1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production.  Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "clang/Parse/Parser.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "clang/Parse/RAIIObjectsForParser.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallVector.h"
33 using namespace clang;
34 
35 /// Simple precedence-based parser for binary/ternary operators.
36 ///
37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
38 /// production.  C99 specifies that the LHS of an assignment operator should be
39 /// parsed as a unary-expression, but consistency dictates that it be a
40 /// conditional-expession.  In practice, the important thing here is that the
41 /// LHS of an assignment has to be an l-value, which productions between
42 /// unary-expression and conditional-expression don't produce.  Because we want
43 /// consistency, we parse the LHS as a conditional-expression, then check for
44 /// l-value-ness in semantic analysis stages.
45 ///
46 /// \verbatim
47 ///       pm-expression: [C++ 5.5]
48 ///         cast-expression
49 ///         pm-expression '.*' cast-expression
50 ///         pm-expression '->*' cast-expression
51 ///
52 ///       multiplicative-expression: [C99 6.5.5]
53 ///     Note: in C++, apply pm-expression instead of cast-expression
54 ///         cast-expression
55 ///         multiplicative-expression '*' cast-expression
56 ///         multiplicative-expression '/' cast-expression
57 ///         multiplicative-expression '%' cast-expression
58 ///
59 ///       additive-expression: [C99 6.5.6]
60 ///         multiplicative-expression
61 ///         additive-expression '+' multiplicative-expression
62 ///         additive-expression '-' multiplicative-expression
63 ///
64 ///       shift-expression: [C99 6.5.7]
65 ///         additive-expression
66 ///         shift-expression '<<' additive-expression
67 ///         shift-expression '>>' additive-expression
68 ///
69 ///       compare-expression: [C++20 expr.spaceship]
70 ///         shift-expression
71 ///         compare-expression '<=>' shift-expression
72 ///
73 ///       relational-expression: [C99 6.5.8]
74 ///         compare-expression
75 ///         relational-expression '<' compare-expression
76 ///         relational-expression '>' compare-expression
77 ///         relational-expression '<=' compare-expression
78 ///         relational-expression '>=' compare-expression
79 ///
80 ///       equality-expression: [C99 6.5.9]
81 ///         relational-expression
82 ///         equality-expression '==' relational-expression
83 ///         equality-expression '!=' relational-expression
84 ///
85 ///       AND-expression: [C99 6.5.10]
86 ///         equality-expression
87 ///         AND-expression '&' equality-expression
88 ///
89 ///       exclusive-OR-expression: [C99 6.5.11]
90 ///         AND-expression
91 ///         exclusive-OR-expression '^' AND-expression
92 ///
93 ///       inclusive-OR-expression: [C99 6.5.12]
94 ///         exclusive-OR-expression
95 ///         inclusive-OR-expression '|' exclusive-OR-expression
96 ///
97 ///       logical-AND-expression: [C99 6.5.13]
98 ///         inclusive-OR-expression
99 ///         logical-AND-expression '&&' inclusive-OR-expression
100 ///
101 ///       logical-OR-expression: [C99 6.5.14]
102 ///         logical-AND-expression
103 ///         logical-OR-expression '||' logical-AND-expression
104 ///
105 ///       conditional-expression: [C99 6.5.15]
106 ///         logical-OR-expression
107 ///         logical-OR-expression '?' expression ':' conditional-expression
108 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
109 /// [C++] the third operand is an assignment-expression
110 ///
111 ///       assignment-expression: [C99 6.5.16]
112 ///         conditional-expression
113 ///         unary-expression assignment-operator assignment-expression
114 /// [C++]   throw-expression [C++ 15]
115 ///
116 ///       assignment-operator: one of
117 ///         = *= /= %= += -= <<= >>= &= ^= |=
118 ///
119 ///       expression: [C99 6.5.17]
120 ///         assignment-expression ...[opt]
121 ///         expression ',' assignment-expression ...[opt]
122 /// \endverbatim
123 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
124   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
125   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
126 }
127 
128 /// This routine is called when the '@' is seen and consumed.
129 /// Current token is an Identifier and is not a 'try'. This
130 /// routine is necessary to disambiguate \@try-statement from,
131 /// for example, \@encode-expression.
132 ///
133 ExprResult
134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
135   ExprResult LHS(ParseObjCAtExpression(AtLoc));
136   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
137 }
138 
139 /// This routine is called when a leading '__extension__' is seen and
140 /// consumed.  This is necessary because the token gets consumed in the
141 /// process of disambiguating between an expression and a declaration.
142 ExprResult
143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
144   ExprResult LHS(true);
145   {
146     // Silence extension warnings in the sub-expression
147     ExtensionRAIIObject O(Diags);
148 
149     LHS = ParseCastExpression(AnyCastExpr);
150   }
151 
152   if (!LHS.isInvalid())
153     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
154                                LHS.get());
155 
156   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
157 }
158 
159 /// Parse an expr that doesn't include (top-level) commas.
160 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
161   if (Tok.is(tok::code_completion)) {
162     cutOffParsing();
163     Actions.CodeCompleteExpression(getCurScope(),
164                                    PreferredType.get(Tok.getLocation()));
165     return ExprError();
166   }
167 
168   if (Tok.is(tok::kw_throw))
169     return ParseThrowExpression();
170   if (Tok.is(tok::kw_co_yield))
171     return ParseCoyieldExpression();
172 
173   ExprResult LHS = ParseCastExpression(AnyCastExpr,
174                                        /*isAddressOfOperand=*/false,
175                                        isTypeCast);
176   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
177 }
178 
179 /// Parse an assignment expression where part of an Objective-C message
180 /// send has already been parsed.
181 ///
182 /// In this case \p LBracLoc indicates the location of the '[' of the message
183 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
184 /// the receiver of the message.
185 ///
186 /// Since this handles full assignment-expression's, it handles postfix
187 /// expressions and other binary operators for these expressions as well.
188 ExprResult
189 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
190                                                     SourceLocation SuperLoc,
191                                                     ParsedType ReceiverType,
192                                                     Expr *ReceiverExpr) {
193   ExprResult R
194     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
195                                      ReceiverType, ReceiverExpr);
196   R = ParsePostfixExpressionSuffix(R);
197   return ParseRHSOfBinaryExpression(R, prec::Assignment);
198 }
199 
200 ExprResult
201 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
202   assert(Actions.ExprEvalContexts.back().Context ==
203              Sema::ExpressionEvaluationContext::ConstantEvaluated &&
204          "Call this function only if your ExpressionEvaluationContext is "
205          "already ConstantEvaluated");
206   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
207   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
208   return Actions.ActOnConstantExpression(Res);
209 }
210 
211 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
212   // C++03 [basic.def.odr]p2:
213   //   An expression is potentially evaluated unless it appears where an
214   //   integral constant expression is required (see 5.19) [...].
215   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
216   EnterExpressionEvaluationContext ConstantEvaluated(
217       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
218   return ParseConstantExpressionInExprEvalContext(isTypeCast);
219 }
220 
221 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
222   EnterExpressionEvaluationContext ConstantEvaluated(
223       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
224   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
225   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
226   return Actions.ActOnCaseExpr(CaseLoc, Res);
227 }
228 
229 /// Parse a constraint-expression.
230 ///
231 /// \verbatim
232 ///       constraint-expression: C++2a[temp.constr.decl]p1
233 ///         logical-or-expression
234 /// \endverbatim
235 ExprResult Parser::ParseConstraintExpression() {
236   EnterExpressionEvaluationContext ConstantEvaluated(
237       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
238   ExprResult LHS(ParseCastExpression(AnyCastExpr));
239   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
240   if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
241     Actions.CorrectDelayedTyposInExpr(Res);
242     return ExprError();
243   }
244   return Res;
245 }
246 
247 /// \brief Parse a constraint-logical-and-expression.
248 ///
249 /// \verbatim
250 ///       C++2a[temp.constr.decl]p1
251 ///       constraint-logical-and-expression:
252 ///         primary-expression
253 ///         constraint-logical-and-expression '&&' primary-expression
254 ///
255 /// \endverbatim
256 ExprResult
257 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
258   EnterExpressionEvaluationContext ConstantEvaluated(
259       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
260   bool NotPrimaryExpression = false;
261   auto ParsePrimary = [&] () {
262     ExprResult E = ParseCastExpression(PrimaryExprOnly,
263                                        /*isAddressOfOperand=*/false,
264                                        /*isTypeCast=*/NotTypeCast,
265                                        /*isVectorLiteral=*/false,
266                                        &NotPrimaryExpression);
267     if (E.isInvalid())
268       return ExprError();
269     auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
270         E = ParsePostfixExpressionSuffix(E);
271         // Use InclusiveOr, the precedence just after '&&' to not parse the
272         // next arguments to the logical and.
273         E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
274         if (!E.isInvalid())
275           Diag(E.get()->getExprLoc(),
276                Note
277                ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
278                : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
279                << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
280                << FixItHint::CreateInsertion(
281                    PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
282                << E.get()->getSourceRange();
283         return E;
284     };
285 
286     if (NotPrimaryExpression ||
287         // Check if the following tokens must be a part of a non-primary
288         // expression
289         getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
290                            /*CPlusPlus11=*/true) > prec::LogicalAnd ||
291         // Postfix operators other than '(' (which will be checked for in
292         // CheckConstraintExpression).
293         Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
294         (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
295       E = RecoverFromNonPrimary(E, /*Note=*/false);
296       if (E.isInvalid())
297         return ExprError();
298       NotPrimaryExpression = false;
299     }
300     bool PossibleNonPrimary;
301     bool IsConstraintExpr =
302         Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
303                                           IsTrailingRequiresClause);
304     if (!IsConstraintExpr || PossibleNonPrimary) {
305       // Atomic constraint might be an unparenthesized non-primary expression
306       // (such as a binary operator), in which case we might get here (e.g. in
307       // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
308       // the rest of the addition expression). Try to parse the rest of it here.
309       if (PossibleNonPrimary)
310         E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
311       Actions.CorrectDelayedTyposInExpr(E);
312       return ExprError();
313     }
314     return E;
315   };
316   ExprResult LHS = ParsePrimary();
317   if (LHS.isInvalid())
318     return ExprError();
319   while (Tok.is(tok::ampamp)) {
320     SourceLocation LogicalAndLoc = ConsumeToken();
321     ExprResult RHS = ParsePrimary();
322     if (RHS.isInvalid()) {
323       Actions.CorrectDelayedTyposInExpr(LHS);
324       return ExprError();
325     }
326     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
327                                        tok::ampamp, LHS.get(), RHS.get());
328     if (!Op.isUsable()) {
329       Actions.CorrectDelayedTyposInExpr(RHS);
330       Actions.CorrectDelayedTyposInExpr(LHS);
331       return ExprError();
332     }
333     LHS = Op;
334   }
335   return LHS;
336 }
337 
338 /// \brief Parse a constraint-logical-or-expression.
339 ///
340 /// \verbatim
341 ///       C++2a[temp.constr.decl]p1
342 ///       constraint-logical-or-expression:
343 ///         constraint-logical-and-expression
344 ///         constraint-logical-or-expression '||'
345 ///             constraint-logical-and-expression
346 ///
347 /// \endverbatim
348 ExprResult
349 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
350   ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
351   if (!LHS.isUsable())
352     return ExprError();
353   while (Tok.is(tok::pipepipe)) {
354     SourceLocation LogicalOrLoc = ConsumeToken();
355     ExprResult RHS =
356         ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
357     if (!RHS.isUsable()) {
358       Actions.CorrectDelayedTyposInExpr(LHS);
359       return ExprError();
360     }
361     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
362                                        tok::pipepipe, LHS.get(), RHS.get());
363     if (!Op.isUsable()) {
364       Actions.CorrectDelayedTyposInExpr(RHS);
365       Actions.CorrectDelayedTyposInExpr(LHS);
366       return ExprError();
367     }
368     LHS = Op;
369   }
370   return LHS;
371 }
372 
373 bool Parser::isNotExpressionStart() {
374   tok::TokenKind K = Tok.getKind();
375   if (K == tok::l_brace || K == tok::r_brace  ||
376       K == tok::kw_for  || K == tok::kw_while ||
377       K == tok::kw_if   || K == tok::kw_else  ||
378       K == tok::kw_goto || K == tok::kw_try)
379     return true;
380   // If this is a decl-specifier, we can't be at the start of an expression.
381   return isKnownToBeDeclarationSpecifier();
382 }
383 
384 bool Parser::isFoldOperator(prec::Level Level) const {
385   return Level > prec::Unknown && Level != prec::Conditional &&
386          Level != prec::Spaceship;
387 }
388 
389 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
390   return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
391 }
392 
393 /// Parse a binary expression that starts with \p LHS and has a
394 /// precedence of at least \p MinPrec.
395 ExprResult
396 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
397   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
398                                                GreaterThanIsOperator,
399                                                getLangOpts().CPlusPlus11);
400   SourceLocation ColonLoc;
401 
402   auto SavedType = PreferredType;
403   while (true) {
404     // Every iteration may rely on a preferred type for the whole expression.
405     PreferredType = SavedType;
406     // If this token has a lower precedence than we are allowed to parse (e.g.
407     // because we are called recursively, or because the token is not a binop),
408     // then we are done!
409     if (NextTokPrec < MinPrec)
410       return LHS;
411 
412     // Consume the operator, saving the operator token for error reporting.
413     Token OpToken = Tok;
414     ConsumeToken();
415 
416     if (OpToken.is(tok::caretcaret)) {
417       return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
418     }
419 
420     // If we're potentially in a template-id, we may now be able to determine
421     // whether we're actually in one or not.
422     if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
423                         tok::greatergreatergreater) &&
424         checkPotentialAngleBracketDelimiter(OpToken))
425       return ExprError();
426 
427     // Bail out when encountering a comma followed by a token which can't
428     // possibly be the start of an expression. For instance:
429     //   int f() { return 1, }
430     // We can't do this before consuming the comma, because
431     // isNotExpressionStart() looks at the token stream.
432     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
433       PP.EnterToken(Tok, /*IsReinject*/true);
434       Tok = OpToken;
435       return LHS;
436     }
437 
438     // If the next token is an ellipsis, then this is a fold-expression. Leave
439     // it alone so we can handle it in the paren expression.
440     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
441       // FIXME: We can't check this via lookahead before we consume the token
442       // because that tickles a lexer bug.
443       PP.EnterToken(Tok, /*IsReinject*/true);
444       Tok = OpToken;
445       return LHS;
446     }
447 
448     // In Objective-C++, alternative operator tokens can be used as keyword args
449     // in message expressions. Unconsume the token so that it can reinterpreted
450     // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
451     //   [foo meth:0 and:0];
452     //   [foo not_eq];
453     if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
454         Tok.isOneOf(tok::colon, tok::r_square) &&
455         OpToken.getIdentifierInfo() != nullptr) {
456       PP.EnterToken(Tok, /*IsReinject*/true);
457       Tok = OpToken;
458       return LHS;
459     }
460 
461     // Special case handling for the ternary operator.
462     ExprResult TernaryMiddle(true);
463     if (NextTokPrec == prec::Conditional) {
464       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
465         // Parse a braced-init-list here for error recovery purposes.
466         SourceLocation BraceLoc = Tok.getLocation();
467         TernaryMiddle = ParseBraceInitializer();
468         if (!TernaryMiddle.isInvalid()) {
469           Diag(BraceLoc, diag::err_init_list_bin_op)
470               << /*RHS*/ 1 << PP.getSpelling(OpToken)
471               << Actions.getExprRange(TernaryMiddle.get());
472           TernaryMiddle = ExprError();
473         }
474       } else if (Tok.isNot(tok::colon)) {
475         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
476         ColonProtectionRAIIObject X(*this);
477 
478         // Handle this production specially:
479         //   logical-OR-expression '?' expression ':' conditional-expression
480         // In particular, the RHS of the '?' is 'expression', not
481         // 'logical-OR-expression' as we might expect.
482         TernaryMiddle = ParseExpression();
483       } else {
484         // Special case handling of "X ? Y : Z" where Y is empty:
485         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
486         TernaryMiddle = nullptr;
487         Diag(Tok, diag::ext_gnu_conditional_expr);
488       }
489 
490       if (TernaryMiddle.isInvalid()) {
491         Actions.CorrectDelayedTyposInExpr(LHS);
492         LHS = ExprError();
493         TernaryMiddle = nullptr;
494       }
495 
496       if (!TryConsumeToken(tok::colon, ColonLoc)) {
497         // Otherwise, we're missing a ':'.  Assume that this was a typo that
498         // the user forgot. If we're not in a macro expansion, we can suggest
499         // a fixit hint. If there were two spaces before the current token,
500         // suggest inserting the colon in between them, otherwise insert ": ".
