1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ exception specification testing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTMutationListener.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include <optional>
25 
26 namespace clang {
27 
28 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
29 {
30   if (const PointerType *PtrTy = T->getAs<PointerType>())
31     T = PtrTy->getPointeeType();
32   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
33     T = RefTy->getPointeeType();
34   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
35     T = MPTy->getPointeeType();
36   return T->getAs<FunctionProtoType>();
37 }
38 
39 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
40 /// member swap function then tries to call std::swap unqualified from the
41 /// exception specification of that function. This function detects whether
42 /// we're in such a case and turns off delay-parsing of exception
43 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
44 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
45 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
46   auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
47 
48   // All the problem cases are member functions named "swap" within class
49   // templates declared directly within namespace std or std::__debug or
50   // std::__profile.
51   if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
52       !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
53     return false;
54 
55   auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
56   if (!ND)
57     return false;
58 
59   bool IsInStd = ND->isStdNamespace();
60   if (!IsInStd) {
61     // This isn't a direct member of namespace std, but it might still be
62     // libstdc++'s std::__debug::array or std::__profile::array.
63     IdentifierInfo *II = ND->getIdentifier();
64     if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
65         !ND->isInStdNamespace())
66       return false;
67   }
68 
69   // Only apply this hack within a system header.
70   if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
71     return false;
72 
73   return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
74       .Case("array", true)
75       .Case("pair", IsInStd)
76       .Case("priority_queue", IsInStd)
77       .Case("stack", IsInStd)
78       .Case("queue", IsInStd)
79       .Default(false);
80 }
81 
82 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr,
83                                    ExceptionSpecificationType &EST) {
84 
85   if (NoexceptExpr->isTypeDependent() ||
86       NoexceptExpr->containsUnexpandedParameterPack()) {
87     EST = EST_DependentNoexcept;
88     return NoexceptExpr;
89   }
90 
91   llvm::APSInt Result;
92   ExprResult Converted = CheckConvertedConstantExpression(
93       NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept);
94 
95   if (Converted.isInvalid()) {
96     EST = EST_NoexceptFalse;
97     // Fill in an expression of 'false' as a fixup.
98     auto *BoolExpr = new (Context)
99         CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
100     llvm::APSInt Value{1};
101     Value = 0;
102     return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
103   }
104 
105   if (Converted.get()->isValueDependent()) {
106     EST = EST_DependentNoexcept;
107     return Converted;
108   }
109 
110   if (!Converted.isInvalid())
111     EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
112   return Converted;
113 }
114 
115 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
116 /// exception specification. Incomplete types, or pointers to incomplete types
117 /// other than void are not allowed.
118 ///
119 /// \param[in,out] T  The exception type. This will be decayed to a pointer type
120 ///                   when the input is an array or a function type.
121 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
122   // C++11 [except.spec]p2:
123   //   A type cv T, "array of T", or "function returning T" denoted
124   //   in an exception-specification is adjusted to type T, "pointer to T", or
125   //   "pointer to function returning T", respectively.
126   //
127   // We also apply this rule in C++98.
128   if (T->isArrayType())
129     T = Context.getArrayDecayedType(T);
130   else if (T->isFunctionType())
131     T = Context.getPointerType(T);
132 
133   int Kind = 0;
134   QualType PointeeT = T;
135   if (const PointerType *PT = T->getAs<PointerType>()) {
136     PointeeT = PT->getPointeeType();
137     Kind = 1;
138 
139     // cv void* is explicitly permitted, despite being a pointer to an
140     // incomplete type.
141     if (PointeeT->isVoidType())
142       return false;
143   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
144     PointeeT = RT->getPointeeType();
145     Kind = 2;
146 
147     if (RT->isRValueReferenceType()) {
148       // C++11 [except.spec]p2:
149       //   A type denoted in an exception-specification shall not denote [...]
150       //   an rvalue reference type.
151       Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
152         << T << Range;
153       return true;
154     }
155   }
156 
157   // C++11 [except.spec]p2:
158   //   A type denoted in an exception-specification shall not denote an
159   //   incomplete type other than a class currently being defined [...].
160   //   A type denoted in an exception-specification shall not denote a
161   //   pointer or reference to an incomplete type, other than (cv) void* or a
162   //   pointer or reference to a class currently being defined.
163   // In Microsoft mode, downgrade this to a warning.
164   unsigned DiagID = diag::err_incomplete_in_exception_spec;
165   bool ReturnValueOnError = true;
166   if (getLangOpts().MSVCCompat) {
167     DiagID = diag::ext_incomplete_in_exception_spec;
168     ReturnValueOnError = false;
169   }
170   if (!(PointeeT->isRecordType() &&
171         PointeeT->castAs<RecordType>()->isBeingDefined()) &&
172       RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
173     return ReturnValueOnError;
174 
175   // WebAssembly reference types can't be used in exception specifications.
176   if (PointeeT.isWebAssemblyReferenceType()) {
177     Diag(Range.getBegin(), diag::err_wasm_reftype_exception_spec);
178     return true;
179   }
180 
181   // The MSVC compatibility mode doesn't extend to sizeless types,
182   // so diagnose them separately.
183   if (PointeeT->isSizelessType() && Kind != 1) {
184     Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
185         << (Kind == 2 ? 1 : 0) << PointeeT << Range;
186     return true;
187   }
188 
189   return false;
190 }
191 
192 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
193 /// to member to a function with an exception specification. This means that
194 /// it is invalid to add another level of indirection.
195 bool Sema::CheckDistantExceptionSpec(QualType T) {
196   // C++17 removes this rule in favor of putting exception specifications into
197   // the type system.
198   if (getLangOpts().CPlusPlus17)
199     return false;
200 
201   if (const PointerType *PT = T->getAs<PointerType>())
202     T = PT->getPointeeType();
203   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
204     T = PT->getPointeeType();
205   else
206     return false;
207 
208   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
209   if (!FnT)
210     return false;
211 
212   return FnT->hasExceptionSpec();
213 }
214 
215 const FunctionProtoType *
216 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
217   if (FPT->getExceptionSpecType() == EST_Unparsed) {
218     Diag(Loc, diag::err_exception_spec_not_parsed);
219     return nullptr;
220   }
221 
222   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
223     return FPT;
224 
225   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
226   const FunctionProtoType *SourceFPT =
227       SourceDecl->getType()->castAs<FunctionProtoType>();
228 
229   // If the exception specification has already been resolved, just return it.
230   if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
231     return SourceFPT;
232 
233   // Compute or instantiate the exception specification now.
234   if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
235     EvaluateImplicitExceptionSpec(Loc, SourceDecl);
236   else
237     InstantiateExceptionSpec(Loc, SourceDecl);
238 
239   const FunctionProtoType *Proto =
240     SourceDecl->getType()->castAs<FunctionProtoType>();
241   if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
242     Diag(Loc, diag::err_exception_spec_not_parsed);
243     Proto = nullptr;
244   }
245   return Proto;
246 }
247 
248 void
249 Sema::UpdateExceptionSpec(FunctionDecl *FD,
250                           const FunctionProtoType::ExceptionSpecInfo &ESI) {
251   // If we've fully resolved the exception specification, notify listeners.
