1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Basic/TokenKinds.h"
18 #include "clang/Lex/LiteralSupport.h"
19 #include "clang/Parse/ParseDiagnostic.h"
20 #include "clang/Parse/Parser.h"
21 #include "clang/Parse/RAIIObjectsForParser.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/EnterExpressionEvaluationContext.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/Scope.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <numeric>
29 
30 using namespace clang;
31 
32 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
33   switch (Kind) {
34     // template name
35     case tok::unknown:             return 0;
36     // casts
37     case tok::kw_addrspace_cast:   return 1;
38     case tok::kw_const_cast:       return 2;
39     case tok::kw_dynamic_cast:     return 3;
40     case tok::kw_reinterpret_cast: return 4;
41     case tok::kw_static_cast:      return 5;
42     default:
43       llvm_unreachable("Unknown type for digraph error message.");
44   }
45 }
46 
47 // Are the two tokens adjacent in the same source file?
48 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
49   SourceManager &SM = PP.getSourceManager();
50   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
51   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
52   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
53 }
54 
55 // Suggest fixit for "<::" after a cast.
56 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
57                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
58   // Pull '<:' and ':' off token stream.
59   if (!AtDigraph)
60     PP.Lex(DigraphToken);
61   PP.Lex(ColonToken);
62 
63   SourceRange Range;
64   Range.setBegin(DigraphToken.getLocation());
65   Range.setEnd(ColonToken.getLocation());
66   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
67       << SelectDigraphErrorMessage(Kind)
68       << FixItHint::CreateReplacement(Range, "< ::");
69 
70   // Update token information to reflect their change in token type.
71   ColonToken.setKind(tok::coloncolon);
72   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
73   ColonToken.setLength(2);
74   DigraphToken.setKind(tok::less);
75   DigraphToken.setLength(1);
76 
77   // Push new tokens back to token stream.
78   PP.EnterToken(ColonToken, /*IsReinject*/ true);
79   if (!AtDigraph)
80     PP.EnterToken(DigraphToken, /*IsReinject*/ true);
81 }
82 
83 // Check for '<::' which should be '< ::' instead of '[:' when following
84 // a template name.
85 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
86                                         bool EnteringContext,
87                                         IdentifierInfo &II, CXXScopeSpec &SS) {
88   if (!Next.is(tok::l_square) || Next.getLength() != 2)
89     return;
90 
91   Token SecondToken = GetLookAheadToken(2);
92   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
93     return;
94 
95   TemplateTy Template;
96   UnqualifiedId TemplateName;
97   TemplateName.setIdentifier(&II, Tok.getLocation());
98   bool MemberOfUnknownSpecialization;
99   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
100                               TemplateName, ObjectType, EnteringContext,
101                               Template, MemberOfUnknownSpecialization))
102     return;
103 
104   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
105              /*AtDigraph*/false);
106 }
107 
108 /// Parse global scope or nested-name-specifier if present.
109 ///
110 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
111 /// may be preceded by '::'). Note that this routine will not parse ::new or
112 /// ::delete; it will just leave them in the token stream.
113 ///
114 ///       '::'[opt] nested-name-specifier
115 ///       '::'
116 ///
117 ///       nested-name-specifier:
118 ///         type-name '::'
119 ///         namespace-name '::'
120 ///         nested-name-specifier identifier '::'
121 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
122 ///
123 ///
124 /// \param SS the scope specifier that will be set to the parsed
125 /// nested-name-specifier (or empty)
126 ///
127 /// \param ObjectType if this nested-name-specifier is being parsed following
128 /// the "." or "->" of a member access expression, this parameter provides the
129 /// type of the object whose members are being accessed.
130 ///
131 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
132 /// expression, indicates whether the original subexpressions had any errors.
133 /// When true, diagnostics for missing 'template' keyword will be supressed.
134 ///
135 /// \param EnteringContext whether we will be entering into the context of
136 /// the nested-name-specifier after parsing it.
137 ///
138 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
139 /// indicates whether this nested-name-specifier may be part of a
140 /// pseudo-destructor name. In this case, the flag will be set false
141 /// if we don't actually end up parsing a destructor name. Moreover,
142 /// if we do end up determining that we are parsing a destructor name,
143 /// the last component of the nested-name-specifier is not parsed as
144 /// part of the scope specifier.
145 ///
146 /// \param IsTypename If \c true, this nested-name-specifier is known to be
147 /// part of a type name. This is used to improve error recovery.
148 ///
149 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
150 /// filled in with the leading identifier in the last component of the
151 /// nested-name-specifier, if any.
152 ///
153 /// \param OnlyNamespace If true, only considers namespaces in lookup.
154 ///
155 ///
156 /// \returns true if there was an error parsing a scope specifier
157 bool Parser::ParseOptionalCXXScopeSpecifier(
158     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
159     bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
160     IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
161   assert(getLangOpts().CPlusPlus &&
162          "Call sites of this function should be guarded by checking for C++");
163 
164   if (Tok.is(tok::annot_cxxscope)) {
165     assert(!LastII && "want last identifier but have already annotated scope");
166     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
167     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
168                                                  Tok.getAnnotationRange(),
169                                                  SS);
170     ConsumeAnnotationToken();
171     return false;
172   }
173 
174   // Has to happen before any "return false"s in this function.
175   bool CheckForDestructor = false;
176   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
177     CheckForDestructor = true;
178     *MayBePseudoDestructor = false;
179   }
180 
181   if (LastII)
182     *LastII = nullptr;
183 
184   bool HasScopeSpecifier = false;
185 
186   if (Tok.is(tok::coloncolon)) {
187     // ::new and ::delete aren't nested-name-specifiers.
188     tok::TokenKind NextKind = NextToken().getKind();
189     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
190       return false;
191 
192     if (NextKind == tok::l_brace) {
193       // It is invalid to have :: {, consume the scope qualifier and pretend
194       // like we never saw it.
195       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
196     } else {
197       // '::' - Global scope qualifier.
198       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
199         return true;
200 
201       HasScopeSpecifier = true;
202     }
203   }
204 
205   if (Tok.is(tok::kw___super)) {
206     SourceLocation SuperLoc = ConsumeToken();
207     if (!Tok.is(tok::coloncolon)) {
208       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
209       return true;
210     }
211 
212     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
213   }
214 
215   if (!HasScopeSpecifier &&
216       Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
217     DeclSpec DS(AttrFactory);
218     SourceLocation DeclLoc = Tok.getLocation();
219     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
220 
221     SourceLocation CCLoc;
222     // Work around a standard defect: 'decltype(auto)::' is not a
223     // nested-name-specifier.
224     if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
225         !TryConsumeToken(tok::coloncolon, CCLoc)) {
226       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
227       return false;
228     }
229 
230     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
231       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
232 
233     HasScopeSpecifier = true;
234   }
235 
236   // Preferred type might change when parsing qualifiers, we need the original.
237   auto SavedType = PreferredType;
238   while (true) {
239     if (HasScopeSpecifier) {
240       if (Tok.is(tok::code_completion)) {
241         cutOffParsing();
242         // Code completion for a nested-name-specifier, where the code
243         // completion token follows the '::'.
244         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
245                                         InUsingDeclaration, ObjectType.get(),
246                                         SavedType.get(SS.getBeginLoc()));
247         // Include code completion token into the range of the scope otherwise
248         // when we try to annotate the scope tokens the dangling code completion
249         // token will cause assertion in
250         // Preprocessor::AnnotatePreviousCachedTokens.
251         SS.setEndLoc(Tok.getLocation());
252         return true;
253       }
254 
255       // C++ [basic.lookup.classref]p5:
256       //   If the qualified-id has the form
257       //
258       //       ::class-name-or-namespace-name::...
259       //
260       //   the class-name-or-namespace-name is looked up in global scope as a
261       //   class-name or namespace-name.
262       //
263       // To implement this, we clear out the object type as soon as we've
264       // seen a leading '::' or part of a nested-name-specifier.
265       ObjectType = nullptr;
266     }
267 
268     // nested-name-specifier:
269     //   nested-name-specifier 'template'[opt] simple-template-id '::'
270 
271     // Parse the optional 'template' keyword, then make sure we have
272     // 'identifier <' after it.
273     if (Tok.is(tok::kw_template)) {
274       // If we don't have a scope specifier or an object type, this isn't a
275       // nested-name-specifier, since they aren't allowed to start with
276       // 'template'.
277       if (!HasScopeSpecifier && !ObjectType)
278         break;
279 
280       TentativeParsingAction TPA(*this);
281       SourceLocation TemplateKWLoc = ConsumeToken();
282 
283       UnqualifiedId TemplateName;
284       if (Tok.is(tok::identifier)) {
285         // Consume the identifier.
286         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
287         ConsumeToken();
288       } else if (Tok.is(tok::kw_operator)) {
289         // We don't need to actually parse the unqualified-id in this case,
290         // because a simple-template-id cannot start with 'operator', but
291         // go ahead and parse it anyway for consistency with the case where
292         // we already annotated the template-id.
293         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
294                                        TemplateName)) {
295           TPA.Commit();
296           break;
297         }
298 
299         if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
300             TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
301           Diag(TemplateName.getSourceRange().getBegin(),
302                diag::err_id_after_template_in_nested_name_spec)
303             << TemplateName.getSourceRange();
304           TPA.Commit();
305           break;
306         }
307       } else {
308         TPA.Revert();
309         break;
310       }
311 
312       // If the next token is not '<', we have a qualified-id that refers
313       // to a template name, such as T::template apply, but is not a
314       // template-id.
315       if (Tok.isNot(tok::less)) {
316         TPA.Revert();
317         break;
318       }
319 
320       // Commit to parsing the template-id.
321       TPA.Commit();
322       TemplateTy Template;
323       TemplateNameKind TNK = Actions.ActOnTemplateName(
324           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
325           EnteringContext, Template, /*AllowInjectedClassName*/ true);
326       if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
327                                   TemplateName, false))
328         return true;
329 
330       continue;
331     }
332 
333     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
334       // We have
335       //
336       //   template-id '::'
337       //
338       // So we need to check whether the template-id is a simple-template-id of
339       // the right kind (it should name a type or be dependent), and then
340       // convert it into a type within the nested-name-specifier.
341       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
342       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
343         *MayBePseudoDestructor = true;
344         return false;
345       }
346 
347       if (LastII)
348         *LastII = TemplateId->Name;
349 
350       // Consume the template-id token.
351       ConsumeAnnotationToken();
352 
353       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
354       SourceLocation CCLoc = ConsumeToken();
355 
356       HasScopeSpecifier = true;
357 
358       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
359                                          TemplateId->NumArgs);
360 
361       if (TemplateId->isInvalid() ||
362           Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
363                                               SS,
364                                               TemplateId->TemplateKWLoc,
365                                               TemplateId->Template,
366                                               TemplateId->TemplateNameLoc,
367                                               TemplateId->LAngleLoc,
368                                               TemplateArgsPtr,
369                                               TemplateId->RAngleLoc,
370                                               CCLoc,
371                                               EnteringContext)) {
372         SourceLocation StartLoc
373           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
374                                       : TemplateId->TemplateNameLoc;
375         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
376       }
377 
378       continue;
379     }
380 
381     // The rest of the nested-name-specifier possibilities start with
382     // tok::identifier.
383     if (Tok.isNot(tok::identifier))
384       break;
385 
386     IdentifierInfo &II = *Tok.getIdentifierInfo();
387 
388     // nested-name-specifier:
389     //   type-name '::'
390     //   namespace-name '::'
391     //   nested-name-specifier identifier '::'
392     Token Next = NextToken();
393     Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
394                                     ObjectType);
395 
396     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
397     // and emit a fixit hint for it.
398     if (Next.is(tok::colon) && !ColonIsSacred) {
399       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
400                                             EnteringContext) &&
401           // If the token after the colon isn't an identifier, it's still an
402           // error, but they probably meant something else strange so don't
403           // recover like this.
404           PP.LookAhead(1).is(tok::identifier)) {
405         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
406           << FixItHint::CreateReplacement(Next.getLocation(), "::");
407         // Recover as if the user wrote '::'.
408         Next.setKind(tok::coloncolon);
409       }
410     }
411 
412     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
413       // It is invalid to have :: {, consume the scope qualifier and pretend
414       // like we never saw it.
415       Token Identifier = Tok; // Stash away the identifier.
416       ConsumeToken();         // Eat the identifier, current token is now '::'.
417       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
418           << tok::identifier;
419       UnconsumeToken(Identifier); // Stick the identifier back.
420       Next = NextToken();         // Point Next at the '{' token.
421     }
422 
423     if (Next.is(tok::coloncolon)) {
424       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
425         *MayBePseudoDestructor = true;
426         return false;
427       }
428 
429       if (ColonIsSacred) {
430         const Token &Next2 = GetLookAheadToken(2);
431         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
432             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
433           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
434               << Next2.getName()
435               << FixItHint::CreateReplacement(Next.getLocation(), ":");
436           Token ColonColon;
437           PP.Lex(ColonColon);
438           ColonColon.setKind(tok::colon);
439           PP.EnterToken(ColonColon, /*IsReinject*/ true);
440           break;
441         }
442       }
443 
444       if (LastII)
445         *LastII = &II;
446 
447       // We have an identifier followed by a '::'. Lookup this name
448       // as the name in a nested-name-specifier.
449       Token Identifier = Tok;
450       SourceLocation IdLoc = ConsumeToken();
451       assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
452              "NextToken() not working properly!");
453       Token ColonColon = Tok;
454       SourceLocation CCLoc = ConsumeToken();
455 
456       bool IsCorrectedToColon = false;
457       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
458       if (Actions.ActOnCXXNestedNameSpecifier(
459               getCurScope(), IdInfo, EnteringContext, SS, CorrectionFlagPtr,
460               OnlyNamespace)) {
461         // Identifier is not recognized as a nested name, but we can have
462         // mistyped '::' instead of ':'.
463         if (CorrectionFlagPtr && IsCorrectedToColon) {
464           ColonColon.setKind(tok::colon);
465           PP.EnterToken(Tok, /*IsReinject*/ true);
466           PP.EnterToken(ColonColon, /*IsReinject*/ true);
467           Tok = Identifier;
468           break;
469         }
470         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
471       }
472       HasScopeSpecifier = true;
473       continue;
474     }
475 
476     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
477 
478     // nested-name-specifier:
479     //   type-name '<'
480     if (Next.is(tok::less)) {
481 
482       TemplateTy Template;
483       UnqualifiedId TemplateName;
484       TemplateName.setIdentifier(&II, Tok.getLocation());
485       bool MemberOfUnknownSpecialization;
486       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
487                                               /*hasTemplateKeyword=*/false,
488                                                         TemplateName,
489                                                         ObjectType,
490                                                         EnteringContext,
491                                                         Template,
492                                               MemberOfUnknownSpecialization)) {
493         // If lookup didn't find anything, we treat the name as a template-name
494         // anyway. C++20 requires this, and in prior language modes it improves
495         // error recovery. But before we commit to this, check that we actually
496         // have something that looks like a template-argument-list next.
497         if (!IsTypename && TNK == TNK_Undeclared_template &&
498             isTemplateArgumentList(1) == TPResult::False)
499           break;
500 
501         // We have found a template name, so annotate this token
502         // with a template-id annotation. We do not permit the
503         // template-id to be translated into a type annotation,
504         // because some clients (e.g., the parsing of class template
505         // specializations) still want to see the original template-id
506         // token, and it might not be a type at all (e.g. a concept name in a
507         // type-constraint).
508         ConsumeToken();
509         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
510                                     TemplateName, false))
511           return true;
512         continue;
513       }
514 
515       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
516           (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
517         // If we had errors before, ObjectType can be dependent even without any
518         // templates. Do not report missing template keyword in that case.
519         if (!ObjectHadErrors) {
520           // We have something like t::getAs<T>, where getAs is a
521           // member of an unknown specialization. However, this will only
522           // parse correctly as a template, so suggest the keyword 'template'
523           // before 'getAs' and treat this as a dependent template name.
524           unsigned DiagID = diag::err_missing_dependent_template_keyword;
525           if (getLangOpts().MicrosoftExt)
526             DiagID = diag::warn_missing_dependent_template_keyword;
527 
528           Diag(Tok.getLocation(), DiagID)
529               << II.getName()
530               << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
531         }
532 
533         SourceLocation TemplateNameLoc = ConsumeToken();
534 
535         TemplateNameKind TNK = Actions.ActOnTemplateName(
536             getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
537             EnteringContext, Template, /*AllowInjectedClassName*/ true);
538         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
539                                     TemplateName, false))
540           return true;
541 
542         continue;
543       }
544     }
545 
546     // We don't have any tokens that form the beginning of a
547     // nested-name-specifier, so we're done.
548     break;
549   }
550 
551   // Even if we didn't see any pieces of a nested-name-specifier, we
552   // still check whether there is a tilde in this position, which
553   // indicates a potential pseudo-destructor.
554   if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
555     *MayBePseudoDestructor = true;
556 
557   return false;
558 }
559 
560 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
561                                            bool isAddressOfOperand,
562                                            Token &Replacement) {
563   ExprResult E;
564 
565   // We may have already annotated this id-expression.
