1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for CUDA constructs.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Lex/Preprocessor.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Sema.h"
20 #include "clang/Sema/SemaDiagnostic.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/Template.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallVector.h"
25 using namespace clang;
26 
27 void Sema::PushForceCUDAHostDevice() {
28   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
29   ForceCUDAHostDeviceDepth++;
30 }
31 
32 bool Sema::PopForceCUDAHostDevice() {
33   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
34   if (ForceCUDAHostDeviceDepth == 0)
35     return false;
36   ForceCUDAHostDeviceDepth--;
37   return true;
38 }
39 
40 ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
41                                          MultiExprArg ExecConfig,
42                                          SourceLocation GGGLoc) {
43   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
44   if (!ConfigDecl)
45     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
46                      << getCudaConfigureFuncName());
47   QualType ConfigQTy = ConfigDecl->getType();
48 
49   DeclRefExpr *ConfigDR = new (Context)
50       DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
51   MarkFunctionReferenced(LLLLoc, ConfigDecl);
52 
53   return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
54                        /*IsExecConfig=*/true);
55 }
56 
57 Sema::CUDAFunctionTarget
58 Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
59   bool HasHostAttr = false;
60   bool HasDeviceAttr = false;
61   bool HasGlobalAttr = false;
62   bool HasInvalidTargetAttr = false;
63   for (const ParsedAttr &AL : Attrs) {
64     switch (AL.getKind()) {
65     case ParsedAttr::AT_CUDAGlobal:
66       HasGlobalAttr = true;
67       break;
68     case ParsedAttr::AT_CUDAHost:
69       HasHostAttr = true;
70       break;
71     case ParsedAttr::AT_CUDADevice:
72       HasDeviceAttr = true;
73       break;
74     case ParsedAttr::AT_CUDAInvalidTarget:
75       HasInvalidTargetAttr = true;
76       break;
77     default:
78       break;
79     }
80   }
81 
82   if (HasInvalidTargetAttr)
83     return CFT_InvalidTarget;
84 
85   if (HasGlobalAttr)
86     return CFT_Global;
87 
88   if (HasHostAttr && HasDeviceAttr)
89     return CFT_HostDevice;
90 
91   if (HasDeviceAttr)
92     return CFT_Device;
93 
94   return CFT_Host;
95 }
96 
97 template <typename A>
98 static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
99   return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
100            return isa<A>(Attribute) &&
101                   !(IgnoreImplicitAttr && Attribute->isImplicit());
102          });
103 }
104 
105 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
106 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
107                                                   bool IgnoreImplicitHDAttr) {
108   // Code that lives outside a function is run on the host.
109   if (D == nullptr)
110     return CFT_Host;
111 
112   if (D->hasAttr<CUDAInvalidTargetAttr>())
113     return CFT_InvalidTarget;
114 
115   if (D->hasAttr<CUDAGlobalAttr>())
116     return CFT_Global;
117 
118   if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
119     if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
120       return CFT_HostDevice;
121     return CFT_Device;
122   } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
123     return CFT_Host;
124   } else if (D->isImplicit() && !IgnoreImplicitHDAttr) {
125     // Some implicit declarations (like intrinsic functions) are not marked.
126     // Set the most lenient target on them for maximal flexibility.
127     return CFT_HostDevice;
128   }
129 
130   return CFT_Host;
131 }
132 
133 // * CUDA Call preference table
134 //
135 // F - from,
136 // T - to
137 // Ph - preference in host mode
138 // Pd - preference in device mode
139 // H  - handled in (x)
140 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
141 //
142 // | F  | T  | Ph  | Pd  |  H  |
143 // |----+----+-----+-----+-----+
144 // | d  | d  | N   | N   | (c) |
145 // | d  | g  | --  | --  | (a) |
146 // | d  | h  | --  | --  | (e) |
147 // | d  | hd | HD  | HD  | (b) |
148 // | g  | d  | N   | N   | (c) |
149 // | g  | g  | --  | --  | (a) |
150 // | g  | h  | --  | --  | (e) |
151 // | g  | hd | HD  | HD  | (b) |
152 // | h  | d  | --  | --  | (e) |
153 // | h  | g  | N   | N   | (c) |
154 // | h  | h  | N   | N   | (c) |
155 // | h  | hd | HD  | HD  | (b) |
156 // | hd | d  | WS  | SS  | (d) |
157 // | hd | g  | SS  | --  |(d/a)|
158 // | hd | h  | SS  | WS  | (d) |
159 // | hd | hd | HD  | HD  | (b) |
160 
161 Sema::CUDAFunctionPreference
162 Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
163                              const FunctionDecl *Callee) {
164   assert(Callee && "Callee must be valid.");
165   CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
166   CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
167 
168   // If one of the targets is invalid, the check always fails, no matter what
169   // the other target is.
