1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/AST/UnresolvedSet.h"
38 #include "clang/Basic/AddressSpaces.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/OpenCLOptions.h"
45 #include "clang/Basic/OperatorKinds.h"
46 #include "clang/Basic/PartialDiagnostic.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/SyncScope.h"
51 #include "clang/Basic/TargetBuiltins.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/TypeTraits.h"
55 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
56 #include "clang/Sema/Initialization.h"
57 #include "clang/Sema/Lookup.h"
58 #include "clang/Sema/Ownership.h"
59 #include "clang/Sema/Scope.h"
60 #include "clang/Sema/ScopeInfo.h"
61 #include "clang/Sema/Sema.h"
62 #include "clang/Sema/SemaInternal.h"
63 #include "llvm/ADT/APFloat.h"
64 #include "llvm/ADT/APInt.h"
65 #include "llvm/ADT/APSInt.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/DenseMap.h"
68 #include "llvm/ADT/FoldingSet.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallBitVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallString.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/StringSwitch.h"
78 #include "llvm/ADT/Triple.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/ConvertUTF.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/Format.h"
85 #include "llvm/Support/Locale.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/SaveAndRestore.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstddef>
92 #include <cstdint>
93 #include <functional>
94 #include <limits>
95 #include <string>
96 #include <tuple>
97 #include <utility>
98 
99 using namespace clang;
100 using namespace sema;
101 
102 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
103                                                     unsigned ByteNo) const {
104   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
105                                Context.getTargetInfo());
106 }
107 
108 /// Checks that a call expression's argument count is the desired number.
109 /// This is useful when doing custom type-checking.  Returns true on error.
110 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
111   unsigned argCount = call->getNumArgs();
112   if (argCount == desiredArgCount) return false;
113 
114   if (argCount < desiredArgCount)
115     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
116            << 0 /*function call*/ << desiredArgCount << argCount
117            << call->getSourceRange();
118 
119   // Highlight all the excess arguments.
120   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
121                     call->getArg(argCount - 1)->getEndLoc());
122 
123   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
124     << 0 /*function call*/ << desiredArgCount << argCount
125     << call->getArg(1)->getSourceRange();
126 }
127 
128 /// Check that the first argument to __builtin_annotation is an integer
129 /// and the second argument is a non-wide string literal.
130 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
131   if (checkArgCount(S, TheCall, 2))
132     return true;
133 
134   // First argument should be an integer.
135   Expr *ValArg = TheCall->getArg(0);
136   QualType Ty = ValArg->getType();
137   if (!Ty->isIntegerType()) {
138     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
139         << ValArg->getSourceRange();
140     return true;
141   }
142 
143   // Second argument should be a constant string.
144   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
145   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
146   if (!Literal || !Literal->isAscii()) {
147     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
148         << StrArg->getSourceRange();
149     return true;
150   }
151 
152   TheCall->setType(Ty);
153   return false;
154 }
155 
156 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
157   // We need at least one argument.
158   if (TheCall->getNumArgs() < 1) {
159     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
160         << 0 << 1 << TheCall->getNumArgs()
161         << TheCall->getCallee()->getSourceRange();
162     return true;
163   }
164 
165   // All arguments should be wide string literals.
166   for (Expr *Arg : TheCall->arguments()) {
167     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
168     if (!Literal || !Literal->isWide()) {
169       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
170           << Arg->getSourceRange();
171       return true;
172     }
173   }
174 
175   return false;
176 }
177 
178 /// Check that the argument to __builtin_addressof is a glvalue, and set the
179 /// result type to the corresponding pointer type.
180 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
181   if (checkArgCount(S, TheCall, 1))
182     return true;
183 
184   ExprResult Arg(TheCall->getArg(0));
185   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
186   if (ResultType.isNull())
187     return true;
188 
189   TheCall->setArg(0, Arg.get());
190   TheCall->setType(ResultType);
191   return false;
192 }
193 
194 /// Check the number of arguments and set the result type to
195 /// the argument type.
196 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
197   if (checkArgCount(S, TheCall, 1))
198     return true;
199 
200   TheCall->setType(TheCall->getArg(0)->getType());
201   return false;
202 }
203 
204 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
205 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
206 /// type (but not a function pointer) and that the alignment is a power-of-two.
207 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
208   if (checkArgCount(S, TheCall, 2))
209     return true;
210 
211   clang::Expr *Source = TheCall->getArg(0);
212   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
213 
214   auto IsValidIntegerType = [](QualType Ty) {
215     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
216   };
217   QualType SrcTy = Source->getType();
218   // We should also be able to use it with arrays (but not functions!).
219   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
220     SrcTy = S.Context.getDecayedType(SrcTy);
221   }
222   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
223       SrcTy->isFunctionPointerType()) {
224     // FIXME: this is not quite the right error message since we don't allow
225     // floating point types, or member pointers.
226     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
227         << SrcTy;
228     return true;
229   }
230 
231   clang::Expr *AlignOp = TheCall->getArg(1);
232   if (!IsValidIntegerType(AlignOp->getType())) {
233     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
234         << AlignOp->getType();
235     return true;
236   }
237   Expr::EvalResult AlignResult;
238   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
239   // We can't check validity of alignment if it is type dependent.
240   if (!AlignOp->isInstantiationDependent() &&
241       AlignOp->EvaluateAsInt(AlignResult, S.Context,
242                              Expr::SE_AllowSideEffects)) {
243     llvm::APSInt AlignValue = AlignResult.Val.getInt();
244     llvm::APSInt MaxValue(
245         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
246     if (AlignValue < 1) {
247       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
248       return true;
249     }
250     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
251       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
252           << MaxValue.toString(10);
253       return true;
254     }
255     if (!AlignValue.isPowerOf2()) {
256       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
257       return true;
258     }
259     if (AlignValue == 1) {
260       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
261           << IsBooleanAlignBuiltin;
262     }
263   }
264 
265   ExprResult SrcArg = S.PerformCopyInitialization(
266       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
267       SourceLocation(), Source);
268   if (SrcArg.isInvalid())
269     return true;
270   TheCall->setArg(0, SrcArg.get());
271   ExprResult AlignArg =
272       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
273                                       S.Context, AlignOp->getType(), false),
274                                   SourceLocation(), AlignOp);
275   if (AlignArg.isInvalid())
276     return true;
277   TheCall->setArg(1, AlignArg.get());
278   // For align_up/align_down, the return type is the same as the (potentially
279   // decayed) argument type including qualifiers. For is_aligned(), the result
280   // is always bool.
281   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
282   return false;
283 }
284 
285 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
286   if (checkArgCount(S, TheCall, 3))
287     return true;
288 
289   // First two arguments should be integers.
290   for (unsigned I = 0; I < 2; ++I) {
291     ExprResult Arg = TheCall->getArg(I);
292     QualType Ty = Arg.get()->getType();
293     if (!Ty->isIntegerType()) {
294       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
295           << Ty << Arg.get()->getSourceRange();
296       return true;
297     }
298     InitializedEntity Entity = InitializedEntity::InitializeParameter(
299         S.getASTContext(), Ty, /*consume*/ false);
300     Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
301     if (Arg.isInvalid())
302       return true;
303     TheCall->setArg(I, Arg.get());
304   }
305 
306   // Third argument should be a pointer to a non-const integer.
307   // IRGen correctly handles volatile, restrict, and address spaces, and
308   // the other qualifiers aren't possible.
309   {
310     ExprResult Arg = TheCall->getArg(2);
311     QualType Ty = Arg.get()->getType();
312     const auto *PtrTy = Ty->getAs<PointerType>();
313     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
314           !PtrTy->getPointeeType().isConstQualified())) {
315       S.Diag(Arg.get()->getBeginLoc(),
316              diag::err_overflow_builtin_must_be_ptr_int)
317           << Ty << Arg.get()->getSourceRange();
318       return true;
319     }
320     InitializedEntity Entity = InitializedEntity::InitializeParameter(
321         S.getASTContext(), Ty, /*consume*/ false);
322     Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
323     if (Arg.isInvalid())
324       return true;
325     TheCall->setArg(2, Arg.get());
326   }
327   return false;
328 }
329 
330 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
331   if (checkArgCount(S, BuiltinCall, 2))
332     return true;
333 
334   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
335   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
336   Expr *Call = BuiltinCall->getArg(0);
337   Expr *Chain = BuiltinCall->getArg(1);
338 
339   if (Call->getStmtClass() != Stmt::CallExprClass) {
340     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
341         << Call->getSourceRange();
342     return true;
343   }
344 
345   auto CE = cast<CallExpr>(Call);
346   if (CE->getCallee()->getType()->isBlockPointerType()) {
347     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
348         << Call->getSourceRange();
349     return true;
350   }
351 
352   const Decl *TargetDecl = CE->getCalleeDecl();
353   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
354     if (FD->getBuiltinID()) {
355       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
356           << Call->getSourceRange();
357       return true;
358     }
359 
360   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
361     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
362         << Call->getSourceRange();
363     return true;
364   }
365 
366   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
367   if (ChainResult.isInvalid())
368     return true;
369   if (!ChainResult.get()->getType()->isPointerType()) {
370     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
371         << Chain->getSourceRange();
372     return true;
373   }
374 
375   QualType ReturnTy = CE->getCallReturnType(S.Context);
376   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
377   QualType BuiltinTy = S.Context.getFunctionType(
378       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
379   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
380 
381   Builtin =
382       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
383 
384   BuiltinCall->setType(CE->getType());
385   BuiltinCall->setValueKind(CE->getValueKind());
386   BuiltinCall->setObjectKind(CE->getObjectKind());
387   BuiltinCall->setCallee(Builtin);
388   BuiltinCall->setArg(1, ChainResult.get());
389 
390   return false;
391 }
392 
393 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
394 /// __builtin_*_chk function, then use the object size argument specified in the
395 /// source. Otherwise, infer the object size using __builtin_object_size.
396 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
397                                                CallExpr *TheCall) {
398   // FIXME: There are some more useful checks we could be doing here:
399   //  - Analyze the format string of sprintf to see how much of buffer is used.
400   //  - Evaluate strlen of strcpy arguments, use as object size.
401 
402   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
403       isConstantEvaluated())
404     return;
405 
406   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
407   if (!BuiltinID)
408     return;
409 
410   unsigned DiagID = 0;
411   bool IsChkVariant = false;
412   unsigned SizeIndex, ObjectIndex;
413   switch (BuiltinID) {
414   default:
415     return;
416   case Builtin::BI__builtin___memcpy_chk:
417   case Builtin::BI__builtin___memmove_chk:
418   case Builtin::BI__builtin___memset_chk:
419   case Builtin::BI__builtin___strlcat_chk:
420   case Builtin::BI__builtin___strlcpy_chk:
421   case Builtin::BI__builtin___strncat_chk:
422   case Builtin::BI__builtin___strncpy_chk:
423   case Builtin::BI__builtin___stpncpy_chk:
424   case Builtin::BI__builtin___memccpy_chk:
425   case Builtin::BI__builtin___mempcpy_chk: {
426     DiagID = diag::warn_builtin_chk_overflow;
427     IsChkVariant = true;
428     SizeIndex = TheCall->getNumArgs() - 2;
429     ObjectIndex = TheCall->getNumArgs() - 1;
430     break;
431   }
432 
433   case Builtin::BI__builtin___snprintf_chk:
434   case Builtin::BI__builtin___vsnprintf_chk: {
435     DiagID = diag::warn_builtin_chk_overflow;
436     IsChkVariant = true;
437     SizeIndex = 1;
438     ObjectIndex = 3;
439     break;
440   }
441 
442   case Builtin::BIstrncat:
443   case Builtin::BI__builtin_strncat:
444   case Builtin::BIstrncpy:
445   case Builtin::BI__builtin_strncpy:
446   case Builtin::BIstpncpy:
447   case Builtin::BI__builtin_stpncpy: {
448     // Whether these functions overflow depends on the runtime strlen of the
449     // string, not just the buffer size, so emitting the "always overflow"
450     // diagnostic isn't quite right. We should still diagnose passing a buffer
451     // size larger than the destination buffer though; this is a runtime abort
452     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
453     DiagID = diag::warn_fortify_source_size_mismatch;
454     SizeIndex = TheCall->getNumArgs() - 1;
455     ObjectIndex = 0;
456     break;
457   }
458 
459   case Builtin::BImemcpy:
460   case Builtin::BI__builtin_memcpy:
461   case Builtin::BImemmove:
462   case Builtin::BI__builtin_memmove:
463   case Builtin::BImemset:
464   case Builtin::BI__builtin_memset:
465   case Builtin::BImempcpy:
466   case Builtin::BI__builtin_mempcpy: {
467     DiagID = diag::warn_fortify_source_overflow;
468     SizeIndex = TheCall->getNumArgs() - 1;
469     ObjectIndex = 0;
470     break;
471   }
472   case Builtin::BIsnprintf:
473   case Builtin::BI__builtin_snprintf:
474   case Builtin::BIvsnprintf:
475   case Builtin::BI__builtin_vsnprintf: {
476     DiagID = diag::warn_fortify_source_size_mismatch;
477     SizeIndex = 1;
478     ObjectIndex = 0;
479     break;
480   }
481   }
482 
483   llvm::APSInt ObjectSize;
484   // For __builtin___*_chk, the object size is explicitly provided by the caller
485   // (usually using __builtin_object_size). Use that value to check this call.
486   if (IsChkVariant) {
487     Expr::EvalResult Result;
488     Expr *SizeArg = TheCall->getArg(ObjectIndex);
489     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
490       return;
491     ObjectSize = Result.Val.getInt();
492 
493   // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
494   } else {
495     // If the parameter has a pass_object_size attribute, then we should use its
496     // (potentially) more strict checking mode. Otherwise, conservatively assume
497     // type 0.
498     int BOSType = 0;
499     if (const auto *POS =
500             FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
501       BOSType = POS->getType();
502 
503     Expr *ObjArg = TheCall->getArg(ObjectIndex);
504     uint64_t Result;
505     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
506       return;
507     // Get the object size in the target's size_t width.
508     const TargetInfo &TI = getASTContext().getTargetInfo();
509     unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
510     ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
511   }
512 
513   // Evaluate the number of bytes of the object that this call will use.
514   Expr::EvalResult Result;
515   Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
516   if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
517     return;
518   llvm::APSInt UsedSize = Result.Val.getInt();
519 
520   if (UsedSize.ule(ObjectSize))
521     return;
522 
523   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
524   // Skim off the details of whichever builtin was called to produce a better
525   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
526   if (IsChkVariant) {
527     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
528     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
529   } else if (FunctionName.startswith("__builtin_")) {
530     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
531   }
532 
533   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
534                       PDiag(DiagID)
535                           << FunctionName << ObjectSize.toString(/*Radix=*/10)
536                           << UsedSize.toString(/*Radix=*/10));
537 }
538 
539 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
540                                      Scope::ScopeFlags NeededScopeFlags,
541                                      unsigned DiagID) {
542   // Scopes aren't available during instantiation. Fortunately, builtin
543   // functions cannot be template args so they cannot be formed through template
544   // instantiation. Therefore checking once during the parse is sufficient.
545   if (SemaRef.inTemplateInstantiation())
546     return false;
547 
548   Scope *S = SemaRef.getCurScope();
549   while (S && !S->isSEHExceptScope())
550     S = S->getParent();
551   if (!S || !(S->getFlags() & NeededScopeFlags)) {
552     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
553     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
554         << DRE->getDecl()->getIdentifier();
555     return true;
556   }
557 
558   return false;
559 }
560 
561 static inline bool isBlockPointer(Expr *Arg) {
562   return Arg->getType()->isBlockPointerType();
563 }
564 
565 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
566 /// void*, which is a requirement of device side enqueue.
567 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
568   const BlockPointerType *BPT =
569       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
570   ArrayRef<QualType> Params =
571       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
572   unsigned ArgCounter = 0;
573   bool IllegalParams = false;
574   // Iterate through the block parameters until either one is found that is not
575   // a local void*, or the block is valid.
576   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
577        I != E; ++I, ++ArgCounter) {
578     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
579         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
580             LangAS::opencl_local) {
581       // Get the location of the error. If a block literal has been passed
582       // (BlockExpr) then we can point straight to the offending argument,
583       // else we just point to the variable reference.
584       SourceLocation ErrorLoc;
585       if (isa<BlockExpr>(BlockArg)) {
586         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
587         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
588       } else if (isa<DeclRefExpr>(BlockArg)) {
589         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
590       }
591       S.Diag(ErrorLoc,
592              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
593       IllegalParams = true;
594     }
595   }
596 
597   return IllegalParams;
598 }
599 
600 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
601   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
602     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
603         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
604     return true;
605   }
606   return false;
607 }
608 
609 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
610   if (checkArgCount(S, TheCall, 2))
611     return true;
612 
613   if (checkOpenCLSubgroupExt(S, TheCall))
614     return true;
615 
616   // First argument is an ndrange_t type.
617   Expr *NDRangeArg = TheCall->getArg(0);
618   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
619     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
620         << TheCall->getDirectCallee() << "'ndrange_t'";
621     return true;
622   }
623 
624   Expr *BlockArg = TheCall->getArg(1);
625   if (!isBlockPointer(BlockArg)) {
626     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
627         << TheCall->getDirectCallee() << "block";
628     return true;
629   }
630   return checkOpenCLBlockArgs(S, BlockArg);
631 }
632 
633 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
634 /// get_kernel_work_group_size
635 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
636 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
637   if (checkArgCount(S, TheCall, 1))
638     return true;
639 
640   Expr *BlockArg = TheCall->getArg(0);
641   if (!isBlockPointer(BlockArg)) {
642     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
643         << TheCall->getDirectCallee() << "block";
644     return true;
645   }
646   return checkOpenCLBlockArgs(S, BlockArg);
647 }
648 
649 /// Diagnose integer type and any valid implicit conversion to it.
650 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
651                                       const QualType &IntType);
652 
653 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
654                                             unsigned Start, unsigned End) {
655   bool IllegalParams = false;
656   for (unsigned I = Start; I <= End; ++I)
657     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
658                                               S.Context.getSizeType());
659   return IllegalParams;
660 }
661 
662 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
663 /// 'local void*' parameter of passed block.
664 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
665                                            Expr *BlockArg,
666                                            unsigned NumNonVarArgs) {
667   const BlockPointerType *BPT =
668       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
669   unsigned NumBlockParams =
670       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
671   unsigned TotalNumArgs = TheCall->getNumArgs();
672 
673   // For each argument passed to the block, a corresponding uint needs to
674   // be passed to describe the size of the local memory.
675   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
676     S.Diag(TheCall->getBeginLoc(),
677            diag::err_opencl_enqueue_kernel_local_size_args);
678     return true;
679   }
680 
681   // Check that the sizes of the local memory are specified by integers.
682   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
683                                          TotalNumArgs - 1);
684 }
685 
686 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
687 /// overload formats specified in Table 6.13.17.1.
688 /// int enqueue_kernel(queue_t queue,
689 ///                    kernel_enqueue_flags_t flags,
690 ///                    const ndrange_t ndrange,
691 ///                    void (^block)(void))
692 /// int enqueue_kernel(queue_t queue,
693 ///                    kernel_enqueue_flags_t flags,
694 ///                    const ndrange_t ndrange,
695 ///                    uint num_events_in_wait_list,
696 ///                    clk_event_t *event_wait_list,
697 ///                    clk_event_t *event_ret,
698 ///                    void (^block)(void))
699 /// int enqueue_kernel(queue_t queue,
700 ///                    kernel_enqueue_flags_t flags,
701 ///                    const ndrange_t ndrange,
702 ///                    void (^block)(local void*, ...),
703 ///                    uint size0, ...)
704 /// int enqueue_kernel(queue_t queue,
705 ///                    kernel_enqueue_flags_t flags,
706 ///                    const ndrange_t ndrange,
707 ///                    uint num_events_in_wait_list,
708 ///                    clk_event_t *event_wait_list,
709 ///                    clk_event_t *event_ret,
710 ///                    void (^block)(local void*, ...),
711 ///                    uint size0, ...)
712 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
713   unsigned NumArgs = TheCall->getNumArgs();
714 
715   if (NumArgs < 4) {
716     S.Diag(TheCall->getBeginLoc(),
717            diag::err_typecheck_call_too_few_args_at_least)
718         << 0 << 4 << NumArgs;
719     return true;
720   }
721 
722   Expr *Arg0 = TheCall->getArg(0);
723   Expr *Arg1 = TheCall->getArg(1);
724   Expr *Arg2 = TheCall->getArg(2);
725   Expr *Arg3 = TheCall->getArg(3);
726 
727   // First argument always needs to be a queue_t type.
728   if (!Arg0->getType()->isQueueT()) {
729     S.Diag(TheCall->getArg(0)->getBeginLoc(),
730            diag::err_opencl_builtin_expected_type)
731         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
732     return true;
733   }
734 
735   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
736   if (!Arg1->getType()->isIntegerType()) {
737     S.Diag(TheCall->getArg(1)->getBeginLoc(),
738            diag::err_opencl_builtin_expected_type)
739         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
740     return true;
741   }
742 
743   // Third argument is always an ndrange_t type.
744   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
745     S.Diag(TheCall->getArg(2)->getBeginLoc(),
746            diag::err_opencl_builtin_expected_type)
747         << TheCall->getDirectCallee() << "'ndrange_t'";
748     return true;
749   }
750 
751   // With four arguments, there is only one form that the function could be
752   // called in: no events and no variable arguments.
753   if (NumArgs == 4) {
754     // check that the last argument is the right block type.
755     if (!isBlockPointer(Arg3)) {
756       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
757           << TheCall->getDirectCallee() << "block";
758       return true;
759     }
760     // we have a block type, check the prototype
761     const BlockPointerType *BPT =
762         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
763     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
764       S.Diag(Arg3->getBeginLoc(),
765              diag::err_opencl_enqueue_kernel_blocks_no_args);
766       return true;
767     }
768     return false;
769   }
770   // we can have block + varargs.
771   if (isBlockPointer(Arg3))
772     return (checkOpenCLBlockArgs(S, Arg3) ||
773             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
774   // last two cases with either exactly 7 args or 7 args and varargs.
775   if (NumArgs >= 7) {
776     // check common block argument.
777     Expr *Arg6 = TheCall->getArg(6);
778     if (!isBlockPointer(Arg6)) {
779       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
780           << TheCall->getDirectCallee() << "block";
781       return true;
782     }
783     if (checkOpenCLBlockArgs(S, Arg6))
784       return true;
785 
786     // Forth argument has to be any integer type.
787     if (!Arg3->getType()->isIntegerType()) {
788       S.Diag(TheCall->getArg(3)->getBeginLoc(),
789              diag::err_opencl_builtin_expected_type)
790           << TheCall->getDirectCallee() << "integer";
791       return true;
792     }
793     // check remaining common arguments.
794     Expr *Arg4 = TheCall->getArg(4);
795     Expr *Arg5 = TheCall->getArg(5);
796 
797     // Fifth argument is always passed as a pointer to clk_event_t.
798     if (!Arg4->isNullPointerConstant(S.Context,
799                                      Expr::NPC_ValueDependentIsNotNull) &&
800         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
801       S.Diag(TheCall->getArg(4)->getBeginLoc(),
802              diag::err_opencl_builtin_expected_type)
803           << TheCall->getDirectCallee()
804           << S.Context.getPointerType(S.Context.OCLClkEventTy);
805       return true;
806     }
807 
808     // Sixth argument is always passed as a pointer to clk_event_t.
809     if (!Arg5->isNullPointerConstant(S.Context,
810                                      Expr::NPC_ValueDependentIsNotNull) &&
811         !(Arg5->getType()->isPointerType() &&
812           Arg5->getType()->getPointeeType()->isClkEventT())) {
813       S.Diag(TheCall->getArg(5)->getBeginLoc(),
814              diag::err_opencl_builtin_expected_type)
815           << TheCall->getDirectCallee()
816           << S.Context.getPointerType(S.Context.OCLClkEventTy);
817       return true;
818     }
819 
820     if (NumArgs == 7)
821       return false;
822 
823     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
824   }
825 
826   // None of the specific case has been detected, give generic error
827   S.Diag(TheCall->getBeginLoc(),
828          diag::err_opencl_enqueue_kernel_incorrect_args);
829   return true;
830 }
831 
832 /// Returns OpenCL access qual.
833 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
834     return D->getAttr<OpenCLAccessAttr>();
835 }
836 
837 /// Returns true if pipe element type is different from the pointer.
838 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
839   const Expr *Arg0 = Call->getArg(0);
840   // First argument type should always be pipe.
841   if (!Arg0->getType()->isPipeType()) {
842     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
843         << Call->getDirectCallee() << Arg0->getSourceRange();
844     return true;
845   }
846   OpenCLAccessAttr *AccessQual =
847       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
848   // Validates the access qualifier is compatible with the call.
849   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
850   // read_only and write_only, and assumed to be read_only if no qualifier is
851   // specified.
852   switch (Call->getDirectCallee()->getBuiltinID()) {
853   case Builtin::BIread_pipe:
854   case Builtin::BIreserve_read_pipe:
855   case Builtin::BIcommit_read_pipe:
856   case Builtin::BIwork_group_reserve_read_pipe:
857   case Builtin::BIsub_group_reserve_read_pipe:
858   case Builtin::BIwork_group_commit_read_pipe:
859   case Builtin::BIsub_group_commit_read_pipe:
860     if (!(!AccessQual || AccessQual->isReadOnly())) {
861       S.Diag(Arg0->getBeginLoc(),
862              diag::err_opencl_builtin_pipe_invalid_access_modifier)
863           << "read_only" << Arg0->getSourceRange();
864       return true;
865     }
866     break;
867   case Builtin::BIwrite_pipe:
868   case Builtin::BIreserve_write_pipe:
869   case Builtin::BIcommit_write_pipe:
870   case Builtin::BIwork_group_reserve_write_pipe:
871   case Builtin::BIsub_group_reserve_write_pipe:
872   case Builtin::BIwork_group_commit_write_pipe:
873   case Builtin::BIsub_group_commit_write_pipe:
874     if (!(AccessQual && AccessQual->isWriteOnly())) {
875       S.Diag(Arg0->getBeginLoc(),
876              diag::err_opencl_builtin_pipe_invalid_access_modifier)
877           << "write_only" << Arg0->getSourceRange();
878       return true;
879     }
880     break;
881   default:
882     break;
883   }
884   return false;
885 }
886 
887 /// Returns true if pipe element type is different from the pointer.
888 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
889   const Expr *Arg0 = Call->getArg(0);
890   const Expr *ArgIdx = Call->getArg(Idx);
891   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
892   const QualType EltTy = PipeTy->getElementType();
893   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
894   // The Idx argument should be a pointer and the type of the pointer and
895   // the type of pipe element should also be the same.
896   if (!ArgTy ||
897       !S.Context.hasSameType(
898           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
899     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
900         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
901         << ArgIdx->getType() << ArgIdx->getSourceRange();
902     return true;
903   }
904   return false;
905 }
906 
907 // Performs semantic analysis for the read/write_pipe call.
908 // \param S Reference to the semantic analyzer.
909 // \param Call A pointer to the builtin call.
910 // \return True if a semantic error has been found, false otherwise.
911 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
912   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
913   // functions have two forms.
914   switch (Call->getNumArgs()) {
915   case 2:
916     if (checkOpenCLPipeArg(S, Call))
917       return true;
918     // The call with 2 arguments should be
919     // read/write_pipe(pipe T, T*).
920     // Check packet type T.
921     if (checkOpenCLPipePacketType(S, Call, 1))
922       return true;
923     break;
924 
925   case 4: {
926     if (checkOpenCLPipeArg(S, Call))
927       return true;
928     // The call with 4 arguments should be
929     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
930     // Check reserve_id_t.
931     if (!Call->getArg(1)->getType()->isReserveIDT()) {
932       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
933           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
934           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
935       return true;
936     }
937 
938     // Check the index.
939     const Expr *Arg2 = Call->getArg(2);
940     if (!Arg2->getType()->isIntegerType() &&
941         !Arg2->getType()->isUnsignedIntegerType()) {
942       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
943           << Call->getDirectCallee() << S.Context.UnsignedIntTy
944           << Arg2->getType() << Arg2->getSourceRange();
945       return true;
946     }
947 
948     // Check packet type T.
949     if (checkOpenCLPipePacketType(S, Call, 3))
950       return true;
951   } break;
952   default:
953     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
954         << Call->getDirectCallee() << Call->getSourceRange();
955     return true;
956   }
957 
958   return false;
959 }
960 
961 // Performs a semantic analysis on the {work_group_/sub_group_
962 //        /_}reserve_{read/write}_pipe
963 // \param S Reference to the semantic analyzer.
964 // \param Call The call to the builtin function to be analyzed.
965 // \return True if a semantic error was found, false otherwise.
966 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
967   if (checkArgCount(S, Call, 2))
968     return true;
969 
970   if (checkOpenCLPipeArg(S, Call))
971     return true;
972 
973   // Check the reserve size.
974   if (!Call->getArg(1)->getType()->isIntegerType() &&
975       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
976     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
977         << Call->getDirectCallee() << S.Context.UnsignedIntTy
978         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
979     return true;
980   }
981 
982   // Since return type of reserve_read/write_pipe built-in function is
983   // reserve_id_t, which is not defined in the builtin def file , we used int
984   // as return type and need to override the return type of these functions.
985   Call->setType(S.Context.OCLReserveIDTy);
986 
987   return false;
988 }
989 
990 // Performs a semantic analysis on {work_group_/sub_group_
991 //        /_}commit_{read/write}_pipe
992 // \param S Reference to the semantic analyzer.
993 // \param Call The call to the builtin function to be analyzed.
994 // \return True if a semantic error was found, false otherwise.
995 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
996   if (checkArgCount(S, Call, 2))
997     return true;
998 
999   if (checkOpenCLPipeArg(S, Call))
1000     return true;
1001 
1002   // Check reserve_id_t.
1003   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1004     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1005         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1006         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1007     return true;
1008   }
1009 
1010   return false;
1011 }
1012 
1013 // Performs a semantic analysis on the call to built-in Pipe
1014 //        Query Functions.
1015 // \param S Reference to the semantic analyzer.
1016 // \param Call The call to the builtin function to be analyzed.
1017 // \return True if a semantic error was found, false otherwise.
1018 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1019   if (checkArgCount(S, Call, 1))
1020     return true;
1021 
1022   if (!Call->getArg(0)->getType()->isPipeType()) {
1023     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1024         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1025     return true;
1026   }
1027 
1028   return false;
1029 }
1030 
1031 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1032 // Performs semantic analysis for the to_global/local/private call.
1033 // \param S Reference to the semantic analyzer.
1034 // \param BuiltinID ID of the builtin function.
1035 // \param Call A pointer to the builtin call.
1036 // \return True if a semantic error has been found, false otherwise.
1037 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1038                                     CallExpr *Call) {
1039   if (Call->getNumArgs() != 1) {
1040     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num)
1041         << Call->getDirectCallee() << Call->getSourceRange();
1042     return true;
1043   }
1044 
1045   auto RT = Call->getArg(0)->getType();
1046   if (!RT->isPointerType() || RT->getPointeeType()
1047       .getAddressSpace() == LangAS::opencl_constant) {
1048     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1049         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1050     return true;
1051   }
1052 
1053   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1054     S.Diag(Call->getArg(0)->getBeginLoc(),
1055            diag::warn_opencl_generic_address_space_arg)
1056         << Call->getDirectCallee()->getNameInfo().getAsString()
1057         << Call->getArg(0)->getSourceRange();
1058   }
1059 
1060   RT = RT->getPointeeType();
1061   auto Qual = RT.getQualifiers();
1062   switch (BuiltinID) {
1063   case Builtin::BIto_global:
1064     Qual.setAddressSpace(LangAS::opencl_global);
1065     break;
1066   case Builtin::BIto_local:
1067     Qual.setAddressSpace(LangAS::opencl_local);
1068     break;
1069   case Builtin::BIto_private:
1070     Qual.setAddressSpace(LangAS::opencl_private);
1071     break;
1072   default:
1073     llvm_unreachable("Invalid builtin function");
1074   }
1075   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1076       RT.getUnqualifiedType(), Qual)));
1077 
1078   return false;
1079 }
1080 
1081 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1082   if (checkArgCount(S, TheCall, 1))
1083     return ExprError();
1084 
1085   // Compute __builtin_launder's parameter type from the argument.
1086   // The parameter type is:
1087   //  * The type of the argument if it's not an array or function type,
1088   //  Otherwise,
1089   //  * The decayed argument type.
1090   QualType ParamTy = [&]() {
1091     QualType ArgTy = TheCall->getArg(0)->getType();
1092     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1093       return S.Context.getPointerType(Ty->getElementType());
1094     if (ArgTy->isFunctionType()) {
1095       return S.Context.getPointerType(ArgTy);
1096     }
1097     return ArgTy;
1098   }();
1099 
1100   TheCall->setType(ParamTy);
1101 
1102   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1103     if (!ParamTy->isPointerType())
1104       return 0;
1105     if (ParamTy->isFunctionPointerType())
1106       return 1;
1107     if (ParamTy->isVoidPointerType())
1108       return 2;
1109     return llvm::Optional<unsigned>{};
1110   }();
1111   if (DiagSelect.hasValue()) {
1112     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1113         << DiagSelect.getValue() << TheCall->getSourceRange();
1114     return ExprError();
1115   }
1116 
1117   // We either have an incomplete class type, or we have a class template
1118   // whose instantiation has not been forced. Example:
1119   //
1120   //   template <class T> struct Foo { T value; };
1121   //   Foo<int> *p = nullptr;
1122   //   auto *d = __builtin_launder(p);
1123   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1124                             diag::err_incomplete_type))
1125     return ExprError();
1126 
1127   assert(ParamTy->getPointeeType()->isObjectType() &&
1128          "Unhandled non-object pointer case");
1129 
1130   InitializedEntity Entity =
1131       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1132   ExprResult Arg =
1133       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1134   if (Arg.isInvalid())
1135     return ExprError();
1136   TheCall->setArg(0, Arg.get());
1137 
1138   return TheCall;
1139 }
1140 
1141 // Emit an error and return true if the current architecture is not in the list
1142 // of supported architectures.
1143 static bool
1144 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1145                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1146   llvm::Triple::ArchType CurArch =
1147       S.getASTContext().getTargetInfo().getTriple().getArch();
1148   if (llvm::is_contained(SupportedArchs, CurArch))
1149     return false;
1150   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1151       << TheCall->getSourceRange();
1152   return true;
1153 }
1154 
1155 ExprResult
1156 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1157                                CallExpr *TheCall) {
1158   ExprResult TheCallResult(TheCall);
1159 
1160   // Find out if any arguments are required to be integer constant expressions.
1161   unsigned ICEArguments = 0;
1162   ASTContext::GetBuiltinTypeError Error;
1163   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1164   if (Error != ASTContext::GE_None)
1165     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1166 
1167   // If any arguments are required to be ICE's, check and diagnose.
1168   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1169     // Skip arguments not required to be ICE's.
1170     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1171 
1172     llvm::APSInt Result;
1173     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1174       return true;
1175     ICEArguments &= ~(1 << ArgNo);
1176   }
1177 
1178   switch (BuiltinID) {
1179   case Builtin::BI__builtin___CFStringMakeConstantString:
1180     assert(TheCall->getNumArgs() == 1 &&
1181            "Wrong # arguments to builtin CFStringMakeConstantString");
1182     if (CheckObjCString(TheCall->getArg(0)))
1183       return ExprError();
1184     break;
1185   case Builtin::BI__builtin_ms_va_start:
1186   case Builtin::BI__builtin_stdarg_start:
1187   case Builtin::BI__builtin_va_start:
1188     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1189       return ExprError();
1190     break;
1191   case Builtin::BI__va_start: {
1192     switch (Context.getTargetInfo().getTriple().getArch()) {
1193     case llvm::Triple::aarch64:
1194     case llvm::Triple::arm:
1195     case llvm::Triple::thumb:
1196       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1197         return ExprError();
1198       break;
1199     default:
1200       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1201         return ExprError();
1202       break;
1203     }
1204     break;
1205   }
1206 
1207   // The acquire, release, and no fence variants are ARM and AArch64 only.
1208   case Builtin::BI_interlockedbittestandset_acq:
1209   case Builtin::BI_interlockedbittestandset_rel:
1210   case Builtin::BI_interlockedbittestandset_nf:
1211   case Builtin::BI_interlockedbittestandreset_acq:
1212   case Builtin::BI_interlockedbittestandreset_rel:
1213   case Builtin::BI_interlockedbittestandreset_nf:
1214     if (CheckBuiltinTargetSupport(
1215             *this, BuiltinID, TheCall,
1216             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1217       return ExprError();
1218     break;
1219 
1220   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1221   case Builtin::BI_bittest64:
1222   case Builtin::BI_bittestandcomplement64:
1223   case Builtin::BI_bittestandreset64:
1224   case Builtin::BI_bittestandset64:
1225   case Builtin::BI_interlockedbittestandreset64:
1226   case Builtin::BI_interlockedbittestandset64:
1227     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1228                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1229                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1230       return ExprError();
1231     break;
1232 
1233   case Builtin::BI__builtin_isgreater:
1234   case Builtin::BI__builtin_isgreaterequal:
1235   case Builtin::BI__builtin_isless:
1236   case Builtin::BI__builtin_islessequal:
1237   case Builtin::BI__builtin_islessgreater:
1238   case Builtin::BI__builtin_isunordered:
1239     if (SemaBuiltinUnorderedCompare(TheCall))
1240       return ExprError();
1241     break;
1242   case Builtin::BI__builtin_fpclassify:
1243     if (SemaBuiltinFPClassification(TheCall, 6))
1244       return ExprError();
1245     break;
1246   case Builtin::BI__builtin_isfinite:
1247   case Builtin::BI__builtin_isinf:
1248   case Builtin::BI__builtin_isinf_sign:
1249   case Builtin::BI__builtin_isnan:
1250   case Builtin::BI__builtin_isnormal:
1251   case Builtin::BI__builtin_signbit:
1252   case Builtin::BI__builtin_signbitf:
1253   case Builtin::BI__builtin_signbitl:
1254     if (SemaBuiltinFPClassification(TheCall, 1))
1255       return ExprError();
1256     break;
1257   case Builtin::BI__builtin_shufflevector:
1258     return SemaBuiltinShuffleVector(TheCall);
1259     // TheCall will be freed by the smart pointer here, but that's fine, since
1260     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1261   case Builtin::BI__builtin_prefetch:
1262     if (SemaBuiltinPrefetch(TheCall))
1263       return ExprError();
1264     break;
1265   case Builtin::BI__builtin_alloca_with_align:
1266     if (SemaBuiltinAllocaWithAlign(TheCall))
1267       return ExprError();
1268     LLVM_FALLTHROUGH;
1269   case Builtin::BI__builtin_alloca:
1270     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1271         << TheCall->getDirectCallee();
1272     break;
1273   case Builtin::BI__assume:
1274   case Builtin::BI__builtin_assume:
1275     if (SemaBuiltinAssume(TheCall))
1276       return ExprError();
1277     break;
1278   case Builtin::BI__builtin_assume_aligned:
1279     if (SemaBuiltinAssumeAligned(TheCall))
1280       return ExprError();
1281     break;
1282   case Builtin::BI__builtin_dynamic_object_size:
1283   case Builtin::BI__builtin_object_size:
1284     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1285       return ExprError();
1286     break;
1287   case Builtin::BI__builtin_longjmp:
1288     if (SemaBuiltinLongjmp(TheCall))
1289       return ExprError();
1290     break;
1291   case Builtin::BI__builtin_setjmp:
1292     if (SemaBuiltinSetjmp(TheCall))
1293       return ExprError();
1294     break;
1295   case Builtin::BI_setjmp:
1296   case Builtin::BI_setjmpex:
1297     if (checkArgCount(*this, TheCall, 1))
1298       return true;
1299     break;
1300   case Builtin::BI__builtin_classify_type:
1301     if (checkArgCount(*this, TheCall, 1)) return true;
1302     TheCall->setType(Context.IntTy);
1303     break;
1304   case Builtin::BI__builtin_constant_p: {
1305     if (checkArgCount(*this, TheCall, 1)) return true;
1306     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1307     if (Arg.isInvalid()) return true;
1308     TheCall->setArg(0, Arg.get());
1309     TheCall->setType(Context.IntTy);
1310     break;
1311   }
1312   case Builtin::BI__builtin_launder:
1313     return SemaBuiltinLaunder(*this, TheCall);
1314   case Builtin::BI__sync_fetch_and_add:
1315   case Builtin::BI__sync_fetch_and_add_1:
1316   case Builtin::BI__sync_fetch_and_add_2:
1317   case Builtin::BI__sync_fetch_and_add_4:
1318   case Builtin::BI__sync_fetch_and_add_8:
1319   case Builtin::BI__sync_fetch_and_add_16:
1320   case Builtin::BI__sync_fetch_and_sub:
1321   case Builtin::BI__sync_fetch_and_sub_1:
1322   case Builtin::BI__sync_fetch_and_sub_2:
1323   case Builtin::BI__sync_fetch_and_sub_4:
1324   case Builtin::BI__sync_fetch_and_sub_8:
1325   case Builtin::BI__sync_fetch_and_sub_16:
1326   case Builtin::BI__sync_fetch_and_or:
1327   case Builtin::BI__sync_fetch_and_or_1:
1328   case Builtin::BI__sync_fetch_and_or_2:
1329   case Builtin::BI__sync_fetch_and_or_4:
1330   case Builtin::BI__sync_fetch_and_or_8:
1331   case Builtin::BI__sync_fetch_and_or_16:
1332   case Builtin::BI__sync_fetch_and_and:
1333   case Builtin::BI__sync_fetch_and_and_1:
1334   case Builtin::BI__sync_fetch_and_and_2:
1335   case Builtin::BI__sync_fetch_and_and_4:
1336   case Builtin::BI__sync_fetch_and_and_8:
1337   case Builtin::BI__sync_fetch_and_and_16:
1338   case Builtin::BI__sync_fetch_and_xor:
1339   case Builtin::BI__sync_fetch_and_xor_1:
1340   case Builtin::BI__sync_fetch_and_xor_2:
1341   case Builtin::BI__sync_fetch_and_xor_4:
1342   case Builtin::BI__sync_fetch_and_xor_8:
1343   case Builtin::BI__sync_fetch_and_xor_16:
1344   case Builtin::BI__sync_fetch_and_nand:
1345   case Builtin::BI__sync_fetch_and_nand_1:
1346   case Builtin::BI__sync_fetch_and_nand_2:
1347   case Builtin::BI__sync_fetch_and_nand_4:
1348   case Builtin::BI__sync_fetch_and_nand_8:
1349   case Builtin::BI__sync_fetch_and_nand_16:
1350   case Builtin::BI__sync_add_and_fetch:
1351   case Builtin::BI__sync_add_and_fetch_1:
1352   case Builtin::BI__sync_add_and_fetch_2:
1353   case Builtin::BI__sync_add_and_fetch_4:
1354   case Builtin::BI__sync_add_and_fetch_8:
1355   case Builtin::BI__sync_add_and_fetch_16:
1356   case Builtin::BI__sync_sub_and_fetch:
1357   case Builtin::BI__sync_sub_and_fetch_1:
1358   case Builtin::BI__sync_sub_and_fetch_2:
1359   case Builtin::BI__sync_sub_and_fetch_4:
1360   case Builtin::BI__sync_sub_and_fetch_8:
1361   case Builtin::BI__sync_sub_and_fetch_16:
1362   case Builtin::BI__sync_and_and_fetch:
1363   case Builtin::BI__sync_and_and_fetch_1:
1364   case Builtin::BI__sync_and_and_fetch_2:
1365   case Builtin::BI__sync_and_and_fetch_4:
1366   case Builtin::BI__sync_and_and_fetch_8:
1367   case Builtin::BI__sync_and_and_fetch_16:
1368   case Builtin::BI__sync_or_and_fetch:
1369   case Builtin::BI__sync_or_and_fetch_1:
1370   case Builtin::BI__sync_or_and_fetch_2:
1371   case Builtin::BI__sync_or_and_fetch_4:
1372   case Builtin::BI__sync_or_and_fetch_8:
1373   case Builtin::BI__sync_or_and_fetch_16:
1374   case Builtin::BI__sync_xor_and_fetch:
1375   case Builtin::BI__sync_xor_and_fetch_1:
1376   case Builtin::BI__sync_xor_and_fetch_2:
1377   case Builtin::BI__sync_xor_and_fetch_4:
1378   case Builtin::BI__sync_xor_and_fetch_8:
1379   case Builtin::BI__sync_xor_and_fetch_16:
1380   case Builtin::BI__sync_nand_and_fetch:
1381   case Builtin::BI__sync_nand_and_fetch_1:
1382   case Builtin::BI__sync_nand_and_fetch_2:
1383   case Builtin::BI__sync_nand_and_fetch_4:
1384   case Builtin::BI__sync_nand_and_fetch_8:
1385   case Builtin::BI__sync_nand_and_fetch_16:
1386   case Builtin::BI__sync_val_compare_and_swap:
1387   case Builtin::BI__sync_val_compare_and_swap_1:
1388   case Builtin::BI__sync_val_compare_and_swap_2:
1389   case Builtin::BI__sync_val_compare_and_swap_4:
1390   case Builtin::BI__sync_val_compare_and_swap_8:
1391   case Builtin::BI__sync_val_compare_and_swap_16:
1392   case Builtin::BI__sync_bool_compare_and_swap:
1393   case Builtin::BI__sync_bool_compare_and_swap_1:
1394   case Builtin::BI__sync_bool_compare_and_swap_2:
1395   case Builtin::BI__sync_bool_compare_and_swap_4:
1396   case Builtin::BI__sync_bool_compare_and_swap_8:
1397   case Builtin::BI__sync_bool_compare_and_swap_16:
1398   case Builtin::BI__sync_lock_test_and_set:
1399   case Builtin::BI__sync_lock_test_and_set_1:
1400   case Builtin::BI__sync_lock_test_and_set_2:
1401   case Builtin::BI__sync_lock_test_and_set_4:
1402   case Builtin::BI__sync_lock_test_and_set_8:
1403   case Builtin::BI__sync_lock_test_and_set_16:
1404   case Builtin::BI__sync_lock_release:
1405   case Builtin::BI__sync_lock_release_1:
1406   case Builtin::BI__sync_lock_release_2:
1407   case Builtin::BI__sync_lock_release_4:
1408   case Builtin::BI__sync_lock_release_8:
1409   case Builtin::BI__sync_lock_release_16:
1410   case Builtin::BI__sync_swap:
1411   case Builtin::BI__sync_swap_1:
1412   case Builtin::BI__sync_swap_2:
1413   case Builtin::BI__sync_swap_4:
1414   case Builtin::BI__sync_swap_8:
1415   case Builtin::BI__sync_swap_16:
1416     return SemaBuiltinAtomicOverloaded(TheCallResult);
1417   case Builtin::BI__sync_synchronize:
1418     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1419         << TheCall->getCallee()->getSourceRange();
1420     break;
1421   case Builtin::BI__builtin_nontemporal_load:
1422   case Builtin::BI__builtin_nontemporal_store:
1423     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1424 #define BUILTIN(ID, TYPE, ATTRS)
1425 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1426   case Builtin::BI##ID: \
1427     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1428 #include "clang/Basic/Builtins.def"
1429   case Builtin::BI__annotation:
1430     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1431       return ExprError();
1432     break;
1433   case Builtin::BI__builtin_annotation:
1434     if (SemaBuiltinAnnotation(*this, TheCall))
1435       return ExprError();
1436     break;
1437   case Builtin::BI__builtin_addressof:
1438     if (SemaBuiltinAddressof(*this, TheCall))
1439       return ExprError();
1440     break;
1441   case Builtin::BI__builtin_is_aligned:
1442   case Builtin::BI__builtin_align_up:
1443   case Builtin::BI__builtin_align_down:
1444     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1445       return ExprError();
1446     break;
1447   case Builtin::BI__builtin_add_overflow:
1448   case Builtin::BI__builtin_sub_overflow:
1449   case Builtin::BI__builtin_mul_overflow:
1450     if (SemaBuiltinOverflow(*this, TheCall))
1451       return ExprError();
1452     break;
1453   case Builtin::BI__builtin_operator_new:
1454   case Builtin::BI__builtin_operator_delete: {
1455     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1456     ExprResult Res =
1457         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1458     if (Res.isInvalid())
1459       CorrectDelayedTyposInExpr(TheCallResult.get());
1460     return Res;
1461   }
1462   case Builtin::BI__builtin_dump_struct: {
1463     // We first want to ensure we are called with 2 arguments
1464     if (checkArgCount(*this, TheCall, 2))
1465       return ExprError();
1466     // Ensure that the first argument is of type 'struct XX *'
1467     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1468     const QualType PtrArgType = PtrArg->getType();
1469     if (!PtrArgType->isPointerType() ||
1470         !PtrArgType->getPointeeType()->isRecordType()) {
1471       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1472           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1473           << "structure pointer";
1474       return ExprError();
1475     }
1476 
1477     // Ensure that the second argument is of type 'FunctionType'
1478     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1479     const QualType FnPtrArgType = FnPtrArg->getType();
1480     if (!FnPtrArgType->isPointerType()) {
1481       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1482           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1483           << FnPtrArgType << "'int (*)(const char *, ...)'";
1484       return ExprError();
1485     }
1486 
1487     const auto *FuncType =
1488         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1489 
1490     if (!FuncType) {
1491       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1492           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1493           << FnPtrArgType << "'int (*)(const char *, ...)'";
1494       return ExprError();
1495     }
1496 
1497     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1498       if (!FT->getNumParams()) {
1499         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1500             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1501             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1502         return ExprError();
1503       }
1504       QualType PT = FT->getParamType(0);
1505       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1506           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1507           !PT->getPointeeType().isConstQualified()) {
1508         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1509             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1510             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1511         return ExprError();
1512       }
1513     }
1514 
1515     TheCall->setType(Context.IntTy);
1516     break;
1517   }
1518   case Builtin::BI__builtin_preserve_access_index:
1519     if (SemaBuiltinPreserveAI(*this, TheCall))
1520       return ExprError();
1521     break;
1522   case Builtin::BI__builtin_call_with_static_chain:
1523     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1524       return ExprError();
1525     break;
1526   case Builtin::BI__exception_code:
1527   case Builtin::BI_exception_code:
1528     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1529                                  diag::err_seh___except_block))
1530       return ExprError();
1531     break;
1532   case Builtin::BI__exception_info:
1533   case Builtin::BI_exception_info:
1534     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1535                                  diag::err_seh___except_filter))
1536       return ExprError();
1537     break;
1538   case Builtin::BI__GetExceptionInfo:
1539     if (checkArgCount(*this, TheCall, 1))
1540       return ExprError();
1541 
1542     if (CheckCXXThrowOperand(
1543             TheCall->getBeginLoc(),
1544             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1545             TheCall))
1546       return ExprError();
1547 
1548     TheCall->setType(Context.VoidPtrTy);
1549     break;
1550   // OpenCL v2.0, s6.13.16 - Pipe functions
1551   case Builtin::BIread_pipe:
1552   case Builtin::BIwrite_pipe:
1553     // Since those two functions are declared with var args, we need a semantic
1554     // check for the argument.
1555     if (SemaBuiltinRWPipe(*this, TheCall))
1556       return ExprError();
1557     break;
1558   case Builtin::BIreserve_read_pipe:
1559   case Builtin::BIreserve_write_pipe:
1560   case Builtin::BIwork_group_reserve_read_pipe:
1561   case Builtin::BIwork_group_reserve_write_pipe:
1562     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1563       return ExprError();
1564     break;
1565   case Builtin::BIsub_group_reserve_read_pipe:
1566   case Builtin::BIsub_group_reserve_write_pipe:
1567     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1568         SemaBuiltinReserveRWPipe(*this, TheCall))
1569       return ExprError();
1570     break;
1571   case Builtin::BIcommit_read_pipe:
1572   case Builtin::BIcommit_write_pipe:
1573   case Builtin::BIwork_group_commit_read_pipe:
1574   case Builtin::BIwork_group_commit_write_pipe:
1575     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1576       return ExprError();
1577     break;
1578   case Builtin::BIsub_group_commit_read_pipe:
1579   case Builtin::BIsub_group_commit_write_pipe:
1580     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1581         SemaBuiltinCommitRWPipe(*this, TheCall))
1582       return ExprError();
1583     break;
1584   case Builtin::BIget_pipe_num_packets:
1585   case Builtin::BIget_pipe_max_packets:
1586     if (SemaBuiltinPipePackets(*this, TheCall))
1587       return ExprError();
1588     break;
1589   case Builtin::BIto_global:
1590   case Builtin::BIto_local:
1591   case Builtin::BIto_private:
1592     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1593       return ExprError();
1594     break;
1595   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1596   case Builtin::BIenqueue_kernel:
1597     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1598       return ExprError();
1599     break;
1600   case Builtin::BIget_kernel_work_group_size:
1601   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1602     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1603       return ExprError();
1604     break;
1605   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1606   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1607     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1608       return ExprError();
1609     break;
1610   case Builtin::BI__builtin_os_log_format:
1611   case Builtin::BI__builtin_os_log_format_buffer_size:
1612     if (SemaBuiltinOSLogFormat(TheCall))
1613       return ExprError();
1614     break;
1615   }
1616 
1617   // Since the target specific builtins for each arch overlap, only check those
1618   // of the arch we are compiling for.
1619   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1620     switch (Context.getTargetInfo().getTriple().getArch()) {
1621       case llvm::Triple::arm:
1622       case llvm::Triple::armeb:
1623       case llvm::Triple::thumb:
1624       case llvm::Triple::thumbeb:
1625         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
1626           return ExprError();
1627         break;
1628       case llvm::Triple::aarch64:
1629       case llvm::Triple::aarch64_32:
1630       case llvm::Triple::aarch64_be:
1631         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
1632           return ExprError();
1633         break;
1634       case llvm::Triple::bpfeb:
1635       case llvm::Triple::bpfel:
1636         if (CheckBPFBuiltinFunctionCall(BuiltinID, TheCall))
1637           return ExprError();
1638         break;
1639       case llvm::Triple::hexagon:
1640         if (CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall))
1641           return ExprError();
1642         break;
1643       case llvm::Triple::mips:
1644       case llvm::Triple::mipsel:
1645       case llvm::Triple::mips64:
1646       case llvm::Triple::mips64el:
1647         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
1648           return ExprError();
1649         break;
1650       case llvm::Triple::systemz:
1651         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
1652           return ExprError();
1653         break;
1654       case llvm::Triple::x86:
1655       case llvm::Triple::x86_64:
1656         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
1657           return ExprError();
1658         break;
1659       case llvm::Triple::ppc:
1660       case llvm::Triple::ppc64:
1661       case llvm::Triple::ppc64le:
1662         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
1663           return ExprError();
1664         break;
1665       default:
1666         break;
1667     }
1668   }
1669 
1670   return TheCallResult;
1671 }
1672 
1673 // Get the valid immediate range for the specified NEON type code.
1674 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1675   NeonTypeFlags Type(t);
1676   int IsQuad = ForceQuad ? true : Type.isQuad();
1677   switch (Type.getEltType()) {
1678   case NeonTypeFlags::Int8:
1679   case NeonTypeFlags::Poly8:
1680     return shift ? 7 : (8 << IsQuad) - 1;
1681   case NeonTypeFlags::Int16:
1682   case NeonTypeFlags::Poly16:
1683     return shift ? 15 : (4 << IsQuad) - 1;
1684   case NeonTypeFlags::Int32:
1685     return shift ? 31 : (2 << IsQuad) - 1;
1686   case NeonTypeFlags::Int64:
1687   case NeonTypeFlags::Poly64:
1688     return shift ? 63 : (1 << IsQuad) - 1;
1689   case NeonTypeFlags::Poly128:
1690     return shift ? 127 : (1 << IsQuad) - 1;
1691   case NeonTypeFlags::Float16:
1692     assert(!shift && "cannot shift float types!");
1693     return (4 << IsQuad) - 1;
1694   case NeonTypeFlags::Float32:
1695     assert(!shift && "cannot shift float types!");
1696     return (2 << IsQuad) - 1;
1697   case NeonTypeFlags::Float64:
1698     assert(!shift && "cannot shift float types!");
1699     return (1 << IsQuad) - 1;
1700   }
1701   llvm_unreachable("Invalid NeonTypeFlag!");
1702 }
1703 
1704 /// getNeonEltType - Return the QualType corresponding to the elements of
1705 /// the vector type specified by the NeonTypeFlags.  This is used to check
1706 /// the pointer arguments for Neon load/store intrinsics.
1707 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
1708                                bool IsPolyUnsigned, bool IsInt64Long) {
1709   switch (Flags.getEltType()) {
1710   case NeonTypeFlags::Int8:
1711     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
1712   case NeonTypeFlags::Int16:
1713     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
1714   case NeonTypeFlags::Int32:
1715     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
1716   case NeonTypeFlags::Int64:
1717     if (IsInt64Long)
1718       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
1719     else
1720       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
1721                                 : Context.LongLongTy;
1722   case NeonTypeFlags::Poly8:
1723     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
1724   case NeonTypeFlags::Poly16:
1725     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
1726   case NeonTypeFlags::Poly64:
1727     if (IsInt64Long)
1728       return Context.UnsignedLongTy;
1729     else
1730       return Context.UnsignedLongLongTy;
1731   case NeonTypeFlags::Poly128:
1732     break;
1733   case NeonTypeFlags::Float16:
1734     return Context.HalfTy;
1735   case NeonTypeFlags::Float32:
1736     return Context.FloatTy;
1737   case NeonTypeFlags::Float64:
1738     return Context.DoubleTy;
1739   }
1740   llvm_unreachable("Invalid NeonTypeFlag!");
1741 }
1742 
1743 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1744   llvm::APSInt Result;
1745   uint64_t mask = 0;
1746   unsigned TV = 0;
1747   int PtrArgNum = -1;
1748   bool HasConstPtr = false;
1749   switch (BuiltinID) {
1750 #define GET_NEON_OVERLOAD_CHECK
1751 #include "clang/Basic/arm_neon.inc"
1752 #include "clang/Basic/arm_fp16.inc"
1753 #undef GET_NEON_OVERLOAD_CHECK
1754   }
1755 
1756   // For NEON intrinsics which are overloaded on vector element type, validate
1757   // the immediate which specifies which variant to emit.
1758   unsigned ImmArg = TheCall->getNumArgs()-1;
1759   if (mask) {
1760     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
1761       return true;
1762 
1763     TV = Result.getLimitedValue(64);
1764     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
1765       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
1766              << TheCall->getArg(ImmArg)->getSourceRange();
1767   }
1768 
1769   if (PtrArgNum >= 0) {
1770     // Check that pointer arguments have the specified type.
1771     Expr *Arg = TheCall->getArg(PtrArgNum);
1772     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
1773       Arg = ICE->getSubExpr();
1774     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
1775     QualType RHSTy = RHS.get()->getType();
1776 
1777     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1778     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
1779                           Arch == llvm::Triple::aarch64_32 ||
1780                           Arch == llvm::Triple::aarch64_be;
1781     bool IsInt64Long =
1782         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
1783     QualType EltTy =
1784         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
1785     if (HasConstPtr)
1786       EltTy = EltTy.withConst();
1787     QualType LHSTy = Context.getPointerType(EltTy);
1788     AssignConvertType ConvTy;
1789     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
1790     if (RHS.isInvalid())
1791       return true;
1792     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
1793                                  RHS.get(), AA_Assigning))
1794       return true;
1795   }
1796 
1797   // For NEON intrinsics which take an immediate value as part of the
1798   // instruction, range check them here.
1799   unsigned i = 0, l = 0, u = 0;
1800   switch (BuiltinID) {
1801   default:
1802     return false;
1803   #define GET_NEON_IMMEDIATE_CHECK
1804   #include "clang/Basic/arm_neon.inc"
1805   #include "clang/Basic/arm_fp16.inc"
1806   #undef GET_NEON_IMMEDIATE_CHECK
1807   }
1808 
1809   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1810 }
1811 
1812 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1813   switch (BuiltinID) {
1814   default:
1815     return false;
1816   #include "clang/Basic/arm_mve_builtin_sema.inc"
1817   }
1818 }
1819 
1820 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
1821                                         unsigned MaxWidth) {
1822   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
1823           BuiltinID == ARM::BI__builtin_arm_ldaex ||
1824           BuiltinID == ARM::BI__builtin_arm_strex ||
1825           BuiltinID == ARM::BI__builtin_arm_stlex ||
1826           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1827           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1828           BuiltinID == AArch64::BI__builtin_arm_strex ||
1829           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
1830          "unexpected ARM builtin");
1831   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
1832                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
1833                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1834                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
1835 
1836   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1837 
1838   // Ensure that we have the proper number of arguments.
1839   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
1840     return true;
1841 
1842   // Inspect the pointer argument of the atomic builtin.  This should always be
1843   // a pointer type, whose element is an integral scalar or pointer type.
1844   // Because it is a pointer type, we don't have to worry about any implicit
1845   // casts here.
1846   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
1847   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
1848   if (PointerArgRes.isInvalid())
1849     return true;
1850   PointerArg = PointerArgRes.get();
1851 
1852   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
1853   if (!pointerType) {
1854     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
1855         << PointerArg->getType() << PointerArg->getSourceRange();
1856     return true;
1857   }
1858 
1859   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
1860   // task is to insert the appropriate casts into the AST. First work out just
1861   // what the appropriate type is.
1862   QualType ValType = pointerType->getPointeeType();
1863   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
1864   if (IsLdrex)
1865     AddrType.addConst();
1866 
1867   // Issue a warning if the cast is dodgy.
1868   CastKind CastNeeded = CK_NoOp;
1869   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
1870     CastNeeded = CK_BitCast;
1871     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
1872         << PointerArg->getType() << Context.getPointerType(AddrType)
1873         << AA_Passing << PointerArg->getSourceRange();
1874   }
1875 
1876   // Finally, do the cast and replace the argument with the corrected version.
1877   AddrType = Context.getPointerType(AddrType);
1878   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
1879   if (PointerArgRes.isInvalid())
1880     return true;
1881   PointerArg = PointerArgRes.get();
1882 
1883   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
1884 
1885   // In general, we allow ints, floats and pointers to be loaded and stored.
1886   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1887       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
1888     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
1889         << PointerArg->getType() << PointerArg->getSourceRange();
1890     return true;
1891   }
1892 
1893   // But ARM doesn't have instructions to deal with 128-bit versions.
1894   if (Context.getTypeSize(ValType) > MaxWidth) {
1895     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
1896     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
1897         << PointerArg->getType() << PointerArg->getSourceRange();
1898     return true;
1899   }
1900 
1901   switch (ValType.getObjCLifetime()) {
1902   case Qualifiers::OCL_None:
1903   case Qualifiers::OCL_ExplicitNone:
1904     // okay
1905     break;
1906 
1907   case Qualifiers::OCL_Weak:
1908   case Qualifiers::OCL_Strong:
1909   case Qualifiers::OCL_Autoreleasing:
1910     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
1911         << ValType << PointerArg->getSourceRange();
1912     return true;
1913   }
1914 
1915   if (IsLdrex) {
1916     TheCall->setType(ValType);
1917     return false;
1918   }
1919 
1920   // Initialize the argument to be stored.
1921   ExprResult ValArg = TheCall->getArg(0);
1922   InitializedEntity Entity = InitializedEntity::InitializeParameter(
1923       Context, ValType, /*consume*/ false);
1924   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
1925   if (ValArg.isInvalid())
1926     return true;
1927   TheCall->setArg(0, ValArg.get());
1928 
1929   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
1930   // but the custom checker bypasses all default analysis.
1931   TheCall->setType(Context.IntTy);
1932   return false;
1933 }
1934 
1935 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1936   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
1937       BuiltinID == ARM::BI__builtin_arm_ldaex ||
1938       BuiltinID == ARM::BI__builtin_arm_strex ||
1939       BuiltinID == ARM::BI__builtin_arm_stlex) {
1940     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
1941   }
1942 
1943   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
1944     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1945       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
1946   }
1947 
1948   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
1949       BuiltinID == ARM::BI__builtin_arm_wsr64)
1950     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
1951 
1952   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
1953       BuiltinID == ARM::BI__builtin_arm_rsrp ||
1954       BuiltinID == ARM::BI__builtin_arm_wsr ||
1955       BuiltinID == ARM::BI__builtin_arm_wsrp)
1956     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1957 
1958   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1959     return true;
1960   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
1961     return true;
1962 
1963   // For intrinsics which take an immediate value as part of the instruction,
1964   // range check them here.
1965   // FIXME: VFP Intrinsics should error if VFP not present.
1966   switch (BuiltinID) {
1967   default: return false;
1968   case ARM::BI__builtin_arm_ssat:
1969     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
1970   case ARM::BI__builtin_arm_usat:
1971     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
1972   case ARM::BI__builtin_arm_ssat16:
1973     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
1974   case ARM::BI__builtin_arm_usat16:
1975     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
1976   case ARM::BI__builtin_arm_vcvtr_f:
1977   case ARM::BI__builtin_arm_vcvtr_d:
1978     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
1979   case ARM::BI__builtin_arm_dmb:
1980   case ARM::BI__builtin_arm_dsb:
1981   case ARM::BI__builtin_arm_isb:
1982   case ARM::BI__builtin_arm_dbg:
1983     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
1984   }
1985 }
1986 
1987 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
1988                                          CallExpr *TheCall) {
1989   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1990       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1991       BuiltinID == AArch64::BI__builtin_arm_strex ||
1992       BuiltinID == AArch64::BI__builtin_arm_stlex) {
1993     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1994   }
1995 
1996   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1997     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1998       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
1999       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2000       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2001   }
2002 
2003   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2004       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2005     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2006 
2007   // Memory Tagging Extensions (MTE) Intrinsics
2008   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2009       BuiltinID == AArch64::BI__builtin_arm_addg ||
2010       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2011       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2012       BuiltinID == AArch64::BI__builtin_arm_stg ||
2013       BuiltinID == AArch64::BI__builtin_arm_subp) {
2014     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2015   }
2016 
2017   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2018       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2019       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2020       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2021     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2022 
2023   // Only check the valid encoding range. Any constant in this range would be
2024   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2025   // an exception for incorrect registers. This matches MSVC behavior.
