1 //===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for cast expressions, including
10 //  1) C-style casts like '(int) x'
11 //  2) C++ functional casts like 'int(x)'
12 //  3) C++ named casts like 'static_cast<int>(x)'
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/Sema/SemaInternal.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "clang/Sema/Initialization.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include <set>
28 using namespace clang;
29 
30 
31 
32 enum TryCastResult {
33   TC_NotApplicable, ///< The cast method is not applicable.
34   TC_Success,       ///< The cast method is appropriate and successful.
35   TC_Extension,     ///< The cast method is appropriate and accepted as a
36                     ///< language extension.
37   TC_Failed         ///< The cast method is appropriate, but failed. A
38                     ///< diagnostic has been emitted.
39 };
40 
41 static bool isValidCast(TryCastResult TCR) {
42   return TCR == TC_Success || TCR == TC_Extension;
43 }
44 
45 enum CastType {
46   CT_Const,       ///< const_cast
47   CT_Static,      ///< static_cast
48   CT_Reinterpret, ///< reinterpret_cast
49   CT_Dynamic,     ///< dynamic_cast
50   CT_CStyle,      ///< (Type)expr
51   CT_Functional   ///< Type(expr)
52 };
53 
54 namespace {
55   struct CastOperation {
56     CastOperation(Sema &S, QualType destType, ExprResult src)
57       : Self(S), SrcExpr(src), DestType(destType),
58         ResultType(destType.getNonLValueExprType(S.Context)),
59         ValueKind(Expr::getValueKindForType(destType)),
60         Kind(CK_Dependent), IsARCUnbridgedCast(false) {
61 
62       if (const BuiltinType *placeholder =
63             src.get()->getType()->getAsPlaceholderType()) {
64         PlaceholderKind = placeholder->getKind();
65       } else {
66         PlaceholderKind = (BuiltinType::Kind) 0;
67       }
68     }
69 
70     Sema &Self;
71     ExprResult SrcExpr;
72     QualType DestType;
73     QualType ResultType;
74     ExprValueKind ValueKind;
75     CastKind Kind;
76     BuiltinType::Kind PlaceholderKind;
77     CXXCastPath BasePath;
78     bool IsARCUnbridgedCast;
79 
80     SourceRange OpRange;
81     SourceRange DestRange;
82 
83     // Top-level semantics-checking routines.
84     void CheckConstCast();
85     void CheckReinterpretCast();
86     void CheckStaticCast();
87     void CheckDynamicCast();
88     void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization);
89     void CheckCStyleCast();
90     void CheckBuiltinBitCast();
91 
92     void updatePartOfExplicitCastFlags(CastExpr *CE) {
93       // Walk down from the CE to the OrigSrcExpr, and mark all immediate
94       // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE
95       // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched.
96       for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE)
97         ICE->setIsPartOfExplicitCast(true);
98     }
99 
100     /// Complete an apparently-successful cast operation that yields
101     /// the given expression.
102     ExprResult complete(CastExpr *castExpr) {
103       // If this is an unbridged cast, wrap the result in an implicit
104       // cast that yields the unbridged-cast placeholder type.
105       if (IsARCUnbridgedCast) {
106         castExpr = ImplicitCastExpr::Create(Self.Context,
107                                             Self.Context.ARCUnbridgedCastTy,
108                                             CK_Dependent, castExpr, nullptr,
109                                             castExpr->getValueKind());
110       }
111       updatePartOfExplicitCastFlags(castExpr);
112       return castExpr;
113     }
114 
115     // Internal convenience methods.
116 
117     /// Try to handle the given placeholder expression kind.  Return
118     /// true if the source expression has the appropriate placeholder
119     /// kind.  A placeholder can only be claimed once.
120     bool claimPlaceholder(BuiltinType::Kind K) {
121       if (PlaceholderKind != K) return false;
122 
123       PlaceholderKind = (BuiltinType::Kind) 0;
124       return true;
125     }
126 
127     bool isPlaceholder() const {
128       return PlaceholderKind != 0;
129     }
130     bool isPlaceholder(BuiltinType::Kind K) const {
131       return PlaceholderKind == K;
132     }
133 
134     // Language specific cast restrictions for address spaces.
135     void checkAddressSpaceCast(QualType SrcType, QualType DestType);
136 
137     void checkCastAlign() {
138       Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange);
139     }
140 
141     void checkObjCConversion(Sema::CheckedConversionKind CCK) {
142       assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers());
143 
144       Expr *src = SrcExpr.get();
145       if (Self.CheckObjCConversion(OpRange, DestType, src, CCK) ==
146           Sema::ACR_unbridged)
147         IsARCUnbridgedCast = true;
148       SrcExpr = src;
149     }
150 
151     /// Check for and handle non-overload placeholder expressions.
152     void checkNonOverloadPlaceholders() {
153       if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload))
154         return;
155 
156       SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
157       if (SrcExpr.isInvalid())
158         return;
159       PlaceholderKind = (BuiltinType::Kind) 0;
160     }
161   };
162 }
163 
164 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
165                              QualType DestType);
166 
167 // The Try functions attempt a specific way of casting. If they succeed, they
168 // return TC_Success. If their way of casting is not appropriate for the given
169 // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic
170 // to emit if no other way succeeds. If their way of casting is appropriate but
171 // fails, they return TC_Failed and *must* set diag; they can set it to 0 if
172 // they emit a specialized diagnostic.
173 // All diagnostics returned by these functions must expect the same three
174 // arguments:
175 // %0: Cast Type (a value from the CastType enumeration)
176 // %1: Source Type
177 // %2: Destination Type
178 static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
179                                            QualType DestType, bool CStyle,
180                                            CastKind &Kind,
181                                            CXXCastPath &BasePath,
182                                            unsigned &msg);
183 static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr,
184                                                QualType DestType, bool CStyle,
185                                                SourceRange OpRange,
186                                                unsigned &msg,
187                                                CastKind &Kind,
188                                                CXXCastPath &BasePath);
189 static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType,
190                                               QualType DestType, bool CStyle,
191                                               SourceRange OpRange,
192                                               unsigned &msg,
193                                               CastKind &Kind,
194                                               CXXCastPath &BasePath);
195 static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType,
196                                        CanQualType DestType, bool CStyle,
197                                        SourceRange OpRange,
198                                        QualType OrigSrcType,
199                                        QualType OrigDestType, unsigned &msg,
200                                        CastKind &Kind,
201                                        CXXCastPath &BasePath);
202 static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr,
203                                                QualType SrcType,
204                                                QualType DestType,bool CStyle,
205                                                SourceRange OpRange,
206                                                unsigned &msg,
207                                                CastKind &Kind,
208                                                CXXCastPath &BasePath);
209 
210 static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr,
211                                            QualType DestType,
212                                            Sema::CheckedConversionKind CCK,
213                                            SourceRange OpRange,
214                                            unsigned &msg, CastKind &Kind,
215                                            bool ListInitialization);
216 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
217                                    QualType DestType,
218                                    Sema::CheckedConversionKind CCK,
219                                    SourceRange OpRange,
220                                    unsigned &msg, CastKind &Kind,
221                                    CXXCastPath &BasePath,
222                                    bool ListInitialization);
223 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
224                                   QualType DestType, bool CStyle,
225                                   unsigned &msg);
226 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
227                                         QualType DestType, bool CStyle,
228                                         SourceRange OpRange,
229                                         unsigned &msg,
230                                         CastKind &Kind);
231 
232 
233 /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
234 ExprResult
235 Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
236                         SourceLocation LAngleBracketLoc, Declarator &D,
237                         SourceLocation RAngleBracketLoc,
238                         SourceLocation LParenLoc, Expr *E,
239                         SourceLocation RParenLoc) {
240 
241   assert(!D.isInvalidType());
242 
243   TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType());
244   if (D.isInvalidType())
245     return ExprError();
246 
247   if (getLangOpts().CPlusPlus) {
248     // Check that there are no default arguments (C++ only).
249     CheckExtraCXXDefaultArguments(D);
250   }
251 
252   return BuildCXXNamedCast(OpLoc, Kind, TInfo, E,
253                            SourceRange(LAngleBracketLoc, RAngleBracketLoc),
254                            SourceRange(LParenLoc, RParenLoc));
255 }
256 
257 ExprResult
258 Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
259                         TypeSourceInfo *DestTInfo, Expr *E,
260                         SourceRange AngleBrackets, SourceRange Parens) {
261   ExprResult Ex = E;
262   QualType DestType = DestTInfo->getType();
263 
264   // If the type is dependent, we won't do the semantic analysis now.
265   bool TypeDependent =
266       DestType->isDependentType() || Ex.get()->isTypeDependent();
267 
268   CastOperation Op(*this, DestType, E);
269   Op.OpRange = SourceRange(OpLoc, Parens.getEnd());
270   Op.DestRange = AngleBrackets;
271 
272   switch (Kind) {
273   default: llvm_unreachable("Unknown C++ cast!");
274 
275   case tok::kw_const_cast:
276     if (!TypeDependent) {
277       Op.CheckConstCast();
278       if (Op.SrcExpr.isInvalid())
279         return ExprError();
280       DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
281     }
282     return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType,
283                                   Op.ValueKind, Op.SrcExpr.get(), DestTInfo,
284                                                 OpLoc, Parens.getEnd(),
285                                                 AngleBrackets));
286 
287   case tok::kw_dynamic_cast: {
288     // dynamic_cast is not supported in C++ for OpenCL.
289     if (getLangOpts().OpenCLCPlusPlus) {
290       return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
291                        << "dynamic_cast");
292     }
293 
294     if (!TypeDependent) {
295       Op.CheckDynamicCast();
296       if (Op.SrcExpr.isInvalid())
297         return ExprError();
298     }
299     return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType,
300                                     Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
301                                                   &Op.BasePath, DestTInfo,
302                                                   OpLoc, Parens.getEnd(),
303                                                   AngleBrackets));
304   }
305   case tok::kw_reinterpret_cast: {
306     if (!TypeDependent) {
307       Op.CheckReinterpretCast();
308       if (Op.SrcExpr.isInvalid())
309         return ExprError();
310       DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
311     }
312     return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType,
313                                     Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
314                                                       nullptr, DestTInfo, OpLoc,
315                                                       Parens.getEnd(),
316                                                       AngleBrackets));
317   }
318   case tok::kw_static_cast: {
319     if (!TypeDependent) {
320       Op.CheckStaticCast();
321       if (Op.SrcExpr.isInvalid())
322         return ExprError();
323       DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
324     }
325 
326     return Op.complete(CXXStaticCastExpr::Create(Context, Op.ResultType,
327                                    Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
328                                                  &Op.BasePath, DestTInfo,
329                                                  OpLoc, Parens.getEnd(),
330                                                  AngleBrackets));
331   }
332   }
333 }
334 
335 ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D,
336                                          ExprResult Operand,
337                                          SourceLocation RParenLoc) {
338   assert(!D.isInvalidType());
339 
340   TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType());
341   if (D.isInvalidType())
342     return ExprError();
343 
344   return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc);
345 }
346 
347 ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc,
348                                          TypeSourceInfo *TSI, Expr *Operand,
349                                          SourceLocation RParenLoc) {
350   CastOperation Op(*this, TSI->getType(), Operand);
351   Op.OpRange = SourceRange(KWLoc, RParenLoc);
352   TypeLoc TL = TSI->getTypeLoc();
353   Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc());
354 
355   if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) {
356     Op.CheckBuiltinBitCast();
357     if (Op.SrcExpr.isInvalid())
358       return ExprError();
359   }
360 
361   BuiltinBitCastExpr *BCE =
362       new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind,
363                                        Op.SrcExpr.get(), TSI, KWLoc, RParenLoc);
364   return Op.complete(BCE);
365 }
366 
367 /// Try to diagnose a failed overloaded cast.  Returns true if
368 /// diagnostics were emitted.
369 static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT,
370                                       SourceRange range, Expr *src,
371                                       QualType destType,
372                                       bool listInitialization) {
373   switch (CT) {
374   // These cast kinds don't consider user-defined conversions.
375   case CT_Const:
376   case CT_Reinterpret:
377   case CT_Dynamic:
378     return false;
379 
380   // These do.
381   case CT_Static:
382   case CT_CStyle:
383   case CT_Functional:
384     break;
385   }
386 
387   QualType srcType = src->getType();
388   if (!destType->isRecordType() && !srcType->isRecordType())
389     return false;
390 
391   InitializedEntity entity = InitializedEntity::InitializeTemporary(destType);
392   InitializationKind initKind
393     = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(),
394                                                       range, listInitialization)
395     : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range,
396                                                              listInitialization)
397     : InitializationKind::CreateCast(/*type range?*/ range);
398   InitializationSequence sequence(S, entity, initKind, src);
399 
400   assert(sequence.Failed() && "initialization succeeded on second try?");
401   switch (sequence.getFailureKind()) {
402   default: return false;
403 
404   case InitializationSequence::FK_ConstructorOverloadFailed:
405   case InitializationSequence::FK_UserConversionOverloadFailed:
406     break;
407   }
408 
409   OverloadCandidateSet &candidates = sequence.getFailedCandidateSet();
410 
411   unsigned msg = 0;
412   OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates;
413 
414   switch (sequence.getFailedOverloadResult()) {
415   case OR_Success: llvm_unreachable("successful failed overload");
416   case OR_No_Viable_Function:
417     if (candidates.empty())
418       msg = diag::err_ovl_no_conversion_in_cast;
419     else
420       msg = diag::err_ovl_no_viable_conversion_in_cast;
421     howManyCandidates = OCD_AllCandidates;
422     break;
423 
424   case OR_Ambiguous:
425     msg = diag::err_ovl_ambiguous_conversion_in_cast;
426     howManyCandidates = OCD_AmbiguousCandidates;
427     break;
428 
429   case OR_Deleted:
430     msg = diag::err_ovl_deleted_conversion_in_cast;
431     howManyCandidates = OCD_ViableCandidates;
432     break;
433   }
434 
435   candidates.NoteCandidates(
436       PartialDiagnosticAt(range.getBegin(),
437                           S.PDiag(msg) << CT << srcType << destType << range
438                                        << src->getSourceRange()),
439       S, howManyCandidates, src);
440 
441   return true;
442 }
443 
444 /// Diagnose a failed cast.
