1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/ComparisonCategories.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/AST/TypeOrdering.h"
27 #include "clang/Basic/AttributeCommonInfo.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "clang/Sema/Template.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/StringExtras.h"
44 #include <map>
45 #include <set>
46 
47 using namespace clang;
48 
49 //===----------------------------------------------------------------------===//
50 // CheckDefaultArgumentVisitor
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
55   /// the default argument of a parameter to determine whether it
56   /// contains any ill-formed subexpressions. For example, this will
57   /// diagnose the use of local variables or parameters within the
58   /// default argument expression.
59   class CheckDefaultArgumentVisitor
60     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
61     Expr *DefaultArg;
62     Sema *S;
63 
64   public:
65     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
66         : DefaultArg(defarg), S(s) {}
67 
68     bool VisitExpr(Expr *Node);
69     bool VisitDeclRefExpr(DeclRefExpr *DRE);
70     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
71     bool VisitLambdaExpr(LambdaExpr *Lambda);
72     bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
73   };
74 
75   /// VisitExpr - Visit all of the children of this expression.
76   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
77     bool IsInvalid = false;
78     for (Stmt *SubStmt : Node->children())
79       IsInvalid |= Visit(SubStmt);
80     return IsInvalid;
81   }
82 
83   /// VisitDeclRefExpr - Visit a reference to a declaration, to
84   /// determine whether this declaration can be used in the default
85   /// argument expression.
86   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
87     NamedDecl *Decl = DRE->getDecl();
88     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
89       // C++ [dcl.fct.default]p9
90       //   Default arguments are evaluated each time the function is
91       //   called. The order of evaluation of function arguments is
92       //   unspecified. Consequently, parameters of a function shall not
93       //   be used in default argument expressions, even if they are not
94       //   evaluated. Parameters of a function declared before a default
95       //   argument expression are in scope and can hide namespace and
96       //   class member names.
97       return S->Diag(DRE->getBeginLoc(),
98                      diag::err_param_default_argument_references_param)
99              << Param->getDeclName() << DefaultArg->getSourceRange();
100     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
101       // C++ [dcl.fct.default]p7
102       //   Local variables shall not be used in default argument
103       //   expressions.
104       if (VDecl->isLocalVarDecl())
105         return S->Diag(DRE->getBeginLoc(),
106                        diag::err_param_default_argument_references_local)
107                << VDecl->getDeclName() << DefaultArg->getSourceRange();
108     }
109 
110     return false;
111   }
112 
113   /// VisitCXXThisExpr - Visit a C++ "this" expression.
114   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
115     // C++ [dcl.fct.default]p8:
116     //   The keyword this shall not be used in a default argument of a
117     //   member function.
118     return S->Diag(ThisE->getBeginLoc(),
119                    diag::err_param_default_argument_references_this)
120            << ThisE->getSourceRange();
121   }
122 
123   bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
124     bool Invalid = false;
125     for (PseudoObjectExpr::semantics_iterator
126            i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
127       Expr *E = *i;
128 
129       // Look through bindings.
130       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
131         E = OVE->getSourceExpr();
132         assert(E && "pseudo-object binding without source expression?");
133       }
134 
135       Invalid |= Visit(E);
136     }
137     return Invalid;
138   }
139 
140   bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
141     // C++11 [expr.lambda.prim]p13:
142     //   A lambda-expression appearing in a default argument shall not
143     //   implicitly or explicitly capture any entity.
144     if (Lambda->capture_begin() == Lambda->capture_end())
145       return false;
146 
147     return S->Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
148   }
149 }
150 
151 void
152 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153                                                  const CXXMethodDecl *Method) {
154   // If we have an MSAny spec already, don't bother.
155   if (!Method || ComputedEST == EST_MSAny)
156     return;
157 
158   const FunctionProtoType *Proto
159     = Method->getType()->getAs<FunctionProtoType>();
160   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161   if (!Proto)
162     return;
163 
164   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165 
166   // If we have a throw-all spec at this point, ignore the function.
167   if (ComputedEST == EST_None)
168     return;
169 
170   if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
171     EST = EST_BasicNoexcept;
172 
173   switch (EST) {
174   case EST_Unparsed:
175   case EST_Uninstantiated:
176   case EST_Unevaluated:
177     llvm_unreachable("should not see unresolved exception specs here");
178 
179   // If this function can throw any exceptions, make a note of that.
180   case EST_MSAny:
181   case EST_None:
182     // FIXME: Whichever we see last of MSAny and None determines our result.
183     // We should make a consistent, order-independent choice here.
184     ClearExceptions();
185     ComputedEST = EST;
186     return;
187   case EST_NoexceptFalse:
188     ClearExceptions();
189     ComputedEST = EST_None;
190     return;
191   // FIXME: If the call to this decl is using any of its default arguments, we
192   // need to search them for potentially-throwing calls.
193   // If this function has a basic noexcept, it doesn't affect the outcome.
194   case EST_BasicNoexcept:
195   case EST_NoexceptTrue:
196   case EST_NoThrow:
197     return;
198   // If we're still at noexcept(true) and there's a throw() callee,
199   // change to that specification.
200   case EST_DynamicNone:
201     if (ComputedEST == EST_BasicNoexcept)
202       ComputedEST = EST_DynamicNone;
203     return;
204   case EST_DependentNoexcept:
205     llvm_unreachable(
206         "should not generate implicit declarations for dependent cases");
207   case EST_Dynamic:
208     break;
209   }
210   assert(EST == EST_Dynamic && "EST case not considered earlier.");
211   assert(ComputedEST != EST_None &&
212          "Shouldn't collect exceptions when throw-all is guaranteed.");
213   ComputedEST = EST_Dynamic;
214   // Record the exceptions in this function's exception specification.
215   for (const auto &E : Proto->exceptions())
216     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
217       Exceptions.push_back(E);
218 }
219 
220 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
221   if (!S || ComputedEST == EST_MSAny)
222     return;
223 
224   // FIXME:
225   //
226   // C++0x [except.spec]p14:
227   //   [An] implicit exception-specification specifies the type-id T if and
228   // only if T is allowed by the exception-specification of a function directly
229   // invoked by f's implicit definition; f shall allow all exceptions if any
230   // function it directly invokes allows all exceptions, and f shall allow no
231   // exceptions if every function it directly invokes allows no exceptions.
232   //
233   // Note in particular that if an implicit exception-specification is generated
234   // for a function containing a throw-expression, that specification can still
235   // be noexcept(true).
236   //
237   // Note also that 'directly invoked' is not defined in the standard, and there
238   // is no indication that we should only consider potentially-evaluated calls.
239   //
240   // Ultimately we should implement the intent of the standard: the exception
241   // specification should be the set of exceptions which can be thrown by the
242   // implicit definition. For now, we assume that any non-nothrow expression can
243   // throw any exception.
244 
245   if (Self->canThrow(S))
246     ComputedEST = EST_None;
247 }
248 
249 bool
250 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                               SourceLocation EqualLoc) {
252   if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                           diag::err_typecheck_decl_incomplete_type)) {
254     Param->setInvalidDecl();
255     return true;
256   }
257 
258   // C++ [dcl.fct.default]p5
259   //   A default argument expression is implicitly converted (clause
260   //   4) to the parameter type. The default argument expression has
261   //   the same semantic constraints as the initializer expression in
262   //   a declaration of a variable of the parameter type, using the
263   //   copy-initialization semantics (8.5).
264   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                     Param);
266   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                            EqualLoc);
268   InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270   if (Result.isInvalid())
271     return true;
272   Arg = Result.getAs<Expr>();
273 
274   CheckCompletedExpr(Arg, EqualLoc);
275   Arg = MaybeCreateExprWithCleanups(Arg);
276 
277   // Okay: add the default argument to the parameter
278   Param->setDefaultArg(Arg);
279 
280   // We have already instantiated this parameter; provide each of the
281   // instantiations with the uninstantiated default argument.
282   UnparsedDefaultArgInstantiationsMap::iterator InstPos
283     = UnparsedDefaultArgInstantiations.find(Param);
284   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287 
288     // We're done tracking this parameter's instantiations.
289     UnparsedDefaultArgInstantiations.erase(InstPos);
290   }
291 
292   return false;
293 }
294 
295 /// ActOnParamDefaultArgument - Check whether the default argument
296 /// provided for a function parameter is well-formed. If so, attach it
297 /// to the parameter declaration.
298 void
299 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                 Expr *DefaultArg) {
301   if (!param || !DefaultArg)
302     return;
303 
304   ParmVarDecl *Param = cast<ParmVarDecl>(param);
305   UnparsedDefaultArgLocs.erase(Param);
306 
307   // Default arguments are only permitted in C++
308   if (!getLangOpts().CPlusPlus) {
309     Diag(EqualLoc, diag::err_param_default_argument)
310       << DefaultArg->getSourceRange();
311     Param->setInvalidDecl();
312     return;
313   }
314 
315   // Check for unexpanded parameter packs.
316   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317     Param->setInvalidDecl();
318     return;
319   }
320 
321   // C++11 [dcl.fct.default]p3
322   //   A default argument expression [...] shall not be specified for a
323   //   parameter pack.
324   if (Param->isParameterPack()) {
325     Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
326         << DefaultArg->getSourceRange();
327     return;
328   }
329 
330   // Check that the default argument is well-formed
331   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
332   if (DefaultArgChecker.Visit(DefaultArg)) {
333     Param->setInvalidDecl();
334     return;
335   }
336 
337   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
338 }
339 
340 /// ActOnParamUnparsedDefaultArgument - We've seen a default
341 /// argument for a function parameter, but we can't parse it yet
342 /// because we're inside a class definition. Note that this default
343 /// argument will be parsed later.
344 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
345                                              SourceLocation EqualLoc,
346                                              SourceLocation ArgLoc) {
347   if (!param)
348     return;
349 
350   ParmVarDecl *Param = cast<ParmVarDecl>(param);
351   Param->setUnparsedDefaultArg();
352   UnparsedDefaultArgLocs[Param] = ArgLoc;
353 }
354 
355 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
356 /// the default argument for the parameter param failed.
357 void Sema::ActOnParamDefaultArgumentError(Decl *param,
358                                           SourceLocation EqualLoc) {
359   if (!param)
360     return;
361 
362   ParmVarDecl *Param = cast<ParmVarDecl>(param);
363   Param->setInvalidDecl();
364   UnparsedDefaultArgLocs.erase(Param);
365   Param->setDefaultArg(new(Context)
366                        OpaqueValueExpr(EqualLoc,
367                                        Param->getType().getNonReferenceType(),
368                                        VK_RValue));
369 }
370 
371 /// CheckExtraCXXDefaultArguments - Check for any extra default
372 /// arguments in the declarator, which is not a function declaration
373 /// or definition and therefore is not permitted to have default
374 /// arguments. This routine should be invoked for every declarator
375 /// that is not a function declaration or definition.
376 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
377   // C++ [dcl.fct.default]p3
378   //   A default argument expression shall be specified only in the
379   //   parameter-declaration-clause of a function declaration or in a
380   //   template-parameter (14.1). It shall not be specified for a
381   //   parameter pack. If it is specified in a
382   //   parameter-declaration-clause, it shall not occur within a
383   //   declarator or abstract-declarator of a parameter-declaration.
384   bool MightBeFunction = D.isFunctionDeclarationContext();
385   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
386     DeclaratorChunk &chunk = D.getTypeObject(i);
387     if (chunk.Kind == DeclaratorChunk::Function) {
388       if (MightBeFunction) {
389         // This is a function declaration. It can have default arguments, but
390         // keep looking in case its return type is a function type with default
391         // arguments.
392         MightBeFunction = false;
393         continue;
394       }
395       for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
396            ++argIdx) {
397         ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
398         if (Param->hasUnparsedDefaultArg()) {
399           std::unique_ptr<CachedTokens> Toks =
400               std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
401           SourceRange SR;
402           if (Toks->size() > 1)
403             SR = SourceRange((*Toks)[1].getLocation(),
404                              Toks->back().getLocation());
405           else
406             SR = UnparsedDefaultArgLocs[Param];
407           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
408             << SR;
409         } else if (Param->getDefaultArg()) {
410           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
411             << Param->getDefaultArg()->getSourceRange();
412           Param->setDefaultArg(nullptr);
413         }
414       }
415     } else if (chunk.Kind != DeclaratorChunk::Paren) {
416       MightBeFunction = false;
417     }
418   }
419 }
420 
421 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
422   for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
423     const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
424     if (!PVD->hasDefaultArg())
425       return false;
426     if (!PVD->hasInheritedDefaultArg())
427       return true;
428   }
429   return false;
430 }
431 
432 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
433 /// function, once we already know that they have the same
434 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
435 /// error, false otherwise.
436 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
437                                 Scope *S) {
438   bool Invalid = false;
439 
440   // The declaration context corresponding to the scope is the semantic
441   // parent, unless this is a local function declaration, in which case
442   // it is that surrounding function.
443   DeclContext *ScopeDC = New->isLocalExternDecl()
444                              ? New->getLexicalDeclContext()
445                              : New->getDeclContext();
446 
447   // Find the previous declaration for the purpose of default arguments.
448   FunctionDecl *PrevForDefaultArgs = Old;
449   for (/**/; PrevForDefaultArgs;
450        // Don't bother looking back past the latest decl if this is a local
451        // extern declaration; nothing else could work.
452        PrevForDefaultArgs = New->isLocalExternDecl()
453                                 ? nullptr
454                                 : PrevForDefaultArgs->getPreviousDecl()) {
455     // Ignore hidden declarations.
456     if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
457       continue;
458 
459     if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
460         !New->isCXXClassMember()) {
461       // Ignore default arguments of old decl if they are not in
462       // the same scope and this is not an out-of-line definition of
463       // a member function.
464       continue;
465     }
466 
467     if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
468       // If only one of these is a local function declaration, then they are
469       // declared in different scopes, even though isDeclInScope may think
470       // they're in the same scope. (If both are local, the scope check is
471       // sufficient, and if neither is local, then they are in the same scope.)
472       continue;
473     }
474 
475     // We found the right previous declaration.
476     break;
477   }
478 
479   // C++ [dcl.fct.default]p4:
480   //   For non-template functions, default arguments can be added in
481   //   later declarations of a function in the same
482   //   scope. Declarations in different scopes have completely
483   //   distinct sets of default arguments. That is, declarations in
484   //   inner scopes do not acquire default arguments from
485   //   declarations in outer scopes, and vice versa. In a given
486   //   function declaration, all parameters subsequent to a
487   //   parameter with a default argument shall have default
488   //   arguments supplied in this or previous declarations. A
489   //   default argument shall not be redefined by a later
490   //   declaration (not even to the same value).
491   //
492   // C++ [dcl.fct.default]p6:
493   //   Except for member functions of class templates, the default arguments
494   //   in a member function definition that appears outside of the class
495   //   definition are added to the set of default arguments provided by the
496   //   member function declaration in the class definition.
497   for (unsigned p = 0, NumParams = PrevForDefaultArgs
498                                        ? PrevForDefaultArgs->getNumParams()
499                                        : 0;
500        p < NumParams; ++p) {
501     ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
502     ParmVarDecl *NewParam = New->getParamDecl(p);
503 
504     bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
505     bool NewParamHasDfl = NewParam->hasDefaultArg();
506 
507     if (OldParamHasDfl && NewParamHasDfl) {
508       unsigned DiagDefaultParamID =
509         diag::err_param_default_argument_redefinition;
510 
511       // MSVC accepts that default parameters be redefined for member functions
512       // of template class. The new default parameter's value is ignored.
513       Invalid = true;
514       if (getLangOpts().MicrosoftExt) {
515         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
516         if (MD && MD->getParent()->getDescribedClassTemplate()) {
517           // Merge the old default argument into the new parameter.
518           NewParam->setHasInheritedDefaultArg();
519           if (OldParam->hasUninstantiatedDefaultArg())
520             NewParam->setUninstantiatedDefaultArg(
521                                       OldParam->getUninstantiatedDefaultArg());
522           else
523             NewParam->setDefaultArg(OldParam->getInit());
524           DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
525           Invalid = false;
526         }
527       }
528 
529       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
530       // hint here. Alternatively, we could walk the type-source information
531       // for NewParam to find the last source location in the type... but it
532       // isn't worth the effort right now. This is the kind of test case that
533       // is hard to get right:
534       //   int f(int);
535       //   void g(int (*fp)(int) = f);
536       //   void g(int (*fp)(int) = &f);
537       Diag(NewParam->getLocation(), DiagDefaultParamID)
538         << NewParam->getDefaultArgRange();
539 
540       // Look for the function declaration where the default argument was
541       // actually written, which may be a declaration prior to Old.
542       for (auto Older = PrevForDefaultArgs;
543            OldParam->hasInheritedDefaultArg(); /**/) {
544         Older = Older->getPreviousDecl();
545         OldParam = Older->getParamDecl(p);
546       }
547 
548       Diag(OldParam->getLocation(), diag::note_previous_definition)
549         << OldParam->getDefaultArgRange();
550     } else if (OldParamHasDfl) {
551       // Merge the old default argument into the new parameter unless the new
552       // function is a friend declaration in a template class. In the latter
553       // case the default arguments will be inherited when the friend
554       // declaration will be instantiated.
555       if (New->getFriendObjectKind() == Decl::FOK_None ||
556           !New->getLexicalDeclContext()->isDependentContext()) {
557         // It's important to use getInit() here;  getDefaultArg()
558         // strips off any top-level ExprWithCleanups.
559         NewParam->setHasInheritedDefaultArg();
560         if (OldParam->hasUnparsedDefaultArg())
561           NewParam->setUnparsedDefaultArg();
562         else if (OldParam->hasUninstantiatedDefaultArg())
563           NewParam->setUninstantiatedDefaultArg(
564                                        OldParam->getUninstantiatedDefaultArg());
565         else
566           NewParam->setDefaultArg(OldParam->getInit());
567       }
568     } else if (NewParamHasDfl) {
569       if (New->getDescribedFunctionTemplate()) {
570         // Paragraph 4, quoted above, only applies to non-template functions.
571         Diag(NewParam->getLocation(),
572              diag::err_param_default_argument_template_redecl)
573           << NewParam->getDefaultArgRange();
574         Diag(PrevForDefaultArgs->getLocation(),
575              diag::note_template_prev_declaration)
576             << false;
577       } else if (New->getTemplateSpecializationKind()
578                    != TSK_ImplicitInstantiation &&
579                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
580         // C++ [temp.expr.spec]p21:
581         //   Default function arguments shall not be specified in a declaration
582         //   or a definition for one of the following explicit specializations:
583         //     - the explicit specialization of a function template;
584         //     - the explicit specialization of a member function template;
585         //     - the explicit specialization of a member function of a class
586         //       template where the class template specialization to which the
587         //       member function specialization belongs is implicitly
588         //       instantiated.
589         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
590           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
591           << New->getDeclName()
592           << NewParam->getDefaultArgRange();
593       } else if (New->getDeclContext()->isDependentContext()) {
594         // C++ [dcl.fct.default]p6 (DR217):
595         //   Default arguments for a member function of a class template shall
596         //   be specified on the initial declaration of the member function
597         //   within the class template.
598         //
599         // Reading the tea leaves a bit in DR217 and its reference to DR205
600         // leads me to the conclusion that one cannot add default function
601         // arguments for an out-of-line definition of a member function of a
602         // dependent type.
603         int WhichKind = 2;
604         if (CXXRecordDecl *Record
605               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
606           if (Record->getDescribedClassTemplate())
607             WhichKind = 0;
608           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
609             WhichKind = 1;
610           else
611             WhichKind = 2;
612         }
613 
614         Diag(NewParam->getLocation(),
615              diag::err_param_default_argument_member_template_redecl)
616           << WhichKind
617           << NewParam->getDefaultArgRange();
618       }
619     }
620   }
621 
622   // DR1344: If a default argument is added outside a class definition and that
623   // default argument makes the function a special member function, the program
624   // is ill-formed. This can only happen for constructors.
625   if (isa<CXXConstructorDecl>(New) &&
626       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
627     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
628                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
629     if (NewSM != OldSM) {
630       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
631       assert(NewParam->hasDefaultArg());
632       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
633         << NewParam->getDefaultArgRange() << NewSM;
634       Diag(Old->getLocation(), diag::note_previous_declaration);
635     }
636   }
637 
638   const FunctionDecl *Def;
639   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
640   // template has a constexpr specifier then all its declarations shall
641   // contain the constexpr specifier.
642   if (New->getConstexprKind() != Old->getConstexprKind()) {
643     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
644         << New << New->getConstexprKind() << Old->getConstexprKind();
645     Diag(Old->getLocation(), diag::note_previous_declaration);
646     Invalid = true;
647   } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
648              Old->isDefined(Def) &&
649              // If a friend function is inlined but does not have 'inline'
650              // specifier, it is a definition. Do not report attribute conflict
651              // in this case, redefinition will be diagnosed later.
652              (New->isInlineSpecified() ||
653               New->getFriendObjectKind() == Decl::FOK_None)) {
654     // C++11 [dcl.fcn.spec]p4:
655     //   If the definition of a function appears in a translation unit before its
656     //   first declaration as inline, the program is ill-formed.
657     Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
658     Diag(Def->getLocation(), diag::note_previous_definition);
659     Invalid = true;
660   }
661 
662   // C++17 [temp.deduct.guide]p3:
663   //   Two deduction guide declarations in the same translation unit
664   //   for the same class template shall not have equivalent
665   //   parameter-declaration-clauses.
666   if (isa<CXXDeductionGuideDecl>(New) &&
667       !New->isFunctionTemplateSpecialization()) {
668     Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
669     Diag(Old->getLocation(), diag::note_previous_declaration);
670   }
671 
672   // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
673   // argument expression, that declaration shall be a definition and shall be
674   // the only declaration of the function or function template in the
675   // translation unit.
676   if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
677       functionDeclHasDefaultArgument(Old)) {
678     Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
679     Diag(Old->getLocation(), diag::note_previous_declaration);
680     Invalid = true;
681   }
682 
683   return Invalid;
684 }
685 
686 NamedDecl *
687 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
688                                    MultiTemplateParamsArg TemplateParamLists) {
689   assert(D.isDecompositionDeclarator());
690   const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
691 
692   // The syntax only allows a decomposition declarator as a simple-declaration,
693   // a for-range-declaration, or a condition in Clang, but we parse it in more
694   // cases than that.
695   if (!D.mayHaveDecompositionDeclarator()) {
696     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
697       << Decomp.getSourceRange();
698     return nullptr;
699   }
700 
701   if (!TemplateParamLists.empty()) {
702     // FIXME: There's no rule against this, but there are also no rules that
703     // would actually make it usable, so we reject it for now.
704     Diag(TemplateParamLists.front()->getTemplateLoc(),
705          diag::err_decomp_decl_template);
706     return nullptr;
707   }
708 
709   Diag(Decomp.getLSquareLoc(),
710        !getLangOpts().CPlusPlus17
711            ? diag::ext_decomp_decl
712            : D.getContext() == DeclaratorContext::ConditionContext
713                  ? diag::ext_decomp_decl_cond
714                  : diag::warn_cxx14_compat_decomp_decl)
715       << Decomp.getSourceRange();
716 
717   // The semantic context is always just the current context.
718   DeclContext *const DC = CurContext;
719 
720   // C++17 [dcl.dcl]/8:
721   //   The decl-specifier-seq shall contain only the type-specifier auto
722   //   and cv-qualifiers.
723   // C++2a [dcl.dcl]/8:
724   //   If decl-specifier-seq contains any decl-specifier other than static,
725   //   thread_local, auto, or cv-qualifiers, the program is ill-formed.
726   auto &DS = D.getDeclSpec();
727   {
728     SmallVector<StringRef, 8> BadSpecifiers;
729     SmallVector<SourceLocation, 8> BadSpecifierLocs;
730     SmallVector<StringRef, 8> CPlusPlus20Specifiers;
731     SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
732     if (auto SCS = DS.getStorageClassSpec()) {
733       if (SCS == DeclSpec::SCS_static) {
734         CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
735         CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
736       } else {
737         BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
738         BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
739       }
740     }
741     if (auto TSCS = DS.getThreadStorageClassSpec()) {
742       CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
743       CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
744     }
745     if (DS.hasConstexprSpecifier()) {
746       BadSpecifiers.push_back(
747           DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
748       BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
749     }
750     if (DS.isInlineSpecified()) {
751       BadSpecifiers.push_back("inline");
752       BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
753     }
754     if (!BadSpecifiers.empty()) {
755       auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
756       Err << (int)BadSpecifiers.size()
757           << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
758       // Don't add FixItHints to remove the specifiers; we do still respect
759       // them when building the underlying variable.
760       for (auto Loc : BadSpecifierLocs)
761         Err << SourceRange(Loc, Loc);
762     } else if (!CPlusPlus20Specifiers.empty()) {
763       auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
764                          getLangOpts().CPlusPlus2a
765                              ? diag::warn_cxx17_compat_decomp_decl_spec
766                              : diag::ext_decomp_decl_spec);
767       Warn << (int)CPlusPlus20Specifiers.size()
768            << llvm::join(CPlusPlus20Specifiers.begin(),
769                          CPlusPlus20Specifiers.end(), " ");
770       for (auto Loc : CPlusPlus20SpecifierLocs)
771         Warn << SourceRange(Loc, Loc);
772     }
773     // We can't recover from it being declared as a typedef.
774     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
775       return nullptr;
776   }
777 
778   // C++2a [dcl.struct.bind]p1:
779   //   A cv that includes volatile is deprecated
780   if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
781       getLangOpts().CPlusPlus2a)
782     Diag(DS.getVolatileSpecLoc(),
783          diag::warn_deprecated_volatile_structured_binding);
784 
785   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
786   QualType R = TInfo->getType();
787 
788   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
789                                       UPPC_DeclarationType))
790     D.setInvalidType();
791 
792   // The syntax only allows a single ref-qualifier prior to the decomposition
793   // declarator. No other declarator chunks are permitted. Also check the type
794   // specifier here.
795   if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
796       D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
797       (D.getNumTypeObjects() == 1 &&
798        D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
799     Diag(Decomp.getLSquareLoc(),
800          (D.hasGroupingParens() ||
801           (D.getNumTypeObjects() &&
802            D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
803              ? diag::err_decomp_decl_parens
804              : diag::err_decomp_decl_type)
805         << R;
806 
807     // In most cases, there's no actual problem with an explicitly-specified
808     // type, but a function type won't work here, and ActOnVariableDeclarator
809     // shouldn't be called for such a type.
810     if (R->isFunctionType())
811       D.setInvalidType();
812   }
813 
814   // Build the BindingDecls.
815   SmallVector<BindingDecl*, 8> Bindings;
816 
817   // Build the BindingDecls.
818   for (auto &B : D.getDecompositionDeclarator().bindings()) {
819     // Check for name conflicts.
820     DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
821     LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
822                           ForVisibleRedeclaration);
823     LookupName(Previous, S,
824                /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
825 
826     // It's not permitted to shadow a template parameter name.
827     if (Previous.isSingleResult() &&
828         Previous.getFoundDecl()->isTemplateParameter()) {
829       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
830                                       Previous.getFoundDecl());
831       Previous.clear();
832     }
833 
834     bool ConsiderLinkage = DC->isFunctionOrMethod() &&
835                            DS.getStorageClassSpec() == DeclSpec::SCS_extern;
836     FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
837                          /*AllowInlineNamespace*/false);
838     if (!Previous.empty()) {
839       auto *Old = Previous.getRepresentativeDecl();
840       Diag(B.NameLoc, diag::err_redefinition) << B.Name;
841       Diag(Old->getLocation(), diag::note_previous_definition);
842     }
843 
844     auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
845     PushOnScopeChains(BD, S, true);
846     Bindings.push_back(BD);
847     ParsingInitForAutoVars.insert(BD);
848   }
849 
850   // There are no prior lookup results for the variable itself, because it
851   // is unnamed.
852   DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
853                                Decomp.getLSquareLoc());
854   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
855                         ForVisibleRedeclaration);
856 
857   // Build the variable that holds the non-decomposed object.
858   bool AddToScope = true;
859   NamedDecl *New =
860       ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
861                               MultiTemplateParamsArg(), AddToScope, Bindings);
862   if (AddToScope) {
863     S->AddDecl(New);
864     CurContext->addHiddenDecl(New);
865   }
866 
867   if (isInOpenMPDeclareTargetContext())
868     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
869 
870   return New;
871 }
872 
873 static bool checkSimpleDecomposition(
874     Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
875     QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
876     llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
877   if ((int64_t)Bindings.size() != NumElems) {
878     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
879         << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
880         << (NumElems < Bindings.size());
881     return true;
882   }
883 
884   unsigned I = 0;
885   for (auto *B : Bindings) {
886     SourceLocation Loc = B->getLocation();
887     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
888     if (E.isInvalid())
889       return true;
890     E = GetInit(Loc, E.get(), I++);
891     if (E.isInvalid())
892       return true;
893     B->setBinding(ElemType, E.get());
894   }
895 
896   return false;
897 }
898 
899 static bool checkArrayLikeDecomposition(Sema &S,
900                                         ArrayRef<BindingDecl *> Bindings,
901                                         ValueDecl *Src, QualType DecompType,
902                                         const llvm::APSInt &NumElems,
903                                         QualType ElemType) {
904   return checkSimpleDecomposition(
905       S, Bindings, Src, DecompType, NumElems, ElemType,
906       [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
907         ExprResult E = S.ActOnIntegerConstant(Loc, I);
908         if (E.isInvalid())
909           return ExprError();
910         return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
911       });
912 }
913 
914 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
915                                     ValueDecl *Src, QualType DecompType,
916                                     const ConstantArrayType *CAT) {
917   return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
918                                      llvm::APSInt(CAT->getSize()),
919                                      CAT->getElementType());
920 }
921 
922 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
923                                      ValueDecl *Src, QualType DecompType,
924                                      const VectorType *VT) {
925   return checkArrayLikeDecomposition(
926       S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
927       S.Context.getQualifiedType(VT->getElementType(),
928                                  DecompType.getQualifiers()));
929 }
930 
931 static bool checkComplexDecomposition(Sema &S,
932                                       ArrayRef<BindingDecl *> Bindings,
933                                       ValueDecl *Src, QualType DecompType,
934                                       const ComplexType *CT) {
935   return checkSimpleDecomposition(
936       S, Bindings, Src, DecompType, llvm::APSInt::get(2),
937       S.Context.getQualifiedType(CT->getElementType(),
938                                  DecompType.getQualifiers()),
939       [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
940         return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
941       });
942 }
943 
944 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
945                                      TemplateArgumentListInfo &Args) {
946   SmallString<128> SS;
947   llvm::raw_svector_ostream OS(SS);
948   bool First = true;
949   for (auto &Arg : Args.arguments()) {
950     if (!First)
951       OS << ", ";
952     Arg.getArgument().print(PrintingPolicy, OS);
953     First = false;
954   }
955   return OS.str();
956 }
957 
958 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
959                                      SourceLocation Loc, StringRef Trait,
960                                      TemplateArgumentListInfo &Args,
961                                      unsigned DiagID) {
962   auto DiagnoseMissing = [&] {
963     if (DiagID)
964       S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
965                                                Args);
966     return true;
967   };
968 
969   // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
970   NamespaceDecl *Std = S.getStdNamespace();
971   if (!Std)
972     return DiagnoseMissing();
973 
974   // Look up the trait itself, within namespace std. We can diagnose various
975   // problems with this lookup even if we've been asked to not diagnose a
976   // missing specialization, because this can only fail if the user has been
977   // declaring their own names in namespace std or we don't support the
978   // standard library implementation in use.
979   LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
980                       Loc, Sema::LookupOrdinaryName);
981   if (!S.LookupQualifiedName(Result, Std))
982     return DiagnoseMissing();
983   if (Result.isAmbiguous())
984     return true;
985 
986   ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
987   if (!TraitTD) {
988     Result.suppressDiagnostics();
989     NamedDecl *Found = *Result.begin();
990     S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
991     S.Diag(Found->getLocation(), diag::note_declared_at);
992     return true;
993   }
994 
995   // Build the template-id.
996   QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
997   if (TraitTy.isNull())
998     return true;
999   if (!S.isCompleteType(Loc, TraitTy)) {
1000     if (DiagID)
1001       S.RequireCompleteType(
1002           Loc, TraitTy, DiagID,
1003           printTemplateArgs(S.Context.getPrintingPolicy(), Args));
1004     return true;
1005   }
1006 
1007   CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1008   assert(RD && "specialization of class template is not a class?");
1009 
1010   // Look up the member of the trait type.
1011   S.LookupQualifiedName(TraitMemberLookup, RD);
1012   return TraitMemberLookup.isAmbiguous();
1013 }
1014 
1015 static TemplateArgumentLoc
1016 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1017                                    uint64_t I) {
1018   TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1019   return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1020 }
1021 
1022 static TemplateArgumentLoc
1023 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1024   return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1025 }
1026 
1027 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1028 
1029 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1030                                llvm::APSInt &Size) {
1031   EnterExpressionEvaluationContext ContextRAII(
1032       S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1033 
1034   DeclarationName Value = S.PP.getIdentifierInfo("value");
1035   LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1036 
1037   // Form template argument list for tuple_size<T>.
1038   TemplateArgumentListInfo Args(Loc, Loc);
1039   Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1040 
1041   // If there's no tuple_size specialization or the lookup of 'value' is empty,
1042   // it's not tuple-like.
1043   if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1044       R.empty())
1045     return IsTupleLike::NotTupleLike;
1046 
1047   // If we get this far, we've committed to the tuple interpretation, but
1048   // we can still fail if there actually isn't a usable ::value.
1049 
1050   struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1051     LookupResult &R;
1052     TemplateArgumentListInfo &Args;
1053     ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1054         : R(R), Args(Args) {}
1055     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1056       S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1057           << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1058     }
1059   } Diagnoser(R, Args);
1060 
1061   ExprResult E =
1062       S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1063   if (E.isInvalid())
1064     return IsTupleLike::Error;
1065 
1066   E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1067   if (E.isInvalid())
1068     return IsTupleLike::Error;
1069 
1070   return IsTupleLike::TupleLike;
1071 }
1072 
1073 /// \return std::tuple_element<I, T>::type.
1074 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1075                                         unsigned I, QualType T) {
1076   // Form template argument list for tuple_element<I, T>.
1077   TemplateArgumentListInfo Args(Loc, Loc);
1078   Args.addArgument(
1079       getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1080   Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1081 
1082   DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1083   LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1084   if (lookupStdTypeTraitMember(
1085           S, R, Loc, "tuple_element", Args,
1086           diag::err_decomp_decl_std_tuple_element_not_specialized))
1087     return QualType();
1088 
1089   auto *TD = R.getAsSingle<TypeDecl>();
1090   if (!TD) {
1091     R.suppressDiagnostics();
1092     S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1093       << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1094     if (!R.empty())
1095       S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1096     return QualType();
1097   }
1098 
1099   return S.Context.getTypeDeclType(TD);
1100 }
1101 
1102 namespace {
1103 struct BindingDiagnosticTrap {
1104   Sema &S;
1105   DiagnosticErrorTrap Trap;
1106   BindingDecl *BD;
1107 
1108   BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1109       : S(S), Trap(S.Diags), BD(BD) {}
1110   ~BindingDiagnosticTrap() {
1111     if (Trap.hasErrorOccurred())
1112       S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1113   }
1114 };
1115 }
1116 
1117 static bool checkTupleLikeDecomposition(Sema &S,
1118                                         ArrayRef<BindingDecl *> Bindings,
1119                                         VarDecl *Src, QualType DecompType,
1120                                         const llvm::APSInt &TupleSize) {
1121   if ((int64_t)Bindings.size() != TupleSize) {
1122     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1123         << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1124         << (TupleSize < Bindings.size());
1125     return true;
1126   }
1127 
1128   if (Bindings.empty())
1129     return false;
1130 
1131   DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1132 
1133   // [dcl.decomp]p3:
1134   //   The unqualified-id get is looked up in the scope of E by class member
1135   //   access lookup ...
1136   LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1137   bool UseMemberGet = false;
1138   if (S.isCompleteType(Src->getLocation(), DecompType)) {
1139     if (auto *RD = DecompType->getAsCXXRecordDecl())
1140       S.LookupQualifiedName(MemberGet, RD);
1141     if (MemberGet.isAmbiguous())
1142       return true;
1143     //   ... and if that finds at least one declaration that is a function
1144     //   template whose first template parameter is a non-type parameter ...
1145     for (NamedDecl *D : MemberGet) {
1146       if (FunctionTemplateDecl *FTD =
1147               dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1148         TemplateParameterList *TPL = FTD->getTemplateParameters();
1149         if (TPL->size() != 0 &&
1150             isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1151           //   ... the initializer is e.get<i>().
1152           UseMemberGet = true;
1153           break;
1154         }
1155       }
1156     }
1157   }
1158 
1159   unsigned I = 0;
1160   for (auto *B : Bindings) {
1161     BindingDiagnosticTrap Trap(S, B);
1162     SourceLocation Loc = B->getLocation();
1163 
1164     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1165     if (E.isInvalid())
1166       return true;
1167 
1168     //   e is an lvalue if the type of the entity is an lvalue reference and
1169     //   an xvalue otherwise
1170     if (!Src->getType()->isLValueReferenceType())
1171       E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1172                                    E.get(), nullptr, VK_XValue);
1173 
1174     TemplateArgumentListInfo Args(Loc, Loc);
1175     Args.addArgument(
1176         getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1177 
1178     if (UseMemberGet) {
1179       //   if [lookup of member get] finds at least one declaration, the
1180       //   initializer is e.get<i-1>().
1181       E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1182                                      CXXScopeSpec(), SourceLocation(), nullptr,
1183                                      MemberGet, &Args, nullptr);
1184       if (E.isInvalid())
1185         return true;
1186 
1187       E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1188     } else {
1189       //   Otherwise, the initializer is get<i-1>(e), where get is looked up
1190       //   in the associated namespaces.
1191       Expr *Get = UnresolvedLookupExpr::Create(
1192           S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1193           DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1194           UnresolvedSetIterator(), UnresolvedSetIterator());
1195 
1196       Expr *Arg = E.get();
1197       E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1198     }
1199     if (E.isInvalid())
1200       return true;
1201     Expr *Init = E.get();
1202 
1203     //   Given the type T designated by std::tuple_element<i - 1, E>::type,
1204     QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1205     if (T.isNull())
1206       return true;
1207 
1208     //   each vi is a variable of type "reference to T" initialized with the
1209     //   initializer, where the reference is an lvalue reference if the
1210     //   initializer is an lvalue and an rvalue reference otherwise
1211     QualType RefType =
1212         S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1213     if (RefType.isNull())
1214       return true;
1215     auto *RefVD = VarDecl::Create(
1216         S.Context, Src->getDeclContext(), Loc, Loc,
1217         B->getDeclName().getAsIdentifierInfo(), RefType,
1218         S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1219     RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1220     RefVD->setTSCSpec(Src->getTSCSpec());
1221     RefVD->setImplicit();
1222     if (Src->isInlineSpecified())
1223       RefVD->setInlineSpecified();
1224     RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1225 
1226     InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1227     InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1228     InitializationSequence Seq(S, Entity, Kind, Init);
1229     E = Seq.Perform(S, Entity, Kind, Init);
1230     if (E.isInvalid())
1231       return true;
1232     E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1233     if (E.isInvalid())
1234       return true;
1235     RefVD->setInit(E.get());
1236     if (!E.get()->isValueDependent())
1237       RefVD->checkInitIsICE();
1238 
1239     E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1240                                    DeclarationNameInfo(B->getDeclName(), Loc),
1241                                    RefVD);
1242     if (E.isInvalid())
1243       return true;
1244 
1245     B->setBinding(T, E.get());
1246     I++;
1247   }
1248 
1249   return false;
1250 }
1251 
1252 /// Find the base class to decompose in a built-in decomposition of a class type.
1253 /// This base class search is, unfortunately, not quite like any other that we
1254 /// perform anywhere else in C++.
1255 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1256                                                 const CXXRecordDecl *RD,
1257                                                 CXXCastPath &BasePath) {
1258   auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1259                           CXXBasePath &Path) {
1260     return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1261   };
1262 
1263   const CXXRecordDecl *ClassWithFields = nullptr;
1264   AccessSpecifier AS = AS_public;
1265   if (RD->hasDirectFields())
1266     // [dcl.decomp]p4:
1267     //   Otherwise, all of E's non-static data members shall be public direct
1268     //   members of E ...
1269     ClassWithFields = RD;
1270   else {
1271     //   ... or of ...
1272     CXXBasePaths Paths;
1273     Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1274     if (!RD->lookupInBases(BaseHasFields, Paths)) {
1275       // If no classes have fields, just decompose RD itself. (This will work
1276       // if and only if zero bindings were provided.)
1277       return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1278     }
1279 
1280     CXXBasePath *BestPath = nullptr;
1281     for (auto &P : Paths) {
1282       if (!BestPath)
1283         BestPath = &P;
1284       else if (!S.Context.hasSameType(P.back().Base->getType(),
1285                                       BestPath->back().Base->getType())) {
1286         //   ... the same ...
1287         S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1288           << false << RD << BestPath->back().Base->getType()
1289           << P.back().Base->getType();
1290         return DeclAccessPair();
1291       } else if (P.Access < BestPath->Access) {
1292         BestPath = &P;
1293       }
1294     }
1295 
1296     //   ... unambiguous ...
1297     QualType BaseType = BestPath->back().Base->getType();
1298     if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1299       S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1300         << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1301       return DeclAccessPair();
1302     }
1303 
1304     //   ... [accessible, implied by other rules] base class of E.
1305     S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1306                            *BestPath, diag::err_decomp_decl_inaccessible_base);
1307     AS = BestPath->Access;
1308 
1309     ClassWithFields = BaseType->getAsCXXRecordDecl();
1310     S.BuildBasePathArray(Paths, BasePath);
1311   }
1312 
1313   // The above search did not check whether the selected class itself has base
1314   // classes with fields, so check that now.
1315   CXXBasePaths Paths;
1316   if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1317     S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1318       << (ClassWithFields == RD) << RD << ClassWithFields
1319       << Paths.front().back().Base->getType();
1320     return DeclAccessPair();
1321   }
1322 
1323   return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1324 }
1325 
1326 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1327                                      ValueDecl *Src, QualType DecompType,
1328                                      const CXXRecordDecl *OrigRD) {
1329   if (S.RequireCompleteType(Src->getLocation(), DecompType,
1330                             diag::err_incomplete_type))
1331     return true;
1332 
1333   CXXCastPath BasePath;
1334   DeclAccessPair BasePair =
1335       findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1336   const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1337   if (!RD)
1338     return true;
1339   QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1340                                                  DecompType.getQualifiers());
1341 
1342   auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1343     unsigned NumFields =
1344         std::count_if(RD->field_begin(), RD->field_end(),
1345                       [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1346     assert(Bindings.size() != NumFields);
1347     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1348         << DecompType << (unsigned)Bindings.size() << NumFields
1349         << (NumFields < Bindings.size());
1350     return true;
1351   };
1352 
1353   //   all of E's non-static data members shall be [...] well-formed
1354   //   when named as e.name in the context of the structured binding,
1355   //   E shall not have an anonymous union member, ...
1356   unsigned I = 0;
1357   for (auto *FD : RD->fields()) {
1358     if (FD->isUnnamedBitfield())
1359       continue;
1360 
1361     if (FD->isAnonymousStructOrUnion()) {
1362       S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1363         << DecompType << FD->getType()->isUnionType();
1364       S.Diag(FD->getLocation(), diag::note_declared_at);
1365       return true;
1366     }
1367 
1368     // We have a real field to bind.
1369     if (I >= Bindings.size())
1370       return DiagnoseBadNumberOfBindings();
1371     auto *B = Bindings[I++];
1372     SourceLocation Loc = B->getLocation();
1373 
1374     // The field must be accessible in the context of the structured binding.
1375     // We already checked that the base class is accessible.
1376     // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1377     // const_cast here.
1378     S.CheckStructuredBindingMemberAccess(
1379         Loc, const_cast<CXXRecordDecl *>(OrigRD),
1380         DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1381                                      BasePair.getAccess(), FD->getAccess())));
1382 
1383     // Initialize the binding to Src.FD.
1384     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1385     if (E.isInvalid())
1386       return true;
1387     E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1388                             VK_LValue, &BasePath);
1389     if (E.isInvalid())
1390       return true;
1391     E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1392                                   CXXScopeSpec(), FD,
1393                                   DeclAccessPair::make(FD, FD->getAccess()),
1394                                   DeclarationNameInfo(FD->getDeclName(), Loc));
1395     if (E.isInvalid())
1396       return true;
1397 
1398     // If the type of the member is T, the referenced type is cv T, where cv is
1399     // the cv-qualification of the decomposition expression.
1400     //
1401     // FIXME: We resolve a defect here: if the field is mutable, we do not add
1402     // 'const' to the type of the field.
1403     Qualifiers Q = DecompType.getQualifiers();
1404     if (FD->isMutable())
1405       Q.removeConst();
1406     B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1407   }
1408 
1409   if (I != Bindings.size())
1410     return DiagnoseBadNumberOfBindings();
1411 
1412   return false;
1413 }
1414 
1415 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1416   QualType DecompType = DD->getType();
1417 
1418   // If the type of the decomposition is dependent, then so is the type of
1419   // each binding.
1420   if (DecompType->isDependentType()) {
1421     for (auto *B : DD->bindings())
1422       B->setType(Context.DependentTy);
1423     return;
1424   }
1425 
1426   DecompType = DecompType.getNonReferenceType();
1427   ArrayRef<BindingDecl*> Bindings = DD->bindings();
1428 
1429   // C++1z [dcl.decomp]/2:
1430   //   If E is an array type [...]
1431   // As an extension, we also support decomposition of built-in complex and
1432   // vector types.
1433   if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1434     if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1435       DD->setInvalidDecl();
1436     return;
1437   }
1438   if (auto *VT = DecompType->getAs<VectorType>()) {
1439     if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1440       DD->setInvalidDecl();
1441     return;
1442   }
1443   if (auto *CT = DecompType->getAs<ComplexType>()) {
1444     if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1445       DD->setInvalidDecl();
1446     return;
1447   }
1448 
1449   // C++1z [dcl.decomp]/3:
1450   //   if the expression std::tuple_size<E>::value is a well-formed integral
1451   //   constant expression, [...]
1452   llvm::APSInt TupleSize(32);
1453   switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1454   case IsTupleLike::Error:
1455     DD->setInvalidDecl();
1456     return;
1457 
1458   case IsTupleLike::TupleLike:
1459     if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1460       DD->setInvalidDecl();
1461     return;
1462 
1463   case IsTupleLike::NotTupleLike:
1464     break;
1465   }
1466 
1467   // C++1z [dcl.dcl]/8:
1468   //   [E shall be of array or non-union class type]
1469   CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1470   if (!RD || RD->isUnion()) {
1471     Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1472         << DD << !RD << DecompType;
1473     DD->setInvalidDecl();
1474     return;
1475   }
1476 
1477   // C++1z [dcl.decomp]/4:
1478   //   all of E's non-static data members shall be [...] direct members of
1479   //   E or of the same unambiguous public base class of E, ...
1480   if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1481     DD->setInvalidDecl();
1482 }
1483 
1484 /// Merge the exception specifications of two variable declarations.
1485 ///
1486 /// This is called when there's a redeclaration of a VarDecl. The function
1487 /// checks if the redeclaration might have an exception specification and
1488 /// validates compatibility and merges the specs if necessary.
1489 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1490   // Shortcut if exceptions are disabled.
1491   if (!getLangOpts().CXXExceptions)
1492     return;
1493 
1494   assert(Context.hasSameType(New->getType(), Old->getType()) &&
1495          "Should only be called if types are otherwise the same.");
1496 
1497   QualType NewType = New->getType();
1498   QualType OldType = Old->getType();
1499 
1500   // We're only interested in pointers and references to functions, as well
1501   // as pointers to member functions.
1502   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1503     NewType = R->getPointeeType();
1504     OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1505   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1506     NewType = P->getPointeeType();
1507     OldType = OldType->castAs<PointerType>()->getPointeeType();
1508   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1509     NewType = M->getPointeeType();
1510     OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1511   }
1512 
1513   if (!NewType->isFunctionProtoType())
1514     return;
1515 
1516   // There's lots of special cases for functions. For function pointers, system
1517   // libraries are hopefully not as broken so that we don't need these
1518   // workarounds.
1519   if (CheckEquivalentExceptionSpec(
1520         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1521         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1522     New->setInvalidDecl();
1523   }
1524 }
1525 
1526 /// CheckCXXDefaultArguments - Verify that the default arguments for a
1527 /// function declaration are well-formed according to C++
1528 /// [dcl.fct.default].
1529 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1530   unsigned NumParams = FD->getNumParams();
1531   unsigned p;
1532 
1533   // Find first parameter with a default argument
1534   for (p = 0; p < NumParams; ++p) {
1535     ParmVarDecl *Param = FD->getParamDecl(p);
1536     if (Param->hasDefaultArg())
1537       break;
1538   }
1539 
1540   // C++11 [dcl.fct.default]p4:
1541   //   In a given function declaration, each parameter subsequent to a parameter
1542   //   with a default argument shall have a default argument supplied in this or
1543   //   a previous declaration or shall be a function parameter pack. A default
1544   //   argument shall not be redefined by a later declaration (not even to the
1545   //   same value).
1546   unsigned LastMissingDefaultArg = 0;
1547   for (; p < NumParams; ++p) {
1548     ParmVarDecl *Param = FD->getParamDecl(p);
1549     if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1550       if (Param->isInvalidDecl())
1551         /* We already complained about this parameter. */;
1552       else if (Param->getIdentifier())
1553         Diag(Param->getLocation(),
1554              diag::err_param_default_argument_missing_name)
1555           << Param->getIdentifier();
1556       else
1557         Diag(Param->getLocation(),
1558              diag::err_param_default_argument_missing);
1559 
1560       LastMissingDefaultArg = p;
1561     }
1562   }
1563 
1564   if (LastMissingDefaultArg > 0) {
1565     // Some default arguments were missing. Clear out all of the
1566     // default arguments up to (and including) the last missing
1567     // default argument, so that we leave the function parameters
1568     // in a semantically valid state.
1569     for (p = 0; p <= LastMissingDefaultArg; ++p) {
1570       ParmVarDecl *Param = FD->getParamDecl(p);
1571       if (Param->hasDefaultArg()) {
1572         Param->setDefaultArg(nullptr);
1573       }
1574     }
1575   }
1576 }
1577 
1578 /// Check that the given type is a literal type. Issue a diagnostic if not,
1579 /// if Kind is Diagnose.
1580 /// \return \c true if a problem has been found (and optionally diagnosed).
1581 template <typename... Ts>
1582 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1583                              SourceLocation Loc, QualType T, unsigned DiagID,
1584                              Ts &&...DiagArgs) {
1585   if (T->isDependentType())
1586     return false;
1587 
1588   switch (Kind) {
1589   case Sema::CheckConstexprKind::Diagnose:
1590     return SemaRef.RequireLiteralType(Loc, T, DiagID,
1591                                       std::forward<Ts>(DiagArgs)...);
1592 
1593   case Sema::CheckConstexprKind::CheckValid:
1594     return !T->isLiteralType(SemaRef.Context);
1595   }
1596 
1597   llvm_unreachable("unknown CheckConstexprKind");
1598 }
1599 
1600 /// Determine whether a destructor cannot be constexpr due to
1601 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1602                                                const CXXDestructorDecl *DD,
1603                                                Sema::CheckConstexprKind Kind) {
1604   auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1605     const CXXRecordDecl *RD =
1606         T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1607     if (!RD || RD->hasConstexprDestructor())
1608       return true;
1609 
1610     if (Kind == Sema::CheckConstexprKind::Diagnose) {
1611       SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1612           << DD->getConstexprKind() << !FD
1613           << (FD ? FD->getDeclName() : DeclarationName()) << T;
1614       SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1615           << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1616     }
1617     return false;
1618   };
1619 
1620   const CXXRecordDecl *RD = DD->getParent();
1621   for (const CXXBaseSpecifier &B : RD->bases())
1622     if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1623       return false;
1624   for (const FieldDecl *FD : RD->fields())
1625     if (!Check(FD->getLocation(), FD->getType(), FD))
1626       return false;
1627   return true;
1628 }
1629 
1630 /// Check whether a function's parameter types are all literal types. If so,
1631 /// return true. If not, produce a suitable diagnostic and return false.
1632 static bool CheckConstexprParameterTypes(Sema &SemaRef,
1633                                          const FunctionDecl *FD,
1634                                          Sema::CheckConstexprKind Kind) {
1635   unsigned ArgIndex = 0;
1636   const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1637   for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1638                                               e = FT->param_type_end();
1639        i != e; ++i, ++ArgIndex) {
1640     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1641     SourceLocation ParamLoc = PD->getLocation();
1642     if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1643                          diag::err_constexpr_non_literal_param, ArgIndex + 1,
1644                          PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1645                          FD->isConsteval()))
1646       return false;
1647   }
1648   return true;
1649 }
1650 
1651 /// Check whether a function's return type is a literal type. If so, return
1652 /// true. If not, produce a suitable diagnostic and return false.
1653 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1654                                      Sema::CheckConstexprKind Kind) {
1655   if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1656                        diag::err_constexpr_non_literal_return,
1657                        FD->isConsteval()))
1658     return false;
1659   return true;
1660 }
1661 
1662 /// Get diagnostic %select index for tag kind for
1663 /// record diagnostic message.
1664 /// WARNING: Indexes apply to particular diagnostics only!
1665 ///
1666 /// \returns diagnostic %select index.
1667 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1668   switch (Tag) {
1669   case TTK_Struct: return 0;
1670   case TTK_Interface: return 1;
1671   case TTK_Class:  return 2;
1672   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
1673   }
1674 }
1675 
1676 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1677                                        Stmt *Body,
1678                                        Sema::CheckConstexprKind Kind);
1679 
1680 // Check whether a function declaration satisfies the requirements of a
1681 // constexpr function definition or a constexpr constructor definition. If so,
1682 // return true. If not, produce appropriate diagnostics (unless asked not to by
1683 // Kind) and return false.
1684 //
1685 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1686 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1687                                             CheckConstexprKind Kind) {
1688   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1689   if (MD && MD->isInstance()) {
1690     // C++11 [dcl.constexpr]p4:
1691     //  The definition of a constexpr constructor shall satisfy the following
1692     //  constraints:
1693     //  - the class shall not have any virtual base classes;
1694     //
1695     // FIXME: This only applies to constructors and destructors, not arbitrary
1696     // member functions.
1697     const CXXRecordDecl *RD = MD->getParent();
1698     if (RD->getNumVBases()) {
1699       if (Kind == CheckConstexprKind::CheckValid)
1700         return false;
1701 
1702       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1703         << isa<CXXConstructorDecl>(NewFD)
1704         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1705       for (const auto &I : RD->vbases())
1706         Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1707             << I.getSourceRange();
1708       return false;
1709     }
1710   }
1711 
1712   if (!isa<CXXConstructorDecl>(NewFD)) {
1713     // C++11 [dcl.constexpr]p3:
1714     //  The definition of a constexpr function shall satisfy the following
1715     //  constraints:
1716     // - it shall not be virtual; (removed in C++20)
1717     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1718     if (Method && Method->isVirtual()) {
1719       if (getLangOpts().CPlusPlus2a) {
1720         if (Kind == CheckConstexprKind::Diagnose)
1721           Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1722       } else {
1723         if (Kind == CheckConstexprKind::CheckValid)
1724           return false;
1725 
1726         Method = Method->getCanonicalDecl();
1727         Diag(Method->getLocation(), diag::err_constexpr_virtual);
1728 
1729         // If it's not obvious why this function is virtual, find an overridden
1730         // function which uses the 'virtual' keyword.
1731         const CXXMethodDecl *WrittenVirtual = Method;
1732         while (!WrittenVirtual->isVirtualAsWritten())
1733           WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1734         if (WrittenVirtual != Method)
1735           Diag(WrittenVirtual->getLocation(),
1736                diag::note_overridden_virtual_function);
1737         return false;
1738       }
1739     }
1740 
1741     // - its return type shall be a literal type;
1742     if (!CheckConstexprReturnType(*this, NewFD, Kind))
1743       return false;
1744   }
1745 
1746   if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1747     // A destructor can be constexpr only if the defaulted destructor could be;
1748     // we don't need to check the members and bases if we already know they all
1749     // have constexpr destructors.
1750     if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1751       if (Kind == CheckConstexprKind::CheckValid)
1752         return false;
1753       if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1754         return false;
1755     }
1756   }
1757 
1758   // - each of its parameter types shall be a literal type;
1759   if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1760     return false;
1761 
1762   Stmt *Body = NewFD->getBody();
1763   assert(Body &&
1764          "CheckConstexprFunctionDefinition called on function with no body");
1765   return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1766 }
1767 
1768 /// Check the given declaration statement is legal within a constexpr function
1769 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1770 ///
1771 /// \return true if the body is OK (maybe only as an extension), false if we
1772 ///         have diagnosed a problem.
1773 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1774                                    DeclStmt *DS, SourceLocation &Cxx1yLoc,
1775                                    Sema::CheckConstexprKind Kind) {
1776   // C++11 [dcl.constexpr]p3 and p4:
1777   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
1778   //  contain only
1779   for (const auto *DclIt : DS->decls()) {
1780     switch (DclIt->getKind()) {
1781     case Decl::StaticAssert:
1782     case Decl::Using:
1783     case Decl::UsingShadow:
1784     case Decl::UsingDirective:
1785     case Decl::UnresolvedUsingTypename:
1786     case Decl::UnresolvedUsingValue:
1787       //   - static_assert-declarations
1788       //   - using-declarations,
1789       //   - using-directives,
1790       continue;
1791 
1792     case Decl::Typedef:
1793     case Decl::TypeAlias: {
1794       //   - typedef declarations and alias-declarations that do not define
1795       //     classes or enumerations,
1796       const auto *TN = cast<TypedefNameDecl>(DclIt);
1797       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1798         // Don't allow variably-modified types in constexpr functions.
1799         if (Kind == Sema::CheckConstexprKind::Diagnose) {
1800           TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1801           SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1802             << TL.getSourceRange() << TL.getType()
1803             << isa<CXXConstructorDecl>(Dcl);
1804         }
1805         return false;
1806       }
1807       continue;
1808     }
1809 
1810     case Decl::Enum:
1811     case Decl::CXXRecord:
1812       // C++1y allows types to be defined, not just declared.
1813       if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1814         if (Kind == Sema::CheckConstexprKind::Diagnose) {
1815           SemaRef.Diag(DS->getBeginLoc(),
1816                        SemaRef.getLangOpts().CPlusPlus14
1817                            ? diag::warn_cxx11_compat_constexpr_type_definition
1818                            : diag::ext_constexpr_type_definition)
1819               << isa<CXXConstructorDecl>(Dcl);
1820         } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1821           return false;
1822         }
1823       }
1824       continue;
1825 
1826     case Decl::EnumConstant:
1827     case Decl::IndirectField:
1828     case Decl::ParmVar:
1829       // These can only appear with other declarations which are banned in
1830       // C++11 and permitted in C++1y, so ignore them.
1831       continue;
1832 
1833     case Decl::Var:
1834     case Decl::Decomposition: {
1835       // C++1y [dcl.constexpr]p3 allows anything except:
1836       //   a definition of a variable of non-literal type or of static or
1837       //   thread storage duration or [before C++2a] for which no
1838       //   initialization is performed.
1839       const auto *VD = cast<VarDecl>(DclIt);
1840       if (VD->isThisDeclarationADefinition()) {
1841         if (VD->isStaticLocal()) {
1842           if (Kind == Sema::CheckConstexprKind::Diagnose) {
1843             SemaRef.Diag(VD->getLocation(),
1844                          diag::err_constexpr_local_var_static)
1845               << isa<CXXConstructorDecl>(Dcl)
1846               << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1847           }
1848           return false;
1849         }
1850         if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1851                              diag::err_constexpr_local_var_non_literal_type,
1852                              isa<CXXConstructorDecl>(Dcl)))
1853           return false;
1854         if (!VD->getType()->isDependentType() &&
1855             !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1856           if (Kind == Sema::CheckConstexprKind::Diagnose) {
1857             SemaRef.Diag(
1858                 VD->getLocation(),
1859                 SemaRef.getLangOpts().CPlusPlus2a
1860                     ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1861                     : diag::ext_constexpr_local_var_no_init)
1862                 << isa<CXXConstructorDecl>(Dcl);
1863           } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
1864             return false;
1865           }
1866           continue;
1867         }
1868       }
1869       if (Kind == Sema::CheckConstexprKind::Diagnose) {
1870         SemaRef.Diag(VD->getLocation(),
1871                      SemaRef.getLangOpts().CPlusPlus14
1872                       ? diag::warn_cxx11_compat_constexpr_local_var
1873                       : diag::ext_constexpr_local_var)
1874           << isa<CXXConstructorDecl>(Dcl);
1875       } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1876         return false;
1877       }
1878       continue;
1879     }
1880 
1881     case Decl::NamespaceAlias:
1882     case Decl::Function:
1883       // These are disallowed in C++11 and permitted in C++1y. Allow them
1884       // everywhere as an extension.
1885       if (!Cxx1yLoc.isValid())
1886         Cxx1yLoc = DS->getBeginLoc();
1887       continue;
1888 
1889     default:
1890       if (Kind == Sema::CheckConstexprKind::Diagnose) {
1891         SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1892             << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1893       }
1894       return false;
1895     }
1896   }
1897 
1898   return true;
1899 }
1900 
1901 /// Check that the given field is initialized within a constexpr constructor.
1902 ///
1903 /// \param Dcl The constexpr constructor being checked.
1904 /// \param Field The field being checked. This may be a member of an anonymous
1905 ///        struct or union nested within the class being checked.
1906 /// \param Inits All declarations, including anonymous struct/union members and
1907 ///        indirect members, for which any initialization was provided.
1908 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1909 ///        multiple notes for different members to the same error.
1910 /// \param Kind Whether we're diagnosing a constructor as written or determining
1911 ///        whether the formal requirements are satisfied.
1912 /// \return \c false if we're checking for validity and the constructor does
1913 ///         not satisfy the requirements on a constexpr constructor.
1914 static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1915                                           const FunctionDecl *Dcl,
1916                                           FieldDecl *Field,
1917                                           llvm::SmallSet<Decl*, 16> &Inits,
1918                                           bool &Diagnosed,
1919                                           Sema::CheckConstexprKind Kind) {
1920   // In C++20 onwards, there's nothing to check for validity.
1921   if (Kind == Sema::CheckConstexprKind::CheckValid &&
1922       SemaRef.getLangOpts().CPlusPlus2a)
1923     return true;
1924 
1925   if (Field->isInvalidDecl())
1926     return true;
1927 
1928   if (Field->isUnnamedBitfield())
1929     return true;
1930 
1931   // Anonymous unions with no variant members and empty anonymous structs do not
1932   // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1933   // indirect fields don't need initializing.
1934   if (Field->isAnonymousStructOrUnion() &&
1935       (Field->getType()->isUnionType()
1936            ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1937            : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1938     return true;
1939 
1940   if (!Inits.count(Field)) {
1941     if (Kind == Sema::CheckConstexprKind::Diagnose) {
1942       if (!Diagnosed) {
1943         SemaRef.Diag(Dcl->getLocation(),
1944                      SemaRef.getLangOpts().CPlusPlus2a
1945                          ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1946                          : diag::ext_constexpr_ctor_missing_init);
1947         Diagnosed = true;
1948       }
1949       SemaRef.Diag(Field->getLocation(),
1950                    diag::note_constexpr_ctor_missing_init);
1951     } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
1952       return false;
1953     }
1954   } else if (Field->isAnonymousStructOrUnion()) {
1955     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1956     for (auto *I : RD->fields())
1957       // If an anonymous union contains an anonymous struct of which any member
1958       // is initialized, all members must be initialized.
1959       if (!RD->isUnion() || Inits.count(I))
1960         if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
1961                                            Kind))
1962           return false;
1963   }
1964   return true;
1965 }
1966 
1967 /// Check the provided statement is allowed in a constexpr function
1968 /// definition.
1969 static bool
1970 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1971                            SmallVectorImpl<SourceLocation> &ReturnStmts,
1972                            SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
1973                            Sema::CheckConstexprKind Kind) {
1974   // - its function-body shall be [...] a compound-statement that contains only
1975   switch (S->getStmtClass()) {
1976   case Stmt::NullStmtClass:
1977     //   - null statements,
1978     return true;
1979 
1980   case Stmt::DeclStmtClass:
1981     //   - static_assert-declarations
1982     //   - using-declarations,
1983     //   - using-directives,
1984     //   - typedef declarations and alias-declarations that do not define
1985     //     classes or enumerations,
1986     if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
1987       return false;
1988     return true;
1989 
1990   case Stmt::ReturnStmtClass:
1991     //   - and exactly one return statement;
1992     if (isa<CXXConstructorDecl>(Dcl)) {
1993       // C++1y allows return statements in constexpr constructors.
1994       if (!Cxx1yLoc.isValid())
1995         Cxx1yLoc = S->getBeginLoc();
1996       return true;
1997     }
1998 
1999     ReturnStmts.push_back(S->getBeginLoc());
2000     return true;
2001 
2002   case Stmt::CompoundStmtClass: {
2003     // C++1y allows compound-statements.
2004     if (!Cxx1yLoc.isValid())
2005       Cxx1yLoc = S->getBeginLoc();
2006 
2007     CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2008     for (auto *BodyIt : CompStmt->body()) {
2009       if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2010                                       Cxx1yLoc, Cxx2aLoc, Kind))
2011         return false;
2012     }
2013     return true;
2014   }
2015 
2016   case Stmt::AttributedStmtClass:
2017     if (!Cxx1yLoc.isValid())
2018       Cxx1yLoc = S->getBeginLoc();
2019     return true;
2020 
2021   case Stmt::IfStmtClass: {
2022     // C++1y allows if-statements.
2023     if (!Cxx1yLoc.isValid())
2024       Cxx1yLoc = S->getBeginLoc();
2025 
2026     IfStmt *If = cast<IfStmt>(S);
2027     if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2028                                     Cxx1yLoc, Cxx2aLoc, Kind))
2029       return false;
2030     if (If->getElse() &&
2031         !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2032                                     Cxx1yLoc, Cxx2aLoc, Kind))
2033       return false;
2034     return true;
2035   }
2036 
2037   case Stmt::WhileStmtClass:
2038   case Stmt::DoStmtClass:
2039   case Stmt::ForStmtClass:
2040   case Stmt::CXXForRangeStmtClass:
2041   case Stmt::ContinueStmtClass:
2042     // C++1y allows all of these. We don't allow them as extensions in C++11,
2043     // because they don't make sense without variable mutation.
2044     if (!SemaRef.getLangOpts().CPlusPlus14)
2045       break;
2046     if (!Cxx1yLoc.isValid())
2047       Cxx1yLoc = S->getBeginLoc();
2048     for (Stmt *SubStmt : S->children())
2049       if (SubStmt &&
2050           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2051                                       Cxx1yLoc, Cxx2aLoc, Kind))
2052         return false;
2053     return true;
2054 
2055   case Stmt::SwitchStmtClass:
2056   case Stmt::CaseStmtClass:
2057   case Stmt::DefaultStmtClass:
2058   case Stmt::BreakStmtClass:
2059     // C++1y allows switch-statements, and since they don't need variable
2060     // mutation, we can reasonably allow them in C++11 as an extension.
2061     if (!Cxx1yLoc.isValid())
2062       Cxx1yLoc = S->getBeginLoc();
2063     for (Stmt *SubStmt : S->children())
2064       if (SubStmt &&
2065           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2066                                       Cxx1yLoc, Cxx2aLoc, Kind))
2067         return false;
2068     return true;
2069 
2070   case Stmt::GCCAsmStmtClass:
2071   case Stmt::MSAsmStmtClass:
2072     // C++2a allows inline assembly statements.
2073   case Stmt::CXXTryStmtClass:
2074     if (Cxx2aLoc.isInvalid())
2075       Cxx2aLoc = S->getBeginLoc();
2076     for (Stmt *SubStmt : S->children()) {
2077       if (SubStmt &&
2078           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2079                                       Cxx1yLoc, Cxx2aLoc, Kind))
2080         return false;
2081     }
2082     return true;
2083 
2084   case Stmt::CXXCatchStmtClass:
2085     // Do not bother checking the language mode (already covered by the
2086     // try block check).
2087     if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2088                                     cast<CXXCatchStmt>(S)->getHandlerBlock(),
2089                                     ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2090       return false;
2091     return true;
2092 
2093   default:
2094     if (!isa<Expr>(S))
2095       break;
2096 
2097     // C++1y allows expression-statements.
2098     if (!Cxx1yLoc.isValid())
2099       Cxx1yLoc = S->getBeginLoc();
2100     return true;
2101   }
2102 
2103   if (Kind == Sema::CheckConstexprKind::Diagnose) {
2104     SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2105         << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2106   }
2107   return false;
2108 }
2109 
2110 /// Check the body for the given constexpr function declaration only contains
2111 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2112 ///
2113 /// \return true if the body is OK, false if we have found or diagnosed a
2114 /// problem.
2115 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2116                                        Stmt *Body,
2117                                        Sema::CheckConstexprKind Kind) {
2118   SmallVector<SourceLocation, 4> ReturnStmts;
2119 
2120   if (isa<CXXTryStmt>(Body)) {
2121     // C++11 [dcl.constexpr]p3:
2122     //  The definition of a constexpr function shall satisfy the following
2123     //  constraints: [...]
2124     // - its function-body shall be = delete, = default, or a
2125     //   compound-statement
2126     //
2127     // C++11 [dcl.constexpr]p4:
2128     //  In the definition of a constexpr constructor, [...]
2129     // - its function-body shall not be a function-try-block;
2130     //
2131     // This restriction is lifted in C++2a, as long as inner statements also
2132     // apply the general constexpr rules.
2133     switch (Kind) {
2134     case Sema::CheckConstexprKind::CheckValid:
2135       if (!SemaRef.getLangOpts().CPlusPlus2a)
2136         return false;
2137       break;
2138 
2139     case Sema::CheckConstexprKind::Diagnose:
2140       SemaRef.Diag(Body->getBeginLoc(),
2141            !SemaRef.getLangOpts().CPlusPlus2a
2142                ? diag::ext_constexpr_function_try_block_cxx2a
2143                : diag::warn_cxx17_compat_constexpr_function_try_block)
2144           << isa<CXXConstructorDecl>(Dcl);
2145       break;
2146     }
2147   }
2148 
2149   // - its function-body shall be [...] a compound-statement that contains only
2150   //   [... list of cases ...]
2151   //
2152   // Note that walking the children here is enough to properly check for
2153   // CompoundStmt and CXXTryStmt body.
2154   SourceLocation Cxx1yLoc, Cxx2aLoc;
2155   for (Stmt *SubStmt : Body->children()) {
2156     if (SubStmt &&
2157         !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2158                                     Cxx1yLoc, Cxx2aLoc, Kind))
2159       return false;
2160   }
2161 
2162   if (Kind == Sema::CheckConstexprKind::CheckValid) {
2163     // If this is only valid as an extension, report that we don't satisfy the
2164     // constraints of the current language.
2165     if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2a) ||
2166         (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2167       return false;
2168   } else if (Cxx2aLoc.isValid()) {
2169     SemaRef.Diag(Cxx2aLoc,
2170          SemaRef.getLangOpts().CPlusPlus2a
2171            ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2172            : diag::ext_constexpr_body_invalid_stmt_cxx2a)
2173       << isa<CXXConstructorDecl>(Dcl);
2174   } else if (Cxx1yLoc.isValid()) {
2175     SemaRef.Diag(Cxx1yLoc,
2176          SemaRef.getLangOpts().CPlusPlus14
2177            ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2178            : diag::ext_constexpr_body_invalid_stmt)
2179       << isa<CXXConstructorDecl>(Dcl);
2180   }
2181 
2182   if (const CXXConstructorDecl *Constructor
2183         = dyn_cast<CXXConstructorDecl>(Dcl)) {
2184     const CXXRecordDecl *RD = Constructor->getParent();
2185     // DR1359:
2186     // - every non-variant non-static data member and base class sub-object
2187     //   shall be initialized;
2188     // DR1460:
2189     // - if the class is a union having variant members, exactly one of them
2190     //   shall be initialized;
2191     if (RD->isUnion()) {
2192       if (Constructor->getNumCtorInitializers() == 0 &&
2193           RD->hasVariantMembers()) {
2194         if (Kind == Sema::CheckConstexprKind::Diagnose) {
2195           SemaRef.Diag(
2196               Dcl->getLocation(),
2197               SemaRef.getLangOpts().CPlusPlus2a
2198                   ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2199                   : diag::ext_constexpr_union_ctor_no_init);
2200         } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
2201           return false;
2202         }
2203       }
2204     } else if (!Constructor->isDependentContext() &&
2205                !Constructor->isDelegatingConstructor()) {
2206       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
2207 
2208       // Skip detailed checking if we have enough initializers, and we would
2209       // allow at most one initializer per member.
2210       bool AnyAnonStructUnionMembers = false;
2211       unsigned Fields = 0;
2212       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2213            E = RD->field_end(); I != E; ++I, ++Fields) {
2214         if (I->isAnonymousStructOrUnion()) {
2215           AnyAnonStructUnionMembers = true;
2216           break;
2217         }
2218       }
2219       // DR1460:
2220       // - if the class is a union-like class, but is not a union, for each of
2221       //   its anonymous union members having variant members, exactly one of
2222       //   them shall be initialized;
2223       if (AnyAnonStructUnionMembers ||
2224           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2225         // Check initialization of non-static data members. Base classes are
2226         // always initialized so do not need to be checked. Dependent bases
2227         // might not have initializers in the member initializer list.
