       // These modes can be triggered via the command line option `-ffast-math`
1585       // or via a `pragam float_control`.
1586       // __FLT_EVAL_METHOD__ expands to -1.
1587       // The `minus` operator is the next token we read from the stream.
1588       auto Toks = std::make_unique<Token[]>(1);
1589       OS << "-";
1590       Tok.setKind(tok::minus);
1591       // Push the token `1` to the stream.
1592       Token NumberToken;
1593       NumberToken.startToken();
1594       NumberToken.setKind(tok::numeric_constant);
1595       NumberToken.setLiteralData("1");
1596       NumberToken.setLength(1);
1597       Toks[0] = NumberToken;
1598       EnterTokenStream(std::move(Toks), 1, /*DisableMacroExpansion*/ false,
1599                        /*IsReinject*/ false);
1600     } else {
1601       OS << getTUFPEvalMethod();
1602       // __FLT_EVAL_METHOD__ expands to a simple numeric value.
1603       Tok.setKind(tok::numeric_constant);
1604       if (getLastFPEvalPragmaLocation().isValid()) {
1605         // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is
1606         // altered by the pragma.
1607         Diag(Tok, diag::err_illegal_use_of_flt_eval_macro);
1608         Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here);
1609       }
1610     }
1611   } else if (II == Ident__COUNTER__) {
1612     // __COUNTER__ expands to a simple numeric value.
1613     OS << CounterValue++;
1614     Tok.setKind(tok::numeric_constant);
1615   } else if (II == Ident__has_feature) {
1616     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1617       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1618         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1619                                            diag::err_feature_check_malformed);
1620         return II && HasFeature(*this, II->getName());
1621       });
1622   } else if (II == Ident__has_extension) {
1623     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1624       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1625         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1626                                            diag::err_feature_check_malformed);
1627         return II && HasExtension(*this, II->getName());
1628       });
1629   } else if (II == Ident__has_builtin) {
1630     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1631       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1632         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1633                                            diag::err_feature_check_malformed);
1634         if (!II)
1635           return false;
1636         else if (II->getBuiltinID() != 0) {
1637           switch (II->getBuiltinID()) {
1638           case Builtin::BI__builtin_operator_new:
1639           case Builtin::BI__builtin_operator_delete:
1640             // denotes date of behavior change to support calling arbitrary
1641             // usual allocation and deallocation functions. Required by libc++
1642             return 201802;
1643           default:
1644             return Builtin::evaluateRequiredTargetFeatures(
1645                 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()),
1646                 getTargetInfo().getTargetOpts().FeatureMap);
1647           }
1648           return true;
1649         } else if (II->getTokenID() != tok::identifier ||
1650                    II->hasRevertedTokenIDToIdentifier()) {
1651           // Treat all keywords that introduce a custom syntax of the form
1652           //
1653           //   '__some_keyword' '(' [...] ')'
1654           //
1655           // as being "builtin functions", even if the syntax isn't a valid
1656           // function call (for example, because the builtin takes a type
1657           // argument).
1658           if (II->getName().startswith("__builtin_") ||
1659               II->getName().startswith("__is_") ||
1660               II->getName().startswith("__has_"))
1661             return true;
1662           return llvm::StringSwitch<bool>(II->getName())
1663               .Case("__array_rank", true)
1664               .Case("__array_extent", true)
1665               .Case("__reference_binds_to_temporary", true)
1666               .Case("__underlying_type", true)
1667               .Default(false);
1668         } else {
1669           return llvm::StringSwitch<bool>(II->getName())
1670               // Report builtin templates as being builtins.
1671               .Case("__make_integer_seq", getLangOpts().CPlusPlus)
1672               .Case("__type_pack_element", getLangOpts().CPlusPlus)
1673               // Likewise for some builtin preprocessor macros.
1674               // FIXME: This is inconsistent; we usually suggest detecting
1675               // builtin macros via #ifdef. Don't add more cases here.