445 static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType,
446                             SourceRange opRange, Expr *src, QualType destType,
447                             bool listInitialization) {
448   if (msg == diag::err_bad_cxx_cast_generic &&
449       tryDiagnoseOverloadedCast(S, castType, opRange, src, destType,
450                                 listInitialization))
451     return;
452 
453   S.Diag(opRange.getBegin(), msg) << castType
454     << src->getType() << destType << opRange << src->getSourceRange();
455 
456   // Detect if both types are (ptr to) class, and note any incompleteness.
457   int DifferentPtrness = 0;
458   QualType From = destType;
459   if (auto Ptr = From->getAs<PointerType>()) {
460     From = Ptr->getPointeeType();
461     DifferentPtrness++;
462   }
463   QualType To = src->getType();
464   if (auto Ptr = To->getAs<PointerType>()) {
465     To = Ptr->getPointeeType();
466     DifferentPtrness--;
467   }
468   if (!DifferentPtrness) {
469     auto RecFrom = From->getAs<RecordType>();
470     auto RecTo = To->getAs<RecordType>();
471     if (RecFrom && RecTo) {
472       auto DeclFrom = RecFrom->getAsCXXRecordDecl();
473       if (!DeclFrom->isCompleteDefinition())
474         S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete)
475           << DeclFrom->getDeclName();
476       auto DeclTo = RecTo->getAsCXXRecordDecl();
477       if (!DeclTo->isCompleteDefinition())
478         S.Diag(DeclTo->getLocation(), diag::note_type_incomplete)
479           << DeclTo->getDeclName();
480     }
481   }
482 }
483 
484 namespace {
485 /// The kind of unwrapping we did when determining whether a conversion casts
486 /// away constness.
487 enum CastAwayConstnessKind {
488   /// The conversion does not cast away constness.
489   CACK_None = 0,
490   /// We unwrapped similar types.
491   CACK_Similar = 1,
492   /// We unwrapped dissimilar types with similar representations (eg, a pointer
493   /// versus an Objective-C object pointer).
494   CACK_SimilarKind = 2,
495   /// We unwrapped representationally-unrelated types, such as a pointer versus
496   /// a pointer-to-member.
497   CACK_Incoherent = 3,
498 };
499 }
500 
501 /// Unwrap one level of types for CastsAwayConstness.
502 ///
503 /// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from
504 /// both types, provided that they're both pointer-like or array-like. Unlike
505 /// the Sema function, doesn't care if the unwrapped pieces are related.
506 ///
507 /// This function may remove additional levels as necessary for correctness:
508 /// the resulting T1 is unwrapped sufficiently that it is never an array type,
509 /// so that its qualifiers can be directly compared to those of T2 (which will
510 /// have the combined set of qualifiers from all indermediate levels of T2),
511 /// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers
512 /// with those from T2.
513 static CastAwayConstnessKind
514 unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) {
515   enum { None, Ptr, MemPtr, BlockPtr, Array };
516   auto Classify = [](QualType T) {
517     if (T->isAnyPointerType()) return Ptr;
518     if (T->isMemberPointerType()) return MemPtr;
519     if (T->isBlockPointerType()) return BlockPtr;
520     // We somewhat-arbitrarily don't look through VLA types here. This is at
521     // least consistent with the behavior of UnwrapSimilarTypes.
522     if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array;
523     return None;
524   };
525 
526   auto Unwrap = [&](QualType T) {
527     if (auto *AT = Context.getAsArrayType(T))
528       return AT->getElementType();
529     return T->getPointeeType();
530   };
531 
532   CastAwayConstnessKind Kind;
533 
534   if (T2->isReferenceType()) {
535     // Special case: if the destination type is a reference type, unwrap it as
536     // the first level. (The source will have been an lvalue expression in this
537     // case, so there is no corresponding "reference to" in T1 to remove.) This
538     // simulates removing a "pointer to" from both sides.
539     T2 = T2->getPointeeType();
540     Kind = CastAwayConstnessKind::CACK_Similar;
541   } else if (Context.UnwrapSimilarTypes(T1, T2)) {
542     Kind = CastAwayConstnessKind::CACK_Similar;
543   } else {
544     // Try unwrapping mismatching levels.
545     int T1Class = Classify(T1);
546     if (T1Class == None)
547       return CastAwayConstnessKind::CACK_None;
548 
549     int T2Class = Classify(T2);
550     if (T2Class == None)
551       return CastAwayConstnessKind::CACK_None;
552 
553     T1 = Unwrap(T1);
554     T2 = Unwrap(T2);
555     Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind
556                               : CastAwayConstnessKind::CACK_Incoherent;
557   }
558 
559   // We've unwrapped at least one level. If the resulting T1 is a (possibly
560   // multidimensional) array type, any qualifier on any matching layer of
561   // T2 is considered to correspond to T1. Decompose down to the element
562   // type of T1 so that we can compare properly.
563   while (true) {
564     Context.UnwrapSimilarArrayTypes(T1, T2);
565 
566     if (Classify(T1) != Array)
567       break;
568 
569     auto T2Class = Classify(T2);
570     if (T2Class == None)
571       break;
572 
573     if (T2Class != Array)
574       Kind = CastAwayConstnessKind::CACK_Incoherent;
575     else if (Kind != CastAwayConstnessKind::CACK_Incoherent)
576       Kind = CastAwayConstnessKind::CACK_SimilarKind;
577 
578     T1 = Unwrap(T1);
579     T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers());
580   }
581 
582   return Kind;
583 }
584 
585 /// Check if the pointer conversion from SrcType to DestType casts away
586 /// constness as defined in C++ [expr.const.cast]. This is used by the cast
587 /// checkers. Both arguments must denote pointer (possibly to member) types.
588 ///
589 /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers.
590 /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers.
591 static CastAwayConstnessKind
592 CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType,
593                    bool CheckCVR, bool CheckObjCLifetime,
594                    QualType *TheOffendingSrcType = nullptr,
595                    QualType *TheOffendingDestType = nullptr,
596                    Qualifiers *CastAwayQualifiers = nullptr) {
597   // If the only checking we care about is for Objective-C lifetime qualifiers,
598   // and we're not in ObjC mode, there's nothing to check.
599   if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC)
600     return CastAwayConstnessKind::CACK_None;
601 
602   if (!DestType->isReferenceType()) {
603     assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() ||
604             SrcType->isBlockPointerType()) &&
605            "Source type is not pointer or pointer to member.");
606     assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() ||
607             DestType->isBlockPointerType()) &&
608            "Destination type is not pointer or pointer to member.");
609   }
610 
611   QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType),
612            UnwrappedDestType = Self.Context.getCanonicalType(DestType);
613 
614   // Find the qualifiers. We only care about cvr-qualifiers for the
615   // purpose of this check, because other qualifiers (address spaces,
616   // Objective-C GC, etc.) are part of the type's identity.
617   QualType PrevUnwrappedSrcType = UnwrappedSrcType;
618   QualType PrevUnwrappedDestType = UnwrappedDestType;
619   auto WorstKind = CastAwayConstnessKind::CACK_Similar;
620   bool AllConstSoFar = true;
621   while (auto Kind = unwrapCastAwayConstnessLevel(
622              Self.Context, UnwrappedSrcType, UnwrappedDestType)) {
623     // Track the worst kind of unwrap we needed to do before we found a
624     // problem.
625     if (Kind > WorstKind)
626       WorstKind = Kind;
627 
628     // Determine the relevant qualifiers at this level.
629     Qualifiers SrcQuals, DestQuals;
630     Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals);
631     Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals);
632 
633     // We do not meaningfully track object const-ness of Objective-C object
634     // types. Remove const from the source type if either the source or
635     // the destination is an Objective-C object type.
636     if (UnwrappedSrcType->isObjCObjectType() ||
637         UnwrappedDestType->isObjCObjectType())
638       SrcQuals.removeConst();
639 
640     if (CheckCVR) {
641       Qualifiers SrcCvrQuals =
642           Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers());
643       Qualifiers DestCvrQuals =
644           Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers());
645 
646       if (SrcCvrQuals != DestCvrQuals) {
647         if (CastAwayQualifiers)
648           *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals;
649 
650         // If we removed a cvr-qualifier, this is casting away 'constness'.
651         if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals)) {
652           if (TheOffendingSrcType)
653             *TheOffendingSrcType = PrevUnwrappedSrcType;
654           if (TheOffendingDestType)
655             *TheOffendingDestType = PrevUnwrappedDestType;
656           return WorstKind;
657         }
658 
659         // If any prior level was not 'const', this is also casting away
660         // 'constness'. We noted the outermost type missing a 'const' already.
661         if (!AllConstSoFar)
662           return WorstKind;
663       }
664     }
665 
666     if (CheckObjCLifetime &&
667         !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals))
668       return WorstKind;
669 
670     // If we found our first non-const-qualified type, this may be the place
671     // where things start to go wrong.
672     if (AllConstSoFar && !DestQuals.hasConst()) {
673       AllConstSoFar = false;
674       if (TheOffendingSrcType)
675         *TheOffendingSrcType = PrevUnwrappedSrcType;
676       if (TheOffendingDestType)
677         *TheOffendingDestType = PrevUnwrappedDestType;
678     }
679 
680     PrevUnwrappedSrcType = UnwrappedSrcType;
681     PrevUnwrappedDestType = UnwrappedDestType;
682   }
683 
684   return CastAwayConstnessKind::CACK_None;
685 }
686 
687 static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK,
688                                                   unsigned &DiagID) {
689   switch (CACK) {
690   case CastAwayConstnessKind::CACK_None:
691     llvm_unreachable("did not cast away constness");
692 
693   case CastAwayConstnessKind::CACK_Similar:
694     // FIXME: Accept these as an extension too?
695   case CastAwayConstnessKind::CACK_SimilarKind:
696     DiagID = diag::err_bad_cxx_cast_qualifiers_away;
697     return TC_Failed;
698 
699   case CastAwayConstnessKind::CACK_Incoherent:
700     DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent;
701     return TC_Extension;
702   }
703 
704   llvm_unreachable("unexpected cast away constness kind");
705 }
706 
707 /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid.
708 /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime-
709 /// checked downcasts in class hierarchies.
710 void CastOperation::CheckDynamicCast() {
711   if (ValueKind == VK_RValue)
712     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
713   else if (isPlaceholder())
714     SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
715   if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
716     return;
717 
718   QualType OrigSrcType = SrcExpr.get()->getType();
719   QualType DestType = Self.Context.getCanonicalType(this->DestType);
720 
721   // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type,
722   //   or "pointer to cv void".
723 
724   QualType DestPointee;
725   const PointerType *DestPointer = DestType->getAs<PointerType>();
726   const ReferenceType *DestReference = nullptr;
727   if (DestPointer) {
728     DestPointee = DestPointer->getPointeeType();
729   } else if ((DestReference = DestType->getAs<ReferenceType>())) {
730     DestPointee = DestReference->getPointeeType();
731   } else {
732     Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr)
733       << this->DestType << DestRange;
734     SrcExpr = ExprError();
735     return;
736   }
737 
738   const RecordType *DestRecord = DestPointee->getAs<RecordType>();
739   if (DestPointee->isVoidType()) {
740     assert(DestPointer && "Reference to void is not possible");
741   } else if (DestRecord) {
742     if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee,
743                                  diag::err_bad_cast_incomplete,
744                                  DestRange)) {
745       SrcExpr = ExprError();
746       return;
747     }
748   } else {
749     Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
750       << DestPointee.getUnqualifiedType() << DestRange;
751     SrcExpr = ExprError();
752     return;
753   }
754 
755   // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to
756   //   complete class type, [...]. If T is an lvalue reference type, v shall be
757   //   an lvalue of a complete class type, [...]. If T is an rvalue reference
758   //   type, v shall be an expression having a complete class type, [...]
759   QualType SrcType = Self.Context.getCanonicalType(OrigSrcType);
760   QualType SrcPointee;
761   if (DestPointer) {
762     if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
763       SrcPointee = SrcPointer->getPointeeType();
764     } else {
765       Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr)
766           << OrigSrcType << this->DestType << SrcExpr.get()->getSourceRange();
767       SrcExpr = ExprError();
768       return;
769     }
770   } else if (DestReference->isLValueReferenceType()) {
771     if (!SrcExpr.get()->isLValue()) {
772       Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue)
773         << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
774     }
775     SrcPointee = SrcType;
776   } else {
777     // If we're dynamic_casting from a prvalue to an rvalue reference, we need
778     // to materialize the prvalue before we bind the reference to it.
