1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production.  Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/Basic/PrettyStackTrace.h"
26 #include "clang/Lex/LiteralSupport.h"
27 #include "clang/Parse/Parser.h"
28 #include "clang/Parse/RAIIObjectsForParser.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/TypoCorrection.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include <optional>
36 using namespace clang;
37 
38 /// Simple precedence-based parser for binary/ternary operators.
39 ///
40 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
41 /// production.  C99 specifies that the LHS of an assignment operator should be
42 /// parsed as a unary-expression, but consistency dictates that it be a
43 /// conditional-expession.  In practice, the important thing here is that the
44 /// LHS of an assignment has to be an l-value, which productions between
45 /// unary-expression and conditional-expression don't produce.  Because we want
46 /// consistency, we parse the LHS as a conditional-expression, then check for
47 /// l-value-ness in semantic analysis stages.
48 ///
49 /// \verbatim
50 ///       pm-expression: [C++ 5.5]
51 ///         cast-expression
52 ///         pm-expression '.*' cast-expression
53 ///         pm-expression '->*' cast-expression
54 ///
55 ///       multiplicative-expression: [C99 6.5.5]
56 ///     Note: in C++, apply pm-expression instead of cast-expression
57 ///         cast-expression
58 ///         multiplicative-expression '*' cast-expression
59 ///         multiplicative-expression '/' cast-expression
60 ///         multiplicative-expression '%' cast-expression
61 ///
62 ///       additive-expression: [C99 6.5.6]
63 ///         multiplicative-expression
64 ///         additive-expression '+' multiplicative-expression
65 ///         additive-expression '-' multiplicative-expression
66 ///
67 ///       shift-expression: [C99 6.5.7]
68 ///         additive-expression
69 ///         shift-expression '<<' additive-expression
70 ///         shift-expression '>>' additive-expression
71 ///
72 ///       compare-expression: [C++20 expr.spaceship]
73 ///         shift-expression
74 ///         compare-expression '<=>' shift-expression
75 ///
76 ///       relational-expression: [C99 6.5.8]
77 ///         compare-expression
78 ///         relational-expression '<' compare-expression
79 ///         relational-expression '>' compare-expression
80 ///         relational-expression '<=' compare-expression
81 ///         relational-expression '>=' compare-expression
82 ///
83 ///       equality-expression: [C99 6.5.9]
84 ///         relational-expression
85 ///         equality-expression '==' relational-expression
86 ///         equality-expression '!=' relational-expression
87 ///
88 ///       AND-expression: [C99 6.5.10]
89 ///         equality-expression
90 ///         AND-expression '&' equality-expression
91 ///
92 ///       exclusive-OR-expression: [C99 6.5.11]
93 ///         AND-expression
94 ///         exclusive-OR-expression '^' AND-expression
95 ///
96 ///       inclusive-OR-expression: [C99 6.5.12]
97 ///         exclusive-OR-expression
98 ///         inclusive-OR-expression '|' exclusive-OR-expression
99 ///
100 ///       logical-AND-expression: [C99 6.5.13]
101 ///         inclusive-OR-expression
102 ///         logical-AND-expression '&&' inclusive-OR-expression
103 ///
104 ///       logical-OR-expression: [C99 6.5.14]
105 ///         logical-AND-expression
106 ///         logical-OR-expression '||' logical-AND-expression
107 ///
108 ///       conditional-expression: [C99 6.5.15]
109 ///         logical-OR-expression
110 ///         logical-OR-expression '?' expression ':' conditional-expression
111 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
112 /// [C++] the third operand is an assignment-expression
113 ///
114 ///       assignment-expression: [C99 6.5.16]
115 ///         conditional-expression
116 ///         unary-expression assignment-operator assignment-expression
117 /// [C++]   throw-expression [C++ 15]
118 ///
119 ///       assignment-operator: one of
120 ///         = *= /= %= += -= <<= >>= &= ^= |=
121 ///
122 ///       expression: [C99 6.5.17]
123 ///         assignment-expression ...[opt]
124 ///         expression ',' assignment-expression ...[opt]
125 /// \endverbatim
126 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
127   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
128   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
129 }
130 
131 /// This routine is called when the '@' is seen and consumed.
132 /// Current token is an Identifier and is not a 'try'. This
133 /// routine is necessary to disambiguate \@try-statement from,
134 /// for example, \@encode-expression.
135 ///
136 ExprResult
137 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
138   ExprResult LHS(ParseObjCAtExpression(AtLoc));
139   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
140 }
141 
142 /// This routine is called when a leading '__extension__' is seen and
143 /// consumed.  This is necessary because the token gets consumed in the
144 /// process of disambiguating between an expression and a declaration.
145 ExprResult
146 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
147   ExprResult LHS(true);
148   {
149     // Silence extension warnings in the sub-expression
150     ExtensionRAIIObject O(Diags);
151 
152     LHS = ParseCastExpression(AnyCastExpr);
153   }
154 
155   if (!LHS.isInvalid())
156     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
157                                LHS.get());
158 
159   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
160 }
161 
162 /// Parse an expr that doesn't include (top-level) commas.
163 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
164   if (Tok.is(tok::code_completion)) {
165     cutOffParsing();
166     Actions.CodeCompleteExpression(getCurScope(),
167                                    PreferredType.get(Tok.getLocation()));
168     return ExprError();
169   }
170 
171   if (Tok.is(tok::kw_throw))
172     return ParseThrowExpression();
173   if (Tok.is(tok::kw_co_yield))
174     return ParseCoyieldExpression();
175 
176   ExprResult LHS = ParseCastExpression(AnyCastExpr,
177                                        /*isAddressOfOperand=*/false,
178                                        isTypeCast);
179   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
180 }
181 
182 /// Parse an assignment expression where part of an Objective-C message
183 /// send has already been parsed.
184 ///
185 /// In this case \p LBracLoc indicates the location of the '[' of the message
186 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
187 /// the receiver of the message.
188 ///
189 /// Since this handles full assignment-expression's, it handles postfix
190 /// expressions and other binary operators for these expressions as well.
191 ExprResult
192 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
193                                                     SourceLocation SuperLoc,
194                                                     ParsedType ReceiverType,
195                                                     Expr *ReceiverExpr) {
196   ExprResult R
197     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
198                                      ReceiverType, ReceiverExpr);
199   R = ParsePostfixExpressionSuffix(R);
200   return ParseRHSOfBinaryExpression(R, prec::Assignment);
201 }
202 
203 ExprResult
204 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
205   assert(Actions.ExprEvalContexts.back().Context ==
206              Sema::ExpressionEvaluationContext::ConstantEvaluated &&
207          "Call this function only if your ExpressionEvaluationContext is "
208          "already ConstantEvaluated");
209   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
210   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
211   return Actions.ActOnConstantExpression(Res);
212 }
213 
214 ExprResult Parser::ParseConstantExpression() {
215   // C++03 [basic.def.odr]p2:
216   //   An expression is potentially evaluated unless it appears where an
217   //   integral constant expression is required (see 5.19) [...].
218   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
219   EnterExpressionEvaluationContext ConstantEvaluated(
220       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
221   return ParseConstantExpressionInExprEvalContext(NotTypeCast);
222 }
223 
224 ExprResult Parser::ParseArrayBoundExpression() {
225   EnterExpressionEvaluationContext ConstantEvaluated(
226       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
227   // If we parse the bound of a VLA... we parse a non-constant
228   // constant-expression!
229   Actions.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true;
230   return ParseConstantExpressionInExprEvalContext(NotTypeCast);
231 }
232 
233 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
234   EnterExpressionEvaluationContext ConstantEvaluated(
235       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
236   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
237   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
238   return Actions.ActOnCaseExpr(CaseLoc, Res);
239 }
240 
241 /// Parse a constraint-expression.
242 ///
243 /// \verbatim
244 ///       constraint-expression: C++2a[temp.constr.decl]p1
245 ///         logical-or-expression
246 /// \endverbatim
247 ExprResult Parser::ParseConstraintExpression() {
248   EnterExpressionEvaluationContext ConstantEvaluated(
249       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
250   ExprResult LHS(ParseCastExpression(AnyCastExpr));
251   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
252   if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
253     Actions.CorrectDelayedTyposInExpr(Res);
254     return ExprError();
255   }
256   return Res;
257 }
258 
259 /// \brief Parse a constraint-logical-and-expression.
260 ///
261 /// \verbatim
262 ///       C++2a[temp.constr.decl]p1
263 ///       constraint-logical-and-expression:
264 ///         primary-expression
265 ///         constraint-logical-and-expression '&&' primary-expression
266 ///
267 /// \endverbatim
268 ExprResult
269 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
270   EnterExpressionEvaluationContext ConstantEvaluated(
271       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
272   bool NotPrimaryExpression = false;
273   auto ParsePrimary = [&] () {
274     ExprResult E = ParseCastExpression(PrimaryExprOnly,
275                                        /*isAddressOfOperand=*/false,
276                                        /*isTypeCast=*/NotTypeCast,
277                                        /*isVectorLiteral=*/false,
278                                        &NotPrimaryExpression);
279     if (E.isInvalid())
280       return ExprError();
281     auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
282         E = ParsePostfixExpressionSuffix(E);
283         // Use InclusiveOr, the precedence just after '&&' to not parse the
284         // next arguments to the logical and.
285         E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
286         if (!E.isInvalid())
287           Diag(E.get()->getExprLoc(),
288                Note
289                ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
290                : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
291                << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
292                << FixItHint::CreateInsertion(
293                    PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
294                << E.get()->getSourceRange();
295         return E;
296     };
297 
298     if (NotPrimaryExpression ||
299         // Check if the following tokens must be a part of a non-primary
300         // expression
301         getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
302                            /*CPlusPlus11=*/true) > prec::LogicalAnd ||
303         // Postfix operators other than '(' (which will be checked for in
304         // CheckConstraintExpression).
305         Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
306         (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
307       E = RecoverFromNonPrimary(E, /*Note=*/false);
308       if (E.isInvalid())
309         return ExprError();
310       NotPrimaryExpression = false;
311     }
312     bool PossibleNonPrimary;
313     bool IsConstraintExpr =
314         Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
315                                           IsTrailingRequiresClause);
316     if (!IsConstraintExpr || PossibleNonPrimary) {
317       // Atomic constraint might be an unparenthesized non-primary expression
318       // (such as a binary operator), in which case we might get here (e.g. in
319       // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
320       // the rest of the addition expression). Try to parse the rest of it here.
321       if (PossibleNonPrimary)
322         E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
323       Actions.CorrectDelayedTyposInExpr(E);
324       return ExprError();
325     }
326     return E;
327   };
328   ExprResult LHS = ParsePrimary();
329   if (LHS.isInvalid())
330     return ExprError();
331   while (Tok.is(tok::ampamp)) {
332     SourceLocation LogicalAndLoc = ConsumeToken();
333     ExprResult RHS = ParsePrimary();
334     if (RHS.isInvalid()) {
335       Actions.CorrectDelayedTyposInExpr(LHS);
336       return ExprError();
337     }
338     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
339                                        tok::ampamp, LHS.get(), RHS.get());
340     if (!Op.isUsable()) {
341       Actions.CorrectDelayedTyposInExpr(RHS);
342       Actions.CorrectDelayedTyposInExpr(LHS);
343       return ExprError();
344     }
345     LHS = Op;
346   }
347   return LHS;
348 }
349 
350 /// \brief Parse a constraint-logical-or-expression.
351 ///
352 /// \verbatim
353 ///       C++2a[temp.constr.decl]p1
354 ///       constraint-logical-or-expression:
355 ///         constraint-logical-and-expression
356 ///         constraint-logical-or-expression '||'
357 ///             constraint-logical-and-expression
358 ///
359 /// \endverbatim
360 ExprResult
361 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
362   ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
363   if (!LHS.isUsable())
364     return ExprError();
365   while (Tok.is(tok::pipepipe)) {
366     SourceLocation LogicalOrLoc = ConsumeToken();
367     ExprResult RHS =
368         ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
369     if (!RHS.isUsable()) {
370       Actions.CorrectDelayedTyposInExpr(LHS);
371       return ExprError();
372     }
373     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
374                                        tok::pipepipe, LHS.get(), RHS.get());
375     if (!Op.isUsable()) {
376       Actions.CorrectDelayedTyposInExpr(RHS);
377       Actions.CorrectDelayedTyposInExpr(LHS);
378       return ExprError();
379     }
380     LHS = Op;
381   }
382   return LHS;
383 }
384 
385 bool Parser::isNotExpressionStart() {
386   tok::TokenKind K = Tok.getKind();
387   if (K == tok::l_brace || K == tok::r_brace  ||
388       K == tok::kw_for  || K == tok::kw_while ||
389       K == tok::kw_if   || K == tok::kw_else  ||
390       K == tok::kw_goto || K == tok::kw_try)
391     return true;
392   // If this is a decl-specifier, we can't be at the start of an expression.
393   return isKnownToBeDeclarationSpecifier();
394 }
395 
396 bool Parser::isFoldOperator(prec::Level Level) const {
397   return Level > prec::Unknown && Level != prec::Conditional &&
398          Level != prec::Spaceship;
399 }
400 
401 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
402   return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
403 }
404 
405 /// Parse a binary expression that starts with \p LHS and has a
406 /// precedence of at least \p MinPrec.
407 ExprResult
408 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
409   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
410                                                GreaterThanIsOperator,
411                                                getLangOpts().CPlusPlus11);
412   SourceLocation ColonLoc;
413 
414   auto SavedType = PreferredType;
415   while (true) {
416     // Every iteration may rely on a preferred type for the whole expression.
417     PreferredType = SavedType;
418     // If this token has a lower precedence than we are allowed to parse (e.g.
419     // because we are called recursively, or because the token is not a binop),
420     // then we are done!
421     if (NextTokPrec < MinPrec)
422       return LHS;
423 
424     // Consume the operator, saving the operator token for error reporting.
425     Token OpToken = Tok;
426     ConsumeToken();
427 
428     if (OpToken.is(tok::caretcaret)) {
429       return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
430     }
431 
432     // If we're potentially in a template-id, we may now be able to determine
433     // whether we're actually in one or not.
434     if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
435                         tok::greatergreatergreater) &&
436         checkPotentialAngleBracketDelimiter(OpToken))
437       return ExprError();
438 
439     // Bail out when encountering a comma followed by a token which can't
440     // possibly be the start of an expression. For instance:
441     //   int f() { return 1, }
442     // We can't do this before consuming the comma, because
443     // isNotExpressionStart() looks at the token stream.
444     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
445       PP.EnterToken(Tok, /*IsReinject*/true);
446       Tok = OpToken;
447       return LHS;
448     }
449 
450     // If the next token is an ellipsis, then this is a fold-expression. Leave
451     // it alone so we can handle it in the paren expression.
452     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
453       // FIXME: We can't check this via lookahead before we consume the token
454       // because that tickles a lexer bug.
455       PP.EnterToken(Tok, /*IsReinject*/true);
456       Tok = OpToken;
457       return LHS;
458     }
459 
460     // In Objective-C++, alternative operator tokens can be used as keyword args
461     // in message expressions. Unconsume the token so that it can reinterpreted
462     // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
463     //   [foo meth:0 and:0];
464     //   [foo not_eq];
465     if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
466         Tok.isOneOf(tok::colon, tok::r_square) &&
467         OpToken.getIdentifierInfo() != nullptr) {
468       PP.EnterToken(Tok, /*IsReinject*/true);
469       Tok = OpToken;
470       return LHS;
471     }
472 
473     // Special case handling for the ternary operator.
474     ExprResult TernaryMiddle(true);
475     if (NextTokPrec == prec::Conditional) {
476       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
477         // Parse a braced-init-list here for error recovery purposes.
478         SourceLocation BraceLoc = Tok.getLocation();
479         TernaryMiddle = ParseBraceInitializer();
480         if (!TernaryMiddle.isInvalid()) {
481           Diag(BraceLoc, diag::err_init_list_bin_op)
482               << /*RHS*/ 1 << PP.getSpelling(OpToken)
483               << Actions.getExprRange(TernaryMiddle.get());
484           TernaryMiddle = ExprError();
485         }
486       } else if (Tok.isNot(tok::colon)) {
487         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
488         ColonProtectionRAIIObject X(*this);
489 
490         // Handle this production specially:
491         //   logical-OR-expression '?' expression ':' conditional-expression
492         // In particular, the RHS of the '?' is 'expression', not
493         // 'logical-OR-expression' as we might expect.
494         TernaryMiddle = ParseExpression();
495       } else {
496         // Special case handling of "X ? Y : Z" where Y is empty:
497         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
498         TernaryMiddle = nullptr;
499         Diag(Tok, diag::ext_gnu_conditional_expr);
500       }
501 
502       if (TernaryMiddle.isInvalid()) {
503         Actions.CorrectDelayedTyposInExpr(LHS);
504         LHS = ExprError();
505         TernaryMiddle = nullptr;
506       }
507 
508       if (!TryConsumeToken(tok::colon, ColonLoc)) {
509         // Otherwise, we're missing a ':'.  Assume that this was a typo that
510         // the user forgot. If we're not in a macro expansion, we can suggest
511         // a fixit hint. If there were two spaces before the current token,
512         // suggest inserting the colon in between them, otherwise insert ": ".