2026   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2027       BuiltinID == AArch64::BI_WriteStatusReg)
2028     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2029 
2030   if (BuiltinID == AArch64::BI__getReg)
2031     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2032 
2033   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
2034     return true;
2035 
2036   // For intrinsics which take an immediate value as part of the instruction,
2037   // range check them here.
2038   unsigned i = 0, l = 0, u = 0;
2039   switch (BuiltinID) {
2040   default: return false;
2041   case AArch64::BI__builtin_arm_dmb:
2042   case AArch64::BI__builtin_arm_dsb:
2043   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2044   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2045   }
2046 
2047   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2048 }
2049 
2050 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2051                                        CallExpr *TheCall) {
2052   assert(BuiltinID == BPF::BI__builtin_preserve_field_info &&
2053          "unexpected ARM builtin");
2054 
2055   if (checkArgCount(*this, TheCall, 2))
2056     return true;
2057 
2058   // The first argument needs to be a record field access.
2059   // If it is an array element access, we delay decision
2060   // to BPF backend to check whether the access is a
2061   // field access or not.
2062   Expr *Arg = TheCall->getArg(0);
2063   if (Arg->getType()->getAsPlaceholderType() ||
2064       (Arg->IgnoreParens()->getObjectKind() != OK_BitField &&
2065        !dyn_cast<MemberExpr>(Arg->IgnoreParens()) &&
2066        !dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()))) {
2067     Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_field)
2068         << 1 << Arg->getSourceRange();
2069     return true;
2070   }
2071 
2072   // The second argument needs to be a constant int
2073   llvm::APSInt Value;
2074   if (!TheCall->getArg(1)->isIntegerConstantExpr(Value, Context)) {
2075     Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_const)
2076         << 2 << Arg->getSourceRange();
2077     return true;
2078   }
2079 
2080   TheCall->setType(Context.UnsignedIntTy);
2081   return false;
2082 }
2083 
2084 bool Sema::CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) {
2085   struct BuiltinAndString {
2086     unsigned BuiltinID;
2087     const char *Str;
2088   };
2089 
2090   static BuiltinAndString ValidCPU[] = {
2091     { Hexagon::BI__builtin_HEXAGON_A6_vcmpbeq_notany, "v65,v66" },
2092     { Hexagon::BI__builtin_HEXAGON_A6_vminub_RdP, "v62,v65,v66" },
2093     { Hexagon::BI__builtin_HEXAGON_F2_dfadd, "v66" },
2094     { Hexagon::BI__builtin_HEXAGON_F2_dfsub, "v66" },
2095     { Hexagon::BI__builtin_HEXAGON_M2_mnaci, "v66" },
2096     { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffb, "v62,v65,v66" },
2097     { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffub, "v62,v65,v66" },
2098     { Hexagon::BI__builtin_HEXAGON_S2_mask, "v66" },
2099     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, "v60,v62,v65,v66" },
2100     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, "v60,v62,v65,v66" },
2101     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, "v60,v62,v65,v66" },
2102     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, "v60,v62,v65,v66" },
2103     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, "v60,v62,v65,v66" },
2104     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, "v60,v62,v65,v66" },
2105     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, "v60,v62,v65,v66" },
2106     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, "v60,v62,v65,v66" },
2107     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, "v60,v62,v65,v66" },
2108     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, "v60,v62,v65,v66" },
2109     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, "v60,v62,v65,v66" },
2110     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, "v60,v62,v65,v66" },
2111     { Hexagon::BI__builtin_HEXAGON_S6_vsplatrbp, "v62,v65,v66" },
2112     { Hexagon::BI__builtin_HEXAGON_S6_vtrunehb_ppp, "v62,v65,v66" },
2113     { Hexagon::BI__builtin_HEXAGON_S6_vtrunohb_ppp, "v62,v65,v66" },
2114   };
2115 
2116   static BuiltinAndString ValidHVX[] = {
2117     { Hexagon::BI__builtin_HEXAGON_V6_hi, "v60,v62,v65,v66" },
2118     { Hexagon::BI__builtin_HEXAGON_V6_hi_128B, "v60,v62,v65,v66" },
2119     { Hexagon::BI__builtin_HEXAGON_V6_lo, "v60,v62,v65,v66" },
2120     { Hexagon::BI__builtin_HEXAGON_V6_lo_128B, "v60,v62,v65,v66" },
2121     { Hexagon::BI__builtin_HEXAGON_V6_extractw, "v60,v62,v65,v66" },
2122     { Hexagon::BI__builtin_HEXAGON_V6_extractw_128B, "v60,v62,v65,v66" },
2123     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb, "v62,v65,v66" },
2124     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb_128B, "v62,v65,v66" },
2125     { Hexagon::BI__builtin_HEXAGON_V6_lvsplath, "v62,v65,v66" },
2126     { Hexagon::BI__builtin_HEXAGON_V6_lvsplath_128B, "v62,v65,v66" },
2127     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw, "v60,v62,v65,v66" },
2128     { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw_128B, "v60,v62,v65,v66" },
2129     { Hexagon::BI__builtin_HEXAGON_V6_pred_and, "v60,v62,v65,v66" },
2130     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_128B, "v60,v62,v65,v66" },
2131     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n, "v60,v62,v65,v66" },
2132     { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n_128B, "v60,v62,v65,v66" },
2133     { Hexagon::BI__builtin_HEXAGON_V6_pred_not, "v60,v62,v65,v66" },
2134     { Hexagon::BI__builtin_HEXAGON_V6_pred_not_128B, "v60,v62,v65,v66" },
2135     { Hexagon::BI__builtin_HEXAGON_V6_pred_or, "v60,v62,v65,v66" },
2136     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_128B, "v60,v62,v65,v66" },
2137     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n, "v60,v62,v65,v66" },
2138     { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n_128B, "v60,v62,v65,v66" },
2139     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2, "v60,v62,v65,v66" },
2140     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2_128B, "v60,v62,v65,v66" },
2141     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2, "v62,v65,v66" },
2142     { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2_128B, "v62,v65,v66" },
2143     { Hexagon::BI__builtin_HEXAGON_V6_pred_xor, "v60,v62,v65,v66" },
2144     { Hexagon::BI__builtin_HEXAGON_V6_pred_xor_128B, "v60,v62,v65,v66" },
2145     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh, "v62,v65,v66" },
2146     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh_128B, "v62,v65,v66" },
2147     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw, "v62,v65,v66" },
2148     { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw_128B, "v62,v65,v66" },
2149     { Hexagon::BI__builtin_HEXAGON_V6_vabsb, "v65,v66" },
2150     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_128B, "v65,v66" },
2151     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat, "v65,v66" },
2152     { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat_128B, "v65,v66" },
2153     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh, "v60,v62,v65,v66" },
2154     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh_128B, "v60,v62,v65,v66" },
2155     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub, "v60,v62,v65,v66" },
2156     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub_128B, "v60,v62,v65,v66" },
2157     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh, "v60,v62,v65,v66" },
2158     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh_128B, "v60,v62,v65,v66" },
2159     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw, "v60,v62,v65,v66" },
2160     { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw_128B, "v60,v62,v65,v66" },
2161     { Hexagon::BI__builtin_HEXAGON_V6_vabsh, "v60,v62,v65,v66" },
2162     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_128B, "v60,v62,v65,v66" },
2163     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat, "v60,v62,v65,v66" },
2164     { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat_128B, "v60,v62,v65,v66" },
2165     { Hexagon::BI__builtin_HEXAGON_V6_vabsw, "v60,v62,v65,v66" },
2166     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_128B, "v60,v62,v65,v66" },
2167     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat, "v60,v62,v65,v66" },
2168     { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat_128B, "v60,v62,v65,v66" },
2169     { Hexagon::BI__builtin_HEXAGON_V6_vaddb, "v60,v62,v65,v66" },
2170     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_128B, "v60,v62,v65,v66" },
2171     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv, "v60,v62,v65,v66" },
2172     { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv_128B, "v60,v62,v65,v66" },
2173     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat, "v62,v65,v66" },
2174     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_128B, "v62,v65,v66" },
2175     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv, "v62,v65,v66" },
2176     { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv_128B, "v62,v65,v66" },
2177     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry, "v62,v65,v66" },
2178     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B, "v62,v65,v66" },
2179     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat, "v66" },
2180     { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat_128B, "v66" },
2181     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh, "v62,v65,v66" },
2182     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh_128B, "v62,v65,v66" },
2183     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw, "v62,v65,v66" },
2184     { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw_128B, "v62,v65,v66" },
2185     { Hexagon::BI__builtin_HEXAGON_V6_vaddh, "v60,v62,v65,v66" },
2186     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_128B, "v60,v62,v65,v66" },
2187     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv, "v60,v62,v65,v66" },
2188     { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv_128B, "v60,v62,v65,v66" },
2189     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat, "v60,v62,v65,v66" },
2190     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_128B, "v60,v62,v65,v66" },
2191     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv, "v60,v62,v65,v66" },
2192     { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv_128B, "v60,v62,v65,v66" },
2193     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw, "v60,v62,v65,v66" },
2194     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_128B, "v60,v62,v65,v66" },
2195     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc, "v62,v65,v66" },
2196     { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc_128B, "v62,v65,v66" },
2197     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh, "v60,v62,v65,v66" },
2198     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_128B, "v60,v62,v65,v66" },
2199     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc, "v62,v65,v66" },
2200     { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc_128B, "v62,v65,v66" },
2201     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat, "v60,v62,v65,v66" },
2202     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_128B, "v60,v62,v65,v66" },
2203     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv, "v60,v62,v65,v66" },
2204     { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv_128B, "v60,v62,v65,v66" },
2205     { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat, "v62,v65,v66" },
2206     { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat_128B, "v62,v65,v66" },
2207     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat, "v60,v62,v65,v66" },
2208     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_128B, "v60,v62,v65,v66" },
2209     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv, "v60,v62,v65,v66" },
2210     { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv_128B, "v60,v62,v65,v66" },
2211     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw, "v60,v62,v65,v66" },
2212     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_128B, "v60,v62,v65,v66" },
2213     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc, "v62,v65,v66" },
2214     { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc_128B, "v62,v65,v66" },
2215     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat, "v62,v65,v66" },
2216     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_128B, "v62,v65,v66" },
2217     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv, "v62,v65,v66" },
2218     { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv_128B, "v62,v65,v66" },
2219     { Hexagon::BI__builtin_HEXAGON_V6_vaddw, "v60,v62,v65,v66" },
2220     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_128B, "v60,v62,v65,v66" },
2221     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv, "v60,v62,v65,v66" },
2222     { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv_128B, "v60,v62,v65,v66" },
2223     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat, "v60,v62,v65,v66" },
2224     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_128B, "v60,v62,v65,v66" },
2225     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv, "v60,v62,v65,v66" },
2226     { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv_128B, "v60,v62,v65,v66" },
2227     { Hexagon::BI__builtin_HEXAGON_V6_valignb, "v60,v62,v65,v66" },
2228     { Hexagon::BI__builtin_HEXAGON_V6_valignb_128B, "v60,v62,v65,v66" },
2229     { Hexagon::BI__builtin_HEXAGON_V6_valignbi, "v60,v62,v65,v66" },
2230     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, "v60,v62,v65,v66" },
2231     { Hexagon::BI__builtin_HEXAGON_V6_vand, "v60,v62,v65,v66" },
2232     { Hexagon::BI__builtin_HEXAGON_V6_vand_128B, "v60,v62,v65,v66" },
2233     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt, "v62,v65,v66" },
2234     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_128B, "v62,v65,v66" },
2235     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc, "v62,v65,v66" },
2236     { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc_128B, "v62,v65,v66" },
2237     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt, "v60,v62,v65,v66" },
2238     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_128B, "v60,v62,v65,v66" },
2239     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc, "v60,v62,v65,v66" },
2240     { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc_128B, "v60,v62,v65,v66" },
2241     { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv, "v62,v65,v66" },
2242     { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv_128B, "v62,v65,v66" },
2243     { Hexagon::BI__builtin_HEXAGON_V6_vandvqv, "v62,v65,v66" },
2244     { Hexagon::BI__builtin_HEXAGON_V6_vandvqv_128B, "v62,v65,v66" },
2245     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt, "v60,v62,v65,v66" },
2246     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_128B, "v60,v62,v65,v66" },
2247     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc, "v60,v62,v65,v66" },
2248     { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc_128B, "v60,v62,v65,v66" },
2249     { Hexagon::BI__builtin_HEXAGON_V6_vaslh, "v60,v62,v65,v66" },
2250     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_128B, "v60,v62,v65,v66" },
2251     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc, "v65,v66" },
2252     { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc_128B, "v65,v66" },
2253     { Hexagon::BI__builtin_HEXAGON_V6_vaslhv, "v60,v62,v65,v66" },
2254     { Hexagon::BI__builtin_HEXAGON_V6_vaslhv_128B, "v60,v62,v65,v66" },
2255     { Hexagon::BI__builtin_HEXAGON_V6_vaslw, "v60,v62,v65,v66" },
2256     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_128B, "v60,v62,v65,v66" },
2257     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc, "v60,v62,v65,v66" },
2258     { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc_128B, "v60,v62,v65,v66" },
2259     { Hexagon::BI__builtin_HEXAGON_V6_vaslwv, "v60,v62,v65,v66" },
2260     { Hexagon::BI__builtin_HEXAGON_V6_vaslwv_128B, "v60,v62,v65,v66" },
2261     { Hexagon::BI__builtin_HEXAGON_V6_vasrh, "v60,v62,v65,v66" },
2262     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_128B, "v60,v62,v65,v66" },
2263     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc, "v65,v66" },
2264     { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc_128B, "v65,v66" },
2265     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat, "v60,v62,v65,v66" },
2266     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat_128B, "v60,v62,v65,v66" },
2267     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat, "v62,v65,v66" },
2268     { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat_128B, "v62,v65,v66" },
2269     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat, "v60,v62,v65,v66" },
2270     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat_128B, "v60,v62,v65,v66" },
2271     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat, "v60,v62,v65,v66" },
2272     { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat_128B, "v60,v62,v65,v66" },
2273     { Hexagon::BI__builtin_HEXAGON_V6_vasrhv, "v60,v62,v65,v66" },
2274     { Hexagon::BI__builtin_HEXAGON_V6_vasrhv_128B, "v60,v62,v65,v66" },
2275     { Hexagon::BI__builtin_HEXAGON_V6_vasr_into, "v66" },
2276     { Hexagon::BI__builtin_HEXAGON_V6_vasr_into_128B, "v66" },
2277     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat, "v65,v66" },
2278     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat_128B, "v65,v66" },
2279     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat, "v65,v66" },
2280     { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat_128B, "v65,v66" },
2281     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat, "v62,v65,v66" },
2282     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat_128B, "v62,v65,v66" },
2283     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat, "v65,v66" },
2284     { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat_128B, "v65,v66" },
2285     { Hexagon::BI__builtin_HEXAGON_V6_vasrw, "v60,v62,v65,v66" },
2286     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_128B, "v60,v62,v65,v66" },
2287     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc, "v60,v62,v65,v66" },
2288     { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc_128B, "v60,v62,v65,v66" },
2289     { Hexagon::BI__builtin_HEXAGON_V6_vasrwh, "v60,v62,v65,v66" },
2290     { Hexagon::BI__builtin_HEXAGON_V6_vasrwh_128B, "v60,v62,v65,v66" },
2291     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat, "v60,v62,v65,v66" },
2292     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat_128B, "v60,v62,v65,v66" },
2293     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat, "v60,v62,v65,v66" },
2294     { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat_128B, "v60,v62,v65,v66" },
2295     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat, "v62,v65,v66" },
2296     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat_128B, "v62,v65,v66" },
2297     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat, "v60,v62,v65,v66" },
2298     { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat_128B, "v60,v62,v65,v66" },
2299     { Hexagon::BI__builtin_HEXAGON_V6_vasrwv, "v60,v62,v65,v66" },
2300     { Hexagon::BI__builtin_HEXAGON_V6_vasrwv_128B, "v60,v62,v65,v66" },
2301     { Hexagon::BI__builtin_HEXAGON_V6_vassign, "v60,v62,v65,v66" },
2302     { Hexagon::BI__builtin_HEXAGON_V6_vassign_128B, "v60,v62,v65,v66" },
2303     { Hexagon::BI__builtin_HEXAGON_V6_vassignp, "v60,v62,v65,v66" },
2304     { Hexagon::BI__builtin_HEXAGON_V6_vassignp_128B, "v60,v62,v65,v66" },
2305     { Hexagon::BI__builtin_HEXAGON_V6_vavgb, "v65,v66" },
2306     { Hexagon::BI__builtin_HEXAGON_V6_vavgb_128B, "v65,v66" },
2307     { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd, "v65,v66" },
2308     { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd_128B, "v65,v66" },
2309     { Hexagon::BI__builtin_HEXAGON_V6_vavgh, "v60,v62,v65,v66" },
2310     { Hexagon::BI__builtin_HEXAGON_V6_vavgh_128B, "v60,v62,v65,v66" },
2311     { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd, "v60,v62,v65,v66" },
2312     { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd_128B, "v60,v62,v65,v66" },
2313     { Hexagon::BI__builtin_HEXAGON_V6_vavgub, "v60,v62,v65,v66" },
2314     { Hexagon::BI__builtin_HEXAGON_V6_vavgub_128B, "v60,v62,v65,v66" },
2315     { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd, "v60,v62,v65,v66" },
2316     { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd_128B, "v60,v62,v65,v66" },
2317     { Hexagon::BI__builtin_HEXAGON_V6_vavguh, "v60,v62,v65,v66" },
2318     { Hexagon::BI__builtin_HEXAGON_V6_vavguh_128B, "v60,v62,v65,v66" },
2319     { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd, "v60,v62,v65,v66" },
2320     { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd_128B, "v60,v62,v65,v66" },
2321     { Hexagon::BI__builtin_HEXAGON_V6_vavguw, "v65,v66" },
2322     { Hexagon::BI__builtin_HEXAGON_V6_vavguw_128B, "v65,v66" },
2323     { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd, "v65,v66" },
2324     { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd_128B, "v65,v66" },
2325     { Hexagon::BI__builtin_HEXAGON_V6_vavgw, "v60,v62,v65,v66" },
2326     { Hexagon::BI__builtin_HEXAGON_V6_vavgw_128B, "v60,v62,v65,v66" },
2327     { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd, "v60,v62,v65,v66" },
2328     { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd_128B, "v60,v62,v65,v66" },
2329     { Hexagon::BI__builtin_HEXAGON_V6_vcl0h, "v60,v62,v65,v66" },
2330     { Hexagon::BI__builtin_HEXAGON_V6_vcl0h_128B, "v60,v62,v65,v66" },
2331     { Hexagon::BI__builtin_HEXAGON_V6_vcl0w, "v60,v62,v65,v66" },
2332     { Hexagon::BI__builtin_HEXAGON_V6_vcl0w_128B, "v60,v62,v65,v66" },
2333     { Hexagon::BI__builtin_HEXAGON_V6_vcombine, "v60,v62,v65,v66" },
2334     { Hexagon::BI__builtin_HEXAGON_V6_vcombine_128B, "v60,v62,v65,v66" },
2335     { Hexagon::BI__builtin_HEXAGON_V6_vd0, "v60,v62,v65,v66" },
2336     { Hexagon::BI__builtin_HEXAGON_V6_vd0_128B, "v60,v62,v65,v66" },
2337     { Hexagon::BI__builtin_HEXAGON_V6_vdd0, "v65,v66" },
2338     { Hexagon::BI__builtin_HEXAGON_V6_vdd0_128B, "v65,v66" },
2339     { Hexagon::BI__builtin_HEXAGON_V6_vdealb, "v60,v62,v65,v66" },
2340     { Hexagon::BI__builtin_HEXAGON_V6_vdealb_128B, "v60,v62,v65,v66" },
2341     { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w, "v60,v62,v65,v66" },
2342     { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w_128B, "v60,v62,v65,v66" },
2343     { Hexagon::BI__builtin_HEXAGON_V6_vdealh, "v60,v62,v65,v66" },
2344     { Hexagon::BI__builtin_HEXAGON_V6_vdealh_128B, "v60,v62,v65,v66" },
2345     { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd, "v60,v62,v65,v66" },
2346     { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd_128B, "v60,v62,v65,v66" },
2347     { Hexagon::BI__builtin_HEXAGON_V6_vdelta, "v60,v62,v65,v66" },
2348     { Hexagon::BI__builtin_HEXAGON_V6_vdelta_128B, "v60,v62,v65,v66" },
2349     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus, "v60,v62,v65,v66" },
2350     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_128B, "v60,v62,v65,v66" },
2351     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc, "v60,v62,v65,v66" },
2352     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc_128B, "v60,v62,v65,v66" },
2353     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv, "v60,v62,v65,v66" },
2354     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_128B, "v60,v62,v65,v66" },
2355     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc, "v60,v62,v65,v66" },
2356     { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc_128B, "v60,v62,v65,v66" },
2357     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb, "v60,v62,v65,v66" },
2358     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_128B, "v60,v62,v65,v66" },
2359     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc, "v60,v62,v65,v66" },
2360     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc_128B, "v60,v62,v65,v66" },
2361     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv, "v60,v62,v65,v66" },
2362     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_128B, "v60,v62,v65,v66" },
2363     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc, "v60,v62,v65,v66" },
2364     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc_128B, "v60,v62,v65,v66" },
2365     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat, "v60,v62,v65,v66" },
2366     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_128B, "v60,v62,v65,v66" },
2367     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc, "v60,v62,v65,v66" },
2368     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc_128B, "v60,v62,v65,v66" },
2369     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat, "v60,v62,v65,v66" },
2370     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_128B, "v60,v62,v65,v66" },
2371     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc, "v60,v62,v65,v66" },
2372     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc_128B, "v60,v62,v65,v66" },
2373     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat, "v60,v62,v65,v66" },
2374     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_128B, "v60,v62,v65,v66" },
2375     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc, "v60,v62,v65,v66" },
2376     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc_128B, "v60,v62,v65,v66" },
2377     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat, "v60,v62,v65,v66" },
2378     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_128B, "v60,v62,v65,v66" },
2379     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc, "v60,v62,v65,v66" },
2380     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc_128B, "v60,v62,v65,v66" },
2381     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat, "v60,v62,v65,v66" },
2382     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_128B, "v60,v62,v65,v66" },
2383     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc, "v60,v62,v65,v66" },
2384     { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc_128B, "v60,v62,v65,v66" },
2385     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh, "v60,v62,v65,v66" },
2386     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_128B, "v60,v62,v65,v66" },
2387     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc, "v60,v62,v65,v66" },
2388     { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc_128B, "v60,v62,v65,v66" },
2389     { Hexagon::BI__builtin_HEXAGON_V6_veqb, "v60,v62,v65,v66" },
2390     { Hexagon::BI__builtin_HEXAGON_V6_veqb_128B, "v60,v62,v65,v66" },
2391     { Hexagon::BI__builtin_HEXAGON_V6_veqb_and, "v60,v62,v65,v66" },
2392     { Hexagon::BI__builtin_HEXAGON_V6_veqb_and_128B, "v60,v62,v65,v66" },
2393     { Hexagon::BI__builtin_HEXAGON_V6_veqb_or, "v60,v62,v65,v66" },
2394     { Hexagon::BI__builtin_HEXAGON_V6_veqb_or_128B, "v60,v62,v65,v66" },
2395     { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor, "v60,v62,v65,v66" },
2396     { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor_128B, "v60,v62,v65,v66" },
2397     { Hexagon::BI__builtin_HEXAGON_V6_veqh, "v60,v62,v65,v66" },
2398     { Hexagon::BI__builtin_HEXAGON_V6_veqh_128B, "v60,v62,v65,v66" },
2399     { Hexagon::BI__builtin_HEXAGON_V6_veqh_and, "v60,v62,v65,v66" },
2400     { Hexagon::BI__builtin_HEXAGON_V6_veqh_and_128B, "v60,v62,v65,v66" },
2401     { Hexagon::BI__builtin_HEXAGON_V6_veqh_or, "v60,v62,v65,v66" },
2402     { Hexagon::BI__builtin_HEXAGON_V6_veqh_or_128B, "v60,v62,v65,v66" },
2403     { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor, "v60,v62,v65,v66" },
2404     { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor_128B, "v60,v62,v65,v66" },
2405     { Hexagon::BI__builtin_HEXAGON_V6_veqw, "v60,v62,v65,v66" },
2406     { Hexagon::BI__builtin_HEXAGON_V6_veqw_128B, "v60,v62,v65,v66" },
2407     { Hexagon::BI__builtin_HEXAGON_V6_veqw_and, "v60,v62,v65,v66" },
2408     { Hexagon::BI__builtin_HEXAGON_V6_veqw_and_128B, "v60,v62,v65,v66" },
2409     { Hexagon::BI__builtin_HEXAGON_V6_veqw_or, "v60,v62,v65,v66" },
2410     { Hexagon::BI__builtin_HEXAGON_V6_veqw_or_128B, "v60,v62,v65,v66" },
2411     { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor, "v60,v62,v65,v66" },
2412     { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor_128B, "v60,v62,v65,v66" },
2413     { Hexagon::BI__builtin_HEXAGON_V6_vgtb, "v60,v62,v65,v66" },
2414     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_128B, "v60,v62,v65,v66" },
2415     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and, "v60,v62,v65,v66" },
2416     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and_128B, "v60,v62,v65,v66" },
2417     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or, "v60,v62,v65,v66" },
2418     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or_128B, "v60,v62,v65,v66" },
2419     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor, "v60,v62,v65,v66" },
2420     { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor_128B, "v60,v62,v65,v66" },
2421     { Hexagon::BI__builtin_HEXAGON_V6_vgth, "v60,v62,v65,v66" },
2422     { Hexagon::BI__builtin_HEXAGON_V6_vgth_128B, "v60,v62,v65,v66" },
2423     { Hexagon::BI__builtin_HEXAGON_V6_vgth_and, "v60,v62,v65,v66" },
2424     { Hexagon::BI__builtin_HEXAGON_V6_vgth_and_128B, "v60,v62,v65,v66" },
2425     { Hexagon::BI__builtin_HEXAGON_V6_vgth_or, "v60,v62,v65,v66" },
2426     { Hexagon::BI__builtin_HEXAGON_V6_vgth_or_128B, "v60,v62,v65,v66" },
2427     { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor, "v60,v62,v65,v66" },
2428     { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor_128B, "v60,v62,v65,v66" },
2429     { Hexagon::BI__builtin_HEXAGON_V6_vgtub, "v60,v62,v65,v66" },
2430     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_128B, "v60,v62,v65,v66" },
2431     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and, "v60,v62,v65,v66" },
2432     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and_128B, "v60,v62,v65,v66" },
2433     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or, "v60,v62,v65,v66" },
2434     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or_128B, "v60,v62,v65,v66" },
2435     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor, "v60,v62,v65,v66" },
2436     { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor_128B, "v60,v62,v65,v66" },
2437     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh, "v60,v62,v65,v66" },
2438     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_128B, "v60,v62,v65,v66" },
2439     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and, "v60,v62,v65,v66" },
2440     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and_128B, "v60,v62,v65,v66" },
2441     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or, "v60,v62,v65,v66" },
2442     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or_128B, "v60,v62,v65,v66" },
2443     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor, "v60,v62,v65,v66" },
2444     { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor_128B, "v60,v62,v65,v66" },
2445     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw, "v60,v62,v65,v66" },
2446     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_128B, "v60,v62,v65,v66" },
2447     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and, "v60,v62,v65,v66" },
2448     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and_128B, "v60,v62,v65,v66" },
2449     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or, "v60,v62,v65,v66" },
2450     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or_128B, "v60,v62,v65,v66" },
2451     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor, "v60,v62,v65,v66" },
2452     { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor_128B, "v60,v62,v65,v66" },
2453     { Hexagon::BI__builtin_HEXAGON_V6_vgtw, "v60,v62,v65,v66" },
2454     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_128B, "v60,v62,v65,v66" },
2455     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and, "v60,v62,v65,v66" },
2456     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and_128B, "v60,v62,v65,v66" },
2457     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or, "v60,v62,v65,v66" },
2458     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or_128B, "v60,v62,v65,v66" },
2459     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor, "v60,v62,v65,v66" },
2460     { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor_128B, "v60,v62,v65,v66" },
2461     { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr, "v60,v62,v65,v66" },
2462     { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr_128B, "v60,v62,v65,v66" },
2463     { Hexagon::BI__builtin_HEXAGON_V6_vlalignb, "v60,v62,v65,v66" },
2464     { Hexagon::BI__builtin_HEXAGON_V6_vlalignb_128B, "v60,v62,v65,v66" },
2465     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, "v60,v62,v65,v66" },
2466     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, "v60,v62,v65,v66" },
2467     { Hexagon::BI__builtin_HEXAGON_V6_vlsrb, "v62,v65,v66" },
2468     { Hexagon::BI__builtin_HEXAGON_V6_vlsrb_128B, "v62,v65,v66" },
2469     { Hexagon::BI__builtin_HEXAGON_V6_vlsrh, "v60,v62,v65,v66" },
2470     { Hexagon::BI__builtin_HEXAGON_V6_vlsrh_128B, "v60,v62,v65,v66" },
2471     { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv, "v60,v62,v65,v66" },
2472     { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv_128B, "v60,v62,v65,v66" },
2473     { Hexagon::BI__builtin_HEXAGON_V6_vlsrw, "v60,v62,v65,v66" },
2474     { Hexagon::BI__builtin_HEXAGON_V6_vlsrw_128B, "v60,v62,v65,v66" },
2475     { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv, "v60,v62,v65,v66" },
2476     { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv_128B, "v60,v62,v65,v66" },
2477     { Hexagon::BI__builtin_HEXAGON_V6_vlut4, "v65,v66" },
2478     { Hexagon::BI__builtin_HEXAGON_V6_vlut4_128B, "v65,v66" },
2479     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb, "v60,v62,v65,v66" },
2480     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_128B, "v60,v62,v65,v66" },
2481     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi, "v62,v65,v66" },
2482     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B, "v62,v65,v66" },
2483     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm, "v62,v65,v66" },
2484     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm_128B, "v62,v65,v66" },
2485     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc, "v60,v62,v65,v66" },
2486     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc_128B, "v60,v62,v65,v66" },
2487     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, "v62,v65,v66" },
2488     { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B, "v62,v65,v66" },
2489     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh, "v60,v62,v65,v66" },
2490     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_128B, "v60,v62,v65,v66" },
2491     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi, "v62,v65,v66" },
2492     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B, "v62,v65,v66" },
2493     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm, "v62,v65,v66" },
2494     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm_128B, "v62,v65,v66" },
2495     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc, "v60,v62,v65,v66" },
2496     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc_128B, "v60,v62,v65,v66" },
2497     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, "v62,v65,v66" },
2498     { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B, "v62,v65,v66" },
2499     { Hexagon::BI__builtin_HEXAGON_V6_vmaxb, "v62,v65,v66" },
2500     { Hexagon::BI__builtin_HEXAGON_V6_vmaxb_128B, "v62,v65,v66" },
2501     { Hexagon::BI__builtin_HEXAGON_V6_vmaxh, "v60,v62,v65,v66" },
2502     { Hexagon::BI__builtin_HEXAGON_V6_vmaxh_128B, "v60,v62,v65,v66" },
2503     { Hexagon::BI__builtin_HEXAGON_V6_vmaxub, "v60,v62,v65,v66" },
2504     { Hexagon::BI__builtin_HEXAGON_V6_vmaxub_128B, "v60,v62,v65,v66" },
2505     { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh, "v60,v62,v65,v66" },
2506     { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh_128B, "v60,v62,v65,v66" },
2507     { Hexagon::BI__builtin_HEXAGON_V6_vmaxw, "v60,v62,v65,v66" },
2508     { Hexagon::BI__builtin_HEXAGON_V6_vmaxw_128B, "v60,v62,v65,v66" },
2509     { Hexagon::BI__builtin_HEXAGON_V6_vminb, "v62,v65,v66" },
2510     { Hexagon::BI__builtin_HEXAGON_V6_vminb_128B, "v62,v65,v66" },
2511     { Hexagon::BI__builtin_HEXAGON_V6_vminh, "v60,v62,v65,v66" },
2512     { Hexagon::BI__builtin_HEXAGON_V6_vminh_128B, "v60,v62,v65,v66" },
2513     { Hexagon::BI__builtin_HEXAGON_V6_vminub, "v60,v62,v65,v66" },
2514     { Hexagon::BI__builtin_HEXAGON_V6_vminub_128B, "v60,v62,v65,v66" },
2515     { Hexagon::BI__builtin_HEXAGON_V6_vminuh, "v60,v62,v65,v66" },
2516     { Hexagon::BI__builtin_HEXAGON_V6_vminuh_128B, "v60,v62,v65,v66" },
2517     { Hexagon::BI__builtin_HEXAGON_V6_vminw, "v60,v62,v65,v66" },
2518     { Hexagon::BI__builtin_HEXAGON_V6_vminw_128B, "v60,v62,v65,v66" },
2519     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus, "v60,v62,v65,v66" },
2520     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_128B, "v60,v62,v65,v66" },
2521     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc, "v60,v62,v65,v66" },
2522     { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc_128B, "v60,v62,v65,v66" },
2523     { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv, "v60,v62,v65,v66" },
2524     { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv_128B, "v60,v62,v65,v66" },
2525     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu, "v65,v66" },
2526     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_128B, "v65,v66" },
2527     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc, "v65,v66" },
2528     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc_128B, "v65,v66" },
2529     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv, "v60,v62,v65,v66" },
2530     { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv_128B, "v60,v62,v65,v66" },
2531     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb, "v60,v62,v65,v66" },
2532     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_128B, "v60,v62,v65,v66" },
2533     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc, "v60,v62,v65,v66" },
2534     { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc_128B, "v60,v62,v65,v66" },
2535     { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat, "v65,v66" },
2536     { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat_128B, "v65,v66" },
2537     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb, "v62,v65,v66" },
2538     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_128B, "v62,v65,v66" },
2539     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc, "v62,v65,v66" },
2540     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc_128B, "v62,v65,v66" },
2541     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat, "v65,v66" },
2542     { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat_128B, "v65,v66" },
2543     { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat, "v65,v66" },
2544     { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat_128B, "v65,v66" },
2545     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus, "v60,v62,v65,v66" },
2546     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_128B, "v60,v62,v65,v66" },
2547     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc, "v60,v62,v65,v66" },
2548     { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc_128B, "v60,v62,v65,v66" },
2549     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv, "v60,v62,v65,v66" },
2550     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_128B, "v60,v62,v65,v66" },
2551     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc, "v60,v62,v65,v66" },
2552     { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc_128B, "v60,v62,v65,v66" },
2553     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv, "v60,v62,v65,v66" },
2554     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_128B, "v60,v62,v65,v66" },
2555     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc, "v60,v62,v65,v66" },
2556     { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc_128B, "v60,v62,v65,v66" },
2557     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh, "v60,v62,v65,v66" },
2558     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_128B, "v60,v62,v65,v66" },
2559     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64, "v62,v65,v66" },
2560     { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64_128B, "v62,v65,v66" },
2561     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh, "v60,v62,v65,v66" },
2562     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_128B, "v60,v62,v65,v66" },
2563     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc, "v65,v66" },
2564     { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc_128B, "v65,v66" },
2565     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc, "v60,v62,v65,v66" },
2566     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc_128B, "v60,v62,v65,v66" },
2567     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs, "v60,v62,v65,v66" },
2568     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs_128B, "v60,v62,v65,v66" },
2569     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss, "v60,v62,v65,v66" },
2570     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss_128B, "v60,v62,v65,v66" },
2571     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus, "v60,v62,v65,v66" },
2572     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_128B, "v60,v62,v65,v66" },
2573     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc, "v60,v62,v65,v66" },
2574     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc_128B, "v60,v62,v65,v66" },
2575     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv, "v60,v62,v65,v66" },
2576     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_128B, "v60,v62,v65,v66" },
2577     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc, "v60,v62,v65,v66" },
2578     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc_128B, "v60,v62,v65,v66" },
2579     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs, "v60,v62,v65,v66" },
2580     { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs_128B, "v60,v62,v65,v66" },
2581     { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh, "v60,v62,v65,v66" },
2582     { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh_128B, "v60,v62,v65,v66" },
2583     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc, "v60,v62,v65,v66" },
2584     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc_128B, "v60,v62,v65,v66" },
2585     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh, "v60,v62,v65,v66" },
2586     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_128B, "v60,v62,v65,v66" },
2587     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc, "v60,v62,v65,v66" },
2588     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc_128B, "v60,v62,v65,v66" },
2589     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih, "v60,v62,v65,v66" },
2590     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_128B, "v60,v62,v65,v66" },
2591     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc, "v60,v62,v65,v66" },
2592     { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc_128B, "v60,v62,v65,v66" },
2593     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb, "v60,v62,v65,v66" },
2594     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_128B, "v60,v62,v65,v66" },
2595     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc, "v60,v62,v65,v66" },
2596     { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc_128B, "v60,v62,v65,v66" },
2597     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh, "v60,v62,v65,v66" },
2598     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh_128B, "v60,v62,v65,v66" },
2599     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb, "v60,v62,v65,v66" },
2600     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_128B, "v60,v62,v65,v66" },
2601     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc, "v60,v62,v65,v66" },
2602     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc_128B, "v60,v62,v65,v66" },
2603     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh, "v60,v62,v65,v66" },
2604     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_128B, "v60,v62,v65,v66" },
2605     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc, "v60,v62,v65,v66" },
2606     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc_128B, "v60,v62,v65,v66" },
2607     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub, "v62,v65,v66" },
2608     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_128B, "v62,v65,v66" },
2609     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc, "v62,v65,v66" },
2610     { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc_128B, "v62,v65,v66" },
2611     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh, "v60,v62,v65,v66" },
2612     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_128B, "v60,v62,v65,v66" },
2613     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc, "v62,v65,v66" },
2614     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc_128B, "v62,v65,v66" },
2615     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd, "v60,v62,v65,v66" },
2616     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_128B, "v60,v62,v65,v66" },
2617     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc, "v60,v62,v65,v66" },
2618     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc_128B, "v60,v62,v65,v66" },
2619     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc, "v60,v62,v65,v66" },
2620     { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc_128B, "v60,v62,v65,v66" },
2621     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub, "v60,v62,v65,v66" },
2622     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_128B, "v60,v62,v65,v66" },
2623     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc, "v60,v62,v65,v66" },
2624     { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc_128B, "v60,v62,v65,v66" },
2625     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv, "v60,v62,v65,v66" },
2626     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_128B, "v60,v62,v65,v66" },
2627     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc, "v60,v62,v65,v66" },
2628     { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc_128B, "v60,v62,v65,v66" },
2629     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh, "v60,v62,v65,v66" },
2630     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_128B, "v60,v62,v65,v66" },
2631     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc, "v60,v62,v65,v66" },
2632     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc_128B, "v60,v62,v65,v66" },
2633     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe, "v65,v66" },
2634     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_128B, "v65,v66" },
2635     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc, "v65,v66" },
2636     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc_128B, "v65,v66" },
2637     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv, "v60,v62,v65,v66" },
2638     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_128B, "v60,v62,v65,v66" },
2639     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc, "v60,v62,v65,v66" },
2640     { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc_128B, "v60,v62,v65,v66" },
2641     { Hexagon::BI__builtin_HEXAGON_V6_vmux, "v60,v62,v65,v66" },
2642     { Hexagon::BI__builtin_HEXAGON_V6_vmux_128B, "v60,v62,v65,v66" },
2643     { Hexagon::BI__builtin_HEXAGON_V6_vnavgb, "v65,v66" },
2644     { Hexagon::BI__builtin_HEXAGON_V6_vnavgb_128B, "v65,v66" },
2645     { Hexagon::BI__builtin_HEXAGON_V6_vnavgh, "v60,v62,v65,v66" },
2646     { Hexagon::BI__builtin_HEXAGON_V6_vnavgh_128B, "v60,v62,v65,v66" },
2647     { Hexagon::BI__builtin_HEXAGON_V6_vnavgub, "v60,v62,v65,v66" },
2648     { Hexagon::BI__builtin_HEXAGON_V6_vnavgub_128B, "v60,v62,v65,v66" },
2649     { Hexagon::BI__builtin_HEXAGON_V6_vnavgw, "v60,v62,v65,v66" },
2650     { Hexagon::BI__builtin_HEXAGON_V6_vnavgw_128B, "v60,v62,v65,v66" },
2651     { Hexagon::BI__builtin_HEXAGON_V6_vnormamth, "v60,v62,v65,v66" },
2652     { Hexagon::BI__builtin_HEXAGON_V6_vnormamth_128B, "v60,v62,v65,v66" },
2653     { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw, "v60,v62,v65,v66" },
2654     { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw_128B, "v60,v62,v65,v66" },
2655     { Hexagon::BI__builtin_HEXAGON_V6_vnot, "v60,v62,v65,v66" },
2656     { Hexagon::BI__builtin_HEXAGON_V6_vnot_128B, "v60,v62,v65,v66" },
2657     { Hexagon::BI__builtin_HEXAGON_V6_vor, "v60,v62,v65,v66" },
2658     { Hexagon::BI__builtin_HEXAGON_V6_vor_128B, "v60,v62,v65,v66" },
2659     { Hexagon::BI__builtin_HEXAGON_V6_vpackeb, "v60,v62,v65,v66" },
2660     { Hexagon::BI__builtin_HEXAGON_V6_vpackeb_128B, "v60,v62,v65,v66" },
2661     { Hexagon::BI__builtin_HEXAGON_V6_vpackeh, "v60,v62,v65,v66" },
2662     { Hexagon::BI__builtin_HEXAGON_V6_vpackeh_128B, "v60,v62,v65,v66" },
2663     { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat, "v60,v62,v65,v66" },
2664     { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat_128B, "v60,v62,v65,v66" },
2665     { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat, "v60,v62,v65,v66" },
2666     { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat_128B, "v60,v62,v65,v66" },
2667     { Hexagon::BI__builtin_HEXAGON_V6_vpackob, "v60,v62,v65,v66" },
2668     { Hexagon::BI__builtin_HEXAGON_V6_vpackob_128B, "v60,v62,v65,v66" },
2669     { Hexagon::BI__builtin_HEXAGON_V6_vpackoh, "v60,v62,v65,v66" },
2670     { Hexagon::BI__builtin_HEXAGON_V6_vpackoh_128B, "v60,v62,v65,v66" },
2671     { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat, "v60,v62,v65,v66" },
2672     { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat_128B, "v60,v62,v65,v66" },
2673     { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat, "v60,v62,v65,v66" },
2674     { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat_128B, "v60,v62,v65,v66" },
2675     { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth, "v60,v62,v65,v66" },
2676     { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth_128B, "v60,v62,v65,v66" },
2677     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb, "v65,v66" },
2678     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb_128B, "v65,v66" },
2679     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh, "v65,v66" },
2680     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh_128B, "v65,v66" },
2681     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw, "v65,v66" },
2682     { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw_128B, "v65,v66" },
2683     { Hexagon::BI__builtin_HEXAGON_V6_vrdelta, "v60,v62,v65,v66" },
2684     { Hexagon::BI__builtin_HEXAGON_V6_vrdelta_128B, "v60,v62,v65,v66" },
2685     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt, "v65" },
2686     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_128B, "v65" },
2687     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc, "v65" },
2688     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc_128B, "v65" },
2689     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus, "v60,v62,v65,v66" },
2690     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_128B, "v60,v62,v65,v66" },
2691     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc, "v60,v62,v65,v66" },
2692     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc_128B, "v60,v62,v65,v66" },
2693     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, "v60,v62,v65,v66" },
2694     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, "v60,v62,v65,v66" },
2695     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, "v60,v62,v65,v66" },
2696     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, "v60,v62,v65,v66" },
2697     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv, "v60,v62,v65,v66" },
2698     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_128B, "v60,v62,v65,v66" },
2699     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc, "v60,v62,v65,v66" },
2700     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc_128B, "v60,v62,v65,v66" },
2701     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv, "v60,v62,v65,v66" },
2702     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_128B, "v60,v62,v65,v66" },
2703     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc, "v60,v62,v65,v66" },
2704     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc_128B, "v60,v62,v65,v66" },
2705     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub, "v60,v62,v65,v66" },
2706     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_128B, "v60,v62,v65,v66" },
2707     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc, "v60,v62,v65,v66" },
2708     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc_128B, "v60,v62,v65,v66" },
2709     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, "v60,v62,v65,v66" },
2710     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, "v60,v62,v65,v66" },
2711     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, "v60,v62,v65,v66" },
2712     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, "v60,v62,v65,v66" },
2713     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt, "v65" },
2714     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_128B, "v65" },
2715     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc, "v65" },
2716     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc_128B, "v65" },
2717     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv, "v60,v62,v65,v66" },
2718     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_128B, "v60,v62,v65,v66" },
2719     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc, "v60,v62,v65,v66" },
2720     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc_128B, "v60,v62,v65,v66" },
2721     { Hexagon::BI__builtin_HEXAGON_V6_vror, "v60,v62,v65,v66" },
2722     { Hexagon::BI__builtin_HEXAGON_V6_vror_128B, "v60,v62,v65,v66" },
2723     { Hexagon::BI__builtin_HEXAGON_V6_vrotr, "v66" },
2724     { Hexagon::BI__builtin_HEXAGON_V6_vrotr_128B, "v66" },
2725     { Hexagon::BI__builtin_HEXAGON_V6_vroundhb, "v60,v62,v65,v66" },
2726     { Hexagon::BI__builtin_HEXAGON_V6_vroundhb_128B, "v60,v62,v65,v66" },
2727     { Hexagon::BI__builtin_HEXAGON_V6_vroundhub, "v60,v62,v65,v66" },
2728     { Hexagon::BI__builtin_HEXAGON_V6_vroundhub_128B, "v60,v62,v65,v66" },
2729     { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub, "v62,v65,v66" },
2730     { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub_128B, "v62,v65,v66" },
2731     { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh, "v62,v65,v66" },
2732     { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh_128B, "v62,v65,v66" },
2733     { Hexagon::BI__builtin_HEXAGON_V6_vroundwh, "v60,v62,v65,v66" },
2734     { Hexagon::BI__builtin_HEXAGON_V6_vroundwh_128B, "v60,v62,v65,v66" },
2735     { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh, "v60,v62,v65,v66" },
2736     { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh_128B, "v60,v62,v65,v66" },
2737     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, "v60,v62,v65,v66" },
2738     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, "v60,v62,v65,v66" },
2739     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, "v60,v62,v65,v66" },
2740     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, "v60,v62,v65,v66" },
2741     { Hexagon::BI__builtin_HEXAGON_V6_vsatdw, "v66" },
2742     { Hexagon::BI__builtin_HEXAGON_V6_vsatdw_128B, "v66" },
2743     { Hexagon::BI__builtin_HEXAGON_V6_vsathub, "v60,v62,v65,v66" },
2744     { Hexagon::BI__builtin_HEXAGON_V6_vsathub_128B, "v60,v62,v65,v66" },
2745     { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh, "v62,v65,v66" },
2746     { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh_128B, "v62,v65,v66" },
2747     { Hexagon::BI__builtin_HEXAGON_V6_vsatwh, "v60,v62,v65,v66" },
2748     { Hexagon::BI__builtin_HEXAGON_V6_vsatwh_128B, "v60,v62,v65,v66" },
2749     { Hexagon::BI__builtin_HEXAGON_V6_vsb, "v60,v62,v65,v66" },
2750     { Hexagon::BI__builtin_HEXAGON_V6_vsb_128B, "v60,v62,v65,v66" },
2751     { Hexagon::BI__builtin_HEXAGON_V6_vsh, "v60,v62,v65,v66" },
2752     { Hexagon::BI__builtin_HEXAGON_V6_vsh_128B, "v60,v62,v65,v66" },
2753     { Hexagon::BI__builtin_HEXAGON_V6_vshufeh, "v60,v62,v65,v66" },
2754     { Hexagon::BI__builtin_HEXAGON_V6_vshufeh_128B, "v60,v62,v65,v66" },
2755     { Hexagon::BI__builtin_HEXAGON_V6_vshuffb, "v60,v62,v65,v66" },
2756     { Hexagon::BI__builtin_HEXAGON_V6_vshuffb_128B, "v60,v62,v65,v66" },
2757     { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb, "v60,v62,v65,v66" },
2758     { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb_128B, "v60,v62,v65,v66" },
2759     { Hexagon::BI__builtin_HEXAGON_V6_vshuffh, "v60,v62,v65,v66" },
2760     { Hexagon::BI__builtin_HEXAGON_V6_vshuffh_128B, "v60,v62,v65,v66" },
2761     { Hexagon::BI__builtin_HEXAGON_V6_vshuffob, "v60,v62,v65,v66" },
2762     { Hexagon::BI__builtin_HEXAGON_V6_vshuffob_128B, "v60,v62,v65,v66" },
2763     { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd, "v60,v62,v65,v66" },
2764     { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd_128B, "v60,v62,v65,v66" },
2765     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb, "v60,v62,v65,v66" },
2766     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb_128B, "v60,v62,v65,v66" },
2767     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh, "v60,v62,v65,v66" },
2768     { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh_128B, "v60,v62,v65,v66" },
2769     { Hexagon::BI__builtin_HEXAGON_V6_vshufoh, "v60,v62,v65,v66" },
2770     { Hexagon::BI__builtin_HEXAGON_V6_vshufoh_128B, "v60,v62,v65,v66" },
2771     { Hexagon::BI__builtin_HEXAGON_V6_vsubb, "v60,v62,v65,v66" },
2772     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_128B, "v60,v62,v65,v66" },
2773     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv, "v60,v62,v65,v66" },
2774     { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv_128B, "v60,v62,v65,v66" },
2775     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat, "v62,v65,v66" },
2776     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_128B, "v62,v65,v66" },
2777     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv, "v62,v65,v66" },
2778     { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv_128B, "v62,v65,v66" },
2779     { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry, "v62,v65,v66" },
2780     { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B, "v62,v65,v66" },
2781     { Hexagon::BI__builtin_HEXAGON_V6_vsubh, "v60,v62,v65,v66" },
2782     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_128B, "v60,v62,v65,v66" },
2783     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv, "v60,v62,v65,v66" },
2784     { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv_128B, "v60,v62,v65,v66" },
2785     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat, "v60,v62,v65,v66" },
2786     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_128B, "v60,v62,v65,v66" },
2787     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv, "v60,v62,v65,v66" },
2788     { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv_128B, "v60,v62,v65,v66" },
2789     { Hexagon::BI__builtin_HEXAGON_V6_vsubhw, "v60,v62,v65,v66" },
2790     { Hexagon::BI__builtin_HEXAGON_V6_vsubhw_128B, "v60,v62,v65,v66" },
2791     { Hexagon::BI__builtin_HEXAGON_V6_vsububh, "v60,v62,v65,v66" },
2792     { Hexagon::BI__builtin_HEXAGON_V6_vsububh_128B, "v60,v62,v65,v66" },
2793     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat, "v60,v62,v65,v66" },
2794     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_128B, "v60,v62,v65,v66" },
2795     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv, "v60,v62,v65,v66" },
2796     { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv_128B, "v60,v62,v65,v66" },
2797     { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat, "v62,v65,v66" },
2798     { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat_128B, "v62,v65,v66" },
2799     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat, "v60,v62,v65,v66" },
2800     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_128B, "v60,v62,v65,v66" },
2801     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv, "v60,v62,v65,v66" },
2802     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv_128B, "v60,v62,v65,v66" },
2803     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw, "v60,v62,v65,v66" },
2804     { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw_128B, "v60,v62,v65,v66" },
2805     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat, "v62,v65,v66" },
2806     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_128B, "v62,v65,v66" },
2807     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv, "v62,v65,v66" },
2808     { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv_128B, "v62,v65,v66" },
2809     { Hexagon::BI__builtin_HEXAGON_V6_vsubw, "v60,v62,v65,v66" },
2810     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_128B, "v60,v62,v65,v66" },
2811     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv, "v60,v62,v65,v66" },
2812     { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv_128B, "v60,v62,v65,v66" },
2813     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat, "v60,v62,v65,v66" },
2814     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_128B, "v60,v62,v65,v66" },
2815     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv, "v60,v62,v65,v66" },
2816     { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv_128B, "v60,v62,v65,v66" },
2817     { Hexagon::BI__builtin_HEXAGON_V6_vswap, "v60,v62,v65,v66" },
2818     { Hexagon::BI__builtin_HEXAGON_V6_vswap_128B, "v60,v62,v65,v66" },
2819     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb, "v60,v62,v65,v66" },
2820     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_128B, "v60,v62,v65,v66" },
2821     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc, "v60,v62,v65,v66" },
2822     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc_128B, "v60,v62,v65,v66" },
2823     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus, "v60,v62,v65,v66" },
2824     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_128B, "v60,v62,v65,v66" },
2825     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc, "v60,v62,v65,v66" },
2826     { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc_128B, "v60,v62,v65,v66" },
2827     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb, "v60,v62,v65,v66" },
2828     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_128B, "v60,v62,v65,v66" },
2829     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc, "v60,v62,v65,v66" },
2830     { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc_128B, "v60,v62,v65,v66" },
2831     { Hexagon::BI__builtin_HEXAGON_V6_vunpackb, "v60,v62,v65,v66" },
2832     { Hexagon::BI__builtin_HEXAGON_V6_vunpackb_128B, "v60,v62,v65,v66" },
2833     { Hexagon::BI__builtin_HEXAGON_V6_vunpackh, "v60,v62,v65,v66" },
2834     { Hexagon::BI__builtin_HEXAGON_V6_vunpackh_128B, "v60,v62,v65,v66" },
2835     { Hexagon::BI__builtin_HEXAGON_V6_vunpackob, "v60,v62,v65,v66" },
2836     { Hexagon::BI__builtin_HEXAGON_V6_vunpackob_128B, "v60,v62,v65,v66" },
2837     { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh, "v60,v62,v65,v66" },
2838     { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh_128B, "v60,v62,v65,v66" },
2839     { Hexagon::BI__builtin_HEXAGON_V6_vunpackub, "v60,v62,v65,v66" },
2840     { Hexagon::BI__builtin_HEXAGON_V6_vunpackub_128B, "v60,v62,v65,v66" },
2841     { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh, "v60,v62,v65,v66" },
2842     { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh_128B, "v60,v62,v65,v66" },
2843     { Hexagon::BI__builtin_HEXAGON_V6_vxor, "v60,v62,v65,v66" },
2844     { Hexagon::BI__builtin_HEXAGON_V6_vxor_128B, "v60,v62,v65,v66" },
2845     { Hexagon::BI__builtin_HEXAGON_V6_vzb, "v60,v62,v65,v66" },
2846     { Hexagon::BI__builtin_HEXAGON_V6_vzb_128B, "v60,v62,v65,v66" },
2847     { Hexagon::BI__builtin_HEXAGON_V6_vzh, "v60,v62,v65,v66" },
2848     { Hexagon::BI__builtin_HEXAGON_V6_vzh_128B, "v60,v62,v65,v66" },
2849   };
2850 
2851   // Sort the tables on first execution so we can binary search them.
2852   auto SortCmp = [](const BuiltinAndString &LHS, const BuiltinAndString &RHS) {
2853     return LHS.BuiltinID < RHS.BuiltinID;
2854   };
2855   static const bool SortOnce =
2856       (llvm::sort(ValidCPU, SortCmp),
2857        llvm::sort(ValidHVX, SortCmp), true);
2858   (void)SortOnce;
2859   auto LowerBoundCmp = [](const BuiltinAndString &BI, unsigned BuiltinID) {
2860     return BI.BuiltinID < BuiltinID;
2861   };
2862 
2863   const TargetInfo &TI = Context.getTargetInfo();
2864 
2865   const BuiltinAndString *FC =
2866       llvm::lower_bound(ValidCPU, BuiltinID, LowerBoundCmp);
2867   if (FC != std::end(ValidCPU) && FC->BuiltinID == BuiltinID) {
2868     const TargetOptions &Opts = TI.getTargetOpts();
2869     StringRef CPU = Opts.CPU;
2870     if (!CPU.empty()) {
2871       assert(CPU.startswith("hexagon") && "Unexpected CPU name");
2872       CPU.consume_front("hexagon");
2873       SmallVector<StringRef, 3> CPUs;
2874       StringRef(FC->Str).split(CPUs, ',');
2875       if (llvm::none_of(CPUs, [CPU](StringRef S) { return S == CPU; }))
2876         return Diag(TheCall->getBeginLoc(),
2877                     diag::err_hexagon_builtin_unsupported_cpu);
2878     }
2879   }
2880 
2881   const BuiltinAndString *FH =
2882       llvm::lower_bound(ValidHVX, BuiltinID, LowerBoundCmp);
2883   if (FH != std::end(ValidHVX) && FH->BuiltinID == BuiltinID) {
2884     if (!TI.hasFeature("hvx"))
2885       return Diag(TheCall->getBeginLoc(),
2886                   diag::err_hexagon_builtin_requires_hvx);
2887 
2888     SmallVector<StringRef, 3> HVXs;
2889     StringRef(FH->Str).split(HVXs, ',');
2890     bool IsValid = llvm::any_of(HVXs,
2891                                 [&TI] (StringRef V) {
2892                                   std::string F = "hvx" + V.str();
2893                                   return TI.hasFeature(F);
2894                                 });
2895     if (!IsValid)
2896       return Diag(TheCall->getBeginLoc(),
2897                   diag::err_hexagon_builtin_unsupported_hvx);
2898   }
2899 
2900   return false;
2901 }
2902 
2903 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2904   struct ArgInfo {
2905     uint8_t OpNum;
2906     bool IsSigned;
2907     uint8_t BitWidth;
2908     uint8_t Align;
2909   };
2910   struct BuiltinInfo {
2911     unsigned BuiltinID;
2912     ArgInfo Infos[2];
2913   };
2914 
2915   static BuiltinInfo Infos[] = {
2916     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2917     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2918     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2919     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  0 }} },
2920     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2921     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2922     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2923     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2924     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2925     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2926     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2927 
2928     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2929     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2930     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2931     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2932     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2933     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2934     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2935     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2936     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2937     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2938     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2939 
2940     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2941     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2942     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2943     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2944     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2945     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2946     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2947     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2948     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2949     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2950     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2951     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2952     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2953     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2954     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2955     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2956     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2957     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2958     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2959     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2960     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2961     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2962     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2963     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2964     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2965     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2966     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2967     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2968     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2969     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2970     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2971     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2972     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2973     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2974     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2975     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2976     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2977     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2978     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2979     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2980     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2981     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2982     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2983     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2984     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2985     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2986     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2987     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2988     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2989     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2990     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2991     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2992                                                       {{ 1, false, 6,  0 }} },
2993     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2994     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2995     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2996     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2997     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2998     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2999     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
3000                                                       {{ 1, false, 5,  0 }} },
3001     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
3002     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
3003     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
3004     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
3005     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
3006     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
3007                                                        { 2, false, 5,  0 }} },
3008     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
3009                                                        { 2, false, 6,  0 }} },
3010     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
3011                                                        { 3, false, 5,  0 }} },
3012     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
3013                                                        { 3, false, 6,  0 }} },
3014     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
3015     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
3016     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
3017     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
3018     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
3019     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
3020     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
3021     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
3022     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
3023     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
3024     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
3025     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
3026     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
3027     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
3028     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
3029     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3030                                                       {{ 2, false, 4,  0 },
3031                                                        { 3, false, 5,  0 }} },
3032     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3033                                                       {{ 2, false, 4,  0 },
3034                                                        { 3, false, 5,  0 }} },
3035     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3036                                                       {{ 2, false, 4,  0 },
3037                                                        { 3, false, 5,  0 }} },
3038     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3039                                                       {{ 2, false, 4,  0 },
3040                                                        { 3, false, 5,  0 }} },
3041     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
3042     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
3043     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
3044     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
3045     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
3046     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
3047     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
3048     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
3049     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
3050     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
3051     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
3052                                                        { 2, false, 5,  0 }} },
3053     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
3054                                                        { 2, false, 6,  0 }} },
3055     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
3056     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
3057     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
3058     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
3059     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
3060     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
3061     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
3062     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
3063     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3064                                                       {{ 1, false, 4,  0 }} },
3065     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
3066     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3067                                                       {{ 1, false, 4,  0 }} },
3068     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
3069     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
3070     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
3071     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
3072     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
3073     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
3074     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
3075     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
3076     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
3077     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
3078     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
3079     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
3080     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
3081     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
3082     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
3083     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
3084     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
3085     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
3086     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
3087     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
3088                                                       {{ 3, false, 1,  0 }} },
3089     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
3090     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
3091     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
3092     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
3093                                                       {{ 3, false, 1,  0 }} },
3094     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
3095     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
3096     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
3097     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
3098                                                       {{ 3, false, 1,  0 }} },
3099   };
3100 
3101   // Use a dynamically initialized static to sort the table exactly once on
3102   // first run.
3103   static const bool SortOnce =
3104       (llvm::sort(Infos,
3105                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
3106                    return LHS.BuiltinID < RHS.BuiltinID;
3107                  }),
3108        true);
3109   (void)SortOnce;
3110 
3111   const BuiltinInfo *F = llvm::partition_point(
3112       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
3113   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
3114     return false;
3115 
3116   bool Error = false;
3117 
3118   for (const ArgInfo &A : F->Infos) {
3119     // Ignore empty ArgInfo elements.
3120     if (A.BitWidth == 0)
3121       continue;
3122 
3123     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
3124     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
3125     if (!A.Align) {
3126       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3127     } else {
3128       unsigned M = 1 << A.Align;
3129       Min *= M;
3130       Max *= M;
3131       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
3132                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
3133     }
3134   }
3135   return Error;
3136 }
3137 
3138 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
3139                                            CallExpr *TheCall) {
3140   return CheckHexagonBuiltinCpu(BuiltinID, TheCall) ||
3141          CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3142 }
3143 
3144 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3145   return CheckMipsBuiltinCpu(BuiltinID, TheCall) ||
3146          CheckMipsBuiltinArgument(BuiltinID, TheCall);
3147 }
3148 
3149 bool Sema::CheckMipsBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) {
3150   const TargetInfo &TI = Context.getTargetInfo();
3151 
3152   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3153       BuiltinID <= Mips::BI__builtin_mips_lwx) {
3154     if (!TI.hasFeature("dsp"))
3155       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3156   }
3157 
3158   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3159       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3160     if (!TI.hasFeature("dspr2"))
3161       return Diag(TheCall->getBeginLoc(),
3162                   diag::err_mips_builtin_requires_dspr2);
3163   }
3164 
3165   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3166       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3167     if (!TI.hasFeature("msa"))
3168       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3169   }
3170 
3171   return false;
3172 }
3173 
3174 // CheckMipsBuiltinArgument - Checks the constant value passed to the
3175 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3176 // ordering for DSP is unspecified. MSA is ordered by the data format used
3177 // by the underlying instruction i.e., df/m, df/n and then by size.
3178 //
3179 // FIXME: The size tests here should instead be tablegen'd along with the
3180 //        definitions from include/clang/Basic/BuiltinsMips.def.
3181 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3182 //        be too.
3183 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3184   unsigned i = 0, l = 0, u = 0, m = 0;
3185   switch (BuiltinID) {
3186   default: return false;
3187   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3188   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3189   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3190   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3191   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3192   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3193   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3194   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3195   // df/m field.
3196   // These intrinsics take an unsigned 3 bit immediate.
3197   case Mips::BI__builtin_msa_bclri_b:
3198   case Mips::BI__builtin_msa_bnegi_b:
3199   case Mips::BI__builtin_msa_bseti_b:
3200   case Mips::BI__builtin_msa_sat_s_b:
3201   case Mips::BI__builtin_msa_sat_u_b:
3202   case Mips::BI__builtin_msa_slli_b:
3203   case Mips::BI__builtin_msa_srai_b:
3204   case Mips::BI__builtin_msa_srari_b:
3205   case Mips::BI__builtin_msa_srli_b:
3206   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3207   case Mips::BI__builtin_msa_binsli_b:
3208   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3209   // These intrinsics take an unsigned 4 bit immediate.
3210   case Mips::BI__builtin_msa_bclri_h:
3211   case Mips::BI__builtin_msa_bnegi_h:
3212   case Mips::BI__builtin_msa_bseti_h:
3213   case Mips::BI__builtin_msa_sat_s_h:
3214   case Mips::BI__builtin_msa_sat_u_h:
3215   case Mips::BI__builtin_msa_slli_h:
3216   case Mips::BI__builtin_msa_srai_h:
3217   case Mips::BI__builtin_msa_srari_h:
3218   case Mips::BI__builtin_msa_srli_h:
3219   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3220   case Mips::BI__builtin_msa_binsli_h:
3221   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3222   // These intrinsics take an unsigned 5 bit immediate.
3223   // The first block of intrinsics actually have an unsigned 5 bit field,
3224   // not a df/n field.
3225   case Mips::BI__builtin_msa_cfcmsa:
3226   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3227   case Mips::BI__builtin_msa_clei_u_b:
3228   case Mips::BI__builtin_msa_clei_u_h:
3229   case Mips::BI__builtin_msa_clei_u_w:
3230   case Mips::BI__builtin_msa_clei_u_d:
3231   case Mips::BI__builtin_msa_clti_u_b:
3232   case Mips::BI__builtin_msa_clti_u_h:
3233   case Mips::BI__builtin_msa_clti_u_w:
3234   case Mips::BI__builtin_msa_clti_u_d:
3235   case Mips::BI__builtin_msa_maxi_u_b:
3236   case Mips::BI__builtin_msa_maxi_u_h:
3237   case Mips::BI__builtin_msa_maxi_u_w:
3238   case Mips::BI__builtin_msa_maxi_u_d:
3239   case Mips::BI__builtin_msa_mini_u_b:
3240   case Mips::BI__builtin_msa_mini_u_h:
3241   case Mips::BI__builtin_msa_mini_u_w:
3242   case Mips::BI__builtin_msa_mini_u_d:
3243   case Mips::BI__builtin_msa_addvi_b:
3244   case Mips::BI__builtin_msa_addvi_h:
3245   case Mips::BI__builtin_msa_addvi_w:
3246   case Mips::BI__builtin_msa_addvi_d:
3247   case Mips::BI__builtin_msa_bclri_w:
3248   case Mips::BI__builtin_msa_bnegi_w:
3249   case Mips::BI__builtin_msa_bseti_w:
3250   case Mips::BI__builtin_msa_sat_s_w:
3251   case Mips::BI__builtin_msa_sat_u_w:
3252   case Mips::BI__builtin_msa_slli_w:
3253   case Mips::BI__builtin_msa_srai_w:
3254   case Mips::BI__builtin_msa_srari_w:
3255   case Mips::BI__builtin_msa_srli_w:
3256   case Mips::BI__builtin_msa_srlri_w:
3257   case Mips::BI__builtin_msa_subvi_b:
3258   case Mips::BI__builtin_msa_subvi_h:
3259   case Mips::BI__builtin_msa_subvi_w:
3260   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3261   case Mips::BI__builtin_msa_binsli_w:
3262   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3263   // These intrinsics take an unsigned 6 bit immediate.