566   switch (Tok.getKind()) {
567   case tok::annot_non_type: {
568     NamedDecl *ND = getNonTypeAnnotation(Tok);
569     SourceLocation Loc = ConsumeAnnotationToken();
570     E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
571     break;
572   }
573 
574   case tok::annot_non_type_dependent: {
575     IdentifierInfo *II = getIdentifierAnnotation(Tok);
576     SourceLocation Loc = ConsumeAnnotationToken();
577 
578     // This is only the direct operand of an & operator if it is not
579     // followed by a postfix-expression suffix.
580     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
581       isAddressOfOperand = false;
582 
583     E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
584                                                       isAddressOfOperand);
585     break;
586   }
587 
588   case tok::annot_non_type_undeclared: {
589     assert(SS.isEmpty() &&
590            "undeclared non-type annotation should be unqualified");
591     IdentifierInfo *II = getIdentifierAnnotation(Tok);
592     SourceLocation Loc = ConsumeAnnotationToken();
593     E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
594     break;
595   }
596 
597   default:
598     SourceLocation TemplateKWLoc;
599     UnqualifiedId Name;
600     if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
601                            /*ObjectHadErrors=*/false,
602                            /*EnteringContext=*/false,
603                            /*AllowDestructorName=*/false,
604                            /*AllowConstructorName=*/false,
605                            /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
606       return ExprError();
607 
608     // This is only the direct operand of an & operator if it is not
609     // followed by a postfix-expression suffix.
610     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
611       isAddressOfOperand = false;
612 
613     E = Actions.ActOnIdExpression(
614         getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
615         isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
616         &Replacement);
617     break;
618   }
619 
620   if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
621     checkPotentialAngleBracket(E);
622   return E;
623 }
624 
625 /// ParseCXXIdExpression - Handle id-expression.
626 ///
627 ///       id-expression:
628 ///         unqualified-id
629 ///         qualified-id
630 ///
631 ///       qualified-id:
632 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
633 ///         '::' identifier
634 ///         '::' operator-function-id
635 ///         '::' template-id
636 ///
637 /// NOTE: The standard specifies that, for qualified-id, the parser does not
638 /// expect:
639 ///
640 ///   '::' conversion-function-id
641 ///   '::' '~' class-name
642 ///
643 /// This may cause a slight inconsistency on diagnostics:
644 ///
645 /// class C {};
646 /// namespace A {}
647 /// void f() {
648 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
649 ///                  // namespace.
650 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
651 /// }
652 ///
653 /// We simplify the parser a bit and make it work like:
654 ///
655 ///       qualified-id:
656 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
657 ///         '::' unqualified-id
658 ///
659 /// That way Sema can handle and report similar errors for namespaces and the
660 /// global scope.
661 ///
662 /// The isAddressOfOperand parameter indicates that this id-expression is a
663 /// direct operand of the address-of operator. This is, besides member contexts,
664 /// the only place where a qualified-id naming a non-static class member may
665 /// appear.
666 ///
667 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
668   // qualified-id:
669   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
670   //   '::' unqualified-id
671   //
672   CXXScopeSpec SS;
673   ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
674                                  /*ObjectHasErrors=*/false,
675                                  /*EnteringContext=*/false);
676 
677   Token Replacement;
678   ExprResult Result =
679       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
680   if (Result.isUnset()) {
681     // If the ExprResult is valid but null, then typo correction suggested a
682     // keyword replacement that needs to be reparsed.
683     UnconsumeToken(Replacement);
684     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
685   }
686   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
687                               "for a previous keyword suggestion");
688   return Result;
689 }
690 
691 /// ParseLambdaExpression - Parse a C++11 lambda expression.
692 ///
693 ///       lambda-expression:
694 ///         lambda-introducer lambda-declarator compound-statement
695 ///         lambda-introducer '<' template-parameter-list '>'
696 ///             requires-clause[opt] lambda-declarator compound-statement
697 ///
698 ///       lambda-introducer:
699 ///         '[' lambda-capture[opt] ']'
700 ///
701 ///       lambda-capture:
702 ///         capture-default
703 ///         capture-list
704 ///         capture-default ',' capture-list
705 ///
706 ///       capture-default:
707 ///         '&'
708 ///         '='
709 ///
710 ///       capture-list:
711 ///         capture
712 ///         capture-list ',' capture
713 ///
714 ///       capture:
715 ///         simple-capture
716 ///         init-capture     [C++1y]
717 ///
718 ///       simple-capture:
719 ///         identifier
720 ///         '&' identifier
721 ///         'this'
722 ///
723 ///       init-capture:      [C++1y]
724 ///         identifier initializer
725 ///         '&' identifier initializer
726 ///
727 ///       lambda-declarator:
728 ///         lambda-specifiers     [C++23]
729 ///         '(' parameter-declaration-clause ')' lambda-specifiers
730 ///             requires-clause[opt]
731 ///
732 ///       lambda-specifiers:
733 ///         decl-specifier-seq[opt] noexcept-specifier[opt]
734 ///             attribute-specifier-seq[opt] trailing-return-type[opt]
735 ///
736 ExprResult Parser::ParseLambdaExpression() {
737   // Parse lambda-introducer.
738   LambdaIntroducer Intro;
739   if (ParseLambdaIntroducer(Intro)) {
740     SkipUntil(tok::r_square, StopAtSemi);
741     SkipUntil(tok::l_brace, StopAtSemi);
742     SkipUntil(tok::r_brace, StopAtSemi);
743     return ExprError();
744   }
745 
746   return ParseLambdaExpressionAfterIntroducer(Intro);
747 }
748 
749 /// Use lookahead and potentially tentative parsing to determine if we are
750 /// looking at a C++11 lambda expression, and parse it if we are.
751 ///
752 /// If we are not looking at a lambda expression, returns ExprError().
753 ExprResult Parser::TryParseLambdaExpression() {
754   assert(getLangOpts().CPlusPlus11
755          && Tok.is(tok::l_square)
756          && "Not at the start of a possible lambda expression.");
757 
758   const Token Next = NextToken();
759   if (Next.is(tok::eof)) // Nothing else to lookup here...
760     return ExprEmpty();
761 
762   const Token After = GetLookAheadToken(2);
763   // If lookahead indicates this is a lambda...
764   if (Next.is(tok::r_square) ||     // []
765       Next.is(tok::equal) ||        // [=
766       (Next.is(tok::amp) &&         // [&] or [&,
767        After.isOneOf(tok::r_square, tok::comma)) ||
768       (Next.is(tok::identifier) &&  // [identifier]
769        After.is(tok::r_square)) ||
770       Next.is(tok::ellipsis)) {     // [...
771     return ParseLambdaExpression();
772   }
773 
774   // If lookahead indicates an ObjC message send...
775   // [identifier identifier
776   if (Next.is(tok::identifier) && After.is(tok::identifier))
777     return ExprEmpty();
778 
779   // Here, we're stuck: lambda introducers and Objective-C message sends are
780   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
781   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
782   // writing two routines to parse a lambda introducer, just try to parse
783   // a lambda introducer first, and fall back if that fails.
784   LambdaIntroducer Intro;
785   {
786     TentativeParsingAction TPA(*this);
787     LambdaIntroducerTentativeParse Tentative;
788     if (ParseLambdaIntroducer(Intro, &Tentative)) {
789       TPA.Commit();
790       return ExprError();
791     }
792 
793     switch (Tentative) {
794     case LambdaIntroducerTentativeParse::Success:
795       TPA.Commit();
796       break;
797 
798     case LambdaIntroducerTentativeParse::Incomplete:
799       // Didn't fully parse the lambda-introducer, try again with a
800       // non-tentative parse.
801       TPA.Revert();
802       Intro = LambdaIntroducer();
803       if (ParseLambdaIntroducer(Intro))
804         return ExprError();
805       break;
806 
807     case LambdaIntroducerTentativeParse::MessageSend:
808     case LambdaIntroducerTentativeParse::Invalid:
809       // Not a lambda-introducer, might be a message send.
810       TPA.Revert();
811       return ExprEmpty();
812     }
813   }
814 
815   return ParseLambdaExpressionAfterIntroducer(Intro);
816 }
817 
818 /// Parse a lambda introducer.
819 /// \param Intro A LambdaIntroducer filled in with information about the
820 ///        contents of the lambda-introducer.
821 /// \param Tentative If non-null, we are disambiguating between a
822 ///        lambda-introducer and some other construct. In this mode, we do not
823 ///        produce any diagnostics or take any other irreversible action unless
824 ///        we're sure that this is a lambda-expression.
825 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
826 ///         the caller should bail out / recover.
827 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
828                                    LambdaIntroducerTentativeParse *Tentative) {
829   if (Tentative)
830     *Tentative = LambdaIntroducerTentativeParse::Success;
831 
832   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
833   BalancedDelimiterTracker T(*this, tok::l_square);
834   T.consumeOpen();
835 
836   Intro.Range.setBegin(T.getOpenLocation());
837 
838   bool First = true;
839 
840   // Produce a diagnostic if we're not tentatively parsing; otherwise track
841   // that our parse has failed.
842   auto Invalid = [&](llvm::function_ref<void()> Action) {
843     if (Tentative) {
844       *Tentative = LambdaIntroducerTentativeParse::Invalid;
845       return false;
846     }
847     Action();
848     return true;
849   };
850 
851   // Perform some irreversible action if this is a non-tentative parse;
852   // otherwise note that our actions were incomplete.
853   auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
854     if (Tentative)
855       *Tentative = LambdaIntroducerTentativeParse::Incomplete;
856     else
857       Action();
858   };
859 
860   // Parse capture-default.
861   if (Tok.is(tok::amp) &&
862       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
863     Intro.Default = LCD_ByRef;
864     Intro.DefaultLoc = ConsumeToken();
865     First = false;
866     if (!Tok.getIdentifierInfo()) {
867       // This can only be a lambda; no need for tentative parsing any more.
868       // '[[and]]' can still be an attribute, though.
869       Tentative = nullptr;
870     }
871   } else if (Tok.is(tok::equal)) {
872     Intro.Default = LCD_ByCopy;
873     Intro.DefaultLoc = ConsumeToken();
874     First = false;
875     Tentative = nullptr;
876   }
877 
878   while (Tok.isNot(tok::r_square)) {
879     if (!First) {
880       if (Tok.isNot(tok::comma)) {
881         // Provide a completion for a lambda introducer here. Except
882         // in Objective-C, where this is Almost Surely meant to be a message
883         // send. In that case, fail here and let the ObjC message
884         // expression parser perform the completion.
885         if (Tok.is(tok::code_completion) &&
886             !(getLangOpts().ObjC && Tentative)) {
887           cutOffParsing();
888           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
889                                                /*AfterAmpersand=*/false);
890           break;
891         }
892 
893         return Invalid([&] {
894           Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
895         });
896       }
897       ConsumeToken();
898     }
899 
900     if (Tok.is(tok::code_completion)) {
901       cutOffParsing();
902       // If we're in Objective-C++ and we have a bare '[', then this is more
903       // likely to be a message receiver.
904       if (getLangOpts().ObjC && Tentative && First)
905         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
906       else
907         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
908                                              /*AfterAmpersand=*/false);
909       break;
910     }
911 
912     First = false;
913 
914     // Parse capture.
915     LambdaCaptureKind Kind = LCK_ByCopy;
916     LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
917     SourceLocation Loc;
918     IdentifierInfo *Id = nullptr;
919     SourceLocation EllipsisLocs[4];
920     ExprResult Init;
921     SourceLocation LocStart = Tok.getLocation();
922 
923     if (Tok.is(tok::star)) {
924       Loc = ConsumeToken();
925       if (Tok.is(tok::kw_this)) {
926         ConsumeToken();
927         Kind = LCK_StarThis;
928       } else {
929         return Invalid([&] {
930           Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
931         });
932       }
933     } else if (Tok.is(tok::kw_this)) {
934       Kind = LCK_This;
935       Loc = ConsumeToken();
936     } else if (Tok.isOneOf(tok::amp, tok::equal) &&
937                NextToken().isOneOf(tok::comma, tok::r_square) &&
938                Intro.Default == LCD_None) {
939       // We have a lone "&" or "=" which is either a misplaced capture-default
940       // or the start of a capture (in the "&" case) with the rest of the
941       // capture missing. Both are an error but a misplaced capture-default
942       // is more likely if we don't already have a capture default.
943       return Invalid(
944           [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
945     } else {
946       TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
947 
948       if (Tok.is(tok::amp)) {
949         Kind = LCK_ByRef;
950         ConsumeToken();
951 
952         if (Tok.is(tok::code_completion)) {
953           cutOffParsing();
954           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
955                                                /*AfterAmpersand=*/true);
956           break;
957         }
958       }
959 
960       TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
961 
962       if (Tok.is(tok::identifier)) {
963         Id = Tok.getIdentifierInfo();
964         Loc = ConsumeToken();
965       } else if (Tok.is(tok::kw_this)) {
966         return Invalid([&] {
967           // FIXME: Suggest a fixit here.
968           Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
969         });
970       } else {
971         return Invalid([&] {
972           Diag(Tok.getLocation(), diag::err_expected_capture);
973         });
974       }
975 
976       TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
977 
978       if (Tok.is(tok::l_paren)) {
979         BalancedDelimiterTracker Parens(*this, tok::l_paren);
980         Parens.consumeOpen();
981 
982         InitKind = LambdaCaptureInitKind::DirectInit;
983 
984         ExprVector Exprs;
985         if (Tentative) {
986           Parens.skipToEnd();
987           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
988         } else if (ParseExpressionList(Exprs)) {
989           Parens.skipToEnd();
990           Init = ExprError();
991         } else {
992           Parens.consumeClose();
993           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
994                                             Parens.getCloseLocation(),
995                                             Exprs);
996         }
997       } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
998         // Each lambda init-capture forms its own full expression, which clears
999         // Actions.MaybeODRUseExprs. So create an expression evaluation context
1000         // to save the necessary state, and restore it later.
1001         EnterExpressionEvaluationContext EC(
1002             Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1003 
1004         if (TryConsumeToken(tok::equal))
1005           InitKind = LambdaCaptureInitKind::CopyInit;
1006         else
1007           InitKind = LambdaCaptureInitKind::ListInit;
1008 
1009         if (!Tentative) {
1010           Init = ParseInitializer();
1011         } else if (Tok.is(tok::l_brace)) {
1012           BalancedDelimiterTracker Braces(*this, tok::l_brace);
1013           Braces.consumeOpen();
1014           Braces.skipToEnd();
1015           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1016         } else {
1017           // We're disambiguating this:
1018           //
1019           //   [..., x = expr
1020           //
1021           // We need to find the end of the following expression in order to
1022           // determine whether this is an Obj-C message send's receiver, a
1023           // C99 designator, or a lambda init-capture.
1024           //
1025           // Parse the expression to find where it ends, and annotate it back
1026           // onto the tokens. We would have parsed this expression the same way
1027           // in either case: both the RHS of an init-capture and the RHS of an
1028           // assignment expression are parsed as an initializer-clause, and in
1029           // neither case can anything be added to the scope between the '[' and
1030           // here.
1031           //
1032           // FIXME: This is horrible. Adding a mechanism to skip an expression
1033           // would be much cleaner.
1034           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1035           // that instead. (And if we see a ':' with no matching '?', we can
1036           // classify this as an Obj-C message send.)
1037           SourceLocation StartLoc = Tok.getLocation();
1038           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1039           Init = ParseInitializer();
1040           if (!Init.isInvalid())
1041             Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1042 
1043           if (Tok.getLocation() != StartLoc) {
1044             // Back out the lexing of the token after the initializer.
1045             PP.RevertCachedTokens(1);
1046 
1047             // Replace the consumed tokens with an appropriate annotation.
1048             Tok.setLocation(StartLoc);
1049             Tok.setKind(tok::annot_primary_expr);
1050             setExprAnnotation(Tok, Init);
1051             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1052             PP.AnnotateCachedTokens(Tok);
1053 
1054             // Consume the annotated initializer.
1055             ConsumeAnnotationToken();
1056           }
1057         }
1058       }
1059 
1060       TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1061     }
1062 
1063     // Check if this is a message send before we act on a possible init-capture.
1064     if (Tentative && Tok.is(tok::identifier) &&
1065         NextToken().isOneOf(tok::colon, tok::r_square)) {
1066       // This can only be a message send. We're done with disambiguation.
1067       *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1068       return false;
1069     }
1070 
1071     // Ensure that any ellipsis was in the right place.
1072     SourceLocation EllipsisLoc;
1073     if (llvm::any_of(EllipsisLocs,
1074                      [](SourceLocation Loc) { return Loc.isValid(); })) {
1075       // The '...' should appear before the identifier in an init-capture, and
1076       // after the identifier otherwise.
1077       bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1078       SourceLocation *ExpectedEllipsisLoc =
1079           !InitCapture      ? &EllipsisLocs[2] :
1080           Kind == LCK_ByRef ? &EllipsisLocs[1] :
1081                               &EllipsisLocs[0];
1082       EllipsisLoc = *ExpectedEllipsisLoc;
1083 
1084       unsigned DiagID = 0;
1085       if (EllipsisLoc.isInvalid()) {
1086         DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1087         for (SourceLocation Loc : EllipsisLocs) {
1088           if (Loc.isValid())
1089             EllipsisLoc = Loc;
1090         }
1091       } else {
1092         unsigned NumEllipses = std::accumulate(
1093             std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1094             [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1095         if (NumEllipses > 1)
1096           DiagID = diag::err_lambda_capture_multiple_ellipses;
1097       }
1098       if (DiagID) {
1099         NonTentativeAction([&] {
1100           // Point the diagnostic at the first misplaced ellipsis.
