1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ExprOpenMP.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/FixedPoint.h"
30 #include "clang/Basic/PartialDiagnostic.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "clang/Sema/AnalysisBasedWarnings.h"
36 #include "clang/Sema/DeclSpec.h"
37 #include "clang/Sema/DelayedDiagnostic.h"
38 #include "clang/Sema/Designator.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/Overload.h"
42 #include "clang/Sema/ParsedTemplate.h"
43 #include "clang/Sema/Scope.h"
44 #include "clang/Sema/ScopeInfo.h"
45 #include "clang/Sema/SemaFixItUtils.h"
46 #include "clang/Sema/SemaInternal.h"
47 #include "clang/Sema/Template.h"
48 #include "llvm/Support/ConvertUTF.h"
49 using namespace clang;
50 using namespace sema;
51 
52 /// Determine whether the use of this declaration is valid, without
53 /// emitting diagnostics.
54 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
55   // See if this is an auto-typed variable whose initializer we are parsing.
56   if (ParsingInitForAutoVars.count(D))
57     return false;
58 
59   // See if this is a deleted function.
60   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
61     if (FD->isDeleted())
62       return false;
63 
64     // If the function has a deduced return type, and we can't deduce it,
65     // then we can't use it either.
66     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
67         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
68       return false;
69 
70     // See if this is an aligned allocation/deallocation function that is
71     // unavailable.
72     if (TreatUnavailableAsInvalid &&
73         isUnavailableAlignedAllocationFunction(*FD))
74       return false;
75   }
76 
77   // See if this function is unavailable.
78   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
79       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
80     return false;
81 
82   return true;
83 }
84 
85 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
86   // Warn if this is used but marked unused.
87   if (const auto *A = D->getAttr<UnusedAttr>()) {
88     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
89     // should diagnose them.
90     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
91         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
92       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
93       if (DC && !DC->hasAttr<UnusedAttr>())
94         S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
95     }
96   }
97 }
98 
99 /// Emit a note explaining that this function is deleted.
100 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
101   assert(Decl && Decl->isDeleted());
102 
103   if (Decl->isDefaulted()) {
104     // If the method was explicitly defaulted, point at that declaration.
105     if (!Decl->isImplicit())
106       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
107 
108     // Try to diagnose why this special member function was implicitly
109     // deleted. This might fail, if that reason no longer applies.
110     DiagnoseDeletedDefaultedFunction(Decl);
111     return;
112   }
113 
114   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
115   if (Ctor && Ctor->isInheritingConstructor())
116     return NoteDeletedInheritingConstructor(Ctor);
117 
118   Diag(Decl->getLocation(), diag::note_availability_specified_here)
119     << Decl << 1;
120 }
121 
122 /// Determine whether a FunctionDecl was ever declared with an
123 /// explicit storage class.
124 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
125   for (auto I : D->redecls()) {
126     if (I->getStorageClass() != SC_None)
127       return true;
128   }
129   return false;
130 }
131 
132 /// Check whether we're in an extern inline function and referring to a
133 /// variable or function with internal linkage (C11 6.7.4p3).
134 ///
135 /// This is only a warning because we used to silently accept this code, but
136 /// in many cases it will not behave correctly. This is not enabled in C++ mode
137 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
138 /// and so while there may still be user mistakes, most of the time we can't
139 /// prove that there are errors.
140 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
141                                                       const NamedDecl *D,
142                                                       SourceLocation Loc) {
143   // This is disabled under C++; there are too many ways for this to fire in
144   // contexts where the warning is a false positive, or where it is technically
145   // correct but benign.
146   if (S.getLangOpts().CPlusPlus)
147     return;
148 
149   // Check if this is an inlined function or method.
150   FunctionDecl *Current = S.getCurFunctionDecl();
151   if (!Current)
152     return;
153   if (!Current->isInlined())
154     return;
155   if (!Current->isExternallyVisible())
156     return;
157 
158   // Check if the decl has internal linkage.
159   if (D->getFormalLinkage() != InternalLinkage)
160     return;
161 
162   // Downgrade from ExtWarn to Extension if
163   //  (1) the supposedly external inline function is in the main file,
164   //      and probably won't be included anywhere else.
165   //  (2) the thing we're referencing is a pure function.
166   //  (3) the thing we're referencing is another inline function.
167   // This last can give us false negatives, but it's better than warning on
168   // wrappers for simple C library functions.
169   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
170   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
171   if (!DowngradeWarning && UsedFn)
172     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
173 
174   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
175                                : diag::ext_internal_in_extern_inline)
176     << /*IsVar=*/!UsedFn << D;
177 
178   S.MaybeSuggestAddingStaticToDecl(Current);
179 
180   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
181       << D;
182 }
183 
184 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
185   const FunctionDecl *First = Cur->getFirstDecl();
186 
187   // Suggest "static" on the function, if possible.
188   if (!hasAnyExplicitStorageClass(First)) {
189     SourceLocation DeclBegin = First->getSourceRange().getBegin();
190     Diag(DeclBegin, diag::note_convert_inline_to_static)
191       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
192   }
193 }
194 
195 /// Determine whether the use of this declaration is valid, and
196 /// emit any corresponding diagnostics.
197 ///
198 /// This routine diagnoses various problems with referencing
199 /// declarations that can occur when using a declaration. For example,
200 /// it might warn if a deprecated or unavailable declaration is being
201 /// used, or produce an error (and return true) if a C++0x deleted
202 /// function is being used.
203 ///
204 /// \returns true if there was an error (this declaration cannot be
205 /// referenced), false otherwise.
206 ///
207 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
208                              const ObjCInterfaceDecl *UnknownObjCClass,
209                              bool ObjCPropertyAccess,
210                              bool AvoidPartialAvailabilityChecks,
211                              ObjCInterfaceDecl *ClassReceiver) {
212   SourceLocation Loc = Locs.front();
213   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
214     // If there were any diagnostics suppressed by template argument deduction,
215     // emit them now.
216     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
217     if (Pos != SuppressedDiagnostics.end()) {
218       for (const PartialDiagnosticAt &Suppressed : Pos->second)
219         Diag(Suppressed.first, Suppressed.second);
220 
221       // Clear out the list of suppressed diagnostics, so that we don't emit
222       // them again for this specialization. However, we don't obsolete this
223       // entry from the table, because we want to avoid ever emitting these
224       // diagnostics again.
225       Pos->second.clear();
226     }
227 
228     // C++ [basic.start.main]p3:
229     //   The function 'main' shall not be used within a program.
230     if (cast<FunctionDecl>(D)->isMain())
231       Diag(Loc, diag::ext_main_used);
232 
233     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
234   }
235 
236   // See if this is an auto-typed variable whose initializer we are parsing.
237   if (ParsingInitForAutoVars.count(D)) {
238     if (isa<BindingDecl>(D)) {
239       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
240         << D->getDeclName();
241     } else {
242       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
243         << D->getDeclName() << cast<VarDecl>(D)->getType();
244     }
245     return true;
246   }
247 
248   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
249     // See if this is a deleted function.
250     if (FD->isDeleted()) {
251       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
252       if (Ctor && Ctor->isInheritingConstructor())
253         Diag(Loc, diag::err_deleted_inherited_ctor_use)
254             << Ctor->getParent()
255             << Ctor->getInheritedConstructor().getConstructor()->getParent();
256       else
257         Diag(Loc, diag::err_deleted_function_use);
258       NoteDeletedFunction(FD);
259       return true;
260     }
261 
262     // [expr.prim.id]p4
263     //   A program that refers explicitly or implicitly to a function with a
264     //   trailing requires-clause whose constraint-expression is not satisfied,
265     //   other than to declare it, is ill-formed. [...]
266     //
267     // See if this is a function with constraints that need to be satisfied.
268     // Check this before deducing the return type, as it might instantiate the
269     // definition.
270     if (FD->getTrailingRequiresClause()) {
271       ConstraintSatisfaction Satisfaction;
272       if (CheckFunctionConstraints(FD, Satisfaction, Loc))
273         // A diagnostic will have already been generated (non-constant
274         // constraint expression, for example)
275         return true;
276       if (!Satisfaction.IsSatisfied) {
277         Diag(Loc,
278              diag::err_reference_to_function_with_unsatisfied_constraints)
279             << D;
280         DiagnoseUnsatisfiedConstraint(Satisfaction);
281         return true;
282       }
283     }
284 
285     // If the function has a deduced return type, and we can't deduce it,
286     // then we can't use it either.
287     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
288         DeduceReturnType(FD, Loc))
289       return true;
290 
291     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
292       return true;
293   }
294 
295   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
296     // Lambdas are only default-constructible or assignable in C++2a onwards.
297     if (MD->getParent()->isLambda() &&
298         ((isa<CXXConstructorDecl>(MD) &&
299           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
300          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
301       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
302         << !isa<CXXConstructorDecl>(MD);
303     }
304   }
305 
306   auto getReferencedObjCProp = [](const NamedDecl *D) ->
307                                       const ObjCPropertyDecl * {
308     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
309       return MD->findPropertyDecl();
310     return nullptr;
311   };
312   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
313     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
314       return true;
315   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
316       return true;
317   }
318 
319   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
320   // Only the variables omp_in and omp_out are allowed in the combiner.
321   // Only the variables omp_priv and omp_orig are allowed in the
322   // initializer-clause.
323   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
324   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
325       isa<VarDecl>(D)) {
326     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
327         << getCurFunction()->HasOMPDeclareReductionCombiner;
328     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
329     return true;
330   }
331 
332   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
333   //  List-items in map clauses on this construct may only refer to the declared
334   //  variable var and entities that could be referenced by a procedure defined
335   //  at the same location
336   auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext);
337   if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) &&
338       isa<VarDecl>(D)) {
339     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
340         << DMD->getVarName().getAsString();
341     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
342     return true;
343   }
344 
345   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
346                              AvoidPartialAvailabilityChecks, ClassReceiver);
347 
348   DiagnoseUnusedOfDecl(*this, D, Loc);
349 
350   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
351 
352   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
353       !isUnevaluatedContext()) {
354     // C++ [expr.prim.req.nested] p3
355     //   A local parameter shall only appear as an unevaluated operand
356     //   (Clause 8) within the constraint-expression.
357     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
358         << D;
359     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
360     return true;
361   }
362 
363   return false;
364 }
365 
366 /// DiagnoseSentinelCalls - This routine checks whether a call or
367 /// message-send is to a declaration with the sentinel attribute, and
368 /// if so, it checks that the requirements of the sentinel are
369 /// satisfied.
370 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
371                                  ArrayRef<Expr *> Args) {
372   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
373   if (!attr)
374     return;
375 
376   // The number of formal parameters of the declaration.
377   unsigned numFormalParams;
378 
379   // The kind of declaration.  This is also an index into a %select in
380   // the diagnostic.
381   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
382 
383   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
384     numFormalParams = MD->param_size();
385     calleeType = CT_Method;
386   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
387     numFormalParams = FD->param_size();
388     calleeType = CT_Function;
389   } else if (isa<VarDecl>(D)) {
390     QualType type = cast<ValueDecl>(D)->getType();
391     const FunctionType *fn = nullptr;
392     if (const PointerType *ptr = type->getAs<PointerType>()) {
393       fn = ptr->getPointeeType()->getAs<FunctionType>();
394       if (!fn) return;
395       calleeType = CT_Function;
396     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
397       fn = ptr->getPointeeType()->castAs<FunctionType>();
398       calleeType = CT_Block;
399     } else {
400       return;
401     }
402 
403     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
404       numFormalParams = proto->getNumParams();
405     } else {
406       numFormalParams = 0;
407     }
408   } else {
409     return;
410   }
411 
412   // "nullPos" is the number of formal parameters at the end which
413   // effectively count as part of the variadic arguments.  This is
414   // useful if you would prefer to not have *any* formal parameters,
415   // but the language forces you to have at least one.
416   unsigned nullPos = attr->getNullPos();
417   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
418   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
419 
420   // The number of arguments which should follow the sentinel.
421   unsigned numArgsAfterSentinel = attr->getSentinel();
422 
423   // If there aren't enough arguments for all the formal parameters,
424   // the sentinel, and the args after the sentinel, complain.
425   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
426     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
427     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
428     return;
429   }
430 
431   // Otherwise, find the sentinel expression.
432   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
433   if (!sentinelExpr) return;
434   if (sentinelExpr->isValueDependent()) return;
435   if (Context.isSentinelNullExpr(sentinelExpr)) return;
436 
437   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
438   // or 'NULL' if those are actually defined in the context.  Only use
439   // 'nil' for ObjC methods, where it's much more likely that the
440   // variadic arguments form a list of object pointers.
441   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
442   std::string NullValue;
443   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
444     NullValue = "nil";
445   else if (getLangOpts().CPlusPlus11)
446     NullValue = "nullptr";
447   else if (PP.isMacroDefined("NULL"))
448     NullValue = "NULL";
449   else
450     NullValue = "(void*) 0";
451 
452   if (MissingNilLoc.isInvalid())
453     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
454   else
455     Diag(MissingNilLoc, diag::warn_missing_sentinel)
456       << int(calleeType)
457       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
458   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
459 }
460 
461 SourceRange Sema::getExprRange(Expr *E) const {
462   return E ? E->getSourceRange() : SourceRange();
463 }
464 
465 //===----------------------------------------------------------------------===//
466 //  Standard Promotions and Conversions
467 //===----------------------------------------------------------------------===//
468 
469 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
470 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
471   // Handle any placeholder expressions which made it here.
