1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cstddef>
95 #include <cstdint>
96 #include <functional>
97 #include <limits>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 
102 using namespace clang;
103 using namespace sema;
104 
105 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
106                                                     unsigned ByteNo) const {
107   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
108                                Context.getTargetInfo());
109 }
110 
111 /// Checks that a call expression's argument count is the desired number.
112 /// This is useful when doing custom type-checking.  Returns true on error.
113 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
114   unsigned argCount = call->getNumArgs();
115   if (argCount == desiredArgCount) return false;
116 
117   if (argCount < desiredArgCount)
118     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
119            << 0 /*function call*/ << desiredArgCount << argCount
120            << call->getSourceRange();
121 
122   // Highlight all the excess arguments.
123   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
124                     call->getArg(argCount - 1)->getEndLoc());
125 
126   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
127     << 0 /*function call*/ << desiredArgCount << argCount
128     << call->getArg(1)->getSourceRange();
129 }
130 
131 /// Check that the first argument to __builtin_annotation is an integer
132 /// and the second argument is a non-wide string literal.
133 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
134   if (checkArgCount(S, TheCall, 2))
135     return true;
136 
137   // First argument should be an integer.
138   Expr *ValArg = TheCall->getArg(0);
139   QualType Ty = ValArg->getType();
140   if (!Ty->isIntegerType()) {
141     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
142         << ValArg->getSourceRange();
143     return true;
144   }
145 
146   // Second argument should be a constant string.
147   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
148   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
149   if (!Literal || !Literal->isAscii()) {
150     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
151         << StrArg->getSourceRange();
152     return true;
153   }
154 
155   TheCall->setType(Ty);
156   return false;
157 }
158 
159 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
160   // We need at least one argument.
161   if (TheCall->getNumArgs() < 1) {
162     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
163         << 0 << 1 << TheCall->getNumArgs()
164         << TheCall->getCallee()->getSourceRange();
165     return true;
166   }
167 
168   // All arguments should be wide string literals.
169   for (Expr *Arg : TheCall->arguments()) {
170     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
171     if (!Literal || !Literal->isWide()) {
172       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
173           << Arg->getSourceRange();
174       return true;
175     }
176   }
177 
178   return false;
179 }
180 
181 /// Check that the argument to __builtin_addressof is a glvalue, and set the
182 /// result type to the corresponding pointer type.
183 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
184   if (checkArgCount(S, TheCall, 1))
185     return true;
186 
187   ExprResult Arg(TheCall->getArg(0));
188   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
189   if (ResultType.isNull())
190     return true;
191 
192   TheCall->setArg(0, Arg.get());
193   TheCall->setType(ResultType);
194   return false;
195 }
196 
197 /// Check the number of arguments and set the result type to
198 /// the argument type.
199 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
200   if (checkArgCount(S, TheCall, 1))
201     return true;
202 
203   TheCall->setType(TheCall->getArg(0)->getType());
204   return false;
205 }
206 
207 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
208 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
209 /// type (but not a function pointer) and that the alignment is a power-of-two.
210 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
211   if (checkArgCount(S, TheCall, 2))
212     return true;
213 
214   clang::Expr *Source = TheCall->getArg(0);
215   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
216 
217   auto IsValidIntegerType = [](QualType Ty) {
218     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
219   };
220   QualType SrcTy = Source->getType();
221   // We should also be able to use it with arrays (but not functions!).
222   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
223     SrcTy = S.Context.getDecayedType(SrcTy);
224   }
225   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
226       SrcTy->isFunctionPointerType()) {
227     // FIXME: this is not quite the right error message since we don't allow
228     // floating point types, or member pointers.
229     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
230         << SrcTy;
231     return true;
232   }
233 
234   clang::Expr *AlignOp = TheCall->getArg(1);
235   if (!IsValidIntegerType(AlignOp->getType())) {
236     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
237         << AlignOp->getType();
238     return true;
239   }
240   Expr::EvalResult AlignResult;
241   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
242   // We can't check validity of alignment if it is value dependent.
243   if (!AlignOp->isValueDependent() &&
244       AlignOp->EvaluateAsInt(AlignResult, S.Context,
245                              Expr::SE_AllowSideEffects)) {
246     llvm::APSInt AlignValue = AlignResult.Val.getInt();
247     llvm::APSInt MaxValue(
248         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
249     if (AlignValue < 1) {
250       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
251       return true;
252     }
253     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
254       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
255           << MaxValue.toString(10);
256       return true;
257     }
258     if (!AlignValue.isPowerOf2()) {
259       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
260       return true;
261     }
262     if (AlignValue == 1) {
263       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
264           << IsBooleanAlignBuiltin;
265     }
266   }
267 
268   ExprResult SrcArg = S.PerformCopyInitialization(
269       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
270       SourceLocation(), Source);
271   if (SrcArg.isInvalid())
272     return true;
273   TheCall->setArg(0, SrcArg.get());
274   ExprResult AlignArg =
275       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
276                                       S.Context, AlignOp->getType(), false),
277                                   SourceLocation(), AlignOp);
278   if (AlignArg.isInvalid())
279     return true;
280   TheCall->setArg(1, AlignArg.get());
281   // For align_up/align_down, the return type is the same as the (potentially
282   // decayed) argument type including qualifiers. For is_aligned(), the result
283   // is always bool.
284   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
285   return false;
286 }
287 
288 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
289                                 unsigned BuiltinID) {
290   if (checkArgCount(S, TheCall, 3))
291     return true;
292 
293   // First two arguments should be integers.
294   for (unsigned I = 0; I < 2; ++I) {
295     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
296     if (Arg.isInvalid()) return true;
297     TheCall->setArg(I, Arg.get());
298 
299     QualType Ty = Arg.get()->getType();
300     if (!Ty->isIntegerType()) {
301       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
302           << Ty << Arg.get()->getSourceRange();
303       return true;
304     }
305   }
306 
307   // Third argument should be a pointer to a non-const integer.
308   // IRGen correctly handles volatile, restrict, and address spaces, and
309   // the other qualifiers aren't possible.
310   {
311     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
312     if (Arg.isInvalid()) return true;
313     TheCall->setArg(2, Arg.get());
314 
315     QualType Ty = Arg.get()->getType();
316     const auto *PtrTy = Ty->getAs<PointerType>();
317     if (!PtrTy ||
318         !PtrTy->getPointeeType()->isIntegerType() ||
319         PtrTy->getPointeeType().isConstQualified()) {
320       S.Diag(Arg.get()->getBeginLoc(),
321              diag::err_overflow_builtin_must_be_ptr_int)
322         << Ty << Arg.get()->getSourceRange();
323       return true;
324     }
325   }
326 
327   // Disallow signed ExtIntType args larger than 128 bits to mul function until
328   // we improve backend support.
329   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
330     for (unsigned I = 0; I < 3; ++I) {
331       const auto Arg = TheCall->getArg(I);
332       // Third argument will be a pointer.
333       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
334       if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
335           S.getASTContext().getIntWidth(Ty) > 128)
336         return S.Diag(Arg->getBeginLoc(),
337                       diag::err_overflow_builtin_ext_int_max_size)
338                << 128;
339     }
340   }
341 
342   return false;
343 }
344 
345 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
346   if (checkArgCount(S, BuiltinCall, 2))
347     return true;
348 
349   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
350   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
351   Expr *Call = BuiltinCall->getArg(0);
352   Expr *Chain = BuiltinCall->getArg(1);
353 
354   if (Call->getStmtClass() != Stmt::CallExprClass) {
355     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
356         << Call->getSourceRange();
357     return true;
358   }
359 
360   auto CE = cast<CallExpr>(Call);
361   if (CE->getCallee()->getType()->isBlockPointerType()) {
362     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
363         << Call->getSourceRange();
364     return true;
365   }
366 
367   const Decl *TargetDecl = CE->getCalleeDecl();
368   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
369     if (FD->getBuiltinID()) {
370       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
371           << Call->getSourceRange();
372       return true;
373     }
374 
375   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
376     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
377         << Call->getSourceRange();
378     return true;
379   }
380 
381   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
382   if (ChainResult.isInvalid())
383     return true;
384   if (!ChainResult.get()->getType()->isPointerType()) {
385     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
386         << Chain->getSourceRange();
387     return true;
388   }
389 
390   QualType ReturnTy = CE->getCallReturnType(S.Context);
391   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
392   QualType BuiltinTy = S.Context.getFunctionType(
393       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
394   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
395 
396   Builtin =
397       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
398 
399   BuiltinCall->setType(CE->getType());
400   BuiltinCall->setValueKind(CE->getValueKind());
401   BuiltinCall->setObjectKind(CE->getObjectKind());
402   BuiltinCall->setCallee(Builtin);
403   BuiltinCall->setArg(1, ChainResult.get());
404 
405   return false;
406 }
407 
408 namespace {
409 
410 class EstimateSizeFormatHandler
411     : public analyze_format_string::FormatStringHandler {
412   size_t Size;
413 
414 public:
415   EstimateSizeFormatHandler(StringRef Format)
416       : Size(std::min(Format.find(0), Format.size()) +
417              1 /* null byte always written by sprintf */) {}
418 
419   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
420                              const char *, unsigned SpecifierLen) override {
421 
422     const size_t FieldWidth = computeFieldWidth(FS);
423     const size_t Precision = computePrecision(FS);
424 
425     // The actual format.
426     switch (FS.getConversionSpecifier().getKind()) {
427     // Just a char.
428     case analyze_format_string::ConversionSpecifier::cArg:
429     case analyze_format_string::ConversionSpecifier::CArg:
430       Size += std::max(FieldWidth, (size_t)1);
431       break;
432     // Just an integer.
433     case analyze_format_string::ConversionSpecifier::dArg:
434     case analyze_format_string::ConversionSpecifier::DArg:
435     case analyze_format_string::ConversionSpecifier::iArg:
436     case analyze_format_string::ConversionSpecifier::oArg:
437     case analyze_format_string::ConversionSpecifier::OArg:
438     case analyze_format_string::ConversionSpecifier::uArg:
439     case analyze_format_string::ConversionSpecifier::UArg:
440     case analyze_format_string::ConversionSpecifier::xArg:
441     case analyze_format_string::ConversionSpecifier::XArg:
442       Size += std::max(FieldWidth, Precision);
443       break;
444 
445     // %g style conversion switches between %f or %e style dynamically.
446     // %f always takes less space, so default to it.
447     case analyze_format_string::ConversionSpecifier::gArg:
448     case analyze_format_string::ConversionSpecifier::GArg:
449 
450     // Floating point number in the form '[+]ddd.ddd'.
451     case analyze_format_string::ConversionSpecifier::fArg:
452     case analyze_format_string::ConversionSpecifier::FArg:
453       Size += std::max(FieldWidth, 1 /* integer part */ +
454                                        (Precision ? 1 + Precision
455                                                   : 0) /* period + decimal */);
456       break;
457 
458     // Floating point number in the form '[-]d.ddde[+-]dd'.
459     case analyze_format_string::ConversionSpecifier::eArg:
460     case analyze_format_string::ConversionSpecifier::EArg:
461       Size +=
462           std::max(FieldWidth,
463                    1 /* integer part */ +
464                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
465                        1 /* e or E letter */ + 2 /* exponent */);
466       break;
467 
468     // Floating point number in the form '[-]0xh.hhhhp±dd'.
469     case analyze_format_string::ConversionSpecifier::aArg:
470     case analyze_format_string::ConversionSpecifier::AArg:
471       Size +=
472           std::max(FieldWidth,
473                    2 /* 0x */ + 1 /* integer part */ +
474                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
475                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
476       break;
477 
478     // Just a string.
479     case analyze_format_string::ConversionSpecifier::sArg:
480     case analyze_format_string::ConversionSpecifier::SArg:
481       Size += FieldWidth;
482       break;
483 
484     // Just a pointer in the form '0xddd'.
485     case analyze_format_string::ConversionSpecifier::pArg:
486       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
487       break;
488 
489     // A plain percent.
490     case analyze_format_string::ConversionSpecifier::PercentArg:
491       Size += 1;
492       break;
493 
494     default:
495       break;
496     }
497 
498     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
499 
500     if (FS.hasAlternativeForm()) {
501       switch (FS.getConversionSpecifier().getKind()) {
502       default:
503         break;
504       // Force a leading '0'.
505       case analyze_format_string::ConversionSpecifier::oArg:
506         Size += 1;
507         break;
508       // Force a leading '0x'.
509       case analyze_format_string::ConversionSpecifier::xArg:
510       case analyze_format_string::ConversionSpecifier::XArg:
511         Size += 2;
512         break;
513       // Force a period '.' before decimal, even if precision is 0.
514       case analyze_format_string::ConversionSpecifier::aArg:
515       case analyze_format_string::ConversionSpecifier::AArg:
516       case analyze_format_string::ConversionSpecifier::eArg:
517       case analyze_format_string::ConversionSpecifier::EArg:
518       case analyze_format_string::ConversionSpecifier::fArg:
519       case analyze_format_string::ConversionSpecifier::FArg:
520       case analyze_format_string::ConversionSpecifier::gArg:
521       case analyze_format_string::ConversionSpecifier::GArg:
522         Size += (Precision ? 0 : 1);
523         break;
524       }
525     }
526     assert(SpecifierLen <= Size && "no underflow");
527     Size -= SpecifierLen;
528     return true;
529   }
530 
531   size_t getSizeLowerBound() const { return Size; }
532 
533 private:
534   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
535     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
536     size_t FieldWidth = 0;
537     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
538       FieldWidth = FW.getConstantAmount();
539     return FieldWidth;
540   }
541 
542   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
543     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
544     size_t Precision = 0;
545 
546     // See man 3 printf for default precision value based on the specifier.
547     switch (FW.getHowSpecified()) {
548     case analyze_format_string::OptionalAmount::NotSpecified:
549       switch (FS.getConversionSpecifier().getKind()) {
550       default:
551         break;
552       case analyze_format_string::ConversionSpecifier::dArg: // %d
553       case analyze_format_string::ConversionSpecifier::DArg: // %D
554       case analyze_format_string::ConversionSpecifier::iArg: // %i
555         Precision = 1;
556         break;
557       case analyze_format_string::ConversionSpecifier::oArg: // %d
558       case analyze_format_string::ConversionSpecifier::OArg: // %D
559       case analyze_format_string::ConversionSpecifier::uArg: // %d
560       case analyze_format_string::ConversionSpecifier::UArg: // %D
561       case analyze_format_string::ConversionSpecifier::xArg: // %d
562       case analyze_format_string::ConversionSpecifier::XArg: // %D
563         Precision = 1;
564         break;
565       case analyze_format_string::ConversionSpecifier::fArg: // %f
566       case analyze_format_string::ConversionSpecifier::FArg: // %F
567       case analyze_format_string::ConversionSpecifier::eArg: // %e
568       case analyze_format_string::ConversionSpecifier::EArg: // %E
569       case analyze_format_string::ConversionSpecifier::gArg: // %g
570       case analyze_format_string::ConversionSpecifier::GArg: // %G
571         Precision = 6;
572         break;
573       case analyze_format_string::ConversionSpecifier::pArg: // %d
574         Precision = 1;
575         break;
576       }
577       break;
578     case analyze_format_string::OptionalAmount::Constant:
579       Precision = FW.getConstantAmount();
580       break;
581     default:
582       break;
583     }
584     return Precision;
585   }
586 };
587 
588 } // namespace
589 
590 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
591 /// __builtin_*_chk function, then use the object size argument specified in the
592 /// source. Otherwise, infer the object size using __builtin_object_size.
593 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
594                                                CallExpr *TheCall) {
595   // FIXME: There are some more useful checks we could be doing here:
596   //  - Evaluate strlen of strcpy arguments, use as object size.
597 
598   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
599       isConstantEvaluated())
600     return;
601 
602   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
603   if (!BuiltinID)
604     return;
605 
606   const TargetInfo &TI = getASTContext().getTargetInfo();
607   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
608 
609   unsigned DiagID = 0;
610   bool IsChkVariant = false;
611   Optional<llvm::APSInt> UsedSize;
612   unsigned SizeIndex, ObjectIndex;
613   switch (BuiltinID) {
614   default:
615     return;
616   case Builtin::BIsprintf:
617   case Builtin::BI__builtin___sprintf_chk: {
618     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
619     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
620 
621     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
622 
623       if (!Format->isAscii() && !Format->isUTF8())
624         return;
625 
626       StringRef FormatStrRef = Format->getString();
627       EstimateSizeFormatHandler H(FormatStrRef);
628       const char *FormatBytes = FormatStrRef.data();
629       const ConstantArrayType *T =
630           Context.getAsConstantArrayType(Format->getType());
631       assert(T && "String literal not of constant array type!");
632       size_t TypeSize = T->getSize().getZExtValue();
633 
634       // In case there's a null byte somewhere.
635       size_t StrLen =
636           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
637       if (!analyze_format_string::ParsePrintfString(
638               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
639               Context.getTargetInfo(), false)) {
640         DiagID = diag::warn_fortify_source_format_overflow;
641         UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
642                        .extOrTrunc(SizeTypeWidth);
643         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
644           IsChkVariant = true;
645           ObjectIndex = 2;
646         } else {
647           IsChkVariant = false;
648           ObjectIndex = 0;
649         }
650         break;
651       }
652     }
653     return;
654   }
655   case Builtin::BI__builtin___memcpy_chk:
656   case Builtin::BI__builtin___memmove_chk:
657   case Builtin::BI__builtin___memset_chk:
658   case Builtin::BI__builtin___strlcat_chk:
659   case Builtin::BI__builtin___strlcpy_chk:
660   case Builtin::BI__builtin___strncat_chk:
661   case Builtin::BI__builtin___strncpy_chk:
662   case Builtin::BI__builtin___stpncpy_chk:
663   case Builtin::BI__builtin___memccpy_chk:
664   case Builtin::BI__builtin___mempcpy_chk: {
665     DiagID = diag::warn_builtin_chk_overflow;
666     IsChkVariant = true;
667     SizeIndex = TheCall->getNumArgs() - 2;
668     ObjectIndex = TheCall->getNumArgs() - 1;
669     break;
670   }
671 
672   case Builtin::BI__builtin___snprintf_chk:
673   case Builtin::BI__builtin___vsnprintf_chk: {
674     DiagID = diag::warn_builtin_chk_overflow;
675     IsChkVariant = true;
676     SizeIndex = 1;
677     ObjectIndex = 3;
678     break;
679   }
680 
681   case Builtin::BIstrncat:
682   case Builtin::BI__builtin_strncat:
683   case Builtin::BIstrncpy:
684   case Builtin::BI__builtin_strncpy:
685   case Builtin::BIstpncpy:
686   case Builtin::BI__builtin_stpncpy: {
687     // Whether these functions overflow depends on the runtime strlen of the
688     // string, not just the buffer size, so emitting the "always overflow"
689     // diagnostic isn't quite right. We should still diagnose passing a buffer
690     // size larger than the destination buffer though; this is a runtime abort
691     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
692     DiagID = diag::warn_fortify_source_size_mismatch;
693     SizeIndex = TheCall->getNumArgs() - 1;
694     ObjectIndex = 0;
695     break;
696   }
697 
698   case Builtin::BImemcpy:
699   case Builtin::BI__builtin_memcpy:
700   case Builtin::BImemmove:
701   case Builtin::BI__builtin_memmove:
702   case Builtin::BImemset:
703   case Builtin::BI__builtin_memset:
704   case Builtin::BImempcpy:
705   case Builtin::BI__builtin_mempcpy: {
706     DiagID = diag::warn_fortify_source_overflow;
707     SizeIndex = TheCall->getNumArgs() - 1;
708     ObjectIndex = 0;
709     break;
710   }
711   case Builtin::BIsnprintf:
712   case Builtin::BI__builtin_snprintf:
713   case Builtin::BIvsnprintf:
714   case Builtin::BI__builtin_vsnprintf: {
715     DiagID = diag::warn_fortify_source_size_mismatch;
716     SizeIndex = 1;
717     ObjectIndex = 0;
718     break;
719   }
720   }
721 
722   llvm::APSInt ObjectSize;
723   // For __builtin___*_chk, the object size is explicitly provided by the caller
724   // (usually using __builtin_object_size). Use that value to check this call.
725   if (IsChkVariant) {
726     Expr::EvalResult Result;
727     Expr *SizeArg = TheCall->getArg(ObjectIndex);
728     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
729       return;
730     ObjectSize = Result.Val.getInt();
731 
732   // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
733   } else {
734     // If the parameter has a pass_object_size attribute, then we should use its
735     // (potentially) more strict checking mode. Otherwise, conservatively assume
736     // type 0.
737     int BOSType = 0;
738     if (const auto *POS =
739             FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
740       BOSType = POS->getType();
741 
742     Expr *ObjArg = TheCall->getArg(ObjectIndex);
743     uint64_t Result;
744     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
745       return;
746     // Get the object size in the target's size_t width.
747     ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
748   }
749 
750   // Evaluate the number of bytes of the object that this call will use.
751   if (!UsedSize) {
752     Expr::EvalResult Result;
753     Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
754     if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
755       return;
756     UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth);
757   }
758 
759   if (UsedSize.getValue().ule(ObjectSize))
760     return;
761 
762   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
763   // Skim off the details of whichever builtin was called to produce a better
764   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
765   if (IsChkVariant) {
766     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
767     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
768   } else if (FunctionName.startswith("__builtin_")) {
769     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
770   }
771 
772   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
773                       PDiag(DiagID)
774                           << FunctionName << ObjectSize.toString(/*Radix=*/10)
775                           << UsedSize.getValue().toString(/*Radix=*/10));
776 }
777 
778 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
779                                      Scope::ScopeFlags NeededScopeFlags,
780                                      unsigned DiagID) {
781   // Scopes aren't available during instantiation. Fortunately, builtin
782   // functions cannot be template args so they cannot be formed through template
783   // instantiation. Therefore checking once during the parse is sufficient.
784   if (SemaRef.inTemplateInstantiation())
785     return false;
786 
787   Scope *S = SemaRef.getCurScope();
788   while (S && !S->isSEHExceptScope())
789     S = S->getParent();
790   if (!S || !(S->getFlags() & NeededScopeFlags)) {
791     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
792     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
793         << DRE->getDecl()->getIdentifier();
794     return true;
795   }
796 
797   return false;
798 }
799 
800 static inline bool isBlockPointer(Expr *Arg) {
801   return Arg->getType()->isBlockPointerType();
802 }
803 
804 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
805 /// void*, which is a requirement of device side enqueue.
806 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
807   const BlockPointerType *BPT =
808       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
809   ArrayRef<QualType> Params =
810       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
811   unsigned ArgCounter = 0;
812   bool IllegalParams = false;
813   // Iterate through the block parameters until either one is found that is not
814   // a local void*, or the block is valid.
815   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
816        I != E; ++I, ++ArgCounter) {
817     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
818         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
819             LangAS::opencl_local) {
820       // Get the location of the error. If a block literal has been passed
821       // (BlockExpr) then we can point straight to the offending argument,
822       // else we just point to the variable reference.
823       SourceLocation ErrorLoc;
824       if (isa<BlockExpr>(BlockArg)) {
825         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
826         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
827       } else if (isa<DeclRefExpr>(BlockArg)) {
828         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
829       }
830       S.Diag(ErrorLoc,
831              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
832       IllegalParams = true;
833     }
834   }
835 
836   return IllegalParams;
837 }
838 
839 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
840   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
841     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
842         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
843     return true;
844   }
845   return false;
846 }
847 
848 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
849   if (checkArgCount(S, TheCall, 2))
850     return true;
851 
852   if (checkOpenCLSubgroupExt(S, TheCall))
853     return true;
854 
855   // First argument is an ndrange_t type.
856   Expr *NDRangeArg = TheCall->getArg(0);
857   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
858     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
859         << TheCall->getDirectCallee() << "'ndrange_t'";
860     return true;
861   }
862 
863   Expr *BlockArg = TheCall->getArg(1);
864   if (!isBlockPointer(BlockArg)) {
865     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
866         << TheCall->getDirectCallee() << "block";
867     return true;
868   }
869   return checkOpenCLBlockArgs(S, BlockArg);
870 }
871 
872 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
873 /// get_kernel_work_group_size
874 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
875 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
876   if (checkArgCount(S, TheCall, 1))
877     return true;
878 
879   Expr *BlockArg = TheCall->getArg(0);
880   if (!isBlockPointer(BlockArg)) {
881     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
882         << TheCall->getDirectCallee() << "block";
883     return true;
884   }
885   return checkOpenCLBlockArgs(S, BlockArg);
886 }
887 
888 /// Diagnose integer type and any valid implicit conversion to it.
889 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
890                                       const QualType &IntType);
891 
892 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
893                                             unsigned Start, unsigned End) {
894   bool IllegalParams = false;
895   for (unsigned I = Start; I <= End; ++I)
896     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
897                                               S.Context.getSizeType());
898   return IllegalParams;
899 }
900 
901 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
902 /// 'local void*' parameter of passed block.
903 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
904                                            Expr *BlockArg,
905                                            unsigned NumNonVarArgs) {
906   const BlockPointerType *BPT =
907       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
908   unsigned NumBlockParams =
909       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
910   unsigned TotalNumArgs = TheCall->getNumArgs();
911 
912   // For each argument passed to the block, a corresponding uint needs to
913   // be passed to describe the size of the local memory.
914   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
915     S.Diag(TheCall->getBeginLoc(),
916            diag::err_opencl_enqueue_kernel_local_size_args);
917     return true;
918   }
919 
920   // Check that the sizes of the local memory are specified by integers.
921   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
922                                          TotalNumArgs - 1);
923 }
924 
925 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
926 /// overload formats specified in Table 6.13.17.1.
927 /// int enqueue_kernel(queue_t queue,
928 ///                    kernel_enqueue_flags_t flags,
929 ///                    const ndrange_t ndrange,
930 ///                    void (^block)(void))
931 /// int enqueue_kernel(queue_t queue,
932 ///                    kernel_enqueue_flags_t flags,
933 ///                    const ndrange_t ndrange,
934 ///                    uint num_events_in_wait_list,
935 ///                    clk_event_t *event_wait_list,
936 ///                    clk_event_t *event_ret,
937 ///                    void (^block)(void))
938 /// int enqueue_kernel(queue_t queue,
939 ///                    kernel_enqueue_flags_t flags,
940 ///                    const ndrange_t ndrange,
941 ///                    void (^block)(local void*, ...),
942 ///                    uint size0, ...)
943 /// int enqueue_kernel(queue_t queue,
944 ///                    kernel_enqueue_flags_t flags,
945 ///                    const ndrange_t ndrange,
946 ///                    uint num_events_in_wait_list,
947 ///                    clk_event_t *event_wait_list,
948 ///                    clk_event_t *event_ret,
949 ///                    void (^block)(local void*, ...),
950 ///                    uint size0, ...)
951 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
952   unsigned NumArgs = TheCall->getNumArgs();
953 
954   if (NumArgs < 4) {
955     S.Diag(TheCall->getBeginLoc(),
956            diag::err_typecheck_call_too_few_args_at_least)
957         << 0 << 4 << NumArgs;
958     return true;
959   }
960 
961   Expr *Arg0 = TheCall->getArg(0);
962   Expr *Arg1 = TheCall->getArg(1);
963   Expr *Arg2 = TheCall->getArg(2);
964   Expr *Arg3 = TheCall->getArg(3);
965 
966   // First argument always needs to be a queue_t type.
967   if (!Arg0->getType()->isQueueT()) {
968     S.Diag(TheCall->getArg(0)->getBeginLoc(),
969            diag::err_opencl_builtin_expected_type)
970         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
971     return true;
972   }
973 
974   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
975   if (!Arg1->getType()->isIntegerType()) {
976     S.Diag(TheCall->getArg(1)->getBeginLoc(),
977            diag::err_opencl_builtin_expected_type)
978         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
979     return true;
980   }
981 
982   // Third argument is always an ndrange_t type.
983   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
984     S.Diag(TheCall->getArg(2)->getBeginLoc(),
985            diag::err_opencl_builtin_expected_type)
986         << TheCall->getDirectCallee() << "'ndrange_t'";
987     return true;
988   }
989 
990   // With four arguments, there is only one form that the function could be
991   // called in: no events and no variable arguments.
992   if (NumArgs == 4) {
993     // check that the last argument is the right block type.
994     if (!isBlockPointer(Arg3)) {
995       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
996           << TheCall->getDirectCallee() << "block";
997       return true;
998     }
999     // we have a block type, check the prototype
1000     const BlockPointerType *BPT =
1001         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1002     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1003       S.Diag(Arg3->getBeginLoc(),
1004              diag::err_opencl_enqueue_kernel_blocks_no_args);
1005       return true;
1006     }
1007     return false;
1008   }
1009   // we can have block + varargs.
1010   if (isBlockPointer(Arg3))
1011     return (checkOpenCLBlockArgs(S, Arg3) ||
1012             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1013   // last two cases with either exactly 7 args or 7 args and varargs.
1014   if (NumArgs >= 7) {
1015     // check common block argument.
1016     Expr *Arg6 = TheCall->getArg(6);
1017     if (!isBlockPointer(Arg6)) {
1018       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1019           << TheCall->getDirectCallee() << "block";
1020       return true;
1021     }
1022     if (checkOpenCLBlockArgs(S, Arg6))
1023       return true;
1024 
1025     // Forth argument has to be any integer type.
1026     if (!Arg3->getType()->isIntegerType()) {
1027       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1028              diag::err_opencl_builtin_expected_type)
1029           << TheCall->getDirectCallee() << "integer";
1030       return true;
1031     }
1032     // check remaining common arguments.
1033     Expr *Arg4 = TheCall->getArg(4);
1034     Expr *Arg5 = TheCall->getArg(5);
1035 
1036     // Fifth argument is always passed as a pointer to clk_event_t.
1037     if (!Arg4->isNullPointerConstant(S.Context,
1038                                      Expr::NPC_ValueDependentIsNotNull) &&
1039         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1040       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1041              diag::err_opencl_builtin_expected_type)
1042           << TheCall->getDirectCallee()
1043           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1044       return true;
1045     }
1046 
1047     // Sixth argument is always passed as a pointer to clk_event_t.
1048     if (!Arg5->isNullPointerConstant(S.Context,
1049                                      Expr::NPC_ValueDependentIsNotNull) &&
1050         !(Arg5->getType()->isPointerType() &&
1051           Arg5->getType()->getPointeeType()->isClkEventT())) {
1052       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1053              diag::err_opencl_builtin_expected_type)
1054           << TheCall->getDirectCallee()
1055           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1056       return true;
1057     }
1058 
1059     if (NumArgs == 7)
1060       return false;
1061 
1062     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1063   }
1064 
1065   // None of the specific case has been detected, give generic error
1066   S.Diag(TheCall->getBeginLoc(),
1067          diag::err_opencl_enqueue_kernel_incorrect_args);
1068   return true;
1069 }
1070 
1071 /// Returns OpenCL access qual.
1072 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1073     return D->getAttr<OpenCLAccessAttr>();
1074 }
1075 
1076 /// Returns true if pipe element type is different from the pointer.
1077 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1078   const Expr *Arg0 = Call->getArg(0);
1079   // First argument type should always be pipe.
1080   if (!Arg0->getType()->isPipeType()) {
1081     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1082         << Call->getDirectCallee() << Arg0->getSourceRange();
1083     return true;
1084   }
1085   OpenCLAccessAttr *AccessQual =
1086       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1087   // Validates the access qualifier is compatible with the call.
1088   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1089   // read_only and write_only, and assumed to be read_only if no qualifier is
1090   // specified.
1091   switch (Call->getDirectCallee()->getBuiltinID()) {
1092   case Builtin::BIread_pipe:
1093   case Builtin::BIreserve_read_pipe:
1094   case Builtin::BIcommit_read_pipe:
1095   case Builtin::BIwork_group_reserve_read_pipe:
1096   case Builtin::BIsub_group_reserve_read_pipe:
1097   case Builtin::BIwork_group_commit_read_pipe:
1098   case Builtin::BIsub_group_commit_read_pipe:
1099     if (!(!AccessQual || AccessQual->isReadOnly())) {
1100       S.Diag(Arg0->getBeginLoc(),
1101              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1102           << "read_only" << Arg0->getSourceRange();
1103       return true;
1104     }
1105     break;
1106   case Builtin::BIwrite_pipe:
1107   case Builtin::BIreserve_write_pipe:
1108   case Builtin::BIcommit_write_pipe:
1109   case Builtin::BIwork_group_reserve_write_pipe:
1110   case Builtin::BIsub_group_reserve_write_pipe:
1111   case Builtin::BIwork_group_commit_write_pipe:
1112   case Builtin::BIsub_group_commit_write_pipe:
1113     if (!(AccessQual && AccessQual->isWriteOnly())) {
1114       S.Diag(Arg0->getBeginLoc(),
1115              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1116           << "write_only" << Arg0->getSourceRange();
1117       return true;
1118     }
1119     break;
1120   default:
1121     break;
1122   }
1123   return false;
1124 }
1125 
1126 /// Returns true if pipe element type is different from the pointer.
1127 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1128   const Expr *Arg0 = Call->getArg(0);
1129   const Expr *ArgIdx = Call->getArg(Idx);
1130   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1131   const QualType EltTy = PipeTy->getElementType();
1132   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1133   // The Idx argument should be a pointer and the type of the pointer and
1134   // the type of pipe element should also be the same.
1135   if (!ArgTy ||
1136       !S.Context.hasSameType(
1137           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1138     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1139         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1140         << ArgIdx->getType() << ArgIdx->getSourceRange();
1141     return true;
1142   }
1143   return false;
1144 }
1145 
1146 // Performs semantic analysis for the read/write_pipe call.
1147 // \param S Reference to the semantic analyzer.
1148 // \param Call A pointer to the builtin call.
1149 // \return True if a semantic error has been found, false otherwise.
1150 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1151   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1152   // functions have two forms.
1153   switch (Call->getNumArgs()) {
1154   case 2:
1155     if (checkOpenCLPipeArg(S, Call))
1156       return true;
1157     // The call with 2 arguments should be
1158     // read/write_pipe(pipe T, T*).
1159     // Check packet type T.
1160     if (checkOpenCLPipePacketType(S, Call, 1))
1161       return true;
1162     break;
1163 
1164   case 4: {
1165     if (checkOpenCLPipeArg(S, Call))
1166       return true;
1167     // The call with 4 arguments should be
1168     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1169     // Check reserve_id_t.
1170     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1171       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1172           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1173           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1174       return true;
1175     }
1176 
1177     // Check the index.
1178     const Expr *Arg2 = Call->getArg(2);
1179     if (!Arg2->getType()->isIntegerType() &&
1180         !Arg2->getType()->isUnsignedIntegerType()) {
1181       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1182           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1183           << Arg2->getType() << Arg2->getSourceRange();
1184       return true;
1185     }
1186 
1187     // Check packet type T.
1188     if (checkOpenCLPipePacketType(S, Call, 3))
1189       return true;
1190   } break;
1191   default:
1192     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1193         << Call->getDirectCallee() << Call->getSourceRange();
1194     return true;
1195   }
1196 
1197   return false;
1198 }
1199 
1200 // Performs a semantic analysis on the {work_group_/sub_group_
1201 //        /_}reserve_{read/write}_pipe
1202 // \param S Reference to the semantic analyzer.
1203 // \param Call The call to the builtin function to be analyzed.
1204 // \return True if a semantic error was found, false otherwise.
1205 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1206   if (checkArgCount(S, Call, 2))
1207     return true;
1208 
1209   if (checkOpenCLPipeArg(S, Call))
1210     return true;
1211 
1212   // Check the reserve size.
1213   if (!Call->getArg(1)->getType()->isIntegerType() &&
1214       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1215     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1216         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1217         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1218     return true;
1219   }
1220 
1221   // Since return type of reserve_read/write_pipe built-in function is
1222   // reserve_id_t, which is not defined in the builtin def file , we used int
1223   // as return type and need to override the return type of these functions.
1224   Call->setType(S.Context.OCLReserveIDTy);
1225 
1226   return false;
1227 }
1228 
1229 // Performs a semantic analysis on {work_group_/sub_group_
1230 //        /_}commit_{read/write}_pipe
1231 // \param S Reference to the semantic analyzer.
1232 // \param Call The call to the builtin function to be analyzed.
1233 // \return True if a semantic error was found, false otherwise.
1234 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1235   if (checkArgCount(S, Call, 2))
1236     return true;
1237 
1238   if (checkOpenCLPipeArg(S, Call))
1239     return true;
1240 
1241   // Check reserve_id_t.
1242   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1243     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1244         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1245         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1246     return true;
1247   }
1248 
1249   return false;
1250 }
1251 
1252 // Performs a semantic analysis on the call to built-in Pipe
1253 //        Query Functions.
1254 // \param S Reference to the semantic analyzer.
1255 // \param Call The call to the builtin function to be analyzed.
1256 // \return True if a semantic error was found, false otherwise.
1257 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1258   if (checkArgCount(S, Call, 1))
1259     return true;
1260 
1261   if (!Call->getArg(0)->getType()->isPipeType()) {
1262     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1263         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1264     return true;
1265   }
1266 
1267   return false;
1268 }
1269 
1270 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1271 // Performs semantic analysis for the to_global/local/private call.
1272 // \param S Reference to the semantic analyzer.
1273 // \param BuiltinID ID of the builtin function.
1274 // \param Call A pointer to the builtin call.
1275 // \return True if a semantic error has been found, false otherwise.
1276 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1277                                     CallExpr *Call) {
1278   if (checkArgCount(S, Call, 1))
1279     return true;
1280 
1281   auto RT = Call->getArg(0)->getType();
1282   if (!RT->isPointerType() || RT->getPointeeType()
1283       .getAddressSpace() == LangAS::opencl_constant) {
1284     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1285         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1286     return true;
1287   }
1288 
1289   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1290     S.Diag(Call->getArg(0)->getBeginLoc(),
1291            diag::warn_opencl_generic_address_space_arg)
1292         << Call->getDirectCallee()->getNameInfo().getAsString()
1293         << Call->getArg(0)->getSourceRange();
1294   }
1295 
1296   RT = RT->getPointeeType();
1297   auto Qual = RT.getQualifiers();
1298   switch (BuiltinID) {
1299   case Builtin::BIto_global:
1300     Qual.setAddressSpace(LangAS::opencl_global);
1301     break;
1302   case Builtin::BIto_local:
1303     Qual.setAddressSpace(LangAS::opencl_local);
1304     break;
1305   case Builtin::BIto_private:
1306     Qual.setAddressSpace(LangAS::opencl_private);
1307     break;
1308   default:
1309     llvm_unreachable("Invalid builtin function");
1310   }
1311   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1312       RT.getUnqualifiedType(), Qual)));
1313 
1314   return false;
1315 }
1316 
1317 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1318   if (checkArgCount(S, TheCall, 1))
1319     return ExprError();
1320 
1321   // Compute __builtin_launder's parameter type from the argument.
1322   // The parameter type is:
1323   //  * The type of the argument if it's not an array or function type,
1324   //  Otherwise,
1325   //  * The decayed argument type.
1326   QualType ParamTy = [&]() {
1327     QualType ArgTy = TheCall->getArg(0)->getType();
1328     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1329       return S.Context.getPointerType(Ty->getElementType());
1330     if (ArgTy->isFunctionType()) {
1331       return S.Context.getPointerType(ArgTy);
1332     }
1333     return ArgTy;
1334   }();
1335 
1336   TheCall->setType(ParamTy);
1337 
1338   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1339     if (!ParamTy->isPointerType())
1340       return 0;
1341     if (ParamTy->isFunctionPointerType())
1342       return 1;
1343     if (ParamTy->isVoidPointerType())
1344       return 2;
1345     return llvm::Optional<unsigned>{};
1346   }();
1347   if (DiagSelect.hasValue()) {
1348     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1349         << DiagSelect.getValue() << TheCall->getSourceRange();
1350     return ExprError();
1351   }
1352 
1353   // We either have an incomplete class type, or we have a class template
1354   // whose instantiation has not been forced. Example:
1355   //
1356   //   template <class T> struct Foo { T value; };
1357   //   Foo<int> *p = nullptr;
1358   //   auto *d = __builtin_launder(p);
1359   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1360                             diag::err_incomplete_type))
1361     return ExprError();
1362 
1363   assert(ParamTy->getPointeeType()->isObjectType() &&
1364          "Unhandled non-object pointer case");
1365 
1366   InitializedEntity Entity =
1367       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1368   ExprResult Arg =
1369       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1370   if (Arg.isInvalid())
1371     return ExprError();
1372   TheCall->setArg(0, Arg.get());
1373 
1374   return TheCall;
1375 }
1376 
1377 // Emit an error and return true if the current architecture is not in the list
1378 // of supported architectures.
1379 static bool
1380 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1381                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1382   llvm::Triple::ArchType CurArch =
1383       S.getASTContext().getTargetInfo().getTriple().getArch();
1384   if (llvm::is_contained(SupportedArchs, CurArch))
1385     return false;
1386   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1387       << TheCall->getSourceRange();
1388   return true;
1389 }
1390 
1391 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1392                                  SourceLocation CallSiteLoc);
1393 
1394 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1395                                       CallExpr *TheCall) {
1396   switch (TI.getTriple().getArch()) {
1397   default:
1398     // Some builtins don't require additional checking, so just consider these
1399     // acceptable.
1400     return false;
1401   case llvm::Triple::arm:
1402   case llvm::Triple::armeb:
1403   case llvm::Triple::thumb:
1404   case llvm::Triple::thumbeb:
1405     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1406   case llvm::Triple::aarch64:
1407   case llvm::Triple::aarch64_32:
1408   case llvm::Triple::aarch64_be:
1409     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1410   case llvm::Triple::bpfeb:
1411   case llvm::Triple::bpfel:
1412     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1413   case llvm::Triple::hexagon:
1414     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1415   case llvm::Triple::mips:
1416   case llvm::Triple::mipsel:
1417   case llvm::Triple::mips64:
1418   case llvm::Triple::mips64el:
1419     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1420   case llvm::Triple::systemz:
1421     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1422   case llvm::Triple::x86:
1423   case llvm::Triple::x86_64:
1424     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1425   case llvm::Triple::ppc:
1426   case llvm::Triple::ppcle:
1427   case llvm::Triple::ppc64:
1428   case llvm::Triple::ppc64le:
1429     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1430   case llvm::Triple::amdgcn:
1431     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1432   }
1433 }
1434 
1435 ExprResult
1436 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1437                                CallExpr *TheCall) {
1438   ExprResult TheCallResult(TheCall);
1439 
1440   // Find out if any arguments are required to be integer constant expressions.
1441   unsigned ICEArguments = 0;
1442   ASTContext::GetBuiltinTypeError Error;
1443   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1444   if (Error != ASTContext::GE_None)
1445     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1446 
1447   // If any arguments are required to be ICE's, check and diagnose.
1448   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1449     // Skip arguments not required to be ICE's.
1450     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1451 
1452     llvm::APSInt Result;
1453     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1454       return true;
1455     ICEArguments &= ~(1 << ArgNo);
1456   }
1457 
1458   switch (BuiltinID) {
1459   case Builtin::BI__builtin___CFStringMakeConstantString:
1460     assert(TheCall->getNumArgs() == 1 &&
1461            "Wrong # arguments to builtin CFStringMakeConstantString");
1462     if (CheckObjCString(TheCall->getArg(0)))
1463       return ExprError();
1464     break;
1465   case Builtin::BI__builtin_ms_va_start:
1466   case Builtin::BI__builtin_stdarg_start:
1467   case Builtin::BI__builtin_va_start:
1468     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1469       return ExprError();
1470     break;
1471   case Builtin::BI__va_start: {
1472     switch (Context.getTargetInfo().getTriple().getArch()) {
1473     case llvm::Triple::aarch64:
1474     case llvm::Triple::arm:
1475     case llvm::Triple::thumb:
1476       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1477         return ExprError();
1478       break;
1479     default:
1480       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1481         return ExprError();
1482       break;
1483     }
1484     break;
1485   }
1486 
1487   // The acquire, release, and no fence variants are ARM and AArch64 only.
1488   case Builtin::BI_interlockedbittestandset_acq:
1489   case Builtin::BI_interlockedbittestandset_rel:
1490   case Builtin::BI_interlockedbittestandset_nf:
1491   case Builtin::BI_interlockedbittestandreset_acq:
1492   case Builtin::BI_interlockedbittestandreset_rel:
1493   case Builtin::BI_interlockedbittestandreset_nf:
1494     if (CheckBuiltinTargetSupport(
1495             *this, BuiltinID, TheCall,
1496             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1497       return ExprError();
1498     break;
1499 
1500   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1501   case Builtin::BI_bittest64:
1502   case Builtin::BI_bittestandcomplement64:
1503   case Builtin::BI_bittestandreset64:
1504   case Builtin::BI_bittestandset64:
1505   case Builtin::BI_interlockedbittestandreset64:
1506   case Builtin::BI_interlockedbittestandset64:
1507     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1508                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1509                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1510       return ExprError();
1511     break;
1512 
1513   case Builtin::BI__builtin_isgreater:
1514   case Builtin::BI__builtin_isgreaterequal:
1515   case Builtin::BI__builtin_isless:
1516   case Builtin::BI__builtin_islessequal:
1517   case Builtin::BI__builtin_islessgreater:
1518   case Builtin::BI__builtin_isunordered:
1519     if (SemaBuiltinUnorderedCompare(TheCall))
1520       return ExprError();
1521     break;
1522   case Builtin::BI__builtin_fpclassify:
1523     if (SemaBuiltinFPClassification(TheCall, 6))
1524       return ExprError();
1525     break;
1526   case Builtin::BI__builtin_isfinite:
1527   case Builtin::BI__builtin_isinf:
1528   case Builtin::BI__builtin_isinf_sign:
1529   case Builtin::BI__builtin_isnan:
1530   case Builtin::BI__builtin_isnormal:
1531   case Builtin::BI__builtin_signbit:
1532   case Builtin::BI__builtin_signbitf:
1533   case Builtin::BI__builtin_signbitl:
1534     if (SemaBuiltinFPClassification(TheCall, 1))
1535       return ExprError();
1536     break;
1537   case Builtin::BI__builtin_shufflevector:
1538     return SemaBuiltinShuffleVector(TheCall);
1539     // TheCall will be freed by the smart pointer here, but that's fine, since
1540     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1541   case Builtin::BI__builtin_prefetch:
1542     if (SemaBuiltinPrefetch(TheCall))
1543       return ExprError();
1544     break;
1545   case Builtin::BI__builtin_alloca_with_align:
1546     if (SemaBuiltinAllocaWithAlign(TheCall))
1547       return ExprError();
1548     LLVM_FALLTHROUGH;
1549   case Builtin::BI__builtin_alloca:
1550     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1551         << TheCall->getDirectCallee();
1552     break;
1553   case Builtin::BI__assume:
1554   case Builtin::BI__builtin_assume:
1555     if (SemaBuiltinAssume(TheCall))
1556       return ExprError();
1557     break;
1558   case Builtin::BI__builtin_assume_aligned:
1559     if (SemaBuiltinAssumeAligned(TheCall))
1560       return ExprError();
1561     break;
1562   case Builtin::BI__builtin_dynamic_object_size:
1563   case Builtin::BI__builtin_object_size:
1564     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1565       return ExprError();
1566     break;
1567   case Builtin::BI__builtin_longjmp:
1568     if (SemaBuiltinLongjmp(TheCall))
1569       return ExprError();
1570     break;
1571   case Builtin::BI__builtin_setjmp:
1572     if (SemaBuiltinSetjmp(TheCall))
1573       return ExprError();
1574     break;
1575   case Builtin::BI__builtin_classify_type:
1576     if (checkArgCount(*this, TheCall, 1)) return true;
1577     TheCall->setType(Context.IntTy);
1578     break;
1579   case Builtin::BI__builtin_complex:
1580     if (SemaBuiltinComplex(TheCall))
1581       return ExprError();
1582     break;
1583   case Builtin::BI__builtin_constant_p: {
1584     if (checkArgCount(*this, TheCall, 1)) return true;
1585     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1586     if (Arg.isInvalid()) return true;
1587     TheCall->setArg(0, Arg.get());
1588     TheCall->setType(Context.IntTy);
1589     break;
1590   }
1591   case Builtin::BI__builtin_launder:
1592     return SemaBuiltinLaunder(*this, TheCall);
1593   case Builtin::BI__sync_fetch_and_add:
1594   case Builtin::BI__sync_fetch_and_add_1:
1595   case Builtin::BI__sync_fetch_and_add_2:
1596   case Builtin::BI__sync_fetch_and_add_4:
1597   case Builtin::BI__sync_fetch_and_add_8:
1598   case Builtin::BI__sync_fetch_and_add_16:
1599   case Builtin::BI__sync_fetch_and_sub:
1600   case Builtin::BI__sync_fetch_and_sub_1:
1601   case Builtin::BI__sync_fetch_and_sub_2:
1602   case Builtin::BI__sync_fetch_and_sub_4:
1603   case Builtin::BI__sync_fetch_and_sub_8:
1604   case Builtin::BI__sync_fetch_and_sub_16:
1605   case Builtin::BI__sync_fetch_and_or:
1606   case Builtin::BI__sync_fetch_and_or_1:
1607   case Builtin::BI__sync_fetch_and_or_2:
1608   case Builtin::BI__sync_fetch_and_or_4:
1609   case Builtin::BI__sync_fetch_and_or_8:
1610   case Builtin::BI__sync_fetch_and_or_16:
1611   case Builtin::BI__sync_fetch_and_and:
1612   case Builtin::BI__sync_fetch_and_and_1:
1613   case Builtin::BI__sync_fetch_and_and_2:
1614   case Builtin::BI__sync_fetch_and_and_4:
1615   case Builtin::BI__sync_fetch_and_and_8:
1616   case Builtin::BI__sync_fetch_and_and_16:
1617   case Builtin::BI__sync_fetch_and_xor:
1618   case Builtin::BI__sync_fetch_and_xor_1:
1619   case Builtin::BI__sync_fetch_and_xor_2:
1620   case Builtin::BI__sync_fetch_and_xor_4:
1621   case Builtin::BI__sync_fetch_and_xor_8:
1622   case Builtin::BI__sync_fetch_and_xor_16:
1623   case Builtin::BI__sync_fetch_and_nand:
1624   case Builtin::BI__sync_fetch_and_nand_1:
1625   case Builtin::BI__sync_fetch_and_nand_2:
1626   case Builtin::BI__sync_fetch_and_nand_4:
1627   case Builtin::BI__sync_fetch_and_nand_8:
1628   case Builtin::BI__sync_fetch_and_nand_16:
1629   case Builtin::BI__sync_add_and_fetch:
1630   case Builtin::BI__sync_add_and_fetch_1:
1631   case Builtin::BI__sync_add_and_fetch_2:
1632   case Builtin::BI__sync_add_and_fetch_4:
1633   case Builtin::BI__sync_add_and_fetch_8:
1634   case Builtin::BI__sync_add_and_fetch_16:
1635   case Builtin::BI__sync_sub_and_fetch:
1636   case Builtin::BI__sync_sub_and_fetch_1:
1637   case Builtin::BI__sync_sub_and_fetch_2:
1638   case Builtin::BI__sync_sub_and_fetch_4:
1639   case Builtin::BI__sync_sub_and_fetch_8:
1640   case Builtin::BI__sync_sub_and_fetch_16:
1641   case Builtin::BI__sync_and_and_fetch:
1642   case Builtin::BI__sync_and_and_fetch_1:
1643   case Builtin::BI__sync_and_and_fetch_2:
1644   case Builtin::BI__sync_and_and_fetch_4:
1645   case Builtin::BI__sync_and_and_fetch_8:
1646   case Builtin::BI__sync_and_and_fetch_16:
1647   case Builtin::BI__sync_or_and_fetch:
1648   case Builtin::BI__sync_or_and_fetch_1:
1649   case Builtin::BI__sync_or_and_fetch_2:
1650   case Builtin::BI__sync_or_and_fetch_4:
1651   case Builtin::BI__sync_or_and_fetch_8:
1652   case Builtin::BI__sync_or_and_fetch_16:
1653   case Builtin::BI__sync_xor_and_fetch:
1654   case Builtin::BI__sync_xor_and_fetch_1:
1655   case Builtin::BI__sync_xor_and_fetch_2:
1656   case Builtin::BI__sync_xor_and_fetch_4:
1657   case Builtin::BI__sync_xor_and_fetch_8:
1658   case Builtin::BI__sync_xor_and_fetch_16:
1659   case Builtin::BI__sync_nand_and_fetch:
1660   case Builtin::BI__sync_nand_and_fetch_1:
1661   case Builtin::BI__sync_nand_and_fetch_2:
1662   case Builtin::BI__sync_nand_and_fetch_4:
1663   case Builtin::BI__sync_nand_and_fetch_8:
1664   case Builtin::BI__sync_nand_and_fetch_16:
1665   case Builtin::BI__sync_val_compare_and_swap:
1666   case Builtin::BI__sync_val_compare_and_swap_1:
1667   case Builtin::BI__sync_val_compare_and_swap_2:
1668   case Builtin::BI__sync_val_compare_and_swap_4:
1669   case Builtin::BI__sync_val_compare_and_swap_8:
1670   case Builtin::BI__sync_val_compare_and_swap_16:
1671   case Builtin::BI__sync_bool_compare_and_swap:
1672   case Builtin::BI__sync_bool_compare_and_swap_1:
1673   case Builtin::BI__sync_bool_compare_and_swap_2:
1674   case Builtin::BI__sync_bool_compare_and_swap_4:
1675   case Builtin::BI__sync_bool_compare_and_swap_8:
1676   case Builtin::BI__sync_bool_compare_and_swap_16:
1677   case Builtin::BI__sync_lock_test_and_set:
1678   case Builtin::BI__sync_lock_test_and_set_1:
1679   case Builtin::BI__sync_lock_test_and_set_2:
1680   case Builtin::BI__sync_lock_test_and_set_4:
1681   case Builtin::BI__sync_lock_test_and_set_8:
1682   case Builtin::BI__sync_lock_test_and_set_16:
1683   case Builtin::BI__sync_lock_release:
1684   case Builtin::BI__sync_lock_release_1:
1685   case Builtin::BI__sync_lock_release_2:
1686   case Builtin::BI__sync_lock_release_4:
1687   case Builtin::BI__sync_lock_release_8:
1688   case Builtin::BI__sync_lock_release_16:
1689   case Builtin::BI__sync_swap:
1690   case Builtin::BI__sync_swap_1:
1691   case Builtin::BI__sync_swap_2:
1692   case Builtin::BI__sync_swap_4:
1693   case Builtin::BI__sync_swap_8:
1694   case Builtin::BI__sync_swap_16:
1695     return SemaBuiltinAtomicOverloaded(TheCallResult);
1696   case Builtin::BI__sync_synchronize:
1697     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1698         << TheCall->getCallee()->getSourceRange();
1699     break;
1700   case Builtin::BI__builtin_nontemporal_load:
1701   case Builtin::BI__builtin_nontemporal_store:
1702     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1703   case Builtin::BI__builtin_memcpy_inline: {
1704     clang::Expr *SizeOp = TheCall->getArg(2);
1705     // We warn about copying to or from `nullptr` pointers when `size` is
1706     // greater than 0. When `size` is value dependent we cannot evaluate its
1707     // value so we bail out.
1708     if (SizeOp->isValueDependent())
1709       break;
1710     if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1711       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1712       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1713     }
1714     break;
1715   }
1716 #define BUILTIN(ID, TYPE, ATTRS)
1717 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1718   case Builtin::BI##ID: \
1719     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1720 #include "clang/Basic/Builtins.def"
1721   case Builtin::BI__annotation:
1722     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1723       return ExprError();
1724     break;
1725   case Builtin::BI__builtin_annotation:
1726     if (SemaBuiltinAnnotation(*this, TheCall))
1727       return ExprError();
1728     break;
1729   case Builtin::BI__builtin_addressof:
1730     if (SemaBuiltinAddressof(*this, TheCall))
1731       return ExprError();
1732     break;
1733   case Builtin::BI__builtin_is_aligned:
1734   case Builtin::BI__builtin_align_up:
1735   case Builtin::BI__builtin_align_down:
1736     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1737       return ExprError();
1738     break;
1739   case Builtin::BI__builtin_add_overflow:
1740   case Builtin::BI__builtin_sub_overflow:
1741   case Builtin::BI__builtin_mul_overflow:
1742     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1743       return ExprError();
1744     break;
1745   case Builtin::BI__builtin_operator_new:
1746   case Builtin::BI__builtin_operator_delete: {
1747     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1748     ExprResult Res =
1749         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1750     if (Res.isInvalid())
1751       CorrectDelayedTyposInExpr(TheCallResult.get());
1752     return Res;
1753   }
1754   case Builtin::BI__builtin_dump_struct: {
1755     // We first want to ensure we are called with 2 arguments
1756     if (checkArgCount(*this, TheCall, 2))
1757       return ExprError();
1758     // Ensure that the first argument is of type 'struct XX *'
1759     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1760     const QualType PtrArgType = PtrArg->getType();
1761     if (!PtrArgType->isPointerType() ||
1762         !PtrArgType->getPointeeType()->isRecordType()) {
1763       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1764           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1765           << "structure pointer";
1766       return ExprError();
1767     }
1768 
1769     // Ensure that the second argument is of type 'FunctionType'
1770     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1771     const QualType FnPtrArgType = FnPtrArg->getType();
1772     if (!FnPtrArgType->isPointerType()) {
1773       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1774           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1775           << FnPtrArgType << "'int (*)(const char *, ...)'";
1776       return ExprError();
1777     }
1778 
1779     const auto *FuncType =
1780         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1781 
1782     if (!FuncType) {
1783       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1784           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1785           << FnPtrArgType << "'int (*)(const char *, ...)'";
1786       return ExprError();
1787     }
1788 
1789     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1790       if (!FT->getNumParams()) {
1791         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1792             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1793             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1794         return ExprError();
1795       }
1796       QualType PT = FT->getParamType(0);
1797       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1798           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1799           !PT->getPointeeType().isConstQualified()) {
1800         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1801             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1802             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1803         return ExprError();
1804       }
1805     }
1806 
1807     TheCall->setType(Context.IntTy);
1808     break;
1809   }
1810   case Builtin::BI__builtin_expect_with_probability: {
1811     // We first want to ensure we are called with 3 arguments
1812     if (checkArgCount(*this, TheCall, 3))
1813       return ExprError();
1814     // then check probability is constant float in range [0.0, 1.0]
1815     const Expr *ProbArg = TheCall->getArg(2);
1816     SmallVector<PartialDiagnosticAt, 8> Notes;
1817     Expr::EvalResult Eval;
1818     Eval.Diag = &Notes;
1819     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1820         !Eval.Val.isFloat()) {
1821       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1822           << ProbArg->getSourceRange();
1823       for (const PartialDiagnosticAt &PDiag : Notes)
1824         Diag(PDiag.first, PDiag.second);
1825       return ExprError();
1826     }
1827     llvm::APFloat Probability = Eval.Val.getFloat();
1828     bool LoseInfo = false;
1829     Probability.convert(llvm::APFloat::IEEEdouble(),
1830                         llvm::RoundingMode::Dynamic, &LoseInfo);
1831     if (!(Probability >= llvm::APFloat(0.0) &&
1832           Probability <= llvm::APFloat(1.0))) {
1833       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1834           << ProbArg->getSourceRange();
1835       return ExprError();
1836     }
1837     break;
1838   }
1839   case Builtin::BI__builtin_preserve_access_index:
1840     if (SemaBuiltinPreserveAI(*this, TheCall))
1841       return ExprError();
1842     break;
1843   case Builtin::BI__builtin_call_with_static_chain:
1844     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1845       return ExprError();
1846     break;
1847   case Builtin::BI__exception_code:
1848   case Builtin::BI_exception_code:
1849     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1850                                  diag::err_seh___except_block))
1851       return ExprError();
1852     break;
1853   case Builtin::BI__exception_info:
1854   case Builtin::BI_exception_info:
1855     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1856                                  diag::err_seh___except_filter))
1857       return ExprError();
1858     break;
1859   case Builtin::BI__GetExceptionInfo:
1860     if (checkArgCount(*this, TheCall, 1))
1861       return ExprError();
1862 
1863     if (CheckCXXThrowOperand(
1864             TheCall->getBeginLoc(),
1865             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1866             TheCall))
1867       return ExprError();
1868 
1869     TheCall->setType(Context.VoidPtrTy);
1870     break;
1871   // OpenCL v2.0, s6.13.16 - Pipe functions
1872   case Builtin::BIread_pipe:
1873   case Builtin::BIwrite_pipe:
1874     // Since those two functions are declared with var args, we need a semantic
1875     // check for the argument.
1876     if (SemaBuiltinRWPipe(*this, TheCall))
1877       return ExprError();
1878     break;
1879   case Builtin::BIreserve_read_pipe:
1880   case Builtin::BIreserve_write_pipe:
1881   case Builtin::BIwork_group_reserve_read_pipe:
1882   case Builtin::BIwork_group_reserve_write_pipe:
1883     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1884       return ExprError();
1885     break;
1886   case Builtin::BIsub_group_reserve_read_pipe:
1887   case Builtin::BIsub_group_reserve_write_pipe:
1888     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1889         SemaBuiltinReserveRWPipe(*this, TheCall))
1890       return ExprError();
1891     break;
1892   case Builtin::BIcommit_read_pipe:
1893   case Builtin::BIcommit_write_pipe:
1894   case Builtin::BIwork_group_commit_read_pipe:
1895   case Builtin::BIwork_group_commit_write_pipe:
1896     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1897       return ExprError();
1898     break;
1899   case Builtin::BIsub_group_commit_read_pipe:
1900   case Builtin::BIsub_group_commit_write_pipe:
1901     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1902         SemaBuiltinCommitRWPipe(*this, TheCall))
1903       return ExprError();
1904     break;
1905   case Builtin::BIget_pipe_num_packets:
1906   case Builtin::BIget_pipe_max_packets:
1907     if (SemaBuiltinPipePackets(*this, TheCall))
1908       return ExprError();
1909     break;
1910   case Builtin::BIto_global:
1911   case Builtin::BIto_local:
1912   case Builtin::BIto_private:
1913     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1914       return ExprError();
1915     break;
1916   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1917   case Builtin::BIenqueue_kernel:
1918     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1919       return ExprError();
1920     break;
1921   case Builtin::BIget_kernel_work_group_size:
1922   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1923     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1924       return ExprError();
1925     break;
1926   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1927   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1928     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1929       return ExprError();
1930     break;
1931   case Builtin::BI__builtin_os_log_format:
1932     Cleanup.setExprNeedsCleanups(true);
1933     LLVM_FALLTHROUGH;
1934   case Builtin::BI__builtin_os_log_format_buffer_size:
1935     if (SemaBuiltinOSLogFormat(TheCall))
1936       return ExprError();
1937     break;
1938   case Builtin::BI__builtin_frame_address:
1939   case Builtin::BI__builtin_return_address: {
1940     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1941       return ExprError();
1942 
1943     // -Wframe-address warning if non-zero passed to builtin
1944     // return/frame address.
1945     Expr::EvalResult Result;
1946     if (!TheCall->getArg(0)->isValueDependent() &&
1947         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1948         Result.Val.getInt() != 0)
1949       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1950           << ((BuiltinID == Builtin::BI__builtin_return_address)
1951                   ? "__builtin_return_address"
1952                   : "__builtin_frame_address")
1953           << TheCall->getSourceRange();
1954     break;
1955   }
1956 
1957   case Builtin::BI__builtin_matrix_transpose:
1958     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1959 
1960   case Builtin::BI__builtin_matrix_column_major_load:
1961     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1962 
1963   case Builtin::BI__builtin_matrix_column_major_store:
1964     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1965   }
1966 
1967   // Since the target specific builtins for each arch overlap, only check those
1968   // of the arch we are compiling for.
1969   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1970     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
1971       assert(Context.getAuxTargetInfo() &&
1972              "Aux Target Builtin, but not an aux target?");
1973 
1974       if (CheckTSBuiltinFunctionCall(
1975               *Context.getAuxTargetInfo(),
1976               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
1977         return ExprError();
1978     } else {
1979       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
1980                                      TheCall))
1981         return ExprError();
1982     }
1983   }
1984 
1985   return TheCallResult;
1986 }
1987 
1988 // Get the valid immediate range for the specified NEON type code.
1989 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1990   NeonTypeFlags Type(t);
1991   int IsQuad = ForceQuad ? true : Type.isQuad();
1992   switch (Type.getEltType()) {
1993   case NeonTypeFlags::Int8:
1994   case NeonTypeFlags::Poly8:
1995     return shift ? 7 : (8 << IsQuad) - 1;
1996   case NeonTypeFlags::Int16:
1997   case NeonTypeFlags::Poly16:
1998     return shift ? 15 : (4 << IsQuad) - 1;
1999   case NeonTypeFlags::Int32:
2000     return shift ? 31 : (2 << IsQuad) - 1;
2001   case NeonTypeFlags::Int64:
2002   case NeonTypeFlags::Poly64:
2003     return shift ? 63 : (1 << IsQuad) - 1;
2004   case NeonTypeFlags::Poly128:
2005     return shift ? 127 : (1 << IsQuad) - 1;
2006   case NeonTypeFlags::Float16:
2007     assert(!shift && "cannot shift float types!");
2008     return (4 << IsQuad) - 1;
2009   case NeonTypeFlags::Float32:
2010     assert(!shift && "cannot shift float types!");
2011     return (2 << IsQuad) - 1;
2012   case NeonTypeFlags::Float64:
2013     assert(!shift && "cannot shift float types!");
2014     return (1 << IsQuad) - 1;
2015   case NeonTypeFlags::BFloat16:
2016     assert(!shift && "cannot shift float types!");
2017     return (4 << IsQuad) - 1;
2018   }
2019   llvm_unreachable("Invalid NeonTypeFlag!");
2020 }
2021 
2022 /// getNeonEltType - Return the QualType corresponding to the elements of
2023 /// the vector type specified by the NeonTypeFlags.  This is used to check
2024 /// the pointer arguments for Neon load/store intrinsics.