779     if (SrcExpr.get()->isRValue())
780       SrcExpr = Self.CreateMaterializeTemporaryExpr(
781           SrcType, SrcExpr.get(), /*IsLValueReference*/ false);
782     SrcPointee = SrcType;
783   }
784 
785   const RecordType *SrcRecord = SrcPointee->getAs<RecordType>();
786   if (SrcRecord) {
787     if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee,
788                                  diag::err_bad_cast_incomplete,
789                                  SrcExpr.get())) {
790       SrcExpr = ExprError();
791       return;
792     }
793   } else {
794     Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
795       << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
796     SrcExpr = ExprError();
797     return;
798   }
799 
800   assert((DestPointer || DestReference) &&
801     "Bad destination non-ptr/ref slipped through.");
802   assert((DestRecord || DestPointee->isVoidType()) &&
803     "Bad destination pointee slipped through.");
804   assert(SrcRecord && "Bad source pointee slipped through.");
805 
806   // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness.
807   if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) {
808     Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away)
809       << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
810     SrcExpr = ExprError();
811     return;
812   }
813 
814   // C++ 5.2.7p3: If the type of v is the same as the required result type,
815   //   [except for cv].
816   if (DestRecord == SrcRecord) {
817     Kind = CK_NoOp;
818     return;
819   }
820 
821   // C++ 5.2.7p5
822   // Upcasts are resolved statically.
823   if (DestRecord &&
824       Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) {
825     if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee,
826                                            OpRange.getBegin(), OpRange,
827                                            &BasePath)) {
828       SrcExpr = ExprError();
829       return;
830     }
831 
832     Kind = CK_DerivedToBase;
833     return;
834   }
835 
836   // C++ 5.2.7p6: Otherwise, v shall be [polymorphic].
837   const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition();
838   assert(SrcDecl && "Definition missing");
839   if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) {
840     Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic)
841       << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
842     SrcExpr = ExprError();
843   }
844 
845   // dynamic_cast is not available with -fno-rtti.
846   // As an exception, dynamic_cast to void* is available because it doesn't
847   // use RTTI.
848   if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) {
849     Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti);
850     SrcExpr = ExprError();
851     return;
852   }
853 
854   // Done. Everything else is run-time checks.
855   Kind = CK_Dynamic;
856 }
857 
858 /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid.
859 /// Refer to C++ 5.2.11 for details. const_cast is typically used in code
860 /// like this:
861 /// const char *str = "literal";
862 /// legacy_function(const_cast\<char*\>(str));
863 void CastOperation::CheckConstCast() {
864   if (ValueKind == VK_RValue)
865     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
866   else if (isPlaceholder())
867     SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
868   if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
869     return;
870 
871   unsigned msg = diag::err_bad_cxx_cast_generic;
872   auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg);
873   if (TCR != TC_Success && msg != 0) {
874     Self.Diag(OpRange.getBegin(), msg) << CT_Const
875       << SrcExpr.get()->getType() << DestType << OpRange;
876   }
877   if (!isValidCast(TCR))
878     SrcExpr = ExprError();
879 }
880 
881 /// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast
882 /// or downcast between respective pointers or references.
883 static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr,
884                                           QualType DestType,
885                                           SourceRange OpRange) {
886   QualType SrcType = SrcExpr->getType();
887   // When casting from pointer or reference, get pointee type; use original
888   // type otherwise.
889   const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl();
890   const CXXRecordDecl *SrcRD =
891     SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl();
892 
893   // Examining subobjects for records is only possible if the complete and
894   // valid definition is available.  Also, template instantiation is not
895   // allowed here.
896   if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl())
897     return;
898 
899   const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl();
900 
901   if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl())
902     return;
903 
904   enum {
905     ReinterpretUpcast,
906     ReinterpretDowncast
907   } ReinterpretKind;
908 
909   CXXBasePaths BasePaths;
910 
911   if (SrcRD->isDerivedFrom(DestRD, BasePaths))
912     ReinterpretKind = ReinterpretUpcast;
913   else if (DestRD->isDerivedFrom(SrcRD, BasePaths))
914     ReinterpretKind = ReinterpretDowncast;
915   else
916     return;
917 
918   bool VirtualBase = true;
919   bool NonZeroOffset = false;
920   for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(),
921                                           E = BasePaths.end();
922        I != E; ++I) {
923     const CXXBasePath &Path = *I;
924     CharUnits Offset = CharUnits::Zero();
925     bool IsVirtual = false;
926     for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end();
927          IElem != EElem; ++IElem) {
928       IsVirtual = IElem->Base->isVirtual();
929       if (IsVirtual)
930         break;
931       const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl();
932       assert(BaseRD && "Base type should be a valid unqualified class type");
933       // Don't check if any base has invalid declaration or has no definition
934       // since it has no layout info.
935       const CXXRecordDecl *Class = IElem->Class,
936                           *ClassDefinition = Class->getDefinition();
937       if (Class->isInvalidDecl() || !ClassDefinition ||
938           !ClassDefinition->isCompleteDefinition())
939         return;
940 
941       const ASTRecordLayout &DerivedLayout =
942           Self.Context.getASTRecordLayout(Class);
943       Offset += DerivedLayout.getBaseClassOffset(BaseRD);
944     }
945     if (!IsVirtual) {
946       // Don't warn if any path is a non-virtually derived base at offset zero.
947       if (Offset.isZero())
948         return;
949       // Offset makes sense only for non-virtual bases.
950       else
951         NonZeroOffset = true;
952     }
953     VirtualBase = VirtualBase && IsVirtual;
954   }
955 
956   (void) NonZeroOffset; // Silence set but not used warning.
957   assert((VirtualBase || NonZeroOffset) &&
958          "Should have returned if has non-virtual base with zero offset");
959 
960   QualType BaseType =
961       ReinterpretKind == ReinterpretUpcast? DestType : SrcType;
962   QualType DerivedType =
963       ReinterpretKind == ReinterpretUpcast? SrcType : DestType;
964 
965   SourceLocation BeginLoc = OpRange.getBegin();
966   Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static)
967     << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind)
968     << OpRange;
969   Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static)
970     << int(ReinterpretKind)
971     << FixItHint::CreateReplacement(BeginLoc, "static_cast");
972 }
973 
974 /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is
975 /// valid.
976 /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code
977 /// like this:
978 /// char *bytes = reinterpret_cast\<char*\>(int_ptr);
979 void CastOperation::CheckReinterpretCast() {
980   if (ValueKind == VK_RValue && !isPlaceholder(BuiltinType::Overload))
981     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
982   else
983     checkNonOverloadPlaceholders();
984   if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
985     return;
986 
987   unsigned msg = diag::err_bad_cxx_cast_generic;
988   TryCastResult tcr =
989     TryReinterpretCast(Self, SrcExpr, DestType,
990                        /*CStyle*/false, OpRange, msg, Kind);
991   if (tcr != TC_Success && msg != 0) {
992     if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
993       return;
994     if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
995       //FIXME: &f<int>; is overloaded and resolvable
996       Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload)
997         << OverloadExpr::find(SrcExpr.get()).Expression->getName()
998         << DestType << OpRange;
999       Self.NoteAllOverloadCandidates(SrcExpr.get());
1000 
1001     } else {
1002       diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(),
1003                       DestType, /*listInitialization=*/false);
1004     }
1005   }
1006 
1007   if (isValidCast(tcr)) {
1008     if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1009       checkObjCConversion(Sema::CCK_OtherCast);
1010     DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange);
1011   } else {
1012     SrcExpr = ExprError();
1013   }
1014 }
1015 
1016 
1017 /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid.
1018 /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making
1019 /// implicit conversions explicit and getting rid of data loss warnings.
1020 void CastOperation::CheckStaticCast() {
1021   if (isPlaceholder()) {
1022     checkNonOverloadPlaceholders();
1023     if (SrcExpr.isInvalid())
1024       return;
1025   }
1026 
1027   // This test is outside everything else because it's the only case where
1028   // a non-lvalue-reference target type does not lead to decay.
1029   // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1030   if (DestType->isVoidType()) {
1031     Kind = CK_ToVoid;
1032 
1033     if (claimPlaceholder(BuiltinType::Overload)) {
1034       Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr,
1035                 false, // Decay Function to ptr
1036                 true, // Complain
1037                 OpRange, DestType, diag::err_bad_static_cast_overload);
1038       if (SrcExpr.isInvalid())
1039         return;
1040     }
1041 
1042     SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
1043     return;
1044   }
1045 
1046   if (ValueKind == VK_RValue && !DestType->isRecordType() &&
1047       !isPlaceholder(BuiltinType::Overload)) {
1048     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1049     if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1050       return;
1051   }
1052 
1053   unsigned msg = diag::err_bad_cxx_cast_generic;
1054   TryCastResult tcr
1055     = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg,
1056                     Kind, BasePath, /*ListInitialization=*/false);
1057   if (tcr != TC_Success && msg != 0) {
1058     if (SrcExpr.isInvalid())
1059       return;
1060     if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1061       OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression;
1062       Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload)
1063         << oe->getName() << DestType << OpRange
1064         << oe->getQualifierLoc().getSourceRange();
1065       Self.NoteAllOverloadCandidates(SrcExpr.get());
1066     } else {
1067       diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType,
1068                       /*listInitialization=*/false);
1069     }
1070   }
1071 
1072   if (isValidCast(tcr)) {
1073     if (Kind == CK_BitCast)
1074       checkCastAlign();
1075     if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1076       checkObjCConversion(Sema::CCK_OtherCast);
1077   } else {
1078     SrcExpr = ExprError();
1079   }
1080 }
1081 
1082 static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) {
1083   auto *SrcPtrType = SrcType->getAs<PointerType>();
1084   if (!SrcPtrType)
1085     return false;
1086   auto *DestPtrType = DestType->getAs<PointerType>();
1087   if (!DestPtrType)
1088     return false;
1089   return SrcPtrType->getPointeeType().getAddressSpace() !=
1090          DestPtrType->getPointeeType().getAddressSpace();
1091 }
1092 
1093 /// TryStaticCast - Check if a static cast can be performed, and do so if
1094 /// possible. If @p CStyle, ignore access restrictions on hierarchy casting
1095 /// and casting away constness.
1096 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
1097                                    QualType DestType,
1098                                    Sema::CheckedConversionKind CCK,
1099                                    SourceRange OpRange, unsigned &msg,
1100                                    CastKind &Kind, CXXCastPath &BasePath,
1101                                    bool ListInitialization) {
1102   // Determine whether we have the semantics of a C-style cast.
1103   bool CStyle
1104     = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
1105 
1106   // The order the tests is not entirely arbitrary. There is one conversion
1107   // that can be handled in two different ways. Given:
1108   // struct A {};
1109   // struct B : public A {
1110   //   B(); B(const A&);
1111   // };
1112   // const A &a = B();
1113   // the cast static_cast<const B&>(a) could be seen as either a static
1114   // reference downcast, or an explicit invocation of the user-defined
1115   // conversion using B's conversion constructor.
1116   // DR 427 specifies that the downcast is to be applied here.
1117 
1118   // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1119   // Done outside this function.
1120 
1121   TryCastResult tcr;
1122 
1123   // C++ 5.2.9p5, reference downcast.
1124   // See the function for details.
1125   // DR 427 specifies that this is to be applied before paragraph 2.
1126   tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle,
1127                                    OpRange, msg, Kind, BasePath);
1128   if (tcr != TC_NotApplicable)
1129     return tcr;
1130 
1131   // C++11 [expr.static.cast]p3:
1132   //   A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2
1133   //   T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1134   tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind,
1135                               BasePath, msg);
1136   if (tcr != TC_NotApplicable)
1137     return tcr;
1138 
1139   // C++ 5.2.9p2: An expression e can be explicitly converted to a type T
1140   //   [...] if the declaration "T t(e);" is well-formed, [...].
1141   tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg,
1142                               Kind, ListInitialization);
1143   if (SrcExpr.isInvalid())
1144     return TC_Failed;
1145   if (tcr != TC_NotApplicable)
1146     return tcr;
1147 
1148   // C++ 5.2.9p6: May apply the reverse of any standard conversion, except
1149   // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean
1150   // conversions, subject to further restrictions.
1151   // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal
1152   // of qualification conversions impossible.
1153   // In the CStyle case, the earlier attempt to const_cast should have taken
1154   // care of reverse qualification conversions.
1155 
1156   QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType());
1157 
1158   // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly
1159   // converted to an integral type. [...] A value of a scoped enumeration type
1160   // can also be explicitly converted to a floating-point type [...].
1161   if (const EnumType *Enum = SrcType->getAs<EnumType>()) {
1162     if (Enum->getDecl()->isScoped()) {
1163       if (DestType->isBooleanType()) {
1164         Kind = CK_IntegralToBoolean;
1165         return TC_Success;
1166       } else if (DestType->isIntegralType(Self.Context)) {
1167         Kind = CK_IntegralCast;
1168         return TC_Success;
1169       } else if (DestType->isRealFloatingType()) {
1170         Kind = CK_IntegralToFloating;
1171         return TC_Success;
1172       }
1173     }
1174   }
1175 
1176   // Reverse integral promotion/conversion. All such conversions are themselves
1177   // again integral promotions or conversions and are thus already handled by
1178   // p2 (TryDirectInitialization above).
1179   // (Note: any data loss warnings should be suppressed.)
1180   // The exception is the reverse of enum->integer, i.e. integer->enum (and
1181   // enum->enum). See also C++ 5.2.9p7.
1182   // The same goes for reverse floating point promotion/conversion and
1183   // floating-integral conversions. Again, only floating->enum is relevant.