170   if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
171     return CFP_Never;
172 
173   // (a) Can't call global from some contexts until we support CUDA's
174   // dynamic parallelism.
175   if (CalleeTarget == CFT_Global &&
176       (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
177     return CFP_Never;
178 
179   // (b) Calling HostDevice is OK for everyone.
180   if (CalleeTarget == CFT_HostDevice)
181     return CFP_HostDevice;
182 
183   // (c) Best case scenarios
184   if (CalleeTarget == CallerTarget ||
185       (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
186       (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
187     return CFP_Native;
188 
189   // (d) HostDevice behavior depends on compilation mode.
190   if (CallerTarget == CFT_HostDevice) {
191     // It's OK to call a compilation-mode matching function from an HD one.
192     if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
193         (!getLangOpts().CUDAIsDevice &&
194          (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
195       return CFP_SameSide;
196 
197     // Calls from HD to non-mode-matching functions (i.e., to host functions
198     // when compiling in device mode or to device functions when compiling in
199     // host mode) are allowed at the sema level, but eventually rejected if
200     // they're ever codegened.  TODO: Reject said calls earlier.
201     return CFP_WrongSide;
202   }
203 
204   // (e) Calling across device/host boundary is not something you should do.
205   if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
206       (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
207       (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
208     return CFP_Never;
209 
210   llvm_unreachable("All cases should've been handled by now.");
211 }
212 
213 void Sema::EraseUnwantedCUDAMatches(
214     const FunctionDecl *Caller,
215     SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
216   if (Matches.size() <= 1)
217     return;
218 
219   using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
220 
221   // Gets the CUDA function preference for a call from Caller to Match.
222   auto GetCFP = [&](const Pair &Match) {
223     return IdentifyCUDAPreference(Caller, Match.second);
224   };
225 
226   // Find the best call preference among the functions in Matches.
227   CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
228       Matches.begin(), Matches.end(),
229       [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
230 
231   // Erase all functions with lower priority.
232   llvm::erase_if(Matches,
233                  [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
234 }
235 
236 /// When an implicitly-declared special member has to invoke more than one
237 /// base/field special member, conflicts may occur in the targets of these
238 /// members. For example, if one base's member __host__ and another's is
239 /// __device__, it's a conflict.
240 /// This function figures out if the given targets \param Target1 and
241 /// \param Target2 conflict, and if they do not it fills in
242 /// \param ResolvedTarget with a target that resolves for both calls.
243 /// \return true if there's a conflict, false otherwise.
244 static bool
245 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
246                                 Sema::CUDAFunctionTarget Target2,
247                                 Sema::CUDAFunctionTarget *ResolvedTarget) {
248   // Only free functions and static member functions may be global.
249   assert(Target1 != Sema::CFT_Global);
250   assert(Target2 != Sema::CFT_Global);
251 
252   if (Target1 == Sema::CFT_HostDevice) {
253     *ResolvedTarget = Target2;
254   } else if (Target2 == Sema::CFT_HostDevice) {
255     *ResolvedTarget = Target1;
256   } else if (Target1 != Target2) {
257     return true;
258   } else {
259     *ResolvedTarget = Target1;
260   }
261 
262   return false;
263 }
264 
265 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
266                                                    CXXSpecialMember CSM,
267                                                    CXXMethodDecl *MemberDecl,
268                                                    bool ConstRHS,
269                                                    bool Diagnose) {
270   // If the defaulted special member is defined lexically outside of its
271   // owning class, or the special member already has explicit device or host
272   // attributes, do not infer.
273   bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
274   bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
275   bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
276   bool HasExplicitAttr =
277       (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
278       (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
279   if (!InClass || HasExplicitAttr)
280     return false;
281 
282   llvm::Optional<CUDAFunctionTarget> InferredTarget;
283 
284   // We're going to invoke special member lookup; mark that these special
285   // members are called from this one, and not from its caller.