3264   case Mips::BI__builtin_msa_bclri_d:
3265   case Mips::BI__builtin_msa_bnegi_d:
3266   case Mips::BI__builtin_msa_bseti_d:
3267   case Mips::BI__builtin_msa_sat_s_d:
3268   case Mips::BI__builtin_msa_sat_u_d:
3269   case Mips::BI__builtin_msa_slli_d:
3270   case Mips::BI__builtin_msa_srai_d:
3271   case Mips::BI__builtin_msa_srari_d:
3272   case Mips::BI__builtin_msa_srli_d:
3273   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3274   case Mips::BI__builtin_msa_binsli_d:
3275   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3276   // These intrinsics take a signed 5 bit immediate.
3277   case Mips::BI__builtin_msa_ceqi_b:
3278   case Mips::BI__builtin_msa_ceqi_h:
3279   case Mips::BI__builtin_msa_ceqi_w:
3280   case Mips::BI__builtin_msa_ceqi_d:
3281   case Mips::BI__builtin_msa_clti_s_b:
3282   case Mips::BI__builtin_msa_clti_s_h:
3283   case Mips::BI__builtin_msa_clti_s_w:
3284   case Mips::BI__builtin_msa_clti_s_d:
3285   case Mips::BI__builtin_msa_clei_s_b:
3286   case Mips::BI__builtin_msa_clei_s_h:
3287   case Mips::BI__builtin_msa_clei_s_w:
3288   case Mips::BI__builtin_msa_clei_s_d:
3289   case Mips::BI__builtin_msa_maxi_s_b:
3290   case Mips::BI__builtin_msa_maxi_s_h:
3291   case Mips::BI__builtin_msa_maxi_s_w:
3292   case Mips::BI__builtin_msa_maxi_s_d:
3293   case Mips::BI__builtin_msa_mini_s_b:
3294   case Mips::BI__builtin_msa_mini_s_h:
3295   case Mips::BI__builtin_msa_mini_s_w:
3296   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3297   // These intrinsics take an unsigned 8 bit immediate.
3298   case Mips::BI__builtin_msa_andi_b:
3299   case Mips::BI__builtin_msa_nori_b:
3300   case Mips::BI__builtin_msa_ori_b:
3301   case Mips::BI__builtin_msa_shf_b:
3302   case Mips::BI__builtin_msa_shf_h:
3303   case Mips::BI__builtin_msa_shf_w:
3304   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3305   case Mips::BI__builtin_msa_bseli_b:
3306   case Mips::BI__builtin_msa_bmnzi_b:
3307   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3308   // df/n format
3309   // These intrinsics take an unsigned 4 bit immediate.
3310   case Mips::BI__builtin_msa_copy_s_b:
3311   case Mips::BI__builtin_msa_copy_u_b:
3312   case Mips::BI__builtin_msa_insve_b:
3313   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3314   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3315   // These intrinsics take an unsigned 3 bit immediate.
3316   case Mips::BI__builtin_msa_copy_s_h:
3317   case Mips::BI__builtin_msa_copy_u_h:
3318   case Mips::BI__builtin_msa_insve_h:
3319   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3320   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3321   // These intrinsics take an unsigned 2 bit immediate.
3322   case Mips::BI__builtin_msa_copy_s_w:
3323   case Mips::BI__builtin_msa_copy_u_w:
3324   case Mips::BI__builtin_msa_insve_w:
3325   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3326   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3327   // These intrinsics take an unsigned 1 bit immediate.
3328   case Mips::BI__builtin_msa_copy_s_d:
3329   case Mips::BI__builtin_msa_copy_u_d:
3330   case Mips::BI__builtin_msa_insve_d:
3331   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3332   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3333   // Memory offsets and immediate loads.
3334   // These intrinsics take a signed 10 bit immediate.
3335   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3336   case Mips::BI__builtin_msa_ldi_h:
3337   case Mips::BI__builtin_msa_ldi_w:
3338   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3339   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3340   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3341   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3342   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3343   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3344   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3345   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3346   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3347   }
3348 
3349   if (!m)
3350     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3351 
3352   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3353          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3354 }
3355 
3356 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3357   unsigned i = 0, l = 0, u = 0;
3358   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3359                       BuiltinID == PPC::BI__builtin_divdeu ||
3360                       BuiltinID == PPC::BI__builtin_bpermd;
3361   bool IsTarget64Bit = Context.getTargetInfo()
3362                               .getTypeWidth(Context
3363                                             .getTargetInfo()
3364                                             .getIntPtrType()) == 64;
3365   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3366                        BuiltinID == PPC::BI__builtin_divweu ||
3367                        BuiltinID == PPC::BI__builtin_divde ||
3368                        BuiltinID == PPC::BI__builtin_divdeu;
3369 
3370   if (Is64BitBltin && !IsTarget64Bit)
3371     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3372            << TheCall->getSourceRange();
3373 
3374   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
3375       (BuiltinID == PPC::BI__builtin_bpermd &&
3376        !Context.getTargetInfo().hasFeature("bpermd")))
3377     return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3378            << TheCall->getSourceRange();
3379 
3380   auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3381     if (!Context.getTargetInfo().hasFeature("vsx"))
3382       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3383              << TheCall->getSourceRange();
3384     return false;
3385   };
3386 
3387   switch (BuiltinID) {
3388   default: return false;
3389   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3390   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3391     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3392            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3393   case PPC::BI__builtin_altivec_dss:
3394     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3395   case PPC::BI__builtin_tbegin:
3396   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3397   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3398   case PPC::BI__builtin_tabortwc:
3399   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3400   case PPC::BI__builtin_tabortwci:
3401   case PPC::BI__builtin_tabortdci:
3402     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3403            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3404   case PPC::BI__builtin_altivec_dst:
3405   case PPC::BI__builtin_altivec_dstt:
3406   case PPC::BI__builtin_altivec_dstst:
3407   case PPC::BI__builtin_altivec_dststt:
3408     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3409   case PPC::BI__builtin_vsx_xxpermdi:
3410   case PPC::BI__builtin_vsx_xxsldwi:
3411     return SemaBuiltinVSX(TheCall);
3412   case PPC::BI__builtin_unpack_vector_int128:
3413     return SemaVSXCheck(TheCall) ||
3414            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3415   case PPC::BI__builtin_pack_vector_int128:
3416     return SemaVSXCheck(TheCall);
3417   }
3418   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3419 }
3420 
3421 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3422                                            CallExpr *TheCall) {
3423   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3424     Expr *Arg = TheCall->getArg(0);
3425     llvm::APSInt AbortCode(32);
3426     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
3427         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
3428       return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3429              << Arg->getSourceRange();
3430   }
3431 
3432   // For intrinsics which take an immediate value as part of the instruction,
3433   // range check them here.
3434   unsigned i = 0, l = 0, u = 0;
3435   switch (BuiltinID) {
3436   default: return false;
3437   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3438   case SystemZ::BI__builtin_s390_verimb:
3439   case SystemZ::BI__builtin_s390_verimh:
3440   case SystemZ::BI__builtin_s390_verimf:
3441   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3442   case SystemZ::BI__builtin_s390_vfaeb:
3443   case SystemZ::BI__builtin_s390_vfaeh:
3444   case SystemZ::BI__builtin_s390_vfaef:
3445   case SystemZ::BI__builtin_s390_vfaebs:
3446   case SystemZ::BI__builtin_s390_vfaehs:
3447   case SystemZ::BI__builtin_s390_vfaefs:
3448   case SystemZ::BI__builtin_s390_vfaezb:
3449   case SystemZ::BI__builtin_s390_vfaezh:
3450   case SystemZ::BI__builtin_s390_vfaezf:
3451   case SystemZ::BI__builtin_s390_vfaezbs:
3452   case SystemZ::BI__builtin_s390_vfaezhs:
3453   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3454   case SystemZ::BI__builtin_s390_vfisb:
3455   case SystemZ::BI__builtin_s390_vfidb:
3456     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3457            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3458   case SystemZ::BI__builtin_s390_vftcisb:
3459   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3460   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3461   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3462   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3463   case SystemZ::BI__builtin_s390_vstrcb:
3464   case SystemZ::BI__builtin_s390_vstrch:
3465   case SystemZ::BI__builtin_s390_vstrcf:
3466   case SystemZ::BI__builtin_s390_vstrczb:
3467   case SystemZ::BI__builtin_s390_vstrczh:
3468   case SystemZ::BI__builtin_s390_vstrczf:
3469   case SystemZ::BI__builtin_s390_vstrcbs:
3470   case SystemZ::BI__builtin_s390_vstrchs:
3471   case SystemZ::BI__builtin_s390_vstrcfs:
3472   case SystemZ::BI__builtin_s390_vstrczbs:
3473   case SystemZ::BI__builtin_s390_vstrczhs:
3474   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3475   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3476   case SystemZ::BI__builtin_s390_vfminsb:
3477   case SystemZ::BI__builtin_s390_vfmaxsb:
3478   case SystemZ::BI__builtin_s390_vfmindb:
3479   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3480   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3481   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3482   }
3483   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3484 }
3485 
3486 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3487 /// This checks that the target supports __builtin_cpu_supports and
3488 /// that the string argument is constant and valid.
3489 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
3490   Expr *Arg = TheCall->getArg(0);
3491 
3492   // Check if the argument is a string literal.
3493   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3494     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3495            << Arg->getSourceRange();
3496 
3497   // Check the contents of the string.
3498   StringRef Feature =
3499       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3500   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
3501     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3502            << Arg->getSourceRange();
3503   return false;
3504 }
3505 
3506 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3507 /// This checks that the target supports __builtin_cpu_is and
3508 /// that the string argument is constant and valid.
3509 static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) {
3510   Expr *Arg = TheCall->getArg(0);
3511 
3512   // Check if the argument is a string literal.
3513   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3514     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3515            << Arg->getSourceRange();
3516 
3517   // Check the contents of the string.
3518   StringRef Feature =
3519       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3520   if (!S.Context.getTargetInfo().validateCpuIs(Feature))
3521     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3522            << Arg->getSourceRange();
3523   return false;
3524 }
3525 
3526 // Check if the rounding mode is legal.
3527 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3528   // Indicates if this instruction has rounding control or just SAE.
3529   bool HasRC = false;
3530 
3531   unsigned ArgNum = 0;
3532   switch (BuiltinID) {
3533   default:
3534     return false;
3535   case X86::BI__builtin_ia32_vcvttsd2si32:
3536   case X86::BI__builtin_ia32_vcvttsd2si64:
3537   case X86::BI__builtin_ia32_vcvttsd2usi32:
3538   case X86::BI__builtin_ia32_vcvttsd2usi64:
3539   case X86::BI__builtin_ia32_vcvttss2si32:
3540   case X86::BI__builtin_ia32_vcvttss2si64:
3541   case X86::BI__builtin_ia32_vcvttss2usi32:
3542   case X86::BI__builtin_ia32_vcvttss2usi64:
3543     ArgNum = 1;
3544     break;
3545   case X86::BI__builtin_ia32_maxpd512:
3546   case X86::BI__builtin_ia32_maxps512:
3547   case X86::BI__builtin_ia32_minpd512:
3548   case X86::BI__builtin_ia32_minps512:
3549     ArgNum = 2;
3550     break;
3551   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3552   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3553   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3554   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3555   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3556   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3557   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3558   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3559   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3560   case X86::BI__builtin_ia32_exp2pd_mask:
3561   case X86::BI__builtin_ia32_exp2ps_mask:
3562   case X86::BI__builtin_ia32_getexppd512_mask:
3563   case X86::BI__builtin_ia32_getexpps512_mask:
3564   case X86::BI__builtin_ia32_rcp28pd_mask:
3565   case X86::BI__builtin_ia32_rcp28ps_mask:
3566   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3567   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3568   case X86::BI__builtin_ia32_vcomisd:
3569   case X86::BI__builtin_ia32_vcomiss:
3570   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3571     ArgNum = 3;
3572     break;
3573   case X86::BI__builtin_ia32_cmppd512_mask:
3574   case X86::BI__builtin_ia32_cmpps512_mask:
3575   case X86::BI__builtin_ia32_cmpsd_mask:
3576   case X86::BI__builtin_ia32_cmpss_mask:
3577   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3578   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3579   case X86::BI__builtin_ia32_getexpss128_round_mask:
3580   case X86::BI__builtin_ia32_getmantpd512_mask:
3581   case X86::BI__builtin_ia32_getmantps512_mask:
3582   case X86::BI__builtin_ia32_maxsd_round_mask:
3583   case X86::BI__builtin_ia32_maxss_round_mask:
3584   case X86::BI__builtin_ia32_minsd_round_mask:
3585   case X86::BI__builtin_ia32_minss_round_mask:
3586   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3587   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3588   case X86::BI__builtin_ia32_reducepd512_mask:
3589   case X86::BI__builtin_ia32_reduceps512_mask:
3590   case X86::BI__builtin_ia32_rndscalepd_mask:
3591   case X86::BI__builtin_ia32_rndscaleps_mask:
3592   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3593   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3594     ArgNum = 4;
3595     break;
3596   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3597   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3598   case X86::BI__builtin_ia32_fixupimmps512_mask:
3599   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3600   case X86::BI__builtin_ia32_fixupimmsd_mask:
3601   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3602   case X86::BI__builtin_ia32_fixupimmss_mask:
3603   case X86::BI__builtin_ia32_fixupimmss_maskz:
3604   case X86::BI__builtin_ia32_getmantsd_round_mask:
3605   case X86::BI__builtin_ia32_getmantss_round_mask:
3606   case X86::BI__builtin_ia32_rangepd512_mask:
3607   case X86::BI__builtin_ia32_rangeps512_mask:
3608   case X86::BI__builtin_ia32_rangesd128_round_mask:
3609   case X86::BI__builtin_ia32_rangess128_round_mask:
3610   case X86::BI__builtin_ia32_reducesd_mask:
3611   case X86::BI__builtin_ia32_reducess_mask:
3612   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3613   case X86::BI__builtin_ia32_rndscaless_round_mask:
3614     ArgNum = 5;
3615     break;
3616   case X86::BI__builtin_ia32_vcvtsd2si64:
3617   case X86::BI__builtin_ia32_vcvtsd2si32:
3618   case X86::BI__builtin_ia32_vcvtsd2usi32:
3619   case X86::BI__builtin_ia32_vcvtsd2usi64:
3620   case X86::BI__builtin_ia32_vcvtss2si32:
3621   case X86::BI__builtin_ia32_vcvtss2si64:
3622   case X86::BI__builtin_ia32_vcvtss2usi32:
3623   case X86::BI__builtin_ia32_vcvtss2usi64:
3624   case X86::BI__builtin_ia32_sqrtpd512:
3625   case X86::BI__builtin_ia32_sqrtps512:
3626     ArgNum = 1;
3627     HasRC = true;
3628     break;
3629   case X86::BI__builtin_ia32_addpd512:
3630   case X86::BI__builtin_ia32_addps512:
3631   case X86::BI__builtin_ia32_divpd512:
3632   case X86::BI__builtin_ia32_divps512:
3633   case X86::BI__builtin_ia32_mulpd512:
3634   case X86::BI__builtin_ia32_mulps512:
3635   case X86::BI__builtin_ia32_subpd512:
3636   case X86::BI__builtin_ia32_subps512:
3637   case X86::BI__builtin_ia32_cvtsi2sd64:
3638   case X86::BI__builtin_ia32_cvtsi2ss32:
3639   case X86::BI__builtin_ia32_cvtsi2ss64:
3640   case X86::BI__builtin_ia32_cvtusi2sd64:
3641   case X86::BI__builtin_ia32_cvtusi2ss32:
3642   case X86::BI__builtin_ia32_cvtusi2ss64:
3643     ArgNum = 2;
3644     HasRC = true;
3645     break;
3646   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3647   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3648   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3649   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3650   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3651   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3652   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3653   case X86::BI__builtin_ia32_cvtps2dq512_mask:
3654   case X86::BI__builtin_ia32_cvtps2qq512_mask:
3655   case X86::BI__builtin_ia32_cvtps2udq512_mask:
3656   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3657   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3658   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3659   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3660   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3661     ArgNum = 3;
3662     HasRC = true;
3663     break;
3664   case X86::BI__builtin_ia32_addss_round_mask:
3665   case X86::BI__builtin_ia32_addsd_round_mask:
3666   case X86::BI__builtin_ia32_divss_round_mask:
3667   case X86::BI__builtin_ia32_divsd_round_mask:
3668   case X86::BI__builtin_ia32_mulss_round_mask:
3669   case X86::BI__builtin_ia32_mulsd_round_mask:
3670   case X86::BI__builtin_ia32_subss_round_mask:
3671   case X86::BI__builtin_ia32_subsd_round_mask:
3672   case X86::BI__builtin_ia32_scalefpd512_mask:
3673   case X86::BI__builtin_ia32_scalefps512_mask:
3674   case X86::BI__builtin_ia32_scalefsd_round_mask:
3675   case X86::BI__builtin_ia32_scalefss_round_mask:
3676   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3677   case X86::BI__builtin_ia32_sqrtsd_round_mask:
3678   case X86::BI__builtin_ia32_sqrtss_round_mask:
3679   case X86::BI__builtin_ia32_vfmaddsd3_mask:
3680   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3681   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3682   case X86::BI__builtin_ia32_vfmaddss3_mask:
3683   case X86::BI__builtin_ia32_vfmaddss3_maskz:
3684   case X86::BI__builtin_ia32_vfmaddss3_mask3:
3685   case X86::BI__builtin_ia32_vfmaddpd512_mask:
3686   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3687   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3688   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3689   case X86::BI__builtin_ia32_vfmaddps512_mask:
3690   case X86::BI__builtin_ia32_vfmaddps512_maskz:
3691   case X86::BI__builtin_ia32_vfmaddps512_mask3:
3692   case X86::BI__builtin_ia32_vfmsubps512_mask3:
3693   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3694   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3695   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3696   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3697   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3698   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3699   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3700   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3701     ArgNum = 4;
3702     HasRC = true;
3703     break;
3704   }
3705 
3706   llvm::APSInt Result;
3707 
3708   // We can't check the value of a dependent argument.
3709   Expr *Arg = TheCall->getArg(ArgNum);
3710   if (Arg->isTypeDependent() || Arg->isValueDependent())
3711     return false;
3712 
3713   // Check constant-ness first.
3714   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3715     return true;
3716 
3717   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3718   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3719   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
3720   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
3721   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3722       Result == 8/*ROUND_NO_EXC*/ ||
3723       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
3724       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3725     return false;
3726 
3727   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3728          << Arg->getSourceRange();
3729 }
3730 
3731 // Check if the gather/scatter scale is legal.
3732 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3733                                              CallExpr *TheCall) {
3734   unsigned ArgNum = 0;
3735   switch (BuiltinID) {
3736   default:
3737     return false;
3738   case X86::BI__builtin_ia32_gatherpfdpd:
3739   case X86::BI__builtin_ia32_gatherpfdps:
3740   case X86::BI__builtin_ia32_gatherpfqpd:
3741   case X86::BI__builtin_ia32_gatherpfqps:
3742   case X86::BI__builtin_ia32_scatterpfdpd:
3743   case X86::BI__builtin_ia32_scatterpfdps:
3744   case X86::BI__builtin_ia32_scatterpfqpd:
3745   case X86::BI__builtin_ia32_scatterpfqps:
3746     ArgNum = 3;
3747     break;
3748   case X86::BI__builtin_ia32_gatherd_pd:
3749   case X86::BI__builtin_ia32_gatherd_pd256:
3750   case X86::BI__builtin_ia32_gatherq_pd:
3751   case X86::BI__builtin_ia32_gatherq_pd256:
3752   case X86::BI__builtin_ia32_gatherd_ps:
3753   case X86::BI__builtin_ia32_gatherd_ps256:
3754   case X86::BI__builtin_ia32_gatherq_ps:
3755   case X86::BI__builtin_ia32_gatherq_ps256:
3756   case X86::BI__builtin_ia32_gatherd_q:
3757   case X86::BI__builtin_ia32_gatherd_q256:
3758   case X86::BI__builtin_ia32_gatherq_q:
3759   case X86::BI__builtin_ia32_gatherq_q256:
3760   case X86::BI__builtin_ia32_gatherd_d:
3761   case X86::BI__builtin_ia32_gatherd_d256:
3762   case X86::BI__builtin_ia32_gatherq_d:
3763   case X86::BI__builtin_ia32_gatherq_d256:
3764   case X86::BI__builtin_ia32_gather3div2df:
3765   case X86::BI__builtin_ia32_gather3div2di:
3766   case X86::BI__builtin_ia32_gather3div4df:
3767   case X86::BI__builtin_ia32_gather3div4di:
3768   case X86::BI__builtin_ia32_gather3div4sf:
3769   case X86::BI__builtin_ia32_gather3div4si:
3770   case X86::BI__builtin_ia32_gather3div8sf:
3771   case X86::BI__builtin_ia32_gather3div8si:
3772   case X86::BI__builtin_ia32_gather3siv2df:
3773   case X86::BI__builtin_ia32_gather3siv2di:
3774   case X86::BI__builtin_ia32_gather3siv4df:
3775   case X86::BI__builtin_ia32_gather3siv4di:
3776   case X86::BI__builtin_ia32_gather3siv4sf:
3777   case X86::BI__builtin_ia32_gather3siv4si:
3778   case X86::BI__builtin_ia32_gather3siv8sf:
3779   case X86::BI__builtin_ia32_gather3siv8si:
3780   case X86::BI__builtin_ia32_gathersiv8df:
3781   case X86::BI__builtin_ia32_gathersiv16sf:
3782   case X86::BI__builtin_ia32_gatherdiv8df:
3783   case X86::BI__builtin_ia32_gatherdiv16sf:
3784   case X86::BI__builtin_ia32_gathersiv8di:
3785   case X86::BI__builtin_ia32_gathersiv16si:
3786   case X86::BI__builtin_ia32_gatherdiv8di:
3787   case X86::BI__builtin_ia32_gatherdiv16si:
3788   case X86::BI__builtin_ia32_scatterdiv2df:
3789   case X86::BI__builtin_ia32_scatterdiv2di:
3790   case X86::BI__builtin_ia32_scatterdiv4df:
3791   case X86::BI__builtin_ia32_scatterdiv4di:
3792   case X86::BI__builtin_ia32_scatterdiv4sf:
3793   case X86::BI__builtin_ia32_scatterdiv4si:
3794   case X86::BI__builtin_ia32_scatterdiv8sf:
3795   case X86::BI__builtin_ia32_scatterdiv8si:
3796   case X86::BI__builtin_ia32_scattersiv2df:
3797   case X86::BI__builtin_ia32_scattersiv2di:
3798   case X86::BI__builtin_ia32_scattersiv4df:
3799   case X86::BI__builtin_ia32_scattersiv4di:
3800   case X86::BI__builtin_ia32_scattersiv4sf:
3801   case X86::BI__builtin_ia32_scattersiv4si:
3802   case X86::BI__builtin_ia32_scattersiv8sf:
3803   case X86::BI__builtin_ia32_scattersiv8si:
3804   case X86::BI__builtin_ia32_scattersiv8df:
3805   case X86::BI__builtin_ia32_scattersiv16sf:
3806   case X86::BI__builtin_ia32_scatterdiv8df:
3807   case X86::BI__builtin_ia32_scatterdiv16sf:
3808   case X86::BI__builtin_ia32_scattersiv8di:
3809   case X86::BI__builtin_ia32_scattersiv16si:
3810   case X86::BI__builtin_ia32_scatterdiv8di:
3811   case X86::BI__builtin_ia32_scatterdiv16si:
3812     ArgNum = 4;
3813     break;
3814   }
3815 
3816   llvm::APSInt Result;
3817 
3818   // We can't check the value of a dependent argument.
3819   Expr *Arg = TheCall->getArg(ArgNum);
3820   if (Arg->isTypeDependent() || Arg->isValueDependent())
3821     return false;
3822 
3823   // Check constant-ness first.
3824   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3825     return true;
3826 
3827   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3828     return false;
3829 
3830   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3831          << Arg->getSourceRange();
3832 }
3833 
3834 static bool isX86_32Builtin(unsigned BuiltinID) {
3835   // These builtins only work on x86-32 targets.
3836   switch (BuiltinID) {
3837   case X86::BI__builtin_ia32_readeflags_u32:
3838   case X86::BI__builtin_ia32_writeeflags_u32:
3839     return true;
3840   }
3841 
3842   return false;
3843 }
3844 
3845 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3846   if (BuiltinID == X86::BI__builtin_cpu_supports)
3847     return SemaBuiltinCpuSupports(*this, TheCall);
3848 
3849   if (BuiltinID == X86::BI__builtin_cpu_is)
3850     return SemaBuiltinCpuIs(*this, TheCall);
3851 
3852   // Check for 32-bit only builtins on a 64-bit target.
3853   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
3854   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3855     return Diag(TheCall->getCallee()->getBeginLoc(),
3856                 diag::err_32_bit_builtin_64_bit_tgt);
3857 
3858   // If the intrinsic has rounding or SAE make sure its valid.
3859   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3860     return true;
3861 
3862   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3863   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3864     return true;
3865 
3866   // For intrinsics which take an immediate value as part of the instruction,
3867   // range check them here.
3868   int i = 0, l = 0, u = 0;
3869   switch (BuiltinID) {
3870   default:
3871     return false;
3872   case X86::BI__builtin_ia32_vec_ext_v2si:
3873   case X86::BI__builtin_ia32_vec_ext_v2di:
3874   case X86::BI__builtin_ia32_vextractf128_pd256:
3875   case X86::BI__builtin_ia32_vextractf128_ps256:
3876   case X86::BI__builtin_ia32_vextractf128_si256:
3877   case X86::BI__builtin_ia32_extract128i256:
3878   case X86::BI__builtin_ia32_extractf64x4_mask:
3879   case X86::BI__builtin_ia32_extracti64x4_mask:
3880   case X86::BI__builtin_ia32_extractf32x8_mask:
3881   case X86::BI__builtin_ia32_extracti32x8_mask:
3882   case X86::BI__builtin_ia32_extractf64x2_256_mask:
3883   case X86::BI__builtin_ia32_extracti64x2_256_mask:
3884   case X86::BI__builtin_ia32_extractf32x4_256_mask:
3885   case X86::BI__builtin_ia32_extracti32x4_256_mask:
3886     i = 1; l = 0; u = 1;
3887     break;
3888   case X86::BI__builtin_ia32_vec_set_v2di:
3889   case X86::BI__builtin_ia32_vinsertf128_pd256:
3890   case X86::BI__builtin_ia32_vinsertf128_ps256:
3891   case X86::BI__builtin_ia32_vinsertf128_si256:
3892   case X86::BI__builtin_ia32_insert128i256:
3893   case X86::BI__builtin_ia32_insertf32x8:
3894   case X86::BI__builtin_ia32_inserti32x8:
3895   case X86::BI__builtin_ia32_insertf64x4:
3896   case X86::BI__builtin_ia32_inserti64x4:
3897   case X86::BI__builtin_ia32_insertf64x2_256:
3898   case X86::BI__builtin_ia32_inserti64x2_256:
3899   case X86::BI__builtin_ia32_insertf32x4_256:
3900   case X86::BI__builtin_ia32_inserti32x4_256:
3901     i = 2; l = 0; u = 1;
3902     break;
3903   case X86::BI__builtin_ia32_vpermilpd:
3904   case X86::BI__builtin_ia32_vec_ext_v4hi:
3905   case X86::BI__builtin_ia32_vec_ext_v4si:
3906   case X86::BI__builtin_ia32_vec_ext_v4sf:
3907   case X86::BI__builtin_ia32_vec_ext_v4di:
3908   case X86::BI__builtin_ia32_extractf32x4_mask:
3909   case X86::BI__builtin_ia32_extracti32x4_mask:
3910   case X86::BI__builtin_ia32_extractf64x2_512_mask:
3911   case X86::BI__builtin_ia32_extracti64x2_512_mask:
3912     i = 1; l = 0; u = 3;
3913     break;
3914   case X86::BI_mm_prefetch:
3915   case X86::BI__builtin_ia32_vec_ext_v8hi:
3916   case X86::BI__builtin_ia32_vec_ext_v8si:
3917     i = 1; l = 0; u = 7;
3918     break;
3919   case X86::BI__builtin_ia32_sha1rnds4:
3920   case X86::BI__builtin_ia32_blendpd:
3921   case X86::BI__builtin_ia32_shufpd:
3922   case X86::BI__builtin_ia32_vec_set_v4hi:
3923   case X86::BI__builtin_ia32_vec_set_v4si:
3924   case X86::BI__builtin_ia32_vec_set_v4di:
3925   case X86::BI__builtin_ia32_shuf_f32x4_256:
3926   case X86::BI__builtin_ia32_shuf_f64x2_256:
3927   case X86::BI__builtin_ia32_shuf_i32x4_256:
3928   case X86::BI__builtin_ia32_shuf_i64x2_256:
3929   case X86::BI__builtin_ia32_insertf64x2_512:
3930   case X86::BI__builtin_ia32_inserti64x2_512:
3931   case X86::BI__builtin_ia32_insertf32x4:
3932   case X86::BI__builtin_ia32_inserti32x4:
3933     i = 2; l = 0; u = 3;
3934     break;
3935   case X86::BI__builtin_ia32_vpermil2pd:
3936   case X86::BI__builtin_ia32_vpermil2pd256:
3937   case X86::BI__builtin_ia32_vpermil2ps:
3938   case X86::BI__builtin_ia32_vpermil2ps256:
3939     i = 3; l = 0; u = 3;
3940     break;
3941   case X86::BI__builtin_ia32_cmpb128_mask:
3942   case X86::BI__builtin_ia32_cmpw128_mask:
3943   case X86::BI__builtin_ia32_cmpd128_mask:
3944   case X86::BI__builtin_ia32_cmpq128_mask:
3945   case X86::BI__builtin_ia32_cmpb256_mask:
3946   case X86::BI__builtin_ia32_cmpw256_mask:
3947   case X86::BI__builtin_ia32_cmpd256_mask:
3948   case X86::BI__builtin_ia32_cmpq256_mask:
3949   case X86::BI__builtin_ia32_cmpb512_mask:
3950   case X86::BI__builtin_ia32_cmpw512_mask:
3951   case X86::BI__builtin_ia32_cmpd512_mask:
3952   case X86::BI__builtin_ia32_cmpq512_mask:
3953   case X86::BI__builtin_ia32_ucmpb128_mask:
3954   case X86::BI__builtin_ia32_ucmpw128_mask:
3955   case X86::BI__builtin_ia32_ucmpd128_mask:
3956   case X86::BI__builtin_ia32_ucmpq128_mask:
3957   case X86::BI__builtin_ia32_ucmpb256_mask:
3958   case X86::BI__builtin_ia32_ucmpw256_mask:
3959   case X86::BI__builtin_ia32_ucmpd256_mask:
3960   case X86::BI__builtin_ia32_ucmpq256_mask:
3961   case X86::BI__builtin_ia32_ucmpb512_mask:
3962   case X86::BI__builtin_ia32_ucmpw512_mask:
3963   case X86::BI__builtin_ia32_ucmpd512_mask:
3964   case X86::BI__builtin_ia32_ucmpq512_mask:
3965   case X86::BI__builtin_ia32_vpcomub:
3966   case X86::BI__builtin_ia32_vpcomuw:
3967   case X86::BI__builtin_ia32_vpcomud:
3968   case X86::BI__builtin_ia32_vpcomuq:
3969   case X86::BI__builtin_ia32_vpcomb:
3970   case X86::BI__builtin_ia32_vpcomw:
3971   case X86::BI__builtin_ia32_vpcomd:
3972   case X86::BI__builtin_ia32_vpcomq:
3973   case X86::BI__builtin_ia32_vec_set_v8hi:
3974   case X86::BI__builtin_ia32_vec_set_v8si:
3975     i = 2; l = 0; u = 7;
3976     break;
3977   case X86::BI__builtin_ia32_vpermilpd256:
3978   case X86::BI__builtin_ia32_roundps:
3979   case X86::BI__builtin_ia32_roundpd:
3980   case X86::BI__builtin_ia32_roundps256:
3981   case X86::BI__builtin_ia32_roundpd256:
3982   case X86::BI__builtin_ia32_getmantpd128_mask:
3983   case X86::BI__builtin_ia32_getmantpd256_mask:
3984   case X86::BI__builtin_ia32_getmantps128_mask:
3985   case X86::BI__builtin_ia32_getmantps256_mask:
3986   case X86::BI__builtin_ia32_getmantpd512_mask:
3987   case X86::BI__builtin_ia32_getmantps512_mask:
3988   case X86::BI__builtin_ia32_vec_ext_v16qi:
3989   case X86::BI__builtin_ia32_vec_ext_v16hi:
3990     i = 1; l = 0; u = 15;
3991     break;
3992   case X86::BI__builtin_ia32_pblendd128:
3993   case X86::BI__builtin_ia32_blendps:
3994   case X86::BI__builtin_ia32_blendpd256:
3995   case X86::BI__builtin_ia32_shufpd256:
3996   case X86::BI__builtin_ia32_roundss:
3997   case X86::BI__builtin_ia32_roundsd:
3998   case X86::BI__builtin_ia32_rangepd128_mask:
3999   case X86::BI__builtin_ia32_rangepd256_mask:
4000   case X86::BI__builtin_ia32_rangepd512_mask:
4001   case X86::BI__builtin_ia32_rangeps128_mask:
4002   case X86::BI__builtin_ia32_rangeps256_mask:
4003   case X86::BI__builtin_ia32_rangeps512_mask:
4004   case X86::BI__builtin_ia32_getmantsd_round_mask:
4005   case X86::BI__builtin_ia32_getmantss_round_mask:
4006   case X86::BI__builtin_ia32_vec_set_v16qi:
4007   case X86::BI__builtin_ia32_vec_set_v16hi:
4008     i = 2; l = 0; u = 15;
4009     break;
4010   case X86::BI__builtin_ia32_vec_ext_v32qi:
4011     i = 1; l = 0; u = 31;
4012     break;
4013   case X86::BI__builtin_ia32_cmpps:
4014   case X86::BI__builtin_ia32_cmpss:
4015   case X86::BI__builtin_ia32_cmppd:
4016   case X86::BI__builtin_ia32_cmpsd:
4017   case X86::BI__builtin_ia32_cmpps256:
4018   case X86::BI__builtin_ia32_cmppd256:
4019   case X86::BI__builtin_ia32_cmpps128_mask:
4020   case X86::BI__builtin_ia32_cmppd128_mask:
4021   case X86::BI__builtin_ia32_cmpps256_mask:
4022   case X86::BI__builtin_ia32_cmppd256_mask:
4023   case X86::BI__builtin_ia32_cmpps512_mask:
4024   case X86::BI__builtin_ia32_cmppd512_mask:
4025   case X86::BI__builtin_ia32_cmpsd_mask:
4026   case X86::BI__builtin_ia32_cmpss_mask:
4027   case X86::BI__builtin_ia32_vec_set_v32qi:
4028     i = 2; l = 0; u = 31;
4029     break;
4030   case X86::BI__builtin_ia32_permdf256:
4031   case X86::BI__builtin_ia32_permdi256:
4032   case X86::BI__builtin_ia32_permdf512:
4033   case X86::BI__builtin_ia32_permdi512:
4034   case X86::BI__builtin_ia32_vpermilps:
4035   case X86::BI__builtin_ia32_vpermilps256:
4036   case X86::BI__builtin_ia32_vpermilpd512:
4037   case X86::BI__builtin_ia32_vpermilps512:
4038   case X86::BI__builtin_ia32_pshufd:
4039   case X86::BI__builtin_ia32_pshufd256:
4040   case X86::BI__builtin_ia32_pshufd512:
4041   case X86::BI__builtin_ia32_pshufhw:
4042   case X86::BI__builtin_ia32_pshufhw256:
4043   case X86::BI__builtin_ia32_pshufhw512:
4044   case X86::BI__builtin_ia32_pshuflw:
4045   case X86::BI__builtin_ia32_pshuflw256:
4046   case X86::BI__builtin_ia32_pshuflw512:
4047   case X86::BI__builtin_ia32_vcvtps2ph:
4048   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4049   case X86::BI__builtin_ia32_vcvtps2ph256:
4050   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4051   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4052   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4053   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4054   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4055   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4056   case X86::BI__builtin_ia32_rndscaleps_mask:
4057   case X86::BI__builtin_ia32_rndscalepd_mask:
4058   case X86::BI__builtin_ia32_reducepd128_mask:
4059   case X86::BI__builtin_ia32_reducepd256_mask:
4060   case X86::BI__builtin_ia32_reducepd512_mask:
4061   case X86::BI__builtin_ia32_reduceps128_mask:
4062   case X86::BI__builtin_ia32_reduceps256_mask:
4063   case X86::BI__builtin_ia32_reduceps512_mask:
4064   case X86::BI__builtin_ia32_prold512:
4065   case X86::BI__builtin_ia32_prolq512:
4066   case X86::BI__builtin_ia32_prold128:
4067   case X86::BI__builtin_ia32_prold256:
4068   case X86::BI__builtin_ia32_prolq128:
4069   case X86::BI__builtin_ia32_prolq256:
4070   case X86::BI__builtin_ia32_prord512:
4071   case X86::BI__builtin_ia32_prorq512:
4072   case X86::BI__builtin_ia32_prord128:
4073   case X86::BI__builtin_ia32_prord256:
4074   case X86::BI__builtin_ia32_prorq128:
4075   case X86::BI__builtin_ia32_prorq256:
4076   case X86::BI__builtin_ia32_fpclasspd128_mask:
4077   case X86::BI__builtin_ia32_fpclasspd256_mask:
4078   case X86::BI__builtin_ia32_fpclassps128_mask:
4079   case X86::BI__builtin_ia32_fpclassps256_mask:
4080   case X86::BI__builtin_ia32_fpclassps512_mask:
4081   case X86::BI__builtin_ia32_fpclasspd512_mask:
4082   case X86::BI__builtin_ia32_fpclasssd_mask:
4083   case X86::BI__builtin_ia32_fpclassss_mask:
4084   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4085   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4086   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4087   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4088   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4089   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4090   case X86::BI__builtin_ia32_kshiftliqi:
4091   case X86::BI__builtin_ia32_kshiftlihi:
4092   case X86::BI__builtin_ia32_kshiftlisi:
4093   case X86::BI__builtin_ia32_kshiftlidi:
4094   case X86::BI__builtin_ia32_kshiftriqi:
4095   case X86::BI__builtin_ia32_kshiftrihi:
4096   case X86::BI__builtin_ia32_kshiftrisi:
4097   case X86::BI__builtin_ia32_kshiftridi:
4098     i = 1; l = 0; u = 255;
4099     break;
4100   case X86::BI__builtin_ia32_vperm2f128_pd256:
4101   case X86::BI__builtin_ia32_vperm2f128_ps256:
4102   case X86::BI__builtin_ia32_vperm2f128_si256:
4103   case X86::BI__builtin_ia32_permti256:
4104   case X86::BI__builtin_ia32_pblendw128:
4105   case X86::BI__builtin_ia32_pblendw256:
4106   case X86::BI__builtin_ia32_blendps256:
4107   case X86::BI__builtin_ia32_pblendd256:
4108   case X86::BI__builtin_ia32_palignr128:
4109   case X86::BI__builtin_ia32_palignr256:
4110   case X86::BI__builtin_ia32_palignr512:
4111   case X86::BI__builtin_ia32_alignq512:
4112   case X86::BI__builtin_ia32_alignd512:
4113   case X86::BI__builtin_ia32_alignd128:
4114   case X86::BI__builtin_ia32_alignd256:
4115   case X86::BI__builtin_ia32_alignq128:
4116   case X86::BI__builtin_ia32_alignq256:
4117   case X86::BI__builtin_ia32_vcomisd:
4118   case X86::BI__builtin_ia32_vcomiss:
4119   case X86::BI__builtin_ia32_shuf_f32x4:
4120   case X86::BI__builtin_ia32_shuf_f64x2:
4121   case X86::BI__builtin_ia32_shuf_i32x4:
4122   case X86::BI__builtin_ia32_shuf_i64x2:
4123   case X86::BI__builtin_ia32_shufpd512:
4124   case X86::BI__builtin_ia32_shufps:
4125   case X86::BI__builtin_ia32_shufps256:
4126   case X86::BI__builtin_ia32_shufps512:
4127   case X86::BI__builtin_ia32_dbpsadbw128:
4128   case X86::BI__builtin_ia32_dbpsadbw256:
4129   case X86::BI__builtin_ia32_dbpsadbw512:
4130   case X86::BI__builtin_ia32_vpshldd128:
4131   case X86::BI__builtin_ia32_vpshldd256:
4132   case X86::BI__builtin_ia32_vpshldd512:
4133   case X86::BI__builtin_ia32_vpshldq128:
4134   case X86::BI__builtin_ia32_vpshldq256:
4135   case X86::BI__builtin_ia32_vpshldq512:
4136   case X86::BI__builtin_ia32_vpshldw128:
4137   case X86::BI__builtin_ia32_vpshldw256:
4138   case X86::BI__builtin_ia32_vpshldw512:
4139   case X86::BI__builtin_ia32_vpshrdd128:
4140   case X86::BI__builtin_ia32_vpshrdd256:
4141   case X86::BI__builtin_ia32_vpshrdd512:
4142   case X86::BI__builtin_ia32_vpshrdq128:
4143   case X86::BI__builtin_ia32_vpshrdq256:
4144   case X86::BI__builtin_ia32_vpshrdq512:
4145   case X86::BI__builtin_ia32_vpshrdw128:
4146   case X86::BI__builtin_ia32_vpshrdw256:
4147   case X86::BI__builtin_ia32_vpshrdw512:
4148     i = 2; l = 0; u = 255;
4149     break;
4150   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4151   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4152   case X86::BI__builtin_ia32_fixupimmps512_mask:
4153   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4154   case X86::BI__builtin_ia32_fixupimmsd_mask:
4155   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4156   case X86::BI__builtin_ia32_fixupimmss_mask:
4157   case X86::BI__builtin_ia32_fixupimmss_maskz:
4158   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4159   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4160   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4161   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4162   case X86::BI__builtin_ia32_fixupimmps128_mask:
4163   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4164   case X86::BI__builtin_ia32_fixupimmps256_mask:
4165   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4166   case X86::BI__builtin_ia32_pternlogd512_mask:
4167   case X86::BI__builtin_ia32_pternlogd512_maskz:
4168   case X86::BI__builtin_ia32_pternlogq512_mask:
4169   case X86::BI__builtin_ia32_pternlogq512_maskz:
4170   case X86::BI__builtin_ia32_pternlogd128_mask:
4171   case X86::BI__builtin_ia32_pternlogd128_maskz:
4172   case X86::BI__builtin_ia32_pternlogd256_mask:
4173   case X86::BI__builtin_ia32_pternlogd256_maskz:
4174   case X86::BI__builtin_ia32_pternlogq128_mask:
4175   case X86::BI__builtin_ia32_pternlogq128_maskz:
4176   case X86::BI__builtin_ia32_pternlogq256_mask:
4177   case X86::BI__builtin_ia32_pternlogq256_maskz:
4178     i = 3; l = 0; u = 255;
4179     break;
4180   case X86::BI__builtin_ia32_gatherpfdpd:
4181   case X86::BI__builtin_ia32_gatherpfdps:
4182   case X86::BI__builtin_ia32_gatherpfqpd:
4183   case X86::BI__builtin_ia32_gatherpfqps:
4184   case X86::BI__builtin_ia32_scatterpfdpd:
4185   case X86::BI__builtin_ia32_scatterpfdps:
4186   case X86::BI__builtin_ia32_scatterpfqpd:
4187   case X86::BI__builtin_ia32_scatterpfqps:
4188     i = 4; l = 2; u = 3;
4189     break;
4190   case X86::BI__builtin_ia32_reducesd_mask:
4191   case X86::BI__builtin_ia32_reducess_mask:
4192   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4193   case X86::BI__builtin_ia32_rndscaless_round_mask:
4194     i = 4; l = 0; u = 255;
4195     break;
4196   }
4197 
4198   // Note that we don't force a hard error on the range check here, allowing
4199   // template-generated or macro-generated dead code to potentially have out-of-
4200   // range values. These need to code generate, but don't need to necessarily
4201   // make any sense. We use a warning that defaults to an error.
4202   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4203 }
4204 
4205 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4206 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4207 /// Returns true when the format fits the function and the FormatStringInfo has
4208 /// been populated.
4209 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4210                                FormatStringInfo *FSI) {
4211   FSI->HasVAListArg = Format->getFirstArg() == 0;
4212   FSI->FormatIdx = Format->getFormatIdx() - 1;
4213   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4214 
4215   // The way the format attribute works in GCC, the implicit this argument
4216   // of member functions is counted. However, it doesn't appear in our own
4217   // lists, so decrement format_idx in that case.
4218   if (IsCXXMember) {
4219     if(FSI->FormatIdx == 0)
4220       return false;
4221     --FSI->FormatIdx;
4222     if (FSI->FirstDataArg != 0)
4223       --FSI->FirstDataArg;
4224   }
4225   return true;
4226 }
4227 
4228 /// Checks if a the given expression evaluates to null.
4229 ///
4230 /// Returns true if the value evaluates to null.
4231 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4232   // If the expression has non-null type, it doesn't evaluate to null.
4233   if (auto nullability
4234         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4235     if (*nullability == NullabilityKind::NonNull)
4236       return false;
4237   }
4238 
4239   // As a special case, transparent unions initialized with zero are
4240   // considered null for the purposes of the nonnull attribute.
4241   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4242     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4243       if (const CompoundLiteralExpr *CLE =
4244           dyn_cast<CompoundLiteralExpr>(Expr))
4245         if (const InitListExpr *ILE =
4246             dyn_cast<InitListExpr>(CLE->getInitializer()))
4247           Expr = ILE->getInit(0);
4248   }
4249 
4250   bool Result;
4251   return (!Expr->isValueDependent() &&
4252           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4253           !Result);
4254 }
4255 
4256 static void CheckNonNullArgument(Sema &S,
4257                                  const Expr *ArgExpr,
4258                                  SourceLocation CallSiteLoc) {
4259   if (CheckNonNullExpr(S, ArgExpr))
4260     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4261                           S.PDiag(diag::warn_null_arg)
4262                               << ArgExpr->getSourceRange());
4263 }
4264 
4265 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4266   FormatStringInfo FSI;
4267   if ((GetFormatStringType(Format) == FST_NSString) &&
4268       getFormatStringInfo(Format, false, &FSI)) {
4269     Idx = FSI.FormatIdx;
4270     return true;
4271   }
4272   return false;
4273 }
4274 
4275 /// Diagnose use of %s directive in an NSString which is being passed
4276 /// as formatting string to formatting method.
4277 static void
4278 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4279                                         const NamedDecl *FDecl,
4280                                         Expr **Args,
4281                                         unsigned NumArgs) {
4282   unsigned Idx = 0;
4283   bool Format = false;
4284   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4285   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4286     Idx = 2;
4287     Format = true;
4288   }
4289   else
4290     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4291       if (S.GetFormatNSStringIdx(I, Idx)) {
4292         Format = true;
4293         break;
4294       }
4295     }
4296   if (!Format || NumArgs <= Idx)
4297     return;
4298   const Expr *FormatExpr = Args[Idx];
4299   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4300     FormatExpr = CSCE->getSubExpr();
4301   const StringLiteral *FormatString;
4302   if (const ObjCStringLiteral *OSL =
4303       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4304     FormatString = OSL->getString();
4305   else
4306     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4307   if (!FormatString)
4308     return;
4309   if (S.FormatStringHasSArg(FormatString)) {
4310     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4311       << "%s" << 1 << 1;
4312     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4313       << FDecl->getDeclName();
4314   }
4315 }
4316 
4317 /// Determine whether the given type has a non-null nullability annotation.
4318 static bool isNonNullType(ASTContext &ctx, QualType type) {
4319   if (auto nullability = type->getNullability(ctx))
4320     return *nullability == NullabilityKind::NonNull;
4321 
4322   return false;
4323 }
4324 
4325 static void CheckNonNullArguments(Sema &S,
4326                                   const NamedDecl *FDecl,
4327                                   const FunctionProtoType *Proto,
4328                                   ArrayRef<const Expr *> Args,
4329                                   SourceLocation CallSiteLoc) {
4330   assert((FDecl || Proto) && "Need a function declaration or prototype");
4331 
4332   // Already checked by by constant evaluator.
4333   if (S.isConstantEvaluated())
4334     return;
4335   // Check the attributes attached to the method/function itself.
4336   llvm::SmallBitVector NonNullArgs;
4337   if (FDecl) {
4338     // Handle the nonnull attribute on the function/method declaration itself.
4339     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4340       if (!NonNull->args_size()) {
4341         // Easy case: all pointer arguments are nonnull.
4342         for (const auto *Arg : Args)
4343           if (S.isValidPointerAttrType(Arg->getType()))
4344             CheckNonNullArgument(S, Arg, CallSiteLoc);
4345         return;
4346       }
4347 
4348       for (const ParamIdx &Idx : NonNull->args()) {
4349         unsigned IdxAST = Idx.getASTIndex();
4350         if (IdxAST >= Args.size())
4351           continue;
4352         if (NonNullArgs.empty())
4353           NonNullArgs.resize(Args.size());
4354         NonNullArgs.set(IdxAST);
4355       }
4356     }
4357   }
4358 
4359   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4360     // Handle the nonnull attribute on the parameters of the
4361     // function/method.
4362     ArrayRef<ParmVarDecl*> parms;
4363     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4364       parms = FD->parameters();
4365     else
4366       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4367 
4368     unsigned ParamIndex = 0;
4369     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4370          I != E; ++I, ++ParamIndex) {
4371       const ParmVarDecl *PVD = *I;
4372       if (PVD->hasAttr<NonNullAttr>() ||
4373           isNonNullType(S.Context, PVD->getType())) {
4374         if (NonNullArgs.empty())
4375           NonNullArgs.resize(Args.size());
4376 
4377         NonNullArgs.set(ParamIndex);
4378       }
4379     }
4380   } else {
4381     // If we have a non-function, non-method declaration but no
4382     // function prototype, try to dig out the function prototype.
4383     if (!Proto) {
4384       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4385         QualType type = VD->getType().getNonReferenceType();
4386         if (auto pointerType = type->getAs<PointerType>())
4387           type = pointerType->getPointeeType();
4388         else if (auto blockType = type->getAs<BlockPointerType>())
4389           type = blockType->getPointeeType();
4390         // FIXME: data member pointers?
4391 
4392         // Dig out the function prototype, if there is one.
4393         Proto = type->getAs<FunctionProtoType>();
4394       }
4395     }
4396 
4397     // Fill in non-null argument information from the nullability
4398     // information on the parameter types (if we have them).
4399     if (Proto) {
4400       unsigned Index = 0;
4401       for (auto paramType : Proto->getParamTypes()) {
4402         if (isNonNullType(S.Context, paramType)) {
4403           if (NonNullArgs.empty())
4404             NonNullArgs.resize(Args.size());
4405 
4406           NonNullArgs.set(Index);
4407         }
4408 
4409         ++Index;
4410       }
4411     }
4412   }
4413 
4414   // Check for non-null arguments.
4415   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4416        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4417     if (NonNullArgs[ArgIndex])
4418       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4419   }
4420 }
4421 
4422 /// Handles the checks for format strings, non-POD arguments to vararg
4423 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4424 /// attributes.
4425 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4426                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
4427                      bool IsMemberFunction, SourceLocation Loc,
4428                      SourceRange Range, VariadicCallType CallType) {
4429   // FIXME: We should check as much as we can in the template definition.
4430   if (CurContext->isDependentContext())
4431     return;
4432 
4433   // Printf and scanf checking.
4434   llvm::SmallBitVector CheckedVarArgs;
4435   if (FDecl) {
4436     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4437       // Only create vector if there are format attributes.
4438       CheckedVarArgs.resize(Args.size());
4439 
4440       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4441                            CheckedVarArgs);
4442     }
4443   }
4444 
4445   // Refuse POD arguments that weren't caught by the format string
4446   // checks above.
4447   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4448   if (CallType != VariadicDoesNotApply &&
4449       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4450     unsigned NumParams = Proto ? Proto->getNumParams()
4451                        : FDecl && isa<FunctionDecl>(FDecl)
4452                            ? cast<FunctionDecl>(FDecl)->getNumParams()
4453                        : FDecl && isa<ObjCMethodDecl>(FDecl)
4454                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
4455                        : 0;
4456 
4457     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4458       // Args[ArgIdx] can be null in malformed code.
4459       if (const Expr *Arg = Args[ArgIdx]) {
4460         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4461           checkVariadicArgument(Arg, CallType);
4462       }
4463     }
4464   }
4465 
4466   if (FDecl || Proto) {
4467     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4468 
4469     // Type safety checking.
4470     if (FDecl) {
4471       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4472         CheckArgumentWithTypeTag(I, Args, Loc);
4473     }
4474   }
4475 
4476   if (FD)
4477     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4478 }
4479 
4480 /// CheckConstructorCall - Check a constructor call for correctness and safety
4481 /// properties not enforced by the C type system.
4482 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4483                                 ArrayRef<const Expr *> Args,
4484                                 const FunctionProtoType *Proto,
4485                                 SourceLocation Loc) {
4486   VariadicCallType CallType =
4487     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4488   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4489             Loc, SourceRange(), CallType);
4490 }
4491 
4492 /// CheckFunctionCall - Check a direct function call for various correctness
4493 /// and safety properties not strictly enforced by the C type system.
4494 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4495                              const FunctionProtoType *Proto) {
4496   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4497                               isa<CXXMethodDecl>(FDecl);
4498   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4499                           IsMemberOperatorCall;
4500   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4501                                                   TheCall->getCallee());
4502   Expr** Args = TheCall->getArgs();
4503   unsigned NumArgs = TheCall->getNumArgs();
4504 
4505   Expr *ImplicitThis = nullptr;
4506   if (IsMemberOperatorCall) {
4507     // If this is a call to a member operator, hide the first argument
4508     // from checkCall.
4509     // FIXME: Our choice of AST representation here is less than ideal.
4510     ImplicitThis = Args[0];
4511     ++Args;
4512     --NumArgs;
4513   } else if (IsMemberFunction)
4514     ImplicitThis =
4515         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4516 
4517   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4518             IsMemberFunction, TheCall->getRParenLoc(),
4519             TheCall->getCallee()->getSourceRange(), CallType);
4520 
4521   IdentifierInfo *FnInfo = FDecl->getIdentifier();
4522   // None of the checks below are needed for functions that don't have
4523   // simple names (e.g., C++ conversion functions).
4524   if (!FnInfo)
4525     return false;
4526 
4527   CheckAbsoluteValueFunction(TheCall, FDecl);
4528   CheckMaxUnsignedZero(TheCall, FDecl);
4529 
4530   if (getLangOpts().ObjC)
4531     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4532 
4533   unsigned CMId = FDecl->getMemoryFunctionKind();
4534   if (CMId == 0)
4535     return false;
4536 
4537   // Handle memory setting and copying functions.
4538   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
4539     CheckStrlcpycatArguments(TheCall, FnInfo);
4540   else if (CMId == Builtin::BIstrncat)
4541     CheckStrncatArguments(TheCall, FnInfo);
4542   else
4543     CheckMemaccessArguments(TheCall, CMId, FnInfo);
4544 
4545   return false;
4546 }
4547 
4548 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4549                                ArrayRef<const Expr *> Args) {
4550   VariadicCallType CallType =
4551       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4552 
4553   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4554             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4555             CallType);
4556 
4557   return false;
4558 }
4559 
4560 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4561                             const FunctionProtoType *Proto) {
4562   QualType Ty;
4563   if (const auto *V = dyn_cast<VarDecl>(NDecl))
4564     Ty = V->getType().getNonReferenceType();
4565   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4566     Ty = F->getType().getNonReferenceType();
4567   else
4568     return false;
4569 
4570   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4571       !Ty->isFunctionProtoType())
4572     return false;
4573 
4574   VariadicCallType CallType;
4575   if (!Proto || !Proto->isVariadic()) {
4576     CallType = VariadicDoesNotApply;
4577   } else if (Ty->isBlockPointerType()) {
4578     CallType = VariadicBlock;
4579   } else { // Ty->isFunctionPointerType()
4580     CallType = VariadicFunction;
4581   }
4582 
4583   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4584             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4585             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4586             TheCall->getCallee()->getSourceRange(), CallType);
4587 
4588   return false;
4589 }
4590 
4591 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4592 /// such as function pointers returned from functions.
4593 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4594   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4595                                                   TheCall->getCallee());
4596   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4597             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4598             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4599             TheCall->getCallee()->getSourceRange(), CallType);
4600 
4601   return false;
4602 }
4603 
4604 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4605   if (!llvm::isValidAtomicOrderingCABI(Ordering))
4606     return false;
4607 
4608   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4609   switch (Op) {
4610   case AtomicExpr::AO__c11_atomic_init:
4611   case AtomicExpr::AO__opencl_atomic_init:
4612     llvm_unreachable("There is no ordering argument for an init");
4613 
4614   case AtomicExpr::AO__c11_atomic_load:
4615   case AtomicExpr::AO__opencl_atomic_load:
4616   case AtomicExpr::AO__atomic_load_n:
4617   case AtomicExpr::AO__atomic_load:
4618     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4619            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4620 
4621   case AtomicExpr::AO__c11_atomic_store:
4622   case AtomicExpr::AO__opencl_atomic_store:
4623   case AtomicExpr::AO__atomic_store:
4624   case AtomicExpr::AO__atomic_store_n:
4625     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4626            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4627            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4628 
4629   default:
4630     return true;
4631   }
4632 }
4633 
4634 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4635                                          AtomicExpr::AtomicOp Op) {
4636   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4637   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4638   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
4639   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
4640                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
4641                          Op);
4642 }
4643 
4644 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
4645                                  SourceLocation RParenLoc, MultiExprArg Args,
4646                                  AtomicExpr::AtomicOp Op,
4647                                  AtomicArgumentOrder ArgOrder) {
4648   // All the non-OpenCL operations take one of the following forms.
4649   // The OpenCL operations take the __c11 forms with one extra argument for
4650   // synchronization scope.
4651   enum {
4652     // C    __c11_atomic_init(A *, C)
4653     Init,
4654 
4655     // C    __c11_atomic_load(A *, int)
4656     Load,
4657 
4658     // void __atomic_load(A *, CP, int)
4659     LoadCopy,
4660 
4661     // void __atomic_store(A *, CP, int)
4662     Copy,
4663 
4664     // C    __c11_atomic_add(A *, M, int)
4665     Arithmetic,
4666 
4667     // C    __atomic_exchange_n(A *, CP, int)
4668     Xchg,
4669 
4670     // void __atomic_exchange(A *, C *, CP, int)
4671     GNUXchg,
4672 
4673     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4674     C11CmpXchg,
4675 
4676     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4677     GNUCmpXchg
4678   } Form = Init;
4679 
4680   const unsigned NumForm = GNUCmpXchg + 1;
4681   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4682   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4683   // where:
4684   //   C is an appropriate type,
4685   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4686   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4687   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4688   //   the int parameters are for orderings.
4689 
4690   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4691       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4692       "need to update code for modified forms");
4693   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4694                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
4695                         AtomicExpr::AO__atomic_load,
4696                 "need to update code for modified C11 atomics");
4697   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4698                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4699   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4700                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
4701                IsOpenCL;
4702   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4703              Op == AtomicExpr::AO__atomic_store_n ||
4704              Op == AtomicExpr::AO__atomic_exchange_n ||
4705              Op == AtomicExpr::AO__atomic_compare_exchange_n;
4706   bool IsAddSub = false;
4707 
4708   switch (Op) {
4709   case AtomicExpr::AO__c11_atomic_init:
4710   case AtomicExpr::AO__opencl_atomic_init:
4711     Form = Init;
4712     break;
4713 
4714   case AtomicExpr::AO__c11_atomic_load:
4715   case AtomicExpr::AO__opencl_atomic_load:
4716   case AtomicExpr::AO__atomic_load_n:
4717     Form = Load;
4718     break;
4719 
4720   case AtomicExpr::AO__atomic_load:
4721     Form = LoadCopy;
4722     break;
4723 
4724   case AtomicExpr::AO__c11_atomic_store:
4725   case AtomicExpr::AO__opencl_atomic_store:
4726   case AtomicExpr::AO__atomic_store:
4727   case AtomicExpr::AO__atomic_store_n:
4728     Form = Copy;
4729     break;
4730 
4731   case AtomicExpr::AO__c11_atomic_fetch_add:
4732   case AtomicExpr::AO__c11_atomic_fetch_sub:
4733   case AtomicExpr::AO__opencl_atomic_fetch_add:
4734   case AtomicExpr::AO__opencl_atomic_fetch_sub:
4735   case AtomicExpr::AO__atomic_fetch_add:
4736   case AtomicExpr::AO__atomic_fetch_sub:
4737   case AtomicExpr::AO__atomic_add_fetch:
4738   case AtomicExpr::AO__atomic_sub_fetch:
4739     IsAddSub = true;
4740     LLVM_FALLTHROUGH;
4741   case AtomicExpr::AO__c11_atomic_fetch_and:
4742   case AtomicExpr::AO__c11_atomic_fetch_or:
4743   case AtomicExpr::AO__c11_atomic_fetch_xor:
4744   case AtomicExpr::AO__opencl_atomic_fetch_and:
4745   case AtomicExpr::AO__opencl_atomic_fetch_or:
4746   case AtomicExpr::AO__opencl_atomic_fetch_xor:
4747   case AtomicExpr::AO__atomic_fetch_and:
4748   case AtomicExpr::AO__atomic_fetch_or:
4749   case AtomicExpr::AO__atomic_fetch_xor:
4750   case AtomicExpr::AO__atomic_fetch_nand:
4751   case AtomicExpr::AO__atomic_and_fetch:
4752   case AtomicExpr::AO__atomic_or_fetch:
4753   case AtomicExpr::AO__atomic_xor_fetch:
4754   case AtomicExpr::AO__atomic_nand_fetch:
4755   case AtomicExpr::AO__c11_atomic_fetch_min:
4756   case AtomicExpr::AO__c11_atomic_fetch_max:
4757   case AtomicExpr::AO__opencl_atomic_fetch_min:
4758   case AtomicExpr::AO__opencl_atomic_fetch_max:
4759   case AtomicExpr::AO__atomic_min_fetch:
4760   case AtomicExpr::AO__atomic_max_fetch:
4761   case AtomicExpr::AO__atomic_fetch_min:
4762   case AtomicExpr::AO__atomic_fetch_max:
4763     Form = Arithmetic;
4764     break;
4765 
4766   case AtomicExpr::AO__c11_atomic_exchange:
4767   case AtomicExpr::AO__opencl_atomic_exchange:
4768   case AtomicExpr::AO__atomic_exchange_n:
4769     Form = Xchg;
4770     break;
4771 
4772   case AtomicExpr::AO__atomic_exchange:
4773     Form = GNUXchg;
4774     break;
4775 
4776   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4777   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4778   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4779   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4780     Form = C11CmpXchg;
4781     break;
4782 
4783   case AtomicExpr::AO__atomic_compare_exchange:
4784   case AtomicExpr::AO__atomic_compare_exchange_n:
4785     Form = GNUCmpXchg;
4786     break;
4787   }
4788 
4789   unsigned AdjustedNumArgs = NumArgs[Form];
4790   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4791     ++AdjustedNumArgs;
4792   // Check we have the right number of arguments.
4793   if (Args.size() < AdjustedNumArgs) {
4794     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
4795         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4796         << ExprRange;
4797     return ExprError();
4798   } else if (Args.size() > AdjustedNumArgs) {
4799     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
4800          diag::err_typecheck_call_too_many_args)
4801         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4802         << ExprRange;
4803     return ExprError();
4804   }
4805 
4806   // Inspect the first argument of the atomic operation.
4807   Expr *Ptr = Args[0];
4808   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4809   if (ConvertedPtr.isInvalid())
4810     return ExprError();
4811 
4812   Ptr = ConvertedPtr.get();
4813   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4814   if (!pointerType) {
4815     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
4816         << Ptr->getType() << Ptr->getSourceRange();
4817     return ExprError();
4818   }
4819 
4820   // For a __c11 builtin, this should be a pointer to an _Atomic type.
4821   QualType AtomTy = pointerType->getPointeeType(); // 'A'
4822   QualType ValType = AtomTy; // 'C'
4823   if (IsC11) {
4824     if (!AtomTy->isAtomicType()) {
4825       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
4826           << Ptr->getType() << Ptr->getSourceRange();
4827       return ExprError();
4828     }
4829     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4830         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4831       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
4832           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4833           << Ptr->getSourceRange();
4834       return ExprError();
4835     }
4836     ValType = AtomTy->castAs<AtomicType>()->getValueType();
4837   } else if (Form != Load && Form != LoadCopy) {
4838     if (ValType.isConstQualified()) {
4839       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
4840           << Ptr->getType() << Ptr->getSourceRange();
4841       return ExprError();
4842     }
4843   }
4844 
4845   // For an arithmetic operation, the implied arithmetic must be well-formed.