1101           SourceLocation DiagLoc;
1102           for (SourceLocation &Loc : EllipsisLocs) {
1103             if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1104               DiagLoc = Loc;
1105               break;
1106             }
1107           }
1108           assert(DiagLoc.isValid() && "no location for diagnostic");
1109 
1110           // Issue the diagnostic and produce fixits showing where the ellipsis
1111           // should have been written.
1112           auto &&D = Diag(DiagLoc, DiagID);
1113           if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1114             SourceLocation ExpectedLoc =
1115                 InitCapture ? Loc
1116                             : Lexer::getLocForEndOfToken(
1117                                   Loc, 0, PP.getSourceManager(), getLangOpts());
1118             D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1119           }
1120           for (SourceLocation &Loc : EllipsisLocs) {
1121             if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1122               D << FixItHint::CreateRemoval(Loc);
1123           }
1124         });
1125       }
1126     }
1127 
1128     // Process the init-capture initializers now rather than delaying until we
1129     // form the lambda-expression so that they can be handled in the context
1130     // enclosing the lambda-expression, rather than in the context of the
1131     // lambda-expression itself.
1132     ParsedType InitCaptureType;
1133     if (Init.isUsable())
1134       Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1135     if (Init.isUsable()) {
1136       NonTentativeAction([&] {
1137         // Get the pointer and store it in an lvalue, so we can use it as an
1138         // out argument.
1139         Expr *InitExpr = Init.get();
1140         // This performs any lvalue-to-rvalue conversions if necessary, which
1141         // can affect what gets captured in the containing decl-context.
1142         InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1143             Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1144         Init = InitExpr;
1145       });
1146     }
1147 
1148     SourceLocation LocEnd = PrevTokLocation;
1149 
1150     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1151                      InitCaptureType, SourceRange(LocStart, LocEnd));
1152   }
1153 
1154   T.consumeClose();
1155   Intro.Range.setEnd(T.getCloseLocation());
1156   return false;
1157 }
1158 
1159 static void tryConsumeLambdaSpecifierToken(Parser &P,
1160                                            SourceLocation &MutableLoc,
1161                                            SourceLocation &StaticLoc,
1162                                            SourceLocation &ConstexprLoc,
1163                                            SourceLocation &ConstevalLoc,
1164                                            SourceLocation &DeclEndLoc) {
1165   assert(MutableLoc.isInvalid());
1166   assert(StaticLoc.isInvalid());
1167   assert(ConstexprLoc.isInvalid());
1168   assert(ConstevalLoc.isInvalid());
1169   // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1170   // to the final of those locations. Emit an error if we have multiple
1171   // copies of those keywords and recover.
1172 
1173   auto ConsumeLocation = [&P, &DeclEndLoc](SourceLocation &SpecifierLoc,
1174                                            int DiagIndex) {
1175     if (SpecifierLoc.isValid()) {
1176       P.Diag(P.getCurToken().getLocation(),
1177              diag::err_lambda_decl_specifier_repeated)
1178           << DiagIndex
1179           << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1180     }
1181     SpecifierLoc = P.ConsumeToken();
1182     DeclEndLoc = SpecifierLoc;
1183   };
1184 
1185   while (true) {
1186     switch (P.getCurToken().getKind()) {
1187     case tok::kw_mutable:
1188       ConsumeLocation(MutableLoc, 0);
1189       break;
1190     case tok::kw_static:
1191       ConsumeLocation(StaticLoc, 1);
1192       break;
1193     case tok::kw_constexpr:
1194       ConsumeLocation(ConstexprLoc, 2);
1195       break;
1196     case tok::kw_consteval:
1197       ConsumeLocation(ConstevalLoc, 3);
1198       break;
1199     default:
1200       return;
1201     }
1202   }
1203 }
1204 
1205 static void addStaticToLambdaDeclSpecifier(Parser &P, SourceLocation StaticLoc,
1206                                            DeclSpec &DS) {
1207   if (StaticLoc.isValid()) {
1208     P.Diag(StaticLoc, !P.getLangOpts().CPlusPlus23
1209                           ? diag::err_static_lambda
1210                           : diag::warn_cxx20_compat_static_lambda);
1211     const char *PrevSpec = nullptr;
1212     unsigned DiagID = 0;
1213     DS.SetStorageClassSpec(P.getActions(), DeclSpec::SCS_static, StaticLoc,
1214                            PrevSpec, DiagID,
1215                            P.getActions().getASTContext().getPrintingPolicy());
1216     assert(PrevSpec == nullptr && DiagID == 0 &&
1217            "Static cannot have been set previously!");
1218   }
1219 }
1220 
1221 static void
1222 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1223                                   DeclSpec &DS) {
1224   if (ConstexprLoc.isValid()) {
1225     P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1226                              ? diag::ext_constexpr_on_lambda_cxx17
1227                              : diag::warn_cxx14_compat_constexpr_on_lambda);
1228     const char *PrevSpec = nullptr;
1229     unsigned DiagID = 0;
1230     DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1231                         DiagID);
1232     assert(PrevSpec == nullptr && DiagID == 0 &&
1233            "Constexpr cannot have been set previously!");
1234   }
1235 }
1236 
1237 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1238                                               SourceLocation ConstevalLoc,
1239                                               DeclSpec &DS) {
1240   if (ConstevalLoc.isValid()) {
1241     P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1242     const char *PrevSpec = nullptr;
1243     unsigned DiagID = 0;
1244     DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1245                         DiagID);
1246     if (DiagID != 0)
1247       P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1248   }
1249 }
1250 
1251 static void DiagnoseStaticSpecifierRestrictions(Parser &P,
1252                                                 SourceLocation StaticLoc,
1253                                                 SourceLocation MutableLoc,
1254                                                 const LambdaIntroducer &Intro) {
1255   if (StaticLoc.isInvalid())
1256     return;
1257 
1258   // [expr.prim.lambda.general] p4
1259   // The lambda-specifier-seq shall not contain both mutable and static.
1260   // If the lambda-specifier-seq contains static, there shall be no
1261   // lambda-capture.
1262   if (MutableLoc.isValid())
1263     P.Diag(StaticLoc, diag::err_static_mutable_lambda);
1264   if (Intro.hasLambdaCapture()) {
1265     P.Diag(StaticLoc, diag::err_static_lambda_captures);
1266   }
1267 }
1268 
1269 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1270 /// expression.
1271 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1272                      LambdaIntroducer &Intro) {
1273   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1274   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1275 
1276   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1277                                 "lambda expression parsing");
1278 
1279   // Parse lambda-declarator[opt].
1280   DeclSpec DS(AttrFactory);
1281   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr);
1282   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1283 
1284   ParseScope LambdaScope(this, Scope::LambdaScope | Scope::DeclScope |
1285                                    Scope::FunctionDeclarationScope |
1286                                    Scope::FunctionPrototypeScope);
1287 
1288   Actions.PushLambdaScope();
1289   Actions.ActOnLambdaExpressionAfterIntroducer(Intro, getCurScope());
1290 
1291   ParsedAttributes Attributes(AttrFactory);
1292   if (getLangOpts().CUDA) {
1293     // In CUDA code, GNU attributes are allowed to appear immediately after the
1294     // "[...]", even if there is no "(...)" before the lambda body.
1295     //
1296     // Note that we support __noinline__ as a keyword in this mode and thus
1297     // it has to be separately handled.
1298     while (true) {
1299       if (Tok.is(tok::kw___noinline__)) {
1300         IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1301         SourceLocation AttrNameLoc = ConsumeToken();
1302         Attributes.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
1303                           AttrNameLoc, /*ArgsUnion=*/nullptr,
1304                           /*numArgs=*/0, tok::kw___noinline__);
1305       } else if (Tok.is(tok::kw___attribute))
1306         ParseGNUAttributes(Attributes, /*LatePArsedAttrList=*/nullptr, &D);
1307       else
1308         break;
1309     }
1310 
1311     D.takeAttributes(Attributes);
1312   }
1313 
1314   // Helper to emit a warning if we see a CUDA host/device/global attribute
1315   // after '(...)'. nvcc doesn't accept this.
1316   auto WarnIfHasCUDATargetAttr = [&] {
1317     if (getLangOpts().CUDA)
1318       for (const ParsedAttr &A : Attributes)
1319         if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1320             A.getKind() == ParsedAttr::AT_CUDAHost ||
1321             A.getKind() == ParsedAttr::AT_CUDAGlobal)
1322           Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1323               << A.getAttrName()->getName();
1324   };
1325 
1326   MultiParseScope TemplateParamScope(*this);
1327   if (Tok.is(tok::less)) {
1328     Diag(Tok, getLangOpts().CPlusPlus20
1329                   ? diag::warn_cxx17_compat_lambda_template_parameter_list
1330                   : diag::ext_lambda_template_parameter_list);
1331 
1332     SmallVector<NamedDecl*, 4> TemplateParams;
1333     SourceLocation LAngleLoc, RAngleLoc;
1334     if (ParseTemplateParameters(TemplateParamScope,
1335                                 CurTemplateDepthTracker.getDepth(),
1336                                 TemplateParams, LAngleLoc, RAngleLoc)) {
1337       Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1338       return ExprError();
1339     }
1340 
1341     if (TemplateParams.empty()) {
1342       Diag(RAngleLoc,
1343            diag::err_lambda_template_parameter_list_empty);
1344     } else {
1345       ExprResult RequiresClause;
1346       if (TryConsumeToken(tok::kw_requires)) {
1347         RequiresClause =
1348             Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1349                 /*IsTrailingRequiresClause=*/false));
1350         if (RequiresClause.isInvalid())
1351           SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1352       }
1353 
1354       Actions.ActOnLambdaExplicitTemplateParameterList(
1355           Intro, LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1356       ++CurTemplateDepthTracker;
1357     }
1358   }
1359 
1360   // Implement WG21 P2173, which allows attributes immediately before the
1361   // lambda declarator and applies them to the corresponding function operator
1362   // or operator template declaration. We accept this as a conforming extension
1363   // in all language modes that support lambdas.
1364   if (isCXX11AttributeSpecifier()) {
1365     Diag(Tok, getLangOpts().CPlusPlus23
1366                   ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1367                   : diag::ext_decl_attrs_on_lambda)
1368         << Tok.getIdentifierInfo() << Tok.isRegularKeywordAttribute();
1369     MaybeParseCXX11Attributes(D);
1370   }
1371 
1372   TypeResult TrailingReturnType;
1373   SourceLocation TrailingReturnTypeLoc;
1374   SourceLocation LParenLoc, RParenLoc;
1375   SourceLocation DeclEndLoc;
1376   bool HasParentheses = false;
1377   bool HasSpecifiers = false;
1378   SourceLocation MutableLoc;
1379 
1380   auto ParseConstexprAndMutableSpecifiers = [&] {
1381     // GNU-style attributes must be parsed before the mutable specifier to
1382     // be compatible with GCC. MSVC-style attributes must be parsed before
1383     // the mutable specifier to be compatible with MSVC.
1384     MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attributes);
1385     // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1386     // the DeclEndLoc.
1387     SourceLocation ConstexprLoc;
1388     SourceLocation ConstevalLoc;
1389     SourceLocation StaticLoc;
1390 
1391     tryConsumeLambdaSpecifierToken(*this, MutableLoc, StaticLoc, ConstexprLoc,
1392                                    ConstevalLoc, DeclEndLoc);
1393 
1394     DiagnoseStaticSpecifierRestrictions(*this, StaticLoc, MutableLoc, Intro);
1395 
1396     addStaticToLambdaDeclSpecifier(*this, StaticLoc, DS);
1397     addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1398     addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1399   };
1400 
1401   auto ParseLambdaSpecifiers =
1402       [&](MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1403           SourceLocation EllipsisLoc) {
1404         // Parse exception-specification[opt].
1405         ExceptionSpecificationType ESpecType = EST_None;
1406         SourceRange ESpecRange;
1407         SmallVector<ParsedType, 2> DynamicExceptions;
1408         SmallVector<SourceRange, 2> DynamicExceptionRanges;
1409         ExprResult NoexceptExpr;
1410         CachedTokens *ExceptionSpecTokens;
1411 
1412         ESpecType = tryParseExceptionSpecification(
1413             /*Delayed=*/false, ESpecRange, DynamicExceptions,
1414             DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1415 
1416         if (ESpecType != EST_None)
1417           DeclEndLoc = ESpecRange.getEnd();
1418 
1419         // Parse attribute-specifier[opt].
1420         if (MaybeParseCXX11Attributes(Attributes))
1421           DeclEndLoc = Attributes.Range.getEnd();
1422 
1423         // Parse OpenCL addr space attribute.
1424         if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1425                         tok::kw___constant, tok::kw___generic)) {
1426           ParseOpenCLQualifiers(DS.getAttributes());
1427           ConsumeToken();
1428         }
1429 
1430         SourceLocation FunLocalRangeEnd = DeclEndLoc;
1431 
1432         // Parse trailing-return-type[opt].
1433         if (Tok.is(tok::arrow)) {
1434           FunLocalRangeEnd = Tok.getLocation();
1435           SourceRange Range;
1436           TrailingReturnType = ParseTrailingReturnType(
1437               Range, /*MayBeFollowedByDirectInit*/ false);
1438           TrailingReturnTypeLoc = Range.getBegin();
1439           if (Range.getEnd().isValid())
1440             DeclEndLoc = Range.getEnd();
1441         }
1442 
1443         SourceLocation NoLoc;
1444         D.AddTypeInfo(
1445             DeclaratorChunk::getFunction(
1446                 /*HasProto=*/true,
1447                 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1448                 ParamInfo.size(), EllipsisLoc, RParenLoc,
1449                 /*RefQualifierIsLvalueRef=*/true,
1450                 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1451                 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1452                 DynamicExceptions.size(),
1453                 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1454                 /*ExceptionSpecTokens*/ nullptr,
1455                 /*DeclsInPrototype=*/std::nullopt, LParenLoc, FunLocalRangeEnd,
1456                 D, TrailingReturnType, TrailingReturnTypeLoc, &DS),
1457             std::move(Attributes), DeclEndLoc);
1458 
1459         Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1460 
1461         if (HasParentheses && Tok.is(tok::kw_requires))
1462           ParseTrailingRequiresClause(D);
1463       };
1464 
1465   ParseScope Prototype(this, Scope::FunctionPrototypeScope |
1466                                  Scope::FunctionDeclarationScope |
1467                                  Scope::DeclScope);
1468 
1469   // Parse parameter-declaration-clause.
1470   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1471   SourceLocation EllipsisLoc;
1472 
1473   if (Tok.is(tok::l_paren)) {
1474     BalancedDelimiterTracker T(*this, tok::l_paren);
1475     T.consumeOpen();
1476     LParenLoc = T.getOpenLocation();
1477 
1478     if (Tok.isNot(tok::r_paren)) {
1479       Actions.RecordParsingTemplateParameterDepth(
1480           CurTemplateDepthTracker.getOriginalDepth());
1481 
1482       ParseParameterDeclarationClause(D, Attributes, ParamInfo, EllipsisLoc);
1483       // For a generic lambda, each 'auto' within the parameter declaration
1484       // clause creates a template type parameter, so increment the depth.
1485       // If we've parsed any explicit template parameters, then the depth will
1486       // have already been incremented. So we make sure that at most a single
1487       // depth level is added.
1488       if (Actions.getCurGenericLambda())
1489         CurTemplateDepthTracker.setAddedDepth(1);
1490     }
1491 
1492     T.consumeClose();
1493     DeclEndLoc = RParenLoc = T.getCloseLocation();
1494     HasParentheses = true;
1495   }
1496 
1497   HasSpecifiers =
1498       Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1499                   tok::kw_constexpr, tok::kw_consteval, tok::kw_static,
1500                   tok::kw___private, tok::kw___global, tok::kw___local,
1501                   tok::kw___constant, tok::kw___generic, tok::kw_groupshared,
1502                   tok::kw_requires, tok::kw_noexcept) ||
1503       Tok.isRegularKeywordAttribute() ||
1504       (Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1505 
1506   if (HasSpecifiers && !HasParentheses && !getLangOpts().CPlusPlus23) {
1507     // It's common to forget that one needs '()' before 'mutable', an
1508     // attribute specifier, the result type, or the requires clause. Deal with
1509     // this.
1510     Diag(Tok, diag::ext_lambda_missing_parens)
1511         << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1512   }
1513 
1514   if (HasParentheses || HasSpecifiers)
1515     ParseConstexprAndMutableSpecifiers();
1516 
1517   Actions.ActOnLambdaClosureParameters(getCurScope(), ParamInfo);
1518 
1519   if (!HasParentheses)
1520     Actions.ActOnLambdaClosureQualifiers(Intro, MutableLoc);
1521 
1522   if (HasSpecifiers || HasParentheses)
1523     ParseLambdaSpecifiers(ParamInfo, EllipsisLoc);
1524 
1525   WarnIfHasCUDATargetAttr();
1526 
1527   Prototype.Exit();
1528 
1529   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1530   // it.
1531   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1532                         Scope::CompoundStmtScope;
1533   ParseScope BodyScope(this, ScopeFlags);
1534 
1535   Actions.ActOnStartOfLambdaDefinition(Intro, D, DS);
1536 
1537   // Parse compound-statement.