501         SourceLocation FILoc = Tok.getLocation();
502         const char *FIText = ": ";
503         const SourceManager &SM = PP.getSourceManager();
504         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
505           assert(FILoc.isFileID());
506           bool IsInvalid = false;
507           const char *SourcePtr =
508             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
509           if (!IsInvalid && *SourcePtr == ' ') {
510             SourcePtr =
511               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
512             if (!IsInvalid && *SourcePtr == ' ') {
513               FILoc = FILoc.getLocWithOffset(-1);
514               FIText = ":";
515             }
516           }
517         }
518 
519         Diag(Tok, diag::err_expected)
520             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
521         Diag(OpToken, diag::note_matching) << tok::question;
522         ColonLoc = Tok.getLocation();
523       }
524     }
525 
526     PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
527                               OpToken.getKind());
528     // Parse another leaf here for the RHS of the operator.
529     // ParseCastExpression works here because all RHS expressions in C have it
530     // as a prefix, at least. However, in C++, an assignment-expression could
531     // be a throw-expression, which is not a valid cast-expression.
532     // Therefore we need some special-casing here.
533     // Also note that the third operand of the conditional operator is
534     // an assignment-expression in C++, and in C++11, we can have a
535     // braced-init-list on the RHS of an assignment. For better diagnostics,
536     // parse as if we were allowed braced-init-lists everywhere, and check that
537     // they only appear on the RHS of assignments later.
538     ExprResult RHS;
539     bool RHSIsInitList = false;
540     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
541       RHS = ParseBraceInitializer();
542       RHSIsInitList = true;
543     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
544       RHS = ParseAssignmentExpression();
545     else
546       RHS = ParseCastExpression(AnyCastExpr);
547 
548     if (RHS.isInvalid()) {
549       // FIXME: Errors generated by the delayed typo correction should be
550       // printed before errors from parsing the RHS, not after.
551       Actions.CorrectDelayedTyposInExpr(LHS);
552       if (TernaryMiddle.isUsable())
553         TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
554       LHS = ExprError();
555     }
556 
557     // Remember the precedence of this operator and get the precedence of the
558     // operator immediately to the right of the RHS.
559     prec::Level ThisPrec = NextTokPrec;
560     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
561                                      getLangOpts().CPlusPlus11);
562 
563     // Assignment and conditional expressions are right-associative.
564     bool isRightAssoc = ThisPrec == prec::Conditional ||
565                         ThisPrec == prec::Assignment;
566 
567     // Get the precedence of the operator to the right of the RHS.  If it binds
568     // more tightly with RHS than we do, evaluate it completely first.
569     if (ThisPrec < NextTokPrec ||
570         (ThisPrec == NextTokPrec && isRightAssoc)) {
571       if (!RHS.isInvalid() && RHSIsInitList) {
572         Diag(Tok, diag::err_init_list_bin_op)
573           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
574         RHS = ExprError();
575       }
576       // If this is left-associative, only parse things on the RHS that bind
577       // more tightly than the current operator.  If it is left-associative, it
578       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
579       // A=(B=(C=D)), where each paren is a level of recursion here.
580       // The function takes ownership of the RHS.
581       RHS = ParseRHSOfBinaryExpression(RHS,
582                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
583       RHSIsInitList = false;
584 
585       if (RHS.isInvalid()) {
586         // FIXME: Errors generated by the delayed typo correction should be
587         // printed before errors from ParseRHSOfBinaryExpression, not after.
588         Actions.CorrectDelayedTyposInExpr(LHS);
589         if (TernaryMiddle.isUsable())
590           TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
591         LHS = ExprError();
592       }
593 
594       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
595                                        getLangOpts().CPlusPlus11);
596     }
597 
598     if (!RHS.isInvalid() && RHSIsInitList) {
599       if (ThisPrec == prec::Assignment) {
600         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
601           << Actions.getExprRange(RHS.get());
602       } else if (ColonLoc.isValid()) {
603         Diag(ColonLoc, diag::err_init_list_bin_op)
604           << /*RHS*/1 << ":"
605           << Actions.getExprRange(RHS.get());
606         LHS = ExprError();
607       } else {
608         Diag(OpToken, diag::err_init_list_bin_op)
609           << /*RHS*/1 << PP.getSpelling(OpToken)
610           << Actions.getExprRange(RHS.get());
611         LHS = ExprError();
612       }
613     }
614 
615     ExprResult OrigLHS = LHS;
616     if (!LHS.isInvalid()) {
617       // Combine the LHS and RHS into the LHS (e.g. build AST).
618       if (TernaryMiddle.isInvalid()) {
619         // If we're using '>>' as an operator within a template
620         // argument list (in C++98), suggest the addition of
621         // parentheses so that the code remains well-formed in C++0x.
622         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
623           SuggestParentheses(OpToken.getLocation(),
624                              diag::warn_cxx11_right_shift_in_template_arg,
625                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
626                                      Actions.getExprRange(RHS.get()).getEnd()));
627 
628         ExprResult BinOp =
629             Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
630                                OpToken.getKind(), LHS.get(), RHS.get());
631         if (BinOp.isInvalid())
632           BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
633                                              RHS.get()->getEndLoc(),
634                                              {LHS.get(), RHS.get()});
635 
636         LHS = BinOp;
637       } else {
638         ExprResult CondOp = Actions.ActOnConditionalOp(
639             OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
640             RHS.get());
641         if (CondOp.isInvalid()) {
642           std::vector<clang::Expr *> Args;
643           // TernaryMiddle can be null for the GNU conditional expr extension.
644           if (TernaryMiddle.get())
645             Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
646           else
647             Args = {LHS.get(), RHS.get()};
648           CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
649                                               RHS.get()->getEndLoc(), Args);
650         }
651 
652         LHS = CondOp;
653       }
654       // In this case, ActOnBinOp or ActOnConditionalOp performed the
655       // CorrectDelayedTyposInExpr check.
656       if (!getLangOpts().CPlusPlus)
657         continue;
658     }
659 
660     // Ensure potential typos aren't left undiagnosed.
661     if (LHS.isInvalid()) {
662       Actions.CorrectDelayedTyposInExpr(OrigLHS);
663       Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
664       Actions.CorrectDelayedTyposInExpr(RHS);
665     }
666   }
667 }
668 
669 /// Parse a cast-expression, unary-expression or primary-expression, based
670 /// on \p ExprType.
671 ///
672 /// \p isAddressOfOperand exists because an id-expression that is the
673 /// operand of address-of gets special treatment due to member pointers.
674 ///
675 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
676                                        bool isAddressOfOperand,
677                                        TypeCastState isTypeCast,
678                                        bool isVectorLiteral,
679                                        bool *NotPrimaryExpression) {
680   bool NotCastExpr;
681   ExprResult Res = ParseCastExpression(ParseKind,
682                                        isAddressOfOperand,
683                                        NotCastExpr,
684                                        isTypeCast,
685                                        isVectorLiteral,
686                                        NotPrimaryExpression);
687   if (NotCastExpr)
688     Diag(Tok, diag::err_expected_expression);
689   return Res;
690 }
691 
692 namespace {
693 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
694  public:
695   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
696       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
697     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
698   }
699 
700   bool ValidateCandidate(const TypoCorrection &candidate) override {
701     NamedDecl *ND = candidate.getCorrectionDecl();
702     if (!ND)
703       return candidate.isKeyword();
704 
705     if (isa<TypeDecl>(ND))
706       return WantTypeSpecifiers;
707 
708     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
709       return false;
710 
711     if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
712       return true;
713 
714     for (auto *C : candidate) {
715       NamedDecl *ND = C->getUnderlyingDecl();
716       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
717         return true;
718     }
719     return false;
720   }
721 
722   std::unique_ptr<CorrectionCandidateCallback> clone() override {
723     return std::make_unique<CastExpressionIdValidator>(*this);
724   }
725 
726  private:
727   Token NextToken;
728   bool AllowNonTypes;
729 };
730 }
731 
732 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
733 /// a unary-expression.
734 ///
735 /// \p isAddressOfOperand exists because an id-expression that is the operand
736 /// of address-of gets special treatment due to member pointers. NotCastExpr
737 /// is set to true if the token is not the start of a cast-expression, and no
738 /// diagnostic is emitted in this case and no tokens are consumed.
739 ///
740 /// \verbatim
741 ///       cast-expression: [C99 6.5.4]
742 ///         unary-expression
743 ///         '(' type-name ')' cast-expression
744 ///
745 ///       unary-expression:  [C99 6.5.3]
746 ///         postfix-expression
747 ///         '++' unary-expression
748 ///         '--' unary-expression
749 /// [Coro]  'co_await' cast-expression
750 ///         unary-operator cast-expression
751 ///         'sizeof' unary-expression
752 ///         'sizeof' '(' type-name ')'
753 /// [C++11] 'sizeof' '...' '(' identifier ')'
754 /// [GNU]   '__alignof' unary-expression
755 /// [GNU]   '__alignof' '(' type-name ')'
756 /// [C11]   '_Alignof' '(' type-name ')'
757 /// [C++11] 'alignof' '(' type-id ')'
758 /// [GNU]   '&&' identifier
759 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
760 /// [C++]   new-expression
761 /// [C++]   delete-expression
762 ///
763 ///       unary-operator: one of
764 ///         '&'  '*'  '+'  '-'  '~'  '!'
765 /// [GNU]   '__extension__'  '__real'  '__imag'
766 ///
767 ///       primary-expression: [C99 6.5.1]
768 /// [C99]   identifier
769 /// [C++]   id-expression
770 ///         constant
771 ///         string-literal
772 /// [C++]   boolean-literal  [C++ 2.13.5]
773 /// [C++11] 'nullptr'        [C++11 2.14.7]
774 /// [C++11] user-defined-literal
775 ///         '(' expression ')'
776 /// [C11]   generic-selection
777 /// [C++2a] requires-expression
778 ///         '__func__'        [C99 6.4.2.2]
779 /// [GNU]   '__FUNCTION__'
780 /// [MS]    '__FUNCDNAME__'
781 /// [MS]    'L__FUNCTION__'
782 /// [MS]    '__FUNCSIG__'
783 /// [MS]    'L__FUNCSIG__'
784 /// [GNU]   '__PRETTY_FUNCTION__'
785 /// [GNU]   '(' compound-statement ')'
786 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
787 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
788 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
789 ///                                     assign-expr ')'
790 /// [GNU]   '__builtin_FILE' '(' ')'
791 /// [GNU]   '__builtin_FUNCTION' '(' ')'
792 /// [GNU]   '__builtin_LINE' '(' ')'
793 /// [CLANG] '__builtin_COLUMN' '(' ')'
794 /// [GNU]   '__builtin_source_location' '(' ')'
795 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
796 /// [GNU]   '__null'
797 /// [OBJC]  '[' objc-message-expr ']'
798 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
799 /// [OBJC]  '\@protocol' '(' identifier ')'
800 /// [OBJC]  '\@encode' '(' type-name ')'
801 /// [OBJC]  objc-string-literal
802 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
803 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
804 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
805 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
806 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
807 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
808 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
809 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
810 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
811 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
812 /// [C++]   'this'          [C++ 9.3.2]
813 /// [G++]   unary-type-trait '(' type-id ')'
814 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
815 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
816 /// [clang] '^' block-literal
817 ///
818 ///       constant: [C99 6.4.4]
819 ///         integer-constant
820 ///         floating-constant
821 ///         enumeration-constant -> identifier
822 ///         character-constant
823 ///
824 ///       id-expression: [C++ 5.1]
825 ///                   unqualified-id
826 ///                   qualified-id
827 ///
828 ///       unqualified-id: [C++ 5.1]
829 ///                   identifier
830 ///                   operator-function-id
831 ///                   conversion-function-id
832 ///                   '~' class-name
833 ///                   template-id
834 ///
835 ///       new-expression: [C++ 5.3.4]
836 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
837 ///                                     new-initializer[opt]
838 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
839 ///                                     new-initializer[opt]
840 ///
841 ///       delete-expression: [C++ 5.3.5]
842 ///                   '::'[opt] 'delete' cast-expression
843 ///                   '::'[opt] 'delete' '[' ']' cast-expression
844 ///
845 /// [GNU/Embarcadero] unary-type-trait:
846 ///                   '__is_arithmetic'
847 ///                   '__is_floating_point'
848 ///                   '__is_integral'
849 ///                   '__is_lvalue_expr'
850 ///                   '__is_rvalue_expr'
851 ///                   '__is_complete_type'
852 ///                   '__is_void'
853 ///                   '__is_array'
854 ///                   '__is_function'
855 ///                   '__is_reference'
856 ///                   '__is_lvalue_reference'
857 ///                   '__is_rvalue_reference'
858 ///                   '__is_fundamental'
859 ///                   '__is_object'
860 ///                   '__is_scalar'
861 ///                   '__is_compound'
862 ///                   '__is_pointer'
863 ///                   '__is_member_object_pointer'
864 ///                   '__is_member_function_pointer'
865 ///                   '__is_member_pointer'
866 ///                   '__is_const'
867 ///                   '__is_volatile'
868 ///                   '__is_trivial'
869 ///                   '__is_standard_layout'
870 ///                   '__is_signed'
871 ///                   '__is_unsigned'
872 ///
873 /// [GNU] unary-type-trait:
874 ///                   '__has_nothrow_assign'
875 ///                   '__has_nothrow_copy'
876 ///                   '__has_nothrow_constructor'
877 ///                   '__has_trivial_assign'                  [TODO]
878 ///                   '__has_trivial_copy'                    [TODO]
879 ///                   '__has_trivial_constructor'
880 ///                   '__has_trivial_destructor'
881 ///                   '__has_virtual_destructor'
882 ///                   '__is_abstract'                         [TODO]
883 ///                   '__is_class'
884 ///                   '__is_empty'                            [TODO]
885 ///                   '__is_enum'
886 ///                   '__is_final'
887 ///                   '__is_pod'
888 ///                   '__is_polymorphic'
889 ///                   '__is_sealed'                           [MS]
890 ///                   '__is_trivial'
891 ///                   '__is_union'
892 ///                   '__has_unique_object_representations'
893 ///
894 /// [Clang] unary-type-trait:
895 ///                   '__is_aggregate'
896 ///                   '__trivially_copyable'
897 ///
898 ///       binary-type-trait:
899 /// [GNU]             '__is_base_of'
900 /// [MS]              '__is_convertible_to'
901 ///                   '__is_convertible'
902 ///                   '__is_same'
903 ///
904 /// [Embarcadero] array-type-trait:
905 ///                   '__array_rank'
906 ///                   '__array_extent'
907 ///
908 /// [Embarcadero] expression-trait:
909 ///                   '__is_lvalue_expr'
910 ///                   '__is_rvalue_expr'
911 /// \endverbatim
912 ///
913 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
914                                        bool isAddressOfOperand,
915                                        bool &NotCastExpr,
916                                        TypeCastState isTypeCast,
917                                        bool isVectorLiteral,
918                                        bool *NotPrimaryExpression) {
919   ExprResult Res;
920   tok::TokenKind SavedKind = Tok.getKind();
921   auto SavedType = PreferredType;
922   NotCastExpr = false;
923 
924   // Are postfix-expression suffix operators permitted after this
925   // cast-expression? If not, and we find some, we'll parse them anyway and
926   // diagnose them.
927   bool AllowSuffix = true;
928 
929   // This handles all of cast-expression, unary-expression, postfix-expression,
930   // and primary-expression.  We handle them together like this for efficiency
931   // and to simplify handling of an expression starting with a '(' token: which
932   // may be one of a parenthesized expression, cast-expression, compound literal
933   // expression, or statement expression.
934   //
935   // If the parsed tokens consist of a primary-expression, the cases below
936   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
937   // to handle the postfix expression suffixes.  Cases that cannot be followed
938   // by postfix exprs should set AllowSuffix to false.
939   switch (SavedKind) {
940   case tok::l_paren: {
941     // If this expression is limited to being a unary-expression, the paren can
942     // not start a cast expression.
