1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the top level handling of macro expansion for the
10 // preprocessor.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Basic/AttributeCommonInfo.h"
15 #include "clang/Basic/Attributes.h"
16 #include "clang/Basic/Builtins.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/IdentifierTable.h"
19 #include "clang/Basic/LLVM.h"
20 #include "clang/Basic/LangOptions.h"
21 #include "clang/Basic/ObjCRuntime.h"
22 #include "clang/Basic/SourceLocation.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Lex/CodeCompletionHandler.h"
25 #include "clang/Lex/DirectoryLookup.h"
26 #include "clang/Lex/ExternalPreprocessorSource.h"
27 #include "clang/Lex/HeaderSearch.h"
28 #include "clang/Lex/LexDiagnostic.h"
29 #include "clang/Lex/LiteralSupport.h"
30 #include "clang/Lex/MacroArgs.h"
31 #include "clang/Lex/MacroInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Lex/PreprocessorLexer.h"
34 #include "clang/Lex/PreprocessorOptions.h"
35 #include "clang/Lex/Token.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseSet.h"
39 #include "llvm/ADT/FoldingSet.h"
40 #include "llvm/ADT/None.h"
41 #include "llvm/ADT/Optional.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/ADT/StringSwitch.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/Path.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstddef>
55 #include <cstring>
56 #include <ctime>
57 #include <string>
58 #include <tuple>
59 #include <utility>
60 
61 using namespace clang;
62 
63 MacroDirective *
64 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
65   if (!II->hadMacroDefinition())
66     return nullptr;
67   auto Pos = CurSubmoduleState->Macros.find(II);
68   return Pos == CurSubmoduleState->Macros.end() ? nullptr
69                                                 : Pos->second.getLatest();
70 }
71 
72 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
73   assert(MD && "MacroDirective should be non-zero!");
74   assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
75 
76   MacroState &StoredMD = CurSubmoduleState->Macros[II];
77   auto *OldMD = StoredMD.getLatest();
78   MD->setPrevious(OldMD);
79   StoredMD.setLatest(MD);
80   StoredMD.overrideActiveModuleMacros(*this, II);
81 
82   if (needModuleMacros()) {
83     // Track that we created a new macro directive, so we know we should
84     // consider building a ModuleMacro for it when we get to the end of
85     // the module.
86     PendingModuleMacroNames.push_back(II);
87   }
88 
89   // Set up the identifier as having associated macro history.
90   II->setHasMacroDefinition(true);
91   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
92     II->setHasMacroDefinition(false);
93   if (II->isFromAST())
94     II->setChangedSinceDeserialization();
95 }
96 
97 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
98                                            MacroDirective *ED,
99                                            MacroDirective *MD) {
100   // Normally, when a macro is defined, it goes through appendMacroDirective()
101   // above, which chains a macro to previous defines, undefs, etc.
102   // However, in a pch, the whole macro history up to the end of the pch is
103   // stored, so ASTReader goes through this function instead.
104   // However, built-in macros are already registered in the Preprocessor
105   // ctor, and ASTWriter stops writing the macro chain at built-in macros,
106   // so in that case the chain from the pch needs to be spliced to the existing
107   // built-in.
108 
109   assert(II && MD);
110   MacroState &StoredMD = CurSubmoduleState->Macros[II];
111 
112   if (auto *OldMD = StoredMD.getLatest()) {
113     // shouldIgnoreMacro() in ASTWriter also stops at macros from the
114     // predefines buffer in module builds. However, in module builds, modules
115     // are loaded completely before predefines are processed, so StoredMD
116     // will be nullptr for them when they're loaded. StoredMD should only be
117     // non-nullptr for builtins read from a pch file.
118     assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
119            "only built-ins should have an entry here");
120     assert(!OldMD->getPrevious() && "builtin should only have a single entry");
121     ED->setPrevious(OldMD);
122     StoredMD.setLatest(MD);
123   } else {
124     StoredMD = MD;
125   }
126 
127   // Setup the identifier as having associated macro history.
128   II->setHasMacroDefinition(true);
129   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
130     II->setHasMacroDefinition(false);
131 }
132 
133 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
134                                           MacroInfo *Macro,
135                                           ArrayRef<ModuleMacro *> Overrides,
136                                           bool &New) {
137   llvm::FoldingSetNodeID ID;
138   ModuleMacro::Profile(ID, Mod, II);
139 
140   void *InsertPos;
141   if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
142     New = false;
143     return MM;
144   }
145 
146   auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
147   ModuleMacros.InsertNode(MM, InsertPos);
148 
149   // Each overridden macro is now overridden by one more macro.
150   bool HidAny = false;
151   for (auto *O : Overrides) {
152     HidAny |= (O->NumOverriddenBy == 0);
153     ++O->NumOverriddenBy;
154   }
155 
156   // If we were the first overrider for any macro, it's no longer a leaf.
157   auto &LeafMacros = LeafModuleMacros[II];
158   if (HidAny) {
159     llvm::erase_if(LeafMacros,
160                    [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; });
161   }
162 
163   // The new macro is always a leaf macro.
164   LeafMacros.push_back(MM);
165   // The identifier now has defined macros (that may or may not be visible).
166   II->setHasMacroDefinition(true);
167 
168   New = true;
169   return MM;
170 }
171 
172 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod,
173                                           const IdentifierInfo *II) {
174   llvm::FoldingSetNodeID ID;
175   ModuleMacro::Profile(ID, Mod, II);
176 
177   void *InsertPos;
178   return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
179 }
180 
181 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
182                                          ModuleMacroInfo &Info) {
183   assert(Info.ActiveModuleMacrosGeneration !=
184              CurSubmoduleState->VisibleModules.getGeneration() &&
185          "don't need to update this macro name info");
186   Info.ActiveModuleMacrosGeneration =
187       CurSubmoduleState->VisibleModules.getGeneration();
188 
189   auto Leaf = LeafModuleMacros.find(II);
190   if (Leaf == LeafModuleMacros.end()) {
191     // No imported macros at all: nothing to do.
192     return;
193   }
194 
195   Info.ActiveModuleMacros.clear();
196 
197   // Every macro that's locally overridden is overridden by a visible macro.
198   llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
199   for (auto *O : Info.OverriddenMacros)
200     NumHiddenOverrides[O] = -1;
201 
202   // Collect all macros that are not overridden by a visible macro.
203   llvm::SmallVector<ModuleMacro *, 16> Worklist;
204   for (auto *LeafMM : Leaf->second) {
205     assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
206     if (NumHiddenOverrides.lookup(LeafMM) == 0)
207       Worklist.push_back(LeafMM);
208   }
209   while (!Worklist.empty()) {
210     auto *MM = Worklist.pop_back_val();
211     if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
212       // We only care about collecting definitions; undefinitions only act
213       // to override other definitions.
214       if (MM->getMacroInfo())
215         Info.ActiveModuleMacros.push_back(MM);
216     } else {
217       for (auto *O : MM->overrides())
218         if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
219           Worklist.push_back(O);
220     }
221   }
222   // Our reverse postorder walk found the macros in reverse order.
223   std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
224 
225   // Determine whether the macro name is ambiguous.
226   MacroInfo *MI = nullptr;
227   bool IsSystemMacro = true;
228   bool IsAmbiguous = false;
229   if (auto *MD = Info.MD) {
230     while (MD && isa<VisibilityMacroDirective>(MD))
231       MD = MD->getPrevious();
232     if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
233       MI = DMD->getInfo();
234       IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
235     }
236   }
237   for (auto *Active : Info.ActiveModuleMacros) {
238     auto *NewMI = Active->getMacroInfo();
239 
240     // Before marking the macro as ambiguous, check if this is a case where
241     // both macros are in system headers. If so, we trust that the system
242     // did not get it wrong. This also handles cases where Clang's own
243     // headers have a different spelling of certain system macros:
244     //   #define LONG_MAX __LONG_MAX__ (clang's limits.h)
245     //   #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
246     //
247     // FIXME: Remove the defined-in-system-headers check. clang's limits.h
248     // overrides the system limits.h's macros, so there's no conflict here.
249     if (MI && NewMI != MI &&
250         !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
251       IsAmbiguous = true;
252     IsSystemMacro &= Active->getOwningModule()->IsSystem ||
253                      SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
254     MI = NewMI;
255   }
256   Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
257 }
258 
259 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
260   ArrayRef<ModuleMacro*> Leaf;
261   auto LeafIt = LeafModuleMacros.find(II);
262   if (LeafIt != LeafModuleMacros.end())
263     Leaf = LeafIt->second;
264   const MacroState *State = nullptr;
265   auto Pos = CurSubmoduleState->Macros.find(II);
266   if (Pos != CurSubmoduleState->Macros.end())
267     State = &Pos->second;
268 
269   llvm::errs() << "MacroState " << State << " " << II->getNameStart();
270   if (State && State->isAmbiguous(*this, II))
271     llvm::errs() << " ambiguous";
272   if (State && !State->getOverriddenMacros().empty()) {
273     llvm::errs() << " overrides";
274     for (auto *O : State->getOverriddenMacros())
275       llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
276   }
277   llvm::errs() << "\n";
278 
279   // Dump local macro directives.
