1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for CUDA constructs.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Sema.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include <optional>
27 using namespace clang;
28 
29 template <typename AttrT> static bool hasExplicitAttr(const VarDecl *D) {
30   if (!D)
31     return false;
32   if (auto *A = D->getAttr<AttrT>())
33     return !A->isImplicit();
34   return false;
35 }
36 
37 void Sema::PushForceCUDAHostDevice() {
38   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
39   ForceCUDAHostDeviceDepth++;
40 }
41 
42 bool Sema::PopForceCUDAHostDevice() {
43   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
44   if (ForceCUDAHostDeviceDepth == 0)
45     return false;
46   ForceCUDAHostDeviceDepth--;
47   return true;
48 }
49 
50 ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
51                                          MultiExprArg ExecConfig,
52                                          SourceLocation GGGLoc) {
53   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
54   if (!ConfigDecl)
55     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
56                      << getCudaConfigureFuncName());
57   QualType ConfigQTy = ConfigDecl->getType();
58 
59   DeclRefExpr *ConfigDR = new (Context)
60       DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
61   MarkFunctionReferenced(LLLLoc, ConfigDecl);
62 
63   return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
64                        /*IsExecConfig=*/true);
65 }
66 
67 Sema::CUDAFunctionTarget
68 Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
69   bool HasHostAttr = false;
70   bool HasDeviceAttr = false;
71   bool HasGlobalAttr = false;
72   bool HasInvalidTargetAttr = false;
73   for (const ParsedAttr &AL : Attrs) {
74     switch (AL.getKind()) {
75     case ParsedAttr::AT_CUDAGlobal:
76       HasGlobalAttr = true;
77       break;
78     case ParsedAttr::AT_CUDAHost:
79       HasHostAttr = true;
80       break;
81     case ParsedAttr::AT_CUDADevice:
82       HasDeviceAttr = true;
83       break;
84     case ParsedAttr::AT_CUDAInvalidTarget:
85       HasInvalidTargetAttr = true;
86       break;
87     default:
88       break;
89     }
90   }
91 
92   if (HasInvalidTargetAttr)
93     return CFT_InvalidTarget;
94 
95   if (HasGlobalAttr)
96     return CFT_Global;
97 
98   if (HasHostAttr && HasDeviceAttr)
99     return CFT_HostDevice;
100 
101   if (HasDeviceAttr)
102     return CFT_Device;
103 
104   return CFT_Host;
105 }
106 
107 template <typename A>
108 static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109   return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110            return isa<A>(Attribute) &&
111                   !(IgnoreImplicitAttr && Attribute->isImplicit());
112          });
113 }
114 
115 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
116 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
117                                                   bool IgnoreImplicitHDAttr) {
118   // Code that lives outside a function is run on the host.
119   if (D == nullptr)
120     return CFT_Host;
121 
122   if (D->hasAttr<CUDAInvalidTargetAttr>())
123     return CFT_InvalidTarget;
124 
125   if (D->hasAttr<CUDAGlobalAttr>())
126     return CFT_Global;
127 
128   if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
129     if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
130       return CFT_HostDevice;
131     return CFT_Device;
132   } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
133     return CFT_Host;
134   } else if ((D->isImplicit() || !D->isUserProvided()) &&
135              !IgnoreImplicitHDAttr) {
136     // Some implicit declarations (like intrinsic functions) are not marked.
137     // Set the most lenient target on them for maximal flexibility.
138     return CFT_HostDevice;
139   }
140 
141   return CFT_Host;
142 }
143 
144 /// IdentifyTarget - Determine the CUDA compilation target for this variable.
145 Sema::CUDAVariableTarget Sema::IdentifyCUDATarget(const VarDecl *Var) {
146   if (Var->hasAttr<HIPManagedAttr>())
147     return CVT_Unified;
148   // Only constexpr and const variabless with implicit constant attribute
149   // are emitted on both sides. Such variables are promoted to device side
150   // only if they have static constant intializers on device side.