513         SourceLocation FILoc = Tok.getLocation();
514         const char *FIText = ": ";
515         const SourceManager &SM = PP.getSourceManager();
516         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
517           assert(FILoc.isFileID());
518           bool IsInvalid = false;
519           const char *SourcePtr =
520             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
521           if (!IsInvalid && *SourcePtr == ' ') {
522             SourcePtr =
523               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
524             if (!IsInvalid && *SourcePtr == ' ') {
525               FILoc = FILoc.getLocWithOffset(-1);
526               FIText = ":";
527             }
528           }
529         }
530 
531         Diag(Tok, diag::err_expected)
532             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
533         Diag(OpToken, diag::note_matching) << tok::question;
534         ColonLoc = Tok.getLocation();
535       }
536     }
537 
538     PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
539                               OpToken.getKind());
540     // Parse another leaf here for the RHS of the operator.
541     // ParseCastExpression works here because all RHS expressions in C have it
542     // as a prefix, at least. However, in C++, an assignment-expression could
543     // be a throw-expression, which is not a valid cast-expression.
544     // Therefore we need some special-casing here.
545     // Also note that the third operand of the conditional operator is
546     // an assignment-expression in C++, and in C++11, we can have a
547     // braced-init-list on the RHS of an assignment. For better diagnostics,
548     // parse as if we were allowed braced-init-lists everywhere, and check that
549     // they only appear on the RHS of assignments later.
550     ExprResult RHS;
551     bool RHSIsInitList = false;
552     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
553       RHS = ParseBraceInitializer();
554       RHSIsInitList = true;
555     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
556       RHS = ParseAssignmentExpression();
557     else
558       RHS = ParseCastExpression(AnyCastExpr);
559 
560     if (RHS.isInvalid()) {
561       // FIXME: Errors generated by the delayed typo correction should be
562       // printed before errors from parsing the RHS, not after.
563       Actions.CorrectDelayedTyposInExpr(LHS);
564       if (TernaryMiddle.isUsable())
565         TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
566       LHS = ExprError();
567     }
568 
569     // Remember the precedence of this operator and get the precedence of the
570     // operator immediately to the right of the RHS.
571     prec::Level ThisPrec = NextTokPrec;
572     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
573                                      getLangOpts().CPlusPlus11);
574 
575     // Assignment and conditional expressions are right-associative.
576     bool isRightAssoc = ThisPrec == prec::Conditional ||
577                         ThisPrec == prec::Assignment;
578 
579     // Get the precedence of the operator to the right of the RHS.  If it binds
580     // more tightly with RHS than we do, evaluate it completely first.
581     if (ThisPrec < NextTokPrec ||
582         (ThisPrec == NextTokPrec && isRightAssoc)) {
583       if (!RHS.isInvalid() && RHSIsInitList) {
584         Diag(Tok, diag::err_init_list_bin_op)
585           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
586         RHS = ExprError();
587       }
588       // If this is left-associative, only parse things on the RHS that bind
589       // more tightly than the current operator.  If it is left-associative, it
590       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
591       // A=(B=(C=D)), where each paren is a level of recursion here.
592       // The function takes ownership of the RHS.
593       RHS = ParseRHSOfBinaryExpression(RHS,
594                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
595       RHSIsInitList = false;
596 
597       if (RHS.isInvalid()) {
598         // FIXME: Errors generated by the delayed typo correction should be
599         // printed before errors from ParseRHSOfBinaryExpression, not after.
600         Actions.CorrectDelayedTyposInExpr(LHS);
601         if (TernaryMiddle.isUsable())
602           TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
603         LHS = ExprError();
604       }
605 
606       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
607                                        getLangOpts().CPlusPlus11);
608     }
609 
610     if (!RHS.isInvalid() && RHSIsInitList) {
611       if (ThisPrec == prec::Assignment) {
612         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
613           << Actions.getExprRange(RHS.get());
614       } else if (ColonLoc.isValid()) {
615         Diag(ColonLoc, diag::err_init_list_bin_op)
616           << /*RHS*/1 << ":"
617           << Actions.getExprRange(RHS.get());
618         LHS = ExprError();
619       } else {
620         Diag(OpToken, diag::err_init_list_bin_op)
621           << /*RHS*/1 << PP.getSpelling(OpToken)
622           << Actions.getExprRange(RHS.get());
623         LHS = ExprError();
624       }
625     }
626 
627     ExprResult OrigLHS = LHS;
628     if (!LHS.isInvalid()) {
629       // Combine the LHS and RHS into the LHS (e.g. build AST).
630       if (TernaryMiddle.isInvalid()) {
631         // If we're using '>>' as an operator within a template
632         // argument list (in C++98), suggest the addition of
633         // parentheses so that the code remains well-formed in C++0x.
634         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
635           SuggestParentheses(OpToken.getLocation(),
636                              diag::warn_cxx11_right_shift_in_template_arg,
637                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
638                                      Actions.getExprRange(RHS.get()).getEnd()));
639 
640         ExprResult BinOp =
641             Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
642                                OpToken.getKind(), LHS.get(), RHS.get());
643         if (BinOp.isInvalid())
644           BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
645                                              RHS.get()->getEndLoc(),
646                                              {LHS.get(), RHS.get()});
647 
648         LHS = BinOp;
649       } else {
650         ExprResult CondOp = Actions.ActOnConditionalOp(
651             OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
652             RHS.get());
653         if (CondOp.isInvalid()) {
654           std::vector<clang::Expr *> Args;
655           // TernaryMiddle can be null for the GNU conditional expr extension.
656           if (TernaryMiddle.get())
657             Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
658           else
659             Args = {LHS.get(), RHS.get()};
660           CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
661                                               RHS.get()->getEndLoc(), Args);
662         }
663 
664         LHS = CondOp;
665       }
666       // In this case, ActOnBinOp or ActOnConditionalOp performed the
667       // CorrectDelayedTyposInExpr check.
668       if (!getLangOpts().CPlusPlus)
669         continue;
670     }
671 
672     // Ensure potential typos aren't left undiagnosed.
673     if (LHS.isInvalid()) {
674       Actions.CorrectDelayedTyposInExpr(OrigLHS);
675       Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
676       Actions.CorrectDelayedTyposInExpr(RHS);
677     }
678   }
679 }
680 
681 /// Parse a cast-expression, unary-expression or primary-expression, based
682 /// on \p ExprType.
683 ///
684 /// \p isAddressOfOperand exists because an id-expression that is the
685 /// operand of address-of gets special treatment due to member pointers.
686 ///
687 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
688                                        bool isAddressOfOperand,
689                                        TypeCastState isTypeCast,
690                                        bool isVectorLiteral,
691                                        bool *NotPrimaryExpression) {
692   bool NotCastExpr;
693   ExprResult Res = ParseCastExpression(ParseKind,
694                                        isAddressOfOperand,
695                                        NotCastExpr,
696                                        isTypeCast,
697                                        isVectorLiteral,
698                                        NotPrimaryExpression);
699   if (NotCastExpr)
700     Diag(Tok, diag::err_expected_expression);
701   return Res;
702 }
703 
704 namespace {
705 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
706  public:
707   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
708       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
709     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
710   }
711 
712   bool ValidateCandidate(const TypoCorrection &candidate) override {
713     NamedDecl *ND = candidate.getCorrectionDecl();
714     if (!ND)
715       return candidate.isKeyword();
716 
717     if (isa<TypeDecl>(ND))
718       return WantTypeSpecifiers;
719 
720     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
721       return false;
722 
723     if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
724       return true;
725 
726     for (auto *C : candidate) {
727       NamedDecl *ND = C->getUnderlyingDecl();
728       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
729         return true;
730     }
731     return false;
732   }
733 
734   std::unique_ptr<CorrectionCandidateCallback> clone() override {
735     return std::make_unique<CastExpressionIdValidator>(*this);
736   }
737 
738  private:
739   Token NextToken;
740   bool AllowNonTypes;
741 };
742 }
743 
744 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
745 /// a unary-expression.
746 ///
747 /// \p isAddressOfOperand exists because an id-expression that is the operand
748 /// of address-of gets special treatment due to member pointers. NotCastExpr
749 /// is set to true if the token is not the start of a cast-expression, and no
750 /// diagnostic is emitted in this case and no tokens are consumed.
751 ///
752 /// \verbatim
753 ///       cast-expression: [C99 6.5.4]
754 ///         unary-expression
755 ///         '(' type-name ')' cast-expression
756 ///
757 ///       unary-expression:  [C99 6.5.3]
758 ///         postfix-expression
759 ///         '++' unary-expression
760 ///         '--' unary-expression
761 /// [Coro]  'co_await' cast-expression
762 ///         unary-operator cast-expression
763 ///         'sizeof' unary-expression
764 ///         'sizeof' '(' type-name ')'
765 /// [C++11] 'sizeof' '...' '(' identifier ')'
766 /// [GNU]   '__alignof' unary-expression
767 /// [GNU]   '__alignof' '(' type-name ')'
768 /// [C11]   '_Alignof' '(' type-name ')'
769 /// [C++11] 'alignof' '(' type-id ')'
770 /// [GNU]   '&&' identifier
771 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
772 /// [C++]   new-expression
773 /// [C++]   delete-expression
774 ///
775 ///       unary-operator: one of
776 ///         '&'  '*'  '+'  '-'  '~'  '!'
777 /// [GNU]   '__extension__'  '__real'  '__imag'
778 ///
779 ///       primary-expression: [C99 6.5.1]
780 /// [C99]   identifier
781 /// [C++]   id-expression
782 ///         constant
783 ///         string-literal
784 /// [C++]   boolean-literal  [C++ 2.13.5]
785 /// [C++11] 'nullptr'        [C++11 2.14.7]
786 /// [C++11] user-defined-literal
787 ///         '(' expression ')'
788 /// [C11]   generic-selection
789 /// [C++2a] requires-expression
790 ///         '__func__'        [C99 6.4.2.2]
791 /// [GNU]   '__FUNCTION__'
792 /// [MS]    '__FUNCDNAME__'
793 /// [MS]    'L__FUNCTION__'
794 /// [MS]    '__FUNCSIG__'
795 /// [MS]    'L__FUNCSIG__'
796 /// [GNU]   '__PRETTY_FUNCTION__'
797 /// [GNU]   '(' compound-statement ')'
798 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
799 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
800 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
801 ///                                     assign-expr ')'
802 /// [GNU]   '__builtin_FILE' '(' ')'
803 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
804 /// [GNU]   '__builtin_FUNCTION' '(' ')'
805 /// [MS]    '__builtin_FUNCSIG' '(' ')'
806 /// [GNU]   '__builtin_LINE' '(' ')'
807 /// [CLANG] '__builtin_COLUMN' '(' ')'
808 /// [GNU]   '__builtin_source_location' '(' ')'
809 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
810 /// [GNU]   '__null'
811 /// [OBJC]  '[' objc-message-expr ']'
812 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
813 /// [OBJC]  '\@protocol' '(' identifier ')'
814 /// [OBJC]  '\@encode' '(' type-name ')'
815 /// [OBJC]  objc-string-literal
816 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
817 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
818 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
819 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
820 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
821 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
822 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
823 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
824 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
825 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
826 /// [C++]   'this'          [C++ 9.3.2]
827 /// [G++]   unary-type-trait '(' type-id ')'
828 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
829 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
830 /// [clang] '^' block-literal
831 ///
832 ///       constant: [C99 6.4.4]
833 ///         integer-constant
834 ///         floating-constant
835 ///         enumeration-constant -> identifier
836 ///         character-constant
837 ///
838 ///       id-expression: [C++ 5.1]
839 ///                   unqualified-id
840 ///                   qualified-id
841 ///
842 ///       unqualified-id: [C++ 5.1]
843 ///                   identifier
844 ///                   operator-function-id
845 ///                   conversion-function-id
846 ///                   '~' class-name
847 ///                   template-id
848 ///
849 ///       new-expression: [C++ 5.3.4]
850 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
851 ///                                     new-initializer[opt]
852 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
853 ///                                     new-initializer[opt]
854 ///
855 ///       delete-expression: [C++ 5.3.5]
856 ///                   '::'[opt] 'delete' cast-expression
857 ///                   '::'[opt] 'delete' '[' ']' cast-expression
858 ///
859 /// [GNU/Embarcadero] unary-type-trait:
860 ///                   '__is_arithmetic'
861 ///                   '__is_floating_point'
862 ///                   '__is_integral'
863 ///                   '__is_lvalue_expr'
864 ///                   '__is_rvalue_expr'
865 ///                   '__is_complete_type'
866 ///                   '__is_void'
867 ///                   '__is_array'
868 ///                   '__is_function'
869 ///                   '__is_reference'
870 ///                   '__is_lvalue_reference'
871 ///                   '__is_rvalue_reference'
872 ///                   '__is_fundamental'
873 ///                   '__is_object'
874 ///                   '__is_scalar'
875 ///                   '__is_compound'
876 ///                   '__is_pointer'
877 ///                   '__is_member_object_pointer'
878 ///                   '__is_member_function_pointer'
879 ///                   '__is_member_pointer'
880 ///                   '__is_const'
881 ///                   '__is_volatile'
882 ///                   '__is_trivial'
883 ///                   '__is_standard_layout'
884 ///                   '__is_signed'
885 ///                   '__is_unsigned'
886 ///
887 /// [GNU] unary-type-trait:
888 ///                   '__has_nothrow_assign'
889 ///                   '__has_nothrow_copy'
890 ///                   '__has_nothrow_constructor'
891 ///                   '__has_trivial_assign'                  [TODO]
892 ///                   '__has_trivial_copy'                    [TODO]
893 ///                   '__has_trivial_constructor'
894 ///                   '__has_trivial_destructor'
895 ///                   '__has_virtual_destructor'
896 ///                   '__is_abstract'                         [TODO]
897 ///                   '__is_class'
898 ///                   '__is_empty'                            [TODO]
899 ///                   '__is_enum'
900 ///                   '__is_final'
901 ///                   '__is_pod'
902 ///                   '__is_polymorphic'
903 ///                   '__is_sealed'                           [MS]
904 ///                   '__is_trivial'
905 ///                   '__is_union'
906 ///                   '__has_unique_object_representations'
907 ///
908 /// [Clang] unary-type-trait:
909 ///                   '__is_aggregate'
910 ///                   '__trivially_copyable'
911 ///
912 ///       binary-type-trait:
913 /// [GNU]             '__is_base_of'
914 /// [MS]              '__is_convertible_to'
915 ///                   '__is_convertible'
916 ///                   '__is_same'
917 ///
918 /// [Embarcadero] array-type-trait:
919 ///                   '__array_rank'
920 ///                   '__array_extent'
921 ///
922 /// [Embarcadero] expression-trait:
923 ///                   '__is_lvalue_expr'
924 ///                   '__is_rvalue_expr'
925 /// \endverbatim
926 ///
927 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
928                                        bool isAddressOfOperand,
929                                        bool &NotCastExpr,
930                                        TypeCastState isTypeCast,
931                                        bool isVectorLiteral,
932                                        bool *NotPrimaryExpression) {
933   ExprResult Res;
934   tok::TokenKind SavedKind = Tok.getKind();
935   auto SavedType = PreferredType;
936   NotCastExpr = false;
937 
938   // Are postfix-expression suffix operators permitted after this
939   // cast-expression? If not, and we find some, we'll parse them anyway and
940   // diagnose them.
941   bool AllowSuffix = true;
942 
943   // This handles all of cast-expression, unary-expression, postfix-expression,
944   // and primary-expression.  We handle them together like this for efficiency
945   // and to simplify handling of an expression starting with a '(' token: which
946   // may be one of a parenthesized expression, cast-expression, compound literal
947   // expression, or statement expression.
948   //
949   // If the parsed tokens consist of a primary-expression, the cases below
950   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
951   // to handle the postfix expression suffixes.  Cases that cannot be followed
952   // by postfix exprs should set AllowSuffix to false.
953   switch (SavedKind) {
954   case tok::l_paren: {
955     // If this expression is limited to being a unary-expression, the paren can
956     // not start a cast expression.
957     ParenParseOption ParenExprType;
958     switch (ParseKind) {
959       case CastParseKind::UnaryExprOnly:
960         assert(getLangOpts().CPlusPlus && "not possible to get here in C");
961         [[fallthrough]];
962       case CastParseKind::AnyCastExpr:
963         ParenExprType = ParenParseOption::CastExpr;
964         break;
965       case CastParseKind::PrimaryExprOnly:
966         ParenExprType = FoldExpr;
967         break;
968     }
969     ParsedType CastTy;
970     SourceLocation RParenLoc;
971     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
972                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
973 
974     // FIXME: What should we do if a vector literal is followed by a
975     // postfix-expression suffix? Usually postfix operators are permitted on
976     // literals.
977     if (isVectorLiteral)
978       return Res;
979 
980     switch (ParenExprType) {
981     case SimpleExpr:   break;    // Nothing else to do.
982     case CompoundStmt: break;  // Nothing else to do.
983     case CompoundLiteral:
984       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
985       // postfix-expression exist, parse them now.
986       break;
987     case CastExpr:
988       // We have parsed the cast-expression and no postfix-expr pieces are
989       // following.
990       return Res;
991     case FoldExpr:
992       // We only parsed a fold-expression. There might be postfix-expr pieces
993       // afterwards; parse them now.