2228         llvm::SmallSet<Decl*, 16> Inits;
2229         for (const auto *I: Constructor->inits()) {
2230           if (FieldDecl *FD = I->getMember())
2231             Inits.insert(FD);
2232           else if (IndirectFieldDecl *ID = I->getIndirectMember())
2233             Inits.insert(ID->chain_begin(), ID->chain_end());
2234         }
2235 
2236         bool Diagnosed = false;
2237         for (auto *I : RD->fields())
2238           if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2239                                              Kind))
2240             return false;
2241       }
2242     }
2243   } else {
2244     if (ReturnStmts.empty()) {
2245       // C++1y doesn't require constexpr functions to contain a 'return'
2246       // statement. We still do, unless the return type might be void, because
2247       // otherwise if there's no return statement, the function cannot
2248       // be used in a core constant expression.
2249       bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2250                 (Dcl->getReturnType()->isVoidType() ||
2251                  Dcl->getReturnType()->isDependentType());
2252       switch (Kind) {
2253       case Sema::CheckConstexprKind::Diagnose:
2254         SemaRef.Diag(Dcl->getLocation(),
2255                      OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2256                         : diag::err_constexpr_body_no_return)
2257             << Dcl->isConsteval();
2258         if (!OK)
2259           return false;
2260         break;
2261 
2262       case Sema::CheckConstexprKind::CheckValid:
2263         // The formal requirements don't include this rule in C++14, even
2264         // though the "must be able to produce a constant expression" rules
2265         // still imply it in some cases.
2266         if (!SemaRef.getLangOpts().CPlusPlus14)
2267           return false;
2268         break;
2269       }
2270     } else if (ReturnStmts.size() > 1) {
2271       switch (Kind) {
2272       case Sema::CheckConstexprKind::Diagnose:
2273         SemaRef.Diag(
2274             ReturnStmts.back(),
2275             SemaRef.getLangOpts().CPlusPlus14
2276                 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2277                 : diag::ext_constexpr_body_multiple_return);
2278         for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2279           SemaRef.Diag(ReturnStmts[I],
2280                        diag::note_constexpr_body_previous_return);
2281         break;
2282 
2283       case Sema::CheckConstexprKind::CheckValid:
2284         if (!SemaRef.getLangOpts().CPlusPlus14)
2285           return false;
2286         break;
2287       }
2288     }
2289   }
2290 
2291   // C++11 [dcl.constexpr]p5:
2292   //   if no function argument values exist such that the function invocation
2293   //   substitution would produce a constant expression, the program is
2294   //   ill-formed; no diagnostic required.
2295   // C++11 [dcl.constexpr]p3:
2296   //   - every constructor call and implicit conversion used in initializing the
2297   //     return value shall be one of those allowed in a constant expression.
2298   // C++11 [dcl.constexpr]p4:
2299   //   - every constructor involved in initializing non-static data members and
2300   //     base class sub-objects shall be a constexpr constructor.
2301   //
2302   // Note that this rule is distinct from the "requirements for a constexpr
2303   // function", so is not checked in CheckValid mode.
2304   SmallVector<PartialDiagnosticAt, 8> Diags;
2305   if (Kind == Sema::CheckConstexprKind::Diagnose &&
2306       !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2307     SemaRef.Diag(Dcl->getLocation(),
2308                  diag::ext_constexpr_function_never_constant_expr)
2309         << isa<CXXConstructorDecl>(Dcl);
2310     for (size_t I = 0, N = Diags.size(); I != N; ++I)
2311       SemaRef.Diag(Diags[I].first, Diags[I].second);
2312     // Don't return false here: we allow this for compatibility in
2313     // system headers.
2314   }
2315 
2316   return true;
2317 }
2318 
2319 /// Get the class that is directly named by the current context. This is the
2320 /// class for which an unqualified-id in this scope could name a constructor
2321 /// or destructor.
2322 ///
2323 /// If the scope specifier denotes a class, this will be that class.
2324 /// If the scope specifier is empty, this will be the class whose
2325 /// member-specification we are currently within. Otherwise, there
2326 /// is no such class.
2327 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2328   assert(getLangOpts().CPlusPlus && "No class names in C!");
2329 
2330   if (SS && SS->isInvalid())
2331     return nullptr;
2332 
2333   if (SS && SS->isNotEmpty()) {
2334     DeclContext *DC = computeDeclContext(*SS, true);
2335     return dyn_cast_or_null<CXXRecordDecl>(DC);
2336   }
2337 
2338   return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2339 }
2340 
2341 /// isCurrentClassName - Determine whether the identifier II is the
2342 /// name of the class type currently being defined. In the case of
2343 /// nested classes, this will only return true if II is the name of
2344 /// the innermost class.
2345 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2346                               const CXXScopeSpec *SS) {
2347   CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2348   return CurDecl && &II == CurDecl->getIdentifier();
2349 }
2350 
2351 /// Determine whether the identifier II is a typo for the name of
2352 /// the class type currently being defined. If so, update it to the identifier
2353 /// that should have been used.
2354 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2355   assert(getLangOpts().CPlusPlus && "No class names in C!");
2356 
2357   if (!getLangOpts().SpellChecking)
2358     return false;
2359 
2360   CXXRecordDecl *CurDecl;
2361   if (SS && SS->isSet() && !SS->isInvalid()) {
2362     DeclContext *DC = computeDeclContext(*SS, true);
2363     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2364   } else
2365     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2366 
2367   if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2368       3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2369           < II->getLength()) {
2370     II = CurDecl->getIdentifier();
2371     return true;
2372   }
2373 
2374   return false;
2375 }
2376 
2377 /// Determine whether the given class is a base class of the given
2378 /// class, including looking at dependent bases.
2379 static bool findCircularInheritance(const CXXRecordDecl *Class,
2380                                     const CXXRecordDecl *Current) {
2381   SmallVector<const CXXRecordDecl*, 8> Queue;
2382 
2383   Class = Class->getCanonicalDecl();
2384   while (true) {
2385     for (const auto &I : Current->bases()) {
2386       CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2387       if (!Base)
2388         continue;
2389 
2390       Base = Base->getDefinition();
2391       if (!Base)
2392         continue;
2393 
2394       if (Base->getCanonicalDecl() == Class)
2395         return true;
2396 
2397       Queue.push_back(Base);
2398     }
2399 
2400     if (Queue.empty())
2401       return false;
2402 
2403     Current = Queue.pop_back_val();
2404   }
2405 
2406   return false;
2407 }
2408 
2409 /// Check the validity of a C++ base class specifier.
2410 ///
2411 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2412 /// and returns NULL otherwise.
2413 CXXBaseSpecifier *
2414 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2415                          SourceRange SpecifierRange,
2416                          bool Virtual, AccessSpecifier Access,
2417                          TypeSourceInfo *TInfo,
2418                          SourceLocation EllipsisLoc) {
2419   QualType BaseType = TInfo->getType();
2420 
2421   // C++ [class.union]p1:
2422   //   A union shall not have base classes.
2423   if (Class->isUnion()) {
2424     Diag(Class->getLocation(), diag::err_base_clause_on_union)
2425       << SpecifierRange;
2426     return nullptr;
2427   }
2428 
2429   if (EllipsisLoc.isValid() &&
2430       !TInfo->getType()->containsUnexpandedParameterPack()) {
2431     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2432       << TInfo->getTypeLoc().getSourceRange();
2433     EllipsisLoc = SourceLocation();
2434   }
2435 
2436   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2437 
2438   if (BaseType->isDependentType()) {
2439     // Make sure that we don't have circular inheritance among our dependent
2440     // bases. For non-dependent bases, the check for completeness below handles
2441     // this.
2442     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2443       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2444           ((BaseDecl = BaseDecl->getDefinition()) &&
2445            findCircularInheritance(Class, BaseDecl))) {
2446         Diag(BaseLoc, diag::err_circular_inheritance)
2447           << BaseType << Context.getTypeDeclType(Class);
2448 
2449         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2450           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2451             << BaseType;
2452 
2453         return nullptr;
2454       }
2455     }
2456 
2457     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2458                                           Class->getTagKind() == TTK_Class,
2459                                           Access, TInfo, EllipsisLoc);
2460   }
2461 
2462   // Base specifiers must be record types.
2463   if (!BaseType->isRecordType()) {
2464     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2465     return nullptr;
2466   }
2467 
2468   // C++ [class.union]p1:
2469   //   A union shall not be used as a base class.
2470   if (BaseType->isUnionType()) {
2471     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2472     return nullptr;
2473   }
2474 
2475   // For the MS ABI, propagate DLL attributes to base class templates.
2476   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2477     if (Attr *ClassAttr = getDLLAttr(Class)) {
2478       if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2479               BaseType->getAsCXXRecordDecl())) {
2480         propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2481                                             BaseLoc);
2482       }
2483     }
2484   }
2485 
2486   // C++ [class.derived]p2:
2487   //   The class-name in a base-specifier shall not be an incompletely
2488   //   defined class.
2489   if (RequireCompleteType(BaseLoc, BaseType,
2490                           diag::err_incomplete_base_class, SpecifierRange)) {
2491     Class->setInvalidDecl();
2492     return nullptr;
2493   }
2494 
2495   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2496   RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2497   assert(BaseDecl && "Record type has no declaration");
2498   BaseDecl = BaseDecl->getDefinition();
2499   assert(BaseDecl && "Base type is not incomplete, but has no definition");
2500   CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2501   assert(CXXBaseDecl && "Base type is not a C++ type");
2502 
2503   // Microsoft docs say:
2504   // "If a base-class has a code_seg attribute, derived classes must have the
2505   // same attribute."
2506   const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2507   const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2508   if ((DerivedCSA || BaseCSA) &&
2509       (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2510     Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2511     Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2512       << CXXBaseDecl;
2513     return nullptr;
2514   }
2515 
2516   // A class which contains a flexible array member is not suitable for use as a
2517   // base class:
2518   //   - If the layout determines that a base comes before another base,
2519   //     the flexible array member would index into the subsequent base.
2520   //   - If the layout determines that base comes before the derived class,
2521   //     the flexible array member would index into the derived class.
2522   if (CXXBaseDecl->hasFlexibleArrayMember()) {
2523     Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2524       << CXXBaseDecl->getDeclName();
2525     return nullptr;
2526   }
2527 
2528   // C++ [class]p3:
2529   //   If a class is marked final and it appears as a base-type-specifier in
2530   //   base-clause, the program is ill-formed.
2531   if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2532     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2533       << CXXBaseDecl->getDeclName()
2534       << FA->isSpelledAsSealed();
2535     Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2536         << CXXBaseDecl->getDeclName() << FA->getRange();
2537     return nullptr;
2538   }
2539 
2540   if (BaseDecl->isInvalidDecl())
2541     Class->setInvalidDecl();
2542 
2543   // Create the base specifier.
2544   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2545                                         Class->getTagKind() == TTK_Class,
2546                                         Access, TInfo, EllipsisLoc);
2547 }
2548 
2549 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2550 /// one entry in the base class list of a class specifier, for
2551 /// example:
2552 ///    class foo : public bar, virtual private baz {
2553 /// 'public bar' and 'virtual private baz' are each base-specifiers.
2554 BaseResult
2555 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2556                          ParsedAttributes &Attributes,
2557                          bool Virtual, AccessSpecifier Access,
2558                          ParsedType basetype, SourceLocation BaseLoc,
2559                          SourceLocation EllipsisLoc) {
2560   if (!classdecl)
2561     return true;
2562 
2563   AdjustDeclIfTemplate(classdecl);
2564   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2565   if (!Class)
2566     return true;
2567 
2568   // We haven't yet attached the base specifiers.
2569   Class->setIsParsingBaseSpecifiers();
2570 
2571   // We do not support any C++11 attributes on base-specifiers yet.
2572   // Diagnose any attributes we see.
2573   for (const ParsedAttr &AL : Attributes) {
2574     if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2575       continue;
2576     Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2577                           ? (unsigned)diag::warn_unknown_attribute_ignored
2578                           : (unsigned)diag::err_base_specifier_attribute)
2579         << AL;
2580   }
2581 
2582   TypeSourceInfo *TInfo = nullptr;
2583   GetTypeFromParser(basetype, &TInfo);
2584 
2585   if (EllipsisLoc.isInvalid() &&
2586       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2587                                       UPPC_BaseType))
2588     return true;
2589 
2590   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2591                                                       Virtual, Access, TInfo,
2592                                                       EllipsisLoc))
2593     return BaseSpec;
2594   else
2595     Class->setInvalidDecl();
2596 
2597   return true;
2598 }
2599 
2600 /// Use small set to collect indirect bases.  As this is only used
2601 /// locally, there's no need to abstract the small size parameter.
2602 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2603 
2604 /// Recursively add the bases of Type.  Don't add Type itself.
2605 static void
2606 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2607                   const QualType &Type)
2608 {
2609   // Even though the incoming type is a base, it might not be
2610   // a class -- it could be a template parm, for instance.
2611   if (auto Rec = Type->getAs<RecordType>()) {
2612     auto Decl = Rec->getAsCXXRecordDecl();
2613 
2614     // Iterate over its bases.
2615     for (const auto &BaseSpec : Decl->bases()) {
2616       QualType Base = Context.getCanonicalType(BaseSpec.getType())
2617         .getUnqualifiedType();
2618       if (Set.insert(Base).second)
2619         // If we've not already seen it, recurse.
2620         NoteIndirectBases(Context, Set, Base);
2621     }
2622   }
2623 }
2624 
2625 /// Performs the actual work of attaching the given base class
2626 /// specifiers to a C++ class.
2627 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2628                                 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2629  if (Bases.empty())
2630     return false;
2631 
2632   // Used to keep track of which base types we have already seen, so
2633   // that we can properly diagnose redundant direct base types. Note
2634   // that the key is always the unqualified canonical type of the base
2635   // class.
2636   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2637 
2638   // Used to track indirect bases so we can see if a direct base is
2639   // ambiguous.
2640   IndirectBaseSet IndirectBaseTypes;
2641 
2642   // Copy non-redundant base specifiers into permanent storage.
2643   unsigned NumGoodBases = 0;
2644   bool Invalid = false;
2645   for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2646     QualType NewBaseType
2647       = Context.getCanonicalType(Bases[idx]->getType());
2648     NewBaseType = NewBaseType.getLocalUnqualifiedType();
2649 
2650     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2651     if (KnownBase) {
2652       // C++ [class.mi]p3:
2653       //   A class shall not be specified as a direct base class of a
2654       //   derived class more than once.
2655       Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2656           << KnownBase->getType() << Bases[idx]->getSourceRange();
2657 
2658       // Delete the duplicate base class specifier; we're going to
2659       // overwrite its pointer later.
2660       Context.Deallocate(Bases[idx]);
2661 
2662       Invalid = true;
2663     } else {
2664       // Okay, add this new base class.
2665       KnownBase = Bases[idx];
2666       Bases[NumGoodBases++] = Bases[idx];
2667 
2668       // Note this base's direct & indirect bases, if there could be ambiguity.
2669       if (Bases.size() > 1)
2670         NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2671 
2672       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2673         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2674         if (Class->isInterface() &&
2675               (!RD->isInterfaceLike() ||
2676                KnownBase->getAccessSpecifier() != AS_public)) {
2677           // The Microsoft extension __interface does not permit bases that
2678           // are not themselves public interfaces.
2679           Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2680               << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2681               << RD->getSourceRange();
2682           Invalid = true;
2683         }
2684         if (RD->hasAttr<WeakAttr>())
2685           Class->addAttr(WeakAttr::CreateImplicit(Context));
2686       }
2687     }
2688   }
2689 
2690   // Attach the remaining base class specifiers to the derived class.
2691   Class->setBases(Bases.data(), NumGoodBases);
2692 
2693   // Check that the only base classes that are duplicate are virtual.
2694   for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2695     // Check whether this direct base is inaccessible due to ambiguity.
2696     QualType BaseType = Bases[idx]->getType();
2697 
2698     // Skip all dependent types in templates being used as base specifiers.
2699     // Checks below assume that the base specifier is a CXXRecord.
2700     if (BaseType->isDependentType())
2701       continue;
2702 
2703     CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2704       .getUnqualifiedType();
2705 
2706     if (IndirectBaseTypes.count(CanonicalBase)) {
2707       CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2708                          /*DetectVirtual=*/true);
2709       bool found
2710         = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2711       assert(found);
2712       (void)found;
2713 
2714       if (Paths.isAmbiguous(CanonicalBase))
2715         Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2716             << BaseType << getAmbiguousPathsDisplayString(Paths)
2717             << Bases[idx]->getSourceRange();
2718       else
2719         assert(Bases[idx]->isVirtual());
2720     }
2721 
2722     // Delete the base class specifier, since its data has been copied
2723     // into the CXXRecordDecl.
2724     Context.Deallocate(Bases[idx]);
2725   }
2726 
2727   return Invalid;
2728 }
2729 
2730 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
2731 /// class, after checking whether there are any duplicate base
2732 /// classes.
2733 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2734                                MutableArrayRef<CXXBaseSpecifier *> Bases) {
2735   if (!ClassDecl || Bases.empty())
2736     return;
2737 
2738   AdjustDeclIfTemplate(ClassDecl);
2739   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2740 }
2741 
2742 /// Determine whether the type \p Derived is a C++ class that is
2743 /// derived from the type \p Base.
2744 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2745   if (!getLangOpts().CPlusPlus)
2746     return false;
2747 
2748   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2749   if (!DerivedRD)
2750     return false;
2751 
2752   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2753   if (!BaseRD)
2754     return false;
2755 
2756   // If either the base or the derived type is invalid, don't try to
2757   // check whether one is derived from the other.
2758   if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2759     return false;
2760 
2761   // FIXME: In a modules build, do we need the entire path to be visible for us
2762   // to be able to use the inheritance relationship?
2763   if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2764     return false;
2765 
2766   return DerivedRD->isDerivedFrom(BaseRD);
2767 }
2768 
2769 /// Determine whether the type \p Derived is a C++ class that is
2770 /// derived from the type \p Base.
2771 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2772                          CXXBasePaths &Paths) {
2773   if (!getLangOpts().CPlusPlus)
2774     return false;
2775 
2776   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2777   if (!DerivedRD)
2778     return false;
2779 
2780   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2781   if (!BaseRD)
2782     return false;
2783 
2784   if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2785     return false;
2786 
2787   return DerivedRD->isDerivedFrom(BaseRD, Paths);
2788 }
2789 
2790 static void BuildBasePathArray(const CXXBasePath &Path,
2791                                CXXCastPath &BasePathArray) {
2792   // We first go backward and check if we have a virtual base.
2793   // FIXME: It would be better if CXXBasePath had the base specifier for
2794   // the nearest virtual base.
2795   unsigned Start = 0;
2796   for (unsigned I = Path.size(); I != 0; --I) {
2797     if (Path[I - 1].Base->isVirtual()) {
2798       Start = I - 1;
2799       break;
2800     }
2801   }
2802 
2803   // Now add all bases.
2804   for (unsigned I = Start, E = Path.size(); I != E; ++I)
2805     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2806 }
2807 
2808 
2809 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2810                               CXXCastPath &BasePathArray) {
2811   assert(BasePathArray.empty() && "Base path array must be empty!");
2812   assert(Paths.isRecordingPaths() && "Must record paths!");
2813   return ::BuildBasePathArray(Paths.front(), BasePathArray);
2814 }
2815 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2816 /// conversion (where Derived and Base are class types) is
2817 /// well-formed, meaning that the conversion is unambiguous (and
2818 /// that all of the base classes are accessible). Returns true
2819 /// and emits a diagnostic if the code is ill-formed, returns false
2820 /// otherwise. Loc is the location where this routine should point to
2821 /// if there is an error, and Range is the source range to highlight
2822 /// if there is an error.
2823 ///
2824 /// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2825 /// diagnostic for the respective type of error will be suppressed, but the
2826 /// check for ill-formed code will still be performed.
2827 bool
2828 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2829                                    unsigned InaccessibleBaseID,
2830                                    unsigned AmbigiousBaseConvID,
2831                                    SourceLocation Loc, SourceRange Range,
2832                                    DeclarationName Name,
2833                                    CXXCastPath *BasePath,
2834                                    bool IgnoreAccess) {
2835   // First, determine whether the path from Derived to Base is
2836   // ambiguous. This is slightly more expensive than checking whether
2837   // the Derived to Base conversion exists, because here we need to
2838   // explore multiple paths to determine if there is an ambiguity.
2839   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2840                      /*DetectVirtual=*/false);
2841   bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2842   if (!DerivationOkay)
2843     return true;
2844 
2845   const CXXBasePath *Path = nullptr;
2846   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2847     Path = &Paths.front();
2848 
2849   // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2850   // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2851   // user to access such bases.
2852   if (!Path && getLangOpts().MSVCCompat) {
2853     for (const CXXBasePath &PossiblePath : Paths) {
2854       if (PossiblePath.size() == 1) {
2855         Path = &PossiblePath;
2856         if (AmbigiousBaseConvID)
2857           Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2858               << Base << Derived << Range;
2859         break;
2860       }
2861     }
2862   }
2863 
2864   if (Path) {
2865     if (!IgnoreAccess) {
2866       // Check that the base class can be accessed.
2867       switch (
2868           CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2869       case AR_inaccessible:
2870         return true;
2871       case AR_accessible:
2872       case AR_dependent:
2873       case AR_delayed:
2874         break;
2875       }
2876     }
2877 
2878     // Build a base path if necessary.
2879     if (BasePath)
2880       ::BuildBasePathArray(*Path, *BasePath);
2881     return false;
2882   }
2883 
2884   if (AmbigiousBaseConvID) {
2885     // We know that the derived-to-base conversion is ambiguous, and
2886     // we're going to produce a diagnostic. Perform the derived-to-base
2887     // search just one more time to compute all of the possible paths so
2888     // that we can print them out. This is more expensive than any of
2889     // the previous derived-to-base checks we've done, but at this point
2890     // performance isn't as much of an issue.
2891     Paths.clear();
2892     Paths.setRecordingPaths(true);
2893     bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2894     assert(StillOkay && "Can only be used with a derived-to-base conversion");
2895     (void)StillOkay;
2896 
2897     // Build up a textual representation of the ambiguous paths, e.g.,
2898     // D -> B -> A, that will be used to illustrate the ambiguous
2899     // conversions in the diagnostic. We only print one of the paths
2900     // to each base class subobject.
2901     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2902 
2903     Diag(Loc, AmbigiousBaseConvID)
2904     << Derived << Base << PathDisplayStr << Range << Name;
2905   }
2906   return true;
2907 }
2908 
2909 bool
2910 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2911                                    SourceLocation Loc, SourceRange Range,
2912                                    CXXCastPath *BasePath,
2913                                    bool IgnoreAccess) {
2914   return CheckDerivedToBaseConversion(
2915       Derived, Base, diag::err_upcast_to_inaccessible_base,
2916       diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2917       BasePath, IgnoreAccess);
2918 }
2919 
2920 
2921 /// Builds a string representing ambiguous paths from a
2922 /// specific derived class to different subobjects of the same base
2923 /// class.
2924 ///
2925 /// This function builds a string that can be used in error messages
2926 /// to show the different paths that one can take through the
2927 /// inheritance hierarchy to go from the derived class to different
2928 /// subobjects of a base class. The result looks something like this:
2929 /// @code
2930 /// struct D -> struct B -> struct A
2931 /// struct D -> struct C -> struct A
2932 /// @endcode
2933 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2934   std::string PathDisplayStr;
2935   std::set<unsigned> DisplayedPaths;
2936   for (CXXBasePaths::paths_iterator Path = Paths.begin();
2937        Path != Paths.end(); ++Path) {
2938     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2939       // We haven't displayed a path to this particular base
2940       // class subobject yet.
2941       PathDisplayStr += "\n    ";
2942       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2943       for (CXXBasePath::const_iterator Element = Path->begin();
2944            Element != Path->end(); ++Element)
2945         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2946     }
2947   }
2948 
2949   return PathDisplayStr;
2950 }
2951 
2952 //===----------------------------------------------------------------------===//
2953 // C++ class member Handling
2954 //===----------------------------------------------------------------------===//
2955 
2956 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2957 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
2958                                 SourceLocation ColonLoc,
2959                                 const ParsedAttributesView &Attrs) {
2960   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
2961   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2962                                                   ASLoc, ColonLoc);
2963   CurContext->addHiddenDecl(ASDecl);
2964   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2965 }
2966 
2967 /// CheckOverrideControl - Check C++11 override control semantics.
2968 void Sema::CheckOverrideControl(NamedDecl *D) {
2969   if (D->isInvalidDecl())
2970     return;
2971 
2972   // We only care about "override" and "final" declarations.
2973   if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2974     return;
2975 
2976   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2977 
2978   // We can't check dependent instance methods.
2979   if (MD && MD->isInstance() &&
2980       (MD->getParent()->hasAnyDependentBases() ||
2981        MD->getType()->isDependentType()))
2982     return;
2983 
2984   if (MD && !MD->isVirtual()) {
2985     // If we have a non-virtual method, check if if hides a virtual method.
2986     // (In that case, it's most likely the method has the wrong type.)
2987     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2988     FindHiddenVirtualMethods(MD, OverloadedMethods);
2989 
2990     if (!OverloadedMethods.empty()) {
2991       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2992         Diag(OA->getLocation(),
2993              diag::override_keyword_hides_virtual_member_function)
2994           << "override" << (OverloadedMethods.size() > 1);
2995       } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2996         Diag(FA->getLocation(),
2997              diag::override_keyword_hides_virtual_member_function)
2998           << (FA->isSpelledAsSealed() ? "sealed" : "final")
2999           << (OverloadedMethods.size() > 1);
3000       }
3001       NoteHiddenVirtualMethods(MD, OverloadedMethods);
3002       MD->setInvalidDecl();
3003       return;
3004     }
3005     // Fall through into the general case diagnostic.
3006     // FIXME: We might want to attempt typo correction here.
3007   }
3008 
3009   if (!MD || !MD->isVirtual()) {
3010     if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3011       Diag(OA->getLocation(),
3012            diag::override_keyword_only_allowed_on_virtual_member_functions)
3013         << "override" << FixItHint::CreateRemoval(OA->getLocation());
3014       D->dropAttr<OverrideAttr>();
3015     }
3016     if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3017       Diag(FA->getLocation(),
3018            diag::override_keyword_only_allowed_on_virtual_member_functions)
3019         << (FA->isSpelledAsSealed() ? "sealed" : "final")
3020         << FixItHint::CreateRemoval(FA->getLocation());
3021       D->dropAttr<FinalAttr>();
3022     }
3023     return;
3024   }
3025 
3026   // C++11 [class.virtual]p5:
3027   //   If a function is marked with the virt-specifier override and
3028   //   does not override a member function of a base class, the program is
3029   //   ill-formed.
3030   bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3031   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3032     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3033       << MD->getDeclName();
3034 }
3035 
3036 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
3037   if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3038     return;
3039   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3040   if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3041     return;
3042 
3043   SourceLocation Loc = MD->getLocation();
3044   SourceLocation SpellingLoc = Loc;
3045   if (getSourceManager().isMacroArgExpansion(Loc))
3046     SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3047   SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3048   if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3049       return;
3050 
3051   if (MD->size_overridden_methods() > 0) {
3052     unsigned DiagID = isa<CXXDestructorDecl>(MD)
3053                           ? diag::warn_destructor_marked_not_override_overriding
3054                           : diag::warn_function_marked_not_override_overriding;
3055     Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3056     const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3057     Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3058   }
3059 }
3060 
3061 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3062 /// function overrides a virtual member function marked 'final', according to
3063 /// C++11 [class.virtual]p4.
3064 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3065                                                   const CXXMethodDecl *Old) {
3066   FinalAttr *FA = Old->getAttr<FinalAttr>();
3067   if (!FA)
3068     return false;
3069 
3070   Diag(New->getLocation(), diag::err_final_function_overridden)
3071     << New->getDeclName()
3072     << FA->isSpelledAsSealed();
3073   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3074   return true;
3075 }
3076 
3077 static bool InitializationHasSideEffects(const FieldDecl &FD) {
3078   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3079   // FIXME: Destruction of ObjC lifetime types has side-effects.
3080   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3081     return !RD->isCompleteDefinition() ||
3082            !RD->hasTrivialDefaultConstructor() ||
3083            !RD->hasTrivialDestructor();
3084   return false;
3085 }
3086 
3087 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3088   ParsedAttributesView::const_iterator Itr =
3089       llvm::find_if(list, [](const ParsedAttr &AL) {
3090         return AL.isDeclspecPropertyAttribute();
3091       });
3092   if (Itr != list.end())
3093     return &*Itr;
3094   return nullptr;
3095 }
3096 
3097 // Check if there is a field shadowing.
3098 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3099                                       DeclarationName FieldName,
3100                                       const CXXRecordDecl *RD,
3101                                       bool DeclIsField) {
3102   if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3103     return;
3104 
3105   // To record a shadowed field in a base
3106   std::map<CXXRecordDecl*, NamedDecl*> Bases;
3107   auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3108                            CXXBasePath &Path) {
3109     const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3110     // Record an ambiguous path directly
3111     if (Bases.find(Base) != Bases.end())
3112       return true;
3113     for (const auto Field : Base->lookup(FieldName)) {
3114       if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3115           Field->getAccess() != AS_private) {
3116         assert(Field->getAccess() != AS_none);
3117         assert(Bases.find(Base) == Bases.end());
3118         Bases[Base] = Field;
3119         return true;
3120       }
3121     }
3122     return false;
3123   };
3124 
3125   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3126                      /*DetectVirtual=*/true);
3127   if (!RD->lookupInBases(FieldShadowed, Paths))
3128     return;
3129 
3130   for (const auto &P : Paths) {
3131     auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3132     auto It = Bases.find(Base);
3133     // Skip duplicated bases
3134     if (It == Bases.end())
3135       continue;
3136     auto BaseField = It->second;
3137     assert(BaseField->getAccess() != AS_private);
3138     if (AS_none !=
3139         CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3140       Diag(Loc, diag::warn_shadow_field)
3141         << FieldName << RD << Base << DeclIsField;
3142       Diag(BaseField->getLocation(), diag::note_shadow_field);
3143       Bases.erase(It);
3144     }
3145   }
3146 }
3147 
3148 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3149 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3150 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
3151 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3152 /// present (but parsing it has been deferred).
3153 NamedDecl *
3154 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3155                                MultiTemplateParamsArg TemplateParameterLists,
3156                                Expr *BW, const VirtSpecifiers &VS,
3157                                InClassInitStyle InitStyle) {
3158   const DeclSpec &DS = D.getDeclSpec();
3159   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3160   DeclarationName Name = NameInfo.getName();
3161   SourceLocation Loc = NameInfo.getLoc();
3162 
3163   // For anonymous bitfields, the location should point to the type.
3164   if (Loc.isInvalid())
3165     Loc = D.getBeginLoc();
3166 
3167   Expr *BitWidth = static_cast<Expr*>(BW);
3168 
3169   assert(isa<CXXRecordDecl>(CurContext));
3170   assert(!DS.isFriendSpecified());
3171 
3172   bool isFunc = D.isDeclarationOfFunction();
3173   const ParsedAttr *MSPropertyAttr =
3174       getMSPropertyAttr(D.getDeclSpec().getAttributes());
3175 
3176   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3177     // The Microsoft extension __interface only permits public member functions
3178     // and prohibits constructors, destructors, operators, non-public member
3179     // functions, static methods and data members.
3180     unsigned InvalidDecl;
3181     bool ShowDeclName = true;
3182     if (!isFunc &&
3183         (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3184       InvalidDecl = 0;
3185     else if (!isFunc)
3186       InvalidDecl = 1;
3187     else if (AS != AS_public)
3188       InvalidDecl = 2;
3189     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3190       InvalidDecl = 3;
3191     else switch (Name.getNameKind()) {
3192       case DeclarationName::CXXConstructorName:
3193         InvalidDecl = 4;
3194         ShowDeclName = false;
3195         break;
3196 
3197       case DeclarationName::CXXDestructorName:
3198         InvalidDecl = 5;
3199         ShowDeclName = false;
3200         break;
3201 
3202       case DeclarationName::CXXOperatorName:
3203       case DeclarationName::CXXConversionFunctionName:
3204         InvalidDecl = 6;
3205         break;
3206 
3207       default:
3208         InvalidDecl = 0;
3209         break;
3210     }
3211 
3212     if (InvalidDecl) {
3213       if (ShowDeclName)
3214         Diag(Loc, diag::err_invalid_member_in_interface)
3215           << (InvalidDecl-1) << Name;
3216       else
3217         Diag(Loc, diag::err_invalid_member_in_interface)
3218           << (InvalidDecl-1) << "";
3219       return nullptr;
3220     }
3221   }
3222 
3223   // C++ 9.2p6: A member shall not be declared to have automatic storage
3224   // duration (auto, register) or with the extern storage-class-specifier.
3225   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3226   // data members and cannot be applied to names declared const or static,
3227   // and cannot be applied to reference members.
3228   switch (DS.getStorageClassSpec()) {
3229   case DeclSpec::SCS_unspecified:
3230   case DeclSpec::SCS_typedef:
3231   case DeclSpec::SCS_static:
3232     break;
3233   case DeclSpec::SCS_mutable:
3234     if (isFunc) {
3235       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3236 
3237       // FIXME: It would be nicer if the keyword was ignored only for this
3238       // declarator. Otherwise we could get follow-up errors.
3239       D.getMutableDeclSpec().ClearStorageClassSpecs();
3240     }
3241     break;
3242   default:
3243     Diag(DS.getStorageClassSpecLoc(),
3244          diag::err_storageclass_invalid_for_member);
3245     D.getMutableDeclSpec().ClearStorageClassSpecs();
3246     break;
3247   }
3248 
3249   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3250                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3251                       !isFunc);
3252 
3253   if (DS.hasConstexprSpecifier() && isInstField) {
3254     SemaDiagnosticBuilder B =
3255         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3256     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3257     if (InitStyle == ICIS_NoInit) {
3258       B << 0 << 0;
3259       if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3260         B << FixItHint::CreateRemoval(ConstexprLoc);
3261       else {
3262         B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3263         D.getMutableDeclSpec().ClearConstexprSpec();
3264         const char *PrevSpec;
3265         unsigned DiagID;
3266         bool Failed = D.getMutableDeclSpec().SetTypeQual(
3267             DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3268         (void)Failed;
3269         assert(!Failed && "Making a constexpr member const shouldn't fail");
3270       }
3271     } else {
3272       B << 1;
3273       const char *PrevSpec;
3274       unsigned DiagID;
3275       if (D.getMutableDeclSpec().SetStorageClassSpec(
3276           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3277           Context.getPrintingPolicy())) {
3278         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
3279                "This is the only DeclSpec that should fail to be applied");
3280         B << 1;
3281       } else {
3282         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3283         isInstField = false;
3284       }
3285     }
3286   }
3287 
3288   NamedDecl *Member;
3289   if (isInstField) {
3290     CXXScopeSpec &SS = D.getCXXScopeSpec();
3291 
3292     // Data members must have identifiers for names.
3293     if (!Name.isIdentifier()) {
3294       Diag(Loc, diag::err_bad_variable_name)
3295         << Name;
3296       return nullptr;
3297     }
3298 
3299     IdentifierInfo *II = Name.getAsIdentifierInfo();
3300 
3301     // Member field could not be with "template" keyword.
3302     // So TemplateParameterLists should be empty in this case.
3303     if (TemplateParameterLists.size()) {
3304       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3305       if (TemplateParams->size()) {
3306         // There is no such thing as a member field template.
3307         Diag(D.getIdentifierLoc(), diag::err_template_member)
3308             << II
3309             << SourceRange(TemplateParams->getTemplateLoc(),
3310                 TemplateParams->getRAngleLoc());
3311       } else {
3312         // There is an extraneous 'template<>' for this member.
3313         Diag(TemplateParams->getTemplateLoc(),
3314             diag::err_template_member_noparams)
3315             << II
3316             << SourceRange(TemplateParams->getTemplateLoc(),
3317                 TemplateParams->getRAngleLoc());
3318       }
3319       return nullptr;
3320     }
3321 
3322     if (SS.isSet() && !SS.isInvalid()) {
3323       // The user provided a superfluous scope specifier inside a class
3324       // definition:
3325       //
3326       // class X {
3327       //   int X::member;
3328       // };
3329       if (DeclContext *DC = computeDeclContext(SS, false))
3330         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3331                                      D.getName().getKind() ==
3332                                          UnqualifiedIdKind::IK_TemplateId);
3333       else
3334         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3335           << Name << SS.getRange();
3336 
3337       SS.clear();
3338     }
3339 
3340     if (MSPropertyAttr) {
3341       Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3342                                 BitWidth, InitStyle, AS, *MSPropertyAttr);
3343       if (!Member)
3344         return nullptr;
3345       isInstField = false;
3346     } else {
3347       Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3348                                 BitWidth, InitStyle, AS);
3349       if (!Member)
3350         return nullptr;
3351     }
3352 
3353     CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3354   } else {
3355     Member = HandleDeclarator(S, D, TemplateParameterLists);
3356     if (!Member)
3357       return nullptr;
3358 
3359     // Non-instance-fields can't have a bitfield.
3360     if (BitWidth) {
3361       if (Member->isInvalidDecl()) {
3362         // don't emit another diagnostic.
3363       } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3364         // C++ 9.6p3: A bit-field shall not be a static member.
3365         // "static member 'A' cannot be a bit-field"
3366         Diag(Loc, diag::err_static_not_bitfield)
3367           << Name << BitWidth->getSourceRange();
3368       } else if (isa<TypedefDecl>(Member)) {
3369         // "typedef member 'x' cannot be a bit-field"
3370         Diag(Loc, diag::err_typedef_not_bitfield)
3371           << Name << BitWidth->getSourceRange();
3372       } else {
3373         // A function typedef ("typedef int f(); f a;").
3374         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3375         Diag(Loc, diag::err_not_integral_type_bitfield)
3376           << Name << cast<ValueDecl>(Member)->getType()
3377           << BitWidth->getSourceRange();
3378       }
3379 
3380       BitWidth = nullptr;
3381       Member->setInvalidDecl();
3382     }
3383 
3384     NamedDecl *NonTemplateMember = Member;
3385     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3386       NonTemplateMember = FunTmpl->getTemplatedDecl();
3387     else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3388       NonTemplateMember = VarTmpl->getTemplatedDecl();
3389 
3390     Member->setAccess(AS);
3391 
3392     // If we have declared a member function template or static data member
3393     // template, set the access of the templated declaration as well.
3394     if (NonTemplateMember != Member)
3395       NonTemplateMember->setAccess(AS);
3396 
3397     // C++ [temp.deduct.guide]p3:
3398     //   A deduction guide [...] for a member class template [shall be
3399     //   declared] with the same access [as the template].
3400     if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3401       auto *TD = DG->getDeducedTemplate();
3402       // Access specifiers are only meaningful if both the template and the
3403       // deduction guide are from the same scope.
3404       if (AS != TD->getAccess() &&
3405           TD->getDeclContext()->getRedeclContext()->Equals(
3406               DG->getDeclContext()->getRedeclContext())) {
3407         Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3408         Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3409             << TD->getAccess();
3410         const AccessSpecDecl *LastAccessSpec = nullptr;
3411         for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3412           if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3413             LastAccessSpec = AccessSpec;
3414         }
3415         assert(LastAccessSpec && "differing access with no access specifier");
3416         Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3417             << AS;
3418       }
3419     }
3420   }
3421 
3422   if (VS.isOverrideSpecified())
3423     Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3424                                          AttributeCommonInfo::AS_Keyword));
3425   if (VS.isFinalSpecified())
3426     Member->addAttr(FinalAttr::Create(
3427         Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3428         static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3429 
3430   if (VS.getLastLocation().isValid()) {
3431     // Update the end location of a method that has a virt-specifiers.
3432     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3433       MD->setRangeEnd(VS.getLastLocation());
3434   }
3435 
3436   CheckOverrideControl(Member);
3437 
3438   assert((Name || isInstField) && "No identifier for non-field ?");
3439 
3440   if (isInstField) {
3441     FieldDecl *FD = cast<FieldDecl>(Member);
3442     FieldCollector->Add(FD);
3443 
3444     if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3445       // Remember all explicit private FieldDecls that have a name, no side
3446       // effects and are not part of a dependent type declaration.
3447       if (!FD->isImplicit() && FD->getDeclName() &&
3448           FD->getAccess() == AS_private &&
3449           !FD->hasAttr<UnusedAttr>() &&
3450           !FD->getParent()->isDependentContext() &&
3451           !InitializationHasSideEffects(*FD))
3452         UnusedPrivateFields.insert(FD);
3453     }
3454   }
3455 
3456   return Member;
3457 }
3458 
3459 namespace {
3460   class UninitializedFieldVisitor
3461       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3462     Sema &S;
3463     // List of Decls to generate a warning on.  Also remove Decls that become
3464     // initialized.
3465     llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3466     // List of base classes of the record.  Classes are removed after their
3467     // initializers.
3468     llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3469     // Vector of decls to be removed from the Decl set prior to visiting the
3470     // nodes.  These Decls may have been initialized in the prior initializer.
3471     llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3472     // If non-null, add a note to the warning pointing back to the constructor.
3473     const CXXConstructorDecl *Constructor;
3474     // Variables to hold state when processing an initializer list.  When
3475     // InitList is true, special case initialization of FieldDecls matching
3476     // InitListFieldDecl.
3477     bool InitList;
3478     FieldDecl *InitListFieldDecl;
3479     llvm::SmallVector<unsigned, 4> InitFieldIndex;
3480 
3481   public:
3482     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3483     UninitializedFieldVisitor(Sema &S,
3484                               llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3485                               llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3486       : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3487         Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3488 
3489     // Returns true if the use of ME is not an uninitialized use.
3490     bool IsInitListMemberExprInitialized(MemberExpr *ME,
3491                                          bool CheckReferenceOnly) {
3492       llvm::SmallVector<FieldDecl*, 4> Fields;
3493       bool ReferenceField = false;
3494       while (ME) {
3495         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3496         if (!FD)
3497           return false;
3498         Fields.push_back(FD);
3499         if (FD->getType()->isReferenceType())
3500           ReferenceField = true;
3501         ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3502       }
3503 
3504       // Binding a reference to an uninitialized field is not an
3505       // uninitialized use.
3506       if (CheckReferenceOnly && !ReferenceField)
3507         return true;
3508 
3509       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3510       // Discard the first field since it is the field decl that is being
3511       // initialized.
3512       for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3513         UsedFieldIndex.push_back((*I)->getFieldIndex());
3514       }
3515 
3516       for (auto UsedIter = UsedFieldIndex.begin(),
3517                 UsedEnd = UsedFieldIndex.end(),
3518                 OrigIter = InitFieldIndex.begin(),
3519                 OrigEnd = InitFieldIndex.end();
3520            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3521         if (*UsedIter < *OrigIter)
3522           return true;
3523         if (*UsedIter > *OrigIter)
3524           break;
3525       }
3526 
3527       return false;
3528     }
3529 
3530     void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3531                           bool AddressOf) {
3532       if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3533         return;
3534 
3535       // FieldME is the inner-most MemberExpr that is not an anonymous struct
3536       // or union.
3537       MemberExpr *FieldME = ME;
3538 
3539       bool AllPODFields = FieldME->getType().isPODType(S.Context);
3540 
3541       Expr *Base = ME;
3542       while (MemberExpr *SubME =
3543                  dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3544 
3545         if (isa<VarDecl>(SubME->getMemberDecl()))
3546           return;
3547 
3548         if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3549           if (!FD->isAnonymousStructOrUnion())
3550             FieldME = SubME;
3551 
3552         if (!FieldME->getType().isPODType(S.Context))
3553           AllPODFields = false;
3554 
3555         Base = SubME->getBase();
3556       }
3557 
3558       if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3559         return;
3560 
3561       if (AddressOf && AllPODFields)
3562         return;
3563 
3564       ValueDecl* FoundVD = FieldME->getMemberDecl();
3565 
3566       if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3567         while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3568           BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3569         }
3570 
3571         if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3572           QualType T = BaseCast->getType();
3573           if (T->isPointerType() &&
3574               BaseClasses.count(T->getPointeeType())) {
3575             S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3576                 << T->getPointeeType() << FoundVD;
3577           }
3578         }
3579       }
3580 
3581       if (!Decls.count(FoundVD))
3582         return;
3583 
3584       const bool IsReference = FoundVD->getType()->isReferenceType();
3585 
3586       if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3587         // Special checking for initializer lists.
3588         if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3589           return;
3590         }
3591       } else {
3592         // Prevent double warnings on use of unbounded references.
3593         if (CheckReferenceOnly && !IsReference)
3594           return;
3595       }
3596 
3597       unsigned diag = IsReference
3598           ? diag::warn_reference_field_is_uninit
3599           : diag::warn_field_is_uninit;
3600       S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3601       if (Constructor)
3602         S.Diag(Constructor->getLocation(),
3603                diag::note_uninit_in_this_constructor)
3604           << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3605 
3606     }
3607 
3608     void HandleValue(Expr *E, bool AddressOf) {
3609       E = E->IgnoreParens();
3610 
3611       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3612         HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3613                          AddressOf /*AddressOf*/);
3614         return;
3615       }
3616 
3617       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3618         Visit(CO->getCond());
3619         HandleValue(CO->getTrueExpr(), AddressOf);
3620         HandleValue(CO->getFalseExpr(), AddressOf);
3621         return;
3622       }
3623 
3624       if (BinaryConditionalOperator *BCO =
3625               dyn_cast<BinaryConditionalOperator>(E)) {
3626         Visit(BCO->getCond());
3627         HandleValue(BCO->getFalseExpr(), AddressOf);
3628         return;
3629       }
3630 
3631       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3632         HandleValue(OVE->getSourceExpr(), AddressOf);
3633         return;
3634       }
3635 
3636       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3637         switch (BO->getOpcode()) {
3638         default:
3639           break;
3640         case(BO_PtrMemD):
3641         case(BO_PtrMemI):
3642           HandleValue(BO->getLHS(), AddressOf);
3643           Visit(BO->getRHS());
3644           return;
3645         case(BO_Comma):
3646           Visit(BO->getLHS());
3647           HandleValue(BO->getRHS(), AddressOf);
3648           return;
3649         }
3650       }
3651 
3652       Visit(E);
3653     }
3654 
3655     void CheckInitListExpr(InitListExpr *ILE) {
3656       InitFieldIndex.push_back(0);
3657       for (auto Child : ILE->children()) {
3658         if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3659           CheckInitListExpr(SubList);
3660         } else {
3661           Visit(Child);
3662         }
3663         ++InitFieldIndex.back();
3664       }
3665       InitFieldIndex.pop_back();
3666     }
3667 
3668     void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3669                           FieldDecl *Field, const Type *BaseClass) {
3670       // Remove Decls that may have been initialized in the previous
3671       // initializer.
3672       for (ValueDecl* VD : DeclsToRemove)
3673         Decls.erase(VD);
3674       DeclsToRemove.clear();
3675 
3676       Constructor = FieldConstructor;
3677       InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3678 
3679       if (ILE && Field) {
3680         InitList = true;
3681         InitListFieldDecl = Field;
3682         InitFieldIndex.clear();
3683         CheckInitListExpr(ILE);
3684       } else {
3685         InitList = false;
3686         Visit(E);
3687       }
3688 
3689       if (Field)
3690         Decls.erase(Field);
3691       if (BaseClass)
3692         BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3693     }
3694 
3695     void VisitMemberExpr(MemberExpr *ME) {
3696       // All uses of unbounded reference fields will warn.
3697       HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3698     }
3699 
3700     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3701       if (E->getCastKind() == CK_LValueToRValue) {
3702         HandleValue(E->getSubExpr(), false /*AddressOf*/);
3703         return;
3704       }
3705 
3706       Inherited::VisitImplicitCastExpr(E);
3707     }
3708 
3709     void VisitCXXConstructExpr(CXXConstructExpr *E) {
3710       if (E->getConstructor()->isCopyConstructor()) {
3711         Expr *ArgExpr = E->getArg(0);
3712         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3713           if (ILE->getNumInits() == 1)
3714             ArgExpr = ILE->getInit(0);
3715         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3716           if (ICE->getCastKind() == CK_NoOp)
3717             ArgExpr = ICE->getSubExpr();
3718         HandleValue(ArgExpr, false /*AddressOf*/);
3719         return;
3720       }
3721       Inherited::VisitCXXConstructExpr(E);
3722     }
3723 
3724     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3725       Expr *Callee = E->getCallee();
3726       if (isa<MemberExpr>(Callee)) {
3727         HandleValue(Callee, false /*AddressOf*/);
3728         for (auto Arg : E->arguments())
3729           Visit(Arg);
3730         return;
3731       }
3732 
3733       Inherited::VisitCXXMemberCallExpr(E);
3734     }
3735 
3736     void VisitCallExpr(CallExpr *E) {
3737       // Treat std::move as a use.
3738       if (E->isCallToStdMove()) {
3739         HandleValue(E->getArg(0), /*AddressOf=*/false);
3740         return;
3741       }
3742 
3743       Inherited::VisitCallExpr(E);
3744     }
3745 
3746     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3747       Expr *Callee = E->getCallee();
3748 
3749       if (isa<UnresolvedLookupExpr>(Callee))
3750         return Inherited::VisitCXXOperatorCallExpr(E);
3751 
3752       Visit(Callee);
3753       for (auto Arg : E->arguments())
3754         HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3755     }
3756 
3757     void VisitBinaryOperator(BinaryOperator *E) {
3758       // If a field assignment is detected, remove the field from the
3759       // uninitiailized field set.
3760       if (E->getOpcode() == BO_Assign)
3761         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3762           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3763             if (!FD->getType()->isReferenceType())
3764               DeclsToRemove.push_back(FD);
3765 
3766       if (E->isCompoundAssignmentOp()) {
3767         HandleValue(E->getLHS(), false /*AddressOf*/);
3768         Visit(E->getRHS());
3769         return;
3770       }
3771 
3772       Inherited::VisitBinaryOperator(E);
3773     }
3774 
3775     void VisitUnaryOperator(UnaryOperator *E) {
3776       if (E->isIncrementDecrementOp()) {
3777         HandleValue(E->getSubExpr(), false /*AddressOf*/);
3778         return;
3779       }
3780       if (E->getOpcode() == UO_AddrOf) {
3781         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3782           HandleValue(ME->getBase(), true /*AddressOf*/);
3783           return;
3784         }
3785       }
3786 
3787       Inherited::VisitUnaryOperator(E);
3788     }
3789   };
3790 
3791   // Diagnose value-uses of fields to initialize themselves, e.g.
3792   //   foo(foo)
3793   // where foo is not also a parameter to the constructor.
3794   // Also diagnose across field uninitialized use such as
3795   //   x(y), y(x)
3796   // TODO: implement -Wuninitialized and fold this into that framework.
3797   static void DiagnoseUninitializedFields(
3798       Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3799 
3800     if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3801                                            Constructor->getLocation())) {
3802       return;
3803     }
3804 
3805     if (Constructor->isInvalidDecl())
3806       return;
3807 
3808     const CXXRecordDecl *RD = Constructor->getParent();
3809 
3810     if (RD->isDependentContext())
3811       return;
3812 
3813     // Holds fields that are uninitialized.
3814     llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3815 
3816     // At the beginning, all fields are uninitialized.
3817     for (auto *I : RD->decls()) {
3818       if (auto *FD = dyn_cast<FieldDecl>(I)) {
3819         UninitializedFields.insert(FD);
3820       } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3821         UninitializedFields.insert(IFD->getAnonField());
3822       }
3823     }
3824 
3825     llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3826     for (auto I : RD->bases())
3827       UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3828 
3829     if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3830       return;
3831 
3832     UninitializedFieldVisitor UninitializedChecker(SemaRef,
3833                                                    UninitializedFields,
3834                                                    UninitializedBaseClasses);
3835 
3836     for (const auto *FieldInit : Constructor->inits()) {
3837       if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3838         break;
3839 
3840       Expr *InitExpr = FieldInit->getInit();
3841       if (!InitExpr)
3842         continue;
3843 
3844       if (CXXDefaultInitExpr *Default =
3845               dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3846         InitExpr = Default->getExpr();
3847         if (!InitExpr)
3848           continue;
3849         // In class initializers will point to the constructor.
3850         UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3851                                               FieldInit->getAnyMember(),
3852                                               FieldInit->getBaseClass());
3853       } else {
3854         UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3855                                               FieldInit->getAnyMember(),
3856                                               FieldInit->getBaseClass());
3857       }
3858     }
3859   }
3860 } // namespace
3861 
3862 /// Enter a new C++ default initializer scope. After calling this, the
3863 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3864 /// parsing or instantiating the initializer failed.
3865 void Sema::ActOnStartCXXInClassMemberInitializer() {
3866   // Create a synthetic function scope to represent the call to the constructor
3867   // that notionally surrounds a use of this initializer.
3868   PushFunctionScope();
3869 }
3870 
3871 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3872   if (!D.isFunctionDeclarator())
3873     return;
3874   auto &FTI = D.getFunctionTypeInfo();
3875   if (!FTI.Params)
3876     return;
3877   for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3878                                                           FTI.NumParams)) {
3879     auto *ParamDecl = cast<NamedDecl>(Param.Param);
3880     if (ParamDecl->getDeclName())
3881       PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3882   }
3883 }
3884 
3885 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3886   if (ConstraintExpr.isInvalid())
3887     return ExprError();
3888   return CorrectDelayedTyposInExpr(ConstraintExpr);
3889 }
3890 
3891 /// This is invoked after parsing an in-class initializer for a
3892 /// non-static C++ class member, and after instantiating an in-class initializer
3893 /// in a class template. Such actions are deferred until the class is complete.
3894 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3895                                                   SourceLocation InitLoc,
3896                                                   Expr *InitExpr) {
3897   // Pop the notional constructor scope we created earlier.
3898   PopFunctionScopeInfo(nullptr, D);
3899 
3900   FieldDecl *FD = dyn_cast<FieldDecl>(D);
3901   assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
3902          "must set init style when field is created");
3903 
3904   if (!InitExpr) {
3905     D->setInvalidDecl();
3906     if (FD)
3907       FD->removeInClassInitializer();
3908     return;
3909   }
3910 
3911   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3912     FD->setInvalidDecl();
3913     FD->removeInClassInitializer();
3914     return;
3915   }
3916 
3917   ExprResult Init = InitExpr;
3918   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3919     InitializedEntity Entity =
3920         InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
3921     InitializationKind Kind =
3922         FD->getInClassInitStyle() == ICIS_ListInit
3923             ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
3924                                                    InitExpr->getBeginLoc(),
3925                                                    InitExpr->getEndLoc())
3926             : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
3927     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3928     Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3929     if (Init.isInvalid()) {
3930       FD->setInvalidDecl();
3931       return;
3932     }
3933   }
3934 
3935   // C++11 [class.base.init]p7:
3936   //   The initialization of each base and member constitutes a
3937   //   full-expression.
3938   Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
3939   if (Init.isInvalid()) {
3940     FD->setInvalidDecl();
3941     return;
3942   }
3943 
3944   InitExpr = Init.get();
3945 
3946   FD->setInClassInitializer(InitExpr);
3947 }
3948 
3949 /// Find the direct and/or virtual base specifiers that
3950 /// correspond to the given base type, for use in base initialization
3951 /// within a constructor.
3952 static bool FindBaseInitializer(Sema &SemaRef,
3953                                 CXXRecordDecl *ClassDecl,
3954                                 QualType BaseType,
3955                                 const CXXBaseSpecifier *&DirectBaseSpec,
3956                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
3957   // First, check for a direct base class.
3958   DirectBaseSpec = nullptr;
3959   for (const auto &Base : ClassDecl->bases()) {
3960     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3961       // We found a direct base of this type. That's what we're
3962       // initializing.
3963       DirectBaseSpec = &Base;
3964       break;
3965     }
3966   }
3967 
3968   // Check for a virtual base class.
3969   // FIXME: We might be able to short-circuit this if we know in advance that
3970   // there are no virtual bases.
3971   VirtualBaseSpec = nullptr;
3972   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3973     // We haven't found a base yet; search the class hierarchy for a
3974     // virtual base class.
3975     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3976                        /*DetectVirtual=*/false);
3977     if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3978                               SemaRef.Context.getTypeDeclType(ClassDecl),
3979                               BaseType, Paths)) {
3980       for (CXXBasePaths::paths_iterator Path = Paths.begin();
3981            Path != Paths.end(); ++Path) {
3982         if (Path->back().Base->isVirtual()) {
3983           VirtualBaseSpec = Path->back().Base;
3984           break;
3985         }
3986       }
3987     }
3988   }
3989 
3990   return DirectBaseSpec || VirtualBaseSpec;
3991 }
3992 
3993 /// Handle a C++ member initializer using braced-init-list syntax.
3994 MemInitResult
3995 Sema::ActOnMemInitializer(Decl *ConstructorD,
3996                           Scope *S,
3997                           CXXScopeSpec &SS,
3998                           IdentifierInfo *MemberOrBase,
3999                           ParsedType TemplateTypeTy,
4000                           const DeclSpec &DS,
4001                           SourceLocation IdLoc,
4002                           Expr *InitList,
4003                           SourceLocation EllipsisLoc) {
4004   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4005                              DS, IdLoc, InitList,
4006                              EllipsisLoc);
4007 }
4008 
4009 /// Handle a C++ member initializer using parentheses syntax.
4010 MemInitResult
4011 Sema::ActOnMemInitializer(Decl *ConstructorD,
4012                           Scope *S,
4013                           CXXScopeSpec &SS,
4014                           IdentifierInfo *MemberOrBase,
4015                           ParsedType TemplateTypeTy,
4016                           const DeclSpec &DS,
4017                           SourceLocation IdLoc,
4018                           SourceLocation LParenLoc,
4019                           ArrayRef<Expr *> Args,
4020                           SourceLocation RParenLoc,
4021                           SourceLocation EllipsisLoc) {
4022   Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4023   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4024                              DS, IdLoc, List, EllipsisLoc);
4025 }
4026 
4027 namespace {
4028 
4029 // Callback to only accept typo corrections that can be a valid C++ member
4030 // intializer: either a non-static field member or a base class.
4031 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4032 public:
4033   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4034       : ClassDecl(ClassDecl) {}
4035 
4036   bool ValidateCandidate(const TypoCorrection &candidate) override {
4037     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4038       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4039         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4040       return isa<TypeDecl>(ND);
4041     }
4042     return false;
4043   }
4044 
4045   std::unique_ptr<CorrectionCandidateCallback> clone() override {
4046     return std::make_unique<MemInitializerValidatorCCC>(*this);
4047   }
4048 
4049 private:
4050   CXXRecordDecl *ClassDecl;
4051 };
4052 
4053 }
4054 
4055 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4056                                              CXXScopeSpec &SS,
4057                                              ParsedType TemplateTypeTy,
4058                                              IdentifierInfo *MemberOrBase) {
4059   if (SS.getScopeRep() || TemplateTypeTy)
4060     return nullptr;
4061   DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
4062   if (Result.empty())
4063     return nullptr;
4064   ValueDecl *Member;
4065   if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
4066       (Member = dyn_cast<IndirectFieldDecl>(Result.front())))
4067     return Member;
4068   return nullptr;
4069 }
4070 
4071 /// Handle a C++ member initializer.
4072 MemInitResult
4073 Sema::BuildMemInitializer(Decl *ConstructorD,
4074                           Scope *S,
4075                           CXXScopeSpec &SS,
4076                           IdentifierInfo *MemberOrBase,
4077                           ParsedType TemplateTypeTy,
4078                           const DeclSpec &DS,
4079                           SourceLocation IdLoc,
4080                           Expr *Init,
4081                           SourceLocation EllipsisLoc) {
4082   ExprResult Res = CorrectDelayedTyposInExpr(Init);
4083   if (!Res.isUsable())
4084     return true;
4085   Init = Res.get();
4086 
4087   if (!ConstructorD)
4088     return true;
4089 
4090   AdjustDeclIfTemplate(ConstructorD);
4091 
4092   CXXConstructorDecl *Constructor
4093     = dyn_cast<CXXConstructorDecl>(ConstructorD);
4094   if (!Constructor) {
4095     // The user wrote a constructor initializer on a function that is
4096     // not a C++ constructor. Ignore the error for now, because we may
4097     // have more member initializers coming; we'll diagnose it just
4098     // once in ActOnMemInitializers.
4099     return true;
4100   }
4101 
4102   CXXRecordDecl *ClassDecl = Constructor->getParent();
4103 
4104   // C++ [class.base.init]p2:
4105   //   Names in a mem-initializer-id are looked up in the scope of the
4106   //   constructor's class and, if not found in that scope, are looked
4107   //   up in the scope containing the constructor's definition.
4108   //   [Note: if the constructor's class contains a member with the
4109   //   same name as a direct or virtual base class of the class, a
4110   //   mem-initializer-id naming the member or base class and composed
4111   //   of a single identifier refers to the class member. A
4112   //   mem-initializer-id for the hidden base class may be specified
4113   //   using a qualified name. ]
4114 
4115   // Look for a member, first.
4116   if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4117           ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4118     if (EllipsisLoc.isValid())
4119       Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4120           << MemberOrBase
4121           << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4122 
4123     return BuildMemberInitializer(Member, Init, IdLoc);
4124   }
4125   // It didn't name a member, so see if it names a class.
4126   QualType BaseType;
4127   TypeSourceInfo *TInfo = nullptr;
4128 
4129   if (TemplateTypeTy) {
4130     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4131     if (BaseType.isNull())
4132       return true;
4133   } else if (DS.getTypeSpecType() == TST_decltype) {
4134     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4135   } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4136     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4137     return true;
4138   } else {
4139     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4140     LookupParsedName(R, S, &SS);
4141 
4142     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4143     if (!TyD) {
4144       if (R.isAmbiguous()) return true;
4145 
4146       // We don't want access-control diagnostics here.
4147       R.suppressDiagnostics();
4148 
4149       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4150         bool NotUnknownSpecialization = false;
4151         DeclContext *DC = computeDeclContext(SS, false);
4152         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4153           NotUnknownSpecialization = !Record->hasAnyDependentBases();
4154 
4155         if (!NotUnknownSpecialization) {
4156           // When the scope specifier can refer to a member of an unknown
4157           // specialization, we take it as a type name.
4158           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4159                                        SS.getWithLocInContext(Context),
4160                                        *MemberOrBase, IdLoc);
4161           if (BaseType.isNull())
4162             return true;
4163 
4164           TInfo = Context.CreateTypeSourceInfo(BaseType);
4165           DependentNameTypeLoc TL =
4166               TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4167           if (!TL.isNull()) {
4168             TL.setNameLoc(IdLoc);
4169             TL.setElaboratedKeywordLoc(SourceLocation());
4170             TL.setQualifierLoc(SS.getWithLocInContext(Context));
4171           }
4172 
4173           R.clear();
4174           R.setLookupName(MemberOrBase);
4175         }
4176       }
4177 
4178       // If no results were found, try to correct typos.
4179       TypoCorrection Corr;
4180       MemInitializerValidatorCCC CCC(ClassDecl);
4181       if (R.empty() && BaseType.isNull() &&
4182           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4183                               CCC, CTK_ErrorRecovery, ClassDecl))) {
4184         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4185           // We have found a non-static data member with a similar
4186           // name to what was typed; complain and initialize that
4187           // member.
4188           diagnoseTypo(Corr,
4189                        PDiag(diag::err_mem_init_not_member_or_class_suggest)
4190                          << MemberOrBase << true);
4191           return BuildMemberInitializer(Member, Init, IdLoc);
4192         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4193           const CXXBaseSpecifier *DirectBaseSpec;
4194           const CXXBaseSpecifier *VirtualBaseSpec;
4195           if (FindBaseInitializer(*this, ClassDecl,
4196                                   Context.getTypeDeclType(Type),
4197                                   DirectBaseSpec, VirtualBaseSpec)) {
4198             // We have found a direct or virtual base class with a
4199             // similar name to what was typed; complain and initialize
4200             // that base class.
4201             diagnoseTypo(Corr,
4202                          PDiag(diag::err_mem_init_not_member_or_class_suggest)
4203                            << MemberOrBase << false,
4204                          PDiag() /*Suppress note, we provide our own.*/);
4205 
4206             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4207                                                               : VirtualBaseSpec;
4208             Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4209                 << BaseSpec->getType() << BaseSpec->getSourceRange();
4210 
4211             TyD = Type;
4212           }
4213         }
4214       }
4215 
4216       if (!TyD && BaseType.isNull()) {
4217         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4218           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4219         return true;
4220       }
4221     }
4222 
4223     if (BaseType.isNull()) {
4224       BaseType = Context.getTypeDeclType(TyD);
4225       MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4226       if (SS.isSet()) {
4227         BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4228                                              BaseType);
4229         TInfo = Context.CreateTypeSourceInfo(BaseType);
4230         ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4231         TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4232         TL.setElaboratedKeywordLoc(SourceLocation());
4233         TL.setQualifierLoc(SS.getWithLocInContext(Context));
4234       }
4235     }
4236   }
4237 
4238   if (!TInfo)
4239     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4240 
4241   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4242 }
4243 
4244 MemInitResult
4245 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4246                              SourceLocation IdLoc) {
4247   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4248   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4249   assert((DirectMember || IndirectMember) &&
4250          "Member must be a FieldDecl or IndirectFieldDecl");
4251 
4252   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4253     return true;
4254 
4255   if (Member->isInvalidDecl())
4256     return true;
4257 
4258   MultiExprArg Args;
4259   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4260     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4261   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4262     Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4263   } else {
4264     // Template instantiation doesn't reconstruct ParenListExprs for us.
4265     Args = Init;
4266   }
4267 
4268   SourceRange InitRange = Init->getSourceRange();
4269 
4270   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4271     // Can't check initialization for a member of dependent type or when
4272     // any of the arguments are type-dependent expressions.
4273     DiscardCleanupsInEvaluationContext();
4274   } else {
4275     bool InitList = false;
4276     if (isa<InitListExpr>(Init)) {
4277       InitList = true;
4278       Args = Init;
4279     }
4280 
4281     // Initialize the member.
4282     InitializedEntity MemberEntity =
4283       DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4284                    : InitializedEntity::InitializeMember(IndirectMember,
4285                                                          nullptr);
4286     InitializationKind Kind =
4287         InitList ? InitializationKind::CreateDirectList(
4288                        IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4289                  : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4290                                                     InitRange.getEnd());
4291 
4292     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4293     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4294                                             nullptr);
4295     if (MemberInit.isInvalid())
4296       return true;
4297 
4298     // C++11 [class.base.init]p7:
4299     //   The initialization of each base and member constitutes a
4300     //   full-expression.
4301     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4302                                      /*DiscardedValue*/ false);
4303     if (MemberInit.isInvalid())
4304       return true;
4305 
4306     Init = MemberInit.get();
4307   }
4308 
4309   if (DirectMember) {
4310     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4311                                             InitRange.getBegin(), Init,
4312                                             InitRange.getEnd());
4313   } else {
4314     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4315                                             InitRange.getBegin(), Init,
4316                                             InitRange.getEnd());
4317   }
4318 }
4319 
4320 MemInitResult
4321 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4322                                  CXXRecordDecl *ClassDecl) {
4323   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4324   if (!LangOpts.CPlusPlus11)
4325     return Diag(NameLoc, diag::err_delegating_ctor)
4326       << TInfo->getTypeLoc().getLocalSourceRange();
4327   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4328 
4329   bool InitList = true;
4330   MultiExprArg Args = Init;
4331   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4332     InitList = false;
4333     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4334   }
4335 
4336   SourceRange InitRange = Init->getSourceRange();
4337   // Initialize the object.
4338   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4339                                      QualType(ClassDecl->getTypeForDecl(), 0));
4340   InitializationKind Kind =
4341       InitList ? InitializationKind::CreateDirectList(
4342                      NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4343                : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4344                                                   InitRange.getEnd());
4345   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4346   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4347                                               Args, nullptr);
4348   if (DelegationInit.isInvalid())
4349     return true;
4350 
4351   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
4352          "Delegating constructor with no target?");
4353 
4354   // C++11 [class.base.init]p7:
4355   //   The initialization of each base and member constitutes a
4356   //   full-expression.
4357   DelegationInit = ActOnFinishFullExpr(
4358       DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4359   if (DelegationInit.isInvalid())
4360     return true;
4361 
4362   // If we are in a dependent context, template instantiation will
4363   // perform this type-checking again. Just save the arguments that we
4364   // received in a ParenListExpr.
4365   // FIXME: This isn't quite ideal, since our ASTs don't capture all
4366   // of the information that we have about the base
4367   // initializer. However, deconstructing the ASTs is a dicey process,
4368   // and this approach is far more likely to get the corner cases right.
4369   if (CurContext->isDependentContext())
4370     DelegationInit = Init;
4371 
4372   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4373                                           DelegationInit.getAs<Expr>(),
4374                                           InitRange.getEnd());
4375 }
4376 
4377 MemInitResult
4378 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4379                            Expr *Init, CXXRecordDecl *ClassDecl,
4380                            SourceLocation EllipsisLoc) {
4381   SourceLocation BaseLoc
4382     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4383 
4384   if (!BaseType->isDependentType() && !BaseType->isRecordType())
4385     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4386              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4387 
4388   // C++ [class.base.init]p2:
4389   //   [...] Unless the mem-initializer-id names a nonstatic data
4390   //   member of the constructor's class or a direct or virtual base
4391   //   of that class, the mem-initializer is ill-formed. A
4392   //   mem-initializer-list can initialize a base class using any
4393   //   name that denotes that base class type.
4394   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4395 
4396   SourceRange InitRange = Init->getSourceRange();
4397   if (EllipsisLoc.isValid()) {
4398     // This is a pack expansion.
4399     if (!BaseType->containsUnexpandedParameterPack())  {
4400       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4401         << SourceRange(BaseLoc, InitRange.getEnd());
4402 
4403       EllipsisLoc = SourceLocation();
4404     }
4405   } else {
4406     // Check for any unexpanded parameter packs.
4407     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4408       return true;
4409 
4410     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4411       return true;
4412   }
4413 
4414   // Check for direct and virtual base classes.
4415   const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4416   const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4417   if (!Dependent) {
4418     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4419                                        BaseType))
4420       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4421 
4422     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4423                         VirtualBaseSpec);
4424 
4425     // C++ [base.class.init]p2:
4426     // Unless the mem-initializer-id names a nonstatic data member of the
4427     // constructor's class or a direct or virtual base of that class, the
4428     // mem-initializer is ill-formed.
4429     if (!DirectBaseSpec && !VirtualBaseSpec) {
4430       // If the class has any dependent bases, then it's possible that
4431       // one of those types will resolve to the same type as
4432       // BaseType. Therefore, just treat this as a dependent base
4433       // class initialization.  FIXME: Should we try to check the
4434       // initialization anyway? It seems odd.
4435       if (ClassDecl->hasAnyDependentBases())
4436         Dependent = true;
4437       else
4438         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4439           << BaseType << Context.getTypeDeclType(ClassDecl)
4440           << BaseTInfo->getTypeLoc().getLocalSourceRange();
4441     }
4442   }
4443 
4444   if (Dependent) {
4445     DiscardCleanupsInEvaluationContext();
4446 
4447     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4448                                             /*IsVirtual=*/false,
4449                                             InitRange.getBegin(), Init,
4450                                             InitRange.getEnd(), EllipsisLoc);
4451   }
4452 
4453   // C++ [base.class.init]p2:
4454   //   If a mem-initializer-id is ambiguous because it designates both
4455   //   a direct non-virtual base class and an inherited virtual base
4456   //   class, the mem-initializer is ill-formed.
4457   if (DirectBaseSpec && VirtualBaseSpec)
4458     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4459       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4460 
4461   const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4462   if (!BaseSpec)
4463     BaseSpec = VirtualBaseSpec;
4464 
4465   // Initialize the base.
4466   bool InitList = true;
4467   MultiExprArg Args = Init;
4468   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4469     InitList = false;
4470     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4471   }
4472 
4473   InitializedEntity BaseEntity =
4474     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4475   InitializationKind Kind =
4476       InitList ? InitializationKind::CreateDirectList(BaseLoc)
4477                : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4478                                                   InitRange.getEnd());
4479   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4480   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4481   if (BaseInit.isInvalid())
4482     return true;
4483 
4484   // C++11 [class.base.init]p7:
4485   //   The initialization of each base and member constitutes a
4486   //   full-expression.
4487   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4488                                  /*DiscardedValue*/ false);
4489   if (BaseInit.isInvalid())
4490     return true;
4491 
4492   // If we are in a dependent context, template instantiation will
4493   // perform this type-checking again. Just save the arguments that we
4494   // received in a ParenListExpr.
4495   // FIXME: This isn't quite ideal, since our ASTs don't capture all
4496   // of the information that we have about the base
4497   // initializer. However, deconstructing the ASTs is a dicey process,
4498   // and this approach is far more likely to get the corner cases right.
4499   if (CurContext->isDependentContext())
4500     BaseInit = Init;
4501 
4502   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4503                                           BaseSpec->isVirtual(),
4504                                           InitRange.getBegin(),
4505                                           BaseInit.getAs<Expr>(),
4506                                           InitRange.getEnd(), EllipsisLoc);
4507 }
4508 
4509 // Create a static_cast\<T&&>(expr).
4510 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4511   if (T.isNull()) T = E->getType();
4512   QualType TargetType = SemaRef.BuildReferenceType(
4513       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4514   SourceLocation ExprLoc = E->getBeginLoc();
4515   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4516       TargetType, ExprLoc);
4517 
4518   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4519                                    SourceRange(ExprLoc, ExprLoc),
4520                                    E->getSourceRange()).get();
4521 }
4522 
4523 /// ImplicitInitializerKind - How an implicit base or member initializer should
4524 /// initialize its base or member.