151   if ((Var->isConstexpr() || Var->getType().isConstQualified()) &&
152       Var->hasAttr<CUDAConstantAttr>() &&
153       !hasExplicitAttr<CUDAConstantAttr>(Var))
154     return CVT_Both;
155   if (Var->hasAttr<CUDADeviceAttr>() || Var->hasAttr<CUDAConstantAttr>() ||
156       Var->hasAttr<CUDASharedAttr>() ||
157       Var->getType()->isCUDADeviceBuiltinSurfaceType() ||
158       Var->getType()->isCUDADeviceBuiltinTextureType())
159     return CVT_Device;
160   // Function-scope static variable without explicit device or constant
161   // attribute are emitted
162   //  - on both sides in host device functions
163   //  - on device side in device or global functions
164   if (auto *FD = dyn_cast<FunctionDecl>(Var->getDeclContext())) {
165     switch (IdentifyCUDATarget(FD)) {
166     case CFT_HostDevice:
167       return CVT_Both;
168     case CFT_Device:
169     case CFT_Global:
170       return CVT_Device;
171     default:
172       return CVT_Host;
173     }
174   }
175   return CVT_Host;
176 }
177 
178 // * CUDA Call preference table
179 //
180 // F - from,
181 // T - to
182 // Ph - preference in host mode
183 // Pd - preference in device mode
184 // H  - handled in (x)
185 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
186 //
187 // | F  | T  | Ph  | Pd  |  H  |
188 // |----+----+-----+-----+-----+
189 // | d  | d  | N   | N   | (c) |
190 // | d  | g  | --  | --  | (a) |
191 // | d  | h  | --  | --  | (e) |
192 // | d  | hd | HD  | HD  | (b) |
193 // | g  | d  | N   | N   | (c) |
194 // | g  | g  | --  | --  | (a) |
195 // | g  | h  | --  | --  | (e) |
196 // | g  | hd | HD  | HD  | (b) |
197 // | h  | d  | --  | --  | (e) |
198 // | h  | g  | N   | N   | (c) |
199 // | h  | h  | N   | N   | (c) |
200 // | h  | hd | HD  | HD  | (b) |
201 // | hd | d  | WS  | SS  | (d) |
202 // | hd | g  | SS  | --  |(d/a)|
203 // | hd | h  | SS  | WS  | (d) |
204 // | hd | hd | HD  | HD  | (b) |
205 
206 Sema::CUDAFunctionPreference
207 Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
208                              const FunctionDecl *Callee) {
209   assert(Callee && "Callee must be valid.");
210   CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
211   CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
212 
213   // If one of the targets is invalid, the check always fails, no matter what
214   // the other target is.
215   if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
216     return CFP_Never;
217 
218   // (a) Can't call global from some contexts until we support CUDA's
219   // dynamic parallelism.
220   if (CalleeTarget == CFT_Global &&
221       (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
222     return CFP_Never;
223 
224   // (b) Calling HostDevice is OK for everyone.
225   if (CalleeTarget == CFT_HostDevice)
226     return CFP_HostDevice;
227 
228   // (c) Best case scenarios
229   if (CalleeTarget == CallerTarget ||
230       (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
231       (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
232     return CFP_Native;
233 
234   // (d) HostDevice behavior depends on compilation mode.
235   if (CallerTarget == CFT_HostDevice) {
236     // It's OK to call a compilation-mode matching function from an HD one.
237     if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
238         (!getLangOpts().CUDAIsDevice &&
239          (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
240       return CFP_SameSide;
241 
242     // Calls from HD to non-mode-matching functions (i.e., to host functions
243     // when compiling in device mode or to device functions when compiling in
244     // host mode) are allowed at the sema level, but eventually rejected if
245     // they're ever codegened.  TODO: Reject said calls earlier.
246     return CFP_WrongSide;
247   }
248 
249   // (e) Calling across device/host boundary is not something you should do.