252   if (!isUnresolvedExceptionSpec(ESI.Type))
253     if (auto *Listener = getASTMutationListener())
254       Listener->ResolvedExceptionSpec(FD);
255 
256   for (FunctionDecl *Redecl : FD->redecls())
257     Context.adjustExceptionSpec(Redecl, ESI);
258 }
259 
260 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
261   auto *MD = dyn_cast<CXXMethodDecl>(FD);
262   if (!MD)
263     return false;
264 
265   auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
266   return EST == EST_Unparsed ||
267          (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
268 }
269 
270 static bool CheckEquivalentExceptionSpecImpl(
271     Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
272     const FunctionProtoType *Old, SourceLocation OldLoc,
273     const FunctionProtoType *New, SourceLocation NewLoc,
274     bool *MissingExceptionSpecification = nullptr,
275     bool *MissingEmptyExceptionSpecification = nullptr,
276     bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
277 
278 /// Determine whether a function has an implicitly-generated exception
279 /// specification.
280 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
281   if (!isa<CXXDestructorDecl>(Decl) &&
282       Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
283       Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
284     return false;
285 
286   // For a function that the user didn't declare:
287   //  - if this is a destructor, its exception specification is implicit.
288   //  - if this is 'operator delete' or 'operator delete[]', the exception
289   //    specification is as-if an explicit exception specification was given
290   //    (per [basic.stc.dynamic]p2).
291   if (!Decl->getTypeSourceInfo())
292     return isa<CXXDestructorDecl>(Decl);
293 
294   auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
295   return !Ty->hasExceptionSpec();
296 }
297 
298 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
299   // Just completely ignore this under -fno-exceptions prior to C++17.
300   // In C++17 onwards, the exception specification is part of the type and
301   // we will diagnose mismatches anyway, so it's better to check for them here.
302   if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
303     return false;
304 
305   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
306   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
307   bool MissingExceptionSpecification = false;
308   bool MissingEmptyExceptionSpecification = false;
309 
310   unsigned DiagID = diag::err_mismatched_exception_spec;
311   bool ReturnValueOnError = true;
312   if (getLangOpts().MSVCCompat) {
313     DiagID = diag::ext_mismatched_exception_spec;
314     ReturnValueOnError = false;
315   }
316 
317   // If we're befriending a member function of a class that's currently being
318   // defined, we might not be able to work out its exception specification yet.
319   // If not, defer the check until later.
320   if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
321     DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
322     return false;
323   }
324 
325   // Check the types as written: they must match before any exception
326   // specification adjustment is applied.
327   if (!CheckEquivalentExceptionSpecImpl(
328         *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
329         Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
330         New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
331         &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
332         /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
333     // C++11 [except.spec]p4 [DR1492]:
334     //   If a declaration of a function has an implicit
335     //   exception-specification, other declarations of the function shall
336     //   not specify an exception-specification.
337     if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
338         hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
339       Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
340         << hasImplicitExceptionSpec(Old);
341       if (Old->getLocation().isValid())
342         Diag(Old->getLocation(), diag::note_previous_declaration);
343     }
344     return false;
345   }
346 
347   // The failure was something other than an missing exception
348   // specification; return an error, except in MS mode where this is a warning.
349   if (!MissingExceptionSpecification)
350     return ReturnValueOnError;
351 
352   const auto *NewProto = New->getType()->castAs<FunctionProtoType>();
353 
354   // The new function declaration is only missing an empty exception
355   // specification "throw()". If the throw() specification came from a
356   // function in a system header that has C linkage, just add an empty
357   // exception specification to the "new" declaration. Note that C library
358   // implementations are permitted to add these nothrow exception
359   // specifications.
360   //
361   // Likewise if the old function is a builtin.
362   if (MissingEmptyExceptionSpecification &&
363       (Old->getLocation().isInvalid() ||
364        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
365        Old->getBuiltinID()) &&
366       Old->isExternC()) {
367     New->setType(Context.getFunctionType(
368         NewProto->getReturnType(), NewProto->getParamTypes(),
369         NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
370     return false;
371   }
372 
373   const auto *OldProto = Old->getType()->castAs<FunctionProtoType>();
374 
375   FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
376   if (ESI.Type == EST_Dynamic) {
377     // FIXME: What if the exceptions are described in terms of the old
378     // prototype's parameters?
379     ESI.Exceptions = OldProto->exceptions();
380   }
381 
382   if (ESI.Type == EST_NoexceptFalse)
383     ESI.Type = EST_None;
384   if (ESI.Type == EST_NoexceptTrue)
385     ESI.Type = EST_BasicNoexcept;
386 
387   // For dependent noexcept, we can't just take the expression from the old
388   // prototype. It likely contains references to the old prototype's parameters.
389   if (ESI.Type == EST_DependentNoexcept) {
390     New->setInvalidDecl();
391   } else {
392     // Update the type of the function with the appropriate exception
393     // specification.
394     New->setType(Context.getFunctionType(
395         NewProto->getReturnType(), NewProto->getParamTypes(),
396         NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
397   }
398 
399   if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) {
400     DiagID = diag::ext_missing_exception_specification;
401     ReturnValueOnError = false;
402   } else if (New->isReplaceableGlobalAllocationFunction() &&
403              ESI.Type != EST_DependentNoexcept) {
404     // Allow missing exception specifications in redeclarations as an extension,
405     // when declaring a replaceable global allocation function.
406     DiagID = diag::ext_missing_exception_specification;
407     ReturnValueOnError = false;
408   } else if (ESI.Type == EST_NoThrow) {
409     // Don't emit any warning for missing 'nothrow' in MSVC.
410     if (getLangOpts().MSVCCompat) {
411       return false;
412     }
413     // Allow missing attribute 'nothrow' in redeclarations, since this is a very
414     // common omission.
415     DiagID = diag::ext_missing_exception_specification;
416     ReturnValueOnError = false;
417   } else {
418     DiagID = diag::err_missing_exception_specification;
419     ReturnValueOnError = true;
420   }
421 
422   // Warn about the lack of exception specification.
423   SmallString<128> ExceptionSpecString;
424   llvm::raw_svector_ostream OS(ExceptionSpecString);
425   switch (OldProto->getExceptionSpecType()) {
426   case EST_DynamicNone:
427     OS << "throw()";
428     break;
429 
430   case EST_Dynamic: {
431     OS << "throw(";
432     bool OnFirstException = true;
433     for (const auto &E : OldProto->exceptions()) {
434       if (OnFirstException)
435         OnFirstException = false;
436       else
437         OS << ", ";
438 
439       OS << E.getAsString(getPrintingPolicy());
440     }
441     OS << ")";
442     break;
443   }
444 
445   case EST_BasicNoexcept:
446     OS << "noexcept";
447     break;
448 
449   case EST_DependentNoexcept:
450   case EST_NoexceptFalse:
451   case EST_NoexceptTrue:
452     OS << "noexcept(";
453     assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
454     OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
455     OS << ")";
456     break;
457   case EST_NoThrow:
458     OS <<"__attribute__((nothrow))";
459     break;
460   case EST_None:
461   case EST_MSAny:
462   case EST_Unevaluated:
463   case EST_Uninstantiated:
464   case EST_Unparsed:
465     llvm_unreachable("This spec type is compatible with none.");
466   }
467 
468   SourceLocation FixItLoc;
469   if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
470     TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
471     // FIXME: Preserve enough information so that we can produce a correct fixit
472     // location when there is a trailing return type.