280   for (auto *MD = State ? State->getLatest() : nullptr; MD;
281        MD = MD->getPrevious()) {
282     llvm::errs() << " ";
283     MD->dump();
284   }
285 
286   // Dump module macros.
287   llvm::DenseSet<ModuleMacro*> Active;
288   for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
289     Active.insert(MM);
290   llvm::DenseSet<ModuleMacro*> Visited;
291   llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
292   while (!Worklist.empty()) {
293     auto *MM = Worklist.pop_back_val();
294     llvm::errs() << " ModuleMacro " << MM << " "
295                  << MM->getOwningModule()->getFullModuleName();
296     if (!MM->getMacroInfo())
297       llvm::errs() << " undef";
298 
299     if (Active.count(MM))
300       llvm::errs() << " active";
301     else if (!CurSubmoduleState->VisibleModules.isVisible(
302                  MM->getOwningModule()))
303       llvm::errs() << " hidden";
304     else if (MM->getMacroInfo())
305       llvm::errs() << " overridden";
306 
307     if (!MM->overrides().empty()) {
308       llvm::errs() << " overrides";
309       for (auto *O : MM->overrides()) {
310         llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
311         if (Visited.insert(O).second)
312           Worklist.push_back(O);
313       }
314     }
315     llvm::errs() << "\n";
316     if (auto *MI = MM->getMacroInfo()) {
317       llvm::errs() << "  ";
318       MI->dump();
319       llvm::errs() << "\n";
320     }
321   }
322 }
323 
324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
325 /// table and mark it as a builtin macro to be expanded.
326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
327   // Get the identifier.
328   IdentifierInfo *Id = PP.getIdentifierInfo(Name);
329 
330   // Mark it as being a macro that is builtin.
331   MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
332   MI->setIsBuiltinMacro();
333   PP.appendDefMacroDirective(Id, MI);
334   return Id;
335 }
336 
337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
338 /// identifier table.
339 void Preprocessor::RegisterBuiltinMacros() {
340   Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
341   Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
342   Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
343   Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
344   Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
345   Ident_Pragma  = RegisterBuiltinMacro(*this, "_Pragma");
346   Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__");
347 
348   // C++ Standing Document Extensions.
349   if (getLangOpts().CPlusPlus)
350     Ident__has_cpp_attribute =
351         RegisterBuiltinMacro(*this, "__has_cpp_attribute");
352   else
353     Ident__has_cpp_attribute = nullptr;
354 
355   // GCC Extensions.
356   Ident__BASE_FILE__     = RegisterBuiltinMacro(*this, "__BASE_FILE__");
357   Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
358   Ident__TIMESTAMP__     = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
359 
360   // Microsoft Extensions.
361   if (getLangOpts().MicrosoftExt) {
362     Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
363     Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
364   } else {
365     Ident__identifier = nullptr;
366     Ident__pragma = nullptr;
367   }
368 
369   // Clang Extensions.
370   Ident__FILE_NAME__      = RegisterBuiltinMacro(*this, "__FILE_NAME__");
371   Ident__has_feature      = RegisterBuiltinMacro(*this, "__has_feature");
372   Ident__has_extension    = RegisterBuiltinMacro(*this, "__has_extension");
373   Ident__has_builtin      = RegisterBuiltinMacro(*this, "__has_builtin");
374   Ident__has_attribute    = RegisterBuiltinMacro(*this, "__has_attribute");
375   if (!getLangOpts().CPlusPlus)
376     Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute");
377   else
378     Ident__has_c_attribute = nullptr;
379 
380   Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
381   Ident__has_include      = RegisterBuiltinMacro(*this, "__has_include");
382   Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
383   Ident__has_warning      = RegisterBuiltinMacro(*this, "__has_warning");
384   Ident__is_identifier    = RegisterBuiltinMacro(*this, "__is_identifier");
385   Ident__is_target_arch   = RegisterBuiltinMacro(*this, "__is_target_arch");
386   Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
387   Ident__is_target_os     = RegisterBuiltinMacro(*this, "__is_target_os");
388   Ident__is_target_environment =
389       RegisterBuiltinMacro(*this, "__is_target_environment");
390   Ident__is_target_variant_os =
391       RegisterBuiltinMacro(*this, "__is_target_variant_os");
392   Ident__is_target_variant_environment =
393       RegisterBuiltinMacro(*this, "__is_target_variant_environment");
394 
395   // Modules.
396   Ident__building_module  = RegisterBuiltinMacro(*this, "__building_module");
397   if (!getLangOpts().CurrentModule.empty())
398     Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
399   else
400     Ident__MODULE__ = nullptr;
401 }
402 
403 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
404 /// in its expansion, currently expands to that token literally.
405 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
406                                           const IdentifierInfo *MacroIdent,
407                                           Preprocessor &PP) {
408   IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
409 
410   // If the token isn't an identifier, it's always literally expanded.
411   if (!II) return true;
412 
413   // If the information about this identifier is out of date, update it from
414   // the external source.
415   if (II->isOutOfDate())
416     PP.getExternalSource()->updateOutOfDateIdentifier(*II);
417 
418   // If the identifier is a macro, and if that macro is enabled, it may be
419   // expanded so it's not a trivial expansion.
420   if (auto *ExpansionMI = PP.getMacroInfo(II))
421     if (ExpansionMI->isEnabled() &&
422         // Fast expanding "#define X X" is ok, because X would be disabled.
423         II != MacroIdent)
424       return false;
425 
426   // If this is an object-like macro invocation, it is safe to trivially expand
427   // it.
428   if (MI->isObjectLike()) return true;
429 
430   // If this is a function-like macro invocation, it's safe to trivially expand
431   // as long as the identifier is not a macro argument.
432   return !llvm::is_contained(MI->params(), II);
433 }
434 
435 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
436 /// lexed is a '('.  If so, consume the token and return true, if not, this
437 /// method should have no observable side-effect on the lexed tokens.
438 bool Preprocessor::isNextPPTokenLParen() {
439   // Do some quick tests for rejection cases.
440   unsigned Val;
441   if (CurLexer)
442     Val = CurLexer->isNextPPTokenLParen();
443   else
444     Val = CurTokenLexer->isNextTokenLParen();
445 
446   if (Val == 2) {
447     // We have run off the end.  If it's a source file we don't
448     // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
449     // macro stack.
450     if (CurPPLexer)
451       return false;
452     for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
453       if (Entry.TheLexer)
454         Val = Entry.TheLexer->isNextPPTokenLParen();
455       else
456         Val = Entry.TheTokenLexer->isNextTokenLParen();
457 
458       if (Val != 2)
459         break;
460 
461       // Ran off the end of a source file?
462       if (Entry.ThePPLexer)
463         return false;
464     }
465   }
466 
467   // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
468   // have found something that isn't a '(' or we found the end of the
469   // translation unit.  In either case, return false.
470   return Val == 1;
471 }
472 
473 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
474 /// expanded as a macro, handle it and return the next token as 'Identifier'.
475 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
476                                                  const MacroDefinition &M) {
477   emitMacroExpansionWarnings(Identifier);
478 
479   MacroInfo *MI = M.getMacroInfo();
480 
481   // If this is a macro expansion in the "#if !defined(x)" line for the file,
482   // then the macro could expand to different things in other contexts, we need
483   // to disable the optimization in this case.
484   if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
485 
486   // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
487   if (MI->isBuiltinMacro()) {
488     if (Callbacks)
489       Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
490                               /*Args=*/nullptr);
491     ExpandBuiltinMacro(Identifier);
492     return true;
493   }
494 
495   /// Args - If this is a function-like macro expansion, this contains,
496   /// for each macro argument, the list of tokens that were provided to the
497   /// invocation.
498   MacroArgs *Args = nullptr;
499 
500   // Remember where the end of the expansion occurred.  For an object-like
501   // macro, this is the identifier.  For a function-like macro, this is the ')'.
502   SourceLocation ExpansionEnd = Identifier.getLocation();
503 
504   // If this is a function-like macro, read the arguments.
505   if (MI->isFunctionLike()) {
506     // Remember that we are now parsing the arguments to a macro invocation.