1538   if (!Tok.is(tok::l_brace)) {
1539     Diag(Tok, diag::err_expected_lambda_body);
1540     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1541     return ExprError();
1542   }
1543 
1544   StmtResult Stmt(ParseCompoundStatementBody());
1545   BodyScope.Exit();
1546   TemplateParamScope.Exit();
1547   LambdaScope.Exit();
1548 
1549   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1550     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1551 
1552   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1553   return ExprError();
1554 }
1555 
1556 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1557 /// type.
1558 ///
1559 ///       postfix-expression: [C++ 5.2p1]
1560 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
1561 ///         'static_cast' '<' type-name '>' '(' expression ')'
1562 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
1563 ///         'const_cast' '<' type-name '>' '(' expression ')'
1564 ///
1565 /// C++ for OpenCL s2.3.1 adds:
1566 ///         'addrspace_cast' '<' type-name '>' '(' expression ')'
1567 ExprResult Parser::ParseCXXCasts() {
1568   tok::TokenKind Kind = Tok.getKind();
1569   const char *CastName = nullptr; // For error messages
1570 
1571   switch (Kind) {
1572   default: llvm_unreachable("Unknown C++ cast!");
1573   case tok::kw_addrspace_cast:   CastName = "addrspace_cast";   break;
1574   case tok::kw_const_cast:       CastName = "const_cast";       break;
1575   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
1576   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1577   case tok::kw_static_cast:      CastName = "static_cast";      break;
1578   }
1579 
1580   SourceLocation OpLoc = ConsumeToken();
1581   SourceLocation LAngleBracketLoc = Tok.getLocation();
1582 
1583   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
1584   // diagnose error, suggest fix, and recover parsing.
1585   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1586     Token Next = NextToken();
1587     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1588       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1589   }
1590 
1591   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1592     return ExprError();
1593 
1594   // Parse the common declaration-specifiers piece.
1595   DeclSpec DS(AttrFactory);
1596   ParseSpecifierQualifierList(DS, /*AccessSpecifier=*/AS_none,
1597                               DeclSpecContext::DSC_type_specifier);
1598 
1599   // Parse the abstract-declarator, if present.
1600   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1601                             DeclaratorContext::TypeName);
1602   ParseDeclarator(DeclaratorInfo);
1603 
1604   SourceLocation RAngleBracketLoc = Tok.getLocation();
1605 
1606   if (ExpectAndConsume(tok::greater))
1607     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1608 
1609   BalancedDelimiterTracker T(*this, tok::l_paren);
1610 
1611   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1612     return ExprError();
1613 
1614   ExprResult Result = ParseExpression();
1615 
1616   // Match the ')'.
1617   T.consumeClose();
1618 
1619   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1620     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1621                                        LAngleBracketLoc, DeclaratorInfo,
1622                                        RAngleBracketLoc,
1623                                        T.getOpenLocation(), Result.get(),
1624                                        T.getCloseLocation());
1625 
1626   return Result;
1627 }
1628 
1629 /// ParseCXXTypeid - This handles the C++ typeid expression.
1630 ///
1631 ///       postfix-expression: [C++ 5.2p1]
1632 ///         'typeid' '(' expression ')'
1633 ///         'typeid' '(' type-id ')'
1634 ///
1635 ExprResult Parser::ParseCXXTypeid() {
1636   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1637 
1638   SourceLocation OpLoc = ConsumeToken();
1639   SourceLocation LParenLoc, RParenLoc;
1640   BalancedDelimiterTracker T(*this, tok::l_paren);
1641 
1642   // typeid expressions are always parenthesized.
1643   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1644     return ExprError();
1645   LParenLoc = T.getOpenLocation();
1646 
1647   ExprResult Result;
1648 
1649   // C++0x [expr.typeid]p3:
1650   //   When typeid is applied to an expression other than an lvalue of a
1651   //   polymorphic class type [...] The expression is an unevaluated
1652   //   operand (Clause 5).
1653   //
1654   // Note that we can't tell whether the expression is an lvalue of a
1655   // polymorphic class type until after we've parsed the expression; we
1656   // speculatively assume the subexpression is unevaluated, and fix it up
1657   // later.
1658   //
1659   // We enter the unevaluated context before trying to determine whether we
1660   // have a type-id, because the tentative parse logic will try to resolve
1661   // names, and must treat them as unevaluated.
1662   EnterExpressionEvaluationContext Unevaluated(
1663       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1664       Sema::ReuseLambdaContextDecl);
1665 
1666   if (isTypeIdInParens()) {
1667     TypeResult Ty = ParseTypeName();
1668 
1669     // Match the ')'.
1670     T.consumeClose();
1671     RParenLoc = T.getCloseLocation();
1672     if (Ty.isInvalid() || RParenLoc.isInvalid())
1673       return ExprError();
1674 
1675     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1676                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1677   } else {
1678     Result = ParseExpression();
1679 
1680     // Match the ')'.
1681     if (Result.isInvalid())
1682       SkipUntil(tok::r_paren, StopAtSemi);
1683     else {
1684       T.consumeClose();
1685       RParenLoc = T.getCloseLocation();
1686       if (RParenLoc.isInvalid())
1687         return ExprError();
1688 
1689       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1690                                       Result.get(), RParenLoc);
1691     }
1692   }
1693 
1694   return Result;
1695 }
1696 
1697 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1698 ///
1699 ///         '__uuidof' '(' expression ')'
1700 ///         '__uuidof' '(' type-id ')'
1701 ///
1702 ExprResult Parser::ParseCXXUuidof() {
1703   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1704 
1705   SourceLocation OpLoc = ConsumeToken();
1706   BalancedDelimiterTracker T(*this, tok::l_paren);
1707 
1708   // __uuidof expressions are always parenthesized.
1709   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1710     return ExprError();
1711 
1712   ExprResult Result;
1713 
1714   if (isTypeIdInParens()) {
1715     TypeResult Ty = ParseTypeName();
1716 
1717     // Match the ')'.
1718     T.consumeClose();
1719 
1720     if (Ty.isInvalid())
1721       return ExprError();
1722 
1723     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1724                                     Ty.get().getAsOpaquePtr(),
1725                                     T.getCloseLocation());
1726   } else {
1727     EnterExpressionEvaluationContext Unevaluated(
1728         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1729     Result = ParseExpression();
1730 
1731     // Match the ')'.
1732     if (Result.isInvalid())
1733       SkipUntil(tok::r_paren, StopAtSemi);
1734     else {
1735       T.consumeClose();
1736 
1737       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1738                                       /*isType=*/false,
1739                                       Result.get(), T.getCloseLocation());
1740     }
1741   }
1742 
1743   return Result;
1744 }
1745 
1746 /// Parse a C++ pseudo-destructor expression after the base,
1747 /// . or -> operator, and nested-name-specifier have already been
1748 /// parsed. We're handling this fragment of the grammar:
1749 ///
1750 ///       postfix-expression: [C++2a expr.post]
1751 ///         postfix-expression . template[opt] id-expression
1752 ///         postfix-expression -> template[opt] id-expression
1753 ///
1754 ///       id-expression:
1755 ///         qualified-id
1756 ///         unqualified-id
1757 ///
1758 ///       qualified-id:
1759 ///         nested-name-specifier template[opt] unqualified-id
1760 ///
1761 ///       nested-name-specifier:
1762 ///         type-name ::
1763 ///         decltype-specifier ::    FIXME: not implemented, but probably only
1764 ///                                         allowed in C++ grammar by accident
1765 ///         nested-name-specifier identifier ::
1766 ///         nested-name-specifier template[opt] simple-template-id ::
1767 ///         [...]
1768 ///
1769 ///       unqualified-id:
1770 ///         ~ type-name
1771 ///         ~ decltype-specifier
1772 ///         [...]
1773 ///
1774 /// ... where the all but the last component of the nested-name-specifier
1775 /// has already been parsed, and the base expression is not of a non-dependent
1776 /// class type.
1777 ExprResult
1778 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1779                                  tok::TokenKind OpKind,
1780                                  CXXScopeSpec &SS,
1781                                  ParsedType ObjectType) {
1782   // If the last component of the (optional) nested-name-specifier is
1783   // template[opt] simple-template-id, it has already been annotated.
1784   UnqualifiedId FirstTypeName;
1785   SourceLocation CCLoc;
1786   if (Tok.is(tok::identifier)) {
1787     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1788     ConsumeToken();
1789     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1790     CCLoc = ConsumeToken();
1791   } else if (Tok.is(tok::annot_template_id)) {
1792     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1793     // FIXME: Carry on and build an AST representation for tooling.
1794     if (TemplateId->isInvalid())
1795       return ExprError();
1796     FirstTypeName.setTemplateId(TemplateId);
1797     ConsumeAnnotationToken();
1798     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1799     CCLoc = ConsumeToken();
1800   } else {
1801     assert(SS.isEmpty() && "missing last component of nested name specifier");
1802     FirstTypeName.setIdentifier(nullptr, SourceLocation());
1803   }
1804 
1805   // Parse the tilde.
1806   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1807   SourceLocation TildeLoc = ConsumeToken();
1808 
1809   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1810     DeclSpec DS(AttrFactory);
1811     ParseDecltypeSpecifier(DS);
1812     if (DS.getTypeSpecType() == TST_error)
1813       return ExprError();
1814     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1815                                              TildeLoc, DS);
1816   }
1817 
1818   if (!Tok.is(tok::identifier)) {
1819     Diag(Tok, diag::err_destructor_tilde_identifier);
1820     return ExprError();
1821   }
1822 
1823   // Parse the second type.
1824   UnqualifiedId SecondTypeName;
1825   IdentifierInfo *Name = Tok.getIdentifierInfo();
1826   SourceLocation NameLoc = ConsumeToken();
1827   SecondTypeName.setIdentifier(Name, NameLoc);
1828 
1829   // If there is a '<', the second type name is a template-id. Parse
1830   // it as such.
1831   //
1832   // FIXME: This is not a context in which a '<' is assumed to start a template
1833   // argument list. This affects examples such as
1834   //   void f(auto *p) { p->~X<int>(); }
1835   // ... but there's no ambiguity, and nowhere to write 'template' in such an
1836   // example, so we accept it anyway.
1837   if (Tok.is(tok::less) &&
1838       ParseUnqualifiedIdTemplateId(
1839           SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1840           Name, NameLoc, false, SecondTypeName,
1841           /*AssumeTemplateId=*/true))
1842     return ExprError();
1843 
1844   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1845                                            SS, FirstTypeName, CCLoc, TildeLoc,
1846                                            SecondTypeName);
1847 }
1848 
1849 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1850 ///
1851 ///       boolean-literal: [C++ 2.13.5]
1852 ///         'true'
1853 ///         'false'
1854 ExprResult Parser::ParseCXXBoolLiteral() {
1855   tok::TokenKind Kind = Tok.getKind();
1856   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1857 }
1858 
1859 /// ParseThrowExpression - This handles the C++ throw expression.
1860 ///
1861 ///       throw-expression: [C++ 15]
1862 ///         'throw' assignment-expression[opt]
1863 ExprResult Parser::ParseThrowExpression() {
1864   assert(Tok.is(tok::kw_throw) && "Not throw!");
1865   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1866 
1867   // If the current token isn't the start of an assignment-expression,
1868   // then the expression is not present.  This handles things like:
1869   //   "C ? throw : (void)42", which is crazy but legal.
1870   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1871   case tok::semi:
1872   case tok::r_paren:
1873   case tok::r_square:
1874   case tok::r_brace:
1875   case tok::colon:
1876   case tok::comma:
1877     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1878 
1879   default:
1880     ExprResult Expr(ParseAssignmentExpression());
1881     if (Expr.isInvalid()) return Expr;
1882     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1883   }
1884 }
1885 
1886 /// Parse the C++ Coroutines co_yield expression.
1887 ///
1888 ///       co_yield-expression:
1889 ///         'co_yield' assignment-expression[opt]
1890 ExprResult Parser::ParseCoyieldExpression() {
1891   assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1892 
1893   SourceLocation Loc = ConsumeToken();
1894   ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1895                                          : ParseAssignmentExpression();
1896   if (!Expr.isInvalid())
1897     Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1898   return Expr;
1899 }
1900 
1901 /// ParseCXXThis - This handles the C++ 'this' pointer.
1902 ///
1903 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1904 /// a non-lvalue expression whose value is the address of the object for which
1905 /// the function is called.
1906 ExprResult Parser::ParseCXXThis() {
1907   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1908   SourceLocation ThisLoc = ConsumeToken();
1909   return Actions.ActOnCXXThis(ThisLoc);
1910 }
1911 
1912 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1913 /// Can be interpreted either as function-style casting ("int(x)")
1914 /// or class type construction ("ClassType(x,y,z)")
1915 /// or creation of a value-initialized type ("int()").
1916 /// See [C++ 5.2.3].
1917 ///
1918 ///       postfix-expression: [C++ 5.2p1]
1919 ///         simple-type-specifier '(' expression-list[opt] ')'
1920 /// [C++0x] simple-type-specifier braced-init-list
1921 ///         typename-specifier '(' expression-list[opt] ')'
1922 /// [C++0x] typename-specifier braced-init-list
1923 ///
1924 /// In C++1z onwards, the type specifier can also be a template-name.
1925 ExprResult
1926 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1927   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1928                             DeclaratorContext::FunctionalCast);
1929   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1930 
1931   assert((Tok.is(tok::l_paren) ||
1932           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1933          && "Expected '(' or '{'!");
1934 
1935   if (Tok.is(tok::l_brace)) {
1936     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1937     ExprResult Init = ParseBraceInitializer();
1938     if (Init.isInvalid())
1939       return Init;
1940     Expr *InitList = Init.get();
1941     return Actions.ActOnCXXTypeConstructExpr(
1942         TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1943         InitList->getEndLoc(), /*ListInitialization=*/true);
1944   } else {
1945     BalancedDelimiterTracker T(*this, tok::l_paren);
1946     T.consumeOpen();
1947 
1948     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1949 
1950     ExprVector Exprs;
1951 
1952     auto RunSignatureHelp = [&]() {
1953       QualType PreferredType;
1954       if (TypeRep)
1955         PreferredType = Actions.ProduceConstructorSignatureHelp(
1956             TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(), Exprs,
1957             T.getOpenLocation(), /*Braced=*/false);
1958       CalledSignatureHelp = true;
1959       return PreferredType;
1960     };
1961 
1962     if (Tok.isNot(tok::r_paren)) {
1963       if (ParseExpressionList(Exprs, [&] {
1964             PreferredType.enterFunctionArgument(Tok.getLocation(),
1965                                                 RunSignatureHelp);
1966           })) {
1967         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1968           RunSignatureHelp();
1969         SkipUntil(tok::r_paren, StopAtSemi);
1970         return ExprError();
1971       }
1972     }
1973 
1974     // Match the ')'.
1975     T.consumeClose();
1976 
1977     // TypeRep could be null, if it references an invalid typedef.
1978     if (!TypeRep)
1979       return ExprError();
1980 
1981     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1982                                              Exprs, T.getCloseLocation(),
1983                                              /*ListInitialization=*/false);
1984   }
1985 }
1986 
1987 Parser::DeclGroupPtrTy
1988 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
1989                                              ParsedAttributes &Attrs) {
1990   assert(Tok.is(tok::kw_using) && "Expected using");
1991   assert((Context == DeclaratorContext::ForInit ||
1992           Context == DeclaratorContext::SelectionInit) &&
1993          "Unexpected Declarator Context");
1994   DeclGroupPtrTy DG;
1995   SourceLocation DeclStart = ConsumeToken(), DeclEnd;
1996 
1997   DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
1998   if (!DG)
1999     return DG;
2000 
2001   Diag(DeclStart, !getLangOpts().CPlusPlus23
2002                       ? diag::ext_alias_in_init_statement
2003                       : diag::warn_cxx20_alias_in_init_statement)
2004       << SourceRange(DeclStart, DeclEnd);
2005 
2006   return DG;
2007 }
2008 
2009 /// ParseCXXCondition - if/switch/while condition expression.
2010 ///
2011 ///       condition:
2012 ///         expression
2013 ///         type-specifier-seq declarator '=' assignment-expression
2014 /// [C++11] type-specifier-seq declarator '=' initializer-clause
2015 /// [C++11] type-specifier-seq declarator braced-init-list
2016 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
2017 ///             brace-or-equal-initializer
2018 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
2019 ///             '=' assignment-expression
2020 ///
2021 /// In C++1z, a condition may in some contexts be preceded by an
2022 /// optional init-statement. This function will parse that too.
2023 ///
2024 /// \param InitStmt If non-null, an init-statement is permitted, and if present
2025 /// will be parsed and stored here.
2026 ///
2027 /// \param Loc The location of the start of the statement that requires this
2028 /// condition, e.g., the "for" in a for loop.
2029 ///
2030 /// \param MissingOK Whether an empty condition is acceptable here. Otherwise
2031 /// it is considered an error to be recovered from.
2032 ///
2033 /// \param FRI If non-null, a for range declaration is permitted, and if
2034 /// present will be parsed and stored here, and a null result will be returned.
2035 ///
2036 /// \param EnterForConditionScope If true, enter a continue/break scope at the
2037 /// appropriate moment for a 'for' loop.
2038 ///
2039 /// \returns The parsed condition.