4846   if (Form == Arithmetic) {
4847     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4848     if (IsAddSub && !ValType->isIntegerType()
4849         && !ValType->isPointerType()) {
4850       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4851           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4852       return ExprError();
4853     }
4854     if (!IsAddSub && !ValType->isIntegerType()) {
4855       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
4856           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4857       return ExprError();
4858     }
4859     if (IsC11 && ValType->isPointerType() &&
4860         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4861                             diag::err_incomplete_type)) {
4862       return ExprError();
4863     }
4864   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4865     // For __atomic_*_n operations, the value type must be a scalar integral or
4866     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4867     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4868         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4869     return ExprError();
4870   }
4871 
4872   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4873       !AtomTy->isScalarType()) {
4874     // For GNU atomics, require a trivially-copyable type. This is not part of
4875     // the GNU atomics specification, but we enforce it for sanity.
4876     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
4877         << Ptr->getType() << Ptr->getSourceRange();
4878     return ExprError();
4879   }
4880 
4881   switch (ValType.getObjCLifetime()) {
4882   case Qualifiers::OCL_None:
4883   case Qualifiers::OCL_ExplicitNone:
4884     // okay
4885     break;
4886 
4887   case Qualifiers::OCL_Weak:
4888   case Qualifiers::OCL_Strong:
4889   case Qualifiers::OCL_Autoreleasing:
4890     // FIXME: Can this happen? By this point, ValType should be known
4891     // to be trivially copyable.
4892     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
4893         << ValType << Ptr->getSourceRange();
4894     return ExprError();
4895   }
4896 
4897   // All atomic operations have an overload which takes a pointer to a volatile
4898   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
4899   // into the result or the other operands. Similarly atomic_load takes a
4900   // pointer to a const 'A'.
4901   ValType.removeLocalVolatile();
4902   ValType.removeLocalConst();
4903   QualType ResultType = ValType;
4904   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4905       Form == Init)
4906     ResultType = Context.VoidTy;
4907   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4908     ResultType = Context.BoolTy;
4909 
4910   // The type of a parameter passed 'by value'. In the GNU atomics, such
4911   // arguments are actually passed as pointers.
4912   QualType ByValType = ValType; // 'CP'
4913   bool IsPassedByAddress = false;
4914   if (!IsC11 && !IsN) {
4915     ByValType = Ptr->getType();
4916     IsPassedByAddress = true;
4917   }
4918 
4919   SmallVector<Expr *, 5> APIOrderedArgs;
4920   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4921     APIOrderedArgs.push_back(Args[0]);
4922     switch (Form) {
4923     case Init:
4924     case Load:
4925       APIOrderedArgs.push_back(Args[1]); // Val1/Order
4926       break;
4927     case LoadCopy:
4928     case Copy:
4929     case Arithmetic:
4930     case Xchg:
4931       APIOrderedArgs.push_back(Args[2]); // Val1
4932       APIOrderedArgs.push_back(Args[1]); // Order
4933       break;
4934     case GNUXchg:
4935       APIOrderedArgs.push_back(Args[2]); // Val1
4936       APIOrderedArgs.push_back(Args[3]); // Val2
4937       APIOrderedArgs.push_back(Args[1]); // Order
4938       break;
4939     case C11CmpXchg:
4940       APIOrderedArgs.push_back(Args[2]); // Val1
4941       APIOrderedArgs.push_back(Args[4]); // Val2
4942       APIOrderedArgs.push_back(Args[1]); // Order
4943       APIOrderedArgs.push_back(Args[3]); // OrderFail
4944       break;
4945     case GNUCmpXchg:
4946       APIOrderedArgs.push_back(Args[2]); // Val1
4947       APIOrderedArgs.push_back(Args[4]); // Val2
4948       APIOrderedArgs.push_back(Args[5]); // Weak
4949       APIOrderedArgs.push_back(Args[1]); // Order
4950       APIOrderedArgs.push_back(Args[3]); // OrderFail
4951       break;
4952     }
4953   } else
4954     APIOrderedArgs.append(Args.begin(), Args.end());
4955 
4956   // The first argument's non-CV pointer type is used to deduce the type of
4957   // subsequent arguments, except for:
4958   //  - weak flag (always converted to bool)
4959   //  - memory order (always converted to int)
4960   //  - scope  (always converted to int)
4961   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
4962     QualType Ty;
4963     if (i < NumVals[Form] + 1) {
4964       switch (i) {
4965       case 0:
4966         // The first argument is always a pointer. It has a fixed type.
4967         // It is always dereferenced, a nullptr is undefined.
4968         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
4969         // Nothing else to do: we already know all we want about this pointer.
4970         continue;
4971       case 1:
4972         // The second argument is the non-atomic operand. For arithmetic, this
4973         // is always passed by value, and for a compare_exchange it is always
4974         // passed by address. For the rest, GNU uses by-address and C11 uses
4975         // by-value.
4976         assert(Form != Load);
4977         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
4978           Ty = ValType;
4979         else if (Form == Copy || Form == Xchg) {
4980           if (IsPassedByAddress) {
4981             // The value pointer is always dereferenced, a nullptr is undefined.
4982             CheckNonNullArgument(*this, APIOrderedArgs[i],
4983                                  ExprRange.getBegin());
4984           }
4985           Ty = ByValType;
4986         } else if (Form == Arithmetic)
4987           Ty = Context.getPointerDiffType();
4988         else {
4989           Expr *ValArg = APIOrderedArgs[i];
4990           // The value pointer is always dereferenced, a nullptr is undefined.
4991           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
4992           LangAS AS = LangAS::Default;
4993           // Keep address space of non-atomic pointer type.
4994           if (const PointerType *PtrTy =
4995                   ValArg->getType()->getAs<PointerType>()) {
4996             AS = PtrTy->getPointeeType().getAddressSpace();
4997           }
4998           Ty = Context.getPointerType(
4999               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5000         }
5001         break;
5002       case 2:
5003         // The third argument to compare_exchange / GNU exchange is the desired
5004         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5005         if (IsPassedByAddress)
5006           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5007         Ty = ByValType;
5008         break;
5009       case 3:
5010         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5011         Ty = Context.BoolTy;
5012         break;
5013       }
5014     } else {
5015       // The order(s) and scope are always converted to int.
5016       Ty = Context.IntTy;
5017     }
5018 
5019     InitializedEntity Entity =
5020         InitializedEntity::InitializeParameter(Context, Ty, false);
5021     ExprResult Arg = APIOrderedArgs[i];
5022     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5023     if (Arg.isInvalid())
5024       return true;
5025     APIOrderedArgs[i] = Arg.get();
5026   }
5027 
5028   // Permute the arguments into a 'consistent' order.
5029   SmallVector<Expr*, 5> SubExprs;
5030   SubExprs.push_back(Ptr);
5031   switch (Form) {
5032   case Init:
5033     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5034     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5035     break;
5036   case Load:
5037     SubExprs.push_back(APIOrderedArgs[1]); // Order
5038     break;
5039   case LoadCopy:
5040   case Copy:
5041   case Arithmetic:
5042   case Xchg:
5043     SubExprs.push_back(APIOrderedArgs[2]); // Order
5044     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5045     break;
5046   case GNUXchg:
5047     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5048     SubExprs.push_back(APIOrderedArgs[3]); // Order
5049     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5050     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5051     break;
5052   case C11CmpXchg:
5053     SubExprs.push_back(APIOrderedArgs[3]); // Order
5054     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5055     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5056     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5057     break;
5058   case GNUCmpXchg:
5059     SubExprs.push_back(APIOrderedArgs[4]); // Order
5060     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5061     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5062     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5063     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5064     break;
5065   }
5066 
5067   if (SubExprs.size() >= 2 && Form != Init) {
5068     llvm::APSInt Result(32);
5069     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
5070         !isValidOrderingForOp(Result.getSExtValue(), Op))
5071       Diag(SubExprs[1]->getBeginLoc(),
5072            diag::warn_atomic_op_has_invalid_memory_order)
5073           << SubExprs[1]->getSourceRange();
5074   }
5075 
5076   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5077     auto *Scope = Args[Args.size() - 1];
5078     llvm::APSInt Result(32);
5079     if (Scope->isIntegerConstantExpr(Result, Context) &&
5080         !ScopeModel->isValid(Result.getZExtValue())) {
5081       Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5082           << Scope->getSourceRange();
5083     }
5084     SubExprs.push_back(Scope);
5085   }
5086 
5087   AtomicExpr *AE = new (Context)
5088       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5089 
5090   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5091        Op == AtomicExpr::AO__c11_atomic_store ||
5092        Op == AtomicExpr::AO__opencl_atomic_load ||
5093        Op == AtomicExpr::AO__opencl_atomic_store ) &&
5094       Context.AtomicUsesUnsupportedLibcall(AE))
5095     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5096         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5097              Op == AtomicExpr::AO__opencl_atomic_load)
5098                 ? 0
5099                 : 1);
5100 
5101   return AE;
5102 }
5103 
5104 /// checkBuiltinArgument - Given a call to a builtin function, perform
5105 /// normal type-checking on the given argument, updating the call in
5106 /// place.  This is useful when a builtin function requires custom
5107 /// type-checking for some of its arguments but not necessarily all of
5108 /// them.
5109 ///
5110 /// Returns true on error.
5111 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5112   FunctionDecl *Fn = E->getDirectCallee();
5113   assert(Fn && "builtin call without direct callee!");
5114 
5115   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5116   InitializedEntity Entity =
5117     InitializedEntity::InitializeParameter(S.Context, Param);
5118 
5119   ExprResult Arg = E->getArg(0);
5120   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5121   if (Arg.isInvalid())
5122     return true;
5123 
5124   E->setArg(ArgIndex, Arg.get());
5125   return false;
5126 }
5127 
5128 /// We have a call to a function like __sync_fetch_and_add, which is an
5129 /// overloaded function based on the pointer type of its first argument.
5130 /// The main BuildCallExpr routines have already promoted the types of
5131 /// arguments because all of these calls are prototyped as void(...).
5132 ///
5133 /// This function goes through and does final semantic checking for these
5134 /// builtins, as well as generating any warnings.
5135 ExprResult
5136 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5137   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5138   Expr *Callee = TheCall->getCallee();
5139   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5140   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5141 
5142   // Ensure that we have at least one argument to do type inference from.
5143   if (TheCall->getNumArgs() < 1) {
5144     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5145         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5146     return ExprError();
5147   }
5148 
5149   // Inspect the first argument of the atomic builtin.  This should always be
5150   // a pointer type, whose element is an integral scalar or pointer type.
5151   // Because it is a pointer type, we don't have to worry about any implicit
5152   // casts here.
5153   // FIXME: We don't allow floating point scalars as input.
5154   Expr *FirstArg = TheCall->getArg(0);
5155   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5156   if (FirstArgResult.isInvalid())
5157     return ExprError();
5158   FirstArg = FirstArgResult.get();
5159   TheCall->setArg(0, FirstArg);
5160 
5161   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5162   if (!pointerType) {
5163     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5164         << FirstArg->getType() << FirstArg->getSourceRange();
5165     return ExprError();
5166   }
5167 
5168   QualType ValType = pointerType->getPointeeType();
5169   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5170       !ValType->isBlockPointerType()) {
5171     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5172         << FirstArg->getType() << FirstArg->getSourceRange();
5173     return ExprError();
5174   }
5175 
5176   if (ValType.isConstQualified()) {
5177     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5178         << FirstArg->getType() << FirstArg->getSourceRange();
5179     return ExprError();
5180   }
5181 
5182   switch (ValType.getObjCLifetime()) {
5183   case Qualifiers::OCL_None:
5184   case Qualifiers::OCL_ExplicitNone:
5185     // okay
5186     break;
5187 
5188   case Qualifiers::OCL_Weak:
5189   case Qualifiers::OCL_Strong:
5190   case Qualifiers::OCL_Autoreleasing:
5191     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5192         << ValType << FirstArg->getSourceRange();
5193     return ExprError();
5194   }
5195 
5196   // Strip any qualifiers off ValType.
5197   ValType = ValType.getUnqualifiedType();
5198 
5199   // The majority of builtins return a value, but a few have special return
5200   // types, so allow them to override appropriately below.
5201   QualType ResultType = ValType;
5202 
5203   // We need to figure out which concrete builtin this maps onto.  For example,
5204   // __sync_fetch_and_add with a 2 byte object turns into
5205   // __sync_fetch_and_add_2.
5206 #define BUILTIN_ROW(x) \
5207   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5208     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5209 
5210   static const unsigned BuiltinIndices[][5] = {
5211     BUILTIN_ROW(__sync_fetch_and_add),
5212     BUILTIN_ROW(__sync_fetch_and_sub),
5213     BUILTIN_ROW(__sync_fetch_and_or),
5214     BUILTIN_ROW(__sync_fetch_and_and),
5215     BUILTIN_ROW(__sync_fetch_and_xor),
5216     BUILTIN_ROW(__sync_fetch_and_nand),
5217 
5218     BUILTIN_ROW(__sync_add_and_fetch),
5219     BUILTIN_ROW(__sync_sub_and_fetch),
5220     BUILTIN_ROW(__sync_and_and_fetch),
5221     BUILTIN_ROW(__sync_or_and_fetch),
5222     BUILTIN_ROW(__sync_xor_and_fetch),
5223     BUILTIN_ROW(__sync_nand_and_fetch),
5224 
5225     BUILTIN_ROW(__sync_val_compare_and_swap),
5226     BUILTIN_ROW(__sync_bool_compare_and_swap),
5227     BUILTIN_ROW(__sync_lock_test_and_set),
5228     BUILTIN_ROW(__sync_lock_release),
5229     BUILTIN_ROW(__sync_swap)
5230   };
5231 #undef BUILTIN_ROW
5232 
5233   // Determine the index of the size.
5234   unsigned SizeIndex;
5235   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5236   case 1: SizeIndex = 0; break;
5237   case 2: SizeIndex = 1; break;
5238   case 4: SizeIndex = 2; break;
5239   case 8: SizeIndex = 3; break;
5240   case 16: SizeIndex = 4; break;
5241   default:
5242     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5243         << FirstArg->getType() << FirstArg->getSourceRange();
5244     return ExprError();
5245   }
5246 
5247   // Each of these builtins has one pointer argument, followed by some number of
5248   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5249   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5250   // as the number of fixed args.
5251   unsigned BuiltinID = FDecl->getBuiltinID();
5252   unsigned BuiltinIndex, NumFixed = 1;
5253   bool WarnAboutSemanticsChange = false;
5254   switch (BuiltinID) {
5255   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5256   case Builtin::BI__sync_fetch_and_add:
5257   case Builtin::BI__sync_fetch_and_add_1:
5258   case Builtin::BI__sync_fetch_and_add_2:
5259   case Builtin::BI__sync_fetch_and_add_4:
5260   case Builtin::BI__sync_fetch_and_add_8:
5261   case Builtin::BI__sync_fetch_and_add_16:
5262     BuiltinIndex = 0;
5263     break;
5264 
5265   case Builtin::BI__sync_fetch_and_sub:
5266   case Builtin::BI__sync_fetch_and_sub_1:
5267   case Builtin::BI__sync_fetch_and_sub_2:
5268   case Builtin::BI__sync_fetch_and_sub_4:
5269   case Builtin::BI__sync_fetch_and_sub_8:
5270   case Builtin::BI__sync_fetch_and_sub_16:
5271     BuiltinIndex = 1;
5272     break;
5273 
5274   case Builtin::BI__sync_fetch_and_or:
5275   case Builtin::BI__sync_fetch_and_or_1:
5276   case Builtin::BI__sync_fetch_and_or_2:
5277   case Builtin::BI__sync_fetch_and_or_4:
5278   case Builtin::BI__sync_fetch_and_or_8:
5279   case Builtin::BI__sync_fetch_and_or_16:
5280     BuiltinIndex = 2;
5281     break;
5282 
5283   case Builtin::BI__sync_fetch_and_and:
5284   case Builtin::BI__sync_fetch_and_and_1:
5285   case Builtin::BI__sync_fetch_and_and_2:
5286   case Builtin::BI__sync_fetch_and_and_4:
5287   case Builtin::BI__sync_fetch_and_and_8:
5288   case Builtin::BI__sync_fetch_and_and_16:
5289     BuiltinIndex = 3;
5290     break;
5291 
5292   case Builtin::BI__sync_fetch_and_xor:
5293   case Builtin::BI__sync_fetch_and_xor_1:
5294   case Builtin::BI__sync_fetch_and_xor_2:
5295   case Builtin::BI__sync_fetch_and_xor_4:
5296   case Builtin::BI__sync_fetch_and_xor_8:
5297   case Builtin::BI__sync_fetch_and_xor_16:
5298     BuiltinIndex = 4;
5299     break;
5300 
5301   case Builtin::BI__sync_fetch_and_nand:
5302   case Builtin::BI__sync_fetch_and_nand_1:
5303   case Builtin::BI__sync_fetch_and_nand_2:
5304   case Builtin::BI__sync_fetch_and_nand_4:
5305   case Builtin::BI__sync_fetch_and_nand_8:
5306   case Builtin::BI__sync_fetch_and_nand_16:
5307     BuiltinIndex = 5;
5308     WarnAboutSemanticsChange = true;
5309     break;
5310 
5311   case Builtin::BI__sync_add_and_fetch:
5312   case Builtin::BI__sync_add_and_fetch_1:
5313   case Builtin::BI__sync_add_and_fetch_2:
5314   case Builtin::BI__sync_add_and_fetch_4:
5315   case Builtin::BI__sync_add_and_fetch_8:
5316   case Builtin::BI__sync_add_and_fetch_16:
5317     BuiltinIndex = 6;
5318     break;
5319 
5320   case Builtin::BI__sync_sub_and_fetch:
5321   case Builtin::BI__sync_sub_and_fetch_1:
5322   case Builtin::BI__sync_sub_and_fetch_2:
5323   case Builtin::BI__sync_sub_and_fetch_4:
5324   case Builtin::BI__sync_sub_and_fetch_8:
5325   case Builtin::BI__sync_sub_and_fetch_16:
5326     BuiltinIndex = 7;
5327     break;
5328 
5329   case Builtin::BI__sync_and_and_fetch:
5330   case Builtin::BI__sync_and_and_fetch_1:
5331   case Builtin::BI__sync_and_and_fetch_2:
5332   case Builtin::BI__sync_and_and_fetch_4:
5333   case Builtin::BI__sync_and_and_fetch_8:
5334   case Builtin::BI__sync_and_and_fetch_16:
5335     BuiltinIndex = 8;
5336     break;
5337 
5338   case Builtin::BI__sync_or_and_fetch:
5339   case Builtin::BI__sync_or_and_fetch_1:
5340   case Builtin::BI__sync_or_and_fetch_2:
5341   case Builtin::BI__sync_or_and_fetch_4:
5342   case Builtin::BI__sync_or_and_fetch_8:
5343   case Builtin::BI__sync_or_and_fetch_16:
5344     BuiltinIndex = 9;
5345     break;
5346 
5347   case Builtin::BI__sync_xor_and_fetch:
5348   case Builtin::BI__sync_xor_and_fetch_1:
5349   case Builtin::BI__sync_xor_and_fetch_2:
5350   case Builtin::BI__sync_xor_and_fetch_4:
5351   case Builtin::BI__sync_xor_and_fetch_8:
5352   case Builtin::BI__sync_xor_and_fetch_16:
5353     BuiltinIndex = 10;
5354     break;
5355 
5356   case Builtin::BI__sync_nand_and_fetch:
5357   case Builtin::BI__sync_nand_and_fetch_1:
5358   case Builtin::BI__sync_nand_and_fetch_2:
5359   case Builtin::BI__sync_nand_and_fetch_4:
5360   case Builtin::BI__sync_nand_and_fetch_8:
5361   case Builtin::BI__sync_nand_and_fetch_16:
5362     BuiltinIndex = 11;
5363     WarnAboutSemanticsChange = true;
5364     break;
5365 
5366   case Builtin::BI__sync_val_compare_and_swap:
5367   case Builtin::BI__sync_val_compare_and_swap_1:
5368   case Builtin::BI__sync_val_compare_and_swap_2:
5369   case Builtin::BI__sync_val_compare_and_swap_4:
5370   case Builtin::BI__sync_val_compare_and_swap_8:
5371   case Builtin::BI__sync_val_compare_and_swap_16:
5372     BuiltinIndex = 12;
5373     NumFixed = 2;
5374     break;
5375 
5376   case Builtin::BI__sync_bool_compare_and_swap:
5377   case Builtin::BI__sync_bool_compare_and_swap_1:
5378   case Builtin::BI__sync_bool_compare_and_swap_2:
5379   case Builtin::BI__sync_bool_compare_and_swap_4:
5380   case Builtin::BI__sync_bool_compare_and_swap_8:
5381   case Builtin::BI__sync_bool_compare_and_swap_16:
5382     BuiltinIndex = 13;
5383     NumFixed = 2;
5384     ResultType = Context.BoolTy;
5385     break;
5386 
5387   case Builtin::BI__sync_lock_test_and_set:
5388   case Builtin::BI__sync_lock_test_and_set_1:
5389   case Builtin::BI__sync_lock_test_and_set_2:
5390   case Builtin::BI__sync_lock_test_and_set_4:
5391   case Builtin::BI__sync_lock_test_and_set_8:
5392   case Builtin::BI__sync_lock_test_and_set_16:
5393     BuiltinIndex = 14;
5394     break;
5395 
5396   case Builtin::BI__sync_lock_release:
5397   case Builtin::BI__sync_lock_release_1:
5398   case Builtin::BI__sync_lock_release_2:
5399   case Builtin::BI__sync_lock_release_4:
5400   case Builtin::BI__sync_lock_release_8:
5401   case Builtin::BI__sync_lock_release_16:
5402     BuiltinIndex = 15;
5403     NumFixed = 0;
5404     ResultType = Context.VoidTy;
5405     break;
5406 
5407   case Builtin::BI__sync_swap:
5408   case Builtin::BI__sync_swap_1:
5409   case Builtin::BI__sync_swap_2:
5410   case Builtin::BI__sync_swap_4:
5411   case Builtin::BI__sync_swap_8:
5412   case Builtin::BI__sync_swap_16:
5413     BuiltinIndex = 16;
5414     break;
5415   }
5416 
5417   // Now that we know how many fixed arguments we expect, first check that we
5418   // have at least that many.
5419   if (TheCall->getNumArgs() < 1+NumFixed) {
5420     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5421         << 0 << 1 + NumFixed << TheCall->getNumArgs()
5422         << Callee->getSourceRange();
5423     return ExprError();
5424   }
5425 
5426   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5427       << Callee->getSourceRange();
5428 
5429   if (WarnAboutSemanticsChange) {
5430     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5431         << Callee->getSourceRange();
5432   }
5433 
5434   // Get the decl for the concrete builtin from this, we can tell what the
5435   // concrete integer type we should convert to is.
5436   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5437   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5438   FunctionDecl *NewBuiltinDecl;
5439   if (NewBuiltinID == BuiltinID)
5440     NewBuiltinDecl = FDecl;
5441   else {
5442     // Perform builtin lookup to avoid redeclaring it.
5443     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5444     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5445     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5446     assert(Res.getFoundDecl());
5447     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5448     if (!NewBuiltinDecl)
5449       return ExprError();
5450   }
5451 
5452   // The first argument --- the pointer --- has a fixed type; we
5453   // deduce the types of the rest of the arguments accordingly.  Walk
5454   // the remaining arguments, converting them to the deduced value type.
5455   for (unsigned i = 0; i != NumFixed; ++i) {
5456     ExprResult Arg = TheCall->getArg(i+1);
5457 
5458     // GCC does an implicit conversion to the pointer or integer ValType.  This
5459     // can fail in some cases (1i -> int**), check for this error case now.
5460     // Initialize the argument.
5461     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5462                                                    ValType, /*consume*/ false);
5463     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5464     if (Arg.isInvalid())
5465       return ExprError();
5466 
5467     // Okay, we have something that *can* be converted to the right type.  Check
5468     // to see if there is a potentially weird extension going on here.  This can
5469     // happen when you do an atomic operation on something like an char* and
5470     // pass in 42.  The 42 gets converted to char.  This is even more strange
5471     // for things like 45.123 -> char, etc.
5472     // FIXME: Do this check.
5473     TheCall->setArg(i+1, Arg.get());
5474   }
5475 
5476   // Create a new DeclRefExpr to refer to the new decl.
5477   DeclRefExpr *NewDRE = DeclRefExpr::Create(
5478       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5479       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5480       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5481 
5482   // Set the callee in the CallExpr.
5483   // FIXME: This loses syntactic information.
5484   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5485   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5486                                               CK_BuiltinFnToFnPtr);
5487   TheCall->setCallee(PromotedCall.get());
5488 
5489   // Change the result type of the call to match the original value type. This
5490   // is arbitrary, but the codegen for these builtins ins design to handle it
5491   // gracefully.
5492   TheCall->setType(ResultType);
5493 
5494   return TheCallResult;
5495 }
5496 
5497 /// SemaBuiltinNontemporalOverloaded - We have a call to
5498 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5499 /// overloaded function based on the pointer type of its last argument.
5500 ///
5501 /// This function goes through and does final semantic checking for these
5502 /// builtins.
5503 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5504   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5505   DeclRefExpr *DRE =
5506       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5507   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5508   unsigned BuiltinID = FDecl->getBuiltinID();
5509   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5510           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5511          "Unexpected nontemporal load/store builtin!");
5512   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5513   unsigned numArgs = isStore ? 2 : 1;
5514 
5515   // Ensure that we have the proper number of arguments.
5516   if (checkArgCount(*this, TheCall, numArgs))
5517     return ExprError();
5518 
5519   // Inspect the last argument of the nontemporal builtin.  This should always
5520   // be a pointer type, from which we imply the type of the memory access.
5521   // Because it is a pointer type, we don't have to worry about any implicit
5522   // casts here.
5523   Expr *PointerArg = TheCall->getArg(numArgs - 1);
5524   ExprResult PointerArgResult =
5525       DefaultFunctionArrayLvalueConversion(PointerArg);
5526 
5527   if (PointerArgResult.isInvalid())
5528     return ExprError();
5529   PointerArg = PointerArgResult.get();
5530   TheCall->setArg(numArgs - 1, PointerArg);
5531 
5532   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5533   if (!pointerType) {
5534     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5535         << PointerArg->getType() << PointerArg->getSourceRange();
5536     return ExprError();
5537   }
5538 
5539   QualType ValType = pointerType->getPointeeType();
5540 
5541   // Strip any qualifiers off ValType.
5542   ValType = ValType.getUnqualifiedType();
5543   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5544       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5545       !ValType->isVectorType()) {
5546     Diag(DRE->getBeginLoc(),
5547          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5548         << PointerArg->getType() << PointerArg->getSourceRange();
5549     return ExprError();
5550   }
5551 
5552   if (!isStore) {
5553     TheCall->setType(ValType);
5554     return TheCallResult;
5555   }
5556 
5557   ExprResult ValArg = TheCall->getArg(0);
5558   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5559       Context, ValType, /*consume*/ false);
5560   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5561   if (ValArg.isInvalid())
5562     return ExprError();
5563 
5564   TheCall->setArg(0, ValArg.get());
5565   TheCall->setType(Context.VoidTy);
5566   return TheCallResult;
5567 }
5568 
5569 /// CheckObjCString - Checks that the argument to the builtin
5570 /// CFString constructor is correct
5571 /// Note: It might also make sense to do the UTF-16 conversion here (would
5572 /// simplify the backend).
5573 bool Sema::CheckObjCString(Expr *Arg) {
5574   Arg = Arg->IgnoreParenCasts();
5575   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5576 
5577   if (!Literal || !Literal->isAscii()) {
5578     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5579         << Arg->getSourceRange();
5580     return true;
5581   }
5582 
5583   if (Literal->containsNonAsciiOrNull()) {
5584     StringRef String = Literal->getString();
5585     unsigned NumBytes = String.size();
5586     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5587     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5588     llvm::UTF16 *ToPtr = &ToBuf[0];
5589 
5590     llvm::ConversionResult Result =
5591         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5592                                  ToPtr + NumBytes, llvm::strictConversion);
5593     // Check for conversion failure.
5594     if (Result != llvm::conversionOK)
5595       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5596           << Arg->getSourceRange();
5597   }
5598   return false;
5599 }
5600 
5601 /// CheckObjCString - Checks that the format string argument to the os_log()
5602 /// and os_trace() functions is correct, and converts it to const char *.
5603 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5604   Arg = Arg->IgnoreParenCasts();
5605   auto *Literal = dyn_cast<StringLiteral>(Arg);
5606   if (!Literal) {
5607     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5608       Literal = ObjcLiteral->getString();
5609     }
5610   }
5611 
5612   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5613     return ExprError(
5614         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5615         << Arg->getSourceRange());
5616   }
5617 
5618   ExprResult Result(Literal);
5619   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5620   InitializedEntity Entity =
5621       InitializedEntity::InitializeParameter(Context, ResultTy, false);
5622   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5623   return Result;
5624 }
5625 
5626 /// Check that the user is calling the appropriate va_start builtin for the
5627 /// target and calling convention.
5628 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5629   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5630   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5631   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
5632                     TT.getArch() == llvm::Triple::aarch64_32);
5633   bool IsWindows = TT.isOSWindows();
5634   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5635   if (IsX64 || IsAArch64) {
5636     CallingConv CC = CC_C;
5637     if (const FunctionDecl *FD = S.getCurFunctionDecl())
5638       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
5639     if (IsMSVAStart) {
5640       // Don't allow this in System V ABI functions.
5641       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5642         return S.Diag(Fn->getBeginLoc(),
5643                       diag::err_ms_va_start_used_in_sysv_function);
5644     } else {
5645       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5646       // On x64 Windows, don't allow this in System V ABI functions.
5647       // (Yes, that means there's no corresponding way to support variadic
5648       // System V ABI functions on Windows.)
5649       if ((IsWindows && CC == CC_X86_64SysV) ||
5650           (!IsWindows && CC == CC_Win64))
5651         return S.Diag(Fn->getBeginLoc(),
5652                       diag::err_va_start_used_in_wrong_abi_function)
5653                << !IsWindows;
5654     }
5655     return false;
5656   }
5657 
5658   if (IsMSVAStart)
5659     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5660   return false;
5661 }
5662 
5663 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5664                                              ParmVarDecl **LastParam = nullptr) {
5665   // Determine whether the current function, block, or obj-c method is variadic
5666   // and get its parameter list.
5667   bool IsVariadic = false;
5668   ArrayRef<ParmVarDecl *> Params;
5669   DeclContext *Caller = S.CurContext;
5670   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5671     IsVariadic = Block->isVariadic();
5672     Params = Block->parameters();
5673   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5674     IsVariadic = FD->isVariadic();
5675     Params = FD->parameters();
5676   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5677     IsVariadic = MD->isVariadic();
5678     // FIXME: This isn't correct for methods (results in bogus warning).
5679     Params = MD->parameters();
5680   } else if (isa<CapturedDecl>(Caller)) {
5681     // We don't support va_start in a CapturedDecl.
5682     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5683     return true;
5684   } else {
5685     // This must be some other declcontext that parses exprs.
5686     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5687     return true;
5688   }
5689 
5690   if (!IsVariadic) {
5691     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5692     return true;
5693   }
5694 
5695   if (LastParam)
5696     *LastParam = Params.empty() ? nullptr : Params.back();
5697 
5698   return false;
5699 }
5700 
5701 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5702 /// for validity.  Emit an error and return true on failure; return false
5703 /// on success.
5704 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5705   Expr *Fn = TheCall->getCallee();
5706 
5707   if (checkVAStartABI(*this, BuiltinID, Fn))
5708     return true;
5709 
5710   if (TheCall->getNumArgs() > 2) {
5711     Diag(TheCall->getArg(2)->getBeginLoc(),
5712          diag::err_typecheck_call_too_many_args)
5713         << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5714         << Fn->getSourceRange()
5715         << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5716                        (*(TheCall->arg_end() - 1))->getEndLoc());
5717     return true;
5718   }
5719 
5720   if (TheCall->getNumArgs() < 2) {
5721     return Diag(TheCall->getEndLoc(),
5722                 diag::err_typecheck_call_too_few_args_at_least)
5723            << 0 /*function call*/ << 2 << TheCall->getNumArgs();
5724   }
5725 
5726   // Type-check the first argument normally.
5727   if (checkBuiltinArgument(*this, TheCall, 0))
5728     return true;
5729 
5730   // Check that the current function is variadic, and get its last parameter.
5731   ParmVarDecl *LastParam;
5732   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5733     return true;
5734 
5735   // Verify that the second argument to the builtin is the last argument of the
5736   // current function or method.
5737   bool SecondArgIsLastNamedArgument = false;
5738   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5739 
5740   // These are valid if SecondArgIsLastNamedArgument is false after the next
5741   // block.
5742   QualType Type;
5743   SourceLocation ParamLoc;
5744   bool IsCRegister = false;
5745 
5746   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5747     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5748       SecondArgIsLastNamedArgument = PV == LastParam;
5749 
5750       Type = PV->getType();
5751       ParamLoc = PV->getLocation();
5752       IsCRegister =
5753           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5754     }
5755   }
5756 
5757   if (!SecondArgIsLastNamedArgument)
5758     Diag(TheCall->getArg(1)->getBeginLoc(),
5759          diag::warn_second_arg_of_va_start_not_last_named_param);
5760   else if (IsCRegister || Type->isReferenceType() ||
5761            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5762              // Promotable integers are UB, but enumerations need a bit of
5763              // extra checking to see what their promotable type actually is.
5764              if (!Type->isPromotableIntegerType())
5765                return false;
5766              if (!Type->isEnumeralType())
5767                return true;
5768              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
5769              return !(ED &&
5770                       Context.typesAreCompatible(ED->getPromotionType(), Type));
5771            }()) {
5772     unsigned Reason = 0;
5773     if (Type->isReferenceType())  Reason = 1;
5774     else if (IsCRegister)         Reason = 2;
5775     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5776     Diag(ParamLoc, diag::note_parameter_type) << Type;
5777   }
5778 
5779   TheCall->setType(Context.VoidTy);
5780   return false;
5781 }
5782 
5783 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5784   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5785   //                 const char *named_addr);
5786 
5787   Expr *Func = Call->getCallee();
5788 
5789   if (Call->getNumArgs() < 3)
5790     return Diag(Call->getEndLoc(),
5791                 diag::err_typecheck_call_too_few_args_at_least)
5792            << 0 /*function call*/ << 3 << Call->getNumArgs();
5793 
5794   // Type-check the first argument normally.
5795   if (checkBuiltinArgument(*this, Call, 0))
5796     return true;
5797 
5798   // Check that the current function is variadic.
5799   if (checkVAStartIsInVariadicFunction(*this, Func))
5800     return true;
5801 
5802   // __va_start on Windows does not validate the parameter qualifiers
5803 
5804   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5805   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5806 
5807   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5808   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5809 
5810   const QualType &ConstCharPtrTy =
5811       Context.getPointerType(Context.CharTy.withConst());
5812   if (!Arg1Ty->isPointerType() ||
5813       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5814     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5815         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5816         << 0                                      /* qualifier difference */
5817         << 3                                      /* parameter mismatch */
5818         << 2 << Arg1->getType() << ConstCharPtrTy;
5819 
5820   const QualType SizeTy = Context.getSizeType();
5821   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5822     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5823         << Arg2->getType() << SizeTy << 1 /* different class */
5824         << 0                              /* qualifier difference */
5825         << 3                              /* parameter mismatch */
5826         << 3 << Arg2->getType() << SizeTy;
5827 
5828   return false;
5829 }
5830 
5831 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5832 /// friends.  This is declared to take (...), so we have to check everything.
5833 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5834   if (TheCall->getNumArgs() < 2)
5835     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5836            << 0 << 2 << TheCall->getNumArgs() /*function call*/;
5837   if (TheCall->getNumArgs() > 2)
5838     return Diag(TheCall->getArg(2)->getBeginLoc(),
5839                 diag::err_typecheck_call_too_many_args)
5840            << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5841            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5842                           (*(TheCall->arg_end() - 1))->getEndLoc());
5843 
5844   ExprResult OrigArg0 = TheCall->getArg(0);
5845   ExprResult OrigArg1 = TheCall->getArg(1);
5846 
5847   // Do standard promotions between the two arguments, returning their common
5848   // type.
5849   QualType Res = UsualArithmeticConversions(
5850       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
5851   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5852     return true;
5853 
5854   // Make sure any conversions are pushed back into the call; this is
5855   // type safe since unordered compare builtins are declared as "_Bool
5856   // foo(...)".
5857   TheCall->setArg(0, OrigArg0.get());
5858   TheCall->setArg(1, OrigArg1.get());
5859 
5860   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5861     return false;
5862 
5863   // If the common type isn't a real floating type, then the arguments were
5864   // invalid for this operation.
5865   if (Res.isNull() || !Res->isRealFloatingType())
5866     return Diag(OrigArg0.get()->getBeginLoc(),
5867                 diag::err_typecheck_call_invalid_ordered_compare)
5868            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5869            << SourceRange(OrigArg0.get()->getBeginLoc(),
5870                           OrigArg1.get()->getEndLoc());
5871 
5872   return false;
5873 }
5874 
5875 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5876 /// __builtin_isnan and friends.  This is declared to take (...), so we have
5877 /// to check everything. We expect the last argument to be a floating point
5878 /// value.
5879 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5880   if (TheCall->getNumArgs() < NumArgs)
5881     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5882            << 0 << NumArgs << TheCall->getNumArgs() /*function call*/;
5883   if (TheCall->getNumArgs() > NumArgs)
5884     return Diag(TheCall->getArg(NumArgs)->getBeginLoc(),
5885                 diag::err_typecheck_call_too_many_args)
5886            << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
5887            << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(),
5888                           (*(TheCall->arg_end() - 1))->getEndLoc());
5889 
5890   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
5891   // on all preceding parameters just being int.  Try all of those.
5892   for (unsigned i = 0; i < NumArgs - 1; ++i) {
5893     Expr *Arg = TheCall->getArg(i);
5894 
5895     if (Arg->isTypeDependent())
5896       return false;
5897 
5898     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
5899 
5900     if (Res.isInvalid())
5901       return true;
5902     TheCall->setArg(i, Res.get());
5903   }
5904 
5905   Expr *OrigArg = TheCall->getArg(NumArgs-1);
5906 
5907   if (OrigArg->isTypeDependent())
5908     return false;
5909 
5910   // Usual Unary Conversions will convert half to float, which we want for
5911   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5912   // type how it is, but do normal L->Rvalue conversions.
5913   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
5914     OrigArg = UsualUnaryConversions(OrigArg).get();
5915   else
5916     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
5917   TheCall->setArg(NumArgs - 1, OrigArg);
5918 
5919   // This operation requires a non-_Complex floating-point number.
5920   if (!OrigArg->getType()->isRealFloatingType())
5921     return Diag(OrigArg->getBeginLoc(),
5922                 diag::err_typecheck_call_invalid_unary_fp)
5923            << OrigArg->getType() << OrigArg->getSourceRange();
5924 
5925   return false;
5926 }
5927 
5928 // Customized Sema Checking for VSX builtins that have the following signature:
5929 // vector [...] builtinName(vector [...], vector [...], const int);
5930 // Which takes the same type of vectors (any legal vector type) for the first
5931 // two arguments and takes compile time constant for the third argument.
5932 // Example builtins are :
5933 // vector double vec_xxpermdi(vector double, vector double, int);
5934 // vector short vec_xxsldwi(vector short, vector short, int);
5935 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
5936   unsigned ExpectedNumArgs = 3;
5937   if (TheCall->getNumArgs() < ExpectedNumArgs)
5938     return Diag(TheCall->getEndLoc(),
5939                 diag::err_typecheck_call_too_few_args_at_least)
5940            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
5941            << TheCall->getSourceRange();
5942 
5943   if (TheCall->getNumArgs() > ExpectedNumArgs)
5944     return Diag(TheCall->getEndLoc(),
5945                 diag::err_typecheck_call_too_many_args_at_most)
5946            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
5947            << TheCall->getSourceRange();
5948 
5949   // Check the third argument is a compile time constant
5950   llvm::APSInt Value;
5951   if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context))
5952     return Diag(TheCall->getBeginLoc(),
5953                 diag::err_vsx_builtin_nonconstant_argument)
5954            << 3 /* argument index */ << TheCall->getDirectCallee()
5955            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5956                           TheCall->getArg(2)->getEndLoc());
5957 
5958   QualType Arg1Ty = TheCall->getArg(0)->getType();
5959   QualType Arg2Ty = TheCall->getArg(1)->getType();
5960 
5961   // Check the type of argument 1 and argument 2 are vectors.
5962   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
5963   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
5964       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
5965     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
5966            << TheCall->getDirectCallee()
5967            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5968                           TheCall->getArg(1)->getEndLoc());
5969   }
5970 
5971   // Check the first two arguments are the same type.
5972   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
5973     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
5974            << TheCall->getDirectCallee()
5975            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5976                           TheCall->getArg(1)->getEndLoc());
5977   }
5978 
5979   // When default clang type checking is turned off and the customized type
5980   // checking is used, the returning type of the function must be explicitly
5981   // set. Otherwise it is _Bool by default.
5982   TheCall->setType(Arg1Ty);
5983 
5984   return false;
5985 }
5986 
5987 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
5988 // This is declared to take (...), so we have to check everything.
5989 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
5990   if (TheCall->getNumArgs() < 2)
5991     return ExprError(Diag(TheCall->getEndLoc(),
5992                           diag::err_typecheck_call_too_few_args_at_least)
5993                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5994                      << TheCall->getSourceRange());
5995 
5996   // Determine which of the following types of shufflevector we're checking:
5997   // 1) unary, vector mask: (lhs, mask)
5998   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
5999   QualType resType = TheCall->getArg(0)->getType();
6000   unsigned numElements = 0;
6001 
6002   if (!TheCall->getArg(0)->isTypeDependent() &&
6003       !TheCall->getArg(1)->isTypeDependent()) {
6004     QualType LHSType = TheCall->getArg(0)->getType();
6005     QualType RHSType = TheCall->getArg(1)->getType();
6006 
6007     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6008       return ExprError(
6009           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6010           << TheCall->getDirectCallee()
6011           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6012                          TheCall->getArg(1)->getEndLoc()));
6013 
6014     numElements = LHSType->castAs<VectorType>()->getNumElements();
6015     unsigned numResElements = TheCall->getNumArgs() - 2;
6016 
6017     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6018     // with mask.  If so, verify that RHS is an integer vector type with the
6019     // same number of elts as lhs.
6020     if (TheCall->getNumArgs() == 2) {
6021       if (!RHSType->hasIntegerRepresentation() ||
6022           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6023         return ExprError(Diag(TheCall->getBeginLoc(),
6024                               diag::err_vec_builtin_incompatible_vector)
6025                          << TheCall->getDirectCallee()
6026                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6027                                         TheCall->getArg(1)->getEndLoc()));
6028     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6029       return ExprError(Diag(TheCall->getBeginLoc(),
6030                             diag::err_vec_builtin_incompatible_vector)
6031                        << TheCall->getDirectCallee()
6032                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6033                                       TheCall->getArg(1)->getEndLoc()));
6034     } else if (numElements != numResElements) {
6035       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6036       resType = Context.getVectorType(eltType, numResElements,
6037                                       VectorType::GenericVector);
6038     }
6039   }
6040 
6041   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6042     if (TheCall->getArg(i)->isTypeDependent() ||
6043         TheCall->getArg(i)->isValueDependent())
6044       continue;
6045 
6046     llvm::APSInt Result(32);
6047     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
6048       return ExprError(Diag(TheCall->getBeginLoc(),
6049                             diag::err_shufflevector_nonconstant_argument)
6050                        << TheCall->getArg(i)->getSourceRange());
6051 
6052     // Allow -1 which will be translated to undef in the IR.
6053     if (Result.isSigned() && Result.isAllOnesValue())
6054       continue;
6055 
6056     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
6057       return ExprError(Diag(TheCall->getBeginLoc(),
6058                             diag::err_shufflevector_argument_too_large)
6059                        << TheCall->getArg(i)->getSourceRange());
6060   }
6061 
6062   SmallVector<Expr*, 32> exprs;
6063 
6064   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6065     exprs.push_back(TheCall->getArg(i));
6066     TheCall->setArg(i, nullptr);
6067   }
6068 
6069   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6070                                          TheCall->getCallee()->getBeginLoc(),
6071                                          TheCall->getRParenLoc());
6072 }
6073 
6074 /// SemaConvertVectorExpr - Handle __builtin_convertvector
6075 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6076                                        SourceLocation BuiltinLoc,
6077                                        SourceLocation RParenLoc) {
6078   ExprValueKind VK = VK_RValue;
6079   ExprObjectKind OK = OK_Ordinary;
6080   QualType DstTy = TInfo->getType();
6081   QualType SrcTy = E->getType();
6082 
6083   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6084     return ExprError(Diag(BuiltinLoc,
6085                           diag::err_convertvector_non_vector)
6086                      << E->getSourceRange());
6087   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6088     return ExprError(Diag(BuiltinLoc,
6089                           diag::err_convertvector_non_vector_type));
6090 
6091   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6092     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6093     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6094     if (SrcElts != DstElts)
6095       return ExprError(Diag(BuiltinLoc,
6096                             diag::err_convertvector_incompatible_vector)
6097                        << E->getSourceRange());
6098   }
6099 
6100   return new (Context)
6101       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6102 }
6103 
6104 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6105 // This is declared to take (const void*, ...) and can take two
6106 // optional constant int args.
6107 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6108   unsigned NumArgs = TheCall->getNumArgs();
6109 
6110   if (NumArgs > 3)
6111     return Diag(TheCall->getEndLoc(),
6112                 diag::err_typecheck_call_too_many_args_at_most)
6113            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6114 
6115   // Argument 0 is checked for us and the remaining arguments must be
6116   // constant integers.
6117   for (unsigned i = 1; i != NumArgs; ++i)
6118     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6119       return true;
6120 
6121   return false;
6122 }
6123 
6124 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6125 // __assume does not evaluate its arguments, and should warn if its argument
6126 // has side effects.
6127 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6128   Expr *Arg = TheCall->getArg(0);
6129   if (Arg->isInstantiationDependent()) return false;
6130 
6131   if (Arg->HasSideEffects(Context))
6132     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6133         << Arg->getSourceRange()
6134         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6135 
6136   return false;
6137 }
6138 
6139 /// Handle __builtin_alloca_with_align. This is declared
6140 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6141 /// than 8.
6142 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6143   // The alignment must be a constant integer.
6144   Expr *Arg = TheCall->getArg(1);
6145 
6146   // We can't check the value of a dependent argument.
6147   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6148     if (const auto *UE =
6149             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6150       if (UE->getKind() == UETT_AlignOf ||
6151           UE->getKind() == UETT_PreferredAlignOf)
6152         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6153             << Arg->getSourceRange();
6154 
6155     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6156 
6157     if (!Result.isPowerOf2())
6158       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6159              << Arg->getSourceRange();
6160 
6161     if (Result < Context.getCharWidth())
6162       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6163              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6164 
6165     if (Result > std::numeric_limits<int32_t>::max())
6166       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6167              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6168   }
6169 
6170   return false;
6171 }
6172 
6173 /// Handle __builtin_assume_aligned. This is declared
6174 /// as (const void*, size_t, ...) and can take one optional constant int arg.
6175 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6176   unsigned NumArgs = TheCall->getNumArgs();
6177 
6178   if (NumArgs > 3)
6179     return Diag(TheCall->getEndLoc(),
6180                 diag::err_typecheck_call_too_many_args_at_most)
6181            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6182 
6183   // The alignment must be a constant integer.
6184   Expr *Arg = TheCall->getArg(1);
6185 
6186   // We can't check the value of a dependent argument.
6187   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6188     llvm::APSInt Result;
6189     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6190       return true;
6191 
6192     if (!Result.isPowerOf2())
6193       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6194              << Arg->getSourceRange();
6195 
6196     // Alignment calculations can wrap around if it's greater than 2**29.
6197     unsigned MaximumAlignment = 536870912;
6198     if (Result > MaximumAlignment)
6199       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6200           << Arg->getSourceRange() << MaximumAlignment;
6201   }
6202 
6203   if (NumArgs > 2) {
6204     ExprResult Arg(TheCall->getArg(2));
6205     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6206       Context.getSizeType(), false);
6207     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6208     if (Arg.isInvalid()) return true;
6209     TheCall->setArg(2, Arg.get());
6210   }
6211 
6212   return false;
6213 }
6214 
6215 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6216   unsigned BuiltinID =
6217       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6218   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6219 
6220   unsigned NumArgs = TheCall->getNumArgs();
6221   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6222   if (NumArgs < NumRequiredArgs) {
6223     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6224            << 0 /* function call */ << NumRequiredArgs << NumArgs
6225            << TheCall->getSourceRange();
6226   }
6227   if (NumArgs >= NumRequiredArgs + 0x100) {
6228     return Diag(TheCall->getEndLoc(),
6229                 diag::err_typecheck_call_too_many_args_at_most)
6230            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6231            << TheCall->getSourceRange();
6232   }
6233   unsigned i = 0;
6234 
6235   // For formatting call, check buffer arg.
6236   if (!IsSizeCall) {
6237     ExprResult Arg(TheCall->getArg(i));
6238     InitializedEntity Entity = InitializedEntity::InitializeParameter(
6239         Context, Context.VoidPtrTy, false);
6240     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6241     if (Arg.isInvalid())
6242       return true;
6243     TheCall->setArg(i, Arg.get());
6244     i++;
6245   }
6246 
6247   // Check string literal arg.
6248   unsigned FormatIdx = i;
6249   {
6250     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6251     if (Arg.isInvalid())
6252       return true;
6253     TheCall->setArg(i, Arg.get());
6254     i++;
6255   }
6256 
6257   // Make sure variadic args are scalar.
6258   unsigned FirstDataArg = i;
6259   while (i < NumArgs) {
6260     ExprResult Arg = DefaultVariadicArgumentPromotion(
6261         TheCall->getArg(i), VariadicFunction, nullptr);
6262     if (Arg.isInvalid())
6263       return true;
6264     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6265     if (ArgSize.getQuantity() >= 0x100) {
6266       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6267              << i << (int)ArgSize.getQuantity() << 0xff
6268              << TheCall->getSourceRange();
6269     }
6270     TheCall->setArg(i, Arg.get());
6271     i++;
6272   }
6273 
6274   // Check formatting specifiers. NOTE: We're only doing this for the non-size
6275   // call to avoid duplicate diagnostics.
6276   if (!IsSizeCall) {
6277     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6278     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6279     bool Success = CheckFormatArguments(
6280         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6281         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6282         CheckedVarArgs);
6283     if (!Success)
6284       return true;
6285   }
6286 
6287   if (IsSizeCall) {
6288     TheCall->setType(Context.getSizeType());
6289   } else {
6290     TheCall->setType(Context.VoidPtrTy);
6291   }
6292   return false;
6293 }
6294 
6295 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6296 /// TheCall is a constant expression.
6297 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6298                                   llvm::APSInt &Result) {
6299   Expr *Arg = TheCall->getArg(ArgNum);
6300   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6301   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6302 
6303   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6304 
6305   if (!Arg->isIntegerConstantExpr(Result, Context))
6306     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6307            << FDecl->getDeclName() << Arg->getSourceRange();
6308 
6309   return false;
6310 }
6311 
6312 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6313 /// TheCall is a constant expression in the range [Low, High].
6314 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6315                                        int Low, int High, bool RangeIsError) {
6316   if (isConstantEvaluated())
6317     return false;
6318   llvm::APSInt Result;
6319 
6320   // We can't check the value of a dependent argument.
6321   Expr *Arg = TheCall->getArg(ArgNum);
6322   if (Arg->isTypeDependent() || Arg->isValueDependent())
6323     return false;
6324 
6325   // Check constant-ness first.
6326   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6327     return true;
6328 
6329   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6330     if (RangeIsError)
6331       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6332              << Result.toString(10) << Low << High << Arg->getSourceRange();
6333     else
6334       // Defer the warning until we know if the code will be emitted so that
6335       // dead code can ignore this.
6336       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6337                           PDiag(diag::warn_argument_invalid_range)
6338                               << Result.toString(10) << Low << High
6339                               << Arg->getSourceRange());
6340   }
6341 
6342   return false;
6343 }
6344 
6345 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6346 /// TheCall is a constant expression is a multiple of Num..
6347 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6348                                           unsigned Num) {
6349   llvm::APSInt Result;
6350 
6351   // We can't check the value of a dependent argument.
6352   Expr *Arg = TheCall->getArg(ArgNum);
6353   if (Arg->isTypeDependent() || Arg->isValueDependent())
6354     return false;
6355 
6356   // Check constant-ness first.
6357   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6358     return true;
6359 
6360   if (Result.getSExtValue() % Num != 0)
6361     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6362            << Num << Arg->getSourceRange();
6363 
6364   return false;
6365 }
6366 
6367 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6368 /// constant expression representing a power of 2.
6369 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6370   llvm::APSInt Result;
6371 
6372   // We can't check the value of a dependent argument.
6373   Expr *Arg = TheCall->getArg(ArgNum);
6374   if (Arg->isTypeDependent() || Arg->isValueDependent())
6375     return false;
6376 
6377   // Check constant-ness first.
6378   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6379     return true;
6380 
6381   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6382   // and only if x is a power of 2.
6383   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6384     return false;
6385 
6386   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6387          << Arg->getSourceRange();
6388 }
6389 
6390 static bool IsShiftedByte(llvm::APSInt Value) {
6391   if (Value.isNegative())
6392     return false;
6393 
6394   // Check if it's a shifted byte, by shifting it down
6395   while (true) {
6396     // If the value fits in the bottom byte, the check passes.
6397     if (Value < 0x100)
6398       return true;
6399 
6400     // Otherwise, if the value has _any_ bits in the bottom byte, the check
6401     // fails.
6402     if ((Value & 0xFF) != 0)
6403       return false;
6404 
6405     // If the bottom 8 bits are all 0, but something above that is nonzero,
6406     // then shifting the value right by 8 bits won't affect whether it's a
6407     // shifted byte or not. So do that, and go round again.
6408     Value >>= 8;
6409   }
6410 }
6411 
6412 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
6413 /// a constant expression representing an arbitrary byte value shifted left by
6414 /// a multiple of 8 bits.
6415 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum) {
6416   llvm::APSInt Result;
6417 
6418   // We can't check the value of a dependent argument.
6419   Expr *Arg = TheCall->getArg(ArgNum);
6420   if (Arg->isTypeDependent() || Arg->isValueDependent())
6421     return false;
6422 
6423   // Check constant-ness first.
6424   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6425     return true;
6426 
6427   if (IsShiftedByte(Result))
6428     return false;
6429 
6430   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
6431          << Arg->getSourceRange();
6432 }
6433 
6434 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
6435 /// TheCall is a constant expression representing either a shifted byte value,
6436 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
6437 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
6438 /// Arm MVE intrinsics.
6439 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
6440                                                    int ArgNum) {
6441   llvm::APSInt Result;
6442 
6443   // We can't check the value of a dependent argument.
6444   Expr *Arg = TheCall->getArg(ArgNum);
6445   if (Arg->isTypeDependent() || Arg->isValueDependent())
6446     return false;
6447 
6448   // Check constant-ness first.
6449   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6450     return true;
6451 
6452   // Check to see if it's in either of the required forms.
6453   if (IsShiftedByte(Result) ||
6454       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
6455     return false;
6456 
6457   return Diag(TheCall->getBeginLoc(),
6458               diag::err_argument_not_shifted_byte_or_xxff)
6459          << Arg->getSourceRange();
6460 }
6461 
6462 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
6463 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6464   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6465     if (checkArgCount(*this, TheCall, 2))
6466       return true;
6467     Expr *Arg0 = TheCall->getArg(0);
6468     Expr *Arg1 = TheCall->getArg(1);
6469 
6470     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6471     if (FirstArg.isInvalid())
6472       return true;
6473     QualType FirstArgType = FirstArg.get()->getType();
6474     if (!FirstArgType->isAnyPointerType())
6475       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6476                << "first" << FirstArgType << Arg0->getSourceRange();
6477     TheCall->setArg(0, FirstArg.get());
6478 
6479     ExprResult SecArg = DefaultLvalueConversion(Arg1);
6480     if (SecArg.isInvalid())
6481       return true;
6482     QualType SecArgType = SecArg.get()->getType();
6483     if (!SecArgType->isIntegerType())
6484       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6485                << "second" << SecArgType << Arg1->getSourceRange();
6486 
6487     // Derive the return type from the pointer argument.
6488     TheCall->setType(FirstArgType);
6489     return false;
6490   }
6491 
6492   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6493     if (checkArgCount(*this, TheCall, 2))
6494       return true;
6495 
6496     Expr *Arg0 = TheCall->getArg(0);
6497     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6498     if (FirstArg.isInvalid())
6499       return true;
6500     QualType FirstArgType = FirstArg.get()->getType();
6501     if (!FirstArgType->isAnyPointerType())
6502       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6503                << "first" << FirstArgType << Arg0->getSourceRange();
6504     TheCall->setArg(0, FirstArg.get());
6505 
6506     // Derive the return type from the pointer argument.
6507     TheCall->setType(FirstArgType);
6508 
6509     // Second arg must be an constant in range [0,15]
6510     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6511   }
6512 
6513   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6514     if (checkArgCount(*this, TheCall, 2))
6515       return true;
6516     Expr *Arg0 = TheCall->getArg(0);
6517     Expr *Arg1 = TheCall->getArg(1);
6518 
6519     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6520     if (FirstArg.isInvalid())
6521       return true;
6522     QualType FirstArgType = FirstArg.get()->getType();
6523     if (!FirstArgType->isAnyPointerType())
6524       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6525                << "first" << FirstArgType << Arg0->getSourceRange();
6526 
6527     QualType SecArgType = Arg1->getType();
6528     if (!SecArgType->isIntegerType())
6529       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6530                << "second" << SecArgType << Arg1->getSourceRange();
6531     TheCall->setType(Context.IntTy);
6532     return false;
6533   }
6534 
6535   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6536       BuiltinID == AArch64::BI__builtin_arm_stg) {
6537     if (checkArgCount(*this, TheCall, 1))
6538       return true;
6539     Expr *Arg0 = TheCall->getArg(0);
6540     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6541     if (FirstArg.isInvalid())
6542       return true;
6543 
6544     QualType FirstArgType = FirstArg.get()->getType();
6545     if (!FirstArgType->isAnyPointerType())
6546       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6547                << "first" << FirstArgType << Arg0->getSourceRange();
6548     TheCall->setArg(0, FirstArg.get());
6549 
6550     // Derive the return type from the pointer argument.
6551     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6552       TheCall->setType(FirstArgType);
6553     return false;
6554   }
6555 
6556   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6557     Expr *ArgA = TheCall->getArg(0);
6558     Expr *ArgB = TheCall->getArg(1);
6559 
6560     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6561     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6562 
6563     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6564       return true;
6565 
6566     QualType ArgTypeA = ArgExprA.get()->getType();
6567     QualType ArgTypeB = ArgExprB.get()->getType();
6568 
6569     auto isNull = [&] (Expr *E) -> bool {
6570       return E->isNullPointerConstant(
6571                         Context, Expr::NPC_ValueDependentIsNotNull); };
6572 
6573     // argument should be either a pointer or null
6574     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6575       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6576         << "first" << ArgTypeA << ArgA->getSourceRange();
6577 
6578     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6579       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6580         << "second" << ArgTypeB << ArgB->getSourceRange();
6581 
6582     // Ensure Pointee types are compatible
6583     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6584         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6585       QualType pointeeA = ArgTypeA->getPointeeType();
6586       QualType pointeeB = ArgTypeB->getPointeeType();
6587       if (!Context.typesAreCompatible(
6588              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6589              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6590         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6591           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
6592           << ArgB->getSourceRange();
6593       }
6594     }
6595 
6596     // at least one argument should be pointer type
6597     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6598       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6599         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6600 
6601     if (isNull(ArgA)) // adopt type of the other pointer
6602       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6603 
6604     if (isNull(ArgB))
6605       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6606 
6607     TheCall->setArg(0, ArgExprA.get());
6608     TheCall->setArg(1, ArgExprB.get());
6609     TheCall->setType(Context.LongLongTy);
6610     return false;
6611   }
6612   assert(false && "Unhandled ARM MTE intrinsic");
6613   return true;
6614 }
6615 
6616 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6617 /// TheCall is an ARM/AArch64 special register string literal.
6618 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6619                                     int ArgNum, unsigned ExpectedFieldNum,
6620                                     bool AllowName) {
6621   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6622                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6623                       BuiltinID == ARM::BI__builtin_arm_rsr ||
6624                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6625                       BuiltinID == ARM::BI__builtin_arm_wsr ||
6626                       BuiltinID == ARM::BI__builtin_arm_wsrp;
6627   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6628                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6629                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
6630                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6631                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
6632                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
6633   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6634 
6635   // We can't check the value of a dependent argument.
6636   Expr *Arg = TheCall->getArg(ArgNum);
6637   if (Arg->isTypeDependent() || Arg->isValueDependent())
6638     return false;
6639 
6640   // Check if the argument is a string literal.
6641   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6642     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6643            << Arg->getSourceRange();
6644 
6645   // Check the type of special register given.
6646   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6647   SmallVector<StringRef, 6> Fields;
6648   Reg.split(Fields, ":");
6649 
6650   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6651     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6652            << Arg->getSourceRange();
6653 
6654   // If the string is the name of a register then we cannot check that it is
6655   // valid here but if the string is of one the forms described in ACLE then we
6656   // can check that the supplied fields are integers and within the valid
6657   // ranges.
6658   if (Fields.size() > 1) {
6659     bool FiveFields = Fields.size() == 5;
6660 
6661     bool ValidString = true;
6662     if (IsARMBuiltin) {
6663       ValidString &= Fields[0].startswith_lower("cp") ||
6664                      Fields[0].startswith_lower("p");
6665       if (ValidString)
6666         Fields[0] =
6667           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6668 
6669       ValidString &= Fields[2].startswith_lower("c");
6670       if (ValidString)
6671         Fields[2] = Fields[2].drop_front(1);
6672 
6673       if (FiveFields) {
6674         ValidString &= Fields[3].startswith_lower("c");
6675         if (ValidString)
6676           Fields[3] = Fields[3].drop_front(1);
6677       }
6678     }
6679 
6680     SmallVector<int, 5> Ranges;
6681     if (FiveFields)
6682       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6683     else
6684       Ranges.append({15, 7, 15});
6685 
6686     for (unsigned i=0; i<Fields.size(); ++i) {
6687       int IntField;
6688       ValidString &= !Fields[i].getAsInteger(10, IntField);
6689       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6690     }
6691 
6692     if (!ValidString)
6693       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6694              << Arg->getSourceRange();
6695   } else if (IsAArch64Builtin && Fields.size() == 1) {
6696     // If the register name is one of those that appear in the condition below
6697     // and the special register builtin being used is one of the write builtins,
6698     // then we require that the argument provided for writing to the register
6699     // is an integer constant expression. This is because it will be lowered to
6700     // an MSR (immediate) instruction, so we need to know the immediate at
6701     // compile time.
6702     if (TheCall->getNumArgs() != 2)
6703       return false;
6704 
6705     std::string RegLower = Reg.lower();
6706     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6707         RegLower != "pan" && RegLower != "uao")
6708       return false;
6709 
6710     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6711   }
6712 
6713   return false;
6714 }
6715 
6716 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6717 /// This checks that the target supports __builtin_longjmp and
6718 /// that val is a constant 1.
6719 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6720   if (!Context.getTargetInfo().hasSjLjLowering())
6721     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6722            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6723 
6724   Expr *Arg = TheCall->getArg(1);
6725   llvm::APSInt Result;
6726 
6727   // TODO: This is less than ideal. Overload this to take a value.
6728   if (SemaBuiltinConstantArg(TheCall, 1, Result))
6729     return true;
6730 
6731   if (Result != 1)
6732     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6733            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6734 
6735   return false;
6736 }
6737 
6738 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6739 /// This checks that the target supports __builtin_setjmp.
6740 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6741   if (!Context.getTargetInfo().hasSjLjLowering())
6742     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6743            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6744   return false;
6745 }
6746 
6747 namespace {
6748 
6749 class UncoveredArgHandler {
6750   enum { Unknown = -1, AllCovered = -2 };
6751 
6752   signed FirstUncoveredArg = Unknown;
6753   SmallVector<const Expr *, 4> DiagnosticExprs;
6754 
6755 public:
6756   UncoveredArgHandler() = default;
6757 
6758   bool hasUncoveredArg() const {
6759     return (FirstUncoveredArg >= 0);
6760   }
6761 
6762   unsigned getUncoveredArg() const {
6763     assert(hasUncoveredArg() && "no uncovered argument");
6764     return FirstUncoveredArg;
6765   }
6766 
6767   void setAllCovered() {
6768     // A string has been found with all arguments covered, so clear out
6769     // the diagnostics.
6770     DiagnosticExprs.clear();
6771     FirstUncoveredArg = AllCovered;
6772   }
6773 
6774   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6775     assert(NewFirstUncoveredArg >= 0 && "Outside range");
6776 
6777     // Don't update if a previous string covers all arguments.
6778     if (FirstUncoveredArg == AllCovered)
6779       return;
6780 
6781     // UncoveredArgHandler tracks the highest uncovered argument index
6782     // and with it all the strings that match this index.
6783     if (NewFirstUncoveredArg == FirstUncoveredArg)
6784       DiagnosticExprs.push_back(StrExpr);
6785     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6786       DiagnosticExprs.clear();
6787       DiagnosticExprs.push_back(StrExpr);
6788       FirstUncoveredArg = NewFirstUncoveredArg;
6789     }
6790   }
6791 
6792   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6793 };
6794 
6795 enum StringLiteralCheckType {
6796   SLCT_NotALiteral,
6797   SLCT_UncheckedLiteral,
6798   SLCT_CheckedLiteral
6799 };
6800 
6801 } // namespace
6802 
6803 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6804                                      BinaryOperatorKind BinOpKind,
6805                                      bool AddendIsRight) {
6806   unsigned BitWidth = Offset.getBitWidth();
6807   unsigned AddendBitWidth = Addend.getBitWidth();
6808   // There might be negative interim results.