943     ParenParseOption ParenExprType;
944     switch (ParseKind) {
945       case CastParseKind::UnaryExprOnly:
946         if (!getLangOpts().CPlusPlus)
947           ParenExprType = CompoundLiteral;
948         LLVM_FALLTHROUGH;
949       case CastParseKind::AnyCastExpr:
950         ParenExprType = ParenParseOption::CastExpr;
951         break;
952       case CastParseKind::PrimaryExprOnly:
953         ParenExprType = FoldExpr;
954         break;
955     }
956     ParsedType CastTy;
957     SourceLocation RParenLoc;
958     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
959                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
960 
961     // FIXME: What should we do if a vector literal is followed by a
962     // postfix-expression suffix? Usually postfix operators are permitted on
963     // literals.
964     if (isVectorLiteral)
965       return Res;
966 
967     switch (ParenExprType) {
968     case SimpleExpr:   break;    // Nothing else to do.
969     case CompoundStmt: break;  // Nothing else to do.
970     case CompoundLiteral:
971       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
972       // postfix-expression exist, parse them now.
973       break;
974     case CastExpr:
975       // We have parsed the cast-expression and no postfix-expr pieces are
976       // following.
977       return Res;
978     case FoldExpr:
979       // We only parsed a fold-expression. There might be postfix-expr pieces
980       // afterwards; parse them now.
981       break;
982     }
983 
984     break;
985   }
986 
987     // primary-expression
988   case tok::numeric_constant:
989     // constant: integer-constant
990     // constant: floating-constant
991 
992     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
993     ConsumeToken();
994     break;
995 
996   case tok::kw_true:
997   case tok::kw_false:
998     Res = ParseCXXBoolLiteral();
999     break;
1000 
1001   case tok::kw___objc_yes:
1002   case tok::kw___objc_no:
1003     Res = ParseObjCBoolLiteral();
1004     break;
1005 
1006   case tok::kw_nullptr:
1007     Diag(Tok, diag::warn_cxx98_compat_nullptr);
1008     Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1009     break;
1010 
1011   case tok::annot_primary_expr:
1012   case tok::annot_overload_set:
1013     Res = getExprAnnotation(Tok);
1014     if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1015       Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1016     ConsumeAnnotationToken();
1017     if (!Res.isInvalid() && Tok.is(tok::less))
1018       checkPotentialAngleBracket(Res);
1019     break;
1020 
1021   case tok::annot_non_type:
1022   case tok::annot_non_type_dependent:
1023   case tok::annot_non_type_undeclared: {
1024     CXXScopeSpec SS;
1025     Token Replacement;
1026     Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1027     assert(!Res.isUnset() &&
1028            "should not perform typo correction on annotation token");
1029     break;
1030   }
1031 
1032   case tok::kw___super:
1033   case tok::kw_decltype:
1034     // Annotate the token and tail recurse.
1035     if (TryAnnotateTypeOrScopeToken())
1036       return ExprError();
1037     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1038     return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1039                                isVectorLiteral, NotPrimaryExpression);
1040 
1041   case tok::identifier: {      // primary-expression: identifier
1042                                // unqualified-id: identifier
1043                                // constant: enumeration-constant
1044     // Turn a potentially qualified name into a annot_typename or
1045     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
1046     if (getLangOpts().CPlusPlus) {
1047       // Avoid the unnecessary parse-time lookup in the common case
1048       // where the syntax forbids a type.
1049       const Token &Next = NextToken();
1050 
1051       // If this identifier was reverted from a token ID, and the next token
1052       // is a parenthesis, this is likely to be a use of a type trait. Check
1053       // those tokens.
1054       if (Next.is(tok::l_paren) &&
1055           Tok.is(tok::identifier) &&
1056           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1057         IdentifierInfo *II = Tok.getIdentifierInfo();
1058         // Build up the mapping of revertible type traits, for future use.
1059         if (RevertibleTypeTraits.empty()) {
1060 #define RTT_JOIN(X,Y) X##Y
1061 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
1062           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1063             = RTT_JOIN(tok::kw_,Name)
1064 
1065           REVERTIBLE_TYPE_TRAIT(__is_abstract);
1066           REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1067           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1068           REVERTIBLE_TYPE_TRAIT(__is_array);
1069           REVERTIBLE_TYPE_TRAIT(__is_assignable);
1070           REVERTIBLE_TYPE_TRAIT(__is_base_of);
1071           REVERTIBLE_TYPE_TRAIT(__is_class);
1072           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1073           REVERTIBLE_TYPE_TRAIT(__is_compound);
1074           REVERTIBLE_TYPE_TRAIT(__is_const);
1075           REVERTIBLE_TYPE_TRAIT(__is_constructible);
1076           REVERTIBLE_TYPE_TRAIT(__is_convertible);
1077           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1078           REVERTIBLE_TYPE_TRAIT(__is_destructible);
1079           REVERTIBLE_TYPE_TRAIT(__is_empty);
1080           REVERTIBLE_TYPE_TRAIT(__is_enum);
1081           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1082           REVERTIBLE_TYPE_TRAIT(__is_final);
1083           REVERTIBLE_TYPE_TRAIT(__is_function);
1084           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1085           REVERTIBLE_TYPE_TRAIT(__is_integral);
1086           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1087           REVERTIBLE_TYPE_TRAIT(__is_literal);
1088           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1089           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1090           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1091           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1092           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1093           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1094           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1095           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1096           REVERTIBLE_TYPE_TRAIT(__is_object);
1097           REVERTIBLE_TYPE_TRAIT(__is_pod);
1098           REVERTIBLE_TYPE_TRAIT(__is_pointer);
1099           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1100           REVERTIBLE_TYPE_TRAIT(__is_reference);
1101           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1102           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1103           REVERTIBLE_TYPE_TRAIT(__is_same);
1104           REVERTIBLE_TYPE_TRAIT(__is_scalar);
1105           REVERTIBLE_TYPE_TRAIT(__is_sealed);
1106           REVERTIBLE_TYPE_TRAIT(__is_signed);
1107           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1108           REVERTIBLE_TYPE_TRAIT(__is_trivial);
1109           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1110           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1111           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1112           REVERTIBLE_TYPE_TRAIT(__is_union);
1113           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1114           REVERTIBLE_TYPE_TRAIT(__is_void);
1115           REVERTIBLE_TYPE_TRAIT(__is_volatile);
1116 #undef REVERTIBLE_TYPE_TRAIT
1117 #undef RTT_JOIN
1118         }
1119 
1120         // If we find that this is in fact the name of a type trait,
1121         // update the token kind in place and parse again to treat it as
1122         // the appropriate kind of type trait.
1123         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1124           = RevertibleTypeTraits.find(II);
1125         if (Known != RevertibleTypeTraits.end()) {
1126           Tok.setKind(Known->second);
1127           return ParseCastExpression(ParseKind, isAddressOfOperand,
1128                                      NotCastExpr, isTypeCast,
1129                                      isVectorLiteral, NotPrimaryExpression);
1130         }
1131       }
1132 
1133       if ((!ColonIsSacred && Next.is(tok::colon)) ||
1134           Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1135                        tok::l_brace)) {
1136         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1137         if (TryAnnotateTypeOrScopeToken())
1138           return ExprError();
1139         if (!Tok.is(tok::identifier))
1140           return ParseCastExpression(ParseKind, isAddressOfOperand,
1141                                      NotCastExpr, isTypeCast,
1142                                      isVectorLiteral,
1143                                      NotPrimaryExpression);
1144       }
1145     }
1146 
1147     // Consume the identifier so that we can see if it is followed by a '(' or
1148     // '.'.
1149     IdentifierInfo &II = *Tok.getIdentifierInfo();
1150     SourceLocation ILoc = ConsumeToken();
1151 
1152     // Support 'Class.property' and 'super.property' notation.
1153     if (getLangOpts().ObjC && Tok.is(tok::period) &&
1154         (Actions.getTypeName(II, ILoc, getCurScope()) ||
1155          // Allow the base to be 'super' if in an objc-method.
1156          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1157       ConsumeToken();
1158 
1159       if (Tok.is(tok::code_completion) && &II != Ident_super) {
1160         cutOffParsing();
1161         Actions.CodeCompleteObjCClassPropertyRefExpr(
1162             getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1163         return ExprError();
1164       }
1165       // Allow either an identifier or the keyword 'class' (in C++).
1166       if (Tok.isNot(tok::identifier) &&
1167           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1168         Diag(Tok, diag::err_expected_property_name);
1169         return ExprError();
1170       }
1171       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1172       SourceLocation PropertyLoc = ConsumeToken();
1173 
1174       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1175                                               ILoc, PropertyLoc);
1176       break;
1177     }
1178 
1179     // In an Objective-C method, if we have "super" followed by an identifier,
1180     // the token sequence is ill-formed. However, if there's a ':' or ']' after
1181     // that identifier, this is probably a message send with a missing open
1182     // bracket. Treat it as such.
1183     if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1184         getCurScope()->isInObjcMethodScope() &&
1185         ((Tok.is(tok::identifier) &&
1186          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1187          Tok.is(tok::code_completion))) {
1188       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1189                                            nullptr);
1190       break;
1191     }
1192 
1193     // If we have an Objective-C class name followed by an identifier
1194     // and either ':' or ']', this is an Objective-C class message
1195     // send that's missing the opening '['. Recovery
1196     // appropriately. Also take this path if we're performing code
1197     // completion after an Objective-C class name.
1198     if (getLangOpts().ObjC &&
1199         ((Tok.is(tok::identifier) && !InMessageExpression) ||
1200          Tok.is(tok::code_completion))) {
1201       const Token& Next = NextToken();
1202       if (Tok.is(tok::code_completion) ||
1203           Next.is(tok::colon) || Next.is(tok::r_square))
1204         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1205           if (Typ.get()->isObjCObjectOrInterfaceType()) {
1206             // Fake up a Declarator to use with ActOnTypeName.
1207             DeclSpec DS(AttrFactory);
1208             DS.SetRangeStart(ILoc);
1209             DS.SetRangeEnd(ILoc);
1210             const char *PrevSpec = nullptr;
1211             unsigned DiagID;
1212             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1213                                Actions.getASTContext().getPrintingPolicy());
1214 
1215             Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1216                                       DeclaratorContext::TypeName);
1217             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1218                                                   DeclaratorInfo);
1219             if (Ty.isInvalid())
1220               break;
1221 
1222             Res = ParseObjCMessageExpressionBody(SourceLocation(),
1223                                                  SourceLocation(),
1224                                                  Ty.get(), nullptr);
1225             break;
1226           }
1227     }
1228 
1229     // Make sure to pass down the right value for isAddressOfOperand.
1230     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1231       isAddressOfOperand = false;
1232 
1233     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1234     // need to know whether or not this identifier is a function designator or
1235     // not.
1236     UnqualifiedId Name;
1237     CXXScopeSpec ScopeSpec;
1238     SourceLocation TemplateKWLoc;
1239     Token Replacement;
1240     CastExpressionIdValidator Validator(
1241         /*Next=*/Tok,
1242         /*AllowTypes=*/isTypeCast != NotTypeCast,
1243         /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1244     Validator.IsAddressOfOperand = isAddressOfOperand;
1245     if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1246       Validator.WantExpressionKeywords = false;
1247       Validator.WantRemainingKeywords = false;
1248     } else {
1249       Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1250     }
1251     Name.setIdentifier(&II, ILoc);
1252     Res = Actions.ActOnIdExpression(
1253         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1254         isAddressOfOperand, &Validator,
1255         /*IsInlineAsmIdentifier=*/false,
1256         Tok.is(tok::r_paren) ? nullptr : &Replacement);
1257     if (!Res.isInvalid() && Res.isUnset()) {
1258       UnconsumeToken(Replacement);
1259       return ParseCastExpression(ParseKind, isAddressOfOperand,
1260                                  NotCastExpr, isTypeCast,
1261                                  /*isVectorLiteral=*/false,
1262                                  NotPrimaryExpression);
1263     }
1264     if (!Res.isInvalid() && Tok.is(tok::less))
1265       checkPotentialAngleBracket(Res);
1266     break;
1267   }
1268   case tok::char_constant:     // constant: character-constant
1269   case tok::wide_char_constant:
1270   case tok::utf8_char_constant:
1271   case tok::utf16_char_constant:
1272   case tok::utf32_char_constant:
1273     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1274     ConsumeToken();
1275     break;
1276   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
1277   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
1278   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
1279   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
1280   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
1281   case tok::kw_L__FUNCSIG__:    // primary-expression: L__FUNCSIG__ [MS]
1282   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
1283     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1284     ConsumeToken();
1285     break;
1286   case tok::string_literal:    // primary-expression: string-literal
1287   case tok::wide_string_literal:
1288   case tok::utf8_string_literal:
1289   case tok::utf16_string_literal:
1290   case tok::utf32_string_literal:
1291     Res = ParseStringLiteralExpression(true);
1292     break;
1293   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
1294     Res = ParseGenericSelectionExpression();
1295     break;
1296   case tok::kw___builtin_available:
1297     Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1298     break;
1299   case tok::kw___builtin_va_arg:
1300   case tok::kw___builtin_offsetof:
1301   case tok::kw___builtin_choose_expr:
1302   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1303   case tok::kw___builtin_convertvector:
1304   case tok::kw___builtin_COLUMN:
1305   case tok::kw___builtin_FILE:
1306   case tok::kw___builtin_FUNCTION:
1307   case tok::kw___builtin_LINE:
1308   case tok::kw___builtin_source_location:
1309     if (NotPrimaryExpression)
1310       *NotPrimaryExpression = true;
1311     // This parses the complete suffix; we can return early.
1312     return ParseBuiltinPrimaryExpression();
1313   case tok::kw___null:
1314     Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1315     break;
1316 
1317   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
1318   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
1319     if (NotPrimaryExpression)
1320       *NotPrimaryExpression = true;
1321     // C++ [expr.unary] has:
1322     //   unary-expression:
1323     //     ++ cast-expression
1324     //     -- cast-expression
1325     Token SavedTok = Tok;
1326     ConsumeToken();
1327 
1328     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1329                              SavedTok.getLocation());
1330     // One special case is implicitly handled here: if the preceding tokens are
1331     // an ambiguous cast expression, such as "(T())++", then we recurse to
1332     // determine whether the '++' is prefix or postfix.
1333     Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1334                                   UnaryExprOnly : AnyCastExpr,
1335                               /*isAddressOfOperand*/false, NotCastExpr,
1336                               NotTypeCast);
1337     if (NotCastExpr) {
1338       // If we return with NotCastExpr = true, we must not consume any tokens,
1339       // so put the token back where we found it.
1340       assert(Res.isInvalid());
1341       UnconsumeToken(SavedTok);
1342       return ExprError();
1343     }
1344     if (!Res.isInvalid()) {
1345       Expr *Arg = Res.get();
1346       Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1347                                  SavedKind, Arg);
1348       if (Res.isInvalid())
1349         Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1350                                          Arg->getEndLoc(), Arg);
1351     }
1352     return Res;
1353   }
1354   case tok::amp: {         // unary-expression: '&' cast-expression
1355     if (NotPrimaryExpression)
1356       *NotPrimaryExpression = true;
1357     // Special treatment because of member pointers
1358     SourceLocation SavedLoc = ConsumeToken();
1359     PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1360     Res = ParseCastExpression(AnyCastExpr, true);
1361     if (!Res.isInvalid()) {
1362       Expr *Arg = Res.get();
1363       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1364       if (Res.isInvalid())
1365         Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1366                                          Arg);
1367     }
1368     return Res;
1369   }
1370 
1371   case tok::star:          // unary-expression: '*' cast-expression
1372   case tok::plus:          // unary-expression: '+' cast-expression
1373   case tok::minus:         // unary-expression: '-' cast-expression
1374   case tok::tilde:         // unary-expression: '~' cast-expression
1375   case tok::exclaim:       // unary-expression: '!' cast-expression
1376   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1377   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1378     if (NotPrimaryExpression)
1379       *NotPrimaryExpression = true;
1380     SourceLocation SavedLoc = ConsumeToken();
1381     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1382     Res = ParseCastExpression(AnyCastExpr);
1383     if (!Res.isInvalid()) {
1384       Expr *Arg = Res.get();
1385       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1386       if (Res.isInvalid())
1387         Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1388     }
1389     return Res;
1390   }
1391 
1392   case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
1393     if (NotPrimaryExpression)
1394       *NotPrimaryExpression = true;
1395     SourceLocation CoawaitLoc = ConsumeToken();
1396     Res = ParseCastExpression(AnyCastExpr);
1397     if (!Res.isInvalid())
1398       Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1399     return Res;
1400   }
1401 
1402   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1403     // __extension__ silences extension warnings in the subexpression.