507     // Preprocessor directives used inside macro arguments are not portable, and
508     // this enables the warning.
509     InMacroArgs = true;
510     ArgMacro = &Identifier;
511 
512     Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
513 
514     // Finished parsing args.
515     InMacroArgs = false;
516     ArgMacro = nullptr;
517 
518     // If there was an error parsing the arguments, bail out.
519     if (!Args) return true;
520 
521     ++NumFnMacroExpanded;
522   } else {
523     ++NumMacroExpanded;
524   }
525 
526   // Notice that this macro has been used.
527   markMacroAsUsed(MI);
528 
529   // Remember where the token is expanded.
530   SourceLocation ExpandLoc = Identifier.getLocation();
531   SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
532 
533   if (Callbacks) {
534     if (InMacroArgs) {
535       // We can have macro expansion inside a conditional directive while
536       // reading the function macro arguments. To ensure, in that case, that
537       // MacroExpands callbacks still happen in source order, queue this
538       // callback to have it happen after the function macro callback.
539       DelayedMacroExpandsCallbacks.push_back(
540           MacroExpandsInfo(Identifier, M, ExpansionRange));
541     } else {
542       Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
543       if (!DelayedMacroExpandsCallbacks.empty()) {
544         for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
545           // FIXME: We lose macro args info with delayed callback.
546           Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
547                                   /*Args=*/nullptr);
548         }
549         DelayedMacroExpandsCallbacks.clear();
550       }
551     }
552   }
553 
554   // If the macro definition is ambiguous, complain.
555   if (M.isAmbiguous()) {
556     Diag(Identifier, diag::warn_pp_ambiguous_macro)
557       << Identifier.getIdentifierInfo();
558     Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
559       << Identifier.getIdentifierInfo();
560     M.forAllDefinitions([&](const MacroInfo *OtherMI) {
561       if (OtherMI != MI)
562         Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
563           << Identifier.getIdentifierInfo();
564     });
565   }
566 
567   // If we started lexing a macro, enter the macro expansion body.
568 
569   // If this macro expands to no tokens, don't bother to push it onto the
570   // expansion stack, only to take it right back off.
571   if (MI->getNumTokens() == 0) {
572     // No need for arg info.
573     if (Args) Args->destroy(*this);
574 
575     // Propagate whitespace info as if we had pushed, then popped,
576     // a macro context.
577     Identifier.setFlag(Token::LeadingEmptyMacro);
578     PropagateLineStartLeadingSpaceInfo(Identifier);
579     ++NumFastMacroExpanded;
580     return false;
581   } else if (MI->getNumTokens() == 1 &&
582              isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
583                                            *this)) {
584     // Otherwise, if this macro expands into a single trivially-expanded
585     // token: expand it now.  This handles common cases like
586     // "#define VAL 42".
587 
588     // No need for arg info.
589     if (Args) Args->destroy(*this);
590 
591     // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
592     // identifier to the expanded token.
593     bool isAtStartOfLine = Identifier.isAtStartOfLine();
594     bool hasLeadingSpace = Identifier.hasLeadingSpace();
595 
596     // Replace the result token.
597     Identifier = MI->getReplacementToken(0);
598 
599     // Restore the StartOfLine/LeadingSpace markers.
600     Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
601     Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
602 
603     // Update the tokens location to include both its expansion and physical
604     // locations.
605     SourceLocation Loc =
606       SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
607                                    ExpansionEnd,Identifier.getLength());
608     Identifier.setLocation(Loc);
609 
610     // If this is a disabled macro or #define X X, we must mark the result as
611     // unexpandable.
612     if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
613       if (MacroInfo *NewMI = getMacroInfo(NewII))
614         if (!NewMI->isEnabled() || NewMI == MI) {
615           Identifier.setFlag(Token::DisableExpand);
616           // Don't warn for "#define X X" like "#define bool bool" from
617           // stdbool.h.
618           if (NewMI != MI || MI->isFunctionLike())
619             Diag(Identifier, diag::pp_disabled_macro_expansion);
620         }
621     }
622 
623     // Since this is not an identifier token, it can't be macro expanded, so
624     // we're done.
625     ++NumFastMacroExpanded;
626     return true;
627   }
628 
629   // Start expanding the macro.
630   EnterMacro(Identifier, ExpansionEnd, MI, Args);
631   return false;
632 }
633 
634 enum Bracket {
635   Brace,
636   Paren
637 };
638 
639 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
640 /// token vector are properly nested.
641 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
642   SmallVector<Bracket, 8> Brackets;
643   for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
644                                               E = Tokens.end();
645        I != E; ++I) {
646     if (I->is(tok::l_paren)) {
647       Brackets.push_back(Paren);
648     } else if (I->is(tok::r_paren)) {
649       if (Brackets.empty() || Brackets.back() == Brace)
650         return false;
651       Brackets.pop_back();
652     } else if (I->is(tok::l_brace)) {
653       Brackets.push_back(Brace);
654     } else if (I->is(tok::r_brace)) {
655       if (Brackets.empty() || Brackets.back() == Paren)
656         return false;
657       Brackets.pop_back();
658     }
659   }
660   return Brackets.empty();
661 }
662 
663 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
664 /// vector of tokens in NewTokens.  The new number of arguments will be placed
665 /// in NumArgs and the ranges which need to surrounded in parentheses will be
666 /// in ParenHints.
667 /// Returns false if the token stream cannot be changed.  If this is because
668 /// of an initializer list starting a macro argument, the range of those
669 /// initializer lists will be place in InitLists.
670 static bool GenerateNewArgTokens(Preprocessor &PP,
671                                  SmallVectorImpl<Token> &OldTokens,
672                                  SmallVectorImpl<Token> &NewTokens,
673                                  unsigned &NumArgs,
674                                  SmallVectorImpl<SourceRange> &ParenHints,
675                                  SmallVectorImpl<SourceRange> &InitLists) {
676   if (!CheckMatchedBrackets(OldTokens))
677     return false;
678 
679   // Once it is known that the brackets are matched, only a simple count of the
680   // braces is needed.
681   unsigned Braces = 0;
682 
683   // First token of a new macro argument.
684   SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
685 
686   // First closing brace in a new macro argument.  Used to generate
687   // SourceRanges for InitLists.
688   SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
689   NumArgs = 0;
690   Token TempToken;
691   // Set to true when a macro separator token is found inside a braced list.
692   // If true, the fixed argument spans multiple old arguments and ParenHints
693   // will be updated.
694   bool FoundSeparatorToken = false;
695   for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
696                                         E = OldTokens.end();
697        I != E; ++I) {
698     if (I->is(tok::l_brace)) {
699       ++Braces;
700     } else if (I->is(tok::r_brace)) {
701       --Braces;
702       if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
703         ClosingBrace = I;
704     } else if (I->is(tok::eof)) {
705       // EOF token is used to separate macro arguments
706       if (Braces != 0) {
707         // Assume comma separator is actually braced list separator and change
708         // it back to a comma.
709         FoundSeparatorToken = true;
710         I->setKind(tok::comma);
711         I->setLength(1);
712       } else { // Braces == 0
713         // Separator token still separates arguments.
714         ++NumArgs;
715 
716         // If the argument starts with a brace, it can't be fixed with
717         // parentheses.  A different diagnostic will be given.
718         if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
719           InitLists.push_back(
720               SourceRange(ArgStartIterator->getLocation(),
721                           PP.getLocForEndOfToken(ClosingBrace->getLocation())));
722           ClosingBrace = E;
723         }
724 
725         // Add left paren
726         if (FoundSeparatorToken) {
727           TempToken.startToken();
728           TempToken.setKind(tok::l_paren);
729           TempToken.setLocation(ArgStartIterator->getLocation());
730           TempToken.setLength(0);
731           NewTokens.push_back(TempToken);
732         }
733 
734         // Copy over argument tokens
735         NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
736 
737         // Add right paren and store the paren locations in ParenHints
738         if (FoundSeparatorToken) {
739           SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
740           TempToken.startToken();
741           TempToken.setKind(tok::r_paren);
742           TempToken.setLocation(Loc);
743           TempToken.setLength(0);
744           NewTokens.push_back(TempToken);
745           ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
746                                            Loc));
747         }
748 
749         // Copy separator token
750         NewTokens.push_back(*I);
751 
752         // Reset values
753         ArgStartIterator = I + 1;
754         FoundSeparatorToken = false;
755       }
756     }
757   }
758 
759   return !ParenHints.empty() && InitLists.empty();
760 }
761 
762 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
763 /// token is the '(' of the macro, this method is invoked to read all of the
764 /// actual arguments specified for the macro invocation.  This returns null on
765 /// error.