994       break;
995     }
996 
997     break;
998   }
999 
1000     // primary-expression
1001   case tok::numeric_constant:
1002     // constant: integer-constant
1003     // constant: floating-constant
1004 
1005     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
1006     ConsumeToken();
1007     break;
1008 
1009   case tok::kw_true:
1010   case tok::kw_false:
1011     Res = ParseCXXBoolLiteral();
1012     break;
1013 
1014   case tok::kw___objc_yes:
1015   case tok::kw___objc_no:
1016     Res = ParseObjCBoolLiteral();
1017     break;
1018 
1019   case tok::kw_nullptr:
1020     if (getLangOpts().CPlusPlus)
1021       Diag(Tok, diag::warn_cxx98_compat_nullptr);
1022     else
1023       Diag(Tok, getLangOpts().C23 ? diag::warn_c23_compat_keyword
1024                                   : diag::ext_c_nullptr) << Tok.getName();
1025 
1026     Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1027     break;
1028 
1029   case tok::annot_primary_expr:
1030   case tok::annot_overload_set:
1031     Res = getExprAnnotation(Tok);
1032     if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1033       Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1034     ConsumeAnnotationToken();
1035     if (!Res.isInvalid() && Tok.is(tok::less))
1036       checkPotentialAngleBracket(Res);
1037     break;
1038 
1039   case tok::annot_non_type:
1040   case tok::annot_non_type_dependent:
1041   case tok::annot_non_type_undeclared: {
1042     CXXScopeSpec SS;
1043     Token Replacement;
1044     Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1045     assert(!Res.isUnset() &&
1046            "should not perform typo correction on annotation token");
1047     break;
1048   }
1049 
1050   case tok::kw___super:
1051   case tok::kw_decltype:
1052     // Annotate the token and tail recurse.
1053     if (TryAnnotateTypeOrScopeToken())
1054       return ExprError();
1055     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1056     return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1057                                isVectorLiteral, NotPrimaryExpression);
1058 
1059   case tok::identifier:
1060   ParseIdentifier: {    // primary-expression: identifier
1061                         // unqualified-id: identifier
1062                         // constant: enumeration-constant
1063     // Turn a potentially qualified name into a annot_typename or
1064     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
1065     if (getLangOpts().CPlusPlus) {
1066       // Avoid the unnecessary parse-time lookup in the common case
1067       // where the syntax forbids a type.
1068       const Token &Next = NextToken();
1069 
1070       // If this identifier was reverted from a token ID, and the next token
1071       // is a parenthesis, this is likely to be a use of a type trait. Check
1072       // those tokens.
1073       if (Next.is(tok::l_paren) &&
1074           Tok.is(tok::identifier) &&
1075           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1076         IdentifierInfo *II = Tok.getIdentifierInfo();
1077         // Build up the mapping of revertible type traits, for future use.
1078         if (RevertibleTypeTraits.empty()) {
1079 #define RTT_JOIN(X,Y) X##Y
1080 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
1081           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1082             = RTT_JOIN(tok::kw_,Name)
1083 
1084           REVERTIBLE_TYPE_TRAIT(__is_abstract);
1085           REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1086           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1087           REVERTIBLE_TYPE_TRAIT(__is_array);
1088           REVERTIBLE_TYPE_TRAIT(__is_assignable);
1089           REVERTIBLE_TYPE_TRAIT(__is_base_of);
1090           REVERTIBLE_TYPE_TRAIT(__is_bounded_array);
1091           REVERTIBLE_TYPE_TRAIT(__is_class);
1092           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1093           REVERTIBLE_TYPE_TRAIT(__is_compound);
1094           REVERTIBLE_TYPE_TRAIT(__is_const);
1095           REVERTIBLE_TYPE_TRAIT(__is_constructible);
1096           REVERTIBLE_TYPE_TRAIT(__is_convertible);
1097           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1098           REVERTIBLE_TYPE_TRAIT(__is_destructible);
1099           REVERTIBLE_TYPE_TRAIT(__is_empty);
1100           REVERTIBLE_TYPE_TRAIT(__is_enum);
1101           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1102           REVERTIBLE_TYPE_TRAIT(__is_final);
1103           REVERTIBLE_TYPE_TRAIT(__is_function);
1104           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1105           REVERTIBLE_TYPE_TRAIT(__is_integral);
1106           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1107           REVERTIBLE_TYPE_TRAIT(__is_literal);
1108           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1109           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1110           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1111           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1112           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1113           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1114           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1115           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1116           REVERTIBLE_TYPE_TRAIT(__is_nullptr);
1117           REVERTIBLE_TYPE_TRAIT(__is_object);
1118           REVERTIBLE_TYPE_TRAIT(__is_pod);
1119           REVERTIBLE_TYPE_TRAIT(__is_pointer);
1120           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1121           REVERTIBLE_TYPE_TRAIT(__is_reference);
1122           REVERTIBLE_TYPE_TRAIT(__is_referenceable);
1123           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1124           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1125           REVERTIBLE_TYPE_TRAIT(__is_same);
1126           REVERTIBLE_TYPE_TRAIT(__is_scalar);
1127           REVERTIBLE_TYPE_TRAIT(__is_scoped_enum);
1128           REVERTIBLE_TYPE_TRAIT(__is_sealed);
1129           REVERTIBLE_TYPE_TRAIT(__is_signed);
1130           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1131           REVERTIBLE_TYPE_TRAIT(__is_trivial);
1132           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1133           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1134           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1135           REVERTIBLE_TYPE_TRAIT(__is_unbounded_array);
1136           REVERTIBLE_TYPE_TRAIT(__is_union);
1137           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1138           REVERTIBLE_TYPE_TRAIT(__is_void);
1139           REVERTIBLE_TYPE_TRAIT(__is_volatile);
1140           REVERTIBLE_TYPE_TRAIT(__reference_binds_to_temporary);
1141           REVERTIBLE_TYPE_TRAIT(__reference_constructs_from_temporary);
1142 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait)                                     \
1143   REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait));
1144 #include "clang/Basic/TransformTypeTraits.def"
1145 #undef REVERTIBLE_TYPE_TRAIT
1146 #undef RTT_JOIN
1147         }
1148 
1149         // If we find that this is in fact the name of a type trait,
1150         // update the token kind in place and parse again to treat it as
1151         // the appropriate kind of type trait.
1152         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1153           = RevertibleTypeTraits.find(II);
1154         if (Known != RevertibleTypeTraits.end()) {
1155           Tok.setKind(Known->second);
1156           return ParseCastExpression(ParseKind, isAddressOfOperand,
1157                                      NotCastExpr, isTypeCast,
1158                                      isVectorLiteral, NotPrimaryExpression);
1159         }
1160       }
1161 
1162       if ((!ColonIsSacred && Next.is(tok::colon)) ||
1163           Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1164                        tok::l_brace)) {
1165         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1166         if (TryAnnotateTypeOrScopeToken())
1167           return ExprError();
1168         if (!Tok.is(tok::identifier))
1169           return ParseCastExpression(ParseKind, isAddressOfOperand,
1170                                      NotCastExpr, isTypeCast,
1171                                      isVectorLiteral,
1172                                      NotPrimaryExpression);
1173       }
1174     }
1175 
1176     // Consume the identifier so that we can see if it is followed by a '(' or
1177     // '.'.
1178     IdentifierInfo &II = *Tok.getIdentifierInfo();
1179     SourceLocation ILoc = ConsumeToken();
1180 
1181     // Support 'Class.property' and 'super.property' notation.
1182     if (getLangOpts().ObjC && Tok.is(tok::period) &&
1183         (Actions.getTypeName(II, ILoc, getCurScope()) ||
1184          // Allow the base to be 'super' if in an objc-method.
1185          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1186       ConsumeToken();
1187 
1188       if (Tok.is(tok::code_completion) && &II != Ident_super) {
1189         cutOffParsing();
1190         Actions.CodeCompleteObjCClassPropertyRefExpr(
1191             getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1192         return ExprError();
1193       }
1194       // Allow either an identifier or the keyword 'class' (in C++).
1195       if (Tok.isNot(tok::identifier) &&
1196           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1197         Diag(Tok, diag::err_expected_property_name);
1198         return ExprError();
1199       }
1200       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1201       SourceLocation PropertyLoc = ConsumeToken();
1202 
1203       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1204                                               ILoc, PropertyLoc);
1205       break;
1206     }
1207 
1208     // In an Objective-C method, if we have "super" followed by an identifier,
1209     // the token sequence is ill-formed. However, if there's a ':' or ']' after
1210     // that identifier, this is probably a message send with a missing open
1211     // bracket. Treat it as such.
1212     if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1213         getCurScope()->isInObjcMethodScope() &&
1214         ((Tok.is(tok::identifier) &&
1215          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1216          Tok.is(tok::code_completion))) {
1217       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1218                                            nullptr);
1219       break;
1220     }
1221 
1222     // If we have an Objective-C class name followed by an identifier
1223     // and either ':' or ']', this is an Objective-C class message
1224     // send that's missing the opening '['. Recovery
1225     // appropriately. Also take this path if we're performing code
1226     // completion after an Objective-C class name.
1227     if (getLangOpts().ObjC &&
1228         ((Tok.is(tok::identifier) && !InMessageExpression) ||
1229          Tok.is(tok::code_completion))) {
1230       const Token& Next = NextToken();
1231       if (Tok.is(tok::code_completion) ||
1232           Next.is(tok::colon) || Next.is(tok::r_square))
1233         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1234           if (Typ.get()->isObjCObjectOrInterfaceType()) {
1235             // Fake up a Declarator to use with ActOnTypeName.
1236             DeclSpec DS(AttrFactory);
1237             DS.SetRangeStart(ILoc);
1238             DS.SetRangeEnd(ILoc);
1239             const char *PrevSpec = nullptr;
1240             unsigned DiagID;
1241             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1242                                Actions.getASTContext().getPrintingPolicy());
1243 
1244             Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1245                                       DeclaratorContext::TypeName);
1246             TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo);
1247             if (Ty.isInvalid())
1248               break;
1249 
1250             Res = ParseObjCMessageExpressionBody(SourceLocation(),
1251                                                  SourceLocation(),
1252                                                  Ty.get(), nullptr);
1253             break;
1254           }
1255     }
1256 
1257     // Make sure to pass down the right value for isAddressOfOperand.
1258     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1259       isAddressOfOperand = false;
1260 
1261     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1262     // need to know whether or not this identifier is a function designator or
1263     // not.
1264     UnqualifiedId Name;
1265     CXXScopeSpec ScopeSpec;
1266     SourceLocation TemplateKWLoc;
1267     Token Replacement;
1268     CastExpressionIdValidator Validator(
1269         /*Next=*/Tok,
1270         /*AllowTypes=*/isTypeCast != NotTypeCast,
1271         /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1272     Validator.IsAddressOfOperand = isAddressOfOperand;
1273     if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1274       Validator.WantExpressionKeywords = false;
1275       Validator.WantRemainingKeywords = false;
1276     } else {
1277       Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1278     }
1279     Name.setIdentifier(&II, ILoc);
1280     Res = Actions.ActOnIdExpression(
1281         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1282         isAddressOfOperand, &Validator,
1283         /*IsInlineAsmIdentifier=*/false,
1284         Tok.is(tok::r_paren) ? nullptr : &Replacement);
1285     if (!Res.isInvalid() && Res.isUnset()) {
1286       UnconsumeToken(Replacement);
1287       return ParseCastExpression(ParseKind, isAddressOfOperand,
1288                                  NotCastExpr, isTypeCast,
1289                                  /*isVectorLiteral=*/false,
1290                                  NotPrimaryExpression);
1291     }
1292     if (!Res.isInvalid() && Tok.is(tok::less))
1293       checkPotentialAngleBracket(Res);
1294     break;
1295   }
1296   case tok::char_constant:     // constant: character-constant
1297   case tok::wide_char_constant:
1298   case tok::utf8_char_constant:
1299   case tok::utf16_char_constant:
1300   case tok::utf32_char_constant:
1301     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1302     ConsumeToken();
1303     break;
1304   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
1305   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
1306   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
1307   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
1308   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
1309   case tok::kw_L__FUNCSIG__:    // primary-expression: L__FUNCSIG__ [MS]
1310   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
1311     // Function local predefined macros are represented by PredefinedExpr except
1312     // when Microsoft extensions are enabled and one of these macros is adjacent
1313     // to a string literal or another one of these macros.
1314     if (!(getLangOpts().MicrosoftExt &&
1315           tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
1316           tokenIsLikeStringLiteral(NextToken(), getLangOpts()))) {
1317       Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1318       ConsumeToken();
1319       break;
1320     }
1321     [[fallthrough]]; // treat MS function local macros as concatenable strings
1322   case tok::string_literal:    // primary-expression: string-literal
1323   case tok::wide_string_literal:
1324   case tok::utf8_string_literal:
1325   case tok::utf16_string_literal:
1326   case tok::utf32_string_literal:
1327     Res = ParseStringLiteralExpression(true);
1328     break;
1329   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
1330     Res = ParseGenericSelectionExpression();
1331     break;
1332   case tok::kw___builtin_available:
1333     Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1334     break;
1335   case tok::kw___builtin_va_arg:
1336   case tok::kw___builtin_offsetof:
1337   case tok::kw___builtin_choose_expr:
1338   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1339   case tok::kw___builtin_convertvector:
1340   case tok::kw___builtin_COLUMN:
1341   case tok::kw___builtin_FILE:
1342   case tok::kw___builtin_FILE_NAME:
1343   case tok::kw___builtin_FUNCTION:
1344   case tok::kw___builtin_FUNCSIG:
1345   case tok::kw___builtin_LINE:
1346   case tok::kw___builtin_source_location:
1347     if (NotPrimaryExpression)
1348       *NotPrimaryExpression = true;
1349     // This parses the complete suffix; we can return early.
1350     return ParseBuiltinPrimaryExpression();
1351   case tok::kw___null:
1352     Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1353     break;
1354 
1355   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
1356   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
1357     if (NotPrimaryExpression)
1358       *NotPrimaryExpression = true;
1359     // C++ [expr.unary] has:
1360     //   unary-expression:
1361     //     ++ cast-expression
1362     //     -- cast-expression
1363     Token SavedTok = Tok;
1364     ConsumeToken();
1365 
1366     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1367                              SavedTok.getLocation());
1368     // One special case is implicitly handled here: if the preceding tokens are
1369     // an ambiguous cast expression, such as "(T())++", then we recurse to
1370     // determine whether the '++' is prefix or postfix.
1371     Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1372                                   UnaryExprOnly : AnyCastExpr,
1373                               /*isAddressOfOperand*/false, NotCastExpr,
1374                               NotTypeCast);
1375     if (NotCastExpr) {
1376       // If we return with NotCastExpr = true, we must not consume any tokens,
1377       // so put the token back where we found it.
1378       assert(Res.isInvalid());
1379       UnconsumeToken(SavedTok);
1380       return ExprError();
1381     }
1382     if (!Res.isInvalid()) {
1383       Expr *Arg = Res.get();
1384       Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1385                                  SavedKind, Arg);
1386       if (Res.isInvalid())
1387         Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1388                                          Arg->getEndLoc(), Arg);
1389     }
1390     return Res;
1391   }
1392   case tok::amp: {         // unary-expression: '&' cast-expression
1393     if (NotPrimaryExpression)
1394       *NotPrimaryExpression = true;
1395     // Special treatment because of member pointers
1396     SourceLocation SavedLoc = ConsumeToken();
1397     PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1398 
1399     Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true);
1400     if (!Res.isInvalid()) {
1401       Expr *Arg = Res.get();
1402       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1403       if (Res.isInvalid())
1404         Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1405                                          Arg);
1406     }
1407     return Res;
1408   }
1409 
1410   case tok::star:          // unary-expression: '*' cast-expression
1411   case tok::plus:          // unary-expression: '+' cast-expression
1412   case tok::minus:         // unary-expression: '-' cast-expression
1413   case tok::tilde:         // unary-expression: '~' cast-expression
1414   case tok::exclaim:       // unary-expression: '!' cast-expression
1415   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1416   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1417     if (NotPrimaryExpression)
1418       *NotPrimaryExpression = true;
1419     SourceLocation SavedLoc = ConsumeToken();
1420     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1421     Res = ParseCastExpression(AnyCastExpr);
1422     if (!Res.isInvalid()) {
1423       Expr *Arg = Res.get();
1424       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg,
1425                                  isAddressOfOperand);
1426       if (Res.isInvalid())
1427         Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1428     }
1429     return Res;
1430   }
1431 
1432   case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
1433     if (NotPrimaryExpression)
1434       *NotPrimaryExpression = true;
1435     SourceLocation CoawaitLoc = ConsumeToken();
1436     Res = ParseCastExpression(AnyCastExpr);
1437     if (!Res.isInvalid())
1438       Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1439     return Res;
1440   }
1441 
1442   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1443     // __extension__ silences extension warnings in the subexpression.