2040 Sema::ConditionResult
2041 Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
2042                           Sema::ConditionKind CK, bool MissingOK,
2043                           ForRangeInfo *FRI, bool EnterForConditionScope) {
2044   // Helper to ensure we always enter a continue/break scope if requested.
2045   struct ForConditionScopeRAII {
2046     Scope *S;
2047     void enter(bool IsConditionVariable) {
2048       if (S) {
2049         S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
2050         S->setIsConditionVarScope(IsConditionVariable);
2051       }
2052     }
2053     ~ForConditionScopeRAII() {
2054       if (S)
2055         S->setIsConditionVarScope(false);
2056     }
2057   } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
2058 
2059   ParenBraceBracketBalancer BalancerRAIIObj(*this);
2060   PreferredType.enterCondition(Actions, Tok.getLocation());
2061 
2062   if (Tok.is(tok::code_completion)) {
2063     cutOffParsing();
2064     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
2065     return Sema::ConditionError();
2066   }
2067 
2068   ParsedAttributes attrs(AttrFactory);
2069   MaybeParseCXX11Attributes(attrs);
2070 
2071   const auto WarnOnInit = [this, &CK] {
2072     Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
2073                                 ? diag::warn_cxx14_compat_init_statement
2074                                 : diag::ext_init_statement)
2075         << (CK == Sema::ConditionKind::Switch);
2076   };
2077 
2078   // Determine what kind of thing we have.
2079   switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
2080   case ConditionOrInitStatement::Expression: {
2081     // If this is a for loop, we're entering its condition.
2082     ForConditionScope.enter(/*IsConditionVariable=*/false);
2083 
2084     ProhibitAttributes(attrs);
2085 
2086     // We can have an empty expression here.
2087     //   if (; true);
2088     if (InitStmt && Tok.is(tok::semi)) {
2089       WarnOnInit();
2090       SourceLocation SemiLoc = Tok.getLocation();
2091       if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2092         Diag(SemiLoc, diag::warn_empty_init_statement)
2093             << (CK == Sema::ConditionKind::Switch)
2094             << FixItHint::CreateRemoval(SemiLoc);
2095       }
2096       ConsumeToken();
2097       *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2098       return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2099     }
2100 
2101     // Parse the expression.
2102     ExprResult Expr = ParseExpression(); // expression
2103     if (Expr.isInvalid())
2104       return Sema::ConditionError();
2105 
2106     if (InitStmt && Tok.is(tok::semi)) {
2107       WarnOnInit();
2108       *InitStmt = Actions.ActOnExprStmt(Expr.get());
2109       ConsumeToken();
2110       return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2111     }
2112 
2113     return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK,
2114                                   MissingOK);
2115   }
2116 
2117   case ConditionOrInitStatement::InitStmtDecl: {
2118     WarnOnInit();
2119     DeclGroupPtrTy DG;
2120     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2121     if (Tok.is(tok::kw_using))
2122       DG = ParseAliasDeclarationInInitStatement(
2123           DeclaratorContext::SelectionInit, attrs);
2124     else {
2125       ParsedAttributes DeclSpecAttrs(AttrFactory);
2126       DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2127                                   attrs, DeclSpecAttrs, /*RequireSemi=*/true);
2128     }
2129     *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2130     return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2131   }
2132 
2133   case ConditionOrInitStatement::ForRangeDecl: {
2134     // This is 'for (init-stmt; for-range-decl : range-expr)'.
2135     // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2136     // permitted here.
2137     assert(FRI && "should not parse a for range declaration here");
2138     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2139     ParsedAttributes DeclSpecAttrs(AttrFactory);
2140     DeclGroupPtrTy DG = ParseSimpleDeclaration(
2141         DeclaratorContext::ForInit, DeclEnd, attrs, DeclSpecAttrs, false, FRI);
2142     FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2143     return Sema::ConditionResult();
2144   }
2145 
2146   case ConditionOrInitStatement::ConditionDecl:
2147   case ConditionOrInitStatement::Error:
2148     break;
2149   }
2150 
2151   // If this is a for loop, we're entering its condition.
2152   ForConditionScope.enter(/*IsConditionVariable=*/true);
2153 
2154   // type-specifier-seq
2155   DeclSpec DS(AttrFactory);
2156   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2157 
2158   // declarator
2159   Declarator DeclaratorInfo(DS, attrs, DeclaratorContext::Condition);
2160   ParseDeclarator(DeclaratorInfo);
2161 
2162   // simple-asm-expr[opt]
2163   if (Tok.is(tok::kw_asm)) {
2164     SourceLocation Loc;
2165     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2166     if (AsmLabel.isInvalid()) {
2167       SkipUntil(tok::semi, StopAtSemi);
2168       return Sema::ConditionError();
2169     }
2170     DeclaratorInfo.setAsmLabel(AsmLabel.get());
2171     DeclaratorInfo.SetRangeEnd(Loc);
2172   }
2173 
2174   // If attributes are present, parse them.
2175   MaybeParseGNUAttributes(DeclaratorInfo);
2176 
2177   // Type-check the declaration itself.
2178   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2179                                                         DeclaratorInfo);
2180   if (Dcl.isInvalid())
2181     return Sema::ConditionError();
2182   Decl *DeclOut = Dcl.get();
2183 
2184   // '=' assignment-expression
2185   // If a '==' or '+=' is found, suggest a fixit to '='.
2186   bool CopyInitialization = isTokenEqualOrEqualTypo();
2187   if (CopyInitialization)
2188     ConsumeToken();
2189 
2190   ExprResult InitExpr = ExprError();
2191   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2192     Diag(Tok.getLocation(),
2193          diag::warn_cxx98_compat_generalized_initializer_lists);
2194     InitExpr = ParseBraceInitializer();
2195   } else if (CopyInitialization) {
2196     PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2197     InitExpr = ParseAssignmentExpression();
2198   } else if (Tok.is(tok::l_paren)) {
2199     // This was probably an attempt to initialize the variable.
2200     SourceLocation LParen = ConsumeParen(), RParen = LParen;
2201     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2202       RParen = ConsumeParen();
2203     Diag(DeclOut->getLocation(),
2204          diag::err_expected_init_in_condition_lparen)
2205       << SourceRange(LParen, RParen);
2206   } else {
2207     Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2208   }
2209 
2210   if (!InitExpr.isInvalid())
2211     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2212   else
2213     Actions.ActOnInitializerError(DeclOut);
2214 
2215   Actions.FinalizeDeclaration(DeclOut);
2216   return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2217 }
2218 
2219 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2220 /// This should only be called when the current token is known to be part of
2221 /// simple-type-specifier.
2222 ///
2223 ///       simple-type-specifier:
2224 ///         '::'[opt] nested-name-specifier[opt] type-name
2225 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2226 ///         char
2227 ///         wchar_t
2228 ///         bool
2229 ///         short
2230 ///         int
2231 ///         long
2232 ///         signed
2233 ///         unsigned
2234 ///         float
2235 ///         double
2236 ///         void
2237 /// [GNU]   typeof-specifier
2238 /// [C++0x] auto               [TODO]
2239 ///
2240 ///       type-name:
2241 ///         class-name
2242 ///         enum-name
2243 ///         typedef-name
2244 ///
2245 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2246   DS.SetRangeStart(Tok.getLocation());
2247   const char *PrevSpec;
2248   unsigned DiagID;
2249   SourceLocation Loc = Tok.getLocation();
2250   const clang::PrintingPolicy &Policy =
2251       Actions.getASTContext().getPrintingPolicy();
2252 
2253   switch (Tok.getKind()) {
2254   case tok::identifier:   // foo::bar
2255   case tok::coloncolon:   // ::foo::bar
2256     llvm_unreachable("Annotation token should already be formed!");
2257   default:
2258     llvm_unreachable("Not a simple-type-specifier token!");
2259 
2260   // type-name
2261   case tok::annot_typename: {
2262     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2263                        getTypeAnnotation(Tok), Policy);
2264     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2265     ConsumeAnnotationToken();
2266 
2267     DS.Finish(Actions, Policy);
2268     return;
2269   }
2270 
2271   case tok::kw__ExtInt:
2272   case tok::kw__BitInt: {
2273     DiagnoseBitIntUse(Tok);
2274     ExprResult ER = ParseExtIntegerArgument();
2275     if (ER.isInvalid())
2276       DS.SetTypeSpecError();
2277     else
2278       DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2279 
2280     // Do this here because we have already consumed the close paren.
2281     DS.SetRangeEnd(PrevTokLocation);
2282     DS.Finish(Actions, Policy);
2283     return;
2284   }
2285 
2286   // builtin types
2287   case tok::kw_short:
2288     DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2289                         Policy);
2290     break;
2291   case tok::kw_long:
2292     DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2293                         Policy);
2294     break;
2295   case tok::kw___int64:
2296     DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2297                         Policy);
2298     break;
2299   case tok::kw_signed:
2300     DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2301     break;
2302   case tok::kw_unsigned:
2303     DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2304     break;
2305   case tok::kw_void:
2306     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2307     break;
2308   case tok::kw_auto:
2309     DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
2310     break;
2311   case tok::kw_char:
2312     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2313     break;
2314   case tok::kw_int:
2315     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2316     break;
2317   case tok::kw___int128:
2318     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2319     break;
2320   case tok::kw___bf16:
2321     DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2322     break;
2323   case tok::kw_half:
2324     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2325     break;
2326   case tok::kw_float:
2327     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2328     break;
2329   case tok::kw_double:
2330     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2331     break;
2332   case tok::kw__Float16:
2333     DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2334     break;
2335   case tok::kw___float128:
2336     DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2337     break;
2338   case tok::kw___ibm128:
2339     DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2340     break;
2341   case tok::kw_wchar_t:
2342     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2343     break;
2344   case tok::kw_char8_t:
2345     DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2346     break;
2347   case tok::kw_char16_t:
2348     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2349     break;
2350   case tok::kw_char32_t:
2351     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2352     break;
2353   case tok::kw_bool:
2354     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2355     break;
2356 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
2357   case tok::kw_##ImgType##_t:                                                  \
2358     DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID,     \
2359                        Policy);                                                \
2360     break;
2361 #include "clang/Basic/OpenCLImageTypes.def"
2362 
2363   case tok::annot_decltype:
2364   case tok::kw_decltype:
2365     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2366     return DS.Finish(Actions, Policy);
2367 
2368   // GNU typeof support.
2369   case tok::kw_typeof:
2370     ParseTypeofSpecifier(DS);
2371     DS.Finish(Actions, Policy);
2372     return;
2373   }
2374   ConsumeAnyToken();
2375   DS.SetRangeEnd(PrevTokLocation);
2376   DS.Finish(Actions, Policy);
2377 }
2378 
2379 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2380 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2381 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2382 /// by parsing the type-specifier-seq, because these sequences are
2383 /// typically followed by some form of declarator. Returns true and
2384 /// emits diagnostics if this is not a type-specifier-seq, false
2385 /// otherwise.
2386 ///
2387 ///   type-specifier-seq: [C++ 8.1]
2388 ///     type-specifier type-specifier-seq[opt]
2389 ///
2390 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS, DeclaratorContext Context) {
2391   ParseSpecifierQualifierList(DS, AS_none,
2392                               getDeclSpecContextFromDeclaratorContext(Context));
2393   DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2394   return false;
2395 }
2396 
2397 /// Finish parsing a C++ unqualified-id that is a template-id of
2398 /// some form.
2399 ///
2400 /// This routine is invoked when a '<' is encountered after an identifier or
2401 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2402 /// whether the unqualified-id is actually a template-id. This routine will
2403 /// then parse the template arguments and form the appropriate template-id to
2404 /// return to the caller.
2405 ///
2406 /// \param SS the nested-name-specifier that precedes this template-id, if
2407 /// we're actually parsing a qualified-id.
2408 ///
2409 /// \param ObjectType if this unqualified-id occurs within a member access
2410 /// expression, the type of the base object whose member is being accessed.
2411 ///
2412 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2413 /// expression, indicates whether the original subexpressions had any errors.
2414 ///
2415 /// \param Name for constructor and destructor names, this is the actual
2416 /// identifier that may be a template-name.
2417 ///
2418 /// \param NameLoc the location of the class-name in a constructor or
2419 /// destructor.
2420 ///
2421 /// \param EnteringContext whether we're entering the scope of the
2422 /// nested-name-specifier.
2423 ///
2424 /// \param Id as input, describes the template-name or operator-function-id
2425 /// that precedes the '<'. If template arguments were parsed successfully,
2426 /// will be updated with the template-id.
2427 ///
2428 /// \param AssumeTemplateId When true, this routine will assume that the name
2429 /// refers to a template without performing name lookup to verify.
2430 ///
2431 /// \returns true if a parse error occurred, false otherwise.
2432 bool Parser::ParseUnqualifiedIdTemplateId(
2433     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2434     SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2435     bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2436   assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2437 
2438   TemplateTy Template;
2439   TemplateNameKind TNK = TNK_Non_template;
2440   switch (Id.getKind()) {
2441   case UnqualifiedIdKind::IK_Identifier:
2442   case UnqualifiedIdKind::IK_OperatorFunctionId:
2443   case UnqualifiedIdKind::IK_LiteralOperatorId:
2444     if (AssumeTemplateId) {
2445       // We defer the injected-class-name checks until we've found whether
2446       // this template-id is used to form a nested-name-specifier or not.
2447       TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2448                                       ObjectType, EnteringContext, Template,
2449                                       /*AllowInjectedClassName*/ true);
2450     } else {
2451       bool MemberOfUnknownSpecialization;
2452       TNK = Actions.isTemplateName(getCurScope(), SS,
2453                                    TemplateKWLoc.isValid(), Id,
2454                                    ObjectType, EnteringContext, Template,
2455                                    MemberOfUnknownSpecialization);
2456       // If lookup found nothing but we're assuming that this is a template
2457       // name, double-check that makes sense syntactically before committing
2458       // to it.
2459       if (TNK == TNK_Undeclared_template &&
2460           isTemplateArgumentList(0) == TPResult::False)
2461         return false;
2462 
2463       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2464           ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2465         // If we had errors before, ObjectType can be dependent even without any
2466         // templates, do not report missing template keyword in that case.
2467         if (!ObjectHadErrors) {
2468           // We have something like t->getAs<T>(), where getAs is a
2469           // member of an unknown specialization. However, this will only
2470           // parse correctly as a template, so suggest the keyword 'template'
2471           // before 'getAs' and treat this as a dependent template name.
2472           std::string Name;
2473           if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2474             Name = std::string(Id.Identifier->getName());
2475           else {
2476             Name = "operator ";
2477             if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2478               Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2479             else
2480               Name += Id.Identifier->getName();
2481           }
2482           Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2483               << Name
2484               << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2485         }
2486         TNK = Actions.ActOnTemplateName(
2487             getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2488             Template, /*AllowInjectedClassName*/ true);
2489       } else if (TNK == TNK_Non_template) {
2490         return false;
2491       }
2492     }
2493     break;
2494 
2495   case UnqualifiedIdKind::IK_ConstructorName: {
2496     UnqualifiedId TemplateName;
2497     bool MemberOfUnknownSpecialization;
2498     TemplateName.setIdentifier(Name, NameLoc);
2499     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2500                                  TemplateName, ObjectType,
2501                                  EnteringContext, Template,
2502                                  MemberOfUnknownSpecialization);
2503     if (TNK == TNK_Non_template)
2504       return false;
2505     break;
2506   }
2507 
2508   case UnqualifiedIdKind::IK_DestructorName: {
2509     UnqualifiedId TemplateName;
2510     bool MemberOfUnknownSpecialization;
2511     TemplateName.setIdentifier(Name, NameLoc);
2512     if (ObjectType) {
2513       TNK = Actions.ActOnTemplateName(
2514           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2515           EnteringContext, Template, /*AllowInjectedClassName*/ true);
2516     } else {
2517       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2518                                    TemplateName, ObjectType,
2519                                    EnteringContext, Template,
2520                                    MemberOfUnknownSpecialization);
2521 
2522       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2523         Diag(NameLoc, diag::err_destructor_template_id)
2524           << Name << SS.getRange();
2525         // Carry on to parse the template arguments before bailing out.
2526       }
2527     }
2528     break;
2529   }
2530 
2531   default:
2532     return false;
2533   }
2534 
2535   // Parse the enclosed template argument list.
2536   SourceLocation LAngleLoc, RAngleLoc;
2537   TemplateArgList TemplateArgs;
2538   if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc,
2539                                        Template))
2540     return true;
2541 
2542   // If this is a non-template, we already issued a diagnostic.
2543   if (TNK == TNK_Non_template)
2544     return true;
2545 
2546   if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2547       Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2548       Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2549     // Form a parsed representation of the template-id to be stored in the
2550     // UnqualifiedId.
2551 
2552     // FIXME: Store name for literal operator too.
2553     IdentifierInfo *TemplateII =
2554         Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2555                                                          : nullptr;
2556     OverloadedOperatorKind OpKind =
2557         Id.getKind() == UnqualifiedIdKind::IK_Identifier
2558             ? OO_None
2559             : Id.OperatorFunctionId.Operator;
2560 
2561     TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2562         TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2563         LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2564 
2565     Id.setTemplateId(TemplateId);
2566     return false;
2567   }
2568 
2569   // Bundle the template arguments together.
2570   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2571 
2572   // Constructor and destructor names.