250   if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
251       (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
252       (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
253     return CFP_Never;
254 
255   llvm_unreachable("All cases should've been handled by now.");
256 }
257 
258 template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
259   if (!D)
260     return false;
261   if (auto *A = D->getAttr<AttrT>())
262     return A->isImplicit();
263   return D->isImplicit();
264 }
265 
266 bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) {
267   bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
268   bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
269   return IsImplicitDevAttr && IsImplicitHostAttr;
270 }
271 
272 void Sema::EraseUnwantedCUDAMatches(
273     const FunctionDecl *Caller,
274     SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
275   if (Matches.size() <= 1)
276     return;
277 
278   using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
279 
280   // Gets the CUDA function preference for a call from Caller to Match.
281   auto GetCFP = [&](const Pair &Match) {
282     return IdentifyCUDAPreference(Caller, Match.second);
283   };
284 
285   // Find the best call preference among the functions in Matches.
286   CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
287       Matches.begin(), Matches.end(),
288       [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
289 
290   // Erase all functions with lower priority.
291   llvm::erase_if(Matches,
292                  [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
293 }
294 
295 /// When an implicitly-declared special member has to invoke more than one
296 /// base/field special member, conflicts may occur in the targets of these
297 /// members. For example, if one base's member __host__ and another's is
298 /// __device__, it's a conflict.
299 /// This function figures out if the given targets \param Target1 and
300 /// \param Target2 conflict, and if they do not it fills in
301 /// \param ResolvedTarget with a target that resolves for both calls.
302 /// \return true if there's a conflict, false otherwise.
303 static bool
304 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
305                                 Sema::CUDAFunctionTarget Target2,
306                                 Sema::CUDAFunctionTarget *ResolvedTarget) {
307   // Only free functions and static member functions may be global.
308   assert(Target1 != Sema::CFT_Global);
309   assert(Target2 != Sema::CFT_Global);
310 
311   if (Target1 == Sema::CFT_HostDevice) {
312     *ResolvedTarget = Target2;
313   } else if (Target2 == Sema::CFT_HostDevice) {
314     *ResolvedTarget = Target1;
315   } else if (Target1 != Target2) {
316     return true;
317   } else {
318     *ResolvedTarget = Target1;
319   }
320 
321   return false;
322 }
323 
324 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
325                                                    CXXSpecialMember CSM,
326                                                    CXXMethodDecl *MemberDecl,
327                                                    bool ConstRHS,
328                                                    bool Diagnose) {
329   // If the defaulted special member is defined lexically outside of its
330   // owning class, or the special member already has explicit device or host
331   // attributes, do not infer.
332   bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
333   bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
334   bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
335   bool HasExplicitAttr =
336       (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
337       (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
338   if (!InClass || HasExplicitAttr)
339     return false;
340 
341   std::optional<CUDAFunctionTarget> InferredTarget;
342 
343   // We're going to invoke special member lookup; mark that these special
344   // members are called from this one, and not from its caller.
345   ContextRAII MethodContext(*this, MemberDecl);
346 
347   // Look for special members in base classes that should be invoked from here.
348   // Infer the target of this member base on the ones it should call.
349   // Skip direct and indirect virtual bases for abstract classes.
350   llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
351   for (const auto &B : ClassDecl->bases()) {
352     if (!B.isVirtual()) {
353       Bases.push_back(&B);
354     }
355   }
356 
357   if (!ClassDecl->isAbstract()) {
358     llvm::append_range(Bases, llvm::make_pointer_range(ClassDecl->vbases()));
359   }
360 
361   for (const auto *B : Bases) {
362     const RecordType *BaseType = B->getType()->getAs<RecordType>();
363     if (!BaseType) {
364       continue;
365     }
366 
367     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
368     Sema::SpecialMemberOverloadResult SMOR =
369         LookupSpecialMember(BaseClassDecl, CSM,
370                             /* ConstArg */ ConstRHS,
371                             /* VolatileArg */ false,
372                             /* RValueThis */ false,
373                             /* ConstThis */ false,
374                             /* VolatileThis */ false);
375 
376     if (!SMOR.getMethod())
377       continue;
378 
379     CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
380     if (!InferredTarget) {
381       InferredTarget = BaseMethodTarget;
382     } else {
383       bool ResolutionError = resolveCalleeCUDATargetConflict(
384           *InferredTarget, BaseMethodTarget, &*InferredTarget);
385       if (ResolutionError) {
386         if (Diagnose) {
387           Diag(ClassDecl->getLocation(),
388                diag::note_implicit_member_target_infer_collision)
389               << (unsigned)CSM << *InferredTarget << BaseMethodTarget;
390         }
391         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
392         return true;
393       }
394     }
395   }
396 
397   // Same as for bases, but now for special members of fields.