6809   if (Addend.isUnsigned()) {
6810     Addend = Addend.zext(++AddendBitWidth);
6811     Addend.setIsSigned(true);
6812   }
6813   // Adjust the bit width of the APSInts.
6814   if (AddendBitWidth > BitWidth) {
6815     Offset = Offset.sext(AddendBitWidth);
6816     BitWidth = AddendBitWidth;
6817   } else if (BitWidth > AddendBitWidth) {
6818     Addend = Addend.sext(BitWidth);
6819   }
6820 
6821   bool Ov = false;
6822   llvm::APSInt ResOffset = Offset;
6823   if (BinOpKind == BO_Add)
6824     ResOffset = Offset.sadd_ov(Addend, Ov);
6825   else {
6826     assert(AddendIsRight && BinOpKind == BO_Sub &&
6827            "operator must be add or sub with addend on the right");
6828     ResOffset = Offset.ssub_ov(Addend, Ov);
6829   }
6830 
6831   // We add an offset to a pointer here so we should support an offset as big as
6832   // possible.
6833   if (Ov) {
6834     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6835            "index (intermediate) result too big");
6836     Offset = Offset.sext(2 * BitWidth);
6837     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6838     return;
6839   }
6840 
6841   Offset = ResOffset;
6842 }
6843 
6844 namespace {
6845 
6846 // This is a wrapper class around StringLiteral to support offsetted string
6847 // literals as format strings. It takes the offset into account when returning
6848 // the string and its length or the source locations to display notes correctly.
6849 class FormatStringLiteral {
6850   const StringLiteral *FExpr;
6851   int64_t Offset;
6852 
6853  public:
6854   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
6855       : FExpr(fexpr), Offset(Offset) {}
6856 
6857   StringRef getString() const {
6858     return FExpr->getString().drop_front(Offset);
6859   }
6860 
6861   unsigned getByteLength() const {
6862     return FExpr->getByteLength() - getCharByteWidth() * Offset;
6863   }
6864 
6865   unsigned getLength() const { return FExpr->getLength() - Offset; }
6866   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
6867 
6868   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
6869 
6870   QualType getType() const { return FExpr->getType(); }
6871 
6872   bool isAscii() const { return FExpr->isAscii(); }
6873   bool isWide() const { return FExpr->isWide(); }
6874   bool isUTF8() const { return FExpr->isUTF8(); }
6875   bool isUTF16() const { return FExpr->isUTF16(); }
6876   bool isUTF32() const { return FExpr->isUTF32(); }
6877   bool isPascal() const { return FExpr->isPascal(); }
6878 
6879   SourceLocation getLocationOfByte(
6880       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
6881       const TargetInfo &Target, unsigned *StartToken = nullptr,
6882       unsigned *StartTokenByteOffset = nullptr) const {
6883     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
6884                                     StartToken, StartTokenByteOffset);
6885   }
6886 
6887   SourceLocation getBeginLoc() const LLVM_READONLY {
6888     return FExpr->getBeginLoc().getLocWithOffset(Offset);
6889   }
6890 
6891   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
6892 };
6893 
6894 }  // namespace
6895 
6896 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
6897                               const Expr *OrigFormatExpr,
6898                               ArrayRef<const Expr *> Args,
6899                               bool HasVAListArg, unsigned format_idx,
6900                               unsigned firstDataArg,
6901                               Sema::FormatStringType Type,
6902                               bool inFunctionCall,
6903                               Sema::VariadicCallType CallType,
6904                               llvm::SmallBitVector &CheckedVarArgs,
6905                               UncoveredArgHandler &UncoveredArg,
6906                               bool IgnoreStringsWithoutSpecifiers);
6907 
6908 // Determine if an expression is a string literal or constant string.
6909 // If this function returns false on the arguments to a function expecting a
6910 // format string, we will usually need to emit a warning.
6911 // True string literals are then checked by CheckFormatString.
6912 static StringLiteralCheckType
6913 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
6914                       bool HasVAListArg, unsigned format_idx,
6915                       unsigned firstDataArg, Sema::FormatStringType Type,
6916                       Sema::VariadicCallType CallType, bool InFunctionCall,
6917                       llvm::SmallBitVector &CheckedVarArgs,
6918                       UncoveredArgHandler &UncoveredArg,
6919                       llvm::APSInt Offset,
6920                       bool IgnoreStringsWithoutSpecifiers = false) {
6921   if (S.isConstantEvaluated())
6922     return SLCT_NotALiteral;
6923  tryAgain:
6924   assert(Offset.isSigned() && "invalid offset");
6925 
6926   if (E->isTypeDependent() || E->isValueDependent())
6927     return SLCT_NotALiteral;
6928 
6929   E = E->IgnoreParenCasts();
6930 
6931   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
6932     // Technically -Wformat-nonliteral does not warn about this case.
6933     // The behavior of printf and friends in this case is implementation
6934     // dependent.  Ideally if the format string cannot be null then
6935     // it should have a 'nonnull' attribute in the function prototype.
6936     return SLCT_UncheckedLiteral;
6937 
6938   switch (E->getStmtClass()) {
6939   case Stmt::BinaryConditionalOperatorClass:
6940   case Stmt::ConditionalOperatorClass: {
6941     // The expression is a literal if both sub-expressions were, and it was
6942     // completely checked only if both sub-expressions were checked.
6943     const AbstractConditionalOperator *C =
6944         cast<AbstractConditionalOperator>(E);
6945 
6946     // Determine whether it is necessary to check both sub-expressions, for
6947     // example, because the condition expression is a constant that can be
6948     // evaluated at compile time.
6949     bool CheckLeft = true, CheckRight = true;
6950 
6951     bool Cond;
6952     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
6953                                                  S.isConstantEvaluated())) {
6954       if (Cond)
6955         CheckRight = false;
6956       else
6957         CheckLeft = false;
6958     }
6959 
6960     // We need to maintain the offsets for the right and the left hand side
6961     // separately to check if every possible indexed expression is a valid
6962     // string literal. They might have different offsets for different string
6963     // literals in the end.
6964     StringLiteralCheckType Left;
6965     if (!CheckLeft)
6966       Left = SLCT_UncheckedLiteral;
6967     else {
6968       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
6969                                    HasVAListArg, format_idx, firstDataArg,
6970                                    Type, CallType, InFunctionCall,
6971                                    CheckedVarArgs, UncoveredArg, Offset,
6972                                    IgnoreStringsWithoutSpecifiers);
6973       if (Left == SLCT_NotALiteral || !CheckRight) {
6974         return Left;
6975       }
6976     }
6977 
6978     StringLiteralCheckType Right = checkFormatStringExpr(
6979         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
6980         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6981         IgnoreStringsWithoutSpecifiers);
6982 
6983     return (CheckLeft && Left < Right) ? Left : Right;
6984   }
6985 
6986   case Stmt::ImplicitCastExprClass:
6987     E = cast<ImplicitCastExpr>(E)->getSubExpr();
6988     goto tryAgain;
6989 
6990   case Stmt::OpaqueValueExprClass:
6991     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
6992       E = src;
6993       goto tryAgain;
6994     }
6995     return SLCT_NotALiteral;
6996 
6997   case Stmt::PredefinedExprClass:
6998     // While __func__, etc., are technically not string literals, they
6999     // cannot contain format specifiers and thus are not a security
7000     // liability.
7001     return SLCT_UncheckedLiteral;
7002 
7003   case Stmt::DeclRefExprClass: {
7004     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7005 
7006     // As an exception, do not flag errors for variables binding to
7007     // const string literals.
7008     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7009       bool isConstant = false;
7010       QualType T = DR->getType();
7011 
7012       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7013         isConstant = AT->getElementType().isConstant(S.Context);
7014       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7015         isConstant = T.isConstant(S.Context) &&
7016                      PT->getPointeeType().isConstant(S.Context);
7017       } else if (T->isObjCObjectPointerType()) {
7018         // In ObjC, there is usually no "const ObjectPointer" type,
7019         // so don't check if the pointee type is constant.
7020         isConstant = T.isConstant(S.Context);
7021       }
7022 
7023       if (isConstant) {
7024         if (const Expr *Init = VD->getAnyInitializer()) {
7025           // Look through initializers like const char c[] = { "foo" }
7026           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7027             if (InitList->isStringLiteralInit())
7028               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7029           }
7030           return checkFormatStringExpr(S, Init, Args,
7031                                        HasVAListArg, format_idx,
7032                                        firstDataArg, Type, CallType,
7033                                        /*InFunctionCall*/ false, CheckedVarArgs,
7034                                        UncoveredArg, Offset);
7035         }
7036       }
7037 
7038       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7039       // special check to see if the format string is a function parameter
7040       // of the function calling the printf function.  If the function
7041       // has an attribute indicating it is a printf-like function, then we
7042       // should suppress warnings concerning non-literals being used in a call
7043       // to a vprintf function.  For example:
7044       //
7045       // void
7046       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7047       //      va_list ap;
7048       //      va_start(ap, fmt);
7049       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7050       //      ...
7051       // }
7052       if (HasVAListArg) {
7053         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7054           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7055             int PVIndex = PV->getFunctionScopeIndex() + 1;
7056             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7057               // adjust for implicit parameter
7058               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7059                 if (MD->isInstance())
7060                   ++PVIndex;
7061               // We also check if the formats are compatible.
7062               // We can't pass a 'scanf' string to a 'printf' function.
7063               if (PVIndex == PVFormat->getFormatIdx() &&
7064                   Type == S.GetFormatStringType(PVFormat))
7065                 return SLCT_UncheckedLiteral;
7066             }
7067           }
7068         }
7069       }
7070     }
7071 
7072     return SLCT_NotALiteral;
7073   }
7074 
7075   case Stmt::CallExprClass:
7076   case Stmt::CXXMemberCallExprClass: {
7077     const CallExpr *CE = cast<CallExpr>(E);
7078     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7079       bool IsFirst = true;
7080       StringLiteralCheckType CommonResult;
7081       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7082         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7083         StringLiteralCheckType Result = checkFormatStringExpr(
7084             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7085             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7086             IgnoreStringsWithoutSpecifiers);
7087         if (IsFirst) {
7088           CommonResult = Result;
7089           IsFirst = false;
7090         }
7091       }
7092       if (!IsFirst)
7093         return CommonResult;
7094 
7095       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7096         unsigned BuiltinID = FD->getBuiltinID();
7097         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7098             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7099           const Expr *Arg = CE->getArg(0);
7100           return checkFormatStringExpr(S, Arg, Args,
7101                                        HasVAListArg, format_idx,
7102                                        firstDataArg, Type, CallType,
7103                                        InFunctionCall, CheckedVarArgs,
7104                                        UncoveredArg, Offset,
7105                                        IgnoreStringsWithoutSpecifiers);
7106         }
7107       }
7108     }
7109 
7110     return SLCT_NotALiteral;
7111   }
7112   case Stmt::ObjCMessageExprClass: {
7113     const auto *ME = cast<ObjCMessageExpr>(E);
7114     if (const auto *MD = ME->getMethodDecl()) {
7115       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7116         // As a special case heuristic, if we're using the method -[NSBundle
7117         // localizedStringForKey:value:table:], ignore any key strings that lack
7118         // format specifiers. The idea is that if the key doesn't have any
7119         // format specifiers then its probably just a key to map to the
7120         // localized strings. If it does have format specifiers though, then its
7121         // likely that the text of the key is the format string in the
7122         // programmer's language, and should be checked.
7123         const ObjCInterfaceDecl *IFace;
7124         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7125             IFace->getIdentifier()->isStr("NSBundle") &&
7126             MD->getSelector().isKeywordSelector(
7127                 {"localizedStringForKey", "value", "table"})) {
7128           IgnoreStringsWithoutSpecifiers = true;
7129         }
7130 
7131         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7132         return checkFormatStringExpr(
7133             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7134             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7135             IgnoreStringsWithoutSpecifiers);
7136       }
7137     }
7138 
7139     return SLCT_NotALiteral;
7140   }
7141   case Stmt::ObjCStringLiteralClass:
7142   case Stmt::StringLiteralClass: {
7143     const StringLiteral *StrE = nullptr;
7144 
7145     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7146       StrE = ObjCFExpr->getString();
7147     else
7148       StrE = cast<StringLiteral>(E);
7149 
7150     if (StrE) {
7151       if (Offset.isNegative() || Offset > StrE->getLength()) {
7152         // TODO: It would be better to have an explicit warning for out of
7153         // bounds literals.
7154         return SLCT_NotALiteral;
7155       }
7156       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7157       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7158                         firstDataArg, Type, InFunctionCall, CallType,
7159                         CheckedVarArgs, UncoveredArg,
7160                         IgnoreStringsWithoutSpecifiers);
7161       return SLCT_CheckedLiteral;
7162     }
7163 
7164     return SLCT_NotALiteral;
7165   }
7166   case Stmt::BinaryOperatorClass: {
7167     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7168 
7169     // A string literal + an int offset is still a string literal.
7170     if (BinOp->isAdditiveOp()) {
7171       Expr::EvalResult LResult, RResult;
7172 
7173       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7174           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7175       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7176           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7177 
7178       if (LIsInt != RIsInt) {
7179         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7180 
7181         if (LIsInt) {
7182           if (BinOpKind == BO_Add) {
7183             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7184             E = BinOp->getRHS();
7185             goto tryAgain;
7186           }
7187         } else {
7188           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7189           E = BinOp->getLHS();
7190           goto tryAgain;
7191         }
7192       }
7193     }
7194 
7195     return SLCT_NotALiteral;
7196   }
7197   case Stmt::UnaryOperatorClass: {
7198     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7199     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7200     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7201       Expr::EvalResult IndexResult;
7202       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7203                                        Expr::SE_NoSideEffects,
7204                                        S.isConstantEvaluated())) {
7205         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7206                    /*RHS is int*/ true);
7207         E = ASE->getBase();
7208         goto tryAgain;
7209       }
7210     }
7211 
7212     return SLCT_NotALiteral;
7213   }
7214 
7215   default:
7216     return SLCT_NotALiteral;
7217   }
7218 }
7219 
7220 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7221   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7222       .Case("scanf", FST_Scanf)
7223       .Cases("printf", "printf0", FST_Printf)
7224       .Cases("NSString", "CFString", FST_NSString)
7225       .Case("strftime", FST_Strftime)
7226       .Case("strfmon", FST_Strfmon)
7227       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7228       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7229       .Case("os_trace", FST_OSLog)
7230       .Case("os_log", FST_OSLog)
7231       .Default(FST_Unknown);
7232 }
7233 
7234 /// CheckFormatArguments - Check calls to printf and scanf (and similar
7235 /// functions) for correct use of format strings.
7236 /// Returns true if a format string has been fully checked.
7237 bool Sema::CheckFormatArguments(const FormatAttr *Format,
7238                                 ArrayRef<const Expr *> Args,
7239                                 bool IsCXXMember,
7240                                 VariadicCallType CallType,
7241                                 SourceLocation Loc, SourceRange Range,
7242                                 llvm::SmallBitVector &CheckedVarArgs) {
7243   FormatStringInfo FSI;
7244   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7245     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7246                                 FSI.FirstDataArg, GetFormatStringType(Format),
7247                                 CallType, Loc, Range, CheckedVarArgs);
7248   return false;
7249 }
7250 
7251 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7252                                 bool HasVAListArg, unsigned format_idx,
7253                                 unsigned firstDataArg, FormatStringType Type,
7254                                 VariadicCallType CallType,
7255                                 SourceLocation Loc, SourceRange Range,
7256                                 llvm::SmallBitVector &CheckedVarArgs) {
7257   // CHECK: printf/scanf-like function is called with no format string.
7258   if (format_idx >= Args.size()) {
7259     Diag(Loc, diag::warn_missing_format_string) << Range;
7260     return false;
7261   }
7262 
7263   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7264 
7265   // CHECK: format string is not a string literal.
7266   //
7267   // Dynamically generated format strings are difficult to
7268   // automatically vet at compile time.  Requiring that format strings
7269   // are string literals: (1) permits the checking of format strings by
7270   // the compiler and thereby (2) can practically remove the source of
7271   // many format string exploits.
7272 
7273   // Format string can be either ObjC string (e.g. @"%d") or
7274   // C string (e.g. "%d")
7275   // ObjC string uses the same format specifiers as C string, so we can use
7276   // the same format string checking logic for both ObjC and C strings.
7277   UncoveredArgHandler UncoveredArg;
7278   StringLiteralCheckType CT =
7279       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7280                             format_idx, firstDataArg, Type, CallType,
7281                             /*IsFunctionCall*/ true, CheckedVarArgs,
7282                             UncoveredArg,
7283                             /*no string offset*/ llvm::APSInt(64, false) = 0);
7284 
7285   // Generate a diagnostic where an uncovered argument is detected.
7286   if (UncoveredArg.hasUncoveredArg()) {
7287     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7288     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
7289     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7290   }
7291 
7292   if (CT != SLCT_NotALiteral)
7293     // Literal format string found, check done!
7294     return CT == SLCT_CheckedLiteral;
7295 
7296   // Strftime is particular as it always uses a single 'time' argument,
7297   // so it is safe to pass a non-literal string.
7298   if (Type == FST_Strftime)
7299     return false;
7300 
7301   // Do not emit diag when the string param is a macro expansion and the
7302   // format is either NSString or CFString. This is a hack to prevent
7303   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7304   // which are usually used in place of NS and CF string literals.
7305   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7306   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7307     return false;
7308 
7309   // If there are no arguments specified, warn with -Wformat-security, otherwise
7310   // warn only with -Wformat-nonliteral.
7311   if (Args.size() == firstDataArg) {
7312     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7313       << OrigFormatExpr->getSourceRange();
7314     switch (Type) {
7315     default:
7316       break;
7317     case FST_Kprintf:
7318     case FST_FreeBSDKPrintf:
7319     case FST_Printf:
7320       Diag(FormatLoc, diag::note_format_security_fixit)
7321         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7322       break;
7323     case FST_NSString:
7324       Diag(FormatLoc, diag::note_format_security_fixit)
7325         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7326       break;
7327     }
7328   } else {
7329     Diag(FormatLoc, diag::warn_format_nonliteral)
7330       << OrigFormatExpr->getSourceRange();
7331   }
7332   return false;
7333 }
7334 
7335 namespace {
7336 
7337 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
7338 protected:
7339   Sema &S;
7340   const FormatStringLiteral *FExpr;
7341   const Expr *OrigFormatExpr;
7342   const Sema::FormatStringType FSType;
7343   const unsigned FirstDataArg;
7344   const unsigned NumDataArgs;
7345   const char *Beg; // Start of format string.
7346   const bool HasVAListArg;
7347   ArrayRef<const Expr *> Args;
7348   unsigned FormatIdx;
7349   llvm::SmallBitVector CoveredArgs;
7350   bool usesPositionalArgs = false;
7351   bool atFirstArg = true;
7352   bool inFunctionCall;
7353   Sema::VariadicCallType CallType;
7354   llvm::SmallBitVector &CheckedVarArgs;
7355   UncoveredArgHandler &UncoveredArg;
7356 
7357 public:
7358   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
7359                      const Expr *origFormatExpr,
7360                      const Sema::FormatStringType type, unsigned firstDataArg,
7361                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
7362                      ArrayRef<const Expr *> Args, unsigned formatIdx,
7363                      bool inFunctionCall, Sema::VariadicCallType callType,
7364                      llvm::SmallBitVector &CheckedVarArgs,
7365                      UncoveredArgHandler &UncoveredArg)
7366       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
7367         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
7368         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
7369         inFunctionCall(inFunctionCall), CallType(callType),
7370         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
7371     CoveredArgs.resize(numDataArgs);
7372     CoveredArgs.reset();
7373   }
7374 
7375   void DoneProcessing();
7376 
7377   void HandleIncompleteSpecifier(const char *startSpecifier,
7378                                  unsigned specifierLen) override;
7379 
7380   void HandleInvalidLengthModifier(
7381                            const analyze_format_string::FormatSpecifier &FS,
7382                            const analyze_format_string::ConversionSpecifier &CS,
7383                            const char *startSpecifier, unsigned specifierLen,
7384                            unsigned DiagID);
7385 
7386   void HandleNonStandardLengthModifier(
7387                     const analyze_format_string::FormatSpecifier &FS,
7388                     const char *startSpecifier, unsigned specifierLen);
7389 
7390   void HandleNonStandardConversionSpecifier(
7391                     const analyze_format_string::ConversionSpecifier &CS,
7392                     const char *startSpecifier, unsigned specifierLen);
7393 
7394   void HandlePosition(const char *startPos, unsigned posLen) override;
7395 
7396   void HandleInvalidPosition(const char *startSpecifier,
7397                              unsigned specifierLen,
7398                              analyze_format_string::PositionContext p) override;
7399 
7400   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7401 
7402   void HandleNullChar(const char *nullCharacter) override;
7403 
7404   template <typename Range>
7405   static void
7406   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7407                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7408                        bool IsStringLocation, Range StringRange,
7409                        ArrayRef<FixItHint> Fixit = None);
7410 
7411 protected:
7412   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7413                                         const char *startSpec,
7414                                         unsigned specifierLen,
7415                                         const char *csStart, unsigned csLen);
7416 
7417   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7418                                          const char *startSpec,
7419                                          unsigned specifierLen);
7420 
7421   SourceRange getFormatStringRange();
7422   CharSourceRange getSpecifierRange(const char *startSpecifier,
7423                                     unsigned specifierLen);
7424   SourceLocation getLocationOfByte(const char *x);
7425 
7426   const Expr *getDataArg(unsigned i) const;
7427 
7428   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7429                     const analyze_format_string::ConversionSpecifier &CS,
7430                     const char *startSpecifier, unsigned specifierLen,
7431                     unsigned argIndex);
7432 
7433   template <typename Range>
7434   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7435                             bool IsStringLocation, Range StringRange,
7436                             ArrayRef<FixItHint> Fixit = None);
7437 };
7438 
7439 } // namespace
7440 
7441 SourceRange CheckFormatHandler::getFormatStringRange() {
7442   return OrigFormatExpr->getSourceRange();
7443 }
7444 
7445 CharSourceRange CheckFormatHandler::
7446 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7447   SourceLocation Start = getLocationOfByte(startSpecifier);
7448   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
7449 
7450   // Advance the end SourceLocation by one due to half-open ranges.
7451   End = End.getLocWithOffset(1);
7452 
7453   return CharSourceRange::getCharRange(Start, End);
7454 }
7455 
7456 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7457   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7458                                   S.getLangOpts(), S.Context.getTargetInfo());
7459 }
7460 
7461 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7462                                                    unsigned specifierLen){
7463   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7464                        getLocationOfByte(startSpecifier),
7465                        /*IsStringLocation*/true,
7466                        getSpecifierRange(startSpecifier, specifierLen));
7467 }
7468 
7469 void CheckFormatHandler::HandleInvalidLengthModifier(
7470     const analyze_format_string::FormatSpecifier &FS,
7471     const analyze_format_string::ConversionSpecifier &CS,
7472     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7473   using namespace analyze_format_string;
7474 
7475   const LengthModifier &LM = FS.getLengthModifier();
7476   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7477 
7478   // See if we know how to fix this length modifier.
7479   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7480   if (FixedLM) {
7481     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7482                          getLocationOfByte(LM.getStart()),
7483                          /*IsStringLocation*/true,
7484                          getSpecifierRange(startSpecifier, specifierLen));
7485 
7486     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7487       << FixedLM->toString()
7488       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7489 
7490   } else {
7491     FixItHint Hint;
7492     if (DiagID == diag::warn_format_nonsensical_length)
7493       Hint = FixItHint::CreateRemoval(LMRange);
7494 
7495     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7496                          getLocationOfByte(LM.getStart()),
7497                          /*IsStringLocation*/true,
7498                          getSpecifierRange(startSpecifier, specifierLen),
7499                          Hint);
7500   }
7501 }
7502 
7503 void CheckFormatHandler::HandleNonStandardLengthModifier(
7504     const analyze_format_string::FormatSpecifier &FS,
7505     const char *startSpecifier, unsigned specifierLen) {
7506   using namespace analyze_format_string;
7507 
7508   const LengthModifier &LM = FS.getLengthModifier();
7509   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7510 
7511   // See if we know how to fix this length modifier.
7512   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7513   if (FixedLM) {
7514     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7515                            << LM.toString() << 0,
7516                          getLocationOfByte(LM.getStart()),
7517                          /*IsStringLocation*/true,
7518                          getSpecifierRange(startSpecifier, specifierLen));
7519 
7520     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7521       << FixedLM->toString()
7522       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7523 
7524   } else {
7525     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7526                            << LM.toString() << 0,
7527                          getLocationOfByte(LM.getStart()),
7528                          /*IsStringLocation*/true,
7529                          getSpecifierRange(startSpecifier, specifierLen));
7530   }
7531 }
7532 
7533 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7534     const analyze_format_string::ConversionSpecifier &CS,
7535     const char *startSpecifier, unsigned specifierLen) {
7536   using namespace analyze_format_string;
7537 
7538   // See if we know how to fix this conversion specifier.
7539   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7540   if (FixedCS) {
7541     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7542                           << CS.toString() << /*conversion specifier*/1,
7543                          getLocationOfByte(CS.getStart()),
7544                          /*IsStringLocation*/true,
7545                          getSpecifierRange(startSpecifier, specifierLen));
7546 
7547     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7548     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7549       << FixedCS->toString()
7550       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7551   } else {
7552     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7553                           << CS.toString() << /*conversion specifier*/1,
7554                          getLocationOfByte(CS.getStart()),
7555                          /*IsStringLocation*/true,
7556                          getSpecifierRange(startSpecifier, specifierLen));
7557   }
7558 }
7559 
7560 void CheckFormatHandler::HandlePosition(const char *startPos,
7561                                         unsigned posLen) {
7562   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7563                                getLocationOfByte(startPos),
7564                                /*IsStringLocation*/true,
7565                                getSpecifierRange(startPos, posLen));
7566 }
7567 
7568 void
7569 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7570                                      analyze_format_string::PositionContext p) {
7571   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7572                          << (unsigned) p,
7573                        getLocationOfByte(startPos), /*IsStringLocation*/true,
7574                        getSpecifierRange(startPos, posLen));
7575 }
7576 
7577 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7578                                             unsigned posLen) {
7579   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7580                                getLocationOfByte(startPos),
7581                                /*IsStringLocation*/true,
7582                                getSpecifierRange(startPos, posLen));
7583 }
7584 
7585 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7586   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7587     // The presence of a null character is likely an error.
7588     EmitFormatDiagnostic(
7589       S.PDiag(diag::warn_printf_format_string_contains_null_char),
7590       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7591       getFormatStringRange());
7592   }
7593 }
7594 
7595 // Note that this may return NULL if there was an error parsing or building
7596 // one of the argument expressions.
7597 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7598   return Args[FirstDataArg + i];
7599 }
7600 
7601 void CheckFormatHandler::DoneProcessing() {
7602   // Does the number of data arguments exceed the number of
7603   // format conversions in the format string?
7604   if (!HasVAListArg) {
7605       // Find any arguments that weren't covered.
7606     CoveredArgs.flip();
7607     signed notCoveredArg = CoveredArgs.find_first();
7608     if (notCoveredArg >= 0) {
7609       assert((unsigned)notCoveredArg < NumDataArgs);
7610       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7611     } else {
7612       UncoveredArg.setAllCovered();
7613     }
7614   }
7615 }
7616 
7617 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7618                                    const Expr *ArgExpr) {
7619   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7620          "Invalid state");
7621 
7622   if (!ArgExpr)
7623     return;
7624 
7625   SourceLocation Loc = ArgExpr->getBeginLoc();
7626 
7627   if (S.getSourceManager().isInSystemMacro(Loc))
7628     return;
7629 
7630   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7631   for (auto E : DiagnosticExprs)
7632     PDiag << E->getSourceRange();
7633 
7634   CheckFormatHandler::EmitFormatDiagnostic(
7635                                   S, IsFunctionCall, DiagnosticExprs[0],
7636                                   PDiag, Loc, /*IsStringLocation*/false,
7637                                   DiagnosticExprs[0]->getSourceRange());
7638 }
7639 
7640 bool
7641 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7642                                                      SourceLocation Loc,
7643                                                      const char *startSpec,
7644                                                      unsigned specifierLen,
7645                                                      const char *csStart,
7646                                                      unsigned csLen) {
7647   bool keepGoing = true;
7648   if (argIndex < NumDataArgs) {
7649     // Consider the argument coverered, even though the specifier doesn't
7650     // make sense.
7651     CoveredArgs.set(argIndex);
7652   }
7653   else {
7654     // If argIndex exceeds the number of data arguments we
7655     // don't issue a warning because that is just a cascade of warnings (and
7656     // they may have intended '%%' anyway). We don't want to continue processing
7657     // the format string after this point, however, as we will like just get
7658     // gibberish when trying to match arguments.
7659     keepGoing = false;
7660   }
7661 
7662   StringRef Specifier(csStart, csLen);
7663 
7664   // If the specifier in non-printable, it could be the first byte of a UTF-8
7665   // sequence. In that case, print the UTF-8 code point. If not, print the byte
7666   // hex value.
7667   std::string CodePointStr;
7668   if (!llvm::sys::locale::isPrint(*csStart)) {
7669     llvm::UTF32 CodePoint;
7670     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7671     const llvm::UTF8 *E =
7672         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7673     llvm::ConversionResult Result =
7674         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7675 
7676     if (Result != llvm::conversionOK) {
7677       unsigned char FirstChar = *csStart;
7678       CodePoint = (llvm::UTF32)FirstChar;
7679     }
7680 
7681     llvm::raw_string_ostream OS(CodePointStr);
7682     if (CodePoint < 256)
7683       OS << "\\x" << llvm::format("%02x", CodePoint);
7684     else if (CodePoint <= 0xFFFF)
7685       OS << "\\u" << llvm::format("%04x", CodePoint);
7686     else
7687       OS << "\\U" << llvm::format("%08x", CodePoint);
7688     OS.flush();
7689     Specifier = CodePointStr;
7690   }
7691 
7692   EmitFormatDiagnostic(
7693       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7694       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7695 
7696   return keepGoing;
7697 }
7698 
7699 void
7700 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7701                                                       const char *startSpec,
7702                                                       unsigned specifierLen) {
7703   EmitFormatDiagnostic(
7704     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7705     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7706 }
7707 
7708 bool
7709 CheckFormatHandler::CheckNumArgs(
7710   const analyze_format_string::FormatSpecifier &FS,
7711   const analyze_format_string::ConversionSpecifier &CS,
7712   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7713 
7714   if (argIndex >= NumDataArgs) {
7715     PartialDiagnostic PDiag = FS.usesPositionalArg()
7716       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7717            << (argIndex+1) << NumDataArgs)
7718       : S.PDiag(diag::warn_printf_insufficient_data_args);
7719     EmitFormatDiagnostic(
7720       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7721       getSpecifierRange(startSpecifier, specifierLen));
7722 
7723     // Since more arguments than conversion tokens are given, by extension
7724     // all arguments are covered, so mark this as so.
7725     UncoveredArg.setAllCovered();
7726     return false;
7727   }
7728   return true;
7729 }
7730 
7731 template<typename Range>
7732 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7733                                               SourceLocation Loc,
7734                                               bool IsStringLocation,
7735                                               Range StringRange,
7736                                               ArrayRef<FixItHint> FixIt) {
7737   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7738                        Loc, IsStringLocation, StringRange, FixIt);
7739 }
7740 
7741 /// If the format string is not within the function call, emit a note
7742 /// so that the function call and string are in diagnostic messages.
7743 ///
7744 /// \param InFunctionCall if true, the format string is within the function
7745 /// call and only one diagnostic message will be produced.  Otherwise, an
7746 /// extra note will be emitted pointing to location of the format string.
7747 ///
7748 /// \param ArgumentExpr the expression that is passed as the format string
7749 /// argument in the function call.  Used for getting locations when two
7750 /// diagnostics are emitted.
7751 ///
7752 /// \param PDiag the callee should already have provided any strings for the
7753 /// diagnostic message.  This function only adds locations and fixits
7754 /// to diagnostics.
7755 ///
7756 /// \param Loc primary location for diagnostic.  If two diagnostics are
7757 /// required, one will be at Loc and a new SourceLocation will be created for
7758 /// the other one.
7759 ///
7760 /// \param IsStringLocation if true, Loc points to the format string should be
7761 /// used for the note.  Otherwise, Loc points to the argument list and will
7762 /// be used with PDiag.
7763 ///
7764 /// \param StringRange some or all of the string to highlight.  This is
7765 /// templated so it can accept either a CharSourceRange or a SourceRange.
7766 ///
7767 /// \param FixIt optional fix it hint for the format string.
7768 template <typename Range>
7769 void CheckFormatHandler::EmitFormatDiagnostic(
7770     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7771     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7772     Range StringRange, ArrayRef<FixItHint> FixIt) {
7773   if (InFunctionCall) {
7774     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7775     D << StringRange;
7776     D << FixIt;
7777   } else {
7778     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7779       << ArgumentExpr->getSourceRange();
7780 
7781     const Sema::SemaDiagnosticBuilder &Note =
7782       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7783              diag::note_format_string_defined);
7784 
7785     Note << StringRange;
7786     Note << FixIt;
7787   }
7788 }
7789 
7790 //===--- CHECK: Printf format string checking ------------------------------===//
7791 
7792 namespace {
7793 
7794 class CheckPrintfHandler : public CheckFormatHandler {
7795 public:
7796   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7797                      const Expr *origFormatExpr,
7798                      const Sema::FormatStringType type, unsigned firstDataArg,
7799                      unsigned numDataArgs, bool isObjC, const char *beg,
7800                      bool hasVAListArg, ArrayRef<const Expr *> Args,
7801                      unsigned formatIdx, bool inFunctionCall,
7802                      Sema::VariadicCallType CallType,
7803                      llvm::SmallBitVector &CheckedVarArgs,
7804                      UncoveredArgHandler &UncoveredArg)
7805       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7806                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
7807                            inFunctionCall, CallType, CheckedVarArgs,
7808                            UncoveredArg) {}
7809 
7810   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7811 
7812   /// Returns true if '%@' specifiers are allowed in the format string.
7813   bool allowsObjCArg() const {
7814     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7815            FSType == Sema::FST_OSTrace;
7816   }
7817 
7818   bool HandleInvalidPrintfConversionSpecifier(
7819                                       const analyze_printf::PrintfSpecifier &FS,
7820                                       const char *startSpecifier,
7821                                       unsigned specifierLen) override;
7822 
7823   void handleInvalidMaskType(StringRef MaskType) override;
7824 
7825   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7826                              const char *startSpecifier,
7827                              unsigned specifierLen) override;
7828   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7829                        const char *StartSpecifier,
7830                        unsigned SpecifierLen,
7831                        const Expr *E);
7832 
7833   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7834                     const char *startSpecifier, unsigned specifierLen);
7835   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7836                            const analyze_printf::OptionalAmount &Amt,
7837                            unsigned type,
7838                            const char *startSpecifier, unsigned specifierLen);
7839   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7840                   const analyze_printf::OptionalFlag &flag,
7841                   const char *startSpecifier, unsigned specifierLen);
7842   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
7843                          const analyze_printf::OptionalFlag &ignoredFlag,
7844                          const analyze_printf::OptionalFlag &flag,
7845                          const char *startSpecifier, unsigned specifierLen);
7846   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
7847                            const Expr *E);
7848 
7849   void HandleEmptyObjCModifierFlag(const char *startFlag,
7850                                    unsigned flagLen) override;
7851 
7852   void HandleInvalidObjCModifierFlag(const char *startFlag,
7853                                             unsigned flagLen) override;
7854 
7855   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
7856                                            const char *flagsEnd,
7857                                            const char *conversionPosition)
7858                                              override;
7859 };
7860 
7861 } // namespace
7862 
7863 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
7864                                       const analyze_printf::PrintfSpecifier &FS,
7865                                       const char *startSpecifier,
7866                                       unsigned specifierLen) {
7867   const analyze_printf::PrintfConversionSpecifier &CS =
7868     FS.getConversionSpecifier();
7869 
7870   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
7871                                           getLocationOfByte(CS.getStart()),
7872                                           startSpecifier, specifierLen,
7873                                           CS.getStart(), CS.getLength());
7874 }
7875 
7876 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
7877   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
7878 }
7879 
7880 bool CheckPrintfHandler::HandleAmount(
7881                                const analyze_format_string::OptionalAmount &Amt,
7882                                unsigned k, const char *startSpecifier,
7883                                unsigned specifierLen) {
7884   if (Amt.hasDataArgument()) {
7885     if (!HasVAListArg) {
7886       unsigned argIndex = Amt.getArgIndex();
7887       if (argIndex >= NumDataArgs) {
7888         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
7889                                << k,
7890                              getLocationOfByte(Amt.getStart()),
7891                              /*IsStringLocation*/true,
7892                              getSpecifierRange(startSpecifier, specifierLen));
7893         // Don't do any more checking.  We will just emit
7894         // spurious errors.
7895         return false;
7896       }
7897 
7898       // Type check the data argument.  It should be an 'int'.
7899       // Although not in conformance with C99, we also allow the argument to be
7900       // an 'unsigned int' as that is a reasonably safe case.  GCC also
7901       // doesn't emit a warning for that case.
7902       CoveredArgs.set(argIndex);
7903       const Expr *Arg = getDataArg(argIndex);
7904       if (!Arg)
7905         return false;
7906 
7907       QualType T = Arg->getType();
7908 
7909       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
7910       assert(AT.isValid());
7911 
7912       if (!AT.matchesType(S.Context, T)) {
7913         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
7914                                << k << AT.getRepresentativeTypeName(S.Context)
7915                                << T << Arg->getSourceRange(),
7916                              getLocationOfByte(Amt.getStart()),
7917                              /*IsStringLocation*/true,
7918                              getSpecifierRange(startSpecifier, specifierLen));
7919         // Don't do any more checking.  We will just emit
7920         // spurious errors.
7921         return false;
7922       }
7923     }
7924   }
7925   return true;
7926 }
7927 
7928 void CheckPrintfHandler::HandleInvalidAmount(
7929                                       const analyze_printf::PrintfSpecifier &FS,
7930                                       const analyze_printf::OptionalAmount &Amt,
7931                                       unsigned type,
7932                                       const char *startSpecifier,
7933                                       unsigned specifierLen) {
7934   const analyze_printf::PrintfConversionSpecifier &CS =
7935     FS.getConversionSpecifier();
7936 
7937   FixItHint fixit =
7938     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
7939       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
7940                                  Amt.getConstantLength()))
7941       : FixItHint();
7942 
7943   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
7944                          << type << CS.toString(),
7945                        getLocationOfByte(Amt.getStart()),
7946                        /*IsStringLocation*/true,
7947                        getSpecifierRange(startSpecifier, specifierLen),
7948                        fixit);
7949 }
7950 
7951 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7952                                     const analyze_printf::OptionalFlag &flag,
7953                                     const char *startSpecifier,
7954                                     unsigned specifierLen) {
7955   // Warn about pointless flag with a fixit removal.
7956   const analyze_printf::PrintfConversionSpecifier &CS =
7957     FS.getConversionSpecifier();
7958   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
7959                          << flag.toString() << CS.toString(),
7960                        getLocationOfByte(flag.getPosition()),
7961                        /*IsStringLocation*/true,
7962                        getSpecifierRange(startSpecifier, specifierLen),
7963                        FixItHint::CreateRemoval(
7964                          getSpecifierRange(flag.getPosition(), 1)));
7965 }
7966 
7967 void CheckPrintfHandler::HandleIgnoredFlag(
7968                                 const analyze_printf::PrintfSpecifier &FS,
7969                                 const analyze_printf::OptionalFlag &ignoredFlag,
7970                                 const analyze_printf::OptionalFlag &flag,
7971                                 const char *startSpecifier,
7972                                 unsigned specifierLen) {
7973   // Warn about ignored flag with a fixit removal.
7974   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
7975                          << ignoredFlag.toString() << flag.toString(),
7976                        getLocationOfByte(ignoredFlag.getPosition()),
7977                        /*IsStringLocation*/true,
7978                        getSpecifierRange(startSpecifier, specifierLen),
7979                        FixItHint::CreateRemoval(
7980                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
7981 }
7982 
7983 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
7984                                                      unsigned flagLen) {
7985   // Warn about an empty flag.
7986   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
7987                        getLocationOfByte(startFlag),
7988                        /*IsStringLocation*/true,
7989                        getSpecifierRange(startFlag, flagLen));
7990 }
7991 
7992 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
7993                                                        unsigned flagLen) {
7994   // Warn about an invalid flag.
7995   auto Range = getSpecifierRange(startFlag, flagLen);
7996   StringRef flag(startFlag, flagLen);
7997   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
7998                       getLocationOfByte(startFlag),
7999                       /*IsStringLocation*/true,
8000                       Range, FixItHint::CreateRemoval(Range));
8001 }
8002 
8003 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8004     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8005     // Warn about using '[...]' without a '@' conversion.
8006     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8007     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8008     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8009                          getLocationOfByte(conversionPosition),
8010                          /*IsStringLocation*/true,
8011                          Range, FixItHint::CreateRemoval(Range));
8012 }
8013 
8014 // Determines if the specified is a C++ class or struct containing
8015 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8016 // "c_str()").
8017 template<typename MemberKind>
8018 static llvm::SmallPtrSet<MemberKind*, 1>
8019 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8020   const RecordType *RT = Ty->getAs<RecordType>();
8021   llvm::SmallPtrSet<MemberKind*, 1> Results;
8022 
8023   if (!RT)
8024     return Results;
8025   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8026   if (!RD || !RD->getDefinition())
8027     return Results;
8028 
8029   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8030                  Sema::LookupMemberName);
8031   R.suppressDiagnostics();
8032 
8033   // We just need to include all members of the right kind turned up by the
8034   // filter, at this point.
8035   if (S.LookupQualifiedName(R, RT->getDecl()))
8036     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8037       NamedDecl *decl = (*I)->getUnderlyingDecl();
8038       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8039         Results.insert(FK);
8040     }
8041   return Results;
8042 }
8043 
8044 /// Check if we could call '.c_str()' on an object.
8045 ///
8046 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8047 /// allow the call, or if it would be ambiguous).
8048 bool Sema::hasCStrMethod(const Expr *E) {
8049   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8050 
8051   MethodSet Results =
8052       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8053   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8054        MI != ME; ++MI)
8055     if ((*MI)->getMinRequiredArguments() == 0)
8056       return true;
8057   return false;
8058 }
8059 
8060 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8061 // better diagnostic if so. AT is assumed to be valid.
8062 // Returns true when a c_str() conversion method is found.
8063 bool CheckPrintfHandler::checkForCStrMembers(
8064     const analyze_printf::ArgType &AT, const Expr *E) {
8065   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8066 
8067   MethodSet Results =
8068       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8069 
8070   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8071        MI != ME; ++MI) {
8072     const CXXMethodDecl *Method = *MI;
8073     if (Method->getMinRequiredArguments() == 0 &&
8074         AT.matchesType(S.Context, Method->getReturnType())) {
8075       // FIXME: Suggest parens if the expression needs them.
8076       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8077       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8078           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8079       return true;
8080     }
8081   }
8082 
8083   return false;
8084 }
8085 
8086 bool
8087 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8088                                             &FS,
8089                                           const char *startSpecifier,
8090                                           unsigned specifierLen) {
8091   using namespace analyze_format_string;
8092   using namespace analyze_printf;
8093 
8094   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8095 
8096   if (FS.consumesDataArgument()) {
8097     if (atFirstArg) {
8098         atFirstArg = false;
8099         usesPositionalArgs = FS.usesPositionalArg();
8100     }
8101     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8102       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8103                                         startSpecifier, specifierLen);
8104       return false;
8105     }
8106   }
8107 
8108   // First check if the field width, precision, and conversion specifier
8109   // have matching data arguments.
8110   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8111                     startSpecifier, specifierLen)) {
8112     return false;
8113   }
8114 
8115   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8116                     startSpecifier, specifierLen)) {
8117     return false;
8118   }
8119 
8120   if (!CS.consumesDataArgument()) {
8121     // FIXME: Technically specifying a precision or field width here
8122     // makes no sense.  Worth issuing a warning at some point.
8123     return true;
8124   }
8125 
8126   // Consume the argument.
8127   unsigned argIndex = FS.getArgIndex();
8128   if (argIndex < NumDataArgs) {
8129     // The check to see if the argIndex is valid will come later.
8130     // We set the bit here because we may exit early from this
8131     // function if we encounter some other error.
8132     CoveredArgs.set(argIndex);
8133   }
8134 
8135   // FreeBSD kernel extensions.
8136   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8137       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8138     // We need at least two arguments.
8139     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8140       return false;
8141 
8142     // Claim the second argument.
8143     CoveredArgs.set(argIndex + 1);
8144 
8145     // Type check the first argument (int for %b, pointer for %D)
8146     const Expr *Ex = getDataArg(argIndex);
8147     const analyze_printf::ArgType &AT =
8148       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8149         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8150     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8151       EmitFormatDiagnostic(
8152           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8153               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8154               << false << Ex->getSourceRange(),
8155           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8156           getSpecifierRange(startSpecifier, specifierLen));
8157 
8158     // Type check the second argument (char * for both %b and %D)
8159     Ex = getDataArg(argIndex + 1);
8160     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8161     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8162       EmitFormatDiagnostic(
8163           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8164               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8165               << false << Ex->getSourceRange(),
8166           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8167           getSpecifierRange(startSpecifier, specifierLen));
8168 
8169      return true;
8170   }
8171 
8172   // Check for using an Objective-C specific conversion specifier
8173   // in a non-ObjC literal.
8174   if (!allowsObjCArg() && CS.isObjCArg()) {
8175     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8176                                                   specifierLen);
8177   }
8178 
8179   // %P can only be used with os_log.
8180   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8181     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8182                                                   specifierLen);
8183   }
8184 
8185   // %n is not allowed with os_log.
8186   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8187     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8188                          getLocationOfByte(CS.getStart()),
8189                          /*IsStringLocation*/ false,
8190                          getSpecifierRange(startSpecifier, specifierLen));
8191 
8192     return true;
8193   }
8194 
8195   // Only scalars are allowed for os_trace.
8196   if (FSType == Sema::FST_OSTrace &&
8197       (CS.getKind() == ConversionSpecifier::PArg ||
8198        CS.getKind() == ConversionSpecifier::sArg ||
8199        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8200     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8201                                                   specifierLen);
8202   }
8203 
8204   // Check for use of public/private annotation outside of os_log().
8205   if (FSType != Sema::FST_OSLog) {
8206     if (FS.isPublic().isSet()) {
8207       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8208                                << "public",
8209                            getLocationOfByte(FS.isPublic().getPosition()),
8210                            /*IsStringLocation*/ false,
8211                            getSpecifierRange(startSpecifier, specifierLen));
8212     }
8213     if (FS.isPrivate().isSet()) {
8214       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8215                                << "private",
8216                            getLocationOfByte(FS.isPrivate().getPosition()),
8217                            /*IsStringLocation*/ false,
8218                            getSpecifierRange(startSpecifier, specifierLen));
8219     }
8220   }
8221 
8222   // Check for invalid use of field width
8223   if (!FS.hasValidFieldWidth()) {
8224     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8225         startSpecifier, specifierLen);
8226   }
8227 
8228   // Check for invalid use of precision
8229   if (!FS.hasValidPrecision()) {
8230     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8231         startSpecifier, specifierLen);
8232   }
8233 
8234   // Precision is mandatory for %P specifier.
8235   if (CS.getKind() == ConversionSpecifier::PArg &&
8236       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8237     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8238                          getLocationOfByte(startSpecifier),
8239                          /*IsStringLocation*/ false,
8240                          getSpecifierRange(startSpecifier, specifierLen));
8241   }
8242 
8243   // Check each flag does not conflict with any other component.
8244   if (!FS.hasValidThousandsGroupingPrefix())
8245     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8246   if (!FS.hasValidLeadingZeros())
8247     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8248   if (!FS.hasValidPlusPrefix())
8249     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8250   if (!FS.hasValidSpacePrefix())
8251     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8252   if (!FS.hasValidAlternativeForm())
8253     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8254   if (!FS.hasValidLeftJustified())
8255     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8256 
8257   // Check that flags are not ignored by another flag
8258   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8259     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8260         startSpecifier, specifierLen);
8261   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8262     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8263             startSpecifier, specifierLen);
8264 
8265   // Check the length modifier is valid with the given conversion specifier.
8266   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8267                                  S.getLangOpts()))
8268     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8269                                 diag::warn_format_nonsensical_length);
8270   else if (!FS.hasStandardLengthModifier())
8271     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8272   else if (!FS.hasStandardLengthConversionCombination())
8273     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8274                                 diag::warn_format_non_standard_conversion_spec);
8275 
8276   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8277     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8278 
8279   // The remaining checks depend on the data arguments.
8280   if (HasVAListArg)
8281     return true;
8282 
8283   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8284     return false;
8285 
8286   const Expr *Arg = getDataArg(argIndex);
8287   if (!Arg)
8288     return true;
8289 
8290   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8291 }
8292 
8293 static bool requiresParensToAddCast(const Expr *E) {
8294   // FIXME: We should have a general way to reason about operator
8295   // precedence and whether parens are actually needed here.
8296   // Take care of a few common cases where they aren't.
8297   const Expr *Inside = E->IgnoreImpCasts();
8298   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8299     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8300 
8301   switch (Inside->getStmtClass()) {
8302   case Stmt::ArraySubscriptExprClass:
8303   case Stmt::CallExprClass:
8304   case Stmt::CharacterLiteralClass:
8305   case Stmt::CXXBoolLiteralExprClass:
8306   case Stmt::DeclRefExprClass:
8307   case Stmt::FloatingLiteralClass:
8308   case Stmt::IntegerLiteralClass:
8309   case Stmt::MemberExprClass:
8310   case Stmt::ObjCArrayLiteralClass:
8311   case Stmt::ObjCBoolLiteralExprClass:
8312   case Stmt::ObjCBoxedExprClass:
8313   case Stmt::ObjCDictionaryLiteralClass:
8314   case Stmt::ObjCEncodeExprClass:
8315   case Stmt::ObjCIvarRefExprClass:
8316   case Stmt::ObjCMessageExprClass:
8317   case Stmt::ObjCPropertyRefExprClass:
8318   case Stmt::ObjCStringLiteralClass:
8319   case Stmt::ObjCSubscriptRefExprClass:
8320   case Stmt::ParenExprClass:
8321   case Stmt::StringLiteralClass:
8322   case Stmt::UnaryOperatorClass:
8323     return false;
8324   default:
8325     return true;
8326   }
8327 }
8328 
8329 static std::pair<QualType, StringRef>
8330 shouldNotPrintDirectly(const ASTContext &Context,
8331                        QualType IntendedTy,
8332                        const Expr *E) {
8333   // Use a 'while' to peel off layers of typedefs.
8334   QualType TyTy = IntendedTy;
8335   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
8336     StringRef Name = UserTy->getDecl()->getName();
8337     QualType CastTy = llvm::StringSwitch<QualType>(Name)
8338       .Case("CFIndex", Context.getNSIntegerType())
8339       .Case("NSInteger", Context.getNSIntegerType())
8340       .Case("NSUInteger", Context.getNSUIntegerType())
8341       .Case("SInt32", Context.IntTy)
8342       .Case("UInt32", Context.UnsignedIntTy)
8343       .Default(QualType());
8344 
8345     if (!CastTy.isNull())
8346       return std::make_pair(CastTy, Name);
8347 
8348     TyTy = UserTy->desugar();
8349   }
8350 
8351   // Strip parens if necessary.
8352   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
8353     return shouldNotPrintDirectly(Context,
8354                                   PE->getSubExpr()->getType(),
8355                                   PE->getSubExpr());
8356 
8357   // If this is a conditional expression, then its result type is constructed
8358   // via usual arithmetic conversions and thus there might be no necessary
8359   // typedef sugar there.  Recurse to operands to check for NSInteger &
8360   // Co. usage condition.
8361   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8362     QualType TrueTy, FalseTy;
8363     StringRef TrueName, FalseName;
8364 
8365     std::tie(TrueTy, TrueName) =
8366       shouldNotPrintDirectly(Context,
8367                              CO->getTrueExpr()->getType(),
8368                              CO->getTrueExpr());
8369     std::tie(FalseTy, FalseName) =
8370       shouldNotPrintDirectly(Context,
8371                              CO->getFalseExpr()->getType(),
8372                              CO->getFalseExpr());
8373 
8374     if (TrueTy == FalseTy)
8375       return std::make_pair(TrueTy, TrueName);
8376     else if (TrueTy.isNull())
8377       return std::make_pair(FalseTy, FalseName);
8378     else if (FalseTy.isNull())
8379       return std::make_pair(TrueTy, TrueName);
8380   }
8381 
8382   return std::make_pair(QualType(), StringRef());
8383 }
8384 
8385 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
8386 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8387 /// type do not count.
8388 static bool
8389 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8390   QualType From = ICE->getSubExpr()->getType();
8391   QualType To = ICE->getType();
8392   // It's an integer promotion if the destination type is the promoted
8393   // source type.
8394   if (ICE->getCastKind() == CK_IntegralCast &&
8395       From->isPromotableIntegerType() &&
8396       S.Context.getPromotedIntegerType(From) == To)
8397     return true;
8398   // Look through vector types, since we do default argument promotion for
8399   // those in OpenCL.
8400   if (const auto *VecTy = From->getAs<ExtVectorType>())
8401     From = VecTy->getElementType();
8402   if (const auto *VecTy = To->getAs<ExtVectorType>())
8403     To = VecTy->getElementType();
8404   // It's a floating promotion if the source type is a lower rank.
8405   return ICE->getCastKind() == CK_FloatingCast &&
8406          S.Context.getFloatingTypeOrder(From, To) < 0;
8407 }
8408 
8409 bool
8410 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8411                                     const char *StartSpecifier,
8412                                     unsigned SpecifierLen,
8413                                     const Expr *E) {
8414   using namespace analyze_format_string;
8415   using namespace analyze_printf;
8416 
8417   // Now type check the data expression that matches the
8418   // format specifier.
8419   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8420   if (!AT.isValid())
8421     return true;
8422 
8423   QualType ExprTy = E->getType();
8424   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8425     ExprTy = TET->getUnderlyingExpr()->getType();
8426   }
8427 
8428   // Diagnose attempts to print a boolean value as a character. Unlike other
8429   // -Wformat diagnostics, this is fine from a type perspective, but it still
8430   // doesn't make sense.
8431   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
8432       E->isKnownToHaveBooleanValue()) {
8433     const CharSourceRange &CSR =
8434         getSpecifierRange(StartSpecifier, SpecifierLen);
8435     SmallString<4> FSString;
8436     llvm::raw_svector_ostream os(FSString);
8437     FS.toString(os);
8438     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
8439                              << FSString,
8440                          E->getExprLoc(), false, CSR);
8441     return true;
8442   }
8443 
8444   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
8445   if (Match == analyze_printf::ArgType::Match)
8446     return true;
8447 
8448   // Look through argument promotions for our error message's reported type.
8449   // This includes the integral and floating promotions, but excludes array
8450   // and function pointer decay (seeing that an argument intended to be a
8451   // string has type 'char [6]' is probably more confusing than 'char *') and
8452   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8453   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8454     if (isArithmeticArgumentPromotion(S, ICE)) {
8455       E = ICE->getSubExpr();
8456       ExprTy = E->getType();
8457 
8458       // Check if we didn't match because of an implicit cast from a 'char'
8459       // or 'short' to an 'int'.  This is done because printf is a varargs
8460       // function.
8461       if (ICE->getType() == S.Context.IntTy ||
8462           ICE->getType() == S.Context.UnsignedIntTy) {
8463         // All further checking is done on the subexpression
8464         const analyze_printf::ArgType::MatchKind ImplicitMatch =
8465             AT.matchesType(S.Context, ExprTy);
8466         if (ImplicitMatch == analyze_printf::ArgType::Match)
8467           return true;
8468         if (ImplicitMatch == ArgType::NoMatchPedantic ||
8469             ImplicitMatch == ArgType::NoMatchTypeConfusion)
8470           Match = ImplicitMatch;
8471       }
8472     }
8473   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8474     // Special case for 'a', which has type 'int' in C.
8475     // Note, however, that we do /not/ want to treat multibyte constants like
8476     // 'MooV' as characters! This form is deprecated but still exists.
8477     if (ExprTy == S.Context.IntTy)
8478       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8479         ExprTy = S.Context.CharTy;
8480   }
8481 
8482   // Look through enums to their underlying type.
8483   bool IsEnum = false;
8484   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8485     ExprTy = EnumTy->getDecl()->getIntegerType();
8486     IsEnum = true;
8487   }
8488 
8489   // %C in an Objective-C context prints a unichar, not a wchar_t.
8490   // If the argument is an integer of some kind, believe the %C and suggest
8491   // a cast instead of changing the conversion specifier.
8492   QualType IntendedTy = ExprTy;
8493   if (isObjCContext() &&
8494       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8495     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8496         !ExprTy->isCharType()) {
8497       // 'unichar' is defined as a typedef of unsigned short, but we should
8498       // prefer using the typedef if it is visible.
8499       IntendedTy = S.Context.UnsignedShortTy;
8500 
8501       // While we are here, check if the value is an IntegerLiteral that happens
8502       // to be within the valid range.
8503       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8504         const llvm::APInt &V = IL->getValue();
8505         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8506           return true;
8507       }
8508 
8509       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8510                           Sema::LookupOrdinaryName);
8511       if (S.LookupName(Result, S.getCurScope())) {
8512         NamedDecl *ND = Result.getFoundDecl();
8513         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8514           if (TD->getUnderlyingType() == IntendedTy)
8515             IntendedTy = S.Context.getTypedefType(TD);
8516       }
8517     }
8518   }
8519 
8520   // Special-case some of Darwin's platform-independence types by suggesting
8521   // casts to primitive types that are known to be large enough.
8522   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8523   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8524     QualType CastTy;
8525     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8526     if (!CastTy.isNull()) {
8527       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8528       // (long in ASTContext). Only complain to pedants.
8529       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8530           (AT.isSizeT() || AT.isPtrdiffT()) &&
8531           AT.matchesType(S.Context, CastTy))
8532         Match = ArgType::NoMatchPedantic;
8533       IntendedTy = CastTy;
8534       ShouldNotPrintDirectly = true;
8535     }
8536   }
8537 
8538   // We may be able to offer a FixItHint if it is a supported type.
8539   PrintfSpecifier fixedFS = FS;
8540   bool Success =
8541       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8542 
8543   if (Success) {
8544     // Get the fix string from the fixed format specifier
8545     SmallString<16> buf;
8546     llvm::raw_svector_ostream os(buf);
8547     fixedFS.toString(os);
8548 
8549     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8550 
8551     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8552       unsigned Diag;
8553       switch (Match) {
8554       case ArgType::Match: llvm_unreachable("expected non-matching");
8555       case ArgType::NoMatchPedantic:
8556         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8557         break;
8558       case ArgType::NoMatchTypeConfusion:
8559         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8560         break;
8561       case ArgType::NoMatch:
8562         Diag = diag::warn_format_conversion_argument_type_mismatch;
8563         break;
8564       }
8565 
8566       // In this case, the specifier is wrong and should be changed to match
8567       // the argument.
8568       EmitFormatDiagnostic(S.PDiag(Diag)
8569                                << AT.getRepresentativeTypeName(S.Context)
8570                                << IntendedTy << IsEnum << E->getSourceRange(),
8571                            E->getBeginLoc(),
8572                            /*IsStringLocation*/ false, SpecRange,
8573                            FixItHint::CreateReplacement(SpecRange, os.str()));
8574     } else {
8575       // The canonical type for formatting this value is different from the
8576       // actual type of the expression. (This occurs, for example, with Darwin's
8577       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8578       // should be printed as 'long' for 64-bit compatibility.)
8579       // Rather than emitting a normal format/argument mismatch, we want to
8580       // add a cast to the recommended type (and correct the format string
8581       // if necessary).
8582       SmallString<16> CastBuf;
8583       llvm::raw_svector_ostream CastFix(CastBuf);
8584       CastFix << "(";
8585       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8586       CastFix << ")";
8587 
8588       SmallVector<FixItHint,4> Hints;
8589       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8590         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8591 
8592       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8593         // If there's already a cast present, just replace it.
8594         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8595         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8596 
8597       } else if (!requiresParensToAddCast(E)) {
8598         // If the expression has high enough precedence,
8599         // just write the C-style cast.
8600         Hints.push_back(
8601             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8602       } else {
8603         // Otherwise, add parens around the expression as well as the cast.
8604         CastFix << "(";
8605         Hints.push_back(
8606             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8607 
8608         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8609         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8610       }
8611 
8612       if (ShouldNotPrintDirectly) {
8613         // The expression has a type that should not be printed directly.
8614         // We extract the name from the typedef because we don't want to show
8615         // the underlying type in the diagnostic.
8616         StringRef Name;
8617         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8618           Name = TypedefTy->getDecl()->getName();
8619         else
8620           Name = CastTyName;
8621         unsigned Diag = Match == ArgType::NoMatchPedantic
8622                             ? diag::warn_format_argument_needs_cast_pedantic
8623                             : diag::warn_format_argument_needs_cast;
8624         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8625                                            << E->getSourceRange(),
8626                              E->getBeginLoc(), /*IsStringLocation=*/false,
8627                              SpecRange, Hints);
8628       } else {
8629         // In this case, the expression could be printed using a different
8630         // specifier, but we've decided that the specifier is probably correct
8631         // and we should cast instead. Just use the normal warning message.
8632         EmitFormatDiagnostic(
8633             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8634                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8635                 << E->getSourceRange(),
8636             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8637       }
8638     }
8639   } else {
8640     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8641                                                    SpecifierLen);
8642     // Since the warning for passing non-POD types to variadic functions
8643     // was deferred until now, we emit a warning for non-POD
8644     // arguments here.
8645     switch (S.isValidVarArgType(ExprTy)) {
8646     case Sema::VAK_Valid:
8647     case Sema::VAK_ValidInCXX11: {
8648       unsigned Diag;
8649       switch (Match) {
8650       case ArgType::Match: llvm_unreachable("expected non-matching");
8651       case ArgType::NoMatchPedantic:
8652         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8653         break;
8654       case ArgType::NoMatchTypeConfusion:
8655         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8656         break;
8657       case ArgType::NoMatch:
8658         Diag = diag::warn_format_conversion_argument_type_mismatch;
8659         break;
8660       }
8661 
8662       EmitFormatDiagnostic(
8663           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8664                         << IsEnum << CSR << E->getSourceRange(),
8665           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8666       break;
8667     }
8668     case Sema::VAK_Undefined:
8669     case Sema::VAK_MSVCUndefined:
8670       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8671                                << S.getLangOpts().CPlusPlus11 << ExprTy
8672                                << CallType
8673                                << AT.getRepresentativeTypeName(S.Context) << CSR
8674                                << E->getSourceRange(),
8675                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8676       checkForCStrMembers(AT, E);
8677       break;
8678 
8679     case Sema::VAK_Invalid:
8680       if (ExprTy->isObjCObjectType())
8681         EmitFormatDiagnostic(
8682             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8683                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8684                 << AT.getRepresentativeTypeName(S.Context) << CSR
8685                 << E->getSourceRange(),
8686             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8687       else
8688         // FIXME: If this is an initializer list, suggest removing the braces
8689         // or inserting a cast to the target type.
8690         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8691             << isa<InitListExpr>(E) << ExprTy << CallType
8692             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8693       break;
8694     }
8695 
8696     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8697            "format string specifier index out of range");
8698     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8699   }
8700 
8701   return true;
8702 }
8703 
8704 //===--- CHECK: Scanf format string checking ------------------------------===//
8705 
8706 namespace {
8707 
8708 class CheckScanfHandler : public CheckFormatHandler {
8709 public:
8710   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8711                     const Expr *origFormatExpr, Sema::FormatStringType type,
8712                     unsigned firstDataArg, unsigned numDataArgs,
8713                     const char *beg, bool hasVAListArg,
8714                     ArrayRef<const Expr *> Args, unsigned formatIdx,
8715                     bool inFunctionCall, Sema::VariadicCallType CallType,
8716                     llvm::SmallBitVector &CheckedVarArgs,
8717                     UncoveredArgHandler &UncoveredArg)
8718       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8719                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8720                            inFunctionCall, CallType, CheckedVarArgs,
8721                            UncoveredArg) {}
8722 
8723   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8724                             const char *startSpecifier,
8725                             unsigned specifierLen) override;
8726 
8727   bool HandleInvalidScanfConversionSpecifier(
8728           const analyze_scanf::ScanfSpecifier &FS,
8729           const char *startSpecifier,
8730           unsigned specifierLen) override;
8731 
8732   void HandleIncompleteScanList(const char *start, const char *end) override;
8733 };
8734 
8735 } // namespace
8736 
8737 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8738                                                  const char *end) {
8739   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8740                        getLocationOfByte(end), /*IsStringLocation*/true,
8741                        getSpecifierRange(start, end - start));
8742 }
8743 
8744 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8745                                         const analyze_scanf::ScanfSpecifier &FS,
8746                                         const char *startSpecifier,
8747                                         unsigned specifierLen) {
8748   const analyze_scanf::ScanfConversionSpecifier &CS =
8749     FS.getConversionSpecifier();
8750 
8751   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8752                                           getLocationOfByte(CS.getStart()),
8753                                           startSpecifier, specifierLen,
8754                                           CS.getStart(), CS.getLength());
8755 }
8756 
8757 bool CheckScanfHandler::HandleScanfSpecifier(
8758                                        const analyze_scanf::ScanfSpecifier &FS,
8759                                        const char *startSpecifier,
8760                                        unsigned specifierLen) {
8761   using namespace analyze_scanf;
8762   using namespace analyze_format_string;
8763 
8764   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8765 
8766   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
8767   // be used to decide if we are using positional arguments consistently.
8768   if (FS.consumesDataArgument()) {
8769     if (atFirstArg) {
8770       atFirstArg = false;
8771       usesPositionalArgs = FS.usesPositionalArg();
8772     }
8773     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8774       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8775                                         startSpecifier, specifierLen);
8776       return false;
8777     }
8778   }
8779 
8780   // Check if the field with is non-zero.