1184   if (DestType->isEnumeralType()) {
1185     if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
1186                                  diag::err_bad_cast_incomplete)) {
1187       SrcExpr = ExprError();
1188       return TC_Failed;
1189     }
1190     if (SrcType->isIntegralOrEnumerationType()) {
1191       Kind = CK_IntegralCast;
1192       return TC_Success;
1193     } else if (SrcType->isRealFloatingType())   {
1194       Kind = CK_FloatingToIntegral;
1195       return TC_Success;
1196     }
1197   }
1198 
1199   // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast.
1200   // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance.
1201   tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg,
1202                                  Kind, BasePath);
1203   if (tcr != TC_NotApplicable)
1204     return tcr;
1205 
1206   // Reverse member pointer conversion. C++ 4.11 specifies member pointer
1207   // conversion. C++ 5.2.9p9 has additional information.
1208   // DR54's access restrictions apply here also.
1209   tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle,
1210                                      OpRange, msg, Kind, BasePath);
1211   if (tcr != TC_NotApplicable)
1212     return tcr;
1213 
1214   // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to
1215   // void*. C++ 5.2.9p10 specifies additional restrictions, which really is
1216   // just the usual constness stuff.
1217   if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
1218     QualType SrcPointee = SrcPointer->getPointeeType();
1219     if (SrcPointee->isVoidType()) {
1220       if (const PointerType *DestPointer = DestType->getAs<PointerType>()) {
1221         QualType DestPointee = DestPointer->getPointeeType();
1222         if (DestPointee->isIncompleteOrObjectType()) {
1223           // This is definitely the intended conversion, but it might fail due
1224           // to a qualifier violation. Note that we permit Objective-C lifetime
1225           // and GC qualifier mismatches here.
1226           if (!CStyle) {
1227             Qualifiers DestPointeeQuals = DestPointee.getQualifiers();
1228             Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers();
1229             DestPointeeQuals.removeObjCGCAttr();
1230             DestPointeeQuals.removeObjCLifetime();
1231             SrcPointeeQuals.removeObjCGCAttr();
1232             SrcPointeeQuals.removeObjCLifetime();
1233             if (DestPointeeQuals != SrcPointeeQuals &&
1234                 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) {
1235               msg = diag::err_bad_cxx_cast_qualifiers_away;
1236               return TC_Failed;
1237             }
1238           }
1239           Kind = IsAddressSpaceConversion(SrcType, DestType)
1240                      ? CK_AddressSpaceConversion
1241                      : CK_BitCast;
1242           return TC_Success;
1243         }
1244 
1245         // Microsoft permits static_cast from 'pointer-to-void' to
1246         // 'pointer-to-function'.
1247         if (!CStyle && Self.getLangOpts().MSVCCompat &&
1248             DestPointee->isFunctionType()) {
1249           Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange;
1250           Kind = CK_BitCast;
1251           return TC_Success;
1252         }
1253       }
1254       else if (DestType->isObjCObjectPointerType()) {
1255         // allow both c-style cast and static_cast of objective-c pointers as
1256         // they are pervasive.
1257         Kind = CK_CPointerToObjCPointerCast;
1258         return TC_Success;
1259       }
1260       else if (CStyle && DestType->isBlockPointerType()) {
1261         // allow c-style cast of void * to block pointers.
1262         Kind = CK_AnyPointerToBlockPointerCast;
1263         return TC_Success;
1264       }
1265     }
1266   }
1267   // Allow arbitrary objective-c pointer conversion with static casts.
1268   if (SrcType->isObjCObjectPointerType() &&
1269       DestType->isObjCObjectPointerType()) {
1270     Kind = CK_BitCast;
1271     return TC_Success;
1272   }
1273   // Allow ns-pointer to cf-pointer conversion in either direction
1274   // with static casts.
1275   if (!CStyle &&
1276       Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind))
1277     return TC_Success;
1278 
1279   // See if it looks like the user is trying to convert between
1280   // related record types, and select a better diagnostic if so.
1281   if (auto SrcPointer = SrcType->getAs<PointerType>())
1282     if (auto DestPointer = DestType->getAs<PointerType>())
1283       if (SrcPointer->getPointeeType()->getAs<RecordType>() &&
1284           DestPointer->getPointeeType()->getAs<RecordType>())
1285        msg = diag::err_bad_cxx_cast_unrelated_class;
1286 
1287   // We tried everything. Everything! Nothing works! :-(
1288   return TC_NotApplicable;
1289 }
1290 
1291 /// Tests whether a conversion according to N2844 is valid.
1292 TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
1293                                     QualType DestType, bool CStyle,
1294                                     CastKind &Kind, CXXCastPath &BasePath,
1295                                     unsigned &msg) {
1296   // C++11 [expr.static.cast]p3:
1297   //   A glvalue of type "cv1 T1" can be cast to type "rvalue reference to
1298   //   cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1299   const RValueReferenceType *R = DestType->getAs<RValueReferenceType>();
1300   if (!R)
1301     return TC_NotApplicable;
1302 
1303   if (!SrcExpr->isGLValue())
1304     return TC_NotApplicable;
1305 
1306   // Because we try the reference downcast before this function, from now on
1307   // this is the only cast possibility, so we issue an error if we fail now.
1308   // FIXME: Should allow casting away constness if CStyle.
1309   QualType FromType = SrcExpr->getType();
1310   QualType ToType = R->getPointeeType();
1311   if (CStyle) {
1312     FromType = FromType.getUnqualifiedType();
1313     ToType = ToType.getUnqualifiedType();
1314   }
1315 
1316   Sema::ReferenceConversions RefConv;
1317   Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship(
1318       SrcExpr->getBeginLoc(), ToType, FromType, &RefConv);
1319   if (RefResult != Sema::Ref_Compatible) {
1320     if (CStyle || RefResult == Sema::Ref_Incompatible)
1321       return TC_NotApplicable;
1322     // Diagnose types which are reference-related but not compatible here since
1323     // we can provide better diagnostics. In these cases forwarding to
1324     // [expr.static.cast]p4 should never result in a well-formed cast.
1325     msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast
1326                               : diag::err_bad_rvalue_to_rvalue_cast;
1327     return TC_Failed;
1328   }
1329 
1330   if (RefConv & Sema::ReferenceConversions::DerivedToBase) {
1331     Kind = CK_DerivedToBase;
1332     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1333                        /*DetectVirtual=*/true);
1334     if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(),
1335                             R->getPointeeType(), Paths))
1336       return TC_NotApplicable;
1337 
1338     Self.BuildBasePathArray(Paths, BasePath);
1339   } else
1340     Kind = CK_NoOp;
1341 
1342   return TC_Success;
1343 }
1344 
1345 /// Tests whether a conversion according to C++ 5.2.9p5 is valid.
1346 TryCastResult
1347 TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType,
1348                            bool CStyle, SourceRange OpRange,
1349                            unsigned &msg, CastKind &Kind,
1350                            CXXCastPath &BasePath) {
1351   // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be
1352   //   cast to type "reference to cv2 D", where D is a class derived from B,
1353   //   if a valid standard conversion from "pointer to D" to "pointer to B"
1354   //   exists, cv2 >= cv1, and B is not a virtual base class of D.
1355   // In addition, DR54 clarifies that the base must be accessible in the
1356   // current context. Although the wording of DR54 only applies to the pointer
1357   // variant of this rule, the intent is clearly for it to apply to the this
1358   // conversion as well.
1359 
1360   const ReferenceType *DestReference = DestType->getAs<ReferenceType>();
1361   if (!DestReference) {
1362     return TC_NotApplicable;
1363   }
1364   bool RValueRef = DestReference->isRValueReferenceType();
1365   if (!RValueRef && !SrcExpr->isLValue()) {
1366     // We know the left side is an lvalue reference, so we can suggest a reason.
1367     msg = diag::err_bad_cxx_cast_rvalue;
1368     return TC_NotApplicable;
1369   }
1370 
1371   QualType DestPointee = DestReference->getPointeeType();
1372 
1373   // FIXME: If the source is a prvalue, we should issue a warning (because the
1374   // cast always has undefined behavior), and for AST consistency, we should
1375   // materialize a temporary.
1376   return TryStaticDowncast(Self,
1377                            Self.Context.getCanonicalType(SrcExpr->getType()),
1378                            Self.Context.getCanonicalType(DestPointee), CStyle,
1379                            OpRange, SrcExpr->getType(), DestType, msg, Kind,
1380                            BasePath);
1381 }
1382 
1383 /// Tests whether a conversion according to C++ 5.2.9p8 is valid.
1384 TryCastResult
1385 TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType,
1386                          bool CStyle, SourceRange OpRange,
1387                          unsigned &msg, CastKind &Kind,
1388                          CXXCastPath &BasePath) {
1389   // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class
1390   //   type, can be converted to an rvalue of type "pointer to cv2 D", where D
1391   //   is a class derived from B, if a valid standard conversion from "pointer
1392   //   to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base
1393   //   class of D.
1394   // In addition, DR54 clarifies that the base must be accessible in the
1395   // current context.
1396 
1397   const PointerType *DestPointer = DestType->getAs<PointerType>();
1398   if (!DestPointer) {
1399     return TC_NotApplicable;
1400   }
1401 
1402   const PointerType *SrcPointer = SrcType->getAs<PointerType>();
1403   if (!SrcPointer) {
1404     msg = diag::err_bad_static_cast_pointer_nonpointer;
1405     return TC_NotApplicable;
1406   }
1407 
1408   return TryStaticDowncast(Self,
1409                    Self.Context.getCanonicalType(SrcPointer->getPointeeType()),
1410                   Self.Context.getCanonicalType(DestPointer->getPointeeType()),
1411                            CStyle, OpRange, SrcType, DestType, msg, Kind,
1412                            BasePath);
1413 }
1414 
1415 /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and
1416 /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to
1417 /// DestType is possible and allowed.
1418 TryCastResult
1419 TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType,
1420                   bool CStyle, SourceRange OpRange, QualType OrigSrcType,
1421                   QualType OrigDestType, unsigned &msg,
1422                   CastKind &Kind, CXXCastPath &BasePath) {
1423   // We can only work with complete types. But don't complain if it doesn't work
1424   if (!Self.isCompleteType(OpRange.getBegin(), SrcType) ||
1425       !Self.isCompleteType(OpRange.getBegin(), DestType))
1426     return TC_NotApplicable;
1427 
1428   // Downcast can only happen in class hierarchies, so we need classes.
1429   if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) {
1430     return TC_NotApplicable;
1431   }
1432 
1433   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1434                      /*DetectVirtual=*/true);
1435   if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) {
1436     return TC_NotApplicable;
1437   }
1438 
1439   // Target type does derive from source type. Now we're serious. If an error
1440   // appears now, it's not ignored.
1441   // This may not be entirely in line with the standard. Take for example:
1442   // struct A {};
1443   // struct B : virtual A {
1444   //   B(A&);
1445   // };
1446   //
1447   // void f()
1448   // {
1449   //   (void)static_cast<const B&>(*((A*)0));
1450   // }
1451   // As far as the standard is concerned, p5 does not apply (A is virtual), so
1452   // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid.
1453   // However, both GCC and Comeau reject this example, and accepting it would
1454   // mean more complex code if we're to preserve the nice error message.
1455   // FIXME: Being 100% compliant here would be nice to have.
1456 
1457   // Must preserve cv, as always, unless we're in C-style mode.
1458   if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) {
1459     msg = diag::err_bad_cxx_cast_qualifiers_away;
1460     return TC_Failed;
1461   }
1462 
1463   if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) {
1464     // This code is analoguous to that in CheckDerivedToBaseConversion, except
1465     // that it builds the paths in reverse order.
1466     // To sum up: record all paths to the base and build a nice string from
1467     // them. Use it to spice up the error message.
1468     if (!Paths.isRecordingPaths()) {
1469       Paths.clear();
1470       Paths.setRecordingPaths(true);
1471       Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths);
1472     }
1473     std::string PathDisplayStr;
1474     std::set<unsigned> DisplayedPaths;
1475     for (clang::CXXBasePath &Path : Paths) {
1476       if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) {
1477         // We haven't displayed a path to this particular base
1478         // class subobject yet.
1479         PathDisplayStr += "\n    ";
1480         for (CXXBasePathElement &PE : llvm::reverse(Path))
1481           PathDisplayStr += PE.Base->getType().getAsString() + " -> ";
1482         PathDisplayStr += QualType(DestType).getAsString();
1483       }
1484     }
1485 
1486     Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast)
1487       << QualType(SrcType).getUnqualifiedType()
1488       << QualType(DestType).getUnqualifiedType()
1489       << PathDisplayStr << OpRange;
1490     msg = 0;
1491     return TC_Failed;
1492   }
1493 
1494   if (Paths.getDetectedVirtual() != nullptr) {
1495     QualType VirtualBase(Paths.getDetectedVirtual(), 0);
1496     Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual)
1497       << OrigSrcType << OrigDestType << VirtualBase << OpRange;
1498     msg = 0;
1499     return TC_Failed;
1500   }
1501 
1502   if (!CStyle) {
1503     switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1504                                       SrcType, DestType,
1505                                       Paths.front(),
1506                                 diag::err_downcast_from_inaccessible_base)) {
1507     case Sema::AR_accessible:
1508     case Sema::AR_delayed:     // be optimistic
1509     case Sema::AR_dependent:   // be optimistic
1510       break;
1511 
1512     case Sema::AR_inaccessible:
1513       msg = 0;
1514       return TC_Failed;
1515     }
1516   }
1517 
1518   Self.BuildBasePathArray(Paths, BasePath);
1519   Kind = CK_BaseToDerived;
1520   return TC_Success;
1521 }
1522 
1523 /// TryStaticMemberPointerUpcast - Tests whether a conversion according to
1524 /// C++ 5.2.9p9 is valid:
1525 ///
1526 ///   An rvalue of type "pointer to member of D of type cv1 T" can be
1527 ///   converted to an rvalue of type "pointer to member of B of type cv2 T",
1528 ///   where B is a base class of D [...].