472   if (E->getType()->isPlaceholderType()) {
473     ExprResult result = CheckPlaceholderExpr(E);
474     if (result.isInvalid()) return ExprError();
475     E = result.get();
476   }
477 
478   QualType Ty = E->getType();
479   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
480 
481   if (Ty->isFunctionType()) {
482     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
483       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
484         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
485           return ExprError();
486 
487     E = ImpCastExprToType(E, Context.getPointerType(Ty),
488                           CK_FunctionToPointerDecay).get();
489   } else if (Ty->isArrayType()) {
490     // In C90 mode, arrays only promote to pointers if the array expression is
491     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
492     // type 'array of type' is converted to an expression that has type 'pointer
493     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
494     // that has type 'array of type' ...".  The relevant change is "an lvalue"
495     // (C90) to "an expression" (C99).
496     //
497     // C++ 4.2p1:
498     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
499     // T" can be converted to an rvalue of type "pointer to T".
500     //
501     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
502       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
503                             CK_ArrayToPointerDecay).get();
504   }
505   return E;
506 }
507 
508 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
509   // Check to see if we are dereferencing a null pointer.  If so,
510   // and if not volatile-qualified, this is undefined behavior that the
511   // optimizer will delete, so warn about it.  People sometimes try to use this
512   // to get a deterministic trap and are surprised by clang's behavior.  This
513   // only handles the pattern "*null", which is a very syntactic check.
514   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
515   if (UO && UO->getOpcode() == UO_Deref &&
516       UO->getSubExpr()->getType()->isPointerType()) {
517     const LangAS AS =
518         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
519     if ((!isTargetAddressSpace(AS) ||
520          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
521         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
522             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
523         !UO->getType().isVolatileQualified()) {
524       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
525                             S.PDiag(diag::warn_indirection_through_null)
526                                 << UO->getSubExpr()->getSourceRange());
527       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
528                             S.PDiag(diag::note_indirection_through_null));
529     }
530   }
531 }
532 
533 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
534                                     SourceLocation AssignLoc,
535                                     const Expr* RHS) {
536   const ObjCIvarDecl *IV = OIRE->getDecl();
537   if (!IV)
538     return;
539 
540   DeclarationName MemberName = IV->getDeclName();
541   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
542   if (!Member || !Member->isStr("isa"))
543     return;
544 
545   const Expr *Base = OIRE->getBase();
546   QualType BaseType = Base->getType();
547   if (OIRE->isArrow())
548     BaseType = BaseType->getPointeeType();
549   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
550     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
551       ObjCInterfaceDecl *ClassDeclared = nullptr;
552       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
553       if (!ClassDeclared->getSuperClass()
554           && (*ClassDeclared->ivar_begin()) == IV) {
555         if (RHS) {
556           NamedDecl *ObjectSetClass =
557             S.LookupSingleName(S.TUScope,
558                                &S.Context.Idents.get("object_setClass"),
559                                SourceLocation(), S.LookupOrdinaryName);
560           if (ObjectSetClass) {
561             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
562             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
563                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
564                                               "object_setClass(")
565                 << FixItHint::CreateReplacement(
566                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
567                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
568           }
569           else
570             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
571         } else {
572           NamedDecl *ObjectGetClass =
573             S.LookupSingleName(S.TUScope,
574                                &S.Context.Idents.get("object_getClass"),
575                                SourceLocation(), S.LookupOrdinaryName);
576           if (ObjectGetClass)
577             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
578                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
579                                               "object_getClass(")
580                 << FixItHint::CreateReplacement(
581                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
582           else
583             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
584         }
585         S.Diag(IV->getLocation(), diag::note_ivar_decl);
586       }
587     }
588 }
589 
590 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
591   // Handle any placeholder expressions which made it here.
592   if (E->getType()->isPlaceholderType()) {
593     ExprResult result = CheckPlaceholderExpr(E);
594     if (result.isInvalid()) return ExprError();
595     E = result.get();
596   }
597 
598   // C++ [conv.lval]p1:
599   //   A glvalue of a non-function, non-array type T can be
600   //   converted to a prvalue.
601   if (!E->isGLValue()) return E;
602 
603   QualType T = E->getType();
604   assert(!T.isNull() && "r-value conversion on typeless expression?");
605 
606   // We don't want to throw lvalue-to-rvalue casts on top of
607   // expressions of certain types in C++.
608   if (getLangOpts().CPlusPlus &&
609       (E->getType() == Context.OverloadTy ||
610        T->isDependentType() ||
611        T->isRecordType()))
612     return E;
613 
614   // The C standard is actually really unclear on this point, and
615   // DR106 tells us what the result should be but not why.  It's
616   // generally best to say that void types just doesn't undergo
617   // lvalue-to-rvalue at all.  Note that expressions of unqualified
618   // 'void' type are never l-values, but qualified void can be.
619   if (T->isVoidType())
620     return E;
621 
622   // OpenCL usually rejects direct accesses to values of 'half' type.
623   if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
624       T->isHalfType()) {
625     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
626       << 0 << T;
627     return ExprError();
628   }
629 
630   CheckForNullPointerDereference(*this, E);
631   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
632     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
633                                      &Context.Idents.get("object_getClass"),
634                                      SourceLocation(), LookupOrdinaryName);
635     if (ObjectGetClass)
636       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
637           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
638           << FixItHint::CreateReplacement(
639                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
640     else
641       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
642   }
643   else if (const ObjCIvarRefExpr *OIRE =
644             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
645     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
646 
647   // C++ [conv.lval]p1:
648   //   [...] If T is a non-class type, the type of the prvalue is the
649   //   cv-unqualified version of T. Otherwise, the type of the
650   //   rvalue is T.
651   //
652   // C99 6.3.2.1p2:
653   //   If the lvalue has qualified type, the value has the unqualified
654   //   version of the type of the lvalue; otherwise, the value has the
655   //   type of the lvalue.
656   if (T.hasQualifiers())
657     T = T.getUnqualifiedType();
658 
659   // Under the MS ABI, lock down the inheritance model now.
660   if (T->isMemberPointerType() &&
661       Context.getTargetInfo().getCXXABI().isMicrosoft())
662     (void)isCompleteType(E->getExprLoc(), T);
663 
664   ExprResult Res = CheckLValueToRValueConversionOperand(E);
665   if (Res.isInvalid())
666     return Res;
667   E = Res.get();
668 
669   // Loading a __weak object implicitly retains the value, so we need a cleanup to
670   // balance that.
671   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
672     Cleanup.setExprNeedsCleanups(true);
673 
674   // C++ [conv.lval]p3:
675   //   If T is cv std::nullptr_t, the result is a null pointer constant.
676   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
677   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue);
678 
679   // C11 6.3.2.1p2:
680   //   ... if the lvalue has atomic type, the value has the non-atomic version
681   //   of the type of the lvalue ...
682   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
683     T = Atomic->getValueType().getUnqualifiedType();
684     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
685                                    nullptr, VK_RValue);
686   }
687 
688   return Res;
689 }
690 
691 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
692   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
693   if (Res.isInvalid())
694     return ExprError();
695   Res = DefaultLvalueConversion(Res.get());
696   if (Res.isInvalid())
697     return ExprError();
698   return Res;
699 }
700 
701 /// CallExprUnaryConversions - a special case of an unary conversion
702 /// performed on a function designator of a call expression.
703 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
704   QualType Ty = E->getType();
705   ExprResult Res = E;
706   // Only do implicit cast for a function type, but not for a pointer
707   // to function type.
708   if (Ty->isFunctionType()) {
709     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
710                             CK_FunctionToPointerDecay).get();
711     if (Res.isInvalid())
712       return ExprError();
713   }
714   Res = DefaultLvalueConversion(Res.get());
715   if (Res.isInvalid())
716     return ExprError();
717   return Res.get();
718 }
719 
720 /// UsualUnaryConversions - Performs various conversions that are common to most
721 /// operators (C99 6.3). The conversions of array and function types are
722 /// sometimes suppressed. For example, the array->pointer conversion doesn't
723 /// apply if the array is an argument to the sizeof or address (&) operators.
724 /// In these instances, this routine should *not* be called.
725 ExprResult Sema::UsualUnaryConversions(Expr *E) {
726   // First, convert to an r-value.
727   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
728   if (Res.isInvalid())
729     return ExprError();
730   E = Res.get();
731 
732   QualType Ty = E->getType();
733   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
734 
735   // Half FP have to be promoted to float unless it is natively supported
736   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
737     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
738 
739   // Try to perform integral promotions if the object has a theoretically
740   // promotable type.
741   if (Ty->isIntegralOrUnscopedEnumerationType()) {
742     // C99 6.3.1.1p2:
743     //
744     //   The following may be used in an expression wherever an int or
745     //   unsigned int may be used:
746     //     - an object or expression with an integer type whose integer
747     //       conversion rank is less than or equal to the rank of int
748     //       and unsigned int.
749     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
750     //
751     //   If an int can represent all values of the original type, the
752     //   value is converted to an int; otherwise, it is converted to an
753     //   unsigned int. These are called the integer promotions. All
754     //   other types are unchanged by the integer promotions.
755 
756     QualType PTy = Context.isPromotableBitField(E);
757     if (!PTy.isNull()) {
758       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
759       return E;
760     }
761     if (Ty->isPromotableIntegerType()) {
762       QualType PT = Context.getPromotedIntegerType(Ty);
763       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
764       return E;
765     }
766   }
767   return E;
768 }
769 
770 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
771 /// do not have a prototype. Arguments that have type float or __fp16
772 /// are promoted to double. All other argument types are converted by
773 /// UsualUnaryConversions().
774 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
775   QualType Ty = E->getType();
776   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
777 
778   ExprResult Res = UsualUnaryConversions(E);
779   if (Res.isInvalid())
780     return ExprError();
781   E = Res.get();
782 
783   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
784   // promote to double.
785   // Note that default argument promotion applies only to float (and
786   // half/fp16); it does not apply to _Float16.
787   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
788   if (BTy && (BTy->getKind() == BuiltinType::Half ||
789               BTy->getKind() == BuiltinType::Float)) {
790     if (getLangOpts().OpenCL &&
791         !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
792         if (BTy->getKind() == BuiltinType::Half) {
793             E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
794         }
795     } else {
796       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
797     }
798   }
799 
800   // C++ performs lvalue-to-rvalue conversion as a default argument
801   // promotion, even on class types, but note:
802   //   C++11 [conv.lval]p2:
803   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
804   //     operand or a subexpression thereof the value contained in the
805   //     referenced object is not accessed. Otherwise, if the glvalue
806   //     has a class type, the conversion copy-initializes a temporary
807   //     of type T from the glvalue and the result of the conversion
808   //     is a prvalue for the temporary.
809   // FIXME: add some way to gate this entire thing for correctness in
810   // potentially potentially evaluated contexts.
811   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
812     ExprResult Temp = PerformCopyInitialization(
813                        InitializedEntity::InitializeTemporary(E->getType()),
814                                                 E->getExprLoc(), E);
815     if (Temp.isInvalid())
816       return ExprError();
817     E = Temp.get();
818   }
819 
820   return E;
821 }
822 
823 /// Determine the degree of POD-ness for an expression.
824 /// Incomplete types are considered POD, since this check can be performed
825 /// when we're in an unevaluated context.
826 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
827   if (Ty->isIncompleteType()) {
828     // C++11 [expr.call]p7:
829     //   After these conversions, if the argument does not have arithmetic,
830     //   enumeration, pointer, pointer to member, or class type, the program
831     //   is ill-formed.
832     //
833     // Since we've already performed array-to-pointer and function-to-pointer
834     // decay, the only such type in C++ is cv void. This also handles
835     // initializer lists as variadic arguments.
836     if (Ty->isVoidType())
837       return VAK_Invalid;
838 
839     if (Ty->isObjCObjectType())
840       return VAK_Invalid;
841     return VAK_Valid;
842   }
843 
844   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
845     return VAK_Invalid;
846 
847   if (Ty.isCXX98PODType(Context))
848     return VAK_Valid;
849 
850   // C++11 [expr.call]p7:
851   //   Passing a potentially-evaluated argument of class type (Clause 9)
852   //   having a non-trivial copy constructor, a non-trivial move constructor,
853   //   or a non-trivial destructor, with no corresponding parameter,
854   //   is conditionally-supported with implementation-defined semantics.
855   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
856     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
857       if (!Record->hasNonTrivialCopyConstructor() &&
858           !Record->hasNonTrivialMoveConstructor() &&
859           !Record->hasNonTrivialDestructor())
860         return VAK_ValidInCXX11;
861 
862   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
863     return VAK_Valid;
864 
865   if (Ty->isObjCObjectType())
866     return VAK_Invalid;
867 
868   if (getLangOpts().MSVCCompat)
869     return VAK_MSVCUndefined;
870 
871   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
872   // permitted to reject them. We should consider doing so.
873   return VAK_Undefined;
874 }
875 
876 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
877   // Don't allow one to pass an Objective-C interface to a vararg.
878   const QualType &Ty = E->getType();
879   VarArgKind VAK = isValidVarArgType(Ty);
880 
881   // Complain about passing non-POD types through varargs.
882   switch (VAK) {
883   case VAK_ValidInCXX11:
884     DiagRuntimeBehavior(
885         E->getBeginLoc(), nullptr,
886         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
887     LLVM_FALLTHROUGH;
888   case VAK_Valid:
889     if (Ty->isRecordType()) {
890       // This is unlikely to be what the user intended. If the class has a
891       // 'c_str' member function, the user probably meant to call that.
892       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
893                           PDiag(diag::warn_pass_class_arg_to_vararg)
894                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
895     }
896     break;
897 
898   case VAK_Undefined:
899   case VAK_MSVCUndefined:
900     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
901                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
902                             << getLangOpts().CPlusPlus11 << Ty << CT);
903     break;
904 
905   case VAK_Invalid:
906     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
907       Diag(E->getBeginLoc(),
908            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
909           << Ty << CT;
910     else if (Ty->isObjCObjectType())
911       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
912                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
913                               << Ty << CT);
914     else
915       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
916           << isa<InitListExpr>(E) << Ty << CT;
917     break;
918   }
919 }
920 
921 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
922 /// will create a trap if the resulting type is not a POD type.