766 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
767                                                    MacroInfo *MI,
768                                                    SourceLocation &MacroEnd) {
769   // The number of fixed arguments to parse.
770   unsigned NumFixedArgsLeft = MI->getNumParams();
771   bool isVariadic = MI->isVariadic();
772 
773   // Outer loop, while there are more arguments, keep reading them.
774   Token Tok;
775 
776   // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
777   // an argument value in a macro could expand to ',' or '(' or ')'.
778   LexUnexpandedToken(Tok);
779   assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
780 
781   // ArgTokens - Build up a list of tokens that make up each argument.  Each
782   // argument is separated by an EOF token.  Use a SmallVector so we can avoid
783   // heap allocations in the common case.
784   SmallVector<Token, 64> ArgTokens;
785   bool ContainsCodeCompletionTok = false;
786   bool FoundElidedComma = false;
787 
788   SourceLocation TooManyArgsLoc;
789 
790   unsigned NumActuals = 0;
791   while (Tok.isNot(tok::r_paren)) {
792     if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
793       break;
794 
795     assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
796            "only expect argument separators here");
797 
798     size_t ArgTokenStart = ArgTokens.size();
799     SourceLocation ArgStartLoc = Tok.getLocation();
800 
801     // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
802     // that we already consumed the first one.
803     unsigned NumParens = 0;
804 
805     while (true) {
806       // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
807       // an argument value in a macro could expand to ',' or '(' or ')'.
808       LexUnexpandedToken(Tok);
809 
810       if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
811         if (!ContainsCodeCompletionTok) {
812           Diag(MacroName, diag::err_unterm_macro_invoc);
813           Diag(MI->getDefinitionLoc(), diag::note_macro_here)
814             << MacroName.getIdentifierInfo();
815           // Do not lose the EOF/EOD.  Return it to the client.
816           MacroName = Tok;
817           return nullptr;
818         }
819         // Do not lose the EOF/EOD.
820         auto Toks = std::make_unique<Token[]>(1);
821         Toks[0] = Tok;
822         EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
823         break;
824       } else if (Tok.is(tok::r_paren)) {
825         // If we found the ) token, the macro arg list is done.
826         if (NumParens-- == 0) {
827           MacroEnd = Tok.getLocation();
828           if (!ArgTokens.empty() &&
829               ArgTokens.back().commaAfterElided()) {
830             FoundElidedComma = true;
831           }
832           break;
833         }
834       } else if (Tok.is(tok::l_paren)) {
835         ++NumParens;
836       } else if (Tok.is(tok::comma)) {
837         // In Microsoft-compatibility mode, single commas from nested macro
838         // expansions should not be considered as argument separators. We test
839         // for this with the IgnoredComma token flag.
840         if (Tok.getFlags() & Token::IgnoredComma) {
841           // However, in MSVC's preprocessor, subsequent expansions do treat
842           // these commas as argument separators. This leads to a common
843           // workaround used in macros that need to work in both MSVC and
844           // compliant preprocessors. Therefore, the IgnoredComma flag can only
845           // apply once to any given token.
846           Tok.clearFlag(Token::IgnoredComma);
847         } else if (NumParens == 0) {
848           // Comma ends this argument if there are more fixed arguments
849           // expected. However, if this is a variadic macro, and this is part of
850           // the variadic part, then the comma is just an argument token.
851           if (!isVariadic)
852             break;
853           if (NumFixedArgsLeft > 1)
854             break;
855         }
856       } else if (Tok.is(tok::comment) && !KeepMacroComments) {
857         // If this is a comment token in the argument list and we're just in
858         // -C mode (not -CC mode), discard the comment.
859         continue;
860       } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
861         // Reading macro arguments can cause macros that we are currently
862         // expanding from to be popped off the expansion stack.  Doing so causes
863         // them to be reenabled for expansion.  Here we record whether any
864         // identifiers we lex as macro arguments correspond to disabled macros.
865         // If so, we mark the token as noexpand.  This is a subtle aspect of
866         // C99 6.10.3.4p2.
867         if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
868           if (!MI->isEnabled())
869             Tok.setFlag(Token::DisableExpand);
870       } else if (Tok.is(tok::code_completion)) {
871         ContainsCodeCompletionTok = true;
872         if (CodeComplete)
873           CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
874                                                   MI, NumActuals);
875         // Don't mark that we reached the code-completion point because the
876         // parser is going to handle the token and there will be another
877         // code-completion callback.
878       }
879 
880       ArgTokens.push_back(Tok);
881     }
882 
883     // If this was an empty argument list foo(), don't add this as an empty
884     // argument.
885     if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
886       break;
887 
888     // If this is not a variadic macro, and too many args were specified, emit
889     // an error.
890     if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
891       if (ArgTokens.size() != ArgTokenStart)
892         TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
893       else
894         TooManyArgsLoc = ArgStartLoc;
895     }
896 
897     // Empty arguments are standard in C99 and C++0x, and are supported as an
898     // extension in other modes.
899     if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99)
900       Diag(Tok, getLangOpts().CPlusPlus11
901                     ? diag::warn_cxx98_compat_empty_fnmacro_arg
902                     : diag::ext_empty_fnmacro_arg);
903 
904     // Add a marker EOF token to the end of the token list for this argument.
905     Token EOFTok;
906     EOFTok.startToken();
907     EOFTok.setKind(tok::eof);
908     EOFTok.setLocation(Tok.getLocation());
909     EOFTok.setLength(0);
910     ArgTokens.push_back(EOFTok);
911     ++NumActuals;
912     if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
913       --NumFixedArgsLeft;
914   }
915 
916   // Okay, we either found the r_paren.  Check to see if we parsed too few
917   // arguments.
918   unsigned MinArgsExpected = MI->getNumParams();
919 
920   // If this is not a variadic macro, and too many args were specified, emit
921   // an error.
922   if (!isVariadic && NumActuals > MinArgsExpected &&
923       !ContainsCodeCompletionTok) {
924     // Emit the diagnostic at the macro name in case there is a missing ).
925     // Emitting it at the , could be far away from the macro name.
926     Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
927     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
928       << MacroName.getIdentifierInfo();
929 
930     // Commas from braced initializer lists will be treated as argument
931     // separators inside macros.  Attempt to correct for this with parentheses.
932     // TODO: See if this can be generalized to angle brackets for templates
933     // inside macro arguments.
934 
935     SmallVector<Token, 4> FixedArgTokens;
936     unsigned FixedNumArgs = 0;
937     SmallVector<SourceRange, 4> ParenHints, InitLists;
938     if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
939                               ParenHints, InitLists)) {
940       if (!InitLists.empty()) {
941         DiagnosticBuilder DB =
942             Diag(MacroName,
943                  diag::note_init_list_at_beginning_of_macro_argument);
944         for (SourceRange Range : InitLists)
945           DB << Range;
946       }
947       return nullptr;
948     }
949     if (FixedNumArgs != MinArgsExpected)
950       return nullptr;
951 
952     DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
953     for (SourceRange ParenLocation : ParenHints) {
954       DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
955       DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
956     }
957     ArgTokens.swap(FixedArgTokens);
958     NumActuals = FixedNumArgs;
959   }
960 
961   // See MacroArgs instance var for description of this.
962   bool isVarargsElided = false;
963 
964   if (ContainsCodeCompletionTok) {
965     // Recover from not-fully-formed macro invocation during code-completion.
966     Token EOFTok;
967     EOFTok.startToken();
968     EOFTok.setKind(tok::eof);
969     EOFTok.setLocation(Tok.getLocation());
970     EOFTok.setLength(0);
971     for (; NumActuals < MinArgsExpected; ++NumActuals)
972       ArgTokens.push_back(EOFTok);
973   }
974 
975   if (NumActuals < MinArgsExpected) {
976     // There are several cases where too few arguments is ok, handle them now.
977     if (NumActuals == 0 && MinArgsExpected == 1) {
978       // #define A(X)  or  #define A(...)   ---> A()
979 
980       // If there is exactly one argument, and that argument is missing,
981       // then we have an empty "()" argument empty list.  This is fine, even if
982       // the macro expects one argument (the argument is just empty).
983       isVarargsElided = MI->isVariadic();
984     } else if ((FoundElidedComma || MI->isVariadic()) &&
985                (NumActuals+1 == MinArgsExpected ||  // A(x, ...) -> A(X)
986                 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
987       // Varargs where the named vararg parameter is missing: OK as extension.
988       //   #define A(x, ...)
989       //   A("blah")
990       //
991       // If the macro contains the comma pasting extension, the diagnostic
992       // is suppressed; we know we'll get another diagnostic later.