8781   const OptionalAmount &Amt = FS.getFieldWidth();
8782   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8783     if (Amt.getConstantAmount() == 0) {
8784       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8785                                                    Amt.getConstantLength());
8786       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8787                            getLocationOfByte(Amt.getStart()),
8788                            /*IsStringLocation*/true, R,
8789                            FixItHint::CreateRemoval(R));
8790     }
8791   }
8792 
8793   if (!FS.consumesDataArgument()) {
8794     // FIXME: Technically specifying a precision or field width here
8795     // makes no sense.  Worth issuing a warning at some point.
8796     return true;
8797   }
8798 
8799   // Consume the argument.
8800   unsigned argIndex = FS.getArgIndex();
8801   if (argIndex < NumDataArgs) {
8802       // The check to see if the argIndex is valid will come later.
8803       // We set the bit here because we may exit early from this
8804       // function if we encounter some other error.
8805     CoveredArgs.set(argIndex);
8806   }
8807 
8808   // Check the length modifier is valid with the given conversion specifier.
8809   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8810                                  S.getLangOpts()))
8811     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8812                                 diag::warn_format_nonsensical_length);
8813   else if (!FS.hasStandardLengthModifier())
8814     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8815   else if (!FS.hasStandardLengthConversionCombination())
8816     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8817                                 diag::warn_format_non_standard_conversion_spec);
8818 
8819   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8820     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8821 
8822   // The remaining checks depend on the data arguments.
8823   if (HasVAListArg)
8824     return true;
8825 
8826   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8827     return false;
8828 
8829   // Check that the argument type matches the format specifier.
8830   const Expr *Ex = getDataArg(argIndex);
8831   if (!Ex)
8832     return true;
8833 
8834   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8835 
8836   if (!AT.isValid()) {
8837     return true;
8838   }
8839 
8840   analyze_format_string::ArgType::MatchKind Match =
8841       AT.matchesType(S.Context, Ex->getType());
8842   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
8843   if (Match == analyze_format_string::ArgType::Match)
8844     return true;
8845 
8846   ScanfSpecifier fixedFS = FS;
8847   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
8848                                  S.getLangOpts(), S.Context);
8849 
8850   unsigned Diag =
8851       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8852                : diag::warn_format_conversion_argument_type_mismatch;
8853 
8854   if (Success) {
8855     // Get the fix string from the fixed format specifier.
8856     SmallString<128> buf;
8857     llvm::raw_svector_ostream os(buf);
8858     fixedFS.toString(os);
8859 
8860     EmitFormatDiagnostic(
8861         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
8862                       << Ex->getType() << false << Ex->getSourceRange(),
8863         Ex->getBeginLoc(),
8864         /*IsStringLocation*/ false,
8865         getSpecifierRange(startSpecifier, specifierLen),
8866         FixItHint::CreateReplacement(
8867             getSpecifierRange(startSpecifier, specifierLen), os.str()));
8868   } else {
8869     EmitFormatDiagnostic(S.PDiag(Diag)
8870                              << AT.getRepresentativeTypeName(S.Context)
8871                              << Ex->getType() << false << Ex->getSourceRange(),
8872                          Ex->getBeginLoc(),
8873                          /*IsStringLocation*/ false,
8874                          getSpecifierRange(startSpecifier, specifierLen));
8875   }
8876 
8877   return true;
8878 }
8879 
8880 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
8881                               const Expr *OrigFormatExpr,
8882                               ArrayRef<const Expr *> Args,
8883                               bool HasVAListArg, unsigned format_idx,
8884                               unsigned firstDataArg,
8885                               Sema::FormatStringType Type,
8886                               bool inFunctionCall,
8887                               Sema::VariadicCallType CallType,
8888                               llvm::SmallBitVector &CheckedVarArgs,
8889                               UncoveredArgHandler &UncoveredArg,
8890                               bool IgnoreStringsWithoutSpecifiers) {
8891   // CHECK: is the format string a wide literal?
8892   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
8893     CheckFormatHandler::EmitFormatDiagnostic(
8894         S, inFunctionCall, Args[format_idx],
8895         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
8896         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8897     return;
8898   }
8899 
8900   // Str - The format string.  NOTE: this is NOT null-terminated!
8901   StringRef StrRef = FExpr->getString();
8902   const char *Str = StrRef.data();
8903   // Account for cases where the string literal is truncated in a declaration.
8904   const ConstantArrayType *T =
8905     S.Context.getAsConstantArrayType(FExpr->getType());
8906   assert(T && "String literal not of constant array type!");
8907   size_t TypeSize = T->getSize().getZExtValue();
8908   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8909   const unsigned numDataArgs = Args.size() - firstDataArg;
8910 
8911   if (IgnoreStringsWithoutSpecifiers &&
8912       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
8913           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
8914     return;
8915 
8916   // Emit a warning if the string literal is truncated and does not contain an
8917   // embedded null character.
8918   if (TypeSize <= StrRef.size() &&
8919       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
8920     CheckFormatHandler::EmitFormatDiagnostic(
8921         S, inFunctionCall, Args[format_idx],
8922         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
8923         FExpr->getBeginLoc(),
8924         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
8925     return;
8926   }
8927 
8928   // CHECK: empty format string?
8929   if (StrLen == 0 && numDataArgs > 0) {
8930     CheckFormatHandler::EmitFormatDiagnostic(
8931         S, inFunctionCall, Args[format_idx],
8932         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
8933         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8934     return;
8935   }
8936 
8937   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
8938       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
8939       Type == Sema::FST_OSTrace) {
8940     CheckPrintfHandler H(
8941         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
8942         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
8943         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
8944         CheckedVarArgs, UncoveredArg);
8945 
8946     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
8947                                                   S.getLangOpts(),
8948                                                   S.Context.getTargetInfo(),
8949                                             Type == Sema::FST_FreeBSDKPrintf))
8950       H.DoneProcessing();
8951   } else if (Type == Sema::FST_Scanf) {
8952     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
8953                         numDataArgs, Str, HasVAListArg, Args, format_idx,
8954                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
8955 
8956     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
8957                                                  S.getLangOpts(),
8958                                                  S.Context.getTargetInfo()))
8959       H.DoneProcessing();
8960   } // TODO: handle other formats
8961 }
8962 
8963 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
8964   // Str - The format string.  NOTE: this is NOT null-terminated!
8965   StringRef StrRef = FExpr->getString();
8966   const char *Str = StrRef.data();
8967   // Account for cases where the string literal is truncated in a declaration.
8968   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
8969   assert(T && "String literal not of constant array type!");
8970   size_t TypeSize = T->getSize().getZExtValue();
8971   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8972   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
8973                                                          getLangOpts(),
8974                                                          Context.getTargetInfo());
8975 }
8976 
8977 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
8978 
8979 // Returns the related absolute value function that is larger, of 0 if one
8980 // does not exist.
8981 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
8982   switch (AbsFunction) {
8983   default:
8984     return 0;
8985 
8986   case Builtin::BI__builtin_abs:
8987     return Builtin::BI__builtin_labs;
8988   case Builtin::BI__builtin_labs:
8989     return Builtin::BI__builtin_llabs;
8990   case Builtin::BI__builtin_llabs:
8991     return 0;
8992 
8993   case Builtin::BI__builtin_fabsf:
8994     return Builtin::BI__builtin_fabs;
8995   case Builtin::BI__builtin_fabs:
8996     return Builtin::BI__builtin_fabsl;
8997   case Builtin::BI__builtin_fabsl:
8998     return 0;
8999 
9000   case Builtin::BI__builtin_cabsf:
9001     return Builtin::BI__builtin_cabs;
9002   case Builtin::BI__builtin_cabs:
9003     return Builtin::BI__builtin_cabsl;
9004   case Builtin::BI__builtin_cabsl:
9005     return 0;
9006 
9007   case Builtin::BIabs:
9008     return Builtin::BIlabs;
9009   case Builtin::BIlabs:
9010     return Builtin::BIllabs;
9011   case Builtin::BIllabs:
9012     return 0;
9013 
9014   case Builtin::BIfabsf:
9015     return Builtin::BIfabs;
9016   case Builtin::BIfabs:
9017     return Builtin::BIfabsl;
9018   case Builtin::BIfabsl:
9019     return 0;
9020 
9021   case Builtin::BIcabsf:
9022    return Builtin::BIcabs;
9023   case Builtin::BIcabs:
9024     return Builtin::BIcabsl;
9025   case Builtin::BIcabsl:
9026     return 0;
9027   }
9028 }
9029 
9030 // Returns the argument type of the absolute value function.
9031 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9032                                              unsigned AbsType) {
9033   if (AbsType == 0)
9034     return QualType();
9035 
9036   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9037   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9038   if (Error != ASTContext::GE_None)
9039     return QualType();
9040 
9041   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9042   if (!FT)
9043     return QualType();
9044 
9045   if (FT->getNumParams() != 1)
9046     return QualType();
9047 
9048   return FT->getParamType(0);
9049 }
9050 
9051 // Returns the best absolute value function, or zero, based on type and
9052 // current absolute value function.
9053 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9054                                    unsigned AbsFunctionKind) {
9055   unsigned BestKind = 0;
9056   uint64_t ArgSize = Context.getTypeSize(ArgType);
9057   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9058        Kind = getLargerAbsoluteValueFunction(Kind)) {
9059     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9060     if (Context.getTypeSize(ParamType) >= ArgSize) {
9061       if (BestKind == 0)
9062         BestKind = Kind;
9063       else if (Context.hasSameType(ParamType, ArgType)) {
9064         BestKind = Kind;
9065         break;
9066       }
9067     }
9068   }
9069   return BestKind;
9070 }
9071 
9072 enum AbsoluteValueKind {
9073   AVK_Integer,
9074   AVK_Floating,
9075   AVK_Complex
9076 };
9077 
9078 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9079   if (T->isIntegralOrEnumerationType())
9080     return AVK_Integer;
9081   if (T->isRealFloatingType())
9082     return AVK_Floating;
9083   if (T->isAnyComplexType())
9084     return AVK_Complex;
9085 
9086   llvm_unreachable("Type not integer, floating, or complex");
9087 }
9088 
9089 // Changes the absolute value function to a different type.  Preserves whether
9090 // the function is a builtin.
9091 static unsigned changeAbsFunction(unsigned AbsKind,
9092                                   AbsoluteValueKind ValueKind) {
9093   switch (ValueKind) {
9094   case AVK_Integer:
9095     switch (AbsKind) {
9096     default:
9097       return 0;
9098     case Builtin::BI__builtin_fabsf:
9099     case Builtin::BI__builtin_fabs:
9100     case Builtin::BI__builtin_fabsl:
9101     case Builtin::BI__builtin_cabsf:
9102     case Builtin::BI__builtin_cabs:
9103     case Builtin::BI__builtin_cabsl:
9104       return Builtin::BI__builtin_abs;
9105     case Builtin::BIfabsf:
9106     case Builtin::BIfabs:
9107     case Builtin::BIfabsl:
9108     case Builtin::BIcabsf:
9109     case Builtin::BIcabs:
9110     case Builtin::BIcabsl:
9111       return Builtin::BIabs;
9112     }
9113   case AVK_Floating:
9114     switch (AbsKind) {
9115     default:
9116       return 0;
9117     case Builtin::BI__builtin_abs:
9118     case Builtin::BI__builtin_labs:
9119     case Builtin::BI__builtin_llabs:
9120     case Builtin::BI__builtin_cabsf:
9121     case Builtin::BI__builtin_cabs:
9122     case Builtin::BI__builtin_cabsl:
9123       return Builtin::BI__builtin_fabsf;
9124     case Builtin::BIabs:
9125     case Builtin::BIlabs:
9126     case Builtin::BIllabs:
9127     case Builtin::BIcabsf:
9128     case Builtin::BIcabs:
9129     case Builtin::BIcabsl:
9130       return Builtin::BIfabsf;
9131     }
9132   case AVK_Complex:
9133     switch (AbsKind) {
9134     default:
9135       return 0;
9136     case Builtin::BI__builtin_abs:
9137     case Builtin::BI__builtin_labs:
9138     case Builtin::BI__builtin_llabs:
9139     case Builtin::BI__builtin_fabsf:
9140     case Builtin::BI__builtin_fabs:
9141     case Builtin::BI__builtin_fabsl:
9142       return Builtin::BI__builtin_cabsf;
9143     case Builtin::BIabs:
9144     case Builtin::BIlabs:
9145     case Builtin::BIllabs:
9146     case Builtin::BIfabsf:
9147     case Builtin::BIfabs:
9148     case Builtin::BIfabsl:
9149       return Builtin::BIcabsf;
9150     }
9151   }
9152   llvm_unreachable("Unable to convert function");
9153 }
9154 
9155 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9156   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9157   if (!FnInfo)
9158     return 0;
9159 
9160   switch (FDecl->getBuiltinID()) {
9161   default:
9162     return 0;
9163   case Builtin::BI__builtin_abs:
9164   case Builtin::BI__builtin_fabs:
9165   case Builtin::BI__builtin_fabsf:
9166   case Builtin::BI__builtin_fabsl:
9167   case Builtin::BI__builtin_labs:
9168   case Builtin::BI__builtin_llabs:
9169   case Builtin::BI__builtin_cabs:
9170   case Builtin::BI__builtin_cabsf:
9171   case Builtin::BI__builtin_cabsl:
9172   case Builtin::BIabs:
9173   case Builtin::BIlabs:
9174   case Builtin::BIllabs:
9175   case Builtin::BIfabs:
9176   case Builtin::BIfabsf:
9177   case Builtin::BIfabsl:
9178   case Builtin::BIcabs:
9179   case Builtin::BIcabsf:
9180   case Builtin::BIcabsl:
9181     return FDecl->getBuiltinID();
9182   }
9183   llvm_unreachable("Unknown Builtin type");
9184 }
9185 
9186 // If the replacement is valid, emit a note with replacement function.
9187 // Additionally, suggest including the proper header if not already included.
9188 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9189                             unsigned AbsKind, QualType ArgType) {
9190   bool EmitHeaderHint = true;
9191   const char *HeaderName = nullptr;
9192   const char *FunctionName = nullptr;
9193   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9194     FunctionName = "std::abs";
9195     if (ArgType->isIntegralOrEnumerationType()) {
9196       HeaderName = "cstdlib";
9197     } else if (ArgType->isRealFloatingType()) {
9198       HeaderName = "cmath";
9199     } else {
9200       llvm_unreachable("Invalid Type");
9201     }
9202 
9203     // Lookup all std::abs
9204     if (NamespaceDecl *Std = S.getStdNamespace()) {
9205       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9206       R.suppressDiagnostics();
9207       S.LookupQualifiedName(R, Std);
9208 
9209       for (const auto *I : R) {
9210         const FunctionDecl *FDecl = nullptr;
9211         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9212           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9213         } else {
9214           FDecl = dyn_cast<FunctionDecl>(I);
9215         }
9216         if (!FDecl)
9217           continue;
9218 
9219         // Found std::abs(), check that they are the right ones.
9220         if (FDecl->getNumParams() != 1)
9221           continue;
9222 
9223         // Check that the parameter type can handle the argument.
9224         QualType ParamType = FDecl->getParamDecl(0)->getType();
9225         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9226             S.Context.getTypeSize(ArgType) <=
9227                 S.Context.getTypeSize(ParamType)) {
9228           // Found a function, don't need the header hint.
9229           EmitHeaderHint = false;
9230           break;
9231         }
9232       }
9233     }
9234   } else {
9235     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9236     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9237 
9238     if (HeaderName) {
9239       DeclarationName DN(&S.Context.Idents.get(FunctionName));
9240       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9241       R.suppressDiagnostics();
9242       S.LookupName(R, S.getCurScope());
9243 
9244       if (R.isSingleResult()) {
9245         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9246         if (FD && FD->getBuiltinID() == AbsKind) {
9247           EmitHeaderHint = false;
9248         } else {
9249           return;
9250         }
9251       } else if (!R.empty()) {
9252         return;
9253       }
9254     }
9255   }
9256 
9257   S.Diag(Loc, diag::note_replace_abs_function)
9258       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9259 
9260   if (!HeaderName)
9261     return;
9262 
9263   if (!EmitHeaderHint)
9264     return;
9265 
9266   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9267                                                     << FunctionName;
9268 }
9269 
9270 template <std::size_t StrLen>
9271 static bool IsStdFunction(const FunctionDecl *FDecl,
9272                           const char (&Str)[StrLen]) {
9273   if (!FDecl)
9274     return false;
9275   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9276     return false;
9277   if (!FDecl->isInStdNamespace())
9278     return false;
9279 
9280   return true;
9281 }
9282 
9283 // Warn when using the wrong abs() function.
9284 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9285                                       const FunctionDecl *FDecl) {
9286   if (Call->getNumArgs() != 1)
9287     return;
9288 
9289   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9290   bool IsStdAbs = IsStdFunction(FDecl, "abs");
9291   if (AbsKind == 0 && !IsStdAbs)
9292     return;
9293 
9294   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9295   QualType ParamType = Call->getArg(0)->getType();
9296 
9297   // Unsigned types cannot be negative.  Suggest removing the absolute value
9298   // function call.
9299   if (ArgType->isUnsignedIntegerType()) {
9300     const char *FunctionName =
9301         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9302     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9303     Diag(Call->getExprLoc(), diag::note_remove_abs)
9304         << FunctionName
9305         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9306     return;
9307   }
9308 
9309   // Taking the absolute value of a pointer is very suspicious, they probably
9310   // wanted to index into an array, dereference a pointer, call a function, etc.
9311   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9312     unsigned DiagType = 0;
9313     if (ArgType->isFunctionType())
9314       DiagType = 1;
9315     else if (ArgType->isArrayType())
9316       DiagType = 2;
9317 
9318     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9319     return;
9320   }
9321 
9322   // std::abs has overloads which prevent most of the absolute value problems
9323   // from occurring.
9324   if (IsStdAbs)
9325     return;
9326 
9327   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
9328   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
9329 
9330   // The argument and parameter are the same kind.  Check if they are the right
9331   // size.
9332   if (ArgValueKind == ParamValueKind) {
9333     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
9334       return;
9335 
9336     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
9337     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
9338         << FDecl << ArgType << ParamType;
9339 
9340     if (NewAbsKind == 0)
9341       return;
9342 
9343     emitReplacement(*this, Call->getExprLoc(),
9344                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9345     return;
9346   }
9347 
9348   // ArgValueKind != ParamValueKind
9349   // The wrong type of absolute value function was used.  Attempt to find the
9350   // proper one.
9351   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
9352   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
9353   if (NewAbsKind == 0)
9354     return;
9355 
9356   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
9357       << FDecl << ParamValueKind << ArgValueKind;
9358 
9359   emitReplacement(*this, Call->getExprLoc(),
9360                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9361 }
9362 
9363 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
9364 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
9365                                 const FunctionDecl *FDecl) {
9366   if (!Call || !FDecl) return;
9367 
9368   // Ignore template specializations and macros.
9369   if (inTemplateInstantiation()) return;
9370   if (Call->getExprLoc().isMacroID()) return;
9371 
9372   // Only care about the one template argument, two function parameter std::max
9373   if (Call->getNumArgs() != 2) return;
9374   if (!IsStdFunction(FDecl, "max")) return;
9375   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
9376   if (!ArgList) return;
9377   if (ArgList->size() != 1) return;
9378 
9379   // Check that template type argument is unsigned integer.
9380   const auto& TA = ArgList->get(0);
9381   if (TA.getKind() != TemplateArgument::Type) return;
9382   QualType ArgType = TA.getAsType();
9383   if (!ArgType->isUnsignedIntegerType()) return;
9384 
9385   // See if either argument is a literal zero.
9386   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
9387     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
9388     if (!MTE) return false;
9389     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
9390     if (!Num) return false;
9391     if (Num->getValue() != 0) return false;
9392     return true;
9393   };
9394 
9395   const Expr *FirstArg = Call->getArg(0);
9396   const Expr *SecondArg = Call->getArg(1);
9397   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
9398   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
9399 
9400   // Only warn when exactly one argument is zero.
9401   if (IsFirstArgZero == IsSecondArgZero) return;
9402 
9403   SourceRange FirstRange = FirstArg->getSourceRange();
9404   SourceRange SecondRange = SecondArg->getSourceRange();
9405 
9406   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
9407 
9408   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
9409       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
9410 
9411   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
9412   SourceRange RemovalRange;
9413   if (IsFirstArgZero) {
9414     RemovalRange = SourceRange(FirstRange.getBegin(),
9415                                SecondRange.getBegin().getLocWithOffset(-1));
9416   } else {
9417     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
9418                                SecondRange.getEnd());
9419   }
9420 
9421   Diag(Call->getExprLoc(), diag::note_remove_max_call)
9422         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
9423         << FixItHint::CreateRemoval(RemovalRange);
9424 }
9425 
9426 //===--- CHECK: Standard memory functions ---------------------------------===//
9427 
9428 /// Takes the expression passed to the size_t parameter of functions
9429 /// such as memcmp, strncat, etc and warns if it's a comparison.
9430 ///
9431 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
9432 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9433                                            IdentifierInfo *FnName,
9434                                            SourceLocation FnLoc,
9435                                            SourceLocation RParenLoc) {
9436   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9437   if (!Size)
9438     return false;
9439 
9440   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9441   if (!Size->isComparisonOp() && !Size->isLogicalOp())
9442     return false;
9443 
9444   SourceRange SizeRange = Size->getSourceRange();
9445   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9446       << SizeRange << FnName;
9447   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9448       << FnName
9449       << FixItHint::CreateInsertion(
9450              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9451       << FixItHint::CreateRemoval(RParenLoc);
9452   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9453       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9454       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9455                                     ")");
9456 
9457   return true;
9458 }
9459 
9460 /// Determine whether the given type is or contains a dynamic class type
9461 /// (e.g., whether it has a vtable).
9462 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9463                                                      bool &IsContained) {
9464   // Look through array types while ignoring qualifiers.
9465   const Type *Ty = T->getBaseElementTypeUnsafe();
9466   IsContained = false;
9467 
9468   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9469   RD = RD ? RD->getDefinition() : nullptr;
9470   if (!RD || RD->isInvalidDecl())
9471     return nullptr;
9472 
9473   if (RD->isDynamicClass())
9474     return RD;
9475 
9476   // Check all the fields.  If any bases were dynamic, the class is dynamic.
9477   // It's impossible for a class to transitively contain itself by value, so
9478   // infinite recursion is impossible.
9479   for (auto *FD : RD->fields()) {
9480     bool SubContained;
9481     if (const CXXRecordDecl *ContainedRD =
9482             getContainedDynamicClass(FD->getType(), SubContained)) {
9483       IsContained = true;
9484       return ContainedRD;
9485     }
9486   }
9487 
9488   return nullptr;
9489 }
9490 
9491 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9492   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9493     if (Unary->getKind() == UETT_SizeOf)
9494       return Unary;
9495   return nullptr;
9496 }
9497 
9498 /// If E is a sizeof expression, returns its argument expression,
9499 /// otherwise returns NULL.
9500 static const Expr *getSizeOfExprArg(const Expr *E) {
9501   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9502     if (!SizeOf->isArgumentType())
9503       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9504   return nullptr;
9505 }
9506 
9507 /// If E is a sizeof expression, returns its argument type.
9508 static QualType getSizeOfArgType(const Expr *E) {
9509   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9510     return SizeOf->getTypeOfArgument();
9511   return QualType();
9512 }
9513 
9514 namespace {
9515 
9516 struct SearchNonTrivialToInitializeField
9517     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9518   using Super =
9519       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9520 
9521   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9522 
9523   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9524                      SourceLocation SL) {
9525     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9526       asDerived().visitArray(PDIK, AT, SL);
9527       return;
9528     }
9529 
9530     Super::visitWithKind(PDIK, FT, SL);
9531   }
9532 
9533   void visitARCStrong(QualType FT, SourceLocation SL) {
9534     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9535   }
9536   void visitARCWeak(QualType FT, SourceLocation SL) {
9537     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9538   }
9539   void visitStruct(QualType FT, SourceLocation SL) {
9540     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9541       visit(FD->getType(), FD->getLocation());
9542   }
9543   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9544                   const ArrayType *AT, SourceLocation SL) {
9545     visit(getContext().getBaseElementType(AT), SL);
9546   }
9547   void visitTrivial(QualType FT, SourceLocation SL) {}
9548 
9549   static void diag(QualType RT, const Expr *E, Sema &S) {
9550     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9551   }
9552 
9553   ASTContext &getContext() { return S.getASTContext(); }
9554 
9555   const Expr *E;
9556   Sema &S;
9557 };
9558 
9559 struct SearchNonTrivialToCopyField
9560     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9561   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9562 
9563   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9564 
9565   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9566                      SourceLocation SL) {
9567     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9568       asDerived().visitArray(PCK, AT, SL);
9569       return;
9570     }
9571 
9572     Super::visitWithKind(PCK, FT, SL);
9573   }
9574 
9575   void visitARCStrong(QualType FT, SourceLocation SL) {
9576     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9577   }
9578   void visitARCWeak(QualType FT, SourceLocation SL) {
9579     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9580   }
9581   void visitStruct(QualType FT, SourceLocation SL) {
9582     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9583       visit(FD->getType(), FD->getLocation());
9584   }
9585   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9586                   SourceLocation SL) {
9587     visit(getContext().getBaseElementType(AT), SL);
9588   }
9589   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9590                 SourceLocation SL) {}
9591   void visitTrivial(QualType FT, SourceLocation SL) {}
9592   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9593 
9594   static void diag(QualType RT, const Expr *E, Sema &S) {
9595     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9596   }
9597 
9598   ASTContext &getContext() { return S.getASTContext(); }
9599 
9600   const Expr *E;
9601   Sema &S;
9602 };
9603 
9604 }
9605 
9606 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
9607 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9608   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9609 
9610   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9611     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9612       return false;
9613 
9614     return doesExprLikelyComputeSize(BO->getLHS()) ||
9615            doesExprLikelyComputeSize(BO->getRHS());
9616   }
9617 
9618   return getAsSizeOfExpr(SizeofExpr) != nullptr;
9619 }
9620 
9621 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9622 ///
9623 /// \code
9624 ///   #define MACRO 0
9625 ///   foo(MACRO);
9626 ///   foo(0);
9627 /// \endcode
9628 ///
9629 /// This should return true for the first call to foo, but not for the second
9630 /// (regardless of whether foo is a macro or function).
9631 static bool isArgumentExpandedFromMacro(SourceManager &SM,
9632                                         SourceLocation CallLoc,
9633                                         SourceLocation ArgLoc) {
9634   if (!CallLoc.isMacroID())
9635     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9636 
9637   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9638          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9639 }
9640 
9641 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9642 /// last two arguments transposed.
9643 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9644   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9645     return;
9646 
9647   const Expr *SizeArg =
9648     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9649 
9650   auto isLiteralZero = [](const Expr *E) {
9651     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9652   };
9653 
9654   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9655   SourceLocation CallLoc = Call->getRParenLoc();
9656   SourceManager &SM = S.getSourceManager();
9657   if (isLiteralZero(SizeArg) &&
9658       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9659 
9660     SourceLocation DiagLoc = SizeArg->getExprLoc();
9661 
9662     // Some platforms #define bzero to __builtin_memset. See if this is the
9663     // case, and if so, emit a better diagnostic.
9664     if (BId == Builtin::BIbzero ||
9665         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9666                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
9667       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9668       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9669     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9670       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9671       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9672     }
9673     return;
9674   }
9675 
9676   // If the second argument to a memset is a sizeof expression and the third
9677   // isn't, this is also likely an error. This should catch
9678   // 'memset(buf, sizeof(buf), 0xff)'.
9679   if (BId == Builtin::BImemset &&
9680       doesExprLikelyComputeSize(Call->getArg(1)) &&
9681       !doesExprLikelyComputeSize(Call->getArg(2))) {
9682     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9683     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9684     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9685     return;
9686   }
9687 }
9688 
9689 /// Check for dangerous or invalid arguments to memset().
9690 ///
9691 /// This issues warnings on known problematic, dangerous or unspecified
9692 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9693 /// function calls.
9694 ///
9695 /// \param Call The call expression to diagnose.
9696 void Sema::CheckMemaccessArguments(const CallExpr *Call,
9697                                    unsigned BId,
9698                                    IdentifierInfo *FnName) {
9699   assert(BId != 0);
9700 
9701   // It is possible to have a non-standard definition of memset.  Validate
9702   // we have enough arguments, and if not, abort further checking.
9703   unsigned ExpectedNumArgs =
9704       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9705   if (Call->getNumArgs() < ExpectedNumArgs)
9706     return;
9707 
9708   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9709                       BId == Builtin::BIstrndup ? 1 : 2);
9710   unsigned LenArg =
9711       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9712   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9713 
9714   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9715                                      Call->getBeginLoc(), Call->getRParenLoc()))
9716     return;
9717 
9718   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9719   CheckMemaccessSize(*this, BId, Call);
9720 
9721   // We have special checking when the length is a sizeof expression.
9722   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9723   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9724   llvm::FoldingSetNodeID SizeOfArgID;
9725 
9726   // Although widely used, 'bzero' is not a standard function. Be more strict
9727   // with the argument types before allowing diagnostics and only allow the
9728   // form bzero(ptr, sizeof(...)).
9729   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9730   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9731     return;
9732 
9733   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9734     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9735     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9736 
9737     QualType DestTy = Dest->getType();
9738     QualType PointeeTy;
9739     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9740       PointeeTy = DestPtrTy->getPointeeType();
9741 
9742       // Never warn about void type pointers. This can be used to suppress
9743       // false positives.
9744       if (PointeeTy->isVoidType())
9745         continue;
9746 
9747       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9748       // actually comparing the expressions for equality. Because computing the
9749       // expression IDs can be expensive, we only do this if the diagnostic is
9750       // enabled.
9751       if (SizeOfArg &&
9752           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9753                            SizeOfArg->getExprLoc())) {
9754         // We only compute IDs for expressions if the warning is enabled, and
9755         // cache the sizeof arg's ID.
9756         if (SizeOfArgID == llvm::FoldingSetNodeID())
9757           SizeOfArg->Profile(SizeOfArgID, Context, true);
9758         llvm::FoldingSetNodeID DestID;
9759         Dest->Profile(DestID, Context, true);
9760         if (DestID == SizeOfArgID) {
9761           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9762           //       over sizeof(src) as well.
9763           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9764           StringRef ReadableName = FnName->getName();
9765 
9766           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9767             if (UnaryOp->getOpcode() == UO_AddrOf)
9768               ActionIdx = 1; // If its an address-of operator, just remove it.
9769           if (!PointeeTy->isIncompleteType() &&
9770               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9771             ActionIdx = 2; // If the pointee's size is sizeof(char),
9772                            // suggest an explicit length.
9773 
9774           // If the function is defined as a builtin macro, do not show macro
9775           // expansion.
9776           SourceLocation SL = SizeOfArg->getExprLoc();
9777           SourceRange DSR = Dest->getSourceRange();
9778           SourceRange SSR = SizeOfArg->getSourceRange();
9779           SourceManager &SM = getSourceManager();
9780 
9781           if (SM.isMacroArgExpansion(SL)) {
9782             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9783             SL = SM.getSpellingLoc(SL);
9784             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9785                              SM.getSpellingLoc(DSR.getEnd()));
9786             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9787                              SM.getSpellingLoc(SSR.getEnd()));
9788           }
9789 
9790           DiagRuntimeBehavior(SL, SizeOfArg,
9791                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9792                                 << ReadableName
9793                                 << PointeeTy
9794                                 << DestTy
9795                                 << DSR
9796                                 << SSR);
9797           DiagRuntimeBehavior(SL, SizeOfArg,
9798                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9799                                 << ActionIdx
9800                                 << SSR);
9801 
9802           break;
9803         }
9804       }
9805 
9806       // Also check for cases where the sizeof argument is the exact same
9807       // type as the memory argument, and where it points to a user-defined
9808       // record type.
9809       if (SizeOfArgTy != QualType()) {
9810         if (PointeeTy->isRecordType() &&
9811             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9812           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9813                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
9814                                 << FnName << SizeOfArgTy << ArgIdx
9815                                 << PointeeTy << Dest->getSourceRange()
9816                                 << LenExpr->getSourceRange());
9817           break;
9818         }
9819       }
9820     } else if (DestTy->isArrayType()) {
9821       PointeeTy = DestTy;
9822     }
9823 
9824     if (PointeeTy == QualType())
9825       continue;
9826 
9827     // Always complain about dynamic classes.
9828     bool IsContained;
9829     if (const CXXRecordDecl *ContainedRD =
9830             getContainedDynamicClass(PointeeTy, IsContained)) {
9831 
9832       unsigned OperationType = 0;
9833       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9834       // "overwritten" if we're warning about the destination for any call
9835       // but memcmp; otherwise a verb appropriate to the call.
9836       if (ArgIdx != 0 || IsCmp) {
9837         if (BId == Builtin::BImemcpy)
9838           OperationType = 1;
9839         else if(BId == Builtin::BImemmove)
9840           OperationType = 2;
9841         else if (IsCmp)
9842           OperationType = 3;
9843       }
9844 
9845       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9846                           PDiag(diag::warn_dyn_class_memaccess)
9847                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
9848                               << IsContained << ContainedRD << OperationType
9849                               << Call->getCallee()->getSourceRange());
9850     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
9851              BId != Builtin::BImemset)
9852       DiagRuntimeBehavior(
9853         Dest->getExprLoc(), Dest,
9854         PDiag(diag::warn_arc_object_memaccess)
9855           << ArgIdx << FnName << PointeeTy
9856           << Call->getCallee()->getSourceRange());
9857     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
9858       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9859           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
9860         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9861                             PDiag(diag::warn_cstruct_memaccess)
9862                                 << ArgIdx << FnName << PointeeTy << 0);
9863         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
9864       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9865                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
9866         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9867                             PDiag(diag::warn_cstruct_memaccess)
9868                                 << ArgIdx << FnName << PointeeTy << 1);
9869         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
9870       } else {
9871         continue;
9872       }
9873     } else
9874       continue;
9875 
9876     DiagRuntimeBehavior(
9877       Dest->getExprLoc(), Dest,
9878       PDiag(diag::note_bad_memaccess_silence)
9879         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
9880     break;
9881   }
9882 }
9883 
9884 // A little helper routine: ignore addition and subtraction of integer literals.
9885 // This intentionally does not ignore all integer constant expressions because
9886 // we don't want to remove sizeof().
9887 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
9888   Ex = Ex->IgnoreParenCasts();
9889 
9890   while (true) {
9891     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
9892     if (!BO || !BO->isAdditiveOp())
9893       break;
9894 
9895     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
9896     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
9897 
9898     if (isa<IntegerLiteral>(RHS))
9899       Ex = LHS;
9900     else if (isa<IntegerLiteral>(LHS))
9901       Ex = RHS;
9902     else
9903       break;
9904   }
9905 
9906   return Ex;
9907 }
9908 
9909 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
9910                                                       ASTContext &Context) {
9911   // Only handle constant-sized or VLAs, but not flexible members.
9912   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
9913     // Only issue the FIXIT for arrays of size > 1.
9914     if (CAT->getSize().getSExtValue() <= 1)
9915       return false;
9916   } else if (!Ty->isVariableArrayType()) {
9917     return false;
9918   }
9919   return true;
9920 }
9921 
9922 // Warn if the user has made the 'size' argument to strlcpy or strlcat
9923 // be the size of the source, instead of the destination.
9924 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
9925                                     IdentifierInfo *FnName) {
9926 
9927   // Don't crash if the user has the wrong number of arguments
9928   unsigned NumArgs = Call->getNumArgs();
9929   if ((NumArgs != 3) && (NumArgs != 4))
9930     return;
9931 
9932   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
9933   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
9934   const Expr *CompareWithSrc = nullptr;
9935 
9936   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
9937                                      Call->getBeginLoc(), Call->getRParenLoc()))
9938     return;
9939 
9940   // Look for 'strlcpy(dst, x, sizeof(x))'
9941   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
9942     CompareWithSrc = Ex;
9943   else {
9944     // Look for 'strlcpy(dst, x, strlen(x))'
9945     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
9946       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
9947           SizeCall->getNumArgs() == 1)
9948         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
9949     }
9950   }
9951 
9952   if (!CompareWithSrc)
9953     return;
9954 
9955   // Determine if the argument to sizeof/strlen is equal to the source
9956   // argument.  In principle there's all kinds of things you could do
9957   // here, for instance creating an == expression and evaluating it with
9958   // EvaluateAsBooleanCondition, but this uses a more direct technique:
9959   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
9960   if (!SrcArgDRE)
9961     return;
9962 
9963   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
9964   if (!CompareWithSrcDRE ||
9965       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
9966     return;
9967 
9968   const Expr *OriginalSizeArg = Call->getArg(2);
9969   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
9970       << OriginalSizeArg->getSourceRange() << FnName;
9971 
9972   // Output a FIXIT hint if the destination is an array (rather than a
9973   // pointer to an array).  This could be enhanced to handle some
9974   // pointers if we know the actual size, like if DstArg is 'array+2'
9975   // we could say 'sizeof(array)-2'.
9976   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
9977   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
9978     return;
9979 
9980   SmallString<128> sizeString;
9981   llvm::raw_svector_ostream OS(sizeString);
9982   OS << "sizeof(";
9983   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9984   OS << ")";
9985 
9986   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
9987       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
9988                                       OS.str());
9989 }
9990 
9991 /// Check if two expressions refer to the same declaration.
9992 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
9993   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
9994     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
9995       return D1->getDecl() == D2->getDecl();
9996   return false;
9997 }
9998 
9999 static const Expr *getStrlenExprArg(const Expr *E) {
10000   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10001     const FunctionDecl *FD = CE->getDirectCallee();
10002     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10003       return nullptr;
10004     return CE->getArg(0)->IgnoreParenCasts();
10005   }
10006   return nullptr;
10007 }
10008 
10009 // Warn on anti-patterns as the 'size' argument to strncat.
10010 // The correct size argument should look like following:
10011 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10012 void Sema::CheckStrncatArguments(const CallExpr *CE,
10013                                  IdentifierInfo *FnName) {
10014   // Don't crash if the user has the wrong number of arguments.
10015   if (CE->getNumArgs() < 3)
10016     return;
10017   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10018   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10019   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10020 
10021   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10022                                      CE->getRParenLoc()))
10023     return;
10024 
10025   // Identify common expressions, which are wrongly used as the size argument
10026   // to strncat and may lead to buffer overflows.
10027   unsigned PatternType = 0;
10028   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10029     // - sizeof(dst)
10030     if (referToTheSameDecl(SizeOfArg, DstArg))
10031       PatternType = 1;
10032     // - sizeof(src)
10033     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10034       PatternType = 2;
10035   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10036     if (BE->getOpcode() == BO_Sub) {
10037       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10038       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10039       // - sizeof(dst) - strlen(dst)
10040       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10041           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10042         PatternType = 1;
10043       // - sizeof(src) - (anything)
10044       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10045         PatternType = 2;
10046     }
10047   }
10048 
10049   if (PatternType == 0)
10050     return;
10051 
10052   // Generate the diagnostic.
10053   SourceLocation SL = LenArg->getBeginLoc();
10054   SourceRange SR = LenArg->getSourceRange();
10055   SourceManager &SM = getSourceManager();
10056 
10057   // If the function is defined as a builtin macro, do not show macro expansion.
10058   if (SM.isMacroArgExpansion(SL)) {
10059     SL = SM.getSpellingLoc(SL);
10060     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10061                      SM.getSpellingLoc(SR.getEnd()));
10062   }
10063 
10064   // Check if the destination is an array (rather than a pointer to an array).
10065   QualType DstTy = DstArg->getType();
10066   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10067                                                                     Context);
10068   if (!isKnownSizeArray) {
10069     if (PatternType == 1)
10070       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10071     else
10072       Diag(SL, diag::warn_strncat_src_size) << SR;
10073     return;
10074   }
10075 
10076   if (PatternType == 1)
10077     Diag(SL, diag::warn_strncat_large_size) << SR;
10078   else
10079     Diag(SL, diag::warn_strncat_src_size) << SR;
10080 
10081   SmallString<128> sizeString;
10082   llvm::raw_svector_ostream OS(sizeString);
10083   OS << "sizeof(";
10084   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10085   OS << ") - ";
10086   OS << "strlen(";
10087   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10088   OS << ") - 1";
10089 
10090   Diag(SL, diag::note_strncat_wrong_size)
10091     << FixItHint::CreateReplacement(SR, OS.str());
10092 }
10093 
10094 void
10095 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10096                          SourceLocation ReturnLoc,
10097                          bool isObjCMethod,
10098                          const AttrVec *Attrs,
10099                          const FunctionDecl *FD) {
10100   // Check if the return value is null but should not be.
10101   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10102        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10103       CheckNonNullExpr(*this, RetValExp))
10104     Diag(ReturnLoc, diag::warn_null_ret)
10105       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10106 
10107   // C++11 [basic.stc.dynamic.allocation]p4:
10108   //   If an allocation function declared with a non-throwing
10109   //   exception-specification fails to allocate storage, it shall return
10110   //   a null pointer. Any other allocation function that fails to allocate
10111   //   storage shall indicate failure only by throwing an exception [...]
10112   if (FD) {
10113     OverloadedOperatorKind Op = FD->getOverloadedOperator();
10114     if (Op == OO_New || Op == OO_Array_New) {
10115       const FunctionProtoType *Proto
10116         = FD->getType()->castAs<FunctionProtoType>();
10117       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10118           CheckNonNullExpr(*this, RetValExp))
10119         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10120           << FD << getLangOpts().CPlusPlus11;
10121     }
10122   }
10123 }
10124 
10125 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10126 
10127 /// Check for comparisons of floating point operands using != and ==.
10128 /// Issue a warning if these are no self-comparisons, as they are not likely
10129 /// to do what the programmer intended.
10130 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10131   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10132   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10133 
10134   // Special case: check for x == x (which is OK).
10135   // Do not emit warnings for such cases.
10136   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10137     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10138       if (DRL->getDecl() == DRR->getDecl())
10139         return;
10140 
10141   // Special case: check for comparisons against literals that can be exactly
10142   //  represented by APFloat.  In such cases, do not emit a warning.  This
10143   //  is a heuristic: often comparison against such literals are used to
10144   //  detect if a value in a variable has not changed.  This clearly can
10145   //  lead to false negatives.
10146   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10147     if (FLL->isExact())
10148       return;
10149   } else
10150     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10151       if (FLR->isExact())
10152         return;
10153 
10154   // Check for comparisons with builtin types.
10155   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10156     if (CL->getBuiltinCallee())
10157       return;
10158 
10159   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10160     if (CR->getBuiltinCallee())
10161       return;
10162 
10163   // Emit the diagnostic.
10164   Diag(Loc, diag::warn_floatingpoint_eq)
10165     << LHS->getSourceRange() << RHS->getSourceRange();
10166 }
10167 
10168 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10169 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10170 
10171 namespace {
10172 
10173 /// Structure recording the 'active' range of an integer-valued
10174 /// expression.
10175 struct IntRange {
10176   /// The number of bits active in the int.
10177   unsigned Width;
10178 
10179   /// True if the int is known not to have negative values.
10180   bool NonNegative;
10181 
10182   IntRange(unsigned Width, bool NonNegative)
10183       : Width(Width), NonNegative(NonNegative) {}
10184 
10185   /// Returns the range of the bool type.
10186   static IntRange forBoolType() {
10187     return IntRange(1, true);
10188   }
10189 
10190   /// Returns the range of an opaque value of the given integral type.
10191   static IntRange forValueOfType(ASTContext &C, QualType T) {
10192     return forValueOfCanonicalType(C,
10193                           T->getCanonicalTypeInternal().getTypePtr());
10194   }
10195 
10196   /// Returns the range of an opaque value of a canonical integral type.
10197   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10198     assert(T->isCanonicalUnqualified());
10199 
10200     if (const VectorType *VT = dyn_cast<VectorType>(T))
10201       T = VT->getElementType().getTypePtr();
10202     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10203       T = CT->getElementType().getTypePtr();
10204     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10205       T = AT->getValueType().getTypePtr();
10206 
10207     if (!C.getLangOpts().CPlusPlus) {
10208       // For enum types in C code, use the underlying datatype.
10209       if (const EnumType *ET = dyn_cast<EnumType>(T))
10210         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
10211     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
10212       // For enum types in C++, use the known bit width of the enumerators.
10213       EnumDecl *Enum = ET->getDecl();
10214       // In C++11, enums can have a fixed underlying type. Use this type to
10215       // compute the range.
10216       if (Enum->isFixed()) {
10217         return IntRange(C.getIntWidth(QualType(T, 0)),
10218                         !ET->isSignedIntegerOrEnumerationType());
10219       }
10220 
10221       unsigned NumPositive = Enum->getNumPositiveBits();
10222       unsigned NumNegative = Enum->getNumNegativeBits();
10223 
10224       if (NumNegative == 0)
10225         return IntRange(NumPositive, true/*NonNegative*/);
10226       else
10227         return IntRange(std::max(NumPositive + 1, NumNegative),
10228                         false/*NonNegative*/);
10229     }
10230 
10231     const BuiltinType *BT = cast<BuiltinType>(T);
10232     assert(BT->isInteger());
10233 
10234     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10235   }
10236 
10237   /// Returns the "target" range of a canonical integral type, i.e.
10238   /// the range of values expressible in the type.
10239   ///
10240   /// This matches forValueOfCanonicalType except that enums have the
10241   /// full range of their type, not the range of their enumerators.
10242   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
10243     assert(T->isCanonicalUnqualified());
10244 
10245     if (const VectorType *VT = dyn_cast<VectorType>(T))
10246       T = VT->getElementType().getTypePtr();
10247     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10248       T = CT->getElementType().getTypePtr();
10249     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10250       T = AT->getValueType().getTypePtr();
10251     if (const EnumType *ET = dyn_cast<EnumType>(T))
10252       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
10253 
10254     const BuiltinType *BT = cast<BuiltinType>(T);
10255     assert(BT->isInteger());
10256 
10257     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10258   }
10259 
10260   /// Returns the supremum of two ranges: i.e. their conservative merge.
10261   static IntRange join(IntRange L, IntRange R) {
10262     return IntRange(std::max(L.Width, R.Width),
10263                     L.NonNegative && R.NonNegative);
10264   }
10265 
10266   /// Returns the infinum of two ranges: i.e. their aggressive merge.
10267   static IntRange meet(IntRange L, IntRange R) {
10268     return IntRange(std::min(L.Width, R.Width),
10269                     L.NonNegative || R.NonNegative);
10270   }
10271 };
10272 
10273 } // namespace
10274 
10275 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
10276                               unsigned MaxWidth) {
10277   if (value.isSigned() && value.isNegative())
10278     return IntRange(value.getMinSignedBits(), false);
10279 
10280   if (value.getBitWidth() > MaxWidth)
10281     value = value.trunc(MaxWidth);
10282 
10283   // isNonNegative() just checks the sign bit without considering
10284   // signedness.
10285   return IntRange(value.getActiveBits(), true);
10286 }
10287 
10288 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
10289                               unsigned MaxWidth) {
10290   if (result.isInt())
10291     return GetValueRange(C, result.getInt(), MaxWidth);
10292 
10293   if (result.isVector()) {
10294     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
10295     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
10296       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
10297       R = IntRange::join(R, El);
10298     }
10299     return R;
10300   }
10301 
10302   if (result.isComplexInt()) {
10303     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
10304     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
10305     return IntRange::join(R, I);
10306   }
10307 
10308   // This can happen with lossless casts to intptr_t of "based" lvalues.
10309   // Assume it might use arbitrary bits.
10310   // FIXME: The only reason we need to pass the type in here is to get
10311   // the sign right on this one case.  It would be nice if APValue
10312   // preserved this.
10313   assert(result.isLValue() || result.isAddrLabelDiff());
10314   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
10315 }
10316 
10317 static QualType GetExprType(const Expr *E) {
10318   QualType Ty = E->getType();
10319   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
10320     Ty = AtomicRHS->getValueType();
10321   return Ty;
10322 }
10323 
10324 /// Pseudo-evaluate the given integer expression, estimating the
10325 /// range of values it might take.
10326 ///
10327 /// \param MaxWidth - the width to which the value will be truncated
10328 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
10329                              bool InConstantContext) {
10330   E = E->IgnoreParens();
10331 
10332   // Try a full evaluation first.
10333   Expr::EvalResult result;
10334   if (E->EvaluateAsRValue(result, C, InConstantContext))
10335     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
10336 
10337   // I think we only want to look through implicit casts here; if the
10338   // user has an explicit widening cast, we should treat the value as
10339   // being of the new, wider type.
10340   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
10341     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
10342       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext);
10343 
10344     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
10345 
10346     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
10347                          CE->getCastKind() == CK_BooleanToSignedIntegral;
10348 
10349     // Assume that non-integer casts can span the full range of the type.
10350     if (!isIntegerCast)
10351       return OutputTypeRange;
10352 
10353     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
10354                                      std::min(MaxWidth, OutputTypeRange.Width),
10355                                      InConstantContext);
10356 
10357     // Bail out if the subexpr's range is as wide as the cast type.
10358     if (SubRange.Width >= OutputTypeRange.Width)
10359       return OutputTypeRange;
10360 
10361     // Otherwise, we take the smaller width, and we're non-negative if
10362     // either the output type or the subexpr is.
10363     return IntRange(SubRange.Width,
10364                     SubRange.NonNegative || OutputTypeRange.NonNegative);
10365   }
10366 
10367   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10368     // If we can fold the condition, just take that operand.
10369     bool CondResult;
10370     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
10371       return GetExprRange(C,
10372                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
10373                           MaxWidth, InConstantContext);
10374 
10375     // Otherwise, conservatively merge.
10376     IntRange L =
10377         GetExprRange(C, CO->getTrueExpr(), MaxWidth, InConstantContext);
10378     IntRange R =
10379         GetExprRange(C, CO->getFalseExpr(), MaxWidth, InConstantContext);
10380     return IntRange::join(L, R);
10381   }
10382 
10383   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10384     switch (BO->getOpcode()) {
10385     case BO_Cmp:
10386       llvm_unreachable("builtin <=> should have class type");
10387 
10388     // Boolean-valued operations are single-bit and positive.
10389     case BO_LAnd:
10390     case BO_LOr:
10391     case BO_LT:
10392     case BO_GT:
10393     case BO_LE:
10394     case BO_GE:
10395     case BO_EQ:
10396     case BO_NE:
10397       return IntRange::forBoolType();
10398 
10399     // The type of the assignments is the type of the LHS, so the RHS
10400     // is not necessarily the same type.
10401     case BO_MulAssign:
10402     case BO_DivAssign:
10403     case BO_RemAssign:
10404     case BO_AddAssign:
10405     case BO_SubAssign:
10406     case BO_XorAssign:
10407     case BO_OrAssign:
10408       // TODO: bitfields?
10409       return IntRange::forValueOfType(C, GetExprType(E));
10410 
10411     // Simple assignments just pass through the RHS, which will have
10412     // been coerced to the LHS type.
10413     case BO_Assign:
10414       // TODO: bitfields?
10415       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
10416 
10417     // Operations with opaque sources are black-listed.
10418     case BO_PtrMemD:
10419     case BO_PtrMemI:
10420       return IntRange::forValueOfType(C, GetExprType(E));
10421 
10422     // Bitwise-and uses the *infinum* of the two source ranges.
10423     case BO_And:
10424     case BO_AndAssign:
10425       return IntRange::meet(
10426           GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext),
10427           GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext));
10428 
10429     // Left shift gets black-listed based on a judgement call.
10430     case BO_Shl:
10431       // ...except that we want to treat '1 << (blah)' as logically
10432       // positive.  It's an important idiom.
10433       if (IntegerLiteral *I
10434             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10435         if (I->getValue() == 1) {
10436           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10437           return IntRange(R.Width, /*NonNegative*/ true);
10438         }
10439       }
10440       LLVM_FALLTHROUGH;
10441 
10442     case BO_ShlAssign:
10443       return IntRange::forValueOfType(C, GetExprType(E));
10444 
10445     // Right shift by a constant can narrow its left argument.
10446     case BO_Shr:
10447     case BO_ShrAssign: {
10448       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext);
10449 
10450       // If the shift amount is a positive constant, drop the width by
10451       // that much.
10452       llvm::APSInt shift;
10453       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
10454           shift.isNonNegative()) {
10455         unsigned zext = shift.getZExtValue();
10456         if (zext >= L.Width)
10457           L.Width = (L.NonNegative ? 0 : 1);
10458         else
10459           L.Width -= zext;
10460       }
10461 
10462       return L;
10463     }
10464 
10465     // Comma acts as its right operand.
10466     case BO_Comma:
10467       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
10468 
10469     // Black-list pointer subtractions.
10470     case BO_Sub:
10471       if (BO->getLHS()->getType()->isPointerType())
10472         return IntRange::forValueOfType(C, GetExprType(E));
10473       break;
10474 
10475     // The width of a division result is mostly determined by the size
10476     // of the LHS.
10477     case BO_Div: {
10478       // Don't 'pre-truncate' the operands.
10479       unsigned opWidth = C.getIntWidth(GetExprType(E));
10480       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext);
10481 
10482       // If the divisor is constant, use that.
10483       llvm::APSInt divisor;
10484       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
10485         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
10486         if (log2 >= L.Width)
10487           L.Width = (L.NonNegative ? 0 : 1);
10488         else
10489           L.Width = std::min(L.Width - log2, MaxWidth);
10490         return L;
10491       }
10492 
10493       // Otherwise, just use the LHS's width.
10494       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext);
10495       return IntRange(L.Width, L.NonNegative && R.NonNegative);
10496     }
10497 
10498     // The result of a remainder can't be larger than the result of
10499     // either side.
10500     case BO_Rem: {
10501       // Don't 'pre-truncate' the operands.
10502       unsigned opWidth = C.getIntWidth(GetExprType(E));
10503       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext);
10504       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext);
10505 
10506       IntRange meet = IntRange::meet(L, R);
10507       meet.Width = std::min(meet.Width, MaxWidth);
10508       return meet;
10509     }
10510 
10511     // The default behavior is okay for these.
10512     case BO_Mul:
10513     case BO_Add:
10514     case BO_Xor:
10515     case BO_Or:
10516       break;
10517     }
10518 
10519     // The default case is to treat the operation as if it were closed
10520     // on the narrowest type that encompasses both operands.
10521     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext);
10522     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
10523     return IntRange::join(L, R);
10524   }
10525 
10526   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10527     switch (UO->getOpcode()) {
10528     // Boolean-valued operations are white-listed.
10529     case UO_LNot:
10530       return IntRange::forBoolType();
10531 
10532     // Operations with opaque sources are black-listed.
10533     case UO_Deref:
10534     case UO_AddrOf: // should be impossible
10535       return IntRange::forValueOfType(C, GetExprType(E));
10536 
10537     default:
10538       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext);
10539     }
10540   }
10541 
10542   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10543     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext);
10544 
10545   if (const auto *BitField = E->getSourceBitField())
10546     return IntRange(BitField->getBitWidthValue(C),
10547                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
10548 
10549   return IntRange::forValueOfType(C, GetExprType(E));
10550 }
10551 
10552 static IntRange GetExprRange(ASTContext &C, const Expr *E,
10553                              bool InConstantContext) {
10554   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext);
10555 }
10556 
10557 /// Checks whether the given value, which currently has the given
10558 /// source semantics, has the same value when coerced through the
10559 /// target semantics.
10560 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10561                                  const llvm::fltSemantics &Src,
10562                                  const llvm::fltSemantics &Tgt) {
10563   llvm::APFloat truncated = value;
10564 
10565   bool ignored;
10566   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10567   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10568 
10569   return truncated.bitwiseIsEqual(value);
10570 }
10571 
10572 /// Checks whether the given value, which currently has the given
10573 /// source semantics, has the same value when coerced through the
10574 /// target semantics.
10575 ///
10576 /// The value might be a vector of floats (or a complex number).
10577 static bool IsSameFloatAfterCast(const APValue &value,
10578                                  const llvm::fltSemantics &Src,
10579                                  const llvm::fltSemantics &Tgt) {
10580   if (value.isFloat())
10581     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10582 
10583   if (value.isVector()) {
10584     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10585       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10586         return false;
10587     return true;
10588   }
10589 
10590   assert(value.isComplexFloat());
10591   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10592           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10593 }
10594 
10595 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10596                                        bool IsListInit = false);
10597 
10598 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10599   // Suppress cases where we are comparing against an enum constant.
10600   if (const DeclRefExpr *DR =
10601       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10602     if (isa<EnumConstantDecl>(DR->getDecl()))
10603       return true;
10604 
10605   // Suppress cases where the value is expanded from a macro, unless that macro
10606   // is how a language represents a boolean literal. This is the case in both C
10607   // and Objective-C.
10608   SourceLocation BeginLoc = E->getBeginLoc();
10609   if (BeginLoc.isMacroID()) {
10610     StringRef MacroName = Lexer::getImmediateMacroName(
10611         BeginLoc, S.getSourceManager(), S.getLangOpts());
10612     return MacroName != "YES" && MacroName != "NO" &&
10613            MacroName != "true" && MacroName != "false";
10614   }
10615 
10616   return false;
10617 }
10618 
10619 static bool isKnownToHaveUnsignedValue(Expr *E) {
10620   return E->getType()->isIntegerType() &&
10621          (!E->getType()->isSignedIntegerType() ||
10622           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10623 }
10624 
10625 namespace {
10626 /// The promoted range of values of a type. In general this has the
10627 /// following structure:
10628 ///
10629 ///     |-----------| . . . |-----------|
10630 ///     ^           ^       ^           ^
10631 ///    Min       HoleMin  HoleMax      Max
10632 ///
10633 /// ... where there is only a hole if a signed type is promoted to unsigned
10634 /// (in which case Min and Max are the smallest and largest representable
10635 /// values).
10636 struct PromotedRange {
10637   // Min, or HoleMax if there is a hole.
10638   llvm::APSInt PromotedMin;
10639   // Max, or HoleMin if there is a hole.
10640   llvm::APSInt PromotedMax;
10641 
10642   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10643     if (R.Width == 0)
10644       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10645     else if (R.Width >= BitWidth && !Unsigned) {
10646       // Promotion made the type *narrower*. This happens when promoting
10647       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10648       // Treat all values of 'signed int' as being in range for now.
10649       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10650       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10651     } else {
10652       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10653                         .extOrTrunc(BitWidth);
10654       PromotedMin.setIsUnsigned(Unsigned);
10655 
10656       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10657                         .extOrTrunc(BitWidth);
10658       PromotedMax.setIsUnsigned(Unsigned);
10659     }
10660   }
10661 
10662   // Determine whether this range is contiguous (has no hole).
10663   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10664 
10665   // Where a constant value is within the range.
10666   enum ComparisonResult {
10667     LT = 0x1,
10668     LE = 0x2,
10669     GT = 0x4,
10670     GE = 0x8,
10671     EQ = 0x10,
10672     NE = 0x20,
10673     InRangeFlag = 0x40,
10674 
10675     Less = LE | LT | NE,
10676     Min = LE | InRangeFlag,
10677     InRange = InRangeFlag,
10678     Max = GE | InRangeFlag,
10679     Greater = GE | GT | NE,
10680 
10681     OnlyValue = LE | GE | EQ | InRangeFlag,
10682     InHole = NE
10683   };
10684 
10685   ComparisonResult compare(const llvm::APSInt &Value) const {
10686     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
10687            Value.isUnsigned() == PromotedMin.isUnsigned());
10688     if (!isContiguous()) {
10689       assert(Value.isUnsigned() && "discontiguous range for signed compare");
10690       if (Value.isMinValue()) return Min;
10691       if (Value.isMaxValue()) return Max;
10692       if (Value >= PromotedMin) return InRange;
10693       if (Value <= PromotedMax) return InRange;
10694       return InHole;
10695     }
10696 
10697     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
10698     case -1: return Less;
10699     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
10700     case 1:
10701       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
10702       case -1: return InRange;
10703       case 0: return Max;
10704       case 1: return Greater;
10705       }
10706     }
10707 
10708     llvm_unreachable("impossible compare result");
10709   }
10710 
10711   static llvm::Optional<StringRef>
10712   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
10713     if (Op == BO_Cmp) {
10714       ComparisonResult LTFlag = LT, GTFlag = GT;
10715       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
10716 
10717       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
10718       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
10719       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
10720       return llvm::None;
10721     }
10722 
10723     ComparisonResult TrueFlag, FalseFlag;
10724     if (Op == BO_EQ) {
10725       TrueFlag = EQ;
10726       FalseFlag = NE;
10727     } else if (Op == BO_NE) {
10728       TrueFlag = NE;
10729       FalseFlag = EQ;
10730     } else {
10731       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
10732         TrueFlag = LT;
10733         FalseFlag = GE;
10734       } else {
10735         TrueFlag = GT;
10736         FalseFlag = LE;
10737       }
10738       if (Op == BO_GE || Op == BO_LE)
10739         std::swap(TrueFlag, FalseFlag);
10740     }
10741     if (R & TrueFlag)
10742       return StringRef("true");
10743     if (R & FalseFlag)
10744       return StringRef("false");
10745     return llvm::None;
10746   }
10747 };
10748 }
10749 
10750 static bool HasEnumType(Expr *E) {
10751   // Strip off implicit integral promotions.
10752   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10753     if (ICE->getCastKind() != CK_IntegralCast &&
10754         ICE->getCastKind() != CK_NoOp)
10755       break;
10756     E = ICE->getSubExpr();
10757   }
10758 
10759   return E->getType()->isEnumeralType();
10760 }
10761 
10762 static int classifyConstantValue(Expr *Constant) {
10763   // The values of this enumeration are used in the diagnostics
10764   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
10765   enum ConstantValueKind {
10766     Miscellaneous = 0,
10767     LiteralTrue,
10768     LiteralFalse
10769   };
10770   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
10771     return BL->getValue() ? ConstantValueKind::LiteralTrue
10772                           : ConstantValueKind::LiteralFalse;
10773   return ConstantValueKind::Miscellaneous;
10774 }
10775 
10776 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
10777                                         Expr *Constant, Expr *Other,
10778                                         const llvm::APSInt &Value,
10779                                         bool RhsConstant) {
10780   if (S.inTemplateInstantiation())
10781     return false;
10782 
10783   Expr *OriginalOther = Other;
10784 
10785   Constant = Constant->IgnoreParenImpCasts();
10786   Other = Other->IgnoreParenImpCasts();
10787 
10788   // Suppress warnings on tautological comparisons between values of the same
10789   // enumeration type. There are only two ways we could warn on this:
10790   //  - If the constant is outside the range of representable values of
10791   //    the enumeration. In such a case, we should warn about the cast
10792   //    to enumeration type, not about the comparison.
10793   //  - If the constant is the maximum / minimum in-range value. For an
10794   //    enumeratin type, such comparisons can be meaningful and useful.
10795   if (Constant->getType()->isEnumeralType() &&
10796       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
10797     return false;
10798 
10799   // TODO: Investigate using GetExprRange() to get tighter bounds
10800   // on the bit ranges.
10801   QualType OtherT = Other->getType();
10802   if (const auto *AT = OtherT->getAs<AtomicType>())
10803     OtherT = AT->getValueType();
10804   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
10805 
10806   // Special case for ObjC BOOL on targets where its a typedef for a signed char
10807   // (Namely, macOS).
10808   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
10809                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
10810                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
10811 
10812   // Whether we're treating Other as being a bool because of the form of
10813   // expression despite it having another type (typically 'int' in C).
10814   bool OtherIsBooleanDespiteType =
10815       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
10816   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
10817     OtherRange = IntRange::forBoolType();
10818 
10819   // Determine the promoted range of the other type and see if a comparison of
10820   // the constant against that range is tautological.
10821   PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(),
10822                                    Value.isUnsigned());
10823   auto Cmp = OtherPromotedRange.compare(Value);
10824   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
10825   if (!Result)
10826     return false;
10827 
10828   // Suppress the diagnostic for an in-range comparison if the constant comes
10829   // from a macro or enumerator. We don't want to diagnose
10830   //
10831   //   some_long_value <= INT_MAX
10832   //
10833   // when sizeof(int) == sizeof(long).
10834   bool InRange = Cmp & PromotedRange::InRangeFlag;
10835   if (InRange && IsEnumConstOrFromMacro(S, Constant))
10836     return false;
10837 
10838   // If this is a comparison to an enum constant, include that
10839   // constant in the diagnostic.
10840   const EnumConstantDecl *ED = nullptr;
10841   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
10842     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
10843 
10844   // Should be enough for uint128 (39 decimal digits)
10845   SmallString<64> PrettySourceValue;
10846   llvm::raw_svector_ostream OS(PrettySourceValue);
10847   if (ED) {
10848     OS << '\'' << *ED << "' (" << Value << ")";
10849   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
10850                Constant->IgnoreParenImpCasts())) {
10851     OS << (BL->getValue() ? "YES" : "NO");
10852   } else {
10853     OS << Value;
10854   }
10855 
10856   if (IsObjCSignedCharBool) {
10857     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10858                           S.PDiag(diag::warn_tautological_compare_objc_bool)
10859                               << OS.str() << *Result);
10860     return true;
10861   }
10862 
10863   // FIXME: We use a somewhat different formatting for the in-range cases and
10864   // cases involving boolean values for historical reasons. We should pick a
10865   // consistent way of presenting these diagnostics.
10866   if (!InRange || Other->isKnownToHaveBooleanValue()) {
10867 
10868     S.DiagRuntimeBehavior(
10869         E->getOperatorLoc(), E,
10870         S.PDiag(!InRange ? diag::warn_out_of_range_compare
10871                          : diag::warn_tautological_bool_compare)
10872             << OS.str() << classifyConstantValue(Constant) << OtherT
10873             << OtherIsBooleanDespiteType << *Result
10874             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
10875   } else {
10876     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
10877                         ? (HasEnumType(OriginalOther)
10878                                ? diag::warn_unsigned_enum_always_true_comparison
10879                                : diag::warn_unsigned_always_true_comparison)
10880                         : diag::warn_tautological_constant_compare;
10881 
10882     S.Diag(E->getOperatorLoc(), Diag)
10883         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
10884         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10885   }
10886 
10887   return true;
10888 }
10889 
10890 /// Analyze the operands of the given comparison.  Implements the
10891 /// fallback case from AnalyzeComparison.