1529 ///
1530 TryCastResult
1531 TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType,
1532                              QualType DestType, bool CStyle,
1533                              SourceRange OpRange,
1534                              unsigned &msg, CastKind &Kind,
1535                              CXXCastPath &BasePath) {
1536   const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>();
1537   if (!DestMemPtr)
1538     return TC_NotApplicable;
1539 
1540   bool WasOverloadedFunction = false;
1541   DeclAccessPair FoundOverload;
1542   if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1543     if (FunctionDecl *Fn
1544           = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false,
1545                                                     FoundOverload)) {
1546       CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
1547       SrcType = Self.Context.getMemberPointerType(Fn->getType(),
1548                       Self.Context.getTypeDeclType(M->getParent()).getTypePtr());
1549       WasOverloadedFunction = true;
1550     }
1551   }
1552 
1553   const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>();
1554   if (!SrcMemPtr) {
1555     msg = diag::err_bad_static_cast_member_pointer_nonmp;
1556     return TC_NotApplicable;
1557   }
1558 
1559   // Lock down the inheritance model right now in MS ABI, whether or not the
1560   // pointee types are the same.
1561   if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1562     (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
1563     (void)Self.isCompleteType(OpRange.getBegin(), DestType);
1564   }
1565 
1566   // T == T, modulo cv
1567   if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(),
1568                                            DestMemPtr->getPointeeType()))
1569     return TC_NotApplicable;
1570 
1571   // B base of D
1572   QualType SrcClass(SrcMemPtr->getClass(), 0);
1573   QualType DestClass(DestMemPtr->getClass(), 0);
1574   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1575                   /*DetectVirtual=*/true);
1576   if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths))
1577     return TC_NotApplicable;
1578 
1579   // B is a base of D. But is it an allowed base? If not, it's a hard error.
1580   if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) {
1581     Paths.clear();
1582     Paths.setRecordingPaths(true);
1583     bool StillOkay =
1584         Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths);
1585     assert(StillOkay);
1586     (void)StillOkay;
1587     std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths);
1588     Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv)
1589       << 1 << SrcClass << DestClass << PathDisplayStr << OpRange;
1590     msg = 0;
1591     return TC_Failed;
1592   }
1593 
1594   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1595     Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual)
1596       << SrcClass << DestClass << QualType(VBase, 0) << OpRange;
1597     msg = 0;
1598     return TC_Failed;
1599   }
1600 
1601   if (!CStyle) {
1602     switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1603                                       DestClass, SrcClass,
1604                                       Paths.front(),
1605                                       diag::err_upcast_to_inaccessible_base)) {
1606     case Sema::AR_accessible:
1607     case Sema::AR_delayed:
1608     case Sema::AR_dependent:
1609       // Optimistically assume that the delayed and dependent cases
1610       // will work out.
1611       break;
1612 
1613     case Sema::AR_inaccessible:
1614       msg = 0;
1615       return TC_Failed;
1616     }
1617   }
1618 
1619   if (WasOverloadedFunction) {
1620     // Resolve the address of the overloaded function again, this time
1621     // allowing complaints if something goes wrong.
1622     FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
1623                                                                DestType,
1624                                                                true,
1625                                                                FoundOverload);
1626     if (!Fn) {
1627       msg = 0;
1628       return TC_Failed;
1629     }
1630 
1631     SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn);
1632     if (!SrcExpr.isUsable()) {
1633       msg = 0;
1634       return TC_Failed;
1635     }
1636   }
1637 
1638   Self.BuildBasePathArray(Paths, BasePath);
1639   Kind = CK_DerivedToBaseMemberPointer;
1640   return TC_Success;
1641 }
1642 
1643 /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2
1644 /// is valid:
1645 ///
1646 ///   An expression e can be explicitly converted to a type T using a
1647 ///   @c static_cast if the declaration "T t(e);" is well-formed [...].
1648 TryCastResult
1649 TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType,
1650                       Sema::CheckedConversionKind CCK,
1651                       SourceRange OpRange, unsigned &msg,
1652                       CastKind &Kind, bool ListInitialization) {
1653   if (DestType->isRecordType()) {
1654     if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
1655                                  diag::err_bad_cast_incomplete) ||
1656         Self.RequireNonAbstractType(OpRange.getBegin(), DestType,
1657                                     diag::err_allocation_of_abstract_type)) {
1658       msg = 0;
1659       return TC_Failed;
1660     }
1661   }
1662 
1663   InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType);
1664   InitializationKind InitKind
1665     = (CCK == Sema::CCK_CStyleCast)
1666         ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange,
1667                                                ListInitialization)
1668     : (CCK == Sema::CCK_FunctionalCast)
1669         ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization)
1670     : InitializationKind::CreateCast(OpRange);
1671   Expr *SrcExprRaw = SrcExpr.get();
1672   // FIXME: Per DR242, we should check for an implicit conversion sequence
1673   // or for a constructor that could be invoked by direct-initialization
1674   // here, not for an initialization sequence.
1675   InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw);
1676 
1677   // At this point of CheckStaticCast, if the destination is a reference,
1678   // or the expression is an overload expression this has to work.
1679   // There is no other way that works.
1680   // On the other hand, if we're checking a C-style cast, we've still got
1681   // the reinterpret_cast way.
1682   bool CStyle
1683     = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
1684   if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType()))
1685     return TC_NotApplicable;
1686 
1687   ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw);
1688   if (Result.isInvalid()) {
1689     msg = 0;
1690     return TC_Failed;
1691   }
1692 
1693   if (InitSeq.isConstructorInitialization())
1694     Kind = CK_ConstructorConversion;
1695   else
1696     Kind = CK_NoOp;
1697 
1698   SrcExpr = Result;
1699   return TC_Success;
1700 }
1701 
1702 /// TryConstCast - See if a const_cast from source to destination is allowed,
1703 /// and perform it if it is.
1704 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
1705                                   QualType DestType, bool CStyle,
1706                                   unsigned &msg) {
1707   DestType = Self.Context.getCanonicalType(DestType);
1708   QualType SrcType = SrcExpr.get()->getType();
1709   bool NeedToMaterializeTemporary = false;
1710 
1711   if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) {
1712     // C++11 5.2.11p4:
1713     //   if a pointer to T1 can be explicitly converted to the type "pointer to
1714     //   T2" using a const_cast, then the following conversions can also be
1715     //   made:
1716     //    -- an lvalue of type T1 can be explicitly converted to an lvalue of
1717     //       type T2 using the cast const_cast<T2&>;
1718     //    -- a glvalue of type T1 can be explicitly converted to an xvalue of
1719     //       type T2 using the cast const_cast<T2&&>; and
1720     //    -- if T1 is a class type, a prvalue of type T1 can be explicitly
1721     //       converted to an xvalue of type T2 using the cast const_cast<T2&&>.
1722 
1723     if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) {
1724       // Cannot const_cast non-lvalue to lvalue reference type. But if this
1725       // is C-style, static_cast might find a way, so we simply suggest a
1726       // message and tell the parent to keep searching.
1727       msg = diag::err_bad_cxx_cast_rvalue;
1728       return TC_NotApplicable;
1729     }
1730 
1731     if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isRValue()) {
1732       if (!SrcType->isRecordType()) {
1733         // Cannot const_cast non-class prvalue to rvalue reference type. But if
1734         // this is C-style, static_cast can do this.
1735         msg = diag::err_bad_cxx_cast_rvalue;
1736         return TC_NotApplicable;
1737       }
1738 
1739       // Materialize the class prvalue so that the const_cast can bind a
1740       // reference to it.
1741       NeedToMaterializeTemporary = true;
1742     }
1743 
1744     // It's not completely clear under the standard whether we can
1745     // const_cast bit-field gl-values.  Doing so would not be
1746     // intrinsically complicated, but for now, we say no for
1747     // consistency with other compilers and await the word of the
1748     // committee.
1749     if (SrcExpr.get()->refersToBitField()) {
1750       msg = diag::err_bad_cxx_cast_bitfield;
1751       return TC_NotApplicable;
1752     }
1753 
1754     DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
1755     SrcType = Self.Context.getPointerType(SrcType);
1756   }
1757 
1758   // C++ 5.2.11p5: For a const_cast involving pointers to data members [...]
1759   //   the rules for const_cast are the same as those used for pointers.
1760 
1761   if (!DestType->isPointerType() &&
1762       !DestType->isMemberPointerType() &&
1763       !DestType->isObjCObjectPointerType()) {
1764     // Cannot cast to non-pointer, non-reference type. Note that, if DestType
1765     // was a reference type, we converted it to a pointer above.
1766     // The status of rvalue references isn't entirely clear, but it looks like
1767     // conversion to them is simply invalid.
1768     // C++ 5.2.11p3: For two pointer types [...]
1769     if (!CStyle)
1770       msg = diag::err_bad_const_cast_dest;
1771     return TC_NotApplicable;
1772   }
1773   if (DestType->isFunctionPointerType() ||
1774       DestType->isMemberFunctionPointerType()) {
1775     // Cannot cast direct function pointers.
1776     // C++ 5.2.11p2: [...] where T is any object type or the void type [...]
1777     // T is the ultimate pointee of source and target type.
1778     if (!CStyle)
1779       msg = diag::err_bad_const_cast_dest;
1780     return TC_NotApplicable;
1781   }
1782 
1783   // C++ [expr.const.cast]p3:
1784   //   "For two similar types T1 and T2, [...]"
1785   //
1786   // We only allow a const_cast to change cvr-qualifiers, not other kinds of
1787   // type qualifiers. (Likewise, we ignore other changes when determining
1788   // whether a cast casts away constness.)
1789   if (!Self.Context.hasCvrSimilarType(SrcType, DestType))
1790     return TC_NotApplicable;
1791 
1792   if (NeedToMaterializeTemporary)
1793     // This is a const_cast from a class prvalue to an rvalue reference type.
1794     // Materialize a temporary to store the result of the conversion.
1795     SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(),
1796                                                   SrcExpr.get(),
1797                                                   /*IsLValueReference*/ false);
1798 
1799   return TC_Success;
1800 }
1801 
1802 // Checks for undefined behavior in reinterpret_cast.
1803 // The cases that is checked for is:
1804 // *reinterpret_cast<T*>(&a)
1805 // reinterpret_cast<T&>(a)
1806 // where accessing 'a' as type 'T' will result in undefined behavior.
1807 void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
1808                                           bool IsDereference,
1809                                           SourceRange Range) {
1810   unsigned DiagID = IsDereference ?
1811                         diag::warn_pointer_indirection_from_incompatible_type :
1812                         diag::warn_undefined_reinterpret_cast;
1813 
1814   if (Diags.isIgnored(DiagID, Range.getBegin()))
1815     return;
1816 
1817   QualType SrcTy, DestTy;
1818   if (IsDereference) {
1819     if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) {
1820       return;
1821     }
1822     SrcTy = SrcType->getPointeeType();
1823     DestTy = DestType->getPointeeType();
1824   } else {
1825     if (!DestType->getAs<ReferenceType>()) {
1826       return;
1827     }
1828     SrcTy = SrcType;
1829     DestTy = DestType->getPointeeType();
1830   }
1831 
1832   // Cast is compatible if the types are the same.
1833   if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) {
1834     return;
1835   }
1836   // or one of the types is a char or void type
1837   if (DestTy->isAnyCharacterType() || DestTy->isVoidType() ||
1838       SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) {
1839     return;
1840   }
1841   // or one of the types is a tag type.
1842   if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) {
1843     return;
1844   }
1845 
1846   // FIXME: Scoped enums?
1847   if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) ||
1848       (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) {
1849     if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) {
1850       return;
1851     }
1852   }
1853 
1854   Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range;
1855 }
1856 
1857 static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr,
1858                                   QualType DestType) {
1859   QualType SrcType = SrcExpr.get()->getType();
1860   if (Self.Context.hasSameType(SrcType, DestType))
1861     return;
1862   if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>())
1863     if (SrcPtrTy->isObjCSelType()) {
1864       QualType DT = DestType;
1865       if (isa<PointerType>(DestType))
1866         DT = DestType->getPointeeType();
1867       if (!DT.getUnqualifiedType()->isVoidType())
1868         Self.Diag(SrcExpr.get()->getExprLoc(),
1869                   diag::warn_cast_pointer_from_sel)
1870         << SrcType << DestType << SrcExpr.get()->getSourceRange();
1871     }
1872 }
1873 
1874 /// Diagnose casts that change the calling convention of a pointer to a function
1875 /// defined in the current TU.
1876 static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr,
1877                                     QualType DstType, SourceRange OpRange) {
1878   // Check if this cast would change the calling convention of a function
1879   // pointer type.
1880   QualType SrcType = SrcExpr.get()->getType();
1881   if (Self.Context.hasSameType(SrcType, DstType) ||
1882       !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType())
1883     return;
1884   const auto *SrcFTy =
1885       SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
1886   const auto *DstFTy =
1887       DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
1888   CallingConv SrcCC = SrcFTy->getCallConv();
1889   CallingConv DstCC = DstFTy->getCallConv();
1890   if (SrcCC == DstCC)
1891     return;
1892 
1893   // We have a calling convention cast. Check if the source is a pointer to a
1894   // known, specific function that has already been defined.