993       if (!MI->hasCommaPasting()) {
994         // C++20 allows this construct, but standards before C++20 and all C
995         // standards do not allow the construct (we allow it as an extension).
996         Diag(Tok, getLangOpts().CPlusPlus20
997                       ? diag::warn_cxx17_compat_missing_varargs_arg
998                       : diag::ext_missing_varargs_arg);
999         Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1000           << MacroName.getIdentifierInfo();
1001       }
1002 
1003       // Remember this occurred, allowing us to elide the comma when used for
1004       // cases like:
1005       //   #define A(x, foo...) blah(a, ## foo)
1006       //   #define B(x, ...) blah(a, ## __VA_ARGS__)
1007       //   #define C(...) blah(a, ## __VA_ARGS__)
1008       //  A(x) B(x) C()
1009       isVarargsElided = true;
1010     } else if (!ContainsCodeCompletionTok) {
1011       // Otherwise, emit the error.
1012       Diag(Tok, diag::err_too_few_args_in_macro_invoc);
1013       Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1014         << MacroName.getIdentifierInfo();
1015       return nullptr;
1016     }
1017 
1018     // Add a marker EOF token to the end of the token list for this argument.
1019     SourceLocation EndLoc = Tok.getLocation();
1020     Tok.startToken();
1021     Tok.setKind(tok::eof);
1022     Tok.setLocation(EndLoc);
1023     Tok.setLength(0);
1024     ArgTokens.push_back(Tok);
1025 
1026     // If we expect two arguments, add both as empty.
1027     if (NumActuals == 0 && MinArgsExpected == 2)
1028       ArgTokens.push_back(Tok);
1029 
1030   } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
1031              !ContainsCodeCompletionTok) {
1032     // Emit the diagnostic at the macro name in case there is a missing ).
1033     // Emitting it at the , could be far away from the macro name.
1034     Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
1035     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1036       << MacroName.getIdentifierInfo();
1037     return nullptr;
1038   }
1039 
1040   return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
1041 }
1042 
1043 /// Keeps macro expanded tokens for TokenLexers.
1044 //
1045 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1046 /// going to lex in the cache and when it finishes the tokens are removed
1047 /// from the end of the cache.
1048 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
1049                                               ArrayRef<Token> tokens) {
1050   assert(tokLexer);
1051   if (tokens.empty())
1052     return nullptr;
1053 
1054   size_t newIndex = MacroExpandedTokens.size();
1055   bool cacheNeedsToGrow = tokens.size() >
1056                       MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
1057   MacroExpandedTokens.append(tokens.begin(), tokens.end());
1058 
1059   if (cacheNeedsToGrow) {
1060     // Go through all the TokenLexers whose 'Tokens' pointer points in the
1061     // buffer and update the pointers to the (potential) new buffer array.
1062     for (const auto &Lexer : MacroExpandingLexersStack) {
1063       TokenLexer *prevLexer;
1064       size_t tokIndex;
1065       std::tie(prevLexer, tokIndex) = Lexer;
1066       prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
1067     }
1068   }
1069 
1070   MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
1071   return MacroExpandedTokens.data() + newIndex;
1072 }
1073 
1074 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1075   assert(!MacroExpandingLexersStack.empty());
1076   size_t tokIndex = MacroExpandingLexersStack.back().second;
1077   assert(tokIndex < MacroExpandedTokens.size());
1078   // Pop the cached macro expanded tokens from the end.
1079   MacroExpandedTokens.resize(tokIndex);
1080   MacroExpandingLexersStack.pop_back();
1081 }
1082 
1083 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1084 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1085 /// the identifier tokens inserted.
1086 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1087                              Preprocessor &PP) {
1088   time_t TT = time(nullptr);
1089   struct tm *TM = localtime(&TT);
1090 
1091   static const char * const Months[] = {
1092     "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1093   };
1094 
1095   {
1096     SmallString<32> TmpBuffer;
1097     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1098     TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1099                               TM->tm_mday, TM->tm_year + 1900);
1100     Token TmpTok;
1101     TmpTok.startToken();
1102     PP.CreateString(TmpStream.str(), TmpTok);
1103     DATELoc = TmpTok.getLocation();
1104   }
1105 
1106   {
1107     SmallString<32> TmpBuffer;
1108     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1109     TmpStream << llvm::format("\"%02d:%02d:%02d\"",
1110                               TM->tm_hour, TM->tm_min, TM->tm_sec);
1111     Token TmpTok;
1112     TmpTok.startToken();
1113     PP.CreateString(TmpStream.str(), TmpTok);
1114     TIMELoc = TmpTok.getLocation();
1115   }
1116 }
1117 
1118 /// HasFeature - Return true if we recognize and implement the feature
1119 /// specified by the identifier as a standard language feature.
1120 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1121   const LangOptions &LangOpts = PP.getLangOpts();
1122 
1123   // Normalize the feature name, __foo__ becomes foo.
1124   if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1125     Feature = Feature.substr(2, Feature.size() - 4);
1126 
1127 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1128   return llvm::StringSwitch<bool>(Feature)
1129 #include "clang/Basic/Features.def"
1130       .Default(false);
1131 #undef FEATURE
1132 }
1133 
1134 /// HasExtension - Return true if we recognize and implement the feature
1135 /// specified by the identifier, either as an extension or a standard language
1136 /// feature.
1137 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1138   if (HasFeature(PP, Extension))
1139     return true;
1140 
1141   // If the use of an extension results in an error diagnostic, extensions are
1142   // effectively unavailable, so just return false here.
1143   if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1144       diag::Severity::Error)
1145     return false;
1146 
1147   const LangOptions &LangOpts = PP.getLangOpts();
1148 
1149   // Normalize the extension name, __foo__ becomes foo.
1150   if (Extension.startswith("__") && Extension.endswith("__") &&
1151       Extension.size() >= 4)
1152     Extension = Extension.substr(2, Extension.size() - 4);
1153 
1154     // Because we inherit the feature list from HasFeature, this string switch
1155     // must be less restrictive than HasFeature's.
1156 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1157   return llvm::StringSwitch<bool>(Extension)
1158 #include "clang/Basic/Features.def"
1159       .Default(false);
1160 #undef EXTENSION
1161 }
1162 
1163 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1164 /// or '__has_include_next("path")' expression.
1165 /// Returns true if successful.
1166 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II,
1167                                      Preprocessor &PP,
1168                                      ConstSearchDirIterator LookupFrom,
1169                                      const FileEntry *LookupFromFile) {
1170   // Save the location of the current token.  If a '(' is later found, use
1171   // that location.  If not, use the end of this location instead.
1172   SourceLocation LParenLoc = Tok.getLocation();
1173 
1174   // These expressions are only allowed within a preprocessor directive.
1175   if (!PP.isParsingIfOrElifDirective()) {
1176     PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
1177     // Return a valid identifier token.
1178     assert(Tok.is(tok::identifier));
1179     Tok.setIdentifierInfo(II);
1180     return false;
1181   }
1182 
1183   // Get '('. If we don't have a '(', try to form a header-name token.
1184   do {
1185     if (PP.LexHeaderName(Tok))
1186       return false;
1187   } while (Tok.getKind() == tok::comment);
1188 
1189   // Ensure we have a '('.
1190   if (Tok.isNot(tok::l_paren)) {
1191     // No '(', use end of last token.
1192     LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1193     PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1194     // If the next token looks like a filename or the start of one,
1195     // assume it is and process it as such.
1196     if (Tok.isNot(tok::header_name))
1197       return false;
1198   } else {
1199     // Save '(' location for possible missing ')' message.
1200     LParenLoc = Tok.getLocation();
1201     if (PP.LexHeaderName(Tok))
1202       return false;
1203   }
1204 
1205   if (Tok.isNot(tok::header_name)) {
1206     PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1207     return false;
1208   }
1209 
1210   // Reserve a buffer to get the spelling.
1211   SmallString<128> FilenameBuffer;
1212   bool Invalid = false;
1213   StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1214   if (Invalid)
1215     return false;
1216 
1217   SourceLocation FilenameLoc = Tok.getLocation();
1218 
1219   // Get ')'.
1220   PP.LexNonComment(Tok);
1221 
1222   // Ensure we have a trailing ).
1223   if (Tok.isNot(tok::r_paren)) {
1224     PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1225         << II << tok::r_paren;
1226     PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1227     return false;
1228   }
1229 
1230   bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1231   // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1232   // error.
1233   if (Filename.empty())
1234     return false;
1235 
1236   // Search include directories.
1237   Optional<FileEntryRef> File =
1238       PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1239                     nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
1240 
1241   if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
1242     SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
1243     if (File)
1244       FileType =
1245           PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry());
1246     Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
1247   }
1248 
1249   // Get the result value.  A result of true means the file exists.