1676               .Case("__is_target_arch", true)
1677               .Case("__is_target_vendor", true)
1678               .Case("__is_target_os", true)
1679               .Case("__is_target_environment", true)
1680               .Default(false);
1681         }
1682       });
1683   } else if (II == Ident__is_identifier) {
1684     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1685       [](Token &Tok, bool &HasLexedNextToken) -> int {
1686         return Tok.is(tok::identifier);
1687       });
1688   } else if (II == Ident__has_attribute) {
1689     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1690       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1691         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1692                                            diag::err_feature_check_malformed);
1693         return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr,
1694                                  II, getTargetInfo(), getLangOpts())
1695                   : 0;
1696       });
1697   } else if (II == Ident__has_declspec) {
1698     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1699       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1700         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1701                                            diag::err_feature_check_malformed);
1702         if (II) {
1703           const LangOptions &LangOpts = getLangOpts();
1704           return LangOpts.DeclSpecKeyword &&
1705                  hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr,
1706                               II, getTargetInfo(), LangOpts);
1707         }
1708 
1709         return false;
1710       });
1711   } else if (II == Ident__has_cpp_attribute ||
1712              II == Ident__has_c_attribute) {
1713     bool IsCXX = II == Ident__has_cpp_attribute;
1714     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1715         [&](Token &Tok, bool &HasLexedNextToken) -> int {
1716           IdentifierInfo *ScopeII = nullptr;
1717           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1718               Tok, *this, diag::err_feature_check_malformed);
1719           if (!II)
1720             return false;
1721 
1722           // It is possible to receive a scope token.  Read the "::", if it is
1723           // available, and the subsequent identifier.
1724           LexUnexpandedToken(Tok);
1725           if (Tok.isNot(tok::coloncolon))
1726             HasLexedNextToken = true;
1727           else {
1728             ScopeII = II;
1729             // Lex an expanded token for the attribute name.
1730             Lex(Tok);
1731             II = ExpectFeatureIdentifierInfo(Tok, *this,
1732                                              diag::err_feature_check_malformed);
1733           }
1734 
1735           AttributeCommonInfo::Syntax Syntax =
1736               IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11
1737                     : AttributeCommonInfo::Syntax::AS_C2x;
1738           return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
1739                                    getLangOpts())
1740                     : 0;
1741         });
1742   } else if (II == Ident__has_include ||
1743              II == Ident__has_include_next) {
1744     // The argument to these two builtins should be a parenthesized
1745     // file name string literal using angle brackets (<>) or
1746     // double-quotes ("").
1747     bool Value;
1748     if (II == Ident__has_include)
1749       Value = EvaluateHasInclude(Tok, II);
1750     else
1751       Value = EvaluateHasIncludeNext(Tok, II);
1752 
1753     if (Tok.isNot(tok::r_paren))
1754       return;
1755     OS << (int)Value;
1756     Tok.setKind(tok::numeric_constant);
1757   } else if (II == Ident__has_warning) {
1758     // The argument should be a parenthesized string literal.
1759     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1760       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1761         std::string WarningName;
1762         SourceLocation StrStartLoc = Tok.getLocation();
1763 
1764         HasLexedNextToken = Tok.is(tok::string_literal);
1765         if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1766                                     /*AllowMacroExpansion=*/false))
1767           return false;
1768 
1769         // FIXME: Should we accept "-R..." flags here, or should that be
1770         // handled by a separate __has_remark?
1771         if (WarningName.size() < 3 || WarningName[0] != '-' ||
1772             WarningName[1] != 'W') {
1773           Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1774           return false;
1775         }
1776 
1777         // Finally, check if the warning flags maps to a diagnostic group.
1778         // We construct a SmallVector here to talk to getDiagnosticIDs().
1779         // Although we don't use the result, this isn't a hot path, and not
1780         // worth special casing.
1781         SmallVector<diag::kind, 10> Diags;
1782         return !getDiagnostics().getDiagnosticIDs()->
1783                 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1784                                       WarningName.substr(2), Diags);
1785       });
1786   } else if (II == Ident__building_module) {
1787     // The argument to this builtin should be an identifier. The
1788     // builtin evaluates to 1 when that identifier names the module we are
1789     // currently building.