4525 enum ImplicitInitializerKind {
4526   IIK_Default,
4527   IIK_Copy,
4528   IIK_Move,
4529   IIK_Inherit
4530 };
4531 
4532 static bool
4533 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4534                              ImplicitInitializerKind ImplicitInitKind,
4535                              CXXBaseSpecifier *BaseSpec,
4536                              bool IsInheritedVirtualBase,
4537                              CXXCtorInitializer *&CXXBaseInit) {
4538   InitializedEntity InitEntity
4539     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4540                                         IsInheritedVirtualBase);
4541 
4542   ExprResult BaseInit;
4543 
4544   switch (ImplicitInitKind) {
4545   case IIK_Inherit:
4546   case IIK_Default: {
4547     InitializationKind InitKind
4548       = InitializationKind::CreateDefault(Constructor->getLocation());
4549     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4550     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4551     break;
4552   }
4553 
4554   case IIK_Move:
4555   case IIK_Copy: {
4556     bool Moving = ImplicitInitKind == IIK_Move;
4557     ParmVarDecl *Param = Constructor->getParamDecl(0);
4558     QualType ParamType = Param->getType().getNonReferenceType();
4559 
4560     Expr *CopyCtorArg =
4561       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4562                           SourceLocation(), Param, false,
4563                           Constructor->getLocation(), ParamType,
4564                           VK_LValue, nullptr);
4565 
4566     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4567 
4568     // Cast to the base class to avoid ambiguities.
4569     QualType ArgTy =
4570       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4571                                        ParamType.getQualifiers());
4572 
4573     if (Moving) {
4574       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4575     }
4576 
4577     CXXCastPath BasePath;
4578     BasePath.push_back(BaseSpec);
4579     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4580                                             CK_UncheckedDerivedToBase,
4581                                             Moving ? VK_XValue : VK_LValue,
4582                                             &BasePath).get();
4583 
4584     InitializationKind InitKind
4585       = InitializationKind::CreateDirect(Constructor->getLocation(),
4586                                          SourceLocation(), SourceLocation());
4587     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4588     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4589     break;
4590   }
4591   }
4592 
4593   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4594   if (BaseInit.isInvalid())
4595     return true;
4596 
4597   CXXBaseInit =
4598     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4599                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4600                                                         SourceLocation()),
4601                                              BaseSpec->isVirtual(),
4602                                              SourceLocation(),
4603                                              BaseInit.getAs<Expr>(),
4604                                              SourceLocation(),
4605                                              SourceLocation());
4606 
4607   return false;
4608 }
4609 
4610 static bool RefersToRValueRef(Expr *MemRef) {
4611   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4612   return Referenced->getType()->isRValueReferenceType();
4613 }
4614 
4615 static bool
4616 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4617                                ImplicitInitializerKind ImplicitInitKind,
4618                                FieldDecl *Field, IndirectFieldDecl *Indirect,
4619                                CXXCtorInitializer *&CXXMemberInit) {
4620   if (Field->isInvalidDecl())
4621     return true;
4622 
4623   SourceLocation Loc = Constructor->getLocation();
4624 
4625   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4626     bool Moving = ImplicitInitKind == IIK_Move;
4627     ParmVarDecl *Param = Constructor->getParamDecl(0);
4628     QualType ParamType = Param->getType().getNonReferenceType();
4629 
4630     // Suppress copying zero-width bitfields.
4631     if (Field->isZeroLengthBitField(SemaRef.Context))
4632       return false;
4633 
4634     Expr *MemberExprBase =
4635       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4636                           SourceLocation(), Param, false,
4637                           Loc, ParamType, VK_LValue, nullptr);
4638 
4639     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4640 
4641     if (Moving) {
4642       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4643     }
4644 
4645     // Build a reference to this field within the parameter.
4646     CXXScopeSpec SS;
4647     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4648                               Sema::LookupMemberName);
4649     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4650                                   : cast<ValueDecl>(Field), AS_public);
4651     MemberLookup.resolveKind();
4652     ExprResult CtorArg
4653       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4654                                          ParamType, Loc,
4655                                          /*IsArrow=*/false,
4656                                          SS,
4657                                          /*TemplateKWLoc=*/SourceLocation(),
4658                                          /*FirstQualifierInScope=*/nullptr,
4659                                          MemberLookup,
4660                                          /*TemplateArgs=*/nullptr,
4661                                          /*S*/nullptr);
4662     if (CtorArg.isInvalid())
4663       return true;
4664 
4665     // C++11 [class.copy]p15:
4666     //   - if a member m has rvalue reference type T&&, it is direct-initialized
4667     //     with static_cast<T&&>(x.m);
4668     if (RefersToRValueRef(CtorArg.get())) {
4669       CtorArg = CastForMoving(SemaRef, CtorArg.get());
4670     }
4671 
4672     InitializedEntity Entity =
4673         Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4674                                                        /*Implicit*/ true)
4675                  : InitializedEntity::InitializeMember(Field, nullptr,
4676                                                        /*Implicit*/ true);
4677 
4678     // Direct-initialize to use the copy constructor.
4679     InitializationKind InitKind =
4680       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4681 
4682     Expr *CtorArgE = CtorArg.getAs<Expr>();
4683     InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4684     ExprResult MemberInit =
4685         InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4686     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4687     if (MemberInit.isInvalid())
4688       return true;
4689 
4690     if (Indirect)
4691       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4692           SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4693     else
4694       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4695           SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4696     return false;
4697   }
4698 
4699   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
4700          "Unhandled implicit init kind!");
4701 
4702   QualType FieldBaseElementType =
4703     SemaRef.Context.getBaseElementType(Field->getType());
4704 
4705   if (FieldBaseElementType->isRecordType()) {
4706     InitializedEntity InitEntity =
4707         Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4708                                                        /*Implicit*/ true)
4709                  : InitializedEntity::InitializeMember(Field, nullptr,
4710                                                        /*Implicit*/ true);
4711     InitializationKind InitKind =
4712       InitializationKind::CreateDefault(Loc);
4713 
4714     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4715     ExprResult MemberInit =
4716       InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4717 
4718     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4719     if (MemberInit.isInvalid())
4720       return true;
4721 
4722     if (Indirect)
4723       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4724                                                                Indirect, Loc,
4725                                                                Loc,
4726                                                                MemberInit.get(),
4727                                                                Loc);
4728     else
4729       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4730                                                                Field, Loc, Loc,
4731                                                                MemberInit.get(),
4732                                                                Loc);
4733     return false;
4734   }
4735 
4736   if (!Field->getParent()->isUnion()) {
4737     if (FieldBaseElementType->isReferenceType()) {
4738       SemaRef.Diag(Constructor->getLocation(),
4739                    diag::err_uninitialized_member_in_ctor)
4740       << (int)Constructor->isImplicit()
4741       << SemaRef.Context.getTagDeclType(Constructor->getParent())
4742       << 0 << Field->getDeclName();
4743       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4744       return true;
4745     }
4746 
4747     if (FieldBaseElementType.isConstQualified()) {
4748       SemaRef.Diag(Constructor->getLocation(),
4749                    diag::err_uninitialized_member_in_ctor)
4750       << (int)Constructor->isImplicit()
4751       << SemaRef.Context.getTagDeclType(Constructor->getParent())
4752       << 1 << Field->getDeclName();
4753       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4754       return true;
4755     }
4756   }
4757 
4758   if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4759     // ARC and Weak:
4760     //   Default-initialize Objective-C pointers to NULL.
4761     CXXMemberInit
4762       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4763                                                  Loc, Loc,
4764                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4765                                                  Loc);
4766     return false;
4767   }
4768 
4769   // Nothing to initialize.
4770   CXXMemberInit = nullptr;
4771   return false;
4772 }
4773 
4774 namespace {
4775 struct BaseAndFieldInfo {
4776   Sema &S;
4777   CXXConstructorDecl *Ctor;
4778   bool AnyErrorsInInits;
4779   ImplicitInitializerKind IIK;
4780   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4781   SmallVector<CXXCtorInitializer*, 8> AllToInit;
4782   llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4783 
4784   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4785     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4786     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4787     if (Ctor->getInheritedConstructor())
4788       IIK = IIK_Inherit;
4789     else if (Generated && Ctor->isCopyConstructor())
4790       IIK = IIK_Copy;
4791     else if (Generated && Ctor->isMoveConstructor())
4792       IIK = IIK_Move;
4793     else
4794       IIK = IIK_Default;
4795   }
4796 
4797   bool isImplicitCopyOrMove() const {
4798     switch (IIK) {
4799     case IIK_Copy:
4800     case IIK_Move:
4801       return true;
4802 
4803     case IIK_Default:
4804     case IIK_Inherit:
4805       return false;
4806     }
4807 
4808     llvm_unreachable("Invalid ImplicitInitializerKind!");
4809   }
4810 
4811   bool addFieldInitializer(CXXCtorInitializer *Init) {
4812     AllToInit.push_back(Init);
4813 
4814     // Check whether this initializer makes the field "used".
4815     if (Init->getInit()->HasSideEffects(S.Context))
4816       S.UnusedPrivateFields.remove(Init->getAnyMember());
4817 
4818     return false;
4819   }
4820 
4821   bool isInactiveUnionMember(FieldDecl *Field) {
4822     RecordDecl *Record = Field->getParent();
4823     if (!Record->isUnion())
4824       return false;
4825 
4826     if (FieldDecl *Active =
4827             ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4828       return Active != Field->getCanonicalDecl();
4829 
4830     // In an implicit copy or move constructor, ignore any in-class initializer.
4831     if (isImplicitCopyOrMove())
4832       return true;
4833 
4834     // If there's no explicit initialization, the field is active only if it
4835     // has an in-class initializer...
4836     if (Field->hasInClassInitializer())
4837       return false;
4838     // ... or it's an anonymous struct or union whose class has an in-class
4839     // initializer.
4840     if (!Field->isAnonymousStructOrUnion())
4841       return true;
4842     CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4843     return !FieldRD->hasInClassInitializer();
4844   }
4845 
4846   /// Determine whether the given field is, or is within, a union member
4847   /// that is inactive (because there was an initializer given for a different
4848   /// member of the union, or because the union was not initialized at all).
4849   bool isWithinInactiveUnionMember(FieldDecl *Field,
4850                                    IndirectFieldDecl *Indirect) {
4851     if (!Indirect)
4852       return isInactiveUnionMember(Field);
4853 
4854     for (auto *C : Indirect->chain()) {
4855       FieldDecl *Field = dyn_cast<FieldDecl>(C);
4856       if (Field && isInactiveUnionMember(Field))
4857         return true;
4858     }
4859     return false;
4860   }
4861 };
4862 }
4863 
4864 /// Determine whether the given type is an incomplete or zero-lenfgth
4865 /// array type.
4866 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4867   if (T->isIncompleteArrayType())
4868     return true;
4869 
4870   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4871     if (!ArrayT->getSize())
4872       return true;
4873 
4874     T = ArrayT->getElementType();
4875   }
4876 
4877   return false;
4878 }
4879 
4880 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4881                                     FieldDecl *Field,
4882                                     IndirectFieldDecl *Indirect = nullptr) {
4883   if (Field->isInvalidDecl())
4884     return false;
4885 
4886   // Overwhelmingly common case: we have a direct initializer for this field.
4887   if (CXXCtorInitializer *Init =
4888           Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4889     return Info.addFieldInitializer(Init);
4890 
4891   // C++11 [class.base.init]p8:
4892   //   if the entity is a non-static data member that has a
4893   //   brace-or-equal-initializer and either
4894   //   -- the constructor's class is a union and no other variant member of that
4895   //      union is designated by a mem-initializer-id or
4896   //   -- the constructor's class is not a union, and, if the entity is a member
4897   //      of an anonymous union, no other member of that union is designated by
4898   //      a mem-initializer-id,
4899   //   the entity is initialized as specified in [dcl.init].
4900   //
4901   // We also apply the same rules to handle anonymous structs within anonymous
4902   // unions.
4903   if (Info.isWithinInactiveUnionMember(Field, Indirect))
4904     return false;
4905 
4906   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4907     ExprResult DIE =
4908         SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4909     if (DIE.isInvalid())
4910       return true;
4911 
4912     auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4913     SemaRef.checkInitializerLifetime(Entity, DIE.get());
4914 
4915     CXXCtorInitializer *Init;
4916     if (Indirect)
4917       Init = new (SemaRef.Context)
4918           CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4919                              SourceLocation(), DIE.get(), SourceLocation());
4920     else
4921       Init = new (SemaRef.Context)
4922           CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4923                              SourceLocation(), DIE.get(), SourceLocation());
4924     return Info.addFieldInitializer(Init);
4925   }
4926 
4927   // Don't initialize incomplete or zero-length arrays.
4928   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4929     return false;
4930 
4931   // Don't try to build an implicit initializer if there were semantic
4932   // errors in any of the initializers (and therefore we might be
4933   // missing some that the user actually wrote).
4934   if (Info.AnyErrorsInInits)
4935     return false;
4936 
4937   CXXCtorInitializer *Init = nullptr;
4938   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4939                                      Indirect, Init))
4940     return true;
4941 
4942   if (!Init)
4943     return false;
4944 
4945   return Info.addFieldInitializer(Init);
4946 }
4947 
4948 bool
4949 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4950                                CXXCtorInitializer *Initializer) {
4951   assert(Initializer->isDelegatingInitializer());
4952   Constructor->setNumCtorInitializers(1);
4953   CXXCtorInitializer **initializer =
4954     new (Context) CXXCtorInitializer*[1];
4955   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4956   Constructor->setCtorInitializers(initializer);
4957 
4958   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4959     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4960     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4961   }
4962 
4963   DelegatingCtorDecls.push_back(Constructor);
4964 
4965   DiagnoseUninitializedFields(*this, Constructor);
4966 
4967   return false;
4968 }
4969 
4970 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4971                                ArrayRef<CXXCtorInitializer *> Initializers) {
4972   if (Constructor->isDependentContext()) {
4973     // Just store the initializers as written, they will be checked during
4974     // instantiation.
4975     if (!Initializers.empty()) {
4976       Constructor->setNumCtorInitializers(Initializers.size());
4977       CXXCtorInitializer **baseOrMemberInitializers =
4978         new (Context) CXXCtorInitializer*[Initializers.size()];
4979       memcpy(baseOrMemberInitializers, Initializers.data(),
4980              Initializers.size() * sizeof(CXXCtorInitializer*));
4981       Constructor->setCtorInitializers(baseOrMemberInitializers);
4982     }
4983 
4984     // Let template instantiation know whether we had errors.
4985     if (AnyErrors)
4986       Constructor->setInvalidDecl();
4987 
4988     return false;
4989   }
4990 
4991   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4992 
4993   // We need to build the initializer AST according to order of construction
4994   // and not what user specified in the Initializers list.
4995   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4996   if (!ClassDecl)
4997     return true;
4998 
4999   bool HadError = false;
5000 
5001   for (unsigned i = 0; i < Initializers.size(); i++) {
5002     CXXCtorInitializer *Member = Initializers[i];
5003 
5004     if (Member->isBaseInitializer())
5005       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5006     else {
5007       Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5008 
5009       if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5010         for (auto *C : F->chain()) {
5011           FieldDecl *FD = dyn_cast<FieldDecl>(C);
5012           if (FD && FD->getParent()->isUnion())
5013             Info.ActiveUnionMember.insert(std::make_pair(
5014                 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5015         }
5016       } else if (FieldDecl *FD = Member->getMember()) {
5017         if (FD->getParent()->isUnion())
5018           Info.ActiveUnionMember.insert(std::make_pair(
5019               FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5020       }
5021     }
5022   }
5023 
5024   // Keep track of the direct virtual bases.
5025   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5026   for (auto &I : ClassDecl->bases()) {
5027     if (I.isVirtual())
5028       DirectVBases.insert(&I);
5029   }
5030 
5031   // Push virtual bases before others.
5032   for (auto &VBase : ClassDecl->vbases()) {
5033     if (CXXCtorInitializer *Value
5034         = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5035       // [class.base.init]p7, per DR257:
5036       //   A mem-initializer where the mem-initializer-id names a virtual base
5037       //   class is ignored during execution of a constructor of any class that
5038       //   is not the most derived class.
5039       if (ClassDecl->isAbstract()) {
5040         // FIXME: Provide a fixit to remove the base specifier. This requires
5041         // tracking the location of the associated comma for a base specifier.
5042         Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5043           << VBase.getType() << ClassDecl;
5044         DiagnoseAbstractType(ClassDecl);
5045       }
5046 
5047       Info.AllToInit.push_back(Value);
5048     } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5049       // [class.base.init]p8, per DR257:
5050       //   If a given [...] base class is not named by a mem-initializer-id
5051       //   [...] and the entity is not a virtual base class of an abstract
5052       //   class, then [...] the entity is default-initialized.
5053       bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5054       CXXCtorInitializer *CXXBaseInit;
5055       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5056                                        &VBase, IsInheritedVirtualBase,
5057                                        CXXBaseInit)) {
5058         HadError = true;
5059         continue;
5060       }
5061 
5062       Info.AllToInit.push_back(CXXBaseInit);
5063     }
5064   }
5065 
5066   // Non-virtual bases.
5067   for (auto &Base : ClassDecl->bases()) {
5068     // Virtuals are in the virtual base list and already constructed.
5069     if (Base.isVirtual())
5070       continue;
5071 
5072     if (CXXCtorInitializer *Value
5073           = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5074       Info.AllToInit.push_back(Value);
5075     } else if (!AnyErrors) {
5076       CXXCtorInitializer *CXXBaseInit;
5077       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5078                                        &Base, /*IsInheritedVirtualBase=*/false,
5079                                        CXXBaseInit)) {
5080         HadError = true;
5081         continue;
5082       }
5083 
5084       Info.AllToInit.push_back(CXXBaseInit);
5085     }
5086   }
5087 
5088   // Fields.
5089   for (auto *Mem : ClassDecl->decls()) {
5090     if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5091       // C++ [class.bit]p2:
5092       //   A declaration for a bit-field that omits the identifier declares an
5093       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
5094       //   initialized.
5095       if (F->isUnnamedBitfield())
5096         continue;
5097 
5098       // If we're not generating the implicit copy/move constructor, then we'll
5099       // handle anonymous struct/union fields based on their individual
5100       // indirect fields.
5101       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5102         continue;
5103 
5104       if (CollectFieldInitializer(*this, Info, F))
5105         HadError = true;
5106       continue;
5107     }
5108 
5109     // Beyond this point, we only consider default initialization.
5110     if (Info.isImplicitCopyOrMove())
5111       continue;
5112 
5113     if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5114       if (F->getType()->isIncompleteArrayType()) {
5115         assert(ClassDecl->hasFlexibleArrayMember() &&
5116                "Incomplete array type is not valid");
5117         continue;
5118       }
5119 
5120       // Initialize each field of an anonymous struct individually.
5121       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5122         HadError = true;
5123 
5124       continue;
5125     }
5126   }
5127 
5128   unsigned NumInitializers = Info.AllToInit.size();
5129   if (NumInitializers > 0) {
5130     Constructor->setNumCtorInitializers(NumInitializers);
5131     CXXCtorInitializer **baseOrMemberInitializers =
5132       new (Context) CXXCtorInitializer*[NumInitializers];
5133     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5134            NumInitializers * sizeof(CXXCtorInitializer*));
5135     Constructor->setCtorInitializers(baseOrMemberInitializers);
5136 
5137     // Constructors implicitly reference the base and member
5138     // destructors.
5139     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5140                                            Constructor->getParent());
5141   }
5142 
5143   return HadError;
5144 }
5145 
5146 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5147   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5148     const RecordDecl *RD = RT->getDecl();
5149     if (RD->isAnonymousStructOrUnion()) {
5150       for (auto *Field : RD->fields())
5151         PopulateKeysForFields(Field, IdealInits);
5152       return;
5153     }
5154   }
5155   IdealInits.push_back(Field->getCanonicalDecl());
5156 }
5157 
5158 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5159   return Context.getCanonicalType(BaseType).getTypePtr();
5160 }
5161 
5162 static const void *GetKeyForMember(ASTContext &Context,
5163                                    CXXCtorInitializer *Member) {
5164   if (!Member->isAnyMemberInitializer())
5165     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5166 
5167   return Member->getAnyMember()->getCanonicalDecl();
5168 }
5169 
5170 static void DiagnoseBaseOrMemInitializerOrder(
5171     Sema &SemaRef, const CXXConstructorDecl *Constructor,
5172     ArrayRef<CXXCtorInitializer *> Inits) {
5173   if (Constructor->getDeclContext()->isDependentContext())
5174     return;
5175 
5176   // Don't check initializers order unless the warning is enabled at the
5177   // location of at least one initializer.
5178   bool ShouldCheckOrder = false;
5179   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5180     CXXCtorInitializer *Init = Inits[InitIndex];
5181     if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5182                                  Init->getSourceLocation())) {
5183       ShouldCheckOrder = true;
5184       break;
5185     }
5186   }
5187   if (!ShouldCheckOrder)
5188     return;
5189 
5190   // Build the list of bases and members in the order that they'll
5191   // actually be initialized.  The explicit initializers should be in
5192   // this same order but may be missing things.
5193   SmallVector<const void*, 32> IdealInitKeys;
5194 
5195   const CXXRecordDecl *ClassDecl = Constructor->getParent();
5196 
5197   // 1. Virtual bases.
5198   for (const auto &VBase : ClassDecl->vbases())
5199     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5200 
5201   // 2. Non-virtual bases.
5202   for (const auto &Base : ClassDecl->bases()) {
5203     if (Base.isVirtual())
5204       continue;
5205     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5206   }
5207 
5208   // 3. Direct fields.
5209   for (auto *Field : ClassDecl->fields()) {
5210     if (Field->isUnnamedBitfield())
5211       continue;
5212 
5213     PopulateKeysForFields(Field, IdealInitKeys);
5214   }
5215 
5216   unsigned NumIdealInits = IdealInitKeys.size();
5217   unsigned IdealIndex = 0;
5218 
5219   CXXCtorInitializer *PrevInit = nullptr;
5220   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5221     CXXCtorInitializer *Init = Inits[InitIndex];
5222     const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
5223 
5224     // Scan forward to try to find this initializer in the idealized
5225     // initializers list.
5226     for (; IdealIndex != NumIdealInits; ++IdealIndex)
5227       if (InitKey == IdealInitKeys[IdealIndex])
5228         break;
5229 
5230     // If we didn't find this initializer, it must be because we
5231     // scanned past it on a previous iteration.  That can only
5232     // happen if we're out of order;  emit a warning.
5233     if (IdealIndex == NumIdealInits && PrevInit) {
5234       Sema::SemaDiagnosticBuilder D =
5235         SemaRef.Diag(PrevInit->getSourceLocation(),
5236                      diag::warn_initializer_out_of_order);
5237 
5238       if (PrevInit->isAnyMemberInitializer())
5239         D << 0 << PrevInit->getAnyMember()->getDeclName();
5240       else
5241         D << 1 << PrevInit->getTypeSourceInfo()->getType();
5242 
5243       if (Init->isAnyMemberInitializer())
5244         D << 0 << Init->getAnyMember()->getDeclName();
5245       else
5246         D << 1 << Init->getTypeSourceInfo()->getType();
5247 
5248       // Move back to the initializer's location in the ideal list.
5249       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5250         if (InitKey == IdealInitKeys[IdealIndex])
5251           break;
5252 
5253       assert(IdealIndex < NumIdealInits &&
5254              "initializer not found in initializer list");
5255     }
5256 
5257     PrevInit = Init;
5258   }
5259 }
5260 
5261 namespace {
5262 bool CheckRedundantInit(Sema &S,
5263                         CXXCtorInitializer *Init,
5264                         CXXCtorInitializer *&PrevInit) {
5265   if (!PrevInit) {
5266     PrevInit = Init;
5267     return false;
5268   }
5269 
5270   if (FieldDecl *Field = Init->getAnyMember())
5271     S.Diag(Init->getSourceLocation(),
5272            diag::err_multiple_mem_initialization)
5273       << Field->getDeclName()
5274       << Init->getSourceRange();
5275   else {
5276     const Type *BaseClass = Init->getBaseClass();
5277     assert(BaseClass && "neither field nor base");
5278     S.Diag(Init->getSourceLocation(),
5279            diag::err_multiple_base_initialization)
5280       << QualType(BaseClass, 0)
5281       << Init->getSourceRange();
5282   }
5283   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5284     << 0 << PrevInit->getSourceRange();
5285 
5286   return true;
5287 }
5288 
5289 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5290 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5291 
5292 bool CheckRedundantUnionInit(Sema &S,
5293                              CXXCtorInitializer *Init,
5294                              RedundantUnionMap &Unions) {
5295   FieldDecl *Field = Init->getAnyMember();
5296   RecordDecl *Parent = Field->getParent();
5297   NamedDecl *Child = Field;
5298 
5299   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5300     if (Parent->isUnion()) {
5301       UnionEntry &En = Unions[Parent];
5302       if (En.first && En.first != Child) {
5303         S.Diag(Init->getSourceLocation(),
5304                diag::err_multiple_mem_union_initialization)
5305           << Field->getDeclName()
5306           << Init->getSourceRange();
5307         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5308           << 0 << En.second->getSourceRange();
5309         return true;
5310       }
5311       if (!En.first) {
5312         En.first = Child;
5313         En.second = Init;
5314       }
5315       if (!Parent->isAnonymousStructOrUnion())
5316         return false;
5317     }
5318 
5319     Child = Parent;
5320     Parent = cast<RecordDecl>(Parent->getDeclContext());
5321   }
5322 
5323   return false;
5324 }
5325 }
5326 
5327 /// ActOnMemInitializers - Handle the member initializers for a constructor.
5328 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5329                                 SourceLocation ColonLoc,
5330                                 ArrayRef<CXXCtorInitializer*> MemInits,
5331                                 bool AnyErrors) {
5332   if (!ConstructorDecl)
5333     return;
5334 
5335   AdjustDeclIfTemplate(ConstructorDecl);
5336 
5337   CXXConstructorDecl *Constructor
5338     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5339 
5340   if (!Constructor) {
5341     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5342     return;
5343   }
5344 
5345   // Mapping for the duplicate initializers check.
5346   // For member initializers, this is keyed with a FieldDecl*.
5347   // For base initializers, this is keyed with a Type*.
5348   llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5349 
5350   // Mapping for the inconsistent anonymous-union initializers check.
5351   RedundantUnionMap MemberUnions;
5352 
5353   bool HadError = false;
5354   for (unsigned i = 0; i < MemInits.size(); i++) {
5355     CXXCtorInitializer *Init = MemInits[i];
5356 
5357     // Set the source order index.
5358     Init->setSourceOrder(i);
5359 
5360     if (Init->isAnyMemberInitializer()) {
5361       const void *Key = GetKeyForMember(Context, Init);
5362       if (CheckRedundantInit(*this, Init, Members[Key]) ||
5363           CheckRedundantUnionInit(*this, Init, MemberUnions))
5364         HadError = true;
5365     } else if (Init->isBaseInitializer()) {
5366       const void *Key = GetKeyForMember(Context, Init);
5367       if (CheckRedundantInit(*this, Init, Members[Key]))
5368         HadError = true;
5369     } else {
5370       assert(Init->isDelegatingInitializer());
5371       // This must be the only initializer
5372       if (MemInits.size() != 1) {
5373         Diag(Init->getSourceLocation(),
5374              diag::err_delegating_initializer_alone)
5375           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5376         // We will treat this as being the only initializer.
5377       }
5378       SetDelegatingInitializer(Constructor, MemInits[i]);
5379       // Return immediately as the initializer is set.
5380       return;
5381     }
5382   }
5383 
5384   if (HadError)
5385     return;
5386 
5387   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5388 
5389   SetCtorInitializers(Constructor, AnyErrors, MemInits);
5390 
5391   DiagnoseUninitializedFields(*this, Constructor);
5392 }
5393 
5394 void
5395 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5396                                              CXXRecordDecl *ClassDecl) {
5397   // Ignore dependent contexts. Also ignore unions, since their members never
5398   // have destructors implicitly called.
5399   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5400     return;
5401 
5402   // FIXME: all the access-control diagnostics are positioned on the
5403   // field/base declaration.  That's probably good; that said, the
5404   // user might reasonably want to know why the destructor is being
5405   // emitted, and we currently don't say.
5406 
5407   // Non-static data members.
5408   for (auto *Field : ClassDecl->fields()) {
5409     if (Field->isInvalidDecl())
5410       continue;
5411 
5412     // Don't destroy incomplete or zero-length arrays.
5413     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5414       continue;
5415 
5416     QualType FieldType = Context.getBaseElementType(Field->getType());
5417 
5418     const RecordType* RT = FieldType->getAs<RecordType>();
5419     if (!RT)
5420       continue;
5421 
5422     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5423     if (FieldClassDecl->isInvalidDecl())
5424       continue;
5425     if (FieldClassDecl->hasIrrelevantDestructor())
5426       continue;
5427     // The destructor for an implicit anonymous union member is never invoked.
5428     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5429       continue;
5430 
5431     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5432     assert(Dtor && "No dtor found for FieldClassDecl!");
5433     CheckDestructorAccess(Field->getLocation(), Dtor,
5434                           PDiag(diag::err_access_dtor_field)
5435                             << Field->getDeclName()
5436                             << FieldType);
5437 
5438     MarkFunctionReferenced(Location, Dtor);
5439     DiagnoseUseOfDecl(Dtor, Location);
5440   }
5441 
5442   // We only potentially invoke the destructors of potentially constructed
5443   // subobjects.
5444   bool VisitVirtualBases = !ClassDecl->isAbstract();
5445 
5446   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5447 
5448   // Bases.
5449   for (const auto &Base : ClassDecl->bases()) {
5450     // Bases are always records in a well-formed non-dependent class.
5451     const RecordType *RT = Base.getType()->getAs<RecordType>();
5452 
5453     // Remember direct virtual bases.
5454     if (Base.isVirtual()) {
5455       if (!VisitVirtualBases)
5456         continue;
5457       DirectVirtualBases.insert(RT);
5458     }
5459 
5460     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5461     // If our base class is invalid, we probably can't get its dtor anyway.
5462     if (BaseClassDecl->isInvalidDecl())
5463       continue;
5464     if (BaseClassDecl->hasIrrelevantDestructor())
5465       continue;
5466 
5467     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5468     assert(Dtor && "No dtor found for BaseClassDecl!");
5469 
5470     // FIXME: caret should be on the start of the class name
5471     CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5472                           PDiag(diag::err_access_dtor_base)
5473                               << Base.getType() << Base.getSourceRange(),
5474                           Context.getTypeDeclType(ClassDecl));
5475 
5476     MarkFunctionReferenced(Location, Dtor);
5477     DiagnoseUseOfDecl(Dtor, Location);
5478   }
5479 
5480   if (!VisitVirtualBases)
5481     return;
5482 
5483   // Virtual bases.
5484   for (const auto &VBase : ClassDecl->vbases()) {
5485     // Bases are always records in a well-formed non-dependent class.
5486     const RecordType *RT = VBase.getType()->castAs<RecordType>();
5487 
5488     // Ignore direct virtual bases.
5489     if (DirectVirtualBases.count(RT))
5490       continue;
5491 
5492     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5493     // If our base class is invalid, we probably can't get its dtor anyway.
5494     if (BaseClassDecl->isInvalidDecl())
5495       continue;
5496     if (BaseClassDecl->hasIrrelevantDestructor())
5497       continue;
5498 
5499     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5500     assert(Dtor && "No dtor found for BaseClassDecl!");
5501     if (CheckDestructorAccess(
5502             ClassDecl->getLocation(), Dtor,
5503             PDiag(diag::err_access_dtor_vbase)
5504                 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5505             Context.getTypeDeclType(ClassDecl)) ==
5506         AR_accessible) {
5507       CheckDerivedToBaseConversion(
5508           Context.getTypeDeclType(ClassDecl), VBase.getType(),
5509           diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5510           SourceRange(), DeclarationName(), nullptr);
5511     }
5512 
5513     MarkFunctionReferenced(Location, Dtor);
5514     DiagnoseUseOfDecl(Dtor, Location);
5515   }
5516 }
5517 
5518 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5519   if (!CDtorDecl)
5520     return;
5521 
5522   if (CXXConstructorDecl *Constructor
5523       = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5524     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5525     DiagnoseUninitializedFields(*this, Constructor);
5526   }
5527 }
5528 
5529 bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5530   if (!getLangOpts().CPlusPlus)
5531     return false;
5532 
5533   const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5534   if (!RD)
5535     return false;
5536 
5537   // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5538   // class template specialization here, but doing so breaks a lot of code.
5539 
5540   // We can't answer whether something is abstract until it has a
5541   // definition. If it's currently being defined, we'll walk back
5542   // over all the declarations when we have a full definition.
5543   const CXXRecordDecl *Def = RD->getDefinition();
5544   if (!Def || Def->isBeingDefined())
5545     return false;
5546 
5547   return RD->isAbstract();
5548 }
5549 
5550 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5551                                   TypeDiagnoser &Diagnoser) {
5552   if (!isAbstractType(Loc, T))
5553     return false;
5554 
5555   T = Context.getBaseElementType(T);
5556   Diagnoser.diagnose(*this, Loc, T);
5557   DiagnoseAbstractType(T->getAsCXXRecordDecl());
5558   return true;
5559 }
5560 
5561 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5562   // Check if we've already emitted the list of pure virtual functions
5563   // for this class.
5564   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5565     return;
5566 
5567   // If the diagnostic is suppressed, don't emit the notes. We're only
5568   // going to emit them once, so try to attach them to a diagnostic we're
5569   // actually going to show.
5570   if (Diags.isLastDiagnosticIgnored())
5571     return;
5572 
5573   CXXFinalOverriderMap FinalOverriders;
5574   RD->getFinalOverriders(FinalOverriders);
5575 
5576   // Keep a set of seen pure methods so we won't diagnose the same method
5577   // more than once.
5578   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5579 
5580   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5581                                    MEnd = FinalOverriders.end();
5582        M != MEnd;
5583        ++M) {
5584     for (OverridingMethods::iterator SO = M->second.begin(),
5585                                   SOEnd = M->second.end();
5586          SO != SOEnd; ++SO) {
5587       // C++ [class.abstract]p4:
5588       //   A class is abstract if it contains or inherits at least one
5589       //   pure virtual function for which the final overrider is pure
5590       //   virtual.
5591 
5592       //
5593       if (SO->second.size() != 1)
5594         continue;
5595 
5596       if (!SO->second.front().Method->isPure())
5597         continue;
5598 
5599       if (!SeenPureMethods.insert(SO->second.front().Method).second)
5600         continue;
5601 
5602       Diag(SO->second.front().Method->getLocation(),
5603            diag::note_pure_virtual_function)
5604         << SO->second.front().Method->getDeclName() << RD->getDeclName();
5605     }
5606   }
5607 
5608   if (!PureVirtualClassDiagSet)
5609     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5610   PureVirtualClassDiagSet->insert(RD);
5611 }
5612 
5613 namespace {
5614 struct AbstractUsageInfo {
5615   Sema &S;
5616   CXXRecordDecl *Record;
5617   CanQualType AbstractType;
5618   bool Invalid;
5619 
5620   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5621     : S(S), Record(Record),
5622       AbstractType(S.Context.getCanonicalType(
5623                    S.Context.getTypeDeclType(Record))),
5624       Invalid(false) {}
5625 
5626   void DiagnoseAbstractType() {
5627     if (Invalid) return;
5628     S.DiagnoseAbstractType(Record);
5629     Invalid = true;
5630   }
5631 
5632   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5633 };
5634 
5635 struct CheckAbstractUsage {
5636   AbstractUsageInfo &Info;
5637   const NamedDecl *Ctx;
5638 
5639   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5640     : Info(Info), Ctx(Ctx) {}
5641 
5642   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5643     switch (TL.getTypeLocClass()) {
5644 #define ABSTRACT_TYPELOC(CLASS, PARENT)
5645 #define TYPELOC(CLASS, PARENT) \
5646     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5647 #include "clang/AST/TypeLocNodes.def"
5648     }
5649   }
5650 
5651   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5652     Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5653     for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5654       if (!TL.getParam(I))
5655         continue;
5656 
5657       TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5658       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5659     }
5660   }
5661 
5662   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5663     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5664   }
5665 
5666   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5667     // Visit the type parameters from a permissive context.
5668     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5669       TemplateArgumentLoc TAL = TL.getArgLoc(I);
5670       if (TAL.getArgument().getKind() == TemplateArgument::Type)
5671         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5672           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5673       // TODO: other template argument types?
5674     }
5675   }
5676 
5677   // Visit pointee types from a permissive context.
5678 #define CheckPolymorphic(Type) \
5679   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5680     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5681   }
5682   CheckPolymorphic(PointerTypeLoc)
5683   CheckPolymorphic(ReferenceTypeLoc)
5684   CheckPolymorphic(MemberPointerTypeLoc)
5685   CheckPolymorphic(BlockPointerTypeLoc)
5686   CheckPolymorphic(AtomicTypeLoc)
5687 
5688   /// Handle all the types we haven't given a more specific
5689   /// implementation for above.
5690   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5691     // Every other kind of type that we haven't called out already
5692     // that has an inner type is either (1) sugar or (2) contains that
5693     // inner type in some way as a subobject.
5694     if (TypeLoc Next = TL.getNextTypeLoc())
5695       return Visit(Next, Sel);
5696 
5697     // If there's no inner type and we're in a permissive context,
5698     // don't diagnose.
5699     if (Sel == Sema::AbstractNone) return;
5700 
5701     // Check whether the type matches the abstract type.
5702     QualType T = TL.getType();
5703     if (T->isArrayType()) {
5704       Sel = Sema::AbstractArrayType;
5705       T = Info.S.Context.getBaseElementType(T);
5706     }
5707     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5708     if (CT != Info.AbstractType) return;
5709 
5710     // It matched; do some magic.
5711     if (Sel == Sema::AbstractArrayType) {
5712       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5713         << T << TL.getSourceRange();
5714     } else {
5715       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5716         << Sel << T << TL.getSourceRange();
5717     }
5718     Info.DiagnoseAbstractType();
5719   }
5720 };
5721 
5722 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5723                                   Sema::AbstractDiagSelID Sel) {
5724   CheckAbstractUsage(*this, D).Visit(TL, Sel);
5725 }
5726 
5727 }
5728 
5729 /// Check for invalid uses of an abstract type in a method declaration.
5730 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5731                                     CXXMethodDecl *MD) {
5732   // No need to do the check on definitions, which require that
5733   // the return/param types be complete.
5734   if (MD->doesThisDeclarationHaveABody())
5735     return;
5736 
5737   // For safety's sake, just ignore it if we don't have type source
5738   // information.  This should never happen for non-implicit methods,
5739   // but...
5740   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5741     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5742 }
5743 
5744 /// Check for invalid uses of an abstract type within a class definition.
5745 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5746                                     CXXRecordDecl *RD) {
5747   for (auto *D : RD->decls()) {
5748     if (D->isImplicit()) continue;
5749 
5750     // Methods and method templates.
5751     if (isa<CXXMethodDecl>(D)) {
5752       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5753     } else if (isa<FunctionTemplateDecl>(D)) {
5754       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5755       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5756 
5757     // Fields and static variables.
5758     } else if (isa<FieldDecl>(D)) {
5759       FieldDecl *FD = cast<FieldDecl>(D);
5760       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5761         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5762     } else if (isa<VarDecl>(D)) {
5763       VarDecl *VD = cast<VarDecl>(D);
5764       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5765         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5766 
5767     // Nested classes and class templates.
5768     } else if (isa<CXXRecordDecl>(D)) {
5769       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5770     } else if (isa<ClassTemplateDecl>(D)) {
5771       CheckAbstractClassUsage(Info,
5772                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5773     }
5774   }
5775 }
5776 
5777 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5778   Attr *ClassAttr = getDLLAttr(Class);
5779   if (!ClassAttr)
5780     return;
5781 
5782   assert(ClassAttr->getKind() == attr::DLLExport);
5783 
5784   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5785 
5786   if (TSK == TSK_ExplicitInstantiationDeclaration)
5787     // Don't go any further if this is just an explicit instantiation
5788     // declaration.
5789     return;
5790 
5791   if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
5792     S.MarkVTableUsed(Class->getLocation(), Class, true);
5793 
5794   for (Decl *Member : Class->decls()) {
5795     // Defined static variables that are members of an exported base
5796     // class must be marked export too.
5797     auto *VD = dyn_cast<VarDecl>(Member);
5798     if (VD && Member->getAttr<DLLExportAttr>() &&
5799         VD->getStorageClass() == SC_Static &&
5800         TSK == TSK_ImplicitInstantiation)
5801       S.MarkVariableReferenced(VD->getLocation(), VD);
5802 
5803     auto *MD = dyn_cast<CXXMethodDecl>(Member);
5804     if (!MD)
5805       continue;
5806 
5807     if (Member->getAttr<DLLExportAttr>()) {
5808       if (MD->isUserProvided()) {
5809         // Instantiate non-default class member functions ...
5810 
5811         // .. except for certain kinds of template specializations.
5812         if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5813           continue;
5814 
5815         S.MarkFunctionReferenced(Class->getLocation(), MD);
5816 
5817         // The function will be passed to the consumer when its definition is
5818         // encountered.
5819       } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5820                  MD->isCopyAssignmentOperator() ||
5821                  MD->isMoveAssignmentOperator()) {
5822         // Synthesize and instantiate non-trivial implicit methods, explicitly
5823         // defaulted methods, and the copy and move assignment operators. The
5824         // latter are exported even if they are trivial, because the address of
5825         // an operator can be taken and should compare equal across libraries.
5826         DiagnosticErrorTrap Trap(S.Diags);
5827         S.MarkFunctionReferenced(Class->getLocation(), MD);
5828         if (Trap.hasErrorOccurred()) {
5829           S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5830               << Class << !S.getLangOpts().CPlusPlus11;
5831           break;
5832         }
5833 
5834         // There is no later point when we will see the definition of this
5835         // function, so pass it to the consumer now.
5836         S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5837       }
5838     }
5839   }
5840 }
5841 
5842 static void checkForMultipleExportedDefaultConstructors(Sema &S,
5843                                                         CXXRecordDecl *Class) {
5844   // Only the MS ABI has default constructor closures, so we don't need to do
5845   // this semantic checking anywhere else.
5846   if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5847     return;
5848 
5849   CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5850   for (Decl *Member : Class->decls()) {
5851     // Look for exported default constructors.
5852     auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5853     if (!CD || !CD->isDefaultConstructor())
5854       continue;
5855     auto *Attr = CD->getAttr<DLLExportAttr>();
5856     if (!Attr)
5857       continue;
5858 
5859     // If the class is non-dependent, mark the default arguments as ODR-used so
5860     // that we can properly codegen the constructor closure.
5861     if (!Class->isDependentContext()) {
5862       for (ParmVarDecl *PD : CD->parameters()) {
5863         (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5864         S.DiscardCleanupsInEvaluationContext();
5865       }
5866     }
5867 
5868     if (LastExportedDefaultCtor) {
5869       S.Diag(LastExportedDefaultCtor->getLocation(),
5870              diag::err_attribute_dll_ambiguous_default_ctor)
5871           << Class;
5872       S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5873           << CD->getDeclName();
5874       return;
5875     }
5876     LastExportedDefaultCtor = CD;
5877   }
5878 }
5879 
5880 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
5881   // Mark any compiler-generated routines with the implicit code_seg attribute.
5882   for (auto *Method : Class->methods()) {
5883     if (Method->isUserProvided())
5884       continue;
5885     if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
5886       Method->addAttr(A);
5887   }
5888 }
5889 
5890 /// Check class-level dllimport/dllexport attribute.
5891 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5892   Attr *ClassAttr = getDLLAttr(Class);
5893 
5894   // MSVC inherits DLL attributes to partial class template specializations.
5895   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5896     if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5897       if (Attr *TemplateAttr =
5898               getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5899         auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5900         A->setInherited(true);
5901         ClassAttr = A;
5902       }
5903     }
5904   }
5905 
5906   if (!ClassAttr)
5907     return;
5908 
5909   if (!Class->isExternallyVisible()) {
5910     Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5911         << Class << ClassAttr;
5912     return;
5913   }
5914 
5915   if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5916       !ClassAttr->isInherited()) {
5917     // Diagnose dll attributes on members of class with dll attribute.
5918     for (Decl *Member : Class->decls()) {
5919       if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5920         continue;
5921       InheritableAttr *MemberAttr = getDLLAttr(Member);
5922       if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5923         continue;
5924 
5925       Diag(MemberAttr->getLocation(),
5926              diag::err_attribute_dll_member_of_dll_class)
5927           << MemberAttr << ClassAttr;
5928       Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5929       Member->setInvalidDecl();
5930     }
5931   }
5932 
5933   if (Class->getDescribedClassTemplate())
5934     // Don't inherit dll attribute until the template is instantiated.
5935     return;
5936 
5937   // The class is either imported or exported.
5938   const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5939 
5940   // Check if this was a dllimport attribute propagated from a derived class to
5941   // a base class template specialization. We don't apply these attributes to
5942   // static data members.
5943   const bool PropagatedImport =
5944       !ClassExported &&
5945       cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
5946 
5947   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5948 
5949   // Ignore explicit dllexport on explicit class template instantiation
5950   // declarations, except in MinGW mode.
5951   if (ClassExported && !ClassAttr->isInherited() &&
5952       TSK == TSK_ExplicitInstantiationDeclaration &&
5953       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
5954     Class->dropAttr<DLLExportAttr>();
5955     return;
5956   }
5957 
5958   // Force declaration of implicit members so they can inherit the attribute.
5959   ForceDeclarationOfImplicitMembers(Class);
5960 
5961   // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5962   // seem to be true in practice?
5963 
5964   for (Decl *Member : Class->decls()) {
5965     VarDecl *VD = dyn_cast<VarDecl>(Member);
5966     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5967 
5968     // Only methods and static fields inherit the attributes.
5969     if (!VD && !MD)
5970       continue;
5971 
5972     if (MD) {
5973       // Don't process deleted methods.
5974       if (MD->isDeleted())
5975         continue;
5976 
5977       if (MD->isInlined()) {
5978         // MinGW does not import or export inline methods. But do it for
5979         // template instantiations.
5980         if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5981             !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment() &&
5982             TSK != TSK_ExplicitInstantiationDeclaration &&
5983             TSK != TSK_ExplicitInstantiationDefinition)
5984           continue;
5985 
5986         // MSVC versions before 2015 don't export the move assignment operators
5987         // and move constructor, so don't attempt to import/export them if
5988         // we have a definition.
5989         auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5990         if ((MD->isMoveAssignmentOperator() ||
5991              (Ctor && Ctor->isMoveConstructor())) &&
5992             !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5993           continue;
5994 
5995         // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5996         // operator is exported anyway.
5997         if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5998             (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5999           continue;
6000       }
6001     }
6002 
6003     // Don't apply dllimport attributes to static data members of class template
6004     // instantiations when the attribute is propagated from a derived class.
6005     if (VD && PropagatedImport)
6006       continue;
6007 
6008     if (!cast<NamedDecl>(Member)->isExternallyVisible())
6009       continue;
6010 
6011     if (!getDLLAttr(Member)) {
6012       InheritableAttr *NewAttr = nullptr;
6013 
6014       // Do not export/import inline function when -fno-dllexport-inlines is
6015       // passed. But add attribute for later local static var check.
6016       if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6017           TSK != TSK_ExplicitInstantiationDeclaration &&
6018           TSK != TSK_ExplicitInstantiationDefinition) {
6019         if (ClassExported) {
6020           NewAttr = ::new (getASTContext())
6021               DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6022         } else {
6023           NewAttr = ::new (getASTContext())
6024               DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6025         }
6026       } else {
6027         NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6028       }
6029 
6030       NewAttr->setInherited(true);
6031       Member->addAttr(NewAttr);
6032 
6033       if (MD) {
6034         // Propagate DLLAttr to friend re-declarations of MD that have already
6035         // been constructed.
6036         for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6037              FD = FD->getPreviousDecl()) {
6038           if (FD->getFriendObjectKind() == Decl::FOK_None)
6039             continue;
6040           assert(!getDLLAttr(FD) &&
6041                  "friend re-decl should not already have a DLLAttr");
6042           NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6043           NewAttr->setInherited(true);
6044           FD->addAttr(NewAttr);
6045         }
6046       }
6047     }
6048   }
6049 
6050   if (ClassExported)
6051     DelayedDllExportClasses.push_back(Class);
6052 }
6053 
6054 /// Perform propagation of DLL attributes from a derived class to a
6055 /// templated base class for MS compatibility.
6056 void Sema::propagateDLLAttrToBaseClassTemplate(
6057     CXXRecordDecl *Class, Attr *ClassAttr,
6058     ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6059   if (getDLLAttr(
6060           BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6061     // If the base class template has a DLL attribute, don't try to change it.
6062     return;
6063   }
6064 
6065   auto TSK = BaseTemplateSpec->getSpecializationKind();
6066   if (!getDLLAttr(BaseTemplateSpec) &&
6067       (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6068        TSK == TSK_ImplicitInstantiation)) {
6069     // The template hasn't been instantiated yet (or it has, but only as an
6070     // explicit instantiation declaration or implicit instantiation, which means
6071     // we haven't codegenned any members yet), so propagate the attribute.
6072     auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6073     NewAttr->setInherited(true);
6074     BaseTemplateSpec->addAttr(NewAttr);
6075 
6076     // If this was an import, mark that we propagated it from a derived class to
6077     // a base class template specialization.
6078     if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6079       ImportAttr->setPropagatedToBaseTemplate();
6080 
6081     // If the template is already instantiated, checkDLLAttributeRedeclaration()
6082     // needs to be run again to work see the new attribute. Otherwise this will
6083     // get run whenever the template is instantiated.
6084     if (TSK != TSK_Undeclared)
6085       checkClassLevelDLLAttribute(BaseTemplateSpec);
6086 
6087     return;
6088   }
6089 
6090   if (getDLLAttr(BaseTemplateSpec)) {
6091     // The template has already been specialized or instantiated with an
6092     // attribute, explicitly or through propagation. We should not try to change
6093     // it.
6094     return;
6095   }
6096 
6097   // The template was previously instantiated or explicitly specialized without
6098   // a dll attribute, It's too late for us to add an attribute, so warn that
6099   // this is unsupported.
6100   Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6101       << BaseTemplateSpec->isExplicitSpecialization();
6102   Diag(ClassAttr->getLocation(), diag::note_attribute);
6103   if (BaseTemplateSpec->isExplicitSpecialization()) {
6104     Diag(BaseTemplateSpec->getLocation(),
6105            diag::note_template_class_explicit_specialization_was_here)
6106         << BaseTemplateSpec;
6107   } else {
6108     Diag(BaseTemplateSpec->getPointOfInstantiation(),
6109            diag::note_template_class_instantiation_was_here)
6110         << BaseTemplateSpec;
6111   }
6112 }
6113 
6114 /// Determine the kind of defaulting that would be done for a given function.
6115 ///
6116 /// If the function is both a default constructor and a copy / move constructor
6117 /// (due to having a default argument for the first parameter), this picks
6118 /// CXXDefaultConstructor.
6119 ///
6120 /// FIXME: Check that case is properly handled by all callers.
6121 Sema::DefaultedFunctionKind
6122 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6123   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6124     if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6125       if (Ctor->isDefaultConstructor())
6126         return Sema::CXXDefaultConstructor;
6127 
6128       if (Ctor->isCopyConstructor())
6129         return Sema::CXXCopyConstructor;
6130 
6131       if (Ctor->isMoveConstructor())
6132         return Sema::CXXMoveConstructor;
6133     }
6134 
6135     if (MD->isCopyAssignmentOperator())
6136       return Sema::CXXCopyAssignment;
6137 
6138     if (MD->isMoveAssignmentOperator())
6139       return Sema::CXXMoveAssignment;
6140 
6141     if (isa<CXXDestructorDecl>(FD))
6142       return Sema::CXXDestructor;
6143   }
6144 
6145   switch (FD->getDeclName().getCXXOverloadedOperator()) {
6146   case OO_EqualEqual:
6147     return DefaultedComparisonKind::Equal;
6148 
6149   case OO_ExclaimEqual:
6150     return DefaultedComparisonKind::NotEqual;
6151 
6152   case OO_Spaceship:
6153     // No point allowing this if <=> doesn't exist in the current language mode.
6154     if (!getLangOpts().CPlusPlus2a)
6155       break;
6156     return DefaultedComparisonKind::ThreeWay;
6157 
6158   case OO_Less:
6159   case OO_LessEqual:
6160   case OO_Greater:
6161   case OO_GreaterEqual:
6162     // No point allowing this if <=> doesn't exist in the current language mode.
6163     if (!getLangOpts().CPlusPlus2a)
6164       break;
6165     return DefaultedComparisonKind::Relational;
6166 
6167   default:
6168     break;
6169   }
6170 
6171   // Not defaultable.
6172   return DefaultedFunctionKind();
6173 }
6174 
6175 static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
6176                                         SourceLocation DefaultLoc) {
6177   switch (S.getSpecialMember(MD)) {
6178   case Sema::CXXDefaultConstructor:
6179     S.DefineImplicitDefaultConstructor(DefaultLoc,
6180                                        cast<CXXConstructorDecl>(MD));
6181     break;
6182   case Sema::CXXCopyConstructor:
6183     S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
6184     break;
6185   case Sema::CXXCopyAssignment:
6186     S.DefineImplicitCopyAssignment(DefaultLoc, MD);
6187     break;
6188   case Sema::CXXDestructor:
6189     S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
6190     break;
6191   case Sema::CXXMoveConstructor:
6192     S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
6193     break;
6194   case Sema::CXXMoveAssignment:
6195     S.DefineImplicitMoveAssignment(DefaultLoc, MD);
6196     break;
6197   case Sema::CXXInvalid:
6198     llvm_unreachable("Invalid special member.");
6199   }
6200 }
6201 
6202 /// Determine whether a type is permitted to be passed or returned in
6203 /// registers, per C++ [class.temporary]p3.
6204 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6205                                TargetInfo::CallingConvKind CCK) {
6206   if (D->isDependentType() || D->isInvalidDecl())
6207     return false;
6208 
6209   // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6210   // The PS4 platform ABI follows the behavior of Clang 3.2.
6211   if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6212     return !D->hasNonTrivialDestructorForCall() &&
6213            !D->hasNonTrivialCopyConstructorForCall();
6214 
6215   if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6216     bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6217     bool DtorIsTrivialForCall = false;
6218 
6219     // If a class has at least one non-deleted, trivial copy constructor, it
6220     // is passed according to the C ABI. Otherwise, it is passed indirectly.
6221     //
6222     // Note: This permits classes with non-trivial copy or move ctors to be
6223     // passed in registers, so long as they *also* have a trivial copy ctor,
6224     // which is non-conforming.
6225     if (D->needsImplicitCopyConstructor()) {
6226       if (!D->defaultedCopyConstructorIsDeleted()) {
6227         if (D->hasTrivialCopyConstructor())
6228           CopyCtorIsTrivial = true;
6229         if (D->hasTrivialCopyConstructorForCall())
6230           CopyCtorIsTrivialForCall = true;
6231       }
6232     } else {
6233       for (const CXXConstructorDecl *CD : D->ctors()) {
6234         if (CD->isCopyConstructor() && !CD->isDeleted()) {
6235           if (CD->isTrivial())
6236             CopyCtorIsTrivial = true;
6237           if (CD->isTrivialForCall())
6238             CopyCtorIsTrivialForCall = true;
6239         }
6240       }
6241     }
6242 
6243     if (D->needsImplicitDestructor()) {
6244       if (!D->defaultedDestructorIsDeleted() &&
6245           D->hasTrivialDestructorForCall())
6246         DtorIsTrivialForCall = true;
6247     } else if (const auto *DD = D->getDestructor()) {
6248       if (!DD->isDeleted() && DD->isTrivialForCall())
6249         DtorIsTrivialForCall = true;
6250     }
6251 
6252     // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6253     if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6254       return true;
6255 
6256     // If a class has a destructor, we'd really like to pass it indirectly
6257     // because it allows us to elide copies.  Unfortunately, MSVC makes that
6258     // impossible for small types, which it will pass in a single register or
6259     // stack slot. Most objects with dtors are large-ish, so handle that early.
6260     // We can't call out all large objects as being indirect because there are
6261     // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6262     // how we pass large POD types.
6263 
6264     // Note: This permits small classes with nontrivial destructors to be
6265     // passed in registers, which is non-conforming.
6266     bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6267     uint64_t TypeSize = isAArch64 ? 128 : 64;
6268 
6269     if (CopyCtorIsTrivial &&
6270         S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6271       return true;
6272     return false;
6273   }
6274 
6275   // Per C++ [class.temporary]p3, the relevant condition is:
6276   //   each copy constructor, move constructor, and destructor of X is
6277   //   either trivial or deleted, and X has at least one non-deleted copy
6278   //   or move constructor
6279   bool HasNonDeletedCopyOrMove = false;
6280 
6281   if (D->needsImplicitCopyConstructor() &&
6282       !D->defaultedCopyConstructorIsDeleted()) {
6283     if (!D->hasTrivialCopyConstructorForCall())
6284       return false;
6285     HasNonDeletedCopyOrMove = true;
6286   }
6287 
6288   if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6289       !D->defaultedMoveConstructorIsDeleted()) {
6290     if (!D->hasTrivialMoveConstructorForCall())
6291       return false;
6292     HasNonDeletedCopyOrMove = true;
6293   }
6294 
6295   if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6296       !D->hasTrivialDestructorForCall())
6297     return false;
6298 
6299   for (const CXXMethodDecl *MD : D->methods()) {
6300     if (MD->isDeleted())
6301       continue;
6302 
6303     auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6304     if (CD && CD->isCopyOrMoveConstructor())
6305       HasNonDeletedCopyOrMove = true;
6306     else if (!isa<CXXDestructorDecl>(MD))
6307       continue;
6308 
6309     if (!MD->isTrivialForCall())
6310       return false;
6311   }
6312 
6313   return HasNonDeletedCopyOrMove;
6314 }
6315 
6316 /// Perform semantic checks on a class definition that has been
6317 /// completing, introducing implicitly-declared members, checking for
6318 /// abstract types, etc.
6319 ///
6320 /// \param S The scope in which the class was parsed. Null if we didn't just
6321 ///        parse a class definition.
6322 /// \param Record The completed class.
6323 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6324   if (!Record)
6325     return;
6326 
6327   if (Record->isAbstract() && !Record->isInvalidDecl()) {
6328     AbstractUsageInfo Info(*this, Record);
6329     CheckAbstractClassUsage(Info, Record);
6330   }
6331 
6332   // If this is not an aggregate type and has no user-declared constructor,
6333   // complain about any non-static data members of reference or const scalar
6334   // type, since they will never get initializers.
6335   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6336       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6337       !Record->isLambda()) {
6338     bool Complained = false;
6339     for (const auto *F : Record->fields()) {
6340       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6341         continue;
6342 
6343       if (F->getType()->isReferenceType() ||
6344           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6345         if (!Complained) {
6346           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6347             << Record->getTagKind() << Record;
6348           Complained = true;
6349         }
6350 
6351         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6352           << F->getType()->isReferenceType()
6353           << F->getDeclName();
6354       }
6355     }
6356   }
6357 
6358   if (Record->getIdentifier()) {
6359     // C++ [class.mem]p13:
6360     //   If T is the name of a class, then each of the following shall have a
6361     //   name different from T:
6362     //     - every member of every anonymous union that is a member of class T.
6363     //
6364     // C++ [class.mem]p14:
6365     //   In addition, if class T has a user-declared constructor (12.1), every
6366     //   non-static data member of class T shall have a name different from T.
6367     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6368     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6369          ++I) {
6370       NamedDecl *D = (*I)->getUnderlyingDecl();
6371       if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6372            Record->hasUserDeclaredConstructor()) ||
6373           isa<IndirectFieldDecl>(D)) {
6374         Diag((*I)->getLocation(), diag::err_member_name_of_class)
6375           << D->getDeclName();
6376         break;
6377       }
6378     }
6379   }
6380 
6381   // Warn if the class has virtual methods but non-virtual public destructor.
6382   if (Record->isPolymorphic() && !Record->isDependentType()) {
6383     CXXDestructorDecl *dtor = Record->getDestructor();
6384     if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6385         !Record->hasAttr<FinalAttr>())
6386       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6387            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6388   }
6389 
6390   if (Record->isAbstract()) {
6391     if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6392       Diag(Record->getLocation(), diag::warn_abstract_final_class)
6393         << FA->isSpelledAsSealed();
6394       DiagnoseAbstractType(Record);
6395     }
6396   }
6397 
6398   // Warn if the class has a final destructor but is not itself marked final.
6399   if (!Record->hasAttr<FinalAttr>()) {
6400     if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6401       if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6402         Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6403             << FA->isSpelledAsSealed()
6404             << FixItHint::CreateInsertion(
6405                    getLocForEndOfToken(Record->getLocation()),
6406                    (FA->isSpelledAsSealed() ? " sealed" : " final"));
6407         Diag(Record->getLocation(),
6408              diag::note_final_dtor_non_final_class_silence)
6409             << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6410       }
6411     }
6412   }
6413 
6414   // See if trivial_abi has to be dropped.
6415   if (Record->hasAttr<TrivialABIAttr>())
6416     checkIllFormedTrivialABIStruct(*Record);
6417 
6418   // Set HasTrivialSpecialMemberForCall if the record has attribute
6419   // "trivial_abi".
6420   bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6421 
6422   if (HasTrivialABI)
6423     Record->setHasTrivialSpecialMemberForCall();
6424 
6425   // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6426   // We check these last because they can depend on the properties of the
6427   // primary comparison functions (==, <=>).
6428   llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6429 
6430   auto CheckForDefaultedFunction = [&](FunctionDecl *FD) {
6431     if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6432       return;
6433 
6434     DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6435     if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6436         DFK.asComparison() == DefaultedComparisonKind::Relational)
6437       DefaultedSecondaryComparisons.push_back(FD);
6438     else
6439       CheckExplicitlyDefaultedFunction(S, FD);
6440   };
6441 
6442   auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6443     // Check whether the explicitly-defaulted members are valid.
6444     CheckForDefaultedFunction(M);
6445 
6446     // Skip the rest of the checks for a member of a dependent class.
6447     if (Record->isDependentType())
6448       return;
6449 
6450     // For an explicitly defaulted or deleted special member, we defer
6451     // determining triviality until the class is complete. That time is now!
6452     CXXSpecialMember CSM = getSpecialMember(M);
6453     if (!M->isImplicit() && !M->isUserProvided()) {
6454       if (CSM != CXXInvalid) {
6455         M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6456         // Inform the class that we've finished declaring this member.
6457         Record->finishedDefaultedOrDeletedMember(M);
6458         M->setTrivialForCall(
6459             HasTrivialABI ||
6460             SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6461         Record->setTrivialForCallFlags(M);
6462       }
6463     }
6464 
6465     // Set triviality for the purpose of calls if this is a user-provided
6466     // copy/move constructor or destructor.
6467     if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6468          CSM == CXXDestructor) && M->isUserProvided()) {
6469       M->setTrivialForCall(HasTrivialABI);
6470       Record->setTrivialForCallFlags(M);
6471     }
6472 
6473     if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6474         M->hasAttr<DLLExportAttr>()) {
6475       if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6476           M->isTrivial() &&
6477           (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6478            CSM == CXXDestructor))
6479         M->dropAttr<DLLExportAttr>();
6480 
6481       if (M->hasAttr<DLLExportAttr>()) {
6482         // Define after any fields with in-class initializers have been parsed.
6483         DelayedDllExportMemberFunctions.push_back(M);
6484       }
6485     }
6486 
6487     // Define defaulted constexpr virtual functions that override a base class
6488     // function right away.
6489     // FIXME: We can defer doing this until the vtable is marked as used.
6490     if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6491       DefineImplicitSpecialMember(*this, M, M->getLocation());
6492   };
6493 
6494   // Check the destructor before any other member function. We need to
6495   // determine whether it's trivial in order to determine whether the claas
6496   // type is a literal type, which is a prerequisite for determining whether
6497   // other special member functions are valid and whether they're implicitly
6498   // 'constexpr'.
6499   if (CXXDestructorDecl *Dtor = Record->getDestructor())
6500     CompleteMemberFunction(Dtor);
6501 
6502   bool HasMethodWithOverrideControl = false,
6503        HasOverridingMethodWithoutOverrideControl = false;
6504   for (auto *D : Record->decls()) {
6505     if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
6506       // FIXME: We could do this check for dependent types with non-dependent
6507       // bases.
6508       if (!Record->isDependentType()) {
6509         // See if a method overloads virtual methods in a base
6510         // class without overriding any.
6511         if (!M->isStatic())
6512           DiagnoseHiddenVirtualMethods(M);
6513         if (M->hasAttr<OverrideAttr>())
6514           HasMethodWithOverrideControl = true;
6515         else if (M->size_overridden_methods() > 0)
6516           HasOverridingMethodWithoutOverrideControl = true;
6517       }
6518 
6519       if (!isa<CXXDestructorDecl>(M))
6520         CompleteMemberFunction(M);
6521     } else if (auto *F = dyn_cast<FriendDecl>(D)) {
6522       CheckForDefaultedFunction(
6523           dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
6524     }
6525   }
6526 
6527   if (HasMethodWithOverrideControl &&
6528       HasOverridingMethodWithoutOverrideControl) {
6529     // At least one method has the 'override' control declared.
6530     // Diagnose all other overridden methods which do not have 'override'
6531     // specified on them.
6532     for (auto *M : Record->methods())
6533       DiagnoseAbsenceOfOverrideControl(M);
6534   }
6535 
6536   // Check the defaulted secondary comparisons after any other member functions.
6537   for (FunctionDecl *FD : DefaultedSecondaryComparisons)
6538     CheckExplicitlyDefaultedFunction(S, FD);
6539 
6540   // ms_struct is a request to use the same ABI rules as MSVC.  Check
6541   // whether this class uses any C++ features that are implemented
6542   // completely differently in MSVC, and if so, emit a diagnostic.
6543   // That diagnostic defaults to an error, but we allow projects to
6544   // map it down to a warning (or ignore it).  It's a fairly common
6545   // practice among users of the ms_struct pragma to mass-annotate
6546   // headers, sweeping up a bunch of types that the project doesn't
6547   // really rely on MSVC-compatible layout for.  We must therefore
6548   // support "ms_struct except for C++ stuff" as a secondary ABI.
6549   if (Record->isMsStruct(Context) &&
6550       (Record->isPolymorphic() || Record->getNumBases())) {
6551     Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6552   }
6553 
6554   checkClassLevelDLLAttribute(Record);
6555   checkClassLevelCodeSegAttribute(Record);
6556 
6557   bool ClangABICompat4 =
6558       Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6559   TargetInfo::CallingConvKind CCK =
6560       Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6561   bool CanPass = canPassInRegisters(*this, Record, CCK);
6562 
6563   // Do not change ArgPassingRestrictions if it has already been set to
6564   // APK_CanNeverPassInRegs.
6565   if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
6566     Record->setArgPassingRestrictions(CanPass
6567                                           ? RecordDecl::APK_CanPassInRegs
6568                                           : RecordDecl::APK_CannotPassInRegs);
6569 
6570   // If canPassInRegisters returns true despite the record having a non-trivial
6571   // destructor, the record is destructed in the callee. This happens only when
6572   // the record or one of its subobjects has a field annotated with trivial_abi
6573   // or a field qualified with ObjC __strong/__weak.
6574   if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
6575     Record->setParamDestroyedInCallee(true);
6576   else if (Record->hasNonTrivialDestructor())
6577     Record->setParamDestroyedInCallee(CanPass);
6578 
6579   if (getLangOpts().ForceEmitVTables) {
6580     // If we want to emit all the vtables, we need to mark it as used.  This
6581     // is especially required for cases like vtable assumption loads.
6582     MarkVTableUsed(Record->getInnerLocStart(), Record);
6583   }
6584 }
6585 
6586 /// Look up the special member function that would be called by a special
6587 /// member function for a subobject of class type.
6588 ///
6589 /// \param Class The class type of the subobject.
6590 /// \param CSM The kind of special member function.
6591 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6592 /// \param ConstRHS True if this is a copy operation with a const object
6593 ///        on its RHS, that is, if the argument to the outer special member
6594 ///        function is 'const' and this is not a field marked 'mutable'.
6595 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6596     Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6597     unsigned FieldQuals, bool ConstRHS) {
6598   unsigned LHSQuals = 0;
6599   if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6600     LHSQuals = FieldQuals;
6601 
6602   unsigned RHSQuals = FieldQuals;
6603   if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6604     RHSQuals = 0;
6605   else if (ConstRHS)
6606     RHSQuals |= Qualifiers::Const;
6607 
6608   return S.LookupSpecialMember(Class, CSM,
6609                                RHSQuals & Qualifiers::Const,
6610                                RHSQuals & Qualifiers::Volatile,
6611                                false,
6612                                LHSQuals & Qualifiers::Const,
6613                                LHSQuals & Qualifiers::Volatile);
6614 }
6615 
6616 class Sema::InheritedConstructorInfo {
6617   Sema &S;
6618   SourceLocation UseLoc;
6619 
6620   /// A mapping from the base classes through which the constructor was
6621   /// inherited to the using shadow declaration in that base class (or a null
6622   /// pointer if the constructor was declared in that base class).
6623   llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6624       InheritedFromBases;
6625 
6626 public:
6627   InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6628                            ConstructorUsingShadowDecl *Shadow)
6629       : S(S), UseLoc(UseLoc) {
6630     bool DiagnosedMultipleConstructedBases = false;
6631     CXXRecordDecl *ConstructedBase = nullptr;
6632     UsingDecl *ConstructedBaseUsing = nullptr;
6633 
6634     // Find the set of such base class subobjects and check that there's a
6635     // unique constructed subobject.
6636     for (auto *D : Shadow->redecls()) {
6637       auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6638       auto *DNominatedBase = DShadow->getNominatedBaseClass();
6639       auto *DConstructedBase = DShadow->getConstructedBaseClass();
6640 
6641       InheritedFromBases.insert(
6642           std::make_pair(DNominatedBase->getCanonicalDecl(),
6643                          DShadow->getNominatedBaseClassShadowDecl()));
6644       if (DShadow->constructsVirtualBase())
6645         InheritedFromBases.insert(
6646             std::make_pair(DConstructedBase->getCanonicalDecl(),
6647                            DShadow->getConstructedBaseClassShadowDecl()));
6648       else
6649         assert(DNominatedBase == DConstructedBase);
6650 
6651       // [class.inhctor.init]p2:
6652       //   If the constructor was inherited from multiple base class subobjects
6653       //   of type B, the program is ill-formed.
6654       if (!ConstructedBase) {
6655         ConstructedBase = DConstructedBase;
6656         ConstructedBaseUsing = D->getUsingDecl();
6657       } else if (ConstructedBase != DConstructedBase &&
6658                  !Shadow->isInvalidDecl()) {
6659         if (!DiagnosedMultipleConstructedBases) {
6660           S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
6661               << Shadow->getTargetDecl();
6662           S.Diag(ConstructedBaseUsing->getLocation(),
6663                diag::note_ambiguous_inherited_constructor_using)
6664               << ConstructedBase;
6665           DiagnosedMultipleConstructedBases = true;
6666         }
6667         S.Diag(D->getUsingDecl()->getLocation(),
6668                diag::note_ambiguous_inherited_constructor_using)
6669             << DConstructedBase;
6670       }
6671     }
6672 
6673     if (DiagnosedMultipleConstructedBases)
6674       Shadow->setInvalidDecl();
6675   }
6676 
6677   /// Find the constructor to use for inherited construction of a base class,
6678   /// and whether that base class constructor inherits the constructor from a
6679   /// virtual base class (in which case it won't actually invoke it).
6680   std::pair<CXXConstructorDecl *, bool>
6681   findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
6682     auto It = InheritedFromBases.find(Base->getCanonicalDecl());
6683     if (It == InheritedFromBases.end())
6684       return std::make_pair(nullptr, false);
6685 
6686     // This is an intermediary class.
6687     if (It->second)
6688       return std::make_pair(
6689           S.findInheritingConstructor(UseLoc, Ctor, It->second),
6690           It->second->constructsVirtualBase());
6691 
6692     // This is the base class from which the constructor was inherited.
6693     return std::make_pair(Ctor, false);
6694   }
6695 };
6696 
6697 /// Is the special member function which would be selected to perform the
6698 /// specified operation on the specified class type a constexpr constructor?
6699 static bool
6700 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
6701                          Sema::CXXSpecialMember CSM, unsigned Quals,
6702                          bool ConstRHS,
6703                          CXXConstructorDecl *InheritedCtor = nullptr,
6704                          Sema::InheritedConstructorInfo *Inherited = nullptr) {
6705   // If we're inheriting a constructor, see if we need to call it for this base
6706   // class.
6707   if (InheritedCtor) {
6708     assert(CSM == Sema::CXXDefaultConstructor);
6709     auto BaseCtor =
6710         Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
6711     if (BaseCtor)
6712       return BaseCtor->isConstexpr();
6713   }
6714 
6715   if (CSM == Sema::CXXDefaultConstructor)
6716     return ClassDecl->hasConstexprDefaultConstructor();
6717   if (CSM == Sema::CXXDestructor)
6718     return ClassDecl->hasConstexprDestructor();
6719 
6720   Sema::SpecialMemberOverloadResult SMOR =
6721       lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
6722   if (!SMOR.getMethod())
6723     // A constructor we wouldn't select can't be "involved in initializing"
6724     // anything.
6725     return true;
6726   return SMOR.getMethod()->isConstexpr();
6727 }
6728 
6729 /// Determine whether the specified special member function would be constexpr
6730 /// if it were implicitly defined.
6731 static bool defaultedSpecialMemberIsConstexpr(
6732     Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6733     bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6734     Sema::InheritedConstructorInfo *Inherited = nullptr) {
6735   if (!S.getLangOpts().CPlusPlus11)
6736     return false;
6737 
6738   // C++11 [dcl.constexpr]p4:
6739   // In the definition of a constexpr constructor [...]
6740   bool Ctor = true;
6741   switch (CSM) {
6742   case Sema::CXXDefaultConstructor:
6743     if (Inherited)
6744       break;
6745     // Since default constructor lookup is essentially trivial (and cannot
6746     // involve, for instance, template instantiation), we compute whether a
6747     // defaulted default constructor is constexpr directly within CXXRecordDecl.
6748     //
6749     // This is important for performance; we need to know whether the default
6750     // constructor is constexpr to determine whether the type is a literal type.
6751     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6752 
6753   case Sema::CXXCopyConstructor:
6754   case Sema::CXXMoveConstructor:
6755     // For copy or move constructors, we need to perform overload resolution.