923 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
924                                                   FunctionDecl *FDecl) {
925   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
926     // Strip the unbridged-cast placeholder expression off, if applicable.
927     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
928         (CT == VariadicMethod ||
929          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
930       E = stripARCUnbridgedCast(E);
931 
932     // Otherwise, do normal placeholder checking.
933     } else {
934       ExprResult ExprRes = CheckPlaceholderExpr(E);
935       if (ExprRes.isInvalid())
936         return ExprError();
937       E = ExprRes.get();
938     }
939   }
940 
941   ExprResult ExprRes = DefaultArgumentPromotion(E);
942   if (ExprRes.isInvalid())
943     return ExprError();
944   E = ExprRes.get();
945 
946   // Diagnostics regarding non-POD argument types are
947   // emitted along with format string checking in Sema::CheckFunctionCall().
948   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
949     // Turn this into a trap.
950     CXXScopeSpec SS;
951     SourceLocation TemplateKWLoc;
952     UnqualifiedId Name;
953     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
954                        E->getBeginLoc());
955     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
956                                           /*HasTrailingLParen=*/true,
957                                           /*IsAddressOfOperand=*/false);
958     if (TrapFn.isInvalid())
959       return ExprError();
960 
961     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
962                                     None, E->getEndLoc());
963     if (Call.isInvalid())
964       return ExprError();
965 
966     ExprResult Comma =
967         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
968     if (Comma.isInvalid())
969       return ExprError();
970     return Comma.get();
971   }
972 
973   if (!getLangOpts().CPlusPlus &&
974       RequireCompleteType(E->getExprLoc(), E->getType(),
975                           diag::err_call_incomplete_argument))
976     return ExprError();
977 
978   return E;
979 }
980 
981 /// Converts an integer to complex float type.  Helper function of
982 /// UsualArithmeticConversions()
983 ///
984 /// \return false if the integer expression is an integer type and is
985 /// successfully converted to the complex type.
986 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
987                                                   ExprResult &ComplexExpr,
988                                                   QualType IntTy,
989                                                   QualType ComplexTy,
990                                                   bool SkipCast) {
991   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
992   if (SkipCast) return false;
993   if (IntTy->isIntegerType()) {
994     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
995     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
996     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
997                                   CK_FloatingRealToComplex);
998   } else {
999     assert(IntTy->isComplexIntegerType());
1000     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1001                                   CK_IntegralComplexToFloatingComplex);
1002   }
1003   return false;
1004 }
1005 
1006 /// Handle arithmetic conversion with complex types.  Helper function of
1007 /// UsualArithmeticConversions()
1008 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1009                                              ExprResult &RHS, QualType LHSType,
1010                                              QualType RHSType,
1011                                              bool IsCompAssign) {
1012   // if we have an integer operand, the result is the complex type.
1013   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1014                                              /*skipCast*/false))
1015     return LHSType;
1016   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1017                                              /*skipCast*/IsCompAssign))
1018     return RHSType;
1019 
1020   // This handles complex/complex, complex/float, or float/complex.
1021   // When both operands are complex, the shorter operand is converted to the
1022   // type of the longer, and that is the type of the result. This corresponds
1023   // to what is done when combining two real floating-point operands.
1024   // The fun begins when size promotion occur across type domains.
1025   // From H&S 6.3.4: When one operand is complex and the other is a real
1026   // floating-point type, the less precise type is converted, within it's
1027   // real or complex domain, to the precision of the other type. For example,
1028   // when combining a "long double" with a "double _Complex", the
1029   // "double _Complex" is promoted to "long double _Complex".
1030 
1031   // Compute the rank of the two types, regardless of whether they are complex.
1032   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1033 
1034   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1035   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1036   QualType LHSElementType =
1037       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1038   QualType RHSElementType =
1039       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1040 
1041   QualType ResultType = S.Context.getComplexType(LHSElementType);
1042   if (Order < 0) {
1043     // Promote the precision of the LHS if not an assignment.
1044     ResultType = S.Context.getComplexType(RHSElementType);
1045     if (!IsCompAssign) {
1046       if (LHSComplexType)
1047         LHS =
1048             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1049       else
1050         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1051     }
1052   } else if (Order > 0) {
1053     // Promote the precision of the RHS.
1054     if (RHSComplexType)
1055       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1056     else
1057       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1058   }
1059   return ResultType;
1060 }
1061 
1062 /// Handle arithmetic conversion from integer to float.  Helper function
1063 /// of UsualArithmeticConversions()
1064 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1065                                            ExprResult &IntExpr,
1066                                            QualType FloatTy, QualType IntTy,
1067                                            bool ConvertFloat, bool ConvertInt) {
1068   if (IntTy->isIntegerType()) {
1069     if (ConvertInt)
1070       // Convert intExpr to the lhs floating point type.
1071       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1072                                     CK_IntegralToFloating);
1073     return FloatTy;
1074   }
1075 
1076   // Convert both sides to the appropriate complex float.
1077   assert(IntTy->isComplexIntegerType());
1078   QualType result = S.Context.getComplexType(FloatTy);
1079 
1080   // _Complex int -> _Complex float
1081   if (ConvertInt)
1082     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1083                                   CK_IntegralComplexToFloatingComplex);
1084 
1085   // float -> _Complex float
1086   if (ConvertFloat)
1087     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1088                                     CK_FloatingRealToComplex);
1089 
1090   return result;
1091 }
1092 
1093 /// Handle arithmethic conversion with floating point types.  Helper
1094 /// function of UsualArithmeticConversions()
1095 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1096                                       ExprResult &RHS, QualType LHSType,
1097                                       QualType RHSType, bool IsCompAssign) {
1098   bool LHSFloat = LHSType->isRealFloatingType();
1099   bool RHSFloat = RHSType->isRealFloatingType();
1100 
1101   // If we have two real floating types, convert the smaller operand
1102   // to the bigger result.
1103   if (LHSFloat && RHSFloat) {
1104     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1105     if (order > 0) {
1106       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1107       return LHSType;
1108     }
1109 
1110     assert(order < 0 && "illegal float comparison");
1111     if (!IsCompAssign)
1112       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1113     return RHSType;
1114   }
1115 
1116   if (LHSFloat) {
1117     // Half FP has to be promoted to float unless it is natively supported
1118     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1119       LHSType = S.Context.FloatTy;
1120 
1121     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1122                                       /*ConvertFloat=*/!IsCompAssign,
1123                                       /*ConvertInt=*/ true);
1124   }
1125   assert(RHSFloat);
1126   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1127                                     /*convertInt=*/ true,
1128                                     /*convertFloat=*/!IsCompAssign);
1129 }
1130 
1131 /// Diagnose attempts to convert between __float128 and long double if
1132 /// there is no support for such conversion. Helper function of
1133 /// UsualArithmeticConversions().
1134 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1135                                       QualType RHSType) {
1136   /*  No issue converting if at least one of the types is not a floating point
1137       type or the two types have the same rank.
1138   */
1139   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1140       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1141     return false;
1142 
1143   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
1144          "The remaining types must be floating point types.");
1145 
1146   auto *LHSComplex = LHSType->getAs<ComplexType>();
1147   auto *RHSComplex = RHSType->getAs<ComplexType>();
1148 
1149   QualType LHSElemType = LHSComplex ?
1150     LHSComplex->getElementType() : LHSType;
1151   QualType RHSElemType = RHSComplex ?
1152     RHSComplex->getElementType() : RHSType;
1153 
1154   // No issue if the two types have the same representation
1155   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1156       &S.Context.getFloatTypeSemantics(RHSElemType))
1157     return false;
1158 
1159   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1160                                 RHSElemType == S.Context.LongDoubleTy);
1161   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1162                             RHSElemType == S.Context.Float128Ty);
1163 
1164   // We've handled the situation where __float128 and long double have the same
1165   // representation. We allow all conversions for all possible long double types
1166   // except PPC's double double.
1167   return Float128AndLongDouble &&
1168     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1169      &llvm::APFloat::PPCDoubleDouble());
1170 }
1171 
1172 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1173 
1174 namespace {
1175 /// These helper callbacks are placed in an anonymous namespace to
1176 /// permit their use as function template parameters.
1177 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1178   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1179 }
1180 
1181 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1182   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1183                              CK_IntegralComplexCast);
1184 }
1185 }
1186 
1187 /// Handle integer arithmetic conversions.  Helper function of
1188 /// UsualArithmeticConversions()
1189 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1190 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1191                                         ExprResult &RHS, QualType LHSType,
1192                                         QualType RHSType, bool IsCompAssign) {
1193   // The rules for this case are in C99 6.3.1.8
1194   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1195   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1196   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1197   if (LHSSigned == RHSSigned) {
1198     // Same signedness; use the higher-ranked type
1199     if (order >= 0) {
1200       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1201       return LHSType;
1202     } else if (!IsCompAssign)
1203       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1204     return RHSType;
1205   } else if (order != (LHSSigned ? 1 : -1)) {
1206     // The unsigned type has greater than or equal rank to the
1207     // signed type, so use the unsigned type
1208     if (RHSSigned) {
1209       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1210       return LHSType;
1211     } else if (!IsCompAssign)
1212       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1213     return RHSType;
1214   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1215     // The two types are different widths; if we are here, that
1216     // means the signed type is larger than the unsigned type, so
1217     // use the signed type.
1218     if (LHSSigned) {
1219       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1220       return LHSType;
1221     } else if (!IsCompAssign)
1222       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1223     return RHSType;
1224   } else {
1225     // The signed type is higher-ranked than the unsigned type,
1226     // but isn't actually any bigger (like unsigned int and long
1227     // on most 32-bit systems).  Use the unsigned type corresponding
1228     // to the signed type.
1229     QualType result =
1230       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1231     RHS = (*doRHSCast)(S, RHS.get(), result);
1232     if (!IsCompAssign)
1233       LHS = (*doLHSCast)(S, LHS.get(), result);
1234     return result;
1235   }
1236 }
1237 
1238 /// Handle conversions with GCC complex int extension.  Helper function
1239 /// of UsualArithmeticConversions()
1240 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1241                                            ExprResult &RHS, QualType LHSType,
1242                                            QualType RHSType,
1243                                            bool IsCompAssign) {
1244   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1245   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1246 
1247   if (LHSComplexInt && RHSComplexInt) {
1248     QualType LHSEltType = LHSComplexInt->getElementType();
1249     QualType RHSEltType = RHSComplexInt->getElementType();
1250     QualType ScalarType =
1251       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1252         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1253 
1254     return S.Context.getComplexType(ScalarType);
1255   }
1256 
1257   if (LHSComplexInt) {
1258     QualType LHSEltType = LHSComplexInt->getElementType();
1259     QualType ScalarType =
1260       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1261         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1262     QualType ComplexType = S.Context.getComplexType(ScalarType);
1263     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1264                               CK_IntegralRealToComplex);
1265 
1266     return ComplexType;
1267   }
1268 
1269   assert(RHSComplexInt);
1270 
1271   QualType RHSEltType = RHSComplexInt->getElementType();
1272   QualType ScalarType =
1273     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1274       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1275   QualType ComplexType = S.Context.getComplexType(ScalarType);
1276 
1277   if (!IsCompAssign)
1278     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1279                               CK_IntegralRealToComplex);
1280   return ComplexType;
1281 }
1282 
1283 /// Return the rank of a given fixed point or integer type. The value itself
1284 /// doesn't matter, but the values must be increasing with proper increasing
1285 /// rank as described in N1169 4.1.1.
1286 static unsigned GetFixedPointRank(QualType Ty) {
1287   const auto *BTy = Ty->getAs<BuiltinType>();
1288   assert(BTy && "Expected a builtin type.");
1289 
1290   switch (BTy->getKind()) {
1291   case BuiltinType::ShortFract:
1292   case BuiltinType::UShortFract:
1293   case BuiltinType::SatShortFract:
1294   case BuiltinType::SatUShortFract:
1295     return 1;
1296   case BuiltinType::Fract:
1297   case BuiltinType::UFract:
1298   case BuiltinType::SatFract:
1299   case BuiltinType::SatUFract:
1300     return 2;
1301   case BuiltinType::LongFract:
1302   case BuiltinType::ULongFract:
1303   case BuiltinType::SatLongFract:
1304   case BuiltinType::SatULongFract:
1305     return 3;
1306   case BuiltinType::ShortAccum:
1307   case BuiltinType::UShortAccum:
1308   case BuiltinType::SatShortAccum:
1309   case BuiltinType::SatUShortAccum:
1310     return 4;
1311   case BuiltinType::Accum:
1312   case BuiltinType::UAccum:
1313   case BuiltinType::SatAccum:
1314   case BuiltinType::SatUAccum:
1315     return 5;
1316   case BuiltinType::LongAccum:
1317   case BuiltinType::ULongAccum:
1318   case BuiltinType::SatLongAccum:
1319   case BuiltinType::SatULongAccum:
1320     return 6;
1321   default:
1322     if (BTy->isInteger())
1323       return 0;
1324     llvm_unreachable("Unexpected fixed point or integer type");
1325   }
1326 }
1327 
1328 /// handleFixedPointConversion - Fixed point operations between fixed
1329 /// point types and integers or other fixed point types do not fall under
1330 /// usual arithmetic conversion since these conversions could result in loss
1331 /// of precsision (N1169 4.1.4). These operations should be calculated with
1332 /// the full precision of their result type (N1169 4.1.6.2.1).