2025 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2026                                bool IsPolyUnsigned, bool IsInt64Long) {
2027   switch (Flags.getEltType()) {
2028   case NeonTypeFlags::Int8:
2029     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2030   case NeonTypeFlags::Int16:
2031     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2032   case NeonTypeFlags::Int32:
2033     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2034   case NeonTypeFlags::Int64:
2035     if (IsInt64Long)
2036       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2037     else
2038       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2039                                 : Context.LongLongTy;
2040   case NeonTypeFlags::Poly8:
2041     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2042   case NeonTypeFlags::Poly16:
2043     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2044   case NeonTypeFlags::Poly64:
2045     if (IsInt64Long)
2046       return Context.UnsignedLongTy;
2047     else
2048       return Context.UnsignedLongLongTy;
2049   case NeonTypeFlags::Poly128:
2050     break;
2051   case NeonTypeFlags::Float16:
2052     return Context.HalfTy;
2053   case NeonTypeFlags::Float32:
2054     return Context.FloatTy;
2055   case NeonTypeFlags::Float64:
2056     return Context.DoubleTy;
2057   case NeonTypeFlags::BFloat16:
2058     return Context.BFloat16Ty;
2059   }
2060   llvm_unreachable("Invalid NeonTypeFlag!");
2061 }
2062 
2063 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2064   // Range check SVE intrinsics that take immediate values.
2065   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2066 
2067   switch (BuiltinID) {
2068   default:
2069     return false;
2070 #define GET_SVE_IMMEDIATE_CHECK
2071 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2072 #undef GET_SVE_IMMEDIATE_CHECK
2073   }
2074 
2075   // Perform all the immediate checks for this builtin call.
2076   bool HasError = false;
2077   for (auto &I : ImmChecks) {
2078     int ArgNum, CheckTy, ElementSizeInBits;
2079     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2080 
2081     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2082 
2083     // Function that checks whether the operand (ArgNum) is an immediate
2084     // that is one of the predefined values.
2085     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2086                                    int ErrDiag) -> bool {
2087       // We can't check the value of a dependent argument.
2088       Expr *Arg = TheCall->getArg(ArgNum);
2089       if (Arg->isTypeDependent() || Arg->isValueDependent())
2090         return false;
2091 
2092       // Check constant-ness first.
2093       llvm::APSInt Imm;
2094       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2095         return true;
2096 
2097       if (!CheckImm(Imm.getSExtValue()))
2098         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2099       return false;
2100     };
2101 
2102     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2103     case SVETypeFlags::ImmCheck0_31:
2104       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2105         HasError = true;
2106       break;
2107     case SVETypeFlags::ImmCheck0_13:
2108       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2109         HasError = true;
2110       break;
2111     case SVETypeFlags::ImmCheck1_16:
2112       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2113         HasError = true;
2114       break;
2115     case SVETypeFlags::ImmCheck0_7:
2116       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2117         HasError = true;
2118       break;
2119     case SVETypeFlags::ImmCheckExtract:
2120       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2121                                       (2048 / ElementSizeInBits) - 1))
2122         HasError = true;
2123       break;
2124     case SVETypeFlags::ImmCheckShiftRight:
2125       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2126         HasError = true;
2127       break;
2128     case SVETypeFlags::ImmCheckShiftRightNarrow:
2129       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2130                                       ElementSizeInBits / 2))
2131         HasError = true;
2132       break;
2133     case SVETypeFlags::ImmCheckShiftLeft:
2134       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2135                                       ElementSizeInBits - 1))
2136         HasError = true;
2137       break;
2138     case SVETypeFlags::ImmCheckLaneIndex:
2139       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2140                                       (128 / (1 * ElementSizeInBits)) - 1))
2141         HasError = true;
2142       break;
2143     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2144       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2145                                       (128 / (2 * ElementSizeInBits)) - 1))
2146         HasError = true;
2147       break;
2148     case SVETypeFlags::ImmCheckLaneIndexDot:
2149       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2150                                       (128 / (4 * ElementSizeInBits)) - 1))
2151         HasError = true;
2152       break;
2153     case SVETypeFlags::ImmCheckComplexRot90_270:
2154       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2155                               diag::err_rotation_argument_to_cadd))
2156         HasError = true;
2157       break;
2158     case SVETypeFlags::ImmCheckComplexRotAll90:
2159       if (CheckImmediateInSet(
2160               [](int64_t V) {
2161                 return V == 0 || V == 90 || V == 180 || V == 270;
2162               },
2163               diag::err_rotation_argument_to_cmla))
2164         HasError = true;
2165       break;
2166     case SVETypeFlags::ImmCheck0_1:
2167       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2168         HasError = true;
2169       break;
2170     case SVETypeFlags::ImmCheck0_2:
2171       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2172         HasError = true;
2173       break;
2174     case SVETypeFlags::ImmCheck0_3:
2175       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2176         HasError = true;
2177       break;
2178     }
2179   }
2180 
2181   return HasError;
2182 }
2183 
2184 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2185                                         unsigned BuiltinID, CallExpr *TheCall) {
2186   llvm::APSInt Result;
2187   uint64_t mask = 0;
2188   unsigned TV = 0;
2189   int PtrArgNum = -1;
2190   bool HasConstPtr = false;
2191   switch (BuiltinID) {
2192 #define GET_NEON_OVERLOAD_CHECK
2193 #include "clang/Basic/arm_neon.inc"
2194 #include "clang/Basic/arm_fp16.inc"
2195 #undef GET_NEON_OVERLOAD_CHECK
2196   }
2197 
2198   // For NEON intrinsics which are overloaded on vector element type, validate
2199   // the immediate which specifies which variant to emit.
2200   unsigned ImmArg = TheCall->getNumArgs()-1;
2201   if (mask) {
2202     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2203       return true;
2204 
2205     TV = Result.getLimitedValue(64);
2206     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2207       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2208              << TheCall->getArg(ImmArg)->getSourceRange();
2209   }
2210 
2211   if (PtrArgNum >= 0) {
2212     // Check that pointer arguments have the specified type.
2213     Expr *Arg = TheCall->getArg(PtrArgNum);
2214     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2215       Arg = ICE->getSubExpr();
2216     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2217     QualType RHSTy = RHS.get()->getType();
2218 
2219     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2220     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2221                           Arch == llvm::Triple::aarch64_32 ||
2222                           Arch == llvm::Triple::aarch64_be;
2223     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2224     QualType EltTy =
2225         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2226     if (HasConstPtr)
2227       EltTy = EltTy.withConst();
2228     QualType LHSTy = Context.getPointerType(EltTy);
2229     AssignConvertType ConvTy;
2230     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2231     if (RHS.isInvalid())
2232       return true;
2233     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2234                                  RHS.get(), AA_Assigning))
2235       return true;
2236   }
2237 
2238   // For NEON intrinsics which take an immediate value as part of the
2239   // instruction, range check them here.
2240   unsigned i = 0, l = 0, u = 0;
2241   switch (BuiltinID) {
2242   default:
2243     return false;
2244   #define GET_NEON_IMMEDIATE_CHECK
2245   #include "clang/Basic/arm_neon.inc"
2246   #include "clang/Basic/arm_fp16.inc"
2247   #undef GET_NEON_IMMEDIATE_CHECK
2248   }
2249 
2250   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2251 }
2252 
2253 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2254   switch (BuiltinID) {
2255   default:
2256     return false;
2257   #include "clang/Basic/arm_mve_builtin_sema.inc"
2258   }
2259 }
2260 
2261 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2262                                        CallExpr *TheCall) {
2263   bool Err = false;
2264   switch (BuiltinID) {
2265   default:
2266     return false;
2267 #include "clang/Basic/arm_cde_builtin_sema.inc"
2268   }
2269 
2270   if (Err)
2271     return true;
2272 
2273   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2274 }
2275 
2276 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2277                                         const Expr *CoprocArg, bool WantCDE) {
2278   if (isConstantEvaluated())
2279     return false;
2280 
2281   // We can't check the value of a dependent argument.
2282   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2283     return false;
2284 
2285   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2286   int64_t CoprocNo = CoprocNoAP.getExtValue();
2287   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2288 
2289   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2290   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2291 
2292   if (IsCDECoproc != WantCDE)
2293     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2294            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2295 
2296   return false;
2297 }
2298 
2299 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2300                                         unsigned MaxWidth) {
2301   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2302           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2303           BuiltinID == ARM::BI__builtin_arm_strex ||
2304           BuiltinID == ARM::BI__builtin_arm_stlex ||
2305           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2306           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2307           BuiltinID == AArch64::BI__builtin_arm_strex ||
2308           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2309          "unexpected ARM builtin");
2310   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2311                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2312                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2313                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2314 
2315   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2316 
2317   // Ensure that we have the proper number of arguments.
2318   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2319     return true;
2320 
2321   // Inspect the pointer argument of the atomic builtin.  This should always be
2322   // a pointer type, whose element is an integral scalar or pointer type.
2323   // Because it is a pointer type, we don't have to worry about any implicit
2324   // casts here.
2325   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2326   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2327   if (PointerArgRes.isInvalid())
2328     return true;
2329   PointerArg = PointerArgRes.get();
2330 
2331   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2332   if (!pointerType) {
2333     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2334         << PointerArg->getType() << PointerArg->getSourceRange();
2335     return true;
2336   }
2337 
2338   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2339   // task is to insert the appropriate casts into the AST. First work out just
2340   // what the appropriate type is.
2341   QualType ValType = pointerType->getPointeeType();
2342   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2343   if (IsLdrex)
2344     AddrType.addConst();
2345 
2346   // Issue a warning if the cast is dodgy.
2347   CastKind CastNeeded = CK_NoOp;
2348   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2349     CastNeeded = CK_BitCast;
2350     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2351         << PointerArg->getType() << Context.getPointerType(AddrType)
2352         << AA_Passing << PointerArg->getSourceRange();
2353   }
2354 
2355   // Finally, do the cast and replace the argument with the corrected version.
2356   AddrType = Context.getPointerType(AddrType);
2357   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2358   if (PointerArgRes.isInvalid())
2359     return true;
2360   PointerArg = PointerArgRes.get();
2361 
2362   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2363 
2364   // In general, we allow ints, floats and pointers to be loaded and stored.
2365   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2366       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2367     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2368         << PointerArg->getType() << PointerArg->getSourceRange();
2369     return true;
2370   }
2371 
2372   // But ARM doesn't have instructions to deal with 128-bit versions.
2373   if (Context.getTypeSize(ValType) > MaxWidth) {
2374     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2375     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2376         << PointerArg->getType() << PointerArg->getSourceRange();
2377     return true;
2378   }
2379 
2380   switch (ValType.getObjCLifetime()) {
2381   case Qualifiers::OCL_None:
2382   case Qualifiers::OCL_ExplicitNone:
2383     // okay
2384     break;
2385 
2386   case Qualifiers::OCL_Weak:
2387   case Qualifiers::OCL_Strong:
2388   case Qualifiers::OCL_Autoreleasing:
2389     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2390         << ValType << PointerArg->getSourceRange();
2391     return true;
2392   }
2393 
2394   if (IsLdrex) {
2395     TheCall->setType(ValType);
2396     return false;
2397   }
2398 
2399   // Initialize the argument to be stored.
2400   ExprResult ValArg = TheCall->getArg(0);
2401   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2402       Context, ValType, /*consume*/ false);
2403   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2404   if (ValArg.isInvalid())
2405     return true;
2406   TheCall->setArg(0, ValArg.get());
2407 
2408   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2409   // but the custom checker bypasses all default analysis.
2410   TheCall->setType(Context.IntTy);
2411   return false;
2412 }
2413 
2414 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2415                                        CallExpr *TheCall) {
2416   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2417       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2418       BuiltinID == ARM::BI__builtin_arm_strex ||
2419       BuiltinID == ARM::BI__builtin_arm_stlex) {
2420     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2421   }
2422 
2423   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2424     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2425       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2426   }
2427 
2428   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2429       BuiltinID == ARM::BI__builtin_arm_wsr64)
2430     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2431 
2432   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2433       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2434       BuiltinID == ARM::BI__builtin_arm_wsr ||
2435       BuiltinID == ARM::BI__builtin_arm_wsrp)
2436     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2437 
2438   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2439     return true;
2440   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2441     return true;
2442   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2443     return true;
2444 
2445   // For intrinsics which take an immediate value as part of the instruction,
2446   // range check them here.
2447   // FIXME: VFP Intrinsics should error if VFP not present.
2448   switch (BuiltinID) {
2449   default: return false;
2450   case ARM::BI__builtin_arm_ssat:
2451     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2452   case ARM::BI__builtin_arm_usat:
2453     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2454   case ARM::BI__builtin_arm_ssat16:
2455     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2456   case ARM::BI__builtin_arm_usat16:
2457     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2458   case ARM::BI__builtin_arm_vcvtr_f:
2459   case ARM::BI__builtin_arm_vcvtr_d:
2460     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2461   case ARM::BI__builtin_arm_dmb:
2462   case ARM::BI__builtin_arm_dsb:
2463   case ARM::BI__builtin_arm_isb:
2464   case ARM::BI__builtin_arm_dbg:
2465     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2466   case ARM::BI__builtin_arm_cdp:
2467   case ARM::BI__builtin_arm_cdp2:
2468   case ARM::BI__builtin_arm_mcr:
2469   case ARM::BI__builtin_arm_mcr2:
2470   case ARM::BI__builtin_arm_mrc:
2471   case ARM::BI__builtin_arm_mrc2:
2472   case ARM::BI__builtin_arm_mcrr:
2473   case ARM::BI__builtin_arm_mcrr2:
2474   case ARM::BI__builtin_arm_mrrc:
2475   case ARM::BI__builtin_arm_mrrc2:
2476   case ARM::BI__builtin_arm_ldc:
2477   case ARM::BI__builtin_arm_ldcl:
2478   case ARM::BI__builtin_arm_ldc2:
2479   case ARM::BI__builtin_arm_ldc2l:
2480   case ARM::BI__builtin_arm_stc:
2481   case ARM::BI__builtin_arm_stcl:
2482   case ARM::BI__builtin_arm_stc2:
2483   case ARM::BI__builtin_arm_stc2l:
2484     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2485            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2486                                         /*WantCDE*/ false);
2487   }
2488 }
2489 
2490 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2491                                            unsigned BuiltinID,
2492                                            CallExpr *TheCall) {
2493   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2494       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2495       BuiltinID == AArch64::BI__builtin_arm_strex ||
2496       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2497     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2498   }
2499 
2500   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2501     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2502       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2503       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2504       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2505   }
2506 
2507   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2508       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2509     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2510 
2511   // Memory Tagging Extensions (MTE) Intrinsics
2512   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2513       BuiltinID == AArch64::BI__builtin_arm_addg ||
2514       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2515       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2516       BuiltinID == AArch64::BI__builtin_arm_stg ||
2517       BuiltinID == AArch64::BI__builtin_arm_subp) {
2518     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2519   }
2520 
2521   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2522       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2523       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2524       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2525     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2526 
2527   // Only check the valid encoding range. Any constant in this range would be
2528   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2529   // an exception for incorrect registers. This matches MSVC behavior.
2530   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2531       BuiltinID == AArch64::BI_WriteStatusReg)
2532     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2533 
2534   if (BuiltinID == AArch64::BI__getReg)
2535     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2536 
2537   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2538     return true;
2539 
2540   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2541     return true;
2542 
2543   // For intrinsics which take an immediate value as part of the instruction,
2544   // range check them here.
2545   unsigned i = 0, l = 0, u = 0;
2546   switch (BuiltinID) {
2547   default: return false;
2548   case AArch64::BI__builtin_arm_dmb:
2549   case AArch64::BI__builtin_arm_dsb:
2550   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2551   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2552   }
2553 
2554   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2555 }
2556 
2557 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2558   if (Arg->getType()->getAsPlaceholderType())
2559     return false;
2560 
2561   // The first argument needs to be a record field access.
2562   // If it is an array element access, we delay decision
2563   // to BPF backend to check whether the access is a
2564   // field access or not.
2565   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2566           dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2567           dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2568 }
2569 
2570 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2571                             QualType VectorTy, QualType EltTy) {
2572   QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2573   if (!Context.hasSameType(VectorEltTy, EltTy)) {
2574     S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2575         << Call->getSourceRange() << VectorEltTy << EltTy;
2576     return false;
2577   }
2578   return true;
2579 }
2580 
2581 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2582   QualType ArgType = Arg->getType();
2583   if (ArgType->getAsPlaceholderType())
2584     return false;
2585 
2586   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2587   // format:
2588   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2589   //   2. <type> var;
2590   //      __builtin_preserve_type_info(var, flag);
2591   if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2592       !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2593     return false;
2594 
2595   // Typedef type.
2596   if (ArgType->getAs<TypedefType>())
2597     return true;
2598 
2599   // Record type or Enum type.
2600   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2601   if (const auto *RT = Ty->getAs<RecordType>()) {
2602     if (!RT->getDecl()->getDeclName().isEmpty())
2603       return true;
2604   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2605     if (!ET->getDecl()->getDeclName().isEmpty())
2606       return true;
2607   }
2608 
2609   return false;
2610 }
2611 
2612 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2613   QualType ArgType = Arg->getType();
2614   if (ArgType->getAsPlaceholderType())
2615     return false;
2616 
2617   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2618   // format:
2619   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2620   //                                 flag);
2621   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2622   if (!UO)
2623     return false;
2624 
2625   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2626   if (!CE)
2627     return false;
2628   if (CE->getCastKind() != CK_IntegralToPointer &&
2629       CE->getCastKind() != CK_NullToPointer)
2630     return false;
2631 
2632   // The integer must be from an EnumConstantDecl.
2633   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2634   if (!DR)
2635     return false;
2636 
2637   const EnumConstantDecl *Enumerator =
2638       dyn_cast<EnumConstantDecl>(DR->getDecl());
2639   if (!Enumerator)
2640     return false;
2641 
2642   // The type must be EnumType.
2643   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2644   const auto *ET = Ty->getAs<EnumType>();
2645   if (!ET)
2646     return false;
2647 
2648   // The enum value must be supported.
2649   for (auto *EDI : ET->getDecl()->enumerators()) {
2650     if (EDI == Enumerator)
2651       return true;
2652   }
2653 
2654   return false;
2655 }
2656 
2657 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2658                                        CallExpr *TheCall) {
2659   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2660           BuiltinID == BPF::BI__builtin_btf_type_id ||
2661           BuiltinID == BPF::BI__builtin_preserve_type_info ||
2662           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2663          "unexpected BPF builtin");
2664 
2665   if (checkArgCount(*this, TheCall, 2))
2666     return true;
2667 
2668   // The second argument needs to be a constant int
2669   Expr *Arg = TheCall->getArg(1);
2670   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2671   diag::kind kind;
2672   if (!Value) {
2673     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2674       kind = diag::err_preserve_field_info_not_const;
2675     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2676       kind = diag::err_btf_type_id_not_const;
2677     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2678       kind = diag::err_preserve_type_info_not_const;
2679     else
2680       kind = diag::err_preserve_enum_value_not_const;
2681     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2682     return true;
2683   }
2684 
2685   // The first argument
2686   Arg = TheCall->getArg(0);
2687   bool InvalidArg = false;
2688   bool ReturnUnsignedInt = true;
2689   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2690     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2691       InvalidArg = true;
2692       kind = diag::err_preserve_field_info_not_field;
2693     }
2694   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2695     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2696       InvalidArg = true;
2697       kind = diag::err_preserve_type_info_invalid;
2698     }
2699   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2700     if (!isValidBPFPreserveEnumValueArg(Arg)) {
2701       InvalidArg = true;
2702       kind = diag::err_preserve_enum_value_invalid;
2703     }
2704     ReturnUnsignedInt = false;
2705   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2706     ReturnUnsignedInt = false;
2707   }
2708 
2709   if (InvalidArg) {
2710     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2711     return true;
2712   }
2713 
2714   if (ReturnUnsignedInt)
2715     TheCall->setType(Context.UnsignedIntTy);
2716   else
2717     TheCall->setType(Context.UnsignedLongTy);
2718   return false;
2719 }
2720 
2721 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2722   struct ArgInfo {
2723     uint8_t OpNum;
2724     bool IsSigned;
2725     uint8_t BitWidth;
2726     uint8_t Align;
2727   };
2728   struct BuiltinInfo {
2729     unsigned BuiltinID;
2730     ArgInfo Infos[2];
2731   };
2732 
2733   static BuiltinInfo Infos[] = {
2734     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2735     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2736     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2737     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
2738     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2739     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2740     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2741     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2742     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2743     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2744     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2745 
2746     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2747     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2748     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2749     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2750     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2751     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2752     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2753     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2754     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2755     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2756     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2757 
2758     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2759     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2760     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2761     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2762     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2763     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2764     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2765     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2766     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2767     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2768     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2769     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2770     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2771     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2772     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2773     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2774     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2775     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2776     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2777     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2778     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2779     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2780     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2781     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2782     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2783     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2784     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2785     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2786     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2787     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2788     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2789     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2790     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2791     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2792     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2793     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2794     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2795     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2796     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2797     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2798     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2799     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2800     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2801     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2802     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2803     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2804     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2805     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2806     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2807     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2808     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2809     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2810                                                       {{ 1, false, 6,  0 }} },
2811     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2812     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2813     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2814     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2815     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2816     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2817     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2818                                                       {{ 1, false, 5,  0 }} },
2819     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2820     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2821     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2822     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2823     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2824     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2825                                                        { 2, false, 5,  0 }} },
2826     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
2827                                                        { 2, false, 6,  0 }} },
2828     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
2829                                                        { 3, false, 5,  0 }} },
2830     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
2831                                                        { 3, false, 6,  0 }} },
2832     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
2833     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
2834     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
2835     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
2836     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
2837     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
2838     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
2839     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
2840     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
2841     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
2842     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
2843     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
2844     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
2845     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
2846     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
2847     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2848                                                       {{ 2, false, 4,  0 },
2849                                                        { 3, false, 5,  0 }} },
2850     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2851                                                       {{ 2, false, 4,  0 },
2852                                                        { 3, false, 5,  0 }} },
2853     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2854                                                       {{ 2, false, 4,  0 },
2855                                                        { 3, false, 5,  0 }} },
2856     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2857                                                       {{ 2, false, 4,  0 },
2858                                                        { 3, false, 5,  0 }} },
2859     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
2860     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
2861     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
2862     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
2863     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
2864     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
2865     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
2866     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
2867     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
2868     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
2869     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
2870                                                        { 2, false, 5,  0 }} },
2871     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
2872                                                        { 2, false, 6,  0 }} },
2873     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
2874     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
2875     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
2876     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
2877     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
2878     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
2879     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
2880     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
2881     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2882                                                       {{ 1, false, 4,  0 }} },
2883     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
2884     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2885                                                       {{ 1, false, 4,  0 }} },
2886     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
2887     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
2888     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
2889     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
2890     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
2891     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
2892     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
2893     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
2894     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
2895     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
2896     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
2897     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
2898     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
2899     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
2900     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
2901     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
2902     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
2903     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
2904     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
2905     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2906                                                       {{ 3, false, 1,  0 }} },
2907     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
2908     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
2909     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
2910     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2911                                                       {{ 3, false, 1,  0 }} },
2912     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
2913     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
2914     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
2915     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2916                                                       {{ 3, false, 1,  0 }} },
2917   };
2918 
2919   // Use a dynamically initialized static to sort the table exactly once on
2920   // first run.
2921   static const bool SortOnce =
2922       (llvm::sort(Infos,
2923                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2924                    return LHS.BuiltinID < RHS.BuiltinID;
2925                  }),
2926        true);
2927   (void)SortOnce;
2928 
2929   const BuiltinInfo *F = llvm::partition_point(
2930       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2931   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2932     return false;
2933 
2934   bool Error = false;
2935 
2936   for (const ArgInfo &A : F->Infos) {
2937     // Ignore empty ArgInfo elements.
2938     if (A.BitWidth == 0)
2939       continue;
2940 
2941     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2942     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2943     if (!A.Align) {
2944       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2945     } else {
2946       unsigned M = 1 << A.Align;
2947       Min *= M;
2948       Max *= M;
2949       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2950                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2951     }
2952   }
2953   return Error;
2954 }
2955 
2956 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2957                                            CallExpr *TheCall) {
2958   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
2959 }
2960 
2961 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
2962                                         unsigned BuiltinID, CallExpr *TheCall) {
2963   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
2964          CheckMipsBuiltinArgument(BuiltinID, TheCall);
2965 }
2966 
2967 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
2968                                CallExpr *TheCall) {
2969 
2970   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
2971       BuiltinID <= Mips::BI__builtin_mips_lwx) {
2972     if (!TI.hasFeature("dsp"))
2973       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
2974   }
2975 
2976   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
2977       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
2978     if (!TI.hasFeature("dspr2"))
2979       return Diag(TheCall->getBeginLoc(),
2980                   diag::err_mips_builtin_requires_dspr2);
2981   }
2982 
2983   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
2984       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
2985     if (!TI.hasFeature("msa"))
2986       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
2987   }
2988 
2989   return false;
2990 }
2991 
2992 // CheckMipsBuiltinArgument - Checks the constant value passed to the
2993 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
2994 // ordering for DSP is unspecified. MSA is ordered by the data format used
2995 // by the underlying instruction i.e., df/m, df/n and then by size.
2996 //
2997 // FIXME: The size tests here should instead be tablegen'd along with the
2998 //        definitions from include/clang/Basic/BuiltinsMips.def.
2999 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3000 //        be too.
3001 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3002   unsigned i = 0, l = 0, u = 0, m = 0;
3003   switch (BuiltinID) {
3004   default: return false;
3005   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3006   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3007   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3008   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3009   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3010   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3011   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3012   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3013   // df/m field.
3014   // These intrinsics take an unsigned 3 bit immediate.
3015   case Mips::BI__builtin_msa_bclri_b:
3016   case Mips::BI__builtin_msa_bnegi_b:
3017   case Mips::BI__builtin_msa_bseti_b:
3018   case Mips::BI__builtin_msa_sat_s_b:
3019   case Mips::BI__builtin_msa_sat_u_b:
3020   case Mips::BI__builtin_msa_slli_b:
3021   case Mips::BI__builtin_msa_srai_b:
3022   case Mips::BI__builtin_msa_srari_b:
3023   case Mips::BI__builtin_msa_srli_b:
3024   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3025   case Mips::BI__builtin_msa_binsli_b:
3026   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3027   // These intrinsics take an unsigned 4 bit immediate.
3028   case Mips::BI__builtin_msa_bclri_h:
3029   case Mips::BI__builtin_msa_bnegi_h:
3030   case Mips::BI__builtin_msa_bseti_h:
3031   case Mips::BI__builtin_msa_sat_s_h:
3032   case Mips::BI__builtin_msa_sat_u_h:
3033   case Mips::BI__builtin_msa_slli_h:
3034   case Mips::BI__builtin_msa_srai_h:
3035   case Mips::BI__builtin_msa_srari_h:
3036   case Mips::BI__builtin_msa_srli_h:
3037   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3038   case Mips::BI__builtin_msa_binsli_h:
3039   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3040   // These intrinsics take an unsigned 5 bit immediate.
3041   // The first block of intrinsics actually have an unsigned 5 bit field,
3042   // not a df/n field.
3043   case Mips::BI__builtin_msa_cfcmsa:
3044   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3045   case Mips::BI__builtin_msa_clei_u_b:
3046   case Mips::BI__builtin_msa_clei_u_h:
3047   case Mips::BI__builtin_msa_clei_u_w:
3048   case Mips::BI__builtin_msa_clei_u_d:
3049   case Mips::BI__builtin_msa_clti_u_b:
3050   case Mips::BI__builtin_msa_clti_u_h:
3051   case Mips::BI__builtin_msa_clti_u_w:
3052   case Mips::BI__builtin_msa_clti_u_d:
3053   case Mips::BI__builtin_msa_maxi_u_b:
3054   case Mips::BI__builtin_msa_maxi_u_h:
3055   case Mips::BI__builtin_msa_maxi_u_w:
3056   case Mips::BI__builtin_msa_maxi_u_d:
3057   case Mips::BI__builtin_msa_mini_u_b:
3058   case Mips::BI__builtin_msa_mini_u_h:
3059   case Mips::BI__builtin_msa_mini_u_w:
3060   case Mips::BI__builtin_msa_mini_u_d:
3061   case Mips::BI__builtin_msa_addvi_b:
3062   case Mips::BI__builtin_msa_addvi_h:
3063   case Mips::BI__builtin_msa_addvi_w:
3064   case Mips::BI__builtin_msa_addvi_d:
3065   case Mips::BI__builtin_msa_bclri_w:
3066   case Mips::BI__builtin_msa_bnegi_w:
3067   case Mips::BI__builtin_msa_bseti_w:
3068   case Mips::BI__builtin_msa_sat_s_w:
3069   case Mips::BI__builtin_msa_sat_u_w:
3070   case Mips::BI__builtin_msa_slli_w:
3071   case Mips::BI__builtin_msa_srai_w:
3072   case Mips::BI__builtin_msa_srari_w:
3073   case Mips::BI__builtin_msa_srli_w:
3074   case Mips::BI__builtin_msa_srlri_w:
3075   case Mips::BI__builtin_msa_subvi_b:
3076   case Mips::BI__builtin_msa_subvi_h:
3077   case Mips::BI__builtin_msa_subvi_w:
3078   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3079   case Mips::BI__builtin_msa_binsli_w:
3080   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3081   // These intrinsics take an unsigned 6 bit immediate.
3082   case Mips::BI__builtin_msa_bclri_d:
3083   case Mips::BI__builtin_msa_bnegi_d:
3084   case Mips::BI__builtin_msa_bseti_d:
3085   case Mips::BI__builtin_msa_sat_s_d:
3086   case Mips::BI__builtin_msa_sat_u_d:
3087   case Mips::BI__builtin_msa_slli_d:
3088   case Mips::BI__builtin_msa_srai_d:
3089   case Mips::BI__builtin_msa_srari_d:
3090   case Mips::BI__builtin_msa_srli_d:
3091   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3092   case Mips::BI__builtin_msa_binsli_d:
3093   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3094   // These intrinsics take a signed 5 bit immediate.
3095   case Mips::BI__builtin_msa_ceqi_b:
3096   case Mips::BI__builtin_msa_ceqi_h:
3097   case Mips::BI__builtin_msa_ceqi_w:
3098   case Mips::BI__builtin_msa_ceqi_d:
3099   case Mips::BI__builtin_msa_clti_s_b:
3100   case Mips::BI__builtin_msa_clti_s_h:
3101   case Mips::BI__builtin_msa_clti_s_w:
3102   case Mips::BI__builtin_msa_clti_s_d:
3103   case Mips::BI__builtin_msa_clei_s_b:
3104   case Mips::BI__builtin_msa_clei_s_h:
3105   case Mips::BI__builtin_msa_clei_s_w:
3106   case Mips::BI__builtin_msa_clei_s_d:
3107   case Mips::BI__builtin_msa_maxi_s_b:
3108   case Mips::BI__builtin_msa_maxi_s_h:
3109   case Mips::BI__builtin_msa_maxi_s_w:
3110   case Mips::BI__builtin_msa_maxi_s_d:
3111   case Mips::BI__builtin_msa_mini_s_b:
3112   case Mips::BI__builtin_msa_mini_s_h:
3113   case Mips::BI__builtin_msa_mini_s_w:
3114   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3115   // These intrinsics take an unsigned 8 bit immediate.
3116   case Mips::BI__builtin_msa_andi_b:
3117   case Mips::BI__builtin_msa_nori_b:
3118   case Mips::BI__builtin_msa_ori_b:
3119   case Mips::BI__builtin_msa_shf_b:
3120   case Mips::BI__builtin_msa_shf_h:
3121   case Mips::BI__builtin_msa_shf_w:
3122   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3123   case Mips::BI__builtin_msa_bseli_b:
3124   case Mips::BI__builtin_msa_bmnzi_b:
3125   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3126   // df/n format
3127   // These intrinsics take an unsigned 4 bit immediate.
3128   case Mips::BI__builtin_msa_copy_s_b:
3129   case Mips::BI__builtin_msa_copy_u_b:
3130   case Mips::BI__builtin_msa_insve_b:
3131   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3132   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3133   // These intrinsics take an unsigned 3 bit immediate.
3134   case Mips::BI__builtin_msa_copy_s_h:
3135   case Mips::BI__builtin_msa_copy_u_h:
3136   case Mips::BI__builtin_msa_insve_h:
3137   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3138   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3139   // These intrinsics take an unsigned 2 bit immediate.
3140   case Mips::BI__builtin_msa_copy_s_w:
3141   case Mips::BI__builtin_msa_copy_u_w:
3142   case Mips::BI__builtin_msa_insve_w:
3143   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3144   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3145   // These intrinsics take an unsigned 1 bit immediate.
3146   case Mips::BI__builtin_msa_copy_s_d:
3147   case Mips::BI__builtin_msa_copy_u_d:
3148   case Mips::BI__builtin_msa_insve_d:
3149   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3150   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3151   // Memory offsets and immediate loads.
3152   // These intrinsics take a signed 10 bit immediate.
3153   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3154   case Mips::BI__builtin_msa_ldi_h:
3155   case Mips::BI__builtin_msa_ldi_w:
3156   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3157   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3158   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3159   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3160   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3161   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3162   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3163   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3164   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3165   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3166   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3167   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3168   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3169   }
3170 
3171   if (!m)
3172     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3173 
3174   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3175          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3176 }
3177 
3178 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3179 /// advancing the pointer over the consumed characters. The decoded type is
3180 /// returned. If the decoded type represents a constant integer with a
3181 /// constraint on its value then Mask is set to that value. The type descriptors
3182 /// used in Str are specific to PPC MMA builtins and are documented in the file
3183 /// defining the PPC builtins.
3184 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3185                                         unsigned &Mask) {
3186   bool RequireICE = false;
3187   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3188   switch (*Str++) {
3189   case 'V':
3190     return Context.getVectorType(Context.UnsignedCharTy, 16,
3191                                  VectorType::VectorKind::AltiVecVector);
3192   case 'i': {
3193     char *End;
3194     unsigned size = strtoul(Str, &End, 10);
3195     assert(End != Str && "Missing constant parameter constraint");
3196     Str = End;
3197     Mask = size;
3198     return Context.IntTy;
3199   }
3200   case 'W': {
3201     char *End;
3202     unsigned size = strtoul(Str, &End, 10);
3203     assert(End != Str && "Missing PowerPC MMA type size");
3204     Str = End;
3205     QualType Type;
3206     switch (size) {
3207   #define PPC_VECTOR_TYPE(typeName, Id, size) \
3208     case size: Type = Context.Id##Ty; break;
3209   #include "clang/Basic/PPCTypes.def"
3210     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3211     }
3212     bool CheckVectorArgs = false;
3213     while (!CheckVectorArgs) {
3214       switch (*Str++) {
3215       case '*':
3216         Type = Context.getPointerType(Type);
3217         break;
3218       case 'C':
3219         Type = Type.withConst();
3220         break;
3221       default:
3222         CheckVectorArgs = true;
3223         --Str;
3224         break;
3225       }
3226     }
3227     return Type;
3228   }
3229   default:
3230     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3231   }
3232 }
3233 
3234 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3235                                        CallExpr *TheCall) {
3236   unsigned i = 0, l = 0, u = 0;
3237   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3238                       BuiltinID == PPC::BI__builtin_divdeu ||
3239                       BuiltinID == PPC::BI__builtin_bpermd;
3240   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3241   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3242                        BuiltinID == PPC::BI__builtin_divweu ||
3243                        BuiltinID == PPC::BI__builtin_divde ||
3244                        BuiltinID == PPC::BI__builtin_divdeu;
3245 
3246   if (Is64BitBltin && !IsTarget64Bit)
3247     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3248            << TheCall->getSourceRange();
3249 
3250   if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) ||
3251       (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd")))
3252     return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3253            << TheCall->getSourceRange();
3254 
3255   auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3256     if (!TI.hasFeature("vsx"))
3257       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3258              << TheCall->getSourceRange();
3259     return false;
3260   };
3261 
3262   switch (BuiltinID) {
3263   default: return false;
3264   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3265   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3266     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3267            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3268   case PPC::BI__builtin_altivec_dss:
3269     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3270   case PPC::BI__builtin_tbegin:
3271   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3272   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3273   case PPC::BI__builtin_tabortwc:
3274   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3275   case PPC::BI__builtin_tabortwci:
3276   case PPC::BI__builtin_tabortdci:
3277     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3278            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3279   case PPC::BI__builtin_altivec_dst:
3280   case PPC::BI__builtin_altivec_dstt:
3281   case PPC::BI__builtin_altivec_dstst:
3282   case PPC::BI__builtin_altivec_dststt:
3283     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3284   case PPC::BI__builtin_vsx_xxpermdi:
3285   case PPC::BI__builtin_vsx_xxsldwi:
3286     return SemaBuiltinVSX(TheCall);
3287   case PPC::BI__builtin_unpack_vector_int128:
3288     return SemaVSXCheck(TheCall) ||
3289            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3290   case PPC::BI__builtin_pack_vector_int128:
3291     return SemaVSXCheck(TheCall);
3292   case PPC::BI__builtin_altivec_vgnb:
3293      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3294   case PPC::BI__builtin_altivec_vec_replace_elt:
3295   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3296     QualType VecTy = TheCall->getArg(0)->getType();
3297     QualType EltTy = TheCall->getArg(1)->getType();
3298     unsigned Width = Context.getIntWidth(EltTy);
3299     return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3300            !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3301   }
3302   case PPC::BI__builtin_vsx_xxeval:
3303      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3304   case PPC::BI__builtin_altivec_vsldbi:
3305      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3306   case PPC::BI__builtin_altivec_vsrdbi:
3307      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3308   case PPC::BI__builtin_vsx_xxpermx:
3309      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3310 #define CUSTOM_BUILTIN(Name, Types, Acc) \
3311   case PPC::BI__builtin_##Name: \
3312     return SemaBuiltinPPCMMACall(TheCall, Types);
3313 #include "clang/Basic/BuiltinsPPC.def"
3314   }
3315   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3316 }
3317 
3318 // Check if the given type is a non-pointer PPC MMA type. This function is used
3319 // in Sema to prevent invalid uses of restricted PPC MMA types.
3320 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3321   if (Type->isPointerType() || Type->isArrayType())
3322     return false;
3323 
3324   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3325 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3326   if (false
3327 #include "clang/Basic/PPCTypes.def"
3328      ) {
3329     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3330     return true;
3331   }
3332   return false;
3333 }
3334 
3335 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3336                                           CallExpr *TheCall) {
3337   // position of memory order and scope arguments in the builtin
3338   unsigned OrderIndex, ScopeIndex;
3339   switch (BuiltinID) {
3340   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3341   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3342   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3343   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3344     OrderIndex = 2;
3345     ScopeIndex = 3;
3346     break;
3347   case AMDGPU::BI__builtin_amdgcn_fence:
3348     OrderIndex = 0;
3349     ScopeIndex = 1;
3350     break;
3351   default:
3352     return false;
3353   }
3354 
3355   ExprResult Arg = TheCall->getArg(OrderIndex);
3356   auto ArgExpr = Arg.get();
3357   Expr::EvalResult ArgResult;
3358 
3359   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3360     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3361            << ArgExpr->getType();
3362   int ord = ArgResult.Val.getInt().getZExtValue();
3363 
3364   // Check valididty of memory ordering as per C11 / C++11's memody model.
3365   switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
3366   case llvm::AtomicOrderingCABI::acquire:
3367   case llvm::AtomicOrderingCABI::release:
3368   case llvm::AtomicOrderingCABI::acq_rel:
3369   case llvm::AtomicOrderingCABI::seq_cst:
3370     break;
3371   default: {
3372     return Diag(ArgExpr->getBeginLoc(),
3373                 diag::warn_atomic_op_has_invalid_memory_order)
3374            << ArgExpr->getSourceRange();
3375   }
3376   }
3377 
3378   Arg = TheCall->getArg(ScopeIndex);
3379   ArgExpr = Arg.get();
3380   Expr::EvalResult ArgResult1;
3381   // Check that sync scope is a constant literal
3382   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3383     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3384            << ArgExpr->getType();
3385 
3386   return false;
3387 }
3388 
3389 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3390                                            CallExpr *TheCall) {
3391   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3392     Expr *Arg = TheCall->getArg(0);
3393     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3394       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3395         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3396                << Arg->getSourceRange();
3397   }
3398 
3399   // For intrinsics which take an immediate value as part of the instruction,
3400   // range check them here.
3401   unsigned i = 0, l = 0, u = 0;
3402   switch (BuiltinID) {
3403   default: return false;
3404   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3405   case SystemZ::BI__builtin_s390_verimb:
3406   case SystemZ::BI__builtin_s390_verimh:
3407   case SystemZ::BI__builtin_s390_verimf:
3408   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3409   case SystemZ::BI__builtin_s390_vfaeb:
3410   case SystemZ::BI__builtin_s390_vfaeh:
3411   case SystemZ::BI__builtin_s390_vfaef:
3412   case SystemZ::BI__builtin_s390_vfaebs:
3413   case SystemZ::BI__builtin_s390_vfaehs:
3414   case SystemZ::BI__builtin_s390_vfaefs:
3415   case SystemZ::BI__builtin_s390_vfaezb:
3416   case SystemZ::BI__builtin_s390_vfaezh:
3417   case SystemZ::BI__builtin_s390_vfaezf:
3418   case SystemZ::BI__builtin_s390_vfaezbs:
3419   case SystemZ::BI__builtin_s390_vfaezhs:
3420   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3421   case SystemZ::BI__builtin_s390_vfisb:
3422   case SystemZ::BI__builtin_s390_vfidb:
3423     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3424            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3425   case SystemZ::BI__builtin_s390_vftcisb:
3426   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3427   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3428   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3429   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3430   case SystemZ::BI__builtin_s390_vstrcb:
3431   case SystemZ::BI__builtin_s390_vstrch:
3432   case SystemZ::BI__builtin_s390_vstrcf:
3433   case SystemZ::BI__builtin_s390_vstrczb:
3434   case SystemZ::BI__builtin_s390_vstrczh:
3435   case SystemZ::BI__builtin_s390_vstrczf:
3436   case SystemZ::BI__builtin_s390_vstrcbs:
3437   case SystemZ::BI__builtin_s390_vstrchs:
3438   case SystemZ::BI__builtin_s390_vstrcfs:
3439   case SystemZ::BI__builtin_s390_vstrczbs:
3440   case SystemZ::BI__builtin_s390_vstrczhs:
3441   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3442   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3443   case SystemZ::BI__builtin_s390_vfminsb:
3444   case SystemZ::BI__builtin_s390_vfmaxsb:
3445   case SystemZ::BI__builtin_s390_vfmindb:
3446   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3447   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3448   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3449   }
3450   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3451 }
3452 
3453 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3454 /// This checks that the target supports __builtin_cpu_supports and
3455 /// that the string argument is constant and valid.
3456 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3457                                    CallExpr *TheCall) {
3458   Expr *Arg = TheCall->getArg(0);
3459 
3460   // Check if the argument is a string literal.
3461   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3462     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3463            << Arg->getSourceRange();
3464 
3465   // Check the contents of the string.
3466   StringRef Feature =
3467       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3468   if (!TI.validateCpuSupports(Feature))
3469     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3470            << Arg->getSourceRange();
3471   return false;
3472 }
3473 
3474 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3475 /// This checks that the target supports __builtin_cpu_is and
3476 /// that the string argument is constant and valid.
3477 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3478   Expr *Arg = TheCall->getArg(0);
3479 
3480   // Check if the argument is a string literal.
3481   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3482     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3483            << Arg->getSourceRange();
3484 
3485   // Check the contents of the string.
3486   StringRef Feature =
3487       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3488   if (!TI.validateCpuIs(Feature))
3489     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3490            << Arg->getSourceRange();
3491   return false;
3492 }
3493 
3494 // Check if the rounding mode is legal.
3495 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3496   // Indicates if this instruction has rounding control or just SAE.
3497   bool HasRC = false;
3498 
3499   unsigned ArgNum = 0;
3500   switch (BuiltinID) {
3501   default:
3502     return false;
3503   case X86::BI__builtin_ia32_vcvttsd2si32:
3504   case X86::BI__builtin_ia32_vcvttsd2si64:
3505   case X86::BI__builtin_ia32_vcvttsd2usi32:
3506   case X86::BI__builtin_ia32_vcvttsd2usi64:
3507   case X86::BI__builtin_ia32_vcvttss2si32:
3508   case X86::BI__builtin_ia32_vcvttss2si64:
3509   case X86::BI__builtin_ia32_vcvttss2usi32:
3510   case X86::BI__builtin_ia32_vcvttss2usi64:
3511     ArgNum = 1;
3512     break;
3513   case X86::BI__builtin_ia32_maxpd512:
3514   case X86::BI__builtin_ia32_maxps512:
3515   case X86::BI__builtin_ia32_minpd512:
3516   case X86::BI__builtin_ia32_minps512:
3517     ArgNum = 2;
3518     break;
3519   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3520   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3521   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3522   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3523   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3524   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3525   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3526   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3527   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3528   case X86::BI__builtin_ia32_exp2pd_mask:
3529   case X86::BI__builtin_ia32_exp2ps_mask:
3530   case X86::BI__builtin_ia32_getexppd512_mask:
3531   case X86::BI__builtin_ia32_getexpps512_mask:
3532   case X86::BI__builtin_ia32_rcp28pd_mask:
3533   case X86::BI__builtin_ia32_rcp28ps_mask:
3534   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3535   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3536   case X86::BI__builtin_ia32_vcomisd:
3537   case X86::BI__builtin_ia32_vcomiss:
3538   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3539     ArgNum = 3;
3540     break;
3541   case X86::BI__builtin_ia32_cmppd512_mask:
3542   case X86::BI__builtin_ia32_cmpps512_mask:
3543   case X86::BI__builtin_ia32_cmpsd_mask:
3544   case X86::BI__builtin_ia32_cmpss_mask:
3545   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3546   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3547   case X86::BI__builtin_ia32_getexpss128_round_mask:
3548   case X86::BI__builtin_ia32_getmantpd512_mask:
3549   case X86::BI__builtin_ia32_getmantps512_mask:
3550   case X86::BI__builtin_ia32_maxsd_round_mask:
3551   case X86::BI__builtin_ia32_maxss_round_mask:
3552   case X86::BI__builtin_ia32_minsd_round_mask:
3553   case X86::BI__builtin_ia32_minss_round_mask:
3554   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3555   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3556   case X86::BI__builtin_ia32_reducepd512_mask:
3557   case X86::BI__builtin_ia32_reduceps512_mask:
3558   case X86::BI__builtin_ia32_rndscalepd_mask:
3559   case X86::BI__builtin_ia32_rndscaleps_mask:
3560   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3561   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3562     ArgNum = 4;
3563     break;
3564   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3565   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3566   case X86::BI__builtin_ia32_fixupimmps512_mask:
3567   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3568   case X86::BI__builtin_ia32_fixupimmsd_mask:
3569   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3570   case X86::BI__builtin_ia32_fixupimmss_mask:
3571   case X86::BI__builtin_ia32_fixupimmss_maskz:
3572   case X86::BI__builtin_ia32_getmantsd_round_mask:
3573   case X86::BI__builtin_ia32_getmantss_round_mask:
3574   case X86::BI__builtin_ia32_rangepd512_mask:
3575   case X86::BI__builtin_ia32_rangeps512_mask:
3576   case X86::BI__builtin_ia32_rangesd128_round_mask:
3577   case X86::BI__builtin_ia32_rangess128_round_mask:
3578   case X86::BI__builtin_ia32_reducesd_mask:
3579   case X86::BI__builtin_ia32_reducess_mask:
3580   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3581   case X86::BI__builtin_ia32_rndscaless_round_mask:
3582     ArgNum = 5;
3583     break;
3584   case X86::BI__builtin_ia32_vcvtsd2si64:
3585   case X86::BI__builtin_ia32_vcvtsd2si32:
3586   case X86::BI__builtin_ia32_vcvtsd2usi32:
3587   case X86::BI__builtin_ia32_vcvtsd2usi64:
3588   case X86::BI__builtin_ia32_vcvtss2si32:
3589   case X86::BI__builtin_ia32_vcvtss2si64:
3590   case X86::BI__builtin_ia32_vcvtss2usi32:
3591   case X86::BI__builtin_ia32_vcvtss2usi64:
3592   case X86::BI__builtin_ia32_sqrtpd512:
3593   case X86::BI__builtin_ia32_sqrtps512:
3594     ArgNum = 1;
3595     HasRC = true;
3596     break;
3597   case X86::BI__builtin_ia32_addpd512:
3598   case X86::BI__builtin_ia32_addps512:
3599   case X86::BI__builtin_ia32_divpd512:
3600   case X86::BI__builtin_ia32_divps512:
3601   case X86::BI__builtin_ia32_mulpd512:
3602   case X86::BI__builtin_ia32_mulps512:
3603   case X86::BI__builtin_ia32_subpd512:
3604   case X86::BI__builtin_ia32_subps512:
3605   case X86::BI__builtin_ia32_cvtsi2sd64:
3606   case X86::BI__builtin_ia32_cvtsi2ss32:
3607   case X86::BI__builtin_ia32_cvtsi2ss64:
3608   case X86::BI__builtin_ia32_cvtusi2sd64:
3609   case X86::BI__builtin_ia32_cvtusi2ss32:
3610   case X86::BI__builtin_ia32_cvtusi2ss64:
3611     ArgNum = 2;
3612     HasRC = true;
3613     break;
3614   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3615   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3616   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3617   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3618   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3619   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3620   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3621   case X86::BI__builtin_ia32_cvtps2dq512_mask:
3622   case X86::BI__builtin_ia32_cvtps2qq512_mask:
3623   case X86::BI__builtin_ia32_cvtps2udq512_mask:
3624   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3625   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3626   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3627   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3628   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3629     ArgNum = 3;
3630     HasRC = true;
3631     break;
3632   case X86::BI__builtin_ia32_addss_round_mask:
3633   case X86::BI__builtin_ia32_addsd_round_mask:
3634   case X86::BI__builtin_ia32_divss_round_mask:
3635   case X86::BI__builtin_ia32_divsd_round_mask:
3636   case X86::BI__builtin_ia32_mulss_round_mask:
3637   case X86::BI__builtin_ia32_mulsd_round_mask:
3638   case X86::BI__builtin_ia32_subss_round_mask:
3639   case X86::BI__builtin_ia32_subsd_round_mask:
3640   case X86::BI__builtin_ia32_scalefpd512_mask:
3641   case X86::BI__builtin_ia32_scalefps512_mask:
3642   case X86::BI__builtin_ia32_scalefsd_round_mask:
3643   case X86::BI__builtin_ia32_scalefss_round_mask:
3644   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3645   case X86::BI__builtin_ia32_sqrtsd_round_mask:
3646   case X86::BI__builtin_ia32_sqrtss_round_mask:
3647   case X86::BI__builtin_ia32_vfmaddsd3_mask:
3648   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3649   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3650   case X86::BI__builtin_ia32_vfmaddss3_mask:
3651   case X86::BI__builtin_ia32_vfmaddss3_maskz:
3652   case X86::BI__builtin_ia32_vfmaddss3_mask3:
3653   case X86::BI__builtin_ia32_vfmaddpd512_mask:
3654   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3655   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3656   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3657   case X86::BI__builtin_ia32_vfmaddps512_mask:
3658   case X86::BI__builtin_ia32_vfmaddps512_maskz:
3659   case X86::BI__builtin_ia32_vfmaddps512_mask3:
3660   case X86::BI__builtin_ia32_vfmsubps512_mask3:
3661   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3662   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3663   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3664   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3665   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3666   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3667   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3668   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3669     ArgNum = 4;
3670     HasRC = true;
3671     break;
3672   }
3673 
3674   llvm::APSInt Result;
3675 
3676   // We can't check the value of a dependent argument.
3677   Expr *Arg = TheCall->getArg(ArgNum);
3678   if (Arg->isTypeDependent() || Arg->isValueDependent())
3679     return false;
3680 
3681   // Check constant-ness first.
3682   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3683     return true;
3684 
3685   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3686   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3687   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
3688   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
3689   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3690       Result == 8/*ROUND_NO_EXC*/ ||
3691       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
3692       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3693     return false;
3694 
3695   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3696          << Arg->getSourceRange();
3697 }
3698 
3699 // Check if the gather/scatter scale is legal.
3700 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3701                                              CallExpr *TheCall) {
3702   unsigned ArgNum = 0;
3703   switch (BuiltinID) {
3704   default:
3705     return false;
3706   case X86::BI__builtin_ia32_gatherpfdpd:
3707   case X86::BI__builtin_ia32_gatherpfdps:
3708   case X86::BI__builtin_ia32_gatherpfqpd:
3709   case X86::BI__builtin_ia32_gatherpfqps:
3710   case X86::BI__builtin_ia32_scatterpfdpd:
3711   case X86::BI__builtin_ia32_scatterpfdps:
3712   case X86::BI__builtin_ia32_scatterpfqpd:
3713   case X86::BI__builtin_ia32_scatterpfqps:
3714     ArgNum = 3;
3715     break;
3716   case X86::BI__builtin_ia32_gatherd_pd:
3717   case X86::BI__builtin_ia32_gatherd_pd256:
3718   case X86::BI__builtin_ia32_gatherq_pd:
3719   case X86::BI__builtin_ia32_gatherq_pd256:
3720   case X86::BI__builtin_ia32_gatherd_ps:
3721   case X86::BI__builtin_ia32_gatherd_ps256:
3722   case X86::BI__builtin_ia32_gatherq_ps:
3723   case X86::BI__builtin_ia32_gatherq_ps256:
3724   case X86::BI__builtin_ia32_gatherd_q:
3725   case X86::BI__builtin_ia32_gatherd_q256:
3726   case X86::BI__builtin_ia32_gatherq_q:
3727   case X86::BI__builtin_ia32_gatherq_q256:
3728   case X86::BI__builtin_ia32_gatherd_d:
3729   case X86::BI__builtin_ia32_gatherd_d256:
3730   case X86::BI__builtin_ia32_gatherq_d:
3731   case X86::BI__builtin_ia32_gatherq_d256:
3732   case X86::BI__builtin_ia32_gather3div2df:
3733   case X86::BI__builtin_ia32_gather3div2di:
3734   case X86::BI__builtin_ia32_gather3div4df:
3735   case X86::BI__builtin_ia32_gather3div4di:
3736   case X86::BI__builtin_ia32_gather3div4sf:
3737   case X86::BI__builtin_ia32_gather3div4si:
3738   case X86::BI__builtin_ia32_gather3div8sf:
3739   case X86::BI__builtin_ia32_gather3div8si:
3740   case X86::BI__builtin_ia32_gather3siv2df:
3741   case X86::BI__builtin_ia32_gather3siv2di:
3742   case X86::BI__builtin_ia32_gather3siv4df:
3743   case X86::BI__builtin_ia32_gather3siv4di:
3744   case X86::BI__builtin_ia32_gather3siv4sf:
3745   case X86::BI__builtin_ia32_gather3siv4si:
3746   case X86::BI__builtin_ia32_gather3siv8sf:
3747   case X86::BI__builtin_ia32_gather3siv8si:
3748   case X86::BI__builtin_ia32_gathersiv8df:
3749   case X86::BI__builtin_ia32_gathersiv16sf:
3750   case X86::BI__builtin_ia32_gatherdiv8df:
3751   case X86::BI__builtin_ia32_gatherdiv16sf:
3752   case X86::BI__builtin_ia32_gathersiv8di:
3753   case X86::BI__builtin_ia32_gathersiv16si:
3754   case X86::BI__builtin_ia32_gatherdiv8di:
3755   case X86::BI__builtin_ia32_gatherdiv16si:
3756   case X86::BI__builtin_ia32_scatterdiv2df:
3757   case X86::BI__builtin_ia32_scatterdiv2di:
3758   case X86::BI__builtin_ia32_scatterdiv4df:
3759   case X86::BI__builtin_ia32_scatterdiv4di:
3760   case X86::BI__builtin_ia32_scatterdiv4sf:
3761   case X86::BI__builtin_ia32_scatterdiv4si:
3762   case X86::BI__builtin_ia32_scatterdiv8sf:
3763   case X86::BI__builtin_ia32_scatterdiv8si:
3764   case X86::BI__builtin_ia32_scattersiv2df:
3765   case X86::BI__builtin_ia32_scattersiv2di:
3766   case X86::BI__builtin_ia32_scattersiv4df:
3767   case X86::BI__builtin_ia32_scattersiv4di:
3768   case X86::BI__builtin_ia32_scattersiv4sf:
3769   case X86::BI__builtin_ia32_scattersiv4si:
3770   case X86::BI__builtin_ia32_scattersiv8sf:
3771   case X86::BI__builtin_ia32_scattersiv8si:
3772   case X86::BI__builtin_ia32_scattersiv8df:
3773   case X86::BI__builtin_ia32_scattersiv16sf:
3774   case X86::BI__builtin_ia32_scatterdiv8df:
3775   case X86::BI__builtin_ia32_scatterdiv16sf:
3776   case X86::BI__builtin_ia32_scattersiv8di:
3777   case X86::BI__builtin_ia32_scattersiv16si:
3778   case X86::BI__builtin_ia32_scatterdiv8di:
3779   case X86::BI__builtin_ia32_scatterdiv16si:
3780     ArgNum = 4;
3781     break;
3782   }
3783 
3784   llvm::APSInt Result;
3785 
3786   // We can't check the value of a dependent argument.
3787   Expr *Arg = TheCall->getArg(ArgNum);
3788   if (Arg->isTypeDependent() || Arg->isValueDependent())
3789     return false;
3790 
3791   // Check constant-ness first.
3792   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3793     return true;
3794 
3795   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3796     return false;
3797 
3798   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3799          << Arg->getSourceRange();
3800 }
3801 
3802 enum { TileRegLow = 0, TileRegHigh = 7 };
3803 
3804 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
3805                                              ArrayRef<int> ArgNums) {
3806   for (int ArgNum : ArgNums) {
3807     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
3808       return true;
3809   }
3810   return false;
3811 }
3812 
3813 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
3814                                         ArrayRef<int> ArgNums) {
3815   // Because the max number of tile register is TileRegHigh + 1, so here we use
3816   // each bit to represent the usage of them in bitset.
3817   std::bitset<TileRegHigh + 1> ArgValues;
3818   for (int ArgNum : ArgNums) {
3819     Expr *Arg = TheCall->getArg(ArgNum);
3820     if (Arg->isTypeDependent() || Arg->isValueDependent())
3821       continue;
3822 
3823     llvm::APSInt Result;
3824     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3825       return true;
3826     int ArgExtValue = Result.getExtValue();
3827     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
3828            "Incorrect tile register num.");
3829     if (ArgValues.test(ArgExtValue))
3830       return Diag(TheCall->getBeginLoc(),
3831                   diag::err_x86_builtin_tile_arg_duplicate)
3832              << TheCall->getArg(ArgNum)->getSourceRange();
3833     ArgValues.set(ArgExtValue);
3834   }
3835   return false;
3836 }
3837 
3838 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
3839                                                 ArrayRef<int> ArgNums) {
3840   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
3841          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
3842 }
3843 
3844 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
3845   switch (BuiltinID) {
3846   default:
3847     return false;
3848   case X86::BI__builtin_ia32_tileloadd64:
3849   case X86::BI__builtin_ia32_tileloaddt164:
3850   case X86::BI__builtin_ia32_tilestored64:
3851   case X86::BI__builtin_ia32_tilezero:
3852     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
3853   case X86::BI__builtin_ia32_tdpbssd:
3854   case X86::BI__builtin_ia32_tdpbsud:
3855   case X86::BI__builtin_ia32_tdpbusd:
3856   case X86::BI__builtin_ia32_tdpbuud:
3857   case X86::BI__builtin_ia32_tdpbf16ps:
3858     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
3859   }
3860 }
3861 static bool isX86_32Builtin(unsigned BuiltinID) {
3862   // These builtins only work on x86-32 targets.
3863   switch (BuiltinID) {
3864   case X86::BI__builtin_ia32_readeflags_u32:
3865   case X86::BI__builtin_ia32_writeeflags_u32:
3866     return true;
3867   }
3868 
3869   return false;
3870 }
3871 
3872 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3873                                        CallExpr *TheCall) {
3874   if (BuiltinID == X86::BI__builtin_cpu_supports)
3875     return SemaBuiltinCpuSupports(*this, TI, TheCall);
3876 
3877   if (BuiltinID == X86::BI__builtin_cpu_is)
3878     return SemaBuiltinCpuIs(*this, TI, TheCall);
3879 
3880   // Check for 32-bit only builtins on a 64-bit target.
3881   const llvm::Triple &TT = TI.getTriple();
3882   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3883     return Diag(TheCall->getCallee()->getBeginLoc(),
3884                 diag::err_32_bit_builtin_64_bit_tgt);
3885 
3886   // If the intrinsic has rounding or SAE make sure its valid.
3887   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3888     return true;
3889 
3890   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3891   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3892     return true;
3893 
3894   // If the intrinsic has a tile arguments, make sure they are valid.
3895   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
3896     return true;
3897 
3898   // For intrinsics which take an immediate value as part of the instruction,
3899   // range check them here.