10892 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
10893   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10894   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10895 }
10896 
10897 /// Implements -Wsign-compare.
10898 ///
10899 /// \param E the binary operator to check for warnings
10900 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
10901   // The type the comparison is being performed in.
10902   QualType T = E->getLHS()->getType();
10903 
10904   // Only analyze comparison operators where both sides have been converted to
10905   // the same type.
10906   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
10907     return AnalyzeImpConvsInComparison(S, E);
10908 
10909   // Don't analyze value-dependent comparisons directly.
10910   if (E->isValueDependent())
10911     return AnalyzeImpConvsInComparison(S, E);
10912 
10913   Expr *LHS = E->getLHS();
10914   Expr *RHS = E->getRHS();
10915 
10916   if (T->isIntegralType(S.Context)) {
10917     llvm::APSInt RHSValue;
10918     llvm::APSInt LHSValue;
10919 
10920     bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context);
10921     bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context);
10922 
10923     // We don't care about expressions whose result is a constant.
10924     if (IsRHSIntegralLiteral && IsLHSIntegralLiteral)
10925       return AnalyzeImpConvsInComparison(S, E);
10926 
10927     // We only care about expressions where just one side is literal
10928     if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) {
10929       // Is the constant on the RHS or LHS?
10930       const bool RhsConstant = IsRHSIntegralLiteral;
10931       Expr *Const = RhsConstant ? RHS : LHS;
10932       Expr *Other = RhsConstant ? LHS : RHS;
10933       const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue;
10934 
10935       // Check whether an integer constant comparison results in a value
10936       // of 'true' or 'false'.
10937       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
10938         return AnalyzeImpConvsInComparison(S, E);
10939     }
10940   }
10941 
10942   if (!T->hasUnsignedIntegerRepresentation()) {
10943     // We don't do anything special if this isn't an unsigned integral
10944     // comparison:  we're only interested in integral comparisons, and
10945     // signed comparisons only happen in cases we don't care to warn about.
10946     return AnalyzeImpConvsInComparison(S, E);
10947   }
10948 
10949   LHS = LHS->IgnoreParenImpCasts();
10950   RHS = RHS->IgnoreParenImpCasts();
10951 
10952   if (!S.getLangOpts().CPlusPlus) {
10953     // Avoid warning about comparison of integers with different signs when
10954     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
10955     // the type of `E`.
10956     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
10957       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10958     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
10959       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10960   }
10961 
10962   // Check to see if one of the (unmodified) operands is of different
10963   // signedness.
10964   Expr *signedOperand, *unsignedOperand;
10965   if (LHS->getType()->hasSignedIntegerRepresentation()) {
10966     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
10967            "unsigned comparison between two signed integer expressions?");
10968     signedOperand = LHS;
10969     unsignedOperand = RHS;
10970   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
10971     signedOperand = RHS;
10972     unsignedOperand = LHS;
10973   } else {
10974     return AnalyzeImpConvsInComparison(S, E);
10975   }
10976 
10977   // Otherwise, calculate the effective range of the signed operand.
10978   IntRange signedRange =
10979       GetExprRange(S.Context, signedOperand, S.isConstantEvaluated());
10980 
10981   // Go ahead and analyze implicit conversions in the operands.  Note
10982   // that we skip the implicit conversions on both sides.
10983   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
10984   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
10985 
10986   // If the signed range is non-negative, -Wsign-compare won't fire.
10987   if (signedRange.NonNegative)
10988     return;
10989 
10990   // For (in)equality comparisons, if the unsigned operand is a
10991   // constant which cannot collide with a overflowed signed operand,
10992   // then reinterpreting the signed operand as unsigned will not
10993   // change the result of the comparison.
10994   if (E->isEqualityOp()) {
10995     unsigned comparisonWidth = S.Context.getIntWidth(T);
10996     IntRange unsignedRange =
10997         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated());
10998 
10999     // We should never be unable to prove that the unsigned operand is
11000     // non-negative.
11001     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
11002 
11003     if (unsignedRange.Width < comparisonWidth)
11004       return;
11005   }
11006 
11007   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11008                         S.PDiag(diag::warn_mixed_sign_comparison)
11009                             << LHS->getType() << RHS->getType()
11010                             << LHS->getSourceRange() << RHS->getSourceRange());
11011 }
11012 
11013 /// Analyzes an attempt to assign the given value to a bitfield.
11014 ///
11015 /// Returns true if there was something fishy about the attempt.
11016 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11017                                       SourceLocation InitLoc) {
11018   assert(Bitfield->isBitField());
11019   if (Bitfield->isInvalidDecl())
11020     return false;
11021 
11022   // White-list bool bitfields.
11023   QualType BitfieldType = Bitfield->getType();
11024   if (BitfieldType->isBooleanType())
11025      return false;
11026 
11027   if (BitfieldType->isEnumeralType()) {
11028     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11029     // If the underlying enum type was not explicitly specified as an unsigned
11030     // type and the enum contain only positive values, MSVC++ will cause an
11031     // inconsistency by storing this as a signed type.
11032     if (S.getLangOpts().CPlusPlus11 &&
11033         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11034         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11035         BitfieldEnumDecl->getNumNegativeBits() == 0) {
11036       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11037         << BitfieldEnumDecl->getNameAsString();
11038     }
11039   }
11040 
11041   if (Bitfield->getType()->isBooleanType())
11042     return false;
11043 
11044   // Ignore value- or type-dependent expressions.
11045   if (Bitfield->getBitWidth()->isValueDependent() ||
11046       Bitfield->getBitWidth()->isTypeDependent() ||
11047       Init->isValueDependent() ||
11048       Init->isTypeDependent())
11049     return false;
11050 
11051   Expr *OriginalInit = Init->IgnoreParenImpCasts();
11052   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11053 
11054   Expr::EvalResult Result;
11055   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11056                                    Expr::SE_AllowSideEffects)) {
11057     // The RHS is not constant.  If the RHS has an enum type, make sure the
11058     // bitfield is wide enough to hold all the values of the enum without
11059     // truncation.
11060     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11061       EnumDecl *ED = EnumTy->getDecl();
11062       bool SignedBitfield = BitfieldType->isSignedIntegerType();
11063 
11064       // Enum types are implicitly signed on Windows, so check if there are any
11065       // negative enumerators to see if the enum was intended to be signed or
11066       // not.
11067       bool SignedEnum = ED->getNumNegativeBits() > 0;
11068 
11069       // Check for surprising sign changes when assigning enum values to a
11070       // bitfield of different signedness.  If the bitfield is signed and we
11071       // have exactly the right number of bits to store this unsigned enum,
11072       // suggest changing the enum to an unsigned type. This typically happens
11073       // on Windows where unfixed enums always use an underlying type of 'int'.
11074       unsigned DiagID = 0;
11075       if (SignedEnum && !SignedBitfield) {
11076         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11077       } else if (SignedBitfield && !SignedEnum &&
11078                  ED->getNumPositiveBits() == FieldWidth) {
11079         DiagID = diag::warn_signed_bitfield_enum_conversion;
11080       }
11081 
11082       if (DiagID) {
11083         S.Diag(InitLoc, DiagID) << Bitfield << ED;
11084         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
11085         SourceRange TypeRange =
11086             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
11087         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
11088             << SignedEnum << TypeRange;
11089       }
11090 
11091       // Compute the required bitwidth. If the enum has negative values, we need
11092       // one more bit than the normal number of positive bits to represent the
11093       // sign bit.
11094       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
11095                                                   ED->getNumNegativeBits())
11096                                        : ED->getNumPositiveBits();
11097 
11098       // Check the bitwidth.
11099       if (BitsNeeded > FieldWidth) {
11100         Expr *WidthExpr = Bitfield->getBitWidth();
11101         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
11102             << Bitfield << ED;
11103         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
11104             << BitsNeeded << ED << WidthExpr->getSourceRange();
11105       }
11106     }
11107 
11108     return false;
11109   }
11110 
11111   llvm::APSInt Value = Result.Val.getInt();
11112 
11113   unsigned OriginalWidth = Value.getBitWidth();
11114 
11115   if (!Value.isSigned() || Value.isNegative())
11116     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
11117       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
11118         OriginalWidth = Value.getMinSignedBits();
11119 
11120   if (OriginalWidth <= FieldWidth)
11121     return false;
11122 
11123   // Compute the value which the bitfield will contain.
11124   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
11125   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
11126 
11127   // Check whether the stored value is equal to the original value.
11128   TruncatedValue = TruncatedValue.extend(OriginalWidth);
11129   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
11130     return false;
11131 
11132   // Special-case bitfields of width 1: booleans are naturally 0/1, and
11133   // therefore don't strictly fit into a signed bitfield of width 1.
11134   if (FieldWidth == 1 && Value == 1)
11135     return false;
11136 
11137   std::string PrettyValue = Value.toString(10);
11138   std::string PrettyTrunc = TruncatedValue.toString(10);
11139 
11140   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
11141     << PrettyValue << PrettyTrunc << OriginalInit->getType()
11142     << Init->getSourceRange();
11143 
11144   return true;
11145 }
11146 
11147 /// Analyze the given simple or compound assignment for warning-worthy
11148 /// operations.
11149 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
11150   // Just recurse on the LHS.
11151   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11152 
11153   // We want to recurse on the RHS as normal unless we're assigning to
11154   // a bitfield.
11155   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
11156     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
11157                                   E->getOperatorLoc())) {
11158       // Recurse, ignoring any implicit conversions on the RHS.
11159       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
11160                                         E->getOperatorLoc());
11161     }
11162   }
11163 
11164   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11165 
11166   // Diagnose implicitly sequentially-consistent atomic assignment.
11167   if (E->getLHS()->getType()->isAtomicType())
11168     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11169 }
11170 
11171 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11172 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
11173                             SourceLocation CContext, unsigned diag,
11174                             bool pruneControlFlow = false) {
11175   if (pruneControlFlow) {
11176     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11177                           S.PDiag(diag)
11178                               << SourceType << T << E->getSourceRange()
11179                               << SourceRange(CContext));
11180     return;
11181   }
11182   S.Diag(E->getExprLoc(), diag)
11183     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
11184 }
11185 
11186 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11187 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
11188                             SourceLocation CContext,
11189                             unsigned diag, bool pruneControlFlow = false) {
11190   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
11191 }
11192 
11193 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
11194   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
11195       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
11196 }
11197 
11198 static void adornObjCBoolConversionDiagWithTernaryFixit(
11199     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
11200   Expr *Ignored = SourceExpr->IgnoreImplicit();
11201   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
11202     Ignored = OVE->getSourceExpr();
11203   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
11204                      isa<BinaryOperator>(Ignored) ||
11205                      isa<CXXOperatorCallExpr>(Ignored);
11206   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
11207   if (NeedsParens)
11208     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
11209             << FixItHint::CreateInsertion(EndLoc, ")");
11210   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
11211 }
11212 
11213 /// Diagnose an implicit cast from a floating point value to an integer value.
11214 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
11215                                     SourceLocation CContext) {
11216   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
11217   const bool PruneWarnings = S.inTemplateInstantiation();
11218 
11219   Expr *InnerE = E->IgnoreParenImpCasts();
11220   // We also want to warn on, e.g., "int i = -1.234"
11221   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
11222     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
11223       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
11224 
11225   const bool IsLiteral =
11226       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
11227 
11228   llvm::APFloat Value(0.0);
11229   bool IsConstant =
11230     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
11231   if (!IsConstant) {
11232     if (isObjCSignedCharBool(S, T)) {
11233       return adornObjCBoolConversionDiagWithTernaryFixit(
11234           S, E,
11235           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
11236               << E->getType());
11237     }
11238 
11239     return DiagnoseImpCast(S, E, T, CContext,
11240                            diag::warn_impcast_float_integer, PruneWarnings);
11241   }
11242 
11243   bool isExact = false;
11244 
11245   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
11246                             T->hasUnsignedIntegerRepresentation());
11247   llvm::APFloat::opStatus Result = Value.convertToInteger(
11248       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
11249 
11250   // FIXME: Force the precision of the source value down so we don't print
11251   // digits which are usually useless (we don't really care here if we
11252   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
11253   // would automatically print the shortest representation, but it's a bit
11254   // tricky to implement.
11255   SmallString<16> PrettySourceValue;
11256   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
11257   precision = (precision * 59 + 195) / 196;
11258   Value.toString(PrettySourceValue, precision);
11259 
11260   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
11261     return adornObjCBoolConversionDiagWithTernaryFixit(
11262         S, E,
11263         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
11264             << PrettySourceValue);
11265   }
11266 
11267   if (Result == llvm::APFloat::opOK && isExact) {
11268     if (IsLiteral) return;
11269     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
11270                            PruneWarnings);
11271   }
11272 
11273   // Conversion of a floating-point value to a non-bool integer where the
11274   // integral part cannot be represented by the integer type is undefined.
11275   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
11276     return DiagnoseImpCast(
11277         S, E, T, CContext,
11278         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
11279                   : diag::warn_impcast_float_to_integer_out_of_range,
11280         PruneWarnings);
11281 
11282   unsigned DiagID = 0;
11283   if (IsLiteral) {
11284     // Warn on floating point literal to integer.
11285     DiagID = diag::warn_impcast_literal_float_to_integer;
11286   } else if (IntegerValue == 0) {
11287     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
11288       return DiagnoseImpCast(S, E, T, CContext,
11289                              diag::warn_impcast_float_integer, PruneWarnings);
11290     }
11291     // Warn on non-zero to zero conversion.
11292     DiagID = diag::warn_impcast_float_to_integer_zero;
11293   } else {
11294     if (IntegerValue.isUnsigned()) {
11295       if (!IntegerValue.isMaxValue()) {
11296         return DiagnoseImpCast(S, E, T, CContext,
11297                                diag::warn_impcast_float_integer, PruneWarnings);
11298       }
11299     } else {  // IntegerValue.isSigned()
11300       if (!IntegerValue.isMaxSignedValue() &&
11301           !IntegerValue.isMinSignedValue()) {
11302         return DiagnoseImpCast(S, E, T, CContext,
11303                                diag::warn_impcast_float_integer, PruneWarnings);
11304       }
11305     }
11306     // Warn on evaluatable floating point expression to integer conversion.
11307     DiagID = diag::warn_impcast_float_to_integer;
11308   }
11309 
11310   SmallString<16> PrettyTargetValue;
11311   if (IsBool)
11312     PrettyTargetValue = Value.isZero() ? "false" : "true";
11313   else
11314     IntegerValue.toString(PrettyTargetValue);
11315 
11316   if (PruneWarnings) {
11317     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11318                           S.PDiag(DiagID)
11319                               << E->getType() << T.getUnqualifiedType()
11320                               << PrettySourceValue << PrettyTargetValue
11321                               << E->getSourceRange() << SourceRange(CContext));
11322   } else {
11323     S.Diag(E->getExprLoc(), DiagID)
11324         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
11325         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
11326   }
11327 }
11328 
11329 /// Analyze the given compound assignment for the possible losing of
11330 /// floating-point precision.
11331 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
11332   assert(isa<CompoundAssignOperator>(E) &&
11333          "Must be compound assignment operation");
11334   // Recurse on the LHS and RHS in here
11335   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11336   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11337 
11338   if (E->getLHS()->getType()->isAtomicType())
11339     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
11340 
11341   // Now check the outermost expression
11342   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
11343   const auto *RBT = cast<CompoundAssignOperator>(E)
11344                         ->getComputationResultType()
11345                         ->getAs<BuiltinType>();
11346 
11347   // The below checks assume source is floating point.
11348   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
11349 
11350   // If source is floating point but target is an integer.
11351   if (ResultBT->isInteger())
11352     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
11353                            E->getExprLoc(), diag::warn_impcast_float_integer);
11354 
11355   if (!ResultBT->isFloatingPoint())
11356     return;
11357 
11358   // If both source and target are floating points, warn about losing precision.
11359   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11360       QualType(ResultBT, 0), QualType(RBT, 0));
11361   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
11362     // warn about dropping FP rank.
11363     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
11364                     diag::warn_impcast_float_result_precision);
11365 }
11366 
11367 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
11368                                       IntRange Range) {
11369   if (!Range.Width) return "0";
11370 
11371   llvm::APSInt ValueInRange = Value;
11372   ValueInRange.setIsSigned(!Range.NonNegative);
11373   ValueInRange = ValueInRange.trunc(Range.Width);
11374   return ValueInRange.toString(10);
11375 }
11376 
11377 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
11378   if (!isa<ImplicitCastExpr>(Ex))
11379     return false;
11380 
11381   Expr *InnerE = Ex->IgnoreParenImpCasts();
11382   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
11383   const Type *Source =
11384     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
11385   if (Target->isDependentType())
11386     return false;
11387 
11388   const BuiltinType *FloatCandidateBT =
11389     dyn_cast<BuiltinType>(ToBool ? Source : Target);
11390   const Type *BoolCandidateType = ToBool ? Target : Source;
11391 
11392   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
11393           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
11394 }
11395 
11396 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
11397                                              SourceLocation CC) {
11398   unsigned NumArgs = TheCall->getNumArgs();
11399   for (unsigned i = 0; i < NumArgs; ++i) {
11400     Expr *CurrA = TheCall->getArg(i);
11401     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
11402       continue;
11403 
11404     bool IsSwapped = ((i > 0) &&
11405         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
11406     IsSwapped |= ((i < (NumArgs - 1)) &&
11407         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
11408     if (IsSwapped) {
11409       // Warn on this floating-point to bool conversion.
11410       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
11411                       CurrA->getType(), CC,
11412                       diag::warn_impcast_floating_point_to_bool);
11413     }
11414   }
11415 }
11416 
11417 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
11418                                    SourceLocation CC) {
11419   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
11420                         E->getExprLoc()))
11421     return;
11422 
11423   // Don't warn on functions which have return type nullptr_t.
11424   if (isa<CallExpr>(E))
11425     return;
11426 
11427   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
11428   const Expr::NullPointerConstantKind NullKind =
11429       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
11430   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
11431     return;
11432 
11433   // Return if target type is a safe conversion.
11434   if (T->isAnyPointerType() || T->isBlockPointerType() ||
11435       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
11436     return;
11437 
11438   SourceLocation Loc = E->getSourceRange().getBegin();
11439 
11440   // Venture through the macro stacks to get to the source of macro arguments.
11441   // The new location is a better location than the complete location that was
11442   // passed in.
11443   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
11444   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
11445 
11446   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
11447   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
11448     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
11449         Loc, S.SourceMgr, S.getLangOpts());
11450     if (MacroName == "NULL")
11451       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
11452   }
11453 
11454   // Only warn if the null and context location are in the same macro expansion.
11455   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
11456     return;
11457 
11458   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
11459       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
11460       << FixItHint::CreateReplacement(Loc,
11461                                       S.getFixItZeroLiteralForType(T, Loc));
11462 }
11463 
11464 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11465                                   ObjCArrayLiteral *ArrayLiteral);
11466 
11467 static void
11468 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11469                            ObjCDictionaryLiteral *DictionaryLiteral);
11470 
11471 /// Check a single element within a collection literal against the
11472 /// target element type.
11473 static void checkObjCCollectionLiteralElement(Sema &S,
11474                                               QualType TargetElementType,
11475                                               Expr *Element,
11476                                               unsigned ElementKind) {
11477   // Skip a bitcast to 'id' or qualified 'id'.
11478   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
11479     if (ICE->getCastKind() == CK_BitCast &&
11480         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
11481       Element = ICE->getSubExpr();
11482   }
11483 
11484   QualType ElementType = Element->getType();
11485   ExprResult ElementResult(Element);
11486   if (ElementType->getAs<ObjCObjectPointerType>() &&
11487       S.CheckSingleAssignmentConstraints(TargetElementType,
11488                                          ElementResult,
11489                                          false, false)
11490         != Sema::Compatible) {
11491     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11492         << ElementType << ElementKind << TargetElementType
11493         << Element->getSourceRange();
11494   }
11495 
11496   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11497     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11498   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11499     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11500 }
11501 
11502 /// Check an Objective-C array literal being converted to the given
11503 /// target type.
11504 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11505                                   ObjCArrayLiteral *ArrayLiteral) {
11506   if (!S.NSArrayDecl)
11507     return;
11508 
11509   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11510   if (!TargetObjCPtr)
11511     return;
11512 
11513   if (TargetObjCPtr->isUnspecialized() ||
11514       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11515         != S.NSArrayDecl->getCanonicalDecl())
11516     return;
11517 
11518   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11519   if (TypeArgs.size() != 1)
11520     return;
11521 
11522   QualType TargetElementType = TypeArgs[0];
11523   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11524     checkObjCCollectionLiteralElement(S, TargetElementType,
11525                                       ArrayLiteral->getElement(I),
11526                                       0);
11527   }
11528 }
11529 
11530 /// Check an Objective-C dictionary literal being converted to the given
11531 /// target type.
11532 static void
11533 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11534                            ObjCDictionaryLiteral *DictionaryLiteral) {
11535   if (!S.NSDictionaryDecl)
11536     return;
11537 
11538   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11539   if (!TargetObjCPtr)
11540     return;
11541 
11542   if (TargetObjCPtr->isUnspecialized() ||
11543       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11544         != S.NSDictionaryDecl->getCanonicalDecl())
11545     return;
11546 
11547   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11548   if (TypeArgs.size() != 2)
11549     return;
11550 
11551   QualType TargetKeyType = TypeArgs[0];
11552   QualType TargetObjectType = TypeArgs[1];
11553   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11554     auto Element = DictionaryLiteral->getKeyValueElement(I);
11555     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11556     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11557   }
11558 }
11559 
11560 // Helper function to filter out cases for constant width constant conversion.
11561 // Don't warn on char array initialization or for non-decimal values.
11562 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11563                                           SourceLocation CC) {
11564   // If initializing from a constant, and the constant starts with '0',
11565   // then it is a binary, octal, or hexadecimal.  Allow these constants
11566   // to fill all the bits, even if there is a sign change.
11567   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11568     const char FirstLiteralCharacter =
11569         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11570     if (FirstLiteralCharacter == '0')
11571       return false;
11572   }
11573 
11574   // If the CC location points to a '{', and the type is char, then assume
11575   // assume it is an array initialization.
11576   if (CC.isValid() && T->isCharType()) {
11577     const char FirstContextCharacter =
11578         S.getSourceManager().getCharacterData(CC)[0];
11579     if (FirstContextCharacter == '{')
11580       return false;
11581   }
11582 
11583   return true;
11584 }
11585 
11586 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11587   const auto *IL = dyn_cast<IntegerLiteral>(E);
11588   if (!IL) {
11589     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11590       if (UO->getOpcode() == UO_Minus)
11591         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11592     }
11593   }
11594 
11595   return IL;
11596 }
11597 
11598 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11599   E = E->IgnoreParenImpCasts();
11600   SourceLocation ExprLoc = E->getExprLoc();
11601 
11602   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11603     BinaryOperator::Opcode Opc = BO->getOpcode();
11604     Expr::EvalResult Result;
11605     // Do not diagnose unsigned shifts.
11606     if (Opc == BO_Shl) {
11607       const auto *LHS = getIntegerLiteral(BO->getLHS());
11608       const auto *RHS = getIntegerLiteral(BO->getRHS());
11609       if (LHS && LHS->getValue() == 0)
11610         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11611       else if (!E->isValueDependent() && LHS && RHS &&
11612                RHS->getValue().isNonNegative() &&
11613                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11614         S.Diag(ExprLoc, diag::warn_left_shift_always)
11615             << (Result.Val.getInt() != 0);
11616       else if (E->getType()->isSignedIntegerType())
11617         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11618     }
11619   }
11620 
11621   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11622     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11623     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11624     if (!LHS || !RHS)
11625       return;
11626     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11627         (RHS->getValue() == 0 || RHS->getValue() == 1))
11628       // Do not diagnose common idioms.
11629       return;
11630     if (LHS->getValue() != 0 && RHS->getValue() != 0)
11631       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11632   }
11633 }
11634 
11635 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
11636                                     SourceLocation CC,
11637                                     bool *ICContext = nullptr,
11638                                     bool IsListInit = false) {
11639   if (E->isTypeDependent() || E->isValueDependent()) return;
11640 
11641   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11642   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11643   if (Source == Target) return;
11644   if (Target->isDependentType()) return;
11645 
11646   // If the conversion context location is invalid don't complain. We also
11647   // don't want to emit a warning if the issue occurs from the expansion of
11648   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11649   // delay this check as long as possible. Once we detect we are in that
11650   // scenario, we just return.
11651   if (CC.isInvalid())
11652     return;
11653 
11654   if (Source->isAtomicType())
11655     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
11656 
11657   // Diagnose implicit casts to bool.
11658   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
11659     if (isa<StringLiteral>(E))
11660       // Warn on string literal to bool.  Checks for string literals in logical
11661       // and expressions, for instance, assert(0 && "error here"), are
11662       // prevented by a check in AnalyzeImplicitConversions().
11663       return DiagnoseImpCast(S, E, T, CC,
11664                              diag::warn_impcast_string_literal_to_bool);
11665     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
11666         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
11667       // This covers the literal expressions that evaluate to Objective-C
11668       // objects.
11669       return DiagnoseImpCast(S, E, T, CC,
11670                              diag::warn_impcast_objective_c_literal_to_bool);
11671     }
11672     if (Source->isPointerType() || Source->canDecayToPointerType()) {
11673       // Warn on pointer to bool conversion that is always true.
11674       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
11675                                      SourceRange(CC));
11676     }
11677   }
11678 
11679   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
11680   // is a typedef for signed char (macOS), then that constant value has to be 1
11681   // or 0.
11682   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
11683     Expr::EvalResult Result;
11684     if (E->EvaluateAsInt(Result, S.getASTContext(),
11685                          Expr::SE_AllowSideEffects)) {
11686       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
11687         adornObjCBoolConversionDiagWithTernaryFixit(
11688             S, E,
11689             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
11690                 << Result.Val.getInt().toString(10));
11691       }
11692       return;
11693     }
11694   }
11695 
11696   // Check implicit casts from Objective-C collection literals to specialized
11697   // collection types, e.g., NSArray<NSString *> *.
11698   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
11699     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
11700   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
11701     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
11702 
11703   // Strip vector types.
11704   if (isa<VectorType>(Source)) {
11705     if (!isa<VectorType>(Target)) {
11706       if (S.SourceMgr.isInSystemMacro(CC))
11707         return;
11708       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
11709     }
11710 
11711     // If the vector cast is cast between two vectors of the same size, it is
11712     // a bitcast, not a conversion.
11713     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
11714       return;
11715 
11716     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
11717     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
11718   }
11719   if (auto VecTy = dyn_cast<VectorType>(Target))
11720     Target = VecTy->getElementType().getTypePtr();
11721 
11722   // Strip complex types.
11723   if (isa<ComplexType>(Source)) {
11724     if (!isa<ComplexType>(Target)) {
11725       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
11726         return;
11727 
11728       return DiagnoseImpCast(S, E, T, CC,
11729                              S.getLangOpts().CPlusPlus
11730                                  ? diag::err_impcast_complex_scalar
11731                                  : diag::warn_impcast_complex_scalar);
11732     }
11733 
11734     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
11735     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
11736   }
11737 
11738   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
11739   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
11740 
11741   // If the source is floating point...
11742   if (SourceBT && SourceBT->isFloatingPoint()) {
11743     // ...and the target is floating point...
11744     if (TargetBT && TargetBT->isFloatingPoint()) {
11745       // ...then warn if we're dropping FP rank.
11746 
11747       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11748           QualType(SourceBT, 0), QualType(TargetBT, 0));
11749       if (Order > 0) {
11750         // Don't warn about float constants that are precisely
11751         // representable in the target type.
11752         Expr::EvalResult result;
11753         if (E->EvaluateAsRValue(result, S.Context)) {
11754           // Value might be a float, a float vector, or a float complex.
11755           if (IsSameFloatAfterCast(result.Val,
11756                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
11757                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
11758             return;
11759         }
11760 
11761         if (S.SourceMgr.isInSystemMacro(CC))
11762           return;
11763 
11764         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
11765       }
11766       // ... or possibly if we're increasing rank, too
11767       else if (Order < 0) {
11768         if (S.SourceMgr.isInSystemMacro(CC))
11769           return;
11770 
11771         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
11772       }
11773       return;
11774     }
11775 
11776     // If the target is integral, always warn.
11777     if (TargetBT && TargetBT->isInteger()) {
11778       if (S.SourceMgr.isInSystemMacro(CC))
11779         return;
11780 
11781       DiagnoseFloatingImpCast(S, E, T, CC);
11782     }
11783 
11784     // Detect the case where a call result is converted from floating-point to
11785     // to bool, and the final argument to the call is converted from bool, to
11786     // discover this typo:
11787     //
11788     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
11789     //
11790     // FIXME: This is an incredibly special case; is there some more general
11791     // way to detect this class of misplaced-parentheses bug?
11792     if (Target->isBooleanType() && isa<CallExpr>(E)) {
11793       // Check last argument of function call to see if it is an
11794       // implicit cast from a type matching the type the result
11795       // is being cast to.
11796       CallExpr *CEx = cast<CallExpr>(E);
11797       if (unsigned NumArgs = CEx->getNumArgs()) {
11798         Expr *LastA = CEx->getArg(NumArgs - 1);
11799         Expr *InnerE = LastA->IgnoreParenImpCasts();
11800         if (isa<ImplicitCastExpr>(LastA) &&
11801             InnerE->getType()->isBooleanType()) {
11802           // Warn on this floating-point to bool conversion
11803           DiagnoseImpCast(S, E, T, CC,
11804                           diag::warn_impcast_floating_point_to_bool);
11805         }
11806       }
11807     }
11808     return;
11809   }
11810 
11811   // Valid casts involving fixed point types should be accounted for here.
11812   if (Source->isFixedPointType()) {
11813     if (Target->isUnsaturatedFixedPointType()) {
11814       Expr::EvalResult Result;
11815       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
11816                                   S.isConstantEvaluated())) {
11817         APFixedPoint Value = Result.Val.getFixedPoint();
11818         APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
11819         APFixedPoint MinVal = S.Context.getFixedPointMin(T);
11820         if (Value > MaxVal || Value < MinVal) {
11821           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11822                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11823                                     << Value.toString() << T
11824                                     << E->getSourceRange()
11825                                     << clang::SourceRange(CC));
11826           return;
11827         }
11828       }
11829     } else if (Target->isIntegerType()) {
11830       Expr::EvalResult Result;
11831       if (!S.isConstantEvaluated() &&
11832           E->EvaluateAsFixedPoint(Result, S.Context,
11833                                   Expr::SE_AllowSideEffects)) {
11834         APFixedPoint FXResult = Result.Val.getFixedPoint();
11835 
11836         bool Overflowed;
11837         llvm::APSInt IntResult = FXResult.convertToInt(
11838             S.Context.getIntWidth(T),
11839             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
11840 
11841         if (Overflowed) {
11842           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11843                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11844                                     << FXResult.toString() << T
11845                                     << E->getSourceRange()
11846                                     << clang::SourceRange(CC));
11847           return;
11848         }
11849       }
11850     }
11851   } else if (Target->isUnsaturatedFixedPointType()) {
11852     if (Source->isIntegerType()) {
11853       Expr::EvalResult Result;
11854       if (!S.isConstantEvaluated() &&
11855           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
11856         llvm::APSInt Value = Result.Val.getInt();
11857 
11858         bool Overflowed;
11859         APFixedPoint IntResult = APFixedPoint::getFromIntValue(
11860             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
11861 
11862         if (Overflowed) {
11863           S.DiagRuntimeBehavior(E->getExprLoc(), E,
11864                                 S.PDiag(diag::warn_impcast_fixed_point_range)
11865                                     << Value.toString(/*Radix=*/10) << T
11866                                     << E->getSourceRange()
11867                                     << clang::SourceRange(CC));
11868           return;
11869         }
11870       }
11871     }
11872   }
11873 
11874   // If we are casting an integer type to a floating point type without
11875   // initialization-list syntax, we might lose accuracy if the floating
11876   // point type has a narrower significand than the integer type.
11877   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
11878       TargetBT->isFloatingType() && !IsListInit) {
11879     // Determine the number of precision bits in the source integer type.
11880     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated());
11881     unsigned int SourcePrecision = SourceRange.Width;
11882 
11883     // Determine the number of precision bits in the
11884     // target floating point type.
11885     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
11886         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11887 
11888     if (SourcePrecision > 0 && TargetPrecision > 0 &&
11889         SourcePrecision > TargetPrecision) {
11890 
11891       llvm::APSInt SourceInt;
11892       if (E->isIntegerConstantExpr(SourceInt, S.Context)) {
11893         // If the source integer is a constant, convert it to the target
11894         // floating point type. Issue a warning if the value changes
11895         // during the whole conversion.
11896         llvm::APFloat TargetFloatValue(
11897             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11898         llvm::APFloat::opStatus ConversionStatus =
11899             TargetFloatValue.convertFromAPInt(
11900                 SourceInt, SourceBT->isSignedInteger(),
11901                 llvm::APFloat::rmNearestTiesToEven);
11902 
11903         if (ConversionStatus != llvm::APFloat::opOK) {
11904           std::string PrettySourceValue = SourceInt.toString(10);
11905           SmallString<32> PrettyTargetValue;
11906           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
11907 
11908           S.DiagRuntimeBehavior(
11909               E->getExprLoc(), E,
11910               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
11911                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
11912                   << E->getSourceRange() << clang::SourceRange(CC));
11913         }
11914       } else {
11915         // Otherwise, the implicit conversion may lose precision.
11916         DiagnoseImpCast(S, E, T, CC,
11917                         diag::warn_impcast_integer_float_precision);
11918       }
11919     }
11920   }
11921 
11922   DiagnoseNullConversion(S, E, T, CC);
11923 
11924   S.DiscardMisalignedMemberAddress(Target, E);
11925 
11926   if (Target->isBooleanType())
11927     DiagnoseIntInBoolContext(S, E);
11928 
11929   if (!Source->isIntegerType() || !Target->isIntegerType())
11930     return;
11931 
11932   // TODO: remove this early return once the false positives for constant->bool
11933   // in templates, macros, etc, are reduced or removed.
11934   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
11935     return;
11936 
11937   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
11938       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
11939     return adornObjCBoolConversionDiagWithTernaryFixit(
11940         S, E,
11941         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
11942             << E->getType());
11943   }
11944 
11945   IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated());
11946   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
11947 
11948   if (SourceRange.Width > TargetRange.Width) {
11949     // If the source is a constant, use a default-on diagnostic.
11950     // TODO: this should happen for bitfield stores, too.
11951     Expr::EvalResult Result;
11952     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
11953                          S.isConstantEvaluated())) {
11954       llvm::APSInt Value(32);
11955       Value = Result.Val.getInt();
11956 
11957       if (S.SourceMgr.isInSystemMacro(CC))
11958         return;
11959 
11960       std::string PrettySourceValue = Value.toString(10);
11961       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11962 
11963       S.DiagRuntimeBehavior(
11964           E->getExprLoc(), E,
11965           S.PDiag(diag::warn_impcast_integer_precision_constant)
11966               << PrettySourceValue << PrettyTargetValue << E->getType() << T
11967               << E->getSourceRange() << clang::SourceRange(CC));
11968       return;
11969     }
11970 
11971     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
11972     if (S.SourceMgr.isInSystemMacro(CC))
11973       return;
11974 
11975     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
11976       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
11977                              /* pruneControlFlow */ true);
11978     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
11979   }
11980 
11981   if (TargetRange.Width > SourceRange.Width) {
11982     if (auto *UO = dyn_cast<UnaryOperator>(E))
11983       if (UO->getOpcode() == UO_Minus)
11984         if (Source->isUnsignedIntegerType()) {
11985           if (Target->isUnsignedIntegerType())
11986             return DiagnoseImpCast(S, E, T, CC,
11987                                    diag::warn_impcast_high_order_zero_bits);
11988           if (Target->isSignedIntegerType())
11989             return DiagnoseImpCast(S, E, T, CC,
11990                                    diag::warn_impcast_nonnegative_result);
11991         }
11992   }
11993 
11994   if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative &&
11995       SourceRange.NonNegative && Source->isSignedIntegerType()) {
11996     // Warn when doing a signed to signed conversion, warn if the positive
11997     // source value is exactly the width of the target type, which will
11998     // cause a negative value to be stored.
11999 
12000     Expr::EvalResult Result;
12001     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12002         !S.SourceMgr.isInSystemMacro(CC)) {
12003       llvm::APSInt Value = Result.Val.getInt();
12004       if (isSameWidthConstantConversion(S, E, T, CC)) {
12005         std::string PrettySourceValue = Value.toString(10);
12006         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12007 
12008         S.DiagRuntimeBehavior(
12009             E->getExprLoc(), E,
12010             S.PDiag(diag::warn_impcast_integer_precision_constant)
12011                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12012                 << E->getSourceRange() << clang::SourceRange(CC));
12013         return;
12014       }
12015     }
12016 
12017     // Fall through for non-constants to give a sign conversion warning.
12018   }
12019 
12020   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
12021       (!TargetRange.NonNegative && SourceRange.NonNegative &&
12022        SourceRange.Width == TargetRange.Width)) {
12023     if (S.SourceMgr.isInSystemMacro(CC))
12024       return;
12025 
12026     unsigned DiagID = diag::warn_impcast_integer_sign;
12027 
12028     // Traditionally, gcc has warned about this under -Wsign-compare.
12029     // We also want to warn about it in -Wconversion.
12030     // So if -Wconversion is off, use a completely identical diagnostic
12031     // in the sign-compare group.
12032     // The conditional-checking code will
12033     if (ICContext) {
12034       DiagID = diag::warn_impcast_integer_sign_conditional;
12035       *ICContext = true;
12036     }
12037 
12038     return DiagnoseImpCast(S, E, T, CC, DiagID);
12039   }
12040 
12041   // Diagnose conversions between different enumeration types.
12042   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12043   // type, to give us better diagnostics.
12044   QualType SourceType = E->getType();
12045   if (!S.getLangOpts().CPlusPlus) {
12046     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12047       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12048         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12049         SourceType = S.Context.getTypeDeclType(Enum);
12050         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12051       }
12052   }
12053 
12054   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12055     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12056       if (SourceEnum->getDecl()->hasNameForLinkage() &&
12057           TargetEnum->getDecl()->hasNameForLinkage() &&
12058           SourceEnum != TargetEnum) {
12059         if (S.SourceMgr.isInSystemMacro(CC))
12060           return;
12061 
12062         return DiagnoseImpCast(S, E, SourceType, T, CC,
12063                                diag::warn_impcast_different_enum_types);
12064       }
12065 }
12066 
12067 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
12068                                      SourceLocation CC, QualType T);
12069 
12070 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
12071                                     SourceLocation CC, bool &ICContext) {
12072   E = E->IgnoreParenImpCasts();
12073 
12074   if (isa<ConditionalOperator>(E))
12075     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
12076 
12077   AnalyzeImplicitConversions(S, E, CC);
12078   if (E->getType() != T)
12079     return CheckImplicitConversion(S, E, T, CC, &ICContext);
12080 }
12081 
12082 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
12083                                      SourceLocation CC, QualType T) {
12084   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
12085 
12086   bool Suspicious = false;
12087   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
12088   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
12089 
12090   if (T->isBooleanType())
12091     DiagnoseIntInBoolContext(S, E);
12092 
12093   // If -Wconversion would have warned about either of the candidates
12094   // for a signedness conversion to the context type...
12095   if (!Suspicious) return;
12096 
12097   // ...but it's currently ignored...
12098   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
12099     return;
12100 
12101   // ...then check whether it would have warned about either of the
12102   // candidates for a signedness conversion to the condition type.
12103   if (E->getType() == T) return;
12104 
12105   Suspicious = false;
12106   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
12107                           E->getType(), CC, &Suspicious);
12108   if (!Suspicious)
12109     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
12110                             E->getType(), CC, &Suspicious);
12111 }
12112 
12113 /// Check conversion of given expression to boolean.
12114 /// Input argument E is a logical expression.
12115 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
12116   if (S.getLangOpts().Bool)
12117     return;
12118   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
12119     return;
12120   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
12121 }
12122 
12123 /// AnalyzeImplicitConversions - Find and report any interesting
12124 /// implicit conversions in the given expression.  There are a couple
12125 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
12126 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
12127                                        bool IsListInit/*= false*/) {
12128   QualType T = OrigE->getType();
12129   Expr *E = OrigE->IgnoreParenImpCasts();
12130 
12131   // Propagate whether we are in a C++ list initialization expression.
12132   // If so, we do not issue warnings for implicit int-float conversion
12133   // precision loss, because C++11 narrowing already handles it.
12134   IsListInit =
12135       IsListInit || (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
12136 
12137   if (E->isTypeDependent() || E->isValueDependent())
12138     return;
12139 
12140   if (const auto *UO = dyn_cast<UnaryOperator>(E))
12141     if (UO->getOpcode() == UO_Not &&
12142         UO->getSubExpr()->isKnownToHaveBooleanValue())
12143       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
12144           << OrigE->getSourceRange() << T->isBooleanType()
12145           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
12146 
12147   // For conditional operators, we analyze the arguments as if they
12148   // were being fed directly into the output.
12149   if (isa<ConditionalOperator>(E)) {
12150     ConditionalOperator *CO = cast<ConditionalOperator>(E);
12151     CheckConditionalOperator(S, CO, CC, T);
12152     return;
12153   }
12154 
12155   // Check implicit argument conversions for function calls.
12156   if (CallExpr *Call = dyn_cast<CallExpr>(E))
12157     CheckImplicitArgumentConversions(S, Call, CC);
12158 
12159   // Go ahead and check any implicit conversions we might have skipped.
12160   // The non-canonical typecheck is just an optimization;
12161   // CheckImplicitConversion will filter out dead implicit conversions.
12162   if (E->getType() != T)
12163     CheckImplicitConversion(S, E, T, CC, nullptr, IsListInit);
12164 
12165   // Now continue drilling into this expression.
12166 
12167   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
12168     // The bound subexpressions in a PseudoObjectExpr are not reachable
12169     // as transitive children.
12170     // FIXME: Use a more uniform representation for this.
12171     for (auto *SE : POE->semantics())
12172       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
12173         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC, IsListInit);
12174   }
12175 
12176   // Skip past explicit casts.
12177   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
12178     E = CE->getSubExpr()->IgnoreParenImpCasts();
12179     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
12180       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12181     return AnalyzeImplicitConversions(S, E, CC, IsListInit);
12182   }
12183 
12184   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12185     // Do a somewhat different check with comparison operators.
12186     if (BO->isComparisonOp())
12187       return AnalyzeComparison(S, BO);
12188 
12189     // And with simple assignments.
12190     if (BO->getOpcode() == BO_Assign)
12191       return AnalyzeAssignment(S, BO);
12192     // And with compound assignments.
12193     if (BO->isAssignmentOp())
12194       return AnalyzeCompoundAssignment(S, BO);
12195   }
12196 
12197   // These break the otherwise-useful invariant below.  Fortunately,
12198   // we don't really need to recurse into them, because any internal
12199   // expressions should have been analyzed already when they were
12200   // built into statements.
12201   if (isa<StmtExpr>(E)) return;
12202 
12203   // Don't descend into unevaluated contexts.
12204   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
12205 
12206   // Now just recurse over the expression's children.
12207   CC = E->getExprLoc();
12208   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
12209   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
12210   for (Stmt *SubStmt : E->children()) {
12211     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
12212     if (!ChildExpr)
12213       continue;
12214 
12215     if (IsLogicalAndOperator &&
12216         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
12217       // Ignore checking string literals that are in logical and operators.
12218       // This is a common pattern for asserts.
12219       continue;
12220     AnalyzeImplicitConversions(S, ChildExpr, CC, IsListInit);
12221   }
12222 
12223   if (BO && BO->isLogicalOp()) {
12224     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
12225     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12226       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12227 
12228     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
12229     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12230       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12231   }
12232 
12233   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
12234     if (U->getOpcode() == UO_LNot) {
12235       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
12236     } else if (U->getOpcode() != UO_AddrOf) {
12237       if (U->getSubExpr()->getType()->isAtomicType())
12238         S.Diag(U->getSubExpr()->getBeginLoc(),
12239                diag::warn_atomic_implicit_seq_cst);
12240     }
12241   }
12242 }
12243 
12244 /// Diagnose integer type and any valid implicit conversion to it.
12245 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
12246   // Taking into account implicit conversions,
12247   // allow any integer.
12248   if (!E->getType()->isIntegerType()) {
12249     S.Diag(E->getBeginLoc(),
12250            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
12251     return true;
12252   }
12253   // Potentially emit standard warnings for implicit conversions if enabled
12254   // using -Wconversion.
12255   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
12256   return false;
12257 }
12258 
12259 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
12260 // Returns true when emitting a warning about taking the address of a reference.
12261 static bool CheckForReference(Sema &SemaRef, const Expr *E,
12262                               const PartialDiagnostic &PD) {
12263   E = E->IgnoreParenImpCasts();
12264 
12265   const FunctionDecl *FD = nullptr;
12266 
12267   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12268     if (!DRE->getDecl()->getType()->isReferenceType())
12269       return false;
12270   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12271     if (!M->getMemberDecl()->getType()->isReferenceType())
12272       return false;
12273   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
12274     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
12275       return false;
12276     FD = Call->getDirectCallee();
12277   } else {
12278     return false;
12279   }
12280 
12281   SemaRef.Diag(E->getExprLoc(), PD);
12282 
12283   // If possible, point to location of function.
12284   if (FD) {
12285     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
12286   }
12287 
12288   return true;
12289 }
12290 
12291 // Returns true if the SourceLocation is expanded from any macro body.
12292 // Returns false if the SourceLocation is invalid, is from not in a macro
12293 // expansion, or is from expanded from a top-level macro argument.
12294 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
12295   if (Loc.isInvalid())
12296     return false;
12297 
12298   while (Loc.isMacroID()) {
12299     if (SM.isMacroBodyExpansion(Loc))
12300       return true;
12301     Loc = SM.getImmediateMacroCallerLoc(Loc);
12302   }
12303 
12304   return false;
12305 }
12306 
12307 /// Diagnose pointers that are always non-null.
12308 /// \param E the expression containing the pointer
12309 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
12310 /// compared to a null pointer
12311 /// \param IsEqual True when the comparison is equal to a null pointer
12312 /// \param Range Extra SourceRange to highlight in the diagnostic
12313 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
12314                                         Expr::NullPointerConstantKind NullKind,
12315                                         bool IsEqual, SourceRange Range) {
12316   if (!E)
12317     return;
12318 
12319   // Don't warn inside macros.
12320   if (E->getExprLoc().isMacroID()) {
12321     const SourceManager &SM = getSourceManager();
12322     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
12323         IsInAnyMacroBody(SM, Range.getBegin()))
12324       return;
12325   }
12326   E = E->IgnoreImpCasts();
12327 
12328   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
12329 
12330   if (isa<CXXThisExpr>(E)) {
12331     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
12332                                 : diag::warn_this_bool_conversion;
12333     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
12334     return;
12335   }
12336 
12337   bool IsAddressOf = false;
12338 
12339   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12340     if (UO->getOpcode() != UO_AddrOf)
12341       return;
12342     IsAddressOf = true;
12343     E = UO->getSubExpr();
12344   }
12345 
12346   if (IsAddressOf) {
12347     unsigned DiagID = IsCompare
12348                           ? diag::warn_address_of_reference_null_compare
12349                           : diag::warn_address_of_reference_bool_conversion;
12350     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
12351                                          << IsEqual;
12352     if (CheckForReference(*this, E, PD)) {
12353       return;
12354     }
12355   }
12356 
12357   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
12358     bool IsParam = isa<NonNullAttr>(NonnullAttr);
12359     std::string Str;
12360     llvm::raw_string_ostream S(Str);
12361     E->printPretty(S, nullptr, getPrintingPolicy());
12362     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
12363                                 : diag::warn_cast_nonnull_to_bool;
12364     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
12365       << E->getSourceRange() << Range << IsEqual;
12366     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
12367   };
12368 
12369   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
12370   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
12371     if (auto *Callee = Call->getDirectCallee()) {
12372       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
12373         ComplainAboutNonnullParamOrCall(A);
12374         return;
12375       }
12376     }
12377   }
12378 
12379   // Expect to find a single Decl.  Skip anything more complicated.
12380   ValueDecl *D = nullptr;
12381   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
12382     D = R->getDecl();
12383   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12384     D = M->getMemberDecl();
12385   }
12386 
12387   // Weak Decls can be null.
12388   if (!D || D->isWeak())
12389     return;
12390 
12391   // Check for parameter decl with nonnull attribute
12392   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
12393     if (getCurFunction() &&
12394         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
12395       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
12396         ComplainAboutNonnullParamOrCall(A);
12397         return;
12398       }
12399 
12400       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
12401         // Skip function template not specialized yet.
12402         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
12403           return;
12404         auto ParamIter = llvm::find(FD->parameters(), PV);
12405         assert(ParamIter != FD->param_end());
12406         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
12407 
12408         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
12409           if (!NonNull->args_size()) {
12410               ComplainAboutNonnullParamOrCall(NonNull);
12411               return;
12412           }
12413 
12414           for (const ParamIdx &ArgNo : NonNull->args()) {
12415             if (ArgNo.getASTIndex() == ParamNo) {
12416               ComplainAboutNonnullParamOrCall(NonNull);
12417               return;
12418             }
12419           }
12420         }
12421       }
12422     }
12423   }
12424 
12425   QualType T = D->getType();
12426   const bool IsArray = T->isArrayType();
12427   const bool IsFunction = T->isFunctionType();
12428 
12429   // Address of function is used to silence the function warning.
12430   if (IsAddressOf && IsFunction) {
12431     return;
12432   }
12433 
12434   // Found nothing.
12435   if (!IsAddressOf && !IsFunction && !IsArray)
12436     return;
12437 
12438   // Pretty print the expression for the diagnostic.
12439   std::string Str;
12440   llvm::raw_string_ostream S(Str);
12441   E->printPretty(S, nullptr, getPrintingPolicy());
12442 
12443   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
12444                               : diag::warn_impcast_pointer_to_bool;
12445   enum {
12446     AddressOf,
12447     FunctionPointer,
12448     ArrayPointer
12449   } DiagType;
12450   if (IsAddressOf)
12451     DiagType = AddressOf;
12452   else if (IsFunction)
12453     DiagType = FunctionPointer;
12454   else if (IsArray)
12455     DiagType = ArrayPointer;
12456   else
12457     llvm_unreachable("Could not determine diagnostic.");
12458   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12459                                 << Range << IsEqual;
12460 
12461   if (!IsFunction)
12462     return;
12463 
12464   // Suggest '&' to silence the function warning.
12465   Diag(E->getExprLoc(), diag::note_function_warning_silence)
12466       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12467 
12468   // Check to see if '()' fixit should be emitted.
12469   QualType ReturnType;
12470   UnresolvedSet<4> NonTemplateOverloads;
12471   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12472   if (ReturnType.isNull())
12473     return;
12474 
12475   if (IsCompare) {
12476     // There are two cases here.  If there is null constant, the only suggest
12477     // for a pointer return type.  If the null is 0, then suggest if the return
12478     // type is a pointer or an integer type.
12479     if (!ReturnType->isPointerType()) {
12480       if (NullKind == Expr::NPCK_ZeroExpression ||
12481           NullKind == Expr::NPCK_ZeroLiteral) {
12482         if (!ReturnType->isIntegerType())
12483           return;
12484       } else {
12485         return;
12486       }
12487     }
12488   } else { // !IsCompare
12489     // For function to bool, only suggest if the function pointer has bool
12490     // return type.
12491     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12492       return;
12493   }
12494   Diag(E->getExprLoc(), diag::note_function_to_function_call)
12495       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12496 }
12497 
12498 /// Diagnoses "dangerous" implicit conversions within the given
12499 /// expression (which is a full expression).  Implements -Wconversion
12500 /// and -Wsign-compare.
12501 ///
12502 /// \param CC the "context" location of the implicit conversion, i.e.
12503 ///   the most location of the syntactic entity requiring the implicit
12504 ///   conversion
12505 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12506   // Don't diagnose in unevaluated contexts.
12507   if (isUnevaluatedContext())
12508     return;
12509 
12510   // Don't diagnose for value- or type-dependent expressions.
12511   if (E->isTypeDependent() || E->isValueDependent())
12512     return;
12513 
12514   // Check for array bounds violations in cases where the check isn't triggered
12515   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12516   // ArraySubscriptExpr is on the RHS of a variable initialization.
12517   CheckArrayAccess(E);
12518 
12519   // This is not the right CC for (e.g.) a variable initialization.
12520   AnalyzeImplicitConversions(*this, E, CC);
12521 }
12522 
12523 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
12524 /// Input argument E is a logical expression.
12525 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12526   ::CheckBoolLikeConversion(*this, E, CC);
12527 }
12528 
12529 /// Diagnose when expression is an integer constant expression and its evaluation
12530 /// results in integer overflow
12531 void Sema::CheckForIntOverflow (Expr *E) {
12532   // Use a work list to deal with nested struct initializers.
12533   SmallVector<Expr *, 2> Exprs(1, E);
12534 
12535   do {
12536     Expr *OriginalE = Exprs.pop_back_val();
12537     Expr *E = OriginalE->IgnoreParenCasts();
12538 
12539     if (isa<BinaryOperator>(E)) {
12540       E->EvaluateForOverflow(Context);
12541       continue;
12542     }
12543 
12544     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
12545       Exprs.append(InitList->inits().begin(), InitList->inits().end());
12546     else if (isa<ObjCBoxedExpr>(OriginalE))
12547       E->EvaluateForOverflow(Context);
12548     else if (auto Call = dyn_cast<CallExpr>(E))
12549       Exprs.append(Call->arg_begin(), Call->arg_end());
12550     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
12551       Exprs.append(Message->arg_begin(), Message->arg_end());
12552   } while (!Exprs.empty());
12553 }
12554 
12555 namespace {
12556 
12557 /// Visitor for expressions which looks for unsequenced operations on the
12558 /// same object.
12559 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12560   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12561 
12562   /// A tree of sequenced regions within an expression. Two regions are
12563   /// unsequenced if one is an ancestor or a descendent of the other. When we
12564   /// finish processing an expression with sequencing, such as a comma
12565   /// expression, we fold its tree nodes into its parent, since they are
12566   /// unsequenced with respect to nodes we will visit later.
12567   class SequenceTree {
12568     struct Value {
12569       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12570       unsigned Parent : 31;
12571       unsigned Merged : 1;
12572     };
12573     SmallVector<Value, 8> Values;
12574 
12575   public:
12576     /// A region within an expression which may be sequenced with respect
12577     /// to some other region.
12578     class Seq {
12579       friend class SequenceTree;
12580 
12581       unsigned Index;
12582 
12583       explicit Seq(unsigned N) : Index(N) {}
12584 
12585     public:
12586       Seq() : Index(0) {}
12587     };
12588 
12589     SequenceTree() { Values.push_back(Value(0)); }
12590     Seq root() const { return Seq(0); }
12591 
12592     /// Create a new sequence of operations, which is an unsequenced
12593     /// subset of \p Parent. This sequence of operations is sequenced with
12594     /// respect to other children of \p Parent.
12595     Seq allocate(Seq Parent) {
12596       Values.push_back(Value(Parent.Index));
12597       return Seq(Values.size() - 1);
12598     }
12599 
12600     /// Merge a sequence of operations into its parent.
12601     void merge(Seq S) {
12602       Values[S.Index].Merged = true;
12603     }
12604 
12605     /// Determine whether two operations are unsequenced. This operation
12606     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
12607     /// should have been merged into its parent as appropriate.
12608     bool isUnsequenced(Seq Cur, Seq Old) {
12609       unsigned C = representative(Cur.Index);
12610       unsigned Target = representative(Old.Index);
12611       while (C >= Target) {
12612         if (C == Target)
12613           return true;
12614         C = Values[C].Parent;
12615       }
12616       return false;
12617     }
12618 
12619   private:
12620     /// Pick a representative for a sequence.
12621     unsigned representative(unsigned K) {
12622       if (Values[K].Merged)
12623         // Perform path compression as we go.
12624         return Values[K].Parent = representative(Values[K].Parent);
12625       return K;
12626     }
12627   };
12628 
12629   /// An object for which we can track unsequenced uses.
12630   using Object = const NamedDecl *;
12631 
12632   /// Different flavors of object usage which we track. We only track the
12633   /// least-sequenced usage of each kind.
12634   enum UsageKind {
12635     /// A read of an object. Multiple unsequenced reads are OK.
12636     UK_Use,
12637 
12638     /// A modification of an object which is sequenced before the value
12639     /// computation of the expression, such as ++n in C++.
12640     UK_ModAsValue,
12641 
12642     /// A modification of an object which is not sequenced before the value
12643     /// computation of the expression, such as n++.
12644     UK_ModAsSideEffect,
12645 
12646     UK_Count = UK_ModAsSideEffect + 1
12647   };
12648 
12649   /// Bundle together a sequencing region and the expression corresponding
12650   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
12651   struct Usage {
12652     const Expr *UsageExpr;
12653     SequenceTree::Seq Seq;
12654 
12655     Usage() : UsageExpr(nullptr), Seq() {}
12656   };
12657 
12658   struct UsageInfo {
12659     Usage Uses[UK_Count];
12660 
12661     /// Have we issued a diagnostic for this object already?
12662     bool Diagnosed;
12663 
12664     UsageInfo() : Uses(), Diagnosed(false) {}
12665   };
12666   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
12667 
12668   Sema &SemaRef;
12669 
12670   /// Sequenced regions within the expression.
12671   SequenceTree Tree;
12672 
12673   /// Declaration modifications and references which we have seen.
12674   UsageInfoMap UsageMap;
12675 
12676   /// The region we are currently within.
12677   SequenceTree::Seq Region;
12678 
12679   /// Filled in with declarations which were modified as a side-effect
12680   /// (that is, post-increment operations).
12681   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
12682 
12683   /// Expressions to check later. We defer checking these to reduce
12684   /// stack usage.
12685   SmallVectorImpl<const Expr *> &WorkList;
12686 
12687   /// RAII object wrapping the visitation of a sequenced subexpression of an
12688   /// expression. At the end of this process, the side-effects of the evaluation
12689   /// become sequenced with respect to the value computation of the result, so
12690   /// we downgrade any UK_ModAsSideEffect within the evaluation to
12691   /// UK_ModAsValue.
12692   struct SequencedSubexpression {
12693     SequencedSubexpression(SequenceChecker &Self)
12694       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
12695       Self.ModAsSideEffect = &ModAsSideEffect;
12696     }
12697 
12698     ~SequencedSubexpression() {
12699       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
12700         // Add a new usage with usage kind UK_ModAsValue, and then restore
12701         // the previous usage with UK_ModAsSideEffect (thus clearing it if
12702         // the previous one was empty).
12703         UsageInfo &UI = Self.UsageMap[M.first];
12704         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
12705         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
12706         SideEffectUsage = M.second;
12707       }
12708       Self.ModAsSideEffect = OldModAsSideEffect;
12709     }
12710 
12711     SequenceChecker &Self;
12712     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
12713     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
12714   };
12715 
12716   /// RAII object wrapping the visitation of a subexpression which we might
12717   /// choose to evaluate as a constant. If any subexpression is evaluated and
12718   /// found to be non-constant, this allows us to suppress the evaluation of
12719   /// the outer expression.
12720   class EvaluationTracker {
12721   public:
12722     EvaluationTracker(SequenceChecker &Self)
12723         : Self(Self), Prev(Self.EvalTracker) {
12724       Self.EvalTracker = this;
12725     }
12726 
12727     ~EvaluationTracker() {
12728       Self.EvalTracker = Prev;
12729       if (Prev)
12730         Prev->EvalOK &= EvalOK;
12731     }
12732 
12733     bool evaluate(const Expr *E, bool &Result) {
12734       if (!EvalOK || E->isValueDependent())
12735         return false;
12736       EvalOK = E->EvaluateAsBooleanCondition(
12737           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
12738       return EvalOK;
12739     }
12740 
12741   private:
12742     SequenceChecker &Self;
12743     EvaluationTracker *Prev;
12744     bool EvalOK = true;
12745   } *EvalTracker = nullptr;
12746 
12747   /// Find the object which is produced by the specified expression,
12748   /// if any.
12749   Object getObject(const Expr *E, bool Mod) const {
12750     E = E->IgnoreParenCasts();
12751     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12752       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
12753         return getObject(UO->getSubExpr(), Mod);
12754     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12755       if (BO->getOpcode() == BO_Comma)
12756         return getObject(BO->getRHS(), Mod);
12757       if (Mod && BO->isAssignmentOp())
12758         return getObject(BO->getLHS(), Mod);
12759     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12760       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
12761       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
12762         return ME->getMemberDecl();
12763     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12764       // FIXME: If this is a reference, map through to its value.
12765       return DRE->getDecl();
12766     return nullptr;
12767   }
12768 
12769   /// Note that an object \p O was modified or used by an expression
12770   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
12771   /// the object \p O as obtained via the \p UsageMap.
12772   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
12773     // Get the old usage for the given object and usage kind.
12774     Usage &U = UI.Uses[UK];
12775     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
12776       // If we have a modification as side effect and are in a sequenced
12777       // subexpression, save the old Usage so that we can restore it later
12778       // in SequencedSubexpression::~SequencedSubexpression.
12779       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
12780         ModAsSideEffect->push_back(std::make_pair(O, U));
12781       // Then record the new usage with the current sequencing region.
12782       U.UsageExpr = UsageExpr;
12783       U.Seq = Region;
12784     }
12785   }
12786 
12787   /// Check whether a modification or use of an object \p O in an expression
12788   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
12789   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
12790   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
12791   /// usage and false we are checking for a mod-use unsequenced usage.
12792   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
12793                   UsageKind OtherKind, bool IsModMod) {
12794     if (UI.Diagnosed)
12795       return;
12796 
12797     const Usage &U = UI.Uses[OtherKind];
12798     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
12799       return;
12800 
12801     const Expr *Mod = U.UsageExpr;
12802     const Expr *ModOrUse = UsageExpr;
12803     if (OtherKind == UK_Use)
12804       std::swap(Mod, ModOrUse);
12805 
12806     SemaRef.DiagRuntimeBehavior(
12807         Mod->getExprLoc(), {Mod, ModOrUse},
12808         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
12809                                : diag::warn_unsequenced_mod_use)
12810             << O << SourceRange(ModOrUse->getExprLoc()));
12811     UI.Diagnosed = true;
12812   }
12813 
12814   // A note on note{Pre, Post}{Use, Mod}:
12815   //
12816   // (It helps to follow the algorithm with an expression such as
12817   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
12818   //  operations before C++17 and both are well-defined in C++17).
12819   //
12820   // When visiting a node which uses/modify an object we first call notePreUse
12821   // or notePreMod before visiting its sub-expression(s). At this point the
12822   // children of the current node have not yet been visited and so the eventual
12823   // uses/modifications resulting from the children of the current node have not
12824   // been recorded yet.
12825   //
12826   // We then visit the children of the current node. After that notePostUse or
12827   // notePostMod is called. These will 1) detect an unsequenced modification
12828   // as side effect (as in "k++ + k") and 2) add a new usage with the
12829   // appropriate usage kind.
12830   //
12831   // We also have to be careful that some operation sequences modification as
12832   // side effect as well (for example: || or ,). To account for this we wrap
12833   // the visitation of such a sub-expression (for example: the LHS of || or ,)
12834   // with SequencedSubexpression. SequencedSubexpression is an RAII object
12835   // which record usages which are modifications as side effect, and then
12836   // downgrade them (or more accurately restore the previous usage which was a
12837   // modification as side effect) when exiting the scope of the sequenced
12838   // subexpression.
12839 
12840   void notePreUse(Object O, const Expr *UseExpr) {
12841     UsageInfo &UI = UsageMap[O];
12842     // Uses conflict with other modifications.
12843     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
12844   }
12845 
12846   void notePostUse(Object O, const Expr *UseExpr) {
12847     UsageInfo &UI = UsageMap[O];
12848     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
12849                /*IsModMod=*/false);
12850     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
12851   }
12852 
12853   void notePreMod(Object O, const Expr *ModExpr) {
12854     UsageInfo &UI = UsageMap[O];
12855     // Modifications conflict with other modifications and with uses.
12856     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
12857     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
12858   }
12859 
12860   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
12861     UsageInfo &UI = UsageMap[O];
12862     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
12863                /*IsModMod=*/true);
12864     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
12865   }
12866 
12867 public:
12868   SequenceChecker(Sema &S, const Expr *E,
12869                   SmallVectorImpl<const Expr *> &WorkList)
12870       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
12871     Visit(E);
12872     // Silence a -Wunused-private-field since WorkList is now unused.
12873     // TODO: Evaluate if it can be used, and if not remove it.
12874     (void)this->WorkList;
12875   }
12876 
12877   void VisitStmt(const Stmt *S) {
12878     // Skip all statements which aren't expressions for now.
12879   }
12880 
12881   void VisitExpr(const Expr *E) {
12882     // By default, just recurse to evaluated subexpressions.
12883     Base::VisitStmt(E);
12884   }
12885 
12886   void VisitCastExpr(const CastExpr *E) {
12887     Object O = Object();
12888     if (E->getCastKind() == CK_LValueToRValue)
12889       O = getObject(E->getSubExpr(), false);
12890 
12891     if (O)
12892       notePreUse(O, E);
12893     VisitExpr(E);
12894     if (O)
12895       notePostUse(O, E);
12896   }
12897 
12898   void VisitSequencedExpressions(const Expr *SequencedBefore,
12899                                  const Expr *SequencedAfter) {
12900     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
12901     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
12902     SequenceTree::Seq OldRegion = Region;
12903 
12904     {
12905       SequencedSubexpression SeqBefore(*this);
12906       Region = BeforeRegion;
12907       Visit(SequencedBefore);
12908     }
12909 
12910     Region = AfterRegion;
12911     Visit(SequencedAfter);
12912 
12913     Region = OldRegion;
12914 
12915     Tree.merge(BeforeRegion);
12916     Tree.merge(AfterRegion);
12917   }
12918 
12919   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
12920     // C++17 [expr.sub]p1:
12921     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
12922     //   expression E1 is sequenced before the expression E2.
