1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines analysis_warnings::[Policy,Executor].
10 // Together they are used by Sema to issue warnings based on inexpensive
11 // static analysis algorithms in libAnalysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/AnalysisBasedWarnings.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/EvaluatedExprVisitor.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/ParentMap.h"
22 #include "clang/AST/RecursiveASTVisitor.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
27 #include "clang/Analysis/Analyses/Consumed.h"
28 #include "clang/Analysis/Analyses/ReachableCode.h"
29 #include "clang/Analysis/Analyses/ThreadSafety.h"
30 #include "clang/Analysis/Analyses/UninitializedValues.h"
31 #include "clang/Analysis/AnalysisDeclContext.h"
32 #include "clang/Analysis/CFG.h"
33 #include "clang/Analysis/CFGStmtMap.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Lex/Preprocessor.h"
37 #include "clang/Sema/ScopeInfo.h"
38 #include "clang/Sema/SemaInternal.h"
39 #include "llvm/ADT/BitVector.h"
40 #include "llvm/ADT/MapVector.h"
41 #include "llvm/ADT/SmallString.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/Support/Casting.h"
45 #include <algorithm>
46 #include <deque>
47 #include <iterator>
48 
49 using namespace clang;
50 
51 //===----------------------------------------------------------------------===//
52 // Unreachable code analysis.
53 //===----------------------------------------------------------------------===//
54 
55 namespace {
56   class UnreachableCodeHandler : public reachable_code::Callback {
57     Sema &S;
58     SourceRange PreviousSilenceableCondVal;
59 
60   public:
61     UnreachableCodeHandler(Sema &s) : S(s) {}
62 
63     void HandleUnreachable(reachable_code::UnreachableKind UK,
64                            SourceLocation L,
65                            SourceRange SilenceableCondVal,
66                            SourceRange R1,
67                            SourceRange R2) override {
68       // Avoid reporting multiple unreachable code diagnostics that are
69       // triggered by the same conditional value.
70       if (PreviousSilenceableCondVal.isValid() &&
71           SilenceableCondVal.isValid() &&
72           PreviousSilenceableCondVal == SilenceableCondVal)
73         return;
74       PreviousSilenceableCondVal = SilenceableCondVal;
75 
76       unsigned diag = diag::warn_unreachable;
77       switch (UK) {
78         case reachable_code::UK_Break:
79           diag = diag::warn_unreachable_break;
80           break;
81         case reachable_code::UK_Return:
82           diag = diag::warn_unreachable_return;
83           break;
84         case reachable_code::UK_Loop_Increment:
85           diag = diag::warn_unreachable_loop_increment;
86           break;
87         case reachable_code::UK_Other:
88           break;
89       }
90 
91       S.Diag(L, diag) << R1 << R2;
92 
93       SourceLocation Open = SilenceableCondVal.getBegin();
94       if (Open.isValid()) {
95         SourceLocation Close = SilenceableCondVal.getEnd();
96         Close = S.getLocForEndOfToken(Close);
97         if (Close.isValid()) {
98           S.Diag(Open, diag::note_unreachable_silence)
99             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
100             << FixItHint::CreateInsertion(Close, ")");
101         }
102       }
103     }
104   };
105 } // anonymous namespace
106 
107 /// CheckUnreachable - Check for unreachable code.
108 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
109   // As a heuristic prune all diagnostics not in the main file.  Currently
110   // the majority of warnings in headers are false positives.  These
111   // are largely caused by configuration state, e.g. preprocessor
112   // defined code, etc.
113   //
114   // Note that this is also a performance optimization.  Analyzing
115   // headers many times can be expensive.
116   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
117     return;
118 
119   UnreachableCodeHandler UC(S);
120   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
121 }
122 
123 namespace {
124 /// Warn on logical operator errors in CFGBuilder
125 class LogicalErrorHandler : public CFGCallback {
126   Sema &S;
127 
128 public:
129   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
130 
131   static bool HasMacroID(const Expr *E) {
132     if (E->getExprLoc().isMacroID())
133       return true;
134 
135     // Recurse to children.
136     for (const Stmt *SubStmt : E->children())
137       if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
138         if (HasMacroID(SubExpr))
139           return true;
140 
141     return false;
142   }
143 
144   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
145     if (HasMacroID(B))
146       return;
147 
148     SourceRange DiagRange = B->getSourceRange();
149     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
150         << DiagRange << isAlwaysTrue;
151   }
152 
153   void compareBitwiseEquality(const BinaryOperator *B,
154                               bool isAlwaysTrue) override {
155     if (HasMacroID(B))
156       return;
157 
158     SourceRange DiagRange = B->getSourceRange();
159     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
160         << DiagRange << isAlwaysTrue;
161   }
162 
163   void compareBitwiseOr(const BinaryOperator *B) override {
164     if (HasMacroID(B))
165       return;
166 
167     SourceRange DiagRange = B->getSourceRange();
168     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange;
169   }
170 
171   static bool hasActiveDiagnostics(DiagnosticsEngine &Diags,
172                                    SourceLocation Loc) {
173     return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) ||
174            !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc);
175   }
176 };
177 } // anonymous namespace
178 
179 //===----------------------------------------------------------------------===//
180 // Check for infinite self-recursion in functions
181 //===----------------------------------------------------------------------===//
182 
183 // Returns true if the function is called anywhere within the CFGBlock.
184 // For member functions, the additional condition of being call from the
185 // this pointer is required.
186 static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
187   // Process all the Stmt's in this block to find any calls to FD.
188   for (const auto &B : Block) {
189     if (B.getKind() != CFGElement::Statement)
190       continue;
191 
192     const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
193     if (!CE || !CE->getCalleeDecl() ||
194         CE->getCalleeDecl()->getCanonicalDecl() != FD)
195       continue;
196 
197     // Skip function calls which are qualified with a templated class.
198     if (const DeclRefExpr *DRE =
199             dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
200       if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
201         if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
202             isa<TemplateSpecializationType>(NNS->getAsType())) {
203           continue;
204         }
205       }
206     }
207 
208     const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
209     if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
210         !MCE->getMethodDecl()->isVirtual())
211       return true;
212   }
213   return false;
214 }
215 
216 // Returns true if every path from the entry block passes through a call to FD.
217 static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
218   llvm::SmallPtrSet<CFGBlock *, 16> Visited;
219   llvm::SmallVector<CFGBlock *, 16> WorkList;
220   // Keep track of whether we found at least one recursive path.
221   bool foundRecursion = false;
222 
223   const unsigned ExitID = cfg->getExit().getBlockID();
224 
225   // Seed the work list with the entry block.
226   WorkList.push_back(&cfg->getEntry());
227 
228   while (!WorkList.empty()) {
229     CFGBlock *Block = WorkList.pop_back_val();
230 
231     for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
232       if (CFGBlock *SuccBlock = *I) {
233         if (!Visited.insert(SuccBlock).second)
234           continue;
235 
236         // Found a path to the exit node without a recursive call.
237         if (ExitID == SuccBlock->getBlockID())
238           return false;
239 
240         // If the successor block contains a recursive call, end analysis there.
241         if (hasRecursiveCallInPath(FD, *SuccBlock)) {
242           foundRecursion = true;
243           continue;
244         }
245 
246         WorkList.push_back(SuccBlock);
247       }
248     }
249   }
250   return foundRecursion;
251 }
252 
253 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
254                                    const Stmt *Body, AnalysisDeclContext &AC) {
255   FD = FD->getCanonicalDecl();
256 
257   // Only run on non-templated functions and non-templated members of
258   // templated classes.
259   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
260       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
261     return;
262 
263   CFG *cfg = AC.getCFG();
264   if (!cfg) return;
265 
266   // If the exit block is unreachable, skip processing the function.
267   if (cfg->getExit().pred_empty())
268     return;
269 
270   // Emit diagnostic if a recursive function call is detected for all paths.
271   if (checkForRecursiveFunctionCall(FD, cfg))
272     S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
273 }
274 
275 //===----------------------------------------------------------------------===//
276 // Check for throw in a non-throwing function.
277 //===----------------------------------------------------------------------===//
278 
279 /// Determine whether an exception thrown by E, unwinding from ThrowBlock,
280 /// can reach ExitBlock.
281 static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
282                          CFG *Body) {
283   SmallVector<CFGBlock *, 16> Stack;
284   llvm::BitVector Queued(Body->getNumBlockIDs());
285 
286   Stack.push_back(&ThrowBlock);
287   Queued[ThrowBlock.getBlockID()] = true;
288 
289   while (!Stack.empty()) {
290     CFGBlock &UnwindBlock = *Stack.back();
291     Stack.pop_back();
292 
293     for (auto &Succ : UnwindBlock.succs()) {
294       if (!Succ.isReachable() || Queued[Succ->getBlockID()])
295         continue;
296 
297       if (Succ->getBlockID() == Body->getExit().getBlockID())
298         return true;
299 
300       if (auto *Catch =
301               dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
302         QualType Caught = Catch->getCaughtType();
303         if (Caught.isNull() || // catch (...) catches everything
304             !E->getSubExpr() || // throw; is considered cuaght by any handler
305             S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
306           // Exception doesn't escape via this path.