1250   return File.has_value();
1251 }
1252 
1253 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) {
1254   return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr);
1255 }
1256 
1257 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) {
1258   ConstSearchDirIterator Lookup = nullptr;
1259   const FileEntry *LookupFromFile;
1260   std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok);
1261 
1262   return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile);
1263 }
1264 
1265 /// Process single-argument builtin feature-like macros that return
1266 /// integer values.
1267 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1268                                             Token &Tok, IdentifierInfo *II,
1269                                             Preprocessor &PP, bool ExpandArgs,
1270                                             llvm::function_ref<
1271                                               int(Token &Tok,
1272                                                   bool &HasLexedNextTok)> Op) {
1273   // Parse the initial '('.
1274   PP.LexUnexpandedToken(Tok);
1275   if (Tok.isNot(tok::l_paren)) {
1276     PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1277                                                             << tok::l_paren;
1278 
1279     // Provide a dummy '0' value on output stream to elide further errors.
1280     if (!Tok.isOneOf(tok::eof, tok::eod)) {
1281       OS << 0;
1282       Tok.setKind(tok::numeric_constant);
1283     }
1284     return;
1285   }
1286 
1287   unsigned ParenDepth = 1;
1288   SourceLocation LParenLoc = Tok.getLocation();
1289   llvm::Optional<int> Result;
1290 
1291   Token ResultTok;
1292   bool SuppressDiagnostic = false;
1293   while (true) {
1294     // Parse next token.
1295     if (ExpandArgs)
1296       PP.Lex(Tok);
1297     else
1298       PP.LexUnexpandedToken(Tok);
1299 
1300 already_lexed:
1301     switch (Tok.getKind()) {
1302       case tok::eof:
1303       case tok::eod:
1304         // Don't provide even a dummy value if the eod or eof marker is
1305         // reached.  Simply provide a diagnostic.
1306         PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1307         return;
1308 
1309       case tok::comma:
1310         if (!SuppressDiagnostic) {
1311           PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1312           SuppressDiagnostic = true;
1313         }
1314         continue;
1315 
1316       case tok::l_paren:
1317         ++ParenDepth;
1318         if (Result)
1319           break;
1320         if (!SuppressDiagnostic) {
1321           PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1322           SuppressDiagnostic = true;
1323         }
1324         continue;
1325 
1326       case tok::r_paren:
1327         if (--ParenDepth > 0)
1328           continue;
1329 
1330         // The last ')' has been reached; return the value if one found or
1331         // a diagnostic and a dummy value.
1332         if (Result) {
1333           OS << Result.value();
1334           // For strict conformance to __has_cpp_attribute rules, use 'L'
1335           // suffix for dated literals.
1336           if (Result.value() > 1)
1337             OS << 'L';
1338         } else {
1339           OS << 0;
1340           if (!SuppressDiagnostic)
1341             PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1342         }
1343         Tok.setKind(tok::numeric_constant);
1344         return;
1345 
1346       default: {
1347         // Parse the macro argument, if one not found so far.
1348         if (Result)
1349           break;
1350 
1351         bool HasLexedNextToken = false;
1352         Result = Op(Tok, HasLexedNextToken);
1353         ResultTok = Tok;
1354         if (HasLexedNextToken)
1355           goto already_lexed;
1356         continue;
1357       }
1358     }
1359 
1360     // Diagnose missing ')'.
1361     if (!SuppressDiagnostic) {
1362       if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1363         if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1364           Diag << LastII;
1365         else
1366           Diag << ResultTok.getKind();
1367         Diag << tok::r_paren << ResultTok.getLocation();
1368       }
1369       PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1370       SuppressDiagnostic = true;
1371     }
1372   }
1373 }
1374 
1375 /// Helper function to return the IdentifierInfo structure of a Token
1376 /// or generate a diagnostic if none available.
1377 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1378                                                    Preprocessor &PP,
1379                                                    signed DiagID) {
1380   IdentifierInfo *II;
1381   if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1382     return II;
1383 
1384   PP.Diag(Tok.getLocation(), DiagID);
1385   return nullptr;
1386 }
1387 
1388 /// Implements the __is_target_arch builtin macro.
1389 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
1390   std::string ArchName = II->getName().lower() + "--";
1391   llvm::Triple Arch(ArchName);
1392   const llvm::Triple &TT = TI.getTriple();
1393   if (TT.isThumb()) {
1394     // arm matches thumb or thumbv7. armv7 matches thumbv7.
1395     if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
1396          Arch.getSubArch() == TT.getSubArch()) &&
1397         ((TT.getArch() == llvm::Triple::thumb &&
1398           Arch.getArch() == llvm::Triple::arm) ||
1399          (TT.getArch() == llvm::Triple::thumbeb &&
1400           Arch.getArch() == llvm::Triple::armeb)))
1401       return true;
1402   }
1403   // Check the parsed arch when it has no sub arch to allow Clang to
1404   // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1405   return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
1406           Arch.getSubArch() == TT.getSubArch()) &&
1407          Arch.getArch() == TT.getArch();
1408 }
1409 
1410 /// Implements the __is_target_vendor builtin macro.
1411 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
1412   StringRef VendorName = TI.getTriple().getVendorName();
1413   if (VendorName.empty())
1414     VendorName = "unknown";
1415   return VendorName.equals_insensitive(II->getName());
1416 }
1417 
1418 /// Implements the __is_target_os builtin macro.
1419 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
1420   std::string OSName =
1421       (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1422   llvm::Triple OS(OSName);
1423   if (OS.getOS() == llvm::Triple::Darwin) {
1424     // Darwin matches macos, ios, etc.
1425     return TI.getTriple().isOSDarwin();
1426   }
1427   return TI.getTriple().getOS() == OS.getOS();
1428 }
1429 
1430 /// Implements the __is_target_environment builtin macro.
1431 static bool isTargetEnvironment(const TargetInfo &TI,
1432                                 const IdentifierInfo *II) {
1433   std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1434   llvm::Triple Env(EnvName);
1435   return TI.getTriple().getEnvironment() == Env.getEnvironment();
1436 }
1437 
1438 /// Implements the __is_target_variant_os builtin macro.
1439 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) {
1440   if (TI.getTriple().isOSDarwin()) {
1441     const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple();
1442     if (!VariantTriple)
1443       return false;
1444 
1445     std::string OSName =
1446         (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1447     llvm::Triple OS(OSName);
1448     if (OS.getOS() == llvm::Triple::Darwin) {
1449       // Darwin matches macos, ios, etc.
1450       return VariantTriple->isOSDarwin();
1451     }
1452     return VariantTriple->getOS() == OS.getOS();
1453   }
1454   return false;
1455 }
1456 
1457 /// Implements the __is_target_variant_environment builtin macro.
1458 static bool isTargetVariantEnvironment(const TargetInfo &TI,
1459                                 const IdentifierInfo *II) {
1460   if (TI.getTriple().isOSDarwin()) {
1461     const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple();
1462     if (!VariantTriple)
1463       return false;
1464     std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1465     llvm::Triple Env(EnvName);
1466     return VariantTriple->getEnvironment() == Env.getEnvironment();
1467   }
1468   return false;
1469 }
1470 
1471 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1472 /// as a builtin macro, handle it and return the next token as 'Tok'.
1473 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1474   // Figure out which token this is.
1475   IdentifierInfo *II = Tok.getIdentifierInfo();
1476   assert(II && "Can't be a macro without id info!");
1477 
1478   // If this is an _Pragma or Microsoft __pragma directive, expand it,
1479   // invoke the pragma handler, then lex the token after it.
1480   if (II == Ident_Pragma)
1481     return Handle_Pragma(Tok);
1482   else if (II == Ident__pragma) // in non-MS mode this is null
1483     return HandleMicrosoft__pragma(Tok);
1484 
1485   ++NumBuiltinMacroExpanded;
1486 
1487   SmallString<128> TmpBuffer;
1488   llvm::raw_svector_ostream OS(TmpBuffer);
1489 
1490   // Set up the return result.
1491   Tok.setIdentifierInfo(nullptr);
1492   Tok.clearFlag(Token::NeedsCleaning);
1493   bool IsAtStartOfLine = Tok.isAtStartOfLine();
1494   bool HasLeadingSpace = Tok.hasLeadingSpace();
1495 
1496   if (II == Ident__LINE__) {
1497     // C99 6.10.8: "__LINE__: The presumed line number (within the current
1498     // source file) of the current source line (an integer constant)".  This can
1499     // be affected by #line.
1500     SourceLocation Loc = Tok.getLocation();
1501 
1502     // Advance to the location of the first _, this might not be the first byte
1503     // of the token if it starts with an escaped newline.