3900   int i = 0, l = 0, u = 0;
3901   switch (BuiltinID) {
3902   default:
3903     return false;
3904   case X86::BI__builtin_ia32_vec_ext_v2si:
3905   case X86::BI__builtin_ia32_vec_ext_v2di:
3906   case X86::BI__builtin_ia32_vextractf128_pd256:
3907   case X86::BI__builtin_ia32_vextractf128_ps256:
3908   case X86::BI__builtin_ia32_vextractf128_si256:
3909   case X86::BI__builtin_ia32_extract128i256:
3910   case X86::BI__builtin_ia32_extractf64x4_mask:
3911   case X86::BI__builtin_ia32_extracti64x4_mask:
3912   case X86::BI__builtin_ia32_extractf32x8_mask:
3913   case X86::BI__builtin_ia32_extracti32x8_mask:
3914   case X86::BI__builtin_ia32_extractf64x2_256_mask:
3915   case X86::BI__builtin_ia32_extracti64x2_256_mask:
3916   case X86::BI__builtin_ia32_extractf32x4_256_mask:
3917   case X86::BI__builtin_ia32_extracti32x4_256_mask:
3918     i = 1; l = 0; u = 1;
3919     break;
3920   case X86::BI__builtin_ia32_vec_set_v2di:
3921   case X86::BI__builtin_ia32_vinsertf128_pd256:
3922   case X86::BI__builtin_ia32_vinsertf128_ps256:
3923   case X86::BI__builtin_ia32_vinsertf128_si256:
3924   case X86::BI__builtin_ia32_insert128i256:
3925   case X86::BI__builtin_ia32_insertf32x8:
3926   case X86::BI__builtin_ia32_inserti32x8:
3927   case X86::BI__builtin_ia32_insertf64x4:
3928   case X86::BI__builtin_ia32_inserti64x4:
3929   case X86::BI__builtin_ia32_insertf64x2_256:
3930   case X86::BI__builtin_ia32_inserti64x2_256:
3931   case X86::BI__builtin_ia32_insertf32x4_256:
3932   case X86::BI__builtin_ia32_inserti32x4_256:
3933     i = 2; l = 0; u = 1;
3934     break;
3935   case X86::BI__builtin_ia32_vpermilpd:
3936   case X86::BI__builtin_ia32_vec_ext_v4hi:
3937   case X86::BI__builtin_ia32_vec_ext_v4si:
3938   case X86::BI__builtin_ia32_vec_ext_v4sf:
3939   case X86::BI__builtin_ia32_vec_ext_v4di:
3940   case X86::BI__builtin_ia32_extractf32x4_mask:
3941   case X86::BI__builtin_ia32_extracti32x4_mask:
3942   case X86::BI__builtin_ia32_extractf64x2_512_mask:
3943   case X86::BI__builtin_ia32_extracti64x2_512_mask:
3944     i = 1; l = 0; u = 3;
3945     break;
3946   case X86::BI_mm_prefetch:
3947   case X86::BI__builtin_ia32_vec_ext_v8hi:
3948   case X86::BI__builtin_ia32_vec_ext_v8si:
3949     i = 1; l = 0; u = 7;
3950     break;
3951   case X86::BI__builtin_ia32_sha1rnds4:
3952   case X86::BI__builtin_ia32_blendpd:
3953   case X86::BI__builtin_ia32_shufpd:
3954   case X86::BI__builtin_ia32_vec_set_v4hi:
3955   case X86::BI__builtin_ia32_vec_set_v4si:
3956   case X86::BI__builtin_ia32_vec_set_v4di:
3957   case X86::BI__builtin_ia32_shuf_f32x4_256:
3958   case X86::BI__builtin_ia32_shuf_f64x2_256:
3959   case X86::BI__builtin_ia32_shuf_i32x4_256:
3960   case X86::BI__builtin_ia32_shuf_i64x2_256:
3961   case X86::BI__builtin_ia32_insertf64x2_512:
3962   case X86::BI__builtin_ia32_inserti64x2_512:
3963   case X86::BI__builtin_ia32_insertf32x4:
3964   case X86::BI__builtin_ia32_inserti32x4:
3965     i = 2; l = 0; u = 3;
3966     break;
3967   case X86::BI__builtin_ia32_vpermil2pd:
3968   case X86::BI__builtin_ia32_vpermil2pd256:
3969   case X86::BI__builtin_ia32_vpermil2ps:
3970   case X86::BI__builtin_ia32_vpermil2ps256:
3971     i = 3; l = 0; u = 3;
3972     break;
3973   case X86::BI__builtin_ia32_cmpb128_mask:
3974   case X86::BI__builtin_ia32_cmpw128_mask:
3975   case X86::BI__builtin_ia32_cmpd128_mask:
3976   case X86::BI__builtin_ia32_cmpq128_mask:
3977   case X86::BI__builtin_ia32_cmpb256_mask:
3978   case X86::BI__builtin_ia32_cmpw256_mask:
3979   case X86::BI__builtin_ia32_cmpd256_mask:
3980   case X86::BI__builtin_ia32_cmpq256_mask:
3981   case X86::BI__builtin_ia32_cmpb512_mask:
3982   case X86::BI__builtin_ia32_cmpw512_mask:
3983   case X86::BI__builtin_ia32_cmpd512_mask:
3984   case X86::BI__builtin_ia32_cmpq512_mask:
3985   case X86::BI__builtin_ia32_ucmpb128_mask:
3986   case X86::BI__builtin_ia32_ucmpw128_mask:
3987   case X86::BI__builtin_ia32_ucmpd128_mask:
3988   case X86::BI__builtin_ia32_ucmpq128_mask:
3989   case X86::BI__builtin_ia32_ucmpb256_mask:
3990   case X86::BI__builtin_ia32_ucmpw256_mask:
3991   case X86::BI__builtin_ia32_ucmpd256_mask:
3992   case X86::BI__builtin_ia32_ucmpq256_mask:
3993   case X86::BI__builtin_ia32_ucmpb512_mask:
3994   case X86::BI__builtin_ia32_ucmpw512_mask:
3995   case X86::BI__builtin_ia32_ucmpd512_mask:
3996   case X86::BI__builtin_ia32_ucmpq512_mask:
3997   case X86::BI__builtin_ia32_vpcomub:
3998   case X86::BI__builtin_ia32_vpcomuw:
3999   case X86::BI__builtin_ia32_vpcomud:
4000   case X86::BI__builtin_ia32_vpcomuq:
4001   case X86::BI__builtin_ia32_vpcomb:
4002   case X86::BI__builtin_ia32_vpcomw:
4003   case X86::BI__builtin_ia32_vpcomd:
4004   case X86::BI__builtin_ia32_vpcomq:
4005   case X86::BI__builtin_ia32_vec_set_v8hi:
4006   case X86::BI__builtin_ia32_vec_set_v8si:
4007     i = 2; l = 0; u = 7;
4008     break;
4009   case X86::BI__builtin_ia32_vpermilpd256:
4010   case X86::BI__builtin_ia32_roundps:
4011   case X86::BI__builtin_ia32_roundpd:
4012   case X86::BI__builtin_ia32_roundps256:
4013   case X86::BI__builtin_ia32_roundpd256:
4014   case X86::BI__builtin_ia32_getmantpd128_mask:
4015   case X86::BI__builtin_ia32_getmantpd256_mask:
4016   case X86::BI__builtin_ia32_getmantps128_mask:
4017   case X86::BI__builtin_ia32_getmantps256_mask:
4018   case X86::BI__builtin_ia32_getmantpd512_mask:
4019   case X86::BI__builtin_ia32_getmantps512_mask:
4020   case X86::BI__builtin_ia32_vec_ext_v16qi:
4021   case X86::BI__builtin_ia32_vec_ext_v16hi:
4022     i = 1; l = 0; u = 15;
4023     break;
4024   case X86::BI__builtin_ia32_pblendd128:
4025   case X86::BI__builtin_ia32_blendps:
4026   case X86::BI__builtin_ia32_blendpd256:
4027   case X86::BI__builtin_ia32_shufpd256:
4028   case X86::BI__builtin_ia32_roundss:
4029   case X86::BI__builtin_ia32_roundsd:
4030   case X86::BI__builtin_ia32_rangepd128_mask:
4031   case X86::BI__builtin_ia32_rangepd256_mask:
4032   case X86::BI__builtin_ia32_rangepd512_mask:
4033   case X86::BI__builtin_ia32_rangeps128_mask:
4034   case X86::BI__builtin_ia32_rangeps256_mask:
4035   case X86::BI__builtin_ia32_rangeps512_mask:
4036   case X86::BI__builtin_ia32_getmantsd_round_mask:
4037   case X86::BI__builtin_ia32_getmantss_round_mask:
4038   case X86::BI__builtin_ia32_vec_set_v16qi:
4039   case X86::BI__builtin_ia32_vec_set_v16hi:
4040     i = 2; l = 0; u = 15;
4041     break;
4042   case X86::BI__builtin_ia32_vec_ext_v32qi:
4043     i = 1; l = 0; u = 31;
4044     break;
4045   case X86::BI__builtin_ia32_cmpps:
4046   case X86::BI__builtin_ia32_cmpss:
4047   case X86::BI__builtin_ia32_cmppd:
4048   case X86::BI__builtin_ia32_cmpsd:
4049   case X86::BI__builtin_ia32_cmpps256:
4050   case X86::BI__builtin_ia32_cmppd256:
4051   case X86::BI__builtin_ia32_cmpps128_mask:
4052   case X86::BI__builtin_ia32_cmppd128_mask:
4053   case X86::BI__builtin_ia32_cmpps256_mask:
4054   case X86::BI__builtin_ia32_cmppd256_mask:
4055   case X86::BI__builtin_ia32_cmpps512_mask:
4056   case X86::BI__builtin_ia32_cmppd512_mask:
4057   case X86::BI__builtin_ia32_cmpsd_mask:
4058   case X86::BI__builtin_ia32_cmpss_mask:
4059   case X86::BI__builtin_ia32_vec_set_v32qi:
4060     i = 2; l = 0; u = 31;
4061     break;
4062   case X86::BI__builtin_ia32_permdf256:
4063   case X86::BI__builtin_ia32_permdi256:
4064   case X86::BI__builtin_ia32_permdf512:
4065   case X86::BI__builtin_ia32_permdi512:
4066   case X86::BI__builtin_ia32_vpermilps:
4067   case X86::BI__builtin_ia32_vpermilps256:
4068   case X86::BI__builtin_ia32_vpermilpd512:
4069   case X86::BI__builtin_ia32_vpermilps512:
4070   case X86::BI__builtin_ia32_pshufd:
4071   case X86::BI__builtin_ia32_pshufd256:
4072   case X86::BI__builtin_ia32_pshufd512:
4073   case X86::BI__builtin_ia32_pshufhw:
4074   case X86::BI__builtin_ia32_pshufhw256:
4075   case X86::BI__builtin_ia32_pshufhw512:
4076   case X86::BI__builtin_ia32_pshuflw:
4077   case X86::BI__builtin_ia32_pshuflw256:
4078   case X86::BI__builtin_ia32_pshuflw512:
4079   case X86::BI__builtin_ia32_vcvtps2ph:
4080   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4081   case X86::BI__builtin_ia32_vcvtps2ph256:
4082   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4083   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4084   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4085   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4086   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4087   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4088   case X86::BI__builtin_ia32_rndscaleps_mask:
4089   case X86::BI__builtin_ia32_rndscalepd_mask:
4090   case X86::BI__builtin_ia32_reducepd128_mask:
4091   case X86::BI__builtin_ia32_reducepd256_mask:
4092   case X86::BI__builtin_ia32_reducepd512_mask:
4093   case X86::BI__builtin_ia32_reduceps128_mask:
4094   case X86::BI__builtin_ia32_reduceps256_mask:
4095   case X86::BI__builtin_ia32_reduceps512_mask:
4096   case X86::BI__builtin_ia32_prold512:
4097   case X86::BI__builtin_ia32_prolq512:
4098   case X86::BI__builtin_ia32_prold128:
4099   case X86::BI__builtin_ia32_prold256:
4100   case X86::BI__builtin_ia32_prolq128:
4101   case X86::BI__builtin_ia32_prolq256:
4102   case X86::BI__builtin_ia32_prord512:
4103   case X86::BI__builtin_ia32_prorq512:
4104   case X86::BI__builtin_ia32_prord128:
4105   case X86::BI__builtin_ia32_prord256:
4106   case X86::BI__builtin_ia32_prorq128:
4107   case X86::BI__builtin_ia32_prorq256:
4108   case X86::BI__builtin_ia32_fpclasspd128_mask:
4109   case X86::BI__builtin_ia32_fpclasspd256_mask:
4110   case X86::BI__builtin_ia32_fpclassps128_mask:
4111   case X86::BI__builtin_ia32_fpclassps256_mask:
4112   case X86::BI__builtin_ia32_fpclassps512_mask:
4113   case X86::BI__builtin_ia32_fpclasspd512_mask:
4114   case X86::BI__builtin_ia32_fpclasssd_mask:
4115   case X86::BI__builtin_ia32_fpclassss_mask:
4116   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4117   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4118   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4119   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4120   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4121   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4122   case X86::BI__builtin_ia32_kshiftliqi:
4123   case X86::BI__builtin_ia32_kshiftlihi:
4124   case X86::BI__builtin_ia32_kshiftlisi:
4125   case X86::BI__builtin_ia32_kshiftlidi:
4126   case X86::BI__builtin_ia32_kshiftriqi:
4127   case X86::BI__builtin_ia32_kshiftrihi:
4128   case X86::BI__builtin_ia32_kshiftrisi:
4129   case X86::BI__builtin_ia32_kshiftridi:
4130     i = 1; l = 0; u = 255;
4131     break;
4132   case X86::BI__builtin_ia32_vperm2f128_pd256:
4133   case X86::BI__builtin_ia32_vperm2f128_ps256:
4134   case X86::BI__builtin_ia32_vperm2f128_si256:
4135   case X86::BI__builtin_ia32_permti256:
4136   case X86::BI__builtin_ia32_pblendw128:
4137   case X86::BI__builtin_ia32_pblendw256:
4138   case X86::BI__builtin_ia32_blendps256:
4139   case X86::BI__builtin_ia32_pblendd256:
4140   case X86::BI__builtin_ia32_palignr128:
4141   case X86::BI__builtin_ia32_palignr256:
4142   case X86::BI__builtin_ia32_palignr512:
4143   case X86::BI__builtin_ia32_alignq512:
4144   case X86::BI__builtin_ia32_alignd512:
4145   case X86::BI__builtin_ia32_alignd128:
4146   case X86::BI__builtin_ia32_alignd256:
4147   case X86::BI__builtin_ia32_alignq128:
4148   case X86::BI__builtin_ia32_alignq256:
4149   case X86::BI__builtin_ia32_vcomisd:
4150   case X86::BI__builtin_ia32_vcomiss:
4151   case X86::BI__builtin_ia32_shuf_f32x4:
4152   case X86::BI__builtin_ia32_shuf_f64x2:
4153   case X86::BI__builtin_ia32_shuf_i32x4:
4154   case X86::BI__builtin_ia32_shuf_i64x2:
4155   case X86::BI__builtin_ia32_shufpd512:
4156   case X86::BI__builtin_ia32_shufps:
4157   case X86::BI__builtin_ia32_shufps256:
4158   case X86::BI__builtin_ia32_shufps512:
4159   case X86::BI__builtin_ia32_dbpsadbw128:
4160   case X86::BI__builtin_ia32_dbpsadbw256:
4161   case X86::BI__builtin_ia32_dbpsadbw512:
4162   case X86::BI__builtin_ia32_vpshldd128:
4163   case X86::BI__builtin_ia32_vpshldd256:
4164   case X86::BI__builtin_ia32_vpshldd512:
4165   case X86::BI__builtin_ia32_vpshldq128:
4166   case X86::BI__builtin_ia32_vpshldq256:
4167   case X86::BI__builtin_ia32_vpshldq512:
4168   case X86::BI__builtin_ia32_vpshldw128:
4169   case X86::BI__builtin_ia32_vpshldw256:
4170   case X86::BI__builtin_ia32_vpshldw512:
4171   case X86::BI__builtin_ia32_vpshrdd128:
4172   case X86::BI__builtin_ia32_vpshrdd256:
4173   case X86::BI__builtin_ia32_vpshrdd512:
4174   case X86::BI__builtin_ia32_vpshrdq128:
4175   case X86::BI__builtin_ia32_vpshrdq256:
4176   case X86::BI__builtin_ia32_vpshrdq512:
4177   case X86::BI__builtin_ia32_vpshrdw128:
4178   case X86::BI__builtin_ia32_vpshrdw256:
4179   case X86::BI__builtin_ia32_vpshrdw512:
4180     i = 2; l = 0; u = 255;
4181     break;
4182   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4183   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4184   case X86::BI__builtin_ia32_fixupimmps512_mask:
4185   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4186   case X86::BI__builtin_ia32_fixupimmsd_mask:
4187   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4188   case X86::BI__builtin_ia32_fixupimmss_mask:
4189   case X86::BI__builtin_ia32_fixupimmss_maskz:
4190   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4191   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4192   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4193   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4194   case X86::BI__builtin_ia32_fixupimmps128_mask:
4195   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4196   case X86::BI__builtin_ia32_fixupimmps256_mask:
4197   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4198   case X86::BI__builtin_ia32_pternlogd512_mask:
4199   case X86::BI__builtin_ia32_pternlogd512_maskz:
4200   case X86::BI__builtin_ia32_pternlogq512_mask:
4201   case X86::BI__builtin_ia32_pternlogq512_maskz:
4202   case X86::BI__builtin_ia32_pternlogd128_mask:
4203   case X86::BI__builtin_ia32_pternlogd128_maskz:
4204   case X86::BI__builtin_ia32_pternlogd256_mask:
4205   case X86::BI__builtin_ia32_pternlogd256_maskz:
4206   case X86::BI__builtin_ia32_pternlogq128_mask:
4207   case X86::BI__builtin_ia32_pternlogq128_maskz:
4208   case X86::BI__builtin_ia32_pternlogq256_mask:
4209   case X86::BI__builtin_ia32_pternlogq256_maskz:
4210     i = 3; l = 0; u = 255;
4211     break;
4212   case X86::BI__builtin_ia32_gatherpfdpd:
4213   case X86::BI__builtin_ia32_gatherpfdps:
4214   case X86::BI__builtin_ia32_gatherpfqpd:
4215   case X86::BI__builtin_ia32_gatherpfqps:
4216   case X86::BI__builtin_ia32_scatterpfdpd:
4217   case X86::BI__builtin_ia32_scatterpfdps:
4218   case X86::BI__builtin_ia32_scatterpfqpd:
4219   case X86::BI__builtin_ia32_scatterpfqps:
4220     i = 4; l = 2; u = 3;
4221     break;
4222   case X86::BI__builtin_ia32_reducesd_mask:
4223   case X86::BI__builtin_ia32_reducess_mask:
4224   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4225   case X86::BI__builtin_ia32_rndscaless_round_mask:
4226     i = 4; l = 0; u = 255;
4227     break;
4228   }
4229 
4230   // Note that we don't force a hard error on the range check here, allowing
4231   // template-generated or macro-generated dead code to potentially have out-of-
4232   // range values. These need to code generate, but don't need to necessarily
4233   // make any sense. We use a warning that defaults to an error.
4234   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4235 }
4236 
4237 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4238 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4239 /// Returns true when the format fits the function and the FormatStringInfo has
4240 /// been populated.
4241 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4242                                FormatStringInfo *FSI) {
4243   FSI->HasVAListArg = Format->getFirstArg() == 0;
4244   FSI->FormatIdx = Format->getFormatIdx() - 1;
4245   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4246 
4247   // The way the format attribute works in GCC, the implicit this argument
4248   // of member functions is counted. However, it doesn't appear in our own
4249   // lists, so decrement format_idx in that case.
4250   if (IsCXXMember) {
4251     if(FSI->FormatIdx == 0)
4252       return false;
4253     --FSI->FormatIdx;
4254     if (FSI->FirstDataArg != 0)
4255       --FSI->FirstDataArg;
4256   }
4257   return true;
4258 }
4259 
4260 /// Checks if a the given expression evaluates to null.
4261 ///
4262 /// Returns true if the value evaluates to null.
4263 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4264   // If the expression has non-null type, it doesn't evaluate to null.
4265   if (auto nullability
4266         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4267     if (*nullability == NullabilityKind::NonNull)
4268       return false;
4269   }
4270 
4271   // As a special case, transparent unions initialized with zero are
4272   // considered null for the purposes of the nonnull attribute.
4273   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4274     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4275       if (const CompoundLiteralExpr *CLE =
4276           dyn_cast<CompoundLiteralExpr>(Expr))
4277         if (const InitListExpr *ILE =
4278             dyn_cast<InitListExpr>(CLE->getInitializer()))
4279           Expr = ILE->getInit(0);
4280   }
4281 
4282   bool Result;
4283   return (!Expr->isValueDependent() &&
4284           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4285           !Result);
4286 }
4287 
4288 static void CheckNonNullArgument(Sema &S,
4289                                  const Expr *ArgExpr,
4290                                  SourceLocation CallSiteLoc) {
4291   if (CheckNonNullExpr(S, ArgExpr))
4292     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4293                           S.PDiag(diag::warn_null_arg)
4294                               << ArgExpr->getSourceRange());
4295 }
4296 
4297 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4298   FormatStringInfo FSI;
4299   if ((GetFormatStringType(Format) == FST_NSString) &&
4300       getFormatStringInfo(Format, false, &FSI)) {
4301     Idx = FSI.FormatIdx;
4302     return true;
4303   }
4304   return false;
4305 }
4306 
4307 /// Diagnose use of %s directive in an NSString which is being passed
4308 /// as formatting string to formatting method.
4309 static void
4310 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4311                                         const NamedDecl *FDecl,
4312                                         Expr **Args,
4313                                         unsigned NumArgs) {
4314   unsigned Idx = 0;
4315   bool Format = false;
4316   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4317   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4318     Idx = 2;
4319     Format = true;
4320   }
4321   else
4322     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4323       if (S.GetFormatNSStringIdx(I, Idx)) {
4324         Format = true;
4325         break;
4326       }
4327     }
4328   if (!Format || NumArgs <= Idx)
4329     return;
4330   const Expr *FormatExpr = Args[Idx];
4331   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4332     FormatExpr = CSCE->getSubExpr();
4333   const StringLiteral *FormatString;
4334   if (const ObjCStringLiteral *OSL =
4335       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4336     FormatString = OSL->getString();
4337   else
4338     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4339   if (!FormatString)
4340     return;
4341   if (S.FormatStringHasSArg(FormatString)) {
4342     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4343       << "%s" << 1 << 1;
4344     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4345       << FDecl->getDeclName();
4346   }
4347 }
4348 
4349 /// Determine whether the given type has a non-null nullability annotation.
4350 static bool isNonNullType(ASTContext &ctx, QualType type) {
4351   if (auto nullability = type->getNullability(ctx))
4352     return *nullability == NullabilityKind::NonNull;
4353 
4354   return false;
4355 }
4356 
4357 static void CheckNonNullArguments(Sema &S,
4358                                   const NamedDecl *FDecl,
4359                                   const FunctionProtoType *Proto,
4360                                   ArrayRef<const Expr *> Args,
4361                                   SourceLocation CallSiteLoc) {
4362   assert((FDecl || Proto) && "Need a function declaration or prototype");
4363 
4364   // Already checked by by constant evaluator.
4365   if (S.isConstantEvaluated())
4366     return;
4367   // Check the attributes attached to the method/function itself.
4368   llvm::SmallBitVector NonNullArgs;
4369   if (FDecl) {
4370     // Handle the nonnull attribute on the function/method declaration itself.
4371     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4372       if (!NonNull->args_size()) {
4373         // Easy case: all pointer arguments are nonnull.
4374         for (const auto *Arg : Args)
4375           if (S.isValidPointerAttrType(Arg->getType()))
4376             CheckNonNullArgument(S, Arg, CallSiteLoc);
4377         return;
4378       }
4379 
4380       for (const ParamIdx &Idx : NonNull->args()) {
4381         unsigned IdxAST = Idx.getASTIndex();
4382         if (IdxAST >= Args.size())
4383           continue;
4384         if (NonNullArgs.empty())
4385           NonNullArgs.resize(Args.size());
4386         NonNullArgs.set(IdxAST);
4387       }
4388     }
4389   }
4390 
4391   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4392     // Handle the nonnull attribute on the parameters of the
4393     // function/method.
4394     ArrayRef<ParmVarDecl*> parms;
4395     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4396       parms = FD->parameters();
4397     else
4398       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4399 
4400     unsigned ParamIndex = 0;
4401     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4402          I != E; ++I, ++ParamIndex) {
4403       const ParmVarDecl *PVD = *I;
4404       if (PVD->hasAttr<NonNullAttr>() ||
4405           isNonNullType(S.Context, PVD->getType())) {
4406         if (NonNullArgs.empty())
4407           NonNullArgs.resize(Args.size());
4408 
4409         NonNullArgs.set(ParamIndex);
4410       }
4411     }
4412   } else {
4413     // If we have a non-function, non-method declaration but no
4414     // function prototype, try to dig out the function prototype.
4415     if (!Proto) {
4416       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4417         QualType type = VD->getType().getNonReferenceType();
4418         if (auto pointerType = type->getAs<PointerType>())
4419           type = pointerType->getPointeeType();
4420         else if (auto blockType = type->getAs<BlockPointerType>())
4421           type = blockType->getPointeeType();
4422         // FIXME: data member pointers?
4423 
4424         // Dig out the function prototype, if there is one.
4425         Proto = type->getAs<FunctionProtoType>();
4426       }
4427     }
4428 
4429     // Fill in non-null argument information from the nullability
4430     // information on the parameter types (if we have them).
4431     if (Proto) {
4432       unsigned Index = 0;
4433       for (auto paramType : Proto->getParamTypes()) {
4434         if (isNonNullType(S.Context, paramType)) {
4435           if (NonNullArgs.empty())
4436             NonNullArgs.resize(Args.size());
4437 
4438           NonNullArgs.set(Index);
4439         }
4440 
4441         ++Index;
4442       }
4443     }
4444   }
4445 
4446   // Check for non-null arguments.
4447   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4448        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4449     if (NonNullArgs[ArgIndex])
4450       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4451   }
4452 }
4453 
4454 /// Handles the checks for format strings, non-POD arguments to vararg
4455 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4456 /// attributes.
4457 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4458                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
4459                      bool IsMemberFunction, SourceLocation Loc,
4460                      SourceRange Range, VariadicCallType CallType) {
4461   // FIXME: We should check as much as we can in the template definition.
4462   if (CurContext->isDependentContext())
4463     return;
4464 
4465   // Printf and scanf checking.
4466   llvm::SmallBitVector CheckedVarArgs;
4467   if (FDecl) {
4468     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4469       // Only create vector if there are format attributes.
4470       CheckedVarArgs.resize(Args.size());
4471 
4472       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4473                            CheckedVarArgs);
4474     }
4475   }
4476 
4477   // Refuse POD arguments that weren't caught by the format string
4478   // checks above.
4479   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4480   if (CallType != VariadicDoesNotApply &&
4481       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4482     unsigned NumParams = Proto ? Proto->getNumParams()
4483                        : FDecl && isa<FunctionDecl>(FDecl)
4484                            ? cast<FunctionDecl>(FDecl)->getNumParams()
4485                        : FDecl && isa<ObjCMethodDecl>(FDecl)
4486                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
4487                        : 0;
4488 
4489     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4490       // Args[ArgIdx] can be null in malformed code.
4491       if (const Expr *Arg = Args[ArgIdx]) {
4492         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4493           checkVariadicArgument(Arg, CallType);
4494       }
4495     }
4496   }
4497 
4498   if (FDecl || Proto) {
4499     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4500 
4501     // Type safety checking.
4502     if (FDecl) {
4503       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4504         CheckArgumentWithTypeTag(I, Args, Loc);
4505     }
4506   }
4507 
4508   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
4509     auto *AA = FDecl->getAttr<AllocAlignAttr>();
4510     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
4511     if (!Arg->isValueDependent()) {
4512       Expr::EvalResult Align;
4513       if (Arg->EvaluateAsInt(Align, Context)) {
4514         const llvm::APSInt &I = Align.Val.getInt();
4515         if (!I.isPowerOf2())
4516           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
4517               << Arg->getSourceRange();
4518 
4519         if (I > Sema::MaximumAlignment)
4520           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
4521               << Arg->getSourceRange() << Sema::MaximumAlignment;
4522       }
4523     }
4524   }
4525 
4526   if (FD)
4527     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4528 }
4529 
4530 /// CheckConstructorCall - Check a constructor call for correctness and safety
4531 /// properties not enforced by the C type system.
4532 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4533                                 ArrayRef<const Expr *> Args,
4534                                 const FunctionProtoType *Proto,
4535                                 SourceLocation Loc) {
4536   VariadicCallType CallType =
4537     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4538   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4539             Loc, SourceRange(), CallType);
4540 }
4541 
4542 /// CheckFunctionCall - Check a direct function call for various correctness
4543 /// and safety properties not strictly enforced by the C type system.
4544 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4545                              const FunctionProtoType *Proto) {
4546   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4547                               isa<CXXMethodDecl>(FDecl);
4548   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4549                           IsMemberOperatorCall;
4550   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4551                                                   TheCall->getCallee());
4552   Expr** Args = TheCall->getArgs();
4553   unsigned NumArgs = TheCall->getNumArgs();
4554 
4555   Expr *ImplicitThis = nullptr;
4556   if (IsMemberOperatorCall) {
4557     // If this is a call to a member operator, hide the first argument
4558     // from checkCall.
4559     // FIXME: Our choice of AST representation here is less than ideal.
4560     ImplicitThis = Args[0];
4561     ++Args;
4562     --NumArgs;
4563   } else if (IsMemberFunction)
4564     ImplicitThis =
4565         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4566 
4567   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4568             IsMemberFunction, TheCall->getRParenLoc(),
4569             TheCall->getCallee()->getSourceRange(), CallType);
4570 
4571   IdentifierInfo *FnInfo = FDecl->getIdentifier();
4572   // None of the checks below are needed for functions that don't have
4573   // simple names (e.g., C++ conversion functions).
4574   if (!FnInfo)
4575     return false;
4576 
4577   CheckTCBEnforcement(TheCall, FDecl);
4578 
4579   CheckAbsoluteValueFunction(TheCall, FDecl);
4580   CheckMaxUnsignedZero(TheCall, FDecl);
4581 
4582   if (getLangOpts().ObjC)
4583     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4584 
4585   unsigned CMId = FDecl->getMemoryFunctionKind();
4586 
4587   // Handle memory setting and copying functions.
4588   switch (CMId) {
4589   case 0:
4590     return false;
4591   case Builtin::BIstrlcpy: // fallthrough
4592   case Builtin::BIstrlcat:
4593     CheckStrlcpycatArguments(TheCall, FnInfo);
4594     break;
4595   case Builtin::BIstrncat:
4596     CheckStrncatArguments(TheCall, FnInfo);
4597     break;
4598   case Builtin::BIfree:
4599     CheckFreeArguments(TheCall);
4600     break;
4601   default:
4602     CheckMemaccessArguments(TheCall, CMId, FnInfo);
4603   }
4604 
4605   return false;
4606 }
4607 
4608 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4609                                ArrayRef<const Expr *> Args) {
4610   VariadicCallType CallType =
4611       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4612 
4613   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4614             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4615             CallType);
4616 
4617   return false;
4618 }
4619 
4620 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4621                             const FunctionProtoType *Proto) {
4622   QualType Ty;
4623   if (const auto *V = dyn_cast<VarDecl>(NDecl))
4624     Ty = V->getType().getNonReferenceType();
4625   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4626     Ty = F->getType().getNonReferenceType();
4627   else
4628     return false;
4629 
4630   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4631       !Ty->isFunctionProtoType())
4632     return false;
4633 
4634   VariadicCallType CallType;
4635   if (!Proto || !Proto->isVariadic()) {
4636     CallType = VariadicDoesNotApply;
4637   } else if (Ty->isBlockPointerType()) {
4638     CallType = VariadicBlock;
4639   } else { // Ty->isFunctionPointerType()
4640     CallType = VariadicFunction;
4641   }
4642 
4643   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4644             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4645             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4646             TheCall->getCallee()->getSourceRange(), CallType);
4647 
4648   return false;
4649 }
4650 
4651 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4652 /// such as function pointers returned from functions.
4653 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4654   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4655                                                   TheCall->getCallee());
4656   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4657             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4658             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4659             TheCall->getCallee()->getSourceRange(), CallType);
4660 
4661   return false;
4662 }
4663 
4664 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4665   if (!llvm::isValidAtomicOrderingCABI(Ordering))
4666     return false;
4667 
4668   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4669   switch (Op) {
4670   case AtomicExpr::AO__c11_atomic_init:
4671   case AtomicExpr::AO__opencl_atomic_init:
4672     llvm_unreachable("There is no ordering argument for an init");
4673 
4674   case AtomicExpr::AO__c11_atomic_load:
4675   case AtomicExpr::AO__opencl_atomic_load:
4676   case AtomicExpr::AO__atomic_load_n:
4677   case AtomicExpr::AO__atomic_load:
4678     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4679            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4680 
4681   case AtomicExpr::AO__c11_atomic_store:
4682   case AtomicExpr::AO__opencl_atomic_store:
4683   case AtomicExpr::AO__atomic_store:
4684   case AtomicExpr::AO__atomic_store_n:
4685     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4686            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4687            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4688 
4689   default:
4690     return true;
4691   }
4692 }
4693 
4694 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4695                                          AtomicExpr::AtomicOp Op) {
4696   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4697   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4698   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
4699   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
4700                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
4701                          Op);
4702 }
4703 
4704 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
4705                                  SourceLocation RParenLoc, MultiExprArg Args,
4706                                  AtomicExpr::AtomicOp Op,
4707                                  AtomicArgumentOrder ArgOrder) {
4708   // All the non-OpenCL operations take one of the following forms.
4709   // The OpenCL operations take the __c11 forms with one extra argument for
4710   // synchronization scope.
4711   enum {
4712     // C    __c11_atomic_init(A *, C)
4713     Init,
4714 
4715     // C    __c11_atomic_load(A *, int)
4716     Load,
4717 
4718     // void __atomic_load(A *, CP, int)
4719     LoadCopy,
4720 
4721     // void __atomic_store(A *, CP, int)
4722     Copy,
4723 
4724     // C    __c11_atomic_add(A *, M, int)
4725     Arithmetic,
4726 
4727     // C    __atomic_exchange_n(A *, CP, int)
4728     Xchg,
4729 
4730     // void __atomic_exchange(A *, C *, CP, int)
4731     GNUXchg,
4732 
4733     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4734     C11CmpXchg,
4735 
4736     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4737     GNUCmpXchg
4738   } Form = Init;
4739 
4740   const unsigned NumForm = GNUCmpXchg + 1;
4741   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4742   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4743   // where:
4744   //   C is an appropriate type,
4745   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4746   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4747   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4748   //   the int parameters are for orderings.
4749 
4750   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4751       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4752       "need to update code for modified forms");
4753   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4754                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
4755                         AtomicExpr::AO__atomic_load,
4756                 "need to update code for modified C11 atomics");
4757   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4758                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4759   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4760                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
4761                IsOpenCL;
4762   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4763              Op == AtomicExpr::AO__atomic_store_n ||
4764              Op == AtomicExpr::AO__atomic_exchange_n ||
4765              Op == AtomicExpr::AO__atomic_compare_exchange_n;
4766   bool IsAddSub = false;
4767 
4768   switch (Op) {
4769   case AtomicExpr::AO__c11_atomic_init:
4770   case AtomicExpr::AO__opencl_atomic_init:
4771     Form = Init;
4772     break;
4773 
4774   case AtomicExpr::AO__c11_atomic_load:
4775   case AtomicExpr::AO__opencl_atomic_load:
4776   case AtomicExpr::AO__atomic_load_n:
4777     Form = Load;
4778     break;
4779 
4780   case AtomicExpr::AO__atomic_load:
4781     Form = LoadCopy;
4782     break;
4783 
4784   case AtomicExpr::AO__c11_atomic_store:
4785   case AtomicExpr::AO__opencl_atomic_store:
4786   case AtomicExpr::AO__atomic_store:
4787   case AtomicExpr::AO__atomic_store_n:
4788     Form = Copy;
4789     break;
4790 
4791   case AtomicExpr::AO__c11_atomic_fetch_add:
4792   case AtomicExpr::AO__c11_atomic_fetch_sub:
4793   case AtomicExpr::AO__opencl_atomic_fetch_add:
4794   case AtomicExpr::AO__opencl_atomic_fetch_sub:
4795   case AtomicExpr::AO__atomic_fetch_add:
4796   case AtomicExpr::AO__atomic_fetch_sub:
4797   case AtomicExpr::AO__atomic_add_fetch:
4798   case AtomicExpr::AO__atomic_sub_fetch:
4799     IsAddSub = true;
4800     LLVM_FALLTHROUGH;
4801   case AtomicExpr::AO__c11_atomic_fetch_and:
4802   case AtomicExpr::AO__c11_atomic_fetch_or:
4803   case AtomicExpr::AO__c11_atomic_fetch_xor:
4804   case AtomicExpr::AO__opencl_atomic_fetch_and:
4805   case AtomicExpr::AO__opencl_atomic_fetch_or:
4806   case AtomicExpr::AO__opencl_atomic_fetch_xor:
4807   case AtomicExpr::AO__atomic_fetch_and:
4808   case AtomicExpr::AO__atomic_fetch_or:
4809   case AtomicExpr::AO__atomic_fetch_xor:
4810   case AtomicExpr::AO__atomic_fetch_nand:
4811   case AtomicExpr::AO__atomic_and_fetch:
4812   case AtomicExpr::AO__atomic_or_fetch:
4813   case AtomicExpr::AO__atomic_xor_fetch:
4814   case AtomicExpr::AO__atomic_nand_fetch:
4815   case AtomicExpr::AO__c11_atomic_fetch_min:
4816   case AtomicExpr::AO__c11_atomic_fetch_max:
4817   case AtomicExpr::AO__opencl_atomic_fetch_min:
4818   case AtomicExpr::AO__opencl_atomic_fetch_max:
4819   case AtomicExpr::AO__atomic_min_fetch:
4820   case AtomicExpr::AO__atomic_max_fetch:
4821   case AtomicExpr::AO__atomic_fetch_min:
4822   case AtomicExpr::AO__atomic_fetch_max:
4823     Form = Arithmetic;
4824     break;
4825 
4826   case AtomicExpr::AO__c11_atomic_exchange:
4827   case AtomicExpr::AO__opencl_atomic_exchange:
4828   case AtomicExpr::AO__atomic_exchange_n:
4829     Form = Xchg;
4830     break;
4831 
4832   case AtomicExpr::AO__atomic_exchange:
4833     Form = GNUXchg;
4834     break;
4835 
4836   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4837   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4838   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4839   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4840     Form = C11CmpXchg;
4841     break;
4842 
4843   case AtomicExpr::AO__atomic_compare_exchange:
4844   case AtomicExpr::AO__atomic_compare_exchange_n:
4845     Form = GNUCmpXchg;
4846     break;
4847   }
4848 
4849   unsigned AdjustedNumArgs = NumArgs[Form];
4850   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4851     ++AdjustedNumArgs;
4852   // Check we have the right number of arguments.
4853   if (Args.size() < AdjustedNumArgs) {
4854     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
4855         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4856         << ExprRange;
4857     return ExprError();
4858   } else if (Args.size() > AdjustedNumArgs) {
4859     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
4860          diag::err_typecheck_call_too_many_args)
4861         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4862         << ExprRange;
4863     return ExprError();
4864   }
4865 
4866   // Inspect the first argument of the atomic operation.
4867   Expr *Ptr = Args[0];
4868   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4869   if (ConvertedPtr.isInvalid())
4870     return ExprError();
4871 
4872   Ptr = ConvertedPtr.get();
4873   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4874   if (!pointerType) {
4875     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
4876         << Ptr->getType() << Ptr->getSourceRange();
4877     return ExprError();
4878   }
4879 
4880   // For a __c11 builtin, this should be a pointer to an _Atomic type.
4881   QualType AtomTy = pointerType->getPointeeType(); // 'A'
4882   QualType ValType = AtomTy; // 'C'
4883   if (IsC11) {
4884     if (!AtomTy->isAtomicType()) {
4885       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
4886           << Ptr->getType() << Ptr->getSourceRange();
4887       return ExprError();
4888     }
4889     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4890         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4891       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
4892           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4893           << Ptr->getSourceRange();
4894       return ExprError();
4895     }
4896     ValType = AtomTy->castAs<AtomicType>()->getValueType();
4897   } else if (Form != Load && Form != LoadCopy) {
4898     if (ValType.isConstQualified()) {
4899       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
4900           << Ptr->getType() << Ptr->getSourceRange();
4901       return ExprError();
4902     }
4903   }
4904 
4905   // For an arithmetic operation, the implied arithmetic must be well-formed.
4906   if (Form == Arithmetic) {
4907     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4908     if (IsAddSub && !ValType->isIntegerType()
4909         && !ValType->isPointerType()) {
4910       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4911           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4912       return ExprError();
4913     }
4914     if (!IsAddSub && !ValType->isIntegerType()) {
4915       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
4916           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4917       return ExprError();
4918     }
4919     if (IsC11 && ValType->isPointerType() &&
4920         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4921                             diag::err_incomplete_type)) {
4922       return ExprError();
4923     }
4924   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4925     // For __atomic_*_n operations, the value type must be a scalar integral or
4926     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4927     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4928         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4929     return ExprError();
4930   }
4931 
4932   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4933       !AtomTy->isScalarType()) {
4934     // For GNU atomics, require a trivially-copyable type. This is not part of
4935     // the GNU atomics specification, but we enforce it for sanity.
4936     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
4937         << Ptr->getType() << Ptr->getSourceRange();
4938     return ExprError();
4939   }
4940 
4941   switch (ValType.getObjCLifetime()) {
4942   case Qualifiers::OCL_None:
4943   case Qualifiers::OCL_ExplicitNone:
4944     // okay
4945     break;
4946 
4947   case Qualifiers::OCL_Weak:
4948   case Qualifiers::OCL_Strong:
4949   case Qualifiers::OCL_Autoreleasing:
4950     // FIXME: Can this happen? By this point, ValType should be known
4951     // to be trivially copyable.
4952     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
4953         << ValType << Ptr->getSourceRange();
4954     return ExprError();
4955   }
4956 
4957   // All atomic operations have an overload which takes a pointer to a volatile
4958   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
4959   // into the result or the other operands. Similarly atomic_load takes a
4960   // pointer to a const 'A'.
4961   ValType.removeLocalVolatile();
4962   ValType.removeLocalConst();
4963   QualType ResultType = ValType;
4964   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4965       Form == Init)
4966     ResultType = Context.VoidTy;
4967   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4968     ResultType = Context.BoolTy;
4969 
4970   // The type of a parameter passed 'by value'. In the GNU atomics, such
4971   // arguments are actually passed as pointers.
4972   QualType ByValType = ValType; // 'CP'
4973   bool IsPassedByAddress = false;
4974   if (!IsC11 && !IsN) {
4975     ByValType = Ptr->getType();
4976     IsPassedByAddress = true;
4977   }
4978 
4979   SmallVector<Expr *, 5> APIOrderedArgs;
4980   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4981     APIOrderedArgs.push_back(Args[0]);
4982     switch (Form) {
4983     case Init:
4984     case Load:
4985       APIOrderedArgs.push_back(Args[1]); // Val1/Order
4986       break;
4987     case LoadCopy:
4988     case Copy:
4989     case Arithmetic:
4990     case Xchg:
4991       APIOrderedArgs.push_back(Args[2]); // Val1
4992       APIOrderedArgs.push_back(Args[1]); // Order
4993       break;
4994     case GNUXchg:
4995       APIOrderedArgs.push_back(Args[2]); // Val1
4996       APIOrderedArgs.push_back(Args[3]); // Val2
4997       APIOrderedArgs.push_back(Args[1]); // Order
4998       break;
4999     case C11CmpXchg:
5000       APIOrderedArgs.push_back(Args[2]); // Val1
5001       APIOrderedArgs.push_back(Args[4]); // Val2
5002       APIOrderedArgs.push_back(Args[1]); // Order
5003       APIOrderedArgs.push_back(Args[3]); // OrderFail
5004       break;
5005     case GNUCmpXchg:
5006       APIOrderedArgs.push_back(Args[2]); // Val1
5007       APIOrderedArgs.push_back(Args[4]); // Val2
5008       APIOrderedArgs.push_back(Args[5]); // Weak
5009       APIOrderedArgs.push_back(Args[1]); // Order
5010       APIOrderedArgs.push_back(Args[3]); // OrderFail
5011       break;
5012     }
5013   } else
5014     APIOrderedArgs.append(Args.begin(), Args.end());
5015 
5016   // The first argument's non-CV pointer type is used to deduce the type of
5017   // subsequent arguments, except for:
5018   //  - weak flag (always converted to bool)
5019   //  - memory order (always converted to int)
5020   //  - scope  (always converted to int)
5021   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5022     QualType Ty;
5023     if (i < NumVals[Form] + 1) {
5024       switch (i) {
5025       case 0:
5026         // The first argument is always a pointer. It has a fixed type.
5027         // It is always dereferenced, a nullptr is undefined.
5028         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5029         // Nothing else to do: we already know all we want about this pointer.
5030         continue;
5031       case 1:
5032         // The second argument is the non-atomic operand. For arithmetic, this
5033         // is always passed by value, and for a compare_exchange it is always
5034         // passed by address. For the rest, GNU uses by-address and C11 uses
5035         // by-value.
5036         assert(Form != Load);
5037         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
5038           Ty = ValType;
5039         else if (Form == Copy || Form == Xchg) {
5040           if (IsPassedByAddress) {
5041             // The value pointer is always dereferenced, a nullptr is undefined.
5042             CheckNonNullArgument(*this, APIOrderedArgs[i],
5043                                  ExprRange.getBegin());
5044           }
5045           Ty = ByValType;
5046         } else if (Form == Arithmetic)
5047           Ty = Context.getPointerDiffType();
5048         else {
5049           Expr *ValArg = APIOrderedArgs[i];
5050           // The value pointer is always dereferenced, a nullptr is undefined.
5051           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5052           LangAS AS = LangAS::Default;
5053           // Keep address space of non-atomic pointer type.
5054           if (const PointerType *PtrTy =
5055                   ValArg->getType()->getAs<PointerType>()) {
5056             AS = PtrTy->getPointeeType().getAddressSpace();
5057           }
5058           Ty = Context.getPointerType(
5059               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5060         }
5061         break;
5062       case 2:
5063         // The third argument to compare_exchange / GNU exchange is the desired
5064         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5065         if (IsPassedByAddress)
5066           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5067         Ty = ByValType;
5068         break;
5069       case 3:
5070         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5071         Ty = Context.BoolTy;
5072         break;
5073       }
5074     } else {
5075       // The order(s) and scope are always converted to int.
5076       Ty = Context.IntTy;
5077     }
5078 
5079     InitializedEntity Entity =
5080         InitializedEntity::InitializeParameter(Context, Ty, false);
5081     ExprResult Arg = APIOrderedArgs[i];
5082     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5083     if (Arg.isInvalid())
5084       return true;
5085     APIOrderedArgs[i] = Arg.get();
5086   }
5087 
5088   // Permute the arguments into a 'consistent' order.
5089   SmallVector<Expr*, 5> SubExprs;
5090   SubExprs.push_back(Ptr);
5091   switch (Form) {
5092   case Init:
5093     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5094     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5095     break;
5096   case Load:
5097     SubExprs.push_back(APIOrderedArgs[1]); // Order
5098     break;
5099   case LoadCopy:
5100   case Copy:
5101   case Arithmetic:
5102   case Xchg:
5103     SubExprs.push_back(APIOrderedArgs[2]); // Order
5104     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5105     break;
5106   case GNUXchg:
5107     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5108     SubExprs.push_back(APIOrderedArgs[3]); // Order
5109     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5110     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5111     break;
5112   case C11CmpXchg:
5113     SubExprs.push_back(APIOrderedArgs[3]); // Order
5114     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5115     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5116     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5117     break;
5118   case GNUCmpXchg:
5119     SubExprs.push_back(APIOrderedArgs[4]); // Order
5120     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5121     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5122     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5123     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5124     break;
5125   }
5126 
5127   if (SubExprs.size() >= 2 && Form != Init) {
5128     if (Optional<llvm::APSInt> Result =
5129             SubExprs[1]->getIntegerConstantExpr(Context))
5130       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5131         Diag(SubExprs[1]->getBeginLoc(),
5132              diag::warn_atomic_op_has_invalid_memory_order)
5133             << SubExprs[1]->getSourceRange();
5134   }
5135 
5136   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5137     auto *Scope = Args[Args.size() - 1];
5138     if (Optional<llvm::APSInt> Result =
5139             Scope->getIntegerConstantExpr(Context)) {
5140       if (!ScopeModel->isValid(Result->getZExtValue()))
5141         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5142             << Scope->getSourceRange();
5143     }
5144     SubExprs.push_back(Scope);
5145   }
5146 
5147   AtomicExpr *AE = new (Context)
5148       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5149 
5150   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5151        Op == AtomicExpr::AO__c11_atomic_store ||
5152        Op == AtomicExpr::AO__opencl_atomic_load ||
5153        Op == AtomicExpr::AO__opencl_atomic_store ) &&
5154       Context.AtomicUsesUnsupportedLibcall(AE))
5155     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5156         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5157              Op == AtomicExpr::AO__opencl_atomic_load)
5158                 ? 0
5159                 : 1);
5160 
5161   if (ValType->isExtIntType()) {
5162     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5163     return ExprError();
5164   }
5165 
5166   return AE;
5167 }
5168 
5169 /// checkBuiltinArgument - Given a call to a builtin function, perform
5170 /// normal type-checking on the given argument, updating the call in
5171 /// place.  This is useful when a builtin function requires custom
5172 /// type-checking for some of its arguments but not necessarily all of
5173 /// them.
5174 ///
5175 /// Returns true on error.
5176 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5177   FunctionDecl *Fn = E->getDirectCallee();
5178   assert(Fn && "builtin call without direct callee!");
5179 
5180   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5181   InitializedEntity Entity =
5182     InitializedEntity::InitializeParameter(S.Context, Param);
5183 
5184   ExprResult Arg = E->getArg(0);
5185   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5186   if (Arg.isInvalid())
5187     return true;
5188 
5189   E->setArg(ArgIndex, Arg.get());
5190   return false;
5191 }
5192 
5193 /// We have a call to a function like __sync_fetch_and_add, which is an
5194 /// overloaded function based on the pointer type of its first argument.
5195 /// The main BuildCallExpr routines have already promoted the types of
5196 /// arguments because all of these calls are prototyped as void(...).
5197 ///
5198 /// This function goes through and does final semantic checking for these
5199 /// builtins, as well as generating any warnings.
5200 ExprResult
5201 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5202   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5203   Expr *Callee = TheCall->getCallee();
5204   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5205   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5206 
5207   // Ensure that we have at least one argument to do type inference from.
5208   if (TheCall->getNumArgs() < 1) {
5209     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5210         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5211     return ExprError();
5212   }
5213 
5214   // Inspect the first argument of the atomic builtin.  This should always be
5215   // a pointer type, whose element is an integral scalar or pointer type.
5216   // Because it is a pointer type, we don't have to worry about any implicit
5217   // casts here.
5218   // FIXME: We don't allow floating point scalars as input.
5219   Expr *FirstArg = TheCall->getArg(0);
5220   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5221   if (FirstArgResult.isInvalid())
5222     return ExprError();
5223   FirstArg = FirstArgResult.get();
5224   TheCall->setArg(0, FirstArg);
5225 
5226   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5227   if (!pointerType) {
5228     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5229         << FirstArg->getType() << FirstArg->getSourceRange();
5230     return ExprError();
5231   }
5232 
5233   QualType ValType = pointerType->getPointeeType();
5234   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5235       !ValType->isBlockPointerType()) {
5236     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5237         << FirstArg->getType() << FirstArg->getSourceRange();
5238     return ExprError();
5239   }
5240 
5241   if (ValType.isConstQualified()) {
5242     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5243         << FirstArg->getType() << FirstArg->getSourceRange();
5244     return ExprError();
5245   }
5246 
5247   switch (ValType.getObjCLifetime()) {
5248   case Qualifiers::OCL_None:
5249   case Qualifiers::OCL_ExplicitNone:
5250     // okay
5251     break;
5252 
5253   case Qualifiers::OCL_Weak:
5254   case Qualifiers::OCL_Strong:
5255   case Qualifiers::OCL_Autoreleasing:
5256     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5257         << ValType << FirstArg->getSourceRange();
5258     return ExprError();
5259   }
5260 
5261   // Strip any qualifiers off ValType.
5262   ValType = ValType.getUnqualifiedType();
5263 
5264   // The majority of builtins return a value, but a few have special return
5265   // types, so allow them to override appropriately below.
5266   QualType ResultType = ValType;
5267 
5268   // We need to figure out which concrete builtin this maps onto.  For example,
5269   // __sync_fetch_and_add with a 2 byte object turns into
5270   // __sync_fetch_and_add_2.
5271 #define BUILTIN_ROW(x) \
5272   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5273     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5274 
5275   static const unsigned BuiltinIndices[][5] = {
5276     BUILTIN_ROW(__sync_fetch_and_add),
5277     BUILTIN_ROW(__sync_fetch_and_sub),
5278     BUILTIN_ROW(__sync_fetch_and_or),
5279     BUILTIN_ROW(__sync_fetch_and_and),
5280     BUILTIN_ROW(__sync_fetch_and_xor),
5281     BUILTIN_ROW(__sync_fetch_and_nand),
5282 
5283     BUILTIN_ROW(__sync_add_and_fetch),
5284     BUILTIN_ROW(__sync_sub_and_fetch),
5285     BUILTIN_ROW(__sync_and_and_fetch),
5286     BUILTIN_ROW(__sync_or_and_fetch),
5287     BUILTIN_ROW(__sync_xor_and_fetch),
5288     BUILTIN_ROW(__sync_nand_and_fetch),
5289 
5290     BUILTIN_ROW(__sync_val_compare_and_swap),
5291     BUILTIN_ROW(__sync_bool_compare_and_swap),
5292     BUILTIN_ROW(__sync_lock_test_and_set),
5293     BUILTIN_ROW(__sync_lock_release),
5294     BUILTIN_ROW(__sync_swap)
5295   };
5296 #undef BUILTIN_ROW
5297 
5298   // Determine the index of the size.
5299   unsigned SizeIndex;
5300   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5301   case 1: SizeIndex = 0; break;
5302   case 2: SizeIndex = 1; break;
5303   case 4: SizeIndex = 2; break;
5304   case 8: SizeIndex = 3; break;
5305   case 16: SizeIndex = 4; break;
5306   default:
5307     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5308         << FirstArg->getType() << FirstArg->getSourceRange();
5309     return ExprError();
5310   }
5311 
5312   // Each of these builtins has one pointer argument, followed by some number of
5313   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5314   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5315   // as the number of fixed args.
5316   unsigned BuiltinID = FDecl->getBuiltinID();
5317   unsigned BuiltinIndex, NumFixed = 1;
5318   bool WarnAboutSemanticsChange = false;
5319   switch (BuiltinID) {
5320   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5321   case Builtin::BI__sync_fetch_and_add:
5322   case Builtin::BI__sync_fetch_and_add_1:
5323   case Builtin::BI__sync_fetch_and_add_2:
5324   case Builtin::BI__sync_fetch_and_add_4:
5325   case Builtin::BI__sync_fetch_and_add_8:
5326   case Builtin::BI__sync_fetch_and_add_16:
5327     BuiltinIndex = 0;
5328     break;
5329 
5330   case Builtin::BI__sync_fetch_and_sub:
5331   case Builtin::BI__sync_fetch_and_sub_1:
5332   case Builtin::BI__sync_fetch_and_sub_2:
5333   case Builtin::BI__sync_fetch_and_sub_4:
5334   case Builtin::BI__sync_fetch_and_sub_8:
5335   case Builtin::BI__sync_fetch_and_sub_16:
5336     BuiltinIndex = 1;
5337     break;
5338 
5339   case Builtin::BI__sync_fetch_and_or:
5340   case Builtin::BI__sync_fetch_and_or_1:
5341   case Builtin::BI__sync_fetch_and_or_2:
5342   case Builtin::BI__sync_fetch_and_or_4:
5343   case Builtin::BI__sync_fetch_and_or_8:
5344   case Builtin::BI__sync_fetch_and_or_16:
5345     BuiltinIndex = 2;
5346     break;
5347 
5348   case Builtin::BI__sync_fetch_and_and:
5349   case Builtin::BI__sync_fetch_and_and_1:
5350   case Builtin::BI__sync_fetch_and_and_2:
5351   case Builtin::BI__sync_fetch_and_and_4:
5352   case Builtin::BI__sync_fetch_and_and_8:
5353   case Builtin::BI__sync_fetch_and_and_16:
5354     BuiltinIndex = 3;
5355     break;
5356 
5357   case Builtin::BI__sync_fetch_and_xor:
5358   case Builtin::BI__sync_fetch_and_xor_1:
5359   case Builtin::BI__sync_fetch_and_xor_2:
5360   case Builtin::BI__sync_fetch_and_xor_4:
5361   case Builtin::BI__sync_fetch_and_xor_8:
5362   case Builtin::BI__sync_fetch_and_xor_16:
5363     BuiltinIndex = 4;
5364     break;
5365 
5366   case Builtin::BI__sync_fetch_and_nand:
5367   case Builtin::BI__sync_fetch_and_nand_1:
5368   case Builtin::BI__sync_fetch_and_nand_2:
5369   case Builtin::BI__sync_fetch_and_nand_4:
5370   case Builtin::BI__sync_fetch_and_nand_8:
5371   case Builtin::BI__sync_fetch_and_nand_16:
5372     BuiltinIndex = 5;
5373     WarnAboutSemanticsChange = true;
5374     break;
5375 
5376   case Builtin::BI__sync_add_and_fetch:
5377   case Builtin::BI__sync_add_and_fetch_1:
5378   case Builtin::BI__sync_add_and_fetch_2:
5379   case Builtin::BI__sync_add_and_fetch_4:
5380   case Builtin::BI__sync_add_and_fetch_8:
5381   case Builtin::BI__sync_add_and_fetch_16:
5382     BuiltinIndex = 6;
5383     break;
5384 
5385   case Builtin::BI__sync_sub_and_fetch:
5386   case Builtin::BI__sync_sub_and_fetch_1:
5387   case Builtin::BI__sync_sub_and_fetch_2:
5388   case Builtin::BI__sync_sub_and_fetch_4:
5389   case Builtin::BI__sync_sub_and_fetch_8:
5390   case Builtin::BI__sync_sub_and_fetch_16:
5391     BuiltinIndex = 7;
5392     break;
5393 
5394   case Builtin::BI__sync_and_and_fetch:
5395   case Builtin::BI__sync_and_and_fetch_1:
5396   case Builtin::BI__sync_and_and_fetch_2:
5397   case Builtin::BI__sync_and_and_fetch_4:
5398   case Builtin::BI__sync_and_and_fetch_8:
5399   case Builtin::BI__sync_and_and_fetch_16:
5400     BuiltinIndex = 8;
5401     break;
5402 
5403   case Builtin::BI__sync_or_and_fetch:
5404   case Builtin::BI__sync_or_and_fetch_1:
5405   case Builtin::BI__sync_or_and_fetch_2:
5406   case Builtin::BI__sync_or_and_fetch_4:
5407   case Builtin::BI__sync_or_and_fetch_8:
5408   case Builtin::BI__sync_or_and_fetch_16:
5409     BuiltinIndex = 9;
5410     break;
5411 
5412   case Builtin::BI__sync_xor_and_fetch:
5413   case Builtin::BI__sync_xor_and_fetch_1:
5414   case Builtin::BI__sync_xor_and_fetch_2:
5415   case Builtin::BI__sync_xor_and_fetch_4:
5416   case Builtin::BI__sync_xor_and_fetch_8:
5417   case Builtin::BI__sync_xor_and_fetch_16:
5418     BuiltinIndex = 10;
5419     break;
5420 
5421   case Builtin::BI__sync_nand_and_fetch:
5422   case Builtin::BI__sync_nand_and_fetch_1:
5423   case Builtin::BI__sync_nand_and_fetch_2:
5424   case Builtin::BI__sync_nand_and_fetch_4:
5425   case Builtin::BI__sync_nand_and_fetch_8:
5426   case Builtin::BI__sync_nand_and_fetch_16:
5427     BuiltinIndex = 11;
5428     WarnAboutSemanticsChange = true;
5429     break;
5430 
5431   case Builtin::BI__sync_val_compare_and_swap:
5432   case Builtin::BI__sync_val_compare_and_swap_1:
5433   case Builtin::BI__sync_val_compare_and_swap_2:
5434   case Builtin::BI__sync_val_compare_and_swap_4:
5435   case Builtin::BI__sync_val_compare_and_swap_8:
5436   case Builtin::BI__sync_val_compare_and_swap_16:
5437     BuiltinIndex = 12;
5438     NumFixed = 2;
5439     break;
5440 
5441   case Builtin::BI__sync_bool_compare_and_swap:
5442   case Builtin::BI__sync_bool_compare_and_swap_1:
5443   case Builtin::BI__sync_bool_compare_and_swap_2:
5444   case Builtin::BI__sync_bool_compare_and_swap_4:
5445   case Builtin::BI__sync_bool_compare_and_swap_8:
5446   case Builtin::BI__sync_bool_compare_and_swap_16:
5447     BuiltinIndex = 13;
5448     NumFixed = 2;
5449     ResultType = Context.BoolTy;
5450     break;
5451 
5452   case Builtin::BI__sync_lock_test_and_set:
5453   case Builtin::BI__sync_lock_test_and_set_1:
5454   case Builtin::BI__sync_lock_test_and_set_2:
5455   case Builtin::BI__sync_lock_test_and_set_4:
5456   case Builtin::BI__sync_lock_test_and_set_8:
5457   case Builtin::BI__sync_lock_test_and_set_16:
5458     BuiltinIndex = 14;
5459     break;
5460 
5461   case Builtin::BI__sync_lock_release:
5462   case Builtin::BI__sync_lock_release_1:
5463   case Builtin::BI__sync_lock_release_2:
5464   case Builtin::BI__sync_lock_release_4:
5465   case Builtin::BI__sync_lock_release_8:
5466   case Builtin::BI__sync_lock_release_16:
5467     BuiltinIndex = 15;
5468     NumFixed = 0;
5469     ResultType = Context.VoidTy;
5470     break;
5471 
5472   case Builtin::BI__sync_swap:
5473   case Builtin::BI__sync_swap_1:
5474   case Builtin::BI__sync_swap_2:
5475   case Builtin::BI__sync_swap_4:
5476   case Builtin::BI__sync_swap_8:
5477   case Builtin::BI__sync_swap_16:
5478     BuiltinIndex = 16;
5479     break;
5480   }
5481 
5482   // Now that we know how many fixed arguments we expect, first check that we
5483   // have at least that many.
5484   if (TheCall->getNumArgs() < 1+NumFixed) {
5485     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5486         << 0 << 1 + NumFixed << TheCall->getNumArgs()
5487         << Callee->getSourceRange();
5488     return ExprError();
5489   }
5490 
5491   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5492       << Callee->getSourceRange();
5493 
5494   if (WarnAboutSemanticsChange) {
5495     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5496         << Callee->getSourceRange();
5497   }
5498 
5499   // Get the decl for the concrete builtin from this, we can tell what the
5500   // concrete integer type we should convert to is.
5501   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5502   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5503   FunctionDecl *NewBuiltinDecl;
5504   if (NewBuiltinID == BuiltinID)
5505     NewBuiltinDecl = FDecl;
5506   else {
5507     // Perform builtin lookup to avoid redeclaring it.
5508     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5509     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5510     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5511     assert(Res.getFoundDecl());
5512     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5513     if (!NewBuiltinDecl)
5514       return ExprError();
5515   }
5516 
5517   // The first argument --- the pointer --- has a fixed type; we
5518   // deduce the types of the rest of the arguments accordingly.  Walk
5519   // the remaining arguments, converting them to the deduced value type.
5520   for (unsigned i = 0; i != NumFixed; ++i) {
5521     ExprResult Arg = TheCall->getArg(i+1);
5522 
5523     // GCC does an implicit conversion to the pointer or integer ValType.  This
5524     // can fail in some cases (1i -> int**), check for this error case now.
5525     // Initialize the argument.
5526     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5527                                                    ValType, /*consume*/ false);
5528     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5529     if (Arg.isInvalid())
5530       return ExprError();
5531 
5532     // Okay, we have something that *can* be converted to the right type.  Check
5533     // to see if there is a potentially weird extension going on here.  This can
5534     // happen when you do an atomic operation on something like an char* and
5535     // pass in 42.  The 42 gets converted to char.  This is even more strange
5536     // for things like 45.123 -> char, etc.
5537     // FIXME: Do this check.
5538     TheCall->setArg(i+1, Arg.get());
5539   }
5540 
5541   // Create a new DeclRefExpr to refer to the new decl.
5542   DeclRefExpr *NewDRE = DeclRefExpr::Create(
5543       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5544       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5545       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5546 
5547   // Set the callee in the CallExpr.
5548   // FIXME: This loses syntactic information.
5549   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5550   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5551                                               CK_BuiltinFnToFnPtr);
5552   TheCall->setCallee(PromotedCall.get());
5553 
5554   // Change the result type of the call to match the original value type. This
5555   // is arbitrary, but the codegen for these builtins ins design to handle it
5556   // gracefully.
5557   TheCall->setType(ResultType);
5558 
5559   // Prohibit use of _ExtInt with atomic builtins.
5560   // The arguments would have already been converted to the first argument's
5561   // type, so only need to check the first argument.
5562   const auto *ExtIntValType = ValType->getAs<ExtIntType>();
5563   if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
5564     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
5565     return ExprError();
5566   }
5567 
5568   return TheCallResult;
5569 }
5570 
5571 /// SemaBuiltinNontemporalOverloaded - We have a call to
5572 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5573 /// overloaded function based on the pointer type of its last argument.
5574 ///
5575 /// This function goes through and does final semantic checking for these
5576 /// builtins.
5577 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5578   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5579   DeclRefExpr *DRE =
5580       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5581   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5582   unsigned BuiltinID = FDecl->getBuiltinID();
5583   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5584           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5585          "Unexpected nontemporal load/store builtin!");
5586   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5587   unsigned numArgs = isStore ? 2 : 1;
5588 
5589   // Ensure that we have the proper number of arguments.
5590   if (checkArgCount(*this, TheCall, numArgs))
5591     return ExprError();
5592 
5593   // Inspect the last argument of the nontemporal builtin.  This should always
5594   // be a pointer type, from which we imply the type of the memory access.
5595   // Because it is a pointer type, we don't have to worry about any implicit
5596   // casts here.
5597   Expr *PointerArg = TheCall->getArg(numArgs - 1);
5598   ExprResult PointerArgResult =
5599       DefaultFunctionArrayLvalueConversion(PointerArg);
5600 
5601   if (PointerArgResult.isInvalid())
5602     return ExprError();
5603   PointerArg = PointerArgResult.get();
5604   TheCall->setArg(numArgs - 1, PointerArg);
5605 
5606   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5607   if (!pointerType) {
5608     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5609         << PointerArg->getType() << PointerArg->getSourceRange();
5610     return ExprError();
5611   }
5612 
5613   QualType ValType = pointerType->getPointeeType();
5614 
5615   // Strip any qualifiers off ValType.
5616   ValType = ValType.getUnqualifiedType();
5617   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5618       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5619       !ValType->isVectorType()) {
5620     Diag(DRE->getBeginLoc(),
5621          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5622         << PointerArg->getType() << PointerArg->getSourceRange();
5623     return ExprError();
5624   }
5625 
5626   if (!isStore) {
5627     TheCall->setType(ValType);
5628     return TheCallResult;
5629   }
5630 
5631   ExprResult ValArg = TheCall->getArg(0);
5632   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5633       Context, ValType, /*consume*/ false);
5634   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5635   if (ValArg.isInvalid())
5636     return ExprError();
5637 
5638   TheCall->setArg(0, ValArg.get());
5639   TheCall->setType(Context.VoidTy);
5640   return TheCallResult;
5641 }
5642 
5643 /// CheckObjCString - Checks that the argument to the builtin
5644 /// CFString constructor is correct
5645 /// Note: It might also make sense to do the UTF-16 conversion here (would
5646 /// simplify the backend).
5647 bool Sema::CheckObjCString(Expr *Arg) {
5648   Arg = Arg->IgnoreParenCasts();
5649   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5650 
5651   if (!Literal || !Literal->isAscii()) {
5652     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5653         << Arg->getSourceRange();
5654     return true;
5655   }
5656 
5657   if (Literal->containsNonAsciiOrNull()) {
5658     StringRef String = Literal->getString();
5659     unsigned NumBytes = String.size();
5660     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5661     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5662     llvm::UTF16 *ToPtr = &ToBuf[0];
5663 
5664     llvm::ConversionResult Result =
5665         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5666                                  ToPtr + NumBytes, llvm::strictConversion);
5667     // Check for conversion failure.
5668     if (Result != llvm::conversionOK)
5669       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5670           << Arg->getSourceRange();
5671   }
5672   return false;
5673 }
5674 
5675 /// CheckObjCString - Checks that the format string argument to the os_log()
5676 /// and os_trace() functions is correct, and converts it to const char *.
5677 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5678   Arg = Arg->IgnoreParenCasts();
5679   auto *Literal = dyn_cast<StringLiteral>(Arg);
5680   if (!Literal) {
5681     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5682       Literal = ObjcLiteral->getString();
5683     }
5684   }
5685 
5686   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5687     return ExprError(
5688         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5689         << Arg->getSourceRange());
5690   }
5691 
5692   ExprResult Result(Literal);
5693   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5694   InitializedEntity Entity =
5695       InitializedEntity::InitializeParameter(Context, ResultTy, false);
5696   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5697   return Result;
5698 }
5699 
5700 /// Check that the user is calling the appropriate va_start builtin for the
5701 /// target and calling convention.
5702 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5703   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5704   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5705   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
5706                     TT.getArch() == llvm::Triple::aarch64_32);
5707   bool IsWindows = TT.isOSWindows();
5708   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5709   if (IsX64 || IsAArch64) {
5710     CallingConv CC = CC_C;
5711     if (const FunctionDecl *FD = S.getCurFunctionDecl())
5712       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
5713     if (IsMSVAStart) {
5714       // Don't allow this in System V ABI functions.
5715       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5716         return S.Diag(Fn->getBeginLoc(),
5717                       diag::err_ms_va_start_used_in_sysv_function);
5718     } else {
5719       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5720       // On x64 Windows, don't allow this in System V ABI functions.