307           break;
308       } else {
309         Stack.push_back(Succ);
310         Queued[Succ->getBlockID()] = true;
311       }
312     }
313   }
314 
315   return false;
316 }
317 
318 static void visitReachableThrows(
319     CFG *BodyCFG,
320     llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
321   llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
322   clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
323   for (CFGBlock *B : *BodyCFG) {
324     if (!Reachable[B->getBlockID()])
325       continue;
326     for (CFGElement &E : *B) {
327       Optional<CFGStmt> S = E.getAs<CFGStmt>();
328       if (!S)
329         continue;
330       if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
331         Visit(Throw, *B);
332     }
333   }
334 }
335 
336 static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
337                                                  const FunctionDecl *FD) {
338   if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
339       FD->getTypeSourceInfo()) {
340     S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
341     if (S.getLangOpts().CPlusPlus11 &&
342         (isa<CXXDestructorDecl>(FD) ||
343          FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
344          FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
345       if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
346                                          getAs<FunctionProtoType>())
347         S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
348             << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
349             << FD->getExceptionSpecSourceRange();
350     } else
351       S.Diag(FD->getLocation(), diag::note_throw_in_function)
352           << FD->getExceptionSpecSourceRange();
353   }
354 }
355 
356 static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
357                                         AnalysisDeclContext &AC) {
358   CFG *BodyCFG = AC.getCFG();
359   if (!BodyCFG)
360     return;
361   if (BodyCFG->getExit().pred_empty())
362     return;
363   visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
364     if (throwEscapes(S, Throw, Block, BodyCFG))
365       EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
366   });
367 }
368 
369 static bool isNoexcept(const FunctionDecl *FD) {
370   const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
371   if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
372     return true;
373   return false;
374 }
375 
376 //===----------------------------------------------------------------------===//
377 // Check for missing return value.
378 //===----------------------------------------------------------------------===//
379 
380 enum ControlFlowKind {
381   UnknownFallThrough,
382   NeverFallThrough,
383   MaybeFallThrough,
384   AlwaysFallThrough,
385   NeverFallThroughOrReturn
386 };
387 
388 /// CheckFallThrough - Check that we don't fall off the end of a
389 /// Statement that should return a value.
390 ///
391 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
392 /// MaybeFallThrough iff we might or might not fall off the end,
393 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
394 /// return.  We assume NeverFallThrough iff we never fall off the end of the
395 /// statement but we may return.  We assume that functions not marked noreturn
396 /// will return.
397 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
398   CFG *cfg = AC.getCFG();
399   if (!cfg) return UnknownFallThrough;
400 
401   // The CFG leaves in dead things, and we don't want the dead code paths to
402   // confuse us, so we mark all live things first.
403   llvm::BitVector live(cfg->getNumBlockIDs());
404   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
405                                                           live);
406 
407   bool AddEHEdges = AC.getAddEHEdges();
408   if (!AddEHEdges && count != cfg->getNumBlockIDs())
409     // When there are things remaining dead, and we didn't add EH edges
410     // from CallExprs to the catch clauses, we have to go back and
411     // mark them as live.
412     for (const auto *B : *cfg) {
413       if (!live[B->getBlockID()]) {
414         if (B->pred_begin() == B->pred_end()) {
415           const Stmt *Term = B->getTerminatorStmt();
416           if (Term && isa<CXXTryStmt>(Term))
417             // When not adding EH edges from calls, catch clauses
418             // can otherwise seem dead.  Avoid noting them as dead.
419             count += reachable_code::ScanReachableFromBlock(B, live);
420           continue;
421         }
422       }
423     }
424 
425   // Now we know what is live, we check the live precessors of the exit block
426   // and look for fall through paths, being careful to ignore normal returns,
427   // and exceptional paths.
428   bool HasLiveReturn = false;
429   bool HasFakeEdge = false;
430   bool HasPlainEdge = false;
431   bool HasAbnormalEdge = false;
432 
433   // Ignore default cases that aren't likely to be reachable because all
434   // enums in a switch(X) have explicit case statements.
435   CFGBlock::FilterOptions FO;
436   FO.IgnoreDefaultsWithCoveredEnums = 1;
437 
438   for (CFGBlock::filtered_pred_iterator I =
439            cfg->getExit().filtered_pred_start_end(FO);
440        I.hasMore(); ++I) {
441     const CFGBlock &B = **I;
442     if (!live[B.getBlockID()])
443       continue;
444 
445     // Skip blocks which contain an element marked as no-return. They don't
446     // represent actually viable edges into the exit block, so mark them as
447     // abnormal.
448     if (B.hasNoReturnElement()) {
449       HasAbnormalEdge = true;
450       continue;
451     }
452 
453     // Destructors can appear after the 'return' in the CFG.  This is
454     // normal.  We need to look pass the destructors for the return
455     // statement (if it exists).
456     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
457 
458     for ( ; ri != re ; ++ri)
459       if (ri->getAs<CFGStmt>())
460         break;
461 
462     // No more CFGElements in the block?
463     if (ri == re) {
464       const Stmt *Term = B.getTerminatorStmt();
465       if (Term && isa<CXXTryStmt>(Term)) {
466         HasAbnormalEdge = true;
467         continue;
468       }
469       // A labeled empty statement, or the entry block...
470       HasPlainEdge = true;
471       continue;
472     }
473 
474     CFGStmt CS = ri->castAs<CFGStmt>();
475     const Stmt *S = CS.getStmt();
476     if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
477       HasLiveReturn = true;
478       continue;
479     }
480     if (isa<ObjCAtThrowStmt>(S)) {
481       HasFakeEdge = true;
482       continue;
483     }
484     if (isa<CXXThrowExpr>(S)) {
485       HasFakeEdge = true;
486       continue;
487     }
488     if (isa<MSAsmStmt>(S)) {
489       // TODO: Verify this is correct.
490       HasFakeEdge = true;
491       HasLiveReturn = true;
492       continue;
493     }
494     if (isa<CXXTryStmt>(S)) {
495       HasAbnormalEdge = true;
496       continue;
497     }
498     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
499         == B.succ_end()) {
500       HasAbnormalEdge = true;
501       continue;
502     }
503 
504     HasPlainEdge = true;
505   }
506   if (!HasPlainEdge) {
507     if (HasLiveReturn)
508       return NeverFallThrough;
509     return NeverFallThroughOrReturn;
510   }
511   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
512     return MaybeFallThrough;
513   // This says AlwaysFallThrough for calls to functions that are not marked
514   // noreturn, that don't return.  If people would like this warning to be more
515   // accurate, such functions should be marked as noreturn.
516   return AlwaysFallThrough;
517 }
518 
519 namespace {
520 
521 struct CheckFallThroughDiagnostics {
522   unsigned diag_MaybeFallThrough_HasNoReturn;
523   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
524   unsigned diag_AlwaysFallThrough_HasNoReturn;
525   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
526   unsigned diag_NeverFallThroughOrReturn;
527   enum { Function, Block, Lambda, Coroutine } funMode;
528   SourceLocation FuncLoc;
529 
530   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
531     CheckFallThroughDiagnostics D;
532     D.FuncLoc = Func->getLocation();
533     D.diag_MaybeFallThrough_HasNoReturn =
534       diag::warn_falloff_noreturn_function;
535     D.diag_MaybeFallThrough_ReturnsNonVoid =
536       diag::warn_maybe_falloff_nonvoid_function;
537     D.diag_AlwaysFallThrough_HasNoReturn =
538       diag::warn_falloff_noreturn_function;
539     D.diag_AlwaysFallThrough_ReturnsNonVoid =
540       diag::warn_falloff_nonvoid_function;
541 
542     // Don't suggest that virtual functions be marked "noreturn", since they
543     // might be overridden by non-noreturn functions.
544     bool isVirtualMethod = false;
545     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
546       isVirtualMethod = Method->isVirtual();
547 
548     // Don't suggest that template instantiations be marked "noreturn"
549     bool isTemplateInstantiation = false;
550     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
551       isTemplateInstantiation = Function->isTemplateInstantiation();
552 
553     if (!isVirtualMethod && !isTemplateInstantiation)
554       D.diag_NeverFallThroughOrReturn =
555         diag::warn_suggest_noreturn_function;
556     else
557       D.diag_NeverFallThroughOrReturn = 0;
558 
559     D.funMode = Function;
560     return D;
561   }
562 
563   static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
564     CheckFallThroughDiagnostics D;
565     D.FuncLoc = Func->getLocation();
566     D.diag_MaybeFallThrough_HasNoReturn = 0;
567     D.diag_MaybeFallThrough_ReturnsNonVoid =
568         diag::warn_maybe_falloff_nonvoid_coroutine;
569     D.diag_AlwaysFallThrough_HasNoReturn = 0;
570     D.diag_AlwaysFallThrough_ReturnsNonVoid =
571         diag::warn_falloff_nonvoid_coroutine;
572     D.funMode = Coroutine;
573     return D;
574   }
575 
576   static CheckFallThroughDiagnostics MakeForBlock() {
577     CheckFallThroughDiagnostics D;
578     D.diag_MaybeFallThrough_HasNoReturn =
579       diag::err_noreturn_block_has_return_expr;
580     D.diag_MaybeFallThrough_ReturnsNonVoid =
581       diag::err_maybe_falloff_nonvoid_block;
582     D.diag_AlwaysFallThrough_HasNoReturn =
583       diag::err_noreturn_block_has_return_expr;
584     D.diag_AlwaysFallThrough_ReturnsNonVoid =
585       diag::err_falloff_nonvoid_block;
586     D.diag_NeverFallThroughOrReturn = 0;
587     D.funMode = Block;
588     return D;
589   }
590 
591   static CheckFallThroughDiagnostics MakeForLambda() {
592     CheckFallThroughDiagnostics D;
593     D.diag_MaybeFallThrough_HasNoReturn =
594       diag::err_noreturn_lambda_has_return_expr;
595     D.diag_MaybeFallThrough_ReturnsNonVoid =
596       diag::warn_maybe_falloff_nonvoid_lambda;
597     D.diag_AlwaysFallThrough_HasNoReturn =
598       diag::err_noreturn_lambda_has_return_expr;
599     D.diag_AlwaysFallThrough_ReturnsNonVoid =
600       diag::warn_falloff_nonvoid_lambda;
601     D.diag_NeverFallThroughOrReturn = 0;
602     D.funMode = Lambda;
603     return D;
604   }
605 
606   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
607                         bool HasNoReturn) const {
608     if (funMode == Function) {
609       return (ReturnsVoid ||
610               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
611                           FuncLoc)) &&
612              (!HasNoReturn ||
613               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
614                           FuncLoc)) &&
615              (!ReturnsVoid ||
616               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
617     }
618     if (funMode == Coroutine) {
619       return (ReturnsVoid ||
620               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
621               D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
622                           FuncLoc)) &&
623              (!HasNoReturn);
624     }
625     // For blocks / lambdas.