473     if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
474       if (!FTLoc.getTypePtr()->hasTrailingReturn())
475         FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
476   }
477 
478   if (FixItLoc.isInvalid())
479     Diag(New->getLocation(), DiagID)
480       << New << OS.str();
481   else {
482     Diag(New->getLocation(), DiagID)
483       << New << OS.str()
484       << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
485   }
486 
487   if (Old->getLocation().isValid())
488     Diag(Old->getLocation(), diag::note_previous_declaration);
489 
490   return ReturnValueOnError;
491 }
492 
493 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
494 /// exception specifications. Exception specifications are equivalent if
495 /// they allow exactly the same set of exception types. It does not matter how
496 /// that is achieved. See C++ [except.spec]p2.
497 bool Sema::CheckEquivalentExceptionSpec(
498     const FunctionProtoType *Old, SourceLocation OldLoc,
499     const FunctionProtoType *New, SourceLocation NewLoc) {
500   if (!getLangOpts().CXXExceptions)
501     return false;
502 
503   unsigned DiagID = diag::err_mismatched_exception_spec;
504   if (getLangOpts().MSVCCompat)
505     DiagID = diag::ext_mismatched_exception_spec;
506   bool Result = CheckEquivalentExceptionSpecImpl(
507       *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
508       Old, OldLoc, New, NewLoc);
509 
510   // In Microsoft mode, mismatching exception specifications just cause a warning.
511   if (getLangOpts().MSVCCompat)
512     return false;
513   return Result;
514 }
515 
516 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
517 /// exception specifications. See C++ [except.spec]p3.
518 ///
519 /// \return \c false if the exception specifications match, \c true if there is
520 /// a problem. If \c true is returned, either a diagnostic has already been
521 /// produced or \c *MissingExceptionSpecification is set to \c true.
522 static bool CheckEquivalentExceptionSpecImpl(
523     Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
524     const FunctionProtoType *Old, SourceLocation OldLoc,
525     const FunctionProtoType *New, SourceLocation NewLoc,
526     bool *MissingExceptionSpecification,
527     bool *MissingEmptyExceptionSpecification,
528     bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
529   if (MissingExceptionSpecification)
530     *MissingExceptionSpecification = false;
531 
532   if (MissingEmptyExceptionSpecification)
533     *MissingEmptyExceptionSpecification = false;
534 
535   Old = S.ResolveExceptionSpec(NewLoc, Old);
536   if (!Old)
537     return false;
538   New = S.ResolveExceptionSpec(NewLoc, New);
539   if (!New)
540     return false;
541 
542   // C++0x [except.spec]p3: Two exception-specifications are compatible if:
543   //   - both are non-throwing, regardless of their form,
544   //   - both have the form noexcept(constant-expression) and the constant-
545   //     expressions are equivalent,
546   //   - both are dynamic-exception-specifications that have the same set of
547   //     adjusted types.
548   //
549   // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
550   //   of the form throw(), noexcept, or noexcept(constant-expression) where the
551   //   constant-expression yields true.
552   //
553   // C++0x [except.spec]p4: If any declaration of a function has an exception-
554   //   specifier that is not a noexcept-specification allowing all exceptions,
555   //   all declarations [...] of that function shall have a compatible
556   //   exception-specification.
557   //
558   // That last point basically means that noexcept(false) matches no spec.
559   // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
560 
561   ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
562   ExceptionSpecificationType NewEST = New->getExceptionSpecType();
563 
564   assert(!isUnresolvedExceptionSpec(OldEST) &&
565          !isUnresolvedExceptionSpec(NewEST) &&
566          "Shouldn't see unknown exception specifications here");
567 
568   CanThrowResult OldCanThrow = Old->canThrow();
569   CanThrowResult NewCanThrow = New->canThrow();
570 
571   // Any non-throwing specifications are compatible.
572   if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
573     return false;
574 
575   // Any throws-anything specifications are usually compatible.
576   if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
577       NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
578     // The exception is that the absence of an exception specification only
579     // matches noexcept(false) for functions, as described above.
580     if (!AllowNoexceptAllMatchWithNoSpec &&
581         ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
582          (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
583       // This is the disallowed case.
584     } else {
585       return false;
586     }
587   }
588 
589   // C++14 [except.spec]p3:
590   //   Two exception-specifications are compatible if [...] both have the form
591   //   noexcept(constant-expression) and the constant-expressions are equivalent
592   if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
593     llvm::FoldingSetNodeID OldFSN, NewFSN;
594     Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
595     New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
596     if (OldFSN == NewFSN)
597       return false;
598   }
599 
600   // Dynamic exception specifications with the same set of adjusted types
601   // are compatible.
602   if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
603     bool Success = true;
604     // Both have a dynamic exception spec. Collect the first set, then compare
605     // to the second.
606     llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
607     for (const auto &I : Old->exceptions())
608       OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
609 
610     for (const auto &I : New->exceptions()) {
611       CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
612       if (OldTypes.count(TypePtr))
613         NewTypes.insert(TypePtr);
614       else {
615         Success = false;
616         break;
617       }
618     }
619 
620     if (Success && OldTypes.size() == NewTypes.size())
621       return false;
622   }
623 
624   // As a special compatibility feature, under C++0x we accept no spec and
625   // throw(std::bad_alloc) as equivalent for operator new and operator new[].
626   // This is because the implicit declaration changed, but old code would break.
627   if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
628     const FunctionProtoType *WithExceptions = nullptr;
629     if (OldEST == EST_None && NewEST == EST_Dynamic)
630       WithExceptions = New;
631     else if (OldEST == EST_Dynamic && NewEST == EST_None)
632       WithExceptions = Old;
633     if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
634       // One has no spec, the other throw(something). If that something is
635       // std::bad_alloc, all conditions are met.
636       QualType Exception = *WithExceptions->exception_begin();
637       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
638         IdentifierInfo* Name = ExRecord->getIdentifier();
639         if (Name && Name->getName() == "bad_alloc") {
640           // It's called bad_alloc, but is it in std?
641           if (ExRecord->isInStdNamespace()) {
642             return false;
643           }
644         }
645       }
646     }
647   }
648 
649   // If the caller wants to handle the case that the new function is
650   // incompatible due to a missing exception specification, let it.
651   if (MissingExceptionSpecification && OldEST != EST_None &&
652       NewEST == EST_None) {
653     // The old type has an exception specification of some sort, but
654     // the new type does not.
655     *MissingExceptionSpecification = true;
656 
657     if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
658       // The old type has a throw() or noexcept(true) exception specification
659       // and the new type has no exception specification, and the caller asked
660       // to handle this itself.
661       *MissingEmptyExceptionSpecification = true;
662     }
663 
664     return true;
665   }
666 
667   S.Diag(NewLoc, DiagID);
668   if (NoteID.getDiagID() != 0 && OldLoc.isValid())
669     S.Diag(OldLoc, NoteID);
670   return true;
671 }
672 
673 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
674                                         const PartialDiagnostic &NoteID,
675                                         const FunctionProtoType *Old,
676                                         SourceLocation OldLoc,
677                                         const FunctionProtoType *New,
678                                         SourceLocation NewLoc) {
679   if (!getLangOpts().CXXExceptions)
680     return false;
681   return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
682                                           New, NewLoc);
683 }
684 
685 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
686   // [except.handle]p3:
687   //   A handler is a match for an exception object of type E if:
688 
689   // HandlerType must be ExceptionType or derived from it, or pointer or
690   // reference to such types.