286   ContextRAII MethodContext(*this, MemberDecl);
287 
288   // Look for special members in base classes that should be invoked from here.
289   // Infer the target of this member base on the ones it should call.
290   // Skip direct and indirect virtual bases for abstract classes.
291   llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
292   for (const auto &B : ClassDecl->bases()) {
293     if (!B.isVirtual()) {
294       Bases.push_back(&B);
295     }
296   }
297 
298   if (!ClassDecl->isAbstract()) {
299     for (const auto &VB : ClassDecl->vbases()) {
300       Bases.push_back(&VB);
301     }
302   }
303 
304   for (const auto *B : Bases) {
305     const RecordType *BaseType = B->getType()->getAs<RecordType>();
306     if (!BaseType) {
307       continue;
308     }
309 
310     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
311     Sema::SpecialMemberOverloadResult SMOR =
312         LookupSpecialMember(BaseClassDecl, CSM,
313                             /* ConstArg */ ConstRHS,
314                             /* VolatileArg */ false,
315                             /* RValueThis */ false,
316                             /* ConstThis */ false,
317                             /* VolatileThis */ false);
318 
319     if (!SMOR.getMethod())
320       continue;
321 
322     CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
323     if (!InferredTarget.hasValue()) {
324       InferredTarget = BaseMethodTarget;
325     } else {
326       bool ResolutionError = resolveCalleeCUDATargetConflict(
327           InferredTarget.getValue(), BaseMethodTarget,
328           InferredTarget.getPointer());
329       if (ResolutionError) {
330         if (Diagnose) {
331           Diag(ClassDecl->getLocation(),
332                diag::note_implicit_member_target_infer_collision)
333               << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
334         }
335         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
336         return true;
337       }
338     }
339   }
340 
341   // Same as for bases, but now for special members of fields.
342   for (const auto *F : ClassDecl->fields()) {
343     if (F->isInvalidDecl()) {
344       continue;
345     }
346 
347     const RecordType *FieldType =
348         Context.getBaseElementType(F->getType())->getAs<RecordType>();
349     if (!FieldType) {
350       continue;
351     }
352 
353     CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
354     Sema::SpecialMemberOverloadResult SMOR =
355         LookupSpecialMember(FieldRecDecl, CSM,
356                             /* ConstArg */ ConstRHS && !F->isMutable(),
357                             /* VolatileArg */ false,
358                             /* RValueThis */ false,
359                             /* ConstThis */ false,
360                             /* VolatileThis */ false);
361 
362     if (!SMOR.getMethod())
363       continue;
364 
365     CUDAFunctionTarget FieldMethodTarget =
366         IdentifyCUDATarget(SMOR.getMethod());
367     if (!InferredTarget.hasValue()) {
368       InferredTarget = FieldMethodTarget;
369     } else {
370       bool ResolutionError = resolveCalleeCUDATargetConflict(
371           InferredTarget.getValue(), FieldMethodTarget,
372           InferredTarget.getPointer());
373       if (ResolutionError) {
374         if (Diagnose) {
375           Diag(ClassDecl->getLocation(),
376                diag::note_implicit_member_target_infer_collision)
377               << (unsigned)CSM << InferredTarget.getValue()
378               << FieldMethodTarget;
379         }
380         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
381         return true;
382       }
383     }
384   }
385 
386 
387   // If no target was inferred, mark this member as __host__ __device__;
388   // it's the least restrictive option that can be invoked from any target.
389   bool NeedsH = true, NeedsD = true;
390   if (InferredTarget.hasValue()) {
391     if (InferredTarget.getValue() == CFT_Device)
392       NeedsH = false;
393     else if (InferredTarget.getValue() == CFT_Host)
394       NeedsD = false;
395   }
396 
397   // We either setting attributes first time, or the inferred ones must match
398   // previously set ones.
399   if (NeedsD && !HasD)
400     MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
401   if (NeedsH && !HasH)
402     MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
403 
404   return false;
405 }
406 
407 bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
408   if (!CD->isDefined() && CD->isTemplateInstantiation())
409     InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
410 
411   // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
412   // empty at a point in the translation unit, if it is either a
413   // trivial constructor
414   if (CD->isTrivial())
415     return true;
416 
417   // ... or it satisfies all of the following conditions:
418   // The constructor function has been defined.