2573   TypeResult Type = Actions.ActOnTemplateIdType(
2574       getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2575       TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2576   if (Type.isInvalid())
2577     return true;
2578 
2579   if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2580     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2581   else
2582     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2583 
2584   return false;
2585 }
2586 
2587 /// Parse an operator-function-id or conversion-function-id as part
2588 /// of a C++ unqualified-id.
2589 ///
2590 /// This routine is responsible only for parsing the operator-function-id or
2591 /// conversion-function-id; it does not handle template arguments in any way.
2592 ///
2593 /// \code
2594 ///       operator-function-id: [C++ 13.5]
2595 ///         'operator' operator
2596 ///
2597 ///       operator: one of
2598 ///            new   delete  new[]   delete[]
2599 ///            +     -    *  /    %  ^    &   |   ~
2600 ///            !     =    <  >    += -=   *=  /=  %=
2601 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
2602 ///            <=    >=   && ||   ++ --   ,   ->* ->
2603 ///            ()    []   <=>
2604 ///
2605 ///       conversion-function-id: [C++ 12.3.2]
2606 ///         operator conversion-type-id
2607 ///
2608 ///       conversion-type-id:
2609 ///         type-specifier-seq conversion-declarator[opt]
2610 ///
2611 ///       conversion-declarator:
2612 ///         ptr-operator conversion-declarator[opt]
2613 /// \endcode
2614 ///
2615 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2616 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2617 ///
2618 /// \param EnteringContext whether we are entering the scope of the
2619 /// nested-name-specifier.
2620 ///
2621 /// \param ObjectType if this unqualified-id occurs within a member access
2622 /// expression, the type of the base object whose member is being accessed.
2623 ///
2624 /// \param Result on a successful parse, contains the parsed unqualified-id.
2625 ///
2626 /// \returns true if parsing fails, false otherwise.
2627 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2628                                         ParsedType ObjectType,
2629                                         UnqualifiedId &Result) {
2630   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2631 
2632   // Consume the 'operator' keyword.
2633   SourceLocation KeywordLoc = ConsumeToken();
2634 
2635   // Determine what kind of operator name we have.
2636   unsigned SymbolIdx = 0;
2637   SourceLocation SymbolLocations[3];
2638   OverloadedOperatorKind Op = OO_None;
2639   switch (Tok.getKind()) {
2640     case tok::kw_new:
2641     case tok::kw_delete: {
2642       bool isNew = Tok.getKind() == tok::kw_new;
2643       // Consume the 'new' or 'delete'.
2644       SymbolLocations[SymbolIdx++] = ConsumeToken();
2645       // Check for array new/delete.
2646       if (Tok.is(tok::l_square) &&
2647           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2648         // Consume the '[' and ']'.
2649         BalancedDelimiterTracker T(*this, tok::l_square);
2650         T.consumeOpen();
2651         T.consumeClose();
2652         if (T.getCloseLocation().isInvalid())
2653           return true;
2654 
2655         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2656         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2657         Op = isNew? OO_Array_New : OO_Array_Delete;
2658       } else {
2659         Op = isNew? OO_New : OO_Delete;
2660       }
2661       break;
2662     }
2663 
2664 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2665     case tok::Token:                                                     \
2666       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
2667       Op = OO_##Name;                                                    \
2668       break;
2669 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2670 #include "clang/Basic/OperatorKinds.def"
2671 
2672     case tok::l_paren: {
2673       // Consume the '(' and ')'.
2674       BalancedDelimiterTracker T(*this, tok::l_paren);
2675       T.consumeOpen();
2676       T.consumeClose();
2677       if (T.getCloseLocation().isInvalid())
2678         return true;
2679 
2680       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2681       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2682       Op = OO_Call;
2683       break;
2684     }
2685 
2686     case tok::l_square: {
2687       // Consume the '[' and ']'.
2688       BalancedDelimiterTracker T(*this, tok::l_square);
2689       T.consumeOpen();
2690       T.consumeClose();
2691       if (T.getCloseLocation().isInvalid())
2692         return true;
2693 
2694       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2695       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2696       Op = OO_Subscript;
2697       break;
2698     }
2699 
2700     case tok::code_completion: {
2701       // Don't try to parse any further.
2702       cutOffParsing();
2703       // Code completion for the operator name.
2704       Actions.CodeCompleteOperatorName(getCurScope());
2705       return true;
2706     }
2707 
2708     default:
2709       break;
2710   }
2711 
2712   if (Op != OO_None) {
2713     // We have parsed an operator-function-id.
2714     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2715     return false;
2716   }
2717 
2718   // Parse a literal-operator-id.
2719   //
2720   //   literal-operator-id: C++11 [over.literal]
2721   //     operator string-literal identifier
2722   //     operator user-defined-string-literal
2723 
2724   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2725     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2726 
2727     SourceLocation DiagLoc;
2728     unsigned DiagId = 0;
2729 
2730     // We're past translation phase 6, so perform string literal concatenation
2731     // before checking for "".
2732     SmallVector<Token, 4> Toks;
2733     SmallVector<SourceLocation, 4> TokLocs;
2734     while (isTokenStringLiteral()) {
2735       if (!Tok.is(tok::string_literal) && !DiagId) {
2736         // C++11 [over.literal]p1:
2737         //   The string-literal or user-defined-string-literal in a
2738         //   literal-operator-id shall have no encoding-prefix [...].
2739         DiagLoc = Tok.getLocation();
2740         DiagId = diag::err_literal_operator_string_prefix;
2741       }
2742       Toks.push_back(Tok);
2743       TokLocs.push_back(ConsumeStringToken());
2744     }
2745 
2746     StringLiteralParser Literal(Toks, PP);
2747     if (Literal.hadError)
2748       return true;
2749 
2750     // Grab the literal operator's suffix, which will be either the next token
2751     // or a ud-suffix from the string literal.
2752     bool IsUDSuffix = !Literal.getUDSuffix().empty();
2753     IdentifierInfo *II = nullptr;
2754     SourceLocation SuffixLoc;
2755     if (IsUDSuffix) {
2756       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2757       SuffixLoc =
2758         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2759                                        Literal.getUDSuffixOffset(),
2760                                        PP.getSourceManager(), getLangOpts());
2761     } else if (Tok.is(tok::identifier)) {
2762       II = Tok.getIdentifierInfo();
2763       SuffixLoc = ConsumeToken();
2764       TokLocs.push_back(SuffixLoc);
2765     } else {
2766       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2767       return true;
2768     }
2769 
2770     // The string literal must be empty.
2771     if (!Literal.GetString().empty() || Literal.Pascal) {
2772       // C++11 [over.literal]p1:
2773       //   The string-literal or user-defined-string-literal in a
2774       //   literal-operator-id shall [...] contain no characters
2775       //   other than the implicit terminating '\0'.
2776       DiagLoc = TokLocs.front();
2777       DiagId = diag::err_literal_operator_string_not_empty;
2778     }
2779 
2780     if (DiagId) {
2781       // This isn't a valid literal-operator-id, but we think we know
2782       // what the user meant. Tell them what they should have written.
2783       SmallString<32> Str;
2784       Str += "\"\"";
2785       Str += II->getName();
2786       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2787           SourceRange(TokLocs.front(), TokLocs.back()), Str);
2788     }
2789 
2790     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2791 
2792     return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2793   }
2794 
2795   // Parse a conversion-function-id.
2796   //
2797   //   conversion-function-id: [C++ 12.3.2]
2798   //     operator conversion-type-id
2799   //
2800   //   conversion-type-id:
2801   //     type-specifier-seq conversion-declarator[opt]
2802   //
2803   //   conversion-declarator:
2804   //     ptr-operator conversion-declarator[opt]
2805 
2806   // Parse the type-specifier-seq.
2807   DeclSpec DS(AttrFactory);
2808   if (ParseCXXTypeSpecifierSeq(
2809           DS, DeclaratorContext::ConversionId)) // FIXME: ObjectType?
2810     return true;
2811 
2812   // Parse the conversion-declarator, which is merely a sequence of
2813   // ptr-operators.
2814   Declarator D(DS, ParsedAttributesView::none(),
2815                DeclaratorContext::ConversionId);
2816   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2817 
2818   // Finish up the type.
2819   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2820   if (Ty.isInvalid())
2821     return true;
2822 
2823   // Note that this is a conversion-function-id.
2824   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2825                                  D.getSourceRange().getEnd());
2826   return false;
2827 }
2828 
2829 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2830 /// name of an entity.
2831 ///
2832 /// \code
2833 ///       unqualified-id: [C++ expr.prim.general]
2834 ///         identifier
2835 ///         operator-function-id
2836 ///         conversion-function-id
2837 /// [C++0x] literal-operator-id [TODO]
2838 ///         ~ class-name
2839 ///         template-id
2840 ///
2841 /// \endcode
2842 ///
2843 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2844 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2845 ///
2846 /// \param ObjectType if this unqualified-id occurs within a member access
2847 /// expression, the type of the base object whose member is being accessed.
2848 ///
2849 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2850 /// expression, indicates whether the original subexpressions had any errors.
2851 /// When true, diagnostics for missing 'template' keyword will be supressed.
2852 ///
2853 /// \param EnteringContext whether we are entering the scope of the
2854 /// nested-name-specifier.
2855 ///
2856 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2857 ///
2858 /// \param AllowConstructorName whether we allow parsing a constructor name.
2859 ///
2860 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2861 ///
2862 /// \param Result on a successful parse, contains the parsed unqualified-id.
2863 ///
2864 /// \returns true if parsing fails, false otherwise.
2865 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2866                                 bool ObjectHadErrors, bool EnteringContext,
2867                                 bool AllowDestructorName,
2868                                 bool AllowConstructorName,
2869                                 bool AllowDeductionGuide,
2870                                 SourceLocation *TemplateKWLoc,
2871                                 UnqualifiedId &Result) {
2872   if (TemplateKWLoc)
2873     *TemplateKWLoc = SourceLocation();
2874 
2875   // Handle 'A::template B'. This is for template-ids which have not
2876   // already been annotated by ParseOptionalCXXScopeSpecifier().
2877   bool TemplateSpecified = false;
2878   if (Tok.is(tok::kw_template)) {
2879     if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2880       TemplateSpecified = true;
2881       *TemplateKWLoc = ConsumeToken();
2882     } else {
2883       SourceLocation TemplateLoc = ConsumeToken();
2884       Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2885         << FixItHint::CreateRemoval(TemplateLoc);
2886     }
2887   }
2888 
2889   // unqualified-id:
2890   //   identifier
2891   //   template-id (when it hasn't already been annotated)
2892   if (Tok.is(tok::identifier)) {
2893   ParseIdentifier:
2894     // Consume the identifier.
2895     IdentifierInfo *Id = Tok.getIdentifierInfo();
2896     SourceLocation IdLoc = ConsumeToken();
2897 
2898     if (!getLangOpts().CPlusPlus) {
2899       // If we're not in C++, only identifiers matter. Record the
2900       // identifier and return.
2901       Result.setIdentifier(Id, IdLoc);
2902       return false;
2903     }
2904 
2905     ParsedTemplateTy TemplateName;
2906     if (AllowConstructorName &&
2907         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2908       // We have parsed a constructor name.
2909       ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2910                                                  EnteringContext);
2911       if (!Ty)
2912         return true;
2913       Result.setConstructorName(Ty, IdLoc, IdLoc);
2914     } else if (getLangOpts().CPlusPlus17 && AllowDeductionGuide &&
2915                SS.isEmpty() &&
2916                Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc, SS,
2917                                             &TemplateName)) {
2918       // We have parsed a template-name naming a deduction guide.
2919       Result.setDeductionGuideName(TemplateName, IdLoc);
2920     } else {
2921       // We have parsed an identifier.
2922       Result.setIdentifier(Id, IdLoc);
2923     }
2924 
2925     // If the next token is a '<', we may have a template.
2926     TemplateTy Template;
2927     if (Tok.is(tok::less))
2928       return ParseUnqualifiedIdTemplateId(
2929           SS, ObjectType, ObjectHadErrors,
2930           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2931           EnteringContext, Result, TemplateSpecified);
2932     else if (TemplateSpecified &&
2933              Actions.ActOnTemplateName(
2934                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2935                  EnteringContext, Template,
2936                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2937       return true;
2938 
2939     return false;
2940   }
2941 
2942   // unqualified-id:
2943   //   template-id (already parsed and annotated)
2944   if (Tok.is(tok::annot_template_id)) {
2945     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2946 
2947     // FIXME: Consider passing invalid template-ids on to callers; they may
2948     // be able to recover better than we can.
2949     if (TemplateId->isInvalid()) {
2950       ConsumeAnnotationToken();
2951       return true;
2952     }
2953 
2954     // If the template-name names the current class, then this is a constructor
2955     if (AllowConstructorName && TemplateId->Name &&
2956         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2957       if (SS.isSet()) {
2958         // C++ [class.qual]p2 specifies that a qualified template-name
2959         // is taken as the constructor name where a constructor can be
2960         // declared. Thus, the template arguments are extraneous, so
2961         // complain about them and remove them entirely.
2962         Diag(TemplateId->TemplateNameLoc,
2963              diag::err_out_of_line_constructor_template_id)
2964           << TemplateId->Name
2965           << FixItHint::CreateRemoval(
2966                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2967         ParsedType Ty = Actions.getConstructorName(
2968             *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2969             EnteringContext);
2970         if (!Ty)
2971           return true;
2972         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2973                                   TemplateId->RAngleLoc);
2974         ConsumeAnnotationToken();
2975         return false;
2976       }
2977 
2978       Result.setConstructorTemplateId(TemplateId);
2979       ConsumeAnnotationToken();
2980       return false;
2981     }
2982 
2983     // We have already parsed a template-id; consume the annotation token as
2984     // our unqualified-id.
2985     Result.setTemplateId(TemplateId);
2986     SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2987     if (TemplateLoc.isValid()) {
2988       if (TemplateKWLoc && (ObjectType || SS.isSet()))
2989         *TemplateKWLoc = TemplateLoc;
2990       else
2991         Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2992             << FixItHint::CreateRemoval(TemplateLoc);
2993     }
2994     ConsumeAnnotationToken();
2995     return false;
2996   }
2997 
2998   // unqualified-id:
2999   //   operator-function-id
3000   //   conversion-function-id
3001   if (Tok.is(tok::kw_operator)) {
3002     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
3003       return true;
3004 
3005     // If we have an operator-function-id or a literal-operator-id and the next
3006     // token is a '<', we may have a
3007     //
3008     //   template-id:
3009     //     operator-function-id < template-argument-list[opt] >
3010     TemplateTy Template;
3011     if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
3012          Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
3013         Tok.is(tok::less))
3014       return ParseUnqualifiedIdTemplateId(
3015           SS, ObjectType, ObjectHadErrors,
3016           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
3017           SourceLocation(), EnteringContext, Result, TemplateSpecified);
3018     else if (TemplateSpecified &&
3019              Actions.ActOnTemplateName(
3020                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
3021                  EnteringContext, Template,
3022                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
3023       return true;
3024 
3025     return false;
3026   }
3027 
3028   if (getLangOpts().CPlusPlus &&
3029       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
3030     // C++ [expr.unary.op]p10:
3031     //   There is an ambiguity in the unary-expression ~X(), where X is a
3032     //   class-name. The ambiguity is resolved in favor of treating ~ as a
3033     //    unary complement rather than treating ~X as referring to a destructor.
3034 
3035     // Parse the '~'.
3036     SourceLocation TildeLoc = ConsumeToken();
3037 
3038     if (TemplateSpecified) {
3039       // C++ [temp.names]p3:
3040       //   A name prefixed by the keyword template shall be a template-id [...]
3041       //
3042       // A template-id cannot begin with a '~' token. This would never work
3043       // anyway: x.~A<int>() would specify that the destructor is a template,
3044       // not that 'A' is a template.
3045       //
3046       // FIXME: Suggest replacing the attempted destructor name with a correct
3047       // destructor name and recover. (This is not trivial if this would become
3048       // a pseudo-destructor name).
3049       Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
3050         << Tok.getLocation();
3051       return true;
3052     }
3053 
3054     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
3055       DeclSpec DS(AttrFactory);
3056       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
3057       if (ParsedType Type =
3058               Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
3059         Result.setDestructorName(TildeLoc, Type, EndLoc);
3060         return false;
3061       }
3062       return true;
3063     }
3064 
3065     // Parse the class-name.
3066     if (Tok.isNot(tok::identifier)) {
3067       Diag(Tok, diag::err_destructor_tilde_identifier);
3068       return true;
3069     }
3070 
3071     // If the user wrote ~T::T, correct it to T::~T.
3072     DeclaratorScopeObj DeclScopeObj(*this, SS);
3073     if (NextToken().is(tok::coloncolon)) {
3074       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3075       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3076       // it will confuse this recovery logic.
3077       ColonProtectionRAIIObject ColonRAII(*this, false);
3078 
3079       if (SS.isSet()) {
3080         AnnotateScopeToken(SS, /*NewAnnotation*/true);
3081         SS.clear();
3082       }
3083       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3084                                          EnteringContext))
3085         return true;
3086       if (SS.isNotEmpty())
3087         ObjectType = nullptr;
3088       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3089           !SS.isSet()) {
3090         Diag(TildeLoc, diag::err_destructor_tilde_scope);
3091         return true;
3092       }
3093 
3094       // Recover as if the tilde had been written before the identifier.