691   const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
692   if (RefTy)
693     HandlerType = RefTy->getPointeeType();
694 
695   //   -- the handler is of type cv T or cv T& and E and T are the same type
696   if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
697     return true;
698 
699   // FIXME: ObjC pointer types?
700   if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
701     if (RefTy && (!HandlerType.isConstQualified() ||
702                   HandlerType.isVolatileQualified()))
703       return false;
704 
705     // -- the handler is of type cv T or const T& where T is a pointer or
706     //    pointer to member type and E is std::nullptr_t
707     if (ExceptionType->isNullPtrType())
708       return true;
709 
710     // -- the handler is of type cv T or const T& where T is a pointer or
711     //    pointer to member type and E is a pointer or pointer to member type
712     //    that can be converted to T by one or more of
713     //    -- a qualification conversion
714     //    -- a function pointer conversion
715     bool LifetimeConv;
716     QualType Result;
717     // FIXME: Should we treat the exception as catchable if a lifetime
718     // conversion is required?
719     if (IsQualificationConversion(ExceptionType, HandlerType, false,
720                                   LifetimeConv) ||
721         IsFunctionConversion(ExceptionType, HandlerType, Result))
722       return true;
723 
724     //    -- a standard pointer conversion [...]
725     if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
726       return false;
727 
728     // Handle the "qualification conversion" portion.
729     Qualifiers EQuals, HQuals;
730     ExceptionType = Context.getUnqualifiedArrayType(
731         ExceptionType->getPointeeType(), EQuals);
732     HandlerType = Context.getUnqualifiedArrayType(
733         HandlerType->getPointeeType(), HQuals);
734     if (!HQuals.compatiblyIncludes(EQuals))
735       return false;
736 
737     if (HandlerType->isVoidType() && ExceptionType->isObjectType())
738       return true;
739 
740     // The only remaining case is a derived-to-base conversion.
741   }
742 
743   //   -- the handler is of type cg T or cv T& and T is an unambiguous public
744   //      base class of E
745   if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
746     return false;
747   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
748                      /*DetectVirtual=*/false);
749   if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
750       Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
751     return false;
752 
753   // Do this check from a context without privileges.
754   switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
755                                Paths.front(),
756                                /*Diagnostic*/ 0,
757                                /*ForceCheck*/ true,
758                                /*ForceUnprivileged*/ true)) {
759   case AR_accessible: return true;
760   case AR_inaccessible: return false;
761   case AR_dependent:
762     llvm_unreachable("access check dependent for unprivileged context");
763   case AR_delayed:
764     llvm_unreachable("access check delayed in non-declaration");
765   }
766   llvm_unreachable("unexpected access check result");
767 }
768 
769 /// CheckExceptionSpecSubset - Check whether the second function type's
770 /// exception specification is a subset (or equivalent) of the first function
771 /// type. This is used by override and pointer assignment checks.
772 bool Sema::CheckExceptionSpecSubset(
773     const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID,
774     const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID,
775     const FunctionProtoType *Superset, bool SkipSupersetFirstParameter,
776     SourceLocation SuperLoc, const FunctionProtoType *Subset,
777     bool SkipSubsetFirstParameter, SourceLocation SubLoc) {
778 
779   // Just auto-succeed under -fno-exceptions.
780   if (!getLangOpts().CXXExceptions)
781     return false;
782 
783   // FIXME: As usual, we could be more specific in our error messages, but
784   // that better waits until we've got types with source locations.
785 
786   if (!SubLoc.isValid())
787     SubLoc = SuperLoc;
788 
789   // Resolve the exception specifications, if needed.
790   Superset = ResolveExceptionSpec(SuperLoc, Superset);
791   if (!Superset)
792     return false;
793   Subset = ResolveExceptionSpec(SubLoc, Subset);
794   if (!Subset)
795     return false;
796 
797   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
798   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
799   assert(!isUnresolvedExceptionSpec(SuperEST) &&
800          !isUnresolvedExceptionSpec(SubEST) &&
801          "Shouldn't see unknown exception specifications here");
802 
803   // If there are dependent noexcept specs, assume everything is fine. Unlike
804   // with the equivalency check, this is safe in this case, because we don't
805   // want to merge declarations. Checks after instantiation will catch any
806   // omissions we make here.
807   if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
808     return false;
809 
810   CanThrowResult SuperCanThrow = Superset->canThrow();
811   CanThrowResult SubCanThrow = Subset->canThrow();
812 
813   // If the superset contains everything or the subset contains nothing, we're
814   // done.
815   if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
816       SubCanThrow == CT_Cannot)
817     return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset,
818                                    SkipSupersetFirstParameter, SuperLoc, Subset,
819                                    SkipSubsetFirstParameter, SubLoc);
820 
821   // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
822   // some cases.
823   if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
824       SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
825     Diag(SubLoc, NoThrowDiagID);
826     if (NoteID.getDiagID() != 0)
827       Diag(SuperLoc, NoteID);
828     return true;
829   }
830 
831   // If the subset contains everything or the superset contains nothing, we've
832   // failed.
833   if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
834       SuperCanThrow == CT_Cannot) {
835     Diag(SubLoc, DiagID);
836     if (NoteID.getDiagID() != 0)
837       Diag(SuperLoc, NoteID);
838     return true;
839   }
840 
841   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
842          "Exception spec subset: non-dynamic case slipped through.");
843 
844   // Neither contains everything or nothing. Do a proper comparison.
845   for (QualType SubI : Subset->exceptions()) {
846     if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
847       SubI = RefTy->getPointeeType();
848 
849     // Make sure it's in the superset.
850     bool Contained = false;
851     for (QualType SuperI : Superset->exceptions()) {
852       // [except.spec]p5:
853       //   the target entity shall allow at least the exceptions allowed by the
854       //   source
855       //
856       // We interpret this as meaning that a handler for some target type would
857       // catch an exception of each source type.
858       if (handlerCanCatch(SuperI, SubI)) {
859         Contained = true;
860         break;
861       }
862     }
863     if (!Contained) {
864       Diag(SubLoc, DiagID);
865       if (NoteID.getDiagID() != 0)
866         Diag(SuperLoc, NoteID);
867       return true;
868     }
869   }
870   // We've run half the gauntlet.
871   return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset,
872                                  SkipSupersetFirstParameter, SuperLoc, Subset,
873                                  SkipSupersetFirstParameter, SubLoc);
874 }
875 
876 static bool
877 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
878                             const PartialDiagnostic &NoteID, QualType Target,
879                             SourceLocation TargetLoc, QualType Source,
880                             SourceLocation SourceLoc) {
881   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
882   if (!TFunc)
883     return false;
884   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
885   if (!SFunc)
886     return false;
887 
888   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
889                                         SFunc, SourceLoc);
890 }
891 
892 /// CheckParamExceptionSpec - Check if the parameter and return types of the
893 /// two functions have equivalent exception specs. This is part of the
894 /// assignment and override compatibility check. We do not check the parameters
895 /// of parameter function pointers recursively, as no sane programmer would
896 /// even be able to write such a function type.