5721       // (Yes, that means there's no corresponding way to support variadic
5722       // System V ABI functions on Windows.)
5723       if ((IsWindows && CC == CC_X86_64SysV) ||
5724           (!IsWindows && CC == CC_Win64))
5725         return S.Diag(Fn->getBeginLoc(),
5726                       diag::err_va_start_used_in_wrong_abi_function)
5727                << !IsWindows;
5728     }
5729     return false;
5730   }
5731 
5732   if (IsMSVAStart)
5733     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5734   return false;
5735 }
5736 
5737 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5738                                              ParmVarDecl **LastParam = nullptr) {
5739   // Determine whether the current function, block, or obj-c method is variadic
5740   // and get its parameter list.
5741   bool IsVariadic = false;
5742   ArrayRef<ParmVarDecl *> Params;
5743   DeclContext *Caller = S.CurContext;
5744   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5745     IsVariadic = Block->isVariadic();
5746     Params = Block->parameters();
5747   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5748     IsVariadic = FD->isVariadic();
5749     Params = FD->parameters();
5750   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5751     IsVariadic = MD->isVariadic();
5752     // FIXME: This isn't correct for methods (results in bogus warning).
5753     Params = MD->parameters();
5754   } else if (isa<CapturedDecl>(Caller)) {
5755     // We don't support va_start in a CapturedDecl.
5756     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5757     return true;
5758   } else {
5759     // This must be some other declcontext that parses exprs.
5760     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5761     return true;
5762   }
5763 
5764   if (!IsVariadic) {
5765     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5766     return true;
5767   }
5768 
5769   if (LastParam)
5770     *LastParam = Params.empty() ? nullptr : Params.back();
5771 
5772   return false;
5773 }
5774 
5775 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5776 /// for validity.  Emit an error and return true on failure; return false
5777 /// on success.
5778 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5779   Expr *Fn = TheCall->getCallee();
5780 
5781   if (checkVAStartABI(*this, BuiltinID, Fn))
5782     return true;
5783 
5784   if (checkArgCount(*this, TheCall, 2))
5785     return true;
5786 
5787   // Type-check the first argument normally.
5788   if (checkBuiltinArgument(*this, TheCall, 0))
5789     return true;
5790 
5791   // Check that the current function is variadic, and get its last parameter.
5792   ParmVarDecl *LastParam;
5793   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5794     return true;
5795 
5796   // Verify that the second argument to the builtin is the last argument of the
5797   // current function or method.
5798   bool SecondArgIsLastNamedArgument = false;
5799   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5800 
5801   // These are valid if SecondArgIsLastNamedArgument is false after the next
5802   // block.
5803   QualType Type;
5804   SourceLocation ParamLoc;
5805   bool IsCRegister = false;
5806 
5807   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5808     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5809       SecondArgIsLastNamedArgument = PV == LastParam;
5810 
5811       Type = PV->getType();
5812       ParamLoc = PV->getLocation();
5813       IsCRegister =
5814           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5815     }
5816   }
5817 
5818   if (!SecondArgIsLastNamedArgument)
5819     Diag(TheCall->getArg(1)->getBeginLoc(),
5820          diag::warn_second_arg_of_va_start_not_last_named_param);
5821   else if (IsCRegister || Type->isReferenceType() ||
5822            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5823              // Promotable integers are UB, but enumerations need a bit of
5824              // extra checking to see what their promotable type actually is.
5825              if (!Type->isPromotableIntegerType())
5826                return false;
5827              if (!Type->isEnumeralType())
5828                return true;
5829              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
5830              return !(ED &&
5831                       Context.typesAreCompatible(ED->getPromotionType(), Type));
5832            }()) {
5833     unsigned Reason = 0;
5834     if (Type->isReferenceType())  Reason = 1;
5835     else if (IsCRegister)         Reason = 2;
5836     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5837     Diag(ParamLoc, diag::note_parameter_type) << Type;
5838   }
5839 
5840   TheCall->setType(Context.VoidTy);
5841   return false;
5842 }
5843 
5844 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5845   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5846   //                 const char *named_addr);
5847 
5848   Expr *Func = Call->getCallee();
5849 
5850   if (Call->getNumArgs() < 3)
5851     return Diag(Call->getEndLoc(),
5852                 diag::err_typecheck_call_too_few_args_at_least)
5853            << 0 /*function call*/ << 3 << Call->getNumArgs();
5854 
5855   // Type-check the first argument normally.
5856   if (checkBuiltinArgument(*this, Call, 0))
5857     return true;
5858 
5859   // Check that the current function is variadic.
5860   if (checkVAStartIsInVariadicFunction(*this, Func))
5861     return true;
5862 
5863   // __va_start on Windows does not validate the parameter qualifiers
5864 
5865   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5866   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5867 
5868   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5869   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5870 
5871   const QualType &ConstCharPtrTy =
5872       Context.getPointerType(Context.CharTy.withConst());
5873   if (!Arg1Ty->isPointerType() ||
5874       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5875     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5876         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5877         << 0                                      /* qualifier difference */
5878         << 3                                      /* parameter mismatch */
5879         << 2 << Arg1->getType() << ConstCharPtrTy;
5880 
5881   const QualType SizeTy = Context.getSizeType();
5882   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5883     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5884         << Arg2->getType() << SizeTy << 1 /* different class */
5885         << 0                              /* qualifier difference */
5886         << 3                              /* parameter mismatch */
5887         << 3 << Arg2->getType() << SizeTy;
5888 
5889   return false;
5890 }
5891 
5892 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5893 /// friends.  This is declared to take (...), so we have to check everything.
5894 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5895   if (checkArgCount(*this, TheCall, 2))
5896     return true;
5897 
5898   ExprResult OrigArg0 = TheCall->getArg(0);
5899   ExprResult OrigArg1 = TheCall->getArg(1);
5900 
5901   // Do standard promotions between the two arguments, returning their common
5902   // type.
5903   QualType Res = UsualArithmeticConversions(
5904       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
5905   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5906     return true;
5907 
5908   // Make sure any conversions are pushed back into the call; this is
5909   // type safe since unordered compare builtins are declared as "_Bool
5910   // foo(...)".
5911   TheCall->setArg(0, OrigArg0.get());
5912   TheCall->setArg(1, OrigArg1.get());
5913 
5914   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5915     return false;
5916 
5917   // If the common type isn't a real floating type, then the arguments were
5918   // invalid for this operation.
5919   if (Res.isNull() || !Res->isRealFloatingType())
5920     return Diag(OrigArg0.get()->getBeginLoc(),
5921                 diag::err_typecheck_call_invalid_ordered_compare)
5922            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5923            << SourceRange(OrigArg0.get()->getBeginLoc(),
5924                           OrigArg1.get()->getEndLoc());
5925 
5926   return false;
5927 }
5928 
5929 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5930 /// __builtin_isnan and friends.  This is declared to take (...), so we have
5931 /// to check everything. We expect the last argument to be a floating point
5932 /// value.
5933 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5934   if (checkArgCount(*this, TheCall, NumArgs))
5935     return true;
5936 
5937   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
5938   // on all preceding parameters just being int.  Try all of those.
5939   for (unsigned i = 0; i < NumArgs - 1; ++i) {
5940     Expr *Arg = TheCall->getArg(i);
5941 
5942     if (Arg->isTypeDependent())
5943       return false;
5944 
5945     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
5946 
5947     if (Res.isInvalid())
5948       return true;
5949     TheCall->setArg(i, Res.get());
5950   }
5951 
5952   Expr *OrigArg = TheCall->getArg(NumArgs-1);
5953 
5954   if (OrigArg->isTypeDependent())
5955     return false;
5956 
5957   // Usual Unary Conversions will convert half to float, which we want for
5958   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5959   // type how it is, but do normal L->Rvalue conversions.
5960   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
5961     OrigArg = UsualUnaryConversions(OrigArg).get();
5962   else
5963     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
5964   TheCall->setArg(NumArgs - 1, OrigArg);
5965 
5966   // This operation requires a non-_Complex floating-point number.
5967   if (!OrigArg->getType()->isRealFloatingType())
5968     return Diag(OrigArg->getBeginLoc(),
5969                 diag::err_typecheck_call_invalid_unary_fp)
5970            << OrigArg->getType() << OrigArg->getSourceRange();
5971 
5972   return false;
5973 }
5974 
5975 /// Perform semantic analysis for a call to __builtin_complex.
5976 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
5977   if (checkArgCount(*this, TheCall, 2))
5978     return true;
5979 
5980   bool Dependent = false;
5981   for (unsigned I = 0; I != 2; ++I) {
5982     Expr *Arg = TheCall->getArg(I);
5983     QualType T = Arg->getType();
5984     if (T->isDependentType()) {
5985       Dependent = true;
5986       continue;
5987     }
5988 
5989     // Despite supporting _Complex int, GCC requires a real floating point type
5990     // for the operands of __builtin_complex.
5991     if (!T->isRealFloatingType()) {
5992       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
5993              << Arg->getType() << Arg->getSourceRange();
5994     }
5995 
5996     ExprResult Converted = DefaultLvalueConversion(Arg);
5997     if (Converted.isInvalid())
5998       return true;
5999     TheCall->setArg(I, Converted.get());
6000   }
6001 
6002   if (Dependent) {
6003     TheCall->setType(Context.DependentTy);
6004     return false;
6005   }
6006 
6007   Expr *Real = TheCall->getArg(0);
6008   Expr *Imag = TheCall->getArg(1);
6009   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6010     return Diag(Real->getBeginLoc(),
6011                 diag::err_typecheck_call_different_arg_types)
6012            << Real->getType() << Imag->getType()
6013            << Real->getSourceRange() << Imag->getSourceRange();
6014   }
6015 
6016   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6017   // don't allow this builtin to form those types either.
6018   // FIXME: Should we allow these types?
6019   if (Real->getType()->isFloat16Type())
6020     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6021            << "_Float16";
6022   if (Real->getType()->isHalfType())
6023     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6024            << "half";
6025 
6026   TheCall->setType(Context.getComplexType(Real->getType()));
6027   return false;
6028 }
6029 
6030 // Customized Sema Checking for VSX builtins that have the following signature:
6031 // vector [...] builtinName(vector [...], vector [...], const int);
6032 // Which takes the same type of vectors (any legal vector type) for the first
6033 // two arguments and takes compile time constant for the third argument.
6034 // Example builtins are :
6035 // vector double vec_xxpermdi(vector double, vector double, int);
6036 // vector short vec_xxsldwi(vector short, vector short, int);
6037 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6038   unsigned ExpectedNumArgs = 3;
6039   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6040     return true;
6041 
6042   // Check the third argument is a compile time constant
6043   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6044     return Diag(TheCall->getBeginLoc(),
6045                 diag::err_vsx_builtin_nonconstant_argument)
6046            << 3 /* argument index */ << TheCall->getDirectCallee()
6047            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6048                           TheCall->getArg(2)->getEndLoc());
6049 
6050   QualType Arg1Ty = TheCall->getArg(0)->getType();
6051   QualType Arg2Ty = TheCall->getArg(1)->getType();
6052 
6053   // Check the type of argument 1 and argument 2 are vectors.
6054   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6055   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6056       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6057     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6058            << TheCall->getDirectCallee()
6059            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6060                           TheCall->getArg(1)->getEndLoc());
6061   }
6062 
6063   // Check the first two arguments are the same type.
6064   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6065     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6066            << TheCall->getDirectCallee()
6067            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6068                           TheCall->getArg(1)->getEndLoc());
6069   }
6070 
6071   // When default clang type checking is turned off and the customized type
6072   // checking is used, the returning type of the function must be explicitly
6073   // set. Otherwise it is _Bool by default.
6074   TheCall->setType(Arg1Ty);
6075 
6076   return false;
6077 }
6078 
6079 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6080 // This is declared to take (...), so we have to check everything.
6081 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6082   if (TheCall->getNumArgs() < 2)
6083     return ExprError(Diag(TheCall->getEndLoc(),
6084                           diag::err_typecheck_call_too_few_args_at_least)
6085                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6086                      << TheCall->getSourceRange());
6087 
6088   // Determine which of the following types of shufflevector we're checking:
6089   // 1) unary, vector mask: (lhs, mask)
6090   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6091   QualType resType = TheCall->getArg(0)->getType();
6092   unsigned numElements = 0;
6093 
6094   if (!TheCall->getArg(0)->isTypeDependent() &&
6095       !TheCall->getArg(1)->isTypeDependent()) {
6096     QualType LHSType = TheCall->getArg(0)->getType();
6097     QualType RHSType = TheCall->getArg(1)->getType();
6098 
6099     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6100       return ExprError(
6101           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6102           << TheCall->getDirectCallee()
6103           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6104                          TheCall->getArg(1)->getEndLoc()));
6105 
6106     numElements = LHSType->castAs<VectorType>()->getNumElements();
6107     unsigned numResElements = TheCall->getNumArgs() - 2;
6108 
6109     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6110     // with mask.  If so, verify that RHS is an integer vector type with the
6111     // same number of elts as lhs.
6112     if (TheCall->getNumArgs() == 2) {
6113       if (!RHSType->hasIntegerRepresentation() ||
6114           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6115         return ExprError(Diag(TheCall->getBeginLoc(),
6116                               diag::err_vec_builtin_incompatible_vector)
6117                          << TheCall->getDirectCallee()
6118                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6119                                         TheCall->getArg(1)->getEndLoc()));
6120     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6121       return ExprError(Diag(TheCall->getBeginLoc(),
6122                             diag::err_vec_builtin_incompatible_vector)
6123                        << TheCall->getDirectCallee()
6124                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6125                                       TheCall->getArg(1)->getEndLoc()));
6126     } else if (numElements != numResElements) {
6127       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6128       resType = Context.getVectorType(eltType, numResElements,
6129                                       VectorType::GenericVector);
6130     }
6131   }
6132 
6133   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6134     if (TheCall->getArg(i)->isTypeDependent() ||
6135         TheCall->getArg(i)->isValueDependent())
6136       continue;
6137 
6138     Optional<llvm::APSInt> Result;
6139     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6140       return ExprError(Diag(TheCall->getBeginLoc(),
6141                             diag::err_shufflevector_nonconstant_argument)
6142                        << TheCall->getArg(i)->getSourceRange());
6143 
6144     // Allow -1 which will be translated to undef in the IR.
6145     if (Result->isSigned() && Result->isAllOnesValue())
6146       continue;
6147 
6148     if (Result->getActiveBits() > 64 ||
6149         Result->getZExtValue() >= numElements * 2)
6150       return ExprError(Diag(TheCall->getBeginLoc(),
6151                             diag::err_shufflevector_argument_too_large)
6152                        << TheCall->getArg(i)->getSourceRange());
6153   }
6154 
6155   SmallVector<Expr*, 32> exprs;
6156 
6157   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6158     exprs.push_back(TheCall->getArg(i));
6159     TheCall->setArg(i, nullptr);
6160   }
6161 
6162   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6163                                          TheCall->getCallee()->getBeginLoc(),
6164                                          TheCall->getRParenLoc());
6165 }
6166 
6167 /// SemaConvertVectorExpr - Handle __builtin_convertvector
6168 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6169                                        SourceLocation BuiltinLoc,
6170                                        SourceLocation RParenLoc) {
6171   ExprValueKind VK = VK_RValue;
6172   ExprObjectKind OK = OK_Ordinary;
6173   QualType DstTy = TInfo->getType();
6174   QualType SrcTy = E->getType();
6175 
6176   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6177     return ExprError(Diag(BuiltinLoc,
6178                           diag::err_convertvector_non_vector)
6179                      << E->getSourceRange());
6180   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6181     return ExprError(Diag(BuiltinLoc,
6182                           diag::err_convertvector_non_vector_type));
6183 
6184   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6185     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6186     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6187     if (SrcElts != DstElts)
6188       return ExprError(Diag(BuiltinLoc,
6189                             diag::err_convertvector_incompatible_vector)
6190                        << E->getSourceRange());
6191   }
6192 
6193   return new (Context)
6194       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6195 }
6196 
6197 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6198 // This is declared to take (const void*, ...) and can take two
6199 // optional constant int args.
6200 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6201   unsigned NumArgs = TheCall->getNumArgs();
6202 
6203   if (NumArgs > 3)
6204     return Diag(TheCall->getEndLoc(),
6205                 diag::err_typecheck_call_too_many_args_at_most)
6206            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6207 
6208   // Argument 0 is checked for us and the remaining arguments must be
6209   // constant integers.
6210   for (unsigned i = 1; i != NumArgs; ++i)
6211     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6212       return true;
6213 
6214   return false;
6215 }
6216 
6217 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6218 // __assume does not evaluate its arguments, and should warn if its argument
6219 // has side effects.
6220 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6221   Expr *Arg = TheCall->getArg(0);
6222   if (Arg->isInstantiationDependent()) return false;
6223 
6224   if (Arg->HasSideEffects(Context))
6225     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6226         << Arg->getSourceRange()
6227         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6228 
6229   return false;
6230 }
6231 
6232 /// Handle __builtin_alloca_with_align. This is declared
6233 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6234 /// than 8.
6235 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6236   // The alignment must be a constant integer.
6237   Expr *Arg = TheCall->getArg(1);
6238 
6239   // We can't check the value of a dependent argument.
6240   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6241     if (const auto *UE =
6242             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6243       if (UE->getKind() == UETT_AlignOf ||
6244           UE->getKind() == UETT_PreferredAlignOf)
6245         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6246             << Arg->getSourceRange();
6247 
6248     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6249 
6250     if (!Result.isPowerOf2())
6251       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6252              << Arg->getSourceRange();
6253 
6254     if (Result < Context.getCharWidth())
6255       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6256              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6257 
6258     if (Result > std::numeric_limits<int32_t>::max())
6259       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6260              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6261   }
6262 
6263   return false;
6264 }
6265 
6266 /// Handle __builtin_assume_aligned. This is declared
6267 /// as (const void*, size_t, ...) and can take one optional constant int arg.
6268 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6269   unsigned NumArgs = TheCall->getNumArgs();
6270 
6271   if (NumArgs > 3)
6272     return Diag(TheCall->getEndLoc(),
6273                 diag::err_typecheck_call_too_many_args_at_most)
6274            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6275 
6276   // The alignment must be a constant integer.
6277   Expr *Arg = TheCall->getArg(1);
6278 
6279   // We can't check the value of a dependent argument.
6280   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6281     llvm::APSInt Result;
6282     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6283       return true;
6284 
6285     if (!Result.isPowerOf2())
6286       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6287              << Arg->getSourceRange();
6288 
6289     if (Result > Sema::MaximumAlignment)
6290       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6291           << Arg->getSourceRange() << Sema::MaximumAlignment;
6292   }
6293 
6294   if (NumArgs > 2) {
6295     ExprResult Arg(TheCall->getArg(2));
6296     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6297       Context.getSizeType(), false);
6298     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6299     if (Arg.isInvalid()) return true;
6300     TheCall->setArg(2, Arg.get());
6301   }
6302 
6303   return false;
6304 }
6305 
6306 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6307   unsigned BuiltinID =
6308       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6309   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6310 
6311   unsigned NumArgs = TheCall->getNumArgs();
6312   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6313   if (NumArgs < NumRequiredArgs) {
6314     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6315            << 0 /* function call */ << NumRequiredArgs << NumArgs
6316            << TheCall->getSourceRange();
6317   }
6318   if (NumArgs >= NumRequiredArgs + 0x100) {
6319     return Diag(TheCall->getEndLoc(),
6320                 diag::err_typecheck_call_too_many_args_at_most)
6321            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6322            << TheCall->getSourceRange();
6323   }
6324   unsigned i = 0;
6325 
6326   // For formatting call, check buffer arg.
6327   if (!IsSizeCall) {
6328     ExprResult Arg(TheCall->getArg(i));
6329     InitializedEntity Entity = InitializedEntity::InitializeParameter(
6330         Context, Context.VoidPtrTy, false);
6331     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6332     if (Arg.isInvalid())
6333       return true;
6334     TheCall->setArg(i, Arg.get());
6335     i++;
6336   }
6337 
6338   // Check string literal arg.
6339   unsigned FormatIdx = i;
6340   {
6341     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6342     if (Arg.isInvalid())
6343       return true;
6344     TheCall->setArg(i, Arg.get());
6345     i++;
6346   }
6347 
6348   // Make sure variadic args are scalar.
6349   unsigned FirstDataArg = i;
6350   while (i < NumArgs) {
6351     ExprResult Arg = DefaultVariadicArgumentPromotion(
6352         TheCall->getArg(i), VariadicFunction, nullptr);
6353     if (Arg.isInvalid())
6354       return true;
6355     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6356     if (ArgSize.getQuantity() >= 0x100) {
6357       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6358              << i << (int)ArgSize.getQuantity() << 0xff
6359              << TheCall->getSourceRange();
6360     }
6361     TheCall->setArg(i, Arg.get());
6362     i++;
6363   }
6364 
6365   // Check formatting specifiers. NOTE: We're only doing this for the non-size
6366   // call to avoid duplicate diagnostics.
6367   if (!IsSizeCall) {
6368     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6369     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6370     bool Success = CheckFormatArguments(
6371         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6372         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6373         CheckedVarArgs);
6374     if (!Success)
6375       return true;
6376   }
6377 
6378   if (IsSizeCall) {
6379     TheCall->setType(Context.getSizeType());
6380   } else {
6381     TheCall->setType(Context.VoidPtrTy);
6382   }
6383   return false;
6384 }
6385 
6386 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6387 /// TheCall is a constant expression.
6388 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6389                                   llvm::APSInt &Result) {
6390   Expr *Arg = TheCall->getArg(ArgNum);
6391   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6392   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6393 
6394   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6395 
6396   Optional<llvm::APSInt> R;
6397   if (!(R = Arg->getIntegerConstantExpr(Context)))
6398     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6399            << FDecl->getDeclName() << Arg->getSourceRange();
6400   Result = *R;
6401   return false;
6402 }
6403 
6404 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6405 /// TheCall is a constant expression in the range [Low, High].
6406 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6407                                        int Low, int High, bool RangeIsError) {
6408   if (isConstantEvaluated())
6409     return false;
6410   llvm::APSInt Result;
6411 
6412   // We can't check the value of a dependent argument.
6413   Expr *Arg = TheCall->getArg(ArgNum);
6414   if (Arg->isTypeDependent() || Arg->isValueDependent())
6415     return false;
6416 
6417   // Check constant-ness first.
6418   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6419     return true;
6420 
6421   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6422     if (RangeIsError)
6423       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6424              << Result.toString(10) << Low << High << Arg->getSourceRange();
6425     else
6426       // Defer the warning until we know if the code will be emitted so that
6427       // dead code can ignore this.
6428       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6429                           PDiag(diag::warn_argument_invalid_range)
6430                               << Result.toString(10) << Low << High
6431                               << Arg->getSourceRange());
6432   }
6433 
6434   return false;
6435 }
6436 
6437 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6438 /// TheCall is a constant expression is a multiple of Num..
6439 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6440                                           unsigned Num) {
6441   llvm::APSInt Result;
6442 
6443   // We can't check the value of a dependent argument.
6444   Expr *Arg = TheCall->getArg(ArgNum);
6445   if (Arg->isTypeDependent() || Arg->isValueDependent())
6446     return false;
6447 
6448   // Check constant-ness first.
6449   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6450     return true;
6451 
6452   if (Result.getSExtValue() % Num != 0)
6453     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6454            << Num << Arg->getSourceRange();
6455 
6456   return false;
6457 }
6458 
6459 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6460 /// constant expression representing a power of 2.
6461 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6462   llvm::APSInt Result;
6463 
6464   // We can't check the value of a dependent argument.
6465   Expr *Arg = TheCall->getArg(ArgNum);
6466   if (Arg->isTypeDependent() || Arg->isValueDependent())
6467     return false;
6468 
6469   // Check constant-ness first.
6470   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6471     return true;
6472 
6473   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6474   // and only if x is a power of 2.
6475   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6476     return false;
6477 
6478   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6479          << Arg->getSourceRange();
6480 }
6481 
6482 static bool IsShiftedByte(llvm::APSInt Value) {
6483   if (Value.isNegative())
6484     return false;
6485 
6486   // Check if it's a shifted byte, by shifting it down
6487   while (true) {
6488     // If the value fits in the bottom byte, the check passes.
6489     if (Value < 0x100)
6490       return true;
6491 
6492     // Otherwise, if the value has _any_ bits in the bottom byte, the check
6493     // fails.
6494     if ((Value & 0xFF) != 0)
6495       return false;
6496 
6497     // If the bottom 8 bits are all 0, but something above that is nonzero,
6498     // then shifting the value right by 8 bits won't affect whether it's a
6499     // shifted byte or not. So do that, and go round again.
6500     Value >>= 8;
6501   }
6502 }
6503 
6504 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
6505 /// a constant expression representing an arbitrary byte value shifted left by
6506 /// a multiple of 8 bits.
6507 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
6508                                              unsigned ArgBits) {
6509   llvm::APSInt Result;
6510 
6511   // We can't check the value of a dependent argument.
6512   Expr *Arg = TheCall->getArg(ArgNum);
6513   if (Arg->isTypeDependent() || Arg->isValueDependent())
6514     return false;
6515 
6516   // Check constant-ness first.
6517   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6518     return true;
6519 
6520   // Truncate to the given size.
6521   Result = Result.getLoBits(ArgBits);
6522   Result.setIsUnsigned(true);
6523 
6524   if (IsShiftedByte(Result))
6525     return false;
6526 
6527   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
6528          << Arg->getSourceRange();
6529 }
6530 
6531 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
6532 /// TheCall is a constant expression representing either a shifted byte value,
6533 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
6534 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
6535 /// Arm MVE intrinsics.
6536 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
6537                                                    int ArgNum,
6538                                                    unsigned ArgBits) {
6539   llvm::APSInt Result;
6540 
6541   // We can't check the value of a dependent argument.
6542   Expr *Arg = TheCall->getArg(ArgNum);
6543   if (Arg->isTypeDependent() || Arg->isValueDependent())
6544     return false;
6545 
6546   // Check constant-ness first.
6547   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6548     return true;
6549 
6550   // Truncate to the given size.
6551   Result = Result.getLoBits(ArgBits);
6552   Result.setIsUnsigned(true);
6553 
6554   // Check to see if it's in either of the required forms.
6555   if (IsShiftedByte(Result) ||
6556       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
6557     return false;
6558 
6559   return Diag(TheCall->getBeginLoc(),
6560               diag::err_argument_not_shifted_byte_or_xxff)
6561          << Arg->getSourceRange();
6562 }
6563 
6564 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
6565 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6566   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6567     if (checkArgCount(*this, TheCall, 2))
6568       return true;
6569     Expr *Arg0 = TheCall->getArg(0);
6570     Expr *Arg1 = TheCall->getArg(1);
6571 
6572     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6573     if (FirstArg.isInvalid())
6574       return true;
6575     QualType FirstArgType = FirstArg.get()->getType();
6576     if (!FirstArgType->isAnyPointerType())
6577       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6578                << "first" << FirstArgType << Arg0->getSourceRange();
6579     TheCall->setArg(0, FirstArg.get());
6580 
6581     ExprResult SecArg = DefaultLvalueConversion(Arg1);
6582     if (SecArg.isInvalid())
6583       return true;
6584     QualType SecArgType = SecArg.get()->getType();
6585     if (!SecArgType->isIntegerType())
6586       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6587                << "second" << SecArgType << Arg1->getSourceRange();
6588 
6589     // Derive the return type from the pointer argument.
6590     TheCall->setType(FirstArgType);
6591     return false;
6592   }
6593 
6594   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6595     if (checkArgCount(*this, TheCall, 2))
6596       return true;
6597 
6598     Expr *Arg0 = TheCall->getArg(0);
6599     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6600     if (FirstArg.isInvalid())
6601       return true;
6602     QualType FirstArgType = FirstArg.get()->getType();
6603     if (!FirstArgType->isAnyPointerType())
6604       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6605                << "first" << FirstArgType << Arg0->getSourceRange();
6606     TheCall->setArg(0, FirstArg.get());
6607 
6608     // Derive the return type from the pointer argument.
6609     TheCall->setType(FirstArgType);
6610 
6611     // Second arg must be an constant in range [0,15]
6612     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6613   }
6614 
6615   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6616     if (checkArgCount(*this, TheCall, 2))
6617       return true;
6618     Expr *Arg0 = TheCall->getArg(0);
6619     Expr *Arg1 = TheCall->getArg(1);
6620 
6621     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6622     if (FirstArg.isInvalid())
6623       return true;
6624     QualType FirstArgType = FirstArg.get()->getType();
6625     if (!FirstArgType->isAnyPointerType())
6626       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6627                << "first" << FirstArgType << Arg0->getSourceRange();
6628 
6629     QualType SecArgType = Arg1->getType();
6630     if (!SecArgType->isIntegerType())
6631       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6632                << "second" << SecArgType << Arg1->getSourceRange();
6633     TheCall->setType(Context.IntTy);
6634     return false;
6635   }
6636 
6637   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6638       BuiltinID == AArch64::BI__builtin_arm_stg) {
6639     if (checkArgCount(*this, TheCall, 1))
6640       return true;
6641     Expr *Arg0 = TheCall->getArg(0);
6642     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6643     if (FirstArg.isInvalid())
6644       return true;
6645 
6646     QualType FirstArgType = FirstArg.get()->getType();
6647     if (!FirstArgType->isAnyPointerType())
6648       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6649                << "first" << FirstArgType << Arg0->getSourceRange();
6650     TheCall->setArg(0, FirstArg.get());
6651 
6652     // Derive the return type from the pointer argument.
6653     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6654       TheCall->setType(FirstArgType);
6655     return false;
6656   }
6657 
6658   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6659     Expr *ArgA = TheCall->getArg(0);
6660     Expr *ArgB = TheCall->getArg(1);
6661 
6662     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6663     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6664 
6665     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6666       return true;
6667 
6668     QualType ArgTypeA = ArgExprA.get()->getType();
6669     QualType ArgTypeB = ArgExprB.get()->getType();
6670 
6671     auto isNull = [&] (Expr *E) -> bool {
6672       return E->isNullPointerConstant(
6673                         Context, Expr::NPC_ValueDependentIsNotNull); };
6674 
6675     // argument should be either a pointer or null
6676     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6677       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6678         << "first" << ArgTypeA << ArgA->getSourceRange();
6679 
6680     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6681       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6682         << "second" << ArgTypeB << ArgB->getSourceRange();
6683 
6684     // Ensure Pointee types are compatible
6685     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6686         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6687       QualType pointeeA = ArgTypeA->getPointeeType();
6688       QualType pointeeB = ArgTypeB->getPointeeType();
6689       if (!Context.typesAreCompatible(
6690              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6691              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6692         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6693           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
6694           << ArgB->getSourceRange();
6695       }
6696     }
6697 
6698     // at least one argument should be pointer type
6699     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6700       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6701         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6702 
6703     if (isNull(ArgA)) // adopt type of the other pointer
6704       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6705 
6706     if (isNull(ArgB))
6707       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6708 
6709     TheCall->setArg(0, ArgExprA.get());
6710     TheCall->setArg(1, ArgExprB.get());
6711     TheCall->setType(Context.LongLongTy);
6712     return false;
6713   }
6714   assert(false && "Unhandled ARM MTE intrinsic");
6715   return true;
6716 }
6717 
6718 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6719 /// TheCall is an ARM/AArch64 special register string literal.
6720 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6721                                     int ArgNum, unsigned ExpectedFieldNum,
6722                                     bool AllowName) {
6723   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6724                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6725                       BuiltinID == ARM::BI__builtin_arm_rsr ||
6726                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6727                       BuiltinID == ARM::BI__builtin_arm_wsr ||
6728                       BuiltinID == ARM::BI__builtin_arm_wsrp;
6729   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6730                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6731                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
6732                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6733                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
6734                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
6735   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6736 
6737   // We can't check the value of a dependent argument.
6738   Expr *Arg = TheCall->getArg(ArgNum);
6739   if (Arg->isTypeDependent() || Arg->isValueDependent())
6740     return false;
6741 
6742   // Check if the argument is a string literal.
6743   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6744     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6745            << Arg->getSourceRange();
6746 
6747   // Check the type of special register given.
6748   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6749   SmallVector<StringRef, 6> Fields;
6750   Reg.split(Fields, ":");
6751 
6752   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6753     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6754            << Arg->getSourceRange();
6755 
6756   // If the string is the name of a register then we cannot check that it is
6757   // valid here but if the string is of one the forms described in ACLE then we
6758   // can check that the supplied fields are integers and within the valid
6759   // ranges.
6760   if (Fields.size() > 1) {
6761     bool FiveFields = Fields.size() == 5;
6762 
6763     bool ValidString = true;
6764     if (IsARMBuiltin) {
6765       ValidString &= Fields[0].startswith_lower("cp") ||
6766                      Fields[0].startswith_lower("p");
6767       if (ValidString)
6768         Fields[0] =
6769           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6770 
6771       ValidString &= Fields[2].startswith_lower("c");
6772       if (ValidString)
6773         Fields[2] = Fields[2].drop_front(1);
6774 
6775       if (FiveFields) {
6776         ValidString &= Fields[3].startswith_lower("c");
6777         if (ValidString)
6778           Fields[3] = Fields[3].drop_front(1);
6779       }
6780     }
6781 
6782     SmallVector<int, 5> Ranges;
6783     if (FiveFields)
6784       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6785     else
6786       Ranges.append({15, 7, 15});
6787 
6788     for (unsigned i=0; i<Fields.size(); ++i) {
6789       int IntField;
6790       ValidString &= !Fields[i].getAsInteger(10, IntField);
6791       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6792     }
6793 
6794     if (!ValidString)
6795       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6796              << Arg->getSourceRange();
6797   } else if (IsAArch64Builtin && Fields.size() == 1) {
6798     // If the register name is one of those that appear in the condition below
6799     // and the special register builtin being used is one of the write builtins,
6800     // then we require that the argument provided for writing to the register
6801     // is an integer constant expression. This is because it will be lowered to
6802     // an MSR (immediate) instruction, so we need to know the immediate at
6803     // compile time.
6804     if (TheCall->getNumArgs() != 2)
6805       return false;
6806 
6807     std::string RegLower = Reg.lower();
6808     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6809         RegLower != "pan" && RegLower != "uao")
6810       return false;
6811 
6812     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6813   }
6814 
6815   return false;
6816 }
6817 
6818 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
6819 /// Emit an error and return true on failure; return false on success.
6820 /// TypeStr is a string containing the type descriptor of the value returned by
6821 /// the builtin and the descriptors of the expected type of the arguments.
6822 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
6823 
6824   assert((TypeStr[0] != '\0') &&
6825          "Invalid types in PPC MMA builtin declaration");
6826 
6827   unsigned Mask = 0;
6828   unsigned ArgNum = 0;
6829 
6830   // The first type in TypeStr is the type of the value returned by the
6831   // builtin. So we first read that type and change the type of TheCall.
6832   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6833   TheCall->setType(type);
6834 
6835   while (*TypeStr != '\0') {
6836     Mask = 0;
6837     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6838     if (ArgNum >= TheCall->getNumArgs()) {
6839       ArgNum++;
6840       break;
6841     }
6842 
6843     Expr *Arg = TheCall->getArg(ArgNum);
6844     QualType ArgType = Arg->getType();
6845 
6846     if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
6847         (!ExpectedType->isVoidPointerType() &&
6848            ArgType.getCanonicalType() != ExpectedType))
6849       return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6850              << ArgType << ExpectedType << 1 << 0 << 0;
6851 
6852     // If the value of the Mask is not 0, we have a constraint in the size of
6853     // the integer argument so here we ensure the argument is a constant that
6854     // is in the valid range.
6855     if (Mask != 0 &&
6856         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
6857       return true;
6858 
6859     ArgNum++;
6860   }
6861 
6862   // In case we exited early from the previous loop, there are other types to
6863   // read from TypeStr. So we need to read them all to ensure we have the right
6864   // number of arguments in TheCall and if it is not the case, to display a
6865   // better error message.
6866   while (*TypeStr != '\0') {
6867     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6868     ArgNum++;
6869   }
6870   if (checkArgCount(*this, TheCall, ArgNum))
6871     return true;
6872 
6873   return false;
6874 }
6875 
6876 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6877 /// This checks that the target supports __builtin_longjmp and
6878 /// that val is a constant 1.
6879 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6880   if (!Context.getTargetInfo().hasSjLjLowering())
6881     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6882            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6883 
6884   Expr *Arg = TheCall->getArg(1);
6885   llvm::APSInt Result;
6886 
6887   // TODO: This is less than ideal. Overload this to take a value.
6888   if (SemaBuiltinConstantArg(TheCall, 1, Result))
6889     return true;
6890 
6891   if (Result != 1)
6892     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6893            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6894 
6895   return false;
6896 }
6897 
6898 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6899 /// This checks that the target supports __builtin_setjmp.
6900 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6901   if (!Context.getTargetInfo().hasSjLjLowering())
6902     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6903            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6904   return false;
6905 }
6906 
6907 namespace {
6908 
6909 class UncoveredArgHandler {
6910   enum { Unknown = -1, AllCovered = -2 };
6911 
6912   signed FirstUncoveredArg = Unknown;
6913   SmallVector<const Expr *, 4> DiagnosticExprs;
6914 
6915 public:
6916   UncoveredArgHandler() = default;
6917 
6918   bool hasUncoveredArg() const {
6919     return (FirstUncoveredArg >= 0);
6920   }
6921 
6922   unsigned getUncoveredArg() const {
6923     assert(hasUncoveredArg() && "no uncovered argument");
6924     return FirstUncoveredArg;
6925   }
6926 
6927   void setAllCovered() {
6928     // A string has been found with all arguments covered, so clear out
6929     // the diagnostics.
6930     DiagnosticExprs.clear();
6931     FirstUncoveredArg = AllCovered;
6932   }
6933 
6934   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6935     assert(NewFirstUncoveredArg >= 0 && "Outside range");
6936 
6937     // Don't update if a previous string covers all arguments.
6938     if (FirstUncoveredArg == AllCovered)
6939       return;
6940 
6941     // UncoveredArgHandler tracks the highest uncovered argument index
6942     // and with it all the strings that match this index.
6943     if (NewFirstUncoveredArg == FirstUncoveredArg)
6944       DiagnosticExprs.push_back(StrExpr);
6945     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6946       DiagnosticExprs.clear();
6947       DiagnosticExprs.push_back(StrExpr);
6948       FirstUncoveredArg = NewFirstUncoveredArg;
6949     }
6950   }
6951 
6952   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6953 };
6954 
6955 enum StringLiteralCheckType {
6956   SLCT_NotALiteral,
6957   SLCT_UncheckedLiteral,
6958   SLCT_CheckedLiteral
6959 };
6960 
6961 } // namespace
6962 
6963 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6964                                      BinaryOperatorKind BinOpKind,
6965                                      bool AddendIsRight) {
6966   unsigned BitWidth = Offset.getBitWidth();
6967   unsigned AddendBitWidth = Addend.getBitWidth();
6968   // There might be negative interim results.
6969   if (Addend.isUnsigned()) {
6970     Addend = Addend.zext(++AddendBitWidth);
6971     Addend.setIsSigned(true);
6972   }
6973   // Adjust the bit width of the APSInts.
6974   if (AddendBitWidth > BitWidth) {
6975     Offset = Offset.sext(AddendBitWidth);
6976     BitWidth = AddendBitWidth;
6977   } else if (BitWidth > AddendBitWidth) {
6978     Addend = Addend.sext(BitWidth);
6979   }
6980 
6981   bool Ov = false;
6982   llvm::APSInt ResOffset = Offset;
6983   if (BinOpKind == BO_Add)
6984     ResOffset = Offset.sadd_ov(Addend, Ov);
6985   else {
6986     assert(AddendIsRight && BinOpKind == BO_Sub &&
6987            "operator must be add or sub with addend on the right");
6988     ResOffset = Offset.ssub_ov(Addend, Ov);
6989   }
6990 
6991   // We add an offset to a pointer here so we should support an offset as big as
6992   // possible.
6993   if (Ov) {
6994     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6995            "index (intermediate) result too big");
6996     Offset = Offset.sext(2 * BitWidth);
6997     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6998     return;
6999   }
7000 
7001   Offset = ResOffset;
7002 }
7003 
7004 namespace {
7005 
7006 // This is a wrapper class around StringLiteral to support offsetted string
7007 // literals as format strings. It takes the offset into account when returning
7008 // the string and its length or the source locations to display notes correctly.
7009 class FormatStringLiteral {
7010   const StringLiteral *FExpr;
7011   int64_t Offset;
7012 
7013  public:
7014   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7015       : FExpr(fexpr), Offset(Offset) {}
7016 
7017   StringRef getString() const {
7018     return FExpr->getString().drop_front(Offset);
7019   }
7020 
7021   unsigned getByteLength() const {
7022     return FExpr->getByteLength() - getCharByteWidth() * Offset;
7023   }
7024 
7025   unsigned getLength() const { return FExpr->getLength() - Offset; }
7026   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7027 
7028   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7029 
7030   QualType getType() const { return FExpr->getType(); }
7031 
7032   bool isAscii() const { return FExpr->isAscii(); }
7033   bool isWide() const { return FExpr->isWide(); }
7034   bool isUTF8() const { return FExpr->isUTF8(); }
7035   bool isUTF16() const { return FExpr->isUTF16(); }
7036   bool isUTF32() const { return FExpr->isUTF32(); }
7037   bool isPascal() const { return FExpr->isPascal(); }
7038 
7039   SourceLocation getLocationOfByte(
7040       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7041       const TargetInfo &Target, unsigned *StartToken = nullptr,
7042       unsigned *StartTokenByteOffset = nullptr) const {
7043     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7044                                     StartToken, StartTokenByteOffset);
7045   }
7046 
7047   SourceLocation getBeginLoc() const LLVM_READONLY {
7048     return FExpr->getBeginLoc().getLocWithOffset(Offset);
7049   }
7050 
7051   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7052 };
7053 
7054 }  // namespace
7055 
7056 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7057                               const Expr *OrigFormatExpr,
7058                               ArrayRef<const Expr *> Args,
7059                               bool HasVAListArg, unsigned format_idx,
7060                               unsigned firstDataArg,
7061                               Sema::FormatStringType Type,
7062                               bool inFunctionCall,
7063                               Sema::VariadicCallType CallType,
7064                               llvm::SmallBitVector &CheckedVarArgs,
7065                               UncoveredArgHandler &UncoveredArg,
7066                               bool IgnoreStringsWithoutSpecifiers);
7067 
7068 // Determine if an expression is a string literal or constant string.
7069 // If this function returns false on the arguments to a function expecting a
7070 // format string, we will usually need to emit a warning.
7071 // True string literals are then checked by CheckFormatString.
7072 static StringLiteralCheckType
7073 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7074                       bool HasVAListArg, unsigned format_idx,
7075                       unsigned firstDataArg, Sema::FormatStringType Type,
7076                       Sema::VariadicCallType CallType, bool InFunctionCall,
7077                       llvm::SmallBitVector &CheckedVarArgs,
7078                       UncoveredArgHandler &UncoveredArg,
7079                       llvm::APSInt Offset,
7080                       bool IgnoreStringsWithoutSpecifiers = false) {
7081   if (S.isConstantEvaluated())
7082     return SLCT_NotALiteral;
7083  tryAgain:
7084   assert(Offset.isSigned() && "invalid offset");
7085 
7086   if (E->isTypeDependent() || E->isValueDependent())
7087     return SLCT_NotALiteral;
7088 
7089   E = E->IgnoreParenCasts();
7090 
7091   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7092     // Technically -Wformat-nonliteral does not warn about this case.
7093     // The behavior of printf and friends in this case is implementation
7094     // dependent.  Ideally if the format string cannot be null then
7095     // it should have a 'nonnull' attribute in the function prototype.
7096     return SLCT_UncheckedLiteral;
7097 
7098   switch (E->getStmtClass()) {
7099   case Stmt::BinaryConditionalOperatorClass:
7100   case Stmt::ConditionalOperatorClass: {
7101     // The expression is a literal if both sub-expressions were, and it was
7102     // completely checked only if both sub-expressions were checked.
7103     const AbstractConditionalOperator *C =
7104         cast<AbstractConditionalOperator>(E);
7105 
7106     // Determine whether it is necessary to check both sub-expressions, for
7107     // example, because the condition expression is a constant that can be
7108     // evaluated at compile time.
7109     bool CheckLeft = true, CheckRight = true;
7110 
7111     bool Cond;
7112     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7113                                                  S.isConstantEvaluated())) {
7114       if (Cond)
7115         CheckRight = false;
7116       else
7117         CheckLeft = false;
7118     }
7119 
7120     // We need to maintain the offsets for the right and the left hand side
7121     // separately to check if every possible indexed expression is a valid
7122     // string literal. They might have different offsets for different string
7123     // literals in the end.
7124     StringLiteralCheckType Left;
7125     if (!CheckLeft)
7126       Left = SLCT_UncheckedLiteral;
7127     else {
7128       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7129                                    HasVAListArg, format_idx, firstDataArg,
7130                                    Type, CallType, InFunctionCall,
7131                                    CheckedVarArgs, UncoveredArg, Offset,
7132                                    IgnoreStringsWithoutSpecifiers);
7133       if (Left == SLCT_NotALiteral || !CheckRight) {
7134         return Left;
7135       }
7136     }
7137 
7138     StringLiteralCheckType Right = checkFormatStringExpr(
7139         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7140         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7141         IgnoreStringsWithoutSpecifiers);
7142 
7143     return (CheckLeft && Left < Right) ? Left : Right;
7144   }
7145 
7146   case Stmt::ImplicitCastExprClass:
7147     E = cast<ImplicitCastExpr>(E)->getSubExpr();
7148     goto tryAgain;
7149 
7150   case Stmt::OpaqueValueExprClass:
7151     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7152       E = src;
7153       goto tryAgain;
7154     }
7155     return SLCT_NotALiteral;
7156 
7157   case Stmt::PredefinedExprClass:
7158     // While __func__, etc., are technically not string literals, they
7159     // cannot contain format specifiers and thus are not a security
7160     // liability.
7161     return SLCT_UncheckedLiteral;
7162 
7163   case Stmt::DeclRefExprClass: {
7164     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7165 
7166     // As an exception, do not flag errors for variables binding to
7167     // const string literals.
7168     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7169       bool isConstant = false;
7170       QualType T = DR->getType();
7171 
7172       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7173         isConstant = AT->getElementType().isConstant(S.Context);
7174       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7175         isConstant = T.isConstant(S.Context) &&
7176                      PT->getPointeeType().isConstant(S.Context);
7177       } else if (T->isObjCObjectPointerType()) {
7178         // In ObjC, there is usually no "const ObjectPointer" type,
7179         // so don't check if the pointee type is constant.
7180         isConstant = T.isConstant(S.Context);
7181       }
7182 
7183       if (isConstant) {
7184         if (const Expr *Init = VD->getAnyInitializer()) {
7185           // Look through initializers like const char c[] = { "foo" }
7186           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7187             if (InitList->isStringLiteralInit())
7188               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7189           }
7190           return checkFormatStringExpr(S, Init, Args,
7191                                        HasVAListArg, format_idx,
7192                                        firstDataArg, Type, CallType,
7193                                        /*InFunctionCall*/ false, CheckedVarArgs,
7194                                        UncoveredArg, Offset);
7195         }
7196       }
7197 
7198       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7199       // special check to see if the format string is a function parameter
7200       // of the function calling the printf function.  If the function
7201       // has an attribute indicating it is a printf-like function, then we
7202       // should suppress warnings concerning non-literals being used in a call
7203       // to a vprintf function.  For example:
7204       //
7205       // void
7206       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7207       //      va_list ap;
7208       //      va_start(ap, fmt);
7209       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7210       //      ...
7211       // }
7212       if (HasVAListArg) {
7213         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7214           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7215             int PVIndex = PV->getFunctionScopeIndex() + 1;
7216             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7217               // adjust for implicit parameter
7218               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7219                 if (MD->isInstance())
7220                   ++PVIndex;
7221               // We also check if the formats are compatible.
7222               // We can't pass a 'scanf' string to a 'printf' function.
7223               if (PVIndex == PVFormat->getFormatIdx() &&
7224                   Type == S.GetFormatStringType(PVFormat))
7225                 return SLCT_UncheckedLiteral;
7226             }
7227           }
7228         }
7229       }
7230     }
7231 
7232     return SLCT_NotALiteral;
7233   }
7234 
7235   case Stmt::CallExprClass:
7236   case Stmt::CXXMemberCallExprClass: {
7237     const CallExpr *CE = cast<CallExpr>(E);
7238     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7239       bool IsFirst = true;
7240       StringLiteralCheckType CommonResult;
7241       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7242         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7243         StringLiteralCheckType Result = checkFormatStringExpr(
7244             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7245             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7246             IgnoreStringsWithoutSpecifiers);
7247         if (IsFirst) {
7248           CommonResult = Result;
7249           IsFirst = false;
7250         }
7251       }
7252       if (!IsFirst)
7253         return CommonResult;
7254 
7255       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7256         unsigned BuiltinID = FD->getBuiltinID();
7257         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7258             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7259           const Expr *Arg = CE->getArg(0);
7260           return checkFormatStringExpr(S, Arg, Args,
7261                                        HasVAListArg, format_idx,
7262                                        firstDataArg, Type, CallType,
7263                                        InFunctionCall, CheckedVarArgs,
7264                                        UncoveredArg, Offset,
7265                                        IgnoreStringsWithoutSpecifiers);
7266         }
7267       }
7268     }
7269 
7270     return SLCT_NotALiteral;
7271   }
7272   case Stmt::ObjCMessageExprClass: {
7273     const auto *ME = cast<ObjCMessageExpr>(E);
7274     if (const auto *MD = ME->getMethodDecl()) {
7275       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7276         // As a special case heuristic, if we're using the method -[NSBundle
7277         // localizedStringForKey:value:table:], ignore any key strings that lack
7278         // format specifiers. The idea is that if the key doesn't have any
7279         // format specifiers then its probably just a key to map to the
7280         // localized strings. If it does have format specifiers though, then its
7281         // likely that the text of the key is the format string in the
7282         // programmer's language, and should be checked.
7283         const ObjCInterfaceDecl *IFace;
7284         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7285             IFace->getIdentifier()->isStr("NSBundle") &&
7286             MD->getSelector().isKeywordSelector(
7287                 {"localizedStringForKey", "value", "table"})) {
7288           IgnoreStringsWithoutSpecifiers = true;
7289         }
7290 
7291         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7292         return checkFormatStringExpr(
7293             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7294             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7295             IgnoreStringsWithoutSpecifiers);
7296       }
7297     }
7298 
7299     return SLCT_NotALiteral;
7300   }
7301   case Stmt::ObjCStringLiteralClass:
7302   case Stmt::StringLiteralClass: {
7303     const StringLiteral *StrE = nullptr;
7304 
7305     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7306       StrE = ObjCFExpr->getString();
7307     else
7308       StrE = cast<StringLiteral>(E);
7309 
7310     if (StrE) {
7311       if (Offset.isNegative() || Offset > StrE->getLength()) {
7312         // TODO: It would be better to have an explicit warning for out of
7313         // bounds literals.
7314         return SLCT_NotALiteral;
7315       }
7316       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7317       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7318                         firstDataArg, Type, InFunctionCall, CallType,
7319                         CheckedVarArgs, UncoveredArg,
7320                         IgnoreStringsWithoutSpecifiers);
7321       return SLCT_CheckedLiteral;
7322     }
7323 
7324     return SLCT_NotALiteral;
7325   }
7326   case Stmt::BinaryOperatorClass: {
7327     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7328 
7329     // A string literal + an int offset is still a string literal.
7330     if (BinOp->isAdditiveOp()) {
7331       Expr::EvalResult LResult, RResult;
7332 
7333       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7334           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7335       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7336           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7337 
7338       if (LIsInt != RIsInt) {
7339         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7340 
7341         if (LIsInt) {
7342           if (BinOpKind == BO_Add) {
7343             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7344             E = BinOp->getRHS();
7345             goto tryAgain;
7346           }
7347         } else {
7348           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7349           E = BinOp->getLHS();
7350           goto tryAgain;
7351         }
7352       }
7353     }
7354 
7355     return SLCT_NotALiteral;
7356   }
7357   case Stmt::UnaryOperatorClass: {
7358     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7359     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7360     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7361       Expr::EvalResult IndexResult;
7362       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7363                                        Expr::SE_NoSideEffects,
7364                                        S.isConstantEvaluated())) {
7365         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7366                    /*RHS is int*/ true);
7367         E = ASE->getBase();
7368         goto tryAgain;
7369       }
7370     }
7371 
7372     return SLCT_NotALiteral;
7373   }
7374 
7375   default:
7376     return SLCT_NotALiteral;
7377   }
7378 }
7379 
7380 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7381   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7382       .Case("scanf", FST_Scanf)
7383       .Cases("printf", "printf0", FST_Printf)
7384       .Cases("NSString", "CFString", FST_NSString)
7385       .Case("strftime", FST_Strftime)
7386       .Case("strfmon", FST_Strfmon)
7387       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7388       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7389       .Case("os_trace", FST_OSLog)
7390       .Case("os_log", FST_OSLog)
7391       .Default(FST_Unknown);
7392 }
7393 
7394 /// CheckFormatArguments - Check calls to printf and scanf (and similar
7395 /// functions) for correct use of format strings.
7396 /// Returns true if a format string has been fully checked.
7397 bool Sema::CheckFormatArguments(const FormatAttr *Format,
7398                                 ArrayRef<const Expr *> Args,
7399                                 bool IsCXXMember,
7400                                 VariadicCallType CallType,
7401                                 SourceLocation Loc, SourceRange Range,
7402                                 llvm::SmallBitVector &CheckedVarArgs) {
7403   FormatStringInfo FSI;
7404   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7405     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7406                                 FSI.FirstDataArg, GetFormatStringType(Format),
7407                                 CallType, Loc, Range, CheckedVarArgs);
7408   return false;
7409 }
7410 
7411 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7412                                 bool HasVAListArg, unsigned format_idx,
7413                                 unsigned firstDataArg, FormatStringType Type,
7414                                 VariadicCallType CallType,
7415                                 SourceLocation Loc, SourceRange Range,
7416                                 llvm::SmallBitVector &CheckedVarArgs) {
7417   // CHECK: printf/scanf-like function is called with no format string.
7418   if (format_idx >= Args.size()) {
7419     Diag(Loc, diag::warn_missing_format_string) << Range;
7420     return false;
7421   }
7422 
7423   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7424 
7425   // CHECK: format string is not a string literal.
7426   //
7427   // Dynamically generated format strings are difficult to
7428   // automatically vet at compile time.  Requiring that format strings
7429   // are string literals: (1) permits the checking of format strings by
7430   // the compiler and thereby (2) can practically remove the source of
7431   // many format string exploits.
7432 
7433   // Format string can be either ObjC string (e.g. @"%d") or
7434   // C string (e.g. "%d")
7435   // ObjC string uses the same format specifiers as C string, so we can use
7436   // the same format string checking logic for both ObjC and C strings.
7437   UncoveredArgHandler UncoveredArg;
7438   StringLiteralCheckType CT =
7439       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7440                             format_idx, firstDataArg, Type, CallType,
7441                             /*IsFunctionCall*/ true, CheckedVarArgs,
7442                             UncoveredArg,
7443                             /*no string offset*/ llvm::APSInt(64, false) = 0);
7444 
7445   // Generate a diagnostic where an uncovered argument is detected.
7446   if (UncoveredArg.hasUncoveredArg()) {
7447     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7448     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
7449     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7450   }
7451 
7452   if (CT != SLCT_NotALiteral)
7453     // Literal format string found, check done!
7454     return CT == SLCT_CheckedLiteral;
7455 
7456   // Strftime is particular as it always uses a single 'time' argument,
7457   // so it is safe to pass a non-literal string.
7458   if (Type == FST_Strftime)
7459     return false;
7460 
7461   // Do not emit diag when the string param is a macro expansion and the
7462   // format is either NSString or CFString. This is a hack to prevent
7463   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7464   // which are usually used in place of NS and CF string literals.
7465   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7466   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7467     return false;
7468 
7469   // If there are no arguments specified, warn with -Wformat-security, otherwise
7470   // warn only with -Wformat-nonliteral.
7471   if (Args.size() == firstDataArg) {
7472     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7473       << OrigFormatExpr->getSourceRange();
7474     switch (Type) {
7475     default:
7476       break;
7477     case FST_Kprintf:
7478     case FST_FreeBSDKPrintf:
7479     case FST_Printf:
7480       Diag(FormatLoc, diag::note_format_security_fixit)
7481         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7482       break;
7483     case FST_NSString:
7484       Diag(FormatLoc, diag::note_format_security_fixit)
7485         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7486       break;
7487     }
7488   } else {
7489     Diag(FormatLoc, diag::warn_format_nonliteral)
7490       << OrigFormatExpr->getSourceRange();
7491   }
7492   return false;
7493 }
7494 
7495 namespace {
7496 
7497 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
7498 protected:
7499   Sema &S;
7500   const FormatStringLiteral *FExpr;
7501   const Expr *OrigFormatExpr;
7502   const Sema::FormatStringType FSType;
7503   const unsigned FirstDataArg;
7504   const unsigned NumDataArgs;
7505   const char *Beg; // Start of format string.
7506   const bool HasVAListArg;
7507   ArrayRef<const Expr *> Args;
7508   unsigned FormatIdx;
7509   llvm::SmallBitVector CoveredArgs;
7510   bool usesPositionalArgs = false;
7511   bool atFirstArg = true;
7512   bool inFunctionCall;
7513   Sema::VariadicCallType CallType;
7514   llvm::SmallBitVector &CheckedVarArgs;
7515   UncoveredArgHandler &UncoveredArg;
7516 
7517 public:
7518   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
7519                      const Expr *origFormatExpr,
7520                      const Sema::FormatStringType type, unsigned firstDataArg,
7521                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
7522                      ArrayRef<const Expr *> Args, unsigned formatIdx,
7523                      bool inFunctionCall, Sema::VariadicCallType callType,
7524                      llvm::SmallBitVector &CheckedVarArgs,
7525                      UncoveredArgHandler &UncoveredArg)
7526       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
7527         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
7528         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
7529         inFunctionCall(inFunctionCall), CallType(callType),
7530         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
7531     CoveredArgs.resize(numDataArgs);
7532     CoveredArgs.reset();
7533   }
7534 
7535   void DoneProcessing();
7536 
7537   void HandleIncompleteSpecifier(const char *startSpecifier,
7538                                  unsigned specifierLen) override;
7539 
7540   void HandleInvalidLengthModifier(
7541                            const analyze_format_string::FormatSpecifier &FS,
7542                            const analyze_format_string::ConversionSpecifier &CS,
7543                            const char *startSpecifier, unsigned specifierLen,
7544                            unsigned DiagID);
7545 
7546   void HandleNonStandardLengthModifier(
7547                     const analyze_format_string::FormatSpecifier &FS,
7548                     const char *startSpecifier, unsigned specifierLen);
7549 
7550   void HandleNonStandardConversionSpecifier(
7551                     const analyze_format_string::ConversionSpecifier &CS,
7552                     const char *startSpecifier, unsigned specifierLen);
7553 
7554   void HandlePosition(const char *startPos, unsigned posLen) override;
7555 
7556   void HandleInvalidPosition(const char *startSpecifier,
7557                              unsigned specifierLen,
7558                              analyze_format_string::PositionContext p) override;
7559 
7560   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7561 
7562   void HandleNullChar(const char *nullCharacter) override;
7563 
7564   template <typename Range>
7565   static void
7566   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7567                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7568                        bool IsStringLocation, Range StringRange,
7569                        ArrayRef<FixItHint> Fixit = None);
7570 
7571 protected:
7572   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7573                                         const char *startSpec,
7574                                         unsigned specifierLen,
7575                                         const char *csStart, unsigned csLen);
7576 
7577   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7578                                          const char *startSpec,
7579                                          unsigned specifierLen);
7580 
7581   SourceRange getFormatStringRange();
7582   CharSourceRange getSpecifierRange(const char *startSpecifier,
7583                                     unsigned specifierLen);
7584   SourceLocation getLocationOfByte(const char *x);
7585 
7586   const Expr *getDataArg(unsigned i) const;
7587 
7588   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7589                     const analyze_format_string::ConversionSpecifier &CS,
7590                     const char *startSpecifier, unsigned specifierLen,
7591                     unsigned argIndex);
7592 
7593   template <typename Range>
7594   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7595                             bool IsStringLocation, Range StringRange,
7596                             ArrayRef<FixItHint> Fixit = None);
7597 };
7598 
7599 } // namespace
7600 
7601 SourceRange CheckFormatHandler::getFormatStringRange() {
7602   return OrigFormatExpr->getSourceRange();
7603 }
7604 
7605 CharSourceRange CheckFormatHandler::
7606 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7607   SourceLocation Start = getLocationOfByte(startSpecifier);
7608   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
7609 
7610   // Advance the end SourceLocation by one due to half-open ranges.
7611   End = End.getLocWithOffset(1);
7612 
7613   return CharSourceRange::getCharRange(Start, End);
7614 }
7615 
7616 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7617   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7618                                   S.getLangOpts(), S.Context.getTargetInfo());
7619 }
7620 
7621 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7622                                                    unsigned specifierLen){
7623   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7624                        getLocationOfByte(startSpecifier),
7625                        /*IsStringLocation*/true,
7626                        getSpecifierRange(startSpecifier, specifierLen));
7627 }
7628 
7629 void CheckFormatHandler::HandleInvalidLengthModifier(
7630     const analyze_format_string::FormatSpecifier &FS,
7631     const analyze_format_string::ConversionSpecifier &CS,
7632     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7633   using namespace analyze_format_string;
7634 
7635   const LengthModifier &LM = FS.getLengthModifier();
7636   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7637 
7638   // See if we know how to fix this length modifier.
7639   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7640   if (FixedLM) {
7641     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7642                          getLocationOfByte(LM.getStart()),
7643                          /*IsStringLocation*/true,
7644                          getSpecifierRange(startSpecifier, specifierLen));
7645 
7646     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7647       << FixedLM->toString()
7648       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7649 
7650   } else {
7651     FixItHint Hint;
7652     if (DiagID == diag::warn_format_nonsensical_length)
7653       Hint = FixItHint::CreateRemoval(LMRange);
7654 
7655     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7656                          getLocationOfByte(LM.getStart()),
7657                          /*IsStringLocation*/true,
7658                          getSpecifierRange(startSpecifier, specifierLen),
7659                          Hint);
7660   }
7661 }
7662 
7663 void CheckFormatHandler::HandleNonStandardLengthModifier(
7664     const analyze_format_string::FormatSpecifier &FS,
7665     const char *startSpecifier, unsigned specifierLen) {
7666   using namespace analyze_format_string;
7667 
7668   const LengthModifier &LM = FS.getLengthModifier();
7669   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7670 
7671   // See if we know how to fix this length modifier.
7672   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7673   if (FixedLM) {
7674     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7675                            << LM.toString() << 0,
7676                          getLocationOfByte(LM.getStart()),
7677                          /*IsStringLocation*/true,
7678                          getSpecifierRange(startSpecifier, specifierLen));
7679 
7680     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7681       << FixedLM->toString()
7682       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7683 
7684   } else {
7685     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7686                            << LM.toString() << 0,
7687                          getLocationOfByte(LM.getStart()),
7688                          /*IsStringLocation*/true,
7689                          getSpecifierRange(startSpecifier, specifierLen));
7690   }
7691 }
7692 
7693 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7694     const analyze_format_string::ConversionSpecifier &CS,
7695     const char *startSpecifier, unsigned specifierLen) {
7696   using namespace analyze_format_string;
7697 
7698   // See if we know how to fix this conversion specifier.
7699   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7700   if (FixedCS) {
7701     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7702                           << CS.toString() << /*conversion specifier*/1,
7703                          getLocationOfByte(CS.getStart()),
7704                          /*IsStringLocation*/true,
7705                          getSpecifierRange(startSpecifier, specifierLen));
7706 
7707     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7708     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7709       << FixedCS->toString()
7710       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7711   } else {
7712     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7713                           << CS.toString() << /*conversion specifier*/1,
7714                          getLocationOfByte(CS.getStart()),
7715                          /*IsStringLocation*/true,
7716                          getSpecifierRange(startSpecifier, specifierLen));
7717   }
7718 }
7719 
7720 void CheckFormatHandler::HandlePosition(const char *startPos,
7721                                         unsigned posLen) {
7722   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7723                                getLocationOfByte(startPos),
7724                                /*IsStringLocation*/true,
7725                                getSpecifierRange(startPos, posLen));
7726 }
7727 
7728 void
7729 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7730                                      analyze_format_string::PositionContext p) {
7731   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7732                          << (unsigned) p,
7733                        getLocationOfByte(startPos), /*IsStringLocation*/true,
7734                        getSpecifierRange(startPos, posLen));
7735 }
7736 
7737 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7738                                             unsigned posLen) {
7739   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7740                                getLocationOfByte(startPos),
7741                                /*IsStringLocation*/true,
7742                                getSpecifierRange(startPos, posLen));
7743 }
7744 
7745 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7746   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7747     // The presence of a null character is likely an error.
7748     EmitFormatDiagnostic(
7749       S.PDiag(diag::warn_printf_format_string_contains_null_char),
7750       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7751       getFormatStringRange());
7752   }
7753 }
7754 
7755 // Note that this may return NULL if there was an error parsing or building
7756 // one of the argument expressions.
7757 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7758   return Args[FirstDataArg + i];
7759 }
7760 
7761 void CheckFormatHandler::DoneProcessing() {
7762   // Does the number of data arguments exceed the number of
7763   // format conversions in the format string?
7764   if (!HasVAListArg) {
7765       // Find any arguments that weren't covered.