626     return ReturnsVoid && !HasNoReturn;
627   }
628 };
629 
630 } // anonymous namespace
631 
632 /// CheckFallThroughForBody - Check that we don't fall off the end of a
633 /// function that should return a value.  Check that we don't fall off the end
634 /// of a noreturn function.  We assume that functions and blocks not marked
635 /// noreturn will return.
636 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
637                                     QualType BlockType,
638                                     const CheckFallThroughDiagnostics &CD,
639                                     AnalysisDeclContext &AC,
640                                     sema::FunctionScopeInfo *FSI) {
641 
642   bool ReturnsVoid = false;
643   bool HasNoReturn = false;
644   bool IsCoroutine = FSI->isCoroutine();
645 
646   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
647     if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
648       ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
649     else
650       ReturnsVoid = FD->getReturnType()->isVoidType();
651     HasNoReturn = FD->isNoReturn();
652   }
653   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
654     ReturnsVoid = MD->getReturnType()->isVoidType();
655     HasNoReturn = MD->hasAttr<NoReturnAttr>();
656   }
657   else if (isa<BlockDecl>(D)) {
658     if (const FunctionType *FT =
659           BlockType->getPointeeType()->getAs<FunctionType>()) {
660       if (FT->getReturnType()->isVoidType())
661         ReturnsVoid = true;
662       if (FT->getNoReturnAttr())
663         HasNoReturn = true;
664     }
665   }
666 
667   DiagnosticsEngine &Diags = S.getDiagnostics();
668 
669   // Short circuit for compilation speed.
670   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
671       return;
672   SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
673   auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
674     if (IsCoroutine)
675       S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
676     else
677       S.Diag(Loc, DiagID);
678   };
679 
680   // cpu_dispatch functions permit empty function bodies for ICC compatibility.
681   if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
682     return;
683 
684   // Either in a function body compound statement, or a function-try-block.
685   switch (CheckFallThrough(AC)) {
686     case UnknownFallThrough:
687       break;
688 
689     case MaybeFallThrough:
690       if (HasNoReturn)
691         EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
692       else if (!ReturnsVoid)
693         EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
694       break;
695     case AlwaysFallThrough:
696       if (HasNoReturn)
697         EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
698       else if (!ReturnsVoid)
699         EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
700       break;
701     case NeverFallThroughOrReturn:
702       if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
703         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
704           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
705         } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
706           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
707         } else {
708           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
709         }
710       }
711       break;
712     case NeverFallThrough:
713       break;
714   }
715 }
716 
717 //===----------------------------------------------------------------------===//
718 // -Wuninitialized
719 //===----------------------------------------------------------------------===//
720 
721 namespace {
722 /// ContainsReference - A visitor class to search for references to
723 /// a particular declaration (the needle) within any evaluated component of an
724 /// expression (recursively).
725 class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
726   bool FoundReference;
727   const DeclRefExpr *Needle;
728 
729 public:
730   typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
731 
732   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
733     : Inherited(Context), FoundReference(false), Needle(Needle) {}
734 
735   void VisitExpr(const Expr *E) {
736     // Stop evaluating if we already have a reference.
737     if (FoundReference)
738       return;
739 
740     Inherited::VisitExpr(E);
741   }
742 
743   void VisitDeclRefExpr(const DeclRefExpr *E) {
744     if (E == Needle)
745       FoundReference = true;
746     else
747       Inherited::VisitDeclRefExpr(E);
748   }
749 
750   bool doesContainReference() const { return FoundReference; }
751 };
752 } // anonymous namespace
753 
754 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
755   QualType VariableTy = VD->getType().getCanonicalType();
756   if (VariableTy->isBlockPointerType() &&
757       !VD->hasAttr<BlocksAttr>()) {
758     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
759         << VD->getDeclName()
760         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
761     return true;
762   }
763 
764   // Don't issue a fixit if there is already an initializer.
765   if (VD->getInit())
766     return false;
767 
768   // Don't suggest a fixit inside macros.
769   if (VD->getEndLoc().isMacroID())
770     return false;
771 
772   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
773 
774   // Suggest possible initialization (if any).
775   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
776   if (Init.empty())
777     return false;
778 
779   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
780     << FixItHint::CreateInsertion(Loc, Init);
781   return true;
782 }
783 
784 /// Create a fixit to remove an if-like statement, on the assumption that its
785 /// condition is CondVal.
786 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
787                           const Stmt *Else, bool CondVal,
788                           FixItHint &Fixit1, FixItHint &Fixit2) {
789   if (CondVal) {
790     // If condition is always true, remove all but the 'then'.
791     Fixit1 = FixItHint::CreateRemoval(
792         CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
793     if (Else) {
794       SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
795       Fixit2 =
796           FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
797     }
798   } else {
799     // If condition is always false, remove all but the 'else'.
800     if (Else)
801       Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
802           If->getBeginLoc(), Else->getBeginLoc()));
803     else
804       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
805   }
806 }
807 
808 /// DiagUninitUse -- Helper function to produce a diagnostic for an
809 /// uninitialized use of a variable.
810 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
811                           bool IsCapturedByBlock) {
812   bool Diagnosed = false;
813 
814   switch (Use.getKind()) {
815   case UninitUse::Always:
816     S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
817         << VD->getDeclName() << IsCapturedByBlock
818         << Use.getUser()->getSourceRange();
819     return;
820 
821   case UninitUse::AfterDecl:
822   case UninitUse::AfterCall:
823     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
824       << VD->getDeclName() << IsCapturedByBlock
825       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
826       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
827       << VD->getSourceRange();
828     S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
829         << IsCapturedByBlock << Use.getUser()->getSourceRange();
830     return;
831 
832   case UninitUse::Maybe:
833   case UninitUse::Sometimes:
834     // Carry on to report sometimes-uninitialized branches, if possible,
835     // or a 'may be used uninitialized' diagnostic otherwise.
836     break;
837   }
838 
839   // Diagnose each branch which leads to a sometimes-uninitialized use.
840   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
841        I != E; ++I) {
842     assert(Use.getKind() == UninitUse::Sometimes);
843 
844     const Expr *User = Use.getUser();
845     const Stmt *Term = I->Terminator;
846 
847     // Information used when building the diagnostic.
848     unsigned DiagKind;
849     StringRef Str;
850     SourceRange Range;
851 
852     // FixIts to suppress the diagnostic by removing the dead condition.
853     // For all binary terminators, branch 0 is taken if the condition is true,
854     // and branch 1 is taken if the condition is false.
855     int RemoveDiagKind = -1;
856     const char *FixitStr =
857         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
858                                   : (I->Output ? "1" : "0");
859     FixItHint Fixit1, Fixit2;
860 
861     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
862     default:
863       // Don't know how to report this. Just fall back to 'may be used
864       // uninitialized'. FIXME: Can this happen?
865       continue;
866 
867     // "condition is true / condition is false".
868     case Stmt::IfStmtClass: {
869       const IfStmt *IS = cast<IfStmt>(Term);
870       DiagKind = 0;
871       Str = "if";
872       Range = IS->getCond()->getSourceRange();
873       RemoveDiagKind = 0;
874       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
875                     I->Output, Fixit1, Fixit2);
876       break;
877     }
878     case Stmt::ConditionalOperatorClass: {
879       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
880       DiagKind = 0;
881       Str = "?:";
882       Range = CO->getCond()->getSourceRange();
883       RemoveDiagKind = 0;
884       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
885                     I->Output, Fixit1, Fixit2);
886       break;
887     }
888     case Stmt::BinaryOperatorClass: {
889       const BinaryOperator *BO = cast<BinaryOperator>(Term);
890       if (!BO->isLogicalOp())
891         continue;
892       DiagKind = 0;
893       Str = BO->getOpcodeStr();
894       Range = BO->getLHS()->getSourceRange();
895       RemoveDiagKind = 0;
896       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
897           (BO->getOpcode() == BO_LOr && !I->Output))
898         // true && y -> y, false || y -> y.