897 bool Sema::CheckParamExceptionSpec(
898     const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
899     const FunctionProtoType *Target, bool SkipTargetFirstParameter,
900     SourceLocation TargetLoc, const FunctionProtoType *Source,
901     bool SkipSourceFirstParameter, SourceLocation SourceLoc) {
902   auto RetDiag = DiagID;
903   RetDiag << 0;
904   if (CheckSpecForTypesEquivalent(
905           *this, RetDiag, PDiag(),
906           Target->getReturnType(), TargetLoc, Source->getReturnType(),
907           SourceLoc))
908     return true;
909 
910   // We shouldn't even be testing this unless the arguments are otherwise
911   // compatible.
912   assert((Target->getNumParams() - (unsigned)SkipTargetFirstParameter) ==
913              (Source->getNumParams() - (unsigned)SkipSourceFirstParameter) &&
914          "Functions have different argument counts.");
915   for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
916     auto ParamDiag = DiagID;
917     ParamDiag << 1;
918     if (CheckSpecForTypesEquivalent(
919             *this, ParamDiag, PDiag(),
920             Target->getParamType(i + (SkipTargetFirstParameter ? 1 : 0)),
921             TargetLoc, Source->getParamType(SkipSourceFirstParameter ? 1 : 0),
922             SourceLoc))
923       return true;
924   }
925   return false;
926 }
927 
928 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
929   // First we check for applicability.
930   // Target type must be a function, function pointer or function reference.
931   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
932   if (!ToFunc || ToFunc->hasDependentExceptionSpec())
933     return false;
934 
935   // SourceType must be a function or function pointer.
936   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
937   if (!FromFunc || FromFunc->hasDependentExceptionSpec())
938     return false;
939 
940   unsigned DiagID = diag::err_incompatible_exception_specs;
941   unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
942   // This is not an error in C++17 onwards, unless the noexceptness doesn't
943   // match, but in that case we have a full-on type mismatch, not just a
944   // type sugar mismatch.
945   if (getLangOpts().CPlusPlus17) {
946     DiagID = diag::warn_incompatible_exception_specs;
947     NestedDiagID = diag::warn_deep_exception_specs_differ;
948   }
949 
950   // Now we've got the correct types on both sides, check their compatibility.
951   // This means that the source of the conversion can only throw a subset of
952   // the exceptions of the target, and any exception specs on arguments or
953   // return types must be equivalent.
954   //
955   // FIXME: If there is a nested dependent exception specification, we should
956   // not be checking it here. This is fine:
957   //   template<typename T> void f() {
958   //     void (*p)(void (*) throw(T));
959   //     void (*q)(void (*) throw(int)) = p;
960   //   }
961   // ... because it might be instantiated with T=int.
962   return CheckExceptionSpecSubset(PDiag(DiagID), PDiag(NestedDiagID), PDiag(),
963                                   PDiag(), ToFunc, 0,
964                                   From->getSourceRange().getBegin(), FromFunc,
965                                   0, SourceLocation()) &&
966          !getLangOpts().CPlusPlus17;
967 }
968 
969 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
970                                                 const CXXMethodDecl *Old) {
971   // If the new exception specification hasn't been parsed yet, skip the check.
972   // We'll get called again once it's been parsed.
973   if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
974       EST_Unparsed)
975     return false;
976 
977   // Don't check uninstantiated template destructors at all. We can only
978   // synthesize correct specs after the template is instantiated.
979   if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
980     return false;
981 
982   // If the old exception specification hasn't been parsed yet, or the new
983   // exception specification can't be computed yet, remember that we need to
984   // perform this check when we get to the end of the outermost
985   // lexically-surrounding class.
986   if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
987     DelayedOverridingExceptionSpecChecks.push_back({New, Old});
988     return false;
989   }
990 
991   unsigned DiagID = diag::err_override_exception_spec;
992   if (getLangOpts().MSVCCompat)
993     DiagID = diag::ext_override_exception_spec;
994   return CheckExceptionSpecSubset(
995       PDiag(DiagID), PDiag(diag::err_deep_exception_specs_differ),
996       PDiag(diag::note_overridden_virtual_function),
997       PDiag(diag::ext_override_exception_spec),
998       Old->getType()->castAs<FunctionProtoType>(),
999       Old->hasCXXExplicitFunctionObjectParameter(), Old->getLocation(),
1000       New->getType()->castAs<FunctionProtoType>(),
1001       New->hasCXXExplicitFunctionObjectParameter(), New->getLocation());
1002 }
1003 
1004 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
1005   CanThrowResult R = CT_Cannot;
1006   for (const Stmt *SubStmt : S->children()) {
1007     if (!SubStmt)
1008       continue;
1009     R = mergeCanThrow(R, Self.canThrow(SubStmt));
1010     if (R == CT_Can)
1011       break;
1012   }
1013   return R;
1014 }
1015 
1016 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
1017                                     SourceLocation Loc) {
1018   // As an extension, we assume that __attribute__((nothrow)) functions don't
1019   // throw.
1020   if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1021     return CT_Cannot;
1022 
1023   QualType T;
1024 
1025   // In C++1z, just look at the function type of the callee.
1026   if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) {
1027     E = cast<CallExpr>(E)->getCallee();
1028     T = E->getType();
1029     if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1030       // Sadly we don't preserve the actual type as part of the "bound member"
1031       // placeholder, so we need to reconstruct it.
1032       E = E->IgnoreParenImpCasts();
1033 
1034       // Could be a call to a pointer-to-member or a plain member access.
1035       if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1036         assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1037         T = Op->getRHS()->getType()
1038               ->castAs<MemberPointerType>()->getPointeeType();
1039       } else {
1040         T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1041       }
1042     }
1043   } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1044     T = VD->getType();
1045   else
1046     // If we have no clue what we're calling, assume the worst.
1047     return CT_Can;
1048 
1049   const FunctionProtoType *FT;
1050   if ((FT = T->getAs<FunctionProtoType>())) {
1051   } else if (const PointerType *PT = T->getAs<PointerType>())
1052     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1053   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1054     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1055   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1056     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1057   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1058     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1059 
1060   if (!FT)
1061     return CT_Can;
1062 
1063   if (Loc.isValid() || (Loc.isInvalid() && E))
1064     FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1065   if (!FT)
1066     return CT_Can;
1067 
1068   return FT->canThrow();
1069 }
1070 
1071 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1072   CanThrowResult CT = CT_Cannot;
1073 
1074   // Initialization might throw.
1075   if (!VD->isUsableInConstantExpressions(Self.Context))
1076     if (const Expr *Init = VD->getInit())
1077       CT = mergeCanThrow(CT, Self.canThrow(Init));
1078 
1079   // Destructor might throw.
1080   if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1081     if (auto *RD =
1082             VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1083       if (auto *Dtor = RD->getDestructor()) {
1084         CT = mergeCanThrow(
1085             CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1086       }
1087     }
1088   }
1089 
1090   // If this is a decomposition declaration, bindings might throw.