3095       Diag(TildeLoc, diag::err_destructor_tilde_scope)
3096         << FixItHint::CreateRemoval(TildeLoc)
3097         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3098 
3099       // Temporarily enter the scope for the rest of this function.
3100       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3101         DeclScopeObj.EnterDeclaratorScope();
3102     }
3103 
3104     // Parse the class-name (or template-name in a simple-template-id).
3105     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3106     SourceLocation ClassNameLoc = ConsumeToken();
3107 
3108     if (Tok.is(tok::less)) {
3109       Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3110       return ParseUnqualifiedIdTemplateId(
3111           SS, ObjectType, ObjectHadErrors,
3112           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3113           ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3114     }
3115 
3116     // Note that this is a destructor name.
3117     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3118                                               ClassNameLoc, getCurScope(),
3119                                               SS, ObjectType,
3120                                               EnteringContext);
3121     if (!Ty)
3122       return true;
3123 
3124     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3125     return false;
3126   }
3127 
3128   switch (Tok.getKind()) {
3129 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
3130 #include "clang/Basic/TransformTypeTraits.def"
3131     if (!NextToken().is(tok::l_paren)) {
3132       Tok.setKind(tok::identifier);
3133       Diag(Tok, diag::ext_keyword_as_ident)
3134           << Tok.getIdentifierInfo()->getName() << 0;
3135       goto ParseIdentifier;
3136     }
3137     [[fallthrough]];
3138   default:
3139     Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3140     return true;
3141   }
3142 }
3143 
3144 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3145 /// memory in a typesafe manner and call constructors.
3146 ///
3147 /// This method is called to parse the new expression after the optional :: has
3148 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
3149 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
3150 ///
3151 ///        new-expression:
3152 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
3153 ///                                     new-initializer[opt]
3154 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3155 ///                                     new-initializer[opt]
3156 ///
3157 ///        new-placement:
3158 ///                   '(' expression-list ')'
3159 ///
3160 ///        new-type-id:
3161 ///                   type-specifier-seq new-declarator[opt]
3162 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
3163 ///
3164 ///        new-declarator:
3165 ///                   ptr-operator new-declarator[opt]
3166 ///                   direct-new-declarator
3167 ///
3168 ///        new-initializer:
3169 ///                   '(' expression-list[opt] ')'
3170 /// [C++0x]           braced-init-list
3171 ///
3172 ExprResult
3173 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3174   assert(Tok.is(tok::kw_new) && "expected 'new' token");
3175   ConsumeToken();   // Consume 'new'
3176 
3177   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3178   // second form of new-expression. It can't be a new-type-id.
3179 
3180   ExprVector PlacementArgs;
3181   SourceLocation PlacementLParen, PlacementRParen;
3182 
3183   SourceRange TypeIdParens;
3184   DeclSpec DS(AttrFactory);
3185   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3186                             DeclaratorContext::CXXNew);
3187   if (Tok.is(tok::l_paren)) {
3188     // If it turns out to be a placement, we change the type location.
3189     BalancedDelimiterTracker T(*this, tok::l_paren);
3190     T.consumeOpen();
3191     PlacementLParen = T.getOpenLocation();
3192     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3193       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3194       return ExprError();
3195     }
3196 
3197     T.consumeClose();
3198     PlacementRParen = T.getCloseLocation();
3199     if (PlacementRParen.isInvalid()) {
3200       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3201       return ExprError();
3202     }
3203 
3204     if (PlacementArgs.empty()) {
3205       // Reset the placement locations. There was no placement.
3206       TypeIdParens = T.getRange();
3207       PlacementLParen = PlacementRParen = SourceLocation();
3208     } else {
3209       // We still need the type.
3210       if (Tok.is(tok::l_paren)) {
3211         BalancedDelimiterTracker T(*this, tok::l_paren);
3212         T.consumeOpen();
3213         MaybeParseGNUAttributes(DeclaratorInfo);
3214         ParseSpecifierQualifierList(DS);
3215         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3216         ParseDeclarator(DeclaratorInfo);
3217         T.consumeClose();
3218         TypeIdParens = T.getRange();
3219       } else {
3220         MaybeParseGNUAttributes(DeclaratorInfo);
3221         if (ParseCXXTypeSpecifierSeq(DS))
3222           DeclaratorInfo.setInvalidType(true);
3223         else {
3224           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3225           ParseDeclaratorInternal(DeclaratorInfo,
3226                                   &Parser::ParseDirectNewDeclarator);
3227         }
3228       }
3229     }
3230   } else {
3231     // A new-type-id is a simplified type-id, where essentially the
3232     // direct-declarator is replaced by a direct-new-declarator.
3233     MaybeParseGNUAttributes(DeclaratorInfo);
3234     if (ParseCXXTypeSpecifierSeq(DS, DeclaratorContext::CXXNew))
3235       DeclaratorInfo.setInvalidType(true);
3236     else {
3237       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3238       ParseDeclaratorInternal(DeclaratorInfo,
3239                               &Parser::ParseDirectNewDeclarator);
3240     }
3241   }
3242   if (DeclaratorInfo.isInvalidType()) {
3243     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3244     return ExprError();
3245   }
3246 
3247   ExprResult Initializer;
3248 
3249   if (Tok.is(tok::l_paren)) {
3250     SourceLocation ConstructorLParen, ConstructorRParen;
3251     ExprVector ConstructorArgs;
3252     BalancedDelimiterTracker T(*this, tok::l_paren);
3253     T.consumeOpen();
3254     ConstructorLParen = T.getOpenLocation();
3255     if (Tok.isNot(tok::r_paren)) {
3256       auto RunSignatureHelp = [&]() {
3257         ParsedType TypeRep =
3258             Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3259         QualType PreferredType;
3260         // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3261         // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3262         // `new decltype(invalid) (^)`.
3263         if (TypeRep)
3264           PreferredType = Actions.ProduceConstructorSignatureHelp(
3265               TypeRep.get()->getCanonicalTypeInternal(),
3266               DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen,
3267               /*Braced=*/false);
3268         CalledSignatureHelp = true;
3269         return PreferredType;
3270       };
3271       if (ParseExpressionList(ConstructorArgs, [&] {
3272             PreferredType.enterFunctionArgument(Tok.getLocation(),
3273                                                 RunSignatureHelp);
3274           })) {
3275         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3276           RunSignatureHelp();
3277         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3278         return ExprError();
3279       }
3280     }
3281     T.consumeClose();
3282     ConstructorRParen = T.getCloseLocation();
3283     if (ConstructorRParen.isInvalid()) {
3284       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3285       return ExprError();
3286     }
3287     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3288                                              ConstructorRParen,
3289                                              ConstructorArgs);
3290   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3291     Diag(Tok.getLocation(),
3292          diag::warn_cxx98_compat_generalized_initializer_lists);
3293     Initializer = ParseBraceInitializer();
3294   }
3295   if (Initializer.isInvalid())
3296     return Initializer;
3297 
3298   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3299                              PlacementArgs, PlacementRParen,
3300                              TypeIdParens, DeclaratorInfo, Initializer.get());
3301 }
3302 
3303 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3304 /// passed to ParseDeclaratorInternal.
3305 ///
3306 ///        direct-new-declarator:
3307 ///                   '[' expression[opt] ']'
3308 ///                   direct-new-declarator '[' constant-expression ']'
3309 ///
3310 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3311   // Parse the array dimensions.
3312   bool First = true;
3313   while (Tok.is(tok::l_square)) {
3314     // An array-size expression can't start with a lambda.
3315     if (CheckProhibitedCXX11Attribute())
3316       continue;
3317 
3318     BalancedDelimiterTracker T(*this, tok::l_square);
3319     T.consumeOpen();
3320 
3321     ExprResult Size =
3322         First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3323               : ParseConstantExpression();
3324     if (Size.isInvalid()) {
3325       // Recover
3326       SkipUntil(tok::r_square, StopAtSemi);
3327       return;
3328     }
3329     First = false;
3330 
3331     T.consumeClose();
3332 
3333     // Attributes here appertain to the array type. C++11 [expr.new]p5.
3334     ParsedAttributes Attrs(AttrFactory);
3335     MaybeParseCXX11Attributes(Attrs);
3336 
3337     D.AddTypeInfo(DeclaratorChunk::getArray(0,
3338                                             /*isStatic=*/false, /*isStar=*/false,
3339                                             Size.get(), T.getOpenLocation(),
3340                                             T.getCloseLocation()),
3341                   std::move(Attrs), T.getCloseLocation());
3342 
3343     if (T.getCloseLocation().isInvalid())
3344       return;
3345   }
3346 }
3347 
3348 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3349 /// This ambiguity appears in the syntax of the C++ new operator.
3350 ///
3351 ///        new-expression:
3352 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3353 ///                                     new-initializer[opt]
3354 ///
3355 ///        new-placement:
3356 ///                   '(' expression-list ')'
3357 ///
3358 bool Parser::ParseExpressionListOrTypeId(
3359                                    SmallVectorImpl<Expr*> &PlacementArgs,
3360                                          Declarator &D) {
3361   // The '(' was already consumed.
3362   if (isTypeIdInParens()) {
3363     ParseSpecifierQualifierList(D.getMutableDeclSpec());
3364     D.SetSourceRange(D.getDeclSpec().getSourceRange());
3365     ParseDeclarator(D);
3366     return D.isInvalidType();
3367   }
3368 
3369   // It's not a type, it has to be an expression list.
3370   return ParseExpressionList(PlacementArgs);
3371 }
3372 
3373 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3374 /// to free memory allocated by new.
3375 ///
3376 /// This method is called to parse the 'delete' expression after the optional
3377 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
3378 /// and "Start" is its location.  Otherwise, "Start" is the location of the
3379 /// 'delete' token.
3380 ///
3381 ///        delete-expression:
3382 ///                   '::'[opt] 'delete' cast-expression
3383 ///                   '::'[opt] 'delete' '[' ']' cast-expression
3384 ExprResult
3385 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3386   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3387   ConsumeToken(); // Consume 'delete'
3388 
3389   // Array delete?
3390   bool ArrayDelete = false;
3391   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3392     // C++11 [expr.delete]p1:
3393     //   Whenever the delete keyword is followed by empty square brackets, it
3394     //   shall be interpreted as [array delete].
3395     //   [Footnote: A lambda expression with a lambda-introducer that consists
3396     //              of empty square brackets can follow the delete keyword if
3397     //              the lambda expression is enclosed in parentheses.]
3398 
3399     const Token Next = GetLookAheadToken(2);
3400 
3401     // Basic lookahead to check if we have a lambda expression.
3402     if (Next.isOneOf(tok::l_brace, tok::less) ||
3403         (Next.is(tok::l_paren) &&
3404          (GetLookAheadToken(3).is(tok::r_paren) ||
3405           (GetLookAheadToken(3).is(tok::identifier) &&
3406            GetLookAheadToken(4).is(tok::identifier))))) {
3407       TentativeParsingAction TPA(*this);
3408       SourceLocation LSquareLoc = Tok.getLocation();
3409       SourceLocation RSquareLoc = NextToken().getLocation();
3410 
3411       // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3412       // case.
3413       SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3414       SourceLocation RBraceLoc;
3415       bool EmitFixIt = false;
3416       if (Tok.is(tok::l_brace)) {
3417         ConsumeBrace();
3418         SkipUntil(tok::r_brace, StopBeforeMatch);
3419         RBraceLoc = Tok.getLocation();
3420         EmitFixIt = true;
3421       }
3422 
3423       TPA.Revert();
3424 
3425       if (EmitFixIt)
3426         Diag(Start, diag::err_lambda_after_delete)
3427             << SourceRange(Start, RSquareLoc)
3428             << FixItHint::CreateInsertion(LSquareLoc, "(")
3429             << FixItHint::CreateInsertion(
3430                    Lexer::getLocForEndOfToken(
3431                        RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3432                    ")");
3433       else
3434         Diag(Start, diag::err_lambda_after_delete)
3435             << SourceRange(Start, RSquareLoc);
3436 
3437       // Warn that the non-capturing lambda isn't surrounded by parentheses
3438       // to disambiguate it from 'delete[]'.
3439       ExprResult Lambda = ParseLambdaExpression();
3440       if (Lambda.isInvalid())
3441         return ExprError();
3442 
3443       // Evaluate any postfix expressions used on the lambda.
3444       Lambda = ParsePostfixExpressionSuffix(Lambda);
3445       if (Lambda.isInvalid())
3446         return ExprError();
3447       return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3448                                     Lambda.get());
3449     }
3450 
3451     ArrayDelete = true;
3452     BalancedDelimiterTracker T(*this, tok::l_square);
3453 
3454     T.consumeOpen();
3455     T.consumeClose();
3456     if (T.getCloseLocation().isInvalid())
3457       return ExprError();
3458   }
3459 
3460   ExprResult Operand(ParseCastExpression(AnyCastExpr));
3461   if (Operand.isInvalid())
3462     return Operand;
3463 
3464   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3465 }
3466 
3467 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3468 /// C++2a [expr.prim.req]p1
3469 ///     A requires-expression provides a concise way to express requirements on
3470 ///     template arguments. A requirement is one that can be checked by name
3471 ///     lookup (6.4) or by checking properties of types and expressions.
3472 ///
3473 ///     requires-expression:
3474 ///         'requires' requirement-parameter-list[opt] requirement-body
3475 ///
3476 ///     requirement-parameter-list:
3477 ///         '(' parameter-declaration-clause[opt] ')'
3478 ///
3479 ///     requirement-body:
3480 ///         '{' requirement-seq '}'
3481 ///
3482 ///     requirement-seq:
3483 ///         requirement
3484 ///         requirement-seq requirement
3485 ///
3486 ///     requirement:
3487 ///         simple-requirement
3488 ///         type-requirement
3489 ///         compound-requirement
3490 ///         nested-requirement
3491 ExprResult Parser::ParseRequiresExpression() {
3492   assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3493   SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3494 
3495   llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3496   if (Tok.is(tok::l_paren)) {
3497     // requirement parameter list is present.
3498     ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3499                                     Scope::DeclScope);
3500     BalancedDelimiterTracker Parens(*this, tok::l_paren);
3501     Parens.consumeOpen();
3502     if (!Tok.is(tok::r_paren)) {
3503       ParsedAttributes FirstArgAttrs(getAttrFactory());
3504       SourceLocation EllipsisLoc;
3505       llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3506       ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3507                                       FirstArgAttrs, LocalParameters,
3508                                       EllipsisLoc);
3509       if (EllipsisLoc.isValid())
3510         Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3511       for (auto &ParamInfo : LocalParameters)
3512         LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3513     }
3514     Parens.consumeClose();
3515   }
3516 
3517   BalancedDelimiterTracker Braces(*this, tok::l_brace);
3518   if (Braces.expectAndConsume())
3519     return ExprError();
3520 
3521   // Start of requirement list
3522   llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3523 
3524   // C++2a [expr.prim.req]p2
3525   //   Expressions appearing within a requirement-body are unevaluated operands.
3526   EnterExpressionEvaluationContext Ctx(
3527       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3528 
3529   ParseScope BodyScope(this, Scope::DeclScope);
3530   // Create a separate diagnostic pool for RequiresExprBodyDecl.
3531   // Dependent diagnostics are attached to this Decl and non-depenedent
3532   // diagnostics are surfaced after this parse.
3533   ParsingDeclRAIIObject ParsingBodyDecl(*this, ParsingDeclRAIIObject::NoParent);
3534   RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3535       RequiresKWLoc, LocalParameterDecls, getCurScope());
3536 
3537   if (Tok.is(tok::r_brace)) {
3538     // Grammar does not allow an empty body.
3539     // requirement-body:
3540     //   { requirement-seq }
3541     // requirement-seq:
3542     //   requirement
3543     //   requirement-seq requirement
3544     Diag(Tok, diag::err_empty_requires_expr);
3545     // Continue anyway and produce a requires expr with no requirements.
3546   } else {
3547     while (!Tok.is(tok::r_brace)) {
3548       switch (Tok.getKind()) {
3549       case tok::l_brace: {
3550         // Compound requirement
3551         // C++ [expr.prim.req.compound]
3552         //     compound-requirement:
3553         //         '{' expression '}' 'noexcept'[opt]
3554         //             return-type-requirement[opt] ';'
3555         //     return-type-requirement:
3556         //         trailing-return-type
3557         //         '->' cv-qualifier-seq[opt] constrained-parameter
3558         //             cv-qualifier-seq[opt] abstract-declarator[opt]
3559         BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3560         ExprBraces.consumeOpen();
3561         ExprResult Expression =
3562             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3563         if (!Expression.isUsable()) {
3564           ExprBraces.skipToEnd();
3565           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3566           break;
3567         }
3568         if (ExprBraces.consumeClose())
3569           ExprBraces.skipToEnd();
3570 
3571         concepts::Requirement *Req = nullptr;
3572         SourceLocation NoexceptLoc;
3573         TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3574         if (Tok.is(tok::semi)) {
3575           Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3576           if (Req)
3577             Requirements.push_back(Req);
3578           break;
3579         }
3580         if (!TryConsumeToken(tok::arrow))
3581           // User probably forgot the arrow, remind them and try to continue.