1404     if (NotPrimaryExpression)
1405       *NotPrimaryExpression = true;
1406     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1407     SourceLocation SavedLoc = ConsumeToken();
1408     Res = ParseCastExpression(AnyCastExpr);
1409     if (!Res.isInvalid())
1410       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1411     return Res;
1412   }
1413   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1414     if (!getLangOpts().C11)
1415       Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1416     LLVM_FALLTHROUGH;
1417   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1418   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1419                            // unary-expression: '__alignof' '(' type-name ')'
1420   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1421                            // unary-expression: 'sizeof' '(' type-name ')'
1422   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1423   // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1424   case tok::kw___builtin_omp_required_simd_align:
1425     if (NotPrimaryExpression)
1426       *NotPrimaryExpression = true;
1427     AllowSuffix = false;
1428     Res = ParseUnaryExprOrTypeTraitExpression();
1429     break;
1430   case tok::ampamp: {      // unary-expression: '&&' identifier
1431     if (NotPrimaryExpression)
1432       *NotPrimaryExpression = true;
1433     SourceLocation AmpAmpLoc = ConsumeToken();
1434     if (Tok.isNot(tok::identifier))
1435       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1436 
1437     if (getCurScope()->getFnParent() == nullptr)
1438       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1439 
1440     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1441     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1442                                                 Tok.getLocation());
1443     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1444     ConsumeToken();
1445     AllowSuffix = false;
1446     break;
1447   }
1448   case tok::kw_const_cast:
1449   case tok::kw_dynamic_cast:
1450   case tok::kw_reinterpret_cast:
1451   case tok::kw_static_cast:
1452   case tok::kw_addrspace_cast:
1453     if (NotPrimaryExpression)
1454       *NotPrimaryExpression = true;
1455     Res = ParseCXXCasts();
1456     break;
1457   case tok::kw___builtin_bit_cast:
1458     if (NotPrimaryExpression)
1459       *NotPrimaryExpression = true;
1460     Res = ParseBuiltinBitCast();
1461     break;
1462   case tok::kw_typeid:
1463     if (NotPrimaryExpression)
1464       *NotPrimaryExpression = true;
1465     Res = ParseCXXTypeid();
1466     break;
1467   case tok::kw___uuidof:
1468     if (NotPrimaryExpression)
1469       *NotPrimaryExpression = true;
1470     Res = ParseCXXUuidof();
1471     break;
1472   case tok::kw_this:
1473     Res = ParseCXXThis();
1474     break;
1475   case tok::kw___builtin_sycl_unique_stable_name:
1476     Res = ParseSYCLUniqueStableNameExpression();
1477     break;
1478 
1479   case tok::annot_typename:
1480     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1481       TypeResult Type = getTypeAnnotation(Tok);
1482 
1483       // Fake up a Declarator to use with ActOnTypeName.
1484       DeclSpec DS(AttrFactory);
1485       DS.SetRangeStart(Tok.getLocation());
1486       DS.SetRangeEnd(Tok.getLastLoc());
1487 
1488       const char *PrevSpec = nullptr;
1489       unsigned DiagID;
1490       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1491                          PrevSpec, DiagID, Type,
1492                          Actions.getASTContext().getPrintingPolicy());
1493 
1494       Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1495                                 DeclaratorContext::TypeName);
1496       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1497       if (Ty.isInvalid())
1498         break;
1499 
1500       ConsumeAnnotationToken();
1501       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1502                                            Ty.get(), nullptr);
1503       break;
1504     }
1505     LLVM_FALLTHROUGH;
1506 
1507   case tok::annot_decltype:
1508   case tok::kw_char:
1509   case tok::kw_wchar_t:
1510   case tok::kw_char8_t:
1511   case tok::kw_char16_t:
1512   case tok::kw_char32_t:
1513   case tok::kw_bool:
1514   case tok::kw_short:
1515   case tok::kw_int:
1516   case tok::kw_long:
1517   case tok::kw___int64:
1518   case tok::kw___int128:
1519   case tok::kw__ExtInt:
1520   case tok::kw__BitInt:
1521   case tok::kw_signed:
1522   case tok::kw_unsigned:
1523   case tok::kw_half:
1524   case tok::kw_float:
1525   case tok::kw_double:
1526   case tok::kw___bf16:
1527   case tok::kw__Float16:
1528   case tok::kw___float128:
1529   case tok::kw___ibm128:
1530   case tok::kw_void:
1531   case tok::kw_auto:
1532   case tok::kw_typename:
1533   case tok::kw_typeof:
1534   case tok::kw___vector:
1535 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1536 #include "clang/Basic/OpenCLImageTypes.def"
1537   {
1538     if (!getLangOpts().CPlusPlus) {
1539       Diag(Tok, diag::err_expected_expression);
1540       return ExprError();
1541     }
1542 
1543     // Everything henceforth is a postfix-expression.
1544     if (NotPrimaryExpression)
1545       *NotPrimaryExpression = true;
1546 
1547     if (SavedKind == tok::kw_typename) {
1548       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1549       //                     typename-specifier braced-init-list
1550       if (TryAnnotateTypeOrScopeToken())
1551         return ExprError();
1552 
1553       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1554         // We are trying to parse a simple-type-specifier but might not get such
1555         // a token after error recovery.
1556         return ExprError();
1557     }
1558 
1559     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1560     //                     simple-type-specifier braced-init-list
1561     //
1562     DeclSpec DS(AttrFactory);
1563 
1564     ParseCXXSimpleTypeSpecifier(DS);
1565     if (Tok.isNot(tok::l_paren) &&
1566         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1567       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1568                          << DS.getSourceRange());
1569 
1570     if (Tok.is(tok::l_brace))
1571       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1572 
1573     Res = ParseCXXTypeConstructExpression(DS);
1574     break;
1575   }
1576 
1577   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1578     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1579     // (We can end up in this situation after tentative parsing.)
1580     if (TryAnnotateTypeOrScopeToken())
1581       return ExprError();
1582     if (!Tok.is(tok::annot_cxxscope))
1583       return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1584                                  isTypeCast, isVectorLiteral,
1585                                  NotPrimaryExpression);
1586 
1587     Token Next = NextToken();
1588     if (Next.is(tok::annot_template_id)) {
1589       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1590       if (TemplateId->Kind == TNK_Type_template) {
1591         // We have a qualified template-id that we know refers to a
1592         // type, translate it into a type and continue parsing as a
1593         // cast expression.
1594         CXXScopeSpec SS;
1595         ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1596                                        /*ObjectHasErrors=*/false,
1597                                        /*EnteringContext=*/false);
1598         AnnotateTemplateIdTokenAsType(SS);
1599         return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1600                                    isTypeCast, isVectorLiteral,
1601                                    NotPrimaryExpression);
1602       }
1603     }
1604 
1605     // Parse as an id-expression.
1606     Res = ParseCXXIdExpression(isAddressOfOperand);
1607     break;
1608   }
1609 
1610   case tok::annot_template_id: { // [C++]          template-id
1611     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1612     if (TemplateId->Kind == TNK_Type_template) {
1613       // We have a template-id that we know refers to a type,
1614       // translate it into a type and continue parsing as a cast
1615       // expression.
1616       CXXScopeSpec SS;
1617       AnnotateTemplateIdTokenAsType(SS);
1618       return ParseCastExpression(ParseKind, isAddressOfOperand,
1619                                  NotCastExpr, isTypeCast, isVectorLiteral,
1620                                  NotPrimaryExpression);
1621     }
1622 
1623     // Fall through to treat the template-id as an id-expression.
1624     LLVM_FALLTHROUGH;
1625   }
1626 
1627   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1628     Res = ParseCXXIdExpression(isAddressOfOperand);
1629     break;
1630 
1631   case tok::coloncolon: {
1632     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1633     // annotates the token, tail recurse.
1634     if (TryAnnotateTypeOrScopeToken())
1635       return ExprError();
1636     if (!Tok.is(tok::coloncolon))
1637       return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1638                                  isVectorLiteral, NotPrimaryExpression);
1639 
1640     // ::new -> [C++] new-expression
1641     // ::delete -> [C++] delete-expression
1642     SourceLocation CCLoc = ConsumeToken();
1643     if (Tok.is(tok::kw_new)) {
1644       if (NotPrimaryExpression)
1645         *NotPrimaryExpression = true;
1646       Res = ParseCXXNewExpression(true, CCLoc);
1647       AllowSuffix = false;
1648       break;
1649     }
1650     if (Tok.is(tok::kw_delete)) {
1651       if (NotPrimaryExpression)
1652         *NotPrimaryExpression = true;
1653       Res = ParseCXXDeleteExpression(true, CCLoc);
1654       AllowSuffix = false;
1655       break;
1656     }
1657 
1658     // This is not a type name or scope specifier, it is an invalid expression.
1659     Diag(CCLoc, diag::err_expected_expression);
1660     return ExprError();
1661   }
1662 
1663   case tok::kw_new: // [C++] new-expression
1664     if (NotPrimaryExpression)
1665       *NotPrimaryExpression = true;
1666     Res = ParseCXXNewExpression(false, Tok.getLocation());
1667     AllowSuffix = false;
1668     break;
1669 
1670   case tok::kw_delete: // [C++] delete-expression
1671     if (NotPrimaryExpression)
1672       *NotPrimaryExpression = true;
1673     Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1674     AllowSuffix = false;
1675     break;
1676 
1677   case tok::kw_requires: // [C++2a] requires-expression
1678     Res = ParseRequiresExpression();
1679     AllowSuffix = false;
1680     break;
1681 
1682   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1683     if (NotPrimaryExpression)
1684       *NotPrimaryExpression = true;
1685     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1686     SourceLocation KeyLoc = ConsumeToken();
1687     BalancedDelimiterTracker T(*this, tok::l_paren);
1688 
1689     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1690       return ExprError();
1691     // C++11 [expr.unary.noexcept]p1:
1692     //   The noexcept operator determines whether the evaluation of its operand,
1693     //   which is an unevaluated operand, can throw an exception.
1694     EnterExpressionEvaluationContext Unevaluated(
1695         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1696     Res = ParseExpression();
1697 
1698     T.consumeClose();
1699 
1700     if (!Res.isInvalid())
1701       Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1702                                       T.getCloseLocation());
1703     AllowSuffix = false;
1704     break;
1705   }
1706 
1707 #define TYPE_TRAIT(N,Spelling,K) \
1708   case tok::kw_##Spelling:
1709 #include "clang/Basic/TokenKinds.def"
1710     Res = ParseTypeTrait();
1711     break;
1712 
1713   case tok::kw___array_rank:
1714   case tok::kw___array_extent:
1715     if (NotPrimaryExpression)
1716       *NotPrimaryExpression = true;
1717     Res = ParseArrayTypeTrait();
1718     break;
1719 
1720   case tok::kw___is_lvalue_expr:
1721   case tok::kw___is_rvalue_expr:
1722     if (NotPrimaryExpression)
1723       *NotPrimaryExpression = true;
1724     Res = ParseExpressionTrait();
1725     break;
1726 
1727   case tok::at: {
1728     if (NotPrimaryExpression)
1729       *NotPrimaryExpression = true;
1730     SourceLocation AtLoc = ConsumeToken();
1731     return ParseObjCAtExpression(AtLoc);
1732   }
1733   case tok::caret:
1734     Res = ParseBlockLiteralExpression();
1735     break;
1736   case tok::code_completion: {
1737     cutOffParsing();
1738     Actions.CodeCompleteExpression(getCurScope(),
1739                                    PreferredType.get(Tok.getLocation()));
1740     return ExprError();
1741   }
1742   case tok::l_square:
1743     if (getLangOpts().CPlusPlus11) {
1744       if (getLangOpts().ObjC) {
1745         // C++11 lambda expressions and Objective-C message sends both start with a
1746         // square bracket.  There are three possibilities here:
1747         // we have a valid lambda expression, we have an invalid lambda
1748         // expression, or we have something that doesn't appear to be a lambda.
1749         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1750         Res = TryParseLambdaExpression();
1751         if (!Res.isInvalid() && !Res.get()) {
1752           // We assume Objective-C++ message expressions are not
1753           // primary-expressions.
1754           if (NotPrimaryExpression)
1755             *NotPrimaryExpression = true;
1756           Res = ParseObjCMessageExpression();
1757         }
1758         break;
1759       }
1760       Res = ParseLambdaExpression();
1761       break;
1762     }
1763     if (getLangOpts().ObjC) {
1764       Res = ParseObjCMessageExpression();
1765       break;
1766     }
1767     LLVM_FALLTHROUGH;
1768   default:
1769     NotCastExpr = true;
1770     return ExprError();
1771   }
1772 
1773   // Check to see whether Res is a function designator only. If it is and we
1774   // are compiling for OpenCL, we need to return an error as this implies
1775   // that the address of the function is being taken, which is illegal in CL.
1776 
1777   if (ParseKind == PrimaryExprOnly)
1778     // This is strictly a primary-expression - no postfix-expr pieces should be
1779     // parsed.
1780     return Res;
1781 
1782   if (!AllowSuffix) {
1783     // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1784     // error already.
1785     if (Res.isInvalid())
1786       return Res;
1787 
1788     switch (Tok.getKind()) {
1789     case tok::l_square:
1790     case tok::l_paren:
1791     case tok::plusplus:
1792     case tok::minusminus:
1793       // "expected ';'" or similar is probably the right diagnostic here. Let
1794       // the caller decide what to do.
1795       if (Tok.isAtStartOfLine())
1796         return Res;
1797 
1798       LLVM_FALLTHROUGH;
1799     case tok::period:
1800     case tok::arrow:
1801       break;
1802 
1803     default:
1804       return Res;
1805     }
1806 
1807     // This was a unary-expression for which a postfix-expression suffix is
1808     // not permitted by the grammar (eg, a sizeof expression or
1809     // new-expression or similar). Diagnose but parse the suffix anyway.
1810     Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1811         << Tok.getKind() << Res.get()->getSourceRange()
1812         << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1813         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1814                                       ")");
1815   }
1816 
1817   // These can be followed by postfix-expr pieces.
1818   PreferredType = SavedType;
1819   Res = ParsePostfixExpressionSuffix(Res);
1820   if (getLangOpts().OpenCL &&
1821       !getActions().getOpenCLOptions().isAvailableOption(
1822           "__cl_clang_function_pointers", getLangOpts()))
1823     if (Expr *PostfixExpr = Res.get()) {
1824       QualType Ty = PostfixExpr->getType();
1825       if (!Ty.isNull() && Ty->isFunctionType()) {
1826         Diag(PostfixExpr->getExprLoc(),
1827              diag::err_opencl_taking_function_address_parser);
1828         return ExprError();
1829       }
1830     }
1831 
1832   return Res;
1833 }
1834 
1835 /// Once the leading part of a postfix-expression is parsed, this
1836 /// method parses any suffixes that apply.
1837 ///
1838 /// \verbatim
1839 ///       postfix-expression: [C99 6.5.2]
1840 ///         primary-expression
1841 ///         postfix-expression '[' expression ']'
1842 ///         postfix-expression '[' braced-init-list ']'
1843 ///         postfix-expression '[' expression-list [opt] ']'  [C++2b 12.4.5]
1844 ///         postfix-expression '(' argument-expression-list[opt] ')'
1845 ///         postfix-expression '.' identifier
1846 ///         postfix-expression '->' identifier
1847 ///         postfix-expression '++'
1848 ///         postfix-expression '--'
1849 ///         '(' type-name ')' '{' initializer-list '}'
1850 ///         '(' type-name ')' '{' initializer-list ',' '}'
1851 ///
1852 ///       argument-expression-list: [C99 6.5.2]
1853 ///         argument-expression ...[opt]
1854 ///         argument-expression-list ',' assignment-expression ...[opt]
1855 /// \endverbatim
1856 ExprResult
1857 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1858   // Now that the primary-expression piece of the postfix-expression has been
1859   // parsed, see if there are any postfix-expression pieces here.
1860   SourceLocation Loc;
1861   auto SavedType = PreferredType;
1862   while (true) {
1863     // Each iteration relies on preferred type for the whole expression.