1091   if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1092     for (auto *B : DD->bindings())
1093       if (auto *HD = B->getHoldingVar())
1094         CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1095 
1096   return CT;
1097 }
1098 
1099 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1100   if (DC->isTypeDependent())
1101     return CT_Dependent;
1102 
1103   if (!DC->getTypeAsWritten()->isReferenceType())
1104     return CT_Cannot;
1105 
1106   if (DC->getSubExpr()->isTypeDependent())
1107     return CT_Dependent;
1108 
1109   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1110 }
1111 
1112 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1113   if (DC->isTypeOperand())
1114     return CT_Cannot;
1115 
1116   Expr *Op = DC->getExprOperand();
1117   if (Op->isTypeDependent())
1118     return CT_Dependent;
1119 
1120   const RecordType *RT = Op->getType()->getAs<RecordType>();
1121   if (!RT)
1122     return CT_Cannot;
1123 
1124   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1125     return CT_Cannot;
1126 
1127   if (Op->Classify(S.Context).isPRValue())
1128     return CT_Cannot;
1129 
1130   return CT_Can;
1131 }
1132 
1133 CanThrowResult Sema::canThrow(const Stmt *S) {
1134   // C++ [expr.unary.noexcept]p3:
1135   //   [Can throw] if in a potentially-evaluated context the expression would
1136   //   contain:
1137   switch (S->getStmtClass()) {
1138   case Expr::ConstantExprClass:
1139     return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1140 
1141   case Expr::CXXThrowExprClass:
1142     //   - a potentially evaluated throw-expression
1143     return CT_Can;
1144 
1145   case Expr::CXXDynamicCastExprClass: {
1146     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1147     //     where T is a reference type, that requires a run-time check
1148     auto *CE = cast<CXXDynamicCastExpr>(S);
1149     // FIXME: Properly determine whether a variably-modified type can throw.
1150     if (CE->getType()->isVariablyModifiedType())
1151       return CT_Can;
1152     CanThrowResult CT = canDynamicCastThrow(CE);
1153     if (CT == CT_Can)
1154       return CT;
1155     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1156   }
1157 
1158   case Expr::CXXTypeidExprClass:
1159     //   - a potentially evaluated typeid expression applied to a glvalue
1160     //     expression whose type is a polymorphic class type
1161     return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1162 
1163     //   - a potentially evaluated call to a function, member function, function
1164     //     pointer, or member function pointer that does not have a non-throwing
1165     //     exception-specification
1166   case Expr::CallExprClass:
1167   case Expr::CXXMemberCallExprClass:
1168   case Expr::CXXOperatorCallExprClass:
1169   case Expr::UserDefinedLiteralClass: {
1170     const CallExpr *CE = cast<CallExpr>(S);
1171     CanThrowResult CT;
1172     if (CE->isTypeDependent())
1173       CT = CT_Dependent;
1174     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1175       CT = CT_Cannot;
1176     else
1177       CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1178     if (CT == CT_Can)
1179       return CT;
1180     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1181   }
1182 
1183   case Expr::CXXConstructExprClass:
1184   case Expr::CXXTemporaryObjectExprClass: {
1185     auto *CE = cast<CXXConstructExpr>(S);
1186     // FIXME: Properly determine whether a variably-modified type can throw.
1187     if (CE->getType()->isVariablyModifiedType())
1188       return CT_Can;
1189     CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1190     if (CT == CT_Can)
1191       return CT;
1192     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1193   }
1194 
1195   case Expr::CXXInheritedCtorInitExprClass: {
1196     auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1197     return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1198   }
1199 
1200   case Expr::LambdaExprClass: {
1201     const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1202     CanThrowResult CT = CT_Cannot;
1203     for (LambdaExpr::const_capture_init_iterator
1204              Cap = Lambda->capture_init_begin(),
1205              CapEnd = Lambda->capture_init_end();
1206          Cap != CapEnd; ++Cap)
1207       CT = mergeCanThrow(CT, canThrow(*Cap));
1208     return CT;
1209   }
1210 
1211   case Expr::CXXNewExprClass: {
1212     auto *NE = cast<CXXNewExpr>(S);
1213     CanThrowResult CT;
1214     if (NE->isTypeDependent())
1215       CT = CT_Dependent;
1216     else
1217       CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1218     if (CT == CT_Can)
1219       return CT;
1220     return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1221   }
1222 
1223   case Expr::CXXDeleteExprClass: {
1224     auto *DE = cast<CXXDeleteExpr>(S);
1225     CanThrowResult CT;
1226     QualType DTy = DE->getDestroyedType();
1227     if (DTy.isNull() || DTy->isDependentType()) {
1228       CT = CT_Dependent;
1229     } else {
1230       CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1231       if (const RecordType *RT = DTy->getAs<RecordType>()) {
1232         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1233         const CXXDestructorDecl *DD = RD->getDestructor();
1234         if (DD)
1235           CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1236       }
1237       if (CT == CT_Can)
1238         return CT;
1239     }
1240     return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1241   }
1242 
1243   case Expr::CXXBindTemporaryExprClass: {
1244     auto *BTE = cast<CXXBindTemporaryExpr>(S);
1245     // The bound temporary has to be destroyed again, which might throw.
1246     CanThrowResult CT =
1247         canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1248     if (CT == CT_Can)
1249       return CT;
1250     return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1251   }
1252 
1253   case Expr::PseudoObjectExprClass: {
1254     auto *POE = cast<PseudoObjectExpr>(S);
1255     CanThrowResult CT = CT_Cannot;
1256     for (const Expr *E : POE->semantics()) {
1257       CT = mergeCanThrow(CT, canThrow(E));
1258       if (CT == CT_Can)
1259         break;
1260     }
1261     return CT;
1262   }
1263 
1264     // ObjC message sends are like function calls, but never have exception
1265     // specs.
1266   case Expr::ObjCMessageExprClass:
1267   case Expr::ObjCPropertyRefExprClass:
1268   case Expr::ObjCSubscriptRefExprClass:
1269     return CT_Can;
1270 
1271     // All the ObjC literals that are implemented as calls are
1272     // potentially throwing unless we decide to close off that
1273     // possibility.
1274   case Expr::ObjCArrayLiteralClass:
1275   case Expr::ObjCDictionaryLiteralClass:
1276   case Expr::ObjCBoxedExprClass:
1277     return CT_Can;
1278 
1279     // Many other things have subexpressions, so we have to test those.
1280     // Some are simple:
1281   case Expr::CoawaitExprClass:
1282   case Expr::ConditionalOperatorClass:
1283   case Expr::CoyieldExprClass:
1284   case Expr::CXXRewrittenBinaryOperatorClass:
1285   case Expr::CXXStdInitializerListExprClass:
1286   case Expr::DesignatedInitExprClass:
1287   case Expr::DesignatedInitUpdateExprClass:
1288   case Expr::ExprWithCleanupsClass:
1289   case Expr::ExtVectorElementExprClass:
1290   case Expr::InitListExprClass:
1291   case Expr::ArrayInitLoopExprClass:
1292   case Expr::MemberExprClass:
1293   case Expr::ObjCIsaExprClass:
1294   case Expr::ObjCIvarRefExprClass:
1295   case Expr::ParenExprClass:
1296   case Expr::ParenListExprClass:
1297   case Expr::ShuffleVectorExprClass:
1298   case Expr::StmtExprClass:
1299   case Expr::ConvertVectorExprClass:
1300   case Expr::VAArgExprClass:
1301   case Expr::CXXParenListInitExprClass:
1302     return canSubStmtsThrow(*this, S);
1303 
1304   case Expr::CompoundLiteralExprClass:
1305   case Expr::CXXConstCastExprClass:
1306   case Expr::CXXAddrspaceCastExprClass:
1307   case Expr::CXXReinterpretCastExprClass:
1308   case Expr::BuiltinBitCastExprClass:
1309       // FIXME: Properly determine whether a variably-modified type can throw.