1444     if (NotPrimaryExpression)
1445       *NotPrimaryExpression = true;
1446     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1447     SourceLocation SavedLoc = ConsumeToken();
1448     Res = ParseCastExpression(AnyCastExpr);
1449     if (!Res.isInvalid())
1450       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1451     return Res;
1452   }
1453   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1454     if (!getLangOpts().C11)
1455       Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1456     [[fallthrough]];
1457   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1458   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1459                            // unary-expression: '__alignof' '(' type-name ')'
1460   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1461                            // unary-expression: 'sizeof' '(' type-name ')'
1462   // unary-expression: '__datasizeof' unary-expression
1463   // unary-expression: '__datasizeof' '(' type-name ')'
1464   case tok::kw___datasizeof:
1465   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1466   // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1467   case tok::kw___builtin_omp_required_simd_align:
1468   case tok::kw___builtin_vectorelements:
1469     if (NotPrimaryExpression)
1470       *NotPrimaryExpression = true;
1471     AllowSuffix = false;
1472     Res = ParseUnaryExprOrTypeTraitExpression();
1473     break;
1474   case tok::ampamp: {      // unary-expression: '&&' identifier
1475     if (NotPrimaryExpression)
1476       *NotPrimaryExpression = true;
1477     SourceLocation AmpAmpLoc = ConsumeToken();
1478     if (Tok.isNot(tok::identifier))
1479       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1480 
1481     if (getCurScope()->getFnParent() == nullptr)
1482       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1483 
1484     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1485     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1486                                                 Tok.getLocation());
1487     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1488     ConsumeToken();
1489     AllowSuffix = false;
1490     break;
1491   }
1492   case tok::kw_const_cast:
1493   case tok::kw_dynamic_cast:
1494   case tok::kw_reinterpret_cast:
1495   case tok::kw_static_cast:
1496   case tok::kw_addrspace_cast:
1497     if (NotPrimaryExpression)
1498       *NotPrimaryExpression = true;
1499     Res = ParseCXXCasts();
1500     break;
1501   case tok::kw___builtin_bit_cast:
1502     if (NotPrimaryExpression)
1503       *NotPrimaryExpression = true;
1504     Res = ParseBuiltinBitCast();
1505     break;
1506   case tok::kw_typeid:
1507     if (NotPrimaryExpression)
1508       *NotPrimaryExpression = true;
1509     Res = ParseCXXTypeid();
1510     break;
1511   case tok::kw___uuidof:
1512     if (NotPrimaryExpression)
1513       *NotPrimaryExpression = true;
1514     Res = ParseCXXUuidof();
1515     break;
1516   case tok::kw_this:
1517     Res = ParseCXXThis();
1518     break;
1519   case tok::kw___builtin_sycl_unique_stable_name:
1520     Res = ParseSYCLUniqueStableNameExpression();
1521     break;
1522 
1523   case tok::annot_typename:
1524     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1525       TypeResult Type = getTypeAnnotation(Tok);
1526 
1527       // Fake up a Declarator to use with ActOnTypeName.
1528       DeclSpec DS(AttrFactory);
1529       DS.SetRangeStart(Tok.getLocation());
1530       DS.SetRangeEnd(Tok.getLastLoc());
1531 
1532       const char *PrevSpec = nullptr;
1533       unsigned DiagID;
1534       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1535                          PrevSpec, DiagID, Type,
1536                          Actions.getASTContext().getPrintingPolicy());
1537 
1538       Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1539                                 DeclaratorContext::TypeName);
1540       TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo);
1541       if (Ty.isInvalid())
1542         break;
1543 
1544       ConsumeAnnotationToken();
1545       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1546                                            Ty.get(), nullptr);
1547       break;
1548     }
1549     [[fallthrough]];
1550 
1551   case tok::annot_decltype:
1552   case tok::kw_char:
1553   case tok::kw_wchar_t:
1554   case tok::kw_char8_t:
1555   case tok::kw_char16_t:
1556   case tok::kw_char32_t:
1557   case tok::kw_bool:
1558   case tok::kw_short:
1559   case tok::kw_int:
1560   case tok::kw_long:
1561   case tok::kw___int64:
1562   case tok::kw___int128:
1563   case tok::kw__ExtInt:
1564   case tok::kw__BitInt:
1565   case tok::kw_signed:
1566   case tok::kw_unsigned:
1567   case tok::kw_half:
1568   case tok::kw_float:
1569   case tok::kw_double:
1570   case tok::kw___bf16:
1571   case tok::kw__Float16:
1572   case tok::kw___float128:
1573   case tok::kw___ibm128:
1574   case tok::kw_void:
1575   case tok::kw_auto:
1576   case tok::kw_typename:
1577   case tok::kw_typeof:
1578   case tok::kw___vector:
1579   case tok::kw__Accum:
1580   case tok::kw__Fract:
1581   case tok::kw__Sat:
1582 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1583 #include "clang/Basic/OpenCLImageTypes.def"
1584   {
1585     if (!getLangOpts().CPlusPlus) {
1586       Diag(Tok, diag::err_expected_expression);
1587       return ExprError();
1588     }
1589 
1590     // Everything henceforth is a postfix-expression.
1591     if (NotPrimaryExpression)
1592       *NotPrimaryExpression = true;
1593 
1594     if (SavedKind == tok::kw_typename) {
1595       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1596       //                     typename-specifier braced-init-list
1597       if (TryAnnotateTypeOrScopeToken())
1598         return ExprError();
1599 
1600       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1601         // We are trying to parse a simple-type-specifier but might not get such
1602         // a token after error recovery.
1603         return ExprError();
1604     }
1605 
1606     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1607     //                     simple-type-specifier braced-init-list
1608     //
1609     DeclSpec DS(AttrFactory);
1610 
1611     ParseCXXSimpleTypeSpecifier(DS);
1612     if (Tok.isNot(tok::l_paren) &&
1613         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1614       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1615                          << DS.getSourceRange());
1616 
1617     if (Tok.is(tok::l_brace))
1618       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1619 
1620     Res = ParseCXXTypeConstructExpression(DS);
1621     break;
1622   }
1623 
1624   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1625     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1626     // (We can end up in this situation after tentative parsing.)
1627     if (TryAnnotateTypeOrScopeToken())
1628       return ExprError();
1629     if (!Tok.is(tok::annot_cxxscope))
1630       return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1631                                  isTypeCast, isVectorLiteral,
1632                                  NotPrimaryExpression);
1633 
1634     Token Next = NextToken();
1635     if (Next.is(tok::annot_template_id)) {
1636       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1637       if (TemplateId->Kind == TNK_Type_template) {
1638         // We have a qualified template-id that we know refers to a
1639         // type, translate it into a type and continue parsing as a
1640         // cast expression.
1641         CXXScopeSpec SS;
1642         ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1643                                        /*ObjectHasErrors=*/false,
1644                                        /*EnteringContext=*/false);
1645         AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1646         return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1647                                    isTypeCast, isVectorLiteral,
1648                                    NotPrimaryExpression);
1649       }
1650     }
1651 
1652     // Parse as an id-expression.
1653     Res = ParseCXXIdExpression(isAddressOfOperand);
1654     break;
1655   }
1656 
1657   case tok::annot_template_id: { // [C++]          template-id
1658     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1659     if (TemplateId->Kind == TNK_Type_template) {
1660       // We have a template-id that we know refers to a type,
1661       // translate it into a type and continue parsing as a cast
1662       // expression.
1663       CXXScopeSpec SS;
1664       AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1665       return ParseCastExpression(ParseKind, isAddressOfOperand,
1666                                  NotCastExpr, isTypeCast, isVectorLiteral,
1667                                  NotPrimaryExpression);
1668     }
1669 
1670     // Fall through to treat the template-id as an id-expression.
1671     [[fallthrough]];
1672   }
1673 
1674   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1675     Res = ParseCXXIdExpression(isAddressOfOperand);
1676     break;
1677 
1678   case tok::coloncolon: {
1679     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1680     // annotates the token, tail recurse.
1681     if (TryAnnotateTypeOrScopeToken())
1682       return ExprError();
1683     if (!Tok.is(tok::coloncolon))
1684       return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1685                                  isVectorLiteral, NotPrimaryExpression);
1686 
1687     // ::new -> [C++] new-expression
1688     // ::delete -> [C++] delete-expression
1689     SourceLocation CCLoc = ConsumeToken();
1690     if (Tok.is(tok::kw_new)) {
1691       if (NotPrimaryExpression)
1692         *NotPrimaryExpression = true;
1693       Res = ParseCXXNewExpression(true, CCLoc);
1694       AllowSuffix = false;
1695       break;
1696     }
1697     if (Tok.is(tok::kw_delete)) {
1698       if (NotPrimaryExpression)
1699         *NotPrimaryExpression = true;
1700       Res = ParseCXXDeleteExpression(true, CCLoc);
1701       AllowSuffix = false;
1702       break;
1703     }
1704 
1705     // This is not a type name or scope specifier, it is an invalid expression.
1706     Diag(CCLoc, diag::err_expected_expression);
1707     return ExprError();
1708   }
1709 
1710   case tok::kw_new: // [C++] new-expression
1711     if (NotPrimaryExpression)
1712       *NotPrimaryExpression = true;
1713     Res = ParseCXXNewExpression(false, Tok.getLocation());
1714     AllowSuffix = false;
1715     break;
1716 
1717   case tok::kw_delete: // [C++] delete-expression
1718     if (NotPrimaryExpression)
1719       *NotPrimaryExpression = true;
1720     Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1721     AllowSuffix = false;
1722     break;
1723 
1724   case tok::kw_requires: // [C++2a] requires-expression
1725     Res = ParseRequiresExpression();
1726     AllowSuffix = false;
1727     break;
1728 
1729   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1730     if (NotPrimaryExpression)
1731       *NotPrimaryExpression = true;
1732     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1733     SourceLocation KeyLoc = ConsumeToken();
1734     BalancedDelimiterTracker T(*this, tok::l_paren);
1735 
1736     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1737       return ExprError();
1738     // C++11 [expr.unary.noexcept]p1:
1739     //   The noexcept operator determines whether the evaluation of its operand,
1740     //   which is an unevaluated operand, can throw an exception.
1741     EnterExpressionEvaluationContext Unevaluated(
1742         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1743     Res = ParseExpression();
1744 
1745     T.consumeClose();
1746 
1747     if (!Res.isInvalid())
1748       Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1749                                       T.getCloseLocation());
1750     AllowSuffix = false;
1751     break;
1752   }
1753 
1754 #define TYPE_TRAIT(N,Spelling,K) \
1755   case tok::kw_##Spelling:
1756 #include "clang/Basic/TokenKinds.def"
1757     Res = ParseTypeTrait();
1758     break;
1759 
1760   case tok::kw___array_rank:
1761   case tok::kw___array_extent:
1762     if (NotPrimaryExpression)
1763       *NotPrimaryExpression = true;
1764     Res = ParseArrayTypeTrait();
1765     break;
1766 
1767   case tok::kw___is_lvalue_expr:
1768   case tok::kw___is_rvalue_expr:
1769     if (NotPrimaryExpression)
1770       *NotPrimaryExpression = true;
1771     Res = ParseExpressionTrait();
1772     break;
1773 
1774   case tok::at: {
1775     if (NotPrimaryExpression)
1776       *NotPrimaryExpression = true;
1777     SourceLocation AtLoc = ConsumeToken();
1778     return ParseObjCAtExpression(AtLoc);
1779   }
1780   case tok::caret:
1781     Res = ParseBlockLiteralExpression();
1782     break;
1783   case tok::code_completion: {
1784     cutOffParsing();
1785     Actions.CodeCompleteExpression(getCurScope(),
1786                                    PreferredType.get(Tok.getLocation()));
1787     return ExprError();
1788   }
1789 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
1790 #include "clang/Basic/TransformTypeTraits.def"
1791     // HACK: libstdc++ uses some of the transform-type-traits as alias
1792     // templates, so we need to work around this.
1793     if (!NextToken().is(tok::l_paren)) {
1794       Tok.setKind(tok::identifier);
1795       Diag(Tok, diag::ext_keyword_as_ident)
1796           << Tok.getIdentifierInfo()->getName() << 0;
1797       goto ParseIdentifier;
1798     }
1799     goto ExpectedExpression;
1800   case tok::l_square:
1801     if (getLangOpts().CPlusPlus11) {
1802       if (getLangOpts().ObjC) {
1803         // C++11 lambda expressions and Objective-C message sends both start with a
1804         // square bracket.  There are three possibilities here:
1805         // we have a valid lambda expression, we have an invalid lambda
1806         // expression, or we have something that doesn't appear to be a lambda.
1807         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1808         Res = TryParseLambdaExpression();
1809         if (!Res.isInvalid() && !Res.get()) {
1810           // We assume Objective-C++ message expressions are not
1811           // primary-expressions.
1812           if (NotPrimaryExpression)
1813             *NotPrimaryExpression = true;
1814           Res = ParseObjCMessageExpression();
1815         }
1816         break;
1817       }
1818       Res = ParseLambdaExpression();
1819       break;
1820     }
1821     if (getLangOpts().ObjC) {
1822       Res = ParseObjCMessageExpression();
1823       break;
1824     }
1825     [[fallthrough]];
1826   default:
1827   ExpectedExpression:
1828     NotCastExpr = true;
1829     return ExprError();
1830   }
1831 
1832   // Check to see whether Res is a function designator only. If it is and we
1833   // are compiling for OpenCL, we need to return an error as this implies
1834   // that the address of the function is being taken, which is illegal in CL.
1835 
1836   if (ParseKind == PrimaryExprOnly)
1837     // This is strictly a primary-expression - no postfix-expr pieces should be
1838     // parsed.
1839     return Res;
1840 
1841   if (!AllowSuffix) {
1842     // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1843     // error already.
1844     if (Res.isInvalid())
1845       return Res;
1846 
1847     switch (Tok.getKind()) {
1848     case tok::l_square:
1849     case tok::l_paren:
1850     case tok::plusplus:
1851     case tok::minusminus:
1852       // "expected ';'" or similar is probably the right diagnostic here. Let
1853       // the caller decide what to do.
1854       if (Tok.isAtStartOfLine())
1855         return Res;
1856 
1857       [[fallthrough]];
1858     case tok::period:
1859     case tok::arrow:
1860       break;
1861 
1862     default:
1863       return Res;
1864     }
1865 
1866     // This was a unary-expression for which a postfix-expression suffix is
1867     // not permitted by the grammar (eg, a sizeof expression or
1868     // new-expression or similar). Diagnose but parse the suffix anyway.
1869     Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1870         << Tok.getKind() << Res.get()->getSourceRange()
1871         << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1872         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1873                                       ")");
1874   }
1875 
1876   // These can be followed by postfix-expr pieces.
1877   PreferredType = SavedType;
1878   Res = ParsePostfixExpressionSuffix(Res);
1879   if (getLangOpts().OpenCL &&
1880       !getActions().getOpenCLOptions().isAvailableOption(
1881           "__cl_clang_function_pointers", getLangOpts()))
1882     if (Expr *PostfixExpr = Res.get()) {
1883       QualType Ty = PostfixExpr->getType();
1884       if (!Ty.isNull() && Ty->isFunctionType()) {
1885         Diag(PostfixExpr->getExprLoc(),
1886              diag::err_opencl_taking_function_address_parser);
1887         return ExprError();
1888       }
1889     }
1890 
1891   return Res;
1892 }
1893 
1894 /// Once the leading part of a postfix-expression is parsed, this
1895 /// method parses any suffixes that apply.
1896 ///
1897 /// \verbatim
1898 ///       postfix-expression: [C99 6.5.2]
1899 ///         primary-expression
1900 ///         postfix-expression '[' expression ']'
1901 ///         postfix-expression '[' braced-init-list ']'
1902 ///         postfix-expression '[' expression-list [opt] ']'  [C++23 12.4.5]
1903 ///         postfix-expression '(' argument-expression-list[opt] ')'
1904 ///         postfix-expression '.' identifier
1905 ///         postfix-expression '->' identifier
1906 ///         postfix-expression '++'
1907 ///         postfix-expression '--'
1908 ///         '(' type-name ')' '{' initializer-list '}'
1909 ///         '(' type-name ')' '{' initializer-list ',' '}'
1910 ///
1911 ///       argument-expression-list: [C99 6.5.2]
1912 ///         argument-expression ...[opt]
1913 ///         argument-expression-list ',' assignment-expression ...[opt]
1914 /// \endverbatim
1915 ExprResult
1916 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1917   // Now that the primary-expression piece of the postfix-expression has been
1918   // parsed, see if there are any postfix-expression pieces here.
1919   SourceLocation Loc;
1920   auto SavedType = PreferredType;
1921   while (true) {
1922     // Each iteration relies on preferred type for the whole expression.
1923     PreferredType = SavedType;
1924     switch (Tok.getKind()) {
1925     case tok::code_completion:
1926       if (InMessageExpression)
1927         return LHS;
1928 
1929       cutOffParsing();
1930       Actions.CodeCompletePostfixExpression(
1931           getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1932       return ExprError();
1933 
1934     case tok::identifier:
1935       // If we see identifier: after an expression, and we're not already in a
1936       // message send, then this is probably a message send with a missing
1937       // opening bracket '['.
1938       if (getLangOpts().ObjC && !InMessageExpression &&
1939           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1940         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1941                                              nullptr, LHS.get());
1942         break;
1943       }
1944       // Fall through; this isn't a message send.
1945       [[fallthrough]];
1946 
1947     default:  // Not a postfix-expression suffix.
1948       return LHS;
1949     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1950       // If we have a array postfix expression that starts on a new line and
1951       // Objective-C is enabled, it is highly likely that the user forgot a
1952       // semicolon after the base expression and that the array postfix-expr is
1953       // actually another message send.  In this case, do some look-ahead to see
1954       // if the contents of the square brackets are obviously not a valid
1955       // expression and recover by pretending there is no suffix.
1956       if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1957           isSimpleObjCMessageExpression())
1958         return LHS;
1959 
1960       // Reject array indices starting with a lambda-expression. '[[' is
1961       // reserved for attributes.