1864     PreferredType = SavedType;
1865     switch (Tok.getKind()) {
1866     case tok::code_completion:
1867       if (InMessageExpression)
1868         return LHS;
1869 
1870       cutOffParsing();
1871       Actions.CodeCompletePostfixExpression(
1872           getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1873       return ExprError();
1874 
1875     case tok::identifier:
1876       // If we see identifier: after an expression, and we're not already in a
1877       // message send, then this is probably a message send with a missing
1878       // opening bracket '['.
1879       if (getLangOpts().ObjC && !InMessageExpression &&
1880           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1881         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1882                                              nullptr, LHS.get());
1883         break;
1884       }
1885       // Fall through; this isn't a message send.
1886       LLVM_FALLTHROUGH;
1887 
1888     default:  // Not a postfix-expression suffix.
1889       return LHS;
1890     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1891       // If we have a array postfix expression that starts on a new line and
1892       // Objective-C is enabled, it is highly likely that the user forgot a
1893       // semicolon after the base expression and that the array postfix-expr is
1894       // actually another message send.  In this case, do some look-ahead to see
1895       // if the contents of the square brackets are obviously not a valid
1896       // expression and recover by pretending there is no suffix.
1897       if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1898           isSimpleObjCMessageExpression())
1899         return LHS;
1900 
1901       // Reject array indices starting with a lambda-expression. '[[' is
1902       // reserved for attributes.
1903       if (CheckProhibitedCXX11Attribute()) {
1904         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1905         return ExprError();
1906       }
1907       BalancedDelimiterTracker T(*this, tok::l_square);
1908       T.consumeOpen();
1909       Loc = T.getOpenLocation();
1910       ExprResult Length, Stride;
1911       SourceLocation ColonLocFirst, ColonLocSecond;
1912       ExprVector ArgExprs;
1913       bool HasError = false;
1914       PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1915 
1916       // We try to parse a list of indexes in all language mode first
1917       // and, in we find 0 or one index, we try to parse an OpenMP array
1918       // section. This allow us to support C++2b multi dimensional subscript and
1919       // OpenMp sections in the same language mode.
1920       if (!getLangOpts().OpenMP || Tok.isNot(tok::colon)) {
1921         if (!getLangOpts().CPlusPlus2b) {
1922           ExprResult Idx;
1923           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1924             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1925             Idx = ParseBraceInitializer();
1926           } else {
1927             Idx = ParseExpression(); // May be a comma expression
1928           }
1929           LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1930           Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1931           if (Idx.isInvalid()) {
1932             HasError = true;
1933           } else {
1934             ArgExprs.push_back(Idx.get());
1935           }
1936         } else if (Tok.isNot(tok::r_square)) {
1937           CommaLocsTy CommaLocs;
1938           if (ParseExpressionList(ArgExprs, CommaLocs)) {
1939             LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1940             HasError = true;
1941           }
1942           assert(
1943               (ArgExprs.empty() || ArgExprs.size() == CommaLocs.size() + 1) &&
1944               "Unexpected number of commas!");
1945         }
1946       }
1947 
1948       if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) {
1949         ColonProtectionRAIIObject RAII(*this);
1950         if (Tok.is(tok::colon)) {
1951           // Consume ':'
1952           ColonLocFirst = ConsumeToken();
1953           if (Tok.isNot(tok::r_square) &&
1954               (getLangOpts().OpenMP < 50 ||
1955                ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) {
1956             Length = ParseExpression();
1957             Length = Actions.CorrectDelayedTyposInExpr(Length);
1958           }
1959         }
1960         if (getLangOpts().OpenMP >= 50 &&
1961             (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
1962              OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
1963             Tok.is(tok::colon)) {
1964           // Consume ':'
1965           ColonLocSecond = ConsumeToken();
1966           if (Tok.isNot(tok::r_square)) {
1967             Stride = ParseExpression();
1968           }
1969         }
1970       }
1971 
1972       SourceLocation RLoc = Tok.getLocation();
1973       LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1974 
1975       if (!LHS.isInvalid() && !HasError && !Length.isInvalid() &&
1976           !Stride.isInvalid() && Tok.is(tok::r_square)) {
1977         if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
1978           LHS = Actions.ActOnOMPArraySectionExpr(
1979               LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
1980               ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), RLoc);
1981         } else {
1982           LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1983                                                 ArgExprs, RLoc);
1984         }
1985       } else {
1986         LHS = ExprError();
1987       }
1988 
1989       // Match the ']'.
1990       T.consumeClose();
1991       break;
1992     }
1993 
1994     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1995     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1996                                //   '(' argument-expression-list[opt] ')'
1997       tok::TokenKind OpKind = Tok.getKind();
1998       InMessageExpressionRAIIObject InMessage(*this, false);
1999 
2000       Expr *ExecConfig = nullptr;
2001 
2002       BalancedDelimiterTracker PT(*this, tok::l_paren);
2003 
2004       if (OpKind == tok::lesslessless) {
2005         ExprVector ExecConfigExprs;
2006         CommaLocsTy ExecConfigCommaLocs;
2007         SourceLocation OpenLoc = ConsumeToken();
2008 
2009         if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
2010           (void)Actions.CorrectDelayedTyposInExpr(LHS);
2011           LHS = ExprError();
2012         }
2013 
2014         SourceLocation CloseLoc;
2015         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
2016         } else if (LHS.isInvalid()) {
2017           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2018         } else {
2019           // There was an error closing the brackets
2020           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
2021           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
2022           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2023           LHS = ExprError();
2024         }
2025 
2026         if (!LHS.isInvalid()) {
2027           if (ExpectAndConsume(tok::l_paren))
2028             LHS = ExprError();
2029           else
2030             Loc = PrevTokLocation;
2031         }
2032 
2033         if (!LHS.isInvalid()) {
2034           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
2035                                     OpenLoc,
2036                                     ExecConfigExprs,
2037                                     CloseLoc);
2038           if (ECResult.isInvalid())
2039             LHS = ExprError();
2040           else
2041             ExecConfig = ECResult.get();
2042         }
2043       } else {
2044         PT.consumeOpen();
2045         Loc = PT.getOpenLocation();
2046       }
2047 
2048       ExprVector ArgExprs;
2049       CommaLocsTy CommaLocs;
2050       auto RunSignatureHelp = [&]() -> QualType {
2051         QualType PreferredType = Actions.ProduceCallSignatureHelp(
2052             LHS.get(), ArgExprs, PT.getOpenLocation());
2053         CalledSignatureHelp = true;
2054         return PreferredType;
2055       };
2056       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2057         if (Tok.isNot(tok::r_paren)) {
2058           if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
2059                 PreferredType.enterFunctionArgument(Tok.getLocation(),
2060                                                     RunSignatureHelp);
2061               })) {
2062             (void)Actions.CorrectDelayedTyposInExpr(LHS);
2063             // If we got an error when parsing expression list, we don't call
2064             // the CodeCompleteCall handler inside the parser. So call it here
2065             // to make sure we get overload suggestions even when we are in the
2066             // middle of a parameter.
2067             if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2068               RunSignatureHelp();
2069             LHS = ExprError();
2070           } else if (LHS.isInvalid()) {
2071             for (auto &E : ArgExprs)
2072               Actions.CorrectDelayedTyposInExpr(E);
2073           }
2074         }
2075       }
2076 
2077       // Match the ')'.
2078       if (LHS.isInvalid()) {
2079         SkipUntil(tok::r_paren, StopAtSemi);
2080       } else if (Tok.isNot(tok::r_paren)) {
2081         bool HadDelayedTypo = false;
2082         if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2083           HadDelayedTypo = true;
2084         for (auto &E : ArgExprs)
2085           if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2086             HadDelayedTypo = true;
2087         // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2088         // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2089         // the unmatched l_paren.
2090         if (HadDelayedTypo)
2091           SkipUntil(tok::r_paren, StopAtSemi);
2092         else
2093           PT.consumeClose();
2094         LHS = ExprError();
2095       } else {
2096         assert(
2097             (ArgExprs.size() == 0 || ArgExprs.size() - 1 == CommaLocs.size()) &&
2098             "Unexpected number of commas!");
2099         Expr *Fn = LHS.get();
2100         SourceLocation RParLoc = Tok.getLocation();
2101         LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2102                                     ExecConfig);
2103         if (LHS.isInvalid()) {
2104           ArgExprs.insert(ArgExprs.begin(), Fn);
2105           LHS =
2106               Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2107         }
2108         PT.consumeClose();
2109       }
2110 
2111       break;
2112     }
2113     case tok::arrow:
2114     case tok::period: {
2115       // postfix-expression: p-e '->' template[opt] id-expression
2116       // postfix-expression: p-e '.' template[opt] id-expression
2117       tok::TokenKind OpKind = Tok.getKind();
2118       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
2119 
2120       CXXScopeSpec SS;
2121       ParsedType ObjectType;
2122       bool MayBePseudoDestructor = false;
2123       Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2124 
2125       PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2126 
2127       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2128         Expr *Base = OrigLHS;
2129         const Type* BaseType = Base->getType().getTypePtrOrNull();
2130         if (BaseType && Tok.is(tok::l_paren) &&
2131             (BaseType->isFunctionType() ||
2132              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2133           Diag(OpLoc, diag::err_function_is_not_record)
2134               << OpKind << Base->getSourceRange()
2135               << FixItHint::CreateRemoval(OpLoc);
2136           return ParsePostfixExpressionSuffix(Base);
2137         }
2138 
2139         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2140                                                    OpKind, ObjectType,
2141                                                    MayBePseudoDestructor);
2142         if (LHS.isInvalid()) {
2143           // Clang will try to perform expression based completion as a
2144           // fallback, which is confusing in case of member references. So we
2145           // stop here without any completions.
2146           if (Tok.is(tok::code_completion)) {
2147             cutOffParsing();
2148             return ExprError();
2149           }
2150           break;
2151         }
2152         ParseOptionalCXXScopeSpecifier(
2153             SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2154             /*EnteringContext=*/false, &MayBePseudoDestructor);
2155         if (SS.isNotEmpty())
2156           ObjectType = nullptr;
2157       }
2158 
2159       if (Tok.is(tok::code_completion)) {
2160         tok::TokenKind CorrectedOpKind =
2161             OpKind == tok::arrow ? tok::period : tok::arrow;
2162         ExprResult CorrectedLHS(/*Invalid=*/true);
2163         if (getLangOpts().CPlusPlus && OrigLHS) {
2164           // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2165           // hack.
2166           Sema::TentativeAnalysisScope Trap(Actions);
2167           CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2168               getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2169               MayBePseudoDestructor);
2170         }
2171 
2172         Expr *Base = LHS.get();
2173         Expr *CorrectedBase = CorrectedLHS.get();
2174         if (!CorrectedBase && !getLangOpts().CPlusPlus)
2175           CorrectedBase = Base;
2176 
2177         // Code completion for a member access expression.
2178         cutOffParsing();
2179         Actions.CodeCompleteMemberReferenceExpr(
2180             getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2181             Base && ExprStatementTokLoc == Base->getBeginLoc(),
2182             PreferredType.get(Tok.getLocation()));
2183 
2184         return ExprError();
2185       }
2186 
2187       if (MayBePseudoDestructor && !LHS.isInvalid()) {
2188         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2189                                        ObjectType);
2190         break;
2191       }
2192 
2193       // Either the action has told us that this cannot be a
2194       // pseudo-destructor expression (based on the type of base
2195       // expression), or we didn't see a '~' in the right place. We
2196       // can still parse a destructor name here, but in that case it
2197       // names a real destructor.
2198       // Allow explicit constructor calls in Microsoft mode.
2199       // FIXME: Add support for explicit call of template constructor.
2200       SourceLocation TemplateKWLoc;
2201       UnqualifiedId Name;
2202       if (getLangOpts().ObjC && OpKind == tok::period &&
2203           Tok.is(tok::kw_class)) {
2204         // Objective-C++:
2205         //   After a '.' in a member access expression, treat the keyword
2206         //   'class' as if it were an identifier.
2207         //
2208         // This hack allows property access to the 'class' method because it is
2209         // such a common method name. For other C++ keywords that are
2210         // Objective-C method names, one must use the message send syntax.
2211         IdentifierInfo *Id = Tok.getIdentifierInfo();
2212         SourceLocation Loc = ConsumeToken();
2213         Name.setIdentifier(Id, Loc);
2214       } else if (ParseUnqualifiedId(
2215                      SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2216                      /*EnteringContext=*/false,
2217                      /*AllowDestructorName=*/true,
2218                      /*AllowConstructorName=*/
2219                      getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2220                      /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2221         (void)Actions.CorrectDelayedTyposInExpr(LHS);
2222         LHS = ExprError();
2223       }
2224 
2225       if (!LHS.isInvalid())
2226         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2227                                             OpKind, SS, TemplateKWLoc, Name,
2228                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2229                                                    : nullptr);
2230       if (!LHS.isInvalid()) {
2231         if (Tok.is(tok::less))
2232           checkPotentialAngleBracket(LHS);
2233       } else if (OrigLHS && Name.isValid()) {
2234         // Preserve the LHS if the RHS is an invalid member.
2235         LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2236                                          Name.getEndLoc(), {OrigLHS});
2237       }
2238       break;
2239     }
2240     case tok::plusplus:    // postfix-expression: postfix-expression '++'
2241     case tok::minusminus:  // postfix-expression: postfix-expression '--'
2242       if (!LHS.isInvalid()) {
2243         Expr *Arg = LHS.get();
2244         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2245                                           Tok.getKind(), Arg);
2246         if (LHS.isInvalid())
2247           LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2248                                            Tok.getLocation(), Arg);
2249       }
2250       ConsumeToken();
2251       break;
2252     }
2253   }
2254 }
2255 
2256 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2257 /// vec_step and we are at the start of an expression or a parenthesized
2258 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2259 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2260 ///
2261 /// \verbatim
2262 ///       unary-expression:  [C99 6.5.3]
2263 ///         'sizeof' unary-expression
2264 ///         'sizeof' '(' type-name ')'
2265 /// [GNU]   '__alignof' unary-expression
2266 /// [GNU]   '__alignof' '(' type-name ')'
2267 /// [C11]   '_Alignof' '(' type-name ')'
2268 /// [C++0x] 'alignof' '(' type-id ')'
2269 ///
2270 /// [GNU]   typeof-specifier:
2271 ///           typeof ( expressions )
2272 ///           typeof ( type-name )
2273 /// [GNU/C++] typeof unary-expression
2274 ///
2275 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2276 ///           vec_step ( expressions )
2277 ///           vec_step ( type-name )
2278 /// \endverbatim
2279 ExprResult
2280 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2281                                            bool &isCastExpr,
2282                                            ParsedType &CastTy,
2283                                            SourceRange &CastRange) {
2284 
2285   assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
2286                        tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
2287                        tok::kw___builtin_omp_required_simd_align) &&
2288          "Not a typeof/sizeof/alignof/vec_step expression!");
2289 
2290   ExprResult Operand;
2291 
2292   // If the operand doesn't start with an '(', it must be an expression.
2293   if (Tok.isNot(tok::l_paren)) {
2294     // If construct allows a form without parenthesis, user may forget to put
2295     // pathenthesis around type name.
2296     if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2297                       tok::kw__Alignof)) {
2298       if (isTypeIdUnambiguously()) {
2299         DeclSpec DS(AttrFactory);
2300         ParseSpecifierQualifierList(DS);
2301         Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2302                                   DeclaratorContext::TypeName);
2303         ParseDeclarator(DeclaratorInfo);
2304 
2305         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2306         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2307         if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2308           Diag(OpTok.getLocation(),
2309                diag::err_expected_parentheses_around_typename)
2310               << OpTok.getName();
2311         } else {
2312           Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2313               << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2314               << FixItHint::CreateInsertion(RParenLoc, ")");
2315         }
2316         isCastExpr = true;
2317         return ExprEmpty();
2318       }
2319     }
2320 
2321     isCastExpr = false;
2322     if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
2323       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2324                                           << tok::l_paren;
2325       return ExprError();
2326     }
2327 
2328     Operand = ParseCastExpression(UnaryExprOnly);
2329   } else {
2330     // If it starts with a '(', we know that it is either a parenthesized
2331     // type-name, or it is a unary-expression that starts with a compound
2332     // literal, or starts with a primary-expression that is a parenthesized
2333     // expression.