1310     if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1311       return CT_Can;
1312     return canSubStmtsThrow(*this, S);
1313 
1314     // Some might be dependent for other reasons.
1315   case Expr::ArraySubscriptExprClass:
1316   case Expr::MatrixSubscriptExprClass:
1317   case Expr::OMPArraySectionExprClass:
1318   case Expr::OMPArrayShapingExprClass:
1319   case Expr::OMPIteratorExprClass:
1320   case Expr::BinaryOperatorClass:
1321   case Expr::DependentCoawaitExprClass:
1322   case Expr::CompoundAssignOperatorClass:
1323   case Expr::CStyleCastExprClass:
1324   case Expr::CXXStaticCastExprClass:
1325   case Expr::CXXFunctionalCastExprClass:
1326   case Expr::ImplicitCastExprClass:
1327   case Expr::MaterializeTemporaryExprClass:
1328   case Expr::UnaryOperatorClass: {
1329     // FIXME: Properly determine whether a variably-modified type can throw.
1330     if (auto *CE = dyn_cast<CastExpr>(S))
1331       if (CE->getType()->isVariablyModifiedType())
1332         return CT_Can;
1333     CanThrowResult CT =
1334         cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1335     return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1336   }
1337 
1338   case Expr::CXXDefaultArgExprClass:
1339     return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1340 
1341   case Expr::CXXDefaultInitExprClass:
1342     return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1343 
1344   case Expr::ChooseExprClass: {
1345     auto *CE = cast<ChooseExpr>(S);
1346     if (CE->isTypeDependent() || CE->isValueDependent())
1347       return CT_Dependent;
1348     return canThrow(CE->getChosenSubExpr());
1349   }
1350 
1351   case Expr::GenericSelectionExprClass:
1352     if (cast<GenericSelectionExpr>(S)->isResultDependent())
1353       return CT_Dependent;
1354     return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1355 
1356     // Some expressions are always dependent.
1357   case Expr::CXXDependentScopeMemberExprClass:
1358   case Expr::CXXUnresolvedConstructExprClass:
1359   case Expr::DependentScopeDeclRefExprClass:
1360   case Expr::CXXFoldExprClass:
1361   case Expr::RecoveryExprClass:
1362     return CT_Dependent;
1363 
1364   case Expr::AsTypeExprClass:
1365   case Expr::BinaryConditionalOperatorClass:
1366   case Expr::BlockExprClass:
1367   case Expr::CUDAKernelCallExprClass:
1368   case Expr::DeclRefExprClass:
1369   case Expr::ObjCBridgedCastExprClass:
1370   case Expr::ObjCIndirectCopyRestoreExprClass:
1371   case Expr::ObjCProtocolExprClass:
1372   case Expr::ObjCSelectorExprClass:
1373   case Expr::ObjCAvailabilityCheckExprClass:
1374   case Expr::OffsetOfExprClass:
1375   case Expr::PackExpansionExprClass:
1376   case Expr::SubstNonTypeTemplateParmExprClass:
1377   case Expr::SubstNonTypeTemplateParmPackExprClass:
1378   case Expr::FunctionParmPackExprClass:
1379   case Expr::UnaryExprOrTypeTraitExprClass:
1380   case Expr::UnresolvedLookupExprClass:
1381   case Expr::UnresolvedMemberExprClass:
1382   case Expr::TypoExprClass:
1383     // FIXME: Many of the above can throw.
1384     return CT_Cannot;
1385 
1386   case Expr::AddrLabelExprClass:
1387   case Expr::ArrayTypeTraitExprClass:
1388   case Expr::AtomicExprClass:
1389   case Expr::TypeTraitExprClass:
1390   case Expr::CXXBoolLiteralExprClass:
1391   case Expr::CXXNoexceptExprClass:
1392   case Expr::CXXNullPtrLiteralExprClass:
1393   case Expr::CXXPseudoDestructorExprClass:
1394   case Expr::CXXScalarValueInitExprClass:
1395   case Expr::CXXThisExprClass:
1396   case Expr::CXXUuidofExprClass:
1397   case Expr::CharacterLiteralClass:
1398   case Expr::ExpressionTraitExprClass:
1399   case Expr::FloatingLiteralClass:
1400   case Expr::GNUNullExprClass:
1401   case Expr::ImaginaryLiteralClass:
1402   case Expr::ImplicitValueInitExprClass:
1403   case Expr::IntegerLiteralClass:
1404   case Expr::FixedPointLiteralClass:
1405   case Expr::ArrayInitIndexExprClass:
1406   case Expr::NoInitExprClass:
1407   case Expr::ObjCEncodeExprClass:
1408   case Expr::ObjCStringLiteralClass:
1409   case Expr::ObjCBoolLiteralExprClass:
1410   case Expr::OpaqueValueExprClass:
1411   case Expr::PredefinedExprClass:
1412   case Expr::SizeOfPackExprClass:
1413   case Expr::StringLiteralClass:
1414   case Expr::SourceLocExprClass:
1415   case Expr::ConceptSpecializationExprClass:
1416   case Expr::RequiresExprClass:
1417     // These expressions can never throw.
1418     return CT_Cannot;
1419 
1420   case Expr::MSPropertyRefExprClass:
1421   case Expr::MSPropertySubscriptExprClass:
1422     llvm_unreachable("Invalid class for expression");
1423 
1424     // Most statements can throw if any substatement can throw.