1962       if (CheckProhibitedCXX11Attribute()) {
1963         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1964         return ExprError();
1965       }
1966       BalancedDelimiterTracker T(*this, tok::l_square);
1967       T.consumeOpen();
1968       Loc = T.getOpenLocation();
1969       ExprResult Length, Stride;
1970       SourceLocation ColonLocFirst, ColonLocSecond;
1971       ExprVector ArgExprs;
1972       bool HasError = false;
1973       PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1974 
1975       // We try to parse a list of indexes in all language mode first
1976       // and, in we find 0 or one index, we try to parse an OpenMP/OpenACC array
1977       // section. This allow us to support C++23 multi dimensional subscript and
1978       // OpenMP/OpenACC sections in the same language mode.
1979       if ((!getLangOpts().OpenMP && !AllowOpenACCArraySections) ||
1980           Tok.isNot(tok::colon)) {
1981         if (!getLangOpts().CPlusPlus23) {
1982           ExprResult Idx;
1983           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1984             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1985             Idx = ParseBraceInitializer();
1986           } else {
1987             Idx = ParseExpression(); // May be a comma expression
1988           }
1989           LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1990           Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1991           if (Idx.isInvalid()) {
1992             HasError = true;
1993           } else {
1994             ArgExprs.push_back(Idx.get());
1995           }
1996         } else if (Tok.isNot(tok::r_square)) {
1997           if (ParseExpressionList(ArgExprs)) {
1998             LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1999             HasError = true;
2000           }
2001         }
2002       }
2003 
2004       // Handle OpenACC first, since 'AllowOpenACCArraySections' is only enabled
2005       // when actively parsing a 'var' in a 'var-list' during clause/'cache'
2006       // parsing, so it is the most specific, and best allows us to handle
2007       // OpenACC and OpenMP at the same time.
2008       if (ArgExprs.size() <= 1 && AllowOpenACCArraySections) {
2009         ColonProtectionRAIIObject RAII(*this);
2010         if (Tok.is(tok::colon)) {
2011           // Consume ':'
2012           ColonLocFirst = ConsumeToken();
2013           Length = Actions.CorrectDelayedTyposInExpr(ParseExpression());
2014         }
2015       } else if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) {
2016         ColonProtectionRAIIObject RAII(*this);
2017         if (Tok.is(tok::colon)) {
2018           // Consume ':'
2019           ColonLocFirst = ConsumeToken();
2020           if (Tok.isNot(tok::r_square) &&
2021               (getLangOpts().OpenMP < 50 ||
2022                ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) {
2023             Length = ParseExpression();
2024             Length = Actions.CorrectDelayedTyposInExpr(Length);
2025           }
2026         }
2027         if (getLangOpts().OpenMP >= 50 &&
2028             (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
2029              OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
2030             Tok.is(tok::colon)) {
2031           // Consume ':'
2032           ColonLocSecond = ConsumeToken();
2033           if (Tok.isNot(tok::r_square)) {
2034             Stride = ParseExpression();
2035           }
2036         }
2037       }
2038 
2039       SourceLocation RLoc = Tok.getLocation();
2040       LHS = Actions.CorrectDelayedTyposInExpr(LHS);
2041 
2042       if (!LHS.isInvalid() && !HasError && !Length.isInvalid() &&
2043           !Stride.isInvalid() && Tok.is(tok::r_square)) {
2044         if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
2045           // FIXME: OpenACC hasn't implemented Sema/Array section handling at a
2046           // semantic level yet. For now, just reuse the OpenMP implementation
2047           // as it gets the parsing/type management mostly right, and we can
2048           // replace this call to ActOnOpenACCArraySectionExpr in the future.
2049           // Eventually we'll genericize the OPenMPArraySectionExpr type as
2050           // well.
2051           LHS = Actions.ActOnOMPArraySectionExpr(
2052               LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2053               ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), RLoc);
2054         } else {
2055           LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
2056                                                 ArgExprs, RLoc);
2057         }
2058       } else {
2059         LHS = ExprError();
2060       }
2061 
2062       // Match the ']'.
2063       T.consumeClose();
2064       break;
2065     }
2066 
2067     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
2068     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
2069                                //   '(' argument-expression-list[opt] ')'
2070       tok::TokenKind OpKind = Tok.getKind();
2071       InMessageExpressionRAIIObject InMessage(*this, false);
2072 
2073       Expr *ExecConfig = nullptr;
2074 
2075       BalancedDelimiterTracker PT(*this, tok::l_paren);
2076 
2077       if (OpKind == tok::lesslessless) {
2078         ExprVector ExecConfigExprs;
2079         SourceLocation OpenLoc = ConsumeToken();
2080 
2081         if (ParseSimpleExpressionList(ExecConfigExprs)) {
2082           (void)Actions.CorrectDelayedTyposInExpr(LHS);
2083           LHS = ExprError();
2084         }
2085 
2086         SourceLocation CloseLoc;
2087         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
2088         } else if (LHS.isInvalid()) {
2089           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2090         } else {
2091           // There was an error closing the brackets
2092           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
2093           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
2094           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2095           LHS = ExprError();
2096         }
2097 
2098         if (!LHS.isInvalid()) {
2099           if (ExpectAndConsume(tok::l_paren))
2100             LHS = ExprError();
2101           else
2102             Loc = PrevTokLocation;
2103         }
2104 
2105         if (!LHS.isInvalid()) {
2106           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
2107                                     OpenLoc,
2108                                     ExecConfigExprs,
2109                                     CloseLoc);
2110           if (ECResult.isInvalid())
2111             LHS = ExprError();
2112           else
2113             ExecConfig = ECResult.get();
2114         }
2115       } else {
2116         PT.consumeOpen();
2117         Loc = PT.getOpenLocation();
2118       }
2119 
2120       ExprVector ArgExprs;
2121       auto RunSignatureHelp = [&]() -> QualType {
2122         QualType PreferredType = Actions.ProduceCallSignatureHelp(
2123             LHS.get(), ArgExprs, PT.getOpenLocation());
2124         CalledSignatureHelp = true;
2125         return PreferredType;
2126       };
2127       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2128         if (Tok.isNot(tok::r_paren)) {
2129           if (ParseExpressionList(ArgExprs, [&] {
2130                 PreferredType.enterFunctionArgument(Tok.getLocation(),
2131                                                     RunSignatureHelp);
2132               })) {
2133             (void)Actions.CorrectDelayedTyposInExpr(LHS);
2134             // If we got an error when parsing expression list, we don't call
2135             // the CodeCompleteCall handler inside the parser. So call it here
2136             // to make sure we get overload suggestions even when we are in the
2137             // middle of a parameter.
2138             if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2139               RunSignatureHelp();
2140             LHS = ExprError();
2141           } else if (LHS.isInvalid()) {
2142             for (auto &E : ArgExprs)
2143               Actions.CorrectDelayedTyposInExpr(E);
2144           }
2145         }
2146       }
2147 
2148       // Match the ')'.
2149       if (LHS.isInvalid()) {
2150         SkipUntil(tok::r_paren, StopAtSemi);
2151       } else if (Tok.isNot(tok::r_paren)) {
2152         bool HadDelayedTypo = false;
2153         if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2154           HadDelayedTypo = true;
2155         for (auto &E : ArgExprs)
2156           if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2157             HadDelayedTypo = true;
2158         // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2159         // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2160         // the unmatched l_paren.
2161         if (HadDelayedTypo)
2162           SkipUntil(tok::r_paren, StopAtSemi);
2163         else
2164           PT.consumeClose();
2165         LHS = ExprError();
2166       } else {
2167         Expr *Fn = LHS.get();
2168         SourceLocation RParLoc = Tok.getLocation();
2169         LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2170                                     ExecConfig);
2171         if (LHS.isInvalid()) {
2172           ArgExprs.insert(ArgExprs.begin(), Fn);
2173           LHS =
2174               Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2175         }
2176         PT.consumeClose();
2177       }
2178 
2179       break;
2180     }
2181     case tok::arrow:
2182     case tok::period: {
2183       // postfix-expression: p-e '->' template[opt] id-expression
2184       // postfix-expression: p-e '.' template[opt] id-expression
2185       tok::TokenKind OpKind = Tok.getKind();
2186       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
2187 
2188       CXXScopeSpec SS;
2189       ParsedType ObjectType;
2190       bool MayBePseudoDestructor = false;
2191       Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2192 
2193       PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2194 
2195       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2196         Expr *Base = OrigLHS;
2197         const Type* BaseType = Base->getType().getTypePtrOrNull();
2198         if (BaseType && Tok.is(tok::l_paren) &&
2199             (BaseType->isFunctionType() ||
2200              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2201           Diag(OpLoc, diag::err_function_is_not_record)
2202               << OpKind << Base->getSourceRange()
2203               << FixItHint::CreateRemoval(OpLoc);
2204           return ParsePostfixExpressionSuffix(Base);
2205         }
2206 
2207         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2208                                                    OpKind, ObjectType,
2209                                                    MayBePseudoDestructor);
2210         if (LHS.isInvalid()) {
2211           // Clang will try to perform expression based completion as a
2212           // fallback, which is confusing in case of member references. So we
2213           // stop here without any completions.
2214           if (Tok.is(tok::code_completion)) {
2215             cutOffParsing();
2216             return ExprError();
2217           }
2218           break;
2219         }
2220         ParseOptionalCXXScopeSpecifier(
2221             SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2222             /*EnteringContext=*/false, &MayBePseudoDestructor);
2223         if (SS.isNotEmpty())
2224           ObjectType = nullptr;
2225       }
2226 
2227       if (Tok.is(tok::code_completion)) {
2228         tok::TokenKind CorrectedOpKind =
2229             OpKind == tok::arrow ? tok::period : tok::arrow;
2230         ExprResult CorrectedLHS(/*Invalid=*/true);
2231         if (getLangOpts().CPlusPlus && OrigLHS) {
2232           // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2233           // hack.
2234           Sema::TentativeAnalysisScope Trap(Actions);
2235           CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2236               getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2237               MayBePseudoDestructor);
2238         }
2239 
2240         Expr *Base = LHS.get();
2241         Expr *CorrectedBase = CorrectedLHS.get();
2242         if (!CorrectedBase && !getLangOpts().CPlusPlus)
2243           CorrectedBase = Base;
2244 
2245         // Code completion for a member access expression.
2246         cutOffParsing();
2247         Actions.CodeCompleteMemberReferenceExpr(
2248             getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2249             Base && ExprStatementTokLoc == Base->getBeginLoc(),
2250             PreferredType.get(Tok.getLocation()));
2251 
2252         return ExprError();
2253       }
2254 
2255       if (MayBePseudoDestructor && !LHS.isInvalid()) {
2256         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2257                                        ObjectType);
2258         break;
2259       }
2260 
2261       // Either the action has told us that this cannot be a
2262       // pseudo-destructor expression (based on the type of base
2263       // expression), or we didn't see a '~' in the right place. We
2264       // can still parse a destructor name here, but in that case it
2265       // names a real destructor.
2266       // Allow explicit constructor calls in Microsoft mode.
2267       // FIXME: Add support for explicit call of template constructor.
2268       SourceLocation TemplateKWLoc;
2269       UnqualifiedId Name;
2270       if (getLangOpts().ObjC && OpKind == tok::period &&
2271           Tok.is(tok::kw_class)) {
2272         // Objective-C++:
2273         //   After a '.' in a member access expression, treat the keyword
2274         //   'class' as if it were an identifier.
2275         //
2276         // This hack allows property access to the 'class' method because it is
2277         // such a common method name. For other C++ keywords that are
2278         // Objective-C method names, one must use the message send syntax.
2279         IdentifierInfo *Id = Tok.getIdentifierInfo();
2280         SourceLocation Loc = ConsumeToken();
2281         Name.setIdentifier(Id, Loc);
2282       } else if (ParseUnqualifiedId(
2283                      SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2284                      /*EnteringContext=*/false,
2285                      /*AllowDestructorName=*/true,
2286                      /*AllowConstructorName=*/
2287                      getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2288                      /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2289         (void)Actions.CorrectDelayedTyposInExpr(LHS);
2290         LHS = ExprError();
2291       }
2292 
2293       if (!LHS.isInvalid())
2294         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2295                                             OpKind, SS, TemplateKWLoc, Name,
2296                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2297                                                    : nullptr);
2298       if (!LHS.isInvalid()) {
2299         if (Tok.is(tok::less))
2300           checkPotentialAngleBracket(LHS);
2301       } else if (OrigLHS && Name.isValid()) {
2302         // Preserve the LHS if the RHS is an invalid member.
2303         LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2304                                          Name.getEndLoc(), {OrigLHS});
2305       }
2306       break;
2307     }
2308     case tok::plusplus:    // postfix-expression: postfix-expression '++'
2309     case tok::minusminus:  // postfix-expression: postfix-expression '--'
2310       if (!LHS.isInvalid()) {
2311         Expr *Arg = LHS.get();
2312         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2313                                           Tok.getKind(), Arg);
2314         if (LHS.isInvalid())
2315           LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2316                                            Tok.getLocation(), Arg);
2317       }
2318       ConsumeToken();
2319       break;
2320     }
2321   }
2322 }
2323 
2324 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2325 /// vec_step and we are at the start of an expression or a parenthesized
2326 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2327 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2328 ///
2329 /// \verbatim
2330 ///       unary-expression:  [C99 6.5.3]
2331 ///         'sizeof' unary-expression
2332 ///         'sizeof' '(' type-name ')'
2333 /// [Clang] '__datasizeof' unary-expression
2334 /// [Clang] '__datasizeof' '(' type-name ')'
2335 /// [GNU]   '__alignof' unary-expression
2336 /// [GNU]   '__alignof' '(' type-name ')'
2337 /// [C11]   '_Alignof' '(' type-name ')'
2338 /// [C++0x] 'alignof' '(' type-id ')'
2339 ///
2340 /// [GNU]   typeof-specifier:
2341 ///           typeof ( expressions )
2342 ///           typeof ( type-name )
2343 /// [GNU/C++] typeof unary-expression
2344 /// [C23]   typeof-specifier:
2345 ///           typeof '(' typeof-specifier-argument ')'
2346 ///           typeof_unqual '(' typeof-specifier-argument ')'
2347 ///
2348 ///         typeof-specifier-argument:
2349 ///           expression
2350 ///           type-name
2351 ///
2352 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2353 ///           vec_step ( expressions )
2354 ///           vec_step ( type-name )
2355 /// \endverbatim
2356 ExprResult
2357 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2358                                            bool &isCastExpr,
2359                                            ParsedType &CastTy,
2360                                            SourceRange &CastRange) {
2361 
2362   assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof,
2363                        tok::kw___datasizeof, tok::kw___alignof, tok::kw_alignof,
2364                        tok::kw__Alignof, tok::kw_vec_step,
2365                        tok::kw___builtin_omp_required_simd_align,
2366                        tok::kw___builtin_vectorelements) &&
2367          "Not a typeof/sizeof/alignof/vec_step expression!");
2368 
2369   ExprResult Operand;
2370 
2371   // If the operand doesn't start with an '(', it must be an expression.
2372   if (Tok.isNot(tok::l_paren)) {
2373     // If construct allows a form without parenthesis, user may forget to put
2374     // pathenthesis around type name.
2375     if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof,
2376                       tok::kw_alignof, tok::kw__Alignof)) {
2377       if (isTypeIdUnambiguously()) {
2378         DeclSpec DS(AttrFactory);
2379         ParseSpecifierQualifierList(DS);
2380         Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2381                                   DeclaratorContext::TypeName);
2382         ParseDeclarator(DeclaratorInfo);
2383 
2384         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2385         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2386         if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2387           Diag(OpTok.getLocation(),
2388                diag::err_expected_parentheses_around_typename)
2389               << OpTok.getName();
2390         } else {
2391           Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2392               << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2393               << FixItHint::CreateInsertion(RParenLoc, ")");
2394         }
2395         isCastExpr = true;
2396         return ExprEmpty();
2397       }
2398     }
2399 
2400     isCastExpr = false;
2401     if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
2402         !getLangOpts().CPlusPlus) {
2403       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2404                                           << tok::l_paren;
2405       return ExprError();
2406     }
2407 
2408     Operand = ParseCastExpression(UnaryExprOnly);
2409   } else {
2410     // If it starts with a '(', we know that it is either a parenthesized
2411     // type-name, or it is a unary-expression that starts with a compound
2412     // literal, or starts with a primary-expression that is a parenthesized
2413     // expression.
2414     ParenParseOption ExprType = CastExpr;
2415     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2416 
2417     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2418                                    false, CastTy, RParenLoc);
2419     CastRange = SourceRange(LParenLoc, RParenLoc);
2420 
2421     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2422     // a type.
2423     if (ExprType == CastExpr) {
2424       isCastExpr = true;
2425       return ExprEmpty();
2426     }
2427 
2428     if (getLangOpts().CPlusPlus ||
2429         !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) {
2430       // GNU typeof in C requires the expression to be parenthesized. Not so for
2431       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2432       // the start of a unary-expression, but doesn't include any postfix
2433       // pieces. Parse these now if present.
2434       if (!Operand.isInvalid())
2435         Operand = ParsePostfixExpressionSuffix(Operand.get());
2436     }
2437   }
2438 
2439   // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2440   isCastExpr = false;
2441   return Operand;
2442 }
2443 
2444 /// Parse a __builtin_sycl_unique_stable_name expression.  Accepts a type-id as
2445 /// a parameter.