419   // The constructor function has no parameters,
420   // and the function body is an empty compound statement.
421   if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
422     return false;
423 
424   // Its class has no virtual functions and no virtual base classes.
425   if (CD->getParent()->isDynamicClass())
426     return false;
427 
428   // The only form of initializer allowed is an empty constructor.
429   // This will recursively check all base classes and member initializers
430   if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
431         if (const CXXConstructExpr *CE =
432                 dyn_cast<CXXConstructExpr>(CI->getInit()))
433           return isEmptyCudaConstructor(Loc, CE->getConstructor());
434         return false;
435       }))
436     return false;
437 
438   return true;
439 }
440 
441 bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
442   // No destructor -> no problem.
443   if (!DD)
444     return true;
445 
446   if (!DD->isDefined() && DD->isTemplateInstantiation())
447     InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
448 
449   // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
450   // empty at a point in the translation unit, if it is either a
451   // trivial constructor
452   if (DD->isTrivial())
453     return true;
454 
455   // ... or it satisfies all of the following conditions:
456   // The destructor function has been defined.
457   // and the function body is an empty compound statement.
458   if (!DD->hasTrivialBody())
459     return false;
460 
461   const CXXRecordDecl *ClassDecl = DD->getParent();
462 
463   // Its class has no virtual functions and no virtual base classes.
464   if (ClassDecl->isDynamicClass())
465     return false;
466 
467   // Only empty destructors are allowed. This will recursively check
468   // destructors for all base classes...
469   if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
470         if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
471           return isEmptyCudaDestructor(Loc, RD->getDestructor());
472         return true;
473       }))
474     return false;
475 
476   // ... and member fields.
477   if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
478         if (CXXRecordDecl *RD = Field->getType()
479                                     ->getBaseElementTypeUnsafe()
480                                     ->getAsCXXRecordDecl())
481           return isEmptyCudaDestructor(Loc, RD->getDestructor());
482         return true;
483       }))
484     return false;
485 
486   return true;
487 }
488 
489 void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
490   if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage())
491     return;
492   const Expr *Init = VD->getInit();
493   if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
494       VD->hasAttr<CUDASharedAttr>()) {
495     if (LangOpts.GPUAllowDeviceInit)
496       return;
497     assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>());
498     bool AllowedInit = false;
499     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
500       AllowedInit =
501           isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
502     // We'll allow constant initializers even if it's a non-empty
503     // constructor according to CUDA rules. This deviates from NVCC,
504     // but allows us to handle things like constexpr constructors.
505     if (!AllowedInit &&
506         (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
507       AllowedInit = VD->getInit()->isConstantInitializer(
508           Context, VD->getType()->isReferenceType());
509 
510     // Also make sure that destructor, if there is one, is empty.
511     if (AllowedInit)
512       if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
513         AllowedInit =
514             isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
515 
516     if (!AllowedInit) {
517       Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
518                                   ? diag::err_shared_var_init
519                                   : diag::err_dynamic_var_init)
520           << Init->getSourceRange();
521       VD->setInvalidDecl();
522     }
523   } else {
524     // This is a host-side global variable.  Check that the initializer is
525     // callable from the host side.
526     const FunctionDecl *InitFn = nullptr;
527     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
528       InitFn = CE->getConstructor();
529     } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
530       InitFn = CE->getDirectCallee();
531     }
532     if (InitFn) {
533       CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
534       if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
535         Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
536             << InitFnTarget << InitFn;
537         Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
538         VD->setInvalidDecl();
539       }
540     }
541   }
542 }
543 
544 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
545 // treated as implicitly __host__ __device__, unless:
546 //  * it is a variadic function (device-side variadic functions are not
547 //    allowed), or
548 //  * a __device__ function with this signature was already declared, in which
549 //    case in which case we output an error, unless the __device__ decl is in a
550 //    system header, in which case we leave the constexpr function unattributed.
551 //
552 // In addition, all function decls are treated as __host__ __device__ when
553 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
554 //   #pragma clang force_cuda_host_device_begin/end
555 // pair).