899         Fixit1 = FixItHint::CreateRemoval(
900             SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
901       else
902         // false && y -> false, true || y -> true.
903         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
904       break;
905     }
906 
907     // "loop is entered / loop is exited".
908     case Stmt::WhileStmtClass:
909       DiagKind = 1;
910       Str = "while";
911       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
912       RemoveDiagKind = 1;
913       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
914       break;
915     case Stmt::ForStmtClass:
916       DiagKind = 1;
917       Str = "for";
918       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
919       RemoveDiagKind = 1;
920       if (I->Output)
921         Fixit1 = FixItHint::CreateRemoval(Range);
922       else
923         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
924       break;
925     case Stmt::CXXForRangeStmtClass:
926       if (I->Output == 1) {
927         // The use occurs if a range-based for loop's body never executes.
928         // That may be impossible, and there's no syntactic fix for this,
929         // so treat it as a 'may be uninitialized' case.
930         continue;
931       }
932       DiagKind = 1;
933       Str = "for";
934       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
935       break;
936 
937     // "condition is true / loop is exited".
938     case Stmt::DoStmtClass:
939       DiagKind = 2;
940       Str = "do";
941       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
942       RemoveDiagKind = 1;
943       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
944       break;
945 
946     // "switch case is taken".
947     case Stmt::CaseStmtClass:
948       DiagKind = 3;
949       Str = "case";
950       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
951       break;
952     case Stmt::DefaultStmtClass:
953       DiagKind = 3;
954       Str = "default";
955       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
956       break;
957     }
958 
959     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
960       << VD->getDeclName() << IsCapturedByBlock << DiagKind
961       << Str << I->Output << Range;
962     S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
963         << IsCapturedByBlock << User->getSourceRange();
964     if (RemoveDiagKind != -1)
965       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
966         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
967 
968     Diagnosed = true;
969   }
970 
971   if (!Diagnosed)
972     S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
973         << VD->getDeclName() << IsCapturedByBlock
974         << Use.getUser()->getSourceRange();
975 }
976 
977 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
978 /// uninitialized variable. This manages the different forms of diagnostic
979 /// emitted for particular types of uses. Returns true if the use was diagnosed
980 /// as a warning. If a particular use is one we omit warnings for, returns
981 /// false.
982 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
983                                      const UninitUse &Use,
984                                      bool alwaysReportSelfInit = false) {
985   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
986     // Inspect the initializer of the variable declaration which is
987     // being referenced prior to its initialization. We emit
988     // specialized diagnostics for self-initialization, and we
989     // specifically avoid warning about self references which take the
990     // form of:
991     //
992     //   int x = x;
993     //
994     // This is used to indicate to GCC that 'x' is intentionally left
995     // uninitialized. Proven code paths which access 'x' in
996     // an uninitialized state after this will still warn.
997     if (const Expr *Initializer = VD->getInit()) {
998       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
999         return false;
1000 
1001       ContainsReference CR(S.Context, DRE);
1002       CR.Visit(Initializer);
1003       if (CR.doesContainReference()) {
1004         S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
1005             << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
1006         return true;
1007       }
1008     }
1009 
1010     DiagUninitUse(S, VD, Use, false);
1011   } else {
1012     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
1013     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
1014       S.Diag(BE->getBeginLoc(),
1015              diag::warn_uninit_byref_blockvar_captured_by_block)
1016           << VD->getDeclName()
1017           << VD->getType().getQualifiers().hasObjCLifetime();
1018     else
1019       DiagUninitUse(S, VD, Use, true);
1020   }
1021 
1022   // Report where the variable was declared when the use wasn't within
1023   // the initializer of that declaration & we didn't already suggest
1024   // an initialization fixit.
1025   if (!SuggestInitializationFixit(S, VD))
1026     S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
1027         << VD->getDeclName();
1028 
1029   return true;
1030 }
1031 
1032 namespace {
1033   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
1034   public:
1035     FallthroughMapper(Sema &S)
1036       : FoundSwitchStatements(false),
1037         S(S) {
1038     }
1039 
1040     bool foundSwitchStatements() const { return FoundSwitchStatements; }
1041 
1042     void markFallthroughVisited(const AttributedStmt *Stmt) {
1043       bool Found = FallthroughStmts.erase(Stmt);
1044       assert(Found);
1045       (void)Found;
1046     }
1047 
1048     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
1049 
1050     const AttrStmts &getFallthroughStmts() const {
1051       return FallthroughStmts;
1052     }
1053 
1054     void fillReachableBlocks(CFG *Cfg) {
1055       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
1056       std::deque<const CFGBlock *> BlockQueue;
1057 
1058       ReachableBlocks.insert(&Cfg->getEntry());
1059       BlockQueue.push_back(&Cfg->getEntry());
1060       // Mark all case blocks reachable to avoid problems with switching on
1061       // constants, covered enums, etc.
1062       // These blocks can contain fall-through annotations, and we don't want to
1063       // issue a warn_fallthrough_attr_unreachable for them.
1064       for (const auto *B : *Cfg) {
1065         const Stmt *L = B->getLabel();
1066         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
1067           BlockQueue.push_back(B);
1068       }
1069 
1070       while (!BlockQueue.empty()) {
1071         const CFGBlock *P = BlockQueue.front();
1072         BlockQueue.pop_front();
1073         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
1074                                            E = P->succ_end();
1075              I != E; ++I) {
1076           if (*I && ReachableBlocks.insert(*I).second)
1077             BlockQueue.push_back(*I);
1078         }
1079       }
1080     }
1081 
1082     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
1083                                    bool IsTemplateInstantiation) {
1084       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
1085 
1086       int UnannotatedCnt = 0;
1087       AnnotatedCnt = 0;
1088 
1089       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
1090       while (!BlockQueue.empty()) {
1091         const CFGBlock *P = BlockQueue.front();
1092         BlockQueue.pop_front();
1093         if (!P) continue;
1094 
1095         const Stmt *Term = P->getTerminatorStmt();
1096         if (Term && isa<SwitchStmt>(Term))
1097           continue; // Switch statement, good.
1098 
1099         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
1100         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
1101           continue; // Previous case label has no statements, good.
1102 
1103         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
1104         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
1105           continue; // Case label is preceded with a normal label, good.
1106 
1107         if (!ReachableBlocks.count(P)) {
1108           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
1109                                                 ElemEnd = P->rend();
1110                ElemIt != ElemEnd; ++ElemIt) {
1111             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
1112               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
1113                 // Don't issue a warning for an unreachable fallthrough
1114                 // attribute in template instantiations as it may not be
1115                 // unreachable in all instantiations of the template.
1116                 if (!IsTemplateInstantiation)
1117                   S.Diag(AS->getBeginLoc(),
1118                          diag::warn_fallthrough_attr_unreachable);
1119                 markFallthroughVisited(AS);
1120                 ++AnnotatedCnt;
1121                 break;
1122               }
1123               // Don't care about other unreachable statements.
1124             }
1125           }
1126           // If there are no unreachable statements, this may be a special
1127           // case in CFG:
1128           // case X: {
1129           //    A a;  // A has a destructor.
1130           //    break;
1131           // }
1132           // // <<<< This place is represented by a 'hanging' CFG block.
1133           // case Y:
1134           continue;
1135         }
1136 
1137         const Stmt *LastStmt = getLastStmt(*P);
1138         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1139           markFallthroughVisited(AS);
1140           ++AnnotatedCnt;
1141           continue; // Fallthrough annotation, good.
1142         }
1143 
1144         if (!LastStmt) { // This block contains no executable statements.
1145           // Traverse its predecessors.
1146           std::copy(P->pred_begin(), P->pred_end(),
1147                     std::back_inserter(BlockQueue));
1148           continue;
1149         }
1150 
1151         ++UnannotatedCnt;
1152       }
1153       return !!UnannotatedCnt;
1154     }
1155 
1156     // RecursiveASTVisitor setup.
1157     bool shouldWalkTypesOfTypeLocs() const { return false; }
1158 
1159     bool VisitAttributedStmt(AttributedStmt *S) {
1160       if (asFallThroughAttr(S))
1161         FallthroughStmts.insert(S);
1162       return true;
1163     }
1164 
1165     bool VisitSwitchStmt(SwitchStmt *S) {
1166       FoundSwitchStatements = true;
1167       return true;
1168     }
1169 
1170     // We don't want to traverse local type declarations. We analyze their
1171     // methods separately.
1172     bool TraverseDecl(Decl *D) { return true; }
1173 
1174     // We analyze lambda bodies separately. Skip them here.
1175     bool TraverseLambdaExpr(LambdaExpr *LE) {
1176       // Traverse the captures, but not the body.