2446 ExprResult Parser::ParseSYCLUniqueStableNameExpression() {
2447   assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) &&
2448          "Not __builtin_sycl_unique_stable_name");
2449 
2450   SourceLocation OpLoc = ConsumeToken();
2451   BalancedDelimiterTracker T(*this, tok::l_paren);
2452 
2453   // __builtin_sycl_unique_stable_name expressions are always parenthesized.
2454   if (T.expectAndConsume(diag::err_expected_lparen_after,
2455                          "__builtin_sycl_unique_stable_name"))
2456     return ExprError();
2457 
2458   TypeResult Ty = ParseTypeName();
2459 
2460   if (Ty.isInvalid()) {
2461     T.skipToEnd();
2462     return ExprError();
2463   }
2464 
2465   if (T.consumeClose())
2466     return ExprError();
2467 
2468   return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(),
2469                                                T.getCloseLocation(), Ty.get());
2470 }
2471 
2472 /// Parse a sizeof or alignof expression.
2473 ///
2474 /// \verbatim
2475 ///       unary-expression:  [C99 6.5.3]
2476 ///         'sizeof' unary-expression
2477 ///         'sizeof' '(' type-name ')'
2478 /// [C++11] 'sizeof' '...' '(' identifier ')'
2479 /// [Clang] '__datasizeof' unary-expression
2480 /// [Clang] '__datasizeof' '(' type-name ')'
2481 /// [GNU]   '__alignof' unary-expression
2482 /// [GNU]   '__alignof' '(' type-name ')'
2483 /// [C11]   '_Alignof' '(' type-name ')'
2484 /// [C++11] 'alignof' '(' type-id ')'
2485 /// \endverbatim
2486 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2487   assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof,
2488                      tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
2489                      tok::kw___builtin_omp_required_simd_align,
2490                      tok::kw___builtin_vectorelements) &&
2491          "Not a sizeof/alignof/vec_step expression!");
2492   Token OpTok = Tok;
2493   ConsumeToken();
2494 
2495   // [C++11] 'sizeof' '...' '(' identifier ')'
2496   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2497     SourceLocation EllipsisLoc = ConsumeToken();
2498     SourceLocation LParenLoc, RParenLoc;
2499     IdentifierInfo *Name = nullptr;
2500     SourceLocation NameLoc;
2501     if (Tok.is(tok::l_paren)) {
2502       BalancedDelimiterTracker T(*this, tok::l_paren);
2503       T.consumeOpen();
2504       LParenLoc = T.getOpenLocation();
2505       if (Tok.is(tok::identifier)) {
2506         Name = Tok.getIdentifierInfo();
2507         NameLoc = ConsumeToken();
2508         T.consumeClose();
2509         RParenLoc = T.getCloseLocation();
2510         if (RParenLoc.isInvalid())
2511           RParenLoc = PP.getLocForEndOfToken(NameLoc);
2512       } else {
2513         Diag(Tok, diag::err_expected_parameter_pack);
2514         SkipUntil(tok::r_paren, StopAtSemi);
2515       }
2516     } else if (Tok.is(tok::identifier)) {
2517       Name = Tok.getIdentifierInfo();
2518       NameLoc = ConsumeToken();
2519       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2520       RParenLoc = PP.getLocForEndOfToken(NameLoc);
2521       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2522         << Name
2523         << FixItHint::CreateInsertion(LParenLoc, "(")
2524         << FixItHint::CreateInsertion(RParenLoc, ")");
2525     } else {
2526       Diag(Tok, diag::err_sizeof_parameter_pack);
2527     }
2528 
2529     if (!Name)
2530       return ExprError();
2531 
2532     EnterExpressionEvaluationContext Unevaluated(
2533         Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2534         Sema::ReuseLambdaContextDecl);
2535 
2536     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2537                                                 OpTok.getLocation(),
2538                                                 *Name, NameLoc,
2539                                                 RParenLoc);
2540   }
2541 
2542   if (getLangOpts().CPlusPlus &&
2543       OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2544     Diag(OpTok, diag::warn_cxx98_compat_alignof);
2545   else if (getLangOpts().C23 && OpTok.is(tok::kw_alignof))
2546     Diag(OpTok, diag::warn_c23_compat_keyword) << OpTok.getName();
2547 
2548   EnterExpressionEvaluationContext Unevaluated(
2549       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2550       Sema::ReuseLambdaContextDecl);
2551 
2552   bool isCastExpr;
2553   ParsedType CastTy;
2554   SourceRange CastRange;
2555   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2556                                                           isCastExpr,
2557                                                           CastTy,
2558                                                           CastRange);
2559 
2560   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2561   switch (OpTok.getKind()) {
2562   case tok::kw_alignof:
2563   case tok::kw__Alignof:
2564     ExprKind = UETT_AlignOf;
2565     break;
2566   case tok::kw___alignof:
2567     ExprKind = UETT_PreferredAlignOf;
2568     break;
2569   case tok::kw_vec_step:
2570     ExprKind = UETT_VecStep;
2571     break;
2572   case tok::kw___builtin_omp_required_simd_align:
2573     ExprKind = UETT_OpenMPRequiredSimdAlign;
2574     break;
2575   case tok::kw___datasizeof:
2576     ExprKind = UETT_DataSizeOf;
2577     break;
2578   case tok::kw___builtin_vectorelements:
2579     ExprKind = UETT_VectorElements;
2580     break;
2581   default:
2582     break;
2583   }
2584 
2585   if (isCastExpr)
2586     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2587                                                  ExprKind,
2588                                                  /*IsType=*/true,
2589                                                  CastTy.getAsOpaquePtr(),
2590                                                  CastRange);
2591 
2592   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2593     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2594 
2595   // If we get here, the operand to the sizeof/alignof was an expression.
2596   if (!Operand.isInvalid())
2597     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2598                                                     ExprKind,
2599                                                     /*IsType=*/false,
2600                                                     Operand.get(),
2601                                                     CastRange);
2602   return Operand;
2603 }
2604 
2605 /// ParseBuiltinPrimaryExpression
2606 ///
2607 /// \verbatim
2608 ///       primary-expression: [C99 6.5.1]
2609 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2610 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2611 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2612 ///                                     assign-expr ')'
2613 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2614 /// [GNU]   '__builtin_FILE' '(' ')'
2615 /// [CLANG] '__builtin_FILE_NAME' '(' ')'
2616 /// [GNU]   '__builtin_FUNCTION' '(' ')'
2617 /// [MS]    '__builtin_FUNCSIG' '(' ')'
2618 /// [GNU]   '__builtin_LINE' '(' ')'
2619 /// [CLANG] '__builtin_COLUMN' '(' ')'
2620 /// [GNU]   '__builtin_source_location' '(' ')'
2621 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
2622 ///
2623 /// [GNU] offsetof-member-designator:
2624 /// [GNU]   identifier
2625 /// [GNU]   offsetof-member-designator '.' identifier
2626 /// [GNU]   offsetof-member-designator '[' expression ']'
2627 /// \endverbatim
2628 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2629   ExprResult Res;
2630   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2631 
2632   tok::TokenKind T = Tok.getKind();
2633   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
2634 
2635   // All of these start with an open paren.
2636   if (Tok.isNot(tok::l_paren))
2637     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2638                                                          << tok::l_paren);
2639 
2640   BalancedDelimiterTracker PT(*this, tok::l_paren);
2641   PT.consumeOpen();
2642 
2643   // TODO: Build AST.
2644 
2645   switch (T) {
2646   default: llvm_unreachable("Not a builtin primary expression!");
2647   case tok::kw___builtin_va_arg: {
2648     ExprResult Expr(ParseAssignmentExpression());
2649 
2650     if (ExpectAndConsume(tok::comma)) {
2651       SkipUntil(tok::r_paren, StopAtSemi);
2652       Expr = ExprError();
2653     }
2654 
2655     TypeResult Ty = ParseTypeName();
2656 
2657     if (Tok.isNot(tok::r_paren)) {
2658       Diag(Tok, diag::err_expected) << tok::r_paren;
2659       Expr = ExprError();
2660     }
2661 
2662     if (Expr.isInvalid() || Ty.isInvalid())
2663       Res = ExprError();
2664     else
2665       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2666     break;
2667   }
2668   case tok::kw___builtin_offsetof: {
2669     SourceLocation TypeLoc = Tok.getLocation();
2670     auto OOK = Sema::OffsetOfKind::OOK_Builtin;
2671     if (Tok.getLocation().isMacroID()) {
2672       StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
2673           Tok.getLocation(), PP.getSourceManager(), getLangOpts());
2674       if (MacroName == "offsetof")
2675         OOK = Sema::OffsetOfKind::OOK_Macro;
2676     }
2677     TypeResult Ty;
2678     {
2679       OffsetOfStateRAIIObject InOffsetof(*this, OOK);
2680       Ty = ParseTypeName();
2681       if (Ty.isInvalid()) {
2682         SkipUntil(tok::r_paren, StopAtSemi);
2683         return ExprError();
2684       }
2685     }
2686 
2687     if (ExpectAndConsume(tok::comma)) {
2688       SkipUntil(tok::r_paren, StopAtSemi);
2689       return ExprError();
2690     }
2691 
2692     // We must have at least one identifier here.
2693     if (Tok.isNot(tok::identifier)) {
2694       Diag(Tok, diag::err_expected) << tok::identifier;
2695       SkipUntil(tok::r_paren, StopAtSemi);
2696       return ExprError();
2697     }
2698 
2699     // Keep track of the various subcomponents we see.
2700     SmallVector<Sema::OffsetOfComponent, 4> Comps;
2701 
2702     Comps.push_back(Sema::OffsetOfComponent());
2703     Comps.back().isBrackets = false;
2704     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2705     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2706 
2707     // FIXME: This loop leaks the index expressions on error.
2708     while (true) {
2709       if (Tok.is(tok::period)) {
2710         // offsetof-member-designator: offsetof-member-designator '.' identifier
2711         Comps.push_back(Sema::OffsetOfComponent());
2712         Comps.back().isBrackets = false;
2713         Comps.back().LocStart = ConsumeToken();
2714 
2715         if (Tok.isNot(tok::identifier)) {
2716           Diag(Tok, diag::err_expected) << tok::identifier;
2717           SkipUntil(tok::r_paren, StopAtSemi);
2718           return ExprError();
2719         }
2720         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2721         Comps.back().LocEnd = ConsumeToken();
2722       } else if (Tok.is(tok::l_square)) {
2723         if (CheckProhibitedCXX11Attribute())
2724           return ExprError();
2725 
2726         // offsetof-member-designator: offsetof-member-design '[' expression ']'
2727         Comps.push_back(Sema::OffsetOfComponent());
2728         Comps.back().isBrackets = true;
2729         BalancedDelimiterTracker ST(*this, tok::l_square);
2730         ST.consumeOpen();
2731         Comps.back().LocStart = ST.getOpenLocation();
2732         Res = ParseExpression();
2733         if (Res.isInvalid()) {
2734           SkipUntil(tok::r_paren, StopAtSemi);
2735           return Res;
2736         }
2737         Comps.back().U.E = Res.get();
2738 
2739         ST.consumeClose();
2740         Comps.back().LocEnd = ST.getCloseLocation();
2741       } else {
2742         if (Tok.isNot(tok::r_paren)) {
2743           PT.consumeClose();
2744           Res = ExprError();
2745         } else if (Ty.isInvalid()) {
2746           Res = ExprError();
2747         } else {
2748           PT.consumeClose();
2749           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2750                                              Ty.get(), Comps,
2751                                              PT.getCloseLocation());
2752         }
2753         break;
2754       }
2755     }
2756     break;
2757   }
2758   case tok::kw___builtin_choose_expr: {
2759     ExprResult Cond(ParseAssignmentExpression());
2760     if (Cond.isInvalid()) {
2761       SkipUntil(tok::r_paren, StopAtSemi);
2762       return Cond;
2763     }
2764     if (ExpectAndConsume(tok::comma)) {
2765       SkipUntil(tok::r_paren, StopAtSemi);
2766       return ExprError();
2767     }
2768 
2769     ExprResult Expr1(ParseAssignmentExpression());
2770     if (Expr1.isInvalid()) {
2771       SkipUntil(tok::r_paren, StopAtSemi);
2772       return Expr1;
2773     }
2774     if (ExpectAndConsume(tok::comma)) {
2775       SkipUntil(tok::r_paren, StopAtSemi);
2776       return ExprError();
2777     }
2778 
2779     ExprResult Expr2(ParseAssignmentExpression());
2780     if (Expr2.isInvalid()) {
2781       SkipUntil(tok::r_paren, StopAtSemi);
2782       return Expr2;
2783     }
2784     if (Tok.isNot(tok::r_paren)) {
2785       Diag(Tok, diag::err_expected) << tok::r_paren;
2786       return ExprError();
2787     }
2788     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2789                                   Expr2.get(), ConsumeParen());
2790     break;
2791   }
2792   case tok::kw___builtin_astype: {
2793     // The first argument is an expression to be converted, followed by a comma.
2794     ExprResult Expr(ParseAssignmentExpression());
2795     if (Expr.isInvalid()) {
2796       SkipUntil(tok::r_paren, StopAtSemi);
2797       return ExprError();
2798     }
2799 
2800     if (ExpectAndConsume(tok::comma)) {
2801       SkipUntil(tok::r_paren, StopAtSemi);
2802       return ExprError();
2803     }
2804 
2805     // Second argument is the type to bitcast to.
2806     TypeResult DestTy = ParseTypeName();
2807     if (DestTy.isInvalid())
2808       return ExprError();
2809 
2810     // Attempt to consume the r-paren.
2811     if (Tok.isNot(tok::r_paren)) {
2812       Diag(Tok, diag::err_expected) << tok::r_paren;
2813       SkipUntil(tok::r_paren, StopAtSemi);
2814       return ExprError();
2815     }
2816 
2817     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2818                                   ConsumeParen());
2819     break;
2820   }
2821   case tok::kw___builtin_convertvector: {
2822     // The first argument is an expression to be converted, followed by a comma.
2823     ExprResult Expr(ParseAssignmentExpression());
2824     if (Expr.isInvalid()) {
2825       SkipUntil(tok::r_paren, StopAtSemi);
2826       return ExprError();
2827     }
2828 
2829     if (ExpectAndConsume(tok::comma)) {
2830       SkipUntil(tok::r_paren, StopAtSemi);
2831       return ExprError();
2832     }
2833 
2834     // Second argument is the type to bitcast to.
2835     TypeResult DestTy = ParseTypeName();
2836     if (DestTy.isInvalid())
2837       return ExprError();
2838 
2839     // Attempt to consume the r-paren.
2840     if (Tok.isNot(tok::r_paren)) {
2841       Diag(Tok, diag::err_expected) << tok::r_paren;
2842       SkipUntil(tok::r_paren, StopAtSemi);
2843       return ExprError();
2844     }
2845 
2846     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2847                                          ConsumeParen());
2848     break;
2849   }
2850   case tok::kw___builtin_COLUMN:
2851   case tok::kw___builtin_FILE:
2852   case tok::kw___builtin_FILE_NAME:
2853   case tok::kw___builtin_FUNCTION:
2854   case tok::kw___builtin_FUNCSIG:
2855   case tok::kw___builtin_LINE:
2856   case tok::kw___builtin_source_location: {
2857     // Attempt to consume the r-paren.
2858     if (Tok.isNot(tok::r_paren)) {
2859       Diag(Tok, diag::err_expected) << tok::r_paren;
2860       SkipUntil(tok::r_paren, StopAtSemi);
2861       return ExprError();
2862     }
2863     SourceLocIdentKind Kind = [&] {
2864       switch (T) {
2865       case tok::kw___builtin_FILE:
2866         return SourceLocIdentKind::File;
2867       case tok::kw___builtin_FILE_NAME:
2868         return SourceLocIdentKind::FileName;
2869       case tok::kw___builtin_FUNCTION:
2870         return SourceLocIdentKind::Function;
2871       case tok::kw___builtin_FUNCSIG:
2872         return SourceLocIdentKind::FuncSig;
2873       case tok::kw___builtin_LINE:
2874         return SourceLocIdentKind::Line;
2875       case tok::kw___builtin_COLUMN:
2876         return SourceLocIdentKind::Column;
2877       case tok::kw___builtin_source_location:
2878         return SourceLocIdentKind::SourceLocStruct;
2879       default:
2880         llvm_unreachable("invalid keyword");
2881       }
2882     }();
2883     Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2884     break;
2885   }
2886   }
2887 
2888   if (Res.isInvalid())
2889     return ExprError();
2890 
2891   // These can be followed by postfix-expr pieces because they are
2892   // primary-expressions.
2893   return ParsePostfixExpressionSuffix(Res.get());
2894 }
2895 
2896 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2897   assert(Tok.is(tok::l_square) && "Expected open bracket");
2898   bool ErrorFound = true;
2899   TentativeParsingAction TPA(*this);
2900   do {
2901     if (Tok.isNot(tok::l_square))
2902       break;
2903     // Consume '['
2904     ConsumeBracket();
2905     // Skip inner expression.
2906     while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2907                       StopAtSemi | StopBeforeMatch))
2908       ;
2909     if (Tok.isNot(tok::r_square))
2910       break;
2911     // Consume ']'
2912     ConsumeBracket();
2913     // Found ')' - done.