3582           Diag(Tok, diag::err_requires_expr_missing_arrow)
3583               << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3584         // Try to parse a 'type-constraint'
3585         if (TryAnnotateTypeConstraint()) {
3586           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3587           break;
3588         }
3589         if (!isTypeConstraintAnnotation()) {
3590           Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3591           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3592           break;
3593         }
3594         CXXScopeSpec SS;
3595         if (Tok.is(tok::annot_cxxscope)) {
3596           Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3597                                                        Tok.getAnnotationRange(),
3598                                                        SS);
3599           ConsumeAnnotationToken();
3600         }
3601 
3602         Req = Actions.ActOnCompoundRequirement(
3603             Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3604             TemplateParameterDepth);
3605         ConsumeAnnotationToken();
3606         if (Req)
3607           Requirements.push_back(Req);
3608         break;
3609       }
3610       default: {
3611         bool PossibleRequiresExprInSimpleRequirement = false;
3612         if (Tok.is(tok::kw_requires)) {
3613           auto IsNestedRequirement = [&] {
3614             RevertingTentativeParsingAction TPA(*this);
3615             ConsumeToken(); // 'requires'
3616             if (Tok.is(tok::l_brace))
3617               // This is a requires expression
3618               // requires (T t) {
3619               //   requires { t++; };
3620               //   ...      ^
3621               // }
3622               return false;
3623             if (Tok.is(tok::l_paren)) {
3624               // This might be the parameter list of a requires expression
3625               ConsumeParen();
3626               auto Res = TryParseParameterDeclarationClause();
3627               if (Res != TPResult::False) {
3628                 // Skip to the closing parenthesis
3629                 // FIXME: Don't traverse these tokens twice (here and in
3630                 //  TryParseParameterDeclarationClause).
3631                 unsigned Depth = 1;
3632                 while (Depth != 0) {
3633                   if (Tok.is(tok::l_paren))
3634                     Depth++;
3635                   else if (Tok.is(tok::r_paren))
3636                     Depth--;
3637                   ConsumeAnyToken();
3638                 }
3639                 // requires (T t) {
3640                 //   requires () ?
3641                 //   ...         ^
3642                 //   - OR -
3643                 //   requires (int x) ?
3644                 //   ...              ^
3645                 // }
3646                 if (Tok.is(tok::l_brace))
3647                   // requires (...) {
3648                   //                ^ - a requires expression as a
3649                   //                    simple-requirement.
3650                   return false;
3651               }
3652             }
3653             return true;
3654           };
3655           if (IsNestedRequirement()) {
3656             ConsumeToken();
3657             // Nested requirement
3658             // C++ [expr.prim.req.nested]
3659             //     nested-requirement:
3660             //         'requires' constraint-expression ';'
3661             ExprResult ConstraintExpr =
3662                 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3663             if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3664               SkipUntil(tok::semi, tok::r_brace,
3665                         SkipUntilFlags::StopBeforeMatch);
3666               break;
3667             }
3668             if (auto *Req =
3669                     Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3670               Requirements.push_back(Req);
3671             else {
3672               SkipUntil(tok::semi, tok::r_brace,
3673                         SkipUntilFlags::StopBeforeMatch);
3674               break;
3675             }
3676             break;
3677           } else
3678             PossibleRequiresExprInSimpleRequirement = true;
3679         } else if (Tok.is(tok::kw_typename)) {
3680           // This might be 'typename T::value_type;' (a type requirement) or
3681           // 'typename T::value_type{};' (a simple requirement).
3682           TentativeParsingAction TPA(*this);
3683 
3684           // We need to consume the typename to allow 'requires { typename a; }'
3685           SourceLocation TypenameKWLoc = ConsumeToken();
3686           if (TryAnnotateOptionalCXXScopeToken()) {
3687             TPA.Commit();
3688             SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3689             break;
3690           }
3691           CXXScopeSpec SS;
3692           if (Tok.is(tok::annot_cxxscope)) {
3693             Actions.RestoreNestedNameSpecifierAnnotation(
3694                 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3695             ConsumeAnnotationToken();
3696           }
3697 
3698           if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3699               !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3700             TPA.Commit();
3701             SourceLocation NameLoc = Tok.getLocation();
3702             IdentifierInfo *II = nullptr;
3703             TemplateIdAnnotation *TemplateId = nullptr;
3704             if (Tok.is(tok::identifier)) {
3705               II = Tok.getIdentifierInfo();
3706               ConsumeToken();
3707             } else {
3708               TemplateId = takeTemplateIdAnnotation(Tok);
3709               ConsumeAnnotationToken();
3710               if (TemplateId->isInvalid())
3711                 break;
3712             }
3713 
3714             if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3715                                                          NameLoc, II,
3716                                                          TemplateId)) {
3717               Requirements.push_back(Req);
3718             }
3719             break;
3720           }
3721           TPA.Revert();
3722         }
3723         // Simple requirement
3724         // C++ [expr.prim.req.simple]
3725         //     simple-requirement:
3726         //         expression ';'
3727         SourceLocation StartLoc = Tok.getLocation();
3728         ExprResult Expression =
3729             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3730         if (!Expression.isUsable()) {
3731           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3732           break;
3733         }
3734         if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3735           Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3736               << FixItHint::CreateInsertion(StartLoc, "requires");
3737         if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3738           Requirements.push_back(Req);
3739         else {
3740           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3741           break;
3742         }
3743         // User may have tried to put some compound requirement stuff here
3744         if (Tok.is(tok::kw_noexcept)) {
3745           Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3746               << FixItHint::CreateInsertion(StartLoc, "{")
3747               << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3748           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3749           break;
3750         }
3751         break;
3752       }
3753       }
3754       if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3755         SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3756         TryConsumeToken(tok::semi);
3757         break;
3758       }
3759     }
3760     if (Requirements.empty()) {
3761       // Don't emit an empty requires expr here to avoid confusing the user with
3762       // other diagnostics quoting an empty requires expression they never
3763       // wrote.
3764       Braces.consumeClose();
3765       Actions.ActOnFinishRequiresExpr();
3766       return ExprError();
3767     }
3768   }
3769   Braces.consumeClose();
3770   Actions.ActOnFinishRequiresExpr();
3771   ParsingBodyDecl.complete(Body);
3772   return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3773                                    Requirements, Braces.getCloseLocation());
3774 }
3775 
3776 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3777   switch (kind) {
3778   default: llvm_unreachable("Not a known type trait");
3779 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3780 case tok::kw_ ## Spelling: return UTT_ ## Name;
3781 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3782 case tok::kw_ ## Spelling: return BTT_ ## Name;
3783 #include "clang/Basic/TokenKinds.def"
3784 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3785   case tok::kw_ ## Spelling: return TT_ ## Name;
3786 #include "clang/Basic/TokenKinds.def"
3787   }
3788 }
3789 
3790 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3791   switch (kind) {
3792   default:
3793     llvm_unreachable("Not a known array type trait");
3794 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key)                                  \
3795   case tok::kw_##Spelling:                                                     \
3796     return ATT_##Name;
3797 #include "clang/Basic/TokenKinds.def"
3798   }
3799 }
3800 
3801 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3802   switch (kind) {
3803   default:
3804     llvm_unreachable("Not a known unary expression trait.");
3805 #define EXPRESSION_TRAIT(Spelling, Name, Key)                                  \
3806   case tok::kw_##Spelling:                                                     \
3807     return ET_##Name;
3808 #include "clang/Basic/TokenKinds.def"
3809   }
3810 }
3811 
3812 /// Parse the built-in type-trait pseudo-functions that allow
3813 /// implementation of the TR1/C++11 type traits templates.
3814 ///
3815 ///       primary-expression:
3816 ///          unary-type-trait '(' type-id ')'
3817 ///          binary-type-trait '(' type-id ',' type-id ')'
3818 ///          type-trait '(' type-id-seq ')'
3819 ///
3820 ///       type-id-seq:
3821 ///          type-id ...[opt] type-id-seq[opt]
3822 ///
3823 ExprResult Parser::ParseTypeTrait() {
3824   tok::TokenKind Kind = Tok.getKind();
3825 
3826   SourceLocation Loc = ConsumeToken();
3827 
3828   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3829   if (Parens.expectAndConsume())
3830     return ExprError();
3831 
3832   SmallVector<ParsedType, 2> Args;
3833   do {
3834     // Parse the next type.
3835     TypeResult Ty = ParseTypeName();
3836     if (Ty.isInvalid()) {
3837       Parens.skipToEnd();
3838       return ExprError();
3839     }
3840 
3841     // Parse the ellipsis, if present.
3842     if (Tok.is(tok::ellipsis)) {
3843       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3844       if (Ty.isInvalid()) {
3845         Parens.skipToEnd();
3846         return ExprError();
3847       }
3848     }
3849 
3850     // Add this type to the list of arguments.
3851     Args.push_back(Ty.get());
3852   } while (TryConsumeToken(tok::comma));
3853 
3854   if (Parens.consumeClose())
3855     return ExprError();
3856 
3857   SourceLocation EndLoc = Parens.getCloseLocation();
3858 
3859   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3860 }
3861 
3862 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3863 /// pseudo-functions.
3864 ///
3865 ///       primary-expression:
3866 /// [Embarcadero]     '__array_rank' '(' type-id ')'
3867 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
3868 ///
3869 ExprResult Parser::ParseArrayTypeTrait() {
3870   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3871   SourceLocation Loc = ConsumeToken();
3872 
3873   BalancedDelimiterTracker T(*this, tok::l_paren);
3874   if (T.expectAndConsume())
3875     return ExprError();
3876 
3877   TypeResult Ty = ParseTypeName();
3878   if (Ty.isInvalid()) {
3879     SkipUntil(tok::comma, StopAtSemi);
3880     SkipUntil(tok::r_paren, StopAtSemi);
3881     return ExprError();
3882   }
3883 
3884   switch (ATT) {
3885   case ATT_ArrayRank: {
3886     T.consumeClose();
3887     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3888                                        T.getCloseLocation());
3889   }
3890   case ATT_ArrayExtent: {
3891     if (ExpectAndConsume(tok::comma)) {
3892       SkipUntil(tok::r_paren, StopAtSemi);
3893       return ExprError();
3894     }
3895 
3896     ExprResult DimExpr = ParseExpression();
3897     T.consumeClose();
3898 
3899     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3900                                        T.getCloseLocation());
3901   }
3902   }
3903   llvm_unreachable("Invalid ArrayTypeTrait!");
3904 }
3905 
3906 /// ParseExpressionTrait - Parse built-in expression-trait
3907 /// pseudo-functions like __is_lvalue_expr( xxx ).
3908 ///
3909 ///       primary-expression:
3910 /// [Embarcadero]     expression-trait '(' expression ')'
3911 ///
3912 ExprResult Parser::ParseExpressionTrait() {
3913   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3914   SourceLocation Loc = ConsumeToken();
3915 
3916   BalancedDelimiterTracker T(*this, tok::l_paren);
3917   if (T.expectAndConsume())
3918     return ExprError();
3919 
3920   ExprResult Expr = ParseExpression();
3921 
3922   T.consumeClose();
3923 
3924   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3925                                       T.getCloseLocation());
3926 }
3927 
3928 
3929 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3930 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3931 /// based on the context past the parens.
3932 ExprResult
3933 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3934                                          ParsedType &CastTy,
3935                                          BalancedDelimiterTracker &Tracker,
3936                                          ColonProtectionRAIIObject &ColonProt) {
3937   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3938   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3939   assert(isTypeIdInParens() && "Not a type-id!");
3940 
3941   ExprResult Result(true);
3942   CastTy = nullptr;
3943 
3944   // We need to disambiguate a very ugly part of the C++ syntax:
3945   //
3946   // (T())x;  - type-id
3947   // (T())*x; - type-id
3948   // (T())/x; - expression
3949   // (T());   - expression
3950   //
3951   // The bad news is that we cannot use the specialized tentative parser, since
3952   // it can only verify that the thing inside the parens can be parsed as
3953   // type-id, it is not useful for determining the context past the parens.
3954   //
3955   // The good news is that the parser can disambiguate this part without
3956   // making any unnecessary Action calls.
3957   //
3958   // It uses a scheme similar to parsing inline methods. The parenthesized
3959   // tokens are cached, the context that follows is determined (possibly by
3960   // parsing a cast-expression), and then we re-introduce the cached tokens
3961   // into the token stream and parse them appropriately.
3962 
3963   ParenParseOption ParseAs;
3964   CachedTokens Toks;
3965 
3966   // Store the tokens of the parentheses. We will parse them after we determine
3967   // the context that follows them.
3968   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3969     // We didn't find the ')' we expected.
3970     Tracker.consumeClose();
3971     return ExprError();
3972   }
3973 
3974   if (Tok.is(tok::l_brace)) {
3975     ParseAs = CompoundLiteral;
3976   } else {
3977     bool NotCastExpr;
3978     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3979       NotCastExpr = true;
3980     } else {
3981       // Try parsing the cast-expression that may follow.
3982       // If it is not a cast-expression, NotCastExpr will be true and no token
3983       // will be consumed.
3984       ColonProt.restore();
3985       Result = ParseCastExpression(AnyCastExpr,
3986                                    false/*isAddressofOperand*/,
3987                                    NotCastExpr,
3988                                    // type-id has priority.
3989                                    IsTypeCast);
3990     }
3991 
3992     // If we parsed a cast-expression, it's really a type-id, otherwise it's
3993     // an expression.
3994     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3995   }
3996 
3997   // Create a fake EOF to mark end of Toks buffer.
3998   Token AttrEnd;
3999   AttrEnd.startToken();
4000   AttrEnd.setKind(tok::eof);
4001   AttrEnd.setLocation(Tok.getLocation());
4002   AttrEnd.setEofData(Toks.data());
4003   Toks.push_back(AttrEnd);
4004 
4005   // The current token should go after the cached tokens.
4006   Toks.push_back(Tok);
4007   // Re-enter the stored parenthesized tokens into the token stream, so we may
4008   // parse them now.
4009   PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
4010                       /*IsReinject*/ true);
4011   // Drop the current token and bring the first cached one. It's the same token
4012   // as when we entered this function.
4013   ConsumeAnyToken();
4014 
4015   if (ParseAs >= CompoundLiteral) {
4016     // Parse the type declarator.
4017     DeclSpec DS(AttrFactory);
4018     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4019                               DeclaratorContext::TypeName);
4020     {
4021       ColonProtectionRAIIObject InnerColonProtection(*this);
4022       ParseSpecifierQualifierList(DS);
4023       ParseDeclarator(DeclaratorInfo);
4024     }
4025 
4026     // Match the ')'.
4027     Tracker.consumeClose();
4028     ColonProt.restore();
4029 
4030     // Consume EOF marker for Toks buffer.
4031     assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4032     ConsumeAnyToken();
4033 
4034     if (ParseAs == CompoundLiteral) {
4035       ExprType = CompoundLiteral;
4036       if (DeclaratorInfo.isInvalidType())
4037         return ExprError();
4038 
4039       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
4040       return ParseCompoundLiteralExpression(Ty.get(),
4041                                             Tracker.getOpenLocation(),
4042                                             Tracker.getCloseLocation());
4043     }
4044 
4045     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
4046     assert(ParseAs == CastExpr);
4047 
4048     if (DeclaratorInfo.isInvalidType())
4049       return ExprError();
4050 
4051     // Result is what ParseCastExpression returned earlier.
4052     if (!Result.isInvalid())
4053       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
4054                                     DeclaratorInfo, CastTy,
4055                                     Tracker.getCloseLocation(), Result.get());
4056     return Result;
4057   }
4058 
4059   // Not a compound literal, and not followed by a cast-expression.
4060   assert(ParseAs == SimpleExpr);
4061 
4062   ExprType = SimpleExpr;
4063   Result = ParseExpression();
4064   if (!Result.isInvalid() && Tok.is(tok::r_paren))
4065     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
4066                                     Tok.getLocation(), Result.get());
4067 
4068   // Match the ')'.
4069   if (Result.isInvalid()) {
4070     while (Tok.isNot(tok::eof))
4071       ConsumeAnyToken();
4072     assert(Tok.getEofData() == AttrEnd.getEofData());
4073     ConsumeAnyToken();
4074     return ExprError();
4075   }
4076 
4077   Tracker.consumeClose();
4078   // Consume EOF marker for Toks buffer.
4079   assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4080   ConsumeAnyToken();
4081   return Result;
4082 }
4083 
4084 /// Parse a __builtin_bit_cast(T, E).
4085 ExprResult Parser::ParseBuiltinBitCast() {
4086   SourceLocation KWLoc = ConsumeToken();
4087 
4088   BalancedDelimiterTracker T(*this, tok::l_paren);
4089   if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4090     return ExprError();
4091 
4092   // Parse the common declaration-specifiers piece.
4093   DeclSpec DS(AttrFactory);
4094   ParseSpecifierQualifierList(DS);
4095 
4096   // Parse the abstract-declarator, if present.
4097   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4098                             DeclaratorContext::TypeName);
4099   ParseDeclarator(DeclaratorInfo);
4100 
4101   if (ExpectAndConsume(tok::comma)) {
4102     Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4103     SkipUntil(tok::r_paren, StopAtSemi);
4104     return ExprError();
4105   }
4106 
4107   ExprResult Operand = ParseExpression();
4108 
4109   if (T.consumeClose())
4110     return ExprError();
4111 
4112   if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4113     return ExprError();
4114 
4115   return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4116                                          T.getCloseLocation());
4117 }
4118