1177       for (const auto C : zip(LE->captures(), LE->capture_inits()))
1178         TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
1179       return true;
1180     }
1181 
1182   private:
1183 
1184     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1185       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1186         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1187           return AS;
1188       }
1189       return nullptr;
1190     }
1191 
1192     static const Stmt *getLastStmt(const CFGBlock &B) {
1193       if (const Stmt *Term = B.getTerminatorStmt())
1194         return Term;
1195       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1196                                             ElemEnd = B.rend();
1197                                             ElemIt != ElemEnd; ++ElemIt) {
1198         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1199           return CS->getStmt();
1200       }
1201       // Workaround to detect a statement thrown out by CFGBuilder:
1202       //   case X: {} case Y:
1203       //   case X: ; case Y:
1204       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1205         if (!isa<SwitchCase>(SW->getSubStmt()))
1206           return SW->getSubStmt();
1207 
1208       return nullptr;
1209     }
1210 
1211     bool FoundSwitchStatements;
1212     AttrStmts FallthroughStmts;
1213     Sema &S;
1214     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1215   };
1216 } // anonymous namespace
1217 
1218 static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
1219                                             SourceLocation Loc) {
1220   TokenValue FallthroughTokens[] = {
1221     tok::l_square, tok::l_square,
1222     PP.getIdentifierInfo("fallthrough"),
1223     tok::r_square, tok::r_square
1224   };
1225 
1226   TokenValue ClangFallthroughTokens[] = {
1227     tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1228     tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1229     tok::r_square, tok::r_square
1230   };
1231 
1232   bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x;
1233 
1234   StringRef MacroName;
1235   if (PreferClangAttr)
1236     MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1237   if (MacroName.empty())
1238     MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
1239   if (MacroName.empty() && !PreferClangAttr)
1240     MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1241   if (MacroName.empty()) {
1242     if (!PreferClangAttr)
1243       MacroName = "[[fallthrough]]";
1244     else if (PP.getLangOpts().CPlusPlus)
1245       MacroName = "[[clang::fallthrough]]";
1246     else
1247       MacroName = "__attribute__((fallthrough))";
1248   }
1249   return MacroName;
1250 }
1251 
1252 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1253                                             bool PerFunction) {
1254   FallthroughMapper FM(S);
1255   FM.TraverseStmt(AC.getBody());
1256 
1257   if (!FM.foundSwitchStatements())
1258     return;
1259 
1260   if (PerFunction && FM.getFallthroughStmts().empty())
1261     return;
1262 
1263   CFG *Cfg = AC.getCFG();
1264 
1265   if (!Cfg)
1266     return;
1267 
1268   FM.fillReachableBlocks(Cfg);
1269 
1270   for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1271     const Stmt *Label = B->getLabel();
1272 
1273     if (!Label || !isa<SwitchCase>(Label))
1274       continue;
1275 
1276     int AnnotatedCnt;
1277 
1278     bool IsTemplateInstantiation = false;
1279     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
1280       IsTemplateInstantiation = Function->isTemplateInstantiation();
1281     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
1282                                       IsTemplateInstantiation))
1283       continue;
1284 
1285     S.Diag(Label->getBeginLoc(),
1286            PerFunction ? diag::warn_unannotated_fallthrough_per_function
1287                        : diag::warn_unannotated_fallthrough);
1288 
1289     if (!AnnotatedCnt) {
1290       SourceLocation L = Label->getBeginLoc();
1291       if (L.isMacroID())
1292         continue;
1293 
1294       const Stmt *Term = B->getTerminatorStmt();
1295       // Skip empty cases.
1296       while (B->empty() && !Term && B->succ_size() == 1) {
1297         B = *B->succ_begin();
1298         Term = B->getTerminatorStmt();
1299       }
1300       if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1301         Preprocessor &PP = S.getPreprocessor();
1302         StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
1303         SmallString<64> TextToInsert(AnnotationSpelling);
1304         TextToInsert += "; ";
1305         S.Diag(L, diag::note_insert_fallthrough_fixit)
1306             << AnnotationSpelling
1307             << FixItHint::CreateInsertion(L, TextToInsert);
1308       }
1309       S.Diag(L, diag::note_insert_break_fixit)
1310           << FixItHint::CreateInsertion(L, "break; ");
1311     }
1312   }
1313 
1314   for (const auto *F : FM.getFallthroughStmts())
1315     S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
1316 }
1317 
1318 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1319                      const Stmt *S) {
1320   assert(S);
1321 
1322   do {
1323     switch (S->getStmtClass()) {
1324     case Stmt::ForStmtClass:
1325     case Stmt::WhileStmtClass:
1326     case Stmt::CXXForRangeStmtClass:
1327     case Stmt::ObjCForCollectionStmtClass:
1328       return true;
1329     case Stmt::DoStmtClass: {
1330       Expr::EvalResult Result;
1331       if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
1332         return true;
1333       return Result.Val.getInt().getBoolValue();
1334     }
1335     default:
1336       break;
1337     }
1338   } while ((S = PM.getParent(S)));
1339 
1340   return false;
1341 }
1342 
1343 static void diagnoseRepeatedUseOfWeak(Sema &S,
1344                                       const sema::FunctionScopeInfo *CurFn,
1345                                       const Decl *D,
1346                                       const ParentMap &PM) {
1347   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1348   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1349   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1350   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1351   StmtUsesPair;
1352 
1353   ASTContext &Ctx = S.getASTContext();
1354 
1355   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1356 
1357   // Extract all weak objects that are referenced more than once.
1358   SmallVector<StmtUsesPair, 8> UsesByStmt;
1359   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1360        I != E; ++I) {
1361     const WeakUseVector &Uses = I->second;
1362 
1363     // Find the first read of the weak object.
1364     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1365     for ( ; UI != UE; ++UI) {
1366       if (UI->isUnsafe())
1367         break;
1368     }
1369 
1370     // If there were only writes to this object, don't warn.
1371     if (UI == UE)
1372       continue;
1373 
1374     // If there was only one read, followed by any number of writes, and the
1375     // read is not within a loop, don't warn. Additionally, don't warn in a
1376     // loop if the base object is a local variable -- local variables are often
1377     // changed in loops.
1378     if (UI == Uses.begin()) {
1379       WeakUseVector::const_iterator UI2 = UI;
1380       for (++UI2; UI2 != UE; ++UI2)
1381         if (UI2->isUnsafe())
1382           break;
1383 
1384       if (UI2 == UE) {
1385         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1386           continue;
1387 
1388         const WeakObjectProfileTy &Profile = I->first;
1389         if (!Profile.isExactProfile())
1390           continue;
1391 
1392         const NamedDecl *Base = Profile.getBase();
1393         if (!Base)
1394           Base = Profile.getProperty();
1395         assert(Base && "A profile always has a base or property.");
1396 
1397         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1398           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1399             continue;
1400       }
1401     }
1402 
1403     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1404   }
1405 
1406   if (UsesByStmt.empty())
1407     return;
1408 
1409   // Sort by first use so that we emit the warnings in a deterministic order.
1410   SourceManager &SM = S.getSourceManager();
1411   llvm::sort(UsesByStmt,
1412              [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1413                return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
1414                                                    RHS.first->getBeginLoc());
1415              });
1416 
1417   // Classify the current code body for better warning text.
1418   // This enum should stay in sync with the cases in
1419   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1420   // FIXME: Should we use a common classification enum and the same set of
1421   // possibilities all throughout Sema?
1422   enum {
1423     Function,
1424     Method,
1425     Block,
1426     Lambda
1427   } FunctionKind;
1428 
1429   if (isa<sema::BlockScopeInfo>(CurFn))
1430     FunctionKind = Block;
1431   else if (isa<sema::LambdaScopeInfo>(CurFn))
1432     FunctionKind = Lambda;
1433   else if (isa<ObjCMethodDecl>(D))
1434     FunctionKind = Method;
1435   else
1436     FunctionKind = Function;
1437 
1438   // Iterate through the sorted problems and emit warnings for each.
1439   for (const auto &P : UsesByStmt) {
1440     const Stmt *FirstRead = P.first;
1441     const WeakObjectProfileTy &Key = P.second->first;
1442     const WeakUseVector &Uses = P.second->second;
1443 
1444     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1445     // may not contain enough information to determine that these are different
1446     // properties. We can only be 100% sure of a repeated use in certain cases,
1447     // and we adjust the diagnostic kind accordingly so that the less certain
1448     // case can be turned off if it is too noisy.
1449     unsigned DiagKind;
1450     if (Key.isExactProfile())
1451       DiagKind = diag::warn_arc_repeated_use_of_weak;
1452     else
1453       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1454 
1455     // Classify the weak object being accessed for better warning text.
1456     // This enum should stay in sync with the cases in
1457     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1458     enum {
1459       Variable,
1460       Property,
1461       ImplicitProperty,
1462       Ivar
1463     } ObjectKind;
1464 
1465     const NamedDecl *KeyProp = Key.getProperty();
1466     if (isa<VarDecl>(KeyProp))
1467       ObjectKind = Variable;
1468     else if (isa<ObjCPropertyDecl>(KeyProp))
1469       ObjectKind = Property;
1470     else if (isa<ObjCMethodDecl>(KeyProp))
1471       ObjectKind = ImplicitProperty;
1472     else if (isa<ObjCIvarDecl>(KeyProp))
1473       ObjectKind = Ivar;
1474     else
1475       llvm_unreachable("Unexpected weak object kind!");
1476 
1477     // Do not warn about IBOutlet weak property receivers being set to null
1478     // since they are typically only used from the main thread.