6756     break;
6757 
6758   case Sema::CXXCopyAssignment:
6759   case Sema::CXXMoveAssignment:
6760     if (!S.getLangOpts().CPlusPlus14)
6761       return false;
6762     // In C++1y, we need to perform overload resolution.
6763     Ctor = false;
6764     break;
6765 
6766   case Sema::CXXDestructor:
6767     return ClassDecl->defaultedDestructorIsConstexpr();
6768 
6769   case Sema::CXXInvalid:
6770     return false;
6771   }
6772 
6773   //   -- if the class is a non-empty union, or for each non-empty anonymous
6774   //      union member of a non-union class, exactly one non-static data member
6775   //      shall be initialized; [DR1359]
6776   //
6777   // If we squint, this is guaranteed, since exactly one non-static data member
6778   // will be initialized (if the constructor isn't deleted), we just don't know
6779   // which one.
6780   if (Ctor && ClassDecl->isUnion())
6781     return CSM == Sema::CXXDefaultConstructor
6782                ? ClassDecl->hasInClassInitializer() ||
6783                      !ClassDecl->hasVariantMembers()
6784                : true;
6785 
6786   //   -- the class shall not have any virtual base classes;
6787   if (Ctor && ClassDecl->getNumVBases())
6788     return false;
6789 
6790   // C++1y [class.copy]p26:
6791   //   -- [the class] is a literal type, and
6792   if (!Ctor && !ClassDecl->isLiteral())
6793     return false;
6794 
6795   //   -- every constructor involved in initializing [...] base class
6796   //      sub-objects shall be a constexpr constructor;
6797   //   -- the assignment operator selected to copy/move each direct base
6798   //      class is a constexpr function, and
6799   for (const auto &B : ClassDecl->bases()) {
6800     const RecordType *BaseType = B.getType()->getAs<RecordType>();
6801     if (!BaseType) continue;
6802 
6803     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6804     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6805                                   InheritedCtor, Inherited))
6806       return false;
6807   }
6808 
6809   //   -- every constructor involved in initializing non-static data members
6810   //      [...] shall be a constexpr constructor;
6811   //   -- every non-static data member and base class sub-object shall be
6812   //      initialized
6813   //   -- for each non-static data member of X that is of class type (or array
6814   //      thereof), the assignment operator selected to copy/move that member is
6815   //      a constexpr function
6816   for (const auto *F : ClassDecl->fields()) {
6817     if (F->isInvalidDecl())
6818       continue;
6819     if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6820       continue;
6821     QualType BaseType = S.Context.getBaseElementType(F->getType());
6822     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6823       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6824       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6825                                     BaseType.getCVRQualifiers(),
6826                                     ConstArg && !F->isMutable()))
6827         return false;
6828     } else if (CSM == Sema::CXXDefaultConstructor) {
6829       return false;
6830     }
6831   }
6832 
6833   // All OK, it's constexpr!
6834   return true;
6835 }
6836 
6837 namespace {
6838 /// RAII object to register a defaulted function as having its exception
6839 /// specification computed.
6840 struct ComputingExceptionSpec {
6841   Sema &S;
6842 
6843   ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
6844       : S(S) {
6845     Sema::CodeSynthesisContext Ctx;
6846     Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
6847     Ctx.PointOfInstantiation = Loc;
6848     Ctx.Entity = FD;
6849     S.pushCodeSynthesisContext(Ctx);
6850   }
6851   ~ComputingExceptionSpec() {
6852     S.popCodeSynthesisContext();
6853   }
6854 };
6855 }
6856 
6857 static Sema::ImplicitExceptionSpecification
6858 ComputeDefaultedSpecialMemberExceptionSpec(
6859     Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6860     Sema::InheritedConstructorInfo *ICI);
6861 
6862 static Sema::ImplicitExceptionSpecification
6863 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
6864                                         FunctionDecl *FD,
6865                                         Sema::DefaultedComparisonKind DCK);
6866 
6867 static Sema::ImplicitExceptionSpecification
6868 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
6869   auto DFK = S.getDefaultedFunctionKind(FD);
6870   if (DFK.isSpecialMember())
6871     return ComputeDefaultedSpecialMemberExceptionSpec(
6872         S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
6873   if (DFK.isComparison())
6874     return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
6875                                                    DFK.asComparison());
6876 
6877   auto *CD = cast<CXXConstructorDecl>(FD);
6878   assert(CD->getInheritedConstructor() &&
6879          "only defaulted functions and inherited constructors have implicit "
6880          "exception specs");
6881   Sema::InheritedConstructorInfo ICI(
6882       S, Loc, CD->getInheritedConstructor().getShadowDecl());
6883   return ComputeDefaultedSpecialMemberExceptionSpec(
6884       S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6885 }
6886 
6887 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6888                                                             CXXMethodDecl *MD) {
6889   FunctionProtoType::ExtProtoInfo EPI;
6890 
6891   // Build an exception specification pointing back at this member.
6892   EPI.ExceptionSpec.Type = EST_Unevaluated;
6893   EPI.ExceptionSpec.SourceDecl = MD;
6894 
6895   // Set the calling convention to the default for C++ instance methods.
6896   EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6897       S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6898                                             /*IsCXXMethod=*/true));
6899   return EPI;
6900 }
6901 
6902 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
6903   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
6904   if (FPT->getExceptionSpecType() != EST_Unevaluated)
6905     return;
6906 
6907   // Evaluate the exception specification.
6908   auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
6909   auto ESI = IES.getExceptionSpec();
6910 
6911   // Update the type of the special member to use it.
6912   UpdateExceptionSpec(FD, ESI);
6913 }
6914 
6915 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
6916   assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted");
6917 
6918   DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
6919   if (!DefKind) {
6920     assert(FD->getDeclContext()->isDependentContext());
6921     return;
6922   }
6923 
6924   if (DefKind.isSpecialMember()
6925           ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
6926                                                   DefKind.asSpecialMember())
6927           : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
6928     FD->setInvalidDecl();
6929 }
6930 
6931 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
6932                                                  CXXSpecialMember CSM) {
6933   CXXRecordDecl *RD = MD->getParent();
6934 
6935   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
6936          "not an explicitly-defaulted special member");
6937 
6938   // Defer all checking for special members of a dependent type.
6939   if (RD->isDependentType())
6940     return false;
6941 
6942   // Whether this was the first-declared instance of the constructor.
6943   // This affects whether we implicitly add an exception spec and constexpr.
6944   bool First = MD == MD->getCanonicalDecl();
6945 
6946   bool HadError = false;
6947 
6948   // C++11 [dcl.fct.def.default]p1:
6949   //   A function that is explicitly defaulted shall
6950   //     -- be a special member function [...] (checked elsewhere),
6951   //     -- have the same type (except for ref-qualifiers, and except that a
6952   //        copy operation can take a non-const reference) as an implicit
6953   //        declaration, and
6954   //     -- not have default arguments.
6955   // C++2a changes the second bullet to instead delete the function if it's
6956   // defaulted on its first declaration, unless it's "an assignment operator,
6957   // and its return type differs or its parameter type is not a reference".
6958   bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus2a && First;
6959   bool ShouldDeleteForTypeMismatch = false;
6960   unsigned ExpectedParams = 1;
6961   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6962     ExpectedParams = 0;
6963   if (MD->getNumParams() != ExpectedParams) {
6964     // This checks for default arguments: a copy or move constructor with a
6965     // default argument is classified as a default constructor, and assignment
6966     // operations and destructors can't have default arguments.
6967     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6968       << CSM << MD->getSourceRange();
6969     HadError = true;
6970   } else if (MD->isVariadic()) {
6971     if (DeleteOnTypeMismatch)
6972       ShouldDeleteForTypeMismatch = true;
6973     else {
6974       Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6975         << CSM << MD->getSourceRange();
6976       HadError = true;
6977     }
6978   }
6979 
6980   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6981 
6982   bool CanHaveConstParam = false;
6983   if (CSM == CXXCopyConstructor)
6984     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6985   else if (CSM == CXXCopyAssignment)
6986     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6987 
6988   QualType ReturnType = Context.VoidTy;
6989   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6990     // Check for return type matching.
6991     ReturnType = Type->getReturnType();
6992 
6993     QualType DeclType = Context.getTypeDeclType(RD);
6994     DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
6995     QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
6996 
6997     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6998       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6999         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7000       HadError = true;
7001     }
7002 
7003     // A defaulted special member cannot have cv-qualifiers.
7004     if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7005       if (DeleteOnTypeMismatch)
7006         ShouldDeleteForTypeMismatch = true;
7007       else {
7008         Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7009           << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7010         HadError = true;
7011       }
7012     }
7013   }
7014 
7015   // Check for parameter type matching.
7016   QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7017   bool HasConstParam = false;
7018   if (ExpectedParams && ArgType->isReferenceType()) {
7019     // Argument must be reference to possibly-const T.
7020     QualType ReferentType = ArgType->getPointeeType();
7021     HasConstParam = ReferentType.isConstQualified();
7022 
7023     if (ReferentType.isVolatileQualified()) {
7024       if (DeleteOnTypeMismatch)
7025         ShouldDeleteForTypeMismatch = true;
7026       else {
7027         Diag(MD->getLocation(),
7028              diag::err_defaulted_special_member_volatile_param) << CSM;
7029         HadError = true;
7030       }
7031     }
7032 
7033     if (HasConstParam && !CanHaveConstParam) {
7034       if (DeleteOnTypeMismatch)
7035         ShouldDeleteForTypeMismatch = true;
7036       else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7037         Diag(MD->getLocation(),
7038              diag::err_defaulted_special_member_copy_const_param)
7039           << (CSM == CXXCopyAssignment);
7040         // FIXME: Explain why this special member can't be const.
7041         HadError = true;
7042       } else {
7043         Diag(MD->getLocation(),
7044              diag::err_defaulted_special_member_move_const_param)
7045           << (CSM == CXXMoveAssignment);
7046         HadError = true;
7047       }
7048     }
7049   } else if (ExpectedParams) {
7050     // A copy assignment operator can take its argument by value, but a
7051     // defaulted one cannot.
7052     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
7053     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7054     HadError = true;
7055   }
7056 
7057   // C++11 [dcl.fct.def.default]p2:
7058   //   An explicitly-defaulted function may be declared constexpr only if it
7059   //   would have been implicitly declared as constexpr,
7060   // Do not apply this rule to members of class templates, since core issue 1358
7061   // makes such functions always instantiate to constexpr functions. For
7062   // functions which cannot be constexpr (for non-constructors in C++11 and for
7063   // destructors in C++14 and C++17), this is checked elsewhere.
7064   //
7065   // FIXME: This should not apply if the member is deleted.
7066   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7067                                                      HasConstParam);
7068   if ((getLangOpts().CPlusPlus2a ||
7069        (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7070                                   : isa<CXXConstructorDecl>(MD))) &&
7071       MD->isConstexpr() && !Constexpr &&
7072       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7073     Diag(MD->getBeginLoc(), MD->isConsteval()
7074                                 ? diag::err_incorrect_defaulted_consteval
7075                                 : diag::err_incorrect_defaulted_constexpr)
7076         << CSM;
7077     // FIXME: Explain why the special member can't be constexpr.
7078     HadError = true;
7079   }
7080 
7081   if (First) {
7082     // C++2a [dcl.fct.def.default]p3:
7083     //   If a function is explicitly defaulted on its first declaration, it is
7084     //   implicitly considered to be constexpr if the implicit declaration
7085     //   would be.
7086     MD->setConstexprKind(Constexpr ? CSK_constexpr : CSK_unspecified);
7087 
7088     if (!Type->hasExceptionSpec()) {
7089       // C++2a [except.spec]p3:
7090       //   If a declaration of a function does not have a noexcept-specifier
7091       //   [and] is defaulted on its first declaration, [...] the exception
7092       //   specification is as specified below
7093       FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7094       EPI.ExceptionSpec.Type = EST_Unevaluated;
7095       EPI.ExceptionSpec.SourceDecl = MD;
7096       MD->setType(Context.getFunctionType(ReturnType,
7097                                           llvm::makeArrayRef(&ArgType,
7098                                                              ExpectedParams),
7099                                           EPI));
7100     }
7101   }
7102 
7103   if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7104     if (First) {
7105       SetDeclDeleted(MD, MD->getLocation());
7106       if (!inTemplateInstantiation() && !HadError) {
7107         Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7108         if (ShouldDeleteForTypeMismatch) {
7109           Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7110         } else {
7111           ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7112         }
7113       }
7114       if (ShouldDeleteForTypeMismatch && !HadError) {
7115         Diag(MD->getLocation(),
7116              diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7117       }
7118     } else {
7119       // C++11 [dcl.fct.def.default]p4:
7120       //   [For a] user-provided explicitly-defaulted function [...] if such a
7121       //   function is implicitly defined as deleted, the program is ill-formed.
7122       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7123       assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl");
7124       ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7125       HadError = true;
7126     }
7127   }
7128 
7129   return HadError;
7130 }
7131 
7132 namespace {
7133 /// Helper class for building and checking a defaulted comparison.
7134 ///
7135 /// Defaulted functions are built in two phases:
7136 ///
7137 ///  * First, the set of operations that the function will perform are
7138 ///    identified, and some of them are checked. If any of the checked
7139 ///    operations is invalid in certain ways, the comparison function is
7140 ///    defined as deleted and no body is built.
7141 ///  * Then, if the function is not defined as deleted, the body is built.
7142 ///
7143 /// This is accomplished by performing two visitation steps over the eventual
7144 /// body of the function.
7145 template<typename Derived, typename ResultList, typename Result,
7146          typename Subobject>
7147 class DefaultedComparisonVisitor {
7148 public:
7149   using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7150 
7151   DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7152                              DefaultedComparisonKind DCK)
7153       : S(S), RD(RD), FD(FD), DCK(DCK) {
7154     if (auto *Info = FD->getDefaultedFunctionInfo()) {
7155       // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7156       // UnresolvedSet to avoid this copy.
7157       Fns.assign(Info->getUnqualifiedLookups().begin(),
7158                  Info->getUnqualifiedLookups().end());
7159     }
7160   }
7161 
7162   ResultList visit() {
7163     // The type of an lvalue naming a parameter of this function.
7164     QualType ParamLvalType =
7165         FD->getParamDecl(0)->getType().getNonReferenceType();
7166 
7167     ResultList Results;
7168 
7169     switch (DCK) {
7170     case DefaultedComparisonKind::None:
7171       llvm_unreachable("not a defaulted comparison");
7172 
7173     case DefaultedComparisonKind::Equal:
7174     case DefaultedComparisonKind::ThreeWay:
7175       getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7176       return Results;
7177 
7178     case DefaultedComparisonKind::NotEqual:
7179     case DefaultedComparisonKind::Relational:
7180       Results.add(getDerived().visitExpandedSubobject(
7181           ParamLvalType, getDerived().getCompleteObject()));
7182       return Results;
7183     }
7184     llvm_unreachable("");
7185   }
7186 
7187 protected:
7188   Derived &getDerived() { return static_cast<Derived&>(*this); }
7189 
7190   /// Visit the expanded list of subobjects of the given type, as specified in
7191   /// C++2a [class.compare.default].
7192   ///
7193   /// \return \c true if the ResultList object said we're done, \c false if not.
7194   bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7195                        Qualifiers Quals) {
7196     // C++2a [class.compare.default]p4:
7197     //   The direct base class subobjects of C
7198     for (CXXBaseSpecifier &Base : Record->bases())
7199       if (Results.add(getDerived().visitSubobject(
7200               S.Context.getQualifiedType(Base.getType(), Quals),
7201               getDerived().getBase(&Base))))
7202         return true;
7203 
7204     //   followed by the non-static data members of C
7205     for (FieldDecl *Field : Record->fields()) {
7206       // Recursively expand anonymous structs.
7207       if (Field->isAnonymousStructOrUnion()) {
7208         if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7209                             Quals))
7210           return true;
7211         continue;
7212       }
7213 
7214       // Figure out the type of an lvalue denoting this field.
7215       Qualifiers FieldQuals = Quals;
7216       if (Field->isMutable())
7217         FieldQuals.removeConst();
7218       QualType FieldType =
7219           S.Context.getQualifiedType(Field->getType(), FieldQuals);
7220 
7221       if (Results.add(getDerived().visitSubobject(
7222               FieldType, getDerived().getField(Field))))
7223         return true;
7224     }
7225 
7226     //   form a list of subobjects.
7227     return false;
7228   }
7229 
7230   Result visitSubobject(QualType Type, Subobject Subobj) {
7231     //   In that list, any subobject of array type is recursively expanded
7232     const ArrayType *AT = S.Context.getAsArrayType(Type);
7233     if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7234       return getDerived().visitSubobjectArray(CAT->getElementType(),
7235                                               CAT->getSize(), Subobj);
7236     return getDerived().visitExpandedSubobject(Type, Subobj);
7237   }
7238 
7239   Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7240                              Subobject Subobj) {
7241     return getDerived().visitSubobject(Type, Subobj);
7242   }
7243 
7244 protected:
7245   Sema &S;
7246   CXXRecordDecl *RD;
7247   FunctionDecl *FD;
7248   DefaultedComparisonKind DCK;
7249   UnresolvedSet<16> Fns;
7250 };
7251 
7252 /// Information about a defaulted comparison, as determined by
7253 /// DefaultedComparisonAnalyzer.
7254 struct DefaultedComparisonInfo {
7255   bool Deleted = false;
7256   bool Constexpr = true;
7257   ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7258 
7259   static DefaultedComparisonInfo deleted() {
7260     DefaultedComparisonInfo Deleted;
7261     Deleted.Deleted = true;
7262     return Deleted;
7263   }
7264 
7265   bool add(const DefaultedComparisonInfo &R) {
7266     Deleted |= R.Deleted;
7267     Constexpr &= R.Constexpr;
7268     Category = commonComparisonType(Category, R.Category);
7269     return Deleted;
7270   }
7271 };
7272 
7273 /// An element in the expanded list of subobjects of a defaulted comparison, as
7274 /// specified in C++2a [class.compare.default]p4.
7275 struct DefaultedComparisonSubobject {
7276   enum { CompleteObject, Member, Base } Kind;
7277   NamedDecl *Decl;
7278   SourceLocation Loc;
7279 };
7280 
7281 /// A visitor over the notional body of a defaulted comparison that determines
7282 /// whether that body would be deleted or constexpr.
7283 class DefaultedComparisonAnalyzer
7284     : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7285                                         DefaultedComparisonInfo,
7286                                         DefaultedComparisonInfo,
7287                                         DefaultedComparisonSubobject> {
7288 public:
7289   enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7290 
7291 private:
7292   DiagnosticKind Diagnose;
7293 
7294 public:
7295   using Base = DefaultedComparisonVisitor;
7296   using Result = DefaultedComparisonInfo;
7297   using Subobject = DefaultedComparisonSubobject;
7298 
7299   friend Base;
7300 
7301   DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7302                               DefaultedComparisonKind DCK,
7303                               DiagnosticKind Diagnose = NoDiagnostics)
7304       : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7305 
7306   Result visit() {
7307     if ((DCK == DefaultedComparisonKind::Equal ||
7308          DCK == DefaultedComparisonKind::ThreeWay) &&
7309         RD->hasVariantMembers()) {
7310       // C++2a [class.compare.default]p2 [P2002R0]:
7311       //   A defaulted comparison operator function for class C is defined as
7312       //   deleted if [...] C has variant members.
7313       if (Diagnose == ExplainDeleted) {
7314         S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7315           << FD << RD->isUnion() << RD;
7316       }
7317       return Result::deleted();
7318     }
7319 
7320     return Base::visit();
7321   }
7322 
7323 private:
7324   Subobject getCompleteObject() {
7325     return Subobject{Subobject::CompleteObject, nullptr, FD->getLocation()};
7326   }
7327 
7328   Subobject getBase(CXXBaseSpecifier *Base) {
7329     return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7330                      Base->getBaseTypeLoc()};
7331   }
7332 
7333   Subobject getField(FieldDecl *Field) {
7334     return Subobject{Subobject::Member, Field, Field->getLocation()};
7335   }
7336 
7337   Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7338     // C++2a [class.compare.default]p2 [P2002R0]:
7339     //   A defaulted <=> or == operator function for class C is defined as
7340     //   deleted if any non-static data member of C is of reference type
7341     if (Type->isReferenceType()) {
7342       if (Diagnose == ExplainDeleted) {
7343         S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7344             << FD << RD;
7345       }
7346       return Result::deleted();
7347     }
7348 
7349     // [...] Let xi be an lvalue denoting the ith element [...]
7350     OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7351     Expr *Args[] = {&Xi, &Xi};
7352 
7353     // All operators start by trying to apply that same operator recursively.
7354     OverloadedOperatorKind OO = FD->getOverloadedOperator();
7355     assert(OO != OO_None && "not an overloaded operator!");
7356     return visitBinaryOperator(OO, Args, Subobj);
7357   }
7358 
7359   Result
7360   visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7361                       Subobject Subobj,
7362                       OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7363     // Note that there is no need to consider rewritten candidates here if
7364     // we've already found there is no viable 'operator<=>' candidate (and are
7365     // considering synthesizing a '<=>' from '==' and '<').
7366     OverloadCandidateSet CandidateSet(
7367         FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7368         OverloadCandidateSet::OperatorRewriteInfo(
7369             OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7370 
7371     /// C++2a [class.compare.default]p1 [P2002R0]:
7372     ///   [...] the defaulted function itself is never a candidate for overload
7373     ///   resolution [...]
7374     CandidateSet.exclude(FD);
7375 
7376     if (Args[0]->getType()->isOverloadableType())
7377       S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7378     else {
7379       // FIXME: We determine whether this is a valid expression by checking to
7380       // see if there's a viable builtin operator candidate for it. That isn't
7381       // really what the rules ask us to do, but should give the right results.
7382       S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7383     }
7384 
7385     Result R;
7386 
7387     OverloadCandidateSet::iterator Best;
7388     switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7389     case OR_Success: {
7390       // C++2a [class.compare.secondary]p2 [P2002R0]:
7391       //   The operator function [...] is defined as deleted if [...] the
7392       //   candidate selected by overload resolution is not a rewritten
7393       //   candidate.
7394       if ((DCK == DefaultedComparisonKind::NotEqual ||
7395            DCK == DefaultedComparisonKind::Relational) &&
7396           !Best->RewriteKind) {
7397         if (Diagnose == ExplainDeleted) {
7398           S.Diag(Best->Function->getLocation(),
7399                  diag::note_defaulted_comparison_not_rewritten_callee)
7400               << FD;
7401         }
7402         return Result::deleted();
7403       }
7404 
7405       // Throughout C++2a [class.compare]: if overload resolution does not
7406       // result in a usable function, the candidate function is defined as
7407       // deleted. This requires that we selected an accessible function.
7408       //
7409       // Note that this only considers the access of the function when named
7410       // within the type of the subobject, and not the access path for any
7411       // derived-to-base conversion.
7412       CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7413       if (ArgClass && Best->FoundDecl.getDecl() &&
7414           Best->FoundDecl.getDecl()->isCXXClassMember()) {
7415         QualType ObjectType = Subobj.Kind == Subobject::Member
7416                                   ? Args[0]->getType()
7417                                   : S.Context.getRecordType(RD);
7418         if (!S.isMemberAccessibleForDeletion(
7419                 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7420                 Diagnose == ExplainDeleted
7421                     ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7422                           << FD << Subobj.Kind << Subobj.Decl
7423                     : S.PDiag()))
7424           return Result::deleted();
7425       }
7426 
7427       // C++2a [class.compare.default]p3 [P2002R0]:
7428       //   A defaulted comparison function is constexpr-compatible if [...]
7429       //   no overlod resolution performed [...] results in a non-constexpr
7430       //   function.
7431       if (FunctionDecl *BestFD = Best->Function) {
7432         assert(!BestFD->isDeleted() && "wrong overload resolution result");
7433         // If it's not constexpr, explain why not.
7434         if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
7435           if (Subobj.Kind != Subobject::CompleteObject)
7436             S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
7437               << Subobj.Kind << Subobj.Decl;
7438           S.Diag(BestFD->getLocation(),
7439                  diag::note_defaulted_comparison_not_constexpr_here);
7440           // Bail out after explaining; we don't want any more notes.
7441           return Result::deleted();
7442         }
7443         R.Constexpr &= BestFD->isConstexpr();
7444       }
7445 
7446       if (OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType()) {
7447         if (auto *BestFD = Best->Function) {
7448           // If any callee has an undeduced return type, deduce it now.
7449           // FIXME: It's not clear how a failure here should be handled. For
7450           // now, we produce an eager diagnostic, because that is forward
7451           // compatible with most (all?) other reasonable options.
7452           if (BestFD->getReturnType()->isUndeducedType() &&
7453               S.DeduceReturnType(BestFD, FD->getLocation(),
7454                                  /*Diagnose=*/false)) {
7455             // Don't produce a duplicate error when asked to explain why the
7456             // comparison is deleted: we diagnosed that when initially checking
7457             // the defaulted operator.
7458             if (Diagnose == NoDiagnostics) {
7459               S.Diag(
7460                   FD->getLocation(),
7461                   diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
7462                   << Subobj.Kind << Subobj.Decl;
7463               S.Diag(
7464                   Subobj.Loc,
7465                   diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
7466                   << Subobj.Kind << Subobj.Decl;
7467               S.Diag(BestFD->getLocation(),
7468                      diag::note_defaulted_comparison_cannot_deduce_callee)
7469                   << Subobj.Kind << Subobj.Decl;
7470             }
7471             return Result::deleted();
7472           }
7473           if (auto *Info = S.Context.CompCategories.lookupInfoForType(
7474               BestFD->getCallResultType())) {
7475             R.Category = Info->Kind;
7476           } else {
7477             if (Diagnose == ExplainDeleted) {
7478               S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
7479                   << Subobj.Kind << Subobj.Decl
7480                   << BestFD->getCallResultType().withoutLocalFastQualifiers();
7481               S.Diag(BestFD->getLocation(),
7482                      diag::note_defaulted_comparison_cannot_deduce_callee)
7483                   << Subobj.Kind << Subobj.Decl;
7484             }
7485             return Result::deleted();
7486           }
7487         } else {
7488           Optional<ComparisonCategoryType> Cat =
7489               getComparisonCategoryForBuiltinCmp(Args[0]->getType());
7490           assert(Cat && "no category for builtin comparison?");
7491           R.Category = *Cat;
7492         }
7493       }
7494 
7495       // Note that we might be rewriting to a different operator. That call is
7496       // not considered until we come to actually build the comparison function.
7497       break;
7498     }
7499 
7500     case OR_Ambiguous:
7501       if (Diagnose == ExplainDeleted) {
7502         unsigned Kind = 0;
7503         if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
7504           Kind = OO == OO_EqualEqual ? 1 : 2;
7505         CandidateSet.NoteCandidates(
7506             PartialDiagnosticAt(
7507                 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
7508                                 << FD << Kind << Subobj.Kind << Subobj.Decl),
7509             S, OCD_AmbiguousCandidates, Args);
7510       }
7511       R = Result::deleted();
7512       break;
7513 
7514     case OR_Deleted:
7515       if (Diagnose == ExplainDeleted) {
7516         if ((DCK == DefaultedComparisonKind::NotEqual ||
7517              DCK == DefaultedComparisonKind::Relational) &&
7518             !Best->RewriteKind) {
7519           S.Diag(Best->Function->getLocation(),
7520                  diag::note_defaulted_comparison_not_rewritten_callee)
7521               << FD;
7522         } else {
7523           S.Diag(Subobj.Loc,
7524                  diag::note_defaulted_comparison_calls_deleted)
7525               << FD << Subobj.Kind << Subobj.Decl;
7526           S.NoteDeletedFunction(Best->Function);
7527         }
7528       }
7529       R = Result::deleted();
7530       break;
7531 
7532     case OR_No_Viable_Function:
7533       // If there's no usable candidate, we're done unless we can rewrite a
7534       // '<=>' in terms of '==' and '<'.
7535       if (OO == OO_Spaceship &&
7536           S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
7537         // For any kind of comparison category return type, we need a usable
7538         // '==' and a usable '<'.
7539         if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
7540                                        &CandidateSet)))
7541           R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
7542         break;
7543       }
7544 
7545       if (Diagnose == ExplainDeleted) {
7546         S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
7547             << FD << Subobj.Kind << Subobj.Decl;
7548 
7549         // For a three-way comparison, list both the candidates for the
7550         // original operator and the candidates for the synthesized operator.
7551         if (SpaceshipCandidates) {
7552           SpaceshipCandidates->NoteCandidates(
7553               S, Args,
7554               SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
7555                                                       Args, FD->getLocation()));
7556           S.Diag(Subobj.Loc,
7557                  diag::note_defaulted_comparison_no_viable_function_synthesized)
7558               << (OO == OO_EqualEqual ? 0 : 1);
7559         }
7560 
7561         CandidateSet.NoteCandidates(
7562             S, Args,
7563             CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
7564                                             FD->getLocation()));
7565       }
7566       R = Result::deleted();
7567       break;
7568     }
7569 
7570     return R;
7571   }
7572 };
7573 
7574 /// A list of statements.
7575 struct StmtListResult {
7576   bool IsInvalid = false;
7577   llvm::SmallVector<Stmt*, 16> Stmts;
7578 
7579   bool add(const StmtResult &S) {
7580     IsInvalid |= S.isInvalid();
7581     if (IsInvalid)
7582       return true;
7583     Stmts.push_back(S.get());
7584     return false;
7585   }
7586 };
7587 
7588 /// A visitor over the notional body of a defaulted comparison that synthesizes
7589 /// the actual body.
7590 class DefaultedComparisonSynthesizer
7591     : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
7592                                         StmtListResult, StmtResult,
7593                                         std::pair<ExprResult, ExprResult>> {
7594   SourceLocation Loc;
7595   unsigned ArrayDepth = 0;
7596 
7597 public:
7598   using Base = DefaultedComparisonVisitor;
7599   using ExprPair = std::pair<ExprResult, ExprResult>;
7600 
7601   friend Base;
7602 
7603   DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7604                                  DefaultedComparisonKind DCK,
7605                                  SourceLocation BodyLoc)
7606       : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
7607 
7608   /// Build a suitable function body for this defaulted comparison operator.
7609   StmtResult build() {
7610     Sema::CompoundScopeRAII CompoundScope(S);
7611 
7612     StmtListResult Stmts = visit();
7613     if (Stmts.IsInvalid)
7614       return StmtError();
7615 
7616     ExprResult RetVal;
7617     switch (DCK) {
7618     case DefaultedComparisonKind::None:
7619       llvm_unreachable("not a defaulted comparison");
7620 
7621     case DefaultedComparisonKind::Equal: {
7622       // C++2a [class.eq]p3:
7623       //   [...] compar[e] the corresponding elements [...] until the first
7624       //   index i where xi == yi yields [...] false. If no such index exists,
7625       //   V is true. Otherwise, V is false.
7626       //
7627       // Join the comparisons with '&&'s and return the result. Use a right
7628       // fold (traversing the conditions right-to-left), because that
7629       // short-circuits more naturally.
7630       auto OldStmts = std::move(Stmts.Stmts);
7631       Stmts.Stmts.clear();
7632       ExprResult CmpSoFar;
7633       // Finish a particular comparison chain.
7634       auto FinishCmp = [&] {
7635         if (Expr *Prior = CmpSoFar.get()) {
7636           // Convert the last expression to 'return ...;'
7637           if (RetVal.isUnset() && Stmts.Stmts.empty())
7638             RetVal = CmpSoFar;
7639           // Convert any prior comparison to 'if (!(...)) return false;'
7640           else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
7641             return true;
7642           CmpSoFar = ExprResult();
7643         }
7644         return false;
7645       };
7646       for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
7647         Expr *E = dyn_cast<Expr>(EAsStmt);
7648         if (!E) {
7649           // Found an array comparison.
7650           if (FinishCmp() || Stmts.add(EAsStmt))
7651             return StmtError();
7652           continue;
7653         }
7654 
7655         if (CmpSoFar.isUnset()) {
7656           CmpSoFar = E;
7657           continue;
7658         }
7659         CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
7660         if (CmpSoFar.isInvalid())
7661           return StmtError();
7662       }
7663       if (FinishCmp())
7664         return StmtError();
7665       std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
7666       //   If no such index exists, V is true.
7667       if (RetVal.isUnset())
7668         RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
7669       break;
7670     }
7671 
7672     case DefaultedComparisonKind::ThreeWay: {
7673       // Per C++2a [class.spaceship]p3, as a fallback add:
7674       // return static_cast<R>(std::strong_ordering::equal);
7675       QualType StrongOrdering = S.CheckComparisonCategoryType(
7676           ComparisonCategoryType::StrongOrdering, Loc,
7677           Sema::ComparisonCategoryUsage::DefaultedOperator);
7678       if (StrongOrdering.isNull())
7679         return StmtError();
7680       VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
7681                              .getValueInfo(ComparisonCategoryResult::Equal)
7682                              ->VD;
7683       RetVal = getDecl(EqualVD);
7684       if (RetVal.isInvalid())
7685         return StmtError();
7686       RetVal = buildStaticCastToR(RetVal.get());
7687       break;
7688     }
7689 
7690     case DefaultedComparisonKind::NotEqual:
7691     case DefaultedComparisonKind::Relational:
7692       RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
7693       break;
7694     }
7695 
7696     // Build the final return statement.
7697     if (RetVal.isInvalid())
7698       return StmtError();
7699     StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
7700     if (ReturnStmt.isInvalid())
7701       return StmtError();
7702     Stmts.Stmts.push_back(ReturnStmt.get());
7703 
7704     return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
7705   }
7706 
7707 private:
7708   ExprResult getDecl(ValueDecl *VD) {
7709     return S.BuildDeclarationNameExpr(
7710         CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7711   }
7712 
7713   ExprResult getParam(unsigned I) {
7714     ParmVarDecl *PD = FD->getParamDecl(I);
7715     return getDecl(PD);
7716   }
7717 
7718   ExprPair getCompleteObject() {
7719     unsigned Param = 0;
7720     ExprResult LHS;
7721     if (isa<CXXMethodDecl>(FD)) {
7722       // LHS is '*this'.
7723       LHS = S.ActOnCXXThis(Loc);
7724       if (!LHS.isInvalid())
7725         LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
7726     } else {
7727       LHS = getParam(Param++);
7728     }
7729     ExprResult RHS = getParam(Param++);
7730     assert(Param == FD->getNumParams());
7731     return {LHS, RHS};
7732   }
7733 
7734   ExprPair getBase(CXXBaseSpecifier *Base) {
7735     ExprPair Obj = getCompleteObject();
7736     if (Obj.first.isInvalid() || Obj.second.isInvalid())
7737       return {ExprError(), ExprError()};
7738     CXXCastPath Path = {Base};
7739     return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
7740                                 CK_DerivedToBase, VK_LValue, &Path),
7741             S.ImpCastExprToType(Obj.second.get(), Base->getType(),
7742                                 CK_DerivedToBase, VK_LValue, &Path)};
7743   }
7744 
7745   ExprPair getField(FieldDecl *Field) {
7746     ExprPair Obj = getCompleteObject();
7747     if (Obj.first.isInvalid() || Obj.second.isInvalid())
7748       return {ExprError(), ExprError()};
7749 
7750     DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
7751     DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
7752     return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
7753                                       CXXScopeSpec(), Field, Found, NameInfo),
7754             S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
7755                                       CXXScopeSpec(), Field, Found, NameInfo)};
7756   }
7757 
7758   // FIXME: When expanding a subobject, register a note in the code synthesis
7759   // stack to say which subobject we're comparing.
7760 
7761   StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
7762     if (Cond.isInvalid())
7763       return StmtError();
7764 
7765     ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
7766     if (NotCond.isInvalid())
7767       return StmtError();
7768 
7769     ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
7770     assert(!False.isInvalid() && "should never fail");
7771     StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
7772     if (ReturnFalse.isInvalid())
7773       return StmtError();
7774 
7775     return S.ActOnIfStmt(Loc, false, nullptr,
7776                          S.ActOnCondition(nullptr, Loc, NotCond.get(),
7777                                           Sema::ConditionKind::Boolean),
7778                          ReturnFalse.get(), SourceLocation(), nullptr);
7779   }
7780 
7781   StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
7782                                  ExprPair Subobj) {
7783     QualType SizeType = S.Context.getSizeType();
7784     Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
7785 
7786     // Build 'size_t i$n = 0'.
7787     IdentifierInfo *IterationVarName = nullptr;
7788     {
7789       SmallString<8> Str;
7790       llvm::raw_svector_ostream OS(Str);
7791       OS << "i" << ArrayDepth;
7792       IterationVarName = &S.Context.Idents.get(OS.str());
7793     }
7794     VarDecl *IterationVar = VarDecl::Create(
7795         S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
7796         S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
7797     llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7798     IterationVar->setInit(
7799         IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7800     Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
7801 
7802     auto IterRef = [&] {
7803       ExprResult Ref = S.BuildDeclarationNameExpr(
7804           CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
7805           IterationVar);
7806       assert(!Ref.isInvalid() && "can't reference our own variable?");
7807       return Ref.get();
7808     };
7809 
7810     // Build 'i$n != Size'.
7811     ExprResult Cond = S.CreateBuiltinBinOp(
7812         Loc, BO_NE, IterRef(),
7813         IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
7814     assert(!Cond.isInvalid() && "should never fail");
7815 
7816     // Build '++i$n'.
7817     ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
7818     assert(!Inc.isInvalid() && "should never fail");
7819 
7820     // Build 'a[i$n]' and 'b[i$n]'.
7821     auto Index = [&](ExprResult E) {
7822       if (E.isInvalid())
7823         return ExprError();
7824       return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
7825     };
7826     Subobj.first = Index(Subobj.first);
7827     Subobj.second = Index(Subobj.second);
7828 
7829     // Compare the array elements.
7830     ++ArrayDepth;
7831     StmtResult Substmt = visitSubobject(Type, Subobj);
7832     --ArrayDepth;
7833 
7834     if (Substmt.isInvalid())
7835       return StmtError();
7836 
7837     // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
7838     // For outer levels or for an 'operator<=>' we already have a suitable
7839     // statement that returns as necessary.
7840     if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
7841       assert(DCK == DefaultedComparisonKind::Equal &&
7842              "should have non-expression statement");
7843       Substmt = buildIfNotCondReturnFalse(ElemCmp);
7844       if (Substmt.isInvalid())
7845         return StmtError();
7846     }
7847 
7848     // Build 'for (...) ...'
7849     return S.ActOnForStmt(Loc, Loc, Init,
7850                           S.ActOnCondition(nullptr, Loc, Cond.get(),
7851                                            Sema::ConditionKind::Boolean),
7852                           S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
7853                           Substmt.get());
7854   }
7855 
7856   StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
7857     if (Obj.first.isInvalid() || Obj.second.isInvalid())
7858       return StmtError();
7859 
7860     OverloadedOperatorKind OO = FD->getOverloadedOperator();
7861     BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
7862     ExprResult Op;
7863     if (Type->isOverloadableType())
7864       Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
7865                                    Obj.second.get(), /*PerformADL=*/true,
7866                                    /*AllowRewrittenCandidates=*/true, FD);
7867     else
7868       Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
7869     if (Op.isInvalid())
7870       return StmtError();
7871 
7872     switch (DCK) {
7873     case DefaultedComparisonKind::None:
7874       llvm_unreachable("not a defaulted comparison");
7875 
7876     case DefaultedComparisonKind::Equal:
7877       // Per C++2a [class.eq]p2, each comparison is individually contextually
7878       // converted to bool.
7879       Op = S.PerformContextuallyConvertToBool(Op.get());
7880       if (Op.isInvalid())
7881         return StmtError();
7882       return Op.get();
7883 
7884     case DefaultedComparisonKind::ThreeWay: {
7885       // Per C++2a [class.spaceship]p3, form:
7886       //   if (R cmp = static_cast<R>(op); cmp != 0)
7887       //     return cmp;
7888       QualType R = FD->getReturnType();
7889       Op = buildStaticCastToR(Op.get());
7890       if (Op.isInvalid())
7891         return StmtError();
7892 
7893       // R cmp = ...;
7894       IdentifierInfo *Name = &S.Context.Idents.get("cmp");
7895       VarDecl *VD =
7896           VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
7897                           S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
7898       S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
7899       Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
7900 
7901       // cmp != 0
7902       ExprResult VDRef = getDecl(VD);
7903       if (VDRef.isInvalid())
7904         return StmtError();
7905       llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
7906       Expr *Zero =
7907           IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
7908       ExprResult Comp;
7909       if (VDRef.get()->getType()->isOverloadableType())
7910         Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
7911                                        true, FD);
7912       else
7913         Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
7914       if (Comp.isInvalid())
7915         return StmtError();
7916       Sema::ConditionResult Cond = S.ActOnCondition(
7917           nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
7918       if (Cond.isInvalid())
7919         return StmtError();
7920 
7921       // return cmp;
7922       VDRef = getDecl(VD);
7923       if (VDRef.isInvalid())
7924         return StmtError();
7925       StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
7926       if (ReturnStmt.isInvalid())
7927         return StmtError();
7928 
7929       // if (...)
7930       return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, InitStmt, Cond,
7931                            ReturnStmt.get(), /*ElseLoc=*/SourceLocation(),
7932                            /*Else=*/nullptr);
7933     }
7934 
7935     case DefaultedComparisonKind::NotEqual:
7936     case DefaultedComparisonKind::Relational:
7937       // C++2a [class.compare.secondary]p2:
7938       //   Otherwise, the operator function yields x @ y.
7939       return Op.get();
7940     }
7941     llvm_unreachable("");
7942   }
7943 
7944   /// Build "static_cast<R>(E)".
7945   ExprResult buildStaticCastToR(Expr *E) {
7946     QualType R = FD->getReturnType();
7947     assert(!R->isUndeducedType() && "type should have been deduced already");
7948 
7949     // Don't bother forming a no-op cast in the common case.
7950     if (E->isRValue() && S.Context.hasSameType(E->getType(), R))
7951       return E;
7952     return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
7953                                S.Context.getTrivialTypeSourceInfo(R, Loc), E,
7954                                SourceRange(Loc, Loc), SourceRange(Loc, Loc));
7955   }
7956 };
7957 }
7958 
7959 /// Perform the unqualified lookups that might be needed to form a defaulted
7960 /// comparison function for the given operator.
7961 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
7962                                                   UnresolvedSetImpl &Operators,
7963                                                   OverloadedOperatorKind Op) {
7964   auto Lookup = [&](OverloadedOperatorKind OO) {
7965     Self.LookupOverloadedOperatorName(OO, S, QualType(), QualType(), Operators);
7966   };
7967 
7968   // Every defaulted operator looks up itself.
7969   Lookup(Op);
7970   // ... and the rewritten form of itself, if any.
7971   if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
7972     Lookup(ExtraOp);
7973 
7974   // For 'operator<=>', we also form a 'cmp != 0' expression, and might
7975   // synthesize a three-way comparison from '<' and '=='. In a dependent
7976   // context, we also need to look up '==' in case we implicitly declare a
7977   // defaulted 'operator=='.
7978   if (Op == OO_Spaceship) {
7979     Lookup(OO_ExclaimEqual);
7980     Lookup(OO_Less);
7981     Lookup(OO_EqualEqual);
7982   }
7983 }
7984 
7985 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
7986                                               DefaultedComparisonKind DCK) {
7987   assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison");
7988 
7989   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
7990   assert(RD && "defaulted comparison is not defaulted in a class");
7991 
7992   // Perform any unqualified lookups we're going to need to default this
7993   // function.
7994   if (S) {
7995     UnresolvedSet<32> Operators;
7996     lookupOperatorsForDefaultedComparison(*this, S, Operators,
7997                                           FD->getOverloadedOperator());
7998     FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
7999         Context, Operators.pairs()));
8000   }
8001 
8002   // C++2a [class.compare.default]p1:
8003   //   A defaulted comparison operator function for some class C shall be a
8004   //   non-template function declared in the member-specification of C that is
8005   //    -- a non-static const member of C having one parameter of type
8006   //       const C&, or
8007   //    -- a friend of C having two parameters of type const C& or two
8008   //       parameters of type C.
8009   QualType ExpectedParmType1 = Context.getRecordType(RD);
8010   QualType ExpectedParmType2 =
8011       Context.getLValueReferenceType(ExpectedParmType1.withConst());
8012   if (isa<CXXMethodDecl>(FD))
8013     ExpectedParmType1 = ExpectedParmType2;
8014   for (const ParmVarDecl *Param : FD->parameters()) {
8015     if (!Param->getType()->isDependentType() &&
8016         !Context.hasSameType(Param->getType(), ExpectedParmType1) &&
8017         !Context.hasSameType(Param->getType(), ExpectedParmType2)) {
8018       // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8019       // corresponding defaulted 'operator<=>' already.
8020       if (!FD->isImplicit()) {
8021         Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8022             << (int)DCK << Param->getType() << ExpectedParmType1
8023             << !isa<CXXMethodDecl>(FD)
8024             << ExpectedParmType2 << Param->getSourceRange();
8025       }
8026       return true;
8027     }
8028   }
8029   if (FD->getNumParams() == 2 &&
8030       !Context.hasSameType(FD->getParamDecl(0)->getType(),
8031                            FD->getParamDecl(1)->getType())) {
8032     if (!FD->isImplicit()) {
8033       Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8034           << (int)DCK
8035           << FD->getParamDecl(0)->getType()
8036           << FD->getParamDecl(0)->getSourceRange()
8037           << FD->getParamDecl(1)->getType()
8038           << FD->getParamDecl(1)->getSourceRange();
8039     }
8040     return true;
8041   }
8042 
8043   // ... non-static const member ...
8044   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
8045     assert(!MD->isStatic() && "comparison function cannot be a static member");
8046     if (!MD->isConst()) {
8047       SourceLocation InsertLoc;
8048       if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8049         InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8050       // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8051       // corresponding defaulted 'operator<=>' already.
8052       if (!MD->isImplicit()) {
8053         Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8054           << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8055       }
8056 
8057       // Add the 'const' to the type to recover.
8058       const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8059       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8060       EPI.TypeQuals.addConst();
8061       MD->setType(Context.getFunctionType(FPT->getReturnType(),
8062                                           FPT->getParamTypes(), EPI));
8063     }
8064   } else {
8065     // A non-member function declared in a class must be a friend.
8066     assert(FD->getFriendObjectKind() && "expected a friend declaration");
8067   }
8068 
8069   // C++2a [class.eq]p1, [class.rel]p1:
8070   //   A [defaulted comparison other than <=>] shall have a declared return
8071   //   type bool.
8072   if (DCK != DefaultedComparisonKind::ThreeWay &&
8073       !FD->getDeclaredReturnType()->isDependentType() &&
8074       !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8075     Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8076         << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8077         << FD->getReturnTypeSourceRange();
8078     return true;
8079   }
8080   // C++2a [class.spaceship]p2 [P2002R0]:
8081   //   Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8082   //   R shall not contain a placeholder type.
8083   if (DCK == DefaultedComparisonKind::ThreeWay &&
8084       FD->getDeclaredReturnType()->getContainedDeducedType() &&
8085       !Context.hasSameType(FD->getDeclaredReturnType(),
8086                            Context.getAutoDeductType())) {
8087     Diag(FD->getLocation(),
8088          diag::err_defaulted_comparison_deduced_return_type_not_auto)
8089         << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8090         << FD->getReturnTypeSourceRange();
8091     return true;
8092   }
8093 
8094   // For a defaulted function in a dependent class, defer all remaining checks
8095   // until instantiation.
8096   if (RD->isDependentType())
8097     return false;
8098 
8099   // Determine whether the function should be defined as deleted.
8100   DefaultedComparisonInfo Info =
8101       DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8102 
8103   bool First = FD == FD->getCanonicalDecl();
8104 
8105   // If we want to delete the function, then do so; there's nothing else to
8106   // check in that case.
8107   if (Info.Deleted) {
8108     if (!First) {
8109       // C++11 [dcl.fct.def.default]p4:
8110       //   [For a] user-provided explicitly-defaulted function [...] if such a
8111       //   function is implicitly defined as deleted, the program is ill-formed.
8112       //
8113       // This is really just a consequence of the general rule that you can
8114       // only delete a function on its first declaration.
8115       Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8116           << FD->isImplicit() << (int)DCK;
8117       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8118                                   DefaultedComparisonAnalyzer::ExplainDeleted)
8119           .visit();
8120       return true;
8121     }
8122 
8123     SetDeclDeleted(FD, FD->getLocation());
8124     if (!inTemplateInstantiation() && !FD->isImplicit()) {
8125       Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8126           << (int)DCK;
8127       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8128                                   DefaultedComparisonAnalyzer::ExplainDeleted)
8129           .visit();
8130     }
8131     return false;
8132   }
8133 
8134   // C++2a [class.spaceship]p2:
8135   //   The return type is deduced as the common comparison type of R0, R1, ...
8136   if (DCK == DefaultedComparisonKind::ThreeWay &&
8137       FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8138     SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8139     if (RetLoc.isInvalid())
8140       RetLoc = FD->getBeginLoc();
8141     // FIXME: Should we really care whether we have the complete type and the
8142     // 'enumerator' constants here? A forward declaration seems sufficient.
8143     QualType Cat = CheckComparisonCategoryType(
8144         Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8145     if (Cat.isNull())
8146       return true;
8147     Context.adjustDeducedFunctionResultType(
8148         FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8149   }
8150 
8151   // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8152   //   An explicitly-defaulted function that is not defined as deleted may be
8153   //   declared constexpr or consteval only if it is constexpr-compatible.
8154   // C++2a [class.compare.default]p3 [P2002R0]:
8155   //   A defaulted comparison function is constexpr-compatible if it satisfies
8156   //   the requirements for a constexpr function [...]
8157   // The only relevant requirements are that the parameter and return types are
8158   // literal types. The remaining conditions are checked by the analyzer.
8159   if (FD->isConstexpr()) {
8160     if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8161         CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8162         !Info.Constexpr) {
8163       Diag(FD->getBeginLoc(),
8164            diag::err_incorrect_defaulted_comparison_constexpr)
8165           << FD->isImplicit() << (int)DCK << FD->isConsteval();
8166       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8167                                   DefaultedComparisonAnalyzer::ExplainConstexpr)
8168           .visit();
8169     }
8170   }
8171 
8172   // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8173   //   If a constexpr-compatible function is explicitly defaulted on its first
8174   //   declaration, it is implicitly considered to be constexpr.
8175   // FIXME: Only applying this to the first declaration seems problematic, as
8176   // simple reorderings can affect the meaning of the program.
8177   if (First && !FD->isConstexpr() && Info.Constexpr)
8178     FD->setConstexprKind(CSK_constexpr);
8179 
8180   // C++2a [except.spec]p3:
8181   //   If a declaration of a function does not have a noexcept-specifier
8182   //   [and] is defaulted on its first declaration, [...] the exception
8183   //   specification is as specified below
8184   if (FD->getExceptionSpecType() == EST_None) {
8185     auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8186     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8187     EPI.ExceptionSpec.Type = EST_Unevaluated;
8188     EPI.ExceptionSpec.SourceDecl = FD;
8189     FD->setType(Context.getFunctionType(FPT->getReturnType(),
8190                                         FPT->getParamTypes(), EPI));
8191   }
8192 
8193   return false;
8194 }
8195 
8196 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8197                                              FunctionDecl *Spaceship) {
8198   Sema::CodeSynthesisContext Ctx;
8199   Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8200   Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8201   Ctx.Entity = Spaceship;
8202   pushCodeSynthesisContext(Ctx);
8203 
8204   if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8205     EqualEqual->setImplicit();
8206 
8207   popCodeSynthesisContext();
8208 }
8209 
8210 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8211                                      DefaultedComparisonKind DCK) {
8212   assert(FD->isDefaulted() && !FD->isDeleted() &&
8213          !FD->doesThisDeclarationHaveABody());
8214   if (FD->willHaveBody() || FD->isInvalidDecl())
8215     return;
8216 
8217   SynthesizedFunctionScope Scope(*this, FD);
8218 
8219   // Add a context note for diagnostics produced after this point.
8220   Scope.addContextNote(UseLoc);
8221 
8222   {
8223     // Build and set up the function body.
8224     CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8225     SourceLocation BodyLoc =
8226         FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8227     StmtResult Body =
8228         DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8229     if (Body.isInvalid()) {
8230       FD->setInvalidDecl();
8231       return;
8232     }
8233     FD->setBody(Body.get());
8234     FD->markUsed(Context);
8235   }
8236 
8237   // The exception specification is needed because we are defining the
8238   // function. Note that this will reuse the body we just built.
8239   ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8240 
8241   if (ASTMutationListener *L = getASTMutationListener())
8242     L->CompletedImplicitDefinition(FD);
8243 }
8244 
8245 static Sema::ImplicitExceptionSpecification
8246 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8247                                         FunctionDecl *FD,
8248                                         Sema::DefaultedComparisonKind DCK) {
8249   ComputingExceptionSpec CES(S, FD, Loc);
8250   Sema::ImplicitExceptionSpecification ExceptSpec(S);
8251 
8252   if (FD->isInvalidDecl())
8253     return ExceptSpec;
8254 
8255   // The common case is that we just defined the comparison function. In that
8256   // case, just look at whether the body can throw.
8257   if (FD->hasBody()) {
8258     ExceptSpec.CalledStmt(FD->getBody());
8259   } else {
8260     // Otherwise, build a body so we can check it. This should ideally only
8261     // happen when we're not actually marking the function referenced. (This is
8262     // only really important for efficiency: we don't want to build and throw
8263     // away bodies for comparison functions more than we strictly need to.)
8264 
8265     // Pretend to synthesize the function body in an unevaluated context.
8266     // Note that we can't actually just go ahead and define the function here:
8267     // we are not permitted to mark its callees as referenced.
8268     Sema::SynthesizedFunctionScope Scope(S, FD);
8269     EnterExpressionEvaluationContext Context(
8270         S, Sema::ExpressionEvaluationContext::Unevaluated);
8271 
8272     CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8273     SourceLocation BodyLoc =
8274         FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8275     StmtResult Body =
8276         DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8277     if (!Body.isInvalid())
8278       ExceptSpec.CalledStmt(Body.get());
8279 
8280     // FIXME: Can we hold onto this body and just transform it to potentially
8281     // evaluated when we're asked to define the function rather than rebuilding
8282     // it? Either that, or we should only build the bits of the body that we
8283     // need (the expressions, not the statements).
8284   }
8285 
8286   return ExceptSpec;
8287 }
8288 
8289 void Sema::CheckDelayedMemberExceptionSpecs() {
8290   decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8291   decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8292 
8293   std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8294   std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8295 
8296   // Perform any deferred checking of exception specifications for virtual
8297   // destructors.
8298   for (auto &Check : Overriding)
8299     CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8300 
8301   // Perform any deferred checking of exception specifications for befriended
8302   // special members.
8303   for (auto &Check : Equivalent)
8304     CheckEquivalentExceptionSpec(Check.second, Check.first);
8305 }
8306 
8307 namespace {
8308 /// CRTP base class for visiting operations performed by a special member
8309 /// function (or inherited constructor).
8310 template<typename Derived>
8311 struct SpecialMemberVisitor {
8312   Sema &S;
8313   CXXMethodDecl *MD;
8314   Sema::CXXSpecialMember CSM;
8315   Sema::InheritedConstructorInfo *ICI;
8316 
8317   // Properties of the special member, computed for convenience.
8318   bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8319 
8320   SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8321                        Sema::InheritedConstructorInfo *ICI)
8322       : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8323     switch (CSM) {
8324     case Sema::CXXDefaultConstructor:
8325     case Sema::CXXCopyConstructor:
8326     case Sema::CXXMoveConstructor:
8327       IsConstructor = true;
8328       break;
8329     case Sema::CXXCopyAssignment:
8330     case Sema::CXXMoveAssignment:
8331       IsAssignment = true;
8332       break;
8333     case Sema::CXXDestructor:
8334       break;
8335     case Sema::CXXInvalid:
8336       llvm_unreachable("invalid special member kind");
8337     }
8338 
8339     if (MD->getNumParams()) {
8340       if (const ReferenceType *RT =
8341               MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
8342         ConstArg = RT->getPointeeType().isConstQualified();
8343     }
8344   }
8345 
8346   Derived &getDerived() { return static_cast<Derived&>(*this); }
8347 
8348   /// Is this a "move" special member?
8349   bool isMove() const {
8350     return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
8351   }
8352 
8353   /// Look up the corresponding special member in the given class.
8354   Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
8355                                              unsigned Quals, bool IsMutable) {
8356     return lookupCallFromSpecialMember(S, Class, CSM, Quals,
8357                                        ConstArg && !IsMutable);
8358   }
8359 
8360   /// Look up the constructor for the specified base class to see if it's
8361   /// overridden due to this being an inherited constructor.
8362   Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
8363     if (!ICI)
8364       return {};
8365     assert(CSM == Sema::CXXDefaultConstructor);
8366     auto *BaseCtor =
8367       cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
8368     if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
8369       return MD;
8370     return {};
8371   }
8372 
8373   /// A base or member subobject.
8374   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
8375 
8376   /// Get the location to use for a subobject in diagnostics.
8377   static SourceLocation getSubobjectLoc(Subobject Subobj) {
8378     // FIXME: For an indirect virtual base, the direct base leading to
8379     // the indirect virtual base would be a more useful choice.
8380     if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
8381       return B->getBaseTypeLoc();
8382     else
8383       return Subobj.get<FieldDecl*>()->getLocation();
8384   }
8385 
8386   enum BasesToVisit {
8387     /// Visit all non-virtual (direct) bases.
8388     VisitNonVirtualBases,
8389     /// Visit all direct bases, virtual or not.
8390     VisitDirectBases,
8391     /// Visit all non-virtual bases, and all virtual bases if the class
8392     /// is not abstract.
8393     VisitPotentiallyConstructedBases,
8394     /// Visit all direct or virtual bases.
8395     VisitAllBases
8396   };
8397 
8398   // Visit the bases and members of the class.
8399   bool visit(BasesToVisit Bases) {
8400     CXXRecordDecl *RD = MD->getParent();
8401 
8402     if (Bases == VisitPotentiallyConstructedBases)
8403       Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
8404 
8405     for (auto &B : RD->bases())
8406       if ((Bases == VisitDirectBases || !B.isVirtual()) &&
8407           getDerived().visitBase(&B))
8408         return true;
8409 
8410     if (Bases == VisitAllBases)
8411       for (auto &B : RD->vbases())
8412         if (getDerived().visitBase(&B))
8413           return true;
8414 
8415     for (auto *F : RD->fields())
8416       if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
8417           getDerived().visitField(F))
8418         return true;
8419 
8420     return false;
8421   }
8422 };
8423 }
8424 
8425 namespace {
8426 struct SpecialMemberDeletionInfo
8427     : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
8428   bool Diagnose;
8429 
8430   SourceLocation Loc;
8431 
8432   bool AllFieldsAreConst;
8433 
8434   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
8435                             Sema::CXXSpecialMember CSM,
8436                             Sema::InheritedConstructorInfo *ICI, bool Diagnose)
8437       : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
8438         Loc(MD->getLocation()), AllFieldsAreConst(true) {}
8439 
8440   bool inUnion() const { return MD->getParent()->isUnion(); }
8441 
8442   Sema::CXXSpecialMember getEffectiveCSM() {
8443     return ICI ? Sema::CXXInvalid : CSM;
8444   }
8445 
8446   bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
8447 
8448   bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
8449   bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
8450 
8451   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
8452   bool shouldDeleteForField(FieldDecl *FD);
8453   bool shouldDeleteForAllConstMembers();
8454 
8455   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
8456                                      unsigned Quals);
8457   bool shouldDeleteForSubobjectCall(Subobject Subobj,
8458                                     Sema::SpecialMemberOverloadResult SMOR,
8459                                     bool IsDtorCallInCtor);
8460 
8461   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
8462 };
8463 }
8464 
8465 /// Is the given special member inaccessible when used on the given
8466 /// sub-object.
8467 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
8468                                              CXXMethodDecl *target) {
8469   /// If we're operating on a base class, the object type is the
8470   /// type of this special member.
8471   QualType objectTy;
8472   AccessSpecifier access = target->getAccess();
8473   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
8474     objectTy = S.Context.getTypeDeclType(MD->getParent());
8475     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
8476 
8477   // If we're operating on a field, the object type is the type of the field.
8478   } else {
8479     objectTy = S.Context.getTypeDeclType(target->getParent());
8480   }
8481 
8482   return S.isMemberAccessibleForDeletion(
8483       target->getParent(), DeclAccessPair::make(target, access), objectTy);
8484 }
8485 
8486 /// Check whether we should delete a special member due to the implicit
8487 /// definition containing a call to a special member of a subobject.
8488 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
8489     Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
8490     bool IsDtorCallInCtor) {
8491   CXXMethodDecl *Decl = SMOR.getMethod();
8492   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8493 
8494   int DiagKind = -1;
8495 
8496   if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
8497     DiagKind = !Decl ? 0 : 1;
8498   else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
8499     DiagKind = 2;
8500   else if (!isAccessible(Subobj, Decl))
8501     DiagKind = 3;
8502   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
8503            !Decl->isTrivial()) {
8504     // A member of a union must have a trivial corresponding special member.
8505     // As a weird special case, a destructor call from a union's constructor
8506     // must be accessible and non-deleted, but need not be trivial. Such a
8507     // destructor is never actually called, but is semantically checked as
8508     // if it were.
8509     DiagKind = 4;
8510   }
8511 
8512   if (DiagKind == -1)
8513     return false;
8514 
8515   if (Diagnose) {
8516     if (Field) {
8517       S.Diag(Field->getLocation(),
8518              diag::note_deleted_special_member_class_subobject)
8519         << getEffectiveCSM() << MD->getParent() << /*IsField*/true
8520         << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
8521     } else {
8522       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
8523       S.Diag(Base->getBeginLoc(),
8524              diag::note_deleted_special_member_class_subobject)
8525           << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8526           << Base->getType() << DiagKind << IsDtorCallInCtor
8527           << /*IsObjCPtr*/false;
8528     }
8529 
8530     if (DiagKind == 1)
8531       S.NoteDeletedFunction(Decl);
8532     // FIXME: Explain inaccessibility if DiagKind == 3.
8533   }
8534 
8535   return true;
8536 }
8537 
8538 /// Check whether we should delete a special member function due to having a
8539 /// direct or virtual base class or non-static data member of class type M.
8540 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
8541     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
8542   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8543   bool IsMutable = Field && Field->isMutable();
8544 
8545   // C++11 [class.ctor]p5:
8546   // -- any direct or virtual base class, or non-static data member with no
8547   //    brace-or-equal-initializer, has class type M (or array thereof) and
8548   //    either M has no default constructor or overload resolution as applied
8549   //    to M's default constructor results in an ambiguity or in a function
8550   //    that is deleted or inaccessible
8551   // C++11 [class.copy]p11, C++11 [class.copy]p23:
8552   // -- a direct or virtual base class B that cannot be copied/moved because
8553   //    overload resolution, as applied to B's corresponding special member,
8554   //    results in an ambiguity or a function that is deleted or inaccessible
8555   //    from the defaulted special member
8556   // C++11 [class.dtor]p5:
8557   // -- any direct or virtual base class [...] has a type with a destructor
8558   //    that is deleted or inaccessible
8559   if (!(CSM == Sema::CXXDefaultConstructor &&
8560         Field && Field->hasInClassInitializer()) &&
8561       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
8562                                    false))
8563     return true;
8564 
8565   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
8566   // -- any direct or virtual base class or non-static data member has a
8567   //    type with a destructor that is deleted or inaccessible
8568   if (IsConstructor) {
8569     Sema::SpecialMemberOverloadResult SMOR =
8570         S.LookupSpecialMember(Class, Sema::CXXDestructor,
8571                               false, false, false, false, false);
8572     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
8573       return true;
8574   }
8575 
8576   return false;
8577 }
8578 
8579 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
8580     FieldDecl *FD, QualType FieldType) {
8581   // The defaulted special functions are defined as deleted if this is a variant
8582   // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
8583   // type under ARC.
8584   if (!FieldType.hasNonTrivialObjCLifetime())
8585     return false;
8586 
8587   // Don't make the defaulted default constructor defined as deleted if the
8588   // member has an in-class initializer.
8589   if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
8590     return false;
8591 
8592   if (Diagnose) {
8593     auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
8594     S.Diag(FD->getLocation(),
8595            diag::note_deleted_special_member_class_subobject)
8596         << getEffectiveCSM() << ParentClass << /*IsField*/true
8597         << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
8598   }
8599 
8600   return true;
8601 }
8602 
8603 /// Check whether we should delete a special member function due to the class
8604 /// having a particular direct or virtual base class.
8605 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
8606   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
8607   // If program is correct, BaseClass cannot be null, but if it is, the error
8608   // must be reported elsewhere.
8609   if (!BaseClass)
8610     return false;
8611   // If we have an inheriting constructor, check whether we're calling an
8612   // inherited constructor instead of a default constructor.
8613   Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
8614   if (auto *BaseCtor = SMOR.getMethod()) {
8615     // Note that we do not check access along this path; other than that,
8616     // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
8617     // FIXME: Check that the base has a usable destructor! Sink this into
8618     // shouldDeleteForClassSubobject.
8619     if (BaseCtor->isDeleted() && Diagnose) {
8620       S.Diag(Base->getBeginLoc(),
8621              diag::note_deleted_special_member_class_subobject)
8622           << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8623           << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
8624           << /*IsObjCPtr*/false;
8625       S.NoteDeletedFunction(BaseCtor);
8626     }
8627     return BaseCtor->isDeleted();
8628   }
8629   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
8630 }
8631 
8632 /// Check whether we should delete a special member function due to the class
8633 /// having a particular non-static data member.
8634 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
8635   QualType FieldType = S.Context.getBaseElementType(FD->getType());
8636   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
8637 
8638   if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
8639     return true;
8640 
8641   if (CSM == Sema::CXXDefaultConstructor) {
8642     // For a default constructor, all references must be initialized in-class
8643     // and, if a union, it must have a non-const member.
8644     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
8645       if (Diagnose)
8646         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
8647           << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
8648       return true;
8649     }
8650     // C++11 [class.ctor]p5: any non-variant non-static data member of
8651     // const-qualified type (or array thereof) with no
8652     // brace-or-equal-initializer does not have a user-provided default
8653     // constructor.
8654     if (!inUnion() && FieldType.isConstQualified() &&
8655         !FD->hasInClassInitializer() &&
8656         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
8657       if (Diagnose)
8658         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
8659           << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
8660       return true;
8661     }
8662 
8663     if (inUnion() && !FieldType.isConstQualified())
8664       AllFieldsAreConst = false;
8665   } else if (CSM == Sema::CXXCopyConstructor) {
8666     // For a copy constructor, data members must not be of rvalue reference
8667     // type.
8668     if (FieldType->isRValueReferenceType()) {
8669       if (Diagnose)
8670         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
8671           << MD->getParent() << FD << FieldType;
8672       return true;
8673     }
8674   } else if (IsAssignment) {
8675     // For an assignment operator, data members must not be of reference type.
8676     if (FieldType->isReferenceType()) {
8677       if (Diagnose)
8678         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
8679           << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
8680       return true;
8681     }
8682     if (!FieldRecord && FieldType.isConstQualified()) {
8683       // C++11 [class.copy]p23:
8684       // -- a non-static data member of const non-class type (or array thereof)
8685       if (Diagnose)
8686         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
8687           << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
8688       return true;
8689     }
8690   }
8691 
8692   if (FieldRecord) {
8693     // Some additional restrictions exist on the variant members.
8694     if (!inUnion() && FieldRecord->isUnion() &&
8695         FieldRecord->isAnonymousStructOrUnion()) {
8696       bool AllVariantFieldsAreConst = true;
8697 
8698       // FIXME: Handle anonymous unions declared within anonymous unions.
8699       for (auto *UI : FieldRecord->fields()) {
8700         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
8701 
8702         if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
8703           return true;
8704 
8705         if (!UnionFieldType.isConstQualified())
8706           AllVariantFieldsAreConst = false;
8707 
8708         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
8709         if (UnionFieldRecord &&
8710             shouldDeleteForClassSubobject(UnionFieldRecord, UI,
8711                                           UnionFieldType.getCVRQualifiers()))
8712           return true;
8713       }
8714 
8715       // At least one member in each anonymous union must be non-const
8716       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
8717           !FieldRecord->field_empty()) {
8718         if (Diagnose)
8719           S.Diag(FieldRecord->getLocation(),
8720                  diag::note_deleted_default_ctor_all_const)
8721             << !!ICI << MD->getParent() << /*anonymous union*/1;
8722         return true;
8723       }
8724 
8725       // Don't check the implicit member of the anonymous union type.
8726       // This is technically non-conformant, but sanity demands it.
8727       return false;
8728     }
8729 
8730     if (shouldDeleteForClassSubobject(FieldRecord, FD,
8731                                       FieldType.getCVRQualifiers()))
8732       return true;
8733   }
8734 
8735   return false;
8736 }
8737 
8738 /// C++11 [class.ctor] p5:
8739 ///   A defaulted default constructor for a class X is defined as deleted if
8740 /// X is a union and all of its variant members are of const-qualified type.
8741 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
8742   // This is a silly definition, because it gives an empty union a deleted
8743   // default constructor. Don't do that.
8744   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
8745     bool AnyFields = false;
8746     for (auto *F : MD->getParent()->fields())
8747       if ((AnyFields = !F->isUnnamedBitfield()))
8748         break;
8749     if (!AnyFields)
8750       return false;
8751     if (Diagnose)
8752       S.Diag(MD->getParent()->getLocation(),
8753              diag::note_deleted_default_ctor_all_const)
8754         << !!ICI << MD->getParent() << /*not anonymous union*/0;
8755     return true;
8756   }
8757   return false;
8758 }
8759 
8760 /// Determine whether a defaulted special member function should be defined as
8761 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
8762 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
8763 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
8764                                      InheritedConstructorInfo *ICI,
8765                                      bool Diagnose) {
8766   if (MD->isInvalidDecl())
8767     return false;
8768   CXXRecordDecl *RD = MD->getParent();
8769   assert(!RD->isDependentType() && "do deletion after instantiation");
8770   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
8771     return false;
8772 
8773   // C++11 [expr.lambda.prim]p19:
8774   //   The closure type associated with a lambda-expression has a
8775   //   deleted (8.4.3) default constructor and a deleted copy
8776   //   assignment operator.
8777   // C++2a adds back these operators if the lambda has no lambda-capture.
8778   if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
8779       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
8780     if (Diagnose)
8781       Diag(RD->getLocation(), diag::note_lambda_decl);
8782     return true;
8783   }
8784 
8785   // For an anonymous struct or union, the copy and assignment special members
8786   // will never be used, so skip the check. For an anonymous union declared at
8787   // namespace scope, the constructor and destructor are used.
8788   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
8789       RD->isAnonymousStructOrUnion())
8790     return false;
8791 
8792   // C++11 [class.copy]p7, p18:
8793   //   If the class definition declares a move constructor or move assignment
8794   //   operator, an implicitly declared copy constructor or copy assignment
8795   //   operator is defined as deleted.
8796   if (MD->isImplicit() &&
8797       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
8798     CXXMethodDecl *UserDeclaredMove = nullptr;
8799 
8800     // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
8801     // deletion of the corresponding copy operation, not both copy operations.
8802     // MSVC 2015 has adopted the standards conforming behavior.
8803     bool DeletesOnlyMatchingCopy =
8804         getLangOpts().MSVCCompat &&
8805         !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
8806 
8807     if (RD->hasUserDeclaredMoveConstructor() &&
8808         (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
8809       if (!Diagnose) return true;
8810 
8811       // Find any user-declared move constructor.
8812       for (auto *I : RD->ctors()) {
8813         if (I->isMoveConstructor()) {
8814           UserDeclaredMove = I;
8815           break;
8816         }
8817       }
8818       assert(UserDeclaredMove);
8819     } else if (RD->hasUserDeclaredMoveAssignment() &&
8820                (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
8821       if (!Diagnose) return true;
8822 
8823       // Find any user-declared move assignment operator.
8824       for (auto *I : RD->methods()) {
8825         if (I->isMoveAssignmentOperator()) {
8826           UserDeclaredMove = I;
8827           break;
8828         }
8829       }
8830       assert(UserDeclaredMove);
8831     }
8832 
8833     if (UserDeclaredMove) {
8834       Diag(UserDeclaredMove->getLocation(),
8835            diag::note_deleted_copy_user_declared_move)
8836         << (CSM == CXXCopyAssignment) << RD
8837         << UserDeclaredMove->isMoveAssignmentOperator();
8838       return true;
8839     }
8840   }
8841 
8842   // Do access control from the special member function
8843   ContextRAII MethodContext(*this, MD);
8844 
8845   // C++11 [class.dtor]p5:
8846   // -- for a virtual destructor, lookup of the non-array deallocation function
8847   //    results in an ambiguity or in a function that is deleted or inaccessible
8848   if (CSM == CXXDestructor && MD->isVirtual()) {
8849     FunctionDecl *OperatorDelete = nullptr;
8850     DeclarationName Name =
8851       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
8852     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
8853                                  OperatorDelete, /*Diagnose*/false)) {
8854       if (Diagnose)
8855         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
8856       return true;
8857     }
8858   }
8859 
8860   SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
8861 
8862   // Per DR1611, do not consider virtual bases of constructors of abstract
8863   // classes, since we are not going to construct them.
8864   // Per DR1658, do not consider virtual bases of destructors of abstract
8865   // classes either.
8866   // Per DR2180, for assignment operators we only assign (and thus only
8867   // consider) direct bases.
8868   if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
8869                                  : SMI.VisitPotentiallyConstructedBases))
8870     return true;
8871 
8872   if (SMI.shouldDeleteForAllConstMembers())
8873     return true;
8874 
8875   if (getLangOpts().CUDA) {
8876     // We should delete the special member in CUDA mode if target inference
8877     // failed.
8878     // For inherited constructors (non-null ICI), CSM may be passed so that MD
8879     // is treated as certain special member, which may not reflect what special
8880     // member MD really is. However inferCUDATargetForImplicitSpecialMember
8881     // expects CSM to match MD, therefore recalculate CSM.