2334     ParenParseOption ExprType = CastExpr;
2335     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2336 
2337     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2338                                    false, CastTy, RParenLoc);
2339     CastRange = SourceRange(LParenLoc, RParenLoc);
2340 
2341     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2342     // a type.
2343     if (ExprType == CastExpr) {
2344       isCastExpr = true;
2345       return ExprEmpty();
2346     }
2347 
2348     if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
2349       // GNU typeof in C requires the expression to be parenthesized. Not so for
2350       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2351       // the start of a unary-expression, but doesn't include any postfix
2352       // pieces. Parse these now if present.
2353       if (!Operand.isInvalid())
2354         Operand = ParsePostfixExpressionSuffix(Operand.get());
2355     }
2356   }
2357 
2358   // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2359   isCastExpr = false;
2360   return Operand;
2361 }
2362 
2363 /// Parse a __builtin_sycl_unique_stable_name expression.  Accepts a type-id as
2364 /// a parameter.
2365 ExprResult Parser::ParseSYCLUniqueStableNameExpression() {
2366   assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) &&
2367          "Not __builtin_sycl_unique_stable_name");
2368 
2369   SourceLocation OpLoc = ConsumeToken();
2370   BalancedDelimiterTracker T(*this, tok::l_paren);
2371 
2372   // __builtin_sycl_unique_stable_name expressions are always parenthesized.
2373   if (T.expectAndConsume(diag::err_expected_lparen_after,
2374                          "__builtin_sycl_unique_stable_name"))
2375     return ExprError();
2376 
2377   TypeResult Ty = ParseTypeName();
2378 
2379   if (Ty.isInvalid()) {
2380     T.skipToEnd();
2381     return ExprError();
2382   }
2383 
2384   if (T.consumeClose())
2385     return ExprError();
2386 
2387   return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(),
2388                                                T.getCloseLocation(), Ty.get());
2389 }
2390 
2391 /// Parse a sizeof or alignof expression.
2392 ///
2393 /// \verbatim
2394 ///       unary-expression:  [C99 6.5.3]
2395 ///         'sizeof' unary-expression
2396 ///         'sizeof' '(' type-name ')'
2397 /// [C++11] 'sizeof' '...' '(' identifier ')'
2398 /// [GNU]   '__alignof' unary-expression
2399 /// [GNU]   '__alignof' '(' type-name ')'
2400 /// [C11]   '_Alignof' '(' type-name ')'
2401 /// [C++11] 'alignof' '(' type-id ')'
2402 /// \endverbatim
2403 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2404   assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2405                      tok::kw__Alignof, tok::kw_vec_step,
2406                      tok::kw___builtin_omp_required_simd_align) &&
2407          "Not a sizeof/alignof/vec_step expression!");
2408   Token OpTok = Tok;
2409   ConsumeToken();
2410 
2411   // [C++11] 'sizeof' '...' '(' identifier ')'
2412   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2413     SourceLocation EllipsisLoc = ConsumeToken();
2414     SourceLocation LParenLoc, RParenLoc;
2415     IdentifierInfo *Name = nullptr;
2416     SourceLocation NameLoc;
2417     if (Tok.is(tok::l_paren)) {
2418       BalancedDelimiterTracker T(*this, tok::l_paren);
2419       T.consumeOpen();
2420       LParenLoc = T.getOpenLocation();
2421       if (Tok.is(tok::identifier)) {
2422         Name = Tok.getIdentifierInfo();
2423         NameLoc = ConsumeToken();
2424         T.consumeClose();
2425         RParenLoc = T.getCloseLocation();
2426         if (RParenLoc.isInvalid())
2427           RParenLoc = PP.getLocForEndOfToken(NameLoc);
2428       } else {
2429         Diag(Tok, diag::err_expected_parameter_pack);
2430         SkipUntil(tok::r_paren, StopAtSemi);
2431       }
2432     } else if (Tok.is(tok::identifier)) {
2433       Name = Tok.getIdentifierInfo();
2434       NameLoc = ConsumeToken();
2435       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2436       RParenLoc = PP.getLocForEndOfToken(NameLoc);
2437       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2438         << Name
2439         << FixItHint::CreateInsertion(LParenLoc, "(")
2440         << FixItHint::CreateInsertion(RParenLoc, ")");
2441     } else {
2442       Diag(Tok, diag::err_sizeof_parameter_pack);
2443     }
2444 
2445     if (!Name)
2446       return ExprError();
2447 
2448     EnterExpressionEvaluationContext Unevaluated(
2449         Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2450         Sema::ReuseLambdaContextDecl);
2451 
2452     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2453                                                 OpTok.getLocation(),
2454                                                 *Name, NameLoc,
2455                                                 RParenLoc);
2456   }
2457 
2458   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2459     Diag(OpTok, diag::warn_cxx98_compat_alignof);
2460 
2461   EnterExpressionEvaluationContext Unevaluated(
2462       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2463       Sema::ReuseLambdaContextDecl);
2464 
2465   bool isCastExpr;
2466   ParsedType CastTy;
2467   SourceRange CastRange;
2468   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2469                                                           isCastExpr,
2470                                                           CastTy,
2471                                                           CastRange);
2472 
2473   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2474   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2475     ExprKind = UETT_AlignOf;
2476   else if (OpTok.is(tok::kw___alignof))
2477     ExprKind = UETT_PreferredAlignOf;
2478   else if (OpTok.is(tok::kw_vec_step))
2479     ExprKind = UETT_VecStep;
2480   else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2481     ExprKind = UETT_OpenMPRequiredSimdAlign;
2482 
2483   if (isCastExpr)
2484     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2485                                                  ExprKind,
2486                                                  /*IsType=*/true,
2487                                                  CastTy.getAsOpaquePtr(),
2488                                                  CastRange);
2489 
2490   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2491     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2492 
2493   // If we get here, the operand to the sizeof/alignof was an expression.
2494   if (!Operand.isInvalid())
2495     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2496                                                     ExprKind,
2497                                                     /*IsType=*/false,
2498                                                     Operand.get(),
2499                                                     CastRange);
2500   return Operand;
2501 }
2502 
2503 /// ParseBuiltinPrimaryExpression
2504 ///
2505 /// \verbatim
2506 ///       primary-expression: [C99 6.5.1]
2507 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2508 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2509 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2510 ///                                     assign-expr ')'
2511 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2512 /// [GNU]   '__builtin_FILE' '(' ')'
2513 /// [GNU]   '__builtin_FUNCTION' '(' ')'
2514 /// [GNU]   '__builtin_LINE' '(' ')'
2515 /// [CLANG] '__builtin_COLUMN' '(' ')'
2516 /// [GNU]   '__builtin_source_location' '(' ')'
2517 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
2518 ///
2519 /// [GNU] offsetof-member-designator:
2520 /// [GNU]   identifier
2521 /// [GNU]   offsetof-member-designator '.' identifier
2522 /// [GNU]   offsetof-member-designator '[' expression ']'
2523 /// \endverbatim
2524 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2525   ExprResult Res;
2526   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2527 
2528   tok::TokenKind T = Tok.getKind();
2529   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
2530 
2531   // All of these start with an open paren.
2532   if (Tok.isNot(tok::l_paren))
2533     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2534                                                          << tok::l_paren);
2535 
2536   BalancedDelimiterTracker PT(*this, tok::l_paren);
2537   PT.consumeOpen();
2538 
2539   // TODO: Build AST.
2540 
2541   switch (T) {
2542   default: llvm_unreachable("Not a builtin primary expression!");
2543   case tok::kw___builtin_va_arg: {
2544     ExprResult Expr(ParseAssignmentExpression());
2545 
2546     if (ExpectAndConsume(tok::comma)) {
2547       SkipUntil(tok::r_paren, StopAtSemi);
2548       Expr = ExprError();
2549     }
2550 
2551     TypeResult Ty = ParseTypeName();
2552 
2553     if (Tok.isNot(tok::r_paren)) {
2554       Diag(Tok, diag::err_expected) << tok::r_paren;
2555       Expr = ExprError();
2556     }
2557 
2558     if (Expr.isInvalid() || Ty.isInvalid())
2559       Res = ExprError();
2560     else
2561       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2562     break;
2563   }
2564   case tok::kw___builtin_offsetof: {
2565     SourceLocation TypeLoc = Tok.getLocation();
2566     TypeResult Ty = ParseTypeName();
2567     if (Ty.isInvalid()) {
2568       SkipUntil(tok::r_paren, StopAtSemi);
2569       return ExprError();
2570     }
2571 
2572     if (ExpectAndConsume(tok::comma)) {
2573       SkipUntil(tok::r_paren, StopAtSemi);
2574       return ExprError();
2575     }
2576 
2577     // We must have at least one identifier here.
2578     if (Tok.isNot(tok::identifier)) {
2579       Diag(Tok, diag::err_expected) << tok::identifier;
2580       SkipUntil(tok::r_paren, StopAtSemi);
2581       return ExprError();
2582     }
2583 
2584     // Keep track of the various subcomponents we see.
2585     SmallVector<Sema::OffsetOfComponent, 4> Comps;
2586 
2587     Comps.push_back(Sema::OffsetOfComponent());
2588     Comps.back().isBrackets = false;
2589     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2590     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2591 
2592     // FIXME: This loop leaks the index expressions on error.
2593     while (true) {
2594       if (Tok.is(tok::period)) {
2595         // offsetof-member-designator: offsetof-member-designator '.' identifier
2596         Comps.push_back(Sema::OffsetOfComponent());
2597         Comps.back().isBrackets = false;
2598         Comps.back().LocStart = ConsumeToken();
2599 
2600         if (Tok.isNot(tok::identifier)) {
2601           Diag(Tok, diag::err_expected) << tok::identifier;
2602           SkipUntil(tok::r_paren, StopAtSemi);
2603           return ExprError();
2604         }
2605         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2606         Comps.back().LocEnd = ConsumeToken();
2607 
2608       } else if (Tok.is(tok::l_square)) {
2609         if (CheckProhibitedCXX11Attribute())
2610           return ExprError();
2611 
2612         // offsetof-member-designator: offsetof-member-design '[' expression ']'
2613         Comps.push_back(Sema::OffsetOfComponent());
2614         Comps.back().isBrackets = true;
2615         BalancedDelimiterTracker ST(*this, tok::l_square);
2616         ST.consumeOpen();
2617         Comps.back().LocStart = ST.getOpenLocation();
2618         Res = ParseExpression();
2619         if (Res.isInvalid()) {
2620           SkipUntil(tok::r_paren, StopAtSemi);
2621           return Res;
2622         }
2623         Comps.back().U.E = Res.get();
2624 
2625         ST.consumeClose();
2626         Comps.back().LocEnd = ST.getCloseLocation();
2627       } else {
2628         if (Tok.isNot(tok::r_paren)) {
2629           PT.consumeClose();
2630           Res = ExprError();
2631         } else if (Ty.isInvalid()) {
2632           Res = ExprError();
2633         } else {
2634           PT.consumeClose();
2635           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2636                                              Ty.get(), Comps,
2637                                              PT.getCloseLocation());
2638         }
2639         break;
2640       }
2641     }
2642     break;
2643   }
2644   case tok::kw___builtin_choose_expr: {
2645     ExprResult Cond(ParseAssignmentExpression());
2646     if (Cond.isInvalid()) {
2647       SkipUntil(tok::r_paren, StopAtSemi);
2648       return Cond;
2649     }
2650     if (ExpectAndConsume(tok::comma)) {
2651       SkipUntil(tok::r_paren, StopAtSemi);
2652       return ExprError();
2653     }
2654 
2655     ExprResult Expr1(ParseAssignmentExpression());
2656     if (Expr1.isInvalid()) {
2657       SkipUntil(tok::r_paren, StopAtSemi);
2658       return Expr1;
2659     }
2660     if (ExpectAndConsume(tok::comma)) {
2661       SkipUntil(tok::r_paren, StopAtSemi);
2662       return ExprError();
2663     }
2664 
2665     ExprResult Expr2(ParseAssignmentExpression());
2666     if (Expr2.isInvalid()) {
2667       SkipUntil(tok::r_paren, StopAtSemi);
2668       return Expr2;
2669     }
2670     if (Tok.isNot(tok::r_paren)) {
2671       Diag(Tok, diag::err_expected) << tok::r_paren;
2672       return ExprError();
2673     }
2674     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2675                                   Expr2.get(), ConsumeParen());
2676     break;
2677   }
2678   case tok::kw___builtin_astype: {
2679     // The first argument is an expression to be converted, followed by a comma.
2680     ExprResult Expr(ParseAssignmentExpression());
2681     if (Expr.isInvalid()) {
2682       SkipUntil(tok::r_paren, StopAtSemi);
2683       return ExprError();
2684     }
2685 
2686     if (ExpectAndConsume(tok::comma)) {
2687       SkipUntil(tok::r_paren, StopAtSemi);
2688       return ExprError();
2689     }
2690 
2691     // Second argument is the type to bitcast to.
2692     TypeResult DestTy = ParseTypeName();
2693     if (DestTy.isInvalid())
2694       return ExprError();
2695 
2696     // Attempt to consume the r-paren.
2697     if (Tok.isNot(tok::r_paren)) {
2698       Diag(Tok, diag::err_expected) << tok::r_paren;
2699       SkipUntil(tok::r_paren, StopAtSemi);
2700       return ExprError();
2701     }
2702 
2703     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2704                                   ConsumeParen());
2705     break;
2706   }
2707   case tok::kw___builtin_convertvector: {
2708     // The first argument is an expression to be converted, followed by a comma.
2709     ExprResult Expr(ParseAssignmentExpression());
2710     if (Expr.isInvalid()) {
2711       SkipUntil(tok::r_paren, StopAtSemi);
2712       return ExprError();
2713     }
2714 
2715     if (ExpectAndConsume(tok::comma)) {
2716       SkipUntil(tok::r_paren, StopAtSemi);
2717       return ExprError();
2718     }
2719 
2720     // Second argument is the type to bitcast to.
2721     TypeResult DestTy = ParseTypeName();
2722     if (DestTy.isInvalid())
2723       return ExprError();
2724 
2725     // Attempt to consume the r-paren.
2726     if (Tok.isNot(tok::r_paren)) {
2727       Diag(Tok, diag::err_expected) << tok::r_paren;
2728       SkipUntil(tok::r_paren, StopAtSemi);
2729       return ExprError();
2730     }
2731 
2732     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2733                                          ConsumeParen());
2734     break;
2735   }
2736   case tok::kw___builtin_COLUMN:
2737   case tok::kw___builtin_FILE:
2738   case tok::kw___builtin_FUNCTION:
2739   case tok::kw___builtin_LINE:
2740   case tok::kw___builtin_source_location: {
2741     // Attempt to consume the r-paren.
2742     if (Tok.isNot(tok::r_paren)) {
2743       Diag(Tok, diag::err_expected) << tok::r_paren;
2744       SkipUntil(tok::r_paren, StopAtSemi);
2745       return ExprError();
2746     }
2747     SourceLocExpr::IdentKind Kind = [&] {
2748       switch (T) {
2749       case tok::kw___builtin_FILE:
2750         return SourceLocExpr::File;
2751       case tok::kw___builtin_FUNCTION:
2752         return SourceLocExpr::Function;
2753       case tok::kw___builtin_LINE:
2754         return SourceLocExpr::Line;
2755       case tok::kw___builtin_COLUMN:
2756         return SourceLocExpr::Column;
2757       case tok::kw___builtin_source_location:
2758         return SourceLocExpr::SourceLocStruct;
2759       default:
2760         llvm_unreachable("invalid keyword");
2761       }
2762     }();
2763     Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2764     break;
2765   }
2766   }
2767 
2768   if (Res.isInvalid())
2769     return ExprError();
2770 
2771   // These can be followed by postfix-expr pieces because they are
2772   // primary-expressions.
2773   return ParsePostfixExpressionSuffix(Res.get());
2774 }
2775 
2776 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2777   assert(Tok.is(tok::l_square) && "Expected open bracket");
2778   bool ErrorFound = true;
2779   TentativeParsingAction TPA(*this);
2780   do {
2781     if (Tok.isNot(tok::l_square))
2782       break;
2783     // Consume '['
2784     ConsumeBracket();
2785     // Skip inner expression.