556 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
557                                        const LookupResult &Previous) {
558   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
559 
560   if (ForceCUDAHostDeviceDepth > 0) {
561     if (!NewD->hasAttr<CUDAHostAttr>())
562       NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
563     if (!NewD->hasAttr<CUDADeviceAttr>())
564       NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
565     return;
566   }
567 
568   if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
569       NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
570       NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
571     return;
572 
573   // Is D a __device__ function with the same signature as NewD, ignoring CUDA
574   // attributes?
575   auto IsMatchingDeviceFn = [&](NamedDecl *D) {
576     if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
577       D = Using->getTargetDecl();
578     FunctionDecl *OldD = D->getAsFunction();
579     return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
580            !OldD->hasAttr<CUDAHostAttr>() &&
581            !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
582                        /* ConsiderCudaAttrs = */ false);
583   };
584   auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
585   if (It != Previous.end()) {
586     // We found a __device__ function with the same name and signature as NewD
587     // (ignoring CUDA attrs).  This is an error unless that function is defined
588     // in a system header, in which case we simply return without making NewD
589     // host+device.
590     NamedDecl *Match = *It;
591     if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
592       Diag(NewD->getLocation(),
593            diag::err_cuda_unattributed_constexpr_cannot_overload_device)
594           << NewD;
595       Diag(Match->getLocation(),
596            diag::note_cuda_conflicting_device_function_declared_here);
597     }
598     return;
599   }
600 
601   NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
602   NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
603 }
604 
605 Sema::DeviceDiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
606                                                    unsigned DiagID) {
607   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
608   DeviceDiagBuilder::Kind DiagKind = [this] {
609     switch (CurrentCUDATarget()) {
610     case CFT_Global:
611     case CFT_Device:
612       return DeviceDiagBuilder::K_Immediate;
613     case CFT_HostDevice:
614       // An HD function counts as host code if we're compiling for host, and
615       // device code if we're compiling for device.  Defer any errors in device
616       // mode until the function is known-emitted.
617       if (getLangOpts().CUDAIsDevice) {
618         return (getEmissionStatus(cast<FunctionDecl>(CurContext)) ==
619                 FunctionEmissionStatus::Emitted)
620                    ? DeviceDiagBuilder::K_ImmediateWithCallStack
621                    : DeviceDiagBuilder::K_Deferred;
622       }
623       return DeviceDiagBuilder::K_Nop;
624 
625     default:
626       return DeviceDiagBuilder::K_Nop;
627     }
628   }();
629   return DeviceDiagBuilder(DiagKind, Loc, DiagID,
630                            dyn_cast<FunctionDecl>(CurContext), *this);
631 }
632 
633 Sema::DeviceDiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
634                                                  unsigned DiagID) {
635   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
636   DeviceDiagBuilder::Kind DiagKind = [this] {
637     switch (CurrentCUDATarget()) {
638     case CFT_Host:
639       return DeviceDiagBuilder::K_Immediate;
640     case CFT_HostDevice:
641       // An HD function counts as host code if we're compiling for host, and
642       // device code if we're compiling for device.  Defer any errors in device
643       // mode until the function is known-emitted.
644       if (getLangOpts().CUDAIsDevice)
645         return DeviceDiagBuilder::K_Nop;
646 
647       return (getEmissionStatus(cast<FunctionDecl>(CurContext)) ==
648               FunctionEmissionStatus::Emitted)
649                  ? DeviceDiagBuilder::K_ImmediateWithCallStack
650                  : DeviceDiagBuilder::K_Deferred;
651     default:
652       return DeviceDiagBuilder::K_Nop;
653     }
654   }();
655   return DeviceDiagBuilder(DiagKind, Loc, DiagID,
656                            dyn_cast<FunctionDecl>(CurContext), *this);
657 }
658 
659 bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
660   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
661   assert(Callee && "Callee may not be null.");
662 
663   auto &ExprEvalCtx = ExprEvalContexts.back();
664   if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
665     return true;
666 
667   // FIXME: Is bailing out early correct here?  Should we instead assume that
668   // the caller is a global initializer?
669   FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
670   if (!Caller)
671     return true;
672 
673   // If the caller is known-emitted, mark the callee as known-emitted.
674   // Otherwise, mark the call in our call graph so we can traverse it later.
675   bool CallerKnownEmitted =
676       getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
677   if (CallerKnownEmitted) {
678     // Host-side references to a __global__ function refer to the stub, so the
679     // function itself is never emitted and therefore should not be marked.