8882     assert(ICI || CSM == getSpecialMember(MD));
8883     auto RealCSM = CSM;
8884     if (ICI)
8885       RealCSM = getSpecialMember(MD);
8886 
8887     return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
8888                                                    SMI.ConstArg, Diagnose);
8889   }
8890 
8891   return false;
8892 }
8893 
8894 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
8895   DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
8896   assert(DFK && "not a defaultable function");
8897   assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted");
8898 
8899   if (DFK.isSpecialMember()) {
8900     ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
8901                               nullptr, /*Diagnose=*/true);
8902   } else {
8903     DefaultedComparisonAnalyzer(
8904         *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
8905         DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
8906         .visit();
8907   }
8908 }
8909 
8910 /// Perform lookup for a special member of the specified kind, and determine
8911 /// whether it is trivial. If the triviality can be determined without the
8912 /// lookup, skip it. This is intended for use when determining whether a
8913 /// special member of a containing object is trivial, and thus does not ever
8914 /// perform overload resolution for default constructors.
8915 ///
8916 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
8917 /// member that was most likely to be intended to be trivial, if any.
8918 ///
8919 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
8920 /// determine whether the special member is trivial.
8921 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
8922                                      Sema::CXXSpecialMember CSM, unsigned Quals,
8923                                      bool ConstRHS,
8924                                      Sema::TrivialABIHandling TAH,
8925                                      CXXMethodDecl **Selected) {
8926   if (Selected)
8927     *Selected = nullptr;
8928 
8929   switch (CSM) {
8930   case Sema::CXXInvalid:
8931     llvm_unreachable("not a special member");
8932 
8933   case Sema::CXXDefaultConstructor:
8934     // C++11 [class.ctor]p5:
8935     //   A default constructor is trivial if:
8936     //    - all the [direct subobjects] have trivial default constructors
8937     //
8938     // Note, no overload resolution is performed in this case.
8939     if (RD->hasTrivialDefaultConstructor())
8940       return true;
8941 
8942     if (Selected) {
8943       // If there's a default constructor which could have been trivial, dig it
8944       // out. Otherwise, if there's any user-provided default constructor, point
8945       // to that as an example of why there's not a trivial one.
8946       CXXConstructorDecl *DefCtor = nullptr;
8947       if (RD->needsImplicitDefaultConstructor())
8948         S.DeclareImplicitDefaultConstructor(RD);
8949       for (auto *CI : RD->ctors()) {
8950         if (!CI->isDefaultConstructor())
8951           continue;
8952         DefCtor = CI;
8953         if (!DefCtor->isUserProvided())
8954           break;
8955       }
8956 
8957       *Selected = DefCtor;
8958     }
8959 
8960     return false;
8961 
8962   case Sema::CXXDestructor:
8963     // C++11 [class.dtor]p5:
8964     //   A destructor is trivial if:
8965     //    - all the direct [subobjects] have trivial destructors
8966     if (RD->hasTrivialDestructor() ||
8967         (TAH == Sema::TAH_ConsiderTrivialABI &&
8968          RD->hasTrivialDestructorForCall()))
8969       return true;
8970 
8971     if (Selected) {
8972       if (RD->needsImplicitDestructor())
8973         S.DeclareImplicitDestructor(RD);
8974       *Selected = RD->getDestructor();
8975     }
8976 
8977     return false;
8978 
8979   case Sema::CXXCopyConstructor:
8980     // C++11 [class.copy]p12:
8981     //   A copy constructor is trivial if:
8982     //    - the constructor selected to copy each direct [subobject] is trivial
8983     if (RD->hasTrivialCopyConstructor() ||
8984         (TAH == Sema::TAH_ConsiderTrivialABI &&
8985          RD->hasTrivialCopyConstructorForCall())) {
8986       if (Quals == Qualifiers::Const)
8987         // We must either select the trivial copy constructor or reach an
8988         // ambiguity; no need to actually perform overload resolution.
8989         return true;
8990     } else if (!Selected) {
8991       return false;
8992     }
8993     // In C++98, we are not supposed to perform overload resolution here, but we
8994     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
8995     // cases like B as having a non-trivial copy constructor:
8996     //   struct A { template<typename T> A(T&); };
8997     //   struct B { mutable A a; };
8998     goto NeedOverloadResolution;
8999 
9000   case Sema::CXXCopyAssignment:
9001     // C++11 [class.copy]p25:
9002     //   A copy assignment operator is trivial if:
9003     //    - the assignment operator selected to copy each direct [subobject] is
9004     //      trivial
9005     if (RD->hasTrivialCopyAssignment()) {
9006       if (Quals == Qualifiers::Const)
9007         return true;
9008     } else if (!Selected) {
9009       return false;
9010     }
9011     // In C++98, we are not supposed to perform overload resolution here, but we
9012     // treat that as a language defect.
9013     goto NeedOverloadResolution;
9014 
9015   case Sema::CXXMoveConstructor:
9016   case Sema::CXXMoveAssignment:
9017   NeedOverloadResolution:
9018     Sema::SpecialMemberOverloadResult SMOR =
9019         lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9020 
9021     // The standard doesn't describe how to behave if the lookup is ambiguous.
9022     // We treat it as not making the member non-trivial, just like the standard
9023     // mandates for the default constructor. This should rarely matter, because
9024     // the member will also be deleted.
9025     if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9026       return true;
9027 
9028     if (!SMOR.getMethod()) {
9029       assert(SMOR.getKind() ==
9030              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
9031       return false;
9032     }
9033 
9034     // We deliberately don't check if we found a deleted special member. We're
9035     // not supposed to!
9036     if (Selected)
9037       *Selected = SMOR.getMethod();
9038 
9039     if (TAH == Sema::TAH_ConsiderTrivialABI &&
9040         (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9041       return SMOR.getMethod()->isTrivialForCall();
9042     return SMOR.getMethod()->isTrivial();
9043   }
9044 
9045   llvm_unreachable("unknown special method kind");
9046 }
9047 
9048 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9049   for (auto *CI : RD->ctors())
9050     if (!CI->isImplicit())
9051       return CI;
9052 
9053   // Look for constructor templates.
9054   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9055   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9056     if (CXXConstructorDecl *CD =
9057           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9058       return CD;
9059   }
9060 
9061   return nullptr;
9062 }
9063 
9064 /// The kind of subobject we are checking for triviality. The values of this
9065 /// enumeration are used in diagnostics.
9066 enum TrivialSubobjectKind {
9067   /// The subobject is a base class.
9068   TSK_BaseClass,
9069   /// The subobject is a non-static data member.
9070   TSK_Field,
9071   /// The object is actually the complete object.
9072   TSK_CompleteObject
9073 };
9074 
9075 /// Check whether the special member selected for a given type would be trivial.
9076 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9077                                       QualType SubType, bool ConstRHS,
9078                                       Sema::CXXSpecialMember CSM,
9079                                       TrivialSubobjectKind Kind,
9080                                       Sema::TrivialABIHandling TAH, bool Diagnose) {
9081   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9082   if (!SubRD)
9083     return true;
9084 
9085   CXXMethodDecl *Selected;
9086   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9087                                ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9088     return true;
9089 
9090   if (Diagnose) {
9091     if (ConstRHS)
9092       SubType.addConst();
9093 
9094     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9095       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9096         << Kind << SubType.getUnqualifiedType();
9097       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9098         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9099     } else if (!Selected)
9100       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9101         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9102     else if (Selected->isUserProvided()) {
9103       if (Kind == TSK_CompleteObject)
9104         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9105           << Kind << SubType.getUnqualifiedType() << CSM;
9106       else {
9107         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9108           << Kind << SubType.getUnqualifiedType() << CSM;
9109         S.Diag(Selected->getLocation(), diag::note_declared_at);
9110       }
9111     } else {
9112       if (Kind != TSK_CompleteObject)
9113         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9114           << Kind << SubType.getUnqualifiedType() << CSM;
9115 
9116       // Explain why the defaulted or deleted special member isn't trivial.
9117       S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9118                                Diagnose);
9119     }
9120   }
9121 
9122   return false;
9123 }
9124 
9125 /// Check whether the members of a class type allow a special member to be
9126 /// trivial.
9127 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9128                                      Sema::CXXSpecialMember CSM,
9129                                      bool ConstArg,
9130                                      Sema::TrivialABIHandling TAH,
9131                                      bool Diagnose) {
9132   for (const auto *FI : RD->fields()) {
9133     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9134       continue;
9135 
9136     QualType FieldType = S.Context.getBaseElementType(FI->getType());
9137 
9138     // Pretend anonymous struct or union members are members of this class.
9139     if (FI->isAnonymousStructOrUnion()) {
9140       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9141                                     CSM, ConstArg, TAH, Diagnose))
9142         return false;
9143       continue;
9144     }
9145 
9146     // C++11 [class.ctor]p5:
9147     //   A default constructor is trivial if [...]
9148     //    -- no non-static data member of its class has a
9149     //       brace-or-equal-initializer
9150     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9151       if (Diagnose)
9152         S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
9153       return false;
9154     }
9155 
9156     // Objective C ARC 4.3.5:
9157     //   [...] nontrivally ownership-qualified types are [...] not trivially
9158     //   default constructible, copy constructible, move constructible, copy
9159     //   assignable, move assignable, or destructible [...]
9160     if (FieldType.hasNonTrivialObjCLifetime()) {
9161       if (Diagnose)
9162         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9163           << RD << FieldType.getObjCLifetime();
9164       return false;
9165     }
9166 
9167     bool ConstRHS = ConstArg && !FI->isMutable();
9168     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9169                                    CSM, TSK_Field, TAH, Diagnose))
9170       return false;
9171   }
9172 
9173   return true;
9174 }
9175 
9176 /// Diagnose why the specified class does not have a trivial special member of
9177 /// the given kind.
9178 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9179   QualType Ty = Context.getRecordType(RD);
9180 
9181   bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9182   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9183                             TSK_CompleteObject, TAH_IgnoreTrivialABI,
9184                             /*Diagnose*/true);
9185 }
9186 
9187 /// Determine whether a defaulted or deleted special member function is trivial,
9188 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9189 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
9190 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9191                                   TrivialABIHandling TAH, bool Diagnose) {
9192   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
9193 
9194   CXXRecordDecl *RD = MD->getParent();
9195 
9196   bool ConstArg = false;
9197 
9198   // C++11 [class.copy]p12, p25: [DR1593]
9199   //   A [special member] is trivial if [...] its parameter-type-list is
9200   //   equivalent to the parameter-type-list of an implicit declaration [...]
9201   switch (CSM) {
9202   case CXXDefaultConstructor:
9203   case CXXDestructor:
9204     // Trivial default constructors and destructors cannot have parameters.
9205     break;
9206 
9207   case CXXCopyConstructor:
9208   case CXXCopyAssignment: {
9209     // Trivial copy operations always have const, non-volatile parameter types.
9210     ConstArg = true;
9211     const ParmVarDecl *Param0 = MD->getParamDecl(0);
9212     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9213     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
9214       if (Diagnose)
9215         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9216           << Param0->getSourceRange() << Param0->getType()
9217           << Context.getLValueReferenceType(
9218                Context.getRecordType(RD).withConst());
9219       return false;
9220     }
9221     break;
9222   }
9223 
9224   case CXXMoveConstructor:
9225   case CXXMoveAssignment: {
9226     // Trivial move operations always have non-cv-qualified parameters.
9227     const ParmVarDecl *Param0 = MD->getParamDecl(0);
9228     const RValueReferenceType *RT =
9229       Param0->getType()->getAs<RValueReferenceType>();
9230     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9231       if (Diagnose)
9232         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9233           << Param0->getSourceRange() << Param0->getType()
9234           << Context.getRValueReferenceType(Context.getRecordType(RD));
9235       return false;
9236     }
9237     break;
9238   }
9239 
9240   case CXXInvalid:
9241     llvm_unreachable("not a special member");
9242   }
9243 
9244   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9245     if (Diagnose)
9246       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9247            diag::note_nontrivial_default_arg)
9248         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9249     return false;
9250   }
9251   if (MD->isVariadic()) {
9252     if (Diagnose)
9253       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9254     return false;
9255   }
9256 
9257   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9258   //   A copy/move [constructor or assignment operator] is trivial if
9259   //    -- the [member] selected to copy/move each direct base class subobject
9260   //       is trivial
9261   //
9262   // C++11 [class.copy]p12, C++11 [class.copy]p25:
9263   //   A [default constructor or destructor] is trivial if
9264   //    -- all the direct base classes have trivial [default constructors or
9265   //       destructors]
9266   for (const auto &BI : RD->bases())
9267     if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9268                                    ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9269       return false;
9270 
9271   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9272   //   A copy/move [constructor or assignment operator] for a class X is
9273   //   trivial if
9274   //    -- for each non-static data member of X that is of class type (or array
9275   //       thereof), the constructor selected to copy/move that member is
9276   //       trivial
9277   //
9278   // C++11 [class.copy]p12, C++11 [class.copy]p25:
9279   //   A [default constructor or destructor] is trivial if
9280   //    -- for all of the non-static data members of its class that are of class
9281   //       type (or array thereof), each such class has a trivial [default
9282   //       constructor or destructor]
9283   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9284     return false;
9285 
9286   // C++11 [class.dtor]p5:
9287   //   A destructor is trivial if [...]
9288   //    -- the destructor is not virtual
9289   if (CSM == CXXDestructor && MD->isVirtual()) {
9290     if (Diagnose)
9291       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9292     return false;
9293   }
9294 
9295   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9296   //   A [special member] for class X is trivial if [...]
9297   //    -- class X has no virtual functions and no virtual base classes
9298   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9299     if (!Diagnose)
9300       return false;
9301 
9302     if (RD->getNumVBases()) {
9303       // Check for virtual bases. We already know that the corresponding
9304       // member in all bases is trivial, so vbases must all be direct.
9305       CXXBaseSpecifier &BS = *RD->vbases_begin();
9306       assert(BS.isVirtual());
9307       Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
9308       return false;
9309     }
9310 
9311     // Must have a virtual method.
9312     for (const auto *MI : RD->methods()) {
9313       if (MI->isVirtual()) {
9314         SourceLocation MLoc = MI->getBeginLoc();
9315         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
9316         return false;
9317       }
9318     }
9319 
9320     llvm_unreachable("dynamic class with no vbases and no virtual functions");
9321   }
9322 
9323   // Looks like it's trivial!
9324   return true;
9325 }
9326 
9327 namespace {
9328 struct FindHiddenVirtualMethod {
9329   Sema *S;
9330   CXXMethodDecl *Method;
9331   llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
9332   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9333 
9334 private:
9335   /// Check whether any most overridden method from MD in Methods
9336   static bool CheckMostOverridenMethods(
9337       const CXXMethodDecl *MD,
9338       const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
9339     if (MD->size_overridden_methods() == 0)
9340       return Methods.count(MD->getCanonicalDecl());
9341     for (const CXXMethodDecl *O : MD->overridden_methods())
9342       if (CheckMostOverridenMethods(O, Methods))
9343         return true;
9344     return false;
9345   }
9346 
9347 public:
9348   /// Member lookup function that determines whether a given C++
9349   /// method overloads virtual methods in a base class without overriding any,
9350   /// to be used with CXXRecordDecl::lookupInBases().
9351   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
9352     RecordDecl *BaseRecord =
9353         Specifier->getType()->castAs<RecordType>()->getDecl();
9354 
9355     DeclarationName Name = Method->getDeclName();
9356     assert(Name.getNameKind() == DeclarationName::Identifier);
9357 
9358     bool foundSameNameMethod = false;
9359     SmallVector<CXXMethodDecl *, 8> overloadedMethods;
9360     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
9361          Path.Decls = Path.Decls.slice(1)) {
9362       NamedDecl *D = Path.Decls.front();
9363       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
9364         MD = MD->getCanonicalDecl();
9365         foundSameNameMethod = true;
9366         // Interested only in hidden virtual methods.
9367         if (!MD->isVirtual())
9368           continue;
9369         // If the method we are checking overrides a method from its base
9370         // don't warn about the other overloaded methods. Clang deviates from
9371         // GCC by only diagnosing overloads of inherited virtual functions that
9372         // do not override any other virtual functions in the base. GCC's
9373         // -Woverloaded-virtual diagnoses any derived function hiding a virtual
9374         // function from a base class. These cases may be better served by a
9375         // warning (not specific to virtual functions) on call sites when the
9376         // call would select a different function from the base class, were it
9377         // visible.
9378         // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
9379         if (!S->IsOverload(Method, MD, false))
9380           return true;
9381         // Collect the overload only if its hidden.
9382         if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
9383           overloadedMethods.push_back(MD);
9384       }
9385     }
9386 
9387     if (foundSameNameMethod)
9388       OverloadedMethods.append(overloadedMethods.begin(),
9389                                overloadedMethods.end());
9390     return foundSameNameMethod;
9391   }
9392 };
9393 } // end anonymous namespace
9394 
9395 /// Add the most overriden methods from MD to Methods
9396 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
9397                         llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
9398   if (MD->size_overridden_methods() == 0)
9399     Methods.insert(MD->getCanonicalDecl());
9400   else
9401     for (const CXXMethodDecl *O : MD->overridden_methods())
9402       AddMostOverridenMethods(O, Methods);
9403 }
9404 
9405 /// Check if a method overloads virtual methods in a base class without
9406 /// overriding any.
9407 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
9408                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9409   if (!MD->getDeclName().isIdentifier())
9410     return;
9411 
9412   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
9413                      /*bool RecordPaths=*/false,
9414                      /*bool DetectVirtual=*/false);
9415   FindHiddenVirtualMethod FHVM;
9416   FHVM.Method = MD;
9417   FHVM.S = this;
9418 
9419   // Keep the base methods that were overridden or introduced in the subclass
9420   // by 'using' in a set. A base method not in this set is hidden.
9421   CXXRecordDecl *DC = MD->getParent();
9422   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
9423   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
9424     NamedDecl *ND = *I;
9425     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
9426       ND = shad->getTargetDecl();
9427     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
9428       AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
9429   }
9430 
9431   if (DC->lookupInBases(FHVM, Paths))
9432     OverloadedMethods = FHVM.OverloadedMethods;
9433 }
9434 
9435 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
9436                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9437   for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
9438     CXXMethodDecl *overloadedMD = OverloadedMethods[i];
9439     PartialDiagnostic PD = PDiag(
9440          diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
9441     HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
9442     Diag(overloadedMD->getLocation(), PD);
9443   }
9444 }
9445 
9446 /// Diagnose methods which overload virtual methods in a base class
9447 /// without overriding any.
9448 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
9449   if (MD->isInvalidDecl())
9450     return;
9451 
9452   if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
9453     return;
9454 
9455   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9456   FindHiddenVirtualMethods(MD, OverloadedMethods);
9457   if (!OverloadedMethods.empty()) {
9458     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
9459       << MD << (OverloadedMethods.size() > 1);
9460 
9461     NoteHiddenVirtualMethods(MD, OverloadedMethods);
9462   }
9463 }
9464 
9465 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
9466   auto PrintDiagAndRemoveAttr = [&]() {
9467     // No diagnostics if this is a template instantiation.
9468     if (!isTemplateInstantiation(RD.getTemplateSpecializationKind()))
9469       Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9470            diag::ext_cannot_use_trivial_abi) << &RD;
9471     RD.dropAttr<TrivialABIAttr>();
9472   };
9473 
9474   // Ill-formed if the struct has virtual functions.
9475   if (RD.isPolymorphic()) {
9476     PrintDiagAndRemoveAttr();
9477     return;
9478   }
9479 
9480   for (const auto &B : RD.bases()) {
9481     // Ill-formed if the base class is non-trivial for the purpose of calls or a
9482     // virtual base.
9483     if ((!B.getType()->isDependentType() &&
9484          !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) ||
9485         B.isVirtual()) {
9486       PrintDiagAndRemoveAttr();
9487       return;
9488     }
9489   }
9490 
9491   for (const auto *FD : RD.fields()) {
9492     // Ill-formed if the field is an ObjectiveC pointer or of a type that is
9493     // non-trivial for the purpose of calls.
9494     QualType FT = FD->getType();
9495     if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
9496       PrintDiagAndRemoveAttr();
9497       return;
9498     }
9499 
9500     if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
9501       if (!RT->isDependentType() &&
9502           !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
9503         PrintDiagAndRemoveAttr();
9504         return;
9505       }
9506   }
9507 }
9508 
9509 void Sema::ActOnFinishCXXMemberSpecification(
9510     Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
9511     SourceLocation RBrac, const ParsedAttributesView &AttrList) {
9512   if (!TagDecl)
9513     return;
9514 
9515   AdjustDeclIfTemplate(TagDecl);
9516 
9517   for (const ParsedAttr &AL : AttrList) {
9518     if (AL.getKind() != ParsedAttr::AT_Visibility)
9519       continue;
9520     AL.setInvalid();
9521     Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
9522   }
9523 
9524   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
9525               // strict aliasing violation!
9526               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
9527               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
9528 
9529   CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
9530 }
9531 
9532 /// Find the equality comparison functions that should be implicitly declared
9533 /// in a given class definition, per C++2a [class.compare.default]p3.
9534 static void findImplicitlyDeclaredEqualityComparisons(
9535     ASTContext &Ctx, CXXRecordDecl *RD,
9536     llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
9537   DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
9538   if (!RD->lookup(EqEq).empty())
9539     // Member operator== explicitly declared: no implicit operator==s.
9540     return;
9541 
9542   // Traverse friends looking for an '==' or a '<=>'.
9543   for (FriendDecl *Friend : RD->friends()) {
9544     FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
9545     if (!FD) continue;
9546 
9547     if (FD->getOverloadedOperator() == OO_EqualEqual) {
9548       // Friend operator== explicitly declared: no implicit operator==s.
9549       Spaceships.clear();
9550       return;
9551     }
9552 
9553     if (FD->getOverloadedOperator() == OO_Spaceship &&
9554         FD->isExplicitlyDefaulted())
9555       Spaceships.push_back(FD);
9556   }
9557 
9558   // Look for members named 'operator<=>'.
9559   DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
9560   for (NamedDecl *ND : RD->lookup(Cmp)) {
9561     // Note that we could find a non-function here (either a function template
9562     // or a using-declaration). Neither case results in an implicit
9563     // 'operator=='.
9564     if (auto *FD = dyn_cast<FunctionDecl>(ND))
9565       if (FD->isExplicitlyDefaulted())
9566         Spaceships.push_back(FD);
9567   }
9568 }
9569 
9570 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
9571 /// special functions, such as the default constructor, copy
9572 /// constructor, or destructor, to the given C++ class (C++
9573 /// [special]p1).  This routine can only be executed just before the
9574 /// definition of the class is complete.
9575 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
9576   if (ClassDecl->needsImplicitDefaultConstructor()) {
9577     ++getASTContext().NumImplicitDefaultConstructors;
9578 
9579     if (ClassDecl->hasInheritedConstructor())
9580       DeclareImplicitDefaultConstructor(ClassDecl);
9581   }
9582 
9583   if (ClassDecl->needsImplicitCopyConstructor()) {
9584     ++getASTContext().NumImplicitCopyConstructors;
9585 
9586     // If the properties or semantics of the copy constructor couldn't be
9587     // determined while the class was being declared, force a declaration
9588     // of it now.
9589     if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
9590         ClassDecl->hasInheritedConstructor())
9591       DeclareImplicitCopyConstructor(ClassDecl);
9592     // For the MS ABI we need to know whether the copy ctor is deleted. A
9593     // prerequisite for deleting the implicit copy ctor is that the class has a
9594     // move ctor or move assignment that is either user-declared or whose
9595     // semantics are inherited from a subobject. FIXME: We should provide a more
9596     // direct way for CodeGen to ask whether the constructor was deleted.
9597     else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9598              (ClassDecl->hasUserDeclaredMoveConstructor() ||
9599               ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9600               ClassDecl->hasUserDeclaredMoveAssignment() ||
9601               ClassDecl->needsOverloadResolutionForMoveAssignment()))
9602       DeclareImplicitCopyConstructor(ClassDecl);
9603   }
9604 
9605   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
9606     ++getASTContext().NumImplicitMoveConstructors;
9607 
9608     if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9609         ClassDecl->hasInheritedConstructor())
9610       DeclareImplicitMoveConstructor(ClassDecl);
9611   }
9612 
9613   if (ClassDecl->needsImplicitCopyAssignment()) {
9614     ++getASTContext().NumImplicitCopyAssignmentOperators;
9615 
9616     // If we have a dynamic class, then the copy assignment operator may be
9617     // virtual, so we have to declare it immediately. This ensures that, e.g.,
9618     // it shows up in the right place in the vtable and that we diagnose
9619     // problems with the implicit exception specification.
9620     if (ClassDecl->isDynamicClass() ||
9621         ClassDecl->needsOverloadResolutionForCopyAssignment() ||
9622         ClassDecl->hasInheritedAssignment())
9623       DeclareImplicitCopyAssignment(ClassDecl);
9624   }
9625 
9626   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
9627     ++getASTContext().NumImplicitMoveAssignmentOperators;
9628 
9629     // Likewise for the move assignment operator.
9630     if (ClassDecl->isDynamicClass() ||
9631         ClassDecl->needsOverloadResolutionForMoveAssignment() ||
9632         ClassDecl->hasInheritedAssignment())
9633       DeclareImplicitMoveAssignment(ClassDecl);
9634   }
9635 
9636   if (ClassDecl->needsImplicitDestructor()) {
9637     ++getASTContext().NumImplicitDestructors;
9638 
9639     // If we have a dynamic class, then the destructor may be virtual, so we
9640     // have to declare the destructor immediately. This ensures that, e.g., it
9641     // shows up in the right place in the vtable and that we diagnose problems
9642     // with the implicit exception specification.
9643     if (ClassDecl->isDynamicClass() ||
9644         ClassDecl->needsOverloadResolutionForDestructor())
9645       DeclareImplicitDestructor(ClassDecl);
9646   }
9647 
9648   // C++2a [class.compare.default]p3:
9649   //   If the member-specification does not explicitly declare any member or
9650   //   friend named operator==, an == operator function is declared implicitly
9651   //   for each defaulted three-way comparison operator function defined in the
9652   //   member-specification
9653   // FIXME: Consider doing this lazily.
9654   if (getLangOpts().CPlusPlus2a) {
9655     llvm::SmallVector<FunctionDecl*, 4> DefaultedSpaceships;
9656     findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
9657                                               DefaultedSpaceships);
9658     for (auto *FD : DefaultedSpaceships)
9659       DeclareImplicitEqualityComparison(ClassDecl, FD);
9660   }
9661 }
9662 
9663 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
9664   if (!D)
9665     return 0;
9666 
9667   // The order of template parameters is not important here. All names
9668   // get added to the same scope.
9669   SmallVector<TemplateParameterList *, 4> ParameterLists;
9670 
9671   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9672     D = TD->getTemplatedDecl();
9673 
9674   if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
9675     ParameterLists.push_back(PSD->getTemplateParameters());
9676 
9677   if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
9678     for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
9679       ParameterLists.push_back(DD->getTemplateParameterList(i));
9680 
9681     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9682       if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
9683         ParameterLists.push_back(FTD->getTemplateParameters());
9684     }
9685   }
9686 
9687   if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
9688     for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
9689       ParameterLists.push_back(TD->getTemplateParameterList(i));
9690 
9691     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
9692       if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
9693         ParameterLists.push_back(CTD->getTemplateParameters());
9694     }
9695   }
9696 
9697   unsigned Count = 0;
9698   for (TemplateParameterList *Params : ParameterLists) {
9699     if (Params->size() > 0)
9700       // Ignore explicit specializations; they don't contribute to the template
9701       // depth.
9702       ++Count;
9703     for (NamedDecl *Param : *Params) {
9704       if (Param->getDeclName()) {
9705         S->AddDecl(Param);
9706         IdResolver.AddDecl(Param);
9707       }
9708     }
9709   }
9710 
9711   return Count;
9712 }
9713 
9714 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
9715   if (!RecordD) return;
9716   AdjustDeclIfTemplate(RecordD);
9717   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
9718   PushDeclContext(S, Record);
9719 }
9720 
9721 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
9722   if (!RecordD) return;
9723   PopDeclContext();
9724 }
9725 
9726 /// This is used to implement the constant expression evaluation part of the
9727 /// attribute enable_if extension. There is nothing in standard C++ which would
9728 /// require reentering parameters.
9729 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
9730   if (!Param)
9731     return;
9732 
9733   S->AddDecl(Param);
9734   if (Param->getDeclName())
9735     IdResolver.AddDecl(Param);
9736 }
9737 
9738 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
9739 /// parsing a top-level (non-nested) C++ class, and we are now
9740 /// parsing those parts of the given Method declaration that could
9741 /// not be parsed earlier (C++ [class.mem]p2), such as default
9742 /// arguments. This action should enter the scope of the given
9743 /// Method declaration as if we had just parsed the qualified method
9744 /// name. However, it should not bring the parameters into scope;
9745 /// that will be performed by ActOnDelayedCXXMethodParameter.
9746 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
9747 }
9748 
9749 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
9750 /// C++ method declaration. We're (re-)introducing the given
9751 /// function parameter into scope for use in parsing later parts of
9752 /// the method declaration. For example, we could see an
9753 /// ActOnParamDefaultArgument event for this parameter.
9754 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
9755   if (!ParamD)
9756     return;
9757 
9758   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
9759 
9760   // If this parameter has an unparsed default argument, clear it out
9761   // to make way for the parsed default argument.
9762   if (Param->hasUnparsedDefaultArg())
9763     Param->setDefaultArg(nullptr);
9764 
9765   S->AddDecl(Param);
9766   if (Param->getDeclName())
9767     IdResolver.AddDecl(Param);
9768 }
9769 
9770 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
9771 /// processing the delayed method declaration for Method. The method
9772 /// declaration is now considered finished. There may be a separate
9773 /// ActOnStartOfFunctionDef action later (not necessarily
9774 /// immediately!) for this method, if it was also defined inside the
9775 /// class body.
9776 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
9777   if (!MethodD)
9778     return;
9779 
9780   AdjustDeclIfTemplate(MethodD);
9781 
9782   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
9783 
9784   // Now that we have our default arguments, check the constructor
9785   // again. It could produce additional diagnostics or affect whether
9786   // the class has implicitly-declared destructors, among other
9787   // things.
9788   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
9789     CheckConstructor(Constructor);
9790 
9791   // Check the default arguments, which we may have added.
9792   if (!Method->isInvalidDecl())
9793     CheckCXXDefaultArguments(Method);
9794 }
9795 
9796 // Emit the given diagnostic for each non-address-space qualifier.
9797 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
9798 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
9799   const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9800   if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
9801     bool DiagOccured = false;
9802     FTI.MethodQualifiers->forEachQualifier(
9803         [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
9804                                    SourceLocation SL) {
9805           // This diagnostic should be emitted on any qualifier except an addr
9806           // space qualifier. However, forEachQualifier currently doesn't visit
9807           // addr space qualifiers, so there's no way to write this condition
9808           // right now; we just diagnose on everything.
9809           S.Diag(SL, DiagID) << QualName << SourceRange(SL);
9810           DiagOccured = true;
9811         });
9812     if (DiagOccured)
9813       D.setInvalidType();
9814   }
9815 }
9816 
9817 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
9818 /// the well-formedness of the constructor declarator @p D with type @p
9819 /// R. If there are any errors in the declarator, this routine will
9820 /// emit diagnostics and set the invalid bit to true.  In any case, the type
9821 /// will be updated to reflect a well-formed type for the constructor and
9822 /// returned.
9823 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
9824                                           StorageClass &SC) {
9825   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9826 
9827   // C++ [class.ctor]p3:
9828   //   A constructor shall not be virtual (10.3) or static (9.4). A
9829   //   constructor can be invoked for a const, volatile or const
9830   //   volatile object. A constructor shall not be declared const,
9831   //   volatile, or const volatile (9.3.2).
9832   if (isVirtual) {
9833     if (!D.isInvalidType())
9834       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
9835         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
9836         << SourceRange(D.getIdentifierLoc());
9837     D.setInvalidType();
9838   }
9839   if (SC == SC_Static) {
9840     if (!D.isInvalidType())
9841       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
9842         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
9843         << SourceRange(D.getIdentifierLoc());
9844     D.setInvalidType();
9845     SC = SC_None;
9846   }
9847 
9848   if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
9849     diagnoseIgnoredQualifiers(
9850         diag::err_constructor_return_type, TypeQuals, SourceLocation(),
9851         D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
9852         D.getDeclSpec().getRestrictSpecLoc(),
9853         D.getDeclSpec().getAtomicSpecLoc());
9854     D.setInvalidType();
9855   }
9856 
9857   checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
9858 
9859   // C++0x [class.ctor]p4:
9860   //   A constructor shall not be declared with a ref-qualifier.
9861   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9862   if (FTI.hasRefQualifier()) {
9863     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
9864       << FTI.RefQualifierIsLValueRef
9865       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
9866     D.setInvalidType();
9867   }
9868 
9869   // Rebuild the function type "R" without any type qualifiers (in
9870   // case any of the errors above fired) and with "void" as the
9871   // return type, since constructors don't have return types.
9872   const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
9873   if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
9874     return R;
9875 
9876   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
9877   EPI.TypeQuals = Qualifiers();
9878   EPI.RefQualifier = RQ_None;
9879 
9880   return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
9881 }
9882 
9883 /// CheckConstructor - Checks a fully-formed constructor for
9884 /// well-formedness, issuing any diagnostics required. Returns true if
9885 /// the constructor declarator is invalid.
9886 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
9887   CXXRecordDecl *ClassDecl
9888     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
9889   if (!ClassDecl)
9890     return Constructor->setInvalidDecl();
9891 
9892   // C++ [class.copy]p3:
9893   //   A declaration of a constructor for a class X is ill-formed if
9894   //   its first parameter is of type (optionally cv-qualified) X and
9895   //   either there are no other parameters or else all other
9896   //   parameters have default arguments.
9897   if (!Constructor->isInvalidDecl() &&
9898       ((Constructor->getNumParams() == 1) ||
9899        (Constructor->getNumParams() > 1 &&
9900         Constructor->getParamDecl(1)->hasDefaultArg())) &&
9901       Constructor->getTemplateSpecializationKind()
9902                                               != TSK_ImplicitInstantiation) {
9903     QualType ParamType = Constructor->getParamDecl(0)->getType();
9904     QualType ClassTy = Context.getTagDeclType(ClassDecl);
9905     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
9906       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
9907       const char *ConstRef
9908         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
9909                                                         : " const &";
9910       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
9911         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
9912 
9913       // FIXME: Rather that making the constructor invalid, we should endeavor
9914       // to fix the type.
9915       Constructor->setInvalidDecl();
9916     }
9917   }
9918 }
9919 
9920 /// CheckDestructor - Checks a fully-formed destructor definition for
9921 /// well-formedness, issuing any diagnostics required.  Returns true
9922 /// on error.
9923 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
9924   CXXRecordDecl *RD = Destructor->getParent();
9925 
9926   if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
9927     SourceLocation Loc;
9928 
9929     if (!Destructor->isImplicit())
9930       Loc = Destructor->getLocation();
9931     else
9932       Loc = RD->getLocation();
9933 
9934     // If we have a virtual destructor, look up the deallocation function
9935     if (FunctionDecl *OperatorDelete =
9936             FindDeallocationFunctionForDestructor(Loc, RD)) {
9937       Expr *ThisArg = nullptr;
9938 
9939       // If the notional 'delete this' expression requires a non-trivial
9940       // conversion from 'this' to the type of a destroying operator delete's
9941       // first parameter, perform that conversion now.
9942       if (OperatorDelete->isDestroyingOperatorDelete()) {
9943         QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
9944         if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
9945           // C++ [class.dtor]p13:
9946           //   ... as if for the expression 'delete this' appearing in a
9947           //   non-virtual destructor of the destructor's class.
9948           ContextRAII SwitchContext(*this, Destructor);
9949           ExprResult This =
9950               ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
9951           assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?");
9952           This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
9953           if (This.isInvalid()) {
9954             // FIXME: Register this as a context note so that it comes out
9955             // in the right order.
9956             Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
9957             return true;
9958           }
9959           ThisArg = This.get();
9960         }
9961       }
9962 
9963       DiagnoseUseOfDecl(OperatorDelete, Loc);
9964       MarkFunctionReferenced(Loc, OperatorDelete);
9965       Destructor->setOperatorDelete(OperatorDelete, ThisArg);
9966     }
9967   }
9968 
9969   return false;
9970 }
9971 
9972 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
9973 /// the well-formednes of the destructor declarator @p D with type @p
9974 /// R. If there are any errors in the declarator, this routine will
9975 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
9976 /// will be updated to reflect a well-formed type for the destructor and
9977 /// returned.
9978 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
9979                                          StorageClass& SC) {
9980   // C++ [class.dtor]p1:
9981   //   [...] A typedef-name that names a class is a class-name
9982   //   (7.1.3); however, a typedef-name that names a class shall not
9983   //   be used as the identifier in the declarator for a destructor
9984   //   declaration.
9985   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
9986   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
9987     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
9988       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
9989   else if (const TemplateSpecializationType *TST =
9990              DeclaratorType->getAs<TemplateSpecializationType>())
9991     if (TST->isTypeAlias())
9992       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
9993         << DeclaratorType << 1;
9994 
9995   // C++ [class.dtor]p2:
9996   //   A destructor is used to destroy objects of its class type. A
9997   //   destructor takes no parameters, and no return type can be
9998   //   specified for it (not even void). The address of a destructor
9999   //   shall not be taken. A destructor shall not be static. A
10000   //   destructor can be invoked for a const, volatile or const
10001   //   volatile object. A destructor shall not be declared const,
10002   //   volatile or const volatile (9.3.2).
10003   if (SC == SC_Static) {
10004     if (!D.isInvalidType())
10005       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10006         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10007         << SourceRange(D.getIdentifierLoc())
10008         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10009 
10010     SC = SC_None;
10011   }
10012   if (!D.isInvalidType()) {
10013     // Destructors don't have return types, but the parser will
10014     // happily parse something like:
10015     //
10016     //   class X {
10017     //     float ~X();
10018     //   };
10019     //
10020     // The return type will be eliminated later.
10021     if (D.getDeclSpec().hasTypeSpecifier())
10022       Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10023         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10024         << SourceRange(D.getIdentifierLoc());
10025     else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10026       diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10027                                 SourceLocation(),
10028                                 D.getDeclSpec().getConstSpecLoc(),
10029                                 D.getDeclSpec().getVolatileSpecLoc(),
10030                                 D.getDeclSpec().getRestrictSpecLoc(),
10031                                 D.getDeclSpec().getAtomicSpecLoc());
10032       D.setInvalidType();
10033     }
10034   }
10035 
10036   checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10037 
10038   // C++0x [class.dtor]p2:
10039   //   A destructor shall not be declared with a ref-qualifier.
10040   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10041   if (FTI.hasRefQualifier()) {
10042     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10043       << FTI.RefQualifierIsLValueRef
10044       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10045     D.setInvalidType();
10046   }
10047 
10048   // Make sure we don't have any parameters.
10049   if (FTIHasNonVoidParameters(FTI)) {
10050     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10051 
10052     // Delete the parameters.
10053     FTI.freeParams();
10054     D.setInvalidType();
10055   }
10056 
10057   // Make sure the destructor isn't variadic.
10058   if (FTI.isVariadic) {
10059     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10060     D.setInvalidType();
10061   }
10062 
10063   // Rebuild the function type "R" without any type qualifiers or
10064   // parameters (in case any of the errors above fired) and with
10065   // "void" as the return type, since destructors don't have return
10066   // types.
10067   if (!D.isInvalidType())
10068     return R;
10069 
10070   const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10071   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10072   EPI.Variadic = false;
10073   EPI.TypeQuals = Qualifiers();
10074   EPI.RefQualifier = RQ_None;
10075   return Context.getFunctionType(Context.VoidTy, None, EPI);
10076 }
10077 
10078 static void extendLeft(SourceRange &R, SourceRange Before) {
10079   if (Before.isInvalid())
10080     return;
10081   R.setBegin(Before.getBegin());
10082   if (R.getEnd().isInvalid())
10083     R.setEnd(Before.getEnd());
10084 }
10085 
10086 static void extendRight(SourceRange &R, SourceRange After) {
10087   if (After.isInvalid())
10088     return;
10089   if (R.getBegin().isInvalid())
10090     R.setBegin(After.getBegin());
10091   R.setEnd(After.getEnd());
10092 }
10093 
10094 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10095 /// well-formednes of the conversion function declarator @p D with
10096 /// type @p R. If there are any errors in the declarator, this routine
10097 /// will emit diagnostics and return true. Otherwise, it will return
10098 /// false. Either way, the type @p R will be updated to reflect a
10099 /// well-formed type for the conversion operator.
10100 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10101                                      StorageClass& SC) {
10102   // C++ [class.conv.fct]p1:
10103   //   Neither parameter types nor return type can be specified. The
10104   //   type of a conversion function (8.3.5) is "function taking no
10105   //   parameter returning conversion-type-id."
10106   if (SC == SC_Static) {
10107     if (!D.isInvalidType())
10108       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10109         << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10110         << D.getName().getSourceRange();
10111     D.setInvalidType();
10112     SC = SC_None;
10113   }
10114 
10115   TypeSourceInfo *ConvTSI = nullptr;
10116   QualType ConvType =
10117       GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10118 
10119   const DeclSpec &DS = D.getDeclSpec();
10120   if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10121     // Conversion functions don't have return types, but the parser will
10122     // happily parse something like:
10123     //
10124     //   class X {
10125     //     float operator bool();
10126     //   };
10127     //
10128     // The return type will be changed later anyway.
10129     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10130       << SourceRange(DS.getTypeSpecTypeLoc())
10131       << SourceRange(D.getIdentifierLoc());
10132     D.setInvalidType();
10133   } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10134     // It's also plausible that the user writes type qualifiers in the wrong
10135     // place, such as:
10136     //   struct S { const operator int(); };
10137     // FIXME: we could provide a fixit to move the qualifiers onto the
10138     // conversion type.
10139     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10140         << SourceRange(D.getIdentifierLoc()) << 0;
10141     D.setInvalidType();
10142   }
10143 
10144   const auto *Proto = R->castAs<FunctionProtoType>();
10145 
10146   // Make sure we don't have any parameters.
10147   if (Proto->getNumParams() > 0) {
10148     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10149 
10150     // Delete the parameters.
10151     D.getFunctionTypeInfo().freeParams();
10152     D.setInvalidType();
10153   } else if (Proto->isVariadic()) {
10154     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10155     D.setInvalidType();
10156   }
10157 
10158   // Diagnose "&operator bool()" and other such nonsense.  This
10159   // is actually a gcc extension which we don't support.
10160   if (Proto->getReturnType() != ConvType) {
10161     bool NeedsTypedef = false;
10162     SourceRange Before, After;
10163 
10164     // Walk the chunks and extract information on them for our diagnostic.
10165     bool PastFunctionChunk = false;
10166     for (auto &Chunk : D.type_objects()) {
10167       switch (Chunk.Kind) {
10168       case DeclaratorChunk::Function:
10169         if (!PastFunctionChunk) {
10170           if (Chunk.Fun.HasTrailingReturnType) {
10171             TypeSourceInfo *TRT = nullptr;
10172             GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10173             if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10174           }
10175           PastFunctionChunk = true;
10176           break;
10177         }
10178         LLVM_FALLTHROUGH;
10179       case DeclaratorChunk::Array:
10180         NeedsTypedef = true;
10181         extendRight(After, Chunk.getSourceRange());
10182         break;
10183 
10184       case DeclaratorChunk::Pointer:
10185       case DeclaratorChunk::BlockPointer:
10186       case DeclaratorChunk::Reference:
10187       case DeclaratorChunk::MemberPointer:
10188       case DeclaratorChunk::Pipe:
10189         extendLeft(Before, Chunk.getSourceRange());
10190         break;
10191 
10192       case DeclaratorChunk::Paren:
10193         extendLeft(Before, Chunk.Loc);
10194         extendRight(After, Chunk.EndLoc);
10195         break;
10196       }
10197     }
10198 
10199     SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10200                          After.isValid()  ? After.getBegin() :
10201                                             D.getIdentifierLoc();
10202     auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10203     DB << Before << After;
10204 
10205     if (!NeedsTypedef) {
10206       DB << /*don't need a typedef*/0;
10207 
10208       // If we can provide a correct fix-it hint, do so.
10209       if (After.isInvalid() && ConvTSI) {
10210         SourceLocation InsertLoc =
10211             getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10212         DB << FixItHint::CreateInsertion(InsertLoc, " ")
10213            << FixItHint::CreateInsertionFromRange(
10214                   InsertLoc, CharSourceRange::getTokenRange(Before))
10215            << FixItHint::CreateRemoval(Before);
10216       }
10217     } else if (!Proto->getReturnType()->isDependentType()) {
10218       DB << /*typedef*/1 << Proto->getReturnType();
10219     } else if (getLangOpts().CPlusPlus11) {
10220       DB << /*alias template*/2 << Proto->getReturnType();
10221     } else {
10222       DB << /*might not be fixable*/3;
10223     }
10224 
10225     // Recover by incorporating the other type chunks into the result type.
10226     // Note, this does *not* change the name of the function. This is compatible
10227     // with the GCC extension:
10228     //   struct S { &operator int(); } s;
10229     //   int &r = s.operator int(); // ok in GCC
10230     //   S::operator int&() {} // error in GCC, function name is 'operator int'.
10231     ConvType = Proto->getReturnType();
10232   }
10233 
10234   // C++ [class.conv.fct]p4:
10235   //   The conversion-type-id shall not represent a function type nor
10236   //   an array type.
10237   if (ConvType->isArrayType()) {
10238     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10239     ConvType = Context.getPointerType(ConvType);
10240     D.setInvalidType();
10241   } else if (ConvType->isFunctionType()) {
10242     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10243     ConvType = Context.getPointerType(ConvType);
10244     D.setInvalidType();
10245   }
10246 
10247   // Rebuild the function type "R" without any parameters (in case any
10248   // of the errors above fired) and with the conversion type as the
10249   // return type.
10250   if (D.isInvalidType())
10251     R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
10252 
10253   // C++0x explicit conversion operators.
10254   if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus2a)
10255     Diag(DS.getExplicitSpecLoc(),
10256          getLangOpts().CPlusPlus11
10257              ? diag::warn_cxx98_compat_explicit_conversion_functions
10258              : diag::ext_explicit_conversion_functions)
10259         << SourceRange(DS.getExplicitSpecRange());
10260 }
10261 
10262 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
10263 /// the declaration of the given C++ conversion function. This routine
10264 /// is responsible for recording the conversion function in the C++
10265 /// class, if possible.
10266 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
10267   assert(Conversion && "Expected to receive a conversion function declaration");
10268 
10269   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
10270 
10271   // Make sure we aren't redeclaring the conversion function.
10272   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
10273 
10274   // C++ [class.conv.fct]p1:
10275   //   [...] A conversion function is never used to convert a
10276   //   (possibly cv-qualified) object to the (possibly cv-qualified)
10277   //   same object type (or a reference to it), to a (possibly
10278   //   cv-qualified) base class of that type (or a reference to it),
10279   //   or to (possibly cv-qualified) void.
10280   // FIXME: Suppress this warning if the conversion function ends up being a
10281   // virtual function that overrides a virtual function in a base class.
10282   QualType ClassType
10283     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10284   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
10285     ConvType = ConvTypeRef->getPointeeType();
10286   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
10287       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
10288     /* Suppress diagnostics for instantiations. */;
10289   else if (ConvType->isRecordType()) {
10290     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
10291     if (ConvType == ClassType)
10292       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
10293         << ClassType;
10294     else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
10295       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
10296         <<  ClassType << ConvType;
10297   } else if (ConvType->isVoidType()) {
10298     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
10299       << ClassType << ConvType;
10300   }
10301 
10302   if (FunctionTemplateDecl *ConversionTemplate
10303                                 = Conversion->getDescribedFunctionTemplate())
10304     return ConversionTemplate;
10305 
10306   return Conversion;
10307 }
10308 
10309 namespace {
10310 /// Utility class to accumulate and print a diagnostic listing the invalid
10311 /// specifier(s) on a declaration.
10312 struct BadSpecifierDiagnoser {
10313   BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
10314       : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
10315   ~BadSpecifierDiagnoser() {
10316     Diagnostic << Specifiers;
10317   }
10318 
10319   template<typename T> void check(SourceLocation SpecLoc, T Spec) {
10320     return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
10321   }
10322   void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
10323     return check(SpecLoc,
10324                  DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
10325   }
10326   void check(SourceLocation SpecLoc, const char *Spec) {
10327     if (SpecLoc.isInvalid()) return;
10328     Diagnostic << SourceRange(SpecLoc, SpecLoc);
10329     if (!Specifiers.empty()) Specifiers += " ";
10330     Specifiers += Spec;
10331   }
10332 
10333   Sema &S;
10334   Sema::SemaDiagnosticBuilder Diagnostic;
10335   std::string Specifiers;
10336 };
10337 }
10338 
10339 /// Check the validity of a declarator that we parsed for a deduction-guide.
10340 /// These aren't actually declarators in the grammar, so we need to check that
10341 /// the user didn't specify any pieces that are not part of the deduction-guide
10342 /// grammar.
10343 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
10344                                          StorageClass &SC) {
10345   TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
10346   TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
10347   assert(GuidedTemplateDecl && "missing template decl for deduction guide");
10348 
10349   // C++ [temp.deduct.guide]p3:
10350   //   A deduction-gide shall be declared in the same scope as the
10351   //   corresponding class template.
10352   if (!CurContext->getRedeclContext()->Equals(
10353           GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
10354     Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
10355       << GuidedTemplateDecl;
10356     Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
10357   }
10358 
10359   auto &DS = D.getMutableDeclSpec();
10360   // We leave 'friend' and 'virtual' to be rejected in the normal way.
10361   if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
10362       DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
10363       DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
10364     BadSpecifierDiagnoser Diagnoser(
10365         *this, D.getIdentifierLoc(),
10366         diag::err_deduction_guide_invalid_specifier);
10367 
10368     Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
10369     DS.ClearStorageClassSpecs();
10370     SC = SC_None;
10371 
10372     // 'explicit' is permitted.
10373     Diagnoser.check(DS.getInlineSpecLoc(), "inline");
10374     Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
10375     Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
10376     DS.ClearConstexprSpec();
10377 
10378     Diagnoser.check(DS.getConstSpecLoc(), "const");
10379     Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
10380     Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
10381     Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
10382     Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
10383     DS.ClearTypeQualifiers();
10384 
10385     Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
10386     Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
10387     Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
10388     Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
10389     DS.ClearTypeSpecType();
10390   }
10391 
10392   if (D.isInvalidType())
10393     return;
10394 
10395   // Check the declarator is simple enough.
10396   bool FoundFunction = false;
10397   for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
10398     if (Chunk.Kind == DeclaratorChunk::Paren)
10399       continue;
10400     if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
10401       Diag(D.getDeclSpec().getBeginLoc(),
10402            diag::err_deduction_guide_with_complex_decl)
10403           << D.getSourceRange();
10404       break;
10405     }
10406     if (!Chunk.Fun.hasTrailingReturnType()) {
10407       Diag(D.getName().getBeginLoc(),
10408            diag::err_deduction_guide_no_trailing_return_type);
10409       break;
10410     }
10411 
10412     // Check that the return type is written as a specialization of
10413     // the template specified as the deduction-guide's name.
10414     ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
10415     TypeSourceInfo *TSI = nullptr;
10416     QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
10417     assert(TSI && "deduction guide has valid type but invalid return type?");
10418     bool AcceptableReturnType = false;
10419     bool MightInstantiateToSpecialization = false;
10420     if (auto RetTST =
10421             TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
10422       TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
10423       bool TemplateMatches =
10424           Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
10425       if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
10426         AcceptableReturnType = true;
10427       else {
10428         // This could still instantiate to the right type, unless we know it
10429         // names the wrong class template.
10430         auto *TD = SpecifiedName.getAsTemplateDecl();
10431         MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
10432                                              !TemplateMatches);
10433       }
10434     } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
10435       MightInstantiateToSpecialization = true;
10436     }
10437 
10438     if (!AcceptableReturnType) {
10439       Diag(TSI->getTypeLoc().getBeginLoc(),
10440            diag::err_deduction_guide_bad_trailing_return_type)
10441           << GuidedTemplate << TSI->getType()
10442           << MightInstantiateToSpecialization
10443           << TSI->getTypeLoc().getSourceRange();
10444     }
10445 
10446     // Keep going to check that we don't have any inner declarator pieces (we
10447     // could still have a function returning a pointer to a function).
10448     FoundFunction = true;
10449   }
10450 
10451   if (D.isFunctionDefinition())
10452     Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
10453 }
10454 
10455 //===----------------------------------------------------------------------===//
10456 // Namespace Handling
10457 //===----------------------------------------------------------------------===//
10458 
10459 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is
10460 /// reopened.
10461 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
10462                                             SourceLocation Loc,
10463                                             IdentifierInfo *II, bool *IsInline,
10464                                             NamespaceDecl *PrevNS) {
10465   assert(*IsInline != PrevNS->isInline());
10466 
10467   // HACK: Work around a bug in libstdc++4.6's <atomic>, where
10468   // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
10469   // inline namespaces, with the intention of bringing names into namespace std.
10470   //
10471   // We support this just well enough to get that case working; this is not
10472   // sufficient to support reopening namespaces as inline in general.
10473   if (*IsInline && II && II->getName().startswith("__atomic") &&
10474       S.getSourceManager().isInSystemHeader(Loc)) {
10475     // Mark all prior declarations of the namespace as inline.
10476     for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
10477          NS = NS->getPreviousDecl())
10478       NS->setInline(*IsInline);
10479     // Patch up the lookup table for the containing namespace. This isn't really
10480     // correct, but it's good enough for this particular case.
10481     for (auto *I : PrevNS->decls())
10482       if (auto *ND = dyn_cast<NamedDecl>(I))
10483         PrevNS->getParent()->makeDeclVisibleInContext(ND);
10484     return;
10485   }
10486 
10487   if (PrevNS->isInline())
10488     // The user probably just forgot the 'inline', so suggest that it
10489     // be added back.
10490     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
10491       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
10492   else
10493     S.Diag(Loc, diag::err_inline_namespace_mismatch);
10494 
10495   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
10496   *IsInline = PrevNS->isInline();
10497 }
10498 
10499 /// ActOnStartNamespaceDef - This is called at the start of a namespace
10500 /// definition.
10501 Decl *Sema::ActOnStartNamespaceDef(
10502     Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
10503     SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
10504     const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
10505   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
10506   // For anonymous namespace, take the location of the left brace.
10507   SourceLocation Loc = II ? IdentLoc : LBrace;
10508   bool IsInline = InlineLoc.isValid();
10509   bool IsInvalid = false;
10510   bool IsStd = false;
10511   bool AddToKnown = false;
10512   Scope *DeclRegionScope = NamespcScope->getParent();
10513 
10514   NamespaceDecl *PrevNS = nullptr;
10515   if (II) {
10516     // C++ [namespace.def]p2:
10517     //   The identifier in an original-namespace-definition shall not
10518     //   have been previously defined in the declarative region in
10519     //   which the original-namespace-definition appears. The
10520     //   identifier in an original-namespace-definition is the name of
10521     //   the namespace. Subsequently in that declarative region, it is
10522     //   treated as an original-namespace-name.
10523     //
10524     // Since namespace names are unique in their scope, and we don't
10525     // look through using directives, just look for any ordinary names
10526     // as if by qualified name lookup.
10527     LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
10528                    ForExternalRedeclaration);
10529     LookupQualifiedName(R, CurContext->getRedeclContext());
10530     NamedDecl *PrevDecl =
10531         R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
10532     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
10533 
10534     if (PrevNS) {
10535       // This is an extended namespace definition.
10536       if (IsInline != PrevNS->isInline())
10537         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
10538                                         &IsInline, PrevNS);
10539     } else if (PrevDecl) {
10540       // This is an invalid name redefinition.
10541       Diag(Loc, diag::err_redefinition_different_kind)
10542         << II;
10543       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10544       IsInvalid = true;
10545       // Continue on to push Namespc as current DeclContext and return it.
10546     } else if (II->isStr("std") &&
10547                CurContext->getRedeclContext()->isTranslationUnit()) {
10548       // This is the first "real" definition of the namespace "std", so update
10549       // our cache of the "std" namespace to point at this definition.
10550       PrevNS = getStdNamespace();
10551       IsStd = true;
10552       AddToKnown = !IsInline;
10553     } else {
10554       // We've seen this namespace for the first time.
10555       AddToKnown = !IsInline;
10556     }
10557   } else {
10558     // Anonymous namespaces.
10559 
10560     // Determine whether the parent already has an anonymous namespace.
10561     DeclContext *Parent = CurContext->getRedeclContext();
10562     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10563       PrevNS = TU->getAnonymousNamespace();
10564     } else {
10565       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
10566       PrevNS = ND->getAnonymousNamespace();
10567     }
10568 
10569     if (PrevNS && IsInline != PrevNS->isInline())
10570       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
10571                                       &IsInline, PrevNS);
10572   }
10573 
10574   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
10575                                                  StartLoc, Loc, II, PrevNS);
10576   if (IsInvalid)
10577     Namespc->setInvalidDecl();
10578 
10579   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
10580   AddPragmaAttributes(DeclRegionScope, Namespc);
10581 
10582   // FIXME: Should we be merging attributes?
10583   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
10584     PushNamespaceVisibilityAttr(Attr, Loc);
10585 
10586   if (IsStd)
10587     StdNamespace = Namespc;
10588   if (AddToKnown)
10589     KnownNamespaces[Namespc] = false;
10590 
10591   if (II) {
10592     PushOnScopeChains(Namespc, DeclRegionScope);
10593   } else {
10594     // Link the anonymous namespace into its parent.
10595     DeclContext *Parent = CurContext->getRedeclContext();
10596     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10597       TU->setAnonymousNamespace(Namespc);
10598     } else {
10599       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
10600     }
10601 
10602     CurContext->addDecl(Namespc);
10603 
10604     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
10605     //   behaves as if it were replaced by
10606     //     namespace unique { /* empty body */ }
10607     //     using namespace unique;
10608     //     namespace unique { namespace-body }
10609     //   where all occurrences of 'unique' in a translation unit are
10610     //   replaced by the same identifier and this identifier differs
10611     //   from all other identifiers in the entire program.
10612 
10613     // We just create the namespace with an empty name and then add an
10614     // implicit using declaration, just like the standard suggests.
10615     //
10616     // CodeGen enforces the "universally unique" aspect by giving all
10617     // declarations semantically contained within an anonymous
10618     // namespace internal linkage.
10619 
10620     if (!PrevNS) {
10621       UD = UsingDirectiveDecl::Create(Context, Parent,
10622                                       /* 'using' */ LBrace,
10623                                       /* 'namespace' */ SourceLocation(),
10624                                       /* qualifier */ NestedNameSpecifierLoc(),
10625                                       /* identifier */ SourceLocation(),
10626                                       Namespc,
10627                                       /* Ancestor */ Parent);
10628       UD->setImplicit();
10629       Parent->addDecl(UD);
10630     }
10631   }
10632 
10633   ActOnDocumentableDecl(Namespc);
10634 
10635   // Although we could have an invalid decl (i.e. the namespace name is a
10636   // redefinition), push it as current DeclContext and try to continue parsing.
10637   // FIXME: We should be able to push Namespc here, so that the each DeclContext
10638   // for the namespace has the declarations that showed up in that particular
10639   // namespace definition.
10640   PushDeclContext(NamespcScope, Namespc);
10641   return Namespc;
10642 }
10643 
10644 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
10645 /// is a namespace alias, returns the namespace it points to.
10646 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
10647   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
10648     return AD->getNamespace();
10649   return dyn_cast_or_null<NamespaceDecl>(D);
10650 }
10651 
10652 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
10653 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
10654 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
10655   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
10656   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
10657   Namespc->setRBraceLoc(RBrace);
10658   PopDeclContext();
10659   if (Namespc->hasAttr<VisibilityAttr>())
10660     PopPragmaVisibility(true, RBrace);
10661   // If this namespace contains an export-declaration, export it now.
10662   if (DeferredExportedNamespaces.erase(Namespc))
10663     Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
10664 }
10665 
10666 CXXRecordDecl *Sema::getStdBadAlloc() const {
10667   return cast_or_null<CXXRecordDecl>(
10668                                   StdBadAlloc.get(Context.getExternalSource()));
10669 }
10670 
10671 EnumDecl *Sema::getStdAlignValT() const {
10672   return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
10673 }
10674 
10675 NamespaceDecl *Sema::getStdNamespace() const {
10676   return cast_or_null<NamespaceDecl>(
10677                                  StdNamespace.get(Context.getExternalSource()));
10678 }
10679 
10680 NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
10681   if (!StdExperimentalNamespaceCache) {
10682     if (auto Std = getStdNamespace()) {
10683       LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
10684                           SourceLocation(), LookupNamespaceName);
10685       if (!LookupQualifiedName(Result, Std) ||
10686           !(StdExperimentalNamespaceCache =
10687                 Result.getAsSingle<NamespaceDecl>()))
10688         Result.suppressDiagnostics();
10689     }
10690   }
10691   return StdExperimentalNamespaceCache;
10692 }
10693 
10694 namespace {
10695 
10696 enum UnsupportedSTLSelect {
10697   USS_InvalidMember,
10698   USS_MissingMember,
10699   USS_NonTrivial,
10700   USS_Other
10701 };
10702 
10703 struct InvalidSTLDiagnoser {
10704   Sema &S;
10705   SourceLocation Loc;
10706   QualType TyForDiags;
10707 
10708   QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
10709                       const VarDecl *VD = nullptr) {
10710     {
10711       auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
10712                << TyForDiags << ((int)Sel);
10713       if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
10714         assert(!Name.empty());
10715         D << Name;
10716       }
10717     }
10718     if (Sel == USS_InvalidMember) {
10719       S.Diag(VD->getLocation(), diag::note_var_declared_here)
10720           << VD << VD->getSourceRange();
10721     }
10722     return QualType();
10723   }
10724 };
10725 } // namespace
10726 
10727 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
10728                                            SourceLocation Loc,
10729                                            ComparisonCategoryUsage Usage) {
10730   assert(getLangOpts().CPlusPlus &&
10731          "Looking for comparison category type outside of C++.");
10732 
10733   // Use an elaborated type for diagnostics which has a name containing the
10734   // prepended 'std' namespace but not any inline namespace names.
10735   auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
10736     auto *NNS =
10737         NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
10738     return Context.getElaboratedType(ETK_None, NNS, Info->getType());
10739   };
10740 
10741   // Check if we've already successfully checked the comparison category type
10742   // before. If so, skip checking it again.
10743   ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
10744   if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
10745     // The only thing we need to check is that the type has a reachable
10746     // definition in the current context.
10747     if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
10748       return QualType();
10749 
10750     return Info->getType();
10751   }
10752 
10753   // If lookup failed
10754   if (!Info) {
10755     std::string NameForDiags = "std::";
10756     NameForDiags += ComparisonCategories::getCategoryString(Kind);
10757     Diag(Loc, diag::err_implied_comparison_category_type_not_found)
10758         << NameForDiags << (int)Usage;
10759     return QualType();
10760   }
10761 
10762   assert(Info->Kind == Kind);
10763   assert(Info->Record);
10764 
10765   // Update the Record decl in case we encountered a forward declaration on our
10766   // first pass. FIXME: This is a bit of a hack.
10767   if (Info->Record->hasDefinition())
10768     Info->Record = Info->Record->getDefinition();
10769 
10770   if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
10771     return QualType();
10772 
10773   InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
10774 
10775   if (!Info->Record->isTriviallyCopyable())
10776     return UnsupportedSTLError(USS_NonTrivial);
10777 
10778   for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
10779     CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
10780     // Tolerate empty base classes.
10781     if (Base->isEmpty())
10782       continue;
10783     // Reject STL implementations which have at least one non-empty base.
10784     return UnsupportedSTLError();
10785   }
10786 
10787   // Check that the STL has implemented the types using a single integer field.
10788   // This expectation allows better codegen for builtin operators. We require:
10789   //   (1) The class has exactly one field.
10790   //   (2) The field is an integral or enumeration type.
10791   auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
10792   if (std::distance(FIt, FEnd) != 1 ||
10793       !FIt->getType()->isIntegralOrEnumerationType()) {
10794     return UnsupportedSTLError();
10795   }
10796 
10797   // Build each of the require values and store them in Info.
10798   for (ComparisonCategoryResult CCR :
10799        ComparisonCategories::getPossibleResultsForType(Kind)) {
10800     StringRef MemName = ComparisonCategories::getResultString(CCR);
10801     ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
10802 
10803     if (!ValInfo)
10804       return UnsupportedSTLError(USS_MissingMember, MemName);
10805 
10806     VarDecl *VD = ValInfo->VD;
10807     assert(VD && "should not be null!");
10808 
10809     // Attempt to diagnose reasons why the STL definition of this type
10810     // might be foobar, including it failing to be a constant expression.
10811     // TODO Handle more ways the lookup or result can be invalid.
10812     if (!VD->isStaticDataMember() || !VD->isConstexpr() || !VD->hasInit() ||
10813         !VD->checkInitIsICE())
10814       return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
10815 
10816     // Attempt to evaluate the var decl as a constant expression and extract
10817     // the value of its first field as a ICE. If this fails, the STL
10818     // implementation is not supported.
10819     if (!ValInfo->hasValidIntValue())
10820       return UnsupportedSTLError();
10821 
10822     MarkVariableReferenced(Loc, VD);
10823   }
10824 
10825   // We've successfully built the required types and expressions. Update
10826   // the cache and return the newly cached value.
10827   FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
10828   return Info->getType();
10829 }
10830 
10831 /// Retrieve the special "std" namespace, which may require us to
10832 /// implicitly define the namespace.
10833 NamespaceDecl *Sema::getOrCreateStdNamespace() {
10834   if (!StdNamespace) {
10835     // The "std" namespace has not yet been defined, so build one implicitly.
10836     StdNamespace = NamespaceDecl::Create(Context,
10837                                          Context.getTranslationUnitDecl(),
10838                                          /*Inline=*/false,
10839                                          SourceLocation(), SourceLocation(),
10840                                          &PP.getIdentifierTable().get("std"),
10841                                          /*PrevDecl=*/nullptr);
10842     getStdNamespace()->setImplicit(true);
10843   }
10844 
10845   return getStdNamespace();
10846 }
10847 
10848 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
10849   assert(getLangOpts().CPlusPlus &&
10850          "Looking for std::initializer_list outside of C++.");
10851 
10852   // We're looking for implicit instantiations of
10853   // template <typename E> class std::initializer_list.
10854 
10855   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
10856     return false;
10857 
10858   ClassTemplateDecl *Template = nullptr;
10859   const TemplateArgument *Arguments = nullptr;
10860 
10861   if (const RecordType *RT = Ty->getAs<RecordType>()) {
10862 
10863     ClassTemplateSpecializationDecl *Specialization =
10864         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
10865     if (!Specialization)
10866       return false;
10867 
10868     Template = Specialization->getSpecializedTemplate();
10869     Arguments = Specialization->getTemplateArgs().data();
10870   } else if (const TemplateSpecializationType *TST =
10871                  Ty->getAs<TemplateSpecializationType>()) {
10872     Template = dyn_cast_or_null<ClassTemplateDecl>(
10873         TST->getTemplateName().getAsTemplateDecl());
10874     Arguments = TST->getArgs();
10875   }
10876   if (!Template)
10877     return false;
10878 
10879   if (!StdInitializerList) {
10880     // Haven't recognized std::initializer_list yet, maybe this is it.
10881     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
10882     if (TemplateClass->getIdentifier() !=
10883             &PP.getIdentifierTable().get("initializer_list") ||
10884         !getStdNamespace()->InEnclosingNamespaceSetOf(
10885             TemplateClass->getDeclContext()))
10886       return false;
10887     // This is a template called std::initializer_list, but is it the right
10888     // template?
10889     TemplateParameterList *Params = Template->getTemplateParameters();
10890     if (Params->getMinRequiredArguments() != 1)
10891       return false;
10892     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
10893       return false;
10894 
10895     // It's the right template.
10896     StdInitializerList = Template;
10897   }
10898 
10899   if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
10900     return false;
10901 
10902   // This is an instance of std::initializer_list. Find the argument type.
10903   if (Element)
10904     *Element = Arguments[0].getAsType();
10905   return true;
10906 }
10907 
10908 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
10909   NamespaceDecl *Std = S.getStdNamespace();
10910   if (!Std) {
10911     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
10912     return nullptr;
10913   }
10914 
10915   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
10916                       Loc, Sema::LookupOrdinaryName);
10917   if (!S.LookupQualifiedName(Result, Std)) {
10918     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
10919     return nullptr;
10920   }
10921   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
10922   if (!Template) {
10923     Result.suppressDiagnostics();
10924     // We found something weird. Complain about the first thing we found.
10925     NamedDecl *Found = *Result.begin();
10926     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
10927     return nullptr;
10928   }
10929 
10930   // We found some template called std::initializer_list. Now verify that it's
10931   // correct.
10932   TemplateParameterList *Params = Template->getTemplateParameters();
10933   if (Params->getMinRequiredArguments() != 1 ||
10934       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
10935     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
10936     return nullptr;
10937   }
10938 
10939   return Template;
10940 }
10941 
10942 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
10943   if (!StdInitializerList) {
10944     StdInitializerList = LookupStdInitializerList(*this, Loc);
10945     if (!StdInitializerList)
10946       return QualType();
10947   }
10948 
10949   TemplateArgumentListInfo Args(Loc, Loc);
10950   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
10951                                        Context.getTrivialTypeSourceInfo(Element,
10952                                                                         Loc)));
10953   return Context.getCanonicalType(
10954       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
10955 }
10956 
10957 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
10958   // C++ [dcl.init.list]p2:
10959   //   A constructor is an initializer-list constructor if its first parameter
10960   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
10961   //   std::initializer_list<E> for some type E, and either there are no other
10962   //   parameters or else all other parameters have default arguments.
10963   if (Ctor->getNumParams() < 1 ||
10964       (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
10965     return false;
10966 
10967   QualType ArgType = Ctor->getParamDecl(0)->getType();
10968   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
10969     ArgType = RT->getPointeeType().getUnqualifiedType();
10970 
10971   return isStdInitializerList(ArgType, nullptr);
10972 }
10973 
10974 /// Determine whether a using statement is in a context where it will be
10975 /// apply in all contexts.
10976 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
10977   switch (CurContext->getDeclKind()) {
10978     case Decl::TranslationUnit:
10979       return true;
10980     case Decl::LinkageSpec:
10981       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
10982     default:
10983       return false;
10984   }
10985 }
10986 
10987 namespace {
10988 
10989 // Callback to only accept typo corrections that are namespaces.
10990 class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
10991 public:
10992   bool ValidateCandidate(const TypoCorrection &candidate) override {
10993     if (NamedDecl *ND = candidate.getCorrectionDecl())
10994       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
10995     return false;
10996   }
10997 
10998   std::unique_ptr<CorrectionCandidateCallback> clone() override {
10999     return std::make_unique<NamespaceValidatorCCC>(*this);
11000   }
11001 };
11002 
11003 }
11004 
11005 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11006                                        CXXScopeSpec &SS,
11007                                        SourceLocation IdentLoc,
11008                                        IdentifierInfo *Ident) {
11009   R.clear();
11010   NamespaceValidatorCCC CCC{};
11011   if (TypoCorrection Corrected =
11012           S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11013                         Sema::CTK_ErrorRecovery)) {
11014     if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11015       std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11016       bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11017                               Ident->getName().equals(CorrectedStr);
11018       S.diagnoseTypo(Corrected,
11019                      S.PDiag(diag::err_using_directive_member_suggest)
11020                        << Ident << DC << DroppedSpecifier << SS.getRange(),
11021                      S.PDiag(diag::note_namespace_defined_here));
11022     } else {
11023       S.diagnoseTypo(Corrected,
11024                      S.PDiag(diag::err_using_directive_suggest) << Ident,
11025                      S.PDiag(diag::note_namespace_defined_here));
11026     }
11027     R.addDecl(Corrected.getFoundDecl());
11028     return true;
11029   }
11030   return false;
11031 }
11032 
11033 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11034                                 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11035                                 SourceLocation IdentLoc,
11036                                 IdentifierInfo *NamespcName,
11037                                 const ParsedAttributesView &AttrList) {
11038   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
11039   assert(NamespcName && "Invalid NamespcName.");
11040   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
11041 
11042   // This can only happen along a recovery path.
11043   while (S->isTemplateParamScope())
11044     S = S->getParent();
11045   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11046 
11047   UsingDirectiveDecl *UDir = nullptr;
11048   NestedNameSpecifier *Qualifier = nullptr;
11049   if (SS.isSet())
11050     Qualifier = SS.getScopeRep();
11051 
11052   // Lookup namespace name.
11053   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11054   LookupParsedName(R, S, &SS);
11055   if (R.isAmbiguous())
11056     return nullptr;
11057 
11058   if (R.empty()) {
11059     R.clear();
11060     // Allow "using namespace std;" or "using namespace ::std;" even if
11061     // "std" hasn't been defined yet, for GCC compatibility.
11062     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11063         NamespcName->isStr("std")) {
11064       Diag(IdentLoc, diag::ext_using_undefined_std);
11065       R.addDecl(getOrCreateStdNamespace());
11066       R.resolveKind();
11067     }
11068     // Otherwise, attempt typo correction.
11069     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11070   }
11071 
11072   if (!R.empty()) {
11073     NamedDecl *Named = R.getRepresentativeDecl();
11074     NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11075     assert(NS && "expected namespace decl");
11076 
11077     // The use of a nested name specifier may trigger deprecation warnings.
11078     DiagnoseUseOfDecl(Named, IdentLoc);
11079 
11080     // C++ [namespace.udir]p1:
11081     //   A using-directive specifies that the names in the nominated
11082     //   namespace can be used in the scope in which the
11083     //   using-directive appears after the using-directive. During
11084     //   unqualified name lookup (3.4.1), the names appear as if they
11085     //   were declared in the nearest enclosing namespace which
11086     //   contains both the using-directive and the nominated
11087     //   namespace. [Note: in this context, "contains" means "contains
11088     //   directly or indirectly". ]
11089 
11090     // Find enclosing context containing both using-directive and
11091     // nominated namespace.