1425   case Stmt::AttributedStmtClass:
1426   case Stmt::BreakStmtClass:
1427   case Stmt::CapturedStmtClass:
1428   case Stmt::CaseStmtClass:
1429   case Stmt::CompoundStmtClass:
1430   case Stmt::ContinueStmtClass:
1431   case Stmt::CoreturnStmtClass:
1432   case Stmt::CoroutineBodyStmtClass:
1433   case Stmt::CXXCatchStmtClass:
1434   case Stmt::CXXForRangeStmtClass:
1435   case Stmt::DefaultStmtClass:
1436   case Stmt::DoStmtClass:
1437   case Stmt::ForStmtClass:
1438   case Stmt::GCCAsmStmtClass:
1439   case Stmt::GotoStmtClass:
1440   case Stmt::IndirectGotoStmtClass:
1441   case Stmt::LabelStmtClass:
1442   case Stmt::MSAsmStmtClass:
1443   case Stmt::MSDependentExistsStmtClass:
1444   case Stmt::NullStmtClass:
1445   case Stmt::ObjCAtCatchStmtClass:
1446   case Stmt::ObjCAtFinallyStmtClass:
1447   case Stmt::ObjCAtSynchronizedStmtClass:
1448   case Stmt::ObjCAutoreleasePoolStmtClass:
1449   case Stmt::ObjCForCollectionStmtClass:
1450   case Stmt::OMPAtomicDirectiveClass:
1451   case Stmt::OMPBarrierDirectiveClass:
1452   case Stmt::OMPCancelDirectiveClass:
1453   case Stmt::OMPCancellationPointDirectiveClass:
1454   case Stmt::OMPCriticalDirectiveClass:
1455   case Stmt::OMPDistributeDirectiveClass:
1456   case Stmt::OMPDistributeParallelForDirectiveClass:
1457   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1458   case Stmt::OMPDistributeSimdDirectiveClass:
1459   case Stmt::OMPFlushDirectiveClass:
1460   case Stmt::OMPDepobjDirectiveClass:
1461   case Stmt::OMPScanDirectiveClass:
1462   case Stmt::OMPForDirectiveClass:
1463   case Stmt::OMPForSimdDirectiveClass:
1464   case Stmt::OMPMasterDirectiveClass:
1465   case Stmt::OMPMasterTaskLoopDirectiveClass:
1466   case Stmt::OMPMaskedTaskLoopDirectiveClass:
1467   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1468   case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
1469   case Stmt::OMPOrderedDirectiveClass:
1470   case Stmt::OMPCanonicalLoopClass:
1471   case Stmt::OMPParallelDirectiveClass:
1472   case Stmt::OMPParallelForDirectiveClass:
1473   case Stmt::OMPParallelForSimdDirectiveClass:
1474   case Stmt::OMPParallelMasterDirectiveClass:
1475   case Stmt::OMPParallelMaskedDirectiveClass:
1476   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1477   case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
1478   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1479   case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
1480   case Stmt::OMPParallelSectionsDirectiveClass:
1481   case Stmt::OMPSectionDirectiveClass:
1482   case Stmt::OMPSectionsDirectiveClass:
1483   case Stmt::OMPSimdDirectiveClass:
1484   case Stmt::OMPTileDirectiveClass:
1485   case Stmt::OMPUnrollDirectiveClass:
1486   case Stmt::OMPSingleDirectiveClass:
1487   case Stmt::OMPTargetDataDirectiveClass:
1488   case Stmt::OMPTargetDirectiveClass:
1489   case Stmt::OMPTargetEnterDataDirectiveClass:
1490   case Stmt::OMPTargetExitDataDirectiveClass:
1491   case Stmt::OMPTargetParallelDirectiveClass:
1492   case Stmt::OMPTargetParallelForDirectiveClass:
1493   case Stmt::OMPTargetParallelForSimdDirectiveClass:
1494   case Stmt::OMPTargetSimdDirectiveClass:
1495   case Stmt::OMPTargetTeamsDirectiveClass:
1496   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1497   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1498   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1499   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1500   case Stmt::OMPTargetUpdateDirectiveClass:
1501   case Stmt::OMPScopeDirectiveClass:
1502   case Stmt::OMPTaskDirectiveClass:
1503   case Stmt::OMPTaskgroupDirectiveClass:
1504   case Stmt::OMPTaskLoopDirectiveClass:
1505   case Stmt::OMPTaskLoopSimdDirectiveClass:
1506   case Stmt::OMPTaskwaitDirectiveClass:
1507   case Stmt::OMPTaskyieldDirectiveClass:
1508   case Stmt::OMPErrorDirectiveClass:
1509   case Stmt::OMPTeamsDirectiveClass:
1510   case Stmt::OMPTeamsDistributeDirectiveClass:
1511   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1512   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1513   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1514   case Stmt::OMPInteropDirectiveClass:
1515   case Stmt::OMPDispatchDirectiveClass:
1516   case Stmt::OMPMaskedDirectiveClass:
1517   case Stmt::OMPMetaDirectiveClass:
1518   case Stmt::OMPGenericLoopDirectiveClass:
1519   case Stmt::OMPTeamsGenericLoopDirectiveClass:
1520   case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
1521   case Stmt::OMPParallelGenericLoopDirectiveClass:
1522   case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
1523   case Stmt::ReturnStmtClass:
1524   case Stmt::SEHExceptStmtClass:
1525   case Stmt::SEHFinallyStmtClass:
1526   case Stmt::SEHLeaveStmtClass:
1527   case Stmt::SEHTryStmtClass:
1528   case Stmt::SwitchStmtClass:
1529   case Stmt::WhileStmtClass:
1530     return canSubStmtsThrow(*this, S);
1531 
1532   case Stmt::DeclStmtClass: {
1533     CanThrowResult CT = CT_Cannot;
1534     for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1535       if (auto *VD = dyn_cast<VarDecl>(D))
1536         CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1537 
1538       // FIXME: Properly determine whether a variably-modified type can throw.
1539       if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1540         if (TND->getUnderlyingType()->isVariablyModifiedType())
1541           return CT_Can;
1542       if (auto *VD = dyn_cast<ValueDecl>(D))
1543         if (VD->getType()->isVariablyModifiedType())
1544           return CT_Can;
1545     }
1546     return CT;
1547   }
1548 
1549   case Stmt::IfStmtClass: {
1550     auto *IS = cast<IfStmt>(S);
1551     CanThrowResult CT = CT_Cannot;
1552     if (const Stmt *Init = IS->getInit())
1553       CT = mergeCanThrow(CT, canThrow(Init));
1554     if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1555       CT = mergeCanThrow(CT, canThrow(CondDS));
1556     CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1557 
1558     // For 'if constexpr', consider only the non-discarded case.
1559     // FIXME: We should add a DiscardedStmt marker to the AST.
1560     if (std::optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1561       return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1562 
1563     CanThrowResult Then = canThrow(IS->getThen());
1564     CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1565     if (Then == Else)
1566       return mergeCanThrow(CT, Then);
1567 
1568     // For a dependent 'if constexpr', the result is dependent if it depends on
1569     // the value of the condition.
1570     return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1571                                                : mergeCanThrow(Then, Else));
1572   }
1573 
1574   case Stmt::CXXTryStmtClass: {
1575     auto *TS = cast<CXXTryStmt>(S);
1576     // try /*...*/ catch (...) { H } can throw only if H can throw.
1577     // Any other try-catch can throw if any substatement can throw.
1578     const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1579     if (!FinalHandler->getExceptionDecl())
1580       return canThrow(FinalHandler->getHandlerBlock());
1581     return canSubStmtsThrow(*this, S);
1582   }
1583 
1584   case Stmt::ObjCAtThrowStmtClass:
1585     return CT_Can;
1586 
1587   case Stmt::ObjCAtTryStmtClass: {
1588     auto *TS = cast<ObjCAtTryStmt>(S);
1589 
1590     // @catch(...) need not be last in Objective-C. Walk backwards until we
1591     // see one or hit the @try.
1592     CanThrowResult CT = CT_Cannot;
1593     if (const Stmt *Finally = TS->getFinallyStmt())
1594       CT = mergeCanThrow(CT, canThrow(Finally));
1595     for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1596       const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1597       CT = mergeCanThrow(CT, canThrow(Catch));
1598       // If we reach a @catch(...), no earlier exceptions can escape.
1599       if (Catch->hasEllipsis())
1600         return CT;
1601     }
1602 
1603     // Didn't find an @catch(...). Exceptions from the @try body can escape.
1604     return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1605   }
1606 
1607   case Stmt::SYCLUniqueStableNameExprClass:
1608     return CT_Cannot;
1609   case Stmt::NoStmtClass:
1610     llvm_unreachable("Invalid class for statement");
1611   }
1612   llvm_unreachable("Bogus StmtClass");
1613 }
1614 
1615 } // end namespace clang
1616