1504     Loc = AdvanceToTokenCharacter(Loc, 0);
1505 
1506     // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1507     // a macro expansion.  This doesn't matter for object-like macros, but
1508     // can matter for a function-like macro that expands to contain __LINE__.
1509     // Skip down through expansion points until we find a file loc for the
1510     // end of the expansion history.
1511     Loc = SourceMgr.getExpansionRange(Loc).getEnd();
1512     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1513 
1514     // __LINE__ expands to a simple numeric value.
1515     OS << (PLoc.isValid()? PLoc.getLine() : 1);
1516     Tok.setKind(tok::numeric_constant);
1517   } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
1518              II == Ident__FILE_NAME__) {
1519     // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1520     // character string literal)". This can be affected by #line.
1521     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1522 
1523     // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1524     // #include stack instead of the current file.
1525     if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1526       SourceLocation NextLoc = PLoc.getIncludeLoc();
1527       while (NextLoc.isValid()) {
1528         PLoc = SourceMgr.getPresumedLoc(NextLoc);
1529         if (PLoc.isInvalid())
1530           break;
1531 
1532         NextLoc = PLoc.getIncludeLoc();
1533       }
1534     }
1535 
1536     // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
1537     SmallString<256> FN;
1538     if (PLoc.isValid()) {
1539       // __FILE_NAME__ is a Clang-specific extension that expands to the
1540       // the last part of __FILE__.
1541       if (II == Ident__FILE_NAME__) {
1542         // Try to get the last path component, failing that return the original
1543         // presumed location.
1544         StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
1545         if (PLFileName != "")
1546           FN += PLFileName;
1547         else
1548           FN += PLoc.getFilename();
1549       } else {
1550         FN += PLoc.getFilename();
1551       }
1552       processPathForFileMacro(FN, getLangOpts(), getTargetInfo());
1553       Lexer::Stringify(FN);
1554       OS << '"' << FN << '"';
1555     }
1556     Tok.setKind(tok::string_literal);
1557   } else if (II == Ident__DATE__) {
1558     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1559     if (!DATELoc.isValid())
1560       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1561     Tok.setKind(tok::string_literal);
1562     Tok.setLength(strlen("\"Mmm dd yyyy\""));
1563     Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1564                                                  Tok.getLocation(),
1565                                                  Tok.getLength()));
1566     return;
1567   } else if (II == Ident__TIME__) {
1568     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1569     if (!TIMELoc.isValid())
1570       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1571     Tok.setKind(tok::string_literal);
1572     Tok.setLength(strlen("\"hh:mm:ss\""));
1573     Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1574                                                  Tok.getLocation(),
1575                                                  Tok.getLength()));
1576     return;
1577   } else if (II == Ident__INCLUDE_LEVEL__) {
1578     // Compute the presumed include depth of this token.  This can be affected
1579     // by GNU line markers.
1580     unsigned Depth = 0;
1581 
1582     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1583     if (PLoc.isValid()) {
1584       PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1585       for (; PLoc.isValid(); ++Depth)
1586         PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1587     }
1588 
1589     // __INCLUDE_LEVEL__ expands to a simple numeric value.
1590     OS << Depth;
1591     Tok.setKind(tok::numeric_constant);
1592   } else if (II == Ident__TIMESTAMP__) {
1593     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1594     // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
1595     // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1596 
1597     // Get the file that we are lexing out of.  If we're currently lexing from
1598     // a macro, dig into the include stack.
1599     const FileEntry *CurFile = nullptr;
1600     PreprocessorLexer *TheLexer = getCurrentFileLexer();
1601 
1602     if (TheLexer)
1603       CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1604 
1605     const char *Result;
1606     if (CurFile) {
1607       time_t TT = CurFile->getModificationTime();
1608       struct tm *TM = localtime(&TT);
1609       Result = asctime(TM);
1610     } else {
1611       Result = "??? ??? ?? ??:??:?? ????\n";
1612     }
1613     // Surround the string with " and strip the trailing newline.
1614     OS << '"' << StringRef(Result).drop_back() << '"';
1615     Tok.setKind(tok::string_literal);
1616   } else if (II == Ident__FLT_EVAL_METHOD__) {
1617     // __FLT_EVAL_METHOD__ is set to the default value.
1618     if (getTUFPEvalMethod() ==
1619         LangOptions::FPEvalMethodKind::FEM_Indeterminable) {
1620       // This is possible if `AllowFPReassoc` or `AllowReciprocal` is enabled.
1621       // These modes can be triggered via the command line option `-ffast-math`
1622       // or via a `pragam float_control`.
1623       // __FLT_EVAL_METHOD__ expands to -1.
1624       // The `minus` operator is the next token we read from the stream.
1625       auto Toks = std::make_unique<Token[]>(1);
1626       OS << "-";
1627       Tok.setKind(tok::minus);
1628       // Push the token `1` to the stream.
1629       Token NumberToken;
1630       NumberToken.startToken();
1631       NumberToken.setKind(tok::numeric_constant);
1632       NumberToken.setLiteralData("1");
1633       NumberToken.setLength(1);
1634       Toks[0] = NumberToken;
1635       EnterTokenStream(std::move(Toks), 1, /*DisableMacroExpansion*/ false,
1636                        /*IsReinject*/ false);
1637     } else {
1638       OS << getTUFPEvalMethod();
1639       // __FLT_EVAL_METHOD__ expands to a simple numeric value.
1640       Tok.setKind(tok::numeric_constant);
1641       if (getLastFPEvalPragmaLocation().isValid()) {
1642         // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is
1643         // altered by the pragma.
1644         Diag(Tok, diag::err_illegal_use_of_flt_eval_macro);
1645         Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here);
1646       }
1647     }
1648   } else if (II == Ident__COUNTER__) {
1649     // __COUNTER__ expands to a simple numeric value.
1650     OS << CounterValue++;
1651     Tok.setKind(tok::numeric_constant);
1652   } else if (II == Ident__has_feature) {
1653     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1654       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1655         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1656                                            diag::err_feature_check_malformed);
1657         return II && HasFeature(*this, II->getName());
1658       });
1659   } else if (II == Ident__has_extension) {
1660     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1661       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1662         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1663                                            diag::err_feature_check_malformed);
1664         return II && HasExtension(*this, II->getName());
1665       });
1666   } else if (II == Ident__has_builtin) {
1667     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1668       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1669         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1670                                            diag::err_feature_check_malformed);
1671         if (!II)
1672           return false;
1673         else if (II->getBuiltinID() != 0) {
1674           switch (II->getBuiltinID()) {
1675           case Builtin::BI__builtin_operator_new:
1676           case Builtin::BI__builtin_operator_delete:
1677             // denotes date of behavior change to support calling arbitrary
1678             // usual allocation and deallocation functions. Required by libc++
1679             return 201802;
1680           default:
1681             return Builtin::evaluateRequiredTargetFeatures(
1682                 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()),
1683                 getTargetInfo().getTargetOpts().FeatureMap);
1684           }
1685           return true;
1686         } else if (II->getTokenID() != tok::identifier ||
1687                    II->hasRevertedTokenIDToIdentifier()) {
1688           // Treat all keywords that introduce a custom syntax of the form
1689           //
1690           //   '__some_keyword' '(' [...] ')'
1691           //
1692           // as being "builtin functions", even if the syntax isn't a valid
1693           // function call (for example, because the builtin takes a type
1694           // argument).
1695           if (II->getName().startswith("__builtin_") ||
1696               II->getName().startswith("__is_") ||
1697               II->getName().startswith("__has_"))
1698             return true;
1699           return llvm::StringSwitch<bool>(II->getName())
1700               .Case("__array_rank", true)
1701               .Case("__array_extent", true)
1702               .Case("__reference_binds_to_temporary", true)
1703               .Case("__underlying_type", true)
1704               .Default(false);
1705         } else {
1706           return llvm::StringSwitch<bool>(II->getName())
1707               // Report builtin templates as being builtins.
1708               .Case("__make_integer_seq", getLangOpts().CPlusPlus)
1709               .Case("__type_pack_element", getLangOpts().CPlusPlus)
1710               // Likewise for some builtin preprocessor macros.
1711               // FIXME: This is inconsistent; we usually suggest detecting
1712               // builtin macros via #ifdef. Don't add more cases here.