1333 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1334                                            QualType RHSTy) {
1335   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1336          "Expected at least one of the operands to be a fixed point type");
1337   assert((LHSTy->isFixedPointOrIntegerType() ||
1338           RHSTy->isFixedPointOrIntegerType()) &&
1339          "Special fixed point arithmetic operation conversions are only "
1340          "applied to ints or other fixed point types");
1341 
1342   // If one operand has signed fixed-point type and the other operand has
1343   // unsigned fixed-point type, then the unsigned fixed-point operand is
1344   // converted to its corresponding signed fixed-point type and the resulting
1345   // type is the type of the converted operand.
1346   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1347     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1348   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1349     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1350 
1351   // The result type is the type with the highest rank, whereby a fixed-point
1352   // conversion rank is always greater than an integer conversion rank; if the
1353   // type of either of the operands is a saturating fixedpoint type, the result
1354   // type shall be the saturating fixed-point type corresponding to the type
1355   // with the highest rank; the resulting value is converted (taking into
1356   // account rounding and overflow) to the precision of the resulting type.
1357   // Same ranks between signed and unsigned types are resolved earlier, so both
1358   // types are either signed or both unsigned at this point.
1359   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1360   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1361 
1362   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1363 
1364   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1365     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1366 
1367   return ResultTy;
1368 }
1369 
1370 /// Check that the usual arithmetic conversions can be performed on this pair of
1371 /// expressions that might be of enumeration type.
1372 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1373                                            SourceLocation Loc,
1374                                            Sema::ArithConvKind ACK) {
1375   // C++2a [expr.arith.conv]p1:
1376   //   If one operand is of enumeration type and the other operand is of a
1377   //   different enumeration type or a floating-point type, this behavior is
1378   //   deprecated ([depr.arith.conv.enum]).
1379   //
1380   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1381   // Eventually we will presumably reject these cases (in C++23 onwards?).
1382   QualType L = LHS->getType(), R = RHS->getType();
1383   bool LEnum = L->isUnscopedEnumerationType(),
1384        REnum = R->isUnscopedEnumerationType();
1385   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1386   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1387       (REnum && L->isFloatingType())) {
1388     S.Diag(Loc, S.getLangOpts().CPlusPlus2a
1389                     ? diag::warn_arith_conv_enum_float_cxx2a
1390                     : diag::warn_arith_conv_enum_float)
1391         << LHS->getSourceRange() << RHS->getSourceRange()
1392         << (int)ACK << LEnum << L << R;
1393   } else if (!IsCompAssign && LEnum && REnum &&
1394              !S.Context.hasSameUnqualifiedType(L, R)) {
1395     unsigned DiagID;
1396     if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1397         !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1398       // If either enumeration type is unnamed, it's less likely that the
1399       // user cares about this, but this situation is still deprecated in
1400       // C++2a. Use a different warning group.
1401       DiagID = S.getLangOpts().CPlusPlus2a
1402                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx2a
1403                     : diag::warn_arith_conv_mixed_anon_enum_types;
1404     } else if (ACK == Sema::ACK_Conditional) {
1405       // Conditional expressions are separated out because they have
1406       // historically had a different warning flag.
1407       DiagID = S.getLangOpts().CPlusPlus2a
1408                    ? diag::warn_conditional_mixed_enum_types_cxx2a
1409                    : diag::warn_conditional_mixed_enum_types;
1410     } else if (ACK == Sema::ACK_Comparison) {
1411       // Comparison expressions are separated out because they have
1412       // historically had a different warning flag.
1413       DiagID = S.getLangOpts().CPlusPlus2a
1414                    ? diag::warn_comparison_mixed_enum_types_cxx2a
1415                    : diag::warn_comparison_mixed_enum_types;
1416     } else {
1417       DiagID = S.getLangOpts().CPlusPlus2a
1418                    ? diag::warn_arith_conv_mixed_enum_types_cxx2a
1419                    : diag::warn_arith_conv_mixed_enum_types;
1420     }
1421     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1422                         << (int)ACK << L << R;
1423   }
1424 }
1425 
1426 /// UsualArithmeticConversions - Performs various conversions that are common to
1427 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1428 /// routine returns the first non-arithmetic type found. The client is
1429 /// responsible for emitting appropriate error diagnostics.
1430 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1431                                           SourceLocation Loc,
1432                                           ArithConvKind ACK) {
1433   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1434 
1435   if (ACK != ACK_CompAssign) {
1436     LHS = UsualUnaryConversions(LHS.get());
1437     if (LHS.isInvalid())
1438       return QualType();
1439   }
1440 
1441   RHS = UsualUnaryConversions(RHS.get());
1442   if (RHS.isInvalid())
1443     return QualType();
1444 
1445   // For conversion purposes, we ignore any qualifiers.
1446   // For example, "const float" and "float" are equivalent.
1447   QualType LHSType =
1448     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1449   QualType RHSType =
1450     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1451 
1452   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1453   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1454     LHSType = AtomicLHS->getValueType();
1455 
1456   // If both types are identical, no conversion is needed.
1457   if (LHSType == RHSType)
1458     return LHSType;
1459 
1460   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1461   // The caller can deal with this (e.g. pointer + int).
1462   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1463     return QualType();
1464 
1465   // Apply unary and bitfield promotions to the LHS's type.
1466   QualType LHSUnpromotedType = LHSType;
1467   if (LHSType->isPromotableIntegerType())
1468     LHSType = Context.getPromotedIntegerType(LHSType);
1469   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1470   if (!LHSBitfieldPromoteTy.isNull())
1471     LHSType = LHSBitfieldPromoteTy;
1472   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1473     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1474 
1475   // If both types are identical, no conversion is needed.
1476   if (LHSType == RHSType)
1477     return LHSType;
1478 
1479   // At this point, we have two different arithmetic types.
1480 
1481   // Diagnose attempts to convert between __float128 and long double where
1482   // such conversions currently can't be handled.
1483   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1484     return QualType();
1485 
1486   // Handle complex types first (C99 6.3.1.8p1).
1487   if (LHSType->isComplexType() || RHSType->isComplexType())
1488     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1489                                         ACK == ACK_CompAssign);
1490 
1491   // Now handle "real" floating types (i.e. float, double, long double).
1492   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1493     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1494                                  ACK == ACK_CompAssign);
1495 
1496   // Handle GCC complex int extension.
1497   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1498     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1499                                       ACK == ACK_CompAssign);
1500 
1501   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1502     return handleFixedPointConversion(*this, LHSType, RHSType);
1503 
1504   // Finally, we have two differing integer types.
1505   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1506            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1507 }
1508 
1509 //===----------------------------------------------------------------------===//
1510 //  Semantic Analysis for various Expression Types
1511 //===----------------------------------------------------------------------===//
1512 
1513 
1514 ExprResult
1515 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1516                                 SourceLocation DefaultLoc,
1517                                 SourceLocation RParenLoc,
1518                                 Expr *ControllingExpr,
1519                                 ArrayRef<ParsedType> ArgTypes,
1520                                 ArrayRef<Expr *> ArgExprs) {
1521   unsigned NumAssocs = ArgTypes.size();
1522   assert(NumAssocs == ArgExprs.size());
1523 
1524   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1525   for (unsigned i = 0; i < NumAssocs; ++i) {
1526     if (ArgTypes[i])
1527       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1528     else
1529       Types[i] = nullptr;
1530   }
1531 
1532   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1533                                              ControllingExpr,
1534                                              llvm::makeArrayRef(Types, NumAssocs),
1535                                              ArgExprs);
1536   delete [] Types;
1537   return ER;
1538 }
1539 
1540 ExprResult
1541 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1542                                  SourceLocation DefaultLoc,
1543                                  SourceLocation RParenLoc,
1544                                  Expr *ControllingExpr,
1545                                  ArrayRef<TypeSourceInfo *> Types,
1546                                  ArrayRef<Expr *> Exprs) {
1547   unsigned NumAssocs = Types.size();
1548   assert(NumAssocs == Exprs.size());
1549 
1550   // Decay and strip qualifiers for the controlling expression type, and handle
1551   // placeholder type replacement. See committee discussion from WG14 DR423.
1552   {
1553     EnterExpressionEvaluationContext Unevaluated(
1554         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1555     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1556     if (R.isInvalid())
1557       return ExprError();
1558     ControllingExpr = R.get();
1559   }
1560 
1561   // The controlling expression is an unevaluated operand, so side effects are
1562   // likely unintended.
1563   if (!inTemplateInstantiation() &&
1564       ControllingExpr->HasSideEffects(Context, false))
1565     Diag(ControllingExpr->getExprLoc(),
1566          diag::warn_side_effects_unevaluated_context);
1567 
1568   bool TypeErrorFound = false,
1569        IsResultDependent = ControllingExpr->isTypeDependent(),
1570        ContainsUnexpandedParameterPack
1571          = ControllingExpr->containsUnexpandedParameterPack();
1572 
1573   for (unsigned i = 0; i < NumAssocs; ++i) {
1574     if (Exprs[i]->containsUnexpandedParameterPack())
1575       ContainsUnexpandedParameterPack = true;
1576 
1577     if (Types[i]) {
1578       if (Types[i]->getType()->containsUnexpandedParameterPack())
1579         ContainsUnexpandedParameterPack = true;
1580 
1581       if (Types[i]->getType()->isDependentType()) {
1582         IsResultDependent = true;
1583       } else {
1584         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1585         // complete object type other than a variably modified type."
1586         unsigned D = 0;
1587         if (Types[i]->getType()->isIncompleteType())
1588           D = diag::err_assoc_type_incomplete;
1589         else if (!Types[i]->getType()->isObjectType())
1590           D = diag::err_assoc_type_nonobject;
1591         else if (Types[i]->getType()->isVariablyModifiedType())
1592           D = diag::err_assoc_type_variably_modified;
1593 
1594         if (D != 0) {
1595           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1596             << Types[i]->getTypeLoc().getSourceRange()
1597             << Types[i]->getType();
1598           TypeErrorFound = true;
1599         }
1600 
1601         // C11 6.5.1.1p2 "No two generic associations in the same generic
1602         // selection shall specify compatible types."
1603         for (unsigned j = i+1; j < NumAssocs; ++j)
1604           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1605               Context.typesAreCompatible(Types[i]->getType(),
1606                                          Types[j]->getType())) {
1607             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1608                  diag::err_assoc_compatible_types)
1609               << Types[j]->getTypeLoc().getSourceRange()
1610               << Types[j]->getType()
1611               << Types[i]->getType();
1612             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1613                  diag::note_compat_assoc)
1614               << Types[i]->getTypeLoc().getSourceRange()
1615               << Types[i]->getType();
1616             TypeErrorFound = true;
1617           }
1618       }
1619     }
1620   }
1621   if (TypeErrorFound)
1622     return ExprError();
1623 
1624   // If we determined that the generic selection is result-dependent, don't
1625   // try to compute the result expression.
1626   if (IsResultDependent)
1627     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1628                                         Exprs, DefaultLoc, RParenLoc,
1629                                         ContainsUnexpandedParameterPack);
1630 
1631   SmallVector<unsigned, 1> CompatIndices;
1632   unsigned DefaultIndex = -1U;
1633   for (unsigned i = 0; i < NumAssocs; ++i) {
1634     if (!Types[i])
1635       DefaultIndex = i;
1636     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1637                                         Types[i]->getType()))
1638       CompatIndices.push_back(i);
1639   }
1640 
1641   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1642   // type compatible with at most one of the types named in its generic
1643   // association list."
1644   if (CompatIndices.size() > 1) {
1645     // We strip parens here because the controlling expression is typically
1646     // parenthesized in macro definitions.
1647     ControllingExpr = ControllingExpr->IgnoreParens();
1648     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1649         << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1650         << (unsigned)CompatIndices.size();
1651     for (unsigned I : CompatIndices) {
1652       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1653            diag::note_compat_assoc)
1654         << Types[I]->getTypeLoc().getSourceRange()
1655         << Types[I]->getType();
1656     }
1657     return ExprError();
1658   }
1659 
1660   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1661   // its controlling expression shall have type compatible with exactly one of
1662   // the types named in its generic association list."
1663   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1664     // We strip parens here because the controlling expression is typically
1665     // parenthesized in macro definitions.
1666     ControllingExpr = ControllingExpr->IgnoreParens();
1667     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1668         << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1669     return ExprError();
1670   }
1671 
1672   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1673   // type name that is compatible with the type of the controlling expression,
1674   // then the result expression of the generic selection is the expression
1675   // in that generic association. Otherwise, the result expression of the
1676   // generic selection is the expression in the default generic association."
1677   unsigned ResultIndex =
1678     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1679 
1680   return GenericSelectionExpr::Create(
1681       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1682       ContainsUnexpandedParameterPack, ResultIndex);
1683 }
1684 
1685 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1686 /// location of the token and the offset of the ud-suffix within it.
1687 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1688                                      unsigned Offset) {
1689   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1690                                         S.getLangOpts());
1691 }
1692 
1693 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1694 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1695 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1696                                                  IdentifierInfo *UDSuffix,
1697                                                  SourceLocation UDSuffixLoc,
1698                                                  ArrayRef<Expr*> Args,
1699                                                  SourceLocation LitEndLoc) {
1700   assert(Args.size() <= 2 && "too many arguments for literal operator");
1701 
1702   QualType ArgTy[2];
1703   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1704     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1705     if (ArgTy[ArgIdx]->isArrayType())
1706       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1707   }
1708 
1709   DeclarationName OpName =
1710     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1711   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1712   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1713 
1714   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1715   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1716                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1717                               /*AllowStringTemplate*/ false,
1718                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1719     return ExprError();
1720 
1721   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1722 }
1723 
1724 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1725 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1726 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1727 /// multiple tokens.  However, the common case is that StringToks points to one
1728 /// string.