1479     if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
1480       if (Prop->hasAttr<IBOutletAttr>())
1481         continue;
1482 
1483     // Show the first time the object was read.
1484     S.Diag(FirstRead->getBeginLoc(), DiagKind)
1485         << int(ObjectKind) << KeyProp << int(FunctionKind)
1486         << FirstRead->getSourceRange();
1487 
1488     // Print all the other accesses as notes.
1489     for (const auto &Use : Uses) {
1490       if (Use.getUseExpr() == FirstRead)
1491         continue;
1492       S.Diag(Use.getUseExpr()->getBeginLoc(),
1493              diag::note_arc_weak_also_accessed_here)
1494           << Use.getUseExpr()->getSourceRange();
1495     }
1496   }
1497 }
1498 
1499 namespace {
1500 class UninitValsDiagReporter : public UninitVariablesHandler {
1501   Sema &S;
1502   typedef SmallVector<UninitUse, 2> UsesVec;
1503   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1504   // Prefer using MapVector to DenseMap, so that iteration order will be
1505   // the same as insertion order. This is needed to obtain a deterministic
1506   // order of diagnostics when calling flushDiagnostics().
1507   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1508   UsesMap uses;
1509 
1510 public:
1511   UninitValsDiagReporter(Sema &S) : S(S) {}
1512   ~UninitValsDiagReporter() override { flushDiagnostics(); }
1513 
1514   MappedType &getUses(const VarDecl *vd) {
1515     MappedType &V = uses[vd];
1516     if (!V.getPointer())
1517       V.setPointer(new UsesVec());
1518     return V;
1519   }
1520 
1521   void handleUseOfUninitVariable(const VarDecl *vd,
1522                                  const UninitUse &use) override {
1523     getUses(vd).getPointer()->push_back(use);
1524   }
1525 
1526   void handleSelfInit(const VarDecl *vd) override {
1527     getUses(vd).setInt(true);
1528   }
1529 
1530   void flushDiagnostics() {
1531     for (const auto &P : uses) {
1532       const VarDecl *vd = P.first;
1533       const MappedType &V = P.second;
1534 
1535       UsesVec *vec = V.getPointer();
1536       bool hasSelfInit = V.getInt();
1537 
1538       // Specially handle the case where we have uses of an uninitialized
1539       // variable, but the root cause is an idiomatic self-init.  We want
1540       // to report the diagnostic at the self-init since that is the root cause.
1541       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1542         DiagnoseUninitializedUse(S, vd,
1543                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
1544                                            /* isAlwaysUninit */ true),
1545                                  /* alwaysReportSelfInit */ true);
1546       else {
1547         // Sort the uses by their SourceLocations.  While not strictly
1548         // guaranteed to produce them in line/column order, this will provide
1549         // a stable ordering.
1550         llvm::sort(vec->begin(), vec->end(),
1551                    [](const UninitUse &a, const UninitUse &b) {
1552           // Prefer a more confident report over a less confident one.
1553           if (a.getKind() != b.getKind())
1554             return a.getKind() > b.getKind();
1555           return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
1556         });
1557 
1558         for (const auto &U : *vec) {
1559           // If we have self-init, downgrade all uses to 'may be uninitialized'.
1560           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1561 
1562           if (DiagnoseUninitializedUse(S, vd, Use))
1563             // Skip further diagnostics for this variable. We try to warn only
1564             // on the first point at which a variable is used uninitialized.
1565             break;
1566         }
1567       }
1568 
1569       // Release the uses vector.
1570       delete vec;
1571     }
1572 
1573     uses.clear();
1574   }
1575 
1576 private:
1577   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1578     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1579       return U.getKind() == UninitUse::Always ||
1580              U.getKind() == UninitUse::AfterCall ||
1581              U.getKind() == UninitUse::AfterDecl;
1582     });
1583   }
1584 };
1585 } // anonymous namespace
1586 
1587 namespace clang {
1588 namespace {
1589 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1590 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1591 typedef std::list<DelayedDiag> DiagList;
1592 
1593 struct SortDiagBySourceLocation {
1594   SourceManager &SM;
1595   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1596 
1597   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1598     // Although this call will be slow, this is only called when outputting
1599     // multiple warnings.
1600     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1601   }
1602 };
1603 } // anonymous namespace
1604 } // namespace clang
1605 
1606 //===----------------------------------------------------------------------===//
1607 // -Wthread-safety
1608 //===----------------------------------------------------------------------===//
1609 namespace clang {
1610 namespace threadSafety {
1611 namespace {
1612 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1613   Sema &S;
1614   DiagList Warnings;
1615   SourceLocation FunLocation, FunEndLocation;
1616 
1617   const FunctionDecl *CurrentFunction;
1618   bool Verbose;
1619 
1620   OptionalNotes getNotes() const {
1621     if (Verbose && CurrentFunction) {
1622       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1623                                 S.PDiag(diag::note_thread_warning_in_fun)
1624                                     << CurrentFunction);
1625       return OptionalNotes(1, FNote);
1626     }
1627     return OptionalNotes();
1628   }
1629 
1630   OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1631     OptionalNotes ONS(1, Note);
1632     if (Verbose && CurrentFunction) {
1633       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1634                                 S.PDiag(diag::note_thread_warning_in_fun)
1635                                     << CurrentFunction);
1636       ONS.push_back(std::move(FNote));
1637     }
1638     return ONS;
1639   }
1640 
1641   OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1642                          const PartialDiagnosticAt &Note2) const {
1643     OptionalNotes ONS;
1644     ONS.push_back(Note1);
1645     ONS.push_back(Note2);
1646     if (Verbose && CurrentFunction) {
1647       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1648                                 S.PDiag(diag::note_thread_warning_in_fun)
1649                                     << CurrentFunction);
1650       ONS.push_back(std::move(FNote));
1651     }
1652     return ONS;
1653   }
1654 
1655   OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
1656     return LocLocked.isValid()
1657                ? getNotes(PartialDiagnosticAt(
1658                      LocLocked, S.PDiag(diag::note_locked_here) << Kind))
1659                : getNotes();
1660   }
1661 
1662  public:
1663   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1664     : S(S), FunLocation(FL), FunEndLocation(FEL),
1665       CurrentFunction(nullptr), Verbose(false) {}
1666 
1667   void setVerbose(bool b) { Verbose = b; }
1668 
1669   /// Emit all buffered diagnostics in order of sourcelocation.
1670   /// We need to output diagnostics produced while iterating through
1671   /// the lockset in deterministic order, so this function orders diagnostics
1672   /// and outputs them.
1673   void emitDiagnostics() {
1674     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1675     for (const auto &Diag : Warnings) {
1676       S.Diag(Diag.first.first, Diag.first.second);
1677       for (const auto &Note : Diag.second)
1678         S.Diag(Note.first, Note.second);
1679     }
1680   }
1681 
1682   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1683     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1684                                          << Loc);
1685     Warnings.emplace_back(std::move(Warning), getNotes());
1686   }
1687 
1688   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1689                              SourceLocation Loc) override {
1690     if (Loc.isInvalid())
1691       Loc = FunLocation;
1692     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
1693                                          << Kind << LockName);
1694     Warnings.emplace_back(std::move(Warning), getNotes());
1695   }
1696 
1697   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1698                                  LockKind Expected, LockKind Received,
1699                                  SourceLocation LocLocked,
1700                                  SourceLocation LocUnlock) override {
1701     if (LocUnlock.isInvalid())
1702       LocUnlock = FunLocation;
1703     PartialDiagnosticAt Warning(
1704         LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
1705                        << Kind << LockName << Received << Expected);
1706     Warnings.emplace_back(std::move(Warning),
1707                           makeLockedHereNote(LocLocked, Kind));
1708   }
1709 
1710   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
1711                         SourceLocation LocDoubleLock) override {
1712     if (LocDoubleLock.isInvalid())
1713       LocDoubleLock = FunLocation;
1714     PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
1715                                                    << Kind << LockName);
1716     Warnings.emplace_back(std::move(Warning),
1717                           makeLockedHereNote(LocLocked, Kind));
1718   }
1719 
1720   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1721                                  SourceLocation LocLocked,
1722                                  SourceLocation LocEndOfScope,
1723                                  LockErrorKind LEK) override {
1724     unsigned DiagID = 0;
1725     switch (LEK) {
1726       case LEK_LockedSomePredecessors:
1727         DiagID = diag::warn_lock_some_predecessors;
1728         break;
1729       case LEK_LockedSomeLoopIterations:
1730         DiagID = diag::warn_expecting_lock_held_on_loop;
1731         break;
1732       case LEK_LockedAtEndOfFunction:
1733         DiagID = diag::warn_no_unlock;
1734         break;
1735       case LEK_NotLockedAtEndOfFunction:
1736         DiagID = diag::warn_expecting_locked;
1737         break;
1738     }
1739     if (LocEndOfScope.isInvalid())
1740       LocEndOfScope = FunEndLocation;
1741 
1742     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1743                                                                << LockName);
1744     Warnings.emplace_back(std::move(Warning),
1745                           makeLockedHereNote(LocLocked, Kind));
1746   }
1747 
1748   void handleExclusiveAndShared(StringRef Kind, Name LockName,
1749                                 SourceLocation Loc1,
1750                                 SourceLocation Loc2) override {
1751     PartialDiagnosticAt Warning(Loc1,
1752                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
1753                                     << Kind << LockName);
1754     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1755                                        << Kind << LockName);
1756     Warnings.emplace_back(std::move(Warning), getNotes(Note));
1757   }
1758 
1759   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1760                          ProtectedOperationKind POK, AccessKind AK,
1761                          SourceLocation Loc) override {
1762     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1763            "Only works for variables");
1764     unsigned DiagID = POK == POK_VarAccess?