2914     if (Tok.is(tok::r_paren)) {
2915       ErrorFound = false;
2916       break;
2917     }
2918   } while (Tok.isNot(tok::annot_pragma_openmp_end));
2919   TPA.Revert();
2920   return !ErrorFound;
2921 }
2922 
2923 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2924 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2925 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2926 /// not the parsed cast-expression.
2927 ///
2928 /// \verbatim
2929 ///       primary-expression: [C99 6.5.1]
2930 ///         '(' expression ')'
2931 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2932 ///       postfix-expression: [C99 6.5.2]
2933 ///         '(' type-name ')' '{' initializer-list '}'
2934 ///         '(' type-name ')' '{' initializer-list ',' '}'
2935 ///       cast-expression: [C99 6.5.4]
2936 ///         '(' type-name ')' cast-expression
2937 /// [ARC]   bridged-cast-expression
2938 /// [ARC] bridged-cast-expression:
2939 ///         (__bridge type-name) cast-expression
2940 ///         (__bridge_transfer type-name) cast-expression
2941 ///         (__bridge_retained type-name) cast-expression
2942 ///       fold-expression: [C++1z]
2943 ///         '(' cast-expression fold-operator '...' ')'
2944 ///         '(' '...' fold-operator cast-expression ')'
2945 ///         '(' cast-expression fold-operator '...'
2946 ///                 fold-operator cast-expression ')'
2947 /// [OPENMP] Array shaping operation
2948 ///       '(' '[' expression ']' { '[' expression ']' } cast-expression
2949 /// \endverbatim
2950 ExprResult
2951 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2952                              bool isTypeCast, ParsedType &CastTy,
2953                              SourceLocation &RParenLoc) {
2954   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2955   ColonProtectionRAIIObject ColonProtection(*this, false);
2956   BalancedDelimiterTracker T(*this, tok::l_paren);
2957   if (T.consumeOpen())
2958     return ExprError();
2959   SourceLocation OpenLoc = T.getOpenLocation();
2960 
2961   PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2962 
2963   ExprResult Result(true);
2964   bool isAmbiguousTypeId;
2965   CastTy = nullptr;
2966 
2967   if (Tok.is(tok::code_completion)) {
2968     cutOffParsing();
2969     Actions.CodeCompleteExpression(
2970         getCurScope(), PreferredType.get(Tok.getLocation()),
2971         /*IsParenthesized=*/ExprType >= CompoundLiteral);
2972     return ExprError();
2973   }
2974 
2975   // Diagnose use of bridge casts in non-arc mode.
2976   bool BridgeCast = (getLangOpts().ObjC &&
2977                      Tok.isOneOf(tok::kw___bridge,
2978                                  tok::kw___bridge_transfer,
2979                                  tok::kw___bridge_retained,
2980                                  tok::kw___bridge_retain));
2981   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2982     if (!TryConsumeToken(tok::kw___bridge)) {
2983       StringRef BridgeCastName = Tok.getName();
2984       SourceLocation BridgeKeywordLoc = ConsumeToken();
2985       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2986         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2987           << BridgeCastName
2988           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2989     }
2990     BridgeCast = false;
2991   }
2992 
2993   // None of these cases should fall through with an invalid Result
2994   // unless they've already reported an error.
2995   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2996     Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro
2997                                   : diag::ext_gnu_statement_expr);
2998 
2999     checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
3000 
3001     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
3002       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
3003     } else {
3004       // Find the nearest non-record decl context. Variables declared in a
3005       // statement expression behave as if they were declared in the enclosing
3006       // function, block, or other code construct.
3007       DeclContext *CodeDC = Actions.CurContext;
3008       while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
3009         CodeDC = CodeDC->getParent();
3010         assert(CodeDC && !CodeDC->isFileContext() &&
3011                "statement expr not in code context");
3012       }
3013       Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
3014 
3015       Actions.ActOnStartStmtExpr();
3016 
3017       StmtResult Stmt(ParseCompoundStatement(true));
3018       ExprType = CompoundStmt;
3019 
3020       // If the substmt parsed correctly, build the AST node.
3021       if (!Stmt.isInvalid()) {
3022         Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
3023                                        Tok.getLocation());
3024       } else {
3025         Actions.ActOnStmtExprError();
3026       }
3027     }
3028   } else if (ExprType >= CompoundLiteral && BridgeCast) {
3029     tok::TokenKind tokenKind = Tok.getKind();
3030     SourceLocation BridgeKeywordLoc = ConsumeToken();
3031 
3032     // Parse an Objective-C ARC ownership cast expression.
3033     ObjCBridgeCastKind Kind;
3034     if (tokenKind == tok::kw___bridge)
3035       Kind = OBC_Bridge;
3036     else if (tokenKind == tok::kw___bridge_transfer)
3037       Kind = OBC_BridgeTransfer;
3038     else if (tokenKind == tok::kw___bridge_retained)
3039       Kind = OBC_BridgeRetained;
3040     else {
3041       // As a hopefully temporary workaround, allow __bridge_retain as
3042       // a synonym for __bridge_retained, but only in system headers.
3043       assert(tokenKind == tok::kw___bridge_retain);
3044       Kind = OBC_BridgeRetained;
3045       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
3046         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
3047           << FixItHint::CreateReplacement(BridgeKeywordLoc,
3048                                           "__bridge_retained");
3049     }
3050 
3051     TypeResult Ty = ParseTypeName();
3052     T.consumeClose();
3053     ColonProtection.restore();
3054     RParenLoc = T.getCloseLocation();
3055 
3056     PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
3057     ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
3058 
3059     if (Ty.isInvalid() || SubExpr.isInvalid())
3060       return ExprError();
3061 
3062     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
3063                                         BridgeKeywordLoc, Ty.get(),
3064                                         RParenLoc, SubExpr.get());
3065   } else if (ExprType >= CompoundLiteral &&
3066              isTypeIdInParens(isAmbiguousTypeId)) {
3067 
3068     // Otherwise, this is a compound literal expression or cast expression.
3069 
3070     // In C++, if the type-id is ambiguous we disambiguate based on context.
3071     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
3072     // in which case we should treat it as type-id.
3073     // if stopIfCastExpr is false, we need to determine the context past the
3074     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
3075     if (isAmbiguousTypeId && !stopIfCastExpr) {
3076       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
3077                                                         ColonProtection);
3078       RParenLoc = T.getCloseLocation();
3079       return res;
3080     }
3081 
3082     // Parse the type declarator.
3083     DeclSpec DS(AttrFactory);
3084     ParseSpecifierQualifierList(DS);
3085     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3086                               DeclaratorContext::TypeName);
3087     ParseDeclarator(DeclaratorInfo);
3088 
3089     // If our type is followed by an identifier and either ':' or ']', then
3090     // this is probably an Objective-C message send where the leading '[' is
3091     // missing. Recover as if that were the case.
3092     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
3093         !InMessageExpression && getLangOpts().ObjC &&
3094         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
3095       TypeResult Ty;
3096       {
3097         InMessageExpressionRAIIObject InMessage(*this, false);
3098         Ty = Actions.ActOnTypeName(DeclaratorInfo);
3099       }
3100       Result = ParseObjCMessageExpressionBody(SourceLocation(),
3101                                               SourceLocation(),
3102                                               Ty.get(), nullptr);
3103     } else {
3104       // Match the ')'.
3105       T.consumeClose();
3106       ColonProtection.restore();
3107       RParenLoc = T.getCloseLocation();
3108       if (Tok.is(tok::l_brace)) {
3109         ExprType = CompoundLiteral;
3110         TypeResult Ty;
3111         {
3112           InMessageExpressionRAIIObject InMessage(*this, false);
3113           Ty = Actions.ActOnTypeName(DeclaratorInfo);
3114         }
3115         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
3116       }
3117 
3118       if (Tok.is(tok::l_paren)) {
3119         // This could be OpenCL vector Literals
3120         if (getLangOpts().OpenCL)
3121         {
3122           TypeResult Ty;
3123           {
3124             InMessageExpressionRAIIObject InMessage(*this, false);
3125             Ty = Actions.ActOnTypeName(DeclaratorInfo);
3126           }
3127           if(Ty.isInvalid())
3128           {
3129              return ExprError();
3130           }
3131           QualType QT = Ty.get().get().getCanonicalType();
3132           if (QT->isVectorType())
3133           {
3134             // We parsed '(' vector-type-name ')' followed by '('
3135 
3136             // Parse the cast-expression that follows it next.
3137             // isVectorLiteral = true will make sure we don't parse any
3138             // Postfix expression yet
3139             Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3140                                          /*isAddressOfOperand=*/false,
3141                                          /*isTypeCast=*/IsTypeCast,
3142                                          /*isVectorLiteral=*/true);
3143 
3144             if (!Result.isInvalid()) {
3145               Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3146                                              DeclaratorInfo, CastTy,
3147                                              RParenLoc, Result.get());
3148             }
3149 
3150             // After we performed the cast we can check for postfix-expr pieces.
3151             if (!Result.isInvalid()) {
3152               Result = ParsePostfixExpressionSuffix(Result);
3153             }
3154 
3155             return Result;
3156           }
3157         }
3158       }
3159 
3160       if (ExprType == CastExpr) {
3161         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
3162 
3163         if (DeclaratorInfo.isInvalidType())
3164           return ExprError();
3165 
3166         // Note that this doesn't parse the subsequent cast-expression, it just
3167         // returns the parsed type to the callee.
3168         if (stopIfCastExpr) {
3169           TypeResult Ty;
3170           {
3171             InMessageExpressionRAIIObject InMessage(*this, false);
3172             Ty = Actions.ActOnTypeName(DeclaratorInfo);
3173           }
3174           CastTy = Ty.get();
3175           return ExprResult();
3176         }
3177 
3178         // Reject the cast of super idiom in ObjC.
3179         if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
3180             Tok.getIdentifierInfo() == Ident_super &&
3181             getCurScope()->isInObjcMethodScope() &&
3182             GetLookAheadToken(1).isNot(tok::period)) {
3183           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
3184             << SourceRange(OpenLoc, RParenLoc);
3185           return ExprError();
3186         }
3187 
3188         PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3189         // Parse the cast-expression that follows it next.
3190         // TODO: For cast expression with CastTy.
3191         Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3192                                      /*isAddressOfOperand=*/false,
3193                                      /*isTypeCast=*/IsTypeCast);
3194         if (!Result.isInvalid()) {
3195           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3196                                          DeclaratorInfo, CastTy,
3197                                          RParenLoc, Result.get());
3198         }
3199         return Result;
3200       }
3201 
3202       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3203       return ExprError();
3204     }
3205   } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3206              isFoldOperator(NextToken().getKind())) {
3207     ExprType = FoldExpr;
3208     return ParseFoldExpression(ExprResult(), T);
3209   } else if (isTypeCast) {
3210     // Parse the expression-list.
3211     InMessageExpressionRAIIObject InMessage(*this, false);
3212     ExprVector ArgExprs;
3213 
3214     if (!ParseSimpleExpressionList(ArgExprs)) {
3215       // FIXME: If we ever support comma expressions as operands to
3216       // fold-expressions, we'll need to allow multiple ArgExprs here.
3217       if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3218           isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3219         ExprType = FoldExpr;
3220         return ParseFoldExpression(ArgExprs[0], T);
3221       }
3222 
3223       ExprType = SimpleExpr;
3224       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3225                                           ArgExprs);
3226     }
3227   } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3228              ExprType == CastExpr && Tok.is(tok::l_square) &&
3229              tryParseOpenMPArrayShapingCastPart()) {
3230     bool ErrorFound = false;
3231     SmallVector<Expr *, 4> OMPDimensions;
3232     SmallVector<SourceRange, 4> OMPBracketsRanges;
3233     do {
3234       BalancedDelimiterTracker TS(*this, tok::l_square);
3235       TS.consumeOpen();
3236       ExprResult NumElements =
3237           Actions.CorrectDelayedTyposInExpr(ParseExpression());
3238       if (!NumElements.isUsable()) {
3239         ErrorFound = true;
3240         while (!SkipUntil(tok::r_square, tok::r_paren,
3241                           StopAtSemi | StopBeforeMatch))
3242           ;
3243       }
3244       TS.consumeClose();
3245       OMPDimensions.push_back(NumElements.get());
3246       OMPBracketsRanges.push_back(TS.getRange());
3247     } while (Tok.isNot(tok::r_paren));
3248     // Match the ')'.
3249     T.consumeClose();
3250     RParenLoc = T.getCloseLocation();
3251     Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3252     if (ErrorFound) {
3253       Result = ExprError();
3254     } else if (!Result.isInvalid()) {
3255       Result = Actions.ActOnOMPArrayShapingExpr(
3256           Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3257     }
3258     return Result;
3259   } else {
3260     InMessageExpressionRAIIObject InMessage(*this, false);
3261 
3262     Result = ParseExpression(MaybeTypeCast);
3263     if (!getLangOpts().CPlusPlus && Result.isUsable()) {
3264       // Correct typos in non-C++ code earlier so that implicit-cast-like
3265       // expressions are parsed correctly.
3266       Result = Actions.CorrectDelayedTyposInExpr(Result);
3267     }
3268 
3269     if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3270         NextToken().is(tok::ellipsis)) {
3271       ExprType = FoldExpr;
3272       return ParseFoldExpression(Result, T);
3273     }
3274     ExprType = SimpleExpr;
3275 
3276     // Don't build a paren expression unless we actually match a ')'.
3277     if (!Result.isInvalid() && Tok.is(tok::r_paren))
3278       Result =
3279           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3280   }
3281 
3282   // Match the ')'.
3283   if (Result.isInvalid()) {
3284     SkipUntil(tok::r_paren, StopAtSemi);
3285     return ExprError();
3286   }
3287 
3288   T.consumeClose();
3289   RParenLoc = T.getCloseLocation();
3290   return Result;
3291 }
3292 
3293 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3294 /// and we are at the left brace.
3295 ///
3296 /// \verbatim
3297 ///       postfix-expression: [C99 6.5.2]
3298 ///         '(' type-name ')' '{' initializer-list '}'
3299 ///         '(' type-name ')' '{' initializer-list ',' '}'
3300 /// \endverbatim
3301 ExprResult
3302 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3303                                        SourceLocation LParenLoc,
3304                                        SourceLocation RParenLoc) {
3305   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3306   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
3307     Diag(LParenLoc, diag::ext_c99_compound_literal);
3308   PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3309   ExprResult Result = ParseInitializer();
3310   if (!Result.isInvalid() && Ty)
3311     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3312   return Result;
3313 }
3314 
3315 /// ParseStringLiteralExpression - This handles the various token types that
3316 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3317 /// translation phase #6].
3318 ///
3319 /// \verbatim
3320 ///       primary-expression: [C99 6.5.1]
3321 ///         string-literal
3322 /// \verbatim
3323 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3324   return ParseStringLiteralExpression(AllowUserDefinedLiteral,
3325                                       /*Unevaluated=*/false);
3326 }
3327 
3328 ExprResult Parser::ParseUnevaluatedStringLiteralExpression() {
3329   return ParseStringLiteralExpression(/*AllowUserDefinedLiteral=*/false,
3330                                       /*Unevaluated=*/true);
3331 }
3332 
3333 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral,
3334                                                 bool Unevaluated) {
3335   assert(tokenIsLikeStringLiteral(Tok, getLangOpts()) &&
3336          "Not a string-literal-like token!");
3337 
3338   // String concatenation.
3339   // Note: some keywords like __FUNCTION__ are not considered to be strings
3340   // for concatenation purposes, unless Microsoft extensions are enabled.
3341   SmallVector<Token, 4> StringToks;
3342 
3343   do {
3344     StringToks.push_back(Tok);
3345     ConsumeAnyToken();
3346   } while (tokenIsLikeStringLiteral(Tok, getLangOpts()));
3347 
3348   if (Unevaluated) {
3349     assert(!AllowUserDefinedLiteral && "UDL are always evaluated");
3350     return Actions.ActOnUnevaluatedStringLiteral(StringToks);
3351   }
3352 
3353   // Pass the set of string tokens, ready for concatenation, to the actions.
3354   return Actions.ActOnStringLiteral(StringToks,
3355                                     AllowUserDefinedLiteral ? getCurScope()
3356                                                             : nullptr);
3357 }
3358 
3359 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3360 /// [C11 6.5.1.1].
3361 ///
3362 /// \verbatim
3363 ///    generic-selection:
3364 ///           _Generic ( assignment-expression , generic-assoc-list )
3365 ///    generic-assoc-list:
3366 ///           generic-association
3367 ///           generic-assoc-list , generic-association
3368 ///    generic-association:
3369 ///           type-name : assignment-expression
3370 ///           default : assignment-expression
3371 /// \endverbatim
3372 ///
3373 /// As an extension, Clang also accepts:
3374 /// \verbatim
3375 ///   generic-selection:
3376 ///          _Generic ( type-name, generic-assoc-list )
3377 /// \endverbatim
3378 ExprResult Parser::ParseGenericSelectionExpression() {
3379   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3380   if (!getLangOpts().C11)
3381     Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3382 
3383   SourceLocation KeyLoc = ConsumeToken();
3384   BalancedDelimiterTracker T(*this, tok::l_paren);
3385   if (T.expectAndConsume())
3386     return ExprError();
3387 
3388   // We either have a controlling expression or we have a controlling type, and
3389   // we need to figure out which it is.