1729 ///
1730 ExprResult
1731 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1732   assert(!StringToks.empty() && "Must have at least one string!");
1733 
1734   StringLiteralParser Literal(StringToks, PP);
1735   if (Literal.hadError)
1736     return ExprError();
1737 
1738   SmallVector<SourceLocation, 4> StringTokLocs;
1739   for (const Token &Tok : StringToks)
1740     StringTokLocs.push_back(Tok.getLocation());
1741 
1742   QualType CharTy = Context.CharTy;
1743   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1744   if (Literal.isWide()) {
1745     CharTy = Context.getWideCharType();
1746     Kind = StringLiteral::Wide;
1747   } else if (Literal.isUTF8()) {
1748     if (getLangOpts().Char8)
1749       CharTy = Context.Char8Ty;
1750     Kind = StringLiteral::UTF8;
1751   } else if (Literal.isUTF16()) {
1752     CharTy = Context.Char16Ty;
1753     Kind = StringLiteral::UTF16;
1754   } else if (Literal.isUTF32()) {
1755     CharTy = Context.Char32Ty;
1756     Kind = StringLiteral::UTF32;
1757   } else if (Literal.isPascal()) {
1758     CharTy = Context.UnsignedCharTy;
1759   }
1760 
1761   // Warn on initializing an array of char from a u8 string literal; this
1762   // becomes ill-formed in C++2a.
1763   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus2a &&
1764       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1765     Diag(StringTokLocs.front(), diag::warn_cxx2a_compat_utf8_string);
1766 
1767     // Create removals for all 'u8' prefixes in the string literal(s). This
1768     // ensures C++2a compatibility (but may change the program behavior when
1769     // built by non-Clang compilers for which the execution character set is
1770     // not always UTF-8).
1771     auto RemovalDiag = PDiag(diag::note_cxx2a_compat_utf8_string_remove_u8);
1772     SourceLocation RemovalDiagLoc;
1773     for (const Token &Tok : StringToks) {
1774       if (Tok.getKind() == tok::utf8_string_literal) {
1775         if (RemovalDiagLoc.isInvalid())
1776           RemovalDiagLoc = Tok.getLocation();
1777         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1778             Tok.getLocation(),
1779             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1780                                            getSourceManager(), getLangOpts())));
1781       }
1782     }
1783     Diag(RemovalDiagLoc, RemovalDiag);
1784   }
1785 
1786   QualType StrTy =
1787       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1788 
1789   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1790   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1791                                              Kind, Literal.Pascal, StrTy,
1792                                              &StringTokLocs[0],
1793                                              StringTokLocs.size());
1794   if (Literal.getUDSuffix().empty())
1795     return Lit;
1796 
1797   // We're building a user-defined literal.
1798   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1799   SourceLocation UDSuffixLoc =
1800     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1801                    Literal.getUDSuffixOffset());
1802 
1803   // Make sure we're allowed user-defined literals here.
1804   if (!UDLScope)
1805     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1806 
1807   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1808   //   operator "" X (str, len)
1809   QualType SizeType = Context.getSizeType();
1810 
1811   DeclarationName OpName =
1812     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1813   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1814   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1815 
1816   QualType ArgTy[] = {
1817     Context.getArrayDecayedType(StrTy), SizeType
1818   };
1819 
1820   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1821   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1822                                 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1823                                 /*AllowStringTemplate*/ true,
1824                                 /*DiagnoseMissing*/ true)) {
1825 
1826   case LOLR_Cooked: {
1827     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1828     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1829                                                     StringTokLocs[0]);
1830     Expr *Args[] = { Lit, LenArg };
1831 
1832     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1833   }
1834 
1835   case LOLR_StringTemplate: {
1836     TemplateArgumentListInfo ExplicitArgs;
1837 
1838     unsigned CharBits = Context.getIntWidth(CharTy);
1839     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1840     llvm::APSInt Value(CharBits, CharIsUnsigned);
1841 
1842     TemplateArgument TypeArg(CharTy);
1843     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1844     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1845 
1846     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1847       Value = Lit->getCodeUnit(I);
1848       TemplateArgument Arg(Context, Value, CharTy);
1849       TemplateArgumentLocInfo ArgInfo;
1850       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1851     }
1852     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1853                                     &ExplicitArgs);
1854   }
1855   case LOLR_Raw:
1856   case LOLR_Template:
1857   case LOLR_ErrorNoDiagnostic:
1858     llvm_unreachable("unexpected literal operator lookup result");
1859   case LOLR_Error:
1860     return ExprError();
1861   }
1862   llvm_unreachable("unexpected literal operator lookup result");
1863 }
1864 
1865 DeclRefExpr *
1866 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1867                        SourceLocation Loc,
1868                        const CXXScopeSpec *SS) {
1869   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1870   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1871 }
1872 
1873 DeclRefExpr *
1874 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1875                        const DeclarationNameInfo &NameInfo,
1876                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1877                        SourceLocation TemplateKWLoc,
1878                        const TemplateArgumentListInfo *TemplateArgs) {
1879   NestedNameSpecifierLoc NNS =
1880       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1881   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1882                           TemplateArgs);
1883 }
1884 
1885 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1886   // A declaration named in an unevaluated operand never constitutes an odr-use.
1887   if (isUnevaluatedContext())
1888     return NOUR_Unevaluated;
1889 
1890   // C++2a [basic.def.odr]p4:
1891   //   A variable x whose name appears as a potentially-evaluated expression e
1892   //   is odr-used by e unless [...] x is a reference that is usable in
1893   //   constant expressions.
1894   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1895     if (VD->getType()->isReferenceType() &&
1896         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
1897         VD->isUsableInConstantExpressions(Context))
1898       return NOUR_Constant;
1899   }
1900 
1901   // All remaining non-variable cases constitute an odr-use. For variables, we
1902   // need to wait and see how the expression is used.
1903   return NOUR_None;
1904 }
1905 
1906 /// BuildDeclRefExpr - Build an expression that references a
1907 /// declaration that does not require a closure capture.
1908 DeclRefExpr *
1909 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1910                        const DeclarationNameInfo &NameInfo,
1911                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
1912                        SourceLocation TemplateKWLoc,
1913                        const TemplateArgumentListInfo *TemplateArgs) {
1914   bool RefersToCapturedVariable =
1915       isa<VarDecl>(D) &&
1916       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1917 
1918   DeclRefExpr *E = DeclRefExpr::Create(
1919       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
1920       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
1921   MarkDeclRefReferenced(E);
1922 
1923   // C++ [except.spec]p17:
1924   //   An exception-specification is considered to be needed when:
1925   //   - in an expression, the function is the unique lookup result or
1926   //     the selected member of a set of overloaded functions.
1927   //
1928   // We delay doing this until after we've built the function reference and
1929   // marked it as used so that:
1930   //  a) if the function is defaulted, we get errors from defining it before /
1931   //     instead of errors from computing its exception specification, and
1932   //  b) if the function is a defaulted comparison, we can use the body we
1933   //     build when defining it as input to the exception specification
1934   //     computation rather than computing a new body.
1935   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
1936     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
1937       if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
1938         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
1939     }
1940   }
1941 
1942   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1943       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
1944       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
1945     getCurFunction()->recordUseOfWeak(E);
1946 
1947   FieldDecl *FD = dyn_cast<FieldDecl>(D);
1948   if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
1949     FD = IFD->getAnonField();
1950   if (FD) {
1951     UnusedPrivateFields.remove(FD);
1952     // Just in case we're building an illegal pointer-to-member.
1953     if (FD->isBitField())
1954       E->setObjectKind(OK_BitField);
1955   }
1956 
1957   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
1958   // designates a bit-field.
1959   if (auto *BD = dyn_cast<BindingDecl>(D))
1960     if (auto *BE = BD->getBinding())
1961       E->setObjectKind(BE->getObjectKind());
1962 
1963   return E;
1964 }
1965 
1966 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1967 /// possibly a list of template arguments.
1968 ///
1969 /// If this produces template arguments, it is permitted to call
1970 /// DecomposeTemplateName.
1971 ///
1972 /// This actually loses a lot of source location information for
1973 /// non-standard name kinds; we should consider preserving that in
1974 /// some way.
1975 void
1976 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1977                              TemplateArgumentListInfo &Buffer,
1978                              DeclarationNameInfo &NameInfo,
1979                              const TemplateArgumentListInfo *&TemplateArgs) {
1980   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
1981     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1982     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1983 
1984     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1985                                        Id.TemplateId->NumArgs);
1986     translateTemplateArguments(TemplateArgsPtr, Buffer);
1987 
1988     TemplateName TName = Id.TemplateId->Template.get();
1989     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1990     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1991     TemplateArgs = &Buffer;
1992   } else {
1993     NameInfo = GetNameFromUnqualifiedId(Id);
1994     TemplateArgs = nullptr;
1995   }
1996 }
1997 
1998 static void emitEmptyLookupTypoDiagnostic(
1999     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2000     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2001     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2002   DeclContext *Ctx =
2003       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2004   if (!TC) {
2005     // Emit a special diagnostic for failed member lookups.
2006     // FIXME: computing the declaration context might fail here (?)
2007     if (Ctx)
2008       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2009                                                  << SS.getRange();
2010     else
2011       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2012     return;
2013   }
2014 
2015   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2016   bool DroppedSpecifier =
2017       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2018   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2019                         ? diag::note_implicit_param_decl
2020                         : diag::note_previous_decl;
2021   if (!Ctx)
2022     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2023                          SemaRef.PDiag(NoteID));
2024   else
2025     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2026                                  << Typo << Ctx << DroppedSpecifier
2027                                  << SS.getRange(),
2028                          SemaRef.PDiag(NoteID));
2029 }
2030 
2031 /// Diagnose an empty lookup.
2032 ///
2033 /// \return false if new lookup candidates were found
2034 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2035                                CorrectionCandidateCallback &CCC,
2036                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2037                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2038   DeclarationName Name = R.getLookupName();
2039 
2040   unsigned diagnostic = diag::err_undeclared_var_use;
2041   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2042   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2043       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2044       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2045     diagnostic = diag::err_undeclared_use;
2046     diagnostic_suggest = diag::err_undeclared_use_suggest;
2047   }
2048 
2049   // If the original lookup was an unqualified lookup, fake an
2050   // unqualified lookup.  This is useful when (for example) the
2051   // original lookup would not have found something because it was a
2052   // dependent name.
2053   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2054   while (DC) {
2055     if (isa<CXXRecordDecl>(DC)) {
2056       LookupQualifiedName(R, DC);
2057 
2058       if (!R.empty()) {
2059         // Don't give errors about ambiguities in this lookup.
2060         R.suppressDiagnostics();
2061 
2062         // During a default argument instantiation the CurContext points
2063         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2064         // function parameter list, hence add an explicit check.
2065         bool isDefaultArgument =
2066             !CodeSynthesisContexts.empty() &&
2067             CodeSynthesisContexts.back().Kind ==
2068                 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2069         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2070         bool isInstance = CurMethod &&
2071                           CurMethod->isInstance() &&
2072                           DC == CurMethod->getParent() && !isDefaultArgument;
2073 
2074         // Give a code modification hint to insert 'this->'.
2075         // TODO: fixit for inserting 'Base<T>::' in the other cases.
2076         // Actually quite difficult!
2077         if (getLangOpts().MSVCCompat)
2078           diagnostic = diag::ext_found_via_dependent_bases_lookup;
2079         if (isInstance) {
2080           Diag(R.getNameLoc(), diagnostic) << Name
2081             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2082           CheckCXXThisCapture(R.getNameLoc());
2083         } else {
2084           Diag(R.getNameLoc(), diagnostic) << Name;
2085         }
2086 
2087         // Do we really want to note all of these?
2088         for (NamedDecl *D : R)
2089           Diag(D->getLocation(), diag::note_dependent_var_use);
2090 
2091         // Return true if we are inside a default argument instantiation
2092         // and the found name refers to an instance member function, otherwise
2093         // the function calling DiagnoseEmptyLookup will try to create an
2094         // implicit member call and this is wrong for default argument.
2095         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2096           Diag(R.getNameLoc(), diag::err_member_call_without_object);
2097           return true;
2098         }
2099 
2100         // Tell the callee to try to recover.
2101         return false;
2102       }
2103 
2104       R.clear();
2105     }
2106 
2107     DC = DC->getLookupParent();
2108   }
2109 
2110   // We didn't find anything, so try to correct for a typo.
2111   TypoCorrection Corrected;
2112   if (S && Out) {
2113     SourceLocation TypoLoc = R.getNameLoc();
2114     assert(!ExplicitTemplateArgs &&
2115            "Diagnosing an empty lookup with explicit template args!");
2116     *Out = CorrectTypoDelayed(
2117         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2118         [=](const TypoCorrection &TC) {
2119           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2120                                         diagnostic, diagnostic_suggest);
2121         },
2122         nullptr, CTK_ErrorRecovery);
2123     if (*Out)
2124       return true;
2125   } else if (S &&
2126              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2127                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2128     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2129     bool DroppedSpecifier =
2130         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2131     R.setLookupName(Corrected.getCorrection());
2132 
2133     bool AcceptableWithRecovery = false;
2134     bool AcceptableWithoutRecovery = false;
2135     NamedDecl *ND = Corrected.getFoundDecl();
2136     if (ND) {
2137       if (Corrected.isOverloaded()) {
2138         OverloadCandidateSet OCS(R.getNameLoc(),
2139                                  OverloadCandidateSet::CSK_Normal);
2140         OverloadCandidateSet::iterator Best;
2141         for (NamedDecl *CD : Corrected) {
2142           if (FunctionTemplateDecl *FTD =
2143                    dyn_cast<FunctionTemplateDecl>(CD))
2144             AddTemplateOverloadCandidate(
2145                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2146                 Args, OCS);
2147           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2148             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2149               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2150                                    Args, OCS);
2151         }
2152         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2153         case OR_Success:
2154           ND = Best->FoundDecl;
2155           Corrected.setCorrectionDecl(ND);
2156           break;
2157         default:
2158           // FIXME: Arbitrarily pick the first declaration for the note.