2786     while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2787                       StopAtSemi | StopBeforeMatch))
2788       ;
2789     if (Tok.isNot(tok::r_square))
2790       break;
2791     // Consume ']'
2792     ConsumeBracket();
2793     // Found ')' - done.
2794     if (Tok.is(tok::r_paren)) {
2795       ErrorFound = false;
2796       break;
2797     }
2798   } while (Tok.isNot(tok::annot_pragma_openmp_end));
2799   TPA.Revert();
2800   return !ErrorFound;
2801 }
2802 
2803 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2804 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2805 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2806 /// not the parsed cast-expression.
2807 ///
2808 /// \verbatim
2809 ///       primary-expression: [C99 6.5.1]
2810 ///         '(' expression ')'
2811 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2812 ///       postfix-expression: [C99 6.5.2]
2813 ///         '(' type-name ')' '{' initializer-list '}'
2814 ///         '(' type-name ')' '{' initializer-list ',' '}'
2815 ///       cast-expression: [C99 6.5.4]
2816 ///         '(' type-name ')' cast-expression
2817 /// [ARC]   bridged-cast-expression
2818 /// [ARC] bridged-cast-expression:
2819 ///         (__bridge type-name) cast-expression
2820 ///         (__bridge_transfer type-name) cast-expression
2821 ///         (__bridge_retained type-name) cast-expression
2822 ///       fold-expression: [C++1z]
2823 ///         '(' cast-expression fold-operator '...' ')'
2824 ///         '(' '...' fold-operator cast-expression ')'
2825 ///         '(' cast-expression fold-operator '...'
2826 ///                 fold-operator cast-expression ')'
2827 /// [OPENMP] Array shaping operation
2828 ///       '(' '[' expression ']' { '[' expression ']' } cast-expression
2829 /// \endverbatim
2830 ExprResult
2831 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2832                              bool isTypeCast, ParsedType &CastTy,
2833                              SourceLocation &RParenLoc) {
2834   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2835   ColonProtectionRAIIObject ColonProtection(*this, false);
2836   BalancedDelimiterTracker T(*this, tok::l_paren);
2837   if (T.consumeOpen())
2838     return ExprError();
2839   SourceLocation OpenLoc = T.getOpenLocation();
2840 
2841   PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2842 
2843   ExprResult Result(true);
2844   bool isAmbiguousTypeId;
2845   CastTy = nullptr;
2846 
2847   if (Tok.is(tok::code_completion)) {
2848     cutOffParsing();
2849     Actions.CodeCompleteExpression(
2850         getCurScope(), PreferredType.get(Tok.getLocation()),
2851         /*IsParenthesized=*/ExprType >= CompoundLiteral);
2852     return ExprError();
2853   }
2854 
2855   // Diagnose use of bridge casts in non-arc mode.
2856   bool BridgeCast = (getLangOpts().ObjC &&
2857                      Tok.isOneOf(tok::kw___bridge,
2858                                  tok::kw___bridge_transfer,
2859                                  tok::kw___bridge_retained,
2860                                  tok::kw___bridge_retain));
2861   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2862     if (!TryConsumeToken(tok::kw___bridge)) {
2863       StringRef BridgeCastName = Tok.getName();
2864       SourceLocation BridgeKeywordLoc = ConsumeToken();
2865       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2866         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2867           << BridgeCastName
2868           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2869     }
2870     BridgeCast = false;
2871   }
2872 
2873   // None of these cases should fall through with an invalid Result
2874   // unless they've already reported an error.
2875   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2876     Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro
2877                                   : diag::ext_gnu_statement_expr);
2878 
2879     checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
2880 
2881     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2882       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2883     } else {
2884       // Find the nearest non-record decl context. Variables declared in a
2885       // statement expression behave as if they were declared in the enclosing
2886       // function, block, or other code construct.
2887       DeclContext *CodeDC = Actions.CurContext;
2888       while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2889         CodeDC = CodeDC->getParent();
2890         assert(CodeDC && !CodeDC->isFileContext() &&
2891                "statement expr not in code context");
2892       }
2893       Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2894 
2895       Actions.ActOnStartStmtExpr();
2896 
2897       StmtResult Stmt(ParseCompoundStatement(true));
2898       ExprType = CompoundStmt;
2899 
2900       // If the substmt parsed correctly, build the AST node.
2901       if (!Stmt.isInvalid()) {
2902         Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
2903                                        Tok.getLocation());
2904       } else {
2905         Actions.ActOnStmtExprError();
2906       }
2907     }
2908   } else if (ExprType >= CompoundLiteral && BridgeCast) {
2909     tok::TokenKind tokenKind = Tok.getKind();
2910     SourceLocation BridgeKeywordLoc = ConsumeToken();
2911 
2912     // Parse an Objective-C ARC ownership cast expression.
2913     ObjCBridgeCastKind Kind;
2914     if (tokenKind == tok::kw___bridge)
2915       Kind = OBC_Bridge;
2916     else if (tokenKind == tok::kw___bridge_transfer)
2917       Kind = OBC_BridgeTransfer;
2918     else if (tokenKind == tok::kw___bridge_retained)
2919       Kind = OBC_BridgeRetained;
2920     else {
2921       // As a hopefully temporary workaround, allow __bridge_retain as
2922       // a synonym for __bridge_retained, but only in system headers.
2923       assert(tokenKind == tok::kw___bridge_retain);
2924       Kind = OBC_BridgeRetained;
2925       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2926         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2927           << FixItHint::CreateReplacement(BridgeKeywordLoc,
2928                                           "__bridge_retained");
2929     }
2930 
2931     TypeResult Ty = ParseTypeName();
2932     T.consumeClose();
2933     ColonProtection.restore();
2934     RParenLoc = T.getCloseLocation();
2935 
2936     PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
2937     ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
2938 
2939     if (Ty.isInvalid() || SubExpr.isInvalid())
2940       return ExprError();
2941 
2942     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2943                                         BridgeKeywordLoc, Ty.get(),
2944                                         RParenLoc, SubExpr.get());
2945   } else if (ExprType >= CompoundLiteral &&
2946              isTypeIdInParens(isAmbiguousTypeId)) {
2947 
2948     // Otherwise, this is a compound literal expression or cast expression.
2949 
2950     // In C++, if the type-id is ambiguous we disambiguate based on context.
2951     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2952     // in which case we should treat it as type-id.
2953     // if stopIfCastExpr is false, we need to determine the context past the
2954     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2955     if (isAmbiguousTypeId && !stopIfCastExpr) {
2956       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2957                                                         ColonProtection);
2958       RParenLoc = T.getCloseLocation();
2959       return res;
2960     }
2961 
2962     // Parse the type declarator.
2963     DeclSpec DS(AttrFactory);
2964     ParseSpecifierQualifierList(DS);
2965     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2966                               DeclaratorContext::TypeName);
2967     ParseDeclarator(DeclaratorInfo);
2968 
2969     // If our type is followed by an identifier and either ':' or ']', then
2970     // this is probably an Objective-C message send where the leading '[' is
2971     // missing. Recover as if that were the case.
2972     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2973         !InMessageExpression && getLangOpts().ObjC &&
2974         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2975       TypeResult Ty;
2976       {
2977         InMessageExpressionRAIIObject InMessage(*this, false);
2978         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2979       }
2980       Result = ParseObjCMessageExpressionBody(SourceLocation(),
2981                                               SourceLocation(),
2982                                               Ty.get(), nullptr);
2983     } else {
2984       // Match the ')'.
2985       T.consumeClose();
2986       ColonProtection.restore();
2987       RParenLoc = T.getCloseLocation();
2988       if (Tok.is(tok::l_brace)) {
2989         ExprType = CompoundLiteral;
2990         TypeResult Ty;
2991         {
2992           InMessageExpressionRAIIObject InMessage(*this, false);
2993           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2994         }
2995         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2996       }
2997 
2998       if (Tok.is(tok::l_paren)) {
2999         // This could be OpenCL vector Literals
3000         if (getLangOpts().OpenCL)
3001         {
3002           TypeResult Ty;
3003           {
3004             InMessageExpressionRAIIObject InMessage(*this, false);
3005             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3006           }
3007           if(Ty.isInvalid())
3008           {
3009              return ExprError();
3010           }
3011           QualType QT = Ty.get().get().getCanonicalType();
3012           if (QT->isVectorType())
3013           {
3014             // We parsed '(' vector-type-name ')' followed by '('
3015 
3016             // Parse the cast-expression that follows it next.
3017             // isVectorLiteral = true will make sure we don't parse any
3018             // Postfix expression yet
3019             Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3020                                          /*isAddressOfOperand=*/false,
3021                                          /*isTypeCast=*/IsTypeCast,
3022                                          /*isVectorLiteral=*/true);
3023 
3024             if (!Result.isInvalid()) {
3025               Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3026                                              DeclaratorInfo, CastTy,
3027                                              RParenLoc, Result.get());
3028             }
3029 
3030             // After we performed the cast we can check for postfix-expr pieces.
3031             if (!Result.isInvalid()) {
3032               Result = ParsePostfixExpressionSuffix(Result);
3033             }
3034 
3035             return Result;
3036           }
3037         }
3038       }
3039 
3040       if (ExprType == CastExpr) {
3041         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
3042 
3043         if (DeclaratorInfo.isInvalidType())
3044           return ExprError();
3045 
3046         // Note that this doesn't parse the subsequent cast-expression, it just
3047         // returns the parsed type to the callee.
3048         if (stopIfCastExpr) {
3049           TypeResult Ty;
3050           {
3051             InMessageExpressionRAIIObject InMessage(*this, false);
3052             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3053           }
3054           CastTy = Ty.get();
3055           return ExprResult();
3056         }
3057 
3058         // Reject the cast of super idiom in ObjC.
3059         if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
3060             Tok.getIdentifierInfo() == Ident_super &&
3061             getCurScope()->isInObjcMethodScope() &&
3062             GetLookAheadToken(1).isNot(tok::period)) {
3063           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
3064             << SourceRange(OpenLoc, RParenLoc);
3065           return ExprError();
3066         }
3067 
3068         PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3069         // Parse the cast-expression that follows it next.
3070         // TODO: For cast expression with CastTy.
3071         Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3072                                      /*isAddressOfOperand=*/false,
3073                                      /*isTypeCast=*/IsTypeCast);
3074         if (!Result.isInvalid()) {
3075           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3076                                          DeclaratorInfo, CastTy,
3077                                          RParenLoc, Result.get());
3078         }
3079         return Result;
3080       }
3081 
3082       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3083       return ExprError();
3084     }
3085   } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3086              isFoldOperator(NextToken().getKind())) {
3087     ExprType = FoldExpr;
3088     return ParseFoldExpression(ExprResult(), T);
3089   } else if (isTypeCast) {
3090     // Parse the expression-list.
3091     InMessageExpressionRAIIObject InMessage(*this, false);
3092 
3093     ExprVector ArgExprs;
3094     CommaLocsTy CommaLocs;
3095 
3096     if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
3097       // FIXME: If we ever support comma expressions as operands to
3098       // fold-expressions, we'll need to allow multiple ArgExprs here.
3099       if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3100           isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3101         ExprType = FoldExpr;
3102         return ParseFoldExpression(ArgExprs[0], T);
3103       }
3104 
3105       ExprType = SimpleExpr;
3106       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3107                                           ArgExprs);
3108     }
3109   } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3110              ExprType == CastExpr && Tok.is(tok::l_square) &&
3111              tryParseOpenMPArrayShapingCastPart()) {
3112     bool ErrorFound = false;
3113     SmallVector<Expr *, 4> OMPDimensions;
3114     SmallVector<SourceRange, 4> OMPBracketsRanges;
3115     do {
3116       BalancedDelimiterTracker TS(*this, tok::l_square);
3117       TS.consumeOpen();
3118       ExprResult NumElements =
3119           Actions.CorrectDelayedTyposInExpr(ParseExpression());
3120       if (!NumElements.isUsable()) {
3121         ErrorFound = true;
3122         while (!SkipUntil(tok::r_square, tok::r_paren,
3123                           StopAtSemi | StopBeforeMatch))
3124           ;
3125       }
3126       TS.consumeClose();
3127       OMPDimensions.push_back(NumElements.get());
3128       OMPBracketsRanges.push_back(TS.getRange());
3129     } while (Tok.isNot(tok::r_paren));
3130     // Match the ')'.
3131     T.consumeClose();
3132     RParenLoc = T.getCloseLocation();
3133     Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3134     if (ErrorFound) {
3135       Result = ExprError();
3136     } else if (!Result.isInvalid()) {
3137       Result = Actions.ActOnOMPArrayShapingExpr(
3138           Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3139     }
3140     return Result;
3141   } else {
3142     InMessageExpressionRAIIObject InMessage(*this, false);
3143 
3144     Result = ParseExpression(MaybeTypeCast);
3145     if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
3146       // Correct typos in non-C++ code earlier so that implicit-cast-like
3147       // expressions are parsed correctly.
3148       Result = Actions.CorrectDelayedTyposInExpr(Result);
3149     }
3150 
3151     if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3152         NextToken().is(tok::ellipsis)) {
3153       ExprType = FoldExpr;
3154       return ParseFoldExpression(Result, T);
3155     }
3156     ExprType = SimpleExpr;
3157 
3158     // Don't build a paren expression unless we actually match a ')'.
3159     if (!Result.isInvalid() && Tok.is(tok::r_paren))
3160       Result =
3161           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3162   }
3163 
3164   // Match the ')'.
3165   if (Result.isInvalid()) {
3166     SkipUntil(tok::r_paren, StopAtSemi);
3167     return ExprError();
3168   }
3169 
3170   T.consumeClose();
3171   RParenLoc = T.getCloseLocation();
3172   return Result;
3173 }
3174 
3175 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3176 /// and we are at the left brace.
3177 ///
3178 /// \verbatim
3179 ///       postfix-expression: [C99 6.5.2]
3180 ///         '(' type-name ')' '{' initializer-list '}'
3181 ///         '(' type-name ')' '{' initializer-list ',' '}'
3182 /// \endverbatim
3183 ExprResult
3184 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3185                                        SourceLocation LParenLoc,
3186                                        SourceLocation RParenLoc) {
3187   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3188   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
3189     Diag(LParenLoc, diag::ext_c99_compound_literal);
3190   PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3191   ExprResult Result = ParseInitializer();
3192   if (!Result.isInvalid() && Ty)
3193     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3194   return Result;
3195 }
3196 
3197 /// ParseStringLiteralExpression - This handles the various token types that
3198 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3199 /// translation phase #6].
3200 ///
3201 /// \verbatim
3202 ///       primary-expression: [C99 6.5.1]
3203 ///         string-literal
3204 /// \verbatim
3205 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3206   assert(isTokenStringLiteral() && "Not a string literal!");
3207 
3208   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
3209   // considered to be strings for concatenation purposes.
3210   SmallVector<Token, 4> StringToks;
3211 
3212   do {
3213     StringToks.push_back(Tok);
3214     ConsumeStringToken();
3215   } while (isTokenStringLiteral());
3216 
3217   // Pass the set of string tokens, ready for concatenation, to the actions.
3218   return Actions.ActOnStringLiteral(StringToks,
3219                                     AllowUserDefinedLiteral ? getCurScope()
3220                                                             : nullptr);
3221 }
3222 
3223 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3224 /// [C11 6.5.1.1].
3225 ///
3226 /// \verbatim
3227 ///    generic-selection:
3228 ///           _Generic ( assignment-expression , generic-assoc-list )
3229 ///    generic-assoc-list:
3230 ///           generic-association
3231 ///           generic-assoc-list , generic-association
3232 ///    generic-association:
3233 ///           type-name : assignment-expression
3234 ///           default : assignment-expression
3235 /// \endverbatim
3236 ExprResult Parser::ParseGenericSelectionExpression() {
3237   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3238   if (!getLangOpts().C11)
3239     Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3240 
3241   SourceLocation KeyLoc = ConsumeToken();
3242   BalancedDelimiterTracker T(*this, tok::l_paren);
3243   if (T.expectAndConsume())
3244     return ExprError();
3245 
3246   ExprResult ControllingExpr;
3247   {
3248     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3249     // not evaluated."