1895   Expr *Src = SrcExpr.get()->IgnoreParenImpCasts();
1896   if (auto *UO = dyn_cast<UnaryOperator>(Src))
1897     if (UO->getOpcode() == UO_AddrOf)
1898       Src = UO->getSubExpr()->IgnoreParenImpCasts();
1899   auto *DRE = dyn_cast<DeclRefExpr>(Src);
1900   if (!DRE)
1901     return;
1902   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
1903   if (!FD)
1904     return;
1905 
1906   // Only warn if we are casting from the default convention to a non-default
1907   // convention. This can happen when the programmer forgot to apply the calling
1908   // convention to the function declaration and then inserted this cast to
1909   // satisfy the type system.
1910   CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention(
1911       FD->isVariadic(), FD->isCXXInstanceMember());
1912   if (DstCC == DefaultCC || SrcCC != DefaultCC)
1913     return;
1914 
1915   // Diagnose this cast, as it is probably bad.
1916   StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC);
1917   StringRef DstCCName = FunctionType::getNameForCallConv(DstCC);
1918   Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv)
1919       << SrcCCName << DstCCName << OpRange;
1920 
1921   // The checks above are cheaper than checking if the diagnostic is enabled.
1922   // However, it's worth checking if the warning is enabled before we construct
1923   // a fixit.
1924   if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin()))
1925     return;
1926 
1927   // Try to suggest a fixit to change the calling convention of the function
1928   // whose address was taken. Try to use the latest macro for the convention.
1929   // For example, users probably want to write "WINAPI" instead of "__stdcall"
1930   // to match the Windows header declarations.
1931   SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc();
1932   Preprocessor &PP = Self.getPreprocessor();
1933   SmallVector<TokenValue, 6> AttrTokens;
1934   SmallString<64> CCAttrText;
1935   llvm::raw_svector_ostream OS(CCAttrText);
1936   if (Self.getLangOpts().MicrosoftExt) {
1937     // __stdcall or __vectorcall
1938     OS << "__" << DstCCName;
1939     IdentifierInfo *II = PP.getIdentifierInfo(OS.str());
1940     AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
1941                              ? TokenValue(II->getTokenID())
1942                              : TokenValue(II));
1943   } else {
1944     // __attribute__((stdcall)) or __attribute__((vectorcall))
1945     OS << "__attribute__((" << DstCCName << "))";
1946     AttrTokens.push_back(tok::kw___attribute);
1947     AttrTokens.push_back(tok::l_paren);
1948     AttrTokens.push_back(tok::l_paren);
1949     IdentifierInfo *II = PP.getIdentifierInfo(DstCCName);
1950     AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
1951                              ? TokenValue(II->getTokenID())
1952                              : TokenValue(II));
1953     AttrTokens.push_back(tok::r_paren);
1954     AttrTokens.push_back(tok::r_paren);
1955   }
1956   StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens);
1957   if (!AttrSpelling.empty())
1958     CCAttrText = AttrSpelling;
1959   OS << ' ';
1960   Self.Diag(NameLoc, diag::note_change_calling_conv_fixit)
1961       << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText);
1962 }
1963 
1964 static void checkIntToPointerCast(bool CStyle, SourceLocation Loc,
1965                                   const Expr *SrcExpr, QualType DestType,
1966                                   Sema &Self) {
1967   QualType SrcType = SrcExpr->getType();
1968 
1969   // Not warning on reinterpret_cast, boolean, constant expressions, etc
1970   // are not explicit design choices, but consistent with GCC's behavior.
1971   // Feel free to modify them if you've reason/evidence for an alternative.
1972   if (CStyle && SrcType->isIntegralType(Self.Context)
1973       && !SrcType->isBooleanType()
1974       && !SrcType->isEnumeralType()
1975       && !SrcExpr->isIntegerConstantExpr(Self.Context)
1976       && Self.Context.getTypeSize(DestType) >
1977          Self.Context.getTypeSize(SrcType)) {
1978     // Separate between casts to void* and non-void* pointers.
1979     // Some APIs use (abuse) void* for something like a user context,
1980     // and often that value is an integer even if it isn't a pointer itself.
1981     // Having a separate warning flag allows users to control the warning
1982     // for their workflow.
1983     unsigned Diag = DestType->isVoidPointerType() ?
1984                       diag::warn_int_to_void_pointer_cast
1985                     : diag::warn_int_to_pointer_cast;
1986     Self.Diag(Loc, Diag) << SrcType << DestType;
1987   }
1988 }
1989 
1990 static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType,
1991                                              ExprResult &Result) {
1992   // We can only fix an overloaded reinterpret_cast if
1993   // - it is a template with explicit arguments that resolves to an lvalue
1994   //   unambiguously, or
1995   // - it is the only function in an overload set that may have its address
1996   //   taken.
1997 
1998   Expr *E = Result.get();
1999   // TODO: what if this fails because of DiagnoseUseOfDecl or something
2000   // like it?
2001   if (Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2002           Result,
2003           Expr::getValueKindForType(DestType) == VK_RValue // Convert Fun to Ptr
2004           ) &&
2005       Result.isUsable())
2006     return true;
2007 
2008   // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
2009   // preserves Result.
2010   Result = E;
2011   if (!Self.resolveAndFixAddressOfSingleOverloadCandidate(
2012           Result, /*DoFunctionPointerConversion=*/true))
2013     return false;
2014   return Result.isUsable();
2015 }
2016 
2017 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
2018                                         QualType DestType, bool CStyle,
2019                                         SourceRange OpRange,
2020                                         unsigned &msg,
2021                                         CastKind &Kind) {
2022   bool IsLValueCast = false;
2023 
2024   DestType = Self.Context.getCanonicalType(DestType);
2025   QualType SrcType = SrcExpr.get()->getType();
2026 
2027   // Is the source an overloaded name? (i.e. &foo)
2028   // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5)
2029   if (SrcType == Self.Context.OverloadTy) {
2030     ExprResult FixedExpr = SrcExpr;
2031     if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr))
2032       return TC_NotApplicable;
2033 
2034     assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr");
2035     SrcExpr = FixedExpr;
2036     SrcType = SrcExpr.get()->getType();
2037   }
2038 
2039   if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) {
2040     if (!SrcExpr.get()->isGLValue()) {
2041       // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the
2042       // similar comment in const_cast.
2043       msg = diag::err_bad_cxx_cast_rvalue;
2044       return TC_NotApplicable;
2045     }
2046 
2047     if (!CStyle) {
2048       Self.CheckCompatibleReinterpretCast(SrcType, DestType,
2049                                           /*IsDereference=*/false, OpRange);
2050     }
2051 
2052     // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the
2053     //   same effect as the conversion *reinterpret_cast<T*>(&x) with the
2054     //   built-in & and * operators.
2055 
2056     const char *inappropriate = nullptr;
2057     switch (SrcExpr.get()->getObjectKind()) {
2058     case OK_Ordinary:
2059       break;
2060     case OK_BitField:
2061       msg = diag::err_bad_cxx_cast_bitfield;
2062       return TC_NotApplicable;
2063       // FIXME: Use a specific diagnostic for the rest of these cases.
2064     case OK_VectorComponent: inappropriate = "vector element";      break;
2065     case OK_ObjCProperty:    inappropriate = "property expression"; break;
2066     case OK_ObjCSubscript:   inappropriate = "container subscripting expression";
2067                              break;
2068     }
2069     if (inappropriate) {
2070       Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference)
2071           << inappropriate << DestType
2072           << OpRange << SrcExpr.get()->getSourceRange();
2073       msg = 0; SrcExpr = ExprError();
2074       return TC_NotApplicable;
2075     }
2076 
2077     // This code does this transformation for the checked types.
2078     DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
2079     SrcType = Self.Context.getPointerType(SrcType);
2080 
2081     IsLValueCast = true;
2082   }
2083 
2084   // Canonicalize source for comparison.
2085   SrcType = Self.Context.getCanonicalType(SrcType);
2086 
2087   const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(),
2088                           *SrcMemPtr = SrcType->getAs<MemberPointerType>();
2089   if (DestMemPtr && SrcMemPtr) {
2090     // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1"
2091     //   can be explicitly converted to an rvalue of type "pointer to member
2092     //   of Y of type T2" if T1 and T2 are both function types or both object
2093     //   types.
2094     if (DestMemPtr->isMemberFunctionPointer() !=
2095         SrcMemPtr->isMemberFunctionPointer())
2096       return TC_NotApplicable;
2097 
2098     if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2099       // We need to determine the inheritance model that the class will use if
2100       // haven't yet.
2101       (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
2102       (void)Self.isCompleteType(OpRange.getBegin(), DestType);
2103     }
2104 
2105     // Don't allow casting between member pointers of different sizes.
2106     if (Self.Context.getTypeSize(DestMemPtr) !=
2107         Self.Context.getTypeSize(SrcMemPtr)) {
2108       msg = diag::err_bad_cxx_cast_member_pointer_size;
2109       return TC_Failed;
2110     }
2111 
2112     // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away
2113     //   constness.
2114     // A reinterpret_cast followed by a const_cast can, though, so in C-style,
2115     // we accept it.
2116     if (auto CACK =
2117             CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2118                                /*CheckObjCLifetime=*/CStyle))
2119       return getCastAwayConstnessCastKind(CACK, msg);
2120 
2121     // A valid member pointer cast.
2122     assert(!IsLValueCast);
2123     Kind = CK_ReinterpretMemberPointer;
2124     return TC_Success;
2125   }
2126 
2127   // See below for the enumeral issue.
2128   if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) {
2129     // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral
2130     //   type large enough to hold it. A value of std::nullptr_t can be
2131     //   converted to an integral type; the conversion has the same meaning
2132     //   and validity as a conversion of (void*)0 to the integral type.
2133     if (Self.Context.getTypeSize(SrcType) >
2134         Self.Context.getTypeSize(DestType)) {
2135       msg = diag::err_bad_reinterpret_cast_small_int;
2136       return TC_Failed;
2137     }
2138     Kind = CK_PointerToIntegral;
2139     return TC_Success;
2140   }
2141 
2142   // Allow reinterpret_casts between vectors of the same size and
2143   // between vectors and integers of the same size.
2144   bool destIsVector = DestType->isVectorType();
2145   bool srcIsVector = SrcType->isVectorType();
2146   if (srcIsVector || destIsVector) {
2147     // The non-vector type, if any, must have integral type.  This is
2148     // the same rule that C vector casts use; note, however, that enum
2149     // types are not integral in C++.
2150     if ((!destIsVector && !DestType->isIntegralType(Self.Context)) ||
2151         (!srcIsVector && !SrcType->isIntegralType(Self.Context)))
2152       return TC_NotApplicable;
2153 
2154     // The size we want to consider is eltCount * eltSize.
2155     // That's exactly what the lax-conversion rules will check.
2156     if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) {
2157       Kind = CK_BitCast;
2158       return TC_Success;
2159     }
2160 
2161     // Otherwise, pick a reasonable diagnostic.
2162     if (!destIsVector)
2163       msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size;
2164     else if (!srcIsVector)
2165       msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size;
2166     else
2167       msg = diag::err_bad_cxx_cast_vector_to_vector_different_size;
2168 
2169     return TC_Failed;
2170   }
2171 
2172   if (SrcType == DestType) {
2173     // C++ 5.2.10p2 has a note that mentions that, subject to all other
2174     // restrictions, a cast to the same type is allowed so long as it does not
2175     // cast away constness. In C++98, the intent was not entirely clear here,
2176     // since all other paragraphs explicitly forbid casts to the same type.
2177     // C++11 clarifies this case with p2.
2178     //
2179     // The only allowed types are: integral, enumeration, pointer, or
2180     // pointer-to-member types.  We also won't restrict Obj-C pointers either.
2181     Kind = CK_NoOp;
2182     TryCastResult Result = TC_NotApplicable;
2183     if (SrcType->isIntegralOrEnumerationType() ||
2184         SrcType->isAnyPointerType() ||
2185         SrcType->isMemberPointerType() ||
2186         SrcType->isBlockPointerType()) {
2187       Result = TC_Success;
2188     }
2189     return Result;
2190   }
2191 
2192   bool destIsPtr = DestType->isAnyPointerType() ||
2193                    DestType->isBlockPointerType();
2194   bool srcIsPtr = SrcType->isAnyPointerType() ||
2195                   SrcType->isBlockPointerType();
2196   if (!destIsPtr && !srcIsPtr) {
2197     // Except for std::nullptr_t->integer and lvalue->reference, which are
2198     // handled above, at least one of the two arguments must be a pointer.
2199     return TC_NotApplicable;
2200   }
2201 
2202   if (DestType->isIntegralType(Self.Context)) {
2203     assert(srcIsPtr && "One type must be a pointer");
2204     // C++ 5.2.10p4: A pointer can be explicitly converted to any integral
2205     //   type large enough to hold it; except in Microsoft mode, where the
2206     //   integral type size doesn't matter (except we don't allow bool).