7766     CoveredArgs.flip();
7767     signed notCoveredArg = CoveredArgs.find_first();
7768     if (notCoveredArg >= 0) {
7769       assert((unsigned)notCoveredArg < NumDataArgs);
7770       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7771     } else {
7772       UncoveredArg.setAllCovered();
7773     }
7774   }
7775 }
7776 
7777 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7778                                    const Expr *ArgExpr) {
7779   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7780          "Invalid state");
7781 
7782   if (!ArgExpr)
7783     return;
7784 
7785   SourceLocation Loc = ArgExpr->getBeginLoc();
7786 
7787   if (S.getSourceManager().isInSystemMacro(Loc))
7788     return;
7789 
7790   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7791   for (auto E : DiagnosticExprs)
7792     PDiag << E->getSourceRange();
7793 
7794   CheckFormatHandler::EmitFormatDiagnostic(
7795                                   S, IsFunctionCall, DiagnosticExprs[0],
7796                                   PDiag, Loc, /*IsStringLocation*/false,
7797                                   DiagnosticExprs[0]->getSourceRange());
7798 }
7799 
7800 bool
7801 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7802                                                      SourceLocation Loc,
7803                                                      const char *startSpec,
7804                                                      unsigned specifierLen,
7805                                                      const char *csStart,
7806                                                      unsigned csLen) {
7807   bool keepGoing = true;
7808   if (argIndex < NumDataArgs) {
7809     // Consider the argument coverered, even though the specifier doesn't
7810     // make sense.
7811     CoveredArgs.set(argIndex);
7812   }
7813   else {
7814     // If argIndex exceeds the number of data arguments we
7815     // don't issue a warning because that is just a cascade of warnings (and
7816     // they may have intended '%%' anyway). We don't want to continue processing
7817     // the format string after this point, however, as we will like just get
7818     // gibberish when trying to match arguments.
7819     keepGoing = false;
7820   }
7821 
7822   StringRef Specifier(csStart, csLen);
7823 
7824   // If the specifier in non-printable, it could be the first byte of a UTF-8
7825   // sequence. In that case, print the UTF-8 code point. If not, print the byte
7826   // hex value.
7827   std::string CodePointStr;
7828   if (!llvm::sys::locale::isPrint(*csStart)) {
7829     llvm::UTF32 CodePoint;
7830     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7831     const llvm::UTF8 *E =
7832         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7833     llvm::ConversionResult Result =
7834         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7835 
7836     if (Result != llvm::conversionOK) {
7837       unsigned char FirstChar = *csStart;
7838       CodePoint = (llvm::UTF32)FirstChar;
7839     }
7840 
7841     llvm::raw_string_ostream OS(CodePointStr);
7842     if (CodePoint < 256)
7843       OS << "\\x" << llvm::format("%02x", CodePoint);
7844     else if (CodePoint <= 0xFFFF)
7845       OS << "\\u" << llvm::format("%04x", CodePoint);
7846     else
7847       OS << "\\U" << llvm::format("%08x", CodePoint);
7848     OS.flush();
7849     Specifier = CodePointStr;
7850   }
7851 
7852   EmitFormatDiagnostic(
7853       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7854       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7855 
7856   return keepGoing;
7857 }
7858 
7859 void
7860 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7861                                                       const char *startSpec,
7862                                                       unsigned specifierLen) {
7863   EmitFormatDiagnostic(
7864     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7865     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7866 }
7867 
7868 bool
7869 CheckFormatHandler::CheckNumArgs(
7870   const analyze_format_string::FormatSpecifier &FS,
7871   const analyze_format_string::ConversionSpecifier &CS,
7872   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7873 
7874   if (argIndex >= NumDataArgs) {
7875     PartialDiagnostic PDiag = FS.usesPositionalArg()
7876       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7877            << (argIndex+1) << NumDataArgs)
7878       : S.PDiag(diag::warn_printf_insufficient_data_args);
7879     EmitFormatDiagnostic(
7880       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7881       getSpecifierRange(startSpecifier, specifierLen));
7882 
7883     // Since more arguments than conversion tokens are given, by extension
7884     // all arguments are covered, so mark this as so.
7885     UncoveredArg.setAllCovered();
7886     return false;
7887   }
7888   return true;
7889 }
7890 
7891 template<typename Range>
7892 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7893                                               SourceLocation Loc,
7894                                               bool IsStringLocation,
7895                                               Range StringRange,
7896                                               ArrayRef<FixItHint> FixIt) {
7897   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7898                        Loc, IsStringLocation, StringRange, FixIt);
7899 }
7900 
7901 /// If the format string is not within the function call, emit a note
7902 /// so that the function call and string are in diagnostic messages.
7903 ///
7904 /// \param InFunctionCall if true, the format string is within the function
7905 /// call and only one diagnostic message will be produced.  Otherwise, an
7906 /// extra note will be emitted pointing to location of the format string.
7907 ///
7908 /// \param ArgumentExpr the expression that is passed as the format string
7909 /// argument in the function call.  Used for getting locations when two
7910 /// diagnostics are emitted.
7911 ///
7912 /// \param PDiag the callee should already have provided any strings for the
7913 /// diagnostic message.  This function only adds locations and fixits
7914 /// to diagnostics.
7915 ///
7916 /// \param Loc primary location for diagnostic.  If two diagnostics are
7917 /// required, one will be at Loc and a new SourceLocation will be created for
7918 /// the other one.
7919 ///
7920 /// \param IsStringLocation if true, Loc points to the format string should be
7921 /// used for the note.  Otherwise, Loc points to the argument list and will
7922 /// be used with PDiag.
7923 ///
7924 /// \param StringRange some or all of the string to highlight.  This is
7925 /// templated so it can accept either a CharSourceRange or a SourceRange.
7926 ///
7927 /// \param FixIt optional fix it hint for the format string.
7928 template <typename Range>
7929 void CheckFormatHandler::EmitFormatDiagnostic(
7930     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7931     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7932     Range StringRange, ArrayRef<FixItHint> FixIt) {
7933   if (InFunctionCall) {
7934     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7935     D << StringRange;
7936     D << FixIt;
7937   } else {
7938     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7939       << ArgumentExpr->getSourceRange();
7940 
7941     const Sema::SemaDiagnosticBuilder &Note =
7942       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7943              diag::note_format_string_defined);
7944 
7945     Note << StringRange;
7946     Note << FixIt;
7947   }
7948 }
7949 
7950 //===--- CHECK: Printf format string checking ------------------------------===//
7951 
7952 namespace {
7953 
7954 class CheckPrintfHandler : public CheckFormatHandler {
7955 public:
7956   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7957                      const Expr *origFormatExpr,
7958                      const Sema::FormatStringType type, unsigned firstDataArg,
7959                      unsigned numDataArgs, bool isObjC, const char *beg,
7960                      bool hasVAListArg, ArrayRef<const Expr *> Args,
7961                      unsigned formatIdx, bool inFunctionCall,
7962                      Sema::VariadicCallType CallType,
7963                      llvm::SmallBitVector &CheckedVarArgs,
7964                      UncoveredArgHandler &UncoveredArg)
7965       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7966                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
7967                            inFunctionCall, CallType, CheckedVarArgs,
7968                            UncoveredArg) {}
7969 
7970   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7971 
7972   /// Returns true if '%@' specifiers are allowed in the format string.
7973   bool allowsObjCArg() const {
7974     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7975            FSType == Sema::FST_OSTrace;
7976   }
7977 
7978   bool HandleInvalidPrintfConversionSpecifier(
7979                                       const analyze_printf::PrintfSpecifier &FS,
7980                                       const char *startSpecifier,
7981                                       unsigned specifierLen) override;
7982 
7983   void handleInvalidMaskType(StringRef MaskType) override;
7984 
7985   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7986                              const char *startSpecifier,
7987                              unsigned specifierLen) override;
7988   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7989                        const char *StartSpecifier,
7990                        unsigned SpecifierLen,
7991                        const Expr *E);
7992 
7993   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7994                     const char *startSpecifier, unsigned specifierLen);
7995   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7996                            const analyze_printf::OptionalAmount &Amt,
7997                            unsigned type,
7998                            const char *startSpecifier, unsigned specifierLen);
7999   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8000                   const analyze_printf::OptionalFlag &flag,
8001                   const char *startSpecifier, unsigned specifierLen);
8002   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8003                          const analyze_printf::OptionalFlag &ignoredFlag,
8004                          const analyze_printf::OptionalFlag &flag,
8005                          const char *startSpecifier, unsigned specifierLen);
8006   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8007                            const Expr *E);
8008 
8009   void HandleEmptyObjCModifierFlag(const char *startFlag,
8010                                    unsigned flagLen) override;
8011 
8012   void HandleInvalidObjCModifierFlag(const char *startFlag,
8013                                             unsigned flagLen) override;
8014 
8015   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8016                                            const char *flagsEnd,
8017                                            const char *conversionPosition)
8018                                              override;
8019 };
8020 
8021 } // namespace
8022 
8023 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8024                                       const analyze_printf::PrintfSpecifier &FS,
8025                                       const char *startSpecifier,
8026                                       unsigned specifierLen) {
8027   const analyze_printf::PrintfConversionSpecifier &CS =
8028     FS.getConversionSpecifier();
8029 
8030   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8031                                           getLocationOfByte(CS.getStart()),
8032                                           startSpecifier, specifierLen,
8033                                           CS.getStart(), CS.getLength());
8034 }
8035 
8036 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8037   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8038 }
8039 
8040 bool CheckPrintfHandler::HandleAmount(
8041                                const analyze_format_string::OptionalAmount &Amt,
8042                                unsigned k, const char *startSpecifier,
8043                                unsigned specifierLen) {
8044   if (Amt.hasDataArgument()) {
8045     if (!HasVAListArg) {
8046       unsigned argIndex = Amt.getArgIndex();
8047       if (argIndex >= NumDataArgs) {
8048         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8049                                << k,
8050                              getLocationOfByte(Amt.getStart()),
8051                              /*IsStringLocation*/true,
8052                              getSpecifierRange(startSpecifier, specifierLen));
8053         // Don't do any more checking.  We will just emit
8054         // spurious errors.
8055         return false;
8056       }
8057 
8058       // Type check the data argument.  It should be an 'int'.
8059       // Although not in conformance with C99, we also allow the argument to be
8060       // an 'unsigned int' as that is a reasonably safe case.  GCC also
8061       // doesn't emit a warning for that case.
8062       CoveredArgs.set(argIndex);
8063       const Expr *Arg = getDataArg(argIndex);
8064       if (!Arg)
8065         return false;
8066 
8067       QualType T = Arg->getType();
8068 
8069       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8070       assert(AT.isValid());
8071 
8072       if (!AT.matchesType(S.Context, T)) {
8073         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8074                                << k << AT.getRepresentativeTypeName(S.Context)
8075                                << T << Arg->getSourceRange(),
8076                              getLocationOfByte(Amt.getStart()),
8077                              /*IsStringLocation*/true,
8078                              getSpecifierRange(startSpecifier, specifierLen));
8079         // Don't do any more checking.  We will just emit
8080         // spurious errors.
8081         return false;
8082       }
8083     }
8084   }
8085   return true;
8086 }
8087 
8088 void CheckPrintfHandler::HandleInvalidAmount(
8089                                       const analyze_printf::PrintfSpecifier &FS,
8090                                       const analyze_printf::OptionalAmount &Amt,
8091                                       unsigned type,
8092                                       const char *startSpecifier,
8093                                       unsigned specifierLen) {
8094   const analyze_printf::PrintfConversionSpecifier &CS =
8095     FS.getConversionSpecifier();
8096 
8097   FixItHint fixit =
8098     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8099       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8100                                  Amt.getConstantLength()))
8101       : FixItHint();
8102 
8103   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8104                          << type << CS.toString(),
8105                        getLocationOfByte(Amt.getStart()),
8106                        /*IsStringLocation*/true,
8107                        getSpecifierRange(startSpecifier, specifierLen),
8108                        fixit);
8109 }
8110 
8111 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8112                                     const analyze_printf::OptionalFlag &flag,
8113                                     const char *startSpecifier,
8114                                     unsigned specifierLen) {
8115   // Warn about pointless flag with a fixit removal.
8116   const analyze_printf::PrintfConversionSpecifier &CS =
8117     FS.getConversionSpecifier();
8118   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8119                          << flag.toString() << CS.toString(),
8120                        getLocationOfByte(flag.getPosition()),
8121                        /*IsStringLocation*/true,
8122                        getSpecifierRange(startSpecifier, specifierLen),
8123                        FixItHint::CreateRemoval(
8124                          getSpecifierRange(flag.getPosition(), 1)));
8125 }
8126 
8127 void CheckPrintfHandler::HandleIgnoredFlag(
8128                                 const analyze_printf::PrintfSpecifier &FS,
8129                                 const analyze_printf::OptionalFlag &ignoredFlag,
8130                                 const analyze_printf::OptionalFlag &flag,
8131                                 const char *startSpecifier,
8132                                 unsigned specifierLen) {
8133   // Warn about ignored flag with a fixit removal.
8134   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8135                          << ignoredFlag.toString() << flag.toString(),
8136                        getLocationOfByte(ignoredFlag.getPosition()),
8137                        /*IsStringLocation*/true,
8138                        getSpecifierRange(startSpecifier, specifierLen),
8139                        FixItHint::CreateRemoval(
8140                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
8141 }
8142 
8143 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8144                                                      unsigned flagLen) {
8145   // Warn about an empty flag.
8146   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8147                        getLocationOfByte(startFlag),
8148                        /*IsStringLocation*/true,
8149                        getSpecifierRange(startFlag, flagLen));
8150 }
8151 
8152 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8153                                                        unsigned flagLen) {
8154   // Warn about an invalid flag.
8155   auto Range = getSpecifierRange(startFlag, flagLen);
8156   StringRef flag(startFlag, flagLen);
8157   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8158                       getLocationOfByte(startFlag),
8159                       /*IsStringLocation*/true,
8160                       Range, FixItHint::CreateRemoval(Range));
8161 }
8162 
8163 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8164     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8165     // Warn about using '[...]' without a '@' conversion.
8166     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8167     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8168     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8169                          getLocationOfByte(conversionPosition),
8170                          /*IsStringLocation*/true,
8171                          Range, FixItHint::CreateRemoval(Range));
8172 }
8173 
8174 // Determines if the specified is a C++ class or struct containing
8175 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8176 // "c_str()").
8177 template<typename MemberKind>
8178 static llvm::SmallPtrSet<MemberKind*, 1>
8179 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8180   const RecordType *RT = Ty->getAs<RecordType>();
8181   llvm::SmallPtrSet<MemberKind*, 1> Results;
8182 
8183   if (!RT)
8184     return Results;
8185   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8186   if (!RD || !RD->getDefinition())
8187     return Results;
8188 
8189   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8190                  Sema::LookupMemberName);
8191   R.suppressDiagnostics();
8192 
8193   // We just need to include all members of the right kind turned up by the
8194   // filter, at this point.
8195   if (S.LookupQualifiedName(R, RT->getDecl()))
8196     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8197       NamedDecl *decl = (*I)->getUnderlyingDecl();
8198       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8199         Results.insert(FK);
8200     }
8201   return Results;
8202 }
8203 
8204 /// Check if we could call '.c_str()' on an object.
8205 ///
8206 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8207 /// allow the call, or if it would be ambiguous).
8208 bool Sema::hasCStrMethod(const Expr *E) {
8209   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8210 
8211   MethodSet Results =
8212       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8213   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8214        MI != ME; ++MI)
8215     if ((*MI)->getMinRequiredArguments() == 0)
8216       return true;
8217   return false;
8218 }
8219 
8220 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8221 // better diagnostic if so. AT is assumed to be valid.
8222 // Returns true when a c_str() conversion method is found.
8223 bool CheckPrintfHandler::checkForCStrMembers(
8224     const analyze_printf::ArgType &AT, const Expr *E) {
8225   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8226 
8227   MethodSet Results =
8228       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8229 
8230   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8231        MI != ME; ++MI) {
8232     const CXXMethodDecl *Method = *MI;
8233     if (Method->getMinRequiredArguments() == 0 &&
8234         AT.matchesType(S.Context, Method->getReturnType())) {
8235       // FIXME: Suggest parens if the expression needs them.
8236       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8237       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8238           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8239       return true;
8240     }
8241   }
8242 
8243   return false;
8244 }
8245 
8246 bool
8247 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8248                                             &FS,
8249                                           const char *startSpecifier,
8250                                           unsigned specifierLen) {
8251   using namespace analyze_format_string;
8252   using namespace analyze_printf;
8253 
8254   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8255 
8256   if (FS.consumesDataArgument()) {
8257     if (atFirstArg) {
8258         atFirstArg = false;
8259         usesPositionalArgs = FS.usesPositionalArg();
8260     }
8261     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8262       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8263                                         startSpecifier, specifierLen);
8264       return false;
8265     }
8266   }
8267 
8268   // First check if the field width, precision, and conversion specifier
8269   // have matching data arguments.
8270   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8271                     startSpecifier, specifierLen)) {
8272     return false;
8273   }
8274 
8275   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8276                     startSpecifier, specifierLen)) {
8277     return false;
8278   }
8279 
8280   if (!CS.consumesDataArgument()) {
8281     // FIXME: Technically specifying a precision or field width here
8282     // makes no sense.  Worth issuing a warning at some point.
8283     return true;
8284   }
8285 
8286   // Consume the argument.
8287   unsigned argIndex = FS.getArgIndex();
8288   if (argIndex < NumDataArgs) {
8289     // The check to see if the argIndex is valid will come later.
8290     // We set the bit here because we may exit early from this
8291     // function if we encounter some other error.
8292     CoveredArgs.set(argIndex);
8293   }
8294 
8295   // FreeBSD kernel extensions.
8296   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8297       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8298     // We need at least two arguments.
8299     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8300       return false;
8301 
8302     // Claim the second argument.
8303     CoveredArgs.set(argIndex + 1);
8304 
8305     // Type check the first argument (int for %b, pointer for %D)
8306     const Expr *Ex = getDataArg(argIndex);
8307     const analyze_printf::ArgType &AT =
8308       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8309         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8310     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8311       EmitFormatDiagnostic(
8312           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8313               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8314               << false << Ex->getSourceRange(),
8315           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8316           getSpecifierRange(startSpecifier, specifierLen));
8317 
8318     // Type check the second argument (char * for both %b and %D)
8319     Ex = getDataArg(argIndex + 1);
8320     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8321     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8322       EmitFormatDiagnostic(
8323           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8324               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8325               << false << Ex->getSourceRange(),
8326           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8327           getSpecifierRange(startSpecifier, specifierLen));
8328 
8329      return true;
8330   }
8331 
8332   // Check for using an Objective-C specific conversion specifier
8333   // in a non-ObjC literal.
8334   if (!allowsObjCArg() && CS.isObjCArg()) {
8335     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8336                                                   specifierLen);
8337   }
8338 
8339   // %P can only be used with os_log.
8340   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8341     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8342                                                   specifierLen);
8343   }
8344 
8345   // %n is not allowed with os_log.
8346   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8347     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8348                          getLocationOfByte(CS.getStart()),
8349                          /*IsStringLocation*/ false,
8350                          getSpecifierRange(startSpecifier, specifierLen));
8351 
8352     return true;
8353   }
8354 
8355   // Only scalars are allowed for os_trace.
8356   if (FSType == Sema::FST_OSTrace &&
8357       (CS.getKind() == ConversionSpecifier::PArg ||
8358        CS.getKind() == ConversionSpecifier::sArg ||
8359        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8360     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8361                                                   specifierLen);
8362   }
8363 
8364   // Check for use of public/private annotation outside of os_log().
8365   if (FSType != Sema::FST_OSLog) {
8366     if (FS.isPublic().isSet()) {
8367       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8368                                << "public",
8369                            getLocationOfByte(FS.isPublic().getPosition()),
8370                            /*IsStringLocation*/ false,
8371                            getSpecifierRange(startSpecifier, specifierLen));
8372     }
8373     if (FS.isPrivate().isSet()) {
8374       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8375                                << "private",
8376                            getLocationOfByte(FS.isPrivate().getPosition()),
8377                            /*IsStringLocation*/ false,
8378                            getSpecifierRange(startSpecifier, specifierLen));
8379     }
8380   }
8381 
8382   // Check for invalid use of field width
8383   if (!FS.hasValidFieldWidth()) {
8384     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8385         startSpecifier, specifierLen);
8386   }
8387 
8388   // Check for invalid use of precision
8389   if (!FS.hasValidPrecision()) {
8390     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8391         startSpecifier, specifierLen);
8392   }
8393 
8394   // Precision is mandatory for %P specifier.
8395   if (CS.getKind() == ConversionSpecifier::PArg &&
8396       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8397     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8398                          getLocationOfByte(startSpecifier),
8399                          /*IsStringLocation*/ false,
8400                          getSpecifierRange(startSpecifier, specifierLen));
8401   }
8402 
8403   // Check each flag does not conflict with any other component.
8404   if (!FS.hasValidThousandsGroupingPrefix())
8405     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8406   if (!FS.hasValidLeadingZeros())
8407     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8408   if (!FS.hasValidPlusPrefix())
8409     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8410   if (!FS.hasValidSpacePrefix())
8411     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8412   if (!FS.hasValidAlternativeForm())
8413     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8414   if (!FS.hasValidLeftJustified())
8415     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8416 
8417   // Check that flags are not ignored by another flag
8418   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8419     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8420         startSpecifier, specifierLen);
8421   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8422     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8423             startSpecifier, specifierLen);
8424 
8425   // Check the length modifier is valid with the given conversion specifier.
8426   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8427                                  S.getLangOpts()))
8428     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8429                                 diag::warn_format_nonsensical_length);
8430   else if (!FS.hasStandardLengthModifier())
8431     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8432   else if (!FS.hasStandardLengthConversionCombination())
8433     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8434                                 diag::warn_format_non_standard_conversion_spec);
8435 
8436   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8437     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8438 
8439   // The remaining checks depend on the data arguments.
8440   if (HasVAListArg)
8441     return true;
8442 
8443   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8444     return false;
8445 
8446   const Expr *Arg = getDataArg(argIndex);
8447   if (!Arg)
8448     return true;
8449 
8450   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8451 }
8452 
8453 static bool requiresParensToAddCast(const Expr *E) {
8454   // FIXME: We should have a general way to reason about operator
8455   // precedence and whether parens are actually needed here.
8456   // Take care of a few common cases where they aren't.
8457   const Expr *Inside = E->IgnoreImpCasts();
8458   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8459     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8460 
8461   switch (Inside->getStmtClass()) {
8462   case Stmt::ArraySubscriptExprClass:
8463   case Stmt::CallExprClass:
8464   case Stmt::CharacterLiteralClass:
8465   case Stmt::CXXBoolLiteralExprClass:
8466   case Stmt::DeclRefExprClass:
8467   case Stmt::FloatingLiteralClass:
8468   case Stmt::IntegerLiteralClass:
8469   case Stmt::MemberExprClass:
8470   case Stmt::ObjCArrayLiteralClass:
8471   case Stmt::ObjCBoolLiteralExprClass:
8472   case Stmt::ObjCBoxedExprClass:
8473   case Stmt::ObjCDictionaryLiteralClass:
8474   case Stmt::ObjCEncodeExprClass:
8475   case Stmt::ObjCIvarRefExprClass:
8476   case Stmt::ObjCMessageExprClass:
8477   case Stmt::ObjCPropertyRefExprClass:
8478   case Stmt::ObjCStringLiteralClass:
8479   case Stmt::ObjCSubscriptRefExprClass:
8480   case Stmt::ParenExprClass:
8481   case Stmt::StringLiteralClass:
8482   case Stmt::UnaryOperatorClass:
8483     return false;
8484   default:
8485     return true;
8486   }
8487 }
8488 
8489 static std::pair<QualType, StringRef>
8490 shouldNotPrintDirectly(const ASTContext &Context,
8491                        QualType IntendedTy,
8492                        const Expr *E) {
8493   // Use a 'while' to peel off layers of typedefs.
8494   QualType TyTy = IntendedTy;
8495   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
8496     StringRef Name = UserTy->getDecl()->getName();
8497     QualType CastTy = llvm::StringSwitch<QualType>(Name)
8498       .Case("CFIndex", Context.getNSIntegerType())
8499       .Case("NSInteger", Context.getNSIntegerType())
8500       .Case("NSUInteger", Context.getNSUIntegerType())
8501       .Case("SInt32", Context.IntTy)
8502       .Case("UInt32", Context.UnsignedIntTy)
8503       .Default(QualType());
8504 
8505     if (!CastTy.isNull())
8506       return std::make_pair(CastTy, Name);
8507 
8508     TyTy = UserTy->desugar();
8509   }
8510 
8511   // Strip parens if necessary.
8512   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
8513     return shouldNotPrintDirectly(Context,
8514                                   PE->getSubExpr()->getType(),
8515                                   PE->getSubExpr());
8516 
8517   // If this is a conditional expression, then its result type is constructed
8518   // via usual arithmetic conversions and thus there might be no necessary
8519   // typedef sugar there.  Recurse to operands to check for NSInteger &
8520   // Co. usage condition.
8521   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8522     QualType TrueTy, FalseTy;
8523     StringRef TrueName, FalseName;
8524 
8525     std::tie(TrueTy, TrueName) =
8526       shouldNotPrintDirectly(Context,
8527                              CO->getTrueExpr()->getType(),
8528                              CO->getTrueExpr());
8529     std::tie(FalseTy, FalseName) =
8530       shouldNotPrintDirectly(Context,
8531                              CO->getFalseExpr()->getType(),
8532                              CO->getFalseExpr());
8533 
8534     if (TrueTy == FalseTy)
8535       return std::make_pair(TrueTy, TrueName);
8536     else if (TrueTy.isNull())
8537       return std::make_pair(FalseTy, FalseName);
8538     else if (FalseTy.isNull())
8539       return std::make_pair(TrueTy, TrueName);
8540   }
8541 
8542   return std::make_pair(QualType(), StringRef());
8543 }
8544 
8545 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
8546 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8547 /// type do not count.
8548 static bool
8549 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8550   QualType From = ICE->getSubExpr()->getType();
8551   QualType To = ICE->getType();
8552   // It's an integer promotion if the destination type is the promoted
8553   // source type.
8554   if (ICE->getCastKind() == CK_IntegralCast &&
8555       From->isPromotableIntegerType() &&
8556       S.Context.getPromotedIntegerType(From) == To)
8557     return true;
8558   // Look through vector types, since we do default argument promotion for
8559   // those in OpenCL.
8560   if (const auto *VecTy = From->getAs<ExtVectorType>())
8561     From = VecTy->getElementType();
8562   if (const auto *VecTy = To->getAs<ExtVectorType>())
8563     To = VecTy->getElementType();
8564   // It's a floating promotion if the source type is a lower rank.
8565   return ICE->getCastKind() == CK_FloatingCast &&
8566          S.Context.getFloatingTypeOrder(From, To) < 0;
8567 }
8568 
8569 bool
8570 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8571                                     const char *StartSpecifier,
8572                                     unsigned SpecifierLen,
8573                                     const Expr *E) {
8574   using namespace analyze_format_string;
8575   using namespace analyze_printf;
8576 
8577   // Now type check the data expression that matches the
8578   // format specifier.
8579   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8580   if (!AT.isValid())
8581     return true;
8582 
8583   QualType ExprTy = E->getType();
8584   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8585     ExprTy = TET->getUnderlyingExpr()->getType();
8586   }
8587 
8588   // Diagnose attempts to print a boolean value as a character. Unlike other
8589   // -Wformat diagnostics, this is fine from a type perspective, but it still
8590   // doesn't make sense.
8591   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
8592       E->isKnownToHaveBooleanValue()) {
8593     const CharSourceRange &CSR =
8594         getSpecifierRange(StartSpecifier, SpecifierLen);
8595     SmallString<4> FSString;
8596     llvm::raw_svector_ostream os(FSString);
8597     FS.toString(os);
8598     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
8599                              << FSString,
8600                          E->getExprLoc(), false, CSR);
8601     return true;
8602   }
8603 
8604   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
8605   if (Match == analyze_printf::ArgType::Match)
8606     return true;
8607 
8608   // Look through argument promotions for our error message's reported type.
8609   // This includes the integral and floating promotions, but excludes array
8610   // and function pointer decay (seeing that an argument intended to be a
8611   // string has type 'char [6]' is probably more confusing than 'char *') and
8612   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8613   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8614     if (isArithmeticArgumentPromotion(S, ICE)) {
8615       E = ICE->getSubExpr();
8616       ExprTy = E->getType();
8617 
8618       // Check if we didn't match because of an implicit cast from a 'char'
8619       // or 'short' to an 'int'.  This is done because printf is a varargs
8620       // function.
8621       if (ICE->getType() == S.Context.IntTy ||
8622           ICE->getType() == S.Context.UnsignedIntTy) {
8623         // All further checking is done on the subexpression
8624         const analyze_printf::ArgType::MatchKind ImplicitMatch =
8625             AT.matchesType(S.Context, ExprTy);
8626         if (ImplicitMatch == analyze_printf::ArgType::Match)
8627           return true;
8628         if (ImplicitMatch == ArgType::NoMatchPedantic ||
8629             ImplicitMatch == ArgType::NoMatchTypeConfusion)
8630           Match = ImplicitMatch;
8631       }
8632     }
8633   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8634     // Special case for 'a', which has type 'int' in C.
8635     // Note, however, that we do /not/ want to treat multibyte constants like
8636     // 'MooV' as characters! This form is deprecated but still exists.
8637     if (ExprTy == S.Context.IntTy)
8638       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8639         ExprTy = S.Context.CharTy;
8640   }
8641 
8642   // Look through enums to their underlying type.
8643   bool IsEnum = false;
8644   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8645     ExprTy = EnumTy->getDecl()->getIntegerType();
8646     IsEnum = true;
8647   }
8648 
8649   // %C in an Objective-C context prints a unichar, not a wchar_t.
8650   // If the argument is an integer of some kind, believe the %C and suggest
8651   // a cast instead of changing the conversion specifier.
8652   QualType IntendedTy = ExprTy;
8653   if (isObjCContext() &&
8654       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8655     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8656         !ExprTy->isCharType()) {
8657       // 'unichar' is defined as a typedef of unsigned short, but we should
8658       // prefer using the typedef if it is visible.
8659       IntendedTy = S.Context.UnsignedShortTy;
8660 
8661       // While we are here, check if the value is an IntegerLiteral that happens
8662       // to be within the valid range.
8663       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8664         const llvm::APInt &V = IL->getValue();
8665         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8666           return true;
8667       }
8668 
8669       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8670                           Sema::LookupOrdinaryName);
8671       if (S.LookupName(Result, S.getCurScope())) {
8672         NamedDecl *ND = Result.getFoundDecl();
8673         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8674           if (TD->getUnderlyingType() == IntendedTy)
8675             IntendedTy = S.Context.getTypedefType(TD);
8676       }
8677     }
8678   }
8679 
8680   // Special-case some of Darwin's platform-independence types by suggesting
8681   // casts to primitive types that are known to be large enough.
8682   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8683   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8684     QualType CastTy;
8685     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8686     if (!CastTy.isNull()) {
8687       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8688       // (long in ASTContext). Only complain to pedants.
8689       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8690           (AT.isSizeT() || AT.isPtrdiffT()) &&
8691           AT.matchesType(S.Context, CastTy))
8692         Match = ArgType::NoMatchPedantic;
8693       IntendedTy = CastTy;
8694       ShouldNotPrintDirectly = true;
8695     }
8696   }
8697 
8698   // We may be able to offer a FixItHint if it is a supported type.
8699   PrintfSpecifier fixedFS = FS;
8700   bool Success =
8701       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8702 
8703   if (Success) {
8704     // Get the fix string from the fixed format specifier
8705     SmallString<16> buf;
8706     llvm::raw_svector_ostream os(buf);
8707     fixedFS.toString(os);
8708 
8709     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8710 
8711     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8712       unsigned Diag;
8713       switch (Match) {
8714       case ArgType::Match: llvm_unreachable("expected non-matching");
8715       case ArgType::NoMatchPedantic:
8716         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8717         break;
8718       case ArgType::NoMatchTypeConfusion:
8719         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8720         break;
8721       case ArgType::NoMatch:
8722         Diag = diag::warn_format_conversion_argument_type_mismatch;
8723         break;
8724       }
8725 
8726       // In this case, the specifier is wrong and should be changed to match
8727       // the argument.
8728       EmitFormatDiagnostic(S.PDiag(Diag)
8729                                << AT.getRepresentativeTypeName(S.Context)
8730                                << IntendedTy << IsEnum << E->getSourceRange(),
8731                            E->getBeginLoc(),
8732                            /*IsStringLocation*/ false, SpecRange,
8733                            FixItHint::CreateReplacement(SpecRange, os.str()));
8734     } else {
8735       // The canonical type for formatting this value is different from the
8736       // actual type of the expression. (This occurs, for example, with Darwin's
8737       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8738       // should be printed as 'long' for 64-bit compatibility.)
8739       // Rather than emitting a normal format/argument mismatch, we want to
8740       // add a cast to the recommended type (and correct the format string
8741       // if necessary).
8742       SmallString<16> CastBuf;
8743       llvm::raw_svector_ostream CastFix(CastBuf);
8744       CastFix << "(";
8745       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8746       CastFix << ")";
8747 
8748       SmallVector<FixItHint,4> Hints;
8749       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8750         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8751 
8752       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8753         // If there's already a cast present, just replace it.
8754         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8755         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8756 
8757       } else if (!requiresParensToAddCast(E)) {
8758         // If the expression has high enough precedence,
8759         // just write the C-style cast.
8760         Hints.push_back(
8761             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8762       } else {
8763         // Otherwise, add parens around the expression as well as the cast.
8764         CastFix << "(";
8765         Hints.push_back(
8766             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8767 
8768         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8769         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8770       }
8771 
8772       if (ShouldNotPrintDirectly) {
8773         // The expression has a type that should not be printed directly.
8774         // We extract the name from the typedef because we don't want to show
8775         // the underlying type in the diagnostic.
8776         StringRef Name;
8777         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8778           Name = TypedefTy->getDecl()->getName();
8779         else
8780           Name = CastTyName;
8781         unsigned Diag = Match == ArgType::NoMatchPedantic
8782                             ? diag::warn_format_argument_needs_cast_pedantic
8783                             : diag::warn_format_argument_needs_cast;
8784         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8785                                            << E->getSourceRange(),
8786                              E->getBeginLoc(), /*IsStringLocation=*/false,
8787                              SpecRange, Hints);
8788       } else {
8789         // In this case, the expression could be printed using a different
8790         // specifier, but we've decided that the specifier is probably correct
8791         // and we should cast instead. Just use the normal warning message.
8792         EmitFormatDiagnostic(
8793             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8794                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8795                 << E->getSourceRange(),
8796             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8797       }
8798     }
8799   } else {
8800     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8801                                                    SpecifierLen);
8802     // Since the warning for passing non-POD types to variadic functions
8803     // was deferred until now, we emit a warning for non-POD
8804     // arguments here.
8805     switch (S.isValidVarArgType(ExprTy)) {
8806     case Sema::VAK_Valid:
8807     case Sema::VAK_ValidInCXX11: {
8808       unsigned Diag;
8809       switch (Match) {
8810       case ArgType::Match: llvm_unreachable("expected non-matching");
8811       case ArgType::NoMatchPedantic:
8812         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8813         break;
8814       case ArgType::NoMatchTypeConfusion:
8815         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8816         break;
8817       case ArgType::NoMatch:
8818         Diag = diag::warn_format_conversion_argument_type_mismatch;
8819         break;
8820       }
8821 
8822       EmitFormatDiagnostic(
8823           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8824                         << IsEnum << CSR << E->getSourceRange(),
8825           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8826       break;
8827     }
8828     case Sema::VAK_Undefined:
8829     case Sema::VAK_MSVCUndefined:
8830       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8831                                << S.getLangOpts().CPlusPlus11 << ExprTy
8832                                << CallType
8833                                << AT.getRepresentativeTypeName(S.Context) << CSR
8834                                << E->getSourceRange(),
8835                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8836       checkForCStrMembers(AT, E);
8837       break;
8838 
8839     case Sema::VAK_Invalid:
8840       if (ExprTy->isObjCObjectType())
8841         EmitFormatDiagnostic(
8842             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8843                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8844                 << AT.getRepresentativeTypeName(S.Context) << CSR
8845                 << E->getSourceRange(),
8846             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8847       else
8848         // FIXME: If this is an initializer list, suggest removing the braces
8849         // or inserting a cast to the target type.
8850         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8851             << isa<InitListExpr>(E) << ExprTy << CallType
8852             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8853       break;
8854     }
8855 
8856     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8857            "format string specifier index out of range");
8858     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8859   }
8860 
8861   return true;
8862 }
8863 
8864 //===--- CHECK: Scanf format string checking ------------------------------===//
8865 
8866 namespace {
8867 
8868 class CheckScanfHandler : public CheckFormatHandler {
8869 public:
8870   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8871                     const Expr *origFormatExpr, Sema::FormatStringType type,
8872                     unsigned firstDataArg, unsigned numDataArgs,
8873                     const char *beg, bool hasVAListArg,
8874                     ArrayRef<const Expr *> Args, unsigned formatIdx,
8875                     bool inFunctionCall, Sema::VariadicCallType CallType,
8876                     llvm::SmallBitVector &CheckedVarArgs,
8877                     UncoveredArgHandler &UncoveredArg)
8878       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8879                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8880                            inFunctionCall, CallType, CheckedVarArgs,
8881                            UncoveredArg) {}
8882 
8883   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8884                             const char *startSpecifier,
8885                             unsigned specifierLen) override;
8886 
8887   bool HandleInvalidScanfConversionSpecifier(
8888           const analyze_scanf::ScanfSpecifier &FS,
8889           const char *startSpecifier,
8890           unsigned specifierLen) override;
8891 
8892   void HandleIncompleteScanList(const char *start, const char *end) override;
8893 };
8894 
8895 } // namespace
8896 
8897 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8898                                                  const char *end) {
8899   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8900                        getLocationOfByte(end), /*IsStringLocation*/true,
8901                        getSpecifierRange(start, end - start));
8902 }
8903 
8904 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8905                                         const analyze_scanf::ScanfSpecifier &FS,
8906                                         const char *startSpecifier,
8907                                         unsigned specifierLen) {
8908   const analyze_scanf::ScanfConversionSpecifier &CS =
8909     FS.getConversionSpecifier();
8910 
8911   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8912                                           getLocationOfByte(CS.getStart()),
8913                                           startSpecifier, specifierLen,
8914                                           CS.getStart(), CS.getLength());
8915 }
8916 
8917 bool CheckScanfHandler::HandleScanfSpecifier(
8918                                        const analyze_scanf::ScanfSpecifier &FS,
8919                                        const char *startSpecifier,
8920                                        unsigned specifierLen) {
8921   using namespace analyze_scanf;
8922   using namespace analyze_format_string;
8923 
8924   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8925 
8926   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
8927   // be used to decide if we are using positional arguments consistently.
8928   if (FS.consumesDataArgument()) {
8929     if (atFirstArg) {
8930       atFirstArg = false;
8931       usesPositionalArgs = FS.usesPositionalArg();
8932     }
8933     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8934       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8935                                         startSpecifier, specifierLen);
8936       return false;
8937     }
8938   }
8939 
8940   // Check if the field with is non-zero.
8941   const OptionalAmount &Amt = FS.getFieldWidth();
8942   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8943     if (Amt.getConstantAmount() == 0) {
8944       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8945                                                    Amt.getConstantLength());
8946       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8947                            getLocationOfByte(Amt.getStart()),
8948                            /*IsStringLocation*/true, R,
8949                            FixItHint::CreateRemoval(R));
8950     }
8951   }
8952 
8953   if (!FS.consumesDataArgument()) {
8954     // FIXME: Technically specifying a precision or field width here
8955     // makes no sense.  Worth issuing a warning at some point.
8956     return true;
8957   }
8958 
8959   // Consume the argument.
8960   unsigned argIndex = FS.getArgIndex();
8961   if (argIndex < NumDataArgs) {
8962       // The check to see if the argIndex is valid will come later.
8963       // We set the bit here because we may exit early from this
8964       // function if we encounter some other error.
8965     CoveredArgs.set(argIndex);
8966   }
8967 
8968   // Check the length modifier is valid with the given conversion specifier.
8969   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8970                                  S.getLangOpts()))
8971     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8972                                 diag::warn_format_nonsensical_length);
8973   else if (!FS.hasStandardLengthModifier())
8974     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8975   else if (!FS.hasStandardLengthConversionCombination())
8976     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8977                                 diag::warn_format_non_standard_conversion_spec);
8978 
8979   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8980     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8981 
8982   // The remaining checks depend on the data arguments.
8983   if (HasVAListArg)
8984     return true;
8985 
8986   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8987     return false;
8988 
8989   // Check that the argument type matches the format specifier.
8990   const Expr *Ex = getDataArg(argIndex);
8991   if (!Ex)
8992     return true;
8993 
8994   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8995 
8996   if (!AT.isValid()) {
8997     return true;
8998   }
8999 
9000   analyze_format_string::ArgType::MatchKind Match =
9001       AT.matchesType(S.Context, Ex->getType());
9002   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9003   if (Match == analyze_format_string::ArgType::Match)
9004     return true;
9005 
9006   ScanfSpecifier fixedFS = FS;
9007   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9008                                  S.getLangOpts(), S.Context);
9009 
9010   unsigned Diag =
9011       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9012                : diag::warn_format_conversion_argument_type_mismatch;
9013 
9014   if (Success) {
9015     // Get the fix string from the fixed format specifier.
9016     SmallString<128> buf;
9017     llvm::raw_svector_ostream os(buf);
9018     fixedFS.toString(os);
9019 
9020     EmitFormatDiagnostic(
9021         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9022                       << Ex->getType() << false << Ex->getSourceRange(),
9023         Ex->getBeginLoc(),
9024         /*IsStringLocation*/ false,
9025         getSpecifierRange(startSpecifier, specifierLen),
9026         FixItHint::CreateReplacement(
9027             getSpecifierRange(startSpecifier, specifierLen), os.str()));
9028   } else {
9029     EmitFormatDiagnostic(S.PDiag(Diag)
9030                              << AT.getRepresentativeTypeName(S.Context)
9031                              << Ex->getType() << false << Ex->getSourceRange(),
9032                          Ex->getBeginLoc(),
9033                          /*IsStringLocation*/ false,
9034                          getSpecifierRange(startSpecifier, specifierLen));
9035   }
9036 
9037   return true;
9038 }
9039 
9040 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9041                               const Expr *OrigFormatExpr,
9042                               ArrayRef<const Expr *> Args,
9043                               bool HasVAListArg, unsigned format_idx,
9044                               unsigned firstDataArg,
9045                               Sema::FormatStringType Type,
9046                               bool inFunctionCall,
9047                               Sema::VariadicCallType CallType,
9048                               llvm::SmallBitVector &CheckedVarArgs,
9049                               UncoveredArgHandler &UncoveredArg,
9050                               bool IgnoreStringsWithoutSpecifiers) {
9051   // CHECK: is the format string a wide literal?
9052   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9053     CheckFormatHandler::EmitFormatDiagnostic(
9054         S, inFunctionCall, Args[format_idx],
9055         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9056         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9057     return;
9058   }
9059 
9060   // Str - The format string.  NOTE: this is NOT null-terminated!
9061   StringRef StrRef = FExpr->getString();
9062   const char *Str = StrRef.data();
9063   // Account for cases where the string literal is truncated in a declaration.
9064   const ConstantArrayType *T =
9065     S.Context.getAsConstantArrayType(FExpr->getType());
9066   assert(T && "String literal not of constant array type!");
9067   size_t TypeSize = T->getSize().getZExtValue();
9068   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9069   const unsigned numDataArgs = Args.size() - firstDataArg;
9070 
9071   if (IgnoreStringsWithoutSpecifiers &&
9072       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9073           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9074     return;
9075 
9076   // Emit a warning if the string literal is truncated and does not contain an
9077   // embedded null character.
9078   if (TypeSize <= StrRef.size() &&
9079       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
9080     CheckFormatHandler::EmitFormatDiagnostic(
9081         S, inFunctionCall, Args[format_idx],
9082         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9083         FExpr->getBeginLoc(),
9084         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9085     return;
9086   }
9087 
9088   // CHECK: empty format string?
9089   if (StrLen == 0 && numDataArgs > 0) {
9090     CheckFormatHandler::EmitFormatDiagnostic(
9091         S, inFunctionCall, Args[format_idx],
9092         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9093         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9094     return;
9095   }
9096 
9097   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9098       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9099       Type == Sema::FST_OSTrace) {
9100     CheckPrintfHandler H(
9101         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9102         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9103         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9104         CheckedVarArgs, UncoveredArg);
9105 
9106     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9107                                                   S.getLangOpts(),
9108                                                   S.Context.getTargetInfo(),
9109                                             Type == Sema::FST_FreeBSDKPrintf))
9110       H.DoneProcessing();
9111   } else if (Type == Sema::FST_Scanf) {
9112     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9113                         numDataArgs, Str, HasVAListArg, Args, format_idx,
9114                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9115 
9116     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9117                                                  S.getLangOpts(),
9118                                                  S.Context.getTargetInfo()))
9119       H.DoneProcessing();
9120   } // TODO: handle other formats
9121 }
9122 
9123 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9124   // Str - The format string.  NOTE: this is NOT null-terminated!
9125   StringRef StrRef = FExpr->getString();
9126   const char *Str = StrRef.data();
9127   // Account for cases where the string literal is truncated in a declaration.
9128   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9129   assert(T && "String literal not of constant array type!");
9130   size_t TypeSize = T->getSize().getZExtValue();
9131   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9132   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9133                                                          getLangOpts(),
9134                                                          Context.getTargetInfo());
9135 }
9136 
9137 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9138 
9139 // Returns the related absolute value function that is larger, of 0 if one
9140 // does not exist.
9141 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9142   switch (AbsFunction) {
9143   default:
9144     return 0;
9145 
9146   case Builtin::BI__builtin_abs:
9147     return Builtin::BI__builtin_labs;
9148   case Builtin::BI__builtin_labs:
9149     return Builtin::BI__builtin_llabs;
9150   case Builtin::BI__builtin_llabs:
9151     return 0;
9152 
9153   case Builtin::BI__builtin_fabsf:
9154     return Builtin::BI__builtin_fabs;
9155   case Builtin::BI__builtin_fabs:
9156     return Builtin::BI__builtin_fabsl;
9157   case Builtin::BI__builtin_fabsl:
9158     return 0;
9159 
9160   case Builtin::BI__builtin_cabsf:
9161     return Builtin::BI__builtin_cabs;
9162   case Builtin::BI__builtin_cabs:
9163     return Builtin::BI__builtin_cabsl;
9164   case Builtin::BI__builtin_cabsl:
9165     return 0;
9166 
9167   case Builtin::BIabs:
9168     return Builtin::BIlabs;
9169   case Builtin::BIlabs:
9170     return Builtin::BIllabs;
9171   case Builtin::BIllabs:
9172     return 0;
9173 
9174   case Builtin::BIfabsf:
9175     return Builtin::BIfabs;
9176   case Builtin::BIfabs:
9177     return Builtin::BIfabsl;
9178   case Builtin::BIfabsl:
9179     return 0;
9180 
9181   case Builtin::BIcabsf:
9182    return Builtin::BIcabs;
9183   case Builtin::BIcabs:
9184     return Builtin::BIcabsl;
9185   case Builtin::BIcabsl:
9186     return 0;
9187   }
9188 }
9189 
9190 // Returns the argument type of the absolute value function.
9191 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9192                                              unsigned AbsType) {
9193   if (AbsType == 0)
9194     return QualType();
9195 
9196   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9197   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9198   if (Error != ASTContext::GE_None)
9199     return QualType();
9200 
9201   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9202   if (!FT)
9203     return QualType();
9204 
9205   if (FT->getNumParams() != 1)
9206     return QualType();
9207 
9208   return FT->getParamType(0);
9209 }
9210 
9211 // Returns the best absolute value function, or zero, based on type and
9212 // current absolute value function.
9213 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9214                                    unsigned AbsFunctionKind) {
9215   unsigned BestKind = 0;
9216   uint64_t ArgSize = Context.getTypeSize(ArgType);
9217   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9218        Kind = getLargerAbsoluteValueFunction(Kind)) {
9219     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9220     if (Context.getTypeSize(ParamType) >= ArgSize) {
9221       if (BestKind == 0)
9222         BestKind = Kind;
9223       else if (Context.hasSameType(ParamType, ArgType)) {
9224         BestKind = Kind;
9225         break;
9226       }
9227     }
9228   }
9229   return BestKind;
9230 }
9231 
9232 enum AbsoluteValueKind {
9233   AVK_Integer,
9234   AVK_Floating,
9235   AVK_Complex
9236 };
9237 
9238 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9239   if (T->isIntegralOrEnumerationType())
9240     return AVK_Integer;
9241   if (T->isRealFloatingType())
9242     return AVK_Floating;
9243   if (T->isAnyComplexType())
9244     return AVK_Complex;
9245 
9246   llvm_unreachable("Type not integer, floating, or complex");
9247 }
9248 
9249 // Changes the absolute value function to a different type.  Preserves whether
9250 // the function is a builtin.
9251 static unsigned changeAbsFunction(unsigned AbsKind,
9252                                   AbsoluteValueKind ValueKind) {
9253   switch (ValueKind) {
9254   case AVK_Integer:
9255     switch (AbsKind) {
9256     default:
9257       return 0;
9258     case Builtin::BI__builtin_fabsf:
9259     case Builtin::BI__builtin_fabs:
9260     case Builtin::BI__builtin_fabsl:
9261     case Builtin::BI__builtin_cabsf:
9262     case Builtin::BI__builtin_cabs:
9263     case Builtin::BI__builtin_cabsl:
9264       return Builtin::BI__builtin_abs;
9265     case Builtin::BIfabsf:
9266     case Builtin::BIfabs:
9267     case Builtin::BIfabsl:
9268     case Builtin::BIcabsf:
9269     case Builtin::BIcabs:
9270     case Builtin::BIcabsl:
9271       return Builtin::BIabs;
9272     }
9273   case AVK_Floating:
9274     switch (AbsKind) {
9275     default:
9276       return 0;
9277     case Builtin::BI__builtin_abs:
9278     case Builtin::BI__builtin_labs:
9279     case Builtin::BI__builtin_llabs:
9280     case Builtin::BI__builtin_cabsf:
9281     case Builtin::BI__builtin_cabs:
9282     case Builtin::BI__builtin_cabsl:
9283       return Builtin::BI__builtin_fabsf;
9284     case Builtin::BIabs:
9285     case Builtin::BIlabs:
9286     case Builtin::BIllabs:
9287     case Builtin::BIcabsf:
9288     case Builtin::BIcabs:
9289     case Builtin::BIcabsl:
9290       return Builtin::BIfabsf;
9291     }
9292   case AVK_Complex:
9293     switch (AbsKind) {
9294     default:
9295       return 0;
9296     case Builtin::BI__builtin_abs:
9297     case Builtin::BI__builtin_labs:
9298     case Builtin::BI__builtin_llabs:
9299     case Builtin::BI__builtin_fabsf:
9300     case Builtin::BI__builtin_fabs:
9301     case Builtin::BI__builtin_fabsl:
9302       return Builtin::BI__builtin_cabsf;
9303     case Builtin::BIabs:
9304     case Builtin::BIlabs:
9305     case Builtin::BIllabs:
9306     case Builtin::BIfabsf:
9307     case Builtin::BIfabs:
9308     case Builtin::BIfabsl:
9309       return Builtin::BIcabsf;
9310     }
9311   }
9312   llvm_unreachable("Unable to convert function");
9313 }
9314 
9315 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9316   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9317   if (!FnInfo)
9318     return 0;
9319 
9320   switch (FDecl->getBuiltinID()) {
9321   default:
9322     return 0;
9323   case Builtin::BI__builtin_abs:
9324   case Builtin::BI__builtin_fabs:
9325   case Builtin::BI__builtin_fabsf:
9326   case Builtin::BI__builtin_fabsl:
9327   case Builtin::BI__builtin_labs:
9328   case Builtin::BI__builtin_llabs:
9329   case Builtin::BI__builtin_cabs:
9330   case Builtin::BI__builtin_cabsf:
9331   case Builtin::BI__builtin_cabsl:
9332   case Builtin::BIabs:
9333   case Builtin::BIlabs:
9334   case Builtin::BIllabs:
9335   case Builtin::BIfabs:
9336   case Builtin::BIfabsf:
9337   case Builtin::BIfabsl:
9338   case Builtin::BIcabs:
9339   case Builtin::BIcabsf:
9340   case Builtin::BIcabsl:
9341     return FDecl->getBuiltinID();
9342   }
9343   llvm_unreachable("Unknown Builtin type");
9344 }
9345 
9346 // If the replacement is valid, emit a note with replacement function.
9347 // Additionally, suggest including the proper header if not already included.
9348 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9349                             unsigned AbsKind, QualType ArgType) {
9350   bool EmitHeaderHint = true;
9351   const char *HeaderName = nullptr;
9352   const char *FunctionName = nullptr;
9353   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9354     FunctionName = "std::abs";
9355     if (ArgType->isIntegralOrEnumerationType()) {
9356       HeaderName = "cstdlib";
9357     } else if (ArgType->isRealFloatingType()) {
9358       HeaderName = "cmath";
9359     } else {
9360       llvm_unreachable("Invalid Type");
9361     }
9362 
9363     // Lookup all std::abs
9364     if (NamespaceDecl *Std = S.getStdNamespace()) {
9365       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9366       R.suppressDiagnostics();
9367       S.LookupQualifiedName(R, Std);
9368 
9369       for (const auto *I : R) {
9370         const FunctionDecl *FDecl = nullptr;
9371         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9372           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9373         } else {
9374           FDecl = dyn_cast<FunctionDecl>(I);
9375         }
9376         if (!FDecl)
9377           continue;
9378 
9379         // Found std::abs(), check that they are the right ones.
9380         if (FDecl->getNumParams() != 1)
9381           continue;
9382 
9383         // Check that the parameter type can handle the argument.
9384         QualType ParamType = FDecl->getParamDecl(0)->getType();
9385         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9386             S.Context.getTypeSize(ArgType) <=
9387                 S.Context.getTypeSize(ParamType)) {
9388           // Found a function, don't need the header hint.
9389           EmitHeaderHint = false;
9390           break;
9391         }
9392       }
9393     }
9394   } else {
9395     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9396     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9397 
9398     if (HeaderName) {
9399       DeclarationName DN(&S.Context.Idents.get(FunctionName));
9400       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9401       R.suppressDiagnostics();
9402       S.LookupName(R, S.getCurScope());
9403 
9404       if (R.isSingleResult()) {
9405         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9406         if (FD && FD->getBuiltinID() == AbsKind) {
9407           EmitHeaderHint = false;
9408         } else {
9409           return;
9410         }
9411       } else if (!R.empty()) {
9412         return;
9413       }
9414     }
9415   }
9416 
9417   S.Diag(Loc, diag::note_replace_abs_function)
9418       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9419 
9420   if (!HeaderName)
9421     return;
9422 
9423   if (!EmitHeaderHint)
9424     return;
9425 
9426   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9427                                                     << FunctionName;
9428 }
9429 
9430 template <std::size_t StrLen>
9431 static bool IsStdFunction(const FunctionDecl *FDecl,
9432                           const char (&Str)[StrLen]) {
9433   if (!FDecl)
9434     return false;
9435   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9436     return false;
9437   if (!FDecl->isInStdNamespace())
9438     return false;
9439 
9440   return true;
9441 }
9442 
9443 // Warn when using the wrong abs() function.
9444 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9445                                       const FunctionDecl *FDecl) {
9446   if (Call->getNumArgs() != 1)
9447     return;
9448 
9449   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9450   bool IsStdAbs = IsStdFunction(FDecl, "abs");
9451   if (AbsKind == 0 && !IsStdAbs)
9452     return;
9453 
9454   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9455   QualType ParamType = Call->getArg(0)->getType();
9456 
9457   // Unsigned types cannot be negative.  Suggest removing the absolute value
9458   // function call.
9459   if (ArgType->isUnsignedIntegerType()) {
9460     const char *FunctionName =
9461         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9462     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9463     Diag(Call->getExprLoc(), diag::note_remove_abs)
9464         << FunctionName
9465         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9466     return;
9467   }
9468 
9469   // Taking the absolute value of a pointer is very suspicious, they probably
9470   // wanted to index into an array, dereference a pointer, call a function, etc.
9471   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9472     unsigned DiagType = 0;
9473     if (ArgType->isFunctionType())
9474       DiagType = 1;
9475     else if (ArgType->isArrayType())
9476       DiagType = 2;
9477 
9478     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9479     return;
9480   }
9481 
9482   // std::abs has overloads which prevent most of the absolute value problems
9483   // from occurring.
9484   if (IsStdAbs)
9485     return;
9486 
9487   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
9488   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
9489 
9490   // The argument and parameter are the same kind.  Check if they are the right
9491   // size.
9492   if (ArgValueKind == ParamValueKind) {
9493     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
9494       return;
9495 
9496     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
9497     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
9498         << FDecl << ArgType << ParamType;
9499 
9500     if (NewAbsKind == 0)
9501       return;
9502 
9503     emitReplacement(*this, Call->getExprLoc(),
9504                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9505     return;
9506   }
9507 
9508   // ArgValueKind != ParamValueKind
9509   // The wrong type of absolute value function was used.  Attempt to find the
9510   // proper one.
9511   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
9512   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
9513   if (NewAbsKind == 0)
9514     return;
9515 
9516   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
9517       << FDecl << ParamValueKind << ArgValueKind;
9518 
9519   emitReplacement(*this, Call->getExprLoc(),
9520                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9521 }
9522 
9523 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
9524 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
9525                                 const FunctionDecl *FDecl) {
9526   if (!Call || !FDecl) return;
9527 
9528   // Ignore template specializations and macros.
9529   if (inTemplateInstantiation()) return;
9530   if (Call->getExprLoc().isMacroID()) return;
9531 
9532   // Only care about the one template argument, two function parameter std::max
9533   if (Call->getNumArgs() != 2) return;
9534   if (!IsStdFunction(FDecl, "max")) return;
9535   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
9536   if (!ArgList) return;
9537   if (ArgList->size() != 1) return;
9538 
9539   // Check that template type argument is unsigned integer.
9540   const auto& TA = ArgList->get(0);
9541   if (TA.getKind() != TemplateArgument::Type) return;
9542   QualType ArgType = TA.getAsType();
9543   if (!ArgType->isUnsignedIntegerType()) return;
9544 
9545   // See if either argument is a literal zero.
9546   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
9547     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
9548     if (!MTE) return false;
9549     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
9550     if (!Num) return false;
9551     if (Num->getValue() != 0) return false;
9552     return true;
9553   };
9554 
9555   const Expr *FirstArg = Call->getArg(0);
9556   const Expr *SecondArg = Call->getArg(1);
9557   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
9558   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
9559 
9560   // Only warn when exactly one argument is zero.
9561   if (IsFirstArgZero == IsSecondArgZero) return;
9562 
9563   SourceRange FirstRange = FirstArg->getSourceRange();
9564   SourceRange SecondRange = SecondArg->getSourceRange();
9565 
9566   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
9567 
9568   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
9569       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
9570 
9571   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
9572   SourceRange RemovalRange;
9573   if (IsFirstArgZero) {
9574     RemovalRange = SourceRange(FirstRange.getBegin(),
9575                                SecondRange.getBegin().getLocWithOffset(-1));
9576   } else {
9577     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
9578                                SecondRange.getEnd());
9579   }
9580 
9581   Diag(Call->getExprLoc(), diag::note_remove_max_call)
9582         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
9583         << FixItHint::CreateRemoval(RemovalRange);
9584 }
9585 
9586 //===--- CHECK: Standard memory functions ---------------------------------===//
9587 
9588 /// Takes the expression passed to the size_t parameter of functions
9589 /// such as memcmp, strncat, etc and warns if it's a comparison.
9590 ///
9591 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
9592 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9593                                            IdentifierInfo *FnName,
9594                                            SourceLocation FnLoc,
9595                                            SourceLocation RParenLoc) {
9596   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9597   if (!Size)
9598     return false;
9599 
9600   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9601   if (!Size->isComparisonOp() && !Size->isLogicalOp())
9602     return false;
9603 
9604   SourceRange SizeRange = Size->getSourceRange();
9605   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9606       << SizeRange << FnName;
9607   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9608       << FnName
9609       << FixItHint::CreateInsertion(
9610              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9611       << FixItHint::CreateRemoval(RParenLoc);
9612   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9613       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9614       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9615                                     ")");
9616 
9617   return true;
9618 }
9619 
9620 /// Determine whether the given type is or contains a dynamic class type
9621 /// (e.g., whether it has a vtable).
9622 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9623                                                      bool &IsContained) {
9624   // Look through array types while ignoring qualifiers.
9625   const Type *Ty = T->getBaseElementTypeUnsafe();
9626   IsContained = false;
9627 
9628   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9629   RD = RD ? RD->getDefinition() : nullptr;
9630   if (!RD || RD->isInvalidDecl())
9631     return nullptr;
9632 
9633   if (RD->isDynamicClass())
9634     return RD;
9635 
9636   // Check all the fields.  If any bases were dynamic, the class is dynamic.
9637   // It's impossible for a class to transitively contain itself by value, so
9638   // infinite recursion is impossible.
9639   for (auto *FD : RD->fields()) {
9640     bool SubContained;
9641     if (const CXXRecordDecl *ContainedRD =
9642             getContainedDynamicClass(FD->getType(), SubContained)) {
9643       IsContained = true;
9644       return ContainedRD;
9645     }
9646   }
9647 
9648   return nullptr;
9649 }
9650 
9651 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9652   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9653     if (Unary->getKind() == UETT_SizeOf)
9654       return Unary;
9655   return nullptr;
9656 }
9657 
9658 /// If E is a sizeof expression, returns its argument expression,
9659 /// otherwise returns NULL.
9660 static const Expr *getSizeOfExprArg(const Expr *E) {
9661   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9662     if (!SizeOf->isArgumentType())
9663       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9664   return nullptr;
9665 }
9666 
9667 /// If E is a sizeof expression, returns its argument type.
9668 static QualType getSizeOfArgType(const Expr *E) {
9669   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9670     return SizeOf->getTypeOfArgument();
9671   return QualType();
9672 }
9673 
9674 namespace {
9675 
9676 struct SearchNonTrivialToInitializeField
9677     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9678   using Super =
9679       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9680 
9681   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9682 
9683   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9684                      SourceLocation SL) {
9685     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9686       asDerived().visitArray(PDIK, AT, SL);
9687       return;
9688     }
9689 
9690     Super::visitWithKind(PDIK, FT, SL);
9691   }
9692 
9693   void visitARCStrong(QualType FT, SourceLocation SL) {
9694     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9695   }
9696   void visitARCWeak(QualType FT, SourceLocation SL) {
9697     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9698   }
9699   void visitStruct(QualType FT, SourceLocation SL) {
9700     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9701       visit(FD->getType(), FD->getLocation());
9702   }
9703   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9704                   const ArrayType *AT, SourceLocation SL) {
9705     visit(getContext().getBaseElementType(AT), SL);
9706   }
9707   void visitTrivial(QualType FT, SourceLocation SL) {}
9708 
9709   static void diag(QualType RT, const Expr *E, Sema &S) {
9710     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9711   }
9712 
9713   ASTContext &getContext() { return S.getASTContext(); }
9714 
9715   const Expr *E;
9716   Sema &S;
9717 };
9718 
9719 struct SearchNonTrivialToCopyField
9720     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9721   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9722 
9723   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9724 
9725   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9726                      SourceLocation SL) {
9727     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9728       asDerived().visitArray(PCK, AT, SL);
9729       return;
9730     }
9731 
9732     Super::visitWithKind(PCK, FT, SL);
9733   }
9734 
9735   void visitARCStrong(QualType FT, SourceLocation SL) {
9736     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9737   }
9738   void visitARCWeak(QualType FT, SourceLocation SL) {
9739     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9740   }
9741   void visitStruct(QualType FT, SourceLocation SL) {
9742     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9743       visit(FD->getType(), FD->getLocation());
9744   }
9745   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9746                   SourceLocation SL) {
9747     visit(getContext().getBaseElementType(AT), SL);
9748   }
9749   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9750                 SourceLocation SL) {}
9751   void visitTrivial(QualType FT, SourceLocation SL) {}
9752   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9753 
9754   static void diag(QualType RT, const Expr *E, Sema &S) {
9755     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9756   }
9757 
9758   ASTContext &getContext() { return S.getASTContext(); }
9759 
9760   const Expr *E;
9761   Sema &S;
9762 };
9763 
9764 }
9765 
9766 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
9767 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9768   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9769 
9770   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9771     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9772       return false;
9773 
9774     return doesExprLikelyComputeSize(BO->getLHS()) ||
9775            doesExprLikelyComputeSize(BO->getRHS());
9776   }
9777 
9778   return getAsSizeOfExpr(SizeofExpr) != nullptr;
9779 }
9780 
9781 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9782 ///
9783 /// \code
9784 ///   #define MACRO 0
9785 ///   foo(MACRO);
9786 ///   foo(0);
9787 /// \endcode
9788 ///
9789 /// This should return true for the first call to foo, but not for the second
9790 /// (regardless of whether foo is a macro or function).
9791 static bool isArgumentExpandedFromMacro(SourceManager &SM,
9792                                         SourceLocation CallLoc,
9793                                         SourceLocation ArgLoc) {
9794   if (!CallLoc.isMacroID())
9795     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9796 
9797   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9798          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9799 }
9800 
9801 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9802 /// last two arguments transposed.
9803 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9804   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9805     return;
9806 
9807   const Expr *SizeArg =
9808     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9809 
9810   auto isLiteralZero = [](const Expr *E) {
9811     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9812   };
9813 
9814   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9815   SourceLocation CallLoc = Call->getRParenLoc();
9816   SourceManager &SM = S.getSourceManager();
9817   if (isLiteralZero(SizeArg) &&
9818       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9819 
9820     SourceLocation DiagLoc = SizeArg->getExprLoc();
9821 
9822     // Some platforms #define bzero to __builtin_memset. See if this is the
9823     // case, and if so, emit a better diagnostic.