11092     DeclContext *CommonAncestor = NS;
11093     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11094       CommonAncestor = CommonAncestor->getParent();
11095 
11096     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11097                                       SS.getWithLocInContext(Context),
11098                                       IdentLoc, Named, CommonAncestor);
11099 
11100     if (IsUsingDirectiveInToplevelContext(CurContext) &&
11101         !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11102       Diag(IdentLoc, diag::warn_using_directive_in_header);
11103     }
11104 
11105     PushUsingDirective(S, UDir);
11106   } else {
11107     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11108   }
11109 
11110   if (UDir)
11111     ProcessDeclAttributeList(S, UDir, AttrList);
11112 
11113   return UDir;
11114 }
11115 
11116 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11117   // If the scope has an associated entity and the using directive is at
11118   // namespace or translation unit scope, add the UsingDirectiveDecl into
11119   // its lookup structure so qualified name lookup can find it.
11120   DeclContext *Ctx = S->getEntity();
11121   if (Ctx && !Ctx->isFunctionOrMethod())
11122     Ctx->addDecl(UDir);
11123   else
11124     // Otherwise, it is at block scope. The using-directives will affect lookup
11125     // only to the end of the scope.
11126     S->PushUsingDirective(UDir);
11127 }
11128 
11129 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11130                                   SourceLocation UsingLoc,
11131                                   SourceLocation TypenameLoc, CXXScopeSpec &SS,
11132                                   UnqualifiedId &Name,
11133                                   SourceLocation EllipsisLoc,
11134                                   const ParsedAttributesView &AttrList) {
11135   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11136 
11137   if (SS.isEmpty()) {
11138     Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11139     return nullptr;
11140   }
11141 
11142   switch (Name.getKind()) {
11143   case UnqualifiedIdKind::IK_ImplicitSelfParam:
11144   case UnqualifiedIdKind::IK_Identifier:
11145   case UnqualifiedIdKind::IK_OperatorFunctionId:
11146   case UnqualifiedIdKind::IK_LiteralOperatorId:
11147   case UnqualifiedIdKind::IK_ConversionFunctionId:
11148     break;
11149 
11150   case UnqualifiedIdKind::IK_ConstructorName:
11151   case UnqualifiedIdKind::IK_ConstructorTemplateId:
11152     // C++11 inheriting constructors.
11153     Diag(Name.getBeginLoc(),
11154          getLangOpts().CPlusPlus11
11155              ? diag::warn_cxx98_compat_using_decl_constructor
11156              : diag::err_using_decl_constructor)
11157         << SS.getRange();
11158 
11159     if (getLangOpts().CPlusPlus11) break;
11160 
11161     return nullptr;
11162 
11163   case UnqualifiedIdKind::IK_DestructorName:
11164     Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11165     return nullptr;
11166 
11167   case UnqualifiedIdKind::IK_TemplateId:
11168     Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11169         << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11170     return nullptr;
11171 
11172   case UnqualifiedIdKind::IK_DeductionGuideName:
11173     llvm_unreachable("cannot parse qualified deduction guide name");
11174   }
11175 
11176   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11177   DeclarationName TargetName = TargetNameInfo.getName();
11178   if (!TargetName)
11179     return nullptr;
11180 
11181   // Warn about access declarations.
11182   if (UsingLoc.isInvalid()) {
11183     Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11184                                  ? diag::err_access_decl
11185                                  : diag::warn_access_decl_deprecated)
11186         << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11187   }
11188 
11189   if (EllipsisLoc.isInvalid()) {
11190     if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11191         DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11192       return nullptr;
11193   } else {
11194     if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11195         !TargetNameInfo.containsUnexpandedParameterPack()) {
11196       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11197         << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11198       EllipsisLoc = SourceLocation();
11199     }
11200   }
11201 
11202   NamedDecl *UD =
11203       BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11204                             SS, TargetNameInfo, EllipsisLoc, AttrList,
11205                             /*IsInstantiation*/false);
11206   if (UD)
11207     PushOnScopeChains(UD, S, /*AddToContext*/ false);
11208 
11209   return UD;
11210 }
11211 
11212 /// Determine whether a using declaration considers the given
11213 /// declarations as "equivalent", e.g., if they are redeclarations of
11214 /// the same entity or are both typedefs of the same type.
11215 static bool
11216 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11217   if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11218     return true;
11219 
11220   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11221     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11222       return Context.hasSameType(TD1->getUnderlyingType(),
11223                                  TD2->getUnderlyingType());
11224 
11225   return false;
11226 }
11227 
11228 
11229 /// Determines whether to create a using shadow decl for a particular
11230 /// decl, given the set of decls existing prior to this using lookup.
11231 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
11232                                 const LookupResult &Previous,
11233                                 UsingShadowDecl *&PrevShadow) {
11234   // Diagnose finding a decl which is not from a base class of the
11235   // current class.  We do this now because there are cases where this
11236   // function will silently decide not to build a shadow decl, which
11237   // will pre-empt further diagnostics.
11238   //
11239   // We don't need to do this in C++11 because we do the check once on
11240   // the qualifier.
11241   //
11242   // FIXME: diagnose the following if we care enough:
11243   //   struct A { int foo; };
11244   //   struct B : A { using A::foo; };
11245   //   template <class T> struct C : A {};
11246   //   template <class T> struct D : C<T> { using B::foo; } // <---
11247   // This is invalid (during instantiation) in C++03 because B::foo
11248   // resolves to the using decl in B, which is not a base class of D<T>.
11249   // We can't diagnose it immediately because C<T> is an unknown
11250   // specialization.  The UsingShadowDecl in D<T> then points directly
11251   // to A::foo, which will look well-formed when we instantiate.
11252   // The right solution is to not collapse the shadow-decl chain.
11253   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
11254     DeclContext *OrigDC = Orig->getDeclContext();
11255 
11256     // Handle enums and anonymous structs.
11257     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
11258     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
11259     while (OrigRec->isAnonymousStructOrUnion())
11260       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
11261 
11262     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
11263       if (OrigDC == CurContext) {
11264         Diag(Using->getLocation(),
11265              diag::err_using_decl_nested_name_specifier_is_current_class)
11266           << Using->getQualifierLoc().getSourceRange();
11267         Diag(Orig->getLocation(), diag::note_using_decl_target);
11268         Using->setInvalidDecl();
11269         return true;
11270       }
11271 
11272       Diag(Using->getQualifierLoc().getBeginLoc(),
11273            diag::err_using_decl_nested_name_specifier_is_not_base_class)
11274         << Using->getQualifier()
11275         << cast<CXXRecordDecl>(CurContext)
11276         << Using->getQualifierLoc().getSourceRange();
11277       Diag(Orig->getLocation(), diag::note_using_decl_target);
11278       Using->setInvalidDecl();
11279       return true;
11280     }
11281   }
11282 
11283   if (Previous.empty()) return false;
11284 
11285   NamedDecl *Target = Orig;
11286   if (isa<UsingShadowDecl>(Target))
11287     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11288 
11289   // If the target happens to be one of the previous declarations, we
11290   // don't have a conflict.
11291   //
11292   // FIXME: but we might be increasing its access, in which case we
11293   // should redeclare it.
11294   NamedDecl *NonTag = nullptr, *Tag = nullptr;
11295   bool FoundEquivalentDecl = false;
11296   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
11297          I != E; ++I) {
11298     NamedDecl *D = (*I)->getUnderlyingDecl();
11299     // We can have UsingDecls in our Previous results because we use the same
11300     // LookupResult for checking whether the UsingDecl itself is a valid
11301     // redeclaration.
11302     if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
11303       continue;
11304 
11305     if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
11306       // C++ [class.mem]p19:
11307       //   If T is the name of a class, then [every named member other than
11308       //   a non-static data member] shall have a name different from T
11309       if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
11310           !isa<IndirectFieldDecl>(Target) &&
11311           !isa<UnresolvedUsingValueDecl>(Target) &&
11312           DiagnoseClassNameShadow(
11313               CurContext,
11314               DeclarationNameInfo(Using->getDeclName(), Using->getLocation())))
11315         return true;
11316     }
11317 
11318     if (IsEquivalentForUsingDecl(Context, D, Target)) {
11319       if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
11320         PrevShadow = Shadow;
11321       FoundEquivalentDecl = true;
11322     } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
11323       // We don't conflict with an existing using shadow decl of an equivalent
11324       // declaration, but we're not a redeclaration of it.
11325       FoundEquivalentDecl = true;
11326     }
11327 
11328     if (isVisible(D))
11329       (isa<TagDecl>(D) ? Tag : NonTag) = D;
11330   }
11331 
11332   if (FoundEquivalentDecl)
11333     return false;
11334 
11335   if (FunctionDecl *FD = Target->getAsFunction()) {
11336     NamedDecl *OldDecl = nullptr;
11337     switch (CheckOverload(nullptr, FD, Previous, OldDecl,
11338                           /*IsForUsingDecl*/ true)) {
11339     case Ovl_Overload:
11340       return false;
11341 
11342     case Ovl_NonFunction:
11343       Diag(Using->getLocation(), diag::err_using_decl_conflict);
11344       break;
11345 
11346     // We found a decl with the exact signature.
11347     case Ovl_Match:
11348       // If we're in a record, we want to hide the target, so we
11349       // return true (without a diagnostic) to tell the caller not to
11350       // build a shadow decl.
11351       if (CurContext->isRecord())
11352         return true;
11353 
11354       // If we're not in a record, this is an error.
11355       Diag(Using->getLocation(), diag::err_using_decl_conflict);
11356       break;
11357     }
11358 
11359     Diag(Target->getLocation(), diag::note_using_decl_target);
11360     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
11361     Using->setInvalidDecl();
11362     return true;
11363   }
11364 
11365   // Target is not a function.
11366 
11367   if (isa<TagDecl>(Target)) {
11368     // No conflict between a tag and a non-tag.
11369     if (!Tag) return false;
11370 
11371     Diag(Using->getLocation(), diag::err_using_decl_conflict);
11372     Diag(Target->getLocation(), diag::note_using_decl_target);
11373     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
11374     Using->setInvalidDecl();
11375     return true;
11376   }
11377 
11378   // No conflict between a tag and a non-tag.
11379   if (!NonTag) return false;
11380 
11381   Diag(Using->getLocation(), diag::err_using_decl_conflict);
11382   Diag(Target->getLocation(), diag::note_using_decl_target);
11383   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
11384   Using->setInvalidDecl();
11385   return true;
11386 }
11387 
11388 /// Determine whether a direct base class is a virtual base class.
11389 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
11390   if (!Derived->getNumVBases())
11391     return false;
11392   for (auto &B : Derived->bases())
11393     if (B.getType()->getAsCXXRecordDecl() == Base)
11394       return B.isVirtual();
11395   llvm_unreachable("not a direct base class");
11396 }
11397 
11398 /// Builds a shadow declaration corresponding to a 'using' declaration.
11399 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
11400                                             UsingDecl *UD,
11401                                             NamedDecl *Orig,
11402                                             UsingShadowDecl *PrevDecl) {
11403   // If we resolved to another shadow declaration, just coalesce them.
11404   NamedDecl *Target = Orig;
11405   if (isa<UsingShadowDecl>(Target)) {
11406     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11407     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
11408   }
11409 
11410   NamedDecl *NonTemplateTarget = Target;
11411   if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
11412     NonTemplateTarget = TargetTD->getTemplatedDecl();
11413 
11414   UsingShadowDecl *Shadow;
11415   if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
11416     bool IsVirtualBase =
11417         isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
11418                             UD->getQualifier()->getAsRecordDecl());
11419     Shadow = ConstructorUsingShadowDecl::Create(
11420         Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
11421   } else {
11422     Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
11423                                      Target);
11424   }
11425   UD->addShadowDecl(Shadow);
11426 
11427   Shadow->setAccess(UD->getAccess());
11428   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
11429     Shadow->setInvalidDecl();
11430 
11431   Shadow->setPreviousDecl(PrevDecl);
11432 
11433   if (S)
11434     PushOnScopeChains(Shadow, S);
11435   else
11436     CurContext->addDecl(Shadow);
11437 
11438 
11439   return Shadow;
11440 }
11441 
11442 /// Hides a using shadow declaration.  This is required by the current
11443 /// using-decl implementation when a resolvable using declaration in a
11444 /// class is followed by a declaration which would hide or override
11445 /// one or more of the using decl's targets; for example:
11446 ///
11447 ///   struct Base { void foo(int); };
11448 ///   struct Derived : Base {
11449 ///     using Base::foo;
11450 ///     void foo(int);
11451 ///   };
11452 ///
11453 /// The governing language is C++03 [namespace.udecl]p12:
11454 ///
11455 ///   When a using-declaration brings names from a base class into a
11456 ///   derived class scope, member functions in the derived class
11457 ///   override and/or hide member functions with the same name and
11458 ///   parameter types in a base class (rather than conflicting).
11459 ///
11460 /// There are two ways to implement this:
11461 ///   (1) optimistically create shadow decls when they're not hidden
11462 ///       by existing declarations, or
11463 ///   (2) don't create any shadow decls (or at least don't make them
11464 ///       visible) until we've fully parsed/instantiated the class.
11465 /// The problem with (1) is that we might have to retroactively remove
11466 /// a shadow decl, which requires several O(n) operations because the
11467 /// decl structures are (very reasonably) not designed for removal.
11468 /// (2) avoids this but is very fiddly and phase-dependent.
11469 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
11470   if (Shadow->getDeclName().getNameKind() ==
11471         DeclarationName::CXXConversionFunctionName)
11472     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
11473 
11474   // Remove it from the DeclContext...
11475   Shadow->getDeclContext()->removeDecl(Shadow);
11476 
11477   // ...and the scope, if applicable...
11478   if (S) {
11479     S->RemoveDecl(Shadow);
11480     IdResolver.RemoveDecl(Shadow);
11481   }
11482 
11483   // ...and the using decl.
11484   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
11485 
11486   // TODO: complain somehow if Shadow was used.  It shouldn't
11487   // be possible for this to happen, because...?
11488 }
11489 
11490 /// Find the base specifier for a base class with the given type.
11491 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
11492                                                 QualType DesiredBase,
11493                                                 bool &AnyDependentBases) {
11494   // Check whether the named type is a direct base class.
11495   CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
11496     .getUnqualifiedType();
11497   for (auto &Base : Derived->bases()) {
11498     CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
11499     if (CanonicalDesiredBase == BaseType)
11500       return &Base;
11501     if (BaseType->isDependentType())
11502       AnyDependentBases = true;
11503   }
11504   return nullptr;
11505 }
11506 
11507 namespace {
11508 class UsingValidatorCCC final : public CorrectionCandidateCallback {
11509 public:
11510   UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
11511                     NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
11512       : HasTypenameKeyword(HasTypenameKeyword),
11513         IsInstantiation(IsInstantiation), OldNNS(NNS),
11514         RequireMemberOf(RequireMemberOf) {}
11515 
11516   bool ValidateCandidate(const TypoCorrection &Candidate) override {
11517     NamedDecl *ND = Candidate.getCorrectionDecl();
11518 
11519     // Keywords are not valid here.
11520     if (!ND || isa<NamespaceDecl>(ND))
11521       return false;
11522 
11523     // Completely unqualified names are invalid for a 'using' declaration.
11524     if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
11525       return false;
11526 
11527     // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
11528     // reject.
11529 
11530     if (RequireMemberOf) {
11531       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11532       if (FoundRecord && FoundRecord->isInjectedClassName()) {
11533         // No-one ever wants a using-declaration to name an injected-class-name
11534         // of a base class, unless they're declaring an inheriting constructor.
11535         ASTContext &Ctx = ND->getASTContext();
11536         if (!Ctx.getLangOpts().CPlusPlus11)
11537           return false;
11538         QualType FoundType = Ctx.getRecordType(FoundRecord);
11539 
11540         // Check that the injected-class-name is named as a member of its own
11541         // type; we don't want to suggest 'using Derived::Base;', since that
11542         // means something else.
11543         NestedNameSpecifier *Specifier =
11544             Candidate.WillReplaceSpecifier()
11545                 ? Candidate.getCorrectionSpecifier()
11546                 : OldNNS;
11547         if (!Specifier->getAsType() ||
11548             !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
11549           return false;
11550 
11551         // Check that this inheriting constructor declaration actually names a
11552         // direct base class of the current class.
11553         bool AnyDependentBases = false;
11554         if (!findDirectBaseWithType(RequireMemberOf,
11555                                     Ctx.getRecordType(FoundRecord),
11556                                     AnyDependentBases) &&
11557             !AnyDependentBases)
11558           return false;
11559       } else {
11560         auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
11561         if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
11562           return false;
11563 
11564         // FIXME: Check that the base class member is accessible?
11565       }
11566     } else {
11567       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11568       if (FoundRecord && FoundRecord->isInjectedClassName())
11569         return false;
11570     }
11571 
11572     if (isa<TypeDecl>(ND))
11573       return HasTypenameKeyword || !IsInstantiation;
11574 
11575     return !HasTypenameKeyword;
11576   }
11577 
11578   std::unique_ptr<CorrectionCandidateCallback> clone() override {
11579     return std::make_unique<UsingValidatorCCC>(*this);
11580   }
11581 
11582 private:
11583   bool HasTypenameKeyword;
11584   bool IsInstantiation;
11585   NestedNameSpecifier *OldNNS;
11586   CXXRecordDecl *RequireMemberOf;
11587 };
11588 } // end anonymous namespace
11589 
11590 /// Builds a using declaration.
11591 ///
11592 /// \param IsInstantiation - Whether this call arises from an
11593 ///   instantiation of an unresolved using declaration.  We treat
11594 ///   the lookup differently for these declarations.
11595 NamedDecl *Sema::BuildUsingDeclaration(
11596     Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
11597     bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
11598     DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
11599     const ParsedAttributesView &AttrList, bool IsInstantiation) {
11600   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
11601   SourceLocation IdentLoc = NameInfo.getLoc();
11602   assert(IdentLoc.isValid() && "Invalid TargetName location.");
11603 
11604   // FIXME: We ignore attributes for now.
11605 
11606   // For an inheriting constructor declaration, the name of the using
11607   // declaration is the name of a constructor in this class, not in the
11608   // base class.
11609   DeclarationNameInfo UsingName = NameInfo;
11610   if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
11611     if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
11612       UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
11613           Context.getCanonicalType(Context.getRecordType(RD))));
11614 
11615   // Do the redeclaration lookup in the current scope.
11616   LookupResult Previous(*this, UsingName, LookupUsingDeclName,
11617                         ForVisibleRedeclaration);
11618   Previous.setHideTags(false);
11619   if (S) {
11620     LookupName(Previous, S);
11621 
11622     // It is really dumb that we have to do this.
11623     LookupResult::Filter F = Previous.makeFilter();
11624     while (F.hasNext()) {
11625       NamedDecl *D = F.next();
11626       if (!isDeclInScope(D, CurContext, S))
11627         F.erase();
11628       // If we found a local extern declaration that's not ordinarily visible,
11629       // and this declaration is being added to a non-block scope, ignore it.
11630       // We're only checking for scope conflicts here, not also for violations
11631       // of the linkage rules.
11632       else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
11633                !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
11634         F.erase();
11635     }
11636     F.done();
11637   } else {
11638     assert(IsInstantiation && "no scope in non-instantiation");
11639     if (CurContext->isRecord())
11640       LookupQualifiedName(Previous, CurContext);
11641     else {
11642       // No redeclaration check is needed here; in non-member contexts we
11643       // diagnosed all possible conflicts with other using-declarations when
11644       // building the template:
11645       //
11646       // For a dependent non-type using declaration, the only valid case is
11647       // if we instantiate to a single enumerator. We check for conflicts
11648       // between shadow declarations we introduce, and we check in the template
11649       // definition for conflicts between a non-type using declaration and any
11650       // other declaration, which together covers all cases.
11651       //
11652       // A dependent typename using declaration will never successfully
11653       // instantiate, since it will always name a class member, so we reject
11654       // that in the template definition.
11655     }
11656   }
11657 
11658   // Check for invalid redeclarations.
11659   if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
11660                                   SS, IdentLoc, Previous))
11661     return nullptr;
11662 
11663   // Check for bad qualifiers.
11664   if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
11665                               IdentLoc))
11666     return nullptr;
11667 
11668   DeclContext *LookupContext = computeDeclContext(SS);
11669   NamedDecl *D;
11670   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11671   if (!LookupContext || EllipsisLoc.isValid()) {
11672     if (HasTypenameKeyword) {
11673       // FIXME: not all declaration name kinds are legal here
11674       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
11675                                               UsingLoc, TypenameLoc,
11676                                               QualifierLoc,
11677                                               IdentLoc, NameInfo.getName(),
11678                                               EllipsisLoc);
11679     } else {
11680       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
11681                                            QualifierLoc, NameInfo, EllipsisLoc);
11682     }
11683     D->setAccess(AS);
11684     CurContext->addDecl(D);
11685     return D;
11686   }
11687 
11688   auto Build = [&](bool Invalid) {
11689     UsingDecl *UD =
11690         UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
11691                           UsingName, HasTypenameKeyword);
11692     UD->setAccess(AS);
11693     CurContext->addDecl(UD);
11694     UD->setInvalidDecl(Invalid);
11695     return UD;
11696   };
11697   auto BuildInvalid = [&]{ return Build(true); };
11698   auto BuildValid = [&]{ return Build(false); };
11699 
11700   if (RequireCompleteDeclContext(SS, LookupContext))
11701     return BuildInvalid();
11702 
11703   // Look up the target name.
11704   LookupResult R(*this, NameInfo, LookupOrdinaryName);
11705 
11706   // Unlike most lookups, we don't always want to hide tag
11707   // declarations: tag names are visible through the using declaration
11708   // even if hidden by ordinary names, *except* in a dependent context
11709   // where it's important for the sanity of two-phase lookup.
11710   if (!IsInstantiation)
11711     R.setHideTags(false);
11712 
11713   // For the purposes of this lookup, we have a base object type
11714   // equal to that of the current context.
11715   if (CurContext->isRecord()) {
11716     R.setBaseObjectType(
11717                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
11718   }
11719 
11720   LookupQualifiedName(R, LookupContext);
11721 
11722   // Try to correct typos if possible. If constructor name lookup finds no
11723   // results, that means the named class has no explicit constructors, and we
11724   // suppressed declaring implicit ones (probably because it's dependent or
11725   // invalid).
11726   if (R.empty() &&
11727       NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
11728     // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes
11729     // it will believe that glibc provides a ::gets in cases where it does not,
11730     // and will try to pull it into namespace std with a using-declaration.
11731     // Just ignore the using-declaration in that case.
11732     auto *II = NameInfo.getName().getAsIdentifierInfo();
11733     if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
11734         CurContext->isStdNamespace() &&
11735         isa<TranslationUnitDecl>(LookupContext) &&
11736         getSourceManager().isInSystemHeader(UsingLoc))
11737       return nullptr;
11738     UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
11739                           dyn_cast<CXXRecordDecl>(CurContext));
11740     if (TypoCorrection Corrected =
11741             CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
11742                         CTK_ErrorRecovery)) {
11743       // We reject candidates where DroppedSpecifier == true, hence the
11744       // literal '0' below.
11745       diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
11746                                 << NameInfo.getName() << LookupContext << 0
11747                                 << SS.getRange());
11748 
11749       // If we picked a correction with no attached Decl we can't do anything
11750       // useful with it, bail out.
11751       NamedDecl *ND = Corrected.getCorrectionDecl();
11752       if (!ND)
11753         return BuildInvalid();
11754 
11755       // If we corrected to an inheriting constructor, handle it as one.
11756       auto *RD = dyn_cast<CXXRecordDecl>(ND);
11757       if (RD && RD->isInjectedClassName()) {
11758         // The parent of the injected class name is the class itself.
11759         RD = cast<CXXRecordDecl>(RD->getParent());
11760 
11761         // Fix up the information we'll use to build the using declaration.
11762         if (Corrected.WillReplaceSpecifier()) {
11763           NestedNameSpecifierLocBuilder Builder;
11764           Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
11765                               QualifierLoc.getSourceRange());
11766           QualifierLoc = Builder.getWithLocInContext(Context);
11767         }
11768 
11769         // In this case, the name we introduce is the name of a derived class
11770         // constructor.
11771         auto *CurClass = cast<CXXRecordDecl>(CurContext);
11772         UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
11773             Context.getCanonicalType(Context.getRecordType(CurClass))));
11774         UsingName.setNamedTypeInfo(nullptr);
11775         for (auto *Ctor : LookupConstructors(RD))
11776           R.addDecl(Ctor);
11777         R.resolveKind();
11778       } else {
11779         // FIXME: Pick up all the declarations if we found an overloaded
11780         // function.
11781         UsingName.setName(ND->getDeclName());
11782         R.addDecl(ND);
11783       }
11784     } else {
11785       Diag(IdentLoc, diag::err_no_member)
11786         << NameInfo.getName() << LookupContext << SS.getRange();
11787       return BuildInvalid();
11788     }
11789   }
11790 
11791   if (R.isAmbiguous())
11792     return BuildInvalid();
11793 
11794   if (HasTypenameKeyword) {
11795     // If we asked for a typename and got a non-type decl, error out.
11796     if (!R.getAsSingle<TypeDecl>()) {
11797       Diag(IdentLoc, diag::err_using_typename_non_type);
11798       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11799         Diag((*I)->getUnderlyingDecl()->getLocation(),
11800              diag::note_using_decl_target);
11801       return BuildInvalid();
11802     }
11803   } else {
11804     // If we asked for a non-typename and we got a type, error out,
11805     // but only if this is an instantiation of an unresolved using
11806     // decl.  Otherwise just silently find the type name.
11807     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
11808       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
11809       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
11810       return BuildInvalid();
11811     }
11812   }
11813 
11814   // C++14 [namespace.udecl]p6:
11815   // A using-declaration shall not name a namespace.
11816   if (R.getAsSingle<NamespaceDecl>()) {
11817     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
11818       << SS.getRange();
11819     return BuildInvalid();
11820   }
11821 
11822   // C++14 [namespace.udecl]p7:
11823   // A using-declaration shall not name a scoped enumerator.
11824   if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
11825     if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
11826       Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
11827         << SS.getRange();
11828       return BuildInvalid();
11829     }
11830   }
11831 
11832   UsingDecl *UD = BuildValid();
11833 
11834   // Some additional rules apply to inheriting constructors.
11835   if (UsingName.getName().getNameKind() ==
11836         DeclarationName::CXXConstructorName) {
11837     // Suppress access diagnostics; the access check is instead performed at the
11838     // point of use for an inheriting constructor.
11839     R.suppressDiagnostics();
11840     if (CheckInheritingConstructorUsingDecl(UD))
11841       return UD;
11842   }
11843 
11844   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
11845     UsingShadowDecl *PrevDecl = nullptr;
11846     if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
11847       BuildUsingShadowDecl(S, UD, *I, PrevDecl);
11848   }
11849 
11850   return UD;
11851 }
11852 
11853 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
11854                                     ArrayRef<NamedDecl *> Expansions) {
11855   assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||
11856          isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||
11857          isa<UsingPackDecl>(InstantiatedFrom));
11858 
11859   auto *UPD =
11860       UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
11861   UPD->setAccess(InstantiatedFrom->getAccess());
11862   CurContext->addDecl(UPD);
11863   return UPD;
11864 }
11865 
11866 /// Additional checks for a using declaration referring to a constructor name.
11867 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
11868   assert(!UD->hasTypename() && "expecting a constructor name");
11869 
11870   const Type *SourceType = UD->getQualifier()->getAsType();
11871   assert(SourceType &&
11872          "Using decl naming constructor doesn't have type in scope spec.");
11873   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
11874 
11875   // Check whether the named type is a direct base class.
11876   bool AnyDependentBases = false;
11877   auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
11878                                       AnyDependentBases);
11879   if (!Base && !AnyDependentBases) {
11880     Diag(UD->getUsingLoc(),
11881          diag::err_using_decl_constructor_not_in_direct_base)
11882       << UD->getNameInfo().getSourceRange()
11883       << QualType(SourceType, 0) << TargetClass;
11884     UD->setInvalidDecl();
11885     return true;
11886   }
11887 
11888   if (Base)
11889     Base->setInheritConstructors();
11890 
11891   return false;
11892 }
11893 
11894 /// Checks that the given using declaration is not an invalid
11895 /// redeclaration.  Note that this is checking only for the using decl
11896 /// itself, not for any ill-formedness among the UsingShadowDecls.
11897 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
11898                                        bool HasTypenameKeyword,
11899                                        const CXXScopeSpec &SS,
11900                                        SourceLocation NameLoc,
11901                                        const LookupResult &Prev) {
11902   NestedNameSpecifier *Qual = SS.getScopeRep();
11903 
11904   // C++03 [namespace.udecl]p8:
11905   // C++0x [namespace.udecl]p10:
11906   //   A using-declaration is a declaration and can therefore be used
11907   //   repeatedly where (and only where) multiple declarations are
11908   //   allowed.
11909   //
11910   // That's in non-member contexts.
11911   if (!CurContext->getRedeclContext()->isRecord()) {
11912     // A dependent qualifier outside a class can only ever resolve to an
11913     // enumeration type. Therefore it conflicts with any other non-type
11914     // declaration in the same scope.
11915     // FIXME: How should we check for dependent type-type conflicts at block
11916     // scope?
11917     if (Qual->isDependent() && !HasTypenameKeyword) {
11918       for (auto *D : Prev) {
11919         if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
11920           bool OldCouldBeEnumerator =
11921               isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
11922           Diag(NameLoc,
11923                OldCouldBeEnumerator ? diag::err_redefinition
11924                                     : diag::err_redefinition_different_kind)
11925               << Prev.getLookupName();
11926           Diag(D->getLocation(), diag::note_previous_definition);
11927           return true;
11928         }
11929       }
11930     }
11931     return false;
11932   }
11933 
11934   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
11935     NamedDecl *D = *I;
11936 
11937     bool DTypename;
11938     NestedNameSpecifier *DQual;
11939     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
11940       DTypename = UD->hasTypename();
11941       DQual = UD->getQualifier();
11942     } else if (UnresolvedUsingValueDecl *UD
11943                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
11944       DTypename = false;
11945       DQual = UD->getQualifier();
11946     } else if (UnresolvedUsingTypenameDecl *UD
11947                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
11948       DTypename = true;
11949       DQual = UD->getQualifier();
11950     } else continue;
11951 
11952     // using decls differ if one says 'typename' and the other doesn't.
11953     // FIXME: non-dependent using decls?
11954     if (HasTypenameKeyword != DTypename) continue;
11955 
11956     // using decls differ if they name different scopes (but note that
11957     // template instantiation can cause this check to trigger when it
11958     // didn't before instantiation).
11959     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
11960         Context.getCanonicalNestedNameSpecifier(DQual))
11961       continue;
11962 
11963     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
11964     Diag(D->getLocation(), diag::note_using_decl) << 1;
11965     return true;
11966   }
11967 
11968   return false;
11969 }
11970 
11971 
11972 /// Checks that the given nested-name qualifier used in a using decl
11973 /// in the current context is appropriately related to the current
11974 /// scope.  If an error is found, diagnoses it and returns true.
11975 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
11976                                    bool HasTypename,
11977                                    const CXXScopeSpec &SS,
11978                                    const DeclarationNameInfo &NameInfo,
11979                                    SourceLocation NameLoc) {
11980   DeclContext *NamedContext = computeDeclContext(SS);
11981 
11982   if (!CurContext->isRecord()) {
11983     // C++03 [namespace.udecl]p3:
11984     // C++0x [namespace.udecl]p8:
11985     //   A using-declaration for a class member shall be a member-declaration.
11986 
11987     // If we weren't able to compute a valid scope, it might validly be a
11988     // dependent class scope or a dependent enumeration unscoped scope. If
11989     // we have a 'typename' keyword, the scope must resolve to a class type.
11990     if ((HasTypename && !NamedContext) ||
11991         (NamedContext && NamedContext->getRedeclContext()->isRecord())) {
11992       auto *RD = NamedContext
11993                      ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
11994                      : nullptr;
11995       if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
11996         RD = nullptr;
11997 
11998       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
11999         << SS.getRange();
12000 
12001       // If we have a complete, non-dependent source type, try to suggest a
12002       // way to get the same effect.
12003       if (!RD)
12004         return true;
12005 
12006       // Find what this using-declaration was referring to.
12007       LookupResult R(*this, NameInfo, LookupOrdinaryName);
12008       R.setHideTags(false);
12009       R.suppressDiagnostics();
12010       LookupQualifiedName(R, RD);
12011 
12012       if (R.getAsSingle<TypeDecl>()) {
12013         if (getLangOpts().CPlusPlus11) {
12014           // Convert 'using X::Y;' to 'using Y = X::Y;'.
12015           Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12016             << 0 // alias declaration
12017             << FixItHint::CreateInsertion(SS.getBeginLoc(),
12018                                           NameInfo.getName().getAsString() +
12019                                               " = ");
12020         } else {
12021           // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12022           SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12023           Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12024             << 1 // typedef declaration
12025             << FixItHint::CreateReplacement(UsingLoc, "typedef")
12026             << FixItHint::CreateInsertion(
12027                    InsertLoc, " " + NameInfo.getName().getAsString());
12028         }
12029       } else if (R.getAsSingle<VarDecl>()) {
12030         // Don't provide a fixit outside C++11 mode; we don't want to suggest
12031         // repeating the type of the static data member here.
12032         FixItHint FixIt;
12033         if (getLangOpts().CPlusPlus11) {
12034           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12035           FixIt = FixItHint::CreateReplacement(
12036               UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12037         }
12038 
12039         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12040           << 2 // reference declaration
12041           << FixIt;
12042       } else if (R.getAsSingle<EnumConstantDecl>()) {
12043         // Don't provide a fixit outside C++11 mode; we don't want to suggest
12044         // repeating the type of the enumeration here, and we can't do so if
12045         // the type is anonymous.
12046         FixItHint FixIt;
12047         if (getLangOpts().CPlusPlus11) {
12048           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12049           FixIt = FixItHint::CreateReplacement(
12050               UsingLoc,
12051               "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12052         }
12053 
12054         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12055           << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12056           << FixIt;
12057       }
12058       return true;
12059     }
12060 
12061     // Otherwise, this might be valid.
12062     return false;
12063   }
12064 
12065   // The current scope is a record.
12066 
12067   // If the named context is dependent, we can't decide much.
12068   if (!NamedContext) {
12069     // FIXME: in C++0x, we can diagnose if we can prove that the
12070     // nested-name-specifier does not refer to a base class, which is
12071     // still possible in some cases.
12072 
12073     // Otherwise we have to conservatively report that things might be
12074     // okay.
12075     return false;
12076   }
12077 
12078   if (!NamedContext->isRecord()) {
12079     // Ideally this would point at the last name in the specifier,
12080     // but we don't have that level of source info.
12081     Diag(SS.getRange().getBegin(),
12082          diag::err_using_decl_nested_name_specifier_is_not_class)
12083       << SS.getScopeRep() << SS.getRange();
12084     return true;
12085   }
12086 
12087   if (!NamedContext->isDependentContext() &&
12088       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
12089     return true;
12090 
12091   if (getLangOpts().CPlusPlus11) {
12092     // C++11 [namespace.udecl]p3:
12093     //   In a using-declaration used as a member-declaration, the
12094     //   nested-name-specifier shall name a base class of the class
12095     //   being defined.
12096 
12097     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
12098                                  cast<CXXRecordDecl>(NamedContext))) {
12099       if (CurContext == NamedContext) {
12100         Diag(NameLoc,
12101              diag::err_using_decl_nested_name_specifier_is_current_class)
12102           << SS.getRange();
12103         return true;
12104       }
12105 
12106       if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
12107         Diag(SS.getRange().getBegin(),
12108              diag::err_using_decl_nested_name_specifier_is_not_base_class)
12109           << SS.getScopeRep()
12110           << cast<CXXRecordDecl>(CurContext)
12111           << SS.getRange();
12112       }
12113       return true;
12114     }
12115 
12116     return false;
12117   }
12118 
12119   // C++03 [namespace.udecl]p4:
12120   //   A using-declaration used as a member-declaration shall refer
12121   //   to a member of a base class of the class being defined [etc.].
12122 
12123   // Salient point: SS doesn't have to name a base class as long as
12124   // lookup only finds members from base classes.  Therefore we can
12125   // diagnose here only if we can prove that that can't happen,
12126   // i.e. if the class hierarchies provably don't intersect.
12127 
12128   // TODO: it would be nice if "definitely valid" results were cached
12129   // in the UsingDecl and UsingShadowDecl so that these checks didn't
12130   // need to be repeated.
12131 
12132   llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
12133   auto Collect = [&Bases](const CXXRecordDecl *Base) {
12134     Bases.insert(Base);
12135     return true;
12136   };
12137 
12138   // Collect all bases. Return false if we find a dependent base.
12139   if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
12140     return false;
12141 
12142   // Returns true if the base is dependent or is one of the accumulated base
12143   // classes.
12144   auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
12145     return !Bases.count(Base);
12146   };
12147 
12148   // Return false if the class has a dependent base or if it or one
12149   // of its bases is present in the base set of the current context.
12150   if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
12151       !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
12152     return false;
12153 
12154   Diag(SS.getRange().getBegin(),
12155        diag::err_using_decl_nested_name_specifier_is_not_base_class)
12156     << SS.getScopeRep()
12157     << cast<CXXRecordDecl>(CurContext)
12158     << SS.getRange();
12159 
12160   return true;
12161 }
12162 
12163 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
12164                                   MultiTemplateParamsArg TemplateParamLists,
12165                                   SourceLocation UsingLoc, UnqualifiedId &Name,
12166                                   const ParsedAttributesView &AttrList,
12167                                   TypeResult Type, Decl *DeclFromDeclSpec) {
12168   // Skip up to the relevant declaration scope.
12169   while (S->isTemplateParamScope())
12170     S = S->getParent();
12171   assert((S->getFlags() & Scope::DeclScope) &&
12172          "got alias-declaration outside of declaration scope");
12173 
12174   if (Type.isInvalid())
12175     return nullptr;
12176 
12177   bool Invalid = false;
12178   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
12179   TypeSourceInfo *TInfo = nullptr;
12180   GetTypeFromParser(Type.get(), &TInfo);
12181 
12182   if (DiagnoseClassNameShadow(CurContext, NameInfo))
12183     return nullptr;
12184 
12185   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
12186                                       UPPC_DeclarationType)) {
12187     Invalid = true;
12188     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12189                                              TInfo->getTypeLoc().getBeginLoc());
12190   }
12191 
12192   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12193                         TemplateParamLists.size()
12194                             ? forRedeclarationInCurContext()
12195                             : ForVisibleRedeclaration);
12196   LookupName(Previous, S);
12197 
12198   // Warn about shadowing the name of a template parameter.
12199   if (Previous.isSingleResult() &&
12200       Previous.getFoundDecl()->isTemplateParameter()) {
12201     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
12202     Previous.clear();
12203   }
12204 
12205   assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&
12206          "name in alias declaration must be an identifier");
12207   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
12208                                                Name.StartLocation,
12209                                                Name.Identifier, TInfo);
12210 
12211   NewTD->setAccess(AS);
12212 
12213   if (Invalid)
12214     NewTD->setInvalidDecl();
12215 
12216   ProcessDeclAttributeList(S, NewTD, AttrList);
12217   AddPragmaAttributes(S, NewTD);
12218 
12219   CheckTypedefForVariablyModifiedType(S, NewTD);
12220   Invalid |= NewTD->isInvalidDecl();
12221 
12222   bool Redeclaration = false;
12223 
12224   NamedDecl *NewND;
12225   if (TemplateParamLists.size()) {
12226     TypeAliasTemplateDecl *OldDecl = nullptr;
12227     TemplateParameterList *OldTemplateParams = nullptr;
12228 
12229     if (TemplateParamLists.size() != 1) {
12230       Diag(UsingLoc, diag::err_alias_template_extra_headers)
12231         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
12232          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
12233     }
12234     TemplateParameterList *TemplateParams = TemplateParamLists[0];
12235 
12236     // Check that we can declare a template here.
12237     if (CheckTemplateDeclScope(S, TemplateParams))
12238       return nullptr;
12239 
12240     // Only consider previous declarations in the same scope.
12241     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
12242                          /*ExplicitInstantiationOrSpecialization*/false);
12243     if (!Previous.empty()) {
12244       Redeclaration = true;
12245 
12246       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
12247       if (!OldDecl && !Invalid) {
12248         Diag(UsingLoc, diag::err_redefinition_different_kind)
12249           << Name.Identifier;
12250 
12251         NamedDecl *OldD = Previous.getRepresentativeDecl();
12252         if (OldD->getLocation().isValid())
12253           Diag(OldD->getLocation(), diag::note_previous_definition);
12254 
12255         Invalid = true;
12256       }
12257 
12258       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
12259         if (TemplateParameterListsAreEqual(TemplateParams,
12260                                            OldDecl->getTemplateParameters(),
12261                                            /*Complain=*/true,
12262                                            TPL_TemplateMatch))
12263           OldTemplateParams =
12264               OldDecl->getMostRecentDecl()->getTemplateParameters();
12265         else
12266           Invalid = true;
12267 
12268         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
12269         if (!Invalid &&
12270             !Context.hasSameType(OldTD->getUnderlyingType(),
12271                                  NewTD->getUnderlyingType())) {
12272           // FIXME: The C++0x standard does not clearly say this is ill-formed,
12273           // but we can't reasonably accept it.
12274           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
12275             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
12276           if (OldTD->getLocation().isValid())
12277             Diag(OldTD->getLocation(), diag::note_previous_definition);
12278           Invalid = true;
12279         }
12280       }
12281     }
12282 
12283     // Merge any previous default template arguments into our parameters,
12284     // and check the parameter list.
12285     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
12286                                    TPC_TypeAliasTemplate))
12287       return nullptr;
12288 
12289     TypeAliasTemplateDecl *NewDecl =
12290       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
12291                                     Name.Identifier, TemplateParams,
12292                                     NewTD);
12293     NewTD->setDescribedAliasTemplate(NewDecl);
12294 
12295     NewDecl->setAccess(AS);
12296 
12297     if (Invalid)
12298       NewDecl->setInvalidDecl();
12299     else if (OldDecl) {
12300       NewDecl->setPreviousDecl(OldDecl);
12301       CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
12302     }
12303 
12304     NewND = NewDecl;
12305   } else {
12306     if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
12307       setTagNameForLinkagePurposes(TD, NewTD);
12308       handleTagNumbering(TD, S);
12309     }
12310     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
12311     NewND = NewTD;
12312   }
12313 
12314   PushOnScopeChains(NewND, S);
12315   ActOnDocumentableDecl(NewND);
12316   return NewND;
12317 }
12318 
12319 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
12320                                    SourceLocation AliasLoc,
12321                                    IdentifierInfo *Alias, CXXScopeSpec &SS,
12322                                    SourceLocation IdentLoc,
12323                                    IdentifierInfo *Ident) {
12324 
12325   // Lookup the namespace name.
12326   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
12327   LookupParsedName(R, S, &SS);
12328 
12329   if (R.isAmbiguous())
12330     return nullptr;
12331 
12332   if (R.empty()) {
12333     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
12334       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
12335       return nullptr;
12336     }
12337   }
12338   assert(!R.isAmbiguous() && !R.empty());
12339   NamedDecl *ND = R.getRepresentativeDecl();
12340 
12341   // Check if we have a previous declaration with the same name.
12342   LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
12343                      ForVisibleRedeclaration);
12344   LookupName(PrevR, S);
12345 
12346   // Check we're not shadowing a template parameter.
12347   if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
12348     DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
12349     PrevR.clear();
12350   }
12351 
12352   // Filter out any other lookup result from an enclosing scope.
12353   FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
12354                        /*AllowInlineNamespace*/false);
12355 
12356   // Find the previous declaration and check that we can redeclare it.
12357   NamespaceAliasDecl *Prev = nullptr;
12358   if (PrevR.isSingleResult()) {
12359     NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
12360     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
12361       // We already have an alias with the same name that points to the same
12362       // namespace; check that it matches.
12363       if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
12364         Prev = AD;
12365       } else if (isVisible(PrevDecl)) {
12366         Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
12367           << Alias;
12368         Diag(AD->getLocation(), diag::note_previous_namespace_alias)
12369           << AD->getNamespace();
12370         return nullptr;
12371       }
12372     } else if (isVisible(PrevDecl)) {
12373       unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
12374                             ? diag::err_redefinition
12375                             : diag::err_redefinition_different_kind;
12376       Diag(AliasLoc, DiagID) << Alias;
12377       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12378       return nullptr;
12379     }
12380   }
12381 
12382   // The use of a nested name specifier may trigger deprecation warnings.
12383   DiagnoseUseOfDecl(ND, IdentLoc);
12384 
12385   NamespaceAliasDecl *AliasDecl =
12386     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
12387                                Alias, SS.getWithLocInContext(Context),
12388                                IdentLoc, ND);
12389   if (Prev)
12390     AliasDecl->setPreviousDecl(Prev);
12391 
12392   PushOnScopeChains(AliasDecl, S);
12393   return AliasDecl;
12394 }
12395 
12396 namespace {
12397 struct SpecialMemberExceptionSpecInfo
12398     : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
12399   SourceLocation Loc;
12400   Sema::ImplicitExceptionSpecification ExceptSpec;
12401 
12402   SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
12403                                  Sema::CXXSpecialMember CSM,
12404                                  Sema::InheritedConstructorInfo *ICI,
12405                                  SourceLocation Loc)
12406       : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
12407 
12408   bool visitBase(CXXBaseSpecifier *Base);
12409   bool visitField(FieldDecl *FD);
12410 
12411   void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
12412                            unsigned Quals);
12413 
12414   void visitSubobjectCall(Subobject Subobj,
12415                           Sema::SpecialMemberOverloadResult SMOR);
12416 };
12417 }
12418 
12419 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
12420   auto *RT = Base->getType()->getAs<RecordType>();
12421   if (!RT)
12422     return false;
12423 
12424   auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
12425   Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
12426   if (auto *BaseCtor = SMOR.getMethod()) {
12427     visitSubobjectCall(Base, BaseCtor);
12428     return false;
12429   }
12430 
12431   visitClassSubobject(BaseClass, Base, 0);
12432   return false;
12433 }
12434 
12435 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
12436   if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
12437     Expr *E = FD->getInClassInitializer();
12438     if (!E)
12439       // FIXME: It's a little wasteful to build and throw away a
12440       // CXXDefaultInitExpr here.
12441       // FIXME: We should have a single context note pointing at Loc, and
12442       // this location should be MD->getLocation() instead, since that's
12443       // the location where we actually use the default init expression.
12444       E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
12445     if (E)
12446       ExceptSpec.CalledExpr(E);
12447   } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
12448                             ->getAs<RecordType>()) {
12449     visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
12450                         FD->getType().getCVRQualifiers());
12451   }
12452   return false;
12453 }
12454 
12455 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
12456                                                          Subobject Subobj,
12457                                                          unsigned Quals) {
12458   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
12459   bool IsMutable = Field && Field->isMutable();
12460   visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
12461 }
12462 
12463 void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
12464     Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
12465   // Note, if lookup fails, it doesn't matter what exception specification we
12466   // choose because the special member will be deleted.
12467   if (CXXMethodDecl *MD = SMOR.getMethod())
12468     ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
12469 }
12470 
12471 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
12472   llvm::APSInt Result;
12473   ExprResult Converted = CheckConvertedConstantExpression(
12474       ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
12475   ExplicitSpec.setExpr(Converted.get());
12476   if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
12477     ExplicitSpec.setKind(Result.getBoolValue()
12478                              ? ExplicitSpecKind::ResolvedTrue
12479                              : ExplicitSpecKind::ResolvedFalse);
12480     return true;
12481   }
12482   ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
12483   return false;
12484 }
12485 
12486 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
12487   ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
12488   if (!ExplicitExpr->isTypeDependent())
12489     tryResolveExplicitSpecifier(ES);
12490   return ES;
12491 }
12492 
12493 static Sema::ImplicitExceptionSpecification
12494 ComputeDefaultedSpecialMemberExceptionSpec(
12495     Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
12496     Sema::InheritedConstructorInfo *ICI) {
12497   ComputingExceptionSpec CES(S, MD, Loc);
12498 
12499   CXXRecordDecl *ClassDecl = MD->getParent();
12500 
12501   // C++ [except.spec]p14:
12502   //   An implicitly declared special member function (Clause 12) shall have an
12503   //   exception-specification. [...]
12504   SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
12505   if (ClassDecl->isInvalidDecl())
12506     return Info.ExceptSpec;
12507 
12508   // FIXME: If this diagnostic fires, we're probably missing a check for
12509   // attempting to resolve an exception specification before it's known
12510   // at a higher level.
12511   if (S.RequireCompleteType(MD->getLocation(),
12512                             S.Context.getRecordType(ClassDecl),
12513                             diag::err_exception_spec_incomplete_type))
12514     return Info.ExceptSpec;
12515 
12516   // C++1z [except.spec]p7:
12517   //   [Look for exceptions thrown by] a constructor selected [...] to
12518   //   initialize a potentially constructed subobject,
12519   // C++1z [except.spec]p8:
12520   //   The exception specification for an implicitly-declared destructor, or a
12521   //   destructor without a noexcept-specifier, is potentially-throwing if and
12522   //   only if any of the destructors for any of its potentially constructed
12523   //   subojects is potentially throwing.
12524   // FIXME: We respect the first rule but ignore the "potentially constructed"
12525   // in the second rule to resolve a core issue (no number yet) that would have
12526   // us reject:
12527   //   struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
12528   //   struct B : A {};
12529   //   struct C : B { void f(); };
12530   // ... due to giving B::~B() a non-throwing exception specification.
12531   Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
12532                                 : Info.VisitAllBases);
12533 
12534   return Info.ExceptSpec;
12535 }
12536 
12537 namespace {
12538 /// RAII object to register a special member as being currently declared.
12539 struct DeclaringSpecialMember {
12540   Sema &S;
12541   Sema::SpecialMemberDecl D;
12542   Sema::ContextRAII SavedContext;
12543   bool WasAlreadyBeingDeclared;
12544 
12545   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
12546       : S(S), D(RD, CSM), SavedContext(S, RD) {
12547     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
12548     if (WasAlreadyBeingDeclared)
12549       // This almost never happens, but if it does, ensure that our cache
12550       // doesn't contain a stale result.
12551       S.SpecialMemberCache.clear();
12552     else {
12553       // Register a note to be produced if we encounter an error while
12554       // declaring the special member.
12555       Sema::CodeSynthesisContext Ctx;
12556       Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
12557       // FIXME: We don't have a location to use here. Using the class's
12558       // location maintains the fiction that we declare all special members
12559       // with the class, but (1) it's not clear that lying about that helps our
12560       // users understand what's going on, and (2) there may be outer contexts
12561       // on the stack (some of which are relevant) and printing them exposes
12562       // our lies.
12563       Ctx.PointOfInstantiation = RD->getLocation();
12564       Ctx.Entity = RD;
12565       Ctx.SpecialMember = CSM;
12566       S.pushCodeSynthesisContext(Ctx);
12567     }
12568   }
12569   ~DeclaringSpecialMember() {
12570     if (!WasAlreadyBeingDeclared) {
12571       S.SpecialMembersBeingDeclared.erase(D);
12572       S.popCodeSynthesisContext();
12573     }
12574   }
12575 
12576   /// Are we already trying to declare this special member?
12577   bool isAlreadyBeingDeclared() const {
12578     return WasAlreadyBeingDeclared;
12579   }
12580 };
12581 }
12582 
12583 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
12584   // Look up any existing declarations, but don't trigger declaration of all
12585   // implicit special members with this name.
12586   DeclarationName Name = FD->getDeclName();
12587   LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
12588                  ForExternalRedeclaration);
12589   for (auto *D : FD->getParent()->lookup(Name))
12590     if (auto *Acceptable = R.getAcceptableDecl(D))
12591       R.addDecl(Acceptable);
12592   R.resolveKind();
12593   R.suppressDiagnostics();
12594 
12595   CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
12596 }
12597 
12598 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
12599                                           QualType ResultTy,
12600                                           ArrayRef<QualType> Args) {
12601   // Build an exception specification pointing back at this constructor.
12602   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
12603 
12604   LangAS AS = getDefaultCXXMethodAddrSpace();
12605   if (AS != LangAS::Default) {
12606     EPI.TypeQuals.addAddressSpace(AS);
12607   }
12608 
12609   auto QT = Context.getFunctionType(ResultTy, Args, EPI);
12610   SpecialMem->setType(QT);
12611 }
12612 
12613 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
12614                                                      CXXRecordDecl *ClassDecl) {
12615   // C++ [class.ctor]p5:
12616   //   A default constructor for a class X is a constructor of class X
12617   //   that can be called without an argument. If there is no
12618   //   user-declared constructor for class X, a default constructor is
12619   //   implicitly declared. An implicitly-declared default constructor
12620   //   is an inline public member of its class.
12621   assert(ClassDecl->needsImplicitDefaultConstructor() &&
12622          "Should not build implicit default constructor!");
12623 
12624   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
12625   if (DSM.isAlreadyBeingDeclared())
12626     return nullptr;
12627 
12628   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12629                                                      CXXDefaultConstructor,
12630                                                      false);
12631 
12632   // Create the actual constructor declaration.
12633   CanQualType ClassType
12634     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
12635   SourceLocation ClassLoc = ClassDecl->getLocation();
12636   DeclarationName Name
12637     = Context.DeclarationNames.getCXXConstructorName(ClassType);
12638   DeclarationNameInfo NameInfo(Name, ClassLoc);
12639   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
12640       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
12641       /*TInfo=*/nullptr, ExplicitSpecifier(),
12642       /*isInline=*/true, /*isImplicitlyDeclared=*/true,
12643       Constexpr ? CSK_constexpr : CSK_unspecified);
12644   DefaultCon->setAccess(AS_public);
12645   DefaultCon->setDefaulted();
12646 
12647   if (getLangOpts().CUDA) {
12648     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
12649                                             DefaultCon,
12650                                             /* ConstRHS */ false,
12651                                             /* Diagnose */ false);
12652   }
12653 
12654   setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
12655 
12656   // We don't need to use SpecialMemberIsTrivial here; triviality for default
12657   // constructors is easy to compute.
12658   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
12659 
12660   // Note that we have declared this constructor.
12661   ++getASTContext().NumImplicitDefaultConstructorsDeclared;
12662 
12663   Scope *S = getScopeForContext(ClassDecl);
12664   CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
12665 
12666   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
12667     SetDeclDeleted(DefaultCon, ClassLoc);
12668 
12669   if (S)
12670     PushOnScopeChains(DefaultCon, S, false);
12671   ClassDecl->addDecl(DefaultCon);
12672 
12673   return DefaultCon;
12674 }
12675 
12676 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
12677                                             CXXConstructorDecl *Constructor) {
12678   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
12679           !Constructor->doesThisDeclarationHaveABody() &&
12680           !Constructor->isDeleted()) &&
12681     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
12682   if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
12683     return;
12684 
12685   CXXRecordDecl *ClassDecl = Constructor->getParent();
12686   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
12687 
12688   SynthesizedFunctionScope Scope(*this, Constructor);
12689 
12690   // The exception specification is needed because we are defining the
12691   // function.
12692   ResolveExceptionSpec(CurrentLocation,
12693                        Constructor->getType()->castAs<FunctionProtoType>());
12694   MarkVTableUsed(CurrentLocation, ClassDecl);
12695 
12696   // Add a context note for diagnostics produced after this point.
12697   Scope.addContextNote(CurrentLocation);
12698 
12699   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
12700     Constructor->setInvalidDecl();
12701     return;
12702   }
12703 
12704   SourceLocation Loc = Constructor->getEndLoc().isValid()
12705                            ? Constructor->getEndLoc()
12706                            : Constructor->getLocation();
12707   Constructor->setBody(new (Context) CompoundStmt(Loc));
12708   Constructor->markUsed(Context);
12709 
12710   if (ASTMutationListener *L = getASTMutationListener()) {
12711     L->CompletedImplicitDefinition(Constructor);
12712   }
12713 
12714   DiagnoseUninitializedFields(*this, Constructor);
12715 }
12716 
12717 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
12718   // Perform any delayed checks on exception specifications.
12719   CheckDelayedMemberExceptionSpecs();
12720 }
12721 
12722 /// Find or create the fake constructor we synthesize to model constructing an
12723 /// object of a derived class via a constructor of a base class.
12724 CXXConstructorDecl *
12725 Sema::findInheritingConstructor(SourceLocation Loc,
12726                                 CXXConstructorDecl *BaseCtor,
12727                                 ConstructorUsingShadowDecl *Shadow) {
12728   CXXRecordDecl *Derived = Shadow->getParent();
12729   SourceLocation UsingLoc = Shadow->getLocation();
12730 
12731   // FIXME: Add a new kind of DeclarationName for an inherited constructor.
12732   // For now we use the name of the base class constructor as a member of the
12733   // derived class to indicate a (fake) inherited constructor name.
12734   DeclarationName Name = BaseCtor->getDeclName();
12735 
12736   // Check to see if we already have a fake constructor for this inherited
12737   // constructor call.
12738   for (NamedDecl *Ctor : Derived->lookup(Name))
12739     if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
12740                                ->getInheritedConstructor()
12741                                .getConstructor(),
12742                            BaseCtor))
12743       return cast<CXXConstructorDecl>(Ctor);
12744 
12745   DeclarationNameInfo NameInfo(Name, UsingLoc);
12746   TypeSourceInfo *TInfo =
12747       Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
12748   FunctionProtoTypeLoc ProtoLoc =
12749       TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
12750 
12751   // Check the inherited constructor is valid and find the list of base classes
12752   // from which it was inherited.
12753   InheritedConstructorInfo ICI(*this, Loc, Shadow);
12754 
12755   bool Constexpr =
12756       BaseCtor->isConstexpr() &&
12757       defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
12758                                         false, BaseCtor, &ICI);
12759 
12760   CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
12761       Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
12762       BaseCtor->getExplicitSpecifier(), /*isInline=*/true,
12763       /*isImplicitlyDeclared=*/true,
12764       Constexpr ? BaseCtor->getConstexprKind() : CSK_unspecified,
12765       InheritedConstructor(Shadow, BaseCtor),
12766       BaseCtor->getTrailingRequiresClause());
12767   if (Shadow->isInvalidDecl())
12768     DerivedCtor->setInvalidDecl();
12769 
12770   // Build an unevaluated exception specification for this fake constructor.
12771   const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
12772   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12773   EPI.ExceptionSpec.Type = EST_Unevaluated;
12774   EPI.ExceptionSpec.SourceDecl = DerivedCtor;
12775   DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
12776                                                FPT->getParamTypes(), EPI));
12777 
12778   // Build the parameter declarations.
12779   SmallVector<ParmVarDecl *, 16> ParamDecls;
12780   for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
12781     TypeSourceInfo *TInfo =
12782         Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
12783     ParmVarDecl *PD = ParmVarDecl::Create(
12784         Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
12785         FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
12786     PD->setScopeInfo(0, I);
12787     PD->setImplicit();
12788     // Ensure attributes are propagated onto parameters (this matters for
12789     // format, pass_object_size, ...).
12790     mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
12791     ParamDecls.push_back(PD);
12792     ProtoLoc.setParam(I, PD);
12793   }
12794 
12795   // Set up the new constructor.
12796   assert(!BaseCtor->isDeleted() && "should not use deleted constructor");
12797   DerivedCtor->setAccess(BaseCtor->getAccess());
12798   DerivedCtor->setParams(ParamDecls);
12799   Derived->addDecl(DerivedCtor);
12800 
12801   if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
12802     SetDeclDeleted(DerivedCtor, UsingLoc);
12803 
12804   return DerivedCtor;
12805 }
12806 
12807 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
12808   InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
12809                                Ctor->getInheritedConstructor().getShadowDecl());
12810   ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
12811                             /*Diagnose*/true);
12812 }
12813 
12814 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
12815                                        CXXConstructorDecl *Constructor) {
12816   CXXRecordDecl *ClassDecl = Constructor->getParent();
12817   assert(Constructor->getInheritedConstructor() &&
12818          !Constructor->doesThisDeclarationHaveABody() &&
12819          !Constructor->isDeleted());
12820   if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
12821     return;
12822 
12823   // Initializations are performed "as if by a defaulted default constructor",
12824   // so enter the appropriate scope.
12825   SynthesizedFunctionScope Scope(*this, Constructor);
12826 
12827   // The exception specification is needed because we are defining the
12828   // function.
12829   ResolveExceptionSpec(CurrentLocation,
12830                        Constructor->getType()->castAs<FunctionProtoType>());
12831   MarkVTableUsed(CurrentLocation, ClassDecl);
12832 
12833   // Add a context note for diagnostics produced after this point.
12834   Scope.addContextNote(CurrentLocation);
12835 
12836   ConstructorUsingShadowDecl *Shadow =
12837       Constructor->getInheritedConstructor().getShadowDecl();
12838   CXXConstructorDecl *InheritedCtor =
12839       Constructor->getInheritedConstructor().getConstructor();
12840 
12841   // [class.inhctor.init]p1:
12842   //   initialization proceeds as if a defaulted default constructor is used to
12843   //   initialize the D object and each base class subobject from which the
12844   //   constructor was inherited
12845 
12846   InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
12847   CXXRecordDecl *RD = Shadow->getParent();
12848   SourceLocation InitLoc = Shadow->getLocation();
12849 
12850   // Build explicit initializers for all base classes from which the
12851   // constructor was inherited.
12852   SmallVector<CXXCtorInitializer*, 8> Inits;
12853   for (bool VBase : {false, true}) {
12854     for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
12855       if (B.isVirtual() != VBase)
12856         continue;
12857 
12858       auto *BaseRD = B.getType()->getAsCXXRecordDecl();
12859       if (!BaseRD)
12860         continue;
12861 
12862       auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
12863       if (!BaseCtor.first)
12864         continue;
12865 
12866       MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
12867       ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
12868           InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
12869 
12870       auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
12871       Inits.push_back(new (Context) CXXCtorInitializer(
12872           Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
12873           SourceLocation()));
12874     }
12875   }
12876 
12877   // We now proceed as if for a defaulted default constructor, with the relevant
12878   // initializers replaced.
12879 
12880   if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
12881     Constructor->setInvalidDecl();
12882     return;
12883   }
12884 
12885   Constructor->setBody(new (Context) CompoundStmt(InitLoc));
12886   Constructor->markUsed(Context);
12887 
12888   if (ASTMutationListener *L = getASTMutationListener()) {
12889     L->CompletedImplicitDefinition(Constructor);
12890   }
12891 
12892   DiagnoseUninitializedFields(*this, Constructor);
12893 }
12894 
12895 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
12896   // C++ [class.dtor]p2:
12897   //   If a class has no user-declared destructor, a destructor is
12898   //   declared implicitly. An implicitly-declared destructor is an
12899   //   inline public member of its class.
12900   assert(ClassDecl->needsImplicitDestructor());
12901 
12902   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
12903   if (DSM.isAlreadyBeingDeclared())
12904     return nullptr;
12905 
12906   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12907                                                      CXXDestructor,
12908                                                      false);
12909 
12910   // Create the actual destructor declaration.
12911   CanQualType ClassType
12912     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
12913   SourceLocation ClassLoc = ClassDecl->getLocation();
12914   DeclarationName Name
12915     = Context.DeclarationNames.getCXXDestructorName(ClassType);
12916   DeclarationNameInfo NameInfo(Name, ClassLoc);
12917   CXXDestructorDecl *Destructor =
12918       CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
12919                                 QualType(), nullptr, /*isInline=*/true,
12920                                 /*isImplicitlyDeclared=*/true,
12921                                 Constexpr ? CSK_constexpr : CSK_unspecified);
12922   Destructor->setAccess(AS_public);
12923   Destructor->setDefaulted();
12924 
12925   if (getLangOpts().CUDA) {
12926     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
12927                                             Destructor,
12928                                             /* ConstRHS */ false,
12929                                             /* Diagnose */ false);
12930   }
12931 
12932   setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
12933 
12934   // We don't need to use SpecialMemberIsTrivial here; triviality for
12935   // destructors is easy to compute.
12936   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
12937   Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
12938                                 ClassDecl->hasTrivialDestructorForCall());
12939 
12940   // Note that we have declared this destructor.
12941   ++getASTContext().NumImplicitDestructorsDeclared;
12942 
12943   Scope *S = getScopeForContext(ClassDecl);
12944   CheckImplicitSpecialMemberDeclaration(S, Destructor);
12945 
12946   // We can't check whether an implicit destructor is deleted before we complete
12947   // the definition of the class, because its validity depends on the alignment
12948   // of the class. We'll check this from ActOnFields once the class is complete.
12949   if (ClassDecl->isCompleteDefinition() &&
12950       ShouldDeleteSpecialMember(Destructor, CXXDestructor))
12951     SetDeclDeleted(Destructor, ClassLoc);
12952 
12953   // Introduce this destructor into its scope.
12954   if (S)
12955     PushOnScopeChains(Destructor, S, false);
12956   ClassDecl->addDecl(Destructor);
12957 
12958   return Destructor;
12959 }
12960 
12961 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
12962                                     CXXDestructorDecl *Destructor) {
12963   assert((Destructor->isDefaulted() &&
12964           !Destructor->doesThisDeclarationHaveABody() &&
12965           !Destructor->isDeleted()) &&
12966          "DefineImplicitDestructor - call it for implicit default dtor");
12967   if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
12968     return;
12969 
12970   CXXRecordDecl *ClassDecl = Destructor->getParent();
12971   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
12972 
12973   SynthesizedFunctionScope Scope(*this, Destructor);
12974 
12975   // The exception specification is needed because we are defining the
12976   // function.
12977   ResolveExceptionSpec(CurrentLocation,
12978                        Destructor->getType()->castAs<FunctionProtoType>());
12979   MarkVTableUsed(CurrentLocation, ClassDecl);
12980 
12981   // Add a context note for diagnostics produced after this point.
12982   Scope.addContextNote(CurrentLocation);
12983 
12984   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
12985                                          Destructor->getParent());
12986 
12987   if (CheckDestructor(Destructor)) {
12988     Destructor->setInvalidDecl();
12989     return;
12990   }
12991 
12992   SourceLocation Loc = Destructor->getEndLoc().isValid()
12993                            ? Destructor->getEndLoc()
12994                            : Destructor->getLocation();
12995   Destructor->setBody(new (Context) CompoundStmt(Loc));
12996   Destructor->markUsed(Context);
12997 
12998   if (ASTMutationListener *L = getASTMutationListener()) {
12999     L->CompletedImplicitDefinition(Destructor);
13000   }
13001 }
13002 
13003 /// Perform any semantic analysis which needs to be delayed until all
13004 /// pending class member declarations have been parsed.
13005 void Sema::ActOnFinishCXXMemberDecls() {
13006   // If the context is an invalid C++ class, just suppress these checks.
13007   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13008     if (Record->isInvalidDecl()) {
13009       DelayedOverridingExceptionSpecChecks.clear();
13010       DelayedEquivalentExceptionSpecChecks.clear();
13011       return;
13012     }
13013     checkForMultipleExportedDefaultConstructors(*this, Record);
13014   }
13015 }
13016 
13017 void Sema::ActOnFinishCXXNonNestedClass() {
13018   referenceDLLExportedClassMethods();
13019 
13020   if (!DelayedDllExportMemberFunctions.empty()) {
13021     SmallVector<CXXMethodDecl*, 4> WorkList;
13022     std::swap(DelayedDllExportMemberFunctions, WorkList);
13023     for (CXXMethodDecl *M : WorkList) {
13024       DefineImplicitSpecialMember(*this, M, M->getLocation());
13025 
13026       // Pass the method to the consumer to get emitted. This is not necessary
13027       // for explicit instantiation definitions, as they will get emitted
13028       // anyway.
13029       if (M->getParent()->getTemplateSpecializationKind() !=
13030           TSK_ExplicitInstantiationDefinition)
13031         ActOnFinishInlineFunctionDef(M);
13032     }
13033   }
13034 }
13035 
13036 void Sema::referenceDLLExportedClassMethods() {
13037   if (!DelayedDllExportClasses.empty()) {
13038     // Calling ReferenceDllExportedMembers might cause the current function to
13039     // be called again, so use a local copy of DelayedDllExportClasses.
13040     SmallVector<CXXRecordDecl *, 4> WorkList;
13041     std::swap(DelayedDllExportClasses, WorkList);
13042     for (CXXRecordDecl *Class : WorkList)
13043       ReferenceDllExportedMembers(*this, Class);
13044   }
13045 }
13046 
13047 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13048   assert(getLangOpts().CPlusPlus11 &&
13049          "adjusting dtor exception specs was introduced in c++11");
13050 
13051   if (Destructor->isDependentContext())
13052     return;
13053 
13054   // C++11 [class.dtor]p3:
13055   //   A declaration of a destructor that does not have an exception-
13056   //   specification is implicitly considered to have the same exception-
13057   //   specification as an implicit declaration.
13058   const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
13059   if (DtorType->hasExceptionSpec())
13060     return;
13061 
13062   // Replace the destructor's type, building off the existing one. Fortunately,
13063   // the only thing of interest in the destructor type is its extended info.
13064   // The return and arguments are fixed.
13065   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
13066   EPI.ExceptionSpec.Type = EST_Unevaluated;
13067   EPI.ExceptionSpec.SourceDecl = Destructor;
13068   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
13069 
13070   // FIXME: If the destructor has a body that could throw, and the newly created
13071   // spec doesn't allow exceptions, we should emit a warning, because this
13072   // change in behavior can break conforming C++03 programs at runtime.
13073   // However, we don't have a body or an exception specification yet, so it
13074   // needs to be done somewhere else.
13075 }
13076 
13077 namespace {
13078 /// An abstract base class for all helper classes used in building the
13079 //  copy/move operators. These classes serve as factory functions and help us
13080 //  avoid using the same Expr* in the AST twice.
13081 class ExprBuilder {
13082   ExprBuilder(const ExprBuilder&) = delete;
13083   ExprBuilder &operator=(const ExprBuilder&) = delete;
13084 
13085 protected:
13086   static Expr *assertNotNull(Expr *E) {
13087     assert(E && "Expression construction must not fail.");
13088     return E;
13089   }
13090 
13091 public:
13092   ExprBuilder() {}
13093   virtual ~ExprBuilder() {}
13094 
13095   virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
13096 };
13097 
13098 class RefBuilder: public ExprBuilder {
13099   VarDecl *Var;
13100   QualType VarType;
13101 
13102 public:
13103   Expr *build(Sema &S, SourceLocation Loc) const override {
13104     return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
13105   }
13106 
13107   RefBuilder(VarDecl *Var, QualType VarType)
13108       : Var(Var), VarType(VarType) {}
13109 };
13110 
13111 class ThisBuilder: public ExprBuilder {
13112 public:
13113   Expr *build(Sema &S, SourceLocation Loc) const override {
13114     return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
13115   }
13116 };
13117 
13118 class CastBuilder: public ExprBuilder {
13119   const ExprBuilder &Builder;
13120   QualType Type;
13121   ExprValueKind Kind;
13122   const CXXCastPath &Path;
13123 
13124 public:
13125   Expr *build(Sema &S, SourceLocation Loc) const override {
13126     return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
13127                                              CK_UncheckedDerivedToBase, Kind,
13128                                              &Path).get());
13129   }
13130 
13131   CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
13132               const CXXCastPath &Path)
13133       : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
13134 };
13135 
13136 class DerefBuilder: public ExprBuilder {
13137   const ExprBuilder &Builder;
13138 
13139 public:
13140   Expr *build(Sema &S, SourceLocation Loc) const override {
13141     return assertNotNull(
13142         S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
13143   }
13144 
13145   DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13146 };
13147 
13148 class MemberBuilder: public ExprBuilder {
13149   const ExprBuilder &Builder;
13150   QualType Type;
13151   CXXScopeSpec SS;
13152   bool IsArrow;
13153   LookupResult &MemberLookup;
13154 
13155 public:
13156   Expr *build(Sema &S, SourceLocation Loc) const override {
13157     return assertNotNull(S.BuildMemberReferenceExpr(
13158         Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
13159         nullptr, MemberLookup, nullptr, nullptr).get());
13160   }
13161 
13162   MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
13163                 LookupResult &MemberLookup)
13164       : Builder(Builder), Type(Type), IsArrow(IsArrow),
13165         MemberLookup(MemberLookup) {}
13166 };
13167 
13168 class MoveCastBuilder: public ExprBuilder {
13169   const ExprBuilder &Builder;
13170 
13171 public:
13172   Expr *build(Sema &S, SourceLocation Loc) const override {
13173     return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
13174   }
13175 
13176   MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13177 };
13178 
13179 class LvalueConvBuilder: public ExprBuilder {
13180   const ExprBuilder &Builder;
13181 
13182 public:
13183   Expr *build(Sema &S, SourceLocation Loc) const override {
13184     return assertNotNull(
13185         S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
13186   }
13187 
13188   LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13189 };
13190 
13191 class SubscriptBuilder: public ExprBuilder {
13192   const ExprBuilder &Base;
13193   const ExprBuilder &Index;
13194 
13195 public:
13196   Expr *build(Sema &S, SourceLocation Loc) const override {
13197     return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
13198         Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
13199   }
13200 
13201   SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
13202       : Base(Base), Index(Index) {}
13203 };
13204 
13205 } // end anonymous namespace
13206 
13207 /// When generating a defaulted copy or move assignment operator, if a field
13208 /// should be copied with __builtin_memcpy rather than via explicit assignments,
13209 /// do so. This optimization only applies for arrays of scalars, and for arrays
13210 /// of class type where the selected copy/move-assignment operator is trivial.
13211 static StmtResult
13212 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
13213                            const ExprBuilder &ToB, const ExprBuilder &FromB) {
13214   // Compute the size of the memory buffer to be copied.