1790     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1791       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1792         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1793                                        diag::err_expected_id_building_module);
1794         return getLangOpts().isCompilingModule() && II &&
1795                (II->getName() == getLangOpts().CurrentModule);
1796       });
1797   } else if (II == Ident__MODULE__) {
1798     // The current module as an identifier.
1799     OS << getLangOpts().CurrentModule;
1800     IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1801     Tok.setIdentifierInfo(ModuleII);
1802     Tok.setKind(ModuleII->getTokenID());
1803   } else if (II == Ident__identifier) {
1804     SourceLocation Loc = Tok.getLocation();
1805 
1806     // We're expecting '__identifier' '(' identifier ')'. Try to recover
1807     // if the parens are missing.
1808     LexNonComment(Tok);
1809     if (Tok.isNot(tok::l_paren)) {
1810       // No '(', use end of last token.
1811       Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1812         << II << tok::l_paren;
1813       // If the next token isn't valid as our argument, we can't recover.
1814       if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1815         Tok.setKind(tok::identifier);
1816       return;
1817     }
1818 
1819     SourceLocation LParenLoc = Tok.getLocation();
1820     LexNonComment(Tok);
1821 
1822     if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1823       Tok.setKind(tok::identifier);
1824     else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) {
1825       StringLiteralParser Literal(Tok, *this);
1826       if (Literal.hadError)
1827         return;
1828 
1829       Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString()));
1830       Tok.setKind(tok::identifier);
1831     } else {
1832       Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1833         << Tok.getKind();
1834       // Don't walk past anything that's not a real token.
1835       if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1836         return;
1837     }
1838 
1839     // Discard the ')', preserving 'Tok' as our result.
1840     Token RParen;
1841     LexNonComment(RParen);
1842     if (RParen.isNot(tok::r_paren)) {
1843       Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1844         << Tok.getKind() << tok::r_paren;
1845       Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1846     }
1847     return;
1848   } else if (II == Ident__is_target_arch) {
1849     EvaluateFeatureLikeBuiltinMacro(
1850         OS, Tok, II, *this, false,
1851         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1852           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1853               Tok, *this, diag::err_feature_check_malformed);
1854           return II && isTargetArch(getTargetInfo(), II);
1855         });
1856   } else if (II == Ident__is_target_vendor) {
1857     EvaluateFeatureLikeBuiltinMacro(
1858         OS, Tok, II, *this, false,
1859         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1860           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1861               Tok, *this, diag::err_feature_check_malformed);
1862           return II && isTargetVendor(getTargetInfo(), II);
1863         });
1864   } else if (II == Ident__is_target_os) {
1865     EvaluateFeatureLikeBuiltinMacro(
1866         OS, Tok, II, *this, false,
1867         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1868           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1869               Tok, *this, diag::err_feature_check_malformed);
1870           return II && isTargetOS(getTargetInfo(), II);
1871         });
1872   } else if (II == Ident__is_target_environment) {
1873     EvaluateFeatureLikeBuiltinMacro(
1874         OS, Tok, II, *this, false,
1875         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1876           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1877               Tok, *this, diag::err_feature_check_malformed);
1878           return II && isTargetEnvironment(getTargetInfo(), II);
1879         });
1880   } else {
1881     llvm_unreachable("Unknown identifier!");
1882   }
1883   CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1884   Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
1885   Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
1886 }
1887 
1888 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1889   // If the 'used' status changed, and the macro requires 'unused' warning,
1890   // remove its SourceLocation from the warn-for-unused-macro locations.
1891   if (MI->isWarnIfUnused() && !MI->isUsed())
1892     WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1893   MI->setIsUsed(true);
1894 }
1895 
1896 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path,
1897                                            const LangOptions &LangOpts,
1898                                            const TargetInfo &TI) {
1899   LangOpts.remapPathPrefix(Path);
1900   if (LangOpts.UseTargetPathSeparator) {
1901     if (TI.getTriple().isOSWindows())
1902       llvm::sys::path::remove_dots(Path, false,
1903                                    llvm::sys::path::Style::windows_backslash);
1904     else
1905       llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix);
1906   }
1907 }
1908