398   for (const auto *F : ClassDecl->fields()) {
399     if (F->isInvalidDecl()) {
400       continue;
401     }
402 
403     const RecordType *FieldType =
404         Context.getBaseElementType(F->getType())->getAs<RecordType>();
405     if (!FieldType) {
406       continue;
407     }
408 
409     CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
410     Sema::SpecialMemberOverloadResult SMOR =
411         LookupSpecialMember(FieldRecDecl, CSM,
412                             /* ConstArg */ ConstRHS && !F->isMutable(),
413                             /* VolatileArg */ false,
414                             /* RValueThis */ false,
415                             /* ConstThis */ false,
416                             /* VolatileThis */ false);
417 
418     if (!SMOR.getMethod())
419       continue;
420 
421     CUDAFunctionTarget FieldMethodTarget =
422         IdentifyCUDATarget(SMOR.getMethod());
423     if (!InferredTarget) {
424       InferredTarget = FieldMethodTarget;
425     } else {
426       bool ResolutionError = resolveCalleeCUDATargetConflict(
427           *InferredTarget, FieldMethodTarget, &*InferredTarget);
428       if (ResolutionError) {
429         if (Diagnose) {
430           Diag(ClassDecl->getLocation(),
431                diag::note_implicit_member_target_infer_collision)
432               << (unsigned)CSM << *InferredTarget << FieldMethodTarget;
433         }
434         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
435         return true;
436       }
437     }
438   }
439 
440 
441   // If no target was inferred, mark this member as __host__ __device__;
442   // it's the least restrictive option that can be invoked from any target.
443   bool NeedsH = true, NeedsD = true;
444   if (InferredTarget) {
445     if (*InferredTarget == CFT_Device)
446       NeedsH = false;
447     else if (*InferredTarget == CFT_Host)
448       NeedsD = false;
449   }
450 
451   // We either setting attributes first time, or the inferred ones must match
452   // previously set ones.
453   if (NeedsD && !HasD)
454     MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
455   if (NeedsH && !HasH)
456     MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
457 
458   return false;
459 }
460 
461 bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
462   if (!CD->isDefined() && CD->isTemplateInstantiation())
463     InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
464 
465   // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
466   // empty at a point in the translation unit, if it is either a
467   // trivial constructor
468   if (CD->isTrivial())
469     return true;
470 
471   // ... or it satisfies all of the following conditions:
472   // The constructor function has been defined.
473   // The constructor function has no parameters,
474   // and the function body is an empty compound statement.
475   if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
476     return false;
477 
478   // Its class has no virtual functions and no virtual base classes.
479   if (CD->getParent()->isDynamicClass())
480     return false;
481 
482   // Union ctor does not call ctors of its data members.
483   if (CD->getParent()->isUnion())
484     return true;
485 
486   // The only form of initializer allowed is an empty constructor.
487   // This will recursively check all base classes and member initializers
488   if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
489         if (const CXXConstructExpr *CE =
490                 dyn_cast<CXXConstructExpr>(CI->getInit()))
491           return isEmptyCudaConstructor(Loc, CE->getConstructor());
492         return false;
493       }))
494     return false;
495 
496   return true;
497 }
498 
499 bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
500   // No destructor -> no problem.