1765                         diag::warn_variable_requires_any_lock:
1766                         diag::warn_var_deref_requires_any_lock;
1767     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1768       << D << getLockKindFromAccessKind(AK));
1769     Warnings.emplace_back(std::move(Warning), getNotes());
1770   }
1771 
1772   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1773                           ProtectedOperationKind POK, Name LockName,
1774                           LockKind LK, SourceLocation Loc,
1775                           Name *PossibleMatch) override {
1776     unsigned DiagID = 0;
1777     if (PossibleMatch) {
1778       switch (POK) {
1779         case POK_VarAccess:
1780           DiagID = diag::warn_variable_requires_lock_precise;
1781           break;
1782         case POK_VarDereference:
1783           DiagID = diag::warn_var_deref_requires_lock_precise;
1784           break;
1785         case POK_FunctionCall:
1786           DiagID = diag::warn_fun_requires_lock_precise;
1787           break;
1788         case POK_PassByRef:
1789           DiagID = diag::warn_guarded_pass_by_reference;
1790           break;
1791         case POK_PtPassByRef:
1792           DiagID = diag::warn_pt_guarded_pass_by_reference;
1793           break;
1794       }
1795       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1796                                                        << D
1797                                                        << LockName << LK);
1798       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1799                                         << *PossibleMatch);
1800       if (Verbose && POK == POK_VarAccess) {
1801         PartialDiagnosticAt VNote(D->getLocation(),
1802                                  S.PDiag(diag::note_guarded_by_declared_here)
1803                                      << D->getNameAsString());
1804         Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1805       } else
1806         Warnings.emplace_back(std::move(Warning), getNotes(Note));
1807     } else {
1808       switch (POK) {
1809         case POK_VarAccess:
1810           DiagID = diag::warn_variable_requires_lock;
1811           break;
1812         case POK_VarDereference:
1813           DiagID = diag::warn_var_deref_requires_lock;
1814           break;
1815         case POK_FunctionCall:
1816           DiagID = diag::warn_fun_requires_lock;
1817           break;
1818         case POK_PassByRef:
1819           DiagID = diag::warn_guarded_pass_by_reference;
1820           break;
1821         case POK_PtPassByRef:
1822           DiagID = diag::warn_pt_guarded_pass_by_reference;
1823           break;
1824       }
1825       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1826                                                        << D
1827                                                        << LockName << LK);
1828       if (Verbose && POK == POK_VarAccess) {
1829         PartialDiagnosticAt Note(D->getLocation(),
1830                                  S.PDiag(diag::note_guarded_by_declared_here));
1831         Warnings.emplace_back(std::move(Warning), getNotes(Note));
1832       } else
1833         Warnings.emplace_back(std::move(Warning), getNotes());
1834     }
1835   }
1836 
1837   void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
1838                              SourceLocation Loc) override {
1839     PartialDiagnosticAt Warning(Loc,
1840         S.PDiag(diag::warn_acquire_requires_negative_cap)
1841         << Kind << LockName << Neg);
1842     Warnings.emplace_back(std::move(Warning), getNotes());
1843   }
1844 
1845   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1846                              SourceLocation Loc) override {
1847     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1848                                          << Kind << FunName << LockName);
1849     Warnings.emplace_back(std::move(Warning), getNotes());
1850   }
1851 
1852   void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
1853                                 SourceLocation Loc) override {
1854     PartialDiagnosticAt Warning(Loc,
1855       S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
1856     Warnings.emplace_back(std::move(Warning), getNotes());
1857   }
1858 
1859   void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
1860     PartialDiagnosticAt Warning(Loc,
1861       S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
1862     Warnings.emplace_back(std::move(Warning), getNotes());
1863   }
1864 
1865   void enterFunction(const FunctionDecl* FD) override {
1866     CurrentFunction = FD;
1867   }
1868 
1869   void leaveFunction(const FunctionDecl* FD) override {
1870     CurrentFunction = nullptr;
1871   }
1872 };
1873 } // anonymous namespace
1874 } // namespace threadSafety
1875 } // namespace clang
1876 
1877 //===----------------------------------------------------------------------===//
1878 // -Wconsumed
1879 //===----------------------------------------------------------------------===//
1880 
1881 namespace clang {
1882 namespace consumed {
1883 namespace {
1884 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1885 
1886   Sema &S;
1887   DiagList Warnings;
1888 
1889 public:
1890 
1891   ConsumedWarningsHandler(Sema &S) : S(S) {}
1892 
1893   void emitDiagnostics() override {
1894     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1895     for (const auto &Diag : Warnings) {
1896       S.Diag(Diag.first.first, Diag.first.second);
1897       for (const auto &Note : Diag.second)
1898         S.Diag(Note.first, Note.second);
1899     }
1900   }
1901 
1902   void warnLoopStateMismatch(SourceLocation Loc,
1903                              StringRef VariableName) override {
1904     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1905       VariableName);
1906 
1907     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1908   }
1909 
1910   void warnParamReturnTypestateMismatch(SourceLocation Loc,
1911                                         StringRef VariableName,
1912                                         StringRef ExpectedState,
1913                                         StringRef ObservedState) override {
1914 
1915     PartialDiagnosticAt Warning(Loc, S.PDiag(
1916       diag::warn_param_return_typestate_mismatch) << VariableName <<
1917         ExpectedState << ObservedState);
1918 
1919     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1920   }
1921 
1922   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1923                                   StringRef ObservedState) override {
1924 
1925     PartialDiagnosticAt Warning(Loc, S.PDiag(
1926       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1927 
1928     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1929   }
1930 
1931   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1932                                               StringRef TypeName) override {
1933     PartialDiagnosticAt Warning(Loc, S.PDiag(
1934       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1935 
1936     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1937   }
1938 
1939   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1940                                    StringRef ObservedState) override {
1941 
1942     PartialDiagnosticAt Warning(Loc, S.PDiag(
1943       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1944 
1945     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1946   }
1947 
1948   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
1949                                    SourceLocation Loc) override {
1950 
1951     PartialDiagnosticAt Warning(Loc, S.PDiag(
1952       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1953 
1954     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1955   }
1956 
1957   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
1958                              StringRef State, SourceLocation Loc) override {
1959 
1960     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1961                                 MethodName << VariableName << State);
1962 
1963     Warnings.emplace_back(std::move(Warning), OptionalNotes());
1964   }
1965 };
1966 } // anonymous namespace
1967 } // namespace consumed
1968 } // namespace clang
1969 
1970 //===----------------------------------------------------------------------===//
1971 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1972 //  warnings on a function, method, or block.
1973 //===----------------------------------------------------------------------===//
1974 
1975 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1976   enableCheckFallThrough = 1;
1977   enableCheckUnreachable = 0;
1978   enableThreadSafetyAnalysis = 0;
1979   enableConsumedAnalysis = 0;
1980 }
1981 
1982 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
1983   return (unsigned)!D.isIgnored(diag, SourceLocation());
1984 }
1985 
1986 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1987   : S(s),
1988     NumFunctionsAnalyzed(0),
1989     NumFunctionsWithBadCFGs(0),
1990     NumCFGBlocks(0),
1991     MaxCFGBlocksPerFunction(0),
1992     NumUninitAnalysisFunctions(0),
1993     NumUninitAnalysisVariables(0),
1994     MaxUninitAnalysisVariablesPerFunction(0),
1995     NumUninitAnalysisBlockVisits(0),
1996     MaxUninitAnalysisBlockVisitsPerFunction(0) {
1997 
1998   using namespace diag;
1999   DiagnosticsEngine &D = S.getDiagnostics();
2000 
2001   DefaultPolicy.enableCheckUnreachable =
2002     isEnabled(D, warn_unreachable) ||
2003     isEnabled(D, warn_unreachable_break) ||
2004     isEnabled(D, warn_unreachable_return) ||
2005     isEnabled(D, warn_unreachable_loop_increment);
2006 
2007   DefaultPolicy.enableThreadSafetyAnalysis =
2008     isEnabled(D, warn_double_lock);
2009 
2010   DefaultPolicy.enableConsumedAnalysis =
2011     isEnabled(D, warn_use_in_invalid_state);
2012 }
2013 
2014 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
2015   for (const auto &D : fscope->PossiblyUnreachableDiags)
2016     S.Diag(D.Loc, D.PD);
2017 }
2018 
2019 void clang::sema::
2020 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
2021                                      sema::FunctionScopeInfo *fscope,
2022                                      const Decl *D, QualType BlockType) {
2023 
2024   // We avoid doing analysis-based warnings when there are errors for
2025   // two reasons:
2026   // (1) The CFGs often can't be constructed (if the body is invalid), so
2027   //     don't bother trying.
2028   // (2) The code already has problems; running the analysis just takes more
2029   //     time.
2030   DiagnosticsEngine &Diags = S.getDiagnostics();
2031 
2032   // Do not do any analysis if we are going to just ignore them.