2159           Corrected.setCorrectionDecl(ND);
2160           break;
2161         }
2162       }
2163       R.addDecl(ND);
2164       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2165         CXXRecordDecl *Record = nullptr;
2166         if (Corrected.getCorrectionSpecifier()) {
2167           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2168           Record = Ty->getAsCXXRecordDecl();
2169         }
2170         if (!Record)
2171           Record = cast<CXXRecordDecl>(
2172               ND->getDeclContext()->getRedeclContext());
2173         R.setNamingClass(Record);
2174       }
2175 
2176       auto *UnderlyingND = ND->getUnderlyingDecl();
2177       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2178                                isa<FunctionTemplateDecl>(UnderlyingND);
2179       // FIXME: If we ended up with a typo for a type name or
2180       // Objective-C class name, we're in trouble because the parser
2181       // is in the wrong place to recover. Suggest the typo
2182       // correction, but don't make it a fix-it since we're not going
2183       // to recover well anyway.
2184       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2185                                   getAsTypeTemplateDecl(UnderlyingND) ||
2186                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2187     } else {
2188       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2189       // because we aren't able to recover.
2190       AcceptableWithoutRecovery = true;
2191     }
2192 
2193     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2194       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2195                             ? diag::note_implicit_param_decl
2196                             : diag::note_previous_decl;
2197       if (SS.isEmpty())
2198         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2199                      PDiag(NoteID), AcceptableWithRecovery);
2200       else
2201         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2202                                   << Name << computeDeclContext(SS, false)
2203                                   << DroppedSpecifier << SS.getRange(),
2204                      PDiag(NoteID), AcceptableWithRecovery);
2205 
2206       // Tell the callee whether to try to recover.
2207       return !AcceptableWithRecovery;
2208     }
2209   }
2210   R.clear();
2211 
2212   // Emit a special diagnostic for failed member lookups.
2213   // FIXME: computing the declaration context might fail here (?)
2214   if (!SS.isEmpty()) {
2215     Diag(R.getNameLoc(), diag::err_no_member)
2216       << Name << computeDeclContext(SS, false)
2217       << SS.getRange();
2218     return true;
2219   }
2220 
2221   // Give up, we can't recover.
2222   Diag(R.getNameLoc(), diagnostic) << Name;
2223   return true;
2224 }
2225 
2226 /// In Microsoft mode, if we are inside a template class whose parent class has
2227 /// dependent base classes, and we can't resolve an unqualified identifier, then
2228 /// assume the identifier is a member of a dependent base class.  We can only
2229 /// recover successfully in static methods, instance methods, and other contexts
2230 /// where 'this' is available.  This doesn't precisely match MSVC's
2231 /// instantiation model, but it's close enough.
2232 static Expr *
2233 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2234                                DeclarationNameInfo &NameInfo,
2235                                SourceLocation TemplateKWLoc,
2236                                const TemplateArgumentListInfo *TemplateArgs) {
2237   // Only try to recover from lookup into dependent bases in static methods or
2238   // contexts where 'this' is available.
2239   QualType ThisType = S.getCurrentThisType();
2240   const CXXRecordDecl *RD = nullptr;
2241   if (!ThisType.isNull())
2242     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2243   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2244     RD = MD->getParent();
2245   if (!RD || !RD->hasAnyDependentBases())
2246     return nullptr;
2247 
2248   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2249   // is available, suggest inserting 'this->' as a fixit.
2250   SourceLocation Loc = NameInfo.getLoc();
2251   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2252   DB << NameInfo.getName() << RD;
2253 
2254   if (!ThisType.isNull()) {
2255     DB << FixItHint::CreateInsertion(Loc, "this->");
2256     return CXXDependentScopeMemberExpr::Create(
2257         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2258         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2259         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2260   }
2261 
2262   // Synthesize a fake NNS that points to the derived class.  This will
2263   // perform name lookup during template instantiation.
2264   CXXScopeSpec SS;
2265   auto *NNS =
2266       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2267   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2268   return DependentScopeDeclRefExpr::Create(
2269       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2270       TemplateArgs);
2271 }
2272 
2273 ExprResult
2274 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2275                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2276                         bool HasTrailingLParen, bool IsAddressOfOperand,
2277                         CorrectionCandidateCallback *CCC,
2278                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2279   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2280          "cannot be direct & operand and have a trailing lparen");
2281   if (SS.isInvalid())
2282     return ExprError();
2283 
2284   TemplateArgumentListInfo TemplateArgsBuffer;
2285 
2286   // Decompose the UnqualifiedId into the following data.
2287   DeclarationNameInfo NameInfo;
2288   const TemplateArgumentListInfo *TemplateArgs;
2289   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2290 
2291   DeclarationName Name = NameInfo.getName();
2292   IdentifierInfo *II = Name.getAsIdentifierInfo();
2293   SourceLocation NameLoc = NameInfo.getLoc();
2294 
2295   if (II && II->isEditorPlaceholder()) {
2296     // FIXME: When typed placeholders are supported we can create a typed
2297     // placeholder expression node.
2298     return ExprError();
2299   }
2300 
2301   // C++ [temp.dep.expr]p3:
2302   //   An id-expression is type-dependent if it contains:
2303   //     -- an identifier that was declared with a dependent type,
2304   //        (note: handled after lookup)
2305   //     -- a template-id that is dependent,
2306   //        (note: handled in BuildTemplateIdExpr)
2307   //     -- a conversion-function-id that specifies a dependent type,
2308   //     -- a nested-name-specifier that contains a class-name that
2309   //        names a dependent type.
2310   // Determine whether this is a member of an unknown specialization;
2311   // we need to handle these differently.
2312   bool DependentID = false;
2313   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2314       Name.getCXXNameType()->isDependentType()) {
2315     DependentID = true;
2316   } else if (SS.isSet()) {
2317     if (DeclContext *DC = computeDeclContext(SS, false)) {
2318       if (RequireCompleteDeclContext(SS, DC))
2319         return ExprError();
2320     } else {
2321       DependentID = true;
2322     }
2323   }
2324 
2325   if (DependentID)
2326     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2327                                       IsAddressOfOperand, TemplateArgs);
2328 
2329   // Perform the required lookup.
2330   LookupResult R(*this, NameInfo,
2331                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2332                      ? LookupObjCImplicitSelfParam
2333                      : LookupOrdinaryName);
2334   if (TemplateKWLoc.isValid() || TemplateArgs) {
2335     // Lookup the template name again to correctly establish the context in
2336     // which it was found. This is really unfortunate as we already did the
2337     // lookup to determine that it was a template name in the first place. If
2338     // this becomes a performance hit, we can work harder to preserve those
2339     // results until we get here but it's likely not worth it.
2340     bool MemberOfUnknownSpecialization;
2341     AssumedTemplateKind AssumedTemplate;
2342     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2343                            MemberOfUnknownSpecialization, TemplateKWLoc,
2344                            &AssumedTemplate))
2345       return ExprError();
2346 
2347     if (MemberOfUnknownSpecialization ||
2348         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2349       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2350                                         IsAddressOfOperand, TemplateArgs);
2351   } else {
2352     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2353     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2354 
2355     // If the result might be in a dependent base class, this is a dependent
2356     // id-expression.
2357     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2358       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2359                                         IsAddressOfOperand, TemplateArgs);
2360 
2361     // If this reference is in an Objective-C method, then we need to do
2362     // some special Objective-C lookup, too.
2363     if (IvarLookupFollowUp) {
2364       ExprResult E(LookupInObjCMethod(R, S, II, true));
2365       if (E.isInvalid())
2366         return ExprError();
2367 
2368       if (Expr *Ex = E.getAs<Expr>())
2369         return Ex;
2370     }
2371   }
2372 
2373   if (R.isAmbiguous())
2374     return ExprError();
2375 
2376   // This could be an implicitly declared function reference (legal in C90,
2377   // extension in C99, forbidden in C++).
2378   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2379     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2380     if (D) R.addDecl(D);
2381   }
2382 
2383   // Determine whether this name might be a candidate for
2384   // argument-dependent lookup.
2385   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2386 
2387   if (R.empty() && !ADL) {
2388     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2389       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2390                                                    TemplateKWLoc, TemplateArgs))
2391         return E;
2392     }
2393 
2394     // Don't diagnose an empty lookup for inline assembly.
2395     if (IsInlineAsmIdentifier)
2396       return ExprError();
2397 
2398     // If this name wasn't predeclared and if this is not a function
2399     // call, diagnose the problem.
2400     TypoExpr *TE = nullptr;
2401     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2402                                                        : nullptr);
2403     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2404     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2405            "Typo correction callback misconfigured");
2406     if (CCC) {
2407       // Make sure the callback knows what the typo being diagnosed is.
2408       CCC->setTypoName(II);
2409       if (SS.isValid())
2410         CCC->setTypoNNS(SS.getScopeRep());
2411     }
2412     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2413     // a template name, but we happen to have always already looked up the name
2414     // before we get here if it must be a template name.
2415     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2416                             None, &TE)) {
2417       if (TE && KeywordReplacement) {
2418         auto &State = getTypoExprState(TE);
2419         auto BestTC = State.Consumer->getNextCorrection();
2420         if (BestTC.isKeyword()) {
2421           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2422           if (State.DiagHandler)
2423             State.DiagHandler(BestTC);
2424           KeywordReplacement->startToken();
2425           KeywordReplacement->setKind(II->getTokenID());
2426           KeywordReplacement->setIdentifierInfo(II);
2427           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2428           // Clean up the state associated with the TypoExpr, since it has
2429           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2430           clearDelayedTypo(TE);
2431           // Signal that a correction to a keyword was performed by returning a
2432           // valid-but-null ExprResult.
2433           return (Expr*)nullptr;
2434         }
2435         State.Consumer->resetCorrectionStream();
2436       }
2437       return TE ? TE : ExprError();
2438     }
2439 
2440     assert(!R.empty() &&
2441            "DiagnoseEmptyLookup returned false but added no results");
2442 
2443     // If we found an Objective-C instance variable, let
2444     // LookupInObjCMethod build the appropriate expression to
2445     // reference the ivar.
2446     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2447       R.clear();
2448       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2449       // In a hopelessly buggy code, Objective-C instance variable
2450       // lookup fails and no expression will be built to reference it.
2451       if (!E.isInvalid() && !E.get())
2452         return ExprError();
2453       return E;
2454     }
2455   }
2456 
2457   // This is guaranteed from this point on.
2458   assert(!R.empty() || ADL);
2459 
2460   // Check whether this might be a C++ implicit instance member access.
2461   // C++ [class.mfct.non-static]p3:
2462   //   When an id-expression that is not part of a class member access
2463   //   syntax and not used to form a pointer to member is used in the
2464   //   body of a non-static member function of class X, if name lookup
2465   //   resolves the name in the id-expression to a non-static non-type
2466   //   member of some class C, the id-expression is transformed into a
2467   //   class member access expression using (*this) as the
2468   //   postfix-expression to the left of the . operator.
2469   //
2470   // But we don't actually need to do this for '&' operands if R
2471   // resolved to a function or overloaded function set, because the
2472   // expression is ill-formed if it actually works out to be a
2473   // non-static member function:
2474   //
2475   // C++ [expr.ref]p4:
2476   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2477   //   [t]he expression can be used only as the left-hand operand of a
2478   //   member function call.
2479   //
2480   // There are other safeguards against such uses, but it's important
2481   // to get this right here so that we don't end up making a
2482   // spuriously dependent expression if we're inside a dependent
2483   // instance method.
2484   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2485     bool MightBeImplicitMember;
2486     if (!IsAddressOfOperand)
2487       MightBeImplicitMember = true;
2488     else if (!SS.isEmpty())
2489       MightBeImplicitMember = false;
2490     else if (R.isOverloadedResult())
2491       MightBeImplicitMember = false;
2492     else if (R.isUnresolvableResult())
2493       MightBeImplicitMember = true;
2494     else
2495       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2496                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2497                               isa<MSPropertyDecl>(R.getFoundDecl());
2498 
2499     if (MightBeImplicitMember)
2500       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2501                                              R, TemplateArgs, S);
2502   }
2503 
2504   if (TemplateArgs || TemplateKWLoc.isValid()) {
2505 
2506     // In C++1y, if this is a variable template id, then check it
2507     // in BuildTemplateIdExpr().
2508     // The single lookup result must be a variable template declaration.
2509     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2510         Id.TemplateId->Kind == TNK_Var_template) {
2511       assert(R.getAsSingle<VarTemplateDecl>() &&
2512              "There should only be one declaration found.");
2513     }
2514 
2515     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2516   }
2517 
2518   return BuildDeclarationNameExpr(SS, R, ADL);
2519 }
2520 
2521 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2522 /// declaration name, generally during template instantiation.
2523 /// There's a large number of things which don't need to be done along
2524 /// this path.