1713               .Case("__is_target_arch", true)
1714               .Case("__is_target_vendor", true)
1715               .Case("__is_target_os", true)
1716               .Case("__is_target_environment", true)
1717               .Case("__is_target_variant_os", true)
1718               .Case("__is_target_variant_environment", true)
1719               .Default(false);
1720         }
1721       });
1722   } else if (II == Ident__is_identifier) {
1723     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1724       [](Token &Tok, bool &HasLexedNextToken) -> int {
1725         return Tok.is(tok::identifier);
1726       });
1727   } else if (II == Ident__has_attribute) {
1728     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1729       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1730         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1731                                            diag::err_feature_check_malformed);
1732         return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr,
1733                                  II, getTargetInfo(), getLangOpts())
1734                   : 0;
1735       });
1736   } else if (II == Ident__has_declspec) {
1737     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1738       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1739         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1740                                            diag::err_feature_check_malformed);
1741         if (II) {
1742           const LangOptions &LangOpts = getLangOpts();
1743           return LangOpts.DeclSpecKeyword &&
1744                  hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr,
1745                               II, getTargetInfo(), LangOpts);
1746         }
1747 
1748         return false;
1749       });
1750   } else if (II == Ident__has_cpp_attribute ||
1751              II == Ident__has_c_attribute) {
1752     bool IsCXX = II == Ident__has_cpp_attribute;
1753     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1754         [&](Token &Tok, bool &HasLexedNextToken) -> int {
1755           IdentifierInfo *ScopeII = nullptr;
1756           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1757               Tok, *this, diag::err_feature_check_malformed);
1758           if (!II)
1759             return false;
1760 
1761           // It is possible to receive a scope token.  Read the "::", if it is
1762           // available, and the subsequent identifier.
1763           LexUnexpandedToken(Tok);
1764           if (Tok.isNot(tok::coloncolon))
1765             HasLexedNextToken = true;
1766           else {
1767             ScopeII = II;
1768             // Lex an expanded token for the attribute name.
1769             Lex(Tok);
1770             II = ExpectFeatureIdentifierInfo(Tok, *this,
1771                                              diag::err_feature_check_malformed);
1772           }
1773 
1774           AttributeCommonInfo::Syntax Syntax =
1775               IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11
1776                     : AttributeCommonInfo::Syntax::AS_C2x;
1777           return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
1778                                    getLangOpts())
1779                     : 0;
1780         });
1781   } else if (II == Ident__has_include ||
1782              II == Ident__has_include_next) {
1783     // The argument to these two builtins should be a parenthesized
1784     // file name string literal using angle brackets (<>) or
1785     // double-quotes ("").
1786     bool Value;
1787     if (II == Ident__has_include)
1788       Value = EvaluateHasInclude(Tok, II);
1789     else
1790       Value = EvaluateHasIncludeNext(Tok, II);
1791 
1792     if (Tok.isNot(tok::r_paren))
1793       return;
1794     OS << (int)Value;
1795     Tok.setKind(tok::numeric_constant);
1796   } else if (II == Ident__has_warning) {
1797     // The argument should be a parenthesized string literal.
1798     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1799       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1800         std::string WarningName;
1801         SourceLocation StrStartLoc = Tok.getLocation();
1802 
1803         HasLexedNextToken = Tok.is(tok::string_literal);
1804         if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1805                                     /*AllowMacroExpansion=*/false))
1806           return false;
1807 
1808         // FIXME: Should we accept "-R..." flags here, or should that be
1809         // handled by a separate __has_remark?
1810         if (WarningName.size() < 3 || WarningName[0] != '-' ||
1811             WarningName[1] != 'W') {
1812           Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1813           return false;
1814         }
1815 
1816         // Finally, check if the warning flags maps to a diagnostic group.
1817         // We construct a SmallVector here to talk to getDiagnosticIDs().
1818         // Although we don't use the result, this isn't a hot path, and not
1819         // worth special casing.
1820         SmallVector<diag::kind, 10> Diags;
1821         return !getDiagnostics().getDiagnosticIDs()->
1822                 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1823                                       WarningName.substr(2), Diags);
1824       });
1825   } else if (II == Ident__building_module) {
1826     // The argument to this builtin should be an identifier. The
1827     // builtin evaluates to 1 when that identifier names the module we are
1828     // currently building.
1829     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1830       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1831         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1832                                        diag::err_expected_id_building_module);
1833         return getLangOpts().isCompilingModule() && II &&
1834                (II->getName() == getLangOpts().CurrentModule);
1835       });
1836   } else if (II == Ident__MODULE__) {
1837     // The current module as an identifier.
1838     OS << getLangOpts().CurrentModule;
1839     IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1840     Tok.setIdentifierInfo(ModuleII);
1841     Tok.setKind(ModuleII->getTokenID());
1842   } else if (II == Ident__identifier) {
1843     SourceLocation Loc = Tok.getLocation();
1844 
1845     // We're expecting '__identifier' '(' identifier ')'. Try to recover
1846     // if the parens are missing.
1847     LexNonComment(Tok);
1848     if (Tok.isNot(tok::l_paren)) {
1849       // No '(', use end of last token.
1850       Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1851         << II << tok::l_paren;
1852       // If the next token isn't valid as our argument, we can't recover.
1853       if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1854         Tok.setKind(tok::identifier);
1855       return;
1856     }
1857 
1858     SourceLocation LParenLoc = Tok.getLocation();
1859     LexNonComment(Tok);
1860 
1861     if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1862       Tok.setKind(tok::identifier);
1863     else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) {
1864       StringLiteralParser Literal(Tok, *this);
1865       if (Literal.hadError)
1866         return;
1867 
1868       Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString()));
1869       Tok.setKind(tok::identifier);
1870     } else {
1871       Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1872         << Tok.getKind();
1873       // Don't walk past anything that's not a real token.
1874       if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1875         return;
1876     }
1877 
1878     // Discard the ')', preserving 'Tok' as our result.
1879     Token RParen;
1880     LexNonComment(RParen);
1881     if (RParen.isNot(tok::r_paren)) {
1882       Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1883         << Tok.getKind() << tok::r_paren;
1884       Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1885     }
1886     return;
1887   } else if (II == Ident__is_target_arch) {
1888     EvaluateFeatureLikeBuiltinMacro(
1889         OS, Tok, II, *this, false,
1890         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1891           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1892               Tok, *this, diag::err_feature_check_malformed);
1893           return II && isTargetArch(getTargetInfo(), II);
1894         });
1895   } else if (II == Ident__is_target_vendor) {
1896     EvaluateFeatureLikeBuiltinMacro(
1897         OS, Tok, II, *this, false,
1898         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1899           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1900               Tok, *this, diag::err_feature_check_malformed);
1901           return II && isTargetVendor(getTargetInfo(), II);
1902         });
1903   } else if (II == Ident__is_target_os) {
1904     EvaluateFeatureLikeBuiltinMacro(
1905         OS, Tok, II, *this, false,
1906         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1907           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1908               Tok, *this, diag::err_feature_check_malformed);
1909           return II && isTargetOS(getTargetInfo(), II);
1910         });
1911   } else if (II == Ident__is_target_environment) {
1912     EvaluateFeatureLikeBuiltinMacro(
1913         OS, Tok, II, *this, false,
1914         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1915           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1916               Tok, *this, diag::err_feature_check_malformed);
1917           return II && isTargetEnvironment(getTargetInfo(), II);
1918         });
1919   } else if (II == Ident__is_target_variant_os) {
1920     EvaluateFeatureLikeBuiltinMacro(
1921         OS, Tok, II, *this, false,
1922         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1923           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1924               Tok, *this, diag::err_feature_check_malformed);
1925           return II && isTargetVariantOS(getTargetInfo(), II);
1926         });
1927   } else if (II == Ident__is_target_variant_environment) {
1928     EvaluateFeatureLikeBuiltinMacro(
1929         OS, Tok, II, *this, false,
1930         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1931           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1932               Tok, *this, diag::err_feature_check_malformed);
1933           return II && isTargetVariantEnvironment(getTargetInfo(), II);
1934         });
1935   } else {
1936     llvm_unreachable("Unknown identifier!");
1937   }
1938   CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1939   Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
1940   Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
1941 }
1942 
1943 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1944   // If the 'used' status changed, and the macro requires 'unused' warning,
1945   // remove its SourceLocation from the warn-for-unused-macro locations.
1946   if (MI->isWarnIfUnused() && !MI->isUsed())
1947     WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1948   MI->setIsUsed(true);
1949 }
1950 
1951 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path,
1952                                            const LangOptions &LangOpts,
1953                                            const TargetInfo &TI) {
1954   LangOpts.remapPathPrefix(Path);
1955   if (LangOpts.UseTargetPathSeparator) {
1956     if (TI.getTriple().isOSWindows())
1957       llvm::sys::path::remove_dots(Path, false,
1958                                    llvm::sys::path::Style::windows_backslash);
1959     else
1960       llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix);
1961   }
1962 }
1963