9824     if (BId == Builtin::BIbzero ||
9825         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9826                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
9827       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9828       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9829     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9830       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9831       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9832     }
9833     return;
9834   }
9835 
9836   // If the second argument to a memset is a sizeof expression and the third
9837   // isn't, this is also likely an error. This should catch
9838   // 'memset(buf, sizeof(buf), 0xff)'.
9839   if (BId == Builtin::BImemset &&
9840       doesExprLikelyComputeSize(Call->getArg(1)) &&
9841       !doesExprLikelyComputeSize(Call->getArg(2))) {
9842     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9843     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9844     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9845     return;
9846   }
9847 }
9848 
9849 /// Check for dangerous or invalid arguments to memset().
9850 ///
9851 /// This issues warnings on known problematic, dangerous or unspecified
9852 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9853 /// function calls.
9854 ///
9855 /// \param Call The call expression to diagnose.
9856 void Sema::CheckMemaccessArguments(const CallExpr *Call,
9857                                    unsigned BId,
9858                                    IdentifierInfo *FnName) {
9859   assert(BId != 0);
9860 
9861   // It is possible to have a non-standard definition of memset.  Validate
9862   // we have enough arguments, and if not, abort further checking.
9863   unsigned ExpectedNumArgs =
9864       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9865   if (Call->getNumArgs() < ExpectedNumArgs)
9866     return;
9867 
9868   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9869                       BId == Builtin::BIstrndup ? 1 : 2);
9870   unsigned LenArg =
9871       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9872   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9873 
9874   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9875                                      Call->getBeginLoc(), Call->getRParenLoc()))
9876     return;
9877 
9878   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9879   CheckMemaccessSize(*this, BId, Call);
9880 
9881   // We have special checking when the length is a sizeof expression.
9882   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9883   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9884   llvm::FoldingSetNodeID SizeOfArgID;
9885 
9886   // Although widely used, 'bzero' is not a standard function. Be more strict
9887   // with the argument types before allowing diagnostics and only allow the
9888   // form bzero(ptr, sizeof(...)).
9889   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9890   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9891     return;
9892 
9893   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9894     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9895     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9896 
9897     QualType DestTy = Dest->getType();
9898     QualType PointeeTy;
9899     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9900       PointeeTy = DestPtrTy->getPointeeType();
9901 
9902       // Never warn about void type pointers. This can be used to suppress
9903       // false positives.
9904       if (PointeeTy->isVoidType())
9905         continue;
9906 
9907       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9908       // actually comparing the expressions for equality. Because computing the
9909       // expression IDs can be expensive, we only do this if the diagnostic is
9910       // enabled.
9911       if (SizeOfArg &&
9912           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9913                            SizeOfArg->getExprLoc())) {
9914         // We only compute IDs for expressions if the warning is enabled, and
9915         // cache the sizeof arg's ID.
9916         if (SizeOfArgID == llvm::FoldingSetNodeID())
9917           SizeOfArg->Profile(SizeOfArgID, Context, true);
9918         llvm::FoldingSetNodeID DestID;
9919         Dest->Profile(DestID, Context, true);
9920         if (DestID == SizeOfArgID) {
9921           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9922           //       over sizeof(src) as well.
9923           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9924           StringRef ReadableName = FnName->getName();
9925 
9926           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9927             if (UnaryOp->getOpcode() == UO_AddrOf)
9928               ActionIdx = 1; // If its an address-of operator, just remove it.
9929           if (!PointeeTy->isIncompleteType() &&
9930               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9931             ActionIdx = 2; // If the pointee's size is sizeof(char),
9932                            // suggest an explicit length.
9933 
9934           // If the function is defined as a builtin macro, do not show macro
9935           // expansion.
9936           SourceLocation SL = SizeOfArg->getExprLoc();
9937           SourceRange DSR = Dest->getSourceRange();
9938           SourceRange SSR = SizeOfArg->getSourceRange();
9939           SourceManager &SM = getSourceManager();
9940 
9941           if (SM.isMacroArgExpansion(SL)) {
9942             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9943             SL = SM.getSpellingLoc(SL);
9944             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9945                              SM.getSpellingLoc(DSR.getEnd()));
9946             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9947                              SM.getSpellingLoc(SSR.getEnd()));
9948           }
9949 
9950           DiagRuntimeBehavior(SL, SizeOfArg,
9951                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9952                                 << ReadableName
9953                                 << PointeeTy
9954                                 << DestTy
9955                                 << DSR
9956                                 << SSR);
9957           DiagRuntimeBehavior(SL, SizeOfArg,
9958                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9959                                 << ActionIdx
9960                                 << SSR);
9961 
9962           break;
9963         }
9964       }
9965 
9966       // Also check for cases where the sizeof argument is the exact same
9967       // type as the memory argument, and where it points to a user-defined
9968       // record type.
9969       if (SizeOfArgTy != QualType()) {
9970         if (PointeeTy->isRecordType() &&
9971             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9972           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9973                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
9974                                 << FnName << SizeOfArgTy << ArgIdx
9975                                 << PointeeTy << Dest->getSourceRange()
9976                                 << LenExpr->getSourceRange());
9977           break;
9978         }
9979       }
9980     } else if (DestTy->isArrayType()) {
9981       PointeeTy = DestTy;
9982     }
9983 
9984     if (PointeeTy == QualType())
9985       continue;
9986 
9987     // Always complain about dynamic classes.
9988     bool IsContained;
9989     if (const CXXRecordDecl *ContainedRD =
9990             getContainedDynamicClass(PointeeTy, IsContained)) {
9991 
9992       unsigned OperationType = 0;
9993       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9994       // "overwritten" if we're warning about the destination for any call
9995       // but memcmp; otherwise a verb appropriate to the call.
9996       if (ArgIdx != 0 || IsCmp) {
9997         if (BId == Builtin::BImemcpy)
9998           OperationType = 1;
9999         else if(BId == Builtin::BImemmove)
10000           OperationType = 2;
10001         else if (IsCmp)
10002           OperationType = 3;
10003       }
10004 
10005       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10006                           PDiag(diag::warn_dyn_class_memaccess)
10007                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10008                               << IsContained << ContainedRD << OperationType
10009                               << Call->getCallee()->getSourceRange());
10010     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10011              BId != Builtin::BImemset)
10012       DiagRuntimeBehavior(
10013         Dest->getExprLoc(), Dest,
10014         PDiag(diag::warn_arc_object_memaccess)
10015           << ArgIdx << FnName << PointeeTy
10016           << Call->getCallee()->getSourceRange());
10017     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10018       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10019           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10020         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10021                             PDiag(diag::warn_cstruct_memaccess)
10022                                 << ArgIdx << FnName << PointeeTy << 0);
10023         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10024       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10025                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10026         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10027                             PDiag(diag::warn_cstruct_memaccess)
10028                                 << ArgIdx << FnName << PointeeTy << 1);
10029         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10030       } else {
10031         continue;
10032       }
10033     } else
10034       continue;
10035 
10036     DiagRuntimeBehavior(
10037       Dest->getExprLoc(), Dest,
10038       PDiag(diag::note_bad_memaccess_silence)
10039         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10040     break;
10041   }
10042 }
10043 
10044 // A little helper routine: ignore addition and subtraction of integer literals.
10045 // This intentionally does not ignore all integer constant expressions because
10046 // we don't want to remove sizeof().
10047 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10048   Ex = Ex->IgnoreParenCasts();
10049 
10050   while (true) {
10051     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10052     if (!BO || !BO->isAdditiveOp())
10053       break;
10054 
10055     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10056     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10057 
10058     if (isa<IntegerLiteral>(RHS))
10059       Ex = LHS;
10060     else if (isa<IntegerLiteral>(LHS))
10061       Ex = RHS;
10062     else
10063       break;
10064   }
10065 
10066   return Ex;
10067 }
10068 
10069 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10070                                                       ASTContext &Context) {
10071   // Only handle constant-sized or VLAs, but not flexible members.
10072   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10073     // Only issue the FIXIT for arrays of size > 1.
10074     if (CAT->getSize().getSExtValue() <= 1)
10075       return false;
10076   } else if (!Ty->isVariableArrayType()) {
10077     return false;
10078   }
10079   return true;
10080 }
10081 
10082 // Warn if the user has made the 'size' argument to strlcpy or strlcat
10083 // be the size of the source, instead of the destination.
10084 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10085                                     IdentifierInfo *FnName) {
10086 
10087   // Don't crash if the user has the wrong number of arguments
10088   unsigned NumArgs = Call->getNumArgs();
10089   if ((NumArgs != 3) && (NumArgs != 4))
10090     return;
10091 
10092   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10093   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10094   const Expr *CompareWithSrc = nullptr;
10095 
10096   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10097                                      Call->getBeginLoc(), Call->getRParenLoc()))
10098     return;
10099 
10100   // Look for 'strlcpy(dst, x, sizeof(x))'
10101   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10102     CompareWithSrc = Ex;
10103   else {
10104     // Look for 'strlcpy(dst, x, strlen(x))'
10105     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10106       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10107           SizeCall->getNumArgs() == 1)
10108         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10109     }
10110   }
10111 
10112   if (!CompareWithSrc)
10113     return;
10114 
10115   // Determine if the argument to sizeof/strlen is equal to the source
10116   // argument.  In principle there's all kinds of things you could do
10117   // here, for instance creating an == expression and evaluating it with
10118   // EvaluateAsBooleanCondition, but this uses a more direct technique:
10119   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10120   if (!SrcArgDRE)
10121     return;
10122 
10123   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10124   if (!CompareWithSrcDRE ||
10125       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10126     return;
10127 
10128   const Expr *OriginalSizeArg = Call->getArg(2);
10129   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10130       << OriginalSizeArg->getSourceRange() << FnName;
10131 
10132   // Output a FIXIT hint if the destination is an array (rather than a
10133   // pointer to an array).  This could be enhanced to handle some
10134   // pointers if we know the actual size, like if DstArg is 'array+2'
10135   // we could say 'sizeof(array)-2'.
10136   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10137   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10138     return;
10139 
10140   SmallString<128> sizeString;
10141   llvm::raw_svector_ostream OS(sizeString);
10142   OS << "sizeof(";
10143   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10144   OS << ")";
10145 
10146   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10147       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10148                                       OS.str());
10149 }
10150 
10151 /// Check if two expressions refer to the same declaration.
10152 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10153   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10154     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10155       return D1->getDecl() == D2->getDecl();
10156   return false;
10157 }
10158 
10159 static const Expr *getStrlenExprArg(const Expr *E) {
10160   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10161     const FunctionDecl *FD = CE->getDirectCallee();
10162     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10163       return nullptr;
10164     return CE->getArg(0)->IgnoreParenCasts();
10165   }
10166   return nullptr;
10167 }
10168 
10169 // Warn on anti-patterns as the 'size' argument to strncat.
10170 // The correct size argument should look like following:
10171 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10172 void Sema::CheckStrncatArguments(const CallExpr *CE,
10173                                  IdentifierInfo *FnName) {
10174   // Don't crash if the user has the wrong number of arguments.
10175   if (CE->getNumArgs() < 3)
10176     return;
10177   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10178   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10179   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10180 
10181   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10182                                      CE->getRParenLoc()))
10183     return;
10184 
10185   // Identify common expressions, which are wrongly used as the size argument
10186   // to strncat and may lead to buffer overflows.
10187   unsigned PatternType = 0;
10188   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10189     // - sizeof(dst)
10190     if (referToTheSameDecl(SizeOfArg, DstArg))
10191       PatternType = 1;
10192     // - sizeof(src)
10193     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10194       PatternType = 2;
10195   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10196     if (BE->getOpcode() == BO_Sub) {
10197       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10198       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10199       // - sizeof(dst) - strlen(dst)
10200       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10201           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10202         PatternType = 1;
10203       // - sizeof(src) - (anything)
10204       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10205         PatternType = 2;
10206     }
10207   }
10208 
10209   if (PatternType == 0)
10210     return;
10211 
10212   // Generate the diagnostic.
10213   SourceLocation SL = LenArg->getBeginLoc();
10214   SourceRange SR = LenArg->getSourceRange();
10215   SourceManager &SM = getSourceManager();
10216 
10217   // If the function is defined as a builtin macro, do not show macro expansion.
10218   if (SM.isMacroArgExpansion(SL)) {
10219     SL = SM.getSpellingLoc(SL);
10220     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10221                      SM.getSpellingLoc(SR.getEnd()));
10222   }
10223 
10224   // Check if the destination is an array (rather than a pointer to an array).
10225   QualType DstTy = DstArg->getType();
10226   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10227                                                                     Context);
10228   if (!isKnownSizeArray) {
10229     if (PatternType == 1)
10230       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10231     else
10232       Diag(SL, diag::warn_strncat_src_size) << SR;
10233     return;
10234   }
10235 
10236   if (PatternType == 1)
10237     Diag(SL, diag::warn_strncat_large_size) << SR;
10238   else
10239     Diag(SL, diag::warn_strncat_src_size) << SR;
10240 
10241   SmallString<128> sizeString;
10242   llvm::raw_svector_ostream OS(sizeString);
10243   OS << "sizeof(";
10244   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10245   OS << ") - ";
10246   OS << "strlen(";
10247   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10248   OS << ") - 1";
10249 
10250   Diag(SL, diag::note_strncat_wrong_size)
10251     << FixItHint::CreateReplacement(SR, OS.str());
10252 }
10253 
10254 namespace {
10255 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10256                                 const UnaryOperator *UnaryExpr,
10257                                 const VarDecl *Var) {
10258   StorageClass Class = Var->getStorageClass();
10259   if (Class == StorageClass::SC_Extern ||
10260       Class == StorageClass::SC_PrivateExtern ||
10261       Var->getType()->isReferenceType())
10262     return;
10263 
10264   S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10265       << CalleeName << Var;
10266 }
10267 
10268 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10269                                 const UnaryOperator *UnaryExpr, const Decl *D) {
10270   if (const auto *Field = dyn_cast<FieldDecl>(D))
10271     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10272         << CalleeName << Field;
10273 }
10274 
10275 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10276                                  const UnaryOperator *UnaryExpr) {
10277   if (UnaryExpr->getOpcode() != UnaryOperator::Opcode::UO_AddrOf)
10278     return;
10279 
10280   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr()))
10281     if (const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()))
10282       return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Var);
10283 
10284   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10285     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10286                                       Lvalue->getMemberDecl());
10287 }
10288 
10289 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
10290                                   const DeclRefExpr *Lvalue) {
10291   if (!Lvalue->getType()->isArrayType())
10292     return;
10293 
10294   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
10295   if (Var == nullptr)
10296     return;
10297 
10298   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
10299       << CalleeName << Var;
10300 }
10301 } // namespace
10302 
10303 /// Alerts the user that they are attempting to free a non-malloc'd object.
10304 void Sema::CheckFreeArguments(const CallExpr *E) {
10305   const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
10306   const std::string CalleeName =
10307       dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
10308 
10309   if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
10310     return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
10311 
10312   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
10313     return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
10314 }
10315 
10316 void
10317 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10318                          SourceLocation ReturnLoc,
10319                          bool isObjCMethod,
10320                          const AttrVec *Attrs,
10321                          const FunctionDecl *FD) {
10322   // Check if the return value is null but should not be.
10323   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10324        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10325       CheckNonNullExpr(*this, RetValExp))
10326     Diag(ReturnLoc, diag::warn_null_ret)
10327       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10328 
10329   // C++11 [basic.stc.dynamic.allocation]p4:
10330   //   If an allocation function declared with a non-throwing
10331   //   exception-specification fails to allocate storage, it shall return
10332   //   a null pointer. Any other allocation function that fails to allocate
10333   //   storage shall indicate failure only by throwing an exception [...]
10334   if (FD) {
10335     OverloadedOperatorKind Op = FD->getOverloadedOperator();
10336     if (Op == OO_New || Op == OO_Array_New) {
10337       const FunctionProtoType *Proto
10338         = FD->getType()->castAs<FunctionProtoType>();
10339       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10340           CheckNonNullExpr(*this, RetValExp))
10341         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10342           << FD << getLangOpts().CPlusPlus11;
10343     }
10344   }
10345 
10346   // PPC MMA non-pointer types are not allowed as return type. Checking the type
10347   // here prevent the user from using a PPC MMA type as trailing return type.
10348   if (Context.getTargetInfo().getTriple().isPPC64())
10349     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
10350 }
10351 
10352 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10353 
10354 /// Check for comparisons of floating point operands using != and ==.
10355 /// Issue a warning if these are no self-comparisons, as they are not likely
10356 /// to do what the programmer intended.
10357 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10358   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10359   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10360 
10361   // Special case: check for x == x (which is OK).
10362   // Do not emit warnings for such cases.
10363   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10364     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10365       if (DRL->getDecl() == DRR->getDecl())
10366         return;
10367 
10368   // Special case: check for comparisons against literals that can be exactly
10369   //  represented by APFloat.  In such cases, do not emit a warning.  This
10370   //  is a heuristic: often comparison against such literals are used to
10371   //  detect if a value in a variable has not changed.  This clearly can
10372   //  lead to false negatives.
10373   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10374     if (FLL->isExact())
10375       return;
10376   } else
10377     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10378       if (FLR->isExact())
10379         return;
10380 
10381   // Check for comparisons with builtin types.
10382   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10383     if (CL->getBuiltinCallee())
10384       return;
10385 
10386   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10387     if (CR->getBuiltinCallee())
10388       return;
10389 
10390   // Emit the diagnostic.
10391   Diag(Loc, diag::warn_floatingpoint_eq)
10392     << LHS->getSourceRange() << RHS->getSourceRange();
10393 }
10394 
10395 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10396 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10397 
10398 namespace {
10399 
10400 /// Structure recording the 'active' range of an integer-valued
10401 /// expression.
10402 struct IntRange {
10403   /// The number of bits active in the int. Note that this includes exactly one
10404   /// sign bit if !NonNegative.
10405   unsigned Width;
10406 
10407   /// True if the int is known not to have negative values. If so, all leading
10408   /// bits before Width are known zero, otherwise they are known to be the
10409   /// same as the MSB within Width.
10410   bool NonNegative;
10411 
10412   IntRange(unsigned Width, bool NonNegative)
10413       : Width(Width), NonNegative(NonNegative) {}
10414 
10415   /// Number of bits excluding the sign bit.
10416   unsigned valueBits() const {
10417     return NonNegative ? Width : Width - 1;
10418   }
10419 
10420   /// Returns the range of the bool type.
10421   static IntRange forBoolType() {
10422     return IntRange(1, true);
10423   }
10424 
10425   /// Returns the range of an opaque value of the given integral type.
10426   static IntRange forValueOfType(ASTContext &C, QualType T) {
10427     return forValueOfCanonicalType(C,
10428                           T->getCanonicalTypeInternal().getTypePtr());
10429   }
10430 
10431   /// Returns the range of an opaque value of a canonical integral type.
10432   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10433     assert(T->isCanonicalUnqualified());
10434 
10435     if (const VectorType *VT = dyn_cast<VectorType>(T))
10436       T = VT->getElementType().getTypePtr();
10437     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10438       T = CT->getElementType().getTypePtr();
10439     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10440       T = AT->getValueType().getTypePtr();
10441 
10442     if (!C.getLangOpts().CPlusPlus) {
10443       // For enum types in C code, use the underlying datatype.
10444       if (const EnumType *ET = dyn_cast<EnumType>(T))
10445         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
10446     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
10447       // For enum types in C++, use the known bit width of the enumerators.
10448       EnumDecl *Enum = ET->getDecl();
10449       // In C++11, enums can have a fixed underlying type. Use this type to
10450       // compute the range.
10451       if (Enum->isFixed()) {
10452         return IntRange(C.getIntWidth(QualType(T, 0)),
10453                         !ET->isSignedIntegerOrEnumerationType());
10454       }
10455 
10456       unsigned NumPositive = Enum->getNumPositiveBits();
10457       unsigned NumNegative = Enum->getNumNegativeBits();
10458 
10459       if (NumNegative == 0)
10460         return IntRange(NumPositive, true/*NonNegative*/);
10461       else
10462         return IntRange(std::max(NumPositive + 1, NumNegative),
10463                         false/*NonNegative*/);
10464     }
10465 
10466     if (const auto *EIT = dyn_cast<ExtIntType>(T))
10467       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10468 
10469     const BuiltinType *BT = cast<BuiltinType>(T);
10470     assert(BT->isInteger());
10471 
10472     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10473   }
10474 
10475   /// Returns the "target" range of a canonical integral type, i.e.
10476   /// the range of values expressible in the type.
10477   ///
10478   /// This matches forValueOfCanonicalType except that enums have the
10479   /// full range of their type, not the range of their enumerators.
10480   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
10481     assert(T->isCanonicalUnqualified());
10482 
10483     if (const VectorType *VT = dyn_cast<VectorType>(T))
10484       T = VT->getElementType().getTypePtr();
10485     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10486       T = CT->getElementType().getTypePtr();
10487     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10488       T = AT->getValueType().getTypePtr();
10489     if (const EnumType *ET = dyn_cast<EnumType>(T))
10490       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
10491 
10492     if (const auto *EIT = dyn_cast<ExtIntType>(T))
10493       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10494 
10495     const BuiltinType *BT = cast<BuiltinType>(T);
10496     assert(BT->isInteger());
10497 
10498     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10499   }
10500 
10501   /// Returns the supremum of two ranges: i.e. their conservative merge.
10502   static IntRange join(IntRange L, IntRange R) {
10503     bool Unsigned = L.NonNegative && R.NonNegative;
10504     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
10505                     L.NonNegative && R.NonNegative);
10506   }
10507 
10508   /// Return the range of a bitwise-AND of the two ranges.
10509   static IntRange bit_and(IntRange L, IntRange R) {
10510     unsigned Bits = std::max(L.Width, R.Width);
10511     bool NonNegative = false;
10512     if (L.NonNegative) {
10513       Bits = std::min(Bits, L.Width);
10514       NonNegative = true;
10515     }
10516     if (R.NonNegative) {
10517       Bits = std::min(Bits, R.Width);
10518       NonNegative = true;
10519     }
10520     return IntRange(Bits, NonNegative);
10521   }
10522 
10523   /// Return the range of a sum of the two ranges.
10524   static IntRange sum(IntRange L, IntRange R) {
10525     bool Unsigned = L.NonNegative && R.NonNegative;
10526     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
10527                     Unsigned);
10528   }
10529 
10530   /// Return the range of a difference of the two ranges.
10531   static IntRange difference(IntRange L, IntRange R) {
10532     // We need a 1-bit-wider range if:
10533     //   1) LHS can be negative: least value can be reduced.
10534     //   2) RHS can be negative: greatest value can be increased.
10535     bool CanWiden = !L.NonNegative || !R.NonNegative;
10536     bool Unsigned = L.NonNegative && R.Width == 0;
10537     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
10538                         !Unsigned,
10539                     Unsigned);
10540   }
10541 
10542   /// Return the range of a product of the two ranges.
10543   static IntRange product(IntRange L, IntRange R) {
10544     // If both LHS and RHS can be negative, we can form
10545     //   -2^L * -2^R = 2^(L + R)
10546     // which requires L + R + 1 value bits to represent.
10547     bool CanWiden = !L.NonNegative && !R.NonNegative;
10548     bool Unsigned = L.NonNegative && R.NonNegative;
10549     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
10550                     Unsigned);
10551   }
10552 
10553   /// Return the range of a remainder operation between the two ranges.
10554   static IntRange rem(IntRange L, IntRange R) {
10555     // The result of a remainder can't be larger than the result of
10556     // either side. The sign of the result is the sign of the LHS.
10557     bool Unsigned = L.NonNegative;
10558     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
10559                     Unsigned);
10560   }
10561 };
10562 
10563 } // namespace
10564 
10565 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
10566                               unsigned MaxWidth) {
10567   if (value.isSigned() && value.isNegative())
10568     return IntRange(value.getMinSignedBits(), false);
10569 
10570   if (value.getBitWidth() > MaxWidth)
10571     value = value.trunc(MaxWidth);
10572 
10573   // isNonNegative() just checks the sign bit without considering
10574   // signedness.
10575   return IntRange(value.getActiveBits(), true);
10576 }
10577 
10578 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
10579                               unsigned MaxWidth) {
10580   if (result.isInt())
10581     return GetValueRange(C, result.getInt(), MaxWidth);
10582 
10583   if (result.isVector()) {
10584     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
10585     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
10586       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
10587       R = IntRange::join(R, El);
10588     }
10589     return R;
10590   }
10591 
10592   if (result.isComplexInt()) {
10593     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
10594     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
10595     return IntRange::join(R, I);
10596   }
10597 
10598   // This can happen with lossless casts to intptr_t of "based" lvalues.
10599   // Assume it might use arbitrary bits.
10600   // FIXME: The only reason we need to pass the type in here is to get
10601   // the sign right on this one case.  It would be nice if APValue
10602   // preserved this.
10603   assert(result.isLValue() || result.isAddrLabelDiff());
10604   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
10605 }
10606 
10607 static QualType GetExprType(const Expr *E) {
10608   QualType Ty = E->getType();
10609   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
10610     Ty = AtomicRHS->getValueType();
10611   return Ty;
10612 }
10613 
10614 /// Pseudo-evaluate the given integer expression, estimating the
10615 /// range of values it might take.
10616 ///
10617 /// \param MaxWidth The width to which the value will be truncated.
10618 /// \param Approximate If \c true, return a likely range for the result: in
10619 ///        particular, assume that aritmetic on narrower types doesn't leave
10620 ///        those types. If \c false, return a range including all possible
10621 ///        result values.
10622 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
10623                              bool InConstantContext, bool Approximate) {
10624   E = E->IgnoreParens();
10625 
10626   // Try a full evaluation first.
10627   Expr::EvalResult result;
10628   if (E->EvaluateAsRValue(result, C, InConstantContext))
10629     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
10630 
10631   // I think we only want to look through implicit casts here; if the
10632   // user has an explicit widening cast, we should treat the value as
10633   // being of the new, wider type.
10634   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
10635     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
10636       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
10637                           Approximate);
10638 
10639     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
10640 
10641     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
10642                          CE->getCastKind() == CK_BooleanToSignedIntegral;
10643 
10644     // Assume that non-integer casts can span the full range of the type.
10645     if (!isIntegerCast)
10646       return OutputTypeRange;
10647 
10648     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
10649                                      std::min(MaxWidth, OutputTypeRange.Width),
10650                                      InConstantContext, Approximate);
10651 
10652     // Bail out if the subexpr's range is as wide as the cast type.
10653     if (SubRange.Width >= OutputTypeRange.Width)
10654       return OutputTypeRange;
10655 
10656     // Otherwise, we take the smaller width, and we're non-negative if
10657     // either the output type or the subexpr is.
10658     return IntRange(SubRange.Width,
10659                     SubRange.NonNegative || OutputTypeRange.NonNegative);
10660   }
10661 
10662   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10663     // If we can fold the condition, just take that operand.
10664     bool CondResult;
10665     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
10666       return GetExprRange(C,
10667                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
10668                           MaxWidth, InConstantContext, Approximate);
10669 
10670     // Otherwise, conservatively merge.
10671     // GetExprRange requires an integer expression, but a throw expression
10672     // results in a void type.
10673     Expr *E = CO->getTrueExpr();
10674     IntRange L = E->getType()->isVoidType()
10675                      ? IntRange{0, true}
10676                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10677     E = CO->getFalseExpr();
10678     IntRange R = E->getType()->isVoidType()
10679                      ? IntRange{0, true}
10680                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10681     return IntRange::join(L, R);
10682   }
10683 
10684   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10685     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
10686 
10687     switch (BO->getOpcode()) {
10688     case BO_Cmp:
10689       llvm_unreachable("builtin <=> should have class type");
10690 
10691     // Boolean-valued operations are single-bit and positive.
10692     case BO_LAnd:
10693     case BO_LOr:
10694     case BO_LT:
10695     case BO_GT:
10696     case BO_LE:
10697     case BO_GE:
10698     case BO_EQ:
10699     case BO_NE:
10700       return IntRange::forBoolType();
10701 
10702     // The type of the assignments is the type of the LHS, so the RHS
10703     // is not necessarily the same type.
10704     case BO_MulAssign:
10705     case BO_DivAssign:
10706     case BO_RemAssign:
10707     case BO_AddAssign:
10708     case BO_SubAssign:
10709     case BO_XorAssign:
10710     case BO_OrAssign:
10711       // TODO: bitfields?
10712       return IntRange::forValueOfType(C, GetExprType(E));
10713 
10714     // Simple assignments just pass through the RHS, which will have
10715     // been coerced to the LHS type.
10716     case BO_Assign:
10717       // TODO: bitfields?
10718       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10719                           Approximate);
10720 
10721     // Operations with opaque sources are black-listed.
10722     case BO_PtrMemD:
10723     case BO_PtrMemI:
10724       return IntRange::forValueOfType(C, GetExprType(E));
10725 
10726     // Bitwise-and uses the *infinum* of the two source ranges.
10727     case BO_And:
10728     case BO_AndAssign:
10729       Combine = IntRange::bit_and;
10730       break;
10731 
10732     // Left shift gets black-listed based on a judgement call.
10733     case BO_Shl:
10734       // ...except that we want to treat '1 << (blah)' as logically
10735       // positive.  It's an important idiom.
10736       if (IntegerLiteral *I
10737             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10738         if (I->getValue() == 1) {
10739           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10740           return IntRange(R.Width, /*NonNegative*/ true);
10741         }
10742       }
10743       LLVM_FALLTHROUGH;
10744 
10745     case BO_ShlAssign:
10746       return IntRange::forValueOfType(C, GetExprType(E));
10747 
10748     // Right shift by a constant can narrow its left argument.
10749     case BO_Shr:
10750     case BO_ShrAssign: {
10751       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
10752                                 Approximate);
10753 
10754       // If the shift amount is a positive constant, drop the width by
10755       // that much.
10756       if (Optional<llvm::APSInt> shift =
10757               BO->getRHS()->getIntegerConstantExpr(C)) {
10758         if (shift->isNonNegative()) {
10759           unsigned zext = shift->getZExtValue();
10760           if (zext >= L.Width)
10761             L.Width = (L.NonNegative ? 0 : 1);
10762           else
10763             L.Width -= zext;
10764         }
10765       }
10766 
10767       return L;
10768     }
10769 
10770     // Comma acts as its right operand.
10771     case BO_Comma:
10772       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10773                           Approximate);
10774 
10775     case BO_Add:
10776       if (!Approximate)
10777         Combine = IntRange::sum;
10778       break;
10779 
10780     case BO_Sub:
10781       if (BO->getLHS()->getType()->isPointerType())
10782         return IntRange::forValueOfType(C, GetExprType(E));
10783       if (!Approximate)
10784         Combine = IntRange::difference;
10785       break;
10786 
10787     case BO_Mul:
10788       if (!Approximate)
10789         Combine = IntRange::product;
10790       break;
10791 
10792     // The width of a division result is mostly determined by the size
10793     // of the LHS.
10794     case BO_Div: {
10795       // Don't 'pre-truncate' the operands.
10796       unsigned opWidth = C.getIntWidth(GetExprType(E));
10797       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
10798                                 Approximate);
10799 
10800       // If the divisor is constant, use that.
10801       if (Optional<llvm::APSInt> divisor =
10802               BO->getRHS()->getIntegerConstantExpr(C)) {
10803         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
10804         if (log2 >= L.Width)
10805           L.Width = (L.NonNegative ? 0 : 1);
10806         else
10807           L.Width = std::min(L.Width - log2, MaxWidth);
10808         return L;
10809       }
10810 
10811       // Otherwise, just use the LHS's width.
10812       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
10813       // could be -1.
10814       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
10815                                 Approximate);
10816       return IntRange(L.Width, L.NonNegative && R.NonNegative);
10817     }
10818 
10819     case BO_Rem:
10820       Combine = IntRange::rem;
10821       break;
10822 
10823     // The default behavior is okay for these.
10824     case BO_Xor:
10825     case BO_Or:
10826       break;
10827     }
10828 
10829     // Combine the two ranges, but limit the result to the type in which we
10830     // performed the computation.
10831     QualType T = GetExprType(E);
10832     unsigned opWidth = C.getIntWidth(T);
10833     IntRange L =
10834         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
10835     IntRange R =
10836         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
10837     IntRange C = Combine(L, R);
10838     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
10839     C.Width = std::min(C.Width, MaxWidth);
10840     return C;
10841   }
10842 
10843   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10844     switch (UO->getOpcode()) {
10845     // Boolean-valued operations are white-listed.
10846     case UO_LNot:
10847       return IntRange::forBoolType();
10848 
10849     // Operations with opaque sources are black-listed.
10850     case UO_Deref:
10851     case UO_AddrOf: // should be impossible
10852       return IntRange::forValueOfType(C, GetExprType(E));
10853 
10854     default:
10855       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
10856                           Approximate);
10857     }
10858   }
10859 
10860   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10861     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
10862                         Approximate);
10863 
10864   if (const auto *BitField = E->getSourceBitField())
10865     return IntRange(BitField->getBitWidthValue(C),
10866                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
10867 
10868   return IntRange::forValueOfType(C, GetExprType(E));
10869 }
10870 
10871 static IntRange GetExprRange(ASTContext &C, const Expr *E,
10872                              bool InConstantContext, bool Approximate) {
10873   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
10874                       Approximate);
10875 }
10876 
10877 /// Checks whether the given value, which currently has the given
10878 /// source semantics, has the same value when coerced through the
10879 /// target semantics.
10880 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10881                                  const llvm::fltSemantics &Src,
10882                                  const llvm::fltSemantics &Tgt) {
10883   llvm::APFloat truncated = value;
10884 
10885   bool ignored;
10886   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10887   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10888 
10889   return truncated.bitwiseIsEqual(value);
10890 }
10891 
10892 /// Checks whether the given value, which currently has the given
10893 /// source semantics, has the same value when coerced through the
10894 /// target semantics.
10895 ///
10896 /// The value might be a vector of floats (or a complex number).
10897 static bool IsSameFloatAfterCast(const APValue &value,
10898                                  const llvm::fltSemantics &Src,
10899                                  const llvm::fltSemantics &Tgt) {
10900   if (value.isFloat())
10901     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10902 
10903   if (value.isVector()) {
10904     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10905       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10906         return false;
10907     return true;
10908   }
10909 
10910   assert(value.isComplexFloat());
10911   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10912           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10913 }
10914 
10915 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10916                                        bool IsListInit = false);
10917 
10918 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10919   // Suppress cases where we are comparing against an enum constant.
10920   if (const DeclRefExpr *DR =
10921       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10922     if (isa<EnumConstantDecl>(DR->getDecl()))
10923       return true;
10924 
10925   // Suppress cases where the value is expanded from a macro, unless that macro
10926   // is how a language represents a boolean literal. This is the case in both C
10927   // and Objective-C.
10928   SourceLocation BeginLoc = E->getBeginLoc();
10929   if (BeginLoc.isMacroID()) {
10930     StringRef MacroName = Lexer::getImmediateMacroName(
10931         BeginLoc, S.getSourceManager(), S.getLangOpts());
10932     return MacroName != "YES" && MacroName != "NO" &&
10933            MacroName != "true" && MacroName != "false";
10934   }
10935 
10936   return false;
10937 }
10938 
10939 static bool isKnownToHaveUnsignedValue(Expr *E) {
10940   return E->getType()->isIntegerType() &&
10941          (!E->getType()->isSignedIntegerType() ||
10942           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10943 }
10944 
10945 namespace {
10946 /// The promoted range of values of a type. In general this has the
10947 /// following structure:
10948 ///
10949 ///     |-----------| . . . |-----------|
10950 ///     ^           ^       ^           ^
10951 ///    Min       HoleMin  HoleMax      Max
10952 ///
10953 /// ... where there is only a hole if a signed type is promoted to unsigned
10954 /// (in which case Min and Max are the smallest and largest representable
10955 /// values).
10956 struct PromotedRange {
10957   // Min, or HoleMax if there is a hole.
10958   llvm::APSInt PromotedMin;
10959   // Max, or HoleMin if there is a hole.
10960   llvm::APSInt PromotedMax;
10961 
10962   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10963     if (R.Width == 0)
10964       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10965     else if (R.Width >= BitWidth && !Unsigned) {
10966       // Promotion made the type *narrower*. This happens when promoting
10967       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10968       // Treat all values of 'signed int' as being in range for now.
10969       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10970       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10971     } else {
10972       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10973                         .extOrTrunc(BitWidth);
10974       PromotedMin.setIsUnsigned(Unsigned);
10975 
10976       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10977                         .extOrTrunc(BitWidth);
10978       PromotedMax.setIsUnsigned(Unsigned);
10979     }
10980   }
10981 
10982   // Determine whether this range is contiguous (has no hole).
10983   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10984 
10985   // Where a constant value is within the range.
10986   enum ComparisonResult {
10987     LT = 0x1,
10988     LE = 0x2,
10989     GT = 0x4,
10990     GE = 0x8,
10991     EQ = 0x10,
10992     NE = 0x20,
10993     InRangeFlag = 0x40,
10994 
10995     Less = LE | LT | NE,
10996     Min = LE | InRangeFlag,
10997     InRange = InRangeFlag,
10998     Max = GE | InRangeFlag,
10999     Greater = GE | GT | NE,
11000 
11001     OnlyValue = LE | GE | EQ | InRangeFlag,
11002     InHole = NE
11003   };
11004 
11005   ComparisonResult compare(const llvm::APSInt &Value) const {
11006     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
11007            Value.isUnsigned() == PromotedMin.isUnsigned());
11008     if (!isContiguous()) {
11009       assert(Value.isUnsigned() && "discontiguous range for signed compare");
11010       if (Value.isMinValue()) return Min;
11011       if (Value.isMaxValue()) return Max;
11012       if (Value >= PromotedMin) return InRange;
11013       if (Value <= PromotedMax) return InRange;
11014       return InHole;
11015     }
11016 
11017     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11018     case -1: return Less;
11019     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11020     case 1:
11021       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11022       case -1: return InRange;
11023       case 0: return Max;
11024       case 1: return Greater;
11025       }
11026     }
11027 
11028     llvm_unreachable("impossible compare result");
11029   }
11030 
11031   static llvm::Optional<StringRef>
11032   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11033     if (Op == BO_Cmp) {
11034       ComparisonResult LTFlag = LT, GTFlag = GT;
11035       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11036 
11037       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11038       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11039       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11040       return llvm::None;
11041     }
11042 
11043     ComparisonResult TrueFlag, FalseFlag;
11044     if (Op == BO_EQ) {
11045       TrueFlag = EQ;
11046       FalseFlag = NE;
11047     } else if (Op == BO_NE) {
11048       TrueFlag = NE;
11049       FalseFlag = EQ;
11050     } else {
11051       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11052         TrueFlag = LT;
11053         FalseFlag = GE;
11054       } else {
11055         TrueFlag = GT;
11056         FalseFlag = LE;
11057       }
11058       if (Op == BO_GE || Op == BO_LE)
11059         std::swap(TrueFlag, FalseFlag);
11060     }
11061     if (R & TrueFlag)
11062       return StringRef("true");
11063     if (R & FalseFlag)
11064       return StringRef("false");
11065     return llvm::None;
11066   }
11067 };
11068 }
11069 
11070 static bool HasEnumType(Expr *E) {
11071   // Strip off implicit integral promotions.
11072   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11073     if (ICE->getCastKind() != CK_IntegralCast &&
11074         ICE->getCastKind() != CK_NoOp)
11075       break;
11076     E = ICE->getSubExpr();
11077   }
11078 
11079   return E->getType()->isEnumeralType();
11080 }
11081 
11082 static int classifyConstantValue(Expr *Constant) {
11083   // The values of this enumeration are used in the diagnostics
11084   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11085   enum ConstantValueKind {
11086     Miscellaneous = 0,
11087     LiteralTrue,
11088     LiteralFalse
11089   };
11090   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11091     return BL->getValue() ? ConstantValueKind::LiteralTrue
11092                           : ConstantValueKind::LiteralFalse;
11093   return ConstantValueKind::Miscellaneous;
11094 }
11095 
11096 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11097                                         Expr *Constant, Expr *Other,
11098                                         const llvm::APSInt &Value,
11099                                         bool RhsConstant) {
11100   if (S.inTemplateInstantiation())
11101     return false;
11102 
11103   Expr *OriginalOther = Other;
11104 
11105   Constant = Constant->IgnoreParenImpCasts();
11106   Other = Other->IgnoreParenImpCasts();
11107 
11108   // Suppress warnings on tautological comparisons between values of the same
11109   // enumeration type. There are only two ways we could warn on this:
11110   //  - If the constant is outside the range of representable values of
11111   //    the enumeration. In such a case, we should warn about the cast
11112   //    to enumeration type, not about the comparison.
11113   //  - If the constant is the maximum / minimum in-range value. For an
11114   //    enumeratin type, such comparisons can be meaningful and useful.
11115   if (Constant->getType()->isEnumeralType() &&
11116       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11117     return false;
11118 
11119   IntRange OtherValueRange = GetExprRange(
11120       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11121 
11122   QualType OtherT = Other->getType();
11123   if (const auto *AT = OtherT->getAs<AtomicType>())
11124     OtherT = AT->getValueType();
11125   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11126 
11127   // Special case for ObjC BOOL on targets where its a typedef for a signed char
11128   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11129   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11130                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
11131                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11132 
11133   // Whether we're treating Other as being a bool because of the form of
11134   // expression despite it having another type (typically 'int' in C).
11135   bool OtherIsBooleanDespiteType =
11136       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11137   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11138     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11139 
11140   // Check if all values in the range of possible values of this expression
11141   // lead to the same comparison outcome.
11142   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11143                                         Value.isUnsigned());
11144   auto Cmp = OtherPromotedValueRange.compare(Value);
11145   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11146   if (!Result)
11147     return false;
11148 
11149   // Also consider the range determined by the type alone. This allows us to
11150   // classify the warning under the proper diagnostic group.
11151   bool TautologicalTypeCompare = false;
11152   {
11153     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11154                                          Value.isUnsigned());
11155     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11156     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11157                                                        RhsConstant)) {
11158       TautologicalTypeCompare = true;
11159       Cmp = TypeCmp;
11160       Result = TypeResult;
11161     }
11162   }
11163 
11164   // Don't warn if the non-constant operand actually always evaluates to the
11165   // same value.
11166   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11167     return false;
11168 
11169   // Suppress the diagnostic for an in-range comparison if the constant comes
11170   // from a macro or enumerator. We don't want to diagnose
11171   //
11172   //   some_long_value <= INT_MAX
11173   //
11174   // when sizeof(int) == sizeof(long).
11175   bool InRange = Cmp & PromotedRange::InRangeFlag;
11176   if (InRange && IsEnumConstOrFromMacro(S, Constant))
11177     return false;
11178 
11179   // A comparison of an unsigned bit-field against 0 is really a type problem,
11180   // even though at the type level the bit-field might promote to 'signed int'.
11181   if (Other->refersToBitField() && InRange && Value == 0 &&
11182       Other->getType()->isUnsignedIntegerOrEnumerationType())
11183     TautologicalTypeCompare = true;
11184 
11185   // If this is a comparison to an enum constant, include that
11186   // constant in the diagnostic.
11187   const EnumConstantDecl *ED = nullptr;
11188   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11189     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11190 
11191   // Should be enough for uint128 (39 decimal digits)
11192   SmallString<64> PrettySourceValue;
11193   llvm::raw_svector_ostream OS(PrettySourceValue);
11194   if (ED) {
11195     OS << '\'' << *ED << "' (" << Value << ")";
11196   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11197                Constant->IgnoreParenImpCasts())) {
11198     OS << (BL->getValue() ? "YES" : "NO");
11199   } else {
11200     OS << Value;
11201   }
11202 
11203   if (!TautologicalTypeCompare) {
11204     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11205         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11206         << E->getOpcodeStr() << OS.str() << *Result
11207         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11208     return true;
11209   }
11210 
11211   if (IsObjCSignedCharBool) {
11212     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11213                           S.PDiag(diag::warn_tautological_compare_objc_bool)
11214                               << OS.str() << *Result);
11215     return true;
11216   }
11217 
11218   // FIXME: We use a somewhat different formatting for the in-range cases and
11219   // cases involving boolean values for historical reasons. We should pick a
11220   // consistent way of presenting these diagnostics.
11221   if (!InRange || Other->isKnownToHaveBooleanValue()) {
11222 
11223     S.DiagRuntimeBehavior(
11224         E->getOperatorLoc(), E,
11225         S.PDiag(!InRange ? diag::warn_out_of_range_compare
11226                          : diag::warn_tautological_bool_compare)
11227             << OS.str() << classifyConstantValue(Constant) << OtherT
11228             << OtherIsBooleanDespiteType << *Result
11229             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11230   } else {
11231     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11232                         ? (HasEnumType(OriginalOther)
11233                                ? diag::warn_unsigned_enum_always_true_comparison
11234                                : diag::warn_unsigned_always_true_comparison)
11235                         : diag::warn_tautological_constant_compare;
11236 
11237     S.Diag(E->getOperatorLoc(), Diag)
11238         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11239         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11240   }
11241 
11242   return true;
11243 }
11244 
11245 /// Analyze the operands of the given comparison.  Implements the
11246 /// fallback case from AnalyzeComparison.
11247 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11248   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11249   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11250 }
11251 
11252 /// Implements -Wsign-compare.
11253 ///
11254 /// \param E the binary operator to check for warnings
11255 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11256   // The type the comparison is being performed in.
11257   QualType T = E->getLHS()->getType();
11258 
11259   // Only analyze comparison operators where both sides have been converted to
11260   // the same type.
11261   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11262     return AnalyzeImpConvsInComparison(S, E);
11263 
11264   // Don't analyze value-dependent comparisons directly.
11265   if (E->isValueDependent())
11266     return AnalyzeImpConvsInComparison(S, E);
11267 
11268   Expr *LHS = E->getLHS();
11269   Expr *RHS = E->getRHS();
11270 
11271   if (T->isIntegralType(S.Context)) {
11272     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11273     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11274 
11275     // We don't care about expressions whose result is a constant.
11276     if (RHSValue && LHSValue)
11277       return AnalyzeImpConvsInComparison(S, E);
11278 
11279     // We only care about expressions where just one side is literal
11280     if ((bool)RHSValue ^ (bool)LHSValue) {
11281       // Is the constant on the RHS or LHS?
11282       const bool RhsConstant = (bool)RHSValue;
11283       Expr *Const = RhsConstant ? RHS : LHS;
11284       Expr *Other = RhsConstant ? LHS : RHS;
11285       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
11286 
11287       // Check whether an integer constant comparison results in a value
11288       // of 'true' or 'false'.
11289       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
11290         return AnalyzeImpConvsInComparison(S, E);
11291     }
11292   }
11293 
11294   if (!T->hasUnsignedIntegerRepresentation()) {
11295     // We don't do anything special if this isn't an unsigned integral
11296     // comparison:  we're only interested in integral comparisons, and
11297     // signed comparisons only happen in cases we don't care to warn about.
11298     return AnalyzeImpConvsInComparison(S, E);
11299   }
11300 
11301   LHS = LHS->IgnoreParenImpCasts();
11302   RHS = RHS->IgnoreParenImpCasts();
11303 
11304   if (!S.getLangOpts().CPlusPlus) {
11305     // Avoid warning about comparison of integers with different signs when
11306     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
11307     // the type of `E`.
11308     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
11309       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11310     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
11311       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11312   }
11313 
11314   // Check to see if one of the (unmodified) operands is of different
11315   // signedness.
11316   Expr *signedOperand, *unsignedOperand;
11317   if (LHS->getType()->hasSignedIntegerRepresentation()) {
11318     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
11319            "unsigned comparison between two signed integer expressions?");
11320     signedOperand = LHS;
11321     unsignedOperand = RHS;
11322   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
11323     signedOperand = RHS;
11324     unsignedOperand = LHS;
11325   } else {
11326     return AnalyzeImpConvsInComparison(S, E);
11327   }
11328 
11329   // Otherwise, calculate the effective range of the signed operand.
11330   IntRange signedRange = GetExprRange(
11331       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
11332 
11333   // Go ahead and analyze implicit conversions in the operands.  Note
11334   // that we skip the implicit conversions on both sides.
11335   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
11336   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
11337 
11338   // If the signed range is non-negative, -Wsign-compare won't fire.
11339   if (signedRange.NonNegative)
11340     return;
11341 
11342   // For (in)equality comparisons, if the unsigned operand is a
11343   // constant which cannot collide with a overflowed signed operand,
11344   // then reinterpreting the signed operand as unsigned will not
11345   // change the result of the comparison.
11346   if (E->isEqualityOp()) {
11347     unsigned comparisonWidth = S.Context.getIntWidth(T);
11348     IntRange unsignedRange =
11349         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
11350                      /*Approximate*/ true);
11351 
11352     // We should never be unable to prove that the unsigned operand is
11353     // non-negative.
11354     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
11355 
11356     if (unsignedRange.Width < comparisonWidth)
11357       return;
11358   }
11359 
11360   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11361                         S.PDiag(diag::warn_mixed_sign_comparison)
11362                             << LHS->getType() << RHS->getType()
11363                             << LHS->getSourceRange() << RHS->getSourceRange());
11364 }
11365 
11366 /// Analyzes an attempt to assign the given value to a bitfield.
11367 ///
11368 /// Returns true if there was something fishy about the attempt.
11369 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11370                                       SourceLocation InitLoc) {
11371   assert(Bitfield->isBitField());
11372   if (Bitfield->isInvalidDecl())
11373     return false;
11374 
11375   // White-list bool bitfields.
11376   QualType BitfieldType = Bitfield->getType();
11377   if (BitfieldType->isBooleanType())
11378      return false;
11379 
11380   if (BitfieldType->isEnumeralType()) {
11381     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11382     // If the underlying enum type was not explicitly specified as an unsigned
11383     // type and the enum contain only positive values, MSVC++ will cause an
11384     // inconsistency by storing this as a signed type.
11385     if (S.getLangOpts().CPlusPlus11 &&
11386         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11387         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11388         BitfieldEnumDecl->getNumNegativeBits() == 0) {
11389       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11390           << BitfieldEnumDecl;
11391     }
11392   }
11393 
11394   if (Bitfield->getType()->isBooleanType())
11395     return false;
11396 
11397   // Ignore value- or type-dependent expressions.
11398   if (Bitfield->getBitWidth()->isValueDependent() ||
11399       Bitfield->getBitWidth()->isTypeDependent() ||
11400       Init->isValueDependent() ||
11401       Init->isTypeDependent())
11402     return false;
11403 
11404   Expr *OriginalInit = Init->IgnoreParenImpCasts();
11405   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11406 
11407   Expr::EvalResult Result;
11408   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11409                                    Expr::SE_AllowSideEffects)) {
11410     // The RHS is not constant.  If the RHS has an enum type, make sure the
11411     // bitfield is wide enough to hold all the values of the enum without
11412     // truncation.
11413     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11414       EnumDecl *ED = EnumTy->getDecl();
11415       bool SignedBitfield = BitfieldType->isSignedIntegerType();
11416 
11417       // Enum types are implicitly signed on Windows, so check if there are any
11418       // negative enumerators to see if the enum was intended to be signed or
11419       // not.
11420       bool SignedEnum = ED->getNumNegativeBits() > 0;
11421 
11422       // Check for surprising sign changes when assigning enum values to a
11423       // bitfield of different signedness.  If the bitfield is signed and we
11424       // have exactly the right number of bits to store this unsigned enum,
11425       // suggest changing the enum to an unsigned type. This typically happens
11426       // on Windows where unfixed enums always use an underlying type of 'int'.
11427       unsigned DiagID = 0;
11428       if (SignedEnum && !SignedBitfield) {
11429         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11430       } else if (SignedBitfield && !SignedEnum &&
11431                  ED->getNumPositiveBits() == FieldWidth) {
11432         DiagID = diag::warn_signed_bitfield_enum_conversion;
11433       }
11434 
11435       if (DiagID) {
11436         S.Diag(InitLoc, DiagID) << Bitfield << ED;
11437         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
11438         SourceRange TypeRange =
11439             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
11440         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
11441             << SignedEnum << TypeRange;
11442       }
11443 
11444       // Compute the required bitwidth. If the enum has negative values, we need
11445       // one more bit than the normal number of positive bits to represent the
11446       // sign bit.
11447       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
11448                                                   ED->getNumNegativeBits())
11449                                        : ED->getNumPositiveBits();
11450 
11451       // Check the bitwidth.
11452       if (BitsNeeded > FieldWidth) {
11453         Expr *WidthExpr = Bitfield->getBitWidth();
11454         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
11455             << Bitfield << ED;
11456         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
11457             << BitsNeeded << ED << WidthExpr->getSourceRange();
11458       }
11459     }
11460 
11461     return false;
11462   }
11463 
11464   llvm::APSInt Value = Result.Val.getInt();
11465 
11466   unsigned OriginalWidth = Value.getBitWidth();
11467 
11468   if (!Value.isSigned() || Value.isNegative())
11469     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
11470       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
11471         OriginalWidth = Value.getMinSignedBits();
11472 
11473   if (OriginalWidth <= FieldWidth)
11474     return false;
11475 
11476   // Compute the value which the bitfield will contain.
11477   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
11478   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
11479 
11480   // Check whether the stored value is equal to the original value.
11481   TruncatedValue = TruncatedValue.extend(OriginalWidth);
11482   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
11483     return false;
11484 
11485   // Special-case bitfields of width 1: booleans are naturally 0/1, and
11486   // therefore don't strictly fit into a signed bitfield of width 1.
11487   if (FieldWidth == 1 && Value == 1)
11488     return false;
11489 
11490   std::string PrettyValue = Value.toString(10);
11491   std::string PrettyTrunc = TruncatedValue.toString(10);
11492 
11493   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
11494     << PrettyValue << PrettyTrunc << OriginalInit->getType()
11495     << Init->getSourceRange();
11496 
11497   return true;
11498 }
11499 
11500 /// Analyze the given simple or compound assignment for warning-worthy
11501 /// operations.
11502 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
11503   // Just recurse on the LHS.
11504   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11505 
11506   // We want to recurse on the RHS as normal unless we're assigning to
11507   // a bitfield.
11508   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
11509     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
11510                                   E->getOperatorLoc())) {
11511       // Recurse, ignoring any implicit conversions on the RHS.
11512       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
11513                                         E->getOperatorLoc());
11514     }
11515   }
11516 
11517   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11518 
11519   // Diagnose implicitly sequentially-consistent atomic assignment.
11520   if (E->getLHS()->getType()->isAtomicType())
11521     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11522 }
11523 
11524 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11525 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
11526                             SourceLocation CContext, unsigned diag,
11527                             bool pruneControlFlow = false) {
11528   if (pruneControlFlow) {
11529     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11530                           S.PDiag(diag)
11531                               << SourceType << T << E->getSourceRange()
11532                               << SourceRange(CContext));
11533     return;
11534   }
11535   S.Diag(E->getExprLoc(), diag)
11536     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
11537 }
11538 
11539 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11540 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
11541                             SourceLocation CContext,
11542                             unsigned diag, bool pruneControlFlow = false) {
11543   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
11544 }
11545 
11546 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
11547   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
11548       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
11549 }
11550 
11551 static void adornObjCBoolConversionDiagWithTernaryFixit(
11552     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
11553   Expr *Ignored = SourceExpr->IgnoreImplicit();
11554   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
11555     Ignored = OVE->getSourceExpr();
11556   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
11557                      isa<BinaryOperator>(Ignored) ||
11558                      isa<CXXOperatorCallExpr>(Ignored);
11559   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
11560   if (NeedsParens)
11561     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
11562             << FixItHint::CreateInsertion(EndLoc, ")");
11563   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
11564 }
11565 
11566 /// Diagnose an implicit cast from a floating point value to an integer value.
11567 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
11568                                     SourceLocation CContext) {
11569   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
11570   const bool PruneWarnings = S.inTemplateInstantiation();
11571 
11572   Expr *InnerE = E->IgnoreParenImpCasts();
11573   // We also want to warn on, e.g., "int i = -1.234"
11574   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
11575     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
11576       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
11577 
11578   const bool IsLiteral =
11579       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
11580 
11581   llvm::APFloat Value(0.0);
11582   bool IsConstant =
11583     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
11584   if (!IsConstant) {
11585     if (isObjCSignedCharBool(S, T)) {
11586       return adornObjCBoolConversionDiagWithTernaryFixit(
11587           S, E,
11588           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
11589               << E->getType());
11590     }
11591 
11592     return DiagnoseImpCast(S, E, T, CContext,
11593                            diag::warn_impcast_float_integer, PruneWarnings);
11594   }
11595 
11596   bool isExact = false;
11597 
11598   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
11599                             T->hasUnsignedIntegerRepresentation());
11600   llvm::APFloat::opStatus Result = Value.convertToInteger(
11601       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
11602 
11603   // FIXME: Force the precision of the source value down so we don't print
11604   // digits which are usually useless (we don't really care here if we
11605   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
11606   // would automatically print the shortest representation, but it's a bit
11607   // tricky to implement.
11608   SmallString<16> PrettySourceValue;
11609   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
11610   precision = (precision * 59 + 195) / 196;
11611   Value.toString(PrettySourceValue, precision);
11612 
11613   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
11614     return adornObjCBoolConversionDiagWithTernaryFixit(
11615         S, E,
11616         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
11617             << PrettySourceValue);
11618   }
11619 
11620   if (Result == llvm::APFloat::opOK && isExact) {
11621     if (IsLiteral) return;
11622     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
11623                            PruneWarnings);
11624   }
11625 
11626   // Conversion of a floating-point value to a non-bool integer where the
11627   // integral part cannot be represented by the integer type is undefined.
11628   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
11629     return DiagnoseImpCast(
11630         S, E, T, CContext,
11631         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
11632                   : diag::warn_impcast_float_to_integer_out_of_range,
11633         PruneWarnings);
11634 
11635   unsigned DiagID = 0;
11636   if (IsLiteral) {
11637     // Warn on floating point literal to integer.
11638     DiagID = diag::warn_impcast_literal_float_to_integer;
11639   } else if (IntegerValue == 0) {
11640     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
11641       return DiagnoseImpCast(S, E, T, CContext,
11642                              diag::warn_impcast_float_integer, PruneWarnings);
11643     }
11644     // Warn on non-zero to zero conversion.
11645     DiagID = diag::warn_impcast_float_to_integer_zero;
11646   } else {
11647     if (IntegerValue.isUnsigned()) {
11648       if (!IntegerValue.isMaxValue()) {
11649         return DiagnoseImpCast(S, E, T, CContext,
11650                                diag::warn_impcast_float_integer, PruneWarnings);
11651       }
11652     } else {  // IntegerValue.isSigned()
11653       if (!IntegerValue.isMaxSignedValue() &&
11654           !IntegerValue.isMinSignedValue()) {
11655         return DiagnoseImpCast(S, E, T, CContext,
11656                                diag::warn_impcast_float_integer, PruneWarnings);
11657       }
11658     }
11659     // Warn on evaluatable floating point expression to integer conversion.
11660     DiagID = diag::warn_impcast_float_to_integer;
11661   }
11662 
11663   SmallString<16> PrettyTargetValue;
11664   if (IsBool)
11665     PrettyTargetValue = Value.isZero() ? "false" : "true";
11666   else
11667     IntegerValue.toString(PrettyTargetValue);
11668 
11669   if (PruneWarnings) {
11670     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11671                           S.PDiag(DiagID)
11672                               << E->getType() << T.getUnqualifiedType()
11673                               << PrettySourceValue << PrettyTargetValue
11674                               << E->getSourceRange() << SourceRange(CContext));
11675   } else {
11676     S.Diag(E->getExprLoc(), DiagID)
11677         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
11678         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
11679   }
11680 }
11681 
11682 /// Analyze the given compound assignment for the possible losing of
11683 /// floating-point precision.
11684 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
11685   assert(isa<CompoundAssignOperator>(E) &&
11686          "Must be compound assignment operation");
11687   // Recurse on the LHS and RHS in here
11688   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11689   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11690 
11691   if (E->getLHS()->getType()->isAtomicType())
11692     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
11693 
11694   // Now check the outermost expression
11695   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
11696   const auto *RBT = cast<CompoundAssignOperator>(E)
11697                         ->getComputationResultType()
11698                         ->getAs<BuiltinType>();
11699 
11700   // The below checks assume source is floating point.
11701   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
11702 
11703   // If source is floating point but target is an integer.
11704   if (ResultBT->isInteger())
11705     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
11706                            E->getExprLoc(), diag::warn_impcast_float_integer);
11707 
11708   if (!ResultBT->isFloatingPoint())
11709     return;
11710 
11711   // If both source and target are floating points, warn about losing precision.
11712   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11713       QualType(ResultBT, 0), QualType(RBT, 0));
11714   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
11715     // warn about dropping FP rank.
11716     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
11717                     diag::warn_impcast_float_result_precision);
11718 }
11719 
11720 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
11721                                       IntRange Range) {
11722   if (!Range.Width) return "0";
11723 
11724   llvm::APSInt ValueInRange = Value;
11725   ValueInRange.setIsSigned(!Range.NonNegative);
11726   ValueInRange = ValueInRange.trunc(Range.Width);
11727   return ValueInRange.toString(10);
11728 }
11729 
11730 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
11731   if (!isa<ImplicitCastExpr>(Ex))
11732     return false;
11733 
11734   Expr *InnerE = Ex->IgnoreParenImpCasts();
11735   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
11736   const Type *Source =
11737     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
11738   if (Target->isDependentType())
11739     return false;
11740 
11741   const BuiltinType *FloatCandidateBT =
11742     dyn_cast<BuiltinType>(ToBool ? Source : Target);
11743   const Type *BoolCandidateType = ToBool ? Target : Source;
11744 
11745   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
11746           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
11747 }
11748 
11749 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
11750                                              SourceLocation CC) {
11751   unsigned NumArgs = TheCall->getNumArgs();
11752   for (unsigned i = 0; i < NumArgs; ++i) {
11753     Expr *CurrA = TheCall->getArg(i);
11754     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
11755       continue;
11756 
11757     bool IsSwapped = ((i > 0) &&
11758         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
11759     IsSwapped |= ((i < (NumArgs - 1)) &&
11760         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
11761     if (IsSwapped) {
11762       // Warn on this floating-point to bool conversion.
11763       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
11764                       CurrA->getType(), CC,
11765                       diag::warn_impcast_floating_point_to_bool);
11766     }
11767   }
11768 }
11769 
11770 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
11771                                    SourceLocation CC) {
11772   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
11773                         E->getExprLoc()))
11774     return;
11775 
11776   // Don't warn on functions which have return type nullptr_t.
11777   if (isa<CallExpr>(E))
11778     return;
11779 
11780   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
11781   const Expr::NullPointerConstantKind NullKind =
11782       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
11783   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
11784     return;
11785 
11786   // Return if target type is a safe conversion.
11787   if (T->isAnyPointerType() || T->isBlockPointerType() ||
11788       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
11789     return;
11790 
11791   SourceLocation Loc = E->getSourceRange().getBegin();
11792 
11793   // Venture through the macro stacks to get to the source of macro arguments.
11794   // The new location is a better location than the complete location that was
11795   // passed in.
11796   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
11797   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
11798 
11799   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
11800   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
11801     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
11802         Loc, S.SourceMgr, S.getLangOpts());
11803     if (MacroName == "NULL")
11804       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
11805   }
11806 
11807   // Only warn if the null and context location are in the same macro expansion.
11808   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
11809     return;
11810 
11811   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
11812       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
11813       << FixItHint::CreateReplacement(Loc,
11814                                       S.getFixItZeroLiteralForType(T, Loc));
11815 }
11816 
11817 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11818                                   ObjCArrayLiteral *ArrayLiteral);
11819 
11820 static void
11821 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11822                            ObjCDictionaryLiteral *DictionaryLiteral);
11823 
11824 /// Check a single element within a collection literal against the
11825 /// target element type.
11826 static void checkObjCCollectionLiteralElement(Sema &S,
11827                                               QualType TargetElementType,
11828                                               Expr *Element,
11829                                               unsigned ElementKind) {
11830   // Skip a bitcast to 'id' or qualified 'id'.
11831   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
11832     if (ICE->getCastKind() == CK_BitCast &&
11833         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
11834       Element = ICE->getSubExpr();
11835   }
11836 
11837   QualType ElementType = Element->getType();
11838   ExprResult ElementResult(Element);
11839   if (ElementType->getAs<ObjCObjectPointerType>() &&
11840       S.CheckSingleAssignmentConstraints(TargetElementType,
11841                                          ElementResult,
11842                                          false, false)
11843         != Sema::Compatible) {
11844     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11845         << ElementType << ElementKind << TargetElementType
11846         << Element->getSourceRange();
11847   }
11848 
11849   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11850     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11851   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11852     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11853 }
11854 
11855 /// Check an Objective-C array literal being converted to the given
11856 /// target type.
11857 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11858                                   ObjCArrayLiteral *ArrayLiteral) {
11859   if (!S.NSArrayDecl)
11860     return;
11861 
11862   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11863   if (!TargetObjCPtr)
11864     return;
11865 
11866   if (TargetObjCPtr->isUnspecialized() ||
11867       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11868         != S.NSArrayDecl->getCanonicalDecl())
11869     return;
11870 
11871   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11872   if (TypeArgs.size() != 1)
11873     return;
11874 
11875   QualType TargetElementType = TypeArgs[0];
11876   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11877     checkObjCCollectionLiteralElement(S, TargetElementType,
11878                                       ArrayLiteral->getElement(I),
11879                                       0);
11880   }
11881 }
11882 
11883 /// Check an Objective-C dictionary literal being converted to the given
11884 /// target type.