501   if (!DD)
502     return true;
503 
504   if (!DD->isDefined() && DD->isTemplateInstantiation())
505     InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
506 
507   // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
508   // empty at a point in the translation unit, if it is either a
509   // trivial constructor
510   if (DD->isTrivial())
511     return true;
512 
513   // ... or it satisfies all of the following conditions:
514   // The destructor function has been defined.
515   // and the function body is an empty compound statement.
516   if (!DD->hasTrivialBody())
517     return false;
518 
519   const CXXRecordDecl *ClassDecl = DD->getParent();
520 
521   // Its class has no virtual functions and no virtual base classes.
522   if (ClassDecl->isDynamicClass())
523     return false;
524 
525   // Union does not have base class and union dtor does not call dtors of its
526   // data members.
527   if (DD->getParent()->isUnion())
528     return true;
529 
530   // Only empty destructors are allowed. This will recursively check
531   // destructors for all base classes...
532   if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
533         if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
534           return isEmptyCudaDestructor(Loc, RD->getDestructor());
535         return true;
536       }))
537     return false;
538 
539   // ... and member fields.
540   if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
541         if (CXXRecordDecl *RD = Field->getType()
542                                     ->getBaseElementTypeUnsafe()
543                                     ->getAsCXXRecordDecl())
544           return isEmptyCudaDestructor(Loc, RD->getDestructor());
545         return true;
546       }))
547     return false;
548 
549   return true;
550 }
551 
552 namespace {
553 enum CUDAInitializerCheckKind {
554   CICK_DeviceOrConstant, // Check initializer for device/constant variable
555   CICK_Shared,           // Check initializer for shared variable
556 };
557 
558 bool IsDependentVar(VarDecl *VD) {
559   if (VD->getType()->isDependentType())
560     return true;
561   if (const auto *Init = VD->getInit())
562     return Init->isValueDependent();
563   return false;
564 }
565 
566 // Check whether a variable has an allowed initializer for a CUDA device side
567 // variable with global storage. \p VD may be a host variable to be checked for
568 // potential promotion to device side variable.
569 //
570 // CUDA/HIP allows only empty constructors as initializers for global
571 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
572 // __shared__ variables whether they are local or not (they all are implicitly
573 // static in CUDA). One exception is that CUDA allows constant initializers
574 // for __constant__ and __device__ variables.
575 bool HasAllowedCUDADeviceStaticInitializer(Sema &S, VarDecl *VD,
576                                            CUDAInitializerCheckKind CheckKind) {
577   assert(!VD->isInvalidDecl() && VD->hasGlobalStorage());
578   assert(!IsDependentVar(VD) && "do not check dependent var");
579   const Expr *Init = VD->getInit();
580   auto IsEmptyInit = [&](const Expr *Init) {
581     if (!Init)
582       return true;
583     if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) {
584       return S.isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
585     }
586     return false;
587   };
588   auto IsConstantInit = [&](const Expr *Init) {
589     assert(Init);
590     ASTContext::CUDAConstantEvalContextRAII EvalCtx(S.Context,
591                                                     /*NoWronSidedVars=*/true);
592     return Init->isConstantInitializer(S.Context,
593                                        VD->getType()->isReferenceType());
594   };
595   auto HasEmptyDtor = [&](VarDecl *VD) {
596     if (const auto *RD = VD->getType()->getAsCXXRecordDecl())
597       return S.isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
598     return true;
599   };
600   if (CheckKind == CICK_Shared)
601     return IsEmptyInit(Init) && HasEmptyDtor(VD);
602   return S.LangOpts.GPUAllowDeviceInit ||
603          ((IsEmptyInit(Init) || IsConstantInit(Init)) && HasEmptyDtor(VD));
604 }
605 } // namespace
606 
607 void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
608   // Do not check dependent variables since the ctor/dtor/initializer are not
609   // determined. Do it after instantiation.