12923     if (SemaRef.getLangOpts().CPlusPlus17)
12924       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
12925     else {
12926       Visit(ASE->getLHS());
12927       Visit(ASE->getRHS());
12928     }
12929   }
12930 
12931   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
12932   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
12933   void VisitBinPtrMem(const BinaryOperator *BO) {
12934     // C++17 [expr.mptr.oper]p4:
12935     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
12936     //  the expression E1 is sequenced before the expression E2.
12937     if (SemaRef.getLangOpts().CPlusPlus17)
12938       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12939     else {
12940       Visit(BO->getLHS());
12941       Visit(BO->getRHS());
12942     }
12943   }
12944 
12945   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
12946   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
12947   void VisitBinShlShr(const BinaryOperator *BO) {
12948     // C++17 [expr.shift]p4:
12949     //  The expression E1 is sequenced before the expression E2.
12950     if (SemaRef.getLangOpts().CPlusPlus17)
12951       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12952     else {
12953       Visit(BO->getLHS());
12954       Visit(BO->getRHS());
12955     }
12956   }
12957 
12958   void VisitBinComma(const BinaryOperator *BO) {
12959     // C++11 [expr.comma]p1:
12960     //   Every value computation and side effect associated with the left
12961     //   expression is sequenced before every value computation and side
12962     //   effect associated with the right expression.
12963     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12964   }
12965 
12966   void VisitBinAssign(const BinaryOperator *BO) {
12967     SequenceTree::Seq RHSRegion;
12968     SequenceTree::Seq LHSRegion;
12969     if (SemaRef.getLangOpts().CPlusPlus17) {
12970       RHSRegion = Tree.allocate(Region);
12971       LHSRegion = Tree.allocate(Region);
12972     } else {
12973       RHSRegion = Region;
12974       LHSRegion = Region;
12975     }
12976     SequenceTree::Seq OldRegion = Region;
12977 
12978     // C++11 [expr.ass]p1:
12979     //  [...] the assignment is sequenced after the value computation
12980     //  of the right and left operands, [...]
12981     //
12982     // so check it before inspecting the operands and update the
12983     // map afterwards.
12984     Object O = getObject(BO->getLHS(), /*Mod=*/true);
12985     if (O)
12986       notePreMod(O, BO);
12987 
12988     if (SemaRef.getLangOpts().CPlusPlus17) {
12989       // C++17 [expr.ass]p1:
12990       //  [...] The right operand is sequenced before the left operand. [...]
12991       {
12992         SequencedSubexpression SeqBefore(*this);
12993         Region = RHSRegion;
12994         Visit(BO->getRHS());
12995       }
12996 
12997       Region = LHSRegion;
12998       Visit(BO->getLHS());
12999 
13000       if (O && isa<CompoundAssignOperator>(BO))
13001         notePostUse(O, BO);
13002 
13003     } else {
13004       // C++11 does not specify any sequencing between the LHS and RHS.
13005       Region = LHSRegion;
13006       Visit(BO->getLHS());
13007 
13008       if (O && isa<CompoundAssignOperator>(BO))
13009         notePostUse(O, BO);
13010 
13011       Region = RHSRegion;
13012       Visit(BO->getRHS());
13013     }
13014 
13015     // C++11 [expr.ass]p1:
13016     //  the assignment is sequenced [...] before the value computation of the
13017     //  assignment expression.
13018     // C11 6.5.16/3 has no such rule.
13019     Region = OldRegion;
13020     if (O)
13021       notePostMod(O, BO,
13022                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13023                                                   : UK_ModAsSideEffect);
13024     if (SemaRef.getLangOpts().CPlusPlus17) {
13025       Tree.merge(RHSRegion);
13026       Tree.merge(LHSRegion);
13027     }
13028   }
13029 
13030   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13031     VisitBinAssign(CAO);
13032   }
13033 
13034   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13035   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13036   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
13037     Object O = getObject(UO->getSubExpr(), true);
13038     if (!O)
13039       return VisitExpr(UO);
13040 
13041     notePreMod(O, UO);
13042     Visit(UO->getSubExpr());
13043     // C++11 [expr.pre.incr]p1:
13044     //   the expression ++x is equivalent to x+=1
13045     notePostMod(O, UO,
13046                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13047                                                 : UK_ModAsSideEffect);
13048   }
13049 
13050   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13051   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13052   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
13053     Object O = getObject(UO->getSubExpr(), true);
13054     if (!O)
13055       return VisitExpr(UO);
13056 
13057     notePreMod(O, UO);
13058     Visit(UO->getSubExpr());
13059     notePostMod(O, UO, UK_ModAsSideEffect);
13060   }
13061 
13062   void VisitBinLOr(const BinaryOperator *BO) {
13063     // C++11 [expr.log.or]p2:
13064     //  If the second expression is evaluated, every value computation and
13065     //  side effect associated with the first expression is sequenced before
13066     //  every value computation and side effect associated with the
13067     //  second expression.
13068     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13069     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13070     SequenceTree::Seq OldRegion = Region;
13071 
13072     EvaluationTracker Eval(*this);
13073     {
13074       SequencedSubexpression Sequenced(*this);
13075       Region = LHSRegion;
13076       Visit(BO->getLHS());
13077     }
13078 
13079     // C++11 [expr.log.or]p1:
13080     //  [...] the second operand is not evaluated if the first operand
13081     //  evaluates to true.
13082     bool EvalResult = false;
13083     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13084     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
13085     if (ShouldVisitRHS) {
13086       Region = RHSRegion;
13087       Visit(BO->getRHS());
13088     }
13089 
13090     Region = OldRegion;
13091     Tree.merge(LHSRegion);
13092     Tree.merge(RHSRegion);
13093   }
13094 
13095   void VisitBinLAnd(const BinaryOperator *BO) {
13096     // C++11 [expr.log.and]p2:
13097     //  If the second expression is evaluated, every value computation and
13098     //  side effect associated with the first expression is sequenced before
13099     //  every value computation and side effect associated with the
13100     //  second expression.
13101     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13102     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13103     SequenceTree::Seq OldRegion = Region;
13104 
13105     EvaluationTracker Eval(*this);
13106     {
13107       SequencedSubexpression Sequenced(*this);
13108       Region = LHSRegion;
13109       Visit(BO->getLHS());
13110     }
13111 
13112     // C++11 [expr.log.and]p1:
13113     //  [...] the second operand is not evaluated if the first operand is false.
13114     bool EvalResult = false;
13115     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13116     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
13117     if (ShouldVisitRHS) {
13118       Region = RHSRegion;
13119       Visit(BO->getRHS());
13120     }
13121 
13122     Region = OldRegion;
13123     Tree.merge(LHSRegion);
13124     Tree.merge(RHSRegion);
13125   }
13126 
13127   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
13128     // C++11 [expr.cond]p1:
13129     //  [...] Every value computation and side effect associated with the first
13130     //  expression is sequenced before every value computation and side effect
13131     //  associated with the second or third expression.
13132     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
13133 
13134     // No sequencing is specified between the true and false expression.
13135     // However since exactly one of both is going to be evaluated we can
13136     // consider them to be sequenced. This is needed to avoid warning on
13137     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
13138     // both the true and false expressions because we can't evaluate x.
13139     // This will still allow us to detect an expression like (pre C++17)
13140     // "(x ? y += 1 : y += 2) = y".
13141     //
13142     // We don't wrap the visitation of the true and false expression with
13143     // SequencedSubexpression because we don't want to downgrade modifications
13144     // as side effect in the true and false expressions after the visition
13145     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
13146     // not warn between the two "y++", but we should warn between the "y++"
13147     // and the "y".
13148     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
13149     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
13150     SequenceTree::Seq OldRegion = Region;
13151 
13152     EvaluationTracker Eval(*this);
13153     {
13154       SequencedSubexpression Sequenced(*this);
13155       Region = ConditionRegion;
13156       Visit(CO->getCond());
13157     }
13158 
13159     // C++11 [expr.cond]p1:
13160     // [...] The first expression is contextually converted to bool (Clause 4).
13161     // It is evaluated and if it is true, the result of the conditional
13162     // expression is the value of the second expression, otherwise that of the
13163     // third expression. Only one of the second and third expressions is
13164     // evaluated. [...]
13165     bool EvalResult = false;
13166     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
13167     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
13168     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
13169     if (ShouldVisitTrueExpr) {
13170       Region = TrueRegion;
13171       Visit(CO->getTrueExpr());
13172     }
13173     if (ShouldVisitFalseExpr) {
13174       Region = FalseRegion;
13175       Visit(CO->getFalseExpr());
13176     }
13177 
13178     Region = OldRegion;
13179     Tree.merge(ConditionRegion);
13180     Tree.merge(TrueRegion);
13181     Tree.merge(FalseRegion);
13182   }
13183 
13184   void VisitCallExpr(const CallExpr *CE) {
13185     // C++11 [intro.execution]p15:
13186     //   When calling a function [...], every value computation and side effect
13187     //   associated with any argument expression, or with the postfix expression
13188     //   designating the called function, is sequenced before execution of every
13189     //   expression or statement in the body of the function [and thus before
13190     //   the value computation of its result].
13191     SequencedSubexpression Sequenced(*this);
13192     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(),
13193                                         [&] { Base::VisitCallExpr(CE); });
13194 
13195     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
13196   }
13197 
13198   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
13199     // This is a call, so all subexpressions are sequenced before the result.
13200     SequencedSubexpression Sequenced(*this);
13201 
13202     if (!CCE->isListInitialization())
13203       return VisitExpr(CCE);
13204 
13205     // In C++11, list initializations are sequenced.
13206     SmallVector<SequenceTree::Seq, 32> Elts;
13207     SequenceTree::Seq Parent = Region;
13208     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
13209                                               E = CCE->arg_end();
13210          I != E; ++I) {
13211       Region = Tree.allocate(Parent);
13212       Elts.push_back(Region);
13213       Visit(*I);
13214     }
13215 
13216     // Forget that the initializers are sequenced.
13217     Region = Parent;
13218     for (unsigned I = 0; I < Elts.size(); ++I)
13219       Tree.merge(Elts[I]);
13220   }
13221 
13222   void VisitInitListExpr(const InitListExpr *ILE) {
13223     if (!SemaRef.getLangOpts().CPlusPlus11)
13224       return VisitExpr(ILE);
13225 
13226     // In C++11, list initializations are sequenced.
13227     SmallVector<SequenceTree::Seq, 32> Elts;
13228     SequenceTree::Seq Parent = Region;
13229     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
13230       const Expr *E = ILE->getInit(I);
13231       if (!E)
13232         continue;
13233       Region = Tree.allocate(Parent);
13234       Elts.push_back(Region);
13235       Visit(E);
13236     }
13237 
13238     // Forget that the initializers are sequenced.
13239     Region = Parent;
13240     for (unsigned I = 0; I < Elts.size(); ++I)
13241       Tree.merge(Elts[I]);
13242   }
13243 };
13244 
13245 } // namespace
13246 
13247 void Sema::CheckUnsequencedOperations(const Expr *E) {
13248   SmallVector<const Expr *, 8> WorkList;
13249   WorkList.push_back(E);
13250   while (!WorkList.empty()) {
13251     const Expr *Item = WorkList.pop_back_val();
13252     SequenceChecker(*this, Item, WorkList);
13253   }
13254 }
13255 
13256 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
13257                               bool IsConstexpr) {
13258   llvm::SaveAndRestore<bool> ConstantContext(
13259       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
13260   CheckImplicitConversions(E, CheckLoc);
13261   if (!E->isInstantiationDependent())
13262     CheckUnsequencedOperations(E);
13263   if (!IsConstexpr && !E->isValueDependent())
13264     CheckForIntOverflow(E);
13265   DiagnoseMisalignedMembers();
13266 }
13267 
13268 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13269                                        FieldDecl *BitField,
13270                                        Expr *Init) {
13271   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13272 }
13273 
13274 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13275                                          SourceLocation Loc) {
13276   if (!PType->isVariablyModifiedType())
13277     return;
13278   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13279     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13280     return;
13281   }
13282   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13283     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13284     return;
13285   }
13286   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13287     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13288     return;
13289   }
13290 
13291   const ArrayType *AT = S.Context.getAsArrayType(PType);
13292   if (!AT)
13293     return;
13294 
13295   if (AT->getSizeModifier() != ArrayType::Star) {
13296     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13297     return;
13298   }
13299 
13300   S.Diag(Loc, diag::err_array_star_in_function_definition);
13301 }
13302 
13303 /// CheckParmsForFunctionDef - Check that the parameters of the given
13304 /// function are appropriate for the definition of a function. This
13305 /// takes care of any checks that cannot be performed on the
13306 /// declaration itself, e.g., that the types of each of the function
13307 /// parameters are complete.
13308 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13309                                     bool CheckParameterNames) {
13310   bool HasInvalidParm = false;
13311   for (ParmVarDecl *Param : Parameters) {
13312     // C99 6.7.5.3p4: the parameters in a parameter type list in a
13313     // function declarator that is part of a function definition of
13314     // that function shall not have incomplete type.
13315     //
13316     // This is also C++ [dcl.fct]p6.
13317     if (!Param->isInvalidDecl() &&
13318         RequireCompleteType(Param->getLocation(), Param->getType(),
13319                             diag::err_typecheck_decl_incomplete_type)) {
13320       Param->setInvalidDecl();
13321       HasInvalidParm = true;
13322     }
13323 
13324     // C99 6.9.1p5: If the declarator includes a parameter type list, the
13325     // declaration of each parameter shall include an identifier.
13326     if (CheckParameterNames &&
13327         Param->getIdentifier() == nullptr &&
13328         !Param->isImplicit() &&
13329         !getLangOpts().CPlusPlus)
13330       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
13331 
13332     // C99 6.7.5.3p12:
13333     //   If the function declarator is not part of a definition of that
13334     //   function, parameters may have incomplete type and may use the [*]
13335     //   notation in their sequences of declarator specifiers to specify
13336     //   variable length array types.
13337     QualType PType = Param->getOriginalType();
13338     // FIXME: This diagnostic should point the '[*]' if source-location
13339     // information is added for it.
13340     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13341 
13342     // If the parameter is a c++ class type and it has to be destructed in the
13343     // callee function, declare the destructor so that it can be called by the
13344     // callee function. Do not perform any direct access check on the dtor here.
13345     if (!Param->isInvalidDecl()) {
13346       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13347         if (!ClassDecl->isInvalidDecl() &&
13348             !ClassDecl->hasIrrelevantDestructor() &&
13349             !ClassDecl->isDependentContext() &&
13350             ClassDecl->isParamDestroyedInCallee()) {
13351           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13352           MarkFunctionReferenced(Param->getLocation(), Destructor);
13353           DiagnoseUseOfDecl(Destructor, Param->getLocation());
13354         }
13355       }
13356     }
13357 
13358     // Parameters with the pass_object_size attribute only need to be marked
13359     // constant at function definitions. Because we lack information about
13360     // whether we're on a declaration or definition when we're instantiating the
13361     // attribute, we need to check for constness here.
13362     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13363       if (!Param->getType().isConstQualified())
13364         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13365             << Attr->getSpelling() << 1;
13366 
13367     // Check for parameter names shadowing fields from the class.
13368     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13369       // The owning context for the parameter should be the function, but we
13370       // want to see if this function's declaration context is a record.
13371       DeclContext *DC = Param->getDeclContext();
13372       if (DC && DC->isFunctionOrMethod()) {
13373         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13374           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13375                                      RD, /*DeclIsField*/ false);
13376       }
13377     }
13378   }
13379 
13380   return HasInvalidParm;
13381 }
13382 
13383 /// A helper function to get the alignment of a Decl referred to by DeclRefExpr
13384 /// or MemberExpr.
13385 static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign,
13386                               ASTContext &Context) {
13387   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
13388     return Context.getDeclAlign(DRE->getDecl());
13389 
13390   if (const auto *ME = dyn_cast<MemberExpr>(E))
13391     return Context.getDeclAlign(ME->getMemberDecl());
13392 
13393   return TypeAlign;
13394 }
13395 
13396 /// CheckCastAlign - Implements -Wcast-align, which warns when a
13397 /// pointer cast increases the alignment requirements.
13398 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
13399   // This is actually a lot of work to potentially be doing on every
13400   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
13401   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
13402     return;
13403 
13404   // Ignore dependent types.
13405   if (T->isDependentType() || Op->getType()->isDependentType())
13406     return;
13407 
13408   // Require that the destination be a pointer type.
13409   const PointerType *DestPtr = T->getAs<PointerType>();
13410   if (!DestPtr) return;
13411 
13412   // If the destination has alignment 1, we're done.
13413   QualType DestPointee = DestPtr->getPointeeType();
13414   if (DestPointee->isIncompleteType()) return;
13415   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
13416   if (DestAlign.isOne()) return;
13417 
13418   // Require that the source be a pointer type.
13419   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
13420   if (!SrcPtr) return;
13421   QualType SrcPointee = SrcPtr->getPointeeType();
13422 
13423   // Whitelist casts from cv void*.  We already implicitly
13424   // whitelisted casts to cv void*, since they have alignment 1.
13425   // Also whitelist casts involving incomplete types, which implicitly
13426   // includes 'void'.
13427   if (SrcPointee->isIncompleteType()) return;
13428 
13429   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
13430 
13431   if (auto *CE = dyn_cast<CastExpr>(Op)) {
13432     if (CE->getCastKind() == CK_ArrayToPointerDecay)
13433       SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context);
13434   } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) {
13435     if (UO->getOpcode() == UO_AddrOf)
13436       SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context);
13437   }
13438 
13439   if (SrcAlign >= DestAlign) return;
13440 
13441   Diag(TRange.getBegin(), diag::warn_cast_align)
13442     << Op->getType() << T
13443     << static_cast<unsigned>(SrcAlign.getQuantity())
13444     << static_cast<unsigned>(DestAlign.getQuantity())
13445     << TRange << Op->getSourceRange();
13446 }
13447 
13448 /// Check whether this array fits the idiom of a size-one tail padded
13449 /// array member of a struct.
13450 ///
13451 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
13452 /// commonly used to emulate flexible arrays in C89 code.
13453 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
13454                                     const NamedDecl *ND) {
13455   if (Size != 1 || !ND) return false;
13456 
13457   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
13458   if (!FD) return false;
13459 
13460   // Don't consider sizes resulting from macro expansions or template argument
13461   // substitution to form C89 tail-padded arrays.
13462 
13463   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
13464   while (TInfo) {
13465     TypeLoc TL = TInfo->getTypeLoc();
13466     // Look through typedefs.
13467     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
13468       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
13469       TInfo = TDL->getTypeSourceInfo();
13470       continue;
13471     }
13472     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
13473       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
13474       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
13475         return false;
13476     }
13477     break;
13478   }
13479 
13480   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
13481   if (!RD) return false;
13482   if (RD->isUnion()) return false;
13483   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
13484     if (!CRD->isStandardLayout()) return false;
13485   }
13486 
13487   // See if this is the last field decl in the record.
13488   const Decl *D = FD;
13489   while ((D = D->getNextDeclInContext()))
13490     if (isa<FieldDecl>(D))
13491       return false;
13492   return true;
13493 }
13494 
13495 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
13496                             const ArraySubscriptExpr *ASE,
13497                             bool AllowOnePastEnd, bool IndexNegated) {
13498   // Already diagnosed by the constant evaluator.
13499   if (isConstantEvaluated())
13500     return;
13501 
13502   IndexExpr = IndexExpr->IgnoreParenImpCasts();
13503   if (IndexExpr->isValueDependent())
13504     return;
13505 
13506   const Type *EffectiveType =
13507       BaseExpr->getType()->getPointeeOrArrayElementType();
13508   BaseExpr = BaseExpr->IgnoreParenCasts();
13509   const ConstantArrayType *ArrayTy =
13510       Context.getAsConstantArrayType(BaseExpr->getType());
13511 
13512   if (!ArrayTy)
13513     return;
13514 
13515   const Type *BaseType = ArrayTy->getElementType().getTypePtr();
13516   if (EffectiveType->isDependentType() || BaseType->isDependentType())
13517     return;
13518 
13519   Expr::EvalResult Result;
13520   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
13521     return;
13522 
13523   llvm::APSInt index = Result.Val.getInt();
13524   if (IndexNegated)
13525     index = -index;
13526 
13527   const NamedDecl *ND = nullptr;
13528   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13529     ND = DRE->getDecl();
13530   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
13531     ND = ME->getMemberDecl();
13532 
13533   if (index.isUnsigned() || !index.isNegative()) {
13534     // It is possible that the type of the base expression after
13535     // IgnoreParenCasts is incomplete, even though the type of the base
13536     // expression before IgnoreParenCasts is complete (see PR39746 for an
13537     // example). In this case we have no information about whether the array
13538     // access exceeds the array bounds. However we can still diagnose an array
13539     // access which precedes the array bounds.
13540     if (BaseType->isIncompleteType())
13541       return;
13542 
13543     llvm::APInt size = ArrayTy->getSize();
13544     if (!size.isStrictlyPositive())
13545       return;
13546 
13547     if (BaseType != EffectiveType) {
13548       // Make sure we're comparing apples to apples when comparing index to size
13549       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
13550       uint64_t array_typesize = Context.getTypeSize(BaseType);
13551       // Handle ptrarith_typesize being zero, such as when casting to void*
13552       if (!ptrarith_typesize) ptrarith_typesize = 1;
13553       if (ptrarith_typesize != array_typesize) {
13554         // There's a cast to a different size type involved
13555         uint64_t ratio = array_typesize / ptrarith_typesize;
13556         // TODO: Be smarter about handling cases where array_typesize is not a
13557         // multiple of ptrarith_typesize
13558         if (ptrarith_typesize * ratio == array_typesize)
13559           size *= llvm::APInt(size.getBitWidth(), ratio);
13560       }
13561     }
13562 
13563     if (size.getBitWidth() > index.getBitWidth())
13564       index = index.zext(size.getBitWidth());
13565     else if (size.getBitWidth() < index.getBitWidth())
13566       size = size.zext(index.getBitWidth());
13567 
13568     // For array subscripting the index must be less than size, but for pointer
13569     // arithmetic also allow the index (offset) to be equal to size since
13570     // computing the next address after the end of the array is legal and
13571     // commonly done e.g. in C++ iterators and range-based for loops.
13572     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
13573       return;
13574 
13575     // Also don't warn for arrays of size 1 which are members of some
13576     // structure. These are often used to approximate flexible arrays in C89
13577     // code.
13578     if (IsTailPaddedMemberArray(*this, size, ND))
13579       return;
13580 
13581     // Suppress the warning if the subscript expression (as identified by the
13582     // ']' location) and the index expression are both from macro expansions
13583     // within a system header.
13584     if (ASE) {
13585       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
13586           ASE->getRBracketLoc());
13587       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
13588         SourceLocation IndexLoc =
13589             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
13590         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
13591           return;
13592       }
13593     }
13594 
13595     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
13596     if (ASE)
13597       DiagID = diag::warn_array_index_exceeds_bounds;
13598 
13599     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13600                         PDiag(DiagID) << index.toString(10, true)
13601                                       << size.toString(10, true)
13602                                       << (unsigned)size.getLimitedValue(~0U)
13603                                       << IndexExpr->getSourceRange());
13604   } else {
13605     unsigned DiagID = diag::warn_array_index_precedes_bounds;
13606     if (!ASE) {
13607       DiagID = diag::warn_ptr_arith_precedes_bounds;
13608       if (index.isNegative()) index = -index;
13609     }
13610 
13611     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13612                         PDiag(DiagID) << index.toString(10, true)
13613                                       << IndexExpr->getSourceRange());
13614   }
13615 
13616   if (!ND) {
13617     // Try harder to find a NamedDecl to point at in the note.
13618     while (const ArraySubscriptExpr *ASE =
13619            dyn_cast<ArraySubscriptExpr>(BaseExpr))
13620       BaseExpr = ASE->getBase()->IgnoreParenCasts();
13621     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13622       ND = DRE->getDecl();
13623     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
13624       ND = ME->getMemberDecl();
13625   }
13626 
13627   if (ND)
13628     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
13629                         PDiag(diag::note_array_declared_here)
13630                             << ND->getDeclName());
13631 }
13632 
13633 void Sema::CheckArrayAccess(const Expr *expr) {
13634   int AllowOnePastEnd = 0;
13635   while (expr) {
13636     expr = expr->IgnoreParenImpCasts();
13637     switch (expr->getStmtClass()) {
13638       case Stmt::ArraySubscriptExprClass: {
13639         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
13640         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
13641                          AllowOnePastEnd > 0);
13642         expr = ASE->getBase();
13643         break;
13644       }
13645       case Stmt::MemberExprClass: {
13646         expr = cast<MemberExpr>(expr)->getBase();
13647         break;
13648       }
13649       case Stmt::OMPArraySectionExprClass: {
13650         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
13651         if (ASE->getLowerBound())
13652           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
13653                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
13654         return;
13655       }
13656       case Stmt::UnaryOperatorClass: {
13657         // Only unwrap the * and & unary operators
13658         const UnaryOperator *UO = cast<UnaryOperator>(expr);
13659         expr = UO->getSubExpr();
13660         switch (UO->getOpcode()) {
13661           case UO_AddrOf:
13662             AllowOnePastEnd++;
13663             break;
13664           case UO_Deref:
13665             AllowOnePastEnd--;
13666             break;
13667           default:
13668             return;
13669         }
13670         break;
13671       }
13672       case Stmt::ConditionalOperatorClass: {
13673         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
13674         if (const Expr *lhs = cond->getLHS())
13675           CheckArrayAccess(lhs);
13676         if (const Expr *rhs = cond->getRHS())
13677           CheckArrayAccess(rhs);
13678         return;
13679       }
13680       case Stmt::CXXOperatorCallExprClass: {
13681         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
13682         for (const auto *Arg : OCE->arguments())
13683           CheckArrayAccess(Arg);
13684         return;
13685       }
13686       default:
13687         return;
13688     }
13689   }
13690 }
13691 
13692 //===--- CHECK: Objective-C retain cycles ----------------------------------//
13693 
13694 namespace {
13695 
13696 struct RetainCycleOwner {
13697   VarDecl *Variable = nullptr;
13698   SourceRange Range;
13699   SourceLocation Loc;
13700   bool Indirect = false;
13701 
13702   RetainCycleOwner() = default;
13703 
13704   void setLocsFrom(Expr *e) {
13705     Loc = e->getExprLoc();
13706     Range = e->getSourceRange();
13707   }
13708 };
13709 
13710 } // namespace
13711 
13712 /// Consider whether capturing the given variable can possibly lead to
13713 /// a retain cycle.
13714 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
13715   // In ARC, it's captured strongly iff the variable has __strong
13716   // lifetime.  In MRR, it's captured strongly if the variable is
13717   // __block and has an appropriate type.
13718   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
13719     return false;
13720 
13721   owner.Variable = var;
13722   if (ref)
13723     owner.setLocsFrom(ref);
13724   return true;
13725 }
13726 
13727 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
13728   while (true) {
13729     e = e->IgnoreParens();
13730     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
13731       switch (cast->getCastKind()) {
13732       case CK_BitCast:
13733       case CK_LValueBitCast:
13734       case CK_LValueToRValue:
13735       case CK_ARCReclaimReturnedObject:
13736         e = cast->getSubExpr();
13737         continue;
13738 
13739       default:
13740         return false;
13741       }
13742     }
13743 
13744     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
13745       ObjCIvarDecl *ivar = ref->getDecl();
13746       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
13747         return false;
13748 
13749       // Try to find a retain cycle in the base.
13750       if (!findRetainCycleOwner(S, ref->getBase(), owner))
13751         return false;
13752 
13753       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
13754       owner.Indirect = true;
13755       return true;
13756     }
13757 
13758     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
13759       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
13760       if (!var) return false;
13761       return considerVariable(var, ref, owner);
13762     }
13763 
13764     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
13765       if (member->isArrow()) return false;
13766 
13767       // Don't count this as an indirect ownership.
13768       e = member->getBase();
13769       continue;
13770     }
13771 
13772     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
13773       // Only pay attention to pseudo-objects on property references.
13774       ObjCPropertyRefExpr *pre
13775         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
13776                                               ->IgnoreParens());
13777       if (!pre) return false;
13778       if (pre->isImplicitProperty()) return false;
13779       ObjCPropertyDecl *property = pre->getExplicitProperty();
13780       if (!property->isRetaining() &&
13781           !(property->getPropertyIvarDecl() &&
13782             property->getPropertyIvarDecl()->getType()
13783               .getObjCLifetime() == Qualifiers::OCL_Strong))
13784           return false;
13785 
13786       owner.Indirect = true;
13787       if (pre->isSuperReceiver()) {
13788         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
13789         if (!owner.Variable)
13790           return false;
13791         owner.Loc = pre->getLocation();
13792         owner.Range = pre->getSourceRange();
13793         return true;
13794       }
13795       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
13796                               ->getSourceExpr());
13797       continue;
13798     }
13799 
13800     // Array ivars?
13801 
13802     return false;
13803   }
13804 }
13805 
13806 namespace {
13807 
13808   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
13809     ASTContext &Context;
13810     VarDecl *Variable;
13811     Expr *Capturer = nullptr;
13812     bool VarWillBeReased = false;
13813 
13814     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
13815         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
13816           Context(Context), Variable(variable) {}
13817 
13818     void VisitDeclRefExpr(DeclRefExpr *ref) {
13819       if (ref->getDecl() == Variable && !Capturer)
13820         Capturer = ref;
13821     }
13822 
13823     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
13824       if (Capturer) return;
13825       Visit(ref->getBase());
13826       if (Capturer && ref->isFreeIvar())
13827         Capturer = ref;
13828     }
13829 
13830     void VisitBlockExpr(BlockExpr *block) {
13831       // Look inside nested blocks
13832       if (block->getBlockDecl()->capturesVariable(Variable))
13833         Visit(block->getBlockDecl()->getBody());
13834     }
13835 
13836     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
13837       if (Capturer) return;
13838       if (OVE->getSourceExpr())
13839         Visit(OVE->getSourceExpr());
13840     }
13841 
13842     void VisitBinaryOperator(BinaryOperator *BinOp) {
13843       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
13844         return;
13845       Expr *LHS = BinOp->getLHS();
13846       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
13847         if (DRE->getDecl() != Variable)
13848           return;
13849         if (Expr *RHS = BinOp->getRHS()) {
13850           RHS = RHS->IgnoreParenCasts();
13851           llvm::APSInt Value;
13852           VarWillBeReased =
13853             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
13854         }
13855       }
13856     }
13857   };
13858 
13859 } // namespace
13860 
13861 /// Check whether the given argument is a block which captures a
13862 /// variable.
13863 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
13864   assert(owner.Variable && owner.Loc.isValid());
13865 
13866   e = e->IgnoreParenCasts();
13867 
13868   // Look through [^{...} copy] and Block_copy(^{...}).
13869   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
13870     Selector Cmd = ME->getSelector();
13871     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
13872       e = ME->getInstanceReceiver();
13873       if (!e)
13874         return nullptr;
13875       e = e->IgnoreParenCasts();
13876     }
13877   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
13878     if (CE->getNumArgs() == 1) {
13879       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
13880       if (Fn) {
13881         const IdentifierInfo *FnI = Fn->getIdentifier();
13882         if (FnI && FnI->isStr("_Block_copy")) {
13883           e = CE->getArg(0)->IgnoreParenCasts();
13884         }
13885       }
13886     }
13887   }
13888 
13889   BlockExpr *block = dyn_cast<BlockExpr>(e);
13890   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
13891     return nullptr;
13892 
13893   FindCaptureVisitor visitor(S.Context, owner.Variable);
13894   visitor.Visit(block->getBlockDecl()->getBody());
13895   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
13896 }
13897 
13898 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
13899                                 RetainCycleOwner &owner) {
13900   assert(capturer);
13901   assert(owner.Variable && owner.Loc.isValid());
13902 
13903   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
13904     << owner.Variable << capturer->getSourceRange();
13905   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
13906     << owner.Indirect << owner.Range;
13907 }
13908 
13909 /// Check for a keyword selector that starts with the word 'add' or
13910 /// 'set'.
13911 static bool isSetterLikeSelector(Selector sel) {
13912   if (sel.isUnarySelector()) return false;
13913 
13914   StringRef str = sel.getNameForSlot(0);
13915   while (!str.empty() && str.front() == '_') str = str.substr(1);
13916   if (str.startswith("set"))
13917     str = str.substr(3);
13918   else if (str.startswith("add")) {
13919     // Specially whitelist 'addOperationWithBlock:'.
13920     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
13921       return false;
13922     str = str.substr(3);
13923   }
13924   else
13925     return false;
13926 
13927   if (str.empty()) return true;
13928   return !isLowercase(str.front());
13929 }
13930 
13931 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
13932                                                     ObjCMessageExpr *Message) {
13933   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
13934                                                 Message->getReceiverInterface(),
13935                                                 NSAPI::ClassId_NSMutableArray);
13936   if (!IsMutableArray) {
13937     return None;
13938   }
13939 
13940   Selector Sel = Message->getSelector();
13941 
13942   Optional<NSAPI::NSArrayMethodKind> MKOpt =
13943     S.NSAPIObj->getNSArrayMethodKind(Sel);
13944   if (!MKOpt) {
13945     return None;
13946   }
13947 
13948   NSAPI::NSArrayMethodKind MK = *MKOpt;
13949 
13950   switch (MK) {
13951     case NSAPI::NSMutableArr_addObject:
13952     case NSAPI::NSMutableArr_insertObjectAtIndex:
13953     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
13954       return 0;
13955     case NSAPI::NSMutableArr_replaceObjectAtIndex:
13956       return 1;
13957 
13958     default:
13959       return None;
13960   }
13961 
13962   return None;
13963 }
13964 
13965 static
13966 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
13967                                                   ObjCMessageExpr *Message) {
13968   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
13969                                             Message->getReceiverInterface(),
13970                                             NSAPI::ClassId_NSMutableDictionary);
13971   if (!IsMutableDictionary) {
13972     return None;
13973   }
13974 
13975   Selector Sel = Message->getSelector();
13976 
13977   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
13978     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
13979   if (!MKOpt) {
13980     return None;
13981   }
13982 
13983   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
13984 
13985   switch (MK) {
13986     case NSAPI::NSMutableDict_setObjectForKey:
13987     case NSAPI::NSMutableDict_setValueForKey:
13988     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
13989       return 0;
13990 
13991     default:
13992       return None;
13993   }
13994 
13995   return None;
13996 }
13997 
13998 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
13999   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
14000                                                 Message->getReceiverInterface(),
14001                                                 NSAPI::ClassId_NSMutableSet);
14002 
14003   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
14004                                             Message->getReceiverInterface(),
14005                                             NSAPI::ClassId_NSMutableOrderedSet);
14006   if (!IsMutableSet && !IsMutableOrderedSet) {
14007     return None;
14008   }
14009 
14010   Selector Sel = Message->getSelector();
14011 
14012   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
14013   if (!MKOpt) {
14014     return None;
14015   }
14016 
14017   NSAPI::NSSetMethodKind MK = *MKOpt;
14018 
14019   switch (MK) {
14020     case NSAPI::NSMutableSet_addObject:
14021     case NSAPI::NSOrderedSet_setObjectAtIndex:
14022     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
14023     case NSAPI::NSOrderedSet_insertObjectAtIndex:
14024       return 0;
14025     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
14026       return 1;
14027   }
14028 
14029   return None;
14030 }
14031 
14032 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
14033   if (!Message->isInstanceMessage()) {
14034     return;
14035   }
14036 
14037   Optional<int> ArgOpt;
14038 
14039   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
14040       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
14041       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
14042     return;
14043   }
14044 
14045   int ArgIndex = *ArgOpt;
14046 
14047   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
14048   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
14049     Arg = OE->getSourceExpr()->IgnoreImpCasts();
14050   }
14051 
14052   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14053     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14054       if (ArgRE->isObjCSelfExpr()) {
14055         Diag(Message->getSourceRange().getBegin(),
14056              diag::warn_objc_circular_container)
14057           << ArgRE->getDecl() << StringRef("'super'");
14058       }
14059     }
14060   } else {
14061     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
14062 
14063     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
14064       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
14065     }
14066 
14067     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
14068       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14069         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
14070           ValueDecl *Decl = ReceiverRE->getDecl();
14071           Diag(Message->getSourceRange().getBegin(),
14072                diag::warn_objc_circular_container)
14073             << Decl << Decl;
14074           if (!ArgRE->isObjCSelfExpr()) {
14075             Diag(Decl->getLocation(),
14076                  diag::note_objc_circular_container_declared_here)
14077               << Decl;
14078           }
14079         }
14080       }
14081     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
14082       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
14083         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
14084           ObjCIvarDecl *Decl = IvarRE->getDecl();
14085           Diag(Message->getSourceRange().getBegin(),
14086                diag::warn_objc_circular_container)
14087             << Decl << Decl;
14088           Diag(Decl->getLocation(),
14089                diag::note_objc_circular_container_declared_here)
14090             << Decl;
14091         }
14092       }
14093     }
14094   }
14095 }
14096 
14097 /// Check a message send to see if it's likely to cause a retain cycle.
14098 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
14099   // Only check instance methods whose selector looks like a setter.
14100   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
14101     return;
14102 
14103   // Try to find a variable that the receiver is strongly owned by.
14104   RetainCycleOwner owner;
14105   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
14106     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
14107       return;
14108   } else {
14109     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
14110     owner.Variable = getCurMethodDecl()->getSelfDecl();
14111     owner.Loc = msg->getSuperLoc();
14112     owner.Range = msg->getSuperLoc();
14113   }
14114 
14115   // Check whether the receiver is captured by any of the arguments.
14116   const ObjCMethodDecl *MD = msg->getMethodDecl();
14117   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
14118     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
14119       // noescape blocks should not be retained by the method.
14120       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
14121         continue;
14122       return diagnoseRetainCycle(*this, capturer, owner);
14123     }
14124   }
14125 }
14126 
14127 /// Check a property assign to see if it's likely to cause a retain cycle.
14128 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
14129   RetainCycleOwner owner;
14130   if (!findRetainCycleOwner(*this, receiver, owner))
14131     return;
14132 
14133   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
14134     diagnoseRetainCycle(*this, capturer, owner);
14135 }
14136 
14137 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
14138   RetainCycleOwner Owner;
14139   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
14140     return;
14141 
14142   // Because we don't have an expression for the variable, we have to set the
14143   // location explicitly here.
14144   Owner.Loc = Var->getLocation();
14145   Owner.Range = Var->getSourceRange();
14146 
14147   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
14148     diagnoseRetainCycle(*this, Capturer, Owner);
14149 }
14150 
14151 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
14152                                      Expr *RHS, bool isProperty) {
14153   // Check if RHS is an Objective-C object literal, which also can get
14154   // immediately zapped in a weak reference.  Note that we explicitly
14155   // allow ObjCStringLiterals, since those are designed to never really die.
14156   RHS = RHS->IgnoreParenImpCasts();
14157 
14158   // This enum needs to match with the 'select' in
14159   // warn_objc_arc_literal_assign (off-by-1).
14160   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
14161   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
14162     return false;
14163 
14164   S.Diag(Loc, diag::warn_arc_literal_assign)
14165     << (unsigned) Kind
14166     << (isProperty ? 0 : 1)
14167     << RHS->getSourceRange();
14168 
14169   return true;
14170 }
14171 
14172 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
14173                                     Qualifiers::ObjCLifetime LT,
14174                                     Expr *RHS, bool isProperty) {
14175   // Strip off any implicit cast added to get to the one ARC-specific.
14176   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14177     if (cast->getCastKind() == CK_ARCConsumeObject) {
14178       S.Diag(Loc, diag::warn_arc_retained_assign)
14179         << (LT == Qualifiers::OCL_ExplicitNone)
14180         << (isProperty ? 0 : 1)
14181         << RHS->getSourceRange();
14182       return true;
14183     }
14184     RHS = cast->getSubExpr();
14185   }
14186 
14187   if (LT == Qualifiers::OCL_Weak &&
14188       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
14189     return true;
14190 
14191   return false;
14192 }
14193 
14194 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
14195                               QualType LHS, Expr *RHS) {
14196   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
14197 
14198   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
14199     return false;
14200 
14201   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
14202     return true;
14203 
14204   return false;
14205 }
14206 
14207 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
14208                               Expr *LHS, Expr *RHS) {
14209   QualType LHSType;
14210   // PropertyRef on LHS type need be directly obtained from
14211   // its declaration as it has a PseudoType.
14212   ObjCPropertyRefExpr *PRE
14213     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
14214   if (PRE && !PRE->isImplicitProperty()) {
14215     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14216     if (PD)
14217       LHSType = PD->getType();
14218   }
14219 
14220   if (LHSType.isNull())
14221     LHSType = LHS->getType();
14222 
14223   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
14224 
14225   if (LT == Qualifiers::OCL_Weak) {
14226     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
14227       getCurFunction()->markSafeWeakUse(LHS);
14228   }
14229 
14230   if (checkUnsafeAssigns(Loc, LHSType, RHS))
14231     return;
14232 
14233   // FIXME. Check for other life times.
14234   if (LT != Qualifiers::OCL_None)
14235     return;
14236 
14237   if (PRE) {
14238     if (PRE->isImplicitProperty())
14239       return;
14240     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14241     if (!PD)
14242       return;
14243 
14244     unsigned Attributes = PD->getPropertyAttributes();
14245     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
14246       // when 'assign' attribute was not explicitly specified
14247       // by user, ignore it and rely on property type itself
14248       // for lifetime info.
14249       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
14250       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
14251           LHSType->isObjCRetainableType())
14252         return;
14253 
14254       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14255         if (cast->getCastKind() == CK_ARCConsumeObject) {
14256           Diag(Loc, diag::warn_arc_retained_property_assign)
14257           << RHS->getSourceRange();
14258           return;
14259         }
14260         RHS = cast->getSubExpr();
14261       }
14262     }
14263     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
14264       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
14265         return;
14266     }
14267   }
14268 }
14269 
14270 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
14271 
14272 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
14273                                         SourceLocation StmtLoc,
14274                                         const NullStmt *Body) {
14275   // Do not warn if the body is a macro that expands to nothing, e.g:
14276   //
14277   // #define CALL(x)
14278   // if (condition)
14279   //   CALL(0);
14280   if (Body->hasLeadingEmptyMacro())
14281     return false;
14282 
14283   // Get line numbers of statement and body.
14284   bool StmtLineInvalid;
14285   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
14286                                                       &StmtLineInvalid);
14287   if (StmtLineInvalid)
14288     return false;
14289 
14290   bool BodyLineInvalid;
14291   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
14292                                                       &BodyLineInvalid);
14293   if (BodyLineInvalid)
14294     return false;
14295 
14296   // Warn if null statement and body are on the same line.
14297   if (StmtLine != BodyLine)
14298     return false;
14299 
14300   return true;
14301 }
14302 
14303 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
14304                                  const Stmt *Body,
14305                                  unsigned DiagID) {
14306   // Since this is a syntactic check, don't emit diagnostic for template
14307   // instantiations, this just adds noise.
14308   if (CurrentInstantiationScope)
14309     return;
14310 
14311   // The body should be a null statement.
14312   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
14313   if (!NBody)
14314     return;
14315 
14316   // Do the usual checks.
14317   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
14318     return;
14319 
14320   Diag(NBody->getSemiLoc(), DiagID);
14321   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
14322 }
14323 
14324 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
14325                                  const Stmt *PossibleBody) {
14326   assert(!CurrentInstantiationScope); // Ensured by caller
14327 
14328   SourceLocation StmtLoc;
14329   const Stmt *Body;
14330   unsigned DiagID;
14331   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
14332     StmtLoc = FS->getRParenLoc();
14333     Body = FS->getBody();
14334     DiagID = diag::warn_empty_for_body;
14335   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
14336     StmtLoc = WS->getCond()->getSourceRange().getEnd();
14337     Body = WS->getBody();
14338     DiagID = diag::warn_empty_while_body;
14339   } else
14340     return; // Neither `for' nor `while'.
14341 
14342   // The body should be a null statement.
14343   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
14344   if (!NBody)
14345     return;
14346 
14347   // Skip expensive checks if diagnostic is disabled.
14348   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
14349     return;
14350 
14351   // Do the usual checks.
14352   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
14353     return;
14354 
14355   // `for(...);' and `while(...);' are popular idioms, so in order to keep
14356   // noise level low, emit diagnostics only if for/while is followed by a
14357   // CompoundStmt, e.g.:
14358   //    for (int i = 0; i < n; i++);
14359   //    {
14360   //      a(i);
14361   //    }
14362   // or if for/while is followed by a statement with more indentation
14363   // than for/while itself:
14364   //    for (int i = 0; i < n; i++);
14365   //      a(i);
14366   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
14367   if (!ProbableTypo) {
14368     bool BodyColInvalid;
14369     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
14370         PossibleBody->getBeginLoc(), &BodyColInvalid);
14371     if (BodyColInvalid)
14372       return;
14373 
14374     bool StmtColInvalid;
14375     unsigned StmtCol =
14376         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
14377     if (StmtColInvalid)
14378       return;
14379 
14380     if (BodyCol > StmtCol)
14381       ProbableTypo = true;
14382   }
14383 
14384   if (ProbableTypo) {
14385     Diag(NBody->getSemiLoc(), DiagID);
14386     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
14387   }
14388 }
14389 
14390 //===--- CHECK: Warn on self move with std::move. -------------------------===//
14391 
14392 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
14393 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
14394                              SourceLocation OpLoc) {
14395   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
14396     return;
14397 
14398   if (inTemplateInstantiation())
14399     return;
14400 
14401   // Strip parens and casts away.
14402   LHSExpr = LHSExpr->IgnoreParenImpCasts();
14403   RHSExpr = RHSExpr->IgnoreParenImpCasts();
14404 
14405   // Check for a call expression
14406   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
14407   if (!CE || CE->getNumArgs() != 1)
14408     return;
14409 
14410   // Check for a call to std::move
14411   if (!CE->isCallToStdMove())
14412     return;
14413 
14414   // Get argument from std::move
14415   RHSExpr = CE->getArg(0);
14416 
14417   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14418   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14419 
14420   // Two DeclRefExpr's, check that the decls are the same.
14421   if (LHSDeclRef && RHSDeclRef) {
14422     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
14423       return;
14424     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
14425         RHSDeclRef->getDecl()->getCanonicalDecl())
14426       return;
14427 
14428     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
14429                                         << LHSExpr->getSourceRange()
14430                                         << RHSExpr->getSourceRange();
14431     return;
14432   }
14433 
14434   // Member variables require a different approach to check for self moves.
14435   // MemberExpr's are the same if every nested MemberExpr refers to the same
14436   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
14437   // the base Expr's are CXXThisExpr's.
14438   const Expr *LHSBase = LHSExpr;
14439   const Expr *RHSBase = RHSExpr;
14440   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
14441   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
14442   if (!LHSME || !RHSME)
14443     return;
14444 
14445   while (LHSME && RHSME) {
14446     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
14447         RHSME->getMemberDecl()->getCanonicalDecl())
14448       return;
14449 
14450     LHSBase = LHSME->getBase();
14451     RHSBase = RHSME->getBase();
14452     LHSME = dyn_cast<MemberExpr>(LHSBase);
14453     RHSME = dyn_cast<MemberExpr>(RHSBase);
14454   }
14455 
14456   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
14457   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
14458   if (LHSDeclRef && RHSDeclRef) {
14459     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
14460       return;
14461     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
14462         RHSDeclRef->getDecl()->getCanonicalDecl())
14463       return;
14464 
14465     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
14466                                         << LHSExpr->getSourceRange()
14467                                         << RHSExpr->getSourceRange();
14468     return;
14469   }
14470 
14471   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
14472     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
14473                                         << LHSExpr->getSourceRange()
14474                                         << RHSExpr->getSourceRange();
14475 }
14476 
14477 //===--- Layout compatibility ----------------------------------------------//
14478 
14479 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
14480 
14481 /// Check if two enumeration types are layout-compatible.
14482 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
14483   // C++11 [dcl.enum] p8:
14484   // Two enumeration types are layout-compatible if they have the same
14485   // underlying type.
14486   return ED1->isComplete() && ED2->isComplete() &&
14487          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
14488 }
14489 
14490 /// Check if two fields are layout-compatible.
14491 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
14492                                FieldDecl *Field2) {
14493   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
14494     return false;
14495 
14496   if (Field1->isBitField() != Field2->isBitField())
14497     return false;
14498 
14499   if (Field1->isBitField()) {
14500     // Make sure that the bit-fields are the same length.
14501     unsigned Bits1 = Field1->getBitWidthValue(C);
14502     unsigned Bits2 = Field2->getBitWidthValue(C);
14503 
14504     if (Bits1 != Bits2)
14505       return false;
14506   }
14507 
14508   return true;
14509 }
14510 
14511 /// Check if two standard-layout structs are layout-compatible.
14512 /// (C++11 [class.mem] p17)
14513 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
14514                                      RecordDecl *RD2) {
14515   // If both records are C++ classes, check that base classes match.
14516   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
14517     // If one of records is a CXXRecordDecl we are in C++ mode,
14518     // thus the other one is a CXXRecordDecl, too.
14519     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
14520     // Check number of base classes.
14521     if (D1CXX->getNumBases() != D2CXX->getNumBases())
14522       return false;
14523 
14524     // Check the base classes.
14525     for (CXXRecordDecl::base_class_const_iterator
14526                Base1 = D1CXX->bases_begin(),
14527            BaseEnd1 = D1CXX->bases_end(),
14528               Base2 = D2CXX->bases_begin();
14529          Base1 != BaseEnd1;
14530          ++Base1, ++Base2) {
14531       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
14532         return false;
14533     }
14534   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
14535     // If only RD2 is a C++ class, it should have zero base classes.
14536     if (D2CXX->getNumBases() > 0)
14537       return false;
14538   }
14539 
14540   // Check the fields.
14541   RecordDecl::field_iterator Field2 = RD2->field_begin(),
14542                              Field2End = RD2->field_end(),
14543                              Field1 = RD1->field_begin(),
14544                              Field1End = RD1->field_end();
14545   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
14546     if (!isLayoutCompatible(C, *Field1, *Field2))
14547       return false;
14548   }
14549   if (Field1 != Field1End || Field2 != Field2End)
14550     return false;
14551 
14552   return true;
14553 }
14554 
14555 /// Check if two standard-layout unions are layout-compatible.
14556 /// (C++11 [class.mem] p18)
14557 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
14558                                     RecordDecl *RD2) {
14559   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
14560   for (auto *Field2 : RD2->fields())
14561     UnmatchedFields.insert(Field2);
14562 
14563   for (auto *Field1 : RD1->fields()) {
14564     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
14565         I = UnmatchedFields.begin(),
14566         E = UnmatchedFields.end();
14567 
14568     for ( ; I != E; ++I) {
14569       if (isLayoutCompatible(C, Field1, *I)) {
14570         bool Result = UnmatchedFields.erase(*I);
14571         (void) Result;
14572         assert(Result);
14573         break;
14574       }
14575     }
14576     if (I == E)
14577       return false;
14578   }
14579 
14580   return UnmatchedFields.empty();
14581 }
14582 
14583 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
14584                                RecordDecl *RD2) {
14585   if (RD1->isUnion() != RD2->isUnion())
14586     return false;
14587 
14588   if (RD1->isUnion())
14589     return isLayoutCompatibleUnion(C, RD1, RD2);
14590   else
14591     return isLayoutCompatibleStruct(C, RD1, RD2);
14592 }
14593 
14594 /// Check if two types are layout-compatible in C++11 sense.
14595 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
14596   if (T1.isNull() || T2.isNull())
14597     return false;
14598 
14599   // C++11 [basic.types] p11:
14600   // If two types T1 and T2 are the same type, then T1 and T2 are
14601   // layout-compatible types.
14602   if (C.hasSameType(T1, T2))
14603     return true;
14604 
14605   T1 = T1.getCanonicalType().getUnqualifiedType();
14606   T2 = T2.getCanonicalType().getUnqualifiedType();
14607 
14608   const Type::TypeClass TC1 = T1->getTypeClass();
14609   const Type::TypeClass TC2 = T2->getTypeClass();
14610 
14611   if (TC1 != TC2)
14612     return false;
14613 
14614   if (TC1 == Type::Enum) {
14615     return isLayoutCompatible(C,
14616                               cast<EnumType>(T1)->getDecl(),
14617                               cast<EnumType>(T2)->getDecl());
14618   } else if (TC1 == Type::Record) {
14619     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
14620       return false;
14621 
14622     return isLayoutCompatible(C,
14623                               cast<RecordType>(T1)->getDecl(),
14624                               cast<RecordType>(T2)->getDecl());
14625   }
14626 
14627   return false;
14628 }
14629 
14630 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
14631 
14632 /// Given a type tag expression find the type tag itself.
14633 ///
14634 /// \param TypeExpr Type tag expression, as it appears in user's code.
14635 ///
14636 /// \param VD Declaration of an identifier that appears in a type tag.
14637 ///
14638 /// \param MagicValue Type tag magic value.
14639 ///
14640 /// \param isConstantEvaluated wether the evalaution should be performed in
14641 
14642 /// constant context.
14643 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
14644                             const ValueDecl **VD, uint64_t *MagicValue,
14645                             bool isConstantEvaluated) {
14646   while(true) {
14647     if (!TypeExpr)
14648       return false;
14649 
14650     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
14651 
14652     switch (TypeExpr->getStmtClass()) {
14653     case Stmt::UnaryOperatorClass: {
14654       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
14655       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
14656         TypeExpr = UO->getSubExpr();
14657         continue;
14658       }
14659       return false;
14660     }
14661 
14662     case Stmt::DeclRefExprClass: {
14663       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
14664       *VD = DRE->getDecl();
14665       return true;
14666     }
14667 
14668     case Stmt::IntegerLiteralClass: {
14669       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
14670       llvm::APInt MagicValueAPInt = IL->getValue();
14671       if (MagicValueAPInt.getActiveBits() <= 64) {
14672         *MagicValue = MagicValueAPInt.getZExtValue();
14673         return true;
14674       } else
14675         return false;
14676     }
14677 
14678     case Stmt::BinaryConditionalOperatorClass:
14679     case Stmt::ConditionalOperatorClass: {
14680       const AbstractConditionalOperator *ACO =
14681           cast<AbstractConditionalOperator>(TypeExpr);
14682       bool Result;
14683       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
14684                                                      isConstantEvaluated)) {
14685         if (Result)
14686           TypeExpr = ACO->getTrueExpr();
14687         else
14688           TypeExpr = ACO->getFalseExpr();
14689         continue;
14690       }
14691       return false;
14692     }
14693 
14694     case Stmt::BinaryOperatorClass: {
14695       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
14696       if (BO->getOpcode() == BO_Comma) {
14697         TypeExpr = BO->getRHS();
14698         continue;
14699       }
14700       return false;
14701     }
14702 
14703     default:
14704       return false;
14705     }
14706   }
14707 }
14708 
14709 /// Retrieve the C type corresponding to type tag TypeExpr.
14710 ///
14711 /// \param TypeExpr Expression that specifies a type tag.
14712 ///
14713 /// \param MagicValues Registered magic values.
14714 ///
14715 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
14716 ///        kind.
14717 ///
14718 /// \param TypeInfo Information about the corresponding C type.
14719 ///
14720 /// \param isConstantEvaluated wether the evalaution should be performed in
14721 /// constant context.
14722 ///
14723 /// \returns true if the corresponding C type was found.
14724 static bool GetMatchingCType(
14725     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
14726     const ASTContext &Ctx,
14727     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
14728         *MagicValues,
14729     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
14730     bool isConstantEvaluated) {
14731   FoundWrongKind = false;
14732 
14733   // Variable declaration that has type_tag_for_datatype attribute.
14734   const ValueDecl *VD = nullptr;
14735 
14736   uint64_t MagicValue;
14737 
14738   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
14739     return false;
14740 
14741   if (VD) {
14742     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
14743       if (I->getArgumentKind() != ArgumentKind) {
14744         FoundWrongKind = true;
14745         return false;
14746       }
14747       TypeInfo.Type = I->getMatchingCType();
14748       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
14749       TypeInfo.MustBeNull = I->getMustBeNull();
14750       return true;
14751     }
14752     return false;
14753   }
14754 
14755   if (!MagicValues)
14756     return false;
14757 
14758   llvm::DenseMap<Sema::TypeTagMagicValue,
14759                  Sema::TypeTagData>::const_iterator I =
14760       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
14761   if (I == MagicValues->end())
14762     return false;
14763 
14764   TypeInfo = I->second;
14765   return true;
14766 }
14767 
14768 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
14769                                       uint64_t MagicValue, QualType Type,
14770                                       bool LayoutCompatible,
14771                                       bool MustBeNull) {
14772   if (!TypeTagForDatatypeMagicValues)
14773     TypeTagForDatatypeMagicValues.reset(
14774         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
14775 
14776   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
14777   (*TypeTagForDatatypeMagicValues)[Magic] =
14778       TypeTagData(Type, LayoutCompatible, MustBeNull);
14779 }
14780 
14781 static bool IsSameCharType(QualType T1, QualType T2) {
14782   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
14783   if (!BT1)
14784     return false;
14785 
14786   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
14787   if (!BT2)
14788     return false;
14789 
14790   BuiltinType::Kind T1Kind = BT1->getKind();
14791   BuiltinType::Kind T2Kind = BT2->getKind();
14792 
14793   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
14794          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
14795          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
14796          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
14797 }
14798 
14799 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
14800                                     const ArrayRef<const Expr *> ExprArgs,
14801                                     SourceLocation CallSiteLoc) {
14802   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
14803   bool IsPointerAttr = Attr->getIsPointer();
14804 
14805   // Retrieve the argument representing the 'type_tag'.
14806   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
14807   if (TypeTagIdxAST >= ExprArgs.size()) {
14808     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14809         << 0 << Attr->getTypeTagIdx().getSourceIndex();
14810     return;
14811   }
14812   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
14813   bool FoundWrongKind;
14814   TypeTagData TypeInfo;
14815   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
14816                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
14817                         TypeInfo, isConstantEvaluated())) {
14818     if (FoundWrongKind)
14819       Diag(TypeTagExpr->getExprLoc(),
14820            diag::warn_type_tag_for_datatype_wrong_kind)
14821         << TypeTagExpr->getSourceRange();
14822     return;
14823   }
14824 
14825   // Retrieve the argument representing the 'arg_idx'.
14826   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
14827   if (ArgumentIdxAST >= ExprArgs.size()) {
14828     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14829         << 1 << Attr->getArgumentIdx().getSourceIndex();
14830     return;
14831   }
14832   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
14833   if (IsPointerAttr) {
14834     // Skip implicit cast of pointer to `void *' (as a function argument).
14835     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
14836       if (ICE->getType()->isVoidPointerType() &&
14837           ICE->getCastKind() == CK_BitCast)
14838         ArgumentExpr = ICE->getSubExpr();
14839   }
14840   QualType ArgumentType = ArgumentExpr->getType();
14841 
14842   // Passing a `void*' pointer shouldn't trigger a warning.
14843   if (IsPointerAttr && ArgumentType->isVoidPointerType())
14844     return;
14845 
14846   if (TypeInfo.MustBeNull) {
14847     // Type tag with matching void type requires a null pointer.
14848     if (!ArgumentExpr->isNullPointerConstant(Context,
14849                                              Expr::NPC_ValueDependentIsNotNull)) {
14850       Diag(ArgumentExpr->getExprLoc(),
14851            diag::warn_type_safety_null_pointer_required)
14852           << ArgumentKind->getName()
14853           << ArgumentExpr->getSourceRange()
14854           << TypeTagExpr->getSourceRange();
14855     }
14856     return;
14857   }
14858 
14859   QualType RequiredType = TypeInfo.Type;
14860   if (IsPointerAttr)
14861     RequiredType = Context.getPointerType(RequiredType);
14862 
14863   bool mismatch = false;
14864   if (!TypeInfo.LayoutCompatible) {
14865     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
14866 
14867     // C++11 [basic.fundamental] p1:
14868     // Plain char, signed char, and unsigned char are three distinct types.
14869     //
14870     // But we treat plain `char' as equivalent to `signed char' or `unsigned
14871     // char' depending on the current char signedness mode.
14872     if (mismatch)
14873       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
14874                                            RequiredType->getPointeeType())) ||
14875           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
14876         mismatch = false;
14877   } else
14878     if (IsPointerAttr)
14879       mismatch = !isLayoutCompatible(Context,
14880                                      ArgumentType->getPointeeType(),
14881                                      RequiredType->getPointeeType());
14882     else
14883       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
14884 
14885   if (mismatch)
14886     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
14887         << ArgumentType << ArgumentKind
14888         << TypeInfo.LayoutCompatible << RequiredType
14889         << ArgumentExpr->getSourceRange()
14890         << TypeTagExpr->getSourceRange();
14891 }
14892 
14893 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
14894                                          CharUnits Alignment) {
14895   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
14896 }
14897 
14898 void Sema::DiagnoseMisalignedMembers() {
14899   for (MisalignedMember &m : MisalignedMembers) {
14900     const NamedDecl *ND = m.RD;
14901     if (ND->getName().empty()) {
14902       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
14903         ND = TD;
14904     }
14905     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
14906         << m.MD << ND << m.E->getSourceRange();
14907   }
14908   MisalignedMembers.clear();
14909 }
14910 
14911 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
14912   E = E->IgnoreParens();
14913   if (!T->isPointerType() && !T->isIntegerType())
14914     return;
14915   if (isa<UnaryOperator>(E) &&
14916       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
14917     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
14918     if (isa<MemberExpr>(Op)) {
14919       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
14920       if (MA != MisalignedMembers.end() &&
14921           (T->isIntegerType() ||
14922            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
14923                                    Context.getTypeAlignInChars(
14924                                        T->getPointeeType()) <= MA->Alignment))))
14925         MisalignedMembers.erase(MA);
14926     }
14927   }
14928 }
14929 
14930 void Sema::RefersToMemberWithReducedAlignment(
14931     Expr *E,
14932     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
14933         Action) {
14934   const auto *ME = dyn_cast<MemberExpr>(E);
14935   if (!ME)
14936     return;
14937 
14938   // No need to check expressions with an __unaligned-qualified type.
14939   if (E->getType().getQualifiers().hasUnaligned())
14940     return;
14941 
14942   // For a chain of MemberExpr like "a.b.c.d" this list
14943   // will keep FieldDecl's like [d, c, b].
14944   SmallVector<FieldDecl *, 4> ReverseMemberChain;
14945   const MemberExpr *TopME = nullptr;
14946   bool AnyIsPacked = false;
14947   do {
14948     QualType BaseType = ME->getBase()->getType();
14949     if (BaseType->isDependentType())
14950       return;
14951     if (ME->isArrow())
14952       BaseType = BaseType->getPointeeType();
14953     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
14954     if (RD->isInvalidDecl())
14955       return;
14956 
14957     ValueDecl *MD = ME->getMemberDecl();
14958     auto *FD = dyn_cast<FieldDecl>(MD);
14959     // We do not care about non-data members.
14960     if (!FD || FD->isInvalidDecl())
14961       return;
14962 
14963     AnyIsPacked =
14964         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
14965     ReverseMemberChain.push_back(FD);
14966 
14967     TopME = ME;
14968     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
14969   } while (ME);
14970   assert(TopME && "We did not compute a topmost MemberExpr!");
14971 
14972   // Not the scope of this diagnostic.
14973   if (!AnyIsPacked)
14974     return;
14975 
14976   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
14977   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
14978   // TODO: The innermost base of the member expression may be too complicated.
14979   // For now, just disregard these cases. This is left for future
14980   // improvement.
14981   if (!DRE && !isa<CXXThisExpr>(TopBase))
14982       return;
14983 
14984   // Alignment expected by the whole expression.
14985   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
14986 
14987   // No need to do anything else with this case.
14988   if (ExpectedAlignment.isOne())
14989     return;
14990 
14991   // Synthesize offset of the whole access.
14992   CharUnits Offset;
14993   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
14994        I++) {
14995     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
14996   }
14997 
14998   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
14999   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
15000       ReverseMemberChain.back()->getParent()->getTypeForDecl());
15001 
15002   // The base expression of the innermost MemberExpr may give
15003   // stronger guarantees than the class containing the member.
15004   if (DRE && !TopME->isArrow()) {
15005     const ValueDecl *VD = DRE->getDecl();
15006     if (!VD->getType()->isReferenceType())
15007       CompleteObjectAlignment =
15008           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
15009   }
15010 
15011   // Check if the synthesized offset fulfills the alignment.
15012   if (Offset % ExpectedAlignment != 0 ||
15013       // It may fulfill the offset it but the effective alignment may still be
15014       // lower than the expected expression alignment.
15015       CompleteObjectAlignment < ExpectedAlignment) {
15016     // If this happens, we want to determine a sensible culprit of this.
15017     // Intuitively, watching the chain of member expressions from right to
15018     // left, we start with the required alignment (as required by the field
15019     // type) but some packed attribute in that chain has reduced the alignment.
15020     // It may happen that another packed structure increases it again. But if
15021     // we are here such increase has not been enough. So pointing the first
15022     // FieldDecl that either is packed or else its RecordDecl is,
15023     // seems reasonable.
15024     FieldDecl *FD = nullptr;
15025     CharUnits Alignment;
15026     for (FieldDecl *FDI : ReverseMemberChain) {
15027       if (FDI->hasAttr<PackedAttr>() ||
15028           FDI->getParent()->hasAttr<PackedAttr>()) {
15029         FD = FDI;
15030         Alignment = std::min(
15031             Context.getTypeAlignInChars(FD->getType()),
15032             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
15033         break;
15034       }
15035     }
15036     assert(FD && "We did not find a packed FieldDecl!");
15037     Action(E, FD->getParent(), FD, Alignment);
15038   }
15039 }
15040 
15041 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
15042   using namespace std::placeholders;
15043 
15044   RefersToMemberWithReducedAlignment(
15045       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
15046                      _2, _3, _4));
15047 }
15048