3390   TypeResult ControllingType;
3391   ExprResult ControllingExpr;
3392   if (isTypeIdForGenericSelection()) {
3393     ControllingType = ParseTypeName();
3394     if (ControllingType.isInvalid()) {
3395       SkipUntil(tok::r_paren, StopAtSemi);
3396       return ExprError();
3397     }
3398     const auto *LIT = cast<LocInfoType>(ControllingType.get().get());
3399     SourceLocation Loc = LIT->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
3400     Diag(Loc, diag::ext_generic_with_type_arg);
3401   } else {
3402     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3403     // not evaluated."
3404     EnterExpressionEvaluationContext Unevaluated(
3405         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3406     ControllingExpr =
3407         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3408     if (ControllingExpr.isInvalid()) {
3409       SkipUntil(tok::r_paren, StopAtSemi);
3410       return ExprError();
3411     }
3412   }
3413 
3414   if (ExpectAndConsume(tok::comma)) {
3415     SkipUntil(tok::r_paren, StopAtSemi);
3416     return ExprError();
3417   }
3418 
3419   SourceLocation DefaultLoc;
3420   SmallVector<ParsedType, 12> Types;
3421   ExprVector Exprs;
3422   do {
3423     ParsedType Ty;
3424     if (Tok.is(tok::kw_default)) {
3425       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3426       // generic association."
3427       if (!DefaultLoc.isInvalid()) {
3428         Diag(Tok, diag::err_duplicate_default_assoc);
3429         Diag(DefaultLoc, diag::note_previous_default_assoc);
3430         SkipUntil(tok::r_paren, StopAtSemi);
3431         return ExprError();
3432       }
3433       DefaultLoc = ConsumeToken();
3434       Ty = nullptr;
3435     } else {
3436       ColonProtectionRAIIObject X(*this);
3437       TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association);
3438       if (TR.isInvalid()) {
3439         SkipUntil(tok::r_paren, StopAtSemi);
3440         return ExprError();
3441       }
3442       Ty = TR.get();
3443     }
3444     Types.push_back(Ty);
3445 
3446     if (ExpectAndConsume(tok::colon)) {
3447       SkipUntil(tok::r_paren, StopAtSemi);
3448       return ExprError();
3449     }
3450 
3451     // FIXME: These expressions should be parsed in a potentially potentially
3452     // evaluated context.
3453     ExprResult ER(
3454         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3455     if (ER.isInvalid()) {
3456       SkipUntil(tok::r_paren, StopAtSemi);
3457       return ExprError();
3458     }
3459     Exprs.push_back(ER.get());
3460   } while (TryConsumeToken(tok::comma));
3461 
3462   T.consumeClose();
3463   if (T.getCloseLocation().isInvalid())
3464     return ExprError();
3465 
3466   void *ExprOrTy = ControllingExpr.isUsable()
3467                        ? ControllingExpr.get()
3468                        : ControllingType.get().getAsOpaquePtr();
3469 
3470   return Actions.ActOnGenericSelectionExpr(
3471       KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.isUsable(),
3472       ExprOrTy, Types, Exprs);
3473 }
3474 
3475 /// Parse A C++1z fold-expression after the opening paren and optional
3476 /// left-hand-side expression.
3477 ///
3478 /// \verbatim
3479 ///   fold-expression:
3480 ///       ( cast-expression fold-operator ... )
3481 ///       ( ... fold-operator cast-expression )
3482 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
3483 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3484                                        BalancedDelimiterTracker &T) {
3485   if (LHS.isInvalid()) {
3486     T.skipToEnd();
3487     return true;
3488   }
3489 
3490   tok::TokenKind Kind = tok::unknown;
3491   SourceLocation FirstOpLoc;
3492   if (LHS.isUsable()) {
3493     Kind = Tok.getKind();
3494     assert(isFoldOperator(Kind) && "missing fold-operator");
3495     FirstOpLoc = ConsumeToken();
3496   }
3497 
3498   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3499   SourceLocation EllipsisLoc = ConsumeToken();
3500 
3501   ExprResult RHS;
3502   if (Tok.isNot(tok::r_paren)) {
3503     if (!isFoldOperator(Tok.getKind()))
3504       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3505 
3506     if (Kind != tok::unknown && Tok.getKind() != Kind)
3507       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3508         << SourceRange(FirstOpLoc);
3509     Kind = Tok.getKind();
3510     ConsumeToken();
3511 
3512     RHS = ParseExpression();
3513     if (RHS.isInvalid()) {
3514       T.skipToEnd();
3515       return true;
3516     }
3517   }
3518 
3519   Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3520                         ? diag::warn_cxx14_compat_fold_expression
3521                         : diag::ext_fold_expression);
3522 
3523   T.consumeClose();
3524   return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3525                                   Kind, EllipsisLoc, RHS.get(),
3526                                   T.getCloseLocation());
3527 }
3528 
3529 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3530 ///
3531 /// \verbatim
3532 ///       argument-expression-list:
3533 ///         assignment-expression
3534 ///         argument-expression-list , assignment-expression
3535 ///
3536 /// [C++] expression-list:
3537 /// [C++]   assignment-expression
3538 /// [C++]   expression-list , assignment-expression
3539 ///
3540 /// [C++0x] expression-list:
3541 /// [C++0x]   initializer-list
3542 ///
3543 /// [C++0x] initializer-list
3544 /// [C++0x]   initializer-clause ...[opt]
3545 /// [C++0x]   initializer-list , initializer-clause ...[opt]
3546 ///
3547 /// [C++0x] initializer-clause:
3548 /// [C++0x]   assignment-expression
3549 /// [C++0x]   braced-init-list
3550 /// \endverbatim
3551 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3552                                  llvm::function_ref<void()> ExpressionStarts,
3553                                  bool FailImmediatelyOnInvalidExpr,
3554                                  bool EarlyTypoCorrection) {
3555   bool SawError = false;
3556   while (true) {
3557     if (ExpressionStarts)
3558       ExpressionStarts();
3559 
3560     ExprResult Expr;
3561     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3562       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3563       Expr = ParseBraceInitializer();
3564     } else
3565       Expr = ParseAssignmentExpression();
3566 
3567     if (EarlyTypoCorrection)
3568       Expr = Actions.CorrectDelayedTyposInExpr(Expr);
3569 
3570     if (Tok.is(tok::ellipsis))
3571       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3572     else if (Tok.is(tok::code_completion)) {
3573       // There's nothing to suggest in here as we parsed a full expression.
3574       // Instead fail and propagate the error since caller might have something
3575       // the suggest, e.g. signature help in function call. Note that this is
3576       // performed before pushing the \p Expr, so that signature help can report
3577       // current argument correctly.
3578       SawError = true;
3579       cutOffParsing();
3580       break;
3581     }
3582     if (Expr.isInvalid()) {
3583       SawError = true;
3584       if (FailImmediatelyOnInvalidExpr)
3585         break;
3586       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3587     } else {
3588       Exprs.push_back(Expr.get());
3589     }
3590 
3591     if (Tok.isNot(tok::comma))
3592       break;
3593     // Move to the next argument, remember where the comma was.
3594     Token Comma = Tok;
3595     ConsumeToken();
3596     checkPotentialAngleBracketDelimiter(Comma);
3597   }
3598   if (SawError) {
3599     // Ensure typos get diagnosed when errors were encountered while parsing the
3600     // expression list.
3601     for (auto &E : Exprs) {
3602       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3603       if (Expr.isUsable()) E = Expr.get();
3604     }
3605   }
3606   return SawError;
3607 }
3608 
3609 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3610 /// used for misc language extensions.
3611 ///
3612 /// \verbatim
3613 ///       simple-expression-list:
3614 ///         assignment-expression
3615 ///         simple-expression-list , assignment-expression
3616 /// \endverbatim
3617 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) {
3618   while (true) {
3619     ExprResult Expr = ParseAssignmentExpression();
3620     if (Expr.isInvalid())
3621       return true;
3622 
3623     Exprs.push_back(Expr.get());
3624 
3625     // We might be parsing the LHS of a fold-expression. If we reached the fold
3626     // operator, stop.
3627     if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis))
3628       return false;
3629 
3630     // Move to the next argument, remember where the comma was.
3631     Token Comma = Tok;
3632     ConsumeToken();
3633     checkPotentialAngleBracketDelimiter(Comma);
3634   }
3635 }
3636 
3637 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3638 ///
3639 /// \verbatim
3640 /// [clang] block-id:
3641 /// [clang]   specifier-qualifier-list block-declarator
3642 /// \endverbatim
3643 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3644   if (Tok.is(tok::code_completion)) {
3645     cutOffParsing();
3646     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3647     return;
3648   }
3649 
3650   // Parse the specifier-qualifier-list piece.
3651   DeclSpec DS(AttrFactory);
3652   ParseSpecifierQualifierList(DS);
3653 
3654   // Parse the block-declarator.
3655   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3656                             DeclaratorContext::BlockLiteral);
3657   DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3658   ParseDeclarator(DeclaratorInfo);
3659 
3660   MaybeParseGNUAttributes(DeclaratorInfo);
3661 
3662   // Inform sema that we are starting a block.
3663   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3664 }
3665 
3666 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3667 /// like ^(int x){ return x+1; }
3668 ///
3669 /// \verbatim
3670 ///         block-literal:
3671 /// [clang]   '^' block-args[opt] compound-statement
3672 /// [clang]   '^' block-id compound-statement
3673 /// [clang] block-args:
3674 /// [clang]   '(' parameter-list ')'
3675 /// \endverbatim
3676 ExprResult Parser::ParseBlockLiteralExpression() {
3677   assert(Tok.is(tok::caret) && "block literal starts with ^");
3678   SourceLocation CaretLoc = ConsumeToken();
3679 
3680   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3681                                 "block literal parsing");
3682 
3683   // Enter a scope to hold everything within the block.  This includes the
3684   // argument decls, decls within the compound expression, etc.  This also
3685   // allows determining whether a variable reference inside the block is
3686   // within or outside of the block.
3687   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3688                                   Scope::CompoundStmtScope | Scope::DeclScope);
3689 
3690   // Inform sema that we are starting a block.
3691   Actions.ActOnBlockStart(CaretLoc, getCurScope());
3692 
3693   // Parse the return type if present.
3694   DeclSpec DS(AttrFactory);
3695   Declarator ParamInfo(DS, ParsedAttributesView::none(),
3696                        DeclaratorContext::BlockLiteral);
3697   ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3698   // FIXME: Since the return type isn't actually parsed, it can't be used to
3699   // fill ParamInfo with an initial valid range, so do it manually.
3700   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3701 
3702   // If this block has arguments, parse them.  There is no ambiguity here with
3703   // the expression case, because the expression case requires a parameter list.
3704   if (Tok.is(tok::l_paren)) {
3705     ParseParenDeclarator(ParamInfo);
3706     // Parse the pieces after the identifier as if we had "int(...)".
3707     // SetIdentifier sets the source range end, but in this case we're past
3708     // that location.
3709     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3710     ParamInfo.SetIdentifier(nullptr, CaretLoc);
3711     ParamInfo.SetRangeEnd(Tmp);
3712     if (ParamInfo.isInvalidType()) {
3713       // If there was an error parsing the arguments, they may have
3714       // tried to use ^(x+y) which requires an argument list.  Just
3715       // skip the whole block literal.
3716       Actions.ActOnBlockError(CaretLoc, getCurScope());
3717       return ExprError();
3718     }
3719 
3720     MaybeParseGNUAttributes(ParamInfo);
3721 
3722     // Inform sema that we are starting a block.
3723     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3724   } else if (!Tok.is(tok::l_brace)) {
3725     ParseBlockId(CaretLoc);
3726   } else {
3727     // Otherwise, pretend we saw (void).
3728     SourceLocation NoLoc;
3729     ParamInfo.AddTypeInfo(
3730         DeclaratorChunk::getFunction(/*HasProto=*/true,
3731                                      /*IsAmbiguous=*/false,
3732                                      /*RParenLoc=*/NoLoc,
3733                                      /*ArgInfo=*/nullptr,
3734                                      /*NumParams=*/0,
3735                                      /*EllipsisLoc=*/NoLoc,
3736                                      /*RParenLoc=*/NoLoc,
3737                                      /*RefQualifierIsLvalueRef=*/true,
3738                                      /*RefQualifierLoc=*/NoLoc,
3739                                      /*MutableLoc=*/NoLoc, EST_None,
3740                                      /*ESpecRange=*/SourceRange(),
3741                                      /*Exceptions=*/nullptr,
3742                                      /*ExceptionRanges=*/nullptr,
3743                                      /*NumExceptions=*/0,
3744                                      /*NoexceptExpr=*/nullptr,
3745                                      /*ExceptionSpecTokens=*/nullptr,
3746                                      /*DeclsInPrototype=*/std::nullopt,
3747                                      CaretLoc, CaretLoc, ParamInfo),
3748         CaretLoc);
3749 
3750     MaybeParseGNUAttributes(ParamInfo);
3751 
3752     // Inform sema that we are starting a block.
3753     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3754   }
3755 
3756 
3757   ExprResult Result(true);
3758   if (!Tok.is(tok::l_brace)) {
3759     // Saw something like: ^expr
3760     Diag(Tok, diag::err_expected_expression);
3761     Actions.ActOnBlockError(CaretLoc, getCurScope());
3762     return ExprError();
3763   }
3764 
3765   StmtResult Stmt(ParseCompoundStatementBody());
3766   BlockScope.Exit();
3767   if (!Stmt.isInvalid())
3768     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3769   else
3770     Actions.ActOnBlockError(CaretLoc, getCurScope());
3771   return Result;
3772 }
3773 
3774 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3775 ///
3776 ///         '__objc_yes'
3777 ///         '__objc_no'
3778 ExprResult Parser::ParseObjCBoolLiteral() {
3779   tok::TokenKind Kind = Tok.getKind();
3780   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3781 }
3782 
3783 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3784 /// true if invalid.
3785 static bool CheckAvailabilitySpecList(Parser &P,
3786                                       ArrayRef<AvailabilitySpec> AvailSpecs) {
3787   llvm::SmallSet<StringRef, 4> Platforms;
3788   bool HasOtherPlatformSpec = false;
3789   bool Valid = true;
3790   for (const auto &Spec : AvailSpecs) {
3791     if (Spec.isOtherPlatformSpec()) {
3792       if (HasOtherPlatformSpec) {
3793         P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3794         Valid = false;
3795       }
3796 
3797       HasOtherPlatformSpec = true;
3798       continue;
3799     }
3800 
3801     bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3802     if (!Inserted) {
3803       // Rule out multiple version specs referring to the same platform.
3804       // For example, we emit an error for:
3805       // @available(macos 10.10, macos 10.11, *)
3806       StringRef Platform = Spec.getPlatform();
3807       P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3808           << Spec.getEndLoc() << Platform;
3809       Valid = false;
3810     }
3811   }
3812 
3813   if (!HasOtherPlatformSpec) {
3814     SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3815     P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3816         << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3817     return true;
3818   }
3819 
3820   return !Valid;
3821 }
3822 
3823 /// Parse availability query specification.
3824 ///
3825 ///  availability-spec:
3826 ///     '*'
3827 ///     identifier version-tuple
3828 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3829   if (Tok.is(tok::star)) {
3830     return AvailabilitySpec(ConsumeToken());
3831   } else {
3832     // Parse the platform name.
3833     if (Tok.is(tok::code_completion)) {
3834       cutOffParsing();
3835       Actions.CodeCompleteAvailabilityPlatformName();
3836       return std::nullopt;
3837     }
3838     if (Tok.isNot(tok::identifier)) {
3839       Diag(Tok, diag::err_avail_query_expected_platform_name);
3840       return std::nullopt;
3841     }
3842 
3843     IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3844     SourceRange VersionRange;
3845     VersionTuple Version = ParseVersionTuple(VersionRange);
3846 
3847     if (Version.empty())
3848       return std::nullopt;
3849 
3850     StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3851     StringRef Platform =
3852         AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3853 
3854     if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3855       Diag(PlatformIdentifier->Loc,
3856            diag::err_avail_query_unrecognized_platform_name)
3857           << GivenPlatform;
3858       return std::nullopt;
3859     }
3860 
3861     return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3862                             VersionRange.getEnd());
3863   }
3864 }
3865 
3866 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3867   assert(Tok.is(tok::kw___builtin_available) ||
3868          Tok.isObjCAtKeyword(tok::objc_available));
3869 
3870   // Eat the available or __builtin_available.
3871   ConsumeToken();
3872 
3873   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3874   if (Parens.expectAndConsume())
3875     return ExprError();
3876 
3877   SmallVector<AvailabilitySpec, 4> AvailSpecs;
3878   bool HasError = false;
3879   while (true) {
3880     std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3881     if (!Spec)
3882       HasError = true;
3883     else
3884       AvailSpecs.push_back(*Spec);
3885 
3886     if (!TryConsumeToken(tok::comma))
3887       break;
3888   }
3889 
3890   if (HasError) {
3891     SkipUntil(tok::r_paren, StopAtSemi);
3892     return ExprError();
3893   }
3894 
3895   CheckAvailabilitySpecList(*this, AvailSpecs);
3896 
3897   if (Parens.consumeClose())
3898     return ExprError();
3899 
3900   return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3901                                                 Parens.getCloseLocation());
3902 }
3903