13215   QualType SizeType = S.Context.getSizeType();
13216   llvm::APInt Size(S.Context.getTypeSize(SizeType),
13217                    S.Context.getTypeSizeInChars(T).getQuantity());
13218 
13219   // Take the address of the field references for "from" and "to". We
13220   // directly construct UnaryOperators here because semantic analysis
13221   // does not permit us to take the address of an xvalue.
13222   Expr *From = FromB.build(S, Loc);
13223   From = new (S.Context) UnaryOperator(From, UO_AddrOf,
13224                          S.Context.getPointerType(From->getType()),
13225                          VK_RValue, OK_Ordinary, Loc, false);
13226   Expr *To = ToB.build(S, Loc);
13227   To = new (S.Context) UnaryOperator(To, UO_AddrOf,
13228                        S.Context.getPointerType(To->getType()),
13229                        VK_RValue, OK_Ordinary, Loc, false);
13230 
13231   const Type *E = T->getBaseElementTypeUnsafe();
13232   bool NeedsCollectableMemCpy =
13233       E->isRecordType() &&
13234       E->castAs<RecordType>()->getDecl()->hasObjectMember();
13235 
13236   // Create a reference to the __builtin_objc_memmove_collectable function
13237   StringRef MemCpyName = NeedsCollectableMemCpy ?
13238     "__builtin_objc_memmove_collectable" :
13239     "__builtin_memcpy";
13240   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
13241                  Sema::LookupOrdinaryName);
13242   S.LookupName(R, S.TUScope, true);
13243 
13244   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
13245   if (!MemCpy)
13246     // Something went horribly wrong earlier, and we will have complained
13247     // about it.
13248     return StmtError();
13249 
13250   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
13251                                             VK_RValue, Loc, nullptr);
13252   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
13253 
13254   Expr *CallArgs[] = {
13255     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
13256   };
13257   ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
13258                                     Loc, CallArgs, Loc);
13259 
13260   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
13261   return Call.getAs<Stmt>();
13262 }
13263 
13264 /// Builds a statement that copies/moves the given entity from \p From to
13265 /// \c To.
13266 ///
13267 /// This routine is used to copy/move the members of a class with an
13268 /// implicitly-declared copy/move assignment operator. When the entities being
13269 /// copied are arrays, this routine builds for loops to copy them.
13270 ///
13271 /// \param S The Sema object used for type-checking.
13272 ///
13273 /// \param Loc The location where the implicit copy/move is being generated.
13274 ///
13275 /// \param T The type of the expressions being copied/moved. Both expressions
13276 /// must have this type.
13277 ///
13278 /// \param To The expression we are copying/moving to.
13279 ///
13280 /// \param From The expression we are copying/moving from.
13281 ///
13282 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
13283 /// Otherwise, it's a non-static member subobject.
13284 ///
13285 /// \param Copying Whether we're copying or moving.
13286 ///
13287 /// \param Depth Internal parameter recording the depth of the recursion.
13288 ///
13289 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
13290 /// if a memcpy should be used instead.
13291 static StmtResult
13292 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
13293                                  const ExprBuilder &To, const ExprBuilder &From,
13294                                  bool CopyingBaseSubobject, bool Copying,
13295                                  unsigned Depth = 0) {
13296   // C++11 [class.copy]p28:
13297   //   Each subobject is assigned in the manner appropriate to its type:
13298   //
13299   //     - if the subobject is of class type, as if by a call to operator= with
13300   //       the subobject as the object expression and the corresponding
13301   //       subobject of x as a single function argument (as if by explicit
13302   //       qualification; that is, ignoring any possible virtual overriding
13303   //       functions in more derived classes);
13304   //
13305   // C++03 [class.copy]p13:
13306   //     - if the subobject is of class type, the copy assignment operator for
13307   //       the class is used (as if by explicit qualification; that is,
13308   //       ignoring any possible virtual overriding functions in more derived
13309   //       classes);
13310   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
13311     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
13312 
13313     // Look for operator=.
13314     DeclarationName Name
13315       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13316     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
13317     S.LookupQualifiedName(OpLookup, ClassDecl, false);
13318 
13319     // Prior to C++11, filter out any result that isn't a copy/move-assignment
13320     // operator.
13321     if (!S.getLangOpts().CPlusPlus11) {
13322       LookupResult::Filter F = OpLookup.makeFilter();
13323       while (F.hasNext()) {
13324         NamedDecl *D = F.next();
13325         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
13326           if (Method->isCopyAssignmentOperator() ||
13327               (!Copying && Method->isMoveAssignmentOperator()))
13328             continue;
13329 
13330         F.erase();
13331       }
13332       F.done();
13333     }
13334 
13335     // Suppress the protected check (C++ [class.protected]) for each of the
13336     // assignment operators we found. This strange dance is required when
13337     // we're assigning via a base classes's copy-assignment operator. To
13338     // ensure that we're getting the right base class subobject (without
13339     // ambiguities), we need to cast "this" to that subobject type; to
13340     // ensure that we don't go through the virtual call mechanism, we need
13341     // to qualify the operator= name with the base class (see below). However,
13342     // this means that if the base class has a protected copy assignment
13343     // operator, the protected member access check will fail. So, we
13344     // rewrite "protected" access to "public" access in this case, since we
13345     // know by construction that we're calling from a derived class.
13346     if (CopyingBaseSubobject) {
13347       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
13348            L != LEnd; ++L) {
13349         if (L.getAccess() == AS_protected)
13350           L.setAccess(AS_public);
13351       }
13352     }
13353 
13354     // Create the nested-name-specifier that will be used to qualify the
13355     // reference to operator=; this is required to suppress the virtual
13356     // call mechanism.
13357     CXXScopeSpec SS;
13358     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
13359     SS.MakeTrivial(S.Context,
13360                    NestedNameSpecifier::Create(S.Context, nullptr, false,
13361                                                CanonicalT),
13362                    Loc);
13363 
13364     // Create the reference to operator=.
13365     ExprResult OpEqualRef
13366       = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
13367                                    SS, /*TemplateKWLoc=*/SourceLocation(),
13368                                    /*FirstQualifierInScope=*/nullptr,
13369                                    OpLookup,
13370                                    /*TemplateArgs=*/nullptr, /*S*/nullptr,
13371                                    /*SuppressQualifierCheck=*/true);
13372     if (OpEqualRef.isInvalid())
13373       return StmtError();
13374 
13375     // Build the call to the assignment operator.
13376 
13377     Expr *FromInst = From.build(S, Loc);
13378     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
13379                                                   OpEqualRef.getAs<Expr>(),
13380                                                   Loc, FromInst, Loc);
13381     if (Call.isInvalid())
13382       return StmtError();
13383 
13384     // If we built a call to a trivial 'operator=' while copying an array,
13385     // bail out. We'll replace the whole shebang with a memcpy.
13386     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
13387     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
13388       return StmtResult((Stmt*)nullptr);
13389 
13390     // Convert to an expression-statement, and clean up any produced
13391     // temporaries.
13392     return S.ActOnExprStmt(Call);
13393   }
13394 
13395   //     - if the subobject is of scalar type, the built-in assignment
13396   //       operator is used.
13397   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
13398   if (!ArrayTy) {
13399     ExprResult Assignment = S.CreateBuiltinBinOp(
13400         Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
13401     if (Assignment.isInvalid())
13402       return StmtError();
13403     return S.ActOnExprStmt(Assignment);
13404   }
13405 
13406   //     - if the subobject is an array, each element is assigned, in the
13407   //       manner appropriate to the element type;
13408 
13409   // Construct a loop over the array bounds, e.g.,
13410   //
13411   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
13412   //
13413   // that will copy each of the array elements.
13414   QualType SizeType = S.Context.getSizeType();
13415 
13416   // Create the iteration variable.
13417   IdentifierInfo *IterationVarName = nullptr;
13418   {
13419     SmallString<8> Str;
13420     llvm::raw_svector_ostream OS(Str);
13421     OS << "__i" << Depth;
13422     IterationVarName = &S.Context.Idents.get(OS.str());
13423   }
13424   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
13425                                           IterationVarName, SizeType,
13426                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
13427                                           SC_None);
13428 
13429   // Initialize the iteration variable to zero.
13430   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
13431   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
13432 
13433   // Creates a reference to the iteration variable.
13434   RefBuilder IterationVarRef(IterationVar, SizeType);
13435   LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
13436 
13437   // Create the DeclStmt that holds the iteration variable.
13438   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
13439 
13440   // Subscript the "from" and "to" expressions with the iteration variable.
13441   SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
13442   MoveCastBuilder FromIndexMove(FromIndexCopy);
13443   const ExprBuilder *FromIndex;
13444   if (Copying)
13445     FromIndex = &FromIndexCopy;
13446   else
13447     FromIndex = &FromIndexMove;
13448 
13449   SubscriptBuilder ToIndex(To, IterationVarRefRVal);
13450 
13451   // Build the copy/move for an individual element of the array.
13452   StmtResult Copy =
13453     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
13454                                      ToIndex, *FromIndex, CopyingBaseSubobject,
13455                                      Copying, Depth + 1);
13456   // Bail out if copying fails or if we determined that we should use memcpy.
13457   if (Copy.isInvalid() || !Copy.get())
13458     return Copy;
13459 
13460   // Create the comparison against the array bound.
13461   llvm::APInt Upper
13462     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
13463   Expr *Comparison
13464     = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
13465                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
13466                                      BO_NE, S.Context.BoolTy,
13467                                      VK_RValue, OK_Ordinary, Loc, FPOptions());
13468 
13469   // Create the pre-increment of the iteration variable. We can determine
13470   // whether the increment will overflow based on the value of the array
13471   // bound.
13472   Expr *Increment = new (S.Context)
13473       UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc, SizeType,
13474                     VK_LValue, OK_Ordinary, Loc, Upper.isMaxValue());
13475 
13476   // Construct the loop that copies all elements of this array.
13477   return S.ActOnForStmt(
13478       Loc, Loc, InitStmt,
13479       S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
13480       S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
13481 }
13482 
13483 static StmtResult
13484 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
13485                       const ExprBuilder &To, const ExprBuilder &From,
13486                       bool CopyingBaseSubobject, bool Copying) {
13487   // Maybe we should use a memcpy?
13488   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
13489       T.isTriviallyCopyableType(S.Context))
13490     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13491 
13492   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
13493                                                      CopyingBaseSubobject,
13494                                                      Copying, 0));
13495 
13496   // If we ended up picking a trivial assignment operator for an array of a
13497   // non-trivially-copyable class type, just emit a memcpy.
13498   if (!Result.isInvalid() && !Result.get())
13499     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13500 
13501   return Result;
13502 }
13503 
13504 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
13505   // Note: The following rules are largely analoguous to the copy
13506   // constructor rules. Note that virtual bases are not taken into account
13507   // for determining the argument type of the operator. Note also that
13508   // operators taking an object instead of a reference are allowed.
13509   assert(ClassDecl->needsImplicitCopyAssignment());
13510 
13511   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
13512   if (DSM.isAlreadyBeingDeclared())
13513     return nullptr;
13514 
13515   QualType ArgType = Context.getTypeDeclType(ClassDecl);
13516   LangAS AS = getDefaultCXXMethodAddrSpace();
13517   if (AS != LangAS::Default)
13518     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
13519   QualType RetType = Context.getLValueReferenceType(ArgType);
13520   bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
13521   if (Const)
13522     ArgType = ArgType.withConst();
13523 
13524   ArgType = Context.getLValueReferenceType(ArgType);
13525 
13526   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13527                                                      CXXCopyAssignment,
13528                                                      Const);
13529 
13530   //   An implicitly-declared copy assignment operator is an inline public
13531   //   member of its class.
13532   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13533   SourceLocation ClassLoc = ClassDecl->getLocation();
13534   DeclarationNameInfo NameInfo(Name, ClassLoc);
13535   CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
13536       Context, ClassDecl, ClassLoc, NameInfo, QualType(),
13537       /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
13538       /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified,
13539       SourceLocation());
13540   CopyAssignment->setAccess(AS_public);
13541   CopyAssignment->setDefaulted();
13542   CopyAssignment->setImplicit();
13543 
13544   if (getLangOpts().CUDA) {
13545     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
13546                                             CopyAssignment,
13547                                             /* ConstRHS */ Const,
13548                                             /* Diagnose */ false);
13549   }
13550 
13551   setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
13552 
13553   // Add the parameter to the operator.
13554   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
13555                                                ClassLoc, ClassLoc,
13556                                                /*Id=*/nullptr, ArgType,
13557                                                /*TInfo=*/nullptr, SC_None,
13558                                                nullptr);
13559   CopyAssignment->setParams(FromParam);
13560 
13561   CopyAssignment->setTrivial(
13562     ClassDecl->needsOverloadResolutionForCopyAssignment()
13563       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
13564       : ClassDecl->hasTrivialCopyAssignment());
13565 
13566   // Note that we have added this copy-assignment operator.
13567   ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
13568 
13569   Scope *S = getScopeForContext(ClassDecl);
13570   CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
13571 
13572   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
13573     SetDeclDeleted(CopyAssignment, ClassLoc);
13574 
13575   if (S)
13576     PushOnScopeChains(CopyAssignment, S, false);
13577   ClassDecl->addDecl(CopyAssignment);
13578 
13579   return CopyAssignment;
13580 }
13581 
13582 /// Diagnose an implicit copy operation for a class which is odr-used, but
13583 /// which is deprecated because the class has a user-declared copy constructor,
13584 /// copy assignment operator, or destructor.
13585 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
13586   assert(CopyOp->isImplicit());
13587 
13588   CXXRecordDecl *RD = CopyOp->getParent();
13589   CXXMethodDecl *UserDeclaredOperation = nullptr;
13590 
13591   // In Microsoft mode, assignment operations don't affect constructors and
13592   // vice versa.
13593   if (RD->hasUserDeclaredDestructor()) {
13594     UserDeclaredOperation = RD->getDestructor();
13595   } else if (!isa<CXXConstructorDecl>(CopyOp) &&
13596              RD->hasUserDeclaredCopyConstructor() &&
13597              !S.getLangOpts().MSVCCompat) {
13598     // Find any user-declared copy constructor.
13599     for (auto *I : RD->ctors()) {
13600       if (I->isCopyConstructor()) {
13601         UserDeclaredOperation = I;
13602         break;
13603       }
13604     }
13605     assert(UserDeclaredOperation);
13606   } else if (isa<CXXConstructorDecl>(CopyOp) &&
13607              RD->hasUserDeclaredCopyAssignment() &&
13608              !S.getLangOpts().MSVCCompat) {
13609     // Find any user-declared move assignment operator.
13610     for (auto *I : RD->methods()) {
13611       if (I->isCopyAssignmentOperator()) {
13612         UserDeclaredOperation = I;
13613         break;
13614       }
13615     }
13616     assert(UserDeclaredOperation);
13617   }
13618 
13619   if (UserDeclaredOperation && UserDeclaredOperation->isUserProvided()) {
13620     S.Diag(UserDeclaredOperation->getLocation(),
13621            isa<CXXDestructorDecl>(UserDeclaredOperation)
13622                ? diag::warn_deprecated_copy_dtor_operation
13623                : diag::warn_deprecated_copy_operation)
13624         << RD << /*copy assignment*/ !isa<CXXConstructorDecl>(CopyOp);
13625   }
13626 }
13627 
13628 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
13629                                         CXXMethodDecl *CopyAssignOperator) {
13630   assert((CopyAssignOperator->isDefaulted() &&
13631           CopyAssignOperator->isOverloadedOperator() &&
13632           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
13633           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
13634           !CopyAssignOperator->isDeleted()) &&
13635          "DefineImplicitCopyAssignment called for wrong function");
13636   if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
13637     return;
13638 
13639   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
13640   if (ClassDecl->isInvalidDecl()) {
13641     CopyAssignOperator->setInvalidDecl();
13642     return;
13643   }
13644 
13645   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
13646 
13647   // The exception specification is needed because we are defining the
13648   // function.
13649   ResolveExceptionSpec(CurrentLocation,
13650                        CopyAssignOperator->getType()->castAs<FunctionProtoType>());
13651 
13652   // Add a context note for diagnostics produced after this point.
13653   Scope.addContextNote(CurrentLocation);
13654 
13655   // C++11 [class.copy]p18:
13656   //   The [definition of an implicitly declared copy assignment operator] is
13657   //   deprecated if the class has a user-declared copy constructor or a
13658   //   user-declared destructor.
13659   if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
13660     diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
13661 
13662   // C++0x [class.copy]p30:
13663   //   The implicitly-defined or explicitly-defaulted copy assignment operator
13664   //   for a non-union class X performs memberwise copy assignment of its
13665   //   subobjects. The direct base classes of X are assigned first, in the
13666   //   order of their declaration in the base-specifier-list, and then the
13667   //   immediate non-static data members of X are assigned, in the order in
13668   //   which they were declared in the class definition.
13669 
13670   // The statements that form the synthesized function body.
13671   SmallVector<Stmt*, 8> Statements;
13672 
13673   // The parameter for the "other" object, which we are copying from.
13674   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
13675   Qualifiers OtherQuals = Other->getType().getQualifiers();
13676   QualType OtherRefType = Other->getType();
13677   if (const LValueReferenceType *OtherRef
13678                                 = OtherRefType->getAs<LValueReferenceType>()) {
13679     OtherRefType = OtherRef->getPointeeType();
13680     OtherQuals = OtherRefType.getQualifiers();
13681   }
13682 
13683   // Our location for everything implicitly-generated.
13684   SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
13685                            ? CopyAssignOperator->getEndLoc()
13686                            : CopyAssignOperator->getLocation();
13687 
13688   // Builds a DeclRefExpr for the "other" object.
13689   RefBuilder OtherRef(Other, OtherRefType);
13690 
13691   // Builds the "this" pointer.
13692   ThisBuilder This;
13693 
13694   // Assign base classes.
13695   bool Invalid = false;
13696   for (auto &Base : ClassDecl->bases()) {
13697     // Form the assignment:
13698     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
13699     QualType BaseType = Base.getType().getUnqualifiedType();
13700     if (!BaseType->isRecordType()) {
13701       Invalid = true;
13702       continue;
13703     }
13704 
13705     CXXCastPath BasePath;
13706     BasePath.push_back(&Base);
13707 
13708     // Construct the "from" expression, which is an implicit cast to the
13709     // appropriately-qualified base type.
13710     CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
13711                      VK_LValue, BasePath);
13712 
13713     // Dereference "this".
13714     DerefBuilder DerefThis(This);
13715     CastBuilder To(DerefThis,
13716                    Context.getQualifiedType(
13717                        BaseType, CopyAssignOperator->getMethodQualifiers()),
13718                    VK_LValue, BasePath);
13719 
13720     // Build the copy.
13721     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
13722                                             To, From,
13723                                             /*CopyingBaseSubobject=*/true,
13724                                             /*Copying=*/true);
13725     if (Copy.isInvalid()) {
13726       CopyAssignOperator->setInvalidDecl();
13727       return;
13728     }
13729 
13730     // Success! Record the copy.
13731     Statements.push_back(Copy.getAs<Expr>());
13732   }
13733 
13734   // Assign non-static members.
13735   for (auto *Field : ClassDecl->fields()) {
13736     // FIXME: We should form some kind of AST representation for the implied
13737     // memcpy in a union copy operation.
13738     if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
13739       continue;
13740 
13741     if (Field->isInvalidDecl()) {
13742       Invalid = true;
13743       continue;
13744     }
13745 
13746     // Check for members of reference type; we can't copy those.
13747     if (Field->getType()->isReferenceType()) {
13748       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
13749         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
13750       Diag(Field->getLocation(), diag::note_declared_at);
13751       Invalid = true;
13752       continue;
13753     }
13754 
13755     // Check for members of const-qualified, non-class type.
13756     QualType BaseType = Context.getBaseElementType(Field->getType());
13757     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
13758       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
13759         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
13760       Diag(Field->getLocation(), diag::note_declared_at);
13761       Invalid = true;
13762       continue;
13763     }
13764 
13765     // Suppress assigning zero-width bitfields.
13766     if (Field->isZeroLengthBitField(Context))
13767       continue;
13768 
13769     QualType FieldType = Field->getType().getNonReferenceType();
13770     if (FieldType->isIncompleteArrayType()) {
13771       assert(ClassDecl->hasFlexibleArrayMember() &&
13772              "Incomplete array type is not valid");
13773       continue;
13774     }
13775 
13776     // Build references to the field in the object we're copying from and to.
13777     CXXScopeSpec SS; // Intentionally empty
13778     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
13779                               LookupMemberName);
13780     MemberLookup.addDecl(Field);
13781     MemberLookup.resolveKind();
13782 
13783     MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
13784 
13785     MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
13786 
13787     // Build the copy of this field.
13788     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
13789                                             To, From,
13790                                             /*CopyingBaseSubobject=*/false,
13791                                             /*Copying=*/true);
13792     if (Copy.isInvalid()) {
13793       CopyAssignOperator->setInvalidDecl();
13794       return;
13795     }
13796 
13797     // Success! Record the copy.
13798     Statements.push_back(Copy.getAs<Stmt>());
13799   }
13800 
13801   if (!Invalid) {
13802     // Add a "return *this;"
13803     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
13804 
13805     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
13806     if (Return.isInvalid())
13807       Invalid = true;
13808     else
13809       Statements.push_back(Return.getAs<Stmt>());
13810   }
13811 
13812   if (Invalid) {
13813     CopyAssignOperator->setInvalidDecl();
13814     return;
13815   }
13816 
13817   StmtResult Body;
13818   {
13819     CompoundScopeRAII CompoundScope(*this);
13820     Body = ActOnCompoundStmt(Loc, Loc, Statements,
13821                              /*isStmtExpr=*/false);
13822     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
13823   }
13824   CopyAssignOperator->setBody(Body.getAs<Stmt>());
13825   CopyAssignOperator->markUsed(Context);
13826 
13827   if (ASTMutationListener *L = getASTMutationListener()) {
13828     L->CompletedImplicitDefinition(CopyAssignOperator);
13829   }
13830 }
13831 
13832 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
13833   assert(ClassDecl->needsImplicitMoveAssignment());
13834 
13835   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
13836   if (DSM.isAlreadyBeingDeclared())
13837     return nullptr;
13838 
13839   // Note: The following rules are largely analoguous to the move
13840   // constructor rules.
13841 
13842   QualType ArgType = Context.getTypeDeclType(ClassDecl);
13843   LangAS AS = getDefaultCXXMethodAddrSpace();
13844   if (AS != LangAS::Default)
13845     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
13846   QualType RetType = Context.getLValueReferenceType(ArgType);
13847   ArgType = Context.getRValueReferenceType(ArgType);
13848 
13849   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13850                                                      CXXMoveAssignment,
13851                                                      false);
13852 
13853   //   An implicitly-declared move assignment operator is an inline public
13854   //   member of its class.
13855   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13856   SourceLocation ClassLoc = ClassDecl->getLocation();
13857   DeclarationNameInfo NameInfo(Name, ClassLoc);
13858   CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
13859       Context, ClassDecl, ClassLoc, NameInfo, QualType(),
13860       /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
13861       /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified,
13862       SourceLocation());
13863   MoveAssignment->setAccess(AS_public);
13864   MoveAssignment->setDefaulted();
13865   MoveAssignment->setImplicit();
13866 
13867   if (getLangOpts().CUDA) {
13868     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
13869                                             MoveAssignment,
13870                                             /* ConstRHS */ false,
13871                                             /* Diagnose */ false);
13872   }
13873 
13874   // Build an exception specification pointing back at this member.
13875   FunctionProtoType::ExtProtoInfo EPI =
13876       getImplicitMethodEPI(*this, MoveAssignment);
13877   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
13878 
13879   // Add the parameter to the operator.
13880   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
13881                                                ClassLoc, ClassLoc,
13882                                                /*Id=*/nullptr, ArgType,
13883                                                /*TInfo=*/nullptr, SC_None,
13884                                                nullptr);
13885   MoveAssignment->setParams(FromParam);
13886 
13887   MoveAssignment->setTrivial(
13888     ClassDecl->needsOverloadResolutionForMoveAssignment()
13889       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
13890       : ClassDecl->hasTrivialMoveAssignment());
13891 
13892   // Note that we have added this copy-assignment operator.
13893   ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
13894 
13895   Scope *S = getScopeForContext(ClassDecl);
13896   CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
13897 
13898   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
13899     ClassDecl->setImplicitMoveAssignmentIsDeleted();
13900     SetDeclDeleted(MoveAssignment, ClassLoc);
13901   }
13902 
13903   if (S)
13904     PushOnScopeChains(MoveAssignment, S, false);
13905   ClassDecl->addDecl(MoveAssignment);
13906 
13907   return MoveAssignment;
13908 }
13909 
13910 /// Check if we're implicitly defining a move assignment operator for a class
13911 /// with virtual bases. Such a move assignment might move-assign the virtual
13912 /// base multiple times.
13913 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
13914                                                SourceLocation CurrentLocation) {
13915   assert(!Class->isDependentContext() && "should not define dependent move");
13916 
13917   // Only a virtual base could get implicitly move-assigned multiple times.
13918   // Only a non-trivial move assignment can observe this. We only want to
13919   // diagnose if we implicitly define an assignment operator that assigns
13920   // two base classes, both of which move-assign the same virtual base.
13921   if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
13922       Class->getNumBases() < 2)
13923     return;
13924 
13925   llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
13926   typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
13927   VBaseMap VBases;
13928 
13929   for (auto &BI : Class->bases()) {
13930     Worklist.push_back(&BI);
13931     while (!Worklist.empty()) {
13932       CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
13933       CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
13934 
13935       // If the base has no non-trivial move assignment operators,
13936       // we don't care about moves from it.
13937       if (!Base->hasNonTrivialMoveAssignment())
13938         continue;
13939 
13940       // If there's nothing virtual here, skip it.
13941       if (!BaseSpec->isVirtual() && !Base->getNumVBases())
13942         continue;
13943 
13944       // If we're not actually going to call a move assignment for this base,
13945       // or the selected move assignment is trivial, skip it.
13946       Sema::SpecialMemberOverloadResult SMOR =
13947         S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
13948                               /*ConstArg*/false, /*VolatileArg*/false,
13949                               /*RValueThis*/true, /*ConstThis*/false,
13950                               /*VolatileThis*/false);
13951       if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
13952           !SMOR.getMethod()->isMoveAssignmentOperator())
13953         continue;
13954 
13955       if (BaseSpec->isVirtual()) {
13956         // We're going to move-assign this virtual base, and its move
13957         // assignment operator is not trivial. If this can happen for
13958         // multiple distinct direct bases of Class, diagnose it. (If it
13959         // only happens in one base, we'll diagnose it when synthesizing
13960         // that base class's move assignment operator.)
13961         CXXBaseSpecifier *&Existing =
13962             VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
13963                 .first->second;
13964         if (Existing && Existing != &BI) {
13965           S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
13966             << Class << Base;
13967           S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
13968               << (Base->getCanonicalDecl() ==
13969                   Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
13970               << Base << Existing->getType() << Existing->getSourceRange();
13971           S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
13972               << (Base->getCanonicalDecl() ==
13973                   BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
13974               << Base << BI.getType() << BaseSpec->getSourceRange();
13975 
13976           // Only diagnose each vbase once.
13977           Existing = nullptr;
13978         }
13979       } else {
13980         // Only walk over bases that have defaulted move assignment operators.
13981         // We assume that any user-provided move assignment operator handles
13982         // the multiple-moves-of-vbase case itself somehow.
13983         if (!SMOR.getMethod()->isDefaulted())
13984           continue;
13985 
13986         // We're going to move the base classes of Base. Add them to the list.
13987         for (auto &BI : Base->bases())
13988           Worklist.push_back(&BI);
13989       }
13990     }
13991   }
13992 }
13993 
13994 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
13995                                         CXXMethodDecl *MoveAssignOperator) {
13996   assert((MoveAssignOperator->isDefaulted() &&
13997           MoveAssignOperator->isOverloadedOperator() &&
13998           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
13999           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
14000           !MoveAssignOperator->isDeleted()) &&
14001          "DefineImplicitMoveAssignment called for wrong function");
14002   if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14003     return;
14004 
14005   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14006   if (ClassDecl->isInvalidDecl()) {
14007     MoveAssignOperator->setInvalidDecl();
14008     return;
14009   }
14010 
14011   // C++0x [class.copy]p28:
14012   //   The implicitly-defined or move assignment operator for a non-union class
14013   //   X performs memberwise move assignment of its subobjects. The direct base
14014   //   classes of X are assigned first, in the order of their declaration in the
14015   //   base-specifier-list, and then the immediate non-static data members of X
14016   //   are assigned, in the order in which they were declared in the class
14017   //   definition.
14018 
14019   // Issue a warning if our implicit move assignment operator will move
14020   // from a virtual base more than once.
14021   checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14022 
14023   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14024 
14025   // The exception specification is needed because we are defining the
14026   // function.
14027   ResolveExceptionSpec(CurrentLocation,
14028                        MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14029 
14030   // Add a context note for diagnostics produced after this point.
14031   Scope.addContextNote(CurrentLocation);
14032 
14033   // The statements that form the synthesized function body.
14034   SmallVector<Stmt*, 8> Statements;
14035 
14036   // The parameter for the "other" object, which we are move from.
14037   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
14038   QualType OtherRefType =
14039       Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
14040 
14041   // Our location for everything implicitly-generated.
14042   SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
14043                            ? MoveAssignOperator->getEndLoc()
14044                            : MoveAssignOperator->getLocation();
14045 
14046   // Builds a reference to the "other" object.
14047   RefBuilder OtherRef(Other, OtherRefType);
14048   // Cast to rvalue.
14049   MoveCastBuilder MoveOther(OtherRef);
14050 
14051   // Builds the "this" pointer.
14052   ThisBuilder This;
14053 
14054   // Assign base classes.
14055   bool Invalid = false;
14056   for (auto &Base : ClassDecl->bases()) {
14057     // C++11 [class.copy]p28:
14058     //   It is unspecified whether subobjects representing virtual base classes
14059     //   are assigned more than once by the implicitly-defined copy assignment
14060     //   operator.
14061     // FIXME: Do not assign to a vbase that will be assigned by some other base
14062     // class. For a move-assignment, this can result in the vbase being moved
14063     // multiple times.
14064 
14065     // Form the assignment:
14066     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
14067     QualType BaseType = Base.getType().getUnqualifiedType();
14068     if (!BaseType->isRecordType()) {
14069       Invalid = true;
14070       continue;
14071     }
14072 
14073     CXXCastPath BasePath;
14074     BasePath.push_back(&Base);
14075 
14076     // Construct the "from" expression, which is an implicit cast to the
14077     // appropriately-qualified base type.
14078     CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
14079 
14080     // Dereference "this".
14081     DerefBuilder DerefThis(This);
14082 
14083     // Implicitly cast "this" to the appropriately-qualified base type.
14084     CastBuilder To(DerefThis,
14085                    Context.getQualifiedType(
14086                        BaseType, MoveAssignOperator->getMethodQualifiers()),
14087                    VK_LValue, BasePath);
14088 
14089     // Build the move.
14090     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
14091                                             To, From,
14092                                             /*CopyingBaseSubobject=*/true,
14093                                             /*Copying=*/false);
14094     if (Move.isInvalid()) {
14095       MoveAssignOperator->setInvalidDecl();
14096       return;
14097     }
14098 
14099     // Success! Record the move.
14100     Statements.push_back(Move.getAs<Expr>());
14101   }
14102 
14103   // Assign non-static members.
14104   for (auto *Field : ClassDecl->fields()) {
14105     // FIXME: We should form some kind of AST representation for the implied
14106     // memcpy in a union copy operation.
14107     if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14108       continue;
14109 
14110     if (Field->isInvalidDecl()) {
14111       Invalid = true;
14112       continue;
14113     }
14114 
14115     // Check for members of reference type; we can't move those.
14116     if (Field->getType()->isReferenceType()) {
14117       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14118         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14119       Diag(Field->getLocation(), diag::note_declared_at);
14120       Invalid = true;
14121       continue;
14122     }
14123 
14124     // Check for members of const-qualified, non-class type.
14125     QualType BaseType = Context.getBaseElementType(Field->getType());
14126     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14127       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14128         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14129       Diag(Field->getLocation(), diag::note_declared_at);
14130       Invalid = true;
14131       continue;
14132     }
14133 
14134     // Suppress assigning zero-width bitfields.
14135     if (Field->isZeroLengthBitField(Context))
14136       continue;
14137 
14138     QualType FieldType = Field->getType().getNonReferenceType();
14139     if (FieldType->isIncompleteArrayType()) {
14140       assert(ClassDecl->hasFlexibleArrayMember() &&
14141              "Incomplete array type is not valid");
14142       continue;
14143     }
14144 
14145     // Build references to the field in the object we're copying from and to.
14146     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14147                               LookupMemberName);
14148     MemberLookup.addDecl(Field);
14149     MemberLookup.resolveKind();
14150     MemberBuilder From(MoveOther, OtherRefType,
14151                        /*IsArrow=*/false, MemberLookup);
14152     MemberBuilder To(This, getCurrentThisType(),
14153                      /*IsArrow=*/true, MemberLookup);
14154 
14155     assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
14156         "Member reference with rvalue base must be rvalue except for reference "
14157         "members, which aren't allowed for move assignment.");
14158 
14159     // Build the move of this field.
14160     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
14161                                             To, From,
14162                                             /*CopyingBaseSubobject=*/false,
14163                                             /*Copying=*/false);
14164     if (Move.isInvalid()) {
14165       MoveAssignOperator->setInvalidDecl();
14166       return;
14167     }
14168 
14169     // Success! Record the copy.
14170     Statements.push_back(Move.getAs<Stmt>());
14171   }
14172 
14173   if (!Invalid) {
14174     // Add a "return *this;"
14175     ExprResult ThisObj =
14176         CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14177 
14178     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14179     if (Return.isInvalid())
14180       Invalid = true;
14181     else
14182       Statements.push_back(Return.getAs<Stmt>());
14183   }
14184 
14185   if (Invalid) {
14186     MoveAssignOperator->setInvalidDecl();
14187     return;
14188   }
14189 
14190   StmtResult Body;
14191   {
14192     CompoundScopeRAII CompoundScope(*this);
14193     Body = ActOnCompoundStmt(Loc, Loc, Statements,
14194                              /*isStmtExpr=*/false);
14195     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
14196   }
14197   MoveAssignOperator->setBody(Body.getAs<Stmt>());
14198   MoveAssignOperator->markUsed(Context);
14199 
14200   if (ASTMutationListener *L = getASTMutationListener()) {
14201     L->CompletedImplicitDefinition(MoveAssignOperator);
14202   }
14203 }
14204 
14205 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
14206                                                     CXXRecordDecl *ClassDecl) {
14207   // C++ [class.copy]p4:
14208   //   If the class definition does not explicitly declare a copy
14209   //   constructor, one is declared implicitly.
14210   assert(ClassDecl->needsImplicitCopyConstructor());
14211 
14212   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
14213   if (DSM.isAlreadyBeingDeclared())
14214     return nullptr;
14215 
14216   QualType ClassType = Context.getTypeDeclType(ClassDecl);
14217   QualType ArgType = ClassType;
14218   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
14219   if (Const)
14220     ArgType = ArgType.withConst();
14221 
14222   LangAS AS = getDefaultCXXMethodAddrSpace();
14223   if (AS != LangAS::Default)
14224     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14225 
14226   ArgType = Context.getLValueReferenceType(ArgType);
14227 
14228   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14229                                                      CXXCopyConstructor,
14230                                                      Const);
14231 
14232   DeclarationName Name
14233     = Context.DeclarationNames.getCXXConstructorName(
14234                                            Context.getCanonicalType(ClassType));
14235   SourceLocation ClassLoc = ClassDecl->getLocation();
14236   DeclarationNameInfo NameInfo(Name, ClassLoc);
14237 
14238   //   An implicitly-declared copy constructor is an inline public
14239   //   member of its class.
14240   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
14241       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14242       ExplicitSpecifier(),
14243       /*isInline=*/true,
14244       /*isImplicitlyDeclared=*/true,
14245       Constexpr ? CSK_constexpr : CSK_unspecified);
14246   CopyConstructor->setAccess(AS_public);
14247   CopyConstructor->setDefaulted();
14248 
14249   if (getLangOpts().CUDA) {
14250     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
14251                                             CopyConstructor,
14252                                             /* ConstRHS */ Const,
14253                                             /* Diagnose */ false);
14254   }
14255 
14256   setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
14257 
14258   // Add the parameter to the constructor.
14259   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
14260                                                ClassLoc, ClassLoc,
14261                                                /*IdentifierInfo=*/nullptr,
14262                                                ArgType, /*TInfo=*/nullptr,
14263                                                SC_None, nullptr);
14264   CopyConstructor->setParams(FromParam);
14265 
14266   CopyConstructor->setTrivial(
14267       ClassDecl->needsOverloadResolutionForCopyConstructor()
14268           ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
14269           : ClassDecl->hasTrivialCopyConstructor());
14270 
14271   CopyConstructor->setTrivialForCall(
14272       ClassDecl->hasAttr<TrivialABIAttr>() ||
14273       (ClassDecl->needsOverloadResolutionForCopyConstructor()
14274            ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
14275              TAH_ConsiderTrivialABI)
14276            : ClassDecl->hasTrivialCopyConstructorForCall()));
14277 
14278   // Note that we have declared this constructor.
14279   ++getASTContext().NumImplicitCopyConstructorsDeclared;
14280 
14281   Scope *S = getScopeForContext(ClassDecl);
14282   CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
14283 
14284   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
14285     ClassDecl->setImplicitCopyConstructorIsDeleted();
14286     SetDeclDeleted(CopyConstructor, ClassLoc);
14287   }
14288 
14289   if (S)
14290     PushOnScopeChains(CopyConstructor, S, false);
14291   ClassDecl->addDecl(CopyConstructor);
14292 
14293   return CopyConstructor;
14294 }
14295 
14296 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
14297                                          CXXConstructorDecl *CopyConstructor) {
14298   assert((CopyConstructor->isDefaulted() &&
14299           CopyConstructor->isCopyConstructor() &&
14300           !CopyConstructor->doesThisDeclarationHaveABody() &&
14301           !CopyConstructor->isDeleted()) &&
14302          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
14303   if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
14304     return;
14305 
14306   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
14307   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
14308 
14309   SynthesizedFunctionScope Scope(*this, CopyConstructor);
14310 
14311   // The exception specification is needed because we are defining the
14312   // function.
14313   ResolveExceptionSpec(CurrentLocation,
14314                        CopyConstructor->getType()->castAs<FunctionProtoType>());
14315   MarkVTableUsed(CurrentLocation, ClassDecl);
14316 
14317   // Add a context note for diagnostics produced after this point.
14318   Scope.addContextNote(CurrentLocation);
14319 
14320   // C++11 [class.copy]p7:
14321   //   The [definition of an implicitly declared copy constructor] is
14322   //   deprecated if the class has a user-declared copy assignment operator
14323   //   or a user-declared destructor.
14324   if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
14325     diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
14326 
14327   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
14328     CopyConstructor->setInvalidDecl();
14329   }  else {
14330     SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
14331                              ? CopyConstructor->getEndLoc()
14332                              : CopyConstructor->getLocation();
14333     Sema::CompoundScopeRAII CompoundScope(*this);
14334     CopyConstructor->setBody(
14335         ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
14336     CopyConstructor->markUsed(Context);
14337   }
14338 
14339   if (ASTMutationListener *L = getASTMutationListener()) {
14340     L->CompletedImplicitDefinition(CopyConstructor);
14341   }
14342 }
14343 
14344 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
14345                                                     CXXRecordDecl *ClassDecl) {
14346   assert(ClassDecl->needsImplicitMoveConstructor());
14347 
14348   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
14349   if (DSM.isAlreadyBeingDeclared())
14350     return nullptr;
14351 
14352   QualType ClassType = Context.getTypeDeclType(ClassDecl);
14353 
14354   QualType ArgType = ClassType;
14355   LangAS AS = getDefaultCXXMethodAddrSpace();
14356   if (AS != LangAS::Default)
14357     ArgType = Context.getAddrSpaceQualType(ClassType, AS);
14358   ArgType = Context.getRValueReferenceType(ArgType);
14359 
14360   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14361                                                      CXXMoveConstructor,
14362                                                      false);
14363 
14364   DeclarationName Name
14365     = Context.DeclarationNames.getCXXConstructorName(
14366                                            Context.getCanonicalType(ClassType));
14367   SourceLocation ClassLoc = ClassDecl->getLocation();
14368   DeclarationNameInfo NameInfo(Name, ClassLoc);
14369 
14370   // C++11 [class.copy]p11:
14371   //   An implicitly-declared copy/move constructor is an inline public
14372   //   member of its class.
14373   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
14374       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14375       ExplicitSpecifier(),
14376       /*isInline=*/true,
14377       /*isImplicitlyDeclared=*/true,
14378       Constexpr ? CSK_constexpr : CSK_unspecified);
14379   MoveConstructor->setAccess(AS_public);
14380   MoveConstructor->setDefaulted();
14381 
14382   if (getLangOpts().CUDA) {
14383     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
14384                                             MoveConstructor,
14385                                             /* ConstRHS */ false,
14386                                             /* Diagnose */ false);
14387   }
14388 
14389   setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
14390 
14391   // Add the parameter to the constructor.
14392   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
14393                                                ClassLoc, ClassLoc,
14394                                                /*IdentifierInfo=*/nullptr,
14395                                                ArgType, /*TInfo=*/nullptr,
14396                                                SC_None, nullptr);
14397   MoveConstructor->setParams(FromParam);
14398 
14399   MoveConstructor->setTrivial(
14400       ClassDecl->needsOverloadResolutionForMoveConstructor()
14401           ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
14402           : ClassDecl->hasTrivialMoveConstructor());
14403 
14404   MoveConstructor->setTrivialForCall(
14405       ClassDecl->hasAttr<TrivialABIAttr>() ||
14406       (ClassDecl->needsOverloadResolutionForMoveConstructor()
14407            ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
14408                                     TAH_ConsiderTrivialABI)
14409            : ClassDecl->hasTrivialMoveConstructorForCall()));
14410 
14411   // Note that we have declared this constructor.
14412   ++getASTContext().NumImplicitMoveConstructorsDeclared;
14413 
14414   Scope *S = getScopeForContext(ClassDecl);
14415   CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
14416 
14417   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
14418     ClassDecl->setImplicitMoveConstructorIsDeleted();
14419     SetDeclDeleted(MoveConstructor, ClassLoc);
14420   }
14421 
14422   if (S)
14423     PushOnScopeChains(MoveConstructor, S, false);
14424   ClassDecl->addDecl(MoveConstructor);
14425 
14426   return MoveConstructor;
14427 }
14428 
14429 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
14430                                          CXXConstructorDecl *MoveConstructor) {
14431   assert((MoveConstructor->isDefaulted() &&
14432           MoveConstructor->isMoveConstructor() &&
14433           !MoveConstructor->doesThisDeclarationHaveABody() &&
14434           !MoveConstructor->isDeleted()) &&
14435          "DefineImplicitMoveConstructor - call it for implicit move ctor");
14436   if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
14437     return;
14438 
14439   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
14440   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
14441 
14442   SynthesizedFunctionScope Scope(*this, MoveConstructor);
14443 
14444   // The exception specification is needed because we are defining the
14445   // function.
14446   ResolveExceptionSpec(CurrentLocation,
14447                        MoveConstructor->getType()->castAs<FunctionProtoType>());
14448   MarkVTableUsed(CurrentLocation, ClassDecl);
14449 
14450   // Add a context note for diagnostics produced after this point.
14451   Scope.addContextNote(CurrentLocation);
14452 
14453   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
14454     MoveConstructor->setInvalidDecl();
14455   } else {
14456     SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
14457                              ? MoveConstructor->getEndLoc()
14458                              : MoveConstructor->getLocation();
14459     Sema::CompoundScopeRAII CompoundScope(*this);
14460     MoveConstructor->setBody(ActOnCompoundStmt(
14461         Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
14462     MoveConstructor->markUsed(Context);
14463   }
14464 
14465   if (ASTMutationListener *L = getASTMutationListener()) {
14466     L->CompletedImplicitDefinition(MoveConstructor);
14467   }
14468 }
14469 
14470 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
14471   return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
14472 }
14473 
14474 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
14475                             SourceLocation CurrentLocation,
14476                             CXXConversionDecl *Conv) {
14477   SynthesizedFunctionScope Scope(*this, Conv);
14478   assert(!Conv->getReturnType()->isUndeducedType());
14479 
14480   CXXRecordDecl *Lambda = Conv->getParent();
14481   FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
14482   FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker();
14483 
14484   if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
14485     CallOp = InstantiateFunctionDeclaration(
14486         CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14487     if (!CallOp)
14488       return;
14489 
14490     Invoker = InstantiateFunctionDeclaration(
14491         Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14492     if (!Invoker)
14493       return;
14494   }
14495 
14496   if (CallOp->isInvalidDecl())
14497     return;
14498 
14499   // Mark the call operator referenced (and add to pending instantiations
14500   // if necessary).
14501   // For both the conversion and static-invoker template specializations
14502   // we construct their body's in this function, so no need to add them
14503   // to the PendingInstantiations.
14504   MarkFunctionReferenced(CurrentLocation, CallOp);
14505 
14506   // Fill in the __invoke function with a dummy implementation. IR generation
14507   // will fill in the actual details. Update its type in case it contained
14508   // an 'auto'.
14509   Invoker->markUsed(Context);
14510   Invoker->setReferenced();
14511   Invoker->setType(Conv->getReturnType()->getPointeeType());
14512   Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
14513 
14514   // Construct the body of the conversion function { return __invoke; }.
14515   Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
14516                                        VK_LValue, Conv->getLocation());
14517   assert(FunctionRef && "Can't refer to __invoke function?");
14518   Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
14519   Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
14520                                      Conv->getLocation()));
14521   Conv->markUsed(Context);
14522   Conv->setReferenced();
14523 
14524   if (ASTMutationListener *L = getASTMutationListener()) {
14525     L->CompletedImplicitDefinition(Conv);
14526     L->CompletedImplicitDefinition(Invoker);
14527   }
14528 }
14529 
14530 
14531 
14532 void Sema::DefineImplicitLambdaToBlockPointerConversion(
14533        SourceLocation CurrentLocation,
14534        CXXConversionDecl *Conv)
14535 {
14536   assert(!Conv->getParent()->isGenericLambda());
14537 
14538   SynthesizedFunctionScope Scope(*this, Conv);
14539 
14540   // Copy-initialize the lambda object as needed to capture it.
14541   Expr *This = ActOnCXXThis(CurrentLocation).get();
14542   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
14543 
14544   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
14545                                                         Conv->getLocation(),
14546                                                         Conv, DerefThis);
14547 
14548   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
14549   // behavior.  Note that only the general conversion function does this
14550   // (since it's unusable otherwise); in the case where we inline the
14551   // block literal, it has block literal lifetime semantics.
14552   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
14553     BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
14554                                           CK_CopyAndAutoreleaseBlockObject,
14555                                           BuildBlock.get(), nullptr, VK_RValue);
14556 
14557   if (BuildBlock.isInvalid()) {
14558     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14559     Conv->setInvalidDecl();
14560     return;
14561   }
14562 
14563   // Create the return statement that returns the block from the conversion
14564   // function.
14565   StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
14566   if (Return.isInvalid()) {
14567     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14568     Conv->setInvalidDecl();
14569     return;
14570   }
14571 
14572   // Set the body of the conversion function.
14573   Stmt *ReturnS = Return.get();
14574   Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
14575                                      Conv->getLocation()));
14576   Conv->markUsed(Context);
14577 
14578   // We're done; notify the mutation listener, if any.
14579   if (ASTMutationListener *L = getASTMutationListener()) {
14580     L->CompletedImplicitDefinition(Conv);
14581   }
14582 }
14583 
14584 /// Determine whether the given list arguments contains exactly one
14585 /// "real" (non-default) argument.
14586 static bool hasOneRealArgument(MultiExprArg Args) {
14587   switch (Args.size()) {
14588   case 0:
14589     return false;
14590 
14591   default:
14592     if (!Args[1]->isDefaultArgument())
14593       return false;
14594 
14595     LLVM_FALLTHROUGH;
14596   case 1:
14597     return !Args[0]->isDefaultArgument();
14598   }
14599 
14600   return false;
14601 }
14602 
14603 ExprResult
14604 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
14605                             NamedDecl *FoundDecl,
14606                             CXXConstructorDecl *Constructor,
14607                             MultiExprArg ExprArgs,
14608                             bool HadMultipleCandidates,
14609                             bool IsListInitialization,
14610                             bool IsStdInitListInitialization,
14611                             bool RequiresZeroInit,
14612                             unsigned ConstructKind,
14613                             SourceRange ParenRange) {
14614   bool Elidable = false;
14615 
14616   // C++0x [class.copy]p34:
14617   //   When certain criteria are met, an implementation is allowed to
14618   //   omit the copy/move construction of a class object, even if the
14619   //   copy/move constructor and/or destructor for the object have
14620   //   side effects. [...]
14621   //     - when a temporary class object that has not been bound to a
14622   //       reference (12.2) would be copied/moved to a class object
14623   //       with the same cv-unqualified type, the copy/move operation
14624   //       can be omitted by constructing the temporary object
14625   //       directly into the target of the omitted copy/move
14626   if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
14627       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
14628     Expr *SubExpr = ExprArgs[0];
14629     Elidable = SubExpr->isTemporaryObject(
14630         Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
14631   }
14632 
14633   return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
14634                                FoundDecl, Constructor,
14635                                Elidable, ExprArgs, HadMultipleCandidates,
14636                                IsListInitialization,
14637                                IsStdInitListInitialization, RequiresZeroInit,
14638                                ConstructKind, ParenRange);
14639 }
14640 
14641 ExprResult
14642 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
14643                             NamedDecl *FoundDecl,
14644                             CXXConstructorDecl *Constructor,
14645                             bool Elidable,
14646                             MultiExprArg ExprArgs,
14647                             bool HadMultipleCandidates,
14648                             bool IsListInitialization,
14649                             bool IsStdInitListInitialization,
14650                             bool RequiresZeroInit,
14651                             unsigned ConstructKind,
14652                             SourceRange ParenRange) {
14653   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
14654     Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
14655     if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
14656       return ExprError();
14657   }
14658 
14659   return BuildCXXConstructExpr(
14660       ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
14661       HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
14662       RequiresZeroInit, ConstructKind, ParenRange);
14663 }
14664 
14665 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
14666 /// including handling of its default argument expressions.
14667 ExprResult
14668 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
14669                             CXXConstructorDecl *Constructor,
14670                             bool Elidable,
14671                             MultiExprArg ExprArgs,
14672                             bool HadMultipleCandidates,
14673                             bool IsListInitialization,
14674                             bool IsStdInitListInitialization,
14675                             bool RequiresZeroInit,
14676                             unsigned ConstructKind,
14677                             SourceRange ParenRange) {
14678   assert(declaresSameEntity(
14679              Constructor->getParent(),
14680              DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
14681          "given constructor for wrong type");
14682   MarkFunctionReferenced(ConstructLoc, Constructor);
14683   if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
14684     return ExprError();
14685 
14686   return CXXConstructExpr::Create(
14687       Context, DeclInitType, ConstructLoc, Constructor, Elidable,
14688       ExprArgs, HadMultipleCandidates, IsListInitialization,
14689       IsStdInitListInitialization, RequiresZeroInit,
14690       static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
14691       ParenRange);
14692 }
14693 
14694 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
14695   assert(Field->hasInClassInitializer());
14696 
14697   // If we already have the in-class initializer nothing needs to be done.
14698   if (Field->getInClassInitializer())
14699     return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
14700 
14701   // If we might have already tried and failed to instantiate, don't try again.
14702   if (Field->isInvalidDecl())
14703     return ExprError();
14704 
14705   // Maybe we haven't instantiated the in-class initializer. Go check the
14706   // pattern FieldDecl to see if it has one.
14707   CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
14708 
14709   if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
14710     CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
14711     DeclContext::lookup_result Lookup =
14712         ClassPattern->lookup(Field->getDeclName());
14713 
14714     // Lookup can return at most two results: the pattern for the field, or the
14715     // injected class name of the parent record. No other member can have the
14716     // same name as the field.
14717     // In modules mode, lookup can return multiple results (coming from
14718     // different modules).
14719     assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) &&
14720            "more than two lookup results for field name");
14721     FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]);
14722     if (!Pattern) {
14723       assert(isa<CXXRecordDecl>(Lookup[0]) &&
14724              "cannot have other non-field member with same name");
14725       for (auto L : Lookup)
14726         if (isa<FieldDecl>(L)) {
14727           Pattern = cast<FieldDecl>(L);
14728           break;
14729         }
14730       assert(Pattern && "We must have set the Pattern!");
14731     }
14732 
14733     if (!Pattern->hasInClassInitializer() ||
14734         InstantiateInClassInitializer(Loc, Field, Pattern,
14735                                       getTemplateInstantiationArgs(Field))) {
14736       // Don't diagnose this again.
14737       Field->setInvalidDecl();
14738       return ExprError();
14739     }
14740     return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
14741   }
14742 
14743   // DR1351:
14744   //   If the brace-or-equal-initializer of a non-static data member
14745   //   invokes a defaulted default constructor of its class or of an
14746   //   enclosing class in a potentially evaluated subexpression, the
14747   //   program is ill-formed.
14748   //
14749   // This resolution is unworkable: the exception specification of the
14750   // default constructor can be needed in an unevaluated context, in
14751   // particular, in the operand of a noexcept-expression, and we can be
14752   // unable to compute an exception specification for an enclosed class.
14753   //
14754   // Any attempt to resolve the exception specification of a defaulted default
14755   // constructor before the initializer is lexically complete will ultimately
14756   // come here at which point we can diagnose it.
14757   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
14758   Diag(Loc, diag::err_in_class_initializer_not_yet_parsed)
14759       << OutermostClass << Field;
14760   Diag(Field->getEndLoc(), diag::note_in_class_initializer_not_yet_parsed);
14761   // Recover by marking the field invalid, unless we're in a SFINAE context.
14762   if (!isSFINAEContext())
14763     Field->setInvalidDecl();
14764   return ExprError();
14765 }
14766 
14767 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
14768   if (VD->isInvalidDecl()) return;
14769 
14770   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
14771   if (ClassDecl->isInvalidDecl()) return;
14772   if (ClassDecl->hasIrrelevantDestructor()) return;
14773   if (ClassDecl->isDependentContext()) return;
14774 
14775   if (VD->isNoDestroy(getASTContext()))
14776     return;
14777 
14778   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14779 
14780   // If this is an array, we'll require the destructor during initialization, so
14781   // we can skip over this. We still want to emit exit-time destructor warnings
14782   // though.
14783   if (!VD->getType()->isArrayType()) {
14784     MarkFunctionReferenced(VD->getLocation(), Destructor);
14785     CheckDestructorAccess(VD->getLocation(), Destructor,
14786                           PDiag(diag::err_access_dtor_var)
14787                               << VD->getDeclName() << VD->getType());
14788     DiagnoseUseOfDecl(Destructor, VD->getLocation());
14789   }
14790 
14791   if (Destructor->isTrivial()) return;
14792 
14793   // If the destructor is constexpr, check whether the variable has constant
14794   // destruction now.
14795   if (Destructor->isConstexpr() && VD->getInit() &&
14796       !VD->getInit()->isValueDependent() && VD->evaluateValue()) {
14797     SmallVector<PartialDiagnosticAt, 8> Notes;
14798     if (!VD->evaluateDestruction(Notes) && VD->isConstexpr()) {
14799       Diag(VD->getLocation(),
14800            diag::err_constexpr_var_requires_const_destruction) << VD;
14801       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
14802         Diag(Notes[I].first, Notes[I].second);
14803     }
14804   }
14805 
14806   if (!VD->hasGlobalStorage()) return;
14807 
14808   // Emit warning for non-trivial dtor in global scope (a real global,
14809   // class-static, function-static).
14810   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
14811 
14812   // TODO: this should be re-enabled for static locals by !CXAAtExit
14813   if (!VD->isStaticLocal())
14814     Diag(VD->getLocation(), diag::warn_global_destructor);
14815 }
14816 
14817 /// Given a constructor and the set of arguments provided for the
14818 /// constructor, convert the arguments and add any required default arguments
14819 /// to form a proper call to this constructor.
14820 ///
14821 /// \returns true if an error occurred, false otherwise.
14822 bool
14823 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
14824                               MultiExprArg ArgsPtr,
14825                               SourceLocation Loc,
14826                               SmallVectorImpl<Expr*> &ConvertedArgs,
14827                               bool AllowExplicit,
14828                               bool IsListInitialization) {
14829   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
14830   unsigned NumArgs = ArgsPtr.size();
14831   Expr **Args = ArgsPtr.data();
14832 
14833   const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
14834   unsigned NumParams = Proto->getNumParams();
14835 
14836   // If too few arguments are available, we'll fill in the rest with defaults.
14837   if (NumArgs < NumParams)
14838     ConvertedArgs.reserve(NumParams);
14839   else
14840     ConvertedArgs.reserve(NumArgs);
14841 
14842   VariadicCallType CallType =
14843     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
14844   SmallVector<Expr *, 8> AllArgs;
14845   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
14846                                         Proto, 0,
14847                                         llvm::makeArrayRef(Args, NumArgs),
14848                                         AllArgs,
14849                                         CallType, AllowExplicit,
14850                                         IsListInitialization);
14851   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
14852 
14853   DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
14854 
14855   CheckConstructorCall(Constructor,
14856                        llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
14857                        Proto, Loc);
14858 
14859   return Invalid;
14860 }
14861 
14862 static inline bool
14863 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
14864                                        const FunctionDecl *FnDecl) {
14865   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
14866   if (isa<NamespaceDecl>(DC)) {
14867     return SemaRef.Diag(FnDecl->getLocation(),
14868                         diag::err_operator_new_delete_declared_in_namespace)
14869       << FnDecl->getDeclName();
14870   }
14871 
14872   if (isa<TranslationUnitDecl>(DC) &&
14873       FnDecl->getStorageClass() == SC_Static) {
14874     return SemaRef.Diag(FnDecl->getLocation(),
14875                         diag::err_operator_new_delete_declared_static)
14876       << FnDecl->getDeclName();
14877   }
14878 
14879   return false;
14880 }
14881 
14882 static QualType
14883 RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) {
14884   QualType QTy = PtrTy->getPointeeType();
14885   QTy = SemaRef.Context.removeAddrSpaceQualType(QTy);
14886   return SemaRef.Context.getPointerType(QTy);
14887 }
14888 
14889 static inline bool
14890 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
14891                             CanQualType ExpectedResultType,
14892                             CanQualType ExpectedFirstParamType,
14893                             unsigned DependentParamTypeDiag,
14894                             unsigned InvalidParamTypeDiag) {
14895   QualType ResultType =
14896       FnDecl->getType()->castAs<FunctionType>()->getReturnType();
14897 
14898   // Check that the result type is not dependent.
14899   if (ResultType->isDependentType())
14900     return SemaRef.Diag(FnDecl->getLocation(),
14901                         diag::err_operator_new_delete_dependent_result_type)
14902     << FnDecl->getDeclName() << ExpectedResultType;
14903 
14904   // The operator is valid on any address space for OpenCL.
14905   if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
14906     if (auto *PtrTy = ResultType->getAs<PointerType>()) {
14907       ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
14908     }
14909   }
14910 
14911   // Check that the result type is what we expect.
14912   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
14913     return SemaRef.Diag(FnDecl->getLocation(),
14914                         diag::err_operator_new_delete_invalid_result_type)
14915     << FnDecl->getDeclName() << ExpectedResultType;
14916 
14917   // A function template must have at least 2 parameters.
14918   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
14919     return SemaRef.Diag(FnDecl->getLocation(),
14920                       diag::err_operator_new_delete_template_too_few_parameters)
14921         << FnDecl->getDeclName();
14922 
14923   // The function decl must have at least 1 parameter.
14924   if (FnDecl->getNumParams() == 0)
14925     return SemaRef.Diag(FnDecl->getLocation(),
14926                         diag::err_operator_new_delete_too_few_parameters)
14927       << FnDecl->getDeclName();
14928 
14929   // Check the first parameter type is not dependent.
14930   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
14931   if (FirstParamType->isDependentType())
14932     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
14933       << FnDecl->getDeclName() << ExpectedFirstParamType;
14934 
14935   // Check that the first parameter type is what we expect.
14936   if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
14937     // The operator is valid on any address space for OpenCL.
14938     if (auto *PtrTy =
14939             FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) {
14940       FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
14941     }
14942   }
14943   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
14944       ExpectedFirstParamType)
14945     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
14946     << FnDecl->getDeclName() << ExpectedFirstParamType;
14947 
14948   return false;
14949 }
14950 
14951 static bool
14952 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
14953   // C++ [basic.stc.dynamic.allocation]p1:
14954   //   A program is ill-formed if an allocation function is declared in a
14955   //   namespace scope other than global scope or declared static in global
14956   //   scope.
14957   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
14958     return true;
14959 
14960   CanQualType SizeTy =
14961     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
14962 
14963   // C++ [basic.stc.dynamic.allocation]p1:
14964   //  The return type shall be void*. The first parameter shall have type
14965   //  std::size_t.
14966   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
14967                                   SizeTy,
14968                                   diag::err_operator_new_dependent_param_type,
14969                                   diag::err_operator_new_param_type))
14970     return true;
14971 
14972   // C++ [basic.stc.dynamic.allocation]p1:
14973   //  The first parameter shall not have an associated default argument.
14974   if (FnDecl->getParamDecl(0)->hasDefaultArg())
14975     return SemaRef.Diag(FnDecl->getLocation(),
14976                         diag::err_operator_new_default_arg)
14977       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
14978 
14979   return false;
14980 }
14981 
14982 static bool
14983 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
14984   // C++ [basic.stc.dynamic.deallocation]p1:
14985   //   A program is ill-formed if deallocation functions are declared in a
14986   //   namespace scope other than global scope or declared static in global
14987   //   scope.
14988   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
14989     return true;
14990 
14991   auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
14992 
14993   // C++ P0722:
14994   //   Within a class C, the first parameter of a destroying operator delete
14995   //   shall be of type C *. The first parameter of any other deallocation
14996   //   function shall be of type void *.
14997   CanQualType ExpectedFirstParamType =
14998       MD && MD->isDestroyingOperatorDelete()
14999           ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15000                 SemaRef.Context.getRecordType(MD->getParent())))
15001           : SemaRef.Context.VoidPtrTy;
15002 
15003   // C++ [basic.stc.dynamic.deallocation]p2:
15004   //   Each deallocation function shall return void
15005   if (CheckOperatorNewDeleteTypes(
15006           SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15007           diag::err_operator_delete_dependent_param_type,
15008           diag::err_operator_delete_param_type))
15009     return true;
15010 
15011   // C++ P0722:
15012   //   A destroying operator delete shall be a usual deallocation function.
15013   if (MD && !MD->getParent()->isDependentContext() &&
15014       MD->isDestroyingOperatorDelete() &&
15015       !SemaRef.isUsualDeallocationFunction(MD)) {
15016     SemaRef.Diag(MD->getLocation(),
15017                  diag::err_destroying_operator_delete_not_usual);
15018     return true;
15019   }
15020 
15021   return false;
15022 }
15023 
15024 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
15025 /// of this overloaded operator is well-formed. If so, returns false;
15026 /// otherwise, emits appropriate diagnostics and returns true.
15027 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15028   assert(FnDecl && FnDecl->isOverloadedOperator() &&
15029          "Expected an overloaded operator declaration");
15030 
15031   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15032 
15033   // C++ [over.oper]p5:
15034   //   The allocation and deallocation functions, operator new,
15035   //   operator new[], operator delete and operator delete[], are
15036   //   described completely in 3.7.3. The attributes and restrictions
15037   //   found in the rest of this subclause do not apply to them unless
15038   //   explicitly stated in 3.7.3.
15039   if (Op == OO_Delete || Op == OO_Array_Delete)
15040     return CheckOperatorDeleteDeclaration(*this, FnDecl);
15041 
15042   if (Op == OO_New || Op == OO_Array_New)
15043     return CheckOperatorNewDeclaration(*this, FnDecl);
15044 
15045   // C++ [over.oper]p6:
15046   //   An operator function shall either be a non-static member
15047   //   function or be a non-member function and have at least one
15048   //   parameter whose type is a class, a reference to a class, an
15049   //   enumeration, or a reference to an enumeration.
15050   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15051     if (MethodDecl->isStatic())
15052       return Diag(FnDecl->getLocation(),
15053                   diag::err_operator_overload_static) << FnDecl->getDeclName();
15054   } else {
15055     bool ClassOrEnumParam = false;
15056     for (auto Param : FnDecl->parameters()) {
15057       QualType ParamType = Param->getType().getNonReferenceType();
15058       if (ParamType->isDependentType() || ParamType->isRecordType() ||
15059           ParamType->isEnumeralType()) {
15060         ClassOrEnumParam = true;
15061         break;
15062       }
15063     }
15064 
15065     if (!ClassOrEnumParam)
15066       return Diag(FnDecl->getLocation(),
15067                   diag::err_operator_overload_needs_class_or_enum)
15068         << FnDecl->getDeclName();
15069   }
15070 
15071   // C++ [over.oper]p8:
15072   //   An operator function cannot have default arguments (8.3.6),
15073   //   except where explicitly stated below.
15074   //
15075   // Only the function-call operator allows default arguments
15076   // (C++ [over.call]p1).
15077   if (Op != OO_Call) {
15078     for (auto Param : FnDecl->parameters()) {
15079       if (Param->hasDefaultArg())
15080         return Diag(Param->getLocation(),
15081                     diag::err_operator_overload_default_arg)
15082           << FnDecl->getDeclName() << Param->getDefaultArgRange();
15083     }
15084   }
15085 
15086   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
15087     { false, false, false }
15088 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
15089     , { Unary, Binary, MemberOnly }
15090 #include "clang/Basic/OperatorKinds.def"
15091   };
15092 
15093   bool CanBeUnaryOperator = OperatorUses[Op][0];
15094   bool CanBeBinaryOperator = OperatorUses[Op][1];
15095   bool MustBeMemberOperator = OperatorUses[Op][2];
15096 
15097   // C++ [over.oper]p8:
15098   //   [...] Operator functions cannot have more or fewer parameters
15099   //   than the number required for the corresponding operator, as
15100   //   described in the rest of this subclause.
15101   unsigned NumParams = FnDecl->getNumParams()
15102                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
15103   if (Op != OO_Call &&
15104       ((NumParams == 1 && !CanBeUnaryOperator) ||
15105        (NumParams == 2 && !CanBeBinaryOperator) ||
15106        (NumParams < 1) || (NumParams > 2))) {
15107     // We have the wrong number of parameters.
15108     unsigned ErrorKind;
15109     if (CanBeUnaryOperator && CanBeBinaryOperator) {
15110       ErrorKind = 2;  // 2 -> unary or binary.
15111     } else if (CanBeUnaryOperator) {
15112       ErrorKind = 0;  // 0 -> unary
15113     } else {
15114       assert(CanBeBinaryOperator &&
15115              "All non-call overloaded operators are unary or binary!");
15116       ErrorKind = 1;  // 1 -> binary
15117     }
15118 
15119     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
15120       << FnDecl->getDeclName() << NumParams << ErrorKind;
15121   }
15122 
15123   // Overloaded operators other than operator() cannot be variadic.
15124   if (Op != OO_Call &&
15125       FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
15126     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
15127       << FnDecl->getDeclName();
15128   }
15129 
15130   // Some operators must be non-static member functions.
15131   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
15132     return Diag(FnDecl->getLocation(),
15133                 diag::err_operator_overload_must_be_member)
15134       << FnDecl->getDeclName();
15135   }
15136 
15137   // C++ [over.inc]p1:
15138   //   The user-defined function called operator++ implements the
15139   //   prefix and postfix ++ operator. If this function is a member
15140   //   function with no parameters, or a non-member function with one
15141   //   parameter of class or enumeration type, it defines the prefix
15142   //   increment operator ++ for objects of that type. If the function
15143   //   is a member function with one parameter (which shall be of type
15144   //   int) or a non-member function with two parameters (the second
15145   //   of which shall be of type int), it defines the postfix
15146   //   increment operator ++ for objects of that type.
15147   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
15148     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
15149     QualType ParamType = LastParam->getType();
15150 
15151     if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
15152         !ParamType->isDependentType())
15153       return Diag(LastParam->getLocation(),
15154                   diag::err_operator_overload_post_incdec_must_be_int)
15155         << LastParam->getType() << (Op == OO_MinusMinus);
15156   }
15157 
15158   return false;
15159 }
15160 
15161 static bool
15162 checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
15163                                           FunctionTemplateDecl *TpDecl) {
15164   TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
15165 
15166   // Must have one or two template parameters.
15167   if (TemplateParams->size() == 1) {
15168     NonTypeTemplateParmDecl *PmDecl =
15169         dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
15170 
15171     // The template parameter must be a char parameter pack.
15172     if (PmDecl && PmDecl->isTemplateParameterPack() &&
15173         SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
15174       return false;
15175 
15176   } else if (TemplateParams->size() == 2) {
15177     TemplateTypeParmDecl *PmType =
15178         dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
15179     NonTypeTemplateParmDecl *PmArgs =
15180         dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
15181 
15182     // The second template parameter must be a parameter pack with the
15183     // first template parameter as its type.
15184     if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
15185         PmArgs->isTemplateParameterPack()) {
15186       const TemplateTypeParmType *TArgs =
15187           PmArgs->getType()->getAs<TemplateTypeParmType>();
15188       if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
15189           TArgs->getIndex() == PmType->getIndex()) {
15190         if (!SemaRef.inTemplateInstantiation())
15191           SemaRef.Diag(TpDecl->getLocation(),
15192                        diag::ext_string_literal_operator_template);
15193         return false;
15194       }
15195     }
15196   }
15197 
15198   SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
15199                diag::err_literal_operator_template)
15200       << TpDecl->getTemplateParameters()->getSourceRange();
15201   return true;
15202 }
15203 
15204 /// CheckLiteralOperatorDeclaration - Check whether the declaration
15205 /// of this literal operator function is well-formed. If so, returns
15206 /// false; otherwise, emits appropriate diagnostics and returns true.
15207 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
15208   if (isa<CXXMethodDecl>(FnDecl)) {
15209     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
15210       << FnDecl->getDeclName();
15211     return true;
15212   }
15213 
15214   if (FnDecl->isExternC()) {
15215     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
15216     if (const LinkageSpecDecl *LSD =
15217             FnDecl->getDeclContext()->getExternCContext())
15218       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
15219     return true;
15220   }
15221 
15222   // This might be the definition of a literal operator template.
15223   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
15224 
15225   // This might be a specialization of a literal operator template.
15226   if (!TpDecl)
15227     TpDecl = FnDecl->getPrimaryTemplate();
15228 
15229   // template <char...> type operator "" name() and
15230   // template <class T, T...> type operator "" name() are the only valid
15231   // template signatures, and the only valid signatures with no parameters.
15232   if (TpDecl) {
15233     if (FnDecl->param_size() != 0) {
15234       Diag(FnDecl->getLocation(),
15235            diag::err_literal_operator_template_with_params);
15236       return true;
15237     }
15238 
15239     if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
15240       return true;
15241 
15242   } else if (FnDecl->param_size() == 1) {
15243     const ParmVarDecl *Param = FnDecl->getParamDecl(0);
15244 
15245     QualType ParamType = Param->getType().getUnqualifiedType();
15246 
15247     // Only unsigned long long int, long double, any character type, and const
15248     // char * are allowed as the only parameters.
15249     if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
15250         ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
15251         Context.hasSameType(ParamType, Context.CharTy) ||
15252         Context.hasSameType(ParamType, Context.WideCharTy) ||
15253         Context.hasSameType(ParamType, Context.Char8Ty) ||
15254         Context.hasSameType(ParamType, Context.Char16Ty) ||
15255         Context.hasSameType(ParamType, Context.Char32Ty)) {
15256     } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
15257       QualType InnerType = Ptr->getPointeeType();
15258 
15259       // Pointer parameter must be a const char *.
15260       if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
15261                                 Context.CharTy) &&
15262             InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
15263         Diag(Param->getSourceRange().getBegin(),
15264              diag::err_literal_operator_param)
15265             << ParamType << "'const char *'" << Param->getSourceRange();
15266         return true;
15267       }
15268 
15269     } else if (ParamType->isRealFloatingType()) {
15270       Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15271           << ParamType << Context.LongDoubleTy << Param->getSourceRange();
15272       return true;
15273 
15274     } else if (ParamType->isIntegerType()) {
15275       Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15276           << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
15277       return true;
15278 
15279     } else {
15280       Diag(Param->getSourceRange().getBegin(),
15281            diag::err_literal_operator_invalid_param)
15282           << ParamType << Param->getSourceRange();
15283       return true;
15284     }
15285 
15286   } else if (FnDecl->param_size() == 2) {
15287     FunctionDecl::param_iterator Param = FnDecl->param_begin();
15288 
15289     // First, verify that the first parameter is correct.
15290 
15291     QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
15292 
15293     // Two parameter function must have a pointer to const as a
15294     // first parameter; let's strip those qualifiers.
15295     const PointerType *PT = FirstParamType->getAs<PointerType>();
15296 
15297     if (!PT) {
15298       Diag((*Param)->getSourceRange().getBegin(),
15299            diag::err_literal_operator_param)
15300           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15301       return true;
15302     }
15303 
15304     QualType PointeeType = PT->getPointeeType();
15305     // First parameter must be const
15306     if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
15307       Diag((*Param)->getSourceRange().getBegin(),
15308            diag::err_literal_operator_param)
15309           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15310       return true;
15311     }
15312 
15313     QualType InnerType = PointeeType.getUnqualifiedType();
15314     // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
15315     // const char32_t* are allowed as the first parameter to a two-parameter
15316     // function
15317     if (!(Context.hasSameType(InnerType, Context.CharTy) ||
15318           Context.hasSameType(InnerType, Context.WideCharTy) ||
15319           Context.hasSameType(InnerType, Context.Char8Ty) ||
15320           Context.hasSameType(InnerType, Context.Char16Ty) ||
15321           Context.hasSameType(InnerType, Context.Char32Ty))) {
15322       Diag((*Param)->getSourceRange().getBegin(),
15323            diag::err_literal_operator_param)
15324           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15325       return true;
15326     }
15327 
15328     // Move on to the second and final parameter.