3250     EnterExpressionEvaluationContext Unevaluated(
3251         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3252     ControllingExpr =
3253         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3254     if (ControllingExpr.isInvalid()) {
3255       SkipUntil(tok::r_paren, StopAtSemi);
3256       return ExprError();
3257     }
3258   }
3259 
3260   if (ExpectAndConsume(tok::comma)) {
3261     SkipUntil(tok::r_paren, StopAtSemi);
3262     return ExprError();
3263   }
3264 
3265   SourceLocation DefaultLoc;
3266   TypeVector Types;
3267   ExprVector Exprs;
3268   do {
3269     ParsedType Ty;
3270     if (Tok.is(tok::kw_default)) {
3271       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3272       // generic association."
3273       if (!DefaultLoc.isInvalid()) {
3274         Diag(Tok, diag::err_duplicate_default_assoc);
3275         Diag(DefaultLoc, diag::note_previous_default_assoc);
3276         SkipUntil(tok::r_paren, StopAtSemi);
3277         return ExprError();
3278       }
3279       DefaultLoc = ConsumeToken();
3280       Ty = nullptr;
3281     } else {
3282       ColonProtectionRAIIObject X(*this);
3283       TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association);
3284       if (TR.isInvalid()) {
3285         SkipUntil(tok::r_paren, StopAtSemi);
3286         return ExprError();
3287       }
3288       Ty = TR.get();
3289     }
3290     Types.push_back(Ty);
3291 
3292     if (ExpectAndConsume(tok::colon)) {
3293       SkipUntil(tok::r_paren, StopAtSemi);
3294       return ExprError();
3295     }
3296 
3297     // FIXME: These expressions should be parsed in a potentially potentially
3298     // evaluated context.
3299     ExprResult ER(
3300         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3301     if (ER.isInvalid()) {
3302       SkipUntil(tok::r_paren, StopAtSemi);
3303       return ExprError();
3304     }
3305     Exprs.push_back(ER.get());
3306   } while (TryConsumeToken(tok::comma));
3307 
3308   T.consumeClose();
3309   if (T.getCloseLocation().isInvalid())
3310     return ExprError();
3311 
3312   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
3313                                            T.getCloseLocation(),
3314                                            ControllingExpr.get(),
3315                                            Types, Exprs);
3316 }
3317 
3318 /// Parse A C++1z fold-expression after the opening paren and optional
3319 /// left-hand-side expression.
3320 ///
3321 /// \verbatim
3322 ///   fold-expression:
3323 ///       ( cast-expression fold-operator ... )
3324 ///       ( ... fold-operator cast-expression )
3325 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
3326 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3327                                        BalancedDelimiterTracker &T) {
3328   if (LHS.isInvalid()) {
3329     T.skipToEnd();
3330     return true;
3331   }
3332 
3333   tok::TokenKind Kind = tok::unknown;
3334   SourceLocation FirstOpLoc;
3335   if (LHS.isUsable()) {
3336     Kind = Tok.getKind();
3337     assert(isFoldOperator(Kind) && "missing fold-operator");
3338     FirstOpLoc = ConsumeToken();
3339   }
3340 
3341   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3342   SourceLocation EllipsisLoc = ConsumeToken();
3343 
3344   ExprResult RHS;
3345   if (Tok.isNot(tok::r_paren)) {
3346     if (!isFoldOperator(Tok.getKind()))
3347       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3348 
3349     if (Kind != tok::unknown && Tok.getKind() != Kind)
3350       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3351         << SourceRange(FirstOpLoc);
3352     Kind = Tok.getKind();
3353     ConsumeToken();
3354 
3355     RHS = ParseExpression();
3356     if (RHS.isInvalid()) {
3357       T.skipToEnd();
3358       return true;
3359     }
3360   }
3361 
3362   Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3363                         ? diag::warn_cxx14_compat_fold_expression
3364                         : diag::ext_fold_expression);
3365 
3366   T.consumeClose();
3367   return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3368                                   Kind, EllipsisLoc, RHS.get(),
3369                                   T.getCloseLocation());
3370 }
3371 
3372 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3373 ///
3374 /// \verbatim
3375 ///       argument-expression-list:
3376 ///         assignment-expression
3377 ///         argument-expression-list , assignment-expression
3378 ///
3379 /// [C++] expression-list:
3380 /// [C++]   assignment-expression
3381 /// [C++]   expression-list , assignment-expression
3382 ///
3383 /// [C++0x] expression-list:
3384 /// [C++0x]   initializer-list
3385 ///
3386 /// [C++0x] initializer-list
3387 /// [C++0x]   initializer-clause ...[opt]
3388 /// [C++0x]   initializer-list , initializer-clause ...[opt]
3389 ///
3390 /// [C++0x] initializer-clause:
3391 /// [C++0x]   assignment-expression
3392 /// [C++0x]   braced-init-list
3393 /// \endverbatim
3394 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3395                                  SmallVectorImpl<SourceLocation> &CommaLocs,
3396                                  llvm::function_ref<void()> ExpressionStarts,
3397                                  bool FailImmediatelyOnInvalidExpr,
3398                                  bool EarlyTypoCorrection) {
3399   bool SawError = false;
3400   while (true) {
3401     if (ExpressionStarts)
3402       ExpressionStarts();
3403 
3404     ExprResult Expr;
3405     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3406       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3407       Expr = ParseBraceInitializer();
3408     } else
3409       Expr = ParseAssignmentExpression();
3410 
3411     if (EarlyTypoCorrection)
3412       Expr = Actions.CorrectDelayedTyposInExpr(Expr);
3413 
3414     if (Tok.is(tok::ellipsis))
3415       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3416     else if (Tok.is(tok::code_completion)) {
3417       // There's nothing to suggest in here as we parsed a full expression.
3418       // Instead fail and propogate the error since caller might have something
3419       // the suggest, e.g. signature help in function call. Note that this is
3420       // performed before pushing the \p Expr, so that signature help can report
3421       // current argument correctly.
3422       SawError = true;
3423       cutOffParsing();
3424       break;
3425     }
3426     if (Expr.isInvalid()) {
3427       SawError = true;
3428       if (FailImmediatelyOnInvalidExpr)
3429         break;
3430       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3431     } else {
3432       Exprs.push_back(Expr.get());
3433     }
3434 
3435     if (Tok.isNot(tok::comma))
3436       break;
3437     // Move to the next argument, remember where the comma was.
3438     Token Comma = Tok;
3439     CommaLocs.push_back(ConsumeToken());
3440 
3441     checkPotentialAngleBracketDelimiter(Comma);
3442   }
3443   if (SawError) {
3444     // Ensure typos get diagnosed when errors were encountered while parsing the
3445     // expression list.
3446     for (auto &E : Exprs) {
3447       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3448       if (Expr.isUsable()) E = Expr.get();
3449     }
3450   }
3451   return SawError;
3452 }
3453 
3454 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3455 /// used for misc language extensions.
3456 ///
3457 /// \verbatim
3458 ///       simple-expression-list:
3459 ///         assignment-expression
3460 ///         simple-expression-list , assignment-expression
3461 /// \endverbatim
3462 bool
3463 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
3464                                   SmallVectorImpl<SourceLocation> &CommaLocs) {
3465   while (true) {
3466     ExprResult Expr = ParseAssignmentExpression();
3467     if (Expr.isInvalid())
3468       return true;
3469 
3470     Exprs.push_back(Expr.get());
3471 
3472     if (Tok.isNot(tok::comma))
3473       return false;
3474 
3475     // Move to the next argument, remember where the comma was.
3476     Token Comma = Tok;
3477     CommaLocs.push_back(ConsumeToken());
3478 
3479     checkPotentialAngleBracketDelimiter(Comma);
3480   }
3481 }
3482 
3483 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3484 ///
3485 /// \verbatim
3486 /// [clang] block-id:
3487 /// [clang]   specifier-qualifier-list block-declarator
3488 /// \endverbatim
3489 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3490   if (Tok.is(tok::code_completion)) {
3491     cutOffParsing();
3492     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3493     return;
3494   }
3495 
3496   // Parse the specifier-qualifier-list piece.
3497   DeclSpec DS(AttrFactory);
3498   ParseSpecifierQualifierList(DS);
3499 
3500   // Parse the block-declarator.
3501   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3502                             DeclaratorContext::BlockLiteral);
3503   DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3504   ParseDeclarator(DeclaratorInfo);
3505 
3506   MaybeParseGNUAttributes(DeclaratorInfo);
3507 
3508   // Inform sema that we are starting a block.
3509   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3510 }
3511 
3512 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3513 /// like ^(int x){ return x+1; }
3514 ///
3515 /// \verbatim
3516 ///         block-literal:
3517 /// [clang]   '^' block-args[opt] compound-statement
3518 /// [clang]   '^' block-id compound-statement
3519 /// [clang] block-args:
3520 /// [clang]   '(' parameter-list ')'
3521 /// \endverbatim
3522 ExprResult Parser::ParseBlockLiteralExpression() {
3523   assert(Tok.is(tok::caret) && "block literal starts with ^");
3524   SourceLocation CaretLoc = ConsumeToken();
3525 
3526   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3527                                 "block literal parsing");
3528 
3529   // Enter a scope to hold everything within the block.  This includes the
3530   // argument decls, decls within the compound expression, etc.  This also
3531   // allows determining whether a variable reference inside the block is
3532   // within or outside of the block.
3533   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3534                                   Scope::CompoundStmtScope | Scope::DeclScope);
3535 
3536   // Inform sema that we are starting a block.
3537   Actions.ActOnBlockStart(CaretLoc, getCurScope());
3538 
3539   // Parse the return type if present.
3540   DeclSpec DS(AttrFactory);
3541   Declarator ParamInfo(DS, ParsedAttributesView::none(),
3542                        DeclaratorContext::BlockLiteral);
3543   ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3544   // FIXME: Since the return type isn't actually parsed, it can't be used to
3545   // fill ParamInfo with an initial valid range, so do it manually.
3546   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3547 
3548   // If this block has arguments, parse them.  There is no ambiguity here with
3549   // the expression case, because the expression case requires a parameter list.
3550   if (Tok.is(tok::l_paren)) {
3551     ParseParenDeclarator(ParamInfo);
3552     // Parse the pieces after the identifier as if we had "int(...)".
3553     // SetIdentifier sets the source range end, but in this case we're past
3554     // that location.
3555     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3556     ParamInfo.SetIdentifier(nullptr, CaretLoc);
3557     ParamInfo.SetRangeEnd(Tmp);
3558     if (ParamInfo.isInvalidType()) {
3559       // If there was an error parsing the arguments, they may have
3560       // tried to use ^(x+y) which requires an argument list.  Just
3561       // skip the whole block literal.
3562       Actions.ActOnBlockError(CaretLoc, getCurScope());
3563       return ExprError();
3564     }
3565 
3566     MaybeParseGNUAttributes(ParamInfo);
3567 
3568     // Inform sema that we are starting a block.
3569     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3570   } else if (!Tok.is(tok::l_brace)) {
3571     ParseBlockId(CaretLoc);
3572   } else {
3573     // Otherwise, pretend we saw (void).
3574     SourceLocation NoLoc;
3575     ParamInfo.AddTypeInfo(
3576         DeclaratorChunk::getFunction(/*HasProto=*/true,
3577                                      /*IsAmbiguous=*/false,
3578                                      /*RParenLoc=*/NoLoc,
3579                                      /*ArgInfo=*/nullptr,
3580                                      /*NumParams=*/0,
3581                                      /*EllipsisLoc=*/NoLoc,
3582                                      /*RParenLoc=*/NoLoc,
3583                                      /*RefQualifierIsLvalueRef=*/true,
3584                                      /*RefQualifierLoc=*/NoLoc,
3585                                      /*MutableLoc=*/NoLoc, EST_None,
3586                                      /*ESpecRange=*/SourceRange(),
3587                                      /*Exceptions=*/nullptr,
3588                                      /*ExceptionRanges=*/nullptr,
3589                                      /*NumExceptions=*/0,
3590                                      /*NoexceptExpr=*/nullptr,
3591                                      /*ExceptionSpecTokens=*/nullptr,
3592                                      /*DeclsInPrototype=*/None, CaretLoc,
3593                                      CaretLoc, ParamInfo),
3594         CaretLoc);
3595 
3596     MaybeParseGNUAttributes(ParamInfo);
3597 
3598     // Inform sema that we are starting a block.
3599     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3600   }
3601 
3602 
3603   ExprResult Result(true);
3604   if (!Tok.is(tok::l_brace)) {
3605     // Saw something like: ^expr
3606     Diag(Tok, diag::err_expected_expression);
3607     Actions.ActOnBlockError(CaretLoc, getCurScope());
3608     return ExprError();
3609   }
3610 
3611   StmtResult Stmt(ParseCompoundStatementBody());
3612   BlockScope.Exit();
3613   if (!Stmt.isInvalid())
3614     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3615   else
3616     Actions.ActOnBlockError(CaretLoc, getCurScope());
3617   return Result;
3618 }
3619 
3620 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3621 ///
3622 ///         '__objc_yes'
3623 ///         '__objc_no'
3624 ExprResult Parser::ParseObjCBoolLiteral() {
3625   tok::TokenKind Kind = Tok.getKind();
3626   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3627 }
3628 
3629 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3630 /// true if invalid.
3631 static bool CheckAvailabilitySpecList(Parser &P,
3632                                       ArrayRef<AvailabilitySpec> AvailSpecs) {
3633   llvm::SmallSet<StringRef, 4> Platforms;
3634   bool HasOtherPlatformSpec = false;
3635   bool Valid = true;
3636   for (const auto &Spec : AvailSpecs) {
3637     if (Spec.isOtherPlatformSpec()) {
3638       if (HasOtherPlatformSpec) {
3639         P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3640         Valid = false;
3641       }
3642 
3643       HasOtherPlatformSpec = true;
3644       continue;
3645     }
3646 
3647     bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3648     if (!Inserted) {
3649       // Rule out multiple version specs referring to the same platform.
3650       // For example, we emit an error for:
3651       // @available(macos 10.10, macos 10.11, *)
3652       StringRef Platform = Spec.getPlatform();
3653       P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3654           << Spec.getEndLoc() << Platform;
3655       Valid = false;
3656     }
3657   }
3658 
3659   if (!HasOtherPlatformSpec) {
3660     SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3661     P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3662         << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3663     return true;
3664   }
3665 
3666   return !Valid;
3667 }
3668 
3669 /// Parse availability query specification.
3670 ///
3671 ///  availability-spec:
3672 ///     '*'
3673 ///     identifier version-tuple
3674 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3675   if (Tok.is(tok::star)) {
3676     return AvailabilitySpec(ConsumeToken());
3677   } else {
3678     // Parse the platform name.
3679     if (Tok.is(tok::code_completion)) {
3680       cutOffParsing();
3681       Actions.CodeCompleteAvailabilityPlatformName();
3682       return None;
3683     }
3684     if (Tok.isNot(tok::identifier)) {
3685       Diag(Tok, diag::err_avail_query_expected_platform_name);
3686       return None;
3687     }
3688 
3689     IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3690     SourceRange VersionRange;
3691     VersionTuple Version = ParseVersionTuple(VersionRange);
3692 
3693     if (Version.empty())
3694       return None;
3695 
3696     StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3697     StringRef Platform =
3698         AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3699 
3700     if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3701       Diag(PlatformIdentifier->Loc,
3702            diag::err_avail_query_unrecognized_platform_name)
3703           << GivenPlatform;
3704       return None;
3705     }
3706 
3707     return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3708                             VersionRange.getEnd());
3709   }
3710 }
3711 
3712 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3713   assert(Tok.is(tok::kw___builtin_available) ||
3714          Tok.isObjCAtKeyword(tok::objc_available));
3715 
3716   // Eat the available or __builtin_available.
3717   ConsumeToken();
3718 
3719   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3720   if (Parens.expectAndConsume())
3721     return ExprError();
3722 
3723   SmallVector<AvailabilitySpec, 4> AvailSpecs;
3724   bool HasError = false;
3725   while (true) {
3726     Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3727     if (!Spec)
3728       HasError = true;
3729     else
3730       AvailSpecs.push_back(*Spec);
3731 
3732     if (!TryConsumeToken(tok::comma))
3733       break;
3734   }
3735 
3736   if (HasError) {
3737     SkipUntil(tok::r_paren, StopAtSemi);
3738     return ExprError();
3739   }
3740 
3741   CheckAvailabilitySpecList(*this, AvailSpecs);
3742 
3743   if (Parens.consumeClose())
3744     return ExprError();
3745 
3746   return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3747                                                 Parens.getCloseLocation());
3748 }
3749