680     if (!shouldIgnoreInHostDeviceCheck(Callee))
681       markKnownEmitted(
682           *this, Caller, Callee, Loc, [](Sema &S, FunctionDecl *FD) {
683             return S.getEmissionStatus(FD) == FunctionEmissionStatus::Emitted;
684           });
685   } else {
686     // If we have
687     //   host fn calls kernel fn calls host+device,
688     // the HD function does not get instantiated on the host.  We model this by
689     // omitting at the call to the kernel from the callgraph.  This ensures
690     // that, when compiling for host, only HD functions actually called from the
691     // host get marked as known-emitted.
692     if (!shouldIgnoreInHostDeviceCheck(Callee))
693       DeviceCallGraph[Caller].insert({Callee, Loc});
694   }
695 
696   DeviceDiagBuilder::Kind DiagKind = [this, Caller, Callee,
697                                       CallerKnownEmitted] {
698     switch (IdentifyCUDAPreference(Caller, Callee)) {
699     case CFP_Never:
700       return DeviceDiagBuilder::K_Immediate;
701     case CFP_WrongSide:
702       assert(Caller && "WrongSide calls require a non-null caller");
703       // If we know the caller will be emitted, we know this wrong-side call
704       // will be emitted, so it's an immediate error.  Otherwise, defer the
705       // error until we know the caller is emitted.
706       return CallerKnownEmitted ? DeviceDiagBuilder::K_ImmediateWithCallStack
707                                 : DeviceDiagBuilder::K_Deferred;
708     default:
709       return DeviceDiagBuilder::K_Nop;
710     }
711   }();
712 
713   if (DiagKind == DeviceDiagBuilder::K_Nop)
714     return true;
715 
716   // Avoid emitting this error twice for the same location.  Using a hashtable
717   // like this is unfortunate, but because we must continue parsing as normal
718   // after encountering a deferred error, it's otherwise very tricky for us to
719   // ensure that we only emit this deferred error once.
720   if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
721     return true;
722 
723   DeviceDiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
724       << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
725   DeviceDiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl,
726                     Caller, *this)
727       << Callee;
728   return DiagKind != DeviceDiagBuilder::K_Immediate &&
729          DiagKind != DeviceDiagBuilder::K_ImmediateWithCallStack;
730 }
731 
732 void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
733   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
734   if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
735     return;
736   FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
737   if (!CurFn)
738     return;
739   CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
740   if (Target == CFT_Global || Target == CFT_Device) {
741     Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
742   } else if (Target == CFT_HostDevice) {
743     Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
744     Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
745   }
746 }
747 
748 void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
749                                    const LookupResult &Previous) {
750   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
751   CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
752   for (NamedDecl *OldND : Previous) {
753     FunctionDecl *OldFD = OldND->getAsFunction();
754     if (!OldFD)
755       continue;
756 
757     CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
758     // Don't allow HD and global functions to overload other functions with the
759     // same signature.  We allow overloading based on CUDA attributes so that
760     // functions can have different implementations on the host and device, but
761     // HD/global functions "exist" in some sense on both the host and device, so
762     // should have the same implementation on both sides.
763     if (NewTarget != OldTarget &&
764         ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
765          (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
766         !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
767                     /* ConsiderCudaAttrs = */ false)) {
768       Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
769           << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
770       Diag(OldFD->getLocation(), diag::note_previous_declaration);
771       NewFD->setInvalidDecl();
772       break;
773     }
774   }
775 }
776 
777 template <typename AttrTy>
778 static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
779                               const FunctionDecl &TemplateFD) {
780   if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
781     AttrTy *Clone = Attribute->clone(S.Context);
782     Clone->setInherited(true);
783     FD->addAttr(Clone);
784   }
785 }
786 
787 void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
788                                   const FunctionTemplateDecl &TD) {
789   const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
790   copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
791   copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
792   copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
793 }
794 
795 std::string Sema::getCudaConfigureFuncName() const {
796   if (getLangOpts().HIP)
797     return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
798                                             : "hipConfigureCall";
799 
800   // New CUDA kernel launch sequence.
801   if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
802                          CudaFeature::CUDA_USES_NEW_LAUNCH))
803     return "__cudaPushCallConfiguration";
804 
805   // Legacy CUDA kernel configuration call
806   return "cudaConfigureCall";
807 }
808