2525 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2526     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2527     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2528   DeclContext *DC = computeDeclContext(SS, false);
2529   if (!DC)
2530     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2531                                      NameInfo, /*TemplateArgs=*/nullptr);
2532 
2533   if (RequireCompleteDeclContext(SS, DC))
2534     return ExprError();
2535 
2536   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2537   LookupQualifiedName(R, DC);
2538 
2539   if (R.isAmbiguous())
2540     return ExprError();
2541 
2542   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2543     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2544                                      NameInfo, /*TemplateArgs=*/nullptr);
2545 
2546   if (R.empty()) {
2547     Diag(NameInfo.getLoc(), diag::err_no_member)
2548       << NameInfo.getName() << DC << SS.getRange();
2549     return ExprError();
2550   }
2551 
2552   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2553     // Diagnose a missing typename if this resolved unambiguously to a type in
2554     // a dependent context.  If we can recover with a type, downgrade this to
2555     // a warning in Microsoft compatibility mode.
2556     unsigned DiagID = diag::err_typename_missing;
2557     if (RecoveryTSI && getLangOpts().MSVCCompat)
2558       DiagID = diag::ext_typename_missing;
2559     SourceLocation Loc = SS.getBeginLoc();
2560     auto D = Diag(Loc, DiagID);
2561     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2562       << SourceRange(Loc, NameInfo.getEndLoc());
2563 
2564     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2565     // context.
2566     if (!RecoveryTSI)
2567       return ExprError();
2568 
2569     // Only issue the fixit if we're prepared to recover.
2570     D << FixItHint::CreateInsertion(Loc, "typename ");
2571 
2572     // Recover by pretending this was an elaborated type.
2573     QualType Ty = Context.getTypeDeclType(TD);
2574     TypeLocBuilder TLB;
2575     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2576 
2577     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2578     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2579     QTL.setElaboratedKeywordLoc(SourceLocation());
2580     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2581 
2582     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2583 
2584     return ExprEmpty();
2585   }
2586 
2587   // Defend against this resolving to an implicit member access. We usually
2588   // won't get here if this might be a legitimate a class member (we end up in
2589   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2590   // a pointer-to-member or in an unevaluated context in C++11.
2591   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2592     return BuildPossibleImplicitMemberExpr(SS,
2593                                            /*TemplateKWLoc=*/SourceLocation(),
2594                                            R, /*TemplateArgs=*/nullptr, S);
2595 
2596   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2597 }
2598 
2599 /// The parser has read a name in, and Sema has detected that we're currently
2600 /// inside an ObjC method. Perform some additional checks and determine if we
2601 /// should form a reference to an ivar.
2602 ///
2603 /// Ideally, most of this would be done by lookup, but there's
2604 /// actually quite a lot of extra work involved.
2605 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2606                                         IdentifierInfo *II) {
2607   SourceLocation Loc = Lookup.getNameLoc();
2608   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2609 
2610   // Check for error condition which is already reported.
2611   if (!CurMethod)
2612     return DeclResult(true);
2613 
2614   // There are two cases to handle here.  1) scoped lookup could have failed,
2615   // in which case we should look for an ivar.  2) scoped lookup could have
2616   // found a decl, but that decl is outside the current instance method (i.e.
2617   // a global variable).  In these two cases, we do a lookup for an ivar with
2618   // this name, if the lookup sucedes, we replace it our current decl.
2619 
2620   // If we're in a class method, we don't normally want to look for
2621   // ivars.  But if we don't find anything else, and there's an
2622   // ivar, that's an error.
2623   bool IsClassMethod = CurMethod->isClassMethod();
2624 
2625   bool LookForIvars;
2626   if (Lookup.empty())
2627     LookForIvars = true;
2628   else if (IsClassMethod)
2629     LookForIvars = false;
2630   else
2631     LookForIvars = (Lookup.isSingleResult() &&
2632                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2633   ObjCInterfaceDecl *IFace = nullptr;
2634   if (LookForIvars) {
2635     IFace = CurMethod->getClassInterface();
2636     ObjCInterfaceDecl *ClassDeclared;
2637     ObjCIvarDecl *IV = nullptr;
2638     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2639       // Diagnose using an ivar in a class method.
2640       if (IsClassMethod) {
2641         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2642         return DeclResult(true);
2643       }
2644 
2645       // Diagnose the use of an ivar outside of the declaring class.
2646       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2647           !declaresSameEntity(ClassDeclared, IFace) &&
2648           !getLangOpts().DebuggerSupport)
2649         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2650 
2651       // Success.
2652       return IV;
2653     }
2654   } else if (CurMethod->isInstanceMethod()) {
2655     // We should warn if a local variable hides an ivar.
2656     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2657       ObjCInterfaceDecl *ClassDeclared;
2658       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2659         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2660             declaresSameEntity(IFace, ClassDeclared))
2661           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2662       }
2663     }
2664   } else if (Lookup.isSingleResult() &&
2665              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2666     // If accessing a stand-alone ivar in a class method, this is an error.
2667     if (const ObjCIvarDecl *IV =
2668             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2669       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2670       return DeclResult(true);
2671     }
2672   }
2673 
2674   // Didn't encounter an error, didn't find an ivar.
2675   return DeclResult(false);
2676 }
2677 
2678 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2679                                   ObjCIvarDecl *IV) {
2680   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2681   assert(CurMethod && CurMethod->isInstanceMethod() &&
2682          "should not reference ivar from this context");
2683 
2684   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2685   assert(IFace && "should not reference ivar from this context");
2686 
2687   // If we're referencing an invalid decl, just return this as a silent
2688   // error node.  The error diagnostic was already emitted on the decl.
2689   if (IV->isInvalidDecl())
2690     return ExprError();
2691 
2692   // Check if referencing a field with __attribute__((deprecated)).
2693   if (DiagnoseUseOfDecl(IV, Loc))
2694     return ExprError();
2695 
2696   // FIXME: This should use a new expr for a direct reference, don't
2697   // turn this into Self->ivar, just return a BareIVarExpr or something.
2698   IdentifierInfo &II = Context.Idents.get("self");
2699   UnqualifiedId SelfName;
2700   SelfName.setIdentifier(&II, SourceLocation());
2701   SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
2702   CXXScopeSpec SelfScopeSpec;
2703   SourceLocation TemplateKWLoc;
2704   ExprResult SelfExpr =
2705       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2706                         /*HasTrailingLParen=*/false,
2707                         /*IsAddressOfOperand=*/false);
2708   if (SelfExpr.isInvalid())
2709     return ExprError();
2710 
2711   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2712   if (SelfExpr.isInvalid())
2713     return ExprError();
2714 
2715   MarkAnyDeclReferenced(Loc, IV, true);
2716 
2717   ObjCMethodFamily MF = CurMethod->getMethodFamily();
2718   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2719       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2720     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2721 
2722   ObjCIvarRefExpr *Result = new (Context)
2723       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2724                       IV->getLocation(), SelfExpr.get(), true, true);
2725 
2726   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2727     if (!isUnevaluatedContext() &&
2728         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2729       getCurFunction()->recordUseOfWeak(Result);
2730   }
2731   if (getLangOpts().ObjCAutoRefCount)
2732     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2733       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2734 
2735   return Result;
2736 }
2737 
2738 /// The parser has read a name in, and Sema has detected that we're currently
2739 /// inside an ObjC method. Perform some additional checks and determine if we
2740 /// should form a reference to an ivar. If so, build an expression referencing
2741 /// that ivar.
2742 ExprResult
2743 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2744                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2745   // FIXME: Integrate this lookup step into LookupParsedName.
2746   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2747   if (Ivar.isInvalid())
2748     return ExprError();
2749   if (Ivar.isUsable())
2750     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2751                             cast<ObjCIvarDecl>(Ivar.get()));
2752 
2753   if (Lookup.empty() && II && AllowBuiltinCreation)
2754     LookupBuiltin(Lookup);
2755 
2756   // Sentinel value saying that we didn't do anything special.
2757   return ExprResult(false);
2758 }
2759 
2760 /// Cast a base object to a member's actual type.
2761 ///
2762 /// Logically this happens in three phases:
2763 ///
2764 /// * First we cast from the base type to the naming class.
2765 ///   The naming class is the class into which we were looking
2766 ///   when we found the member;  it's the qualifier type if a
2767 ///   qualifier was provided, and otherwise it's the base type.
2768 ///
2769 /// * Next we cast from the naming class to the declaring class.
2770 ///   If the member we found was brought into a class's scope by
2771 ///   a using declaration, this is that class;  otherwise it's
2772 ///   the class declaring the member.
2773 ///
2774 /// * Finally we cast from the declaring class to the "true"
2775 ///   declaring class of the member.  This conversion does not
2776 ///   obey access control.
2777 ExprResult
2778 Sema::PerformObjectMemberConversion(Expr *From,
2779                                     NestedNameSpecifier *Qualifier,
2780                                     NamedDecl *FoundDecl,
2781                                     NamedDecl *Member) {
2782   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2783   if (!RD)
2784     return From;
2785 
2786   QualType DestRecordType;
2787   QualType DestType;
2788   QualType FromRecordType;
2789   QualType FromType = From->getType();
2790   bool PointerConversions = false;
2791   if (isa<FieldDecl>(Member)) {
2792     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2793     auto FromPtrType = FromType->getAs<PointerType>();
2794     DestRecordType = Context.getAddrSpaceQualType(
2795         DestRecordType, FromPtrType
2796                             ? FromType->getPointeeType().getAddressSpace()
2797                             : FromType.getAddressSpace());
2798 
2799     if (FromPtrType) {
2800       DestType = Context.getPointerType(DestRecordType);
2801       FromRecordType = FromPtrType->getPointeeType();
2802       PointerConversions = true;
2803     } else {
2804       DestType = DestRecordType;
2805       FromRecordType = FromType;
2806     }
2807   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2808     if (Method->isStatic())
2809       return From;
2810 
2811     DestType = Method->getThisType();
2812     DestRecordType = DestType->getPointeeType();
2813 
2814     if (FromType->getAs<PointerType>()) {
2815       FromRecordType = FromType->getPointeeType();
2816       PointerConversions = true;
2817     } else {
2818       FromRecordType = FromType;
2819       DestType = DestRecordType;
2820     }
2821 
2822     LangAS FromAS = FromRecordType.getAddressSpace();
2823     LangAS DestAS = DestRecordType.getAddressSpace();
2824     if (FromAS != DestAS) {
2825       QualType FromRecordTypeWithoutAS =
2826           Context.removeAddrSpaceQualType(FromRecordType);
2827       QualType FromTypeWithDestAS =
2828           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2829       if (PointerConversions)
2830         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2831       From = ImpCastExprToType(From, FromTypeWithDestAS,
2832                                CK_AddressSpaceConversion, From->getValueKind())
2833                  .get();
2834     }
2835   } else {
2836     // No conversion necessary.
2837     return From;
2838   }
2839 
2840   if (DestType->isDependentType() || FromType->isDependentType())
2841     return From;
2842 
2843   // If the unqualified types are the same, no conversion is necessary.
2844   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2845     return From;
2846 
2847   SourceRange FromRange = From->getSourceRange();
2848   SourceLocation FromLoc = FromRange.getBegin();
2849 
2850   ExprValueKind VK = From->getValueKind();
2851 
2852   // C++ [class.member.lookup]p8:
2853   //   [...] Ambiguities can often be resolved by qualifying a name with its
2854   //   class name.
2855   //
2856   // If the member was a qualified name and the qualified referred to a
2857   // specific base subobject type, we'll cast to that intermediate type
2858   // first and then to the object in which the member is declared. That allows
2859   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2860   //
2861   //   class Base { public: int x; };
2862   //   class Derived1 : public Base { };
2863   //   class Derived2 : public Base { };
2864   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2865   //
2866   //   void VeryDerived::f() {
2867   //     x = 17; // error: ambiguous base subobjects
2868   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2869   //   }
2870   if (Qualifier && Qualifier->getAsType()) {
2871     QualType QType = QualType(Qualifier->getAsType(), 0);
2872     assert(QType->isRecordType() && "lookup done with non-record type");
2873 
2874     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2875 
2876     // In C++98, the qualifier type doesn't actually have to be a base
2877     // type of the object type, in which case we just ignore it.
2878     // Otherwise build the appropriate casts.
2879     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2880       CXXCastPath BasePath;
2881       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2882                                        FromLoc, FromRange, &BasePath))
2883         return ExprError();
2884 
2885       if (PointerConversions)
2886         QType = Context.getPointerType(QType);
2887       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2888                                VK, &BasePath).get();
2889 
2890       FromType = QType;
2891       FromRecordType = QRecordType;
2892 
2893       // If the qualifier type was the same as the destination type,
2894       // we're done.
2895       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2896         return From;
2897     }
2898   }
2899 
2900   bool IgnoreAccess = false;
2901 
2902   // If we actually found the member through a using declaration, cast
2903   // down to the using declaration's type.
2904   //
2905   // Pointer equality is fine here because only one declaration of a
2906   // class ever has member declarations.
2907   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2908     assert(isa<UsingShadowDecl>(FoundDecl));
2909     QualType URecordType = Context.getTypeDeclType(
2910                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2911 
2912     // We only need to do this if the naming-class to declaring-class
2913     // conversion is non-trivial.
2914     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2915       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
2916       CXXCastPath BasePath;
2917       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2918                                        FromLoc, FromRange, &BasePath))
2919         return ExprError();
2920 
2921       QualType UType = URecordType;
2922       if (PointerConversions)
2923         UType = Context.getPointerType(UType);
2924       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2925                                VK, &BasePath).get();
2926       FromType = UType;
2927       FromRecordType = URecordType;
2928     }
2929 
2930     // We don't do access control for the conversion from the
2931     // declaring class to the true declaring class.
2932     IgnoreAccess = true;
2933   }
2934 
2935   CXXCastPath BasePath;
2936   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2937                                    FromLoc, FromRange, &BasePath,
2938                                    IgnoreAccess))
2939     return ExprError();
2940 
2941   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2942                            VK, &BasePath);
2943 }
2944 
2945 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2946                                       const LookupResult &R,
2947                                       bool HasTrailingLParen) {
2948   // Only when used directly as the postfix-expression of a call.