610   if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage() ||
611       IsDependentVar(VD))
612     return;
613   const Expr *Init = VD->getInit();
614   bool IsSharedVar = VD->hasAttr<CUDASharedAttr>();
615   bool IsDeviceOrConstantVar =
616       !IsSharedVar &&
617       (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>());
618   if (IsDeviceOrConstantVar || IsSharedVar) {
619     if (HasAllowedCUDADeviceStaticInitializer(
620             *this, VD, IsSharedVar ? CICK_Shared : CICK_DeviceOrConstant))
621       return;
622     Diag(VD->getLocation(),
623          IsSharedVar ? diag::err_shared_var_init : diag::err_dynamic_var_init)
624         << Init->getSourceRange();
625     VD->setInvalidDecl();
626   } else {
627     // This is a host-side global variable.  Check that the initializer is
628     // callable from the host side.
629     const FunctionDecl *InitFn = nullptr;
630     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
631       InitFn = CE->getConstructor();
632     } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
633       InitFn = CE->getDirectCallee();
634     }
635     if (InitFn) {
636       CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
637       if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
638         Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
639             << InitFnTarget << InitFn;
640         Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
641         VD->setInvalidDecl();
642       }
643     }
644   }
645 }
646 
647 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
648 // treated as implicitly __host__ __device__, unless:
649 //  * it is a variadic function (device-side variadic functions are not
650 //    allowed), or
651 //  * a __device__ function with this signature was already declared, in which
652 //    case in which case we output an error, unless the __device__ decl is in a
653 //    system header, in which case we leave the constexpr function unattributed.
654 //
655 // In addition, all function decls are treated as __host__ __device__ when
656 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
657 //   #pragma clang force_cuda_host_device_begin/end
658 // pair).
659 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
660                                        const LookupResult &Previous) {
661   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
662 
663   if (ForceCUDAHostDeviceDepth > 0) {
664     if (!NewD->hasAttr<CUDAHostAttr>())
665       NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
666     if (!NewD->hasAttr<CUDADeviceAttr>())
667       NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
668     return;
669   }
670 
671   if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
672       NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
673       NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
674     return;
675 
676   // Is D a __device__ function with the same signature as NewD, ignoring CUDA
677   // attributes?
678   auto IsMatchingDeviceFn = [&](NamedDecl *D) {
679     if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
680       D = Using->getTargetDecl();
681     FunctionDecl *OldD = D->getAsFunction();
682     return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
683            !OldD->hasAttr<CUDAHostAttr>() &&
684            !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
685                        /* ConsiderCudaAttrs = */ false);
686   };
687   auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
688   if (It != Previous.end()) {
689     // We found a __device__ function with the same name and signature as NewD
690     // (ignoring CUDA attrs).  This is an error unless that function is defined
691     // in a system header, in which case we simply return without making NewD
692     // host+device.
693     NamedDecl *Match = *It;
694     if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
695       Diag(NewD->getLocation(),
696            diag::err_cuda_unattributed_constexpr_cannot_overload_device)
697           << NewD;
698       Diag(Match->getLocation(),
699            diag::note_cuda_conflicting_device_function_declared_here);
700     }
701     return;
702   }
703 
704   NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
705   NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
706 }
707 
708 // TODO: `__constant__` memory may be a limited resource for certain targets.
709 // A safeguard may be needed at the end of compilation pipeline if
710 // `__constant__` memory usage goes beyond limit.
711 void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) {
712   // Do not promote dependent variables since the cotr/dtor/initializer are
713   // not determined. Do it after instantiation.
714   if (getLangOpts().CUDAIsDevice && !VD->hasAttr<CUDAConstantAttr>() &&
715       !VD->hasAttr<CUDASharedAttr>() &&
716       (VD->isFileVarDecl() || VD->isStaticDataMember()) &&
717       !IsDependentVar(VD) &&
718       ((VD->isConstexpr() || VD->getType().isConstQualified()) &&
719        HasAllowedCUDADeviceStaticInitializer(*this, VD,
720                                              CICK_DeviceOrConstant))) {
721     VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
722   }
723 }
724 
725 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
726                                                        unsigned DiagID) {
727   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
728   FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
729   SemaDiagnosticBuilder::Kind DiagKind = [&] {
730     if (!CurFunContext)
731       return SemaDiagnosticBuilder::K_Nop;
732     switch (CurrentCUDATarget()) {
733     case CFT_Global:
734     case CFT_Device:
735       return SemaDiagnosticBuilder::K_Immediate;
736     case CFT_HostDevice:
737       // An HD function counts as host code if we're compiling for host, and
738       // device code if we're compiling for device.  Defer any errors in device
739       // mode until the function is known-emitted.