2033   if (Diags.getIgnoreAllWarnings() ||
2034       (Diags.getSuppressSystemWarnings() &&
2035        S.SourceMgr.isInSystemHeader(D->getLocation())))
2036     return;
2037 
2038   // For code in dependent contexts, we'll do this at instantiation time.
2039   if (cast<DeclContext>(D)->isDependentContext())
2040     return;
2041 
2042   if (Diags.hasUncompilableErrorOccurred()) {
2043     // Flush out any possibly unreachable diagnostics.
2044     flushDiagnostics(S, fscope);
2045     return;
2046   }
2047 
2048   const Stmt *Body = D->getBody();
2049   assert(Body);
2050 
2051   // Construct the analysis context with the specified CFG build options.
2052   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
2053 
2054   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
2055   // explosion for destructors that can result and the compile time hit.
2056   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
2057   AC.getCFGBuildOptions().AddEHEdges = false;
2058   AC.getCFGBuildOptions().AddInitializers = true;
2059   AC.getCFGBuildOptions().AddImplicitDtors = true;
2060   AC.getCFGBuildOptions().AddTemporaryDtors = true;
2061   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
2062   AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
2063 
2064   // Force that certain expressions appear as CFGElements in the CFG.  This
2065   // is used to speed up various analyses.
2066   // FIXME: This isn't the right factoring.  This is here for initial
2067   // prototyping, but we need a way for analyses to say what expressions they
2068   // expect to always be CFGElements and then fill in the BuildOptions
2069   // appropriately.  This is essentially a layering violation.
2070   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
2071       P.enableConsumedAnalysis) {
2072     // Unreachable code analysis and thread safety require a linearized CFG.
2073     AC.getCFGBuildOptions().setAllAlwaysAdd();
2074   }
2075   else {
2076     AC.getCFGBuildOptions()
2077       .setAlwaysAdd(Stmt::BinaryOperatorClass)
2078       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
2079       .setAlwaysAdd(Stmt::BlockExprClass)
2080       .setAlwaysAdd(Stmt::CStyleCastExprClass)
2081       .setAlwaysAdd(Stmt::DeclRefExprClass)
2082       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
2083       .setAlwaysAdd(Stmt::UnaryOperatorClass)
2084       .setAlwaysAdd(Stmt::AttributedStmtClass);
2085   }
2086 
2087   // Install the logical handler.
2088   llvm::Optional<LogicalErrorHandler> LEH;
2089   if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
2090     LEH.emplace(S);
2091     AC.getCFGBuildOptions().Observer = &*LEH;
2092   }
2093 
2094   // Emit delayed diagnostics.
2095   if (!fscope->PossiblyUnreachableDiags.empty()) {
2096     bool analyzed = false;
2097 
2098     // Register the expressions with the CFGBuilder.
2099     for (const auto &D : fscope->PossiblyUnreachableDiags) {
2100       for (const Stmt *S : D.Stmts)
2101         AC.registerForcedBlockExpression(S);
2102     }
2103 
2104     if (AC.getCFG()) {
2105       analyzed = true;
2106       for (const auto &D : fscope->PossiblyUnreachableDiags) {
2107         bool AllReachable = true;
2108         for (const Stmt *S : D.Stmts) {
2109           const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
2110           CFGReverseBlockReachabilityAnalysis *cra =
2111               AC.getCFGReachablityAnalysis();
2112           // FIXME: We should be able to assert that block is non-null, but
2113           // the CFG analysis can skip potentially-evaluated expressions in
2114           // edge cases; see test/Sema/vla-2.c.
2115           if (block && cra) {
2116             // Can this block be reached from the entrance?
2117             if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
2118               AllReachable = false;
2119               break;
2120             }
2121           }
2122           // If we cannot map to a basic block, assume the statement is
2123           // reachable.
2124         }
2125 
2126         if (AllReachable)
2127           S.Diag(D.Loc, D.PD);
2128       }
2129     }
2130 
2131     if (!analyzed)
2132       flushDiagnostics(S, fscope);
2133   }
2134 
2135   // Warning: check missing 'return'
2136   if (P.enableCheckFallThrough) {
2137     const CheckFallThroughDiagnostics &CD =
2138         (isa<BlockDecl>(D)
2139              ? CheckFallThroughDiagnostics::MakeForBlock()
2140              : (isa<CXXMethodDecl>(D) &&
2141                 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
2142                 cast<CXXMethodDecl>(D)->getParent()->isLambda())
2143                    ? CheckFallThroughDiagnostics::MakeForLambda()
2144                    : (fscope->isCoroutine()
2145                           ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
2146                           : CheckFallThroughDiagnostics::MakeForFunction(D)));
2147     CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope);
2148   }
2149 
2150   // Warning: check for unreachable code
2151   if (P.enableCheckUnreachable) {
2152     // Only check for unreachable code on non-template instantiations.
2153     // Different template instantiations can effectively change the control-flow
2154     // and it is very difficult to prove that a snippet of code in a template
2155     // is unreachable for all instantiations.
2156     bool isTemplateInstantiation = false;
2157     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2158       isTemplateInstantiation = Function->isTemplateInstantiation();
2159     if (!isTemplateInstantiation)
2160       CheckUnreachable(S, AC);
2161   }
2162 
2163   // Check for thread safety violations
2164   if (P.enableThreadSafetyAnalysis) {
2165     SourceLocation FL = AC.getDecl()->getLocation();
2166     SourceLocation FEL = AC.getDecl()->getEndLoc();
2167     threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
2168     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
2169       Reporter.setIssueBetaWarnings(true);
2170     if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
2171       Reporter.setVerbose(true);
2172 
2173     threadSafety::runThreadSafetyAnalysis(AC, Reporter,
2174                                           &S.ThreadSafetyDeclCache);
2175     Reporter.emitDiagnostics();
2176   }
2177 
2178   // Check for violations of consumed properties.
2179   if (P.enableConsumedAnalysis) {
2180     consumed::ConsumedWarningsHandler WarningHandler(S);
2181     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2182     Analyzer.run(AC);
2183   }
2184 
2185   if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
2186       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
2187       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc())) {
2188     if (CFG *cfg = AC.getCFG()) {
2189       UninitValsDiagReporter reporter(S);
2190       UninitVariablesAnalysisStats stats;
2191       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2192       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2193                                         reporter, stats);
2194 
2195       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2196         ++NumUninitAnalysisFunctions;
2197         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2198         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2199         MaxUninitAnalysisVariablesPerFunction =
2200             std::max(MaxUninitAnalysisVariablesPerFunction,
2201                      stats.NumVariablesAnalyzed);
2202         MaxUninitAnalysisBlockVisitsPerFunction =
2203             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2204                      stats.NumBlockVisits);
2205       }
2206     }
2207   }
2208 
2209   bool FallThroughDiagFull =
2210       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
2211   bool FallThroughDiagPerFunction = !Diags.isIgnored(
2212       diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
2213   if (FallThroughDiagFull || FallThroughDiagPerFunction ||
2214       fscope->HasFallthroughStmt) {
2215     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2216   }
2217 
2218   if (S.getLangOpts().ObjCWeak &&
2219       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
2220     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2221 
2222 
2223   // Check for infinite self-recursion in functions
2224   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2225                        D->getBeginLoc())) {
2226     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2227       checkRecursiveFunction(S, FD, Body, AC);
2228     }
2229   }
2230 
2231   // Check for throw out of non-throwing function.
2232   if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
2233     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2234       if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
2235         checkThrowInNonThrowingFunc(S, FD, AC);
2236 
2237   // If none of the previous checks caused a CFG build, trigger one here
2238   // for the logical error handler.
2239   if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
2240     AC.getCFG();
2241   }
2242 
2243   // Collect statistics about the CFG if it was built.
2244   if (S.CollectStats && AC.isCFGBuilt()) {
2245     ++NumFunctionsAnalyzed;
2246     if (CFG *cfg = AC.getCFG()) {
2247       // If we successfully built a CFG for this context, record some more
2248       // detail information about it.
2249       NumCFGBlocks += cfg->getNumBlockIDs();
2250       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2251                                          cfg->getNumBlockIDs());
2252     } else {
2253       ++NumFunctionsWithBadCFGs;
2254     }
2255   }
2256 }
2257 
2258 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2259   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2260 
2261   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2262   unsigned AvgCFGBlocksPerFunction =
2263       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2264   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2265                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2266                << "  " << NumCFGBlocks << " CFG blocks built.\n"
2267                << "  " << AvgCFGBlocksPerFunction
2268                << " average CFG blocks per function.\n"
2269                << "  " << MaxCFGBlocksPerFunction
2270                << " max CFG blocks per function.\n";
2271 
2272   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2273       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2274   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2275       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2276   llvm::errs() << NumUninitAnalysisFunctions
2277                << " functions analyzed for uninitialiazed variables\n"
2278                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
2279                << "  " << AvgUninitVariablesPerFunction
2280                << " average variables per function.\n"
2281                << "  " << MaxUninitAnalysisVariablesPerFunction
2282                << " max variables per function.\n"
2283                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
2284                << "  " << AvgUninitBlockVisitsPerFunction
2285                << " average block visits per function.\n"
2286                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
2287                << " max block visits per function.\n";
2288 }
2289