11885 static void
11886 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11887                            ObjCDictionaryLiteral *DictionaryLiteral) {
11888   if (!S.NSDictionaryDecl)
11889     return;
11890 
11891   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11892   if (!TargetObjCPtr)
11893     return;
11894 
11895   if (TargetObjCPtr->isUnspecialized() ||
11896       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11897         != S.NSDictionaryDecl->getCanonicalDecl())
11898     return;
11899 
11900   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11901   if (TypeArgs.size() != 2)
11902     return;
11903 
11904   QualType TargetKeyType = TypeArgs[0];
11905   QualType TargetObjectType = TypeArgs[1];
11906   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11907     auto Element = DictionaryLiteral->getKeyValueElement(I);
11908     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11909     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11910   }
11911 }
11912 
11913 // Helper function to filter out cases for constant width constant conversion.
11914 // Don't warn on char array initialization or for non-decimal values.
11915 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11916                                           SourceLocation CC) {
11917   // If initializing from a constant, and the constant starts with '0',
11918   // then it is a binary, octal, or hexadecimal.  Allow these constants
11919   // to fill all the bits, even if there is a sign change.
11920   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11921     const char FirstLiteralCharacter =
11922         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11923     if (FirstLiteralCharacter == '0')
11924       return false;
11925   }
11926 
11927   // If the CC location points to a '{', and the type is char, then assume
11928   // assume it is an array initialization.
11929   if (CC.isValid() && T->isCharType()) {
11930     const char FirstContextCharacter =
11931         S.getSourceManager().getCharacterData(CC)[0];
11932     if (FirstContextCharacter == '{')
11933       return false;
11934   }
11935 
11936   return true;
11937 }
11938 
11939 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11940   const auto *IL = dyn_cast<IntegerLiteral>(E);
11941   if (!IL) {
11942     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11943       if (UO->getOpcode() == UO_Minus)
11944         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11945     }
11946   }
11947 
11948   return IL;
11949 }
11950 
11951 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11952   E = E->IgnoreParenImpCasts();
11953   SourceLocation ExprLoc = E->getExprLoc();
11954 
11955   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11956     BinaryOperator::Opcode Opc = BO->getOpcode();
11957     Expr::EvalResult Result;
11958     // Do not diagnose unsigned shifts.
11959     if (Opc == BO_Shl) {
11960       const auto *LHS = getIntegerLiteral(BO->getLHS());
11961       const auto *RHS = getIntegerLiteral(BO->getRHS());
11962       if (LHS && LHS->getValue() == 0)
11963         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11964       else if (!E->isValueDependent() && LHS && RHS &&
11965                RHS->getValue().isNonNegative() &&
11966                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11967         S.Diag(ExprLoc, diag::warn_left_shift_always)
11968             << (Result.Val.getInt() != 0);
11969       else if (E->getType()->isSignedIntegerType())
11970         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11971     }
11972   }
11973 
11974   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11975     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11976     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11977     if (!LHS || !RHS)
11978       return;
11979     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11980         (RHS->getValue() == 0 || RHS->getValue() == 1))
11981       // Do not diagnose common idioms.
11982       return;
11983     if (LHS->getValue() != 0 && RHS->getValue() != 0)
11984       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11985   }
11986 }
11987 
11988 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
11989                                     SourceLocation CC,
11990                                     bool *ICContext = nullptr,
11991                                     bool IsListInit = false) {
11992   if (E->isTypeDependent() || E->isValueDependent()) return;
11993 
11994   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11995   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11996   if (Source == Target) return;
11997   if (Target->isDependentType()) return;
11998 
11999   // If the conversion context location is invalid don't complain. We also
12000   // don't want to emit a warning if the issue occurs from the expansion of
12001   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
12002   // delay this check as long as possible. Once we detect we are in that
12003   // scenario, we just return.
12004   if (CC.isInvalid())
12005     return;
12006 
12007   if (Source->isAtomicType())
12008     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12009 
12010   // Diagnose implicit casts to bool.
12011   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12012     if (isa<StringLiteral>(E))
12013       // Warn on string literal to bool.  Checks for string literals in logical
12014       // and expressions, for instance, assert(0 && "error here"), are
12015       // prevented by a check in AnalyzeImplicitConversions().
12016       return DiagnoseImpCast(S, E, T, CC,
12017                              diag::warn_impcast_string_literal_to_bool);
12018     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12019         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12020       // This covers the literal expressions that evaluate to Objective-C
12021       // objects.
12022       return DiagnoseImpCast(S, E, T, CC,
12023                              diag::warn_impcast_objective_c_literal_to_bool);
12024     }
12025     if (Source->isPointerType() || Source->canDecayToPointerType()) {
12026       // Warn on pointer to bool conversion that is always true.
12027       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12028                                      SourceRange(CC));
12029     }
12030   }
12031 
12032   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12033   // is a typedef for signed char (macOS), then that constant value has to be 1
12034   // or 0.
12035   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12036     Expr::EvalResult Result;
12037     if (E->EvaluateAsInt(Result, S.getASTContext(),
12038                          Expr::SE_AllowSideEffects)) {
12039       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12040         adornObjCBoolConversionDiagWithTernaryFixit(
12041             S, E,
12042             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12043                 << Result.Val.getInt().toString(10));
12044       }
12045       return;
12046     }
12047   }
12048 
12049   // Check implicit casts from Objective-C collection literals to specialized
12050   // collection types, e.g., NSArray<NSString *> *.
12051   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12052     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12053   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12054     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12055 
12056   // Strip vector types.
12057   if (isa<VectorType>(Source)) {
12058     if (!isa<VectorType>(Target)) {
12059       if (S.SourceMgr.isInSystemMacro(CC))
12060         return;
12061       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12062     }
12063 
12064     // If the vector cast is cast between two vectors of the same size, it is
12065     // a bitcast, not a conversion.
12066     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12067       return;
12068 
12069     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12070     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12071   }
12072   if (auto VecTy = dyn_cast<VectorType>(Target))
12073     Target = VecTy->getElementType().getTypePtr();
12074 
12075   // Strip complex types.
12076   if (isa<ComplexType>(Source)) {
12077     if (!isa<ComplexType>(Target)) {
12078       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12079         return;
12080 
12081       return DiagnoseImpCast(S, E, T, CC,
12082                              S.getLangOpts().CPlusPlus
12083                                  ? diag::err_impcast_complex_scalar
12084                                  : diag::warn_impcast_complex_scalar);
12085     }
12086 
12087     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12088     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12089   }
12090 
12091   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12092   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12093 
12094   // If the source is floating point...
12095   if (SourceBT && SourceBT->isFloatingPoint()) {
12096     // ...and the target is floating point...
12097     if (TargetBT && TargetBT->isFloatingPoint()) {
12098       // ...then warn if we're dropping FP rank.
12099 
12100       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12101           QualType(SourceBT, 0), QualType(TargetBT, 0));
12102       if (Order > 0) {
12103         // Don't warn about float constants that are precisely
12104         // representable in the target type.
12105         Expr::EvalResult result;
12106         if (E->EvaluateAsRValue(result, S.Context)) {
12107           // Value might be a float, a float vector, or a float complex.
12108           if (IsSameFloatAfterCast(result.Val,
12109                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12110                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12111             return;
12112         }
12113 
12114         if (S.SourceMgr.isInSystemMacro(CC))
12115           return;
12116 
12117         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12118       }
12119       // ... or possibly if we're increasing rank, too
12120       else if (Order < 0) {
12121         if (S.SourceMgr.isInSystemMacro(CC))
12122           return;
12123 
12124         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12125       }
12126       return;
12127     }
12128 
12129     // If the target is integral, always warn.
12130     if (TargetBT && TargetBT->isInteger()) {
12131       if (S.SourceMgr.isInSystemMacro(CC))
12132         return;
12133 
12134       DiagnoseFloatingImpCast(S, E, T, CC);
12135     }
12136 
12137     // Detect the case where a call result is converted from floating-point to
12138     // to bool, and the final argument to the call is converted from bool, to
12139     // discover this typo:
12140     //
12141     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
12142     //
12143     // FIXME: This is an incredibly special case; is there some more general
12144     // way to detect this class of misplaced-parentheses bug?
12145     if (Target->isBooleanType() && isa<CallExpr>(E)) {
12146       // Check last argument of function call to see if it is an
12147       // implicit cast from a type matching the type the result
12148       // is being cast to.
12149       CallExpr *CEx = cast<CallExpr>(E);
12150       if (unsigned NumArgs = CEx->getNumArgs()) {
12151         Expr *LastA = CEx->getArg(NumArgs - 1);
12152         Expr *InnerE = LastA->IgnoreParenImpCasts();
12153         if (isa<ImplicitCastExpr>(LastA) &&
12154             InnerE->getType()->isBooleanType()) {
12155           // Warn on this floating-point to bool conversion
12156           DiagnoseImpCast(S, E, T, CC,
12157                           diag::warn_impcast_floating_point_to_bool);
12158         }
12159       }
12160     }
12161     return;
12162   }
12163 
12164   // Valid casts involving fixed point types should be accounted for here.
12165   if (Source->isFixedPointType()) {
12166     if (Target->isUnsaturatedFixedPointType()) {
12167       Expr::EvalResult Result;
12168       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12169                                   S.isConstantEvaluated())) {
12170         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12171         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12172         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12173         if (Value > MaxVal || Value < MinVal) {
12174           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12175                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12176                                     << Value.toString() << T
12177                                     << E->getSourceRange()
12178                                     << clang::SourceRange(CC));
12179           return;
12180         }
12181       }
12182     } else if (Target->isIntegerType()) {
12183       Expr::EvalResult Result;
12184       if (!S.isConstantEvaluated() &&
12185           E->EvaluateAsFixedPoint(Result, S.Context,
12186                                   Expr::SE_AllowSideEffects)) {
12187         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12188 
12189         bool Overflowed;
12190         llvm::APSInt IntResult = FXResult.convertToInt(
12191             S.Context.getIntWidth(T),
12192             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12193 
12194         if (Overflowed) {
12195           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12196                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12197                                     << FXResult.toString() << T
12198                                     << E->getSourceRange()
12199                                     << clang::SourceRange(CC));
12200           return;
12201         }
12202       }
12203     }
12204   } else if (Target->isUnsaturatedFixedPointType()) {
12205     if (Source->isIntegerType()) {
12206       Expr::EvalResult Result;
12207       if (!S.isConstantEvaluated() &&
12208           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12209         llvm::APSInt Value = Result.Val.getInt();
12210 
12211         bool Overflowed;
12212         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12213             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12214 
12215         if (Overflowed) {
12216           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12217                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12218                                     << Value.toString(/*Radix=*/10) << T
12219                                     << E->getSourceRange()
12220                                     << clang::SourceRange(CC));
12221           return;
12222         }
12223       }
12224     }
12225   }
12226 
12227   // If we are casting an integer type to a floating point type without
12228   // initialization-list syntax, we might lose accuracy if the floating
12229   // point type has a narrower significand than the integer type.
12230   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
12231       TargetBT->isFloatingType() && !IsListInit) {
12232     // Determine the number of precision bits in the source integer type.
12233     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12234                                         /*Approximate*/ true);
12235     unsigned int SourcePrecision = SourceRange.Width;
12236 
12237     // Determine the number of precision bits in the
12238     // target floating point type.
12239     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12240         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12241 
12242     if (SourcePrecision > 0 && TargetPrecision > 0 &&
12243         SourcePrecision > TargetPrecision) {
12244 
12245       if (Optional<llvm::APSInt> SourceInt =
12246               E->getIntegerConstantExpr(S.Context)) {
12247         // If the source integer is a constant, convert it to the target
12248         // floating point type. Issue a warning if the value changes
12249         // during the whole conversion.
12250         llvm::APFloat TargetFloatValue(
12251             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12252         llvm::APFloat::opStatus ConversionStatus =
12253             TargetFloatValue.convertFromAPInt(
12254                 *SourceInt, SourceBT->isSignedInteger(),
12255                 llvm::APFloat::rmNearestTiesToEven);
12256 
12257         if (ConversionStatus != llvm::APFloat::opOK) {
12258           std::string PrettySourceValue = SourceInt->toString(10);
12259           SmallString<32> PrettyTargetValue;
12260           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12261 
12262           S.DiagRuntimeBehavior(
12263               E->getExprLoc(), E,
12264               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12265                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
12266                   << E->getSourceRange() << clang::SourceRange(CC));
12267         }
12268       } else {
12269         // Otherwise, the implicit conversion may lose precision.
12270         DiagnoseImpCast(S, E, T, CC,
12271                         diag::warn_impcast_integer_float_precision);
12272       }
12273     }
12274   }
12275 
12276   DiagnoseNullConversion(S, E, T, CC);
12277 
12278   S.DiscardMisalignedMemberAddress(Target, E);
12279 
12280   if (Target->isBooleanType())
12281     DiagnoseIntInBoolContext(S, E);
12282 
12283   if (!Source->isIntegerType() || !Target->isIntegerType())
12284     return;
12285 
12286   // TODO: remove this early return once the false positives for constant->bool
12287   // in templates, macros, etc, are reduced or removed.
12288   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
12289     return;
12290 
12291   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
12292       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
12293     return adornObjCBoolConversionDiagWithTernaryFixit(
12294         S, E,
12295         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
12296             << E->getType());
12297   }
12298 
12299   IntRange SourceTypeRange =
12300       IntRange::forTargetOfCanonicalType(S.Context, Source);
12301   IntRange LikelySourceRange =
12302       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
12303   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
12304 
12305   if (LikelySourceRange.Width > TargetRange.Width) {
12306     // If the source is a constant, use a default-on diagnostic.
12307     // TODO: this should happen for bitfield stores, too.
12308     Expr::EvalResult Result;
12309     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
12310                          S.isConstantEvaluated())) {
12311       llvm::APSInt Value(32);
12312       Value = Result.Val.getInt();
12313 
12314       if (S.SourceMgr.isInSystemMacro(CC))
12315         return;
12316 
12317       std::string PrettySourceValue = Value.toString(10);
12318       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12319 
12320       S.DiagRuntimeBehavior(
12321           E->getExprLoc(), E,
12322           S.PDiag(diag::warn_impcast_integer_precision_constant)
12323               << PrettySourceValue << PrettyTargetValue << E->getType() << T
12324               << E->getSourceRange() << SourceRange(CC));
12325       return;
12326     }
12327 
12328     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
12329     if (S.SourceMgr.isInSystemMacro(CC))
12330       return;
12331 
12332     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
12333       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
12334                              /* pruneControlFlow */ true);
12335     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
12336   }
12337 
12338   if (TargetRange.Width > SourceTypeRange.Width) {
12339     if (auto *UO = dyn_cast<UnaryOperator>(E))
12340       if (UO->getOpcode() == UO_Minus)
12341         if (Source->isUnsignedIntegerType()) {
12342           if (Target->isUnsignedIntegerType())
12343             return DiagnoseImpCast(S, E, T, CC,
12344                                    diag::warn_impcast_high_order_zero_bits);
12345           if (Target->isSignedIntegerType())
12346             return DiagnoseImpCast(S, E, T, CC,
12347                                    diag::warn_impcast_nonnegative_result);
12348         }
12349   }
12350 
12351   if (TargetRange.Width == LikelySourceRange.Width &&
12352       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12353       Source->isSignedIntegerType()) {
12354     // Warn when doing a signed to signed conversion, warn if the positive
12355     // source value is exactly the width of the target type, which will
12356     // cause a negative value to be stored.
12357 
12358     Expr::EvalResult Result;
12359     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12360         !S.SourceMgr.isInSystemMacro(CC)) {
12361       llvm::APSInt Value = Result.Val.getInt();
12362       if (isSameWidthConstantConversion(S, E, T, CC)) {
12363         std::string PrettySourceValue = Value.toString(10);
12364         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12365 
12366         S.DiagRuntimeBehavior(
12367             E->getExprLoc(), E,
12368             S.PDiag(diag::warn_impcast_integer_precision_constant)
12369                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12370                 << E->getSourceRange() << SourceRange(CC));
12371         return;
12372       }
12373     }
12374 
12375     // Fall through for non-constants to give a sign conversion warning.
12376   }
12377 
12378   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
12379       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12380        LikelySourceRange.Width == TargetRange.Width)) {
12381     if (S.SourceMgr.isInSystemMacro(CC))
12382       return;
12383 
12384     unsigned DiagID = diag::warn_impcast_integer_sign;
12385 
12386     // Traditionally, gcc has warned about this under -Wsign-compare.
12387     // We also want to warn about it in -Wconversion.
12388     // So if -Wconversion is off, use a completely identical diagnostic
12389     // in the sign-compare group.
12390     // The conditional-checking code will
12391     if (ICContext) {
12392       DiagID = diag::warn_impcast_integer_sign_conditional;
12393       *ICContext = true;
12394     }
12395 
12396     return DiagnoseImpCast(S, E, T, CC, DiagID);
12397   }
12398 
12399   // Diagnose conversions between different enumeration types.
12400   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12401   // type, to give us better diagnostics.
12402   QualType SourceType = E->getType();
12403   if (!S.getLangOpts().CPlusPlus) {
12404     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12405       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12406         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12407         SourceType = S.Context.getTypeDeclType(Enum);
12408         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12409       }
12410   }
12411 
12412   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12413     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12414       if (SourceEnum->getDecl()->hasNameForLinkage() &&
12415           TargetEnum->getDecl()->hasNameForLinkage() &&
12416           SourceEnum != TargetEnum) {
12417         if (S.SourceMgr.isInSystemMacro(CC))
12418           return;
12419 
12420         return DiagnoseImpCast(S, E, SourceType, T, CC,
12421                                diag::warn_impcast_different_enum_types);
12422       }
12423 }
12424 
12425 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12426                                      SourceLocation CC, QualType T);
12427 
12428 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
12429                                     SourceLocation CC, bool &ICContext) {
12430   E = E->IgnoreParenImpCasts();
12431 
12432   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
12433     return CheckConditionalOperator(S, CO, CC, T);
12434 
12435   AnalyzeImplicitConversions(S, E, CC);
12436   if (E->getType() != T)
12437     return CheckImplicitConversion(S, E, T, CC, &ICContext);
12438 }
12439 
12440 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12441                                      SourceLocation CC, QualType T) {
12442   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
12443 
12444   Expr *TrueExpr = E->getTrueExpr();
12445   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
12446     TrueExpr = BCO->getCommon();
12447 
12448   bool Suspicious = false;
12449   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
12450   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
12451 
12452   if (T->isBooleanType())
12453     DiagnoseIntInBoolContext(S, E);
12454 
12455   // If -Wconversion would have warned about either of the candidates
12456   // for a signedness conversion to the context type...
12457   if (!Suspicious) return;
12458 
12459   // ...but it's currently ignored...
12460   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
12461     return;
12462 
12463   // ...then check whether it would have warned about either of the
12464   // candidates for a signedness conversion to the condition type.
12465   if (E->getType() == T) return;
12466 
12467   Suspicious = false;
12468   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
12469                           E->getType(), CC, &Suspicious);
12470   if (!Suspicious)
12471     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
12472                             E->getType(), CC, &Suspicious);
12473 }
12474 
12475 /// Check conversion of given expression to boolean.
12476 /// Input argument E is a logical expression.
12477 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
12478   if (S.getLangOpts().Bool)
12479     return;
12480   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
12481     return;
12482   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
12483 }
12484 
12485 namespace {
12486 struct AnalyzeImplicitConversionsWorkItem {
12487   Expr *E;
12488   SourceLocation CC;
12489   bool IsListInit;
12490 };
12491 }
12492 
12493 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
12494 /// that should be visited are added to WorkList.
12495 static void AnalyzeImplicitConversions(
12496     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
12497     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
12498   Expr *OrigE = Item.E;
12499   SourceLocation CC = Item.CC;
12500 
12501   QualType T = OrigE->getType();
12502   Expr *E = OrigE->IgnoreParenImpCasts();
12503 
12504   // Propagate whether we are in a C++ list initialization expression.
12505   // If so, we do not issue warnings for implicit int-float conversion
12506   // precision loss, because C++11 narrowing already handles it.
12507   bool IsListInit = Item.IsListInit ||
12508                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
12509 
12510   if (E->isTypeDependent() || E->isValueDependent())
12511     return;
12512 
12513   Expr *SourceExpr = E;
12514   // Examine, but don't traverse into the source expression of an
12515   // OpaqueValueExpr, since it may have multiple parents and we don't want to
12516   // emit duplicate diagnostics. Its fine to examine the form or attempt to
12517   // evaluate it in the context of checking the specific conversion to T though.
12518   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
12519     if (auto *Src = OVE->getSourceExpr())
12520       SourceExpr = Src;
12521 
12522   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
12523     if (UO->getOpcode() == UO_Not &&
12524         UO->getSubExpr()->isKnownToHaveBooleanValue())
12525       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
12526           << OrigE->getSourceRange() << T->isBooleanType()
12527           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
12528 
12529   // For conditional operators, we analyze the arguments as if they
12530   // were being fed directly into the output.
12531   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
12532     CheckConditionalOperator(S, CO, CC, T);
12533     return;
12534   }
12535 
12536   // Check implicit argument conversions for function calls.
12537   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
12538     CheckImplicitArgumentConversions(S, Call, CC);
12539 
12540   // Go ahead and check any implicit conversions we might have skipped.
12541   // The non-canonical typecheck is just an optimization;
12542   // CheckImplicitConversion will filter out dead implicit conversions.
12543   if (SourceExpr->getType() != T)
12544     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
12545 
12546   // Now continue drilling into this expression.
12547 
12548   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
12549     // The bound subexpressions in a PseudoObjectExpr are not reachable
12550     // as transitive children.
12551     // FIXME: Use a more uniform representation for this.
12552     for (auto *SE : POE->semantics())
12553       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
12554         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
12555   }
12556 
12557   // Skip past explicit casts.
12558   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
12559     E = CE->getSubExpr()->IgnoreParenImpCasts();
12560     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
12561       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12562     WorkList.push_back({E, CC, IsListInit});
12563     return;
12564   }
12565 
12566   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12567     // Do a somewhat different check with comparison operators.
12568     if (BO->isComparisonOp())
12569       return AnalyzeComparison(S, BO);
12570 
12571     // And with simple assignments.
12572     if (BO->getOpcode() == BO_Assign)
12573       return AnalyzeAssignment(S, BO);
12574     // And with compound assignments.
12575     if (BO->isAssignmentOp())
12576       return AnalyzeCompoundAssignment(S, BO);
12577   }
12578 
12579   // These break the otherwise-useful invariant below.  Fortunately,
12580   // we don't really need to recurse into them, because any internal
12581   // expressions should have been analyzed already when they were
12582   // built into statements.
12583   if (isa<StmtExpr>(E)) return;
12584 
12585   // Don't descend into unevaluated contexts.
12586   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
12587 
12588   // Now just recurse over the expression's children.
12589   CC = E->getExprLoc();
12590   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
12591   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
12592   for (Stmt *SubStmt : E->children()) {
12593     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
12594     if (!ChildExpr)
12595       continue;
12596 
12597     if (IsLogicalAndOperator &&
12598         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
12599       // Ignore checking string literals that are in logical and operators.
12600       // This is a common pattern for asserts.
12601       continue;
12602     WorkList.push_back({ChildExpr, CC, IsListInit});
12603   }
12604 
12605   if (BO && BO->isLogicalOp()) {
12606     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
12607     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12608       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12609 
12610     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
12611     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12612       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12613   }
12614 
12615   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
12616     if (U->getOpcode() == UO_LNot) {
12617       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
12618     } else if (U->getOpcode() != UO_AddrOf) {
12619       if (U->getSubExpr()->getType()->isAtomicType())
12620         S.Diag(U->getSubExpr()->getBeginLoc(),
12621                diag::warn_atomic_implicit_seq_cst);
12622     }
12623   }
12624 }
12625 
12626 /// AnalyzeImplicitConversions - Find and report any interesting
12627 /// implicit conversions in the given expression.  There are a couple
12628 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
12629 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
12630                                        bool IsListInit/*= false*/) {
12631   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
12632   WorkList.push_back({OrigE, CC, IsListInit});
12633   while (!WorkList.empty())
12634     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
12635 }
12636 
12637 /// Diagnose integer type and any valid implicit conversion to it.
12638 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
12639   // Taking into account implicit conversions,
12640   // allow any integer.
12641   if (!E->getType()->isIntegerType()) {
12642     S.Diag(E->getBeginLoc(),
12643            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
12644     return true;
12645   }
12646   // Potentially emit standard warnings for implicit conversions if enabled
12647   // using -Wconversion.
12648   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
12649   return false;
12650 }
12651 
12652 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
12653 // Returns true when emitting a warning about taking the address of a reference.
12654 static bool CheckForReference(Sema &SemaRef, const Expr *E,
12655                               const PartialDiagnostic &PD) {
12656   E = E->IgnoreParenImpCasts();
12657 
12658   const FunctionDecl *FD = nullptr;
12659 
12660   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12661     if (!DRE->getDecl()->getType()->isReferenceType())
12662       return false;
12663   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12664     if (!M->getMemberDecl()->getType()->isReferenceType())
12665       return false;
12666   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
12667     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
12668       return false;
12669     FD = Call->getDirectCallee();
12670   } else {
12671     return false;
12672   }
12673 
12674   SemaRef.Diag(E->getExprLoc(), PD);
12675 
12676   // If possible, point to location of function.
12677   if (FD) {
12678     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
12679   }
12680 
12681   return true;
12682 }
12683 
12684 // Returns true if the SourceLocation is expanded from any macro body.
12685 // Returns false if the SourceLocation is invalid, is from not in a macro
12686 // expansion, or is from expanded from a top-level macro argument.
12687 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
12688   if (Loc.isInvalid())
12689     return false;
12690 
12691   while (Loc.isMacroID()) {
12692     if (SM.isMacroBodyExpansion(Loc))
12693       return true;
12694     Loc = SM.getImmediateMacroCallerLoc(Loc);
12695   }
12696 
12697   return false;
12698 }
12699 
12700 /// Diagnose pointers that are always non-null.
12701 /// \param E the expression containing the pointer
12702 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
12703 /// compared to a null pointer
12704 /// \param IsEqual True when the comparison is equal to a null pointer
12705 /// \param Range Extra SourceRange to highlight in the diagnostic
12706 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
12707                                         Expr::NullPointerConstantKind NullKind,
12708                                         bool IsEqual, SourceRange Range) {
12709   if (!E)
12710     return;
12711 
12712   // Don't warn inside macros.
12713   if (E->getExprLoc().isMacroID()) {
12714     const SourceManager &SM = getSourceManager();
12715     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
12716         IsInAnyMacroBody(SM, Range.getBegin()))
12717       return;
12718   }
12719   E = E->IgnoreImpCasts();
12720 
12721   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
12722 
12723   if (isa<CXXThisExpr>(E)) {
12724     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
12725                                 : diag::warn_this_bool_conversion;
12726     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
12727     return;
12728   }
12729 
12730   bool IsAddressOf = false;
12731 
12732   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12733     if (UO->getOpcode() != UO_AddrOf)
12734       return;
12735     IsAddressOf = true;
12736     E = UO->getSubExpr();
12737   }
12738 
12739   if (IsAddressOf) {
12740     unsigned DiagID = IsCompare
12741                           ? diag::warn_address_of_reference_null_compare
12742                           : diag::warn_address_of_reference_bool_conversion;
12743     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
12744                                          << IsEqual;
12745     if (CheckForReference(*this, E, PD)) {
12746       return;
12747     }
12748   }
12749 
12750   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
12751     bool IsParam = isa<NonNullAttr>(NonnullAttr);
12752     std::string Str;
12753     llvm::raw_string_ostream S(Str);
12754     E->printPretty(S, nullptr, getPrintingPolicy());
12755     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
12756                                 : diag::warn_cast_nonnull_to_bool;
12757     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
12758       << E->getSourceRange() << Range << IsEqual;
12759     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
12760   };
12761 
12762   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
12763   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
12764     if (auto *Callee = Call->getDirectCallee()) {
12765       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
12766         ComplainAboutNonnullParamOrCall(A);
12767         return;
12768       }
12769     }
12770   }
12771 
12772   // Expect to find a single Decl.  Skip anything more complicated.
12773   ValueDecl *D = nullptr;
12774   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
12775     D = R->getDecl();
12776   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12777     D = M->getMemberDecl();
12778   }
12779 
12780   // Weak Decls can be null.
12781   if (!D || D->isWeak())
12782     return;
12783 
12784   // Check for parameter decl with nonnull attribute
12785   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
12786     if (getCurFunction() &&
12787         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
12788       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
12789         ComplainAboutNonnullParamOrCall(A);
12790         return;
12791       }
12792 
12793       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
12794         // Skip function template not specialized yet.
12795         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
12796           return;
12797         auto ParamIter = llvm::find(FD->parameters(), PV);
12798         assert(ParamIter != FD->param_end());
12799         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
12800 
12801         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
12802           if (!NonNull->args_size()) {
12803               ComplainAboutNonnullParamOrCall(NonNull);
12804               return;
12805           }
12806 
12807           for (const ParamIdx &ArgNo : NonNull->args()) {
12808             if (ArgNo.getASTIndex() == ParamNo) {
12809               ComplainAboutNonnullParamOrCall(NonNull);
12810               return;
12811             }
12812           }
12813         }
12814       }
12815     }
12816   }
12817 
12818   QualType T = D->getType();
12819   const bool IsArray = T->isArrayType();
12820   const bool IsFunction = T->isFunctionType();
12821 
12822   // Address of function is used to silence the function warning.
12823   if (IsAddressOf && IsFunction) {
12824     return;
12825   }
12826 
12827   // Found nothing.
12828   if (!IsAddressOf && !IsFunction && !IsArray)
12829     return;
12830 
12831   // Pretty print the expression for the diagnostic.
12832   std::string Str;
12833   llvm::raw_string_ostream S(Str);
12834   E->printPretty(S, nullptr, getPrintingPolicy());
12835 
12836   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
12837                               : diag::warn_impcast_pointer_to_bool;
12838   enum {
12839     AddressOf,
12840     FunctionPointer,
12841     ArrayPointer
12842   } DiagType;
12843   if (IsAddressOf)
12844     DiagType = AddressOf;
12845   else if (IsFunction)
12846     DiagType = FunctionPointer;
12847   else if (IsArray)
12848     DiagType = ArrayPointer;
12849   else
12850     llvm_unreachable("Could not determine diagnostic.");
12851   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12852                                 << Range << IsEqual;
12853 
12854   if (!IsFunction)
12855     return;
12856 
12857   // Suggest '&' to silence the function warning.
12858   Diag(E->getExprLoc(), diag::note_function_warning_silence)
12859       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12860 
12861   // Check to see if '()' fixit should be emitted.
12862   QualType ReturnType;
12863   UnresolvedSet<4> NonTemplateOverloads;
12864   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12865   if (ReturnType.isNull())
12866     return;
12867 
12868   if (IsCompare) {
12869     // There are two cases here.  If there is null constant, the only suggest
12870     // for a pointer return type.  If the null is 0, then suggest if the return
12871     // type is a pointer or an integer type.
12872     if (!ReturnType->isPointerType()) {
12873       if (NullKind == Expr::NPCK_ZeroExpression ||
12874           NullKind == Expr::NPCK_ZeroLiteral) {
12875         if (!ReturnType->isIntegerType())
12876           return;
12877       } else {
12878         return;
12879       }
12880     }
12881   } else { // !IsCompare
12882     // For function to bool, only suggest if the function pointer has bool
12883     // return type.
12884     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12885       return;
12886   }
12887   Diag(E->getExprLoc(), diag::note_function_to_function_call)
12888       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12889 }
12890 
12891 /// Diagnoses "dangerous" implicit conversions within the given
12892 /// expression (which is a full expression).  Implements -Wconversion
12893 /// and -Wsign-compare.
12894 ///
12895 /// \param CC the "context" location of the implicit conversion, i.e.
12896 ///   the most location of the syntactic entity requiring the implicit
12897 ///   conversion
12898 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12899   // Don't diagnose in unevaluated contexts.
12900   if (isUnevaluatedContext())
12901     return;
12902 
12903   // Don't diagnose for value- or type-dependent expressions.
12904   if (E->isTypeDependent() || E->isValueDependent())
12905     return;
12906 
12907   // Check for array bounds violations in cases where the check isn't triggered
12908   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12909   // ArraySubscriptExpr is on the RHS of a variable initialization.
12910   CheckArrayAccess(E);
12911 
12912   // This is not the right CC for (e.g.) a variable initialization.
12913   AnalyzeImplicitConversions(*this, E, CC);
12914 }
12915 
12916 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
12917 /// Input argument E is a logical expression.
12918 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12919   ::CheckBoolLikeConversion(*this, E, CC);
12920 }
12921 
12922 /// Diagnose when expression is an integer constant expression and its evaluation
12923 /// results in integer overflow
12924 void Sema::CheckForIntOverflow (Expr *E) {
12925   // Use a work list to deal with nested struct initializers.
12926   SmallVector<Expr *, 2> Exprs(1, E);
12927 
12928   do {
12929     Expr *OriginalE = Exprs.pop_back_val();
12930     Expr *E = OriginalE->IgnoreParenCasts();
12931 
12932     if (isa<BinaryOperator>(E)) {
12933       E->EvaluateForOverflow(Context);
12934       continue;
12935     }
12936 
12937     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
12938       Exprs.append(InitList->inits().begin(), InitList->inits().end());
12939     else if (isa<ObjCBoxedExpr>(OriginalE))
12940       E->EvaluateForOverflow(Context);
12941     else if (auto Call = dyn_cast<CallExpr>(E))
12942       Exprs.append(Call->arg_begin(), Call->arg_end());
12943     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
12944       Exprs.append(Message->arg_begin(), Message->arg_end());
12945   } while (!Exprs.empty());
12946 }
12947 
12948 namespace {
12949 
12950 /// Visitor for expressions which looks for unsequenced operations on the
12951 /// same object.
12952 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12953   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12954 
12955   /// A tree of sequenced regions within an expression. Two regions are
12956   /// unsequenced if one is an ancestor or a descendent of the other. When we
12957   /// finish processing an expression with sequencing, such as a comma
12958   /// expression, we fold its tree nodes into its parent, since they are
12959   /// unsequenced with respect to nodes we will visit later.
12960   class SequenceTree {
12961     struct Value {
12962       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12963       unsigned Parent : 31;
12964       unsigned Merged : 1;
12965     };
12966     SmallVector<Value, 8> Values;
12967 
12968   public:
12969     /// A region within an expression which may be sequenced with respect
12970     /// to some other region.
12971     class Seq {
12972       friend class SequenceTree;
12973 
12974       unsigned Index;
12975 
12976       explicit Seq(unsigned N) : Index(N) {}
12977 
12978     public:
12979       Seq() : Index(0) {}
12980     };
12981 
12982     SequenceTree() { Values.push_back(Value(0)); }
12983     Seq root() const { return Seq(0); }
12984 
12985     /// Create a new sequence of operations, which is an unsequenced
12986     /// subset of \p Parent. This sequence of operations is sequenced with
12987     /// respect to other children of \p Parent.
12988     Seq allocate(Seq Parent) {
12989       Values.push_back(Value(Parent.Index));
12990       return Seq(Values.size() - 1);
12991     }
12992 
12993     /// Merge a sequence of operations into its parent.
12994     void merge(Seq S) {
12995       Values[S.Index].Merged = true;
12996     }
12997 
12998     /// Determine whether two operations are unsequenced. This operation
12999     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
13000     /// should have been merged into its parent as appropriate.
13001     bool isUnsequenced(Seq Cur, Seq Old) {
13002       unsigned C = representative(Cur.Index);
13003       unsigned Target = representative(Old.Index);
13004       while (C >= Target) {
13005         if (C == Target)
13006           return true;
13007         C = Values[C].Parent;
13008       }
13009       return false;
13010     }
13011 
13012   private:
13013     /// Pick a representative for a sequence.
13014     unsigned representative(unsigned K) {
13015       if (Values[K].Merged)
13016         // Perform path compression as we go.
13017         return Values[K].Parent = representative(Values[K].Parent);
13018       return K;
13019     }
13020   };
13021 
13022   /// An object for which we can track unsequenced uses.
13023   using Object = const NamedDecl *;
13024 
13025   /// Different flavors of object usage which we track. We only track the
13026   /// least-sequenced usage of each kind.
13027   enum UsageKind {
13028     /// A read of an object. Multiple unsequenced reads are OK.
13029     UK_Use,
13030 
13031     /// A modification of an object which is sequenced before the value
13032     /// computation of the expression, such as ++n in C++.
13033     UK_ModAsValue,
13034 
13035     /// A modification of an object which is not sequenced before the value
13036     /// computation of the expression, such as n++.
13037     UK_ModAsSideEffect,
13038 
13039     UK_Count = UK_ModAsSideEffect + 1
13040   };
13041 
13042   /// Bundle together a sequencing region and the expression corresponding
13043   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13044   struct Usage {
13045     const Expr *UsageExpr;
13046     SequenceTree::Seq Seq;
13047 
13048     Usage() : UsageExpr(nullptr), Seq() {}
13049   };
13050 
13051   struct UsageInfo {
13052     Usage Uses[UK_Count];
13053 
13054     /// Have we issued a diagnostic for this object already?
13055     bool Diagnosed;
13056 
13057     UsageInfo() : Uses(), Diagnosed(false) {}
13058   };
13059   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13060 
13061   Sema &SemaRef;
13062 
13063   /// Sequenced regions within the expression.
13064   SequenceTree Tree;
13065 
13066   /// Declaration modifications and references which we have seen.
13067   UsageInfoMap UsageMap;
13068 
13069   /// The region we are currently within.
13070   SequenceTree::Seq Region;
13071 
13072   /// Filled in with declarations which were modified as a side-effect
13073   /// (that is, post-increment operations).
13074   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13075 
13076   /// Expressions to check later. We defer checking these to reduce
13077   /// stack usage.
13078   SmallVectorImpl<const Expr *> &WorkList;
13079 
13080   /// RAII object wrapping the visitation of a sequenced subexpression of an
13081   /// expression. At the end of this process, the side-effects of the evaluation
13082   /// become sequenced with respect to the value computation of the result, so
13083   /// we downgrade any UK_ModAsSideEffect within the evaluation to
13084   /// UK_ModAsValue.
13085   struct SequencedSubexpression {
13086     SequencedSubexpression(SequenceChecker &Self)
13087       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13088       Self.ModAsSideEffect = &ModAsSideEffect;
13089     }
13090 
13091     ~SequencedSubexpression() {
13092       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13093         // Add a new usage with usage kind UK_ModAsValue, and then restore
13094         // the previous usage with UK_ModAsSideEffect (thus clearing it if
13095         // the previous one was empty).
13096         UsageInfo &UI = Self.UsageMap[M.first];
13097         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13098         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13099         SideEffectUsage = M.second;
13100       }
13101       Self.ModAsSideEffect = OldModAsSideEffect;
13102     }
13103 
13104     SequenceChecker &Self;
13105     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13106     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13107   };
13108 
13109   /// RAII object wrapping the visitation of a subexpression which we might
13110   /// choose to evaluate as a constant. If any subexpression is evaluated and
13111   /// found to be non-constant, this allows us to suppress the evaluation of
13112   /// the outer expression.
13113   class EvaluationTracker {
13114   public:
13115     EvaluationTracker(SequenceChecker &Self)
13116         : Self(Self), Prev(Self.EvalTracker) {
13117       Self.EvalTracker = this;
13118     }
13119 
13120     ~EvaluationTracker() {
13121       Self.EvalTracker = Prev;
13122       if (Prev)
13123         Prev->EvalOK &= EvalOK;
13124     }
13125 
13126     bool evaluate(const Expr *E, bool &Result) {
13127       if (!EvalOK || E->isValueDependent())
13128         return false;
13129       EvalOK = E->EvaluateAsBooleanCondition(
13130           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13131       return EvalOK;
13132     }
13133 
13134   private:
13135     SequenceChecker &Self;
13136     EvaluationTracker *Prev;
13137     bool EvalOK = true;
13138   } *EvalTracker = nullptr;
13139 
13140   /// Find the object which is produced by the specified expression,
13141   /// if any.
13142   Object getObject(const Expr *E, bool Mod) const {
13143     E = E->IgnoreParenCasts();
13144     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13145       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13146         return getObject(UO->getSubExpr(), Mod);
13147     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13148       if (BO->getOpcode() == BO_Comma)
13149         return getObject(BO->getRHS(), Mod);
13150       if (Mod && BO->isAssignmentOp())
13151         return getObject(BO->getLHS(), Mod);
13152     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13153       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13154       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13155         return ME->getMemberDecl();
13156     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13157       // FIXME: If this is a reference, map through to its value.
13158       return DRE->getDecl();
13159     return nullptr;
13160   }
13161 
13162   /// Note that an object \p O was modified or used by an expression
13163   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13164   /// the object \p O as obtained via the \p UsageMap.
13165   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13166     // Get the old usage for the given object and usage kind.
13167     Usage &U = UI.Uses[UK];
13168     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13169       // If we have a modification as side effect and are in a sequenced
13170       // subexpression, save the old Usage so that we can restore it later
13171       // in SequencedSubexpression::~SequencedSubexpression.
13172       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13173         ModAsSideEffect->push_back(std::make_pair(O, U));
13174       // Then record the new usage with the current sequencing region.
13175       U.UsageExpr = UsageExpr;
13176       U.Seq = Region;
13177     }
13178   }
13179 
13180   /// Check whether a modification or use of an object \p O in an expression
13181   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13182   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13183   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13184   /// usage and false we are checking for a mod-use unsequenced usage.
13185   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13186                   UsageKind OtherKind, bool IsModMod) {
13187     if (UI.Diagnosed)
13188       return;
13189 
13190     const Usage &U = UI.Uses[OtherKind];
13191     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13192       return;
13193 
13194     const Expr *Mod = U.UsageExpr;
13195     const Expr *ModOrUse = UsageExpr;
13196     if (OtherKind == UK_Use)
13197       std::swap(Mod, ModOrUse);
13198 
13199     SemaRef.DiagRuntimeBehavior(
13200         Mod->getExprLoc(), {Mod, ModOrUse},
13201         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13202                                : diag::warn_unsequenced_mod_use)
13203             << O << SourceRange(ModOrUse->getExprLoc()));
13204     UI.Diagnosed = true;
13205   }
13206 
13207   // A note on note{Pre, Post}{Use, Mod}:
13208   //
13209   // (It helps to follow the algorithm with an expression such as
13210   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
13211   //  operations before C++17 and both are well-defined in C++17).
13212   //
13213   // When visiting a node which uses/modify an object we first call notePreUse
13214   // or notePreMod before visiting its sub-expression(s). At this point the
13215   // children of the current node have not yet been visited and so the eventual
13216   // uses/modifications resulting from the children of the current node have not
13217   // been recorded yet.
13218   //
13219   // We then visit the children of the current node. After that notePostUse or
13220   // notePostMod is called. These will 1) detect an unsequenced modification
13221   // as side effect (as in "k++ + k") and 2) add a new usage with the
13222   // appropriate usage kind.
13223   //
13224   // We also have to be careful that some operation sequences modification as
13225   // side effect as well (for example: || or ,). To account for this we wrap
13226   // the visitation of such a sub-expression (for example: the LHS of || or ,)
13227   // with SequencedSubexpression. SequencedSubexpression is an RAII object
13228   // which record usages which are modifications as side effect, and then
13229   // downgrade them (or more accurately restore the previous usage which was a
13230   // modification as side effect) when exiting the scope of the sequenced
13231   // subexpression.
13232 
13233   void notePreUse(Object O, const Expr *UseExpr) {
13234     UsageInfo &UI = UsageMap[O];
13235     // Uses conflict with other modifications.
13236     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13237   }
13238 
13239   void notePostUse(Object O, const Expr *UseExpr) {
13240     UsageInfo &UI = UsageMap[O];
13241     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13242                /*IsModMod=*/false);
13243     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13244   }
13245 
13246   void notePreMod(Object O, const Expr *ModExpr) {
13247     UsageInfo &UI = UsageMap[O];
13248     // Modifications conflict with other modifications and with uses.
13249     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13250     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13251   }
13252 
13253   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13254     UsageInfo &UI = UsageMap[O];
13255     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13256                /*IsModMod=*/true);
13257     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13258   }
13259 
13260 public:
13261   SequenceChecker(Sema &S, const Expr *E,
13262                   SmallVectorImpl<const Expr *> &WorkList)
13263       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13264     Visit(E);
13265     // Silence a -Wunused-private-field since WorkList is now unused.
13266     // TODO: Evaluate if it can be used, and if not remove it.
13267     (void)this->WorkList;
13268   }
13269 
13270   void VisitStmt(const Stmt *S) {
13271     // Skip all statements which aren't expressions for now.
13272   }
13273 
13274   void VisitExpr(const Expr *E) {
13275     // By default, just recurse to evaluated subexpressions.
13276     Base::VisitStmt(E);
13277   }
13278 
13279   void VisitCastExpr(const CastExpr *E) {
13280     Object O = Object();
13281     if (E->getCastKind() == CK_LValueToRValue)
13282       O = getObject(E->getSubExpr(), false);
13283 
13284     if (O)
13285       notePreUse(O, E);
13286     VisitExpr(E);
13287     if (O)
13288       notePostUse(O, E);
13289   }
13290 
13291   void VisitSequencedExpressions(const Expr *SequencedBefore,
13292                                  const Expr *SequencedAfter) {
13293     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
13294     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
13295     SequenceTree::Seq OldRegion = Region;
13296 
13297     {
13298       SequencedSubexpression SeqBefore(*this);
13299       Region = BeforeRegion;
13300       Visit(SequencedBefore);
13301     }
13302 
13303     Region = AfterRegion;
13304     Visit(SequencedAfter);
13305 
13306     Region = OldRegion;
13307 
13308     Tree.merge(BeforeRegion);
13309     Tree.merge(AfterRegion);
13310   }
13311 
13312   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
13313     // C++17 [expr.sub]p1:
13314     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
13315     //   expression E1 is sequenced before the expression E2.
13316     if (SemaRef.getLangOpts().CPlusPlus17)
13317       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
13318     else {
13319       Visit(ASE->getLHS());
13320       Visit(ASE->getRHS());
13321     }
13322   }
13323 
13324   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13325   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13326   void VisitBinPtrMem(const BinaryOperator *BO) {
13327     // C++17 [expr.mptr.oper]p4:
13328     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
13329     //  the expression E1 is sequenced before the expression E2.
13330     if (SemaRef.getLangOpts().CPlusPlus17)
13331       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13332     else {
13333       Visit(BO->getLHS());
13334       Visit(BO->getRHS());
13335     }
13336   }
13337 
13338   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13339   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13340   void VisitBinShlShr(const BinaryOperator *BO) {
13341     // C++17 [expr.shift]p4:
13342     //  The expression E1 is sequenced before the expression E2.
13343     if (SemaRef.getLangOpts().CPlusPlus17)
13344       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13345     else {
13346       Visit(BO->getLHS());
13347       Visit(BO->getRHS());
13348     }
13349   }
13350 
13351   void VisitBinComma(const BinaryOperator *BO) {
13352     // C++11 [expr.comma]p1:
13353     //   Every value computation and side effect associated with the left
13354     //   expression is sequenced before every value computation and side
13355     //   effect associated with the right expression.
13356     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13357   }
13358 
13359   void VisitBinAssign(const BinaryOperator *BO) {
13360     SequenceTree::Seq RHSRegion;
13361     SequenceTree::Seq LHSRegion;
13362     if (SemaRef.getLangOpts().CPlusPlus17) {
13363       RHSRegion = Tree.allocate(Region);
13364       LHSRegion = Tree.allocate(Region);
13365     } else {
13366       RHSRegion = Region;
13367       LHSRegion = Region;
13368     }
13369     SequenceTree::Seq OldRegion = Region;
13370 
13371     // C++11 [expr.ass]p1:
13372     //  [...] the assignment is sequenced after the value computation
13373     //  of the right and left operands, [...]
13374     //
13375     // so check it before inspecting the operands and update the
13376     // map afterwards.
13377     Object O = getObject(BO->getLHS(), /*Mod=*/true);
13378     if (O)
13379       notePreMod(O, BO);
13380 
13381     if (SemaRef.getLangOpts().CPlusPlus17) {
13382       // C++17 [expr.ass]p1:
13383       //  [...] The right operand is sequenced before the left operand. [...]
13384       {
13385         SequencedSubexpression SeqBefore(*this);
13386         Region = RHSRegion;
13387         Visit(BO->getRHS());
13388       }
13389 
13390       Region = LHSRegion;
13391       Visit(BO->getLHS());
13392 
13393       if (O && isa<CompoundAssignOperator>(BO))
13394         notePostUse(O, BO);
13395 
13396     } else {
13397       // C++11 does not specify any sequencing between the LHS and RHS.
13398       Region = LHSRegion;
13399       Visit(BO->getLHS());
13400 
13401       if (O && isa<CompoundAssignOperator>(BO))
13402         notePostUse(O, BO);
13403 
13404       Region = RHSRegion;
13405       Visit(BO->getRHS());
13406     }
13407 
13408     // C++11 [expr.ass]p1:
13409     //  the assignment is sequenced [...] before the value computation of the
13410     //  assignment expression.
13411     // C11 6.5.16/3 has no such rule.
13412     Region = OldRegion;
13413     if (O)
13414       notePostMod(O, BO,
13415                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13416                                                   : UK_ModAsSideEffect);
13417     if (SemaRef.getLangOpts().CPlusPlus17) {
13418       Tree.merge(RHSRegion);
13419       Tree.merge(LHSRegion);
13420     }
13421   }
13422 
13423   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13424     VisitBinAssign(CAO);
13425   }
13426 
13427   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13428   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13429   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
13430     Object O = getObject(UO->getSubExpr(), true);
13431     if (!O)
13432       return VisitExpr(UO);
13433 
13434     notePreMod(O, UO);
13435     Visit(UO->getSubExpr());
13436     // C++11 [expr.pre.incr]p1:
13437     //   the expression ++x is equivalent to x+=1
13438     notePostMod(O, UO,
13439                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13440                                                 : UK_ModAsSideEffect);
13441   }
13442 
13443   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13444   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13445   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
13446     Object O = getObject(UO->getSubExpr(), true);
13447     if (!O)
13448       return VisitExpr(UO);
13449 
13450     notePreMod(O, UO);
13451     Visit(UO->getSubExpr());
13452     notePostMod(O, UO, UK_ModAsSideEffect);
13453   }
13454 
13455   void VisitBinLOr(const BinaryOperator *BO) {
13456     // C++11 [expr.log.or]p2:
13457     //  If the second expression is evaluated, every value computation and
13458     //  side effect associated with the first expression is sequenced before
13459     //  every value computation and side effect associated with the
13460     //  second expression.
13461     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13462     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13463     SequenceTree::Seq OldRegion = Region;
13464 
13465     EvaluationTracker Eval(*this);
13466     {
13467       SequencedSubexpression Sequenced(*this);
13468       Region = LHSRegion;
13469       Visit(BO->getLHS());
13470     }
13471 
13472     // C++11 [expr.log.or]p1:
13473     //  [...] the second operand is not evaluated if the first operand
13474     //  evaluates to true.
13475     bool EvalResult = false;
13476     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13477     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
13478     if (ShouldVisitRHS) {
13479       Region = RHSRegion;
13480       Visit(BO->getRHS());
13481     }
13482 
13483     Region = OldRegion;
13484     Tree.merge(LHSRegion);
13485     Tree.merge(RHSRegion);
13486   }
13487 
13488   void VisitBinLAnd(const BinaryOperator *BO) {
13489     // C++11 [expr.log.and]p2:
13490     //  If the second expression is evaluated, every value computation and
13491     //  side effect associated with the first expression is sequenced before
13492     //  every value computation and side effect associated with the
13493     //  second expression.
13494     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13495     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13496     SequenceTree::Seq OldRegion = Region;
13497 
13498     EvaluationTracker Eval(*this);
13499     {
13500       SequencedSubexpression Sequenced(*this);
13501       Region = LHSRegion;
13502       Visit(BO->getLHS());
13503     }
13504 
13505     // C++11 [expr.log.and]p1:
13506     //  [...] the second operand is not evaluated if the first operand is false.
13507     bool EvalResult = false;
13508     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13509     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
13510     if (ShouldVisitRHS) {
13511       Region = RHSRegion;
13512       Visit(BO->getRHS());
13513     }
13514 
13515     Region = OldRegion;
13516     Tree.merge(LHSRegion);
13517     Tree.merge(RHSRegion);
13518   }
13519 
13520   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
13521     // C++11 [expr.cond]p1:
13522     //  [...] Every value computation and side effect associated with the first
13523     //  expression is sequenced before every value computation and side effect
13524     //  associated with the second or third expression.
13525     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
13526 
13527     // No sequencing is specified between the true and false expression.
13528     // However since exactly one of both is going to be evaluated we can
13529     // consider them to be sequenced. This is needed to avoid warning on
13530     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
13531     // both the true and false expressions because we can't evaluate x.
13532     // This will still allow us to detect an expression like (pre C++17)
13533     // "(x ? y += 1 : y += 2) = y".
13534     //
13535     // We don't wrap the visitation of the true and false expression with
13536     // SequencedSubexpression because we don't want to downgrade modifications
13537     // as side effect in the true and false expressions after the visition
13538     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
13539     // not warn between the two "y++", but we should warn between the "y++"
13540     // and the "y".
13541     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
13542     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
13543     SequenceTree::Seq OldRegion = Region;
13544 
13545     EvaluationTracker Eval(*this);
13546     {
13547       SequencedSubexpression Sequenced(*this);
13548       Region = ConditionRegion;
13549       Visit(CO->getCond());
13550     }
13551 
13552     // C++11 [expr.cond]p1:
13553     // [...] The first expression is contextually converted to bool (Clause 4).
13554     // It is evaluated and if it is true, the result of the conditional
13555     // expression is the value of the second expression, otherwise that of the
13556     // third expression. Only one of the second and third expressions is
13557     // evaluated. [...]
13558     bool EvalResult = false;
13559     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
13560     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
13561     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
13562     if (ShouldVisitTrueExpr) {
13563       Region = TrueRegion;
13564       Visit(CO->getTrueExpr());
13565     }
13566     if (ShouldVisitFalseExpr) {
13567       Region = FalseRegion;
13568       Visit(CO->getFalseExpr());
13569     }
13570 
13571     Region = OldRegion;
13572     Tree.merge(ConditionRegion);
13573     Tree.merge(TrueRegion);
13574     Tree.merge(FalseRegion);
13575   }
13576 
13577   void VisitCallExpr(const CallExpr *CE) {
13578     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
13579 
13580     if (CE->isUnevaluatedBuiltinCall(Context))
13581       return;
13582 
13583     // C++11 [intro.execution]p15:
13584     //   When calling a function [...], every value computation and side effect
13585     //   associated with any argument expression, or with the postfix expression
13586     //   designating the called function, is sequenced before execution of every
13587     //   expression or statement in the body of the function [and thus before
13588     //   the value computation of its result].
13589     SequencedSubexpression Sequenced(*this);
13590     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
13591       // C++17 [expr.call]p5
13592       //   The postfix-expression is sequenced before each expression in the
13593       //   expression-list and any default argument. [...]
13594       SequenceTree::Seq CalleeRegion;
13595       SequenceTree::Seq OtherRegion;
13596       if (SemaRef.getLangOpts().CPlusPlus17) {
13597         CalleeRegion = Tree.allocate(Region);
13598         OtherRegion = Tree.allocate(Region);
13599       } else {
13600         CalleeRegion = Region;
13601         OtherRegion = Region;
13602       }
13603       SequenceTree::Seq OldRegion = Region;
13604 
13605       // Visit the callee expression first.
13606       Region = CalleeRegion;
13607       if (SemaRef.getLangOpts().CPlusPlus17) {
13608         SequencedSubexpression Sequenced(*this);
13609         Visit(CE->getCallee());
13610       } else {
13611         Visit(CE->getCallee());
13612       }
13613 
13614       // Then visit the argument expressions.
13615       Region = OtherRegion;
13616       for (const Expr *Argument : CE->arguments())
13617         Visit(Argument);
13618 
13619       Region = OldRegion;
13620       if (SemaRef.getLangOpts().CPlusPlus17) {
13621         Tree.merge(CalleeRegion);
13622         Tree.merge(OtherRegion);
13623       }
13624     });
13625   }
13626 
13627   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
13628     // C++17 [over.match.oper]p2:
13629     //   [...] the operator notation is first transformed to the equivalent
13630     //   function-call notation as summarized in Table 12 (where @ denotes one
13631     //   of the operators covered in the specified subclause). However, the
13632     //   operands are sequenced in the order prescribed for the built-in
13633     //   operator (Clause 8).
13634     //
13635     // From the above only overloaded binary operators and overloaded call
13636     // operators have sequencing rules in C++17 that we need to handle
13637     // separately.
13638     if (!SemaRef.getLangOpts().CPlusPlus17 ||
13639         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
13640       return VisitCallExpr(CXXOCE);
13641 
13642     enum {
13643       NoSequencing,
13644       LHSBeforeRHS,
13645       RHSBeforeLHS,
13646       LHSBeforeRest
13647     } SequencingKind;
13648     switch (CXXOCE->getOperator()) {
13649     case OO_Equal:
13650     case OO_PlusEqual:
13651     case OO_MinusEqual:
13652     case OO_StarEqual:
13653     case OO_SlashEqual:
13654     case OO_PercentEqual:
13655     case OO_CaretEqual:
13656     case OO_AmpEqual:
13657     case OO_PipeEqual:
13658     case OO_LessLessEqual:
13659     case OO_GreaterGreaterEqual:
13660       SequencingKind = RHSBeforeLHS;
13661       break;
13662 
13663     case OO_LessLess:
13664     case OO_GreaterGreater:
13665     case OO_AmpAmp:
13666     case OO_PipePipe:
13667     case OO_Comma:
13668     case OO_ArrowStar:
13669     case OO_Subscript:
13670       SequencingKind = LHSBeforeRHS;
13671       break;
13672 
13673     case OO_Call:
13674       SequencingKind = LHSBeforeRest;
13675       break;
13676 
13677     default:
13678       SequencingKind = NoSequencing;
13679       break;
13680     }
13681 
13682     if (SequencingKind == NoSequencing)
13683       return VisitCallExpr(CXXOCE);
13684 
13685     // This is a call, so all subexpressions are sequenced before the result.
13686     SequencedSubexpression Sequenced(*this);
13687 
13688     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
13689       assert(SemaRef.getLangOpts().CPlusPlus17 &&
13690              "Should only get there with C++17 and above!");
13691       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
13692              "Should only get there with an overloaded binary operator"
13693              " or an overloaded call operator!");
13694 
13695       if (SequencingKind == LHSBeforeRest) {
13696         assert(CXXOCE->getOperator() == OO_Call &&
13697                "We should only have an overloaded call operator here!");
13698 
13699         // This is very similar to VisitCallExpr, except that we only have the
13700         // C++17 case. The postfix-expression is the first argument of the
13701         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
13702         // are in the following arguments.
13703         //
13704         // Note that we intentionally do not visit the callee expression since
13705         // it is just a decayed reference to a function.
13706         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
13707         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
13708         SequenceTree::Seq OldRegion = Region;
13709 
13710         assert(CXXOCE->getNumArgs() >= 1 &&
13711                "An overloaded call operator must have at least one argument"
13712                " for the postfix-expression!");
13713         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
13714         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
13715                                           CXXOCE->getNumArgs() - 1);
13716 
13717         // Visit the postfix-expression first.
13718         {
13719           Region = PostfixExprRegion;
13720           SequencedSubexpression Sequenced(*this);
13721           Visit(PostfixExpr);
13722         }
13723 
13724         // Then visit the argument expressions.
13725         Region = ArgsRegion;
13726         for (const Expr *Arg : Args)
13727           Visit(Arg);
13728 
13729         Region = OldRegion;
13730         Tree.merge(PostfixExprRegion);
13731         Tree.merge(ArgsRegion);
13732       } else {
13733         assert(CXXOCE->getNumArgs() == 2 &&
13734                "Should only have two arguments here!");
13735         assert((SequencingKind == LHSBeforeRHS ||
13736                 SequencingKind == RHSBeforeLHS) &&
13737                "Unexpected sequencing kind!");
13738 
13739         // We do not visit the callee expression since it is just a decayed
13740         // reference to a function.
13741         const Expr *E1 = CXXOCE->getArg(0);
13742         const Expr *E2 = CXXOCE->getArg(1);
13743         if (SequencingKind == RHSBeforeLHS)
13744           std::swap(E1, E2);
13745 
13746         return VisitSequencedExpressions(E1, E2);
13747       }
13748     });
13749   }
13750 
13751   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
13752     // This is a call, so all subexpressions are sequenced before the result.
13753     SequencedSubexpression Sequenced(*this);
13754 
13755     if (!CCE->isListInitialization())
13756       return VisitExpr(CCE);
13757 
13758     // In C++11, list initializations are sequenced.
13759     SmallVector<SequenceTree::Seq, 32> Elts;
13760     SequenceTree::Seq Parent = Region;
13761     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
13762                                               E = CCE->arg_end();
13763          I != E; ++I) {
13764       Region = Tree.allocate(Parent);
13765       Elts.push_back(Region);
13766       Visit(*I);
13767     }
13768 
13769     // Forget that the initializers are sequenced.
13770     Region = Parent;
13771     for (unsigned I = 0; I < Elts.size(); ++I)
13772       Tree.merge(Elts[I]);
13773   }
13774 
13775   void VisitInitListExpr(const InitListExpr *ILE) {
13776     if (!SemaRef.getLangOpts().CPlusPlus11)
13777       return VisitExpr(ILE);
13778 
13779     // In C++11, list initializations are sequenced.
13780     SmallVector<SequenceTree::Seq, 32> Elts;
13781     SequenceTree::Seq Parent = Region;
13782     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
13783       const Expr *E = ILE->getInit(I);
13784       if (!E)
13785         continue;
13786       Region = Tree.allocate(Parent);
13787       Elts.push_back(Region);
13788       Visit(E);
13789     }
13790 
13791     // Forget that the initializers are sequenced.
13792     Region = Parent;
13793     for (unsigned I = 0; I < Elts.size(); ++I)
13794       Tree.merge(Elts[I]);
13795   }
13796 };
13797 
13798 } // namespace
13799 
13800 void Sema::CheckUnsequencedOperations(const Expr *E) {
13801   SmallVector<const Expr *, 8> WorkList;
13802   WorkList.push_back(E);
13803   while (!WorkList.empty()) {
13804     const Expr *Item = WorkList.pop_back_val();
13805     SequenceChecker(*this, Item, WorkList);
13806   }
13807 }
13808 
13809 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
13810                               bool IsConstexpr) {
13811   llvm::SaveAndRestore<bool> ConstantContext(
13812       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
13813   CheckImplicitConversions(E, CheckLoc);
13814   if (!E->isInstantiationDependent())
13815     CheckUnsequencedOperations(E);
13816   if (!IsConstexpr && !E->isValueDependent())
13817     CheckForIntOverflow(E);
13818   DiagnoseMisalignedMembers();
13819 }
13820 
13821 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13822                                        FieldDecl *BitField,
13823                                        Expr *Init) {
13824   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13825 }
13826 
13827 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13828                                          SourceLocation Loc) {
13829   if (!PType->isVariablyModifiedType())
13830     return;
13831   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13832     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13833     return;
13834   }
13835   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13836     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13837     return;
13838   }
13839   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13840     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13841     return;
13842   }
13843 
13844   const ArrayType *AT = S.Context.getAsArrayType(PType);
13845   if (!AT)
13846     return;
13847 
13848   if (AT->getSizeModifier() != ArrayType::Star) {
13849     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13850     return;
13851   }
13852 
13853   S.Diag(Loc, diag::err_array_star_in_function_definition);
13854 }
13855 
13856 /// CheckParmsForFunctionDef - Check that the parameters of the given
13857 /// function are appropriate for the definition of a function. This
13858 /// takes care of any checks that cannot be performed on the
13859 /// declaration itself, e.g., that the types of each of the function
13860 /// parameters are complete.
13861 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13862                                     bool CheckParameterNames) {
13863   bool HasInvalidParm = false;
13864   for (ParmVarDecl *Param : Parameters) {
13865     // C99 6.7.5.3p4: the parameters in a parameter type list in a
13866     // function declarator that is part of a function definition of
13867     // that function shall not have incomplete type.
13868     //
13869     // This is also C++ [dcl.fct]p6.
13870     if (!Param->isInvalidDecl() &&
13871         RequireCompleteType(Param->getLocation(), Param->getType(),
13872                             diag::err_typecheck_decl_incomplete_type)) {
13873       Param->setInvalidDecl();
13874       HasInvalidParm = true;
13875     }
13876 
13877     // C99 6.9.1p5: If the declarator includes a parameter type list, the
13878     // declaration of each parameter shall include an identifier.
13879     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
13880         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
13881       // Diagnose this as an extension in C17 and earlier.
13882       if (!getLangOpts().C2x)
13883         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
13884     }
13885 
13886     // C99 6.7.5.3p12:
13887     //   If the function declarator is not part of a definition of that
13888     //   function, parameters may have incomplete type and may use the [*]
13889     //   notation in their sequences of declarator specifiers to specify
13890     //   variable length array types.
13891     QualType PType = Param->getOriginalType();
13892     // FIXME: This diagnostic should point the '[*]' if source-location
13893     // information is added for it.
13894     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13895 
13896     // If the parameter is a c++ class type and it has to be destructed in the
13897     // callee function, declare the destructor so that it can be called by the
13898     // callee function. Do not perform any direct access check on the dtor here.
13899     if (!Param->isInvalidDecl()) {
13900       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13901         if (!ClassDecl->isInvalidDecl() &&
13902             !ClassDecl->hasIrrelevantDestructor() &&
13903             !ClassDecl->isDependentContext() &&
13904             ClassDecl->isParamDestroyedInCallee()) {
13905           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13906           MarkFunctionReferenced(Param->getLocation(), Destructor);
13907           DiagnoseUseOfDecl(Destructor, Param->getLocation());
13908         }
13909       }
13910     }
13911 
13912     // Parameters with the pass_object_size attribute only need to be marked
13913     // constant at function definitions. Because we lack information about
13914     // whether we're on a declaration or definition when we're instantiating the
13915     // attribute, we need to check for constness here.
13916     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13917       if (!Param->getType().isConstQualified())
13918         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13919             << Attr->getSpelling() << 1;
13920 
13921     // Check for parameter names shadowing fields from the class.