740       if (!getLangOpts().CUDAIsDevice)
741         return SemaDiagnosticBuilder::K_Nop;
742       if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
743         return SemaDiagnosticBuilder::K_Immediate;
744       return (getEmissionStatus(CurFunContext) ==
745               FunctionEmissionStatus::Emitted)
746                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
747                  : SemaDiagnosticBuilder::K_Deferred;
748     default:
749       return SemaDiagnosticBuilder::K_Nop;
750     }
751   }();
752   return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
753 }
754 
755 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
756                                                      unsigned DiagID) {
757   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
758   FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
759   SemaDiagnosticBuilder::Kind DiagKind = [&] {
760     if (!CurFunContext)
761       return SemaDiagnosticBuilder::K_Nop;
762     switch (CurrentCUDATarget()) {
763     case CFT_Host:
764       return SemaDiagnosticBuilder::K_Immediate;
765     case CFT_HostDevice:
766       // An HD function counts as host code if we're compiling for host, and
767       // device code if we're compiling for device.  Defer any errors in device
768       // mode until the function is known-emitted.
769       if (getLangOpts().CUDAIsDevice)
770         return SemaDiagnosticBuilder::K_Nop;
771       if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
772         return SemaDiagnosticBuilder::K_Immediate;
773       return (getEmissionStatus(CurFunContext) ==
774               FunctionEmissionStatus::Emitted)
775                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
776                  : SemaDiagnosticBuilder::K_Deferred;
777     default:
778       return SemaDiagnosticBuilder::K_Nop;
779     }
780   }();
781   return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
782 }
783 
784 bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
785   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
786   assert(Callee && "Callee may not be null.");
787 
788   auto &ExprEvalCtx = ExprEvalContexts.back();
789   if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
790     return true;
791 
792   // FIXME: Is bailing out early correct here?  Should we instead assume that
793   // the caller is a global initializer?
794   FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
795   if (!Caller)
796     return true;
797 
798   // If the caller is known-emitted, mark the callee as known-emitted.
799   // Otherwise, mark the call in our call graph so we can traverse it later.
800   bool CallerKnownEmitted =
801       getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
802   SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
803                                           CallerKnownEmitted] {
804     switch (IdentifyCUDAPreference(Caller, Callee)) {
805     case CFP_Never:
806     case CFP_WrongSide:
807       assert(Caller && "Never/wrongSide calls require a non-null caller");
808       // If we know the caller will be emitted, we know this wrong-side call
809       // will be emitted, so it's an immediate error.  Otherwise, defer the
810       // error until we know the caller is emitted.
811       return CallerKnownEmitted
812                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
813                  : SemaDiagnosticBuilder::K_Deferred;
814     default:
815       return SemaDiagnosticBuilder::K_Nop;
816     }
817   }();
818 
819   if (DiagKind == SemaDiagnosticBuilder::K_Nop) {
820     // For -fgpu-rdc, keep track of external kernels used by host functions.
821     if (LangOpts.CUDAIsDevice && LangOpts.GPURelocatableDeviceCode &&
822         Callee->hasAttr<CUDAGlobalAttr>() && !Callee->isDefined())
823       getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Callee);
824     return true;
825   }
826 
827   // Avoid emitting this error twice for the same location.  Using a hashtable
828   // like this is unfortunate, but because we must continue parsing as normal
829   // after encountering a deferred error, it's otherwise very tricky for us to
830   // ensure that we only emit this deferred error once.