15329     ++Param;
15330 
15331     // The second parameter must be a std::size_t.
15332     QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
15333     if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
15334       Diag((*Param)->getSourceRange().getBegin(),
15335            diag::err_literal_operator_param)
15336           << SecondParamType << Context.getSizeType()
15337           << (*Param)->getSourceRange();
15338       return true;
15339     }
15340   } else {
15341     Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
15342     return true;
15343   }
15344 
15345   // Parameters are good.
15346 
15347   // A parameter-declaration-clause containing a default argument is not
15348   // equivalent to any of the permitted forms.
15349   for (auto Param : FnDecl->parameters()) {
15350     if (Param->hasDefaultArg()) {
15351       Diag(Param->getDefaultArgRange().getBegin(),
15352            diag::err_literal_operator_default_argument)
15353         << Param->getDefaultArgRange();
15354       break;
15355     }
15356   }
15357 
15358   StringRef LiteralName
15359     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
15360   if (LiteralName[0] != '_' &&
15361       !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
15362     // C++11 [usrlit.suffix]p1:
15363     //   Literal suffix identifiers that do not start with an underscore
15364     //   are reserved for future standardization.
15365     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
15366       << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
15367   }
15368 
15369   return false;
15370 }
15371 
15372 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
15373 /// linkage specification, including the language and (if present)
15374 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
15375 /// language string literal. LBraceLoc, if valid, provides the location of
15376 /// the '{' brace. Otherwise, this linkage specification does not
15377 /// have any braces.
15378 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
15379                                            Expr *LangStr,
15380                                            SourceLocation LBraceLoc) {
15381   StringLiteral *Lit = cast<StringLiteral>(LangStr);
15382   if (!Lit->isAscii()) {
15383     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
15384       << LangStr->getSourceRange();
15385     return nullptr;
15386   }
15387 
15388   StringRef Lang = Lit->getString();
15389   LinkageSpecDecl::LanguageIDs Language;
15390   if (Lang == "C")
15391     Language = LinkageSpecDecl::lang_c;
15392   else if (Lang == "C++")
15393     Language = LinkageSpecDecl::lang_cxx;
15394   else {
15395     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
15396       << LangStr->getSourceRange();
15397     return nullptr;
15398   }
15399 
15400   // FIXME: Add all the various semantics of linkage specifications
15401 
15402   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
15403                                                LangStr->getExprLoc(), Language,
15404                                                LBraceLoc.isValid());
15405   CurContext->addDecl(D);
15406   PushDeclContext(S, D);
15407   return D;
15408 }
15409 
15410 /// ActOnFinishLinkageSpecification - Complete the definition of
15411 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
15412 /// valid, it's the position of the closing '}' brace in a linkage
15413 /// specification that uses braces.
15414 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
15415                                             Decl *LinkageSpec,
15416                                             SourceLocation RBraceLoc) {
15417   if (RBraceLoc.isValid()) {
15418     LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
15419     LSDecl->setRBraceLoc(RBraceLoc);
15420   }
15421   PopDeclContext();
15422   return LinkageSpec;
15423 }
15424 
15425 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
15426                                   const ParsedAttributesView &AttrList,
15427                                   SourceLocation SemiLoc) {
15428   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
15429   // Attribute declarations appertain to empty declaration so we handle
15430   // them here.
15431   ProcessDeclAttributeList(S, ED, AttrList);
15432 
15433   CurContext->addDecl(ED);
15434   return ED;
15435 }
15436 
15437 /// Perform semantic analysis for the variable declaration that
15438 /// occurs within a C++ catch clause, returning the newly-created
15439 /// variable.
15440 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
15441                                          TypeSourceInfo *TInfo,
15442                                          SourceLocation StartLoc,
15443                                          SourceLocation Loc,
15444                                          IdentifierInfo *Name) {
15445   bool Invalid = false;
15446   QualType ExDeclType = TInfo->getType();
15447 
15448   // Arrays and functions decay.
15449   if (ExDeclType->isArrayType())
15450     ExDeclType = Context.getArrayDecayedType(ExDeclType);
15451   else if (ExDeclType->isFunctionType())
15452     ExDeclType = Context.getPointerType(ExDeclType);
15453 
15454   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
15455   // The exception-declaration shall not denote a pointer or reference to an
15456   // incomplete type, other than [cv] void*.
15457   // N2844 forbids rvalue references.
15458   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
15459     Diag(Loc, diag::err_catch_rvalue_ref);
15460     Invalid = true;
15461   }
15462 
15463   if (ExDeclType->isVariablyModifiedType()) {
15464     Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
15465     Invalid = true;
15466   }
15467 
15468   QualType BaseType = ExDeclType;
15469   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
15470   unsigned DK = diag::err_catch_incomplete;
15471   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
15472     BaseType = Ptr->getPointeeType();
15473     Mode = 1;
15474     DK = diag::err_catch_incomplete_ptr;
15475   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
15476     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
15477     BaseType = Ref->getPointeeType();
15478     Mode = 2;
15479     DK = diag::err_catch_incomplete_ref;
15480   }
15481   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
15482       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
15483     Invalid = true;
15484 
15485   if (!Invalid && !ExDeclType->isDependentType() &&
15486       RequireNonAbstractType(Loc, ExDeclType,
15487                              diag::err_abstract_type_in_decl,
15488                              AbstractVariableType))
15489     Invalid = true;
15490 
15491   // Only the non-fragile NeXT runtime currently supports C++ catches
15492   // of ObjC types, and no runtime supports catching ObjC types by value.
15493   if (!Invalid && getLangOpts().ObjC) {
15494     QualType T = ExDeclType;
15495     if (const ReferenceType *RT = T->getAs<ReferenceType>())
15496       T = RT->getPointeeType();
15497 
15498     if (T->isObjCObjectType()) {
15499       Diag(Loc, diag::err_objc_object_catch);
15500       Invalid = true;
15501     } else if (T->isObjCObjectPointerType()) {
15502       // FIXME: should this be a test for macosx-fragile specifically?
15503       if (getLangOpts().ObjCRuntime.isFragile())
15504         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
15505     }
15506   }
15507 
15508   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
15509                                     ExDeclType, TInfo, SC_None);
15510   ExDecl->setExceptionVariable(true);
15511 
15512   // In ARC, infer 'retaining' for variables of retainable type.
15513   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
15514     Invalid = true;
15515 
15516   if (!Invalid && !ExDeclType->isDependentType()) {
15517     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
15518       // Insulate this from anything else we might currently be parsing.
15519       EnterExpressionEvaluationContext scope(
15520           *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15521 
15522       // C++ [except.handle]p16:
15523       //   The object declared in an exception-declaration or, if the
15524       //   exception-declaration does not specify a name, a temporary (12.2) is
15525       //   copy-initialized (8.5) from the exception object. [...]
15526       //   The object is destroyed when the handler exits, after the destruction
15527       //   of any automatic objects initialized within the handler.
15528       //
15529       // We just pretend to initialize the object with itself, then make sure
15530       // it can be destroyed later.
15531       QualType initType = Context.getExceptionObjectType(ExDeclType);
15532 
15533       InitializedEntity entity =
15534         InitializedEntity::InitializeVariable(ExDecl);
15535       InitializationKind initKind =
15536         InitializationKind::CreateCopy(Loc, SourceLocation());
15537 
15538       Expr *opaqueValue =
15539         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
15540       InitializationSequence sequence(*this, entity, initKind, opaqueValue);
15541       ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
15542       if (result.isInvalid())
15543         Invalid = true;
15544       else {
15545         // If the constructor used was non-trivial, set this as the
15546         // "initializer".
15547         CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
15548         if (!construct->getConstructor()->isTrivial()) {
15549           Expr *init = MaybeCreateExprWithCleanups(construct);
15550           ExDecl->setInit(init);
15551         }
15552 
15553         // And make sure it's destructable.
15554         FinalizeVarWithDestructor(ExDecl, recordType);
15555       }
15556     }
15557   }
15558 
15559   if (Invalid)
15560     ExDecl->setInvalidDecl();
15561 
15562   return ExDecl;
15563 }
15564 
15565 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
15566 /// handler.
15567 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
15568   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15569   bool Invalid = D.isInvalidType();
15570 
15571   // Check for unexpanded parameter packs.
15572   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15573                                       UPPC_ExceptionType)) {
15574     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
15575                                              D.getIdentifierLoc());
15576     Invalid = true;
15577   }
15578 
15579   IdentifierInfo *II = D.getIdentifier();
15580   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
15581                                              LookupOrdinaryName,
15582                                              ForVisibleRedeclaration)) {
15583     // The scope should be freshly made just for us. There is just no way
15584     // it contains any previous declaration, except for function parameters in
15585     // a function-try-block's catch statement.
15586     assert(!S->isDeclScope(PrevDecl));
15587     if (isDeclInScope(PrevDecl, CurContext, S)) {
15588       Diag(D.getIdentifierLoc(), diag::err_redefinition)
15589         << D.getIdentifier();
15590       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
15591       Invalid = true;
15592     } else if (PrevDecl->isTemplateParameter())
15593       // Maybe we will complain about the shadowed template parameter.
15594       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15595   }
15596 
15597   if (D.getCXXScopeSpec().isSet() && !Invalid) {
15598     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
15599       << D.getCXXScopeSpec().getRange();
15600     Invalid = true;
15601   }
15602 
15603   VarDecl *ExDecl = BuildExceptionDeclaration(
15604       S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
15605   if (Invalid)
15606     ExDecl->setInvalidDecl();
15607 
15608   // Add the exception declaration into this scope.
15609   if (II)
15610     PushOnScopeChains(ExDecl, S);
15611   else
15612     CurContext->addDecl(ExDecl);
15613 
15614   ProcessDeclAttributes(S, ExDecl, D);
15615   return ExDecl;
15616 }
15617 
15618 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
15619                                          Expr *AssertExpr,
15620                                          Expr *AssertMessageExpr,
15621                                          SourceLocation RParenLoc) {
15622   StringLiteral *AssertMessage =
15623       AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
15624 
15625   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
15626     return nullptr;
15627 
15628   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
15629                                       AssertMessage, RParenLoc, false);
15630 }
15631 
15632 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
15633                                          Expr *AssertExpr,
15634                                          StringLiteral *AssertMessage,
15635                                          SourceLocation RParenLoc,
15636                                          bool Failed) {
15637   assert(AssertExpr != nullptr && "Expected non-null condition");
15638   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
15639       !Failed) {
15640     // In a static_assert-declaration, the constant-expression shall be a
15641     // constant expression that can be contextually converted to bool.
15642     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
15643     if (Converted.isInvalid())
15644       Failed = true;
15645 
15646     ExprResult FullAssertExpr =
15647         ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
15648                             /*DiscardedValue*/ false,
15649                             /*IsConstexpr*/ true);
15650     if (FullAssertExpr.isInvalid())
15651       Failed = true;
15652     else
15653       AssertExpr = FullAssertExpr.get();
15654 
15655     llvm::APSInt Cond;
15656     if (!Failed && VerifyIntegerConstantExpression(AssertExpr, &Cond,
15657           diag::err_static_assert_expression_is_not_constant,
15658           /*AllowFold=*/false).isInvalid())
15659       Failed = true;
15660 
15661     if (!Failed && !Cond) {
15662       SmallString<256> MsgBuffer;
15663       llvm::raw_svector_ostream Msg(MsgBuffer);
15664       if (AssertMessage)
15665         AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
15666 
15667       Expr *InnerCond = nullptr;
15668       std::string InnerCondDescription;
15669       std::tie(InnerCond, InnerCondDescription) =
15670         findFailedBooleanCondition(Converted.get());
15671       if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
15672         // Drill down into concept specialization expressions to see why they
15673         // weren't satisfied.
15674         Diag(StaticAssertLoc, diag::err_static_assert_failed)
15675           << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
15676         ConstraintSatisfaction Satisfaction;
15677         if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
15678           DiagnoseUnsatisfiedConstraint(Satisfaction);
15679       } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
15680                            && !isa<IntegerLiteral>(InnerCond)) {
15681         Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
15682           << InnerCondDescription << !AssertMessage
15683           << Msg.str() << InnerCond->getSourceRange();
15684       } else {
15685         Diag(StaticAssertLoc, diag::err_static_assert_failed)
15686           << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
15687       }
15688       Failed = true;
15689     }
15690   } else {
15691     ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
15692                                                     /*DiscardedValue*/false,
15693                                                     /*IsConstexpr*/true);
15694     if (FullAssertExpr.isInvalid())
15695       Failed = true;
15696     else
15697       AssertExpr = FullAssertExpr.get();
15698   }
15699 
15700   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
15701                                         AssertExpr, AssertMessage, RParenLoc,
15702                                         Failed);
15703 
15704   CurContext->addDecl(Decl);
15705   return Decl;
15706 }
15707 
15708 /// Perform semantic analysis of the given friend type declaration.
15709 ///
15710 /// \returns A friend declaration that.
15711 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
15712                                       SourceLocation FriendLoc,
15713                                       TypeSourceInfo *TSInfo) {
15714   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
15715 
15716   QualType T = TSInfo->getType();
15717   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
15718 
15719   // C++03 [class.friend]p2:
15720   //   An elaborated-type-specifier shall be used in a friend declaration
15721   //   for a class.*
15722   //
15723   //   * The class-key of the elaborated-type-specifier is required.
15724   if (!CodeSynthesisContexts.empty()) {
15725     // Do not complain about the form of friend template types during any kind
15726     // of code synthesis. For template instantiation, we will have complained
15727     // when the template was defined.
15728   } else {
15729     if (!T->isElaboratedTypeSpecifier()) {
15730       // If we evaluated the type to a record type, suggest putting
15731       // a tag in front.
15732       if (const RecordType *RT = T->getAs<RecordType>()) {
15733         RecordDecl *RD = RT->getDecl();
15734 
15735         SmallString<16> InsertionText(" ");
15736         InsertionText += RD->getKindName();
15737 
15738         Diag(TypeRange.getBegin(),
15739              getLangOpts().CPlusPlus11 ?
15740                diag::warn_cxx98_compat_unelaborated_friend_type :
15741                diag::ext_unelaborated_friend_type)
15742           << (unsigned) RD->getTagKind()
15743           << T
15744           << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
15745                                         InsertionText);
15746       } else {
15747         Diag(FriendLoc,
15748              getLangOpts().CPlusPlus11 ?
15749                diag::warn_cxx98_compat_nonclass_type_friend :
15750                diag::ext_nonclass_type_friend)
15751           << T
15752           << TypeRange;
15753       }
15754     } else if (T->getAs<EnumType>()) {
15755       Diag(FriendLoc,
15756            getLangOpts().CPlusPlus11 ?
15757              diag::warn_cxx98_compat_enum_friend :
15758              diag::ext_enum_friend)
15759         << T
15760         << TypeRange;
15761     }
15762 
15763     // C++11 [class.friend]p3:
15764     //   A friend declaration that does not declare a function shall have one
15765     //   of the following forms:
15766     //     friend elaborated-type-specifier ;
15767     //     friend simple-type-specifier ;
15768     //     friend typename-specifier ;
15769     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
15770       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
15771   }
15772 
15773   //   If the type specifier in a friend declaration designates a (possibly
15774   //   cv-qualified) class type, that class is declared as a friend; otherwise,
15775   //   the friend declaration is ignored.
15776   return FriendDecl::Create(Context, CurContext,
15777                             TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
15778                             FriendLoc);
15779 }
15780 
15781 /// Handle a friend tag declaration where the scope specifier was
15782 /// templated.
15783 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
15784                                     unsigned TagSpec, SourceLocation TagLoc,
15785                                     CXXScopeSpec &SS, IdentifierInfo *Name,
15786                                     SourceLocation NameLoc,
15787                                     const ParsedAttributesView &Attr,
15788                                     MultiTemplateParamsArg TempParamLists) {
15789   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15790 
15791   bool IsMemberSpecialization = false;
15792   bool Invalid = false;
15793 
15794   if (TemplateParameterList *TemplateParams =
15795           MatchTemplateParametersToScopeSpecifier(
15796               TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
15797               IsMemberSpecialization, Invalid)) {
15798     if (TemplateParams->size() > 0) {
15799       // This is a declaration of a class template.
15800       if (Invalid)
15801         return nullptr;
15802 
15803       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
15804                                 NameLoc, Attr, TemplateParams, AS_public,
15805                                 /*ModulePrivateLoc=*/SourceLocation(),
15806                                 FriendLoc, TempParamLists.size() - 1,
15807                                 TempParamLists.data()).get();
15808     } else {
15809       // The "template<>" header is extraneous.
15810       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15811         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15812       IsMemberSpecialization = true;
15813     }
15814   }
15815 
15816   if (Invalid) return nullptr;
15817 
15818   bool isAllExplicitSpecializations = true;
15819   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
15820     if (TempParamLists[I]->size()) {
15821       isAllExplicitSpecializations = false;
15822       break;
15823     }
15824   }
15825 
15826   // FIXME: don't ignore attributes.
15827 
15828   // If it's explicit specializations all the way down, just forget
15829   // about the template header and build an appropriate non-templated
15830   // friend.  TODO: for source fidelity, remember the headers.
15831   if (isAllExplicitSpecializations) {
15832     if (SS.isEmpty()) {
15833       bool Owned = false;
15834       bool IsDependent = false;
15835       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
15836                       Attr, AS_public,
15837                       /*ModulePrivateLoc=*/SourceLocation(),
15838                       MultiTemplateParamsArg(), Owned, IsDependent,
15839                       /*ScopedEnumKWLoc=*/SourceLocation(),
15840                       /*ScopedEnumUsesClassTag=*/false,
15841                       /*UnderlyingType=*/TypeResult(),
15842                       /*IsTypeSpecifier=*/false,
15843                       /*IsTemplateParamOrArg=*/false);
15844     }
15845 
15846     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
15847     ElaboratedTypeKeyword Keyword
15848       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
15849     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
15850                                    *Name, NameLoc);
15851     if (T.isNull())
15852       return nullptr;
15853 
15854     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
15855     if (isa<DependentNameType>(T)) {
15856       DependentNameTypeLoc TL =
15857           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
15858       TL.setElaboratedKeywordLoc(TagLoc);
15859       TL.setQualifierLoc(QualifierLoc);
15860       TL.setNameLoc(NameLoc);
15861     } else {
15862       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
15863       TL.setElaboratedKeywordLoc(TagLoc);
15864       TL.setQualifierLoc(QualifierLoc);
15865       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
15866     }
15867 
15868     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
15869                                             TSI, FriendLoc, TempParamLists);
15870     Friend->setAccess(AS_public);
15871     CurContext->addDecl(Friend);
15872     return Friend;
15873   }
15874 
15875   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
15876 
15877 
15878 
15879   // Handle the case of a templated-scope friend class.  e.g.
15880   //   template <class T> class A<T>::B;
15881   // FIXME: we don't support these right now.
15882   Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
15883     << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
15884   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
15885   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
15886   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
15887   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
15888   TL.setElaboratedKeywordLoc(TagLoc);
15889   TL.setQualifierLoc(SS.getWithLocInContext(Context));
15890   TL.setNameLoc(NameLoc);
15891 
15892   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
15893                                           TSI, FriendLoc, TempParamLists);
15894   Friend->setAccess(AS_public);
15895   Friend->setUnsupportedFriend(true);
15896   CurContext->addDecl(Friend);
15897   return Friend;
15898 }
15899 
15900 /// Handle a friend type declaration.  This works in tandem with
15901 /// ActOnTag.
15902 ///
15903 /// Notes on friend class templates:
15904 ///
15905 /// We generally treat friend class declarations as if they were
15906 /// declaring a class.  So, for example, the elaborated type specifier
15907 /// in a friend declaration is required to obey the restrictions of a
15908 /// class-head (i.e. no typedefs in the scope chain), template
15909 /// parameters are required to match up with simple template-ids, &c.
15910 /// However, unlike when declaring a template specialization, it's
15911 /// okay to refer to a template specialization without an empty
15912 /// template parameter declaration, e.g.
15913 ///   friend class A<T>::B<unsigned>;
15914 /// We permit this as a special case; if there are any template
15915 /// parameters present at all, require proper matching, i.e.
15916 ///   template <> template \<class T> friend class A<int>::B;
15917 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
15918                                 MultiTemplateParamsArg TempParams) {
15919   SourceLocation Loc = DS.getBeginLoc();
15920 
15921   assert(DS.isFriendSpecified());
15922   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
15923 
15924   // C++ [class.friend]p3:
15925   // A friend declaration that does not declare a function shall have one of
15926   // the following forms:
15927   //     friend elaborated-type-specifier ;
15928   //     friend simple-type-specifier ;
15929   //     friend typename-specifier ;
15930   //
15931   // Any declaration with a type qualifier does not have that form. (It's
15932   // legal to specify a qualified type as a friend, you just can't write the
15933   // keywords.)
15934   if (DS.getTypeQualifiers()) {
15935     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
15936       Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
15937     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
15938       Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
15939     if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
15940       Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
15941     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
15942       Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
15943     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
15944       Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
15945   }
15946 
15947   // Try to convert the decl specifier to a type.  This works for
15948   // friend templates because ActOnTag never produces a ClassTemplateDecl
15949   // for a TUK_Friend.
15950   Declarator TheDeclarator(DS, DeclaratorContext::MemberContext);
15951   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
15952   QualType T = TSI->getType();
15953   if (TheDeclarator.isInvalidType())
15954     return nullptr;
15955 
15956   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
15957     return nullptr;
15958 
15959   // This is definitely an error in C++98.  It's probably meant to
15960   // be forbidden in C++0x, too, but the specification is just
15961   // poorly written.
15962   //
15963   // The problem is with declarations like the following:
15964   //   template <T> friend A<T>::foo;
15965   // where deciding whether a class C is a friend or not now hinges
15966   // on whether there exists an instantiation of A that causes
15967   // 'foo' to equal C.  There are restrictions on class-heads
15968   // (which we declare (by fiat) elaborated friend declarations to
15969   // be) that makes this tractable.
15970   //
15971   // FIXME: handle "template <> friend class A<T>;", which
15972   // is possibly well-formed?  Who even knows?
15973   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
15974     Diag(Loc, diag::err_tagless_friend_type_template)
15975       << DS.getSourceRange();
15976     return nullptr;
15977   }
15978 
15979   // C++98 [class.friend]p1: A friend of a class is a function
15980   //   or class that is not a member of the class . . .
15981   // This is fixed in DR77, which just barely didn't make the C++03
15982   // deadline.  It's also a very silly restriction that seriously
15983   // affects inner classes and which nobody else seems to implement;
15984   // thus we never diagnose it, not even in -pedantic.
15985   //
15986   // But note that we could warn about it: it's always useless to
15987   // friend one of your own members (it's not, however, worthless to
15988   // friend a member of an arbitrary specialization of your template).
15989 
15990   Decl *D;
15991   if (!TempParams.empty())
15992     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
15993                                    TempParams,
15994                                    TSI,
15995                                    DS.getFriendSpecLoc());
15996   else
15997     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
15998 
15999   if (!D)
16000     return nullptr;
16001 
16002   D->setAccess(AS_public);
16003   CurContext->addDecl(D);
16004 
16005   return D;
16006 }
16007 
16008 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
16009                                         MultiTemplateParamsArg TemplateParams) {
16010   const DeclSpec &DS = D.getDeclSpec();
16011 
16012   assert(DS.isFriendSpecified());
16013   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16014 
16015   SourceLocation Loc = D.getIdentifierLoc();
16016   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16017 
16018   // C++ [class.friend]p1
16019   //   A friend of a class is a function or class....
16020   // Note that this sees through typedefs, which is intended.
16021   // It *doesn't* see through dependent types, which is correct
16022   // according to [temp.arg.type]p3:
16023   //   If a declaration acquires a function type through a
16024   //   type dependent on a template-parameter and this causes
16025   //   a declaration that does not use the syntactic form of a
16026   //   function declarator to have a function type, the program
16027   //   is ill-formed.
16028   if (!TInfo->getType()->isFunctionType()) {
16029     Diag(Loc, diag::err_unexpected_friend);
16030 
16031     // It might be worthwhile to try to recover by creating an
16032     // appropriate declaration.
16033     return nullptr;
16034   }
16035 
16036   // C++ [namespace.memdef]p3
16037   //  - If a friend declaration in a non-local class first declares a
16038   //    class or function, the friend class or function is a member
16039   //    of the innermost enclosing namespace.
16040   //  - The name of the friend is not found by simple name lookup
16041   //    until a matching declaration is provided in that namespace
16042   //    scope (either before or after the class declaration granting
16043   //    friendship).
16044   //  - If a friend function is called, its name may be found by the
16045   //    name lookup that considers functions from namespaces and
16046   //    classes associated with the types of the function arguments.
16047   //  - When looking for a prior declaration of a class or a function
16048   //    declared as a friend, scopes outside the innermost enclosing
16049   //    namespace scope are not considered.
16050 
16051   CXXScopeSpec &SS = D.getCXXScopeSpec();
16052   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
16053   assert(NameInfo.getName());
16054 
16055   // Check for unexpanded parameter packs.
16056   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
16057       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
16058       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
16059     return nullptr;
16060 
16061   // The context we found the declaration in, or in which we should
16062   // create the declaration.
16063   DeclContext *DC;
16064   Scope *DCScope = S;
16065   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
16066                         ForExternalRedeclaration);
16067 
16068   // There are five cases here.
16069   //   - There's no scope specifier and we're in a local class. Only look
16070   //     for functions declared in the immediately-enclosing block scope.
16071   // We recover from invalid scope qualifiers as if they just weren't there.
16072   FunctionDecl *FunctionContainingLocalClass = nullptr;
16073   if ((SS.isInvalid() || !SS.isSet()) &&
16074       (FunctionContainingLocalClass =
16075            cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
16076     // C++11 [class.friend]p11:
16077     //   If a friend declaration appears in a local class and the name
16078     //   specified is an unqualified name, a prior declaration is
16079     //   looked up without considering scopes that are outside the
16080     //   innermost enclosing non-class scope. For a friend function
16081     //   declaration, if there is no prior declaration, the program is
16082     //   ill-formed.
16083 
16084     // Find the innermost enclosing non-class scope. This is the block
16085     // scope containing the local class definition (or for a nested class,
16086     // the outer local class).
16087     DCScope = S->getFnParent();
16088 
16089     // Look up the function name in the scope.
16090     Previous.clear(LookupLocalFriendName);
16091     LookupName(Previous, S, /*AllowBuiltinCreation*/false);
16092 
16093     if (!Previous.empty()) {
16094       // All possible previous declarations must have the same context:
16095       // either they were declared at block scope or they are members of
16096       // one of the enclosing local classes.
16097       DC = Previous.getRepresentativeDecl()->getDeclContext();
16098     } else {
16099       // This is ill-formed, but provide the context that we would have
16100       // declared the function in, if we were permitted to, for error recovery.
16101       DC = FunctionContainingLocalClass;
16102     }
16103     adjustContextForLocalExternDecl(DC);
16104 
16105     // C++ [class.friend]p6:
16106     //   A function can be defined in a friend declaration of a class if and
16107     //   only if the class is a non-local class (9.8), the function name is
16108     //   unqualified, and the function has namespace scope.
16109     if (D.isFunctionDefinition()) {
16110       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
16111     }
16112 
16113   //   - There's no scope specifier, in which case we just go to the
16114   //     appropriate scope and look for a function or function template
16115   //     there as appropriate.
16116   } else if (SS.isInvalid() || !SS.isSet()) {
16117     // C++11 [namespace.memdef]p3:
16118     //   If the name in a friend declaration is neither qualified nor
16119     //   a template-id and the declaration is a function or an
16120     //   elaborated-type-specifier, the lookup to determine whether
16121     //   the entity has been previously declared shall not consider
16122     //   any scopes outside the innermost enclosing namespace.
16123     bool isTemplateId =
16124         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
16125 
16126     // Find the appropriate context according to the above.
16127     DC = CurContext;
16128 
16129     // Skip class contexts.  If someone can cite chapter and verse
16130     // for this behavior, that would be nice --- it's what GCC and
16131     // EDG do, and it seems like a reasonable intent, but the spec
16132     // really only says that checks for unqualified existing
16133     // declarations should stop at the nearest enclosing namespace,
16134     // not that they should only consider the nearest enclosing
16135     // namespace.
16136     while (DC->isRecord())
16137       DC = DC->getParent();
16138 
16139     DeclContext *LookupDC = DC;
16140     while (LookupDC->isTransparentContext())
16141       LookupDC = LookupDC->getParent();
16142 
16143     while (true) {
16144       LookupQualifiedName(Previous, LookupDC);
16145 
16146       if (!Previous.empty()) {
16147         DC = LookupDC;
16148         break;
16149       }
16150 
16151       if (isTemplateId) {
16152         if (isa<TranslationUnitDecl>(LookupDC)) break;
16153       } else {
16154         if (LookupDC->isFileContext()) break;
16155       }
16156       LookupDC = LookupDC->getParent();
16157     }
16158 
16159     DCScope = getScopeForDeclContext(S, DC);
16160 
16161   //   - There's a non-dependent scope specifier, in which case we
16162   //     compute it and do a previous lookup there for a function
16163   //     or function template.
16164   } else if (!SS.getScopeRep()->isDependent()) {
16165     DC = computeDeclContext(SS);
16166     if (!DC) return nullptr;
16167 
16168     if (RequireCompleteDeclContext(SS, DC)) return nullptr;
16169 
16170     LookupQualifiedName(Previous, DC);
16171 
16172     // C++ [class.friend]p1: A friend of a class is a function or
16173     //   class that is not a member of the class . . .
16174     if (DC->Equals(CurContext))
16175       Diag(DS.getFriendSpecLoc(),
16176            getLangOpts().CPlusPlus11 ?
16177              diag::warn_cxx98_compat_friend_is_member :
16178              diag::err_friend_is_member);
16179 
16180     if (D.isFunctionDefinition()) {
16181       // C++ [class.friend]p6:
16182       //   A function can be defined in a friend declaration of a class if and
16183       //   only if the class is a non-local class (9.8), the function name is
16184       //   unqualified, and the function has namespace scope.
16185       //
16186       // FIXME: We should only do this if the scope specifier names the
16187       // innermost enclosing namespace; otherwise the fixit changes the
16188       // meaning of the code.
16189       SemaDiagnosticBuilder DB
16190         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
16191 
16192       DB << SS.getScopeRep();
16193       if (DC->isFileContext())
16194         DB << FixItHint::CreateRemoval(SS.getRange());
16195       SS.clear();
16196     }
16197 
16198   //   - There's a scope specifier that does not match any template
16199   //     parameter lists, in which case we use some arbitrary context,
16200   //     create a method or method template, and wait for instantiation.
16201   //   - There's a scope specifier that does match some template
16202   //     parameter lists, which we don't handle right now.
16203   } else {
16204     if (D.isFunctionDefinition()) {
16205       // C++ [class.friend]p6:
16206       //   A function can be defined in a friend declaration of a class if and
16207       //   only if the class is a non-local class (9.8), the function name is
16208       //   unqualified, and the function has namespace scope.
16209       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
16210         << SS.getScopeRep();
16211     }
16212 
16213     DC = CurContext;
16214     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
16215   }
16216 
16217   if (!DC->isRecord()) {
16218     int DiagArg = -1;
16219     switch (D.getName().getKind()) {
16220     case UnqualifiedIdKind::IK_ConstructorTemplateId:
16221     case UnqualifiedIdKind::IK_ConstructorName:
16222       DiagArg = 0;
16223       break;
16224     case UnqualifiedIdKind::IK_DestructorName:
16225       DiagArg = 1;
16226       break;
16227     case UnqualifiedIdKind::IK_ConversionFunctionId:
16228       DiagArg = 2;
16229       break;
16230     case UnqualifiedIdKind::IK_DeductionGuideName:
16231       DiagArg = 3;
16232       break;
16233     case UnqualifiedIdKind::IK_Identifier:
16234     case UnqualifiedIdKind::IK_ImplicitSelfParam:
16235     case UnqualifiedIdKind::IK_LiteralOperatorId:
16236     case UnqualifiedIdKind::IK_OperatorFunctionId:
16237     case UnqualifiedIdKind::IK_TemplateId:
16238       break;
16239     }
16240     // This implies that it has to be an operator or function.
16241     if (DiagArg >= 0) {
16242       Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
16243       return nullptr;
16244     }
16245   }
16246 
16247   // FIXME: This is an egregious hack to cope with cases where the scope stack
16248   // does not contain the declaration context, i.e., in an out-of-line
16249   // definition of a class.
16250   Scope FakeDCScope(S, Scope::DeclScope, Diags);
16251   if (!DCScope) {
16252     FakeDCScope.setEntity(DC);
16253     DCScope = &FakeDCScope;
16254   }
16255 
16256   bool AddToScope = true;
16257   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
16258                                           TemplateParams, AddToScope);
16259   if (!ND) return nullptr;
16260 
16261   assert(ND->getLexicalDeclContext() == CurContext);
16262 
16263   // If we performed typo correction, we might have added a scope specifier
16264   // and changed the decl context.
16265   DC = ND->getDeclContext();
16266 
16267   // Add the function declaration to the appropriate lookup tables,
16268   // adjusting the redeclarations list as necessary.  We don't
16269   // want to do this yet if the friending class is dependent.
16270   //
16271   // Also update the scope-based lookup if the target context's
16272   // lookup context is in lexical scope.
16273   if (!CurContext->isDependentContext()) {
16274     DC = DC->getRedeclContext();
16275     DC->makeDeclVisibleInContext(ND);
16276     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16277       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
16278   }
16279 
16280   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
16281                                        D.getIdentifierLoc(), ND,
16282                                        DS.getFriendSpecLoc());
16283   FrD->setAccess(AS_public);
16284   CurContext->addDecl(FrD);
16285 
16286   if (ND->isInvalidDecl()) {
16287     FrD->setInvalidDecl();
16288   } else {
16289     if (DC->isRecord()) CheckFriendAccess(ND);
16290 
16291     FunctionDecl *FD;
16292     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
16293       FD = FTD->getTemplatedDecl();
16294     else
16295       FD = cast<FunctionDecl>(ND);
16296 
16297     // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
16298     // default argument expression, that declaration shall be a definition
16299     // and shall be the only declaration of the function or function
16300     // template in the translation unit.
16301     if (functionDeclHasDefaultArgument(FD)) {
16302       // We can't look at FD->getPreviousDecl() because it may not have been set
16303       // if we're in a dependent context. If the function is known to be a
16304       // redeclaration, we will have narrowed Previous down to the right decl.
16305       if (D.isRedeclaration()) {
16306         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
16307         Diag(Previous.getRepresentativeDecl()->getLocation(),
16308              diag::note_previous_declaration);
16309       } else if (!D.isFunctionDefinition())
16310         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
16311     }
16312 
16313     // Mark templated-scope function declarations as unsupported.
16314     if (FD->getNumTemplateParameterLists() && SS.isValid()) {
16315       Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
16316         << SS.getScopeRep() << SS.getRange()
16317         << cast<CXXRecordDecl>(CurContext);
16318       FrD->setUnsupportedFriend(true);
16319     }
16320   }
16321 
16322   return ND;
16323 }
16324 
16325 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
16326   AdjustDeclIfTemplate(Dcl);
16327 
16328   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
16329   if (!Fn) {
16330     Diag(DelLoc, diag::err_deleted_non_function);
16331     return;
16332   }
16333 
16334   // Deleted function does not have a body.
16335   Fn->setWillHaveBody(false);
16336 
16337   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
16338     // Don't consider the implicit declaration we generate for explicit
16339     // specializations. FIXME: Do not generate these implicit declarations.
16340     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
16341          Prev->getPreviousDecl()) &&
16342         !Prev->isDefined()) {
16343       Diag(DelLoc, diag::err_deleted_decl_not_first);
16344       Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
16345            Prev->isImplicit() ? diag::note_previous_implicit_declaration
16346                               : diag::note_previous_declaration);
16347     }
16348     // If the declaration wasn't the first, we delete the function anyway for
16349     // recovery.
16350     Fn = Fn->getCanonicalDecl();
16351   }
16352 
16353   // dllimport/dllexport cannot be deleted.
16354   if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
16355     Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
16356     Fn->setInvalidDecl();
16357   }
16358 
16359   if (Fn->isDeleted())
16360     return;
16361 
16362   // C++11 [basic.start.main]p3:
16363   //   A program that defines main as deleted [...] is ill-formed.
16364   if (Fn->isMain())
16365     Diag(DelLoc, diag::err_deleted_main);
16366 
16367   // C++11 [dcl.fct.def.delete]p4:
16368   //  A deleted function is implicitly inline.
16369   Fn->setImplicitlyInline();
16370   Fn->setDeletedAsWritten();
16371 
16372   // See if we're deleting a function which is already known to override a
16373   // non-deleted virtual function.
16374   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
16375     bool IssuedDiagnostic = false;
16376     for (const CXXMethodDecl *O : MD->overridden_methods()) {
16377       if (!(*MD->begin_overridden_methods())->isDeleted()) {
16378         if (!IssuedDiagnostic) {
16379           Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
16380           IssuedDiagnostic = true;
16381         }
16382         Diag(O->getLocation(), diag::note_overridden_virtual_function);
16383       }
16384     }
16385     // If this function was implicitly deleted because it was defaulted,
16386     // explain why it was deleted.
16387     if (IssuedDiagnostic && MD->isDefaulted())
16388       DiagnoseDeletedDefaultedFunction(MD);
16389   }
16390 }
16391 
16392 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
16393   if (!Dcl || Dcl->isInvalidDecl())
16394     return;
16395 
16396   auto *FD = dyn_cast<FunctionDecl>(Dcl);
16397   if (!FD) {
16398     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
16399       if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
16400         Diag(DefaultLoc, diag::err_defaulted_comparison_template);
16401         return;
16402       }
16403     }
16404 
16405     Diag(DefaultLoc, diag::err_default_special_members)
16406         << getLangOpts().CPlusPlus2a;
16407     return;
16408   }
16409 
16410   // Reject if this can't possibly be a defaultable function.
16411   DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
16412   if (!DefKind &&
16413       // A dependent function that doesn't locally look defaultable can
16414       // still instantiate to a defaultable function if it's a constructor
16415       // or assignment operator.
16416       (!FD->isDependentContext() ||
16417        (!isa<CXXConstructorDecl>(FD) &&
16418         FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
16419     Diag(DefaultLoc, diag::err_default_special_members)
16420         << getLangOpts().CPlusPlus2a;
16421     return;
16422   }
16423 
16424   if (DefKind.isComparison() &&
16425       !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
16426     Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class)
16427         << (int)DefKind.asComparison();
16428     return;
16429   }
16430 
16431   // Issue compatibility warning. We already warned if the operator is
16432   // 'operator<=>' when parsing the '<=>' token.
16433   if (DefKind.isComparison() &&
16434       DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
16435     Diag(DefaultLoc, getLangOpts().CPlusPlus2a
16436                          ? diag::warn_cxx17_compat_defaulted_comparison
16437                          : diag::ext_defaulted_comparison);
16438   }
16439 
16440   FD->setDefaulted();
16441   FD->setExplicitlyDefaulted();
16442 
16443   // Defer checking functions that are defaulted in a dependent context.
16444   if (FD->isDependentContext())
16445     return;
16446 
16447   // Unset that we will have a body for this function. We might not,
16448   // if it turns out to be trivial, and we don't need this marking now
16449   // that we've marked it as defaulted.
16450   FD->setWillHaveBody(false);
16451 
16452   // If this definition appears within the record, do the checking when
16453   // the record is complete. This is always the case for a defaulted
16454   // comparison.
16455   if (DefKind.isComparison())
16456     return;
16457   auto *MD = cast<CXXMethodDecl>(FD);
16458 
16459   const FunctionDecl *Primary = FD;
16460   if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
16461     // Ask the template instantiation pattern that actually had the
16462     // '= default' on it.
16463     Primary = Pattern;
16464 
16465   // If the method was defaulted on its first declaration, we will have
16466   // already performed the checking in CheckCompletedCXXClass. Such a
16467   // declaration doesn't trigger an implicit definition.
16468   if (Primary->getCanonicalDecl()->isDefaulted())
16469     return;
16470 
16471   if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember()))
16472     MD->setInvalidDecl();
16473   else
16474     DefineImplicitSpecialMember(*this, MD, DefaultLoc);
16475 }
16476 
16477 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
16478   for (Stmt *SubStmt : S->children()) {
16479     if (!SubStmt)
16480       continue;
16481     if (isa<ReturnStmt>(SubStmt))
16482       Self.Diag(SubStmt->getBeginLoc(),
16483                 diag::err_return_in_constructor_handler);
16484     if (!isa<Expr>(SubStmt))
16485       SearchForReturnInStmt(Self, SubStmt);
16486   }
16487 }
16488 
16489 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
16490   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
16491     CXXCatchStmt *Handler = TryBlock->getHandler(I);
16492     SearchForReturnInStmt(*this, Handler);
16493   }
16494 }
16495 
16496 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
16497                                              const CXXMethodDecl *Old) {
16498   const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
16499   const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
16500 
16501   if (OldFT->hasExtParameterInfos()) {
16502     for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
16503       // A parameter of the overriding method should be annotated with noescape
16504       // if the corresponding parameter of the overridden method is annotated.
16505       if (OldFT->getExtParameterInfo(I).isNoEscape() &&
16506           !NewFT->getExtParameterInfo(I).isNoEscape()) {
16507         Diag(New->getParamDecl(I)->getLocation(),
16508              diag::warn_overriding_method_missing_noescape);
16509         Diag(Old->getParamDecl(I)->getLocation(),
16510              diag::note_overridden_marked_noescape);
16511       }
16512   }
16513 
16514   // Virtual overrides must have the same code_seg.
16515   const auto *OldCSA = Old->getAttr<CodeSegAttr>();
16516   const auto *NewCSA = New->getAttr<CodeSegAttr>();
16517   if ((NewCSA || OldCSA) &&
16518       (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
16519     Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
16520     Diag(Old->getLocation(), diag::note_previous_declaration);
16521     return true;
16522   }
16523 
16524   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
16525 
16526   // If the calling conventions match, everything is fine
16527   if (NewCC == OldCC)
16528     return false;
16529 
16530   // If the calling conventions mismatch because the new function is static,
16531   // suppress the calling convention mismatch error; the error about static
16532   // function override (err_static_overrides_virtual from
16533   // Sema::CheckFunctionDeclaration) is more clear.
16534   if (New->getStorageClass() == SC_Static)
16535     return false;
16536 
16537   Diag(New->getLocation(),
16538        diag::err_conflicting_overriding_cc_attributes)
16539     << New->getDeclName() << New->getType() << Old->getType();
16540   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
16541   return true;
16542 }
16543 
16544 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
16545                                              const CXXMethodDecl *Old) {
16546   QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
16547   QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
16548 
16549   if (Context.hasSameType(NewTy, OldTy) ||
16550       NewTy->isDependentType() || OldTy->isDependentType())
16551     return false;
16552 
16553   // Check if the return types are covariant
16554   QualType NewClassTy, OldClassTy;
16555 
16556   /// Both types must be pointers or references to classes.
16557   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
16558     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
16559       NewClassTy = NewPT->getPointeeType();
16560       OldClassTy = OldPT->getPointeeType();
16561     }
16562   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
16563     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
16564       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
16565         NewClassTy = NewRT->getPointeeType();
16566         OldClassTy = OldRT->getPointeeType();
16567       }
16568     }
16569   }
16570 
16571   // The return types aren't either both pointers or references to a class type.
16572   if (NewClassTy.isNull()) {
16573     Diag(New->getLocation(),
16574          diag::err_different_return_type_for_overriding_virtual_function)
16575         << New->getDeclName() << NewTy << OldTy
16576         << New->getReturnTypeSourceRange();
16577     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16578         << Old->getReturnTypeSourceRange();
16579 
16580     return true;
16581   }
16582 
16583   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
16584     // C++14 [class.virtual]p8:
16585     //   If the class type in the covariant return type of D::f differs from
16586     //   that of B::f, the class type in the return type of D::f shall be
16587     //   complete at the point of declaration of D::f or shall be the class
16588     //   type D.
16589     if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
16590       if (!RT->isBeingDefined() &&
16591           RequireCompleteType(New->getLocation(), NewClassTy,
16592                               diag::err_covariant_return_incomplete,
16593                               New->getDeclName()))
16594         return true;
16595     }
16596 
16597     // Check if the new class derives from the old class.
16598     if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
16599       Diag(New->getLocation(), diag::err_covariant_return_not_derived)
16600           << New->getDeclName() << NewTy << OldTy
16601           << New->getReturnTypeSourceRange();
16602       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16603           << Old->getReturnTypeSourceRange();
16604       return true;
16605     }
16606 
16607     // Check if we the conversion from derived to base is valid.
16608     if (CheckDerivedToBaseConversion(
16609             NewClassTy, OldClassTy,
16610             diag::err_covariant_return_inaccessible_base,
16611             diag::err_covariant_return_ambiguous_derived_to_base_conv,
16612             New->getLocation(), New->getReturnTypeSourceRange(),
16613             New->getDeclName(), nullptr)) {
16614       // FIXME: this note won't trigger for delayed access control
16615       // diagnostics, and it's impossible to get an undelayed error
16616       // here from access control during the original parse because
16617       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
16618       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16619           << Old->getReturnTypeSourceRange();
16620       return true;
16621     }
16622   }
16623 
16624   // The qualifiers of the return types must be the same.
16625   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
16626     Diag(New->getLocation(),
16627          diag::err_covariant_return_type_different_qualifications)
16628         << New->getDeclName() << NewTy << OldTy
16629         << New->getReturnTypeSourceRange();
16630     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16631         << Old->getReturnTypeSourceRange();
16632     return true;
16633   }
16634 
16635 
16636   // The new class type must have the same or less qualifiers as the old type.
16637   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
16638     Diag(New->getLocation(),
16639          diag::err_covariant_return_type_class_type_more_qualified)
16640         << New->getDeclName() << NewTy << OldTy
16641         << New->getReturnTypeSourceRange();
16642     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16643         << Old->getReturnTypeSourceRange();
16644     return true;
16645   }
16646 
16647   return false;
16648 }
16649 
16650 /// Mark the given method pure.
16651 ///
16652 /// \param Method the method to be marked pure.
16653 ///
16654 /// \param InitRange the source range that covers the "0" initializer.
16655 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
16656   SourceLocation EndLoc = InitRange.getEnd();
16657   if (EndLoc.isValid())
16658     Method->setRangeEnd(EndLoc);
16659 
16660   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
16661     Method->setPure();
16662     return false;
16663   }
16664 
16665   if (!Method->isInvalidDecl())
16666     Diag(Method->getLocation(), diag::err_non_virtual_pure)
16667       << Method->getDeclName() << InitRange;
16668   return true;
16669 }
16670 
16671 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
16672   if (D->getFriendObjectKind())
16673     Diag(D->getLocation(), diag::err_pure_friend);
16674   else if (auto *M = dyn_cast<CXXMethodDecl>(D))
16675     CheckPureMethod(M, ZeroLoc);
16676   else
16677     Diag(D->getLocation(), diag::err_illegal_initializer);
16678 }
16679 
16680 /// Determine whether the given declaration is a global variable or
16681 /// static data member.
16682 static bool isNonlocalVariable(const Decl *D) {
16683   if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
16684     return Var->hasGlobalStorage();
16685 
16686   return false;
16687 }
16688 
16689 /// Invoked when we are about to parse an initializer for the declaration
16690 /// 'Dcl'.
16691 ///
16692 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
16693 /// static data member of class X, names should be looked up in the scope of
16694 /// class X. If the declaration had a scope specifier, a scope will have
16695 /// been created and passed in for this purpose. Otherwise, S will be null.
16696 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
16697   // If there is no declaration, there was an error parsing it.
16698   if (!D || D->isInvalidDecl())
16699     return;
16700 
16701   // We will always have a nested name specifier here, but this declaration
16702   // might not be out of line if the specifier names the current namespace:
16703   //   extern int n;
16704   //   int ::n = 0;
16705   if (S && D->isOutOfLine())
16706     EnterDeclaratorContext(S, D->getDeclContext());
16707 
16708   // If we are parsing the initializer for a static data member, push a
16709   // new expression evaluation context that is associated with this static
16710   // data member.
16711   if (isNonlocalVariable(D))
16712     PushExpressionEvaluationContext(
16713         ExpressionEvaluationContext::PotentiallyEvaluated, D);
16714 }
16715 
16716 /// Invoked after we are finished parsing an initializer for the declaration D.
16717 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
16718   // If there is no declaration, there was an error parsing it.
16719   if (!D || D->isInvalidDecl())
16720     return;
16721 
16722   if (isNonlocalVariable(D))
16723     PopExpressionEvaluationContext();
16724 
16725   if (S && D->isOutOfLine())
16726     ExitDeclaratorContext(S);
16727 }
16728 
16729 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
16730 /// C++ if/switch/while/for statement.
16731 /// e.g: "if (int x = f()) {...}"
16732 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
16733   // C++ 6.4p2:
16734   // The declarator shall not specify a function or an array.
16735   // The type-specifier-seq shall not contain typedef and shall not declare a
16736   // new class or enumeration.
16737   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
16738          "Parser allowed 'typedef' as storage class of condition decl.");
16739 
16740   Decl *Dcl = ActOnDeclarator(S, D);
16741   if (!Dcl)
16742     return true;
16743 
16744   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
16745     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
16746       << D.getSourceRange();
16747     return true;
16748   }
16749 
16750   return Dcl;
16751 }
16752 
16753 void Sema::LoadExternalVTableUses() {
16754   if (!ExternalSource)
16755     return;
16756 
16757   SmallVector<ExternalVTableUse, 4> VTables;
16758   ExternalSource->ReadUsedVTables(VTables);
16759   SmallVector<VTableUse, 4> NewUses;
16760   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
16761     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
16762       = VTablesUsed.find(VTables[I].Record);
16763     // Even if a definition wasn't required before, it may be required now.
16764     if (Pos != VTablesUsed.end()) {
16765       if (!Pos->second && VTables[I].DefinitionRequired)
16766         Pos->second = true;
16767       continue;
16768     }
16769 
16770     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
16771     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
16772   }
16773 
16774   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
16775 }
16776 
16777 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
16778                           bool DefinitionRequired) {
16779   // Ignore any vtable uses in unevaluated operands or for classes that do
16780   // not have a vtable.
16781   if (!Class->isDynamicClass() || Class->isDependentContext() ||
16782       CurContext->isDependentContext() || isUnevaluatedContext())
16783     return;
16784   // Do not mark as used if compiling for the device outside of the target
16785   // region.
16786   if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
16787       !isInOpenMPDeclareTargetContext() &&
16788       !isInOpenMPTargetExecutionDirective()) {
16789     if (!DefinitionRequired)
16790       MarkVirtualMembersReferenced(Loc, Class);
16791     return;
16792   }
16793 
16794   // Try to insert this class into the map.
16795   LoadExternalVTableUses();
16796   Class = Class->getCanonicalDecl();
16797   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
16798     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
16799   if (!Pos.second) {
16800     // If we already had an entry, check to see if we are promoting this vtable
16801     // to require a definition. If so, we need to reappend to the VTableUses
16802     // list, since we may have already processed the first entry.
16803     if (DefinitionRequired && !Pos.first->second) {
16804       Pos.first->second = true;
16805     } else {
16806       // Otherwise, we can early exit.
16807       return;
16808     }
16809   } else {
16810     // The Microsoft ABI requires that we perform the destructor body
16811     // checks (i.e. operator delete() lookup) when the vtable is marked used, as
16812     // the deleting destructor is emitted with the vtable, not with the
16813     // destructor definition as in the Itanium ABI.
16814     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
16815       CXXDestructorDecl *DD = Class->getDestructor();
16816       if (DD && DD->isVirtual() && !DD->isDeleted()) {
16817         if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
16818           // If this is an out-of-line declaration, marking it referenced will
16819           // not do anything. Manually call CheckDestructor to look up operator
16820           // delete().
16821           ContextRAII SavedContext(*this, DD);
16822           CheckDestructor(DD);
16823         } else {
16824           MarkFunctionReferenced(Loc, Class->getDestructor());
16825         }
16826       }
16827     }
16828   }
16829 
16830   // Local classes need to have their virtual members marked
16831   // immediately. For all other classes, we mark their virtual members
16832   // at the end of the translation unit.
16833   if (Class->isLocalClass())
16834     MarkVirtualMembersReferenced(Loc, Class);
16835   else
16836     VTableUses.push_back(std::make_pair(Class, Loc));
16837 }
16838 
16839 bool Sema::DefineUsedVTables() {
16840   LoadExternalVTableUses();
16841   if (VTableUses.empty())
16842     return false;
16843 
16844   // Note: The VTableUses vector could grow as a result of marking
16845   // the members of a class as "used", so we check the size each
16846   // time through the loop and prefer indices (which are stable) to
16847   // iterators (which are not).
16848   bool DefinedAnything = false;
16849   for (unsigned I = 0; I != VTableUses.size(); ++I) {
16850     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
16851     if (!Class)
16852       continue;
16853     TemplateSpecializationKind ClassTSK =
16854         Class->getTemplateSpecializationKind();
16855 
16856     SourceLocation Loc = VTableUses[I].second;
16857 
16858     bool DefineVTable = true;
16859 
16860     // If this class has a key function, but that key function is
16861     // defined in another translation unit, we don't need to emit the
16862     // vtable even though we're using it.
16863     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
16864     if (KeyFunction && !KeyFunction->hasBody()) {
16865       // The key function is in another translation unit.
16866       DefineVTable = false;
16867       TemplateSpecializationKind TSK =
16868           KeyFunction->getTemplateSpecializationKind();
16869       assert(TSK != TSK_ExplicitInstantiationDefinition &&
16870              TSK != TSK_ImplicitInstantiation &&
16871              "Instantiations don't have key functions");
16872       (void)TSK;
16873     } else if (!KeyFunction) {
16874       // If we have a class with no key function that is the subject
16875       // of an explicit instantiation declaration, suppress the
16876       // vtable; it will live with the explicit instantiation
16877       // definition.
16878       bool IsExplicitInstantiationDeclaration =
16879           ClassTSK == TSK_ExplicitInstantiationDeclaration;
16880       for (auto R : Class->redecls()) {
16881         TemplateSpecializationKind TSK
16882           = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
16883         if (TSK == TSK_ExplicitInstantiationDeclaration)
16884           IsExplicitInstantiationDeclaration = true;
16885         else if (TSK == TSK_ExplicitInstantiationDefinition) {
16886           IsExplicitInstantiationDeclaration = false;
16887           break;
16888         }
16889       }
16890 
16891       if (IsExplicitInstantiationDeclaration)
16892         DefineVTable = false;
16893     }
16894 
16895     // The exception specifications for all virtual members may be needed even
16896     // if we are not providing an authoritative form of the vtable in this TU.
16897     // We may choose to emit it available_externally anyway.
16898     if (!DefineVTable) {
16899       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
16900       continue;
16901     }
16902 
16903     // Mark all of the virtual members of this class as referenced, so
16904     // that we can build a vtable. Then, tell the AST consumer that a
16905     // vtable for this class is required.
16906     DefinedAnything = true;
16907     MarkVirtualMembersReferenced(Loc, Class);
16908     CXXRecordDecl *Canonical = Class->getCanonicalDecl();
16909     if (VTablesUsed[Canonical])
16910       Consumer.HandleVTable(Class);
16911 
16912     // Warn if we're emitting a weak vtable. The vtable will be weak if there is
16913     // no key function or the key function is inlined. Don't warn in C++ ABIs
16914     // that lack key functions, since the user won't be able to make one.
16915     if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
16916         Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
16917       const FunctionDecl *KeyFunctionDef = nullptr;
16918       if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
16919                            KeyFunctionDef->isInlined())) {
16920         Diag(Class->getLocation(),
16921              ClassTSK == TSK_ExplicitInstantiationDefinition
16922                  ? diag::warn_weak_template_vtable
16923                  : diag::warn_weak_vtable)
16924             << Class;
16925       }
16926     }
16927   }
16928   VTableUses.clear();
16929 
16930   return DefinedAnything;
16931 }
16932 
16933 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
16934                                                  const CXXRecordDecl *RD) {
16935   for (const auto *I : RD->methods())
16936     if (I->isVirtual() && !I->isPure())
16937       ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
16938 }
16939 
16940 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
16941                                         const CXXRecordDecl *RD,
16942                                         bool ConstexprOnly) {
16943   // Mark all functions which will appear in RD's vtable as used.
16944   CXXFinalOverriderMap FinalOverriders;
16945   RD->getFinalOverriders(FinalOverriders);
16946   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
16947                                             E = FinalOverriders.end();
16948        I != E; ++I) {
16949     for (OverridingMethods::const_iterator OI = I->second.begin(),
16950                                            OE = I->second.end();
16951          OI != OE; ++OI) {
16952       assert(OI->second.size() > 0 && "no final overrider");
16953       CXXMethodDecl *Overrider = OI->second.front().Method;
16954 
16955       // C++ [basic.def.odr]p2:
16956       //   [...] A virtual member function is used if it is not pure. [...]
16957       if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
16958         MarkFunctionReferenced(Loc, Overrider);
16959     }
16960   }
16961 
16962   // Only classes that have virtual bases need a VTT.
16963   if (RD->getNumVBases() == 0)
16964     return;
16965 
16966   for (const auto &I : RD->bases()) {
16967     const auto *Base =
16968         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
16969     if (Base->getNumVBases() == 0)
16970       continue;
16971     MarkVirtualMembersReferenced(Loc, Base);
16972   }
16973 }
16974 
16975 /// SetIvarInitializers - This routine builds initialization ASTs for the
16976 /// Objective-C implementation whose ivars need be initialized.
16977 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
16978   if (!getLangOpts().CPlusPlus)
16979     return;
16980   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
16981     SmallVector<ObjCIvarDecl*, 8> ivars;
16982     CollectIvarsToConstructOrDestruct(OID, ivars);
16983     if (ivars.empty())
16984       return;
16985     SmallVector<CXXCtorInitializer*, 32> AllToInit;
16986     for (unsigned i = 0; i < ivars.size(); i++) {
16987       FieldDecl *Field = ivars[i];
16988       if (Field->isInvalidDecl())
16989         continue;
16990 
16991       CXXCtorInitializer *Member;
16992       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
16993       InitializationKind InitKind =
16994         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
16995 
16996       InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
16997       ExprResult MemberInit =
16998         InitSeq.Perform(*this, InitEntity, InitKind, None);
16999       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
17000       // Note, MemberInit could actually come back empty if no initialization
17001       // is required (e.g., because it would call a trivial default constructor)
17002       if (!MemberInit.get() || MemberInit.isInvalid())
17003         continue;
17004 
17005       Member =
17006         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
17007                                          SourceLocation(),
17008                                          MemberInit.getAs<Expr>(),
17009                                          SourceLocation());
17010       AllToInit.push_back(Member);
17011 
17012       // Be sure that the destructor is accessible and is marked as referenced.
17013       if (const RecordType *RecordTy =
17014               Context.getBaseElementType(Field->getType())
17015                   ->getAs<RecordType>()) {
17016         CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
17017         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
17018           MarkFunctionReferenced(Field->getLocation(), Destructor);
17019           CheckDestructorAccess(Field->getLocation(), Destructor,
17020                             PDiag(diag::err_access_dtor_ivar)
17021                               << Context.getBaseElementType(Field->getType()));
17022         }
17023       }
17024     }
17025     ObjCImplementation->setIvarInitializers(Context,
17026                                             AllToInit.data(), AllToInit.size());
17027   }
17028 }
17029 
17030 static
17031 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
17032                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
17033                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
17034                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
17035                            Sema &S) {
17036   if (Ctor->isInvalidDecl())
17037     return;
17038 
17039   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
17040 
17041   // Target may not be determinable yet, for instance if this is a dependent
17042   // call in an uninstantiated template.
17043   if (Target) {
17044     const FunctionDecl *FNTarget = nullptr;
17045     (void)Target->hasBody(FNTarget);
17046     Target = const_cast<CXXConstructorDecl*>(
17047       cast_or_null<CXXConstructorDecl>(FNTarget));
17048   }
17049 
17050   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
17051                      // Avoid dereferencing a null pointer here.
17052                      *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
17053 
17054   if (!Current.insert(Canonical).second)
17055     return;
17056 
17057   // We know that beyond here, we aren't chaining into a cycle.
17058   if (!Target || !Target->isDelegatingConstructor() ||
17059       Target->isInvalidDecl() || Valid.count(TCanonical)) {
17060     Valid.insert(Current.begin(), Current.end());
17061     Current.clear();
17062   // We've hit a cycle.
17063   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
17064              Current.count(TCanonical)) {
17065     // If we haven't diagnosed this cycle yet, do so now.
17066     if (!Invalid.count(TCanonical)) {
17067       S.Diag((*Ctor->init_begin())->getSourceLocation(),
17068              diag::warn_delegating_ctor_cycle)
17069         << Ctor;
17070 
17071       // Don't add a note for a function delegating directly to itself.
17072       if (TCanonical != Canonical)
17073         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
17074 
17075       CXXConstructorDecl *C = Target;
17076       while (C->getCanonicalDecl() != Canonical) {
17077         const FunctionDecl *FNTarget = nullptr;
17078         (void)C->getTargetConstructor()->hasBody(FNTarget);
17079         assert(FNTarget && "Ctor cycle through bodiless function");
17080 
17081         C = const_cast<CXXConstructorDecl*>(
17082           cast<CXXConstructorDecl>(FNTarget));
17083         S.Diag(C->getLocation(), diag::note_which_delegates_to);
17084       }
17085     }
17086 
17087     Invalid.insert(Current.begin(), Current.end());
17088     Current.clear();
17089   } else {
17090     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
17091   }
17092 }
17093 
17094 
17095 void Sema::CheckDelegatingCtorCycles() {
17096   llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
17097 
17098   for (DelegatingCtorDeclsType::iterator
17099          I = DelegatingCtorDecls.begin(ExternalSource),
17100          E = DelegatingCtorDecls.end();
17101        I != E; ++I)
17102     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
17103 
17104   for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
17105     (*CI)->setInvalidDecl();
17106 }
17107 
17108 namespace {
17109   /// AST visitor that finds references to the 'this' expression.
17110   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
17111     Sema &S;
17112 
17113   public:
17114     explicit FindCXXThisExpr(Sema &S) : S(S) { }
17115 
17116     bool VisitCXXThisExpr(CXXThisExpr *E) {
17117       S.Diag(E->getLocation(), diag::err_this_static_member_func)
17118         << E->isImplicit();
17119       return false;
17120     }
17121   };
17122 }
17123 
17124 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
17125   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17126   if (!TSInfo)
17127     return false;
17128 
17129   TypeLoc TL = TSInfo->getTypeLoc();
17130   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17131   if (!ProtoTL)
17132     return false;
17133 
17134   // C++11 [expr.prim.general]p3:
17135   //   [The expression this] shall not appear before the optional
17136   //   cv-qualifier-seq and it shall not appear within the declaration of a
17137   //   static member function (although its type and value category are defined
17138   //   within a static member function as they are within a non-static member
17139   //   function). [ Note: this is because declaration matching does not occur
17140   //  until the complete declarator is known. - end note ]
17141   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17142   FindCXXThisExpr Finder(*this);
17143 
17144   // If the return type came after the cv-qualifier-seq, check it now.
17145   if (Proto->hasTrailingReturn() &&
17146       !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
17147     return true;
17148 
17149   // Check the exception specification.
17150   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
17151     return true;
17152 
17153   // Check the trailing requires clause
17154   if (Expr *E = Method->getTrailingRequiresClause())
17155     if (!Finder.TraverseStmt(E))
17156       return true;
17157 
17158   return checkThisInStaticMemberFunctionAttributes(Method);
17159 }
17160 
17161 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
17162   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17163   if (!TSInfo)
17164     return false;
17165 
17166   TypeLoc TL = TSInfo->getTypeLoc();
17167   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17168   if (!ProtoTL)
17169     return false;
17170 
17171   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17172   FindCXXThisExpr Finder(*this);
17173 
17174   switch (Proto->getExceptionSpecType()) {
17175   case EST_Unparsed:
17176   case EST_Uninstantiated:
17177   case EST_Unevaluated:
17178   case EST_BasicNoexcept:
17179   case EST_NoThrow:
17180   case EST_DynamicNone:
17181   case EST_MSAny:
17182   case EST_None:
17183     break;
17184 
17185   case EST_DependentNoexcept:
17186   case EST_NoexceptFalse:
17187   case EST_NoexceptTrue:
17188     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
17189       return true;
17190     LLVM_FALLTHROUGH;
17191 
17192   case EST_Dynamic:
17193     for (const auto &E : Proto->exceptions()) {
17194       if (!Finder.TraverseType(E))
17195         return true;
17196     }
17197     break;
17198   }
17199 
17200   return false;
17201 }
17202 
17203 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
17204   FindCXXThisExpr Finder(*this);
17205 
17206   // Check attributes.
17207   for (const auto *A : Method->attrs()) {
17208     // FIXME: This should be emitted by tblgen.
17209     Expr *Arg = nullptr;
17210     ArrayRef<Expr *> Args;
17211     if (const auto *G = dyn_cast<GuardedByAttr>(A))
17212       Arg = G->getArg();
17213     else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
17214       Arg = G->getArg();
17215     else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
17216       Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
17217     else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
17218       Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
17219     else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
17220       Arg = ETLF->getSuccessValue();
17221       Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
17222     } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
17223       Arg = STLF->getSuccessValue();
17224       Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
17225     } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
17226       Arg = LR->getArg();
17227     else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
17228       Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
17229     else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
17230       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17231     else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
17232       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17233     else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
17234       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17235     else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
17236       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17237 
17238     if (Arg && !Finder.TraverseStmt(Arg))
17239       return true;
17240 
17241     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
17242       if (!Finder.TraverseStmt(Args[I]))
17243         return true;
17244     }
17245   }
17246 
17247   return false;
17248 }
17249 
17250 void Sema::checkExceptionSpecification(
17251     bool IsTopLevel, ExceptionSpecificationType EST,
17252     ArrayRef<ParsedType> DynamicExceptions,
17253     ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
17254     SmallVectorImpl<QualType> &Exceptions,
17255     FunctionProtoType::ExceptionSpecInfo &ESI) {
17256   Exceptions.clear();
17257   ESI.Type = EST;
17258   if (EST == EST_Dynamic) {
17259     Exceptions.reserve(DynamicExceptions.size());
17260     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
17261       // FIXME: Preserve type source info.
17262       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
17263 
17264       if (IsTopLevel) {
17265         SmallVector<UnexpandedParameterPack, 2> Unexpanded;
17266         collectUnexpandedParameterPacks(ET, Unexpanded);
17267         if (!Unexpanded.empty()) {
17268           DiagnoseUnexpandedParameterPacks(
17269               DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
17270               Unexpanded);
17271           continue;
17272         }
17273       }
17274 
17275       // Check that the type is valid for an exception spec, and
17276       // drop it if not.
17277       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
17278         Exceptions.push_back(ET);
17279     }
17280     ESI.Exceptions = Exceptions;
17281     return;
17282   }
17283 
17284   if (isComputedNoexcept(EST)) {
17285     assert((NoexceptExpr->isTypeDependent() ||
17286             NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
17287             Context.BoolTy) &&
17288            "Parser should have made sure that the expression is boolean");
17289     if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
17290       ESI.Type = EST_BasicNoexcept;
17291       return;
17292     }
17293 
17294     ESI.NoexceptExpr = NoexceptExpr;
17295     return;
17296   }
17297 }
17298 
17299 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
17300              ExceptionSpecificationType EST,
17301              SourceRange SpecificationRange,
17302              ArrayRef<ParsedType> DynamicExceptions,
17303              ArrayRef<SourceRange> DynamicExceptionRanges,
17304              Expr *NoexceptExpr) {
17305   if (!MethodD)
17306     return;
17307 
17308   // Dig out the method we're referring to.
17309   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
17310     MethodD = FunTmpl->getTemplatedDecl();
17311 
17312   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
17313   if (!Method)
17314     return;
17315 
17316   // Check the exception specification.
17317   llvm::SmallVector<QualType, 4> Exceptions;
17318   FunctionProtoType::ExceptionSpecInfo ESI;
17319   checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
17320                               DynamicExceptionRanges, NoexceptExpr, Exceptions,
17321                               ESI);
17322 
17323   // Update the exception specification on the function type.
17324   Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
17325 
17326   if (Method->isStatic())
17327     checkThisInStaticMemberFunctionExceptionSpec(Method);
17328 
17329   if (Method->isVirtual()) {
17330     // Check overrides, which we previously had to delay.
17331     for (const CXXMethodDecl *O : Method->overridden_methods())
17332       CheckOverridingFunctionExceptionSpec(Method, O);
17333   }
17334 }
17335 
17336 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
17337 ///
17338 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
17339                                        SourceLocation DeclStart, Declarator &D,
17340                                        Expr *BitWidth,
17341                                        InClassInitStyle InitStyle,
17342                                        AccessSpecifier AS,
17343                                        const ParsedAttr &MSPropertyAttr) {
17344   IdentifierInfo *II = D.getIdentifier();
17345   if (!II) {
17346     Diag(DeclStart, diag::err_anonymous_property);
17347     return nullptr;
17348   }
17349   SourceLocation Loc = D.getIdentifierLoc();
17350 
17351   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17352   QualType T = TInfo->getType();
17353   if (getLangOpts().CPlusPlus) {
17354     CheckExtraCXXDefaultArguments(D);
17355 
17356     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17357                                         UPPC_DataMemberType)) {
17358       D.setInvalidType();
17359       T = Context.IntTy;
17360       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
17361     }
17362   }
17363 
17364   DiagnoseFunctionSpecifiers(D.getDeclSpec());
17365 
17366   if (D.getDeclSpec().isInlineSpecified())
17367     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
17368         << getLangOpts().CPlusPlus17;
17369   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
17370     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
17371          diag::err_invalid_thread)
17372       << DeclSpec::getSpecifierName(TSCS);
17373 
17374   // Check to see if this name was declared as a member previously
17375   NamedDecl *PrevDecl = nullptr;
17376   LookupResult Previous(*this, II, Loc, LookupMemberName,
17377                         ForVisibleRedeclaration);
17378   LookupName(Previous, S);
17379   switch (Previous.getResultKind()) {
17380   case LookupResult::Found:
17381   case LookupResult::FoundUnresolvedValue:
17382     PrevDecl = Previous.getAsSingle<NamedDecl>();
17383     break;
17384 
17385   case LookupResult::FoundOverloaded:
17386     PrevDecl = Previous.getRepresentativeDecl();
17387     break;
17388 
17389   case LookupResult::NotFound:
17390   case LookupResult::NotFoundInCurrentInstantiation:
17391   case LookupResult::Ambiguous:
17392     break;
17393   }
17394 
17395   if (PrevDecl && PrevDecl->isTemplateParameter()) {
17396     // Maybe we will complain about the shadowed template parameter.
17397     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17398     // Just pretend that we didn't see the previous declaration.
17399     PrevDecl = nullptr;
17400   }
17401 
17402   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
17403     PrevDecl = nullptr;
17404 
17405   SourceLocation TSSL = D.getBeginLoc();
17406   MSPropertyDecl *NewPD =
17407       MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
17408                              MSPropertyAttr.getPropertyDataGetter(),
17409                              MSPropertyAttr.getPropertyDataSetter());
17410   ProcessDeclAttributes(TUScope, NewPD, D);
17411   NewPD->setAccess(AS);
17412 
17413   if (NewPD->isInvalidDecl())
17414     Record->setInvalidDecl();
17415 
17416   if (D.getDeclSpec().isModulePrivateSpecified())
17417     NewPD->setModulePrivate();
17418 
17419   if (NewPD->isInvalidDecl() && PrevDecl) {
17420     // Don't introduce NewFD into scope; there's already something
17421     // with the same name in the same scope.
17422   } else if (II) {
17423     PushOnScopeChains(NewPD, S);
17424   } else
17425     Record->addDecl(NewPD);
17426 
17427   return NewPD;
17428 }
17429 
17430 void Sema::ActOnStartFunctionDeclarationDeclarator(
17431     Declarator &Declarator, unsigned TemplateParameterDepth) {
17432   auto &Info = InventedParameterInfos.emplace_back();
17433   TemplateParameterList *ExplicitParams = nullptr;
17434   ArrayRef<TemplateParameterList *> ExplicitLists =
17435       Declarator.getTemplateParameterLists();
17436   if (!ExplicitLists.empty()) {
17437     bool IsMemberSpecialization, IsInvalid;
17438     ExplicitParams = MatchTemplateParametersToScopeSpecifier(
17439         Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
17440         Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
17441         ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
17442         /*SuppressDiagnostic=*/true);
17443   }
17444   if (ExplicitParams) {
17445     Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
17446     for (NamedDecl *Param : *ExplicitParams)
17447       Info.TemplateParams.push_back(Param);
17448     Info.NumExplicitTemplateParams = ExplicitParams->size();
17449   } else {
17450     Info.AutoTemplateParameterDepth = TemplateParameterDepth;
17451     Info.NumExplicitTemplateParams = 0;
17452   }
17453 }
17454 
17455 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
17456   auto &FSI = InventedParameterInfos.back();
17457   if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
17458     if (FSI.NumExplicitTemplateParams != 0) {
17459       TemplateParameterList *ExplicitParams =
17460           Declarator.getTemplateParameterLists().back();
17461       Declarator.setInventedTemplateParameterList(
17462           TemplateParameterList::Create(
17463               Context, ExplicitParams->getTemplateLoc(),
17464               ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
17465               ExplicitParams->getRAngleLoc(),
17466               ExplicitParams->getRequiresClause()));
17467     } else {
17468       Declarator.setInventedTemplateParameterList(
17469           TemplateParameterList::Create(
17470               Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
17471               SourceLocation(), /*RequiresClause=*/nullptr));
17472     }
17473   }
17474   InventedParameterInfos.pop_back();
17475 }
17476