2207     bool MicrosoftException = Self.getLangOpts().MicrosoftExt &&
2208                               !DestType->isBooleanType();
2209     if ((Self.Context.getTypeSize(SrcType) >
2210          Self.Context.getTypeSize(DestType)) &&
2211          !MicrosoftException) {
2212       msg = diag::err_bad_reinterpret_cast_small_int;
2213       return TC_Failed;
2214     }
2215     Kind = CK_PointerToIntegral;
2216     return TC_Success;
2217   }
2218 
2219   if (SrcType->isIntegralOrEnumerationType()) {
2220     assert(destIsPtr && "One type must be a pointer");
2221     checkIntToPointerCast(CStyle, OpRange.getBegin(), SrcExpr.get(), DestType,
2222                           Self);
2223     // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly
2224     //   converted to a pointer.
2225     // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not
2226     //   necessarily converted to a null pointer value.]
2227     Kind = CK_IntegralToPointer;
2228     return TC_Success;
2229   }
2230 
2231   if (!destIsPtr || !srcIsPtr) {
2232     // With the valid non-pointer conversions out of the way, we can be even
2233     // more stringent.
2234     return TC_NotApplicable;
2235   }
2236 
2237   // Cannot convert between block pointers and Objective-C object pointers.
2238   if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) ||
2239       (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType()))
2240     return TC_NotApplicable;
2241 
2242   // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness.
2243   // The C-style cast operator can.
2244   TryCastResult SuccessResult = TC_Success;
2245   if (auto CACK =
2246           CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2247                              /*CheckObjCLifetime=*/CStyle))
2248     SuccessResult = getCastAwayConstnessCastKind(CACK, msg);
2249 
2250   if (IsAddressSpaceConversion(SrcType, DestType)) {
2251     Kind = CK_AddressSpaceConversion;
2252     assert(SrcType->isPointerType() && DestType->isPointerType());
2253     if (!CStyle &&
2254         !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf(
2255             SrcType->getPointeeType().getQualifiers())) {
2256       SuccessResult = TC_Failed;
2257     }
2258   } else if (IsLValueCast) {
2259     Kind = CK_LValueBitCast;
2260   } else if (DestType->isObjCObjectPointerType()) {
2261     Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr);
2262   } else if (DestType->isBlockPointerType()) {
2263     if (!SrcType->isBlockPointerType()) {
2264       Kind = CK_AnyPointerToBlockPointerCast;
2265     } else {
2266       Kind = CK_BitCast;
2267     }
2268   } else {
2269     Kind = CK_BitCast;
2270   }
2271 
2272   // Any pointer can be cast to an Objective-C pointer type with a C-style
2273   // cast.
2274   if (CStyle && DestType->isObjCObjectPointerType()) {
2275     return SuccessResult;
2276   }
2277   if (CStyle)
2278     DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
2279 
2280   DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
2281 
2282   // Not casting away constness, so the only remaining check is for compatible
2283   // pointer categories.
2284 
2285   if (SrcType->isFunctionPointerType()) {
2286     if (DestType->isFunctionPointerType()) {
2287       // C++ 5.2.10p6: A pointer to a function can be explicitly converted to
2288       // a pointer to a function of a different type.
2289       return SuccessResult;
2290     }
2291 
2292     // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to
2293     //   an object type or vice versa is conditionally-supported.
2294     // Compilers support it in C++03 too, though, because it's necessary for
2295     // casting the return value of dlsym() and GetProcAddress().
2296     // FIXME: Conditionally-supported behavior should be configurable in the
2297     // TargetInfo or similar.
2298     Self.Diag(OpRange.getBegin(),
2299               Self.getLangOpts().CPlusPlus11 ?
2300                 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2301       << OpRange;
2302     return SuccessResult;
2303   }
2304 
2305   if (DestType->isFunctionPointerType()) {
2306     // See above.
2307     Self.Diag(OpRange.getBegin(),
2308               Self.getLangOpts().CPlusPlus11 ?
2309                 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2310       << OpRange;
2311     return SuccessResult;
2312   }
2313 
2314   // Diagnose address space conversion in nested pointers.
2315   QualType DestPtee = DestType->getPointeeType().isNull()
2316                           ? DestType->getPointeeType()
2317                           : DestType->getPointeeType()->getPointeeType();
2318   QualType SrcPtee = SrcType->getPointeeType().isNull()
2319                          ? SrcType->getPointeeType()
2320                          : SrcType->getPointeeType()->getPointeeType();
2321   while (!DestPtee.isNull() && !SrcPtee.isNull()) {
2322     if (DestPtee.getAddressSpace() != SrcPtee.getAddressSpace()) {
2323       Self.Diag(OpRange.getBegin(),
2324                 diag::warn_bad_cxx_cast_nested_pointer_addr_space)
2325           << CStyle << SrcType << DestType << SrcExpr.get()->getSourceRange();
2326       break;
2327     }
2328     DestPtee = DestPtee->getPointeeType();
2329     SrcPtee = SrcPtee->getPointeeType();
2330   }
2331 
2332   // C++ 5.2.10p7: A pointer to an object can be explicitly converted to
2333   //   a pointer to an object of different type.
2334   // Void pointers are not specified, but supported by every compiler out there.
2335   // So we finish by allowing everything that remains - it's got to be two
2336   // object pointers.
2337   return SuccessResult;
2338 }
2339 
2340 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
2341                                          QualType DestType, bool CStyle,
2342                                          unsigned &msg) {
2343   if (!Self.getLangOpts().OpenCL)
2344     // FIXME: As compiler doesn't have any information about overlapping addr
2345     // spaces at the moment we have to be permissive here.
2346     return TC_NotApplicable;
2347   // Even though the logic below is general enough and can be applied to
2348   // non-OpenCL mode too, we fast-path above because no other languages
2349   // define overlapping address spaces currently.
2350   auto SrcType = SrcExpr.get()->getType();
2351   auto SrcPtrType = SrcType->getAs<PointerType>();
2352   if (!SrcPtrType)
2353     return TC_NotApplicable;
2354   auto DestPtrType = DestType->getAs<PointerType>();
2355   if (!DestPtrType)
2356     return TC_NotApplicable;
2357   auto SrcPointeeType = SrcPtrType->getPointeeType();
2358   auto DestPointeeType = DestPtrType->getPointeeType();
2359   if (SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace())
2360     return TC_NotApplicable;
2361   if (!DestPtrType->isAddressSpaceOverlapping(*SrcPtrType)) {
2362     msg = diag::err_bad_cxx_cast_addr_space_mismatch;
2363     return TC_Failed;
2364   }
2365   auto SrcPointeeTypeWithoutAS =
2366       Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType());
2367   auto DestPointeeTypeWithoutAS =
2368       Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType());
2369   return Self.Context.hasSameType(SrcPointeeTypeWithoutAS,
2370                                   DestPointeeTypeWithoutAS)
2371              ? TC_Success
2372              : TC_NotApplicable;
2373 }
2374 
2375 void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) {
2376   // In OpenCL only conversions between pointers to objects in overlapping
2377   // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps
2378   // with any named one, except for constant.
2379 
2380   // Converting the top level pointee addrspace is permitted for compatible
2381   // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but
2382   // if any of the nested pointee addrspaces differ, we emit a warning
2383   // regardless of addrspace compatibility. This makes
2384   //   local int ** p;
2385   //   return (generic int **) p;
2386   // warn even though local -> generic is permitted.
2387   if (Self.getLangOpts().OpenCL) {
2388     const Type *DestPtr, *SrcPtr;
2389     bool Nested = false;
2390     unsigned DiagID = diag::err_typecheck_incompatible_address_space;
2391     DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()),
2392     SrcPtr  = Self.getASTContext().getCanonicalType(SrcType.getTypePtr());
2393 
2394     while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) {
2395       const PointerType *DestPPtr = cast<PointerType>(DestPtr);
2396       const PointerType *SrcPPtr = cast<PointerType>(SrcPtr);
2397       QualType DestPPointee = DestPPtr->getPointeeType();
2398       QualType SrcPPointee = SrcPPtr->getPointeeType();
2399       if (Nested ? DestPPointee.getAddressSpace() !=
2400                    SrcPPointee.getAddressSpace()
2401                  : !DestPPtr->isAddressSpaceOverlapping(*SrcPPtr)) {
2402         Self.Diag(OpRange.getBegin(), DiagID)
2403             << SrcType << DestType << Sema::AA_Casting
2404             << SrcExpr.get()->getSourceRange();
2405         if (!Nested)
2406           SrcExpr = ExprError();
2407         return;
2408       }
2409 
2410       DestPtr = DestPPtr->getPointeeType().getTypePtr();
2411       SrcPtr = SrcPPtr->getPointeeType().getTypePtr();
2412       Nested = true;
2413       DiagID = diag::ext_nested_pointer_qualifier_mismatch;
2414     }
2415   }
2416 }
2417 
2418 void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle,
2419                                        bool ListInitialization) {
2420   assert(Self.getLangOpts().CPlusPlus);
2421 
2422   // Handle placeholders.
2423   if (isPlaceholder()) {
2424     // C-style casts can resolve __unknown_any types.
2425     if (claimPlaceholder(BuiltinType::UnknownAny)) {
2426       SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2427                                          SrcExpr.get(), Kind,
2428                                          ValueKind, BasePath);
2429       return;
2430     }
2431 
2432     checkNonOverloadPlaceholders();
2433     if (SrcExpr.isInvalid())
2434       return;
2435   }
2436 
2437   // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
2438   // This test is outside everything else because it's the only case where
2439   // a non-lvalue-reference target type does not lead to decay.
2440   if (DestType->isVoidType()) {
2441     Kind = CK_ToVoid;
2442 
2443     if (claimPlaceholder(BuiltinType::Overload)) {
2444       Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2445                   SrcExpr, /* Decay Function to ptr */ false,
2446                   /* Complain */ true, DestRange, DestType,
2447                   diag::err_bad_cstyle_cast_overload);
2448       if (SrcExpr.isInvalid())
2449         return;
2450     }
2451 
2452     SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2453     return;
2454   }
2455 
2456   // If the type is dependent, we won't do any other semantic analysis now.
2457   if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2458       SrcExpr.get()->isValueDependent()) {
2459     assert(Kind == CK_Dependent);
2460     return;
2461   }
2462 
2463   if (ValueKind == VK_RValue && !DestType->isRecordType() &&
2464       !isPlaceholder(BuiltinType::Overload)) {
2465     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2466     if (SrcExpr.isInvalid())
2467       return;
2468   }
2469 
2470   // AltiVec vector initialization with a single literal.
2471   if (const VectorType *vecTy = DestType->getAs<VectorType>())
2472     if (vecTy->getVectorKind() == VectorType::AltiVecVector
2473         && (SrcExpr.get()->getType()->isIntegerType()
2474             || SrcExpr.get()->getType()->isFloatingType())) {
2475       Kind = CK_VectorSplat;
2476       SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
2477       return;
2478     }
2479 
2480   // C++ [expr.cast]p5: The conversions performed by
2481   //   - a const_cast,
2482   //   - a static_cast,
2483   //   - a static_cast followed by a const_cast,
2484   //   - a reinterpret_cast, or
2485   //   - a reinterpret_cast followed by a const_cast,
2486   //   can be performed using the cast notation of explicit type conversion.
2487   //   [...] If a conversion can be interpreted in more than one of the ways
2488   //   listed above, the interpretation that appears first in the list is used,
2489   //   even if a cast resulting from that interpretation is ill-formed.
2490   // In plain language, this means trying a const_cast ...
2491   // Note that for address space we check compatibility after const_cast.
2492   unsigned msg = diag::err_bad_cxx_cast_generic;
2493   TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType,
2494                                    /*CStyle*/ true, msg);
2495   if (SrcExpr.isInvalid())
2496     return;
2497   if (isValidCast(tcr))
2498     Kind = CK_NoOp;
2499 
2500   Sema::CheckedConversionKind CCK =
2501       FunctionalStyle ? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast;
2502   if (tcr == TC_NotApplicable) {
2503     tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg);
2504     if (SrcExpr.isInvalid())
2505       return;
2506 
2507     if (isValidCast(tcr))
2508       Kind = CK_AddressSpaceConversion;
2509 
2510     if (tcr == TC_NotApplicable) {
2511       // ... or if that is not possible, a static_cast, ignoring const, ...
2512       tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind,
2513                           BasePath, ListInitialization);
2514       if (SrcExpr.isInvalid())
2515         return;
2516 
2517       if (tcr == TC_NotApplicable) {
2518         // ... and finally a reinterpret_cast, ignoring const.
2519         tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true,
2520                                  OpRange, msg, Kind);
2521         if (SrcExpr.isInvalid())
2522           return;
2523       }
2524     }
2525   }
2526 
2527   if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
2528       isValidCast(tcr))
2529     checkObjCConversion(CCK);
2530 
2531   if (tcr != TC_Success && msg != 0) {
2532     if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2533       DeclAccessPair Found;
2534       FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
2535                                 DestType,
2536                                 /*Complain*/ true,
2537                                 Found);
2538       if (Fn) {
2539         // If DestType is a function type (not to be confused with the function
2540         // pointer type), it will be possible to resolve the function address,
2541         // but the type cast should be considered as failure.
2542         OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression;
2543         Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload)
2544           << OE->getName() << DestType << OpRange
2545           << OE->getQualifierLoc().getSourceRange();
2546         Self.NoteAllOverloadCandidates(SrcExpr.get());
2547       }
2548     } else {
2549       diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle),
2550                       OpRange, SrcExpr.get(), DestType, ListInitialization);
2551     }
2552   }
2553 
2554   if (isValidCast(tcr)) {
2555     if (Kind == CK_BitCast)
2556       checkCastAlign();
2557   } else {
2558     SrcExpr = ExprError();
2559   }
2560 }
2561 
2562 /// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a
2563 ///  non-matching type. Such as enum function call to int, int call to
2564 /// pointer; etc. Cast to 'void' is an exception.