13922     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13923       // The owning context for the parameter should be the function, but we
13924       // want to see if this function's declaration context is a record.
13925       DeclContext *DC = Param->getDeclContext();
13926       if (DC && DC->isFunctionOrMethod()) {
13927         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13928           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13929                                      RD, /*DeclIsField*/ false);
13930       }
13931     }
13932   }
13933 
13934   return HasInvalidParm;
13935 }
13936 
13937 Optional<std::pair<CharUnits, CharUnits>>
13938 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
13939 
13940 /// Compute the alignment and offset of the base class object given the
13941 /// derived-to-base cast expression and the alignment and offset of the derived
13942 /// class object.
13943 static std::pair<CharUnits, CharUnits>
13944 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
13945                                    CharUnits BaseAlignment, CharUnits Offset,
13946                                    ASTContext &Ctx) {
13947   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
13948        ++PathI) {
13949     const CXXBaseSpecifier *Base = *PathI;
13950     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
13951     if (Base->isVirtual()) {
13952       // The complete object may have a lower alignment than the non-virtual
13953       // alignment of the base, in which case the base may be misaligned. Choose
13954       // the smaller of the non-virtual alignment and BaseAlignment, which is a
13955       // conservative lower bound of the complete object alignment.
13956       CharUnits NonVirtualAlignment =
13957           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
13958       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
13959       Offset = CharUnits::Zero();
13960     } else {
13961       const ASTRecordLayout &RL =
13962           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
13963       Offset += RL.getBaseClassOffset(BaseDecl);
13964     }
13965     DerivedType = Base->getType();
13966   }
13967 
13968   return std::make_pair(BaseAlignment, Offset);
13969 }
13970 
13971 /// Compute the alignment and offset of a binary additive operator.
13972 static Optional<std::pair<CharUnits, CharUnits>>
13973 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
13974                                      bool IsSub, ASTContext &Ctx) {
13975   QualType PointeeType = PtrE->getType()->getPointeeType();
13976 
13977   if (!PointeeType->isConstantSizeType())
13978     return llvm::None;
13979 
13980   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
13981 
13982   if (!P)
13983     return llvm::None;
13984 
13985   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
13986   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
13987     CharUnits Offset = EltSize * IdxRes->getExtValue();
13988     if (IsSub)
13989       Offset = -Offset;
13990     return std::make_pair(P->first, P->second + Offset);
13991   }
13992 
13993   // If the integer expression isn't a constant expression, compute the lower
13994   // bound of the alignment using the alignment and offset of the pointer
13995   // expression and the element size.
13996   return std::make_pair(
13997       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
13998       CharUnits::Zero());
13999 }
14000 
14001 /// This helper function takes an lvalue expression and returns the alignment of
14002 /// a VarDecl and a constant offset from the VarDecl.
14003 Optional<std::pair<CharUnits, CharUnits>>
14004 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14005   E = E->IgnoreParens();
14006   switch (E->getStmtClass()) {
14007   default:
14008     break;
14009   case Stmt::CStyleCastExprClass:
14010   case Stmt::CXXStaticCastExprClass:
14011   case Stmt::ImplicitCastExprClass: {
14012     auto *CE = cast<CastExpr>(E);
14013     const Expr *From = CE->getSubExpr();
14014     switch (CE->getCastKind()) {
14015     default:
14016       break;
14017     case CK_NoOp:
14018       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14019     case CK_UncheckedDerivedToBase:
14020     case CK_DerivedToBase: {
14021       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14022       if (!P)
14023         break;
14024       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14025                                                 P->second, Ctx);
14026     }
14027     }
14028     break;
14029   }
14030   case Stmt::ArraySubscriptExprClass: {
14031     auto *ASE = cast<ArraySubscriptExpr>(E);
14032     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14033                                                 false, Ctx);
14034   }
14035   case Stmt::DeclRefExprClass: {
14036     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14037       // FIXME: If VD is captured by copy or is an escaping __block variable,
14038       // use the alignment of VD's type.
14039       if (!VD->getType()->isReferenceType())
14040         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14041       if (VD->hasInit())
14042         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14043     }
14044     break;
14045   }
14046   case Stmt::MemberExprClass: {
14047     auto *ME = cast<MemberExpr>(E);
14048     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14049     if (!FD || FD->getType()->isReferenceType())
14050       break;
14051     Optional<std::pair<CharUnits, CharUnits>> P;
14052     if (ME->isArrow())
14053       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14054     else
14055       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14056     if (!P)
14057       break;
14058     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14059     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14060     return std::make_pair(P->first,
14061                           P->second + CharUnits::fromQuantity(Offset));
14062   }
14063   case Stmt::UnaryOperatorClass: {
14064     auto *UO = cast<UnaryOperator>(E);
14065     switch (UO->getOpcode()) {
14066     default:
14067       break;
14068     case UO_Deref:
14069       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14070     }
14071     break;
14072   }
14073   case Stmt::BinaryOperatorClass: {
14074     auto *BO = cast<BinaryOperator>(E);
14075     auto Opcode = BO->getOpcode();
14076     switch (Opcode) {
14077     default:
14078       break;
14079     case BO_Comma:
14080       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14081     }
14082     break;
14083   }
14084   }
14085   return llvm::None;
14086 }
14087 
14088 /// This helper function takes a pointer expression and returns the alignment of
14089 /// a VarDecl and a constant offset from the VarDecl.
14090 Optional<std::pair<CharUnits, CharUnits>>
14091 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14092   E = E->IgnoreParens();
14093   switch (E->getStmtClass()) {
14094   default:
14095     break;
14096   case Stmt::CStyleCastExprClass:
14097   case Stmt::CXXStaticCastExprClass:
14098   case Stmt::ImplicitCastExprClass: {
14099     auto *CE = cast<CastExpr>(E);
14100     const Expr *From = CE->getSubExpr();
14101     switch (CE->getCastKind()) {
14102     default:
14103       break;
14104     case CK_NoOp:
14105       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14106     case CK_ArrayToPointerDecay:
14107       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14108     case CK_UncheckedDerivedToBase:
14109     case CK_DerivedToBase: {
14110       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14111       if (!P)
14112         break;
14113       return getDerivedToBaseAlignmentAndOffset(
14114           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14115     }
14116     }
14117     break;
14118   }
14119   case Stmt::CXXThisExprClass: {
14120     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14121     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14122     return std::make_pair(Alignment, CharUnits::Zero());
14123   }
14124   case Stmt::UnaryOperatorClass: {
14125     auto *UO = cast<UnaryOperator>(E);
14126     if (UO->getOpcode() == UO_AddrOf)
14127       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14128     break;
14129   }
14130   case Stmt::BinaryOperatorClass: {
14131     auto *BO = cast<BinaryOperator>(E);
14132     auto Opcode = BO->getOpcode();
14133     switch (Opcode) {
14134     default:
14135       break;
14136     case BO_Add:
14137     case BO_Sub: {
14138       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14139       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14140         std::swap(LHS, RHS);
14141       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14142                                                   Ctx);
14143     }
14144     case BO_Comma:
14145       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14146     }
14147     break;
14148   }
14149   }
14150   return llvm::None;
14151 }
14152 
14153 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14154   // See if we can compute the alignment of a VarDecl and an offset from it.
14155   Optional<std::pair<CharUnits, CharUnits>> P =
14156       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14157 
14158   if (P)
14159     return P->first.alignmentAtOffset(P->second);
14160 
14161   // If that failed, return the type's alignment.
14162   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14163 }
14164 
14165 /// CheckCastAlign - Implements -Wcast-align, which warns when a
14166 /// pointer cast increases the alignment requirements.
14167 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14168   // This is actually a lot of work to potentially be doing on every
14169   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14170   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14171     return;
14172 
14173   // Ignore dependent types.
14174   if (T->isDependentType() || Op->getType()->isDependentType())
14175     return;
14176 
14177   // Require that the destination be a pointer type.
14178   const PointerType *DestPtr = T->getAs<PointerType>();
14179   if (!DestPtr) return;
14180 
14181   // If the destination has alignment 1, we're done.
14182   QualType DestPointee = DestPtr->getPointeeType();
14183   if (DestPointee->isIncompleteType()) return;
14184   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14185   if (DestAlign.isOne()) return;
14186 
14187   // Require that the source be a pointer type.
14188   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14189   if (!SrcPtr) return;
14190   QualType SrcPointee = SrcPtr->getPointeeType();
14191 
14192   // Explicitly allow casts from cv void*.  We already implicitly
14193   // allowed casts to cv void*, since they have alignment 1.
14194   // Also allow casts involving incomplete types, which implicitly
14195   // includes 'void'.
14196   if (SrcPointee->isIncompleteType()) return;
14197 
14198   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14199 
14200   if (SrcAlign >= DestAlign) return;
14201 
14202   Diag(TRange.getBegin(), diag::warn_cast_align)
14203     << Op->getType() << T
14204     << static_cast<unsigned>(SrcAlign.getQuantity())
14205     << static_cast<unsigned>(DestAlign.getQuantity())
14206     << TRange << Op->getSourceRange();
14207 }
14208 
14209 /// Check whether this array fits the idiom of a size-one tail padded
14210 /// array member of a struct.
14211 ///
14212 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
14213 /// commonly used to emulate flexible arrays in C89 code.
14214 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
14215                                     const NamedDecl *ND) {
14216   if (Size != 1 || !ND) return false;
14217 
14218   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
14219   if (!FD) return false;
14220 
14221   // Don't consider sizes resulting from macro expansions or template argument
14222   // substitution to form C89 tail-padded arrays.
14223 
14224   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
14225   while (TInfo) {
14226     TypeLoc TL = TInfo->getTypeLoc();
14227     // Look through typedefs.
14228     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
14229       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
14230       TInfo = TDL->getTypeSourceInfo();
14231       continue;
14232     }
14233     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14234       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14235       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14236         return false;
14237     }
14238     break;
14239   }
14240 
14241   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14242   if (!RD) return false;
14243   if (RD->isUnion()) return false;
14244   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14245     if (!CRD->isStandardLayout()) return false;
14246   }
14247 
14248   // See if this is the last field decl in the record.
14249   const Decl *D = FD;
14250   while ((D = D->getNextDeclInContext()))
14251     if (isa<FieldDecl>(D))
14252       return false;
14253   return true;
14254 }
14255 
14256 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14257                             const ArraySubscriptExpr *ASE,
14258                             bool AllowOnePastEnd, bool IndexNegated) {
14259   // Already diagnosed by the constant evaluator.
14260   if (isConstantEvaluated())
14261     return;
14262 
14263   IndexExpr = IndexExpr->IgnoreParenImpCasts();
14264   if (IndexExpr->isValueDependent())
14265     return;
14266 
14267   const Type *EffectiveType =
14268       BaseExpr->getType()->getPointeeOrArrayElementType();
14269   BaseExpr = BaseExpr->IgnoreParenCasts();
14270   const ConstantArrayType *ArrayTy =
14271       Context.getAsConstantArrayType(BaseExpr->getType());
14272 
14273   if (!ArrayTy)
14274     return;
14275 
14276   const Type *BaseType = ArrayTy->getElementType().getTypePtr();
14277   if (EffectiveType->isDependentType() || BaseType->isDependentType())
14278     return;
14279 
14280   Expr::EvalResult Result;
14281   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
14282     return;
14283 
14284   llvm::APSInt index = Result.Val.getInt();
14285   if (IndexNegated)
14286     index = -index;
14287 
14288   const NamedDecl *ND = nullptr;
14289   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14290     ND = DRE->getDecl();
14291   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14292     ND = ME->getMemberDecl();
14293 
14294   if (index.isUnsigned() || !index.isNegative()) {
14295     // It is possible that the type of the base expression after
14296     // IgnoreParenCasts is incomplete, even though the type of the base
14297     // expression before IgnoreParenCasts is complete (see PR39746 for an
14298     // example). In this case we have no information about whether the array
14299     // access exceeds the array bounds. However we can still diagnose an array
14300     // access which precedes the array bounds.
14301     if (BaseType->isIncompleteType())
14302       return;
14303 
14304     llvm::APInt size = ArrayTy->getSize();
14305     if (!size.isStrictlyPositive())
14306       return;
14307 
14308     if (BaseType != EffectiveType) {
14309       // Make sure we're comparing apples to apples when comparing index to size
14310       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
14311       uint64_t array_typesize = Context.getTypeSize(BaseType);
14312       // Handle ptrarith_typesize being zero, such as when casting to void*
14313       if (!ptrarith_typesize) ptrarith_typesize = 1;
14314       if (ptrarith_typesize != array_typesize) {
14315         // There's a cast to a different size type involved
14316         uint64_t ratio = array_typesize / ptrarith_typesize;
14317         // TODO: Be smarter about handling cases where array_typesize is not a
14318         // multiple of ptrarith_typesize
14319         if (ptrarith_typesize * ratio == array_typesize)
14320           size *= llvm::APInt(size.getBitWidth(), ratio);
14321       }
14322     }
14323 
14324     if (size.getBitWidth() > index.getBitWidth())
14325       index = index.zext(size.getBitWidth());
14326     else if (size.getBitWidth() < index.getBitWidth())
14327       size = size.zext(index.getBitWidth());
14328 
14329     // For array subscripting the index must be less than size, but for pointer
14330     // arithmetic also allow the index (offset) to be equal to size since
14331     // computing the next address after the end of the array is legal and
14332     // commonly done e.g. in C++ iterators and range-based for loops.
14333     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
14334       return;
14335 
14336     // Also don't warn for arrays of size 1 which are members of some
14337     // structure. These are often used to approximate flexible arrays in C89
14338     // code.
14339     if (IsTailPaddedMemberArray(*this, size, ND))
14340       return;
14341 
14342     // Suppress the warning if the subscript expression (as identified by the
14343     // ']' location) and the index expression are both from macro expansions
14344     // within a system header.
14345     if (ASE) {
14346       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
14347           ASE->getRBracketLoc());
14348       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
14349         SourceLocation IndexLoc =
14350             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
14351         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
14352           return;
14353       }
14354     }
14355 
14356     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
14357     if (ASE)
14358       DiagID = diag::warn_array_index_exceeds_bounds;
14359 
14360     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14361                         PDiag(DiagID) << index.toString(10, true)
14362                                       << size.toString(10, true)
14363                                       << (unsigned)size.getLimitedValue(~0U)
14364                                       << IndexExpr->getSourceRange());
14365   } else {
14366     unsigned DiagID = diag::warn_array_index_precedes_bounds;
14367     if (!ASE) {
14368       DiagID = diag::warn_ptr_arith_precedes_bounds;
14369       if (index.isNegative()) index = -index;
14370     }
14371 
14372     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14373                         PDiag(DiagID) << index.toString(10, true)
14374                                       << IndexExpr->getSourceRange());
14375   }
14376 
14377   if (!ND) {
14378     // Try harder to find a NamedDecl to point at in the note.
14379     while (const ArraySubscriptExpr *ASE =
14380            dyn_cast<ArraySubscriptExpr>(BaseExpr))
14381       BaseExpr = ASE->getBase()->IgnoreParenCasts();
14382     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14383       ND = DRE->getDecl();
14384     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14385       ND = ME->getMemberDecl();
14386   }
14387 
14388   if (ND)
14389     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
14390                         PDiag(diag::note_array_declared_here) << ND);
14391 }
14392 
14393 void Sema::CheckArrayAccess(const Expr *expr) {
14394   int AllowOnePastEnd = 0;
14395   while (expr) {
14396     expr = expr->IgnoreParenImpCasts();
14397     switch (expr->getStmtClass()) {
14398       case Stmt::ArraySubscriptExprClass: {
14399         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
14400         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
14401                          AllowOnePastEnd > 0);
14402         expr = ASE->getBase();
14403         break;
14404       }
14405       case Stmt::MemberExprClass: {
14406         expr = cast<MemberExpr>(expr)->getBase();
14407         break;
14408       }
14409       case Stmt::OMPArraySectionExprClass: {
14410         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
14411         if (ASE->getLowerBound())
14412           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
14413                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
14414         return;
14415       }
14416       case Stmt::UnaryOperatorClass: {
14417         // Only unwrap the * and & unary operators
14418         const UnaryOperator *UO = cast<UnaryOperator>(expr);
14419         expr = UO->getSubExpr();
14420         switch (UO->getOpcode()) {
14421           case UO_AddrOf:
14422             AllowOnePastEnd++;
14423             break;
14424           case UO_Deref:
14425             AllowOnePastEnd--;
14426             break;
14427           default:
14428             return;
14429         }
14430         break;
14431       }
14432       case Stmt::ConditionalOperatorClass: {
14433         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
14434         if (const Expr *lhs = cond->getLHS())
14435           CheckArrayAccess(lhs);
14436         if (const Expr *rhs = cond->getRHS())
14437           CheckArrayAccess(rhs);
14438         return;
14439       }
14440       case Stmt::CXXOperatorCallExprClass: {
14441         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
14442         for (const auto *Arg : OCE->arguments())
14443           CheckArrayAccess(Arg);
14444         return;
14445       }
14446       default:
14447         return;
14448     }
14449   }
14450 }
14451 
14452 //===--- CHECK: Objective-C retain cycles ----------------------------------//
14453 
14454 namespace {
14455 
14456 struct RetainCycleOwner {
14457   VarDecl *Variable = nullptr;
14458   SourceRange Range;
14459   SourceLocation Loc;
14460   bool Indirect = false;
14461 
14462   RetainCycleOwner() = default;
14463 
14464   void setLocsFrom(Expr *e) {
14465     Loc = e->getExprLoc();
14466     Range = e->getSourceRange();
14467   }
14468 };
14469 
14470 } // namespace
14471 
14472 /// Consider whether capturing the given variable can possibly lead to
14473 /// a retain cycle.
14474 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
14475   // In ARC, it's captured strongly iff the variable has __strong
14476   // lifetime.  In MRR, it's captured strongly if the variable is
14477   // __block and has an appropriate type.
14478   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14479     return false;
14480 
14481   owner.Variable = var;
14482   if (ref)
14483     owner.setLocsFrom(ref);
14484   return true;
14485 }
14486 
14487 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
14488   while (true) {
14489     e = e->IgnoreParens();
14490     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
14491       switch (cast->getCastKind()) {
14492       case CK_BitCast:
14493       case CK_LValueBitCast:
14494       case CK_LValueToRValue:
14495       case CK_ARCReclaimReturnedObject:
14496         e = cast->getSubExpr();
14497         continue;
14498 
14499       default:
14500         return false;
14501       }
14502     }
14503 
14504     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
14505       ObjCIvarDecl *ivar = ref->getDecl();
14506       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14507         return false;
14508 
14509       // Try to find a retain cycle in the base.
14510       if (!findRetainCycleOwner(S, ref->getBase(), owner))
14511         return false;
14512 
14513       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
14514       owner.Indirect = true;
14515       return true;
14516     }
14517 
14518     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
14519       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
14520       if (!var) return false;
14521       return considerVariable(var, ref, owner);
14522     }
14523 
14524     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
14525       if (member->isArrow()) return false;
14526 
14527       // Don't count this as an indirect ownership.
14528       e = member->getBase();
14529       continue;
14530     }
14531 
14532     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
14533       // Only pay attention to pseudo-objects on property references.
14534       ObjCPropertyRefExpr *pre
14535         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
14536                                               ->IgnoreParens());
14537       if (!pre) return false;
14538       if (pre->isImplicitProperty()) return false;
14539       ObjCPropertyDecl *property = pre->getExplicitProperty();
14540       if (!property->isRetaining() &&
14541           !(property->getPropertyIvarDecl() &&
14542             property->getPropertyIvarDecl()->getType()
14543               .getObjCLifetime() == Qualifiers::OCL_Strong))
14544           return false;
14545 
14546       owner.Indirect = true;
14547       if (pre->isSuperReceiver()) {
14548         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
14549         if (!owner.Variable)
14550           return false;
14551         owner.Loc = pre->getLocation();
14552         owner.Range = pre->getSourceRange();
14553         return true;
14554       }
14555       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
14556                               ->getSourceExpr());
14557       continue;
14558     }
14559 
14560     // Array ivars?
14561 
14562     return false;
14563   }
14564 }
14565 
14566 namespace {
14567 
14568   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
14569     ASTContext &Context;
14570     VarDecl *Variable;
14571     Expr *Capturer = nullptr;
14572     bool VarWillBeReased = false;
14573 
14574     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
14575         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
14576           Context(Context), Variable(variable) {}
14577 
14578     void VisitDeclRefExpr(DeclRefExpr *ref) {
14579       if (ref->getDecl() == Variable && !Capturer)
14580         Capturer = ref;
14581     }
14582 
14583     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
14584       if (Capturer) return;
14585       Visit(ref->getBase());
14586       if (Capturer && ref->isFreeIvar())
14587         Capturer = ref;
14588     }
14589 
14590     void VisitBlockExpr(BlockExpr *block) {
14591       // Look inside nested blocks
14592       if (block->getBlockDecl()->capturesVariable(Variable))
14593         Visit(block->getBlockDecl()->getBody());
14594     }
14595 
14596     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
14597       if (Capturer) return;
14598       if (OVE->getSourceExpr())
14599         Visit(OVE->getSourceExpr());
14600     }
14601 
14602     void VisitBinaryOperator(BinaryOperator *BinOp) {
14603       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
14604         return;
14605       Expr *LHS = BinOp->getLHS();
14606       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
14607         if (DRE->getDecl() != Variable)
14608           return;
14609         if (Expr *RHS = BinOp->getRHS()) {
14610           RHS = RHS->IgnoreParenCasts();
14611           Optional<llvm::APSInt> Value;
14612           VarWillBeReased =
14613               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
14614                *Value == 0);
14615         }
14616       }
14617     }
14618   };
14619 
14620 } // namespace
14621 
14622 /// Check whether the given argument is a block which captures a
14623 /// variable.
14624 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
14625   assert(owner.Variable && owner.Loc.isValid());
14626 
14627   e = e->IgnoreParenCasts();
14628 
14629   // Look through [^{...} copy] and Block_copy(^{...}).
14630   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
14631     Selector Cmd = ME->getSelector();
14632     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
14633       e = ME->getInstanceReceiver();
14634       if (!e)
14635         return nullptr;
14636       e = e->IgnoreParenCasts();
14637     }
14638   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
14639     if (CE->getNumArgs() == 1) {
14640       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
14641       if (Fn) {
14642         const IdentifierInfo *FnI = Fn->getIdentifier();
14643         if (FnI && FnI->isStr("_Block_copy")) {
14644           e = CE->getArg(0)->IgnoreParenCasts();
14645         }
14646       }
14647     }
14648   }
14649 
14650   BlockExpr *block = dyn_cast<BlockExpr>(e);
14651   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
14652     return nullptr;
14653 
14654   FindCaptureVisitor visitor(S.Context, owner.Variable);
14655   visitor.Visit(block->getBlockDecl()->getBody());
14656   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
14657 }
14658 
14659 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
14660                                 RetainCycleOwner &owner) {
14661   assert(capturer);
14662   assert(owner.Variable && owner.Loc.isValid());
14663 
14664   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
14665     << owner.Variable << capturer->getSourceRange();
14666   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
14667     << owner.Indirect << owner.Range;
14668 }
14669 
14670 /// Check for a keyword selector that starts with the word 'add' or
14671 /// 'set'.
14672 static bool isSetterLikeSelector(Selector sel) {
14673   if (sel.isUnarySelector()) return false;
14674 
14675   StringRef str = sel.getNameForSlot(0);
14676   while (!str.empty() && str.front() == '_') str = str.substr(1);
14677   if (str.startswith("set"))
14678     str = str.substr(3);
14679   else if (str.startswith("add")) {
14680     // Specially allow 'addOperationWithBlock:'.
14681     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
14682       return false;
14683     str = str.substr(3);
14684   }
14685   else
14686     return false;
14687 
14688   if (str.empty()) return true;
14689   return !isLowercase(str.front());
14690 }
14691 
14692 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
14693                                                     ObjCMessageExpr *Message) {
14694   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
14695                                                 Message->getReceiverInterface(),
14696                                                 NSAPI::ClassId_NSMutableArray);
14697   if (!IsMutableArray) {
14698     return None;
14699   }
14700 
14701   Selector Sel = Message->getSelector();
14702 
14703   Optional<NSAPI::NSArrayMethodKind> MKOpt =
14704     S.NSAPIObj->getNSArrayMethodKind(Sel);
14705   if (!MKOpt) {
14706     return None;
14707   }
14708 
14709   NSAPI::NSArrayMethodKind MK = *MKOpt;
14710 
14711   switch (MK) {
14712     case NSAPI::NSMutableArr_addObject:
14713     case NSAPI::NSMutableArr_insertObjectAtIndex:
14714     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
14715       return 0;
14716     case NSAPI::NSMutableArr_replaceObjectAtIndex:
14717       return 1;
14718 
14719     default:
14720       return None;
14721   }
14722 
14723   return None;
14724 }
14725 
14726 static
14727 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
14728                                                   ObjCMessageExpr *Message) {
14729   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
14730                                             Message->getReceiverInterface(),
14731                                             NSAPI::ClassId_NSMutableDictionary);
14732   if (!IsMutableDictionary) {
14733     return None;
14734   }
14735 
14736   Selector Sel = Message->getSelector();
14737 
14738   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
14739     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
14740   if (!MKOpt) {
14741     return None;
14742   }
14743 
14744   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
14745 
14746   switch (MK) {
14747     case NSAPI::NSMutableDict_setObjectForKey:
14748     case NSAPI::NSMutableDict_setValueForKey:
14749     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
14750       return 0;
14751 
14752     default:
14753       return None;
14754   }
14755 
14756   return None;
14757 }
14758 
14759 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
14760   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
14761                                                 Message->getReceiverInterface(),
14762                                                 NSAPI::ClassId_NSMutableSet);
14763 
14764   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
14765                                             Message->getReceiverInterface(),
14766                                             NSAPI::ClassId_NSMutableOrderedSet);
14767   if (!IsMutableSet && !IsMutableOrderedSet) {
14768     return None;
14769   }
14770 
14771   Selector Sel = Message->getSelector();
14772 
14773   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
14774   if (!MKOpt) {
14775     return None;
14776   }
14777 
14778   NSAPI::NSSetMethodKind MK = *MKOpt;
14779 
14780   switch (MK) {
14781     case NSAPI::NSMutableSet_addObject:
14782     case NSAPI::NSOrderedSet_setObjectAtIndex:
14783     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
14784     case NSAPI::NSOrderedSet_insertObjectAtIndex:
14785       return 0;
14786     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
14787       return 1;
14788   }
14789 
14790   return None;
14791 }
14792 
14793 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
14794   if (!Message->isInstanceMessage()) {
14795     return;
14796   }
14797 
14798   Optional<int> ArgOpt;
14799 
14800   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
14801       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
14802       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
14803     return;
14804   }
14805 
14806   int ArgIndex = *ArgOpt;
14807 
14808   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
14809   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
14810     Arg = OE->getSourceExpr()->IgnoreImpCasts();
14811   }
14812 
14813   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14814     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14815       if (ArgRE->isObjCSelfExpr()) {
14816         Diag(Message->getSourceRange().getBegin(),
14817              diag::warn_objc_circular_container)
14818           << ArgRE->getDecl() << StringRef("'super'");
14819       }
14820     }
14821   } else {
14822     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
14823 
14824     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
14825       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
14826     }
14827 
14828     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
14829       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14830         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
14831           ValueDecl *Decl = ReceiverRE->getDecl();
14832           Diag(Message->getSourceRange().getBegin(),
14833                diag::warn_objc_circular_container)
14834             << Decl << Decl;
14835           if (!ArgRE->isObjCSelfExpr()) {
14836             Diag(Decl->getLocation(),
14837                  diag::note_objc_circular_container_declared_here)
14838               << Decl;
14839           }
14840         }
14841       }
14842     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
14843       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
14844         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
14845           ObjCIvarDecl *Decl = IvarRE->getDecl();
14846           Diag(Message->getSourceRange().getBegin(),
14847                diag::warn_objc_circular_container)
14848             << Decl << Decl;
14849           Diag(Decl->getLocation(),
14850                diag::note_objc_circular_container_declared_here)
14851             << Decl;
14852         }
14853       }
14854     }
14855   }
14856 }
14857 
14858 /// Check a message send to see if it's likely to cause a retain cycle.
14859 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
14860   // Only check instance methods whose selector looks like a setter.
14861   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
14862     return;
14863 
14864   // Try to find a variable that the receiver is strongly owned by.
14865   RetainCycleOwner owner;
14866   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
14867     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
14868       return;
14869   } else {
14870     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
14871     owner.Variable = getCurMethodDecl()->getSelfDecl();
14872     owner.Loc = msg->getSuperLoc();
14873     owner.Range = msg->getSuperLoc();
14874   }
14875 
14876   // Check whether the receiver is captured by any of the arguments.
14877   const ObjCMethodDecl *MD = msg->getMethodDecl();
14878   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
14879     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
14880       // noescape blocks should not be retained by the method.
14881       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
14882         continue;
14883       return diagnoseRetainCycle(*this, capturer, owner);
14884     }
14885   }
14886 }
14887 
14888 /// Check a property assign to see if it's likely to cause a retain cycle.
14889 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
14890   RetainCycleOwner owner;
14891   if (!findRetainCycleOwner(*this, receiver, owner))
14892     return;
14893 
14894   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
14895     diagnoseRetainCycle(*this, capturer, owner);
14896 }
14897 
14898 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
14899   RetainCycleOwner Owner;
14900   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
14901     return;
14902 
14903   // Because we don't have an expression for the variable, we have to set the
14904   // location explicitly here.
14905   Owner.Loc = Var->getLocation();
14906   Owner.Range = Var->getSourceRange();
14907 
14908   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
14909     diagnoseRetainCycle(*this, Capturer, Owner);
14910 }
14911 
14912 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
14913                                      Expr *RHS, bool isProperty) {
14914   // Check if RHS is an Objective-C object literal, which also can get
14915   // immediately zapped in a weak reference.  Note that we explicitly
14916   // allow ObjCStringLiterals, since those are designed to never really die.
14917   RHS = RHS->IgnoreParenImpCasts();
14918 
14919   // This enum needs to match with the 'select' in
14920   // warn_objc_arc_literal_assign (off-by-1).
14921   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
14922   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
14923     return false;
14924 
14925   S.Diag(Loc, diag::warn_arc_literal_assign)
14926     << (unsigned) Kind
14927     << (isProperty ? 0 : 1)
14928     << RHS->getSourceRange();
14929 
14930   return true;
14931 }
14932 
14933 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
14934                                     Qualifiers::ObjCLifetime LT,
14935                                     Expr *RHS, bool isProperty) {
14936   // Strip off any implicit cast added to get to the one ARC-specific.
14937   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14938     if (cast->getCastKind() == CK_ARCConsumeObject) {
14939       S.Diag(Loc, diag::warn_arc_retained_assign)
14940         << (LT == Qualifiers::OCL_ExplicitNone)
14941         << (isProperty ? 0 : 1)
14942         << RHS->getSourceRange();
14943       return true;
14944     }
14945     RHS = cast->getSubExpr();
14946   }
14947 
14948   if (LT == Qualifiers::OCL_Weak &&
14949       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
14950     return true;
14951 
14952   return false;
14953 }
14954 
14955 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
14956                               QualType LHS, Expr *RHS) {
14957   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
14958 
14959   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
14960     return false;
14961 
14962   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
14963     return true;
14964 
14965   return false;
14966 }
14967 
14968 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
14969                               Expr *LHS, Expr *RHS) {
14970   QualType LHSType;
14971   // PropertyRef on LHS type need be directly obtained from
14972   // its declaration as it has a PseudoType.
14973   ObjCPropertyRefExpr *PRE
14974     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
14975   if (PRE && !PRE->isImplicitProperty()) {
14976     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14977     if (PD)
14978       LHSType = PD->getType();
14979   }
14980 
14981   if (LHSType.isNull())
14982     LHSType = LHS->getType();
14983 
14984   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
14985 
14986   if (LT == Qualifiers::OCL_Weak) {
14987     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
14988       getCurFunction()->markSafeWeakUse(LHS);
14989   }
14990 
14991   if (checkUnsafeAssigns(Loc, LHSType, RHS))
14992     return;
14993 
14994   // FIXME. Check for other life times.
14995   if (LT != Qualifiers::OCL_None)
14996     return;
14997 
14998   if (PRE) {
14999     if (PRE->isImplicitProperty())
15000       return;
15001     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15002     if (!PD)
15003       return;
15004 
15005     unsigned Attributes = PD->getPropertyAttributes();
15006     if (Attributes & ObjCPropertyAttribute::kind_assign) {
15007       // when 'assign' attribute was not explicitly specified
15008       // by user, ignore it and rely on property type itself
15009       // for lifetime info.
15010       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15011       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15012           LHSType->isObjCRetainableType())
15013         return;
15014 
15015       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15016         if (cast->getCastKind() == CK_ARCConsumeObject) {
15017           Diag(Loc, diag::warn_arc_retained_property_assign)
15018           << RHS->getSourceRange();
15019           return;
15020         }
15021         RHS = cast->getSubExpr();
15022       }
15023     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15024       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15025         return;
15026     }
15027   }
15028 }
15029 
15030 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15031 
15032 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15033                                         SourceLocation StmtLoc,
15034                                         const NullStmt *Body) {
15035   // Do not warn if the body is a macro that expands to nothing, e.g:
15036   //
15037   // #define CALL(x)
15038   // if (condition)
15039   //   CALL(0);
15040   if (Body->hasLeadingEmptyMacro())
15041     return false;
15042 
15043   // Get line numbers of statement and body.
15044   bool StmtLineInvalid;
15045   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15046                                                       &StmtLineInvalid);
15047   if (StmtLineInvalid)
15048     return false;
15049 
15050   bool BodyLineInvalid;
15051   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15052                                                       &BodyLineInvalid);
15053   if (BodyLineInvalid)
15054     return false;
15055 
15056   // Warn if null statement and body are on the same line.
15057   if (StmtLine != BodyLine)
15058     return false;
15059 
15060   return true;
15061 }
15062 
15063 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15064                                  const Stmt *Body,
15065                                  unsigned DiagID) {
15066   // Since this is a syntactic check, don't emit diagnostic for template
15067   // instantiations, this just adds noise.
15068   if (CurrentInstantiationScope)
15069     return;
15070 
15071   // The body should be a null statement.
15072   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15073   if (!NBody)
15074     return;
15075 
15076   // Do the usual checks.
15077   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15078     return;
15079 
15080   Diag(NBody->getSemiLoc(), DiagID);
15081   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15082 }
15083 
15084 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15085                                  const Stmt *PossibleBody) {
15086   assert(!CurrentInstantiationScope); // Ensured by caller
15087 
15088   SourceLocation StmtLoc;
15089   const Stmt *Body;
15090   unsigned DiagID;
15091   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15092     StmtLoc = FS->getRParenLoc();
15093     Body = FS->getBody();
15094     DiagID = diag::warn_empty_for_body;
15095   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15096     StmtLoc = WS->getCond()->getSourceRange().getEnd();
15097     Body = WS->getBody();
15098     DiagID = diag::warn_empty_while_body;
15099   } else
15100     return; // Neither `for' nor `while'.
15101 
15102   // The body should be a null statement.
15103   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15104   if (!NBody)
15105     return;
15106 
15107   // Skip expensive checks if diagnostic is disabled.
15108   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15109     return;
15110 
15111   // Do the usual checks.
15112   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15113     return;
15114 
15115   // `for(...);' and `while(...);' are popular idioms, so in order to keep
15116   // noise level low, emit diagnostics only if for/while is followed by a
15117   // CompoundStmt, e.g.:
15118   //    for (int i = 0; i < n; i++);
15119   //    {
15120   //      a(i);
15121   //    }
15122   // or if for/while is followed by a statement with more indentation
15123   // than for/while itself:
15124   //    for (int i = 0; i < n; i++);
15125   //      a(i);
15126   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15127   if (!ProbableTypo) {
15128     bool BodyColInvalid;
15129     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15130         PossibleBody->getBeginLoc(), &BodyColInvalid);
15131     if (BodyColInvalid)
15132       return;
15133 
15134     bool StmtColInvalid;
15135     unsigned StmtCol =
15136         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15137     if (StmtColInvalid)
15138       return;
15139 
15140     if (BodyCol > StmtCol)
15141       ProbableTypo = true;
15142   }
15143 
15144   if (ProbableTypo) {
15145     Diag(NBody->getSemiLoc(), DiagID);
15146     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15147   }
15148 }
15149 
15150 //===--- CHECK: Warn on self move with std::move. -------------------------===//
15151 
15152 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
15153 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
15154                              SourceLocation OpLoc) {
15155   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
15156     return;
15157 
15158   if (inTemplateInstantiation())
15159     return;
15160 
15161   // Strip parens and casts away.
15162   LHSExpr = LHSExpr->IgnoreParenImpCasts();
15163   RHSExpr = RHSExpr->IgnoreParenImpCasts();
15164 
15165   // Check for a call expression
15166   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
15167   if (!CE || CE->getNumArgs() != 1)
15168     return;
15169 
15170   // Check for a call to std::move
15171   if (!CE->isCallToStdMove())
15172     return;
15173 
15174   // Get argument from std::move
15175   RHSExpr = CE->getArg(0);
15176 
15177   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15178   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15179 
15180   // Two DeclRefExpr's, check that the decls are the same.
15181   if (LHSDeclRef && RHSDeclRef) {
15182     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15183       return;
15184     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15185         RHSDeclRef->getDecl()->getCanonicalDecl())
15186       return;
15187 
15188     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15189                                         << LHSExpr->getSourceRange()
15190                                         << RHSExpr->getSourceRange();
15191     return;
15192   }
15193 
15194   // Member variables require a different approach to check for self moves.
15195   // MemberExpr's are the same if every nested MemberExpr refers to the same
15196   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
15197   // the base Expr's are CXXThisExpr's.
15198   const Expr *LHSBase = LHSExpr;
15199   const Expr *RHSBase = RHSExpr;
15200   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
15201   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
15202   if (!LHSME || !RHSME)
15203     return;
15204 
15205   while (LHSME && RHSME) {
15206     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
15207         RHSME->getMemberDecl()->getCanonicalDecl())
15208       return;
15209 
15210     LHSBase = LHSME->getBase();
15211     RHSBase = RHSME->getBase();
15212     LHSME = dyn_cast<MemberExpr>(LHSBase);
15213     RHSME = dyn_cast<MemberExpr>(RHSBase);
15214   }
15215 
15216   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
15217   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
15218   if (LHSDeclRef && RHSDeclRef) {
15219     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15220       return;
15221     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15222         RHSDeclRef->getDecl()->getCanonicalDecl())
15223       return;
15224 
15225     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15226                                         << LHSExpr->getSourceRange()
15227                                         << RHSExpr->getSourceRange();
15228     return;
15229   }
15230 
15231   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
15232     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15233                                         << LHSExpr->getSourceRange()
15234                                         << RHSExpr->getSourceRange();
15235 }
15236 
15237 //===--- Layout compatibility ----------------------------------------------//
15238 
15239 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
15240 
15241 /// Check if two enumeration types are layout-compatible.
15242 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
15243   // C++11 [dcl.enum] p8:
15244   // Two enumeration types are layout-compatible if they have the same
15245   // underlying type.
15246   return ED1->isComplete() && ED2->isComplete() &&
15247          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
15248 }
15249 
15250 /// Check if two fields are layout-compatible.
15251 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
15252                                FieldDecl *Field2) {
15253   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
15254     return false;
15255 
15256   if (Field1->isBitField() != Field2->isBitField())
15257     return false;
15258 
15259   if (Field1->isBitField()) {
15260     // Make sure that the bit-fields are the same length.
15261     unsigned Bits1 = Field1->getBitWidthValue(C);
15262     unsigned Bits2 = Field2->getBitWidthValue(C);
15263 
15264     if (Bits1 != Bits2)
15265       return false;
15266   }
15267 
15268   return true;
15269 }
15270 
15271 /// Check if two standard-layout structs are layout-compatible.
15272 /// (C++11 [class.mem] p17)
15273 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
15274                                      RecordDecl *RD2) {
15275   // If both records are C++ classes, check that base classes match.
15276   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
15277     // If one of records is a CXXRecordDecl we are in C++ mode,
15278     // thus the other one is a CXXRecordDecl, too.
15279     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
15280     // Check number of base classes.
15281     if (D1CXX->getNumBases() != D2CXX->getNumBases())
15282       return false;
15283 
15284     // Check the base classes.
15285     for (CXXRecordDecl::base_class_const_iterator
15286                Base1 = D1CXX->bases_begin(),
15287            BaseEnd1 = D1CXX->bases_end(),
15288               Base2 = D2CXX->bases_begin();
15289          Base1 != BaseEnd1;
15290          ++Base1, ++Base2) {
15291       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
15292         return false;
15293     }
15294   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
15295     // If only RD2 is a C++ class, it should have zero base classes.
15296     if (D2CXX->getNumBases() > 0)
15297       return false;
15298   }
15299 
15300   // Check the fields.
15301   RecordDecl::field_iterator Field2 = RD2->field_begin(),
15302                              Field2End = RD2->field_end(),
15303                              Field1 = RD1->field_begin(),
15304                              Field1End = RD1->field_end();
15305   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
15306     if (!isLayoutCompatible(C, *Field1, *Field2))
15307       return false;
15308   }
15309   if (Field1 != Field1End || Field2 != Field2End)
15310     return false;
15311 
15312   return true;
15313 }
15314 
15315 /// Check if two standard-layout unions are layout-compatible.
15316 /// (C++11 [class.mem] p18)
15317 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
15318                                     RecordDecl *RD2) {
15319   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
15320   for (auto *Field2 : RD2->fields())
15321     UnmatchedFields.insert(Field2);
15322 
15323   for (auto *Field1 : RD1->fields()) {
15324     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
15325         I = UnmatchedFields.begin(),
15326         E = UnmatchedFields.end();
15327 
15328     for ( ; I != E; ++I) {
15329       if (isLayoutCompatible(C, Field1, *I)) {
15330         bool Result = UnmatchedFields.erase(*I);
15331         (void) Result;
15332         assert(Result);
15333         break;
15334       }
15335     }
15336     if (I == E)
15337       return false;
15338   }
15339 
15340   return UnmatchedFields.empty();
15341 }
15342 
15343 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
15344                                RecordDecl *RD2) {
15345   if (RD1->isUnion() != RD2->isUnion())
15346     return false;
15347 
15348   if (RD1->isUnion())
15349     return isLayoutCompatibleUnion(C, RD1, RD2);
15350   else
15351     return isLayoutCompatibleStruct(C, RD1, RD2);
15352 }
15353 
15354 /// Check if two types are layout-compatible in C++11 sense.
15355 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
15356   if (T1.isNull() || T2.isNull())
15357     return false;
15358 
15359   // C++11 [basic.types] p11:
15360   // If two types T1 and T2 are the same type, then T1 and T2 are
15361   // layout-compatible types.
15362   if (C.hasSameType(T1, T2))
15363     return true;
15364 
15365   T1 = T1.getCanonicalType().getUnqualifiedType();
15366   T2 = T2.getCanonicalType().getUnqualifiedType();
15367 
15368   const Type::TypeClass TC1 = T1->getTypeClass();
15369   const Type::TypeClass TC2 = T2->getTypeClass();
15370 
15371   if (TC1 != TC2)
15372     return false;
15373 
15374   if (TC1 == Type::Enum) {
15375     return isLayoutCompatible(C,
15376                               cast<EnumType>(T1)->getDecl(),
15377                               cast<EnumType>(T2)->getDecl());
15378   } else if (TC1 == Type::Record) {
15379     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
15380       return false;
15381 
15382     return isLayoutCompatible(C,
15383                               cast<RecordType>(T1)->getDecl(),
15384                               cast<RecordType>(T2)->getDecl());
15385   }
15386 
15387   return false;
15388 }
15389 
15390 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
15391 
15392 /// Given a type tag expression find the type tag itself.
15393 ///
15394 /// \param TypeExpr Type tag expression, as it appears in user's code.
15395 ///
15396 /// \param VD Declaration of an identifier that appears in a type tag.
15397 ///
15398 /// \param MagicValue Type tag magic value.
15399 ///
15400 /// \param isConstantEvaluated wether the evalaution should be performed in
15401 
15402 /// constant context.
15403 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
15404                             const ValueDecl **VD, uint64_t *MagicValue,
15405                             bool isConstantEvaluated) {
15406   while(true) {
15407     if (!TypeExpr)
15408       return false;
15409 
15410     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
15411 
15412     switch (TypeExpr->getStmtClass()) {
15413     case Stmt::UnaryOperatorClass: {
15414       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
15415       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
15416         TypeExpr = UO->getSubExpr();
15417         continue;
15418       }
15419       return false;
15420     }
15421 
15422     case Stmt::DeclRefExprClass: {
15423       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
15424       *VD = DRE->getDecl();
15425       return true;
15426     }
15427 
15428     case Stmt::IntegerLiteralClass: {
15429       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
15430       llvm::APInt MagicValueAPInt = IL->getValue();
15431       if (MagicValueAPInt.getActiveBits() <= 64) {
15432         *MagicValue = MagicValueAPInt.getZExtValue();
15433         return true;
15434       } else
15435         return false;
15436     }
15437 
15438     case Stmt::BinaryConditionalOperatorClass:
15439     case Stmt::ConditionalOperatorClass: {
15440       const AbstractConditionalOperator *ACO =
15441           cast<AbstractConditionalOperator>(TypeExpr);
15442       bool Result;
15443       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
15444                                                      isConstantEvaluated)) {
15445         if (Result)
15446           TypeExpr = ACO->getTrueExpr();
15447         else
15448           TypeExpr = ACO->getFalseExpr();
15449         continue;
15450       }
15451       return false;
15452     }
15453 
15454     case Stmt::BinaryOperatorClass: {
15455       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
15456       if (BO->getOpcode() == BO_Comma) {
15457         TypeExpr = BO->getRHS();
15458         continue;
15459       }
15460       return false;
15461     }
15462 
15463     default:
15464       return false;
15465     }
15466   }
15467 }
15468 
15469 /// Retrieve the C type corresponding to type tag TypeExpr.
15470 ///
15471 /// \param TypeExpr Expression that specifies a type tag.
15472 ///
15473 /// \param MagicValues Registered magic values.
15474 ///
15475 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
15476 ///        kind.
15477 ///
15478 /// \param TypeInfo Information about the corresponding C type.
15479 ///
15480 /// \param isConstantEvaluated wether the evalaution should be performed in
15481 /// constant context.
15482 ///
15483 /// \returns true if the corresponding C type was found.
15484 static bool GetMatchingCType(
15485     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
15486     const ASTContext &Ctx,
15487     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
15488         *MagicValues,
15489     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
15490     bool isConstantEvaluated) {
15491   FoundWrongKind = false;
15492 
15493   // Variable declaration that has type_tag_for_datatype attribute.
15494   const ValueDecl *VD = nullptr;
15495 
15496   uint64_t MagicValue;
15497 
15498   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
15499     return false;
15500 
15501   if (VD) {
15502     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
15503       if (I->getArgumentKind() != ArgumentKind) {
15504         FoundWrongKind = true;
15505         return false;
15506       }
15507       TypeInfo.Type = I->getMatchingCType();
15508       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
15509       TypeInfo.MustBeNull = I->getMustBeNull();
15510       return true;
15511     }
15512     return false;
15513   }
15514 
15515   if (!MagicValues)
15516     return false;
15517 
15518   llvm::DenseMap<Sema::TypeTagMagicValue,
15519                  Sema::TypeTagData>::const_iterator I =
15520       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
15521   if (I == MagicValues->end())
15522     return false;
15523 
15524   TypeInfo = I->second;
15525   return true;
15526 }
15527 
15528 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
15529                                       uint64_t MagicValue, QualType Type,
15530                                       bool LayoutCompatible,
15531                                       bool MustBeNull) {
15532   if (!TypeTagForDatatypeMagicValues)
15533     TypeTagForDatatypeMagicValues.reset(
15534         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
15535 
15536   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
15537   (*TypeTagForDatatypeMagicValues)[Magic] =
15538       TypeTagData(Type, LayoutCompatible, MustBeNull);
15539 }
15540 
15541 static bool IsSameCharType(QualType T1, QualType T2) {
15542   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
15543   if (!BT1)
15544     return false;
15545 
15546   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
15547   if (!BT2)
15548     return false;
15549 
15550   BuiltinType::Kind T1Kind = BT1->getKind();
15551   BuiltinType::Kind T2Kind = BT2->getKind();
15552 
15553   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
15554          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
15555          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
15556          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
15557 }
15558 
15559 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
15560                                     const ArrayRef<const Expr *> ExprArgs,
15561                                     SourceLocation CallSiteLoc) {
15562   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
15563   bool IsPointerAttr = Attr->getIsPointer();
15564 
15565   // Retrieve the argument representing the 'type_tag'.
15566   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
15567   if (TypeTagIdxAST >= ExprArgs.size()) {
15568     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15569         << 0 << Attr->getTypeTagIdx().getSourceIndex();
15570     return;
15571   }
15572   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
15573   bool FoundWrongKind;
15574   TypeTagData TypeInfo;
15575   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
15576                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
15577                         TypeInfo, isConstantEvaluated())) {
15578     if (FoundWrongKind)
15579       Diag(TypeTagExpr->getExprLoc(),
15580            diag::warn_type_tag_for_datatype_wrong_kind)
15581         << TypeTagExpr->getSourceRange();
15582     return;
15583   }
15584 
15585   // Retrieve the argument representing the 'arg_idx'.
15586   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
15587   if (ArgumentIdxAST >= ExprArgs.size()) {
15588     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15589         << 1 << Attr->getArgumentIdx().getSourceIndex();
15590     return;
15591   }
15592   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
15593   if (IsPointerAttr) {
15594     // Skip implicit cast of pointer to `void *' (as a function argument).
15595     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
15596       if (ICE->getType()->isVoidPointerType() &&
15597           ICE->getCastKind() == CK_BitCast)
15598         ArgumentExpr = ICE->getSubExpr();
15599   }
15600   QualType ArgumentType = ArgumentExpr->getType();
15601 
15602   // Passing a `void*' pointer shouldn't trigger a warning.
15603   if (IsPointerAttr && ArgumentType->isVoidPointerType())
15604     return;
15605 
15606   if (TypeInfo.MustBeNull) {
15607     // Type tag with matching void type requires a null pointer.
15608     if (!ArgumentExpr->isNullPointerConstant(Context,
15609                                              Expr::NPC_ValueDependentIsNotNull)) {
15610       Diag(ArgumentExpr->getExprLoc(),
15611            diag::warn_type_safety_null_pointer_required)
15612           << ArgumentKind->getName()
15613           << ArgumentExpr->getSourceRange()
15614           << TypeTagExpr->getSourceRange();
15615     }
15616     return;
15617   }
15618 
15619   QualType RequiredType = TypeInfo.Type;
15620   if (IsPointerAttr)
15621     RequiredType = Context.getPointerType(RequiredType);
15622 
15623   bool mismatch = false;
15624   if (!TypeInfo.LayoutCompatible) {
15625     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
15626 
15627     // C++11 [basic.fundamental] p1:
15628     // Plain char, signed char, and unsigned char are three distinct types.
15629     //
15630     // But we treat plain `char' as equivalent to `signed char' or `unsigned
15631     // char' depending on the current char signedness mode.
15632     if (mismatch)
15633       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
15634                                            RequiredType->getPointeeType())) ||
15635           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
15636         mismatch = false;
15637   } else
15638     if (IsPointerAttr)
15639       mismatch = !isLayoutCompatible(Context,
15640                                      ArgumentType->getPointeeType(),
15641                                      RequiredType->getPointeeType());
15642     else
15643       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
15644 
15645   if (mismatch)
15646     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
15647         << ArgumentType << ArgumentKind
15648         << TypeInfo.LayoutCompatible << RequiredType
15649         << ArgumentExpr->getSourceRange()
15650         << TypeTagExpr->getSourceRange();
15651 }
15652 
15653 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
15654                                          CharUnits Alignment) {
15655   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
15656 }
15657 
15658 void Sema::DiagnoseMisalignedMembers() {
15659   for (MisalignedMember &m : MisalignedMembers) {
15660     const NamedDecl *ND = m.RD;
15661     if (ND->getName().empty()) {
15662       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
15663         ND = TD;
15664     }
15665     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
15666         << m.MD << ND << m.E->getSourceRange();
15667   }
15668   MisalignedMembers.clear();
15669 }
15670 
15671 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
15672   E = E->IgnoreParens();
15673   if (!T->isPointerType() && !T->isIntegerType())
15674     return;
15675   if (isa<UnaryOperator>(E) &&
15676       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
15677     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
15678     if (isa<MemberExpr>(Op)) {
15679       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
15680       if (MA != MisalignedMembers.end() &&
15681           (T->isIntegerType() ||
15682            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
15683                                    Context.getTypeAlignInChars(
15684                                        T->getPointeeType()) <= MA->Alignment))))
15685         MisalignedMembers.erase(MA);
15686     }
15687   }
15688 }
15689 
15690 void Sema::RefersToMemberWithReducedAlignment(
15691     Expr *E,
15692     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
15693         Action) {
15694   const auto *ME = dyn_cast<MemberExpr>(E);
15695   if (!ME)
15696     return;
15697 
15698   // No need to check expressions with an __unaligned-qualified type.
15699   if (E->getType().getQualifiers().hasUnaligned())
15700     return;
15701 
15702   // For a chain of MemberExpr like "a.b.c.d" this list
15703   // will keep FieldDecl's like [d, c, b].
15704   SmallVector<FieldDecl *, 4> ReverseMemberChain;
15705   const MemberExpr *TopME = nullptr;
15706   bool AnyIsPacked = false;
15707   do {
15708     QualType BaseType = ME->getBase()->getType();
15709     if (BaseType->isDependentType())
15710       return;
15711     if (ME->isArrow())
15712       BaseType = BaseType->getPointeeType();
15713     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
15714     if (RD->isInvalidDecl())
15715       return;
15716 
15717     ValueDecl *MD = ME->getMemberDecl();
15718     auto *FD = dyn_cast<FieldDecl>(MD);
15719     // We do not care about non-data members.
15720     if (!FD || FD->isInvalidDecl())
15721       return;
15722 
15723     AnyIsPacked =
15724         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
15725     ReverseMemberChain.push_back(FD);
15726 
15727     TopME = ME;
15728     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
15729   } while (ME);
15730   assert(TopME && "We did not compute a topmost MemberExpr!");
15731 
15732   // Not the scope of this diagnostic.
15733   if (!AnyIsPacked)
15734     return;
15735 
15736   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
15737   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
15738   // TODO: The innermost base of the member expression may be too complicated.
15739   // For now, just disregard these cases. This is left for future
15740   // improvement.
15741   if (!DRE && !isa<CXXThisExpr>(TopBase))
15742       return;
15743 
15744   // Alignment expected by the whole expression.
15745   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
15746 
15747   // No need to do anything else with this case.
15748   if (ExpectedAlignment.isOne())
15749     return;
15750 
15751   // Synthesize offset of the whole access.
15752   CharUnits Offset;
15753   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
15754        I++) {
15755     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
15756   }
15757 
15758   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
15759   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
15760       ReverseMemberChain.back()->getParent()->getTypeForDecl());
15761 
15762   // The base expression of the innermost MemberExpr may give
15763   // stronger guarantees than the class containing the member.
15764   if (DRE && !TopME->isArrow()) {
15765     const ValueDecl *VD = DRE->getDecl();
15766     if (!VD->getType()->isReferenceType())
15767       CompleteObjectAlignment =
15768           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
15769   }
15770 
15771   // Check if the synthesized offset fulfills the alignment.
15772   if (Offset % ExpectedAlignment != 0 ||
15773       // It may fulfill the offset it but the effective alignment may still be
15774       // lower than the expected expression alignment.
15775       CompleteObjectAlignment < ExpectedAlignment) {
15776     // If this happens, we want to determine a sensible culprit of this.
15777     // Intuitively, watching the chain of member expressions from right to
15778     // left, we start with the required alignment (as required by the field
15779     // type) but some packed attribute in that chain has reduced the alignment.
15780     // It may happen that another packed structure increases it again. But if
15781     // we are here such increase has not been enough. So pointing the first
15782     // FieldDecl that either is packed or else its RecordDecl is,
15783     // seems reasonable.
15784     FieldDecl *FD = nullptr;
15785     CharUnits Alignment;
15786     for (FieldDecl *FDI : ReverseMemberChain) {
15787       if (FDI->hasAttr<PackedAttr>() ||
15788           FDI->getParent()->hasAttr<PackedAttr>()) {
15789         FD = FDI;
15790         Alignment = std::min(
15791             Context.getTypeAlignInChars(FD->getType()),
15792             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
15793         break;
15794       }
15795     }
15796     assert(FD && "We did not find a packed FieldDecl!");
15797     Action(E, FD->getParent(), FD, Alignment);
15798   }
15799 }
15800 
15801 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
15802   using namespace std::placeholders;
15803 
15804   RefersToMemberWithReducedAlignment(
15805       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
15806                      _2, _3, _4));
15807 }
15808 
15809 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
15810                                             ExprResult CallResult) {
15811   if (checkArgCount(*this, TheCall, 1))
15812     return ExprError();
15813 
15814   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
15815   if (MatrixArg.isInvalid())
15816     return MatrixArg;
15817   Expr *Matrix = MatrixArg.get();
15818 
15819   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
15820   if (!MType) {
15821     Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
15822     return ExprError();
15823   }
15824 
15825   // Create returned matrix type by swapping rows and columns of the argument
15826   // matrix type.
15827   QualType ResultType = Context.getConstantMatrixType(
15828       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
15829 
15830   // Change the return type to the type of the returned matrix.
15831   TheCall->setType(ResultType);
15832 
15833   // Update call argument to use the possibly converted matrix argument.
15834   TheCall->setArg(0, Matrix);
15835   return CallResult;
15836 }
15837 
15838 // Get and verify the matrix dimensions.
15839 static llvm::Optional<unsigned>
15840 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
15841   SourceLocation ErrorPos;
15842   Optional<llvm::APSInt> Value =
15843       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
15844   if (!Value) {
15845     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
15846         << Name;
15847     return {};
15848   }
15849   uint64_t Dim = Value->getZExtValue();
15850   if (!ConstantMatrixType::isDimensionValid(Dim)) {
15851     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
15852         << Name << ConstantMatrixType::getMaxElementsPerDimension();
15853     return {};
15854   }
15855   return Dim;
15856 }
15857 
15858 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
15859                                                   ExprResult CallResult) {
15860   if (!getLangOpts().MatrixTypes) {
15861     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
15862     return ExprError();
15863   }
15864 
15865   if (checkArgCount(*this, TheCall, 4))
15866     return ExprError();
15867 
15868   unsigned PtrArgIdx = 0;
15869   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15870   Expr *RowsExpr = TheCall->getArg(1);
15871   Expr *ColumnsExpr = TheCall->getArg(2);
15872   Expr *StrideExpr = TheCall->getArg(3);
15873 
15874   bool ArgError = false;
15875 
15876   // Check pointer argument.
15877   {
15878     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
15879     if (PtrConv.isInvalid())
15880       return PtrConv;
15881     PtrExpr = PtrConv.get();
15882     TheCall->setArg(0, PtrExpr);
15883     if (PtrExpr->isTypeDependent()) {
15884       TheCall->setType(Context.DependentTy);
15885       return TheCall;
15886     }
15887   }
15888 
15889   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
15890   QualType ElementTy;
15891   if (!PtrTy) {
15892     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15893         << PtrArgIdx + 1;
15894     ArgError = true;
15895   } else {
15896     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
15897 
15898     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
15899       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15900           << PtrArgIdx + 1;
15901       ArgError = true;
15902     }
15903   }
15904 
15905   // Apply default Lvalue conversions and convert the expression to size_t.
15906   auto ApplyArgumentConversions = [this](Expr *E) {
15907     ExprResult Conv = DefaultLvalueConversion(E);
15908     if (Conv.isInvalid())
15909       return Conv;
15910 
15911     return tryConvertExprToType(Conv.get(), Context.getSizeType());
15912   };
15913 
15914   // Apply conversion to row and column expressions.
15915   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
15916   if (!RowsConv.isInvalid()) {
15917     RowsExpr = RowsConv.get();
15918     TheCall->setArg(1, RowsExpr);
15919   } else
15920     RowsExpr = nullptr;
15921 
15922   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
15923   if (!ColumnsConv.isInvalid()) {
15924     ColumnsExpr = ColumnsConv.get();
15925     TheCall->setArg(2, ColumnsExpr);
15926   } else
15927     ColumnsExpr = nullptr;
15928 
15929   // If any any part of the result matrix type is still pending, just use
15930   // Context.DependentTy, until all parts are resolved.
15931   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
15932       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
15933     TheCall->setType(Context.DependentTy);
15934     return CallResult;
15935   }
15936 
15937   // Check row and column dimenions.
15938   llvm::Optional<unsigned> MaybeRows;
15939   if (RowsExpr)
15940     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
15941 
15942   llvm::Optional<unsigned> MaybeColumns;
15943   if (ColumnsExpr)
15944     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
15945 
15946   // Check stride argument.
15947   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
15948   if (StrideConv.isInvalid())
15949     return ExprError();
15950   StrideExpr = StrideConv.get();
15951   TheCall->setArg(3, StrideExpr);
15952 
15953   if (MaybeRows) {
15954     if (Optional<llvm::APSInt> Value =
15955             StrideExpr->getIntegerConstantExpr(Context)) {
15956       uint64_t Stride = Value->getZExtValue();
15957       if (Stride < *MaybeRows) {
15958         Diag(StrideExpr->getBeginLoc(),
15959              diag::err_builtin_matrix_stride_too_small);
15960         ArgError = true;
15961       }
15962     }
15963   }
15964 
15965   if (ArgError || !MaybeRows || !MaybeColumns)
15966     return ExprError();
15967 
15968   TheCall->setType(
15969       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
15970   return CallResult;
15971 }
15972 
15973 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
15974                                                    ExprResult CallResult) {
15975   if (checkArgCount(*this, TheCall, 3))
15976     return ExprError();
15977 
15978   unsigned PtrArgIdx = 1;
15979   Expr *MatrixExpr = TheCall->getArg(0);
15980   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15981   Expr *StrideExpr = TheCall->getArg(2);
15982 
15983   bool ArgError = false;
15984 
15985   {
15986     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
15987     if (MatrixConv.isInvalid())
15988       return MatrixConv;
15989     MatrixExpr = MatrixConv.get();
15990     TheCall->setArg(0, MatrixExpr);
15991   }
15992   if (MatrixExpr->isTypeDependent()) {
15993     TheCall->setType(Context.DependentTy);
15994     return TheCall;
15995   }
15996 
15997   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
15998   if (!MatrixTy) {
15999     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
16000     ArgError = true;
16001   }
16002 
16003   {
16004     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16005     if (PtrConv.isInvalid())
16006       return PtrConv;
16007     PtrExpr = PtrConv.get();
16008     TheCall->setArg(1, PtrExpr);
16009     if (PtrExpr->isTypeDependent()) {
16010       TheCall->setType(Context.DependentTy);
16011       return TheCall;
16012     }
16013   }
16014 
16015   // Check pointer argument.
16016   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16017   if (!PtrTy) {
16018     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16019         << PtrArgIdx + 1;
16020     ArgError = true;
16021   } else {
16022     QualType ElementTy = PtrTy->getPointeeType();
16023     if (ElementTy.isConstQualified()) {
16024       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16025       ArgError = true;
16026     }
16027     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16028     if (MatrixTy &&
16029         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16030       Diag(PtrExpr->getBeginLoc(),
16031            diag::err_builtin_matrix_pointer_arg_mismatch)
16032           << ElementTy << MatrixTy->getElementType();
16033       ArgError = true;
16034     }
16035   }
16036 
16037   // Apply default Lvalue conversions and convert the stride expression to
16038   // size_t.
16039   {
16040     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16041     if (StrideConv.isInvalid())
16042       return StrideConv;
16043 
16044     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16045     if (StrideConv.isInvalid())
16046       return StrideConv;
16047     StrideExpr = StrideConv.get();
16048     TheCall->setArg(2, StrideExpr);
16049   }
16050 
16051   // Check stride argument.
16052   if (MatrixTy) {
16053     if (Optional<llvm::APSInt> Value =
16054             StrideExpr->getIntegerConstantExpr(Context)) {
16055       uint64_t Stride = Value->getZExtValue();
16056       if (Stride < MatrixTy->getNumRows()) {
16057         Diag(StrideExpr->getBeginLoc(),
16058              diag::err_builtin_matrix_stride_too_small);
16059         ArgError = true;
16060       }
16061     }
16062   }
16063 
16064   if (ArgError)
16065     return ExprError();
16066 
16067   return CallResult;
16068 }
16069 
16070 /// \brief Enforce the bounds of a TCB
16071 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
16072 /// directly calls other functions in the same TCB as marked by the enforce_tcb
16073 /// and enforce_tcb_leaf attributes.
16074 void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
16075                                const FunctionDecl *Callee) {
16076   const FunctionDecl *Caller = getCurFunctionDecl();
16077 
16078   // Calls to builtins are not enforced.
16079   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
16080       Callee->getBuiltinID() != 0)
16081     return;
16082 
16083   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
16084   // all TCBs the callee is a part of.
16085   llvm::StringSet<> CalleeTCBs;
16086   for_each(Callee->specific_attrs<EnforceTCBAttr>(),
16087            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16088   for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
16089            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16090 
16091   // Go through the TCBs the caller is a part of and emit warnings if Caller
16092   // is in a TCB that the Callee is not.
16093   for_each(
16094       Caller->specific_attrs<EnforceTCBAttr>(),
16095       [&](const auto *A) {
16096         StringRef CallerTCB = A->getTCBName();
16097         if (CalleeTCBs.count(CallerTCB) == 0) {
16098           this->Diag(TheCall->getExprLoc(),
16099                      diag::warn_tcb_enforcement_violation) << Callee
16100                                                            << CallerTCB;
16101         }
16102       });
16103 }
16104