831   if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
832     return true;
833 
834   SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
835       << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee
836       << IdentifyCUDATarget(Caller);
837   if (!Callee->getBuiltinID())
838     SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
839                           diag::note_previous_decl, Caller, *this)
840         << Callee;
841   return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
842          DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
843 }
844 
845 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
846 // A lambda function may capture a stack variable by reference when it is
847 // defined and uses the capture by reference when the lambda is called. When
848 // the capture and use happen on different sides, the capture is invalid and
849 // should be diagnosed.
850 void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee,
851                                   const sema::Capture &Capture) {
852   // In host compilation we only need to check lambda functions emitted on host
853   // side. In such lambda functions, a reference capture is invalid only
854   // if the lambda structure is populated by a device function or kernel then
855   // is passed to and called by a host function. However that is impossible,
856   // since a device function or kernel can only call a device function, also a
857   // kernel cannot pass a lambda back to a host function since we cannot
858   // define a kernel argument type which can hold the lambda before the lambda
859   // itself is defined.
860   if (!LangOpts.CUDAIsDevice)
861     return;
862 
863   // File-scope lambda can only do init captures for global variables, which
864   // results in passing by value for these global variables.
865   FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
866   if (!Caller)
867     return;
868 
869   // In device compilation, we only need to check lambda functions which are
870   // emitted on device side. For such lambdas, a reference capture is invalid
871   // only if the lambda structure is populated by a host function then passed
872   // to and called in a device function or kernel.
873   bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
874   bool CallerIsHost =
875       !Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
876   bool ShouldCheck = CalleeIsDevice && CallerIsHost;
877   if (!ShouldCheck || !Capture.isReferenceCapture())
878     return;
879   auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
880   if (Capture.isVariableCapture()) {
881     SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
882                           diag::err_capture_bad_target, Callee, *this)
883         << Capture.getVariable();
884   } else if (Capture.isThisCapture()) {
885     // Capture of this pointer is allowed since this pointer may be pointing to
886     // managed memory which is accessible on both device and host sides. It only
887     // results in invalid memory access if this pointer points to memory not
888     // accessible on device side.
889     SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
890                           diag::warn_maybe_capture_bad_target_this_ptr, Callee,
891                           *this);
892   }
893 }
894 
895 void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
896   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
897   if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
898     return;
899   Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
900   Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
901 }
902 
903 void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
904                                    const LookupResult &Previous) {
905   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
906   CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
907   for (NamedDecl *OldND : Previous) {
908     FunctionDecl *OldFD = OldND->getAsFunction();
909     if (!OldFD)
910       continue;
911 
912     CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
913     // Don't allow HD and global functions to overload other functions with the
914     // same signature.  We allow overloading based on CUDA attributes so that
915     // functions can have different implementations on the host and device, but
916     // HD/global functions "exist" in some sense on both the host and device, so
917     // should have the same implementation on both sides.
918     if (NewTarget != OldTarget &&
919         ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
920          (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
921         !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
922                     /* ConsiderCudaAttrs = */ false)) {
923       Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
924           << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
925       Diag(OldFD->getLocation(), diag::note_previous_declaration);
926       NewFD->setInvalidDecl();
927       break;
928     }
929   }
930 }
931 
932 template <typename AttrTy>
933 static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
934                               const FunctionDecl &TemplateFD) {
935   if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
936     AttrTy *Clone = Attribute->clone(S.Context);
937     Clone->setInherited(true);
938     FD->addAttr(Clone);
939   }
940 }
941 
942 void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
943                                   const FunctionTemplateDecl &TD) {
944   const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
945   copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
946   copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
947   copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
948 }
949 
950 std::string Sema::getCudaConfigureFuncName() const {
951   if (getLangOpts().HIP)
952     return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
953                                             : "hipConfigureCall";
954 
955   // New CUDA kernel launch sequence.
956   if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
957                          CudaFeature::CUDA_USES_NEW_LAUNCH))
958     return "__cudaPushCallConfiguration";
959 
960   // Legacy CUDA kernel configuration call
961   return "cudaConfigureCall";
962 }
963