2565 static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr,
2566                                   QualType DestType) {
2567   if (Self.Diags.isIgnored(diag::warn_bad_function_cast,
2568                            SrcExpr.get()->getExprLoc()))
2569     return;
2570 
2571   if (!isa<CallExpr>(SrcExpr.get()))
2572     return;
2573 
2574   QualType SrcType = SrcExpr.get()->getType();
2575   if (DestType.getUnqualifiedType()->isVoidType())
2576     return;
2577   if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType())
2578       && (DestType->isAnyPointerType() || DestType->isBlockPointerType()))
2579     return;
2580   if (SrcType->isIntegerType() && DestType->isIntegerType() &&
2581       (SrcType->isBooleanType() == DestType->isBooleanType()) &&
2582       (SrcType->isEnumeralType() == DestType->isEnumeralType()))
2583     return;
2584   if (SrcType->isRealFloatingType() && DestType->isRealFloatingType())
2585     return;
2586   if (SrcType->isEnumeralType() && DestType->isEnumeralType())
2587     return;
2588   if (SrcType->isComplexType() && DestType->isComplexType())
2589     return;
2590   if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType())
2591     return;
2592 
2593   Self.Diag(SrcExpr.get()->getExprLoc(),
2594             diag::warn_bad_function_cast)
2595             << SrcType << DestType << SrcExpr.get()->getSourceRange();
2596 }
2597 
2598 /// Check the semantics of a C-style cast operation, in C.
2599 void CastOperation::CheckCStyleCast() {
2600   assert(!Self.getLangOpts().CPlusPlus);
2601 
2602   // C-style casts can resolve __unknown_any types.
2603   if (claimPlaceholder(BuiltinType::UnknownAny)) {
2604     SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2605                                        SrcExpr.get(), Kind,
2606                                        ValueKind, BasePath);
2607     return;
2608   }
2609 
2610   // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2611   // type needs to be scalar.
2612   if (DestType->isVoidType()) {
2613     // We don't necessarily do lvalue-to-rvalue conversions on this.
2614     SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2615     if (SrcExpr.isInvalid())
2616       return;
2617 
2618     // Cast to void allows any expr type.
2619     Kind = CK_ToVoid;
2620     return;
2621   }
2622 
2623   // Overloads are allowed with C extensions, so we need to support them.
2624   if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2625     DeclAccessPair DAP;
2626     if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction(
2627             SrcExpr.get(), DestType, /*Complain=*/true, DAP))
2628       SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD);
2629     else
2630       return;
2631     assert(SrcExpr.isUsable());
2632   }
2633   SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2634   if (SrcExpr.isInvalid())
2635     return;
2636   QualType SrcType = SrcExpr.get()->getType();
2637 
2638   assert(!SrcType->isPlaceholderType());
2639 
2640   checkAddressSpaceCast(SrcType, DestType);
2641   if (SrcExpr.isInvalid())
2642     return;
2643 
2644   if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
2645                                diag::err_typecheck_cast_to_incomplete)) {
2646     SrcExpr = ExprError();
2647     return;
2648   }
2649 
2650   if (!DestType->isScalarType() && !DestType->isVectorType()) {
2651     const RecordType *DestRecordTy = DestType->getAs<RecordType>();
2652 
2653     if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){
2654       // GCC struct/union extension: allow cast to self.
2655       Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar)
2656         << DestType << SrcExpr.get()->getSourceRange();
2657       Kind = CK_NoOp;
2658       return;
2659     }
2660 
2661     // GCC's cast to union extension.
2662     if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) {
2663       RecordDecl *RD = DestRecordTy->getDecl();
2664       if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) {
2665         Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union)
2666           << SrcExpr.get()->getSourceRange();
2667         Kind = CK_ToUnion;
2668         return;
2669       } else {
2670         Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2671           << SrcType << SrcExpr.get()->getSourceRange();
2672         SrcExpr = ExprError();
2673         return;
2674       }
2675     }
2676 
2677     // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type.
2678     if (Self.getLangOpts().OpenCL && DestType->isEventT()) {
2679       Expr::EvalResult Result;
2680       if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) {
2681         llvm::APSInt CastInt = Result.Val.getInt();
2682         if (0 == CastInt) {
2683           Kind = CK_ZeroToOCLOpaqueType;
2684           return;
2685         }
2686         Self.Diag(OpRange.getBegin(),
2687                   diag::err_opencl_cast_non_zero_to_event_t)
2688                   << CastInt.toString(10) << SrcExpr.get()->getSourceRange();
2689         SrcExpr = ExprError();
2690         return;
2691       }
2692     }
2693 
2694     // Reject any other conversions to non-scalar types.
2695     Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar)
2696       << DestType << SrcExpr.get()->getSourceRange();
2697     SrcExpr = ExprError();
2698     return;
2699   }
2700 
2701   // The type we're casting to is known to be a scalar or vector.
2702 
2703   // Require the operand to be a scalar or vector.
2704   if (!SrcType->isScalarType() && !SrcType->isVectorType()) {
2705     Self.Diag(SrcExpr.get()->getExprLoc(),
2706               diag::err_typecheck_expect_scalar_operand)
2707       << SrcType << SrcExpr.get()->getSourceRange();
2708     SrcExpr = ExprError();
2709     return;
2710   }
2711 
2712   if (DestType->isExtVectorType()) {
2713     SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind);
2714     return;
2715   }
2716 
2717   if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) {
2718     if (DestVecTy->getVectorKind() == VectorType::AltiVecVector &&
2719           (SrcType->isIntegerType() || SrcType->isFloatingType())) {
2720       Kind = CK_VectorSplat;
2721       SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
2722     } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) {
2723       SrcExpr = ExprError();
2724     }
2725     return;
2726   }
2727 
2728   if (SrcType->isVectorType()) {
2729     if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind))
2730       SrcExpr = ExprError();
2731     return;
2732   }
2733 
2734   // The source and target types are both scalars, i.e.
2735   //   - arithmetic types (fundamental, enum, and complex)
2736   //   - all kinds of pointers
2737   // Note that member pointers were filtered out with C++, above.
2738 
2739   if (isa<ObjCSelectorExpr>(SrcExpr.get())) {
2740     Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr);
2741     SrcExpr = ExprError();
2742     return;
2743   }
2744 
2745   // If either type is a pointer, the other type has to be either an
2746   // integer or a pointer.
2747   if (!DestType->isArithmeticType()) {
2748     if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) {
2749       Self.Diag(SrcExpr.get()->getExprLoc(),
2750                 diag::err_cast_pointer_from_non_pointer_int)
2751         << SrcType << SrcExpr.get()->getSourceRange();
2752       SrcExpr = ExprError();
2753       return;
2754     }
2755     checkIntToPointerCast(/* CStyle */ true, OpRange.getBegin(), SrcExpr.get(),
2756                           DestType, Self);
2757   } else if (!SrcType->isArithmeticType()) {
2758     if (!DestType->isIntegralType(Self.Context) &&
2759         DestType->isArithmeticType()) {
2760       Self.Diag(SrcExpr.get()->getBeginLoc(),
2761                 diag::err_cast_pointer_to_non_pointer_int)
2762           << DestType << SrcExpr.get()->getSourceRange();
2763       SrcExpr = ExprError();
2764       return;
2765     }
2766   }
2767 
2768   if (Self.getLangOpts().OpenCL &&
2769       !Self.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
2770     if (DestType->isHalfType()) {
2771       Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half)
2772           << DestType << SrcExpr.get()->getSourceRange();
2773       SrcExpr = ExprError();
2774       return;
2775     }
2776   }
2777 
2778   // ARC imposes extra restrictions on casts.
2779   if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) {
2780     checkObjCConversion(Sema::CCK_CStyleCast);
2781     if (SrcExpr.isInvalid())
2782       return;
2783 
2784     const PointerType *CastPtr = DestType->getAs<PointerType>();
2785     if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) {
2786       if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) {
2787         Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
2788         Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
2789         if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
2790             ExprPtr->getPointeeType()->isObjCLifetimeType() &&
2791             !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
2792           Self.Diag(SrcExpr.get()->getBeginLoc(),
2793                     diag::err_typecheck_incompatible_ownership)
2794               << SrcType << DestType << Sema::AA_Casting
2795               << SrcExpr.get()->getSourceRange();
2796           return;
2797         }
2798       }
2799     }
2800     else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) {
2801       Self.Diag(SrcExpr.get()->getBeginLoc(),
2802                 diag::err_arc_convesion_of_weak_unavailable)
2803           << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange();
2804       SrcExpr = ExprError();
2805       return;
2806     }
2807   }
2808 
2809   DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
2810   DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
2811   DiagnoseBadFunctionCast(Self, SrcExpr, DestType);
2812   Kind = Self.PrepareScalarCast(SrcExpr, DestType);
2813   if (SrcExpr.isInvalid())
2814     return;
2815 
2816   if (Kind == CK_BitCast)
2817     checkCastAlign();
2818 }
2819 
2820 void CastOperation::CheckBuiltinBitCast() {
2821   QualType SrcType = SrcExpr.get()->getType();
2822 
2823   if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
2824                                diag::err_typecheck_cast_to_incomplete) ||
2825       Self.RequireCompleteType(OpRange.getBegin(), SrcType,
2826                                diag::err_incomplete_type)) {
2827     SrcExpr = ExprError();
2828     return;
2829   }
2830 
2831   if (SrcExpr.get()->isRValue())
2832     SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(),
2833                                                   /*IsLValueReference=*/false);
2834 
2835   CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType);
2836   CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType);
2837   if (DestSize != SourceSize) {
2838     Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch)
2839         << (int)SourceSize.getQuantity() << (int)DestSize.getQuantity();
2840     SrcExpr = ExprError();
2841     return;
2842   }
2843 
2844   if (!DestType.isTriviallyCopyableType(Self.Context)) {
2845     Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
2846         << 1;
2847     SrcExpr = ExprError();
2848     return;
2849   }
2850 
2851   if (!SrcType.isTriviallyCopyableType(Self.Context)) {
2852     Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
2853         << 0;
2854     SrcExpr = ExprError();
2855     return;
2856   }
2857 
2858   Kind = CK_LValueToRValueBitCast;
2859 }
2860 
2861 /// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either
2862 /// const, volatile or both.
2863 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
2864                              QualType DestType) {
2865   if (SrcExpr.isInvalid())
2866     return;
2867 
2868   QualType SrcType = SrcExpr.get()->getType();
2869   if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) ||
2870         DestType->isLValueReferenceType()))
2871     return;
2872 
2873   QualType TheOffendingSrcType, TheOffendingDestType;
2874   Qualifiers CastAwayQualifiers;
2875   if (CastsAwayConstness(Self, SrcType, DestType, true, false,
2876                          &TheOffendingSrcType, &TheOffendingDestType,
2877                          &CastAwayQualifiers) !=
2878       CastAwayConstnessKind::CACK_Similar)
2879     return;
2880 
2881   // FIXME: 'restrict' is not properly handled here.
2882   int qualifiers = -1;
2883   if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) {
2884     qualifiers = 0;
2885   } else if (CastAwayQualifiers.hasConst()) {
2886     qualifiers = 1;
2887   } else if (CastAwayQualifiers.hasVolatile()) {
2888     qualifiers = 2;
2889   }
2890   // This is a variant of int **x; const int **y = (const int **)x;
2891   if (qualifiers == -1)
2892     Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2)
2893         << SrcType << DestType;
2894   else
2895     Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual)
2896         << TheOffendingSrcType << TheOffendingDestType << qualifiers;
2897 }
2898 
2899 ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc,
2900                                      TypeSourceInfo *CastTypeInfo,
2901                                      SourceLocation RPLoc,
2902                                      Expr *CastExpr) {
2903   CastOperation Op(*this, CastTypeInfo->getType(), CastExpr);
2904   Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
2905   Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc());
2906 
2907   if (getLangOpts().CPlusPlus) {
2908     Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false,
2909                           isa<InitListExpr>(CastExpr));
2910   } else {
2911     Op.CheckCStyleCast();
2912   }
2913 
2914   if (Op.SrcExpr.isInvalid())
2915     return ExprError();
2916 
2917   // -Wcast-qual
2918   DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType);
2919 
2920   return Op.complete(CStyleCastExpr::Create(Context, Op.ResultType,
2921                               Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
2922                               &Op.BasePath, CastTypeInfo, LPLoc, RPLoc));
2923 }
2924 
2925 ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo,
2926                                             QualType Type,
2927                                             SourceLocation LPLoc,
2928                                             Expr *CastExpr,
2929                                             SourceLocation RPLoc) {
2930   assert(LPLoc.isValid() && "List-initialization shouldn't get here.");
2931   CastOperation Op(*this, Type, CastExpr);
2932   Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
2933   Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getEndLoc());
2934 
2935   Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false);
2936   if (Op.SrcExpr.isInvalid())
2937     return ExprError();
2938 
2939   auto *SubExpr = Op.SrcExpr.get();
2940   if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
2941     SubExpr = BindExpr->getSubExpr();
2942   if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr))
2943     ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc));
2944 
2945   return Op.complete(CXXFunctionalCastExpr::Create(Context, Op.ResultType,
2946                          Op.ValueKind, CastTypeInfo, Op.Kind,
2947                          Op.SrcExpr.get(), &Op.BasePath, LPLoc, RPLoc));
2948 }
2949