2949   if (!HasTrailingLParen)
2950     return false;
2951 
2952   // Never if a scope specifier was provided.
2953   if (SS.isSet())
2954     return false;
2955 
2956   // Only in C++ or ObjC++.
2957   if (!getLangOpts().CPlusPlus)
2958     return false;
2959 
2960   // Turn off ADL when we find certain kinds of declarations during
2961   // normal lookup:
2962   for (NamedDecl *D : R) {
2963     // C++0x [basic.lookup.argdep]p3:
2964     //     -- a declaration of a class member
2965     // Since using decls preserve this property, we check this on the
2966     // original decl.
2967     if (D->isCXXClassMember())
2968       return false;
2969 
2970     // C++0x [basic.lookup.argdep]p3:
2971     //     -- a block-scope function declaration that is not a
2972     //        using-declaration
2973     // NOTE: we also trigger this for function templates (in fact, we
2974     // don't check the decl type at all, since all other decl types
2975     // turn off ADL anyway).
2976     if (isa<UsingShadowDecl>(D))
2977       D = cast<UsingShadowDecl>(D)->getTargetDecl();
2978     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2979       return false;
2980 
2981     // C++0x [basic.lookup.argdep]p3:
2982     //     -- a declaration that is neither a function or a function
2983     //        template
2984     // And also for builtin functions.
2985     if (isa<FunctionDecl>(D)) {
2986       FunctionDecl *FDecl = cast<FunctionDecl>(D);
2987 
2988       // But also builtin functions.
2989       if (FDecl->getBuiltinID() && FDecl->isImplicit())
2990         return false;
2991     } else if (!isa<FunctionTemplateDecl>(D))
2992       return false;
2993   }
2994 
2995   return true;
2996 }
2997 
2998 
2999 /// Diagnoses obvious problems with the use of the given declaration
3000 /// as an expression.  This is only actually called for lookups that
3001 /// were not overloaded, and it doesn't promise that the declaration
3002 /// will in fact be used.
3003 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3004   if (D->isInvalidDecl())
3005     return true;
3006 
3007   if (isa<TypedefNameDecl>(D)) {
3008     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3009     return true;
3010   }
3011 
3012   if (isa<ObjCInterfaceDecl>(D)) {
3013     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3014     return true;
3015   }
3016 
3017   if (isa<NamespaceDecl>(D)) {
3018     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3019     return true;
3020   }
3021 
3022   return false;
3023 }
3024 
3025 // Certain multiversion types should be treated as overloaded even when there is
3026 // only one result.
3027 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3028   assert(R.isSingleResult() && "Expected only a single result");
3029   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3030   return FD &&
3031          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3032 }
3033 
3034 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3035                                           LookupResult &R, bool NeedsADL,
3036                                           bool AcceptInvalidDecl) {
3037   // If this is a single, fully-resolved result and we don't need ADL,
3038   // just build an ordinary singleton decl ref.
3039   if (!NeedsADL && R.isSingleResult() &&
3040       !R.getAsSingle<FunctionTemplateDecl>() &&
3041       !ShouldLookupResultBeMultiVersionOverload(R))
3042     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3043                                     R.getRepresentativeDecl(), nullptr,
3044                                     AcceptInvalidDecl);
3045 
3046   // We only need to check the declaration if there's exactly one
3047   // result, because in the overloaded case the results can only be
3048   // functions and function templates.
3049   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3050       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3051     return ExprError();
3052 
3053   // Otherwise, just build an unresolved lookup expression.  Suppress
3054   // any lookup-related diagnostics; we'll hash these out later, when
3055   // we've picked a target.
3056   R.suppressDiagnostics();
3057 
3058   UnresolvedLookupExpr *ULE
3059     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3060                                    SS.getWithLocInContext(Context),
3061                                    R.getLookupNameInfo(),
3062                                    NeedsADL, R.isOverloadedResult(),
3063                                    R.begin(), R.end());
3064 
3065   return ULE;
3066 }
3067 
3068 static void
3069 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3070                                    ValueDecl *var, DeclContext *DC);
3071 
3072 /// Complete semantic analysis for a reference to the given declaration.
3073 ExprResult Sema::BuildDeclarationNameExpr(
3074     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3075     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3076     bool AcceptInvalidDecl) {
3077   assert(D && "Cannot refer to a NULL declaration");
3078   assert(!isa<FunctionTemplateDecl>(D) &&
3079          "Cannot refer unambiguously to a function template");
3080 
3081   SourceLocation Loc = NameInfo.getLoc();
3082   if (CheckDeclInExpr(*this, Loc, D))
3083     return ExprError();
3084 
3085   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3086     // Specifically diagnose references to class templates that are missing
3087     // a template argument list.
3088     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3089     return ExprError();
3090   }
3091 
3092   // Make sure that we're referring to a value.
3093   ValueDecl *VD = dyn_cast<ValueDecl>(D);
3094   if (!VD) {
3095     Diag(Loc, diag::err_ref_non_value)
3096       << D << SS.getRange();
3097     Diag(D->getLocation(), diag::note_declared_at);
3098     return ExprError();
3099   }
3100 
3101   // Check whether this declaration can be used. Note that we suppress
3102   // this check when we're going to perform argument-dependent lookup
3103   // on this function name, because this might not be the function
3104   // that overload resolution actually selects.
3105   if (DiagnoseUseOfDecl(VD, Loc))
3106     return ExprError();
3107 
3108   // Only create DeclRefExpr's for valid Decl's.
3109   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3110     return ExprError();
3111 
3112   // Handle members of anonymous structs and unions.  If we got here,
3113   // and the reference is to a class member indirect field, then this
3114   // must be the subject of a pointer-to-member expression.
3115   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3116     if (!indirectField->isCXXClassMember())
3117       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3118                                                       indirectField);
3119 
3120   {
3121     QualType type = VD->getType();
3122     if (type.isNull())
3123       return ExprError();
3124     ExprValueKind valueKind = VK_RValue;
3125 
3126     switch (D->getKind()) {
3127     // Ignore all the non-ValueDecl kinds.
3128 #define ABSTRACT_DECL(kind)
3129 #define VALUE(type, base)
3130 #define DECL(type, base) \
3131     case Decl::type:
3132 #include "clang/AST/DeclNodes.inc"
3133       llvm_unreachable("invalid value decl kind");
3134 
3135     // These shouldn't make it here.
3136     case Decl::ObjCAtDefsField:
3137       llvm_unreachable("forming non-member reference to ivar?");
3138 
3139     // Enum constants are always r-values and never references.
3140     // Unresolved using declarations are dependent.
3141     case Decl::EnumConstant:
3142     case Decl::UnresolvedUsingValue:
3143     case Decl::OMPDeclareReduction:
3144     case Decl::OMPDeclareMapper:
3145       valueKind = VK_RValue;
3146       break;
3147 
3148     // Fields and indirect fields that got here must be for
3149     // pointer-to-member expressions; we just call them l-values for
3150     // internal consistency, because this subexpression doesn't really
3151     // exist in the high-level semantics.
3152     case Decl::Field:
3153     case Decl::IndirectField:
3154     case Decl::ObjCIvar:
3155       assert(getLangOpts().CPlusPlus &&
3156              "building reference to field in C?");
3157 
3158       // These can't have reference type in well-formed programs, but
3159       // for internal consistency we do this anyway.
3160       type = type.getNonReferenceType();
3161       valueKind = VK_LValue;
3162       break;
3163 
3164     // Non-type template parameters are either l-values or r-values
3165     // depending on the type.
3166     case Decl::NonTypeTemplateParm: {
3167       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3168         type = reftype->getPointeeType();
3169         valueKind = VK_LValue; // even if the parameter is an r-value reference
3170         break;
3171       }
3172 
3173       // For non-references, we need to strip qualifiers just in case
3174       // the template parameter was declared as 'const int' or whatever.
3175       valueKind = VK_RValue;
3176       type = type.getUnqualifiedType();
3177       break;
3178     }
3179 
3180     case Decl::Var:
3181     case Decl::VarTemplateSpecialization:
3182     case Decl::VarTemplatePartialSpecialization:
3183     case Decl::Decomposition:
3184     case Decl::OMPCapturedExpr:
3185       // In C, "extern void blah;" is valid and is an r-value.
3186       if (!getLangOpts().CPlusPlus &&
3187           !type.hasQualifiers() &&
3188           type->isVoidType()) {
3189         valueKind = VK_RValue;
3190         break;
3191       }
3192       LLVM_FALLTHROUGH;
3193 
3194     case Decl::ImplicitParam:
3195     case Decl::ParmVar: {
3196       // These are always l-values.
3197       valueKind = VK_LValue;
3198       type = type.getNonReferenceType();
3199 
3200       // FIXME: Does the addition of const really only apply in
3201       // potentially-evaluated contexts? Since the variable isn't actually
3202       // captured in an unevaluated context, it seems that the answer is no.
3203       if (!isUnevaluatedContext()) {
3204         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3205         if (!CapturedType.isNull())
3206           type = CapturedType;
3207       }
3208 
3209       break;
3210     }
3211 
3212     case Decl::Binding: {
3213       // These are always lvalues.
3214       valueKind = VK_LValue;
3215       type = type.getNonReferenceType();
3216       // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3217       // decides how that's supposed to work.
3218       auto *BD = cast<BindingDecl>(VD);
3219       if (BD->getDeclContext() != CurContext) {
3220         auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3221         if (DD && DD->hasLocalStorage())
3222           diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3223       }
3224       break;
3225     }
3226 
3227     case Decl::Function: {
3228       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3229         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3230           type = Context.BuiltinFnTy;
3231           valueKind = VK_RValue;
3232           break;
3233         }
3234       }
3235 
3236       const FunctionType *fty = type->castAs<FunctionType>();
3237 
3238       // If we're referring to a function with an __unknown_anytype
3239       // result type, make the entire expression __unknown_anytype.
3240       if (fty->getReturnType() == Context.UnknownAnyTy) {
3241         type = Context.UnknownAnyTy;
3242         valueKind = VK_RValue;
3243         break;
3244       }
3245 
3246       // Functions are l-values in C++.
3247       if (getLangOpts().CPlusPlus) {
3248         valueKind = VK_LValue;
3249         break;
3250       }
3251 
3252       // C99 DR 316 says that, if a function type comes from a
3253       // function definition (without a prototype), that type is only
3254       // used for checking compatibility. Therefore, when referencing
3255       // the function, we pretend that we don't have the full function
3256       // type.
3257       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3258           isa<FunctionProtoType>(fty))
3259         type = Context.getFunctionNoProtoType(fty->getReturnType(),
3260                                               fty->getExtInfo());
3261 
3262       // Functions are r-values in C.
3263       valueKind = VK_RValue;
3264       break;
3265     }
3266 
3267     case Decl::CXXDeductionGuide:
3268       llvm_unreachable("building reference to deduction guide");
3269 
3270     case Decl::MSProperty:
3271       valueKind = VK_LValue;
3272       break;
3273 
3274     case Decl::CXXMethod:
3275       // If we're referring to a method with an __unknown_anytype
3276       // result type, make the entire expression __unknown_anytype.
3277       // This should only be possible with a type written directly.
3278       if (const FunctionProtoType *proto
3279             = dyn_cast<FunctionProtoType>(VD->getType()))
3280         if (proto->getReturnType() == Context.UnknownAnyTy) {
3281           type = Context.UnknownAnyTy;
3282           valueKind = VK_RValue;
3283           break;
3284         }
3285 
3286       // C++ methods are l-values if static, r-values if non-static.
3287       if (cast<CXXMethodDecl>(VD)->isStatic()) {
3288         valueKind = VK_LValue;
3289         break;
3290       }
3291       LLVM_FALLTHROUGH;
3292 
3293     case Decl::CXXConversion:
3294     case Decl::CXXDestructor:
3295     case Decl::CXXConstructor:
3296       valueKind = VK_RValue;
3297       break;
3298     }
3299 
3300     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3301                             /*FIXME: TemplateKWLoc*/ SourceLocation(),
3302                             TemplateArgs);
3303   }
3304 }
3305 
3306 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3307                                     SmallString<32> &Target) {
3308   Target.resize(CharByteWidth * (Source.size() + 1));
3309   char *ResultPtr = &Target[0];
3310   const llvm::UTF8 *ErrorPtr;
3311   bool success =
3312       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3313   (void)success;
3314   assert(success);
3315   Target.resize(ResultPtr - &Target[0]);
3316 }
3317 
3318 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3319                                      PredefinedExpr::IdentKind IK) {
3320   // Pick the current block, lambda, captured statement or function.
3321   Decl *currentDecl = nullptr;
3322   if (const BlockScopeInfo *BSI = getCurBlock())
3323     currentDecl = BSI->TheDecl;
3324   else if (const LambdaScopeInfo *LSI = getCurLambda())
3325     currentDecl = LSI->CallOperator;
3326   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3327     currentDecl = CSI->TheCapturedDecl;
3328   else
3329     currentDecl = getCurFunctionOrMethodDecl();
3330 
3331   if (!currentDecl) {
3332     Diag(Loc, diag::ext_predef_outside_function);
3333     currentDecl = Context.getTranslationUnitDecl();
3334   }
3335 
3336   QualType ResTy;
3337   StringLiteral *SL = nullptr;
3338   if (cast<DeclContext>(currentDecl)->isDependentContext())
3339     ResTy = Context.DependentTy;
3340   else {
3341     // Pre-defined identifiers are of type char[x], where x is the length of
3342     // the string.
3343     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3344     unsigned Length = Str.length();
3345 
3346     llvm::APInt LengthI(32, Length + 1);
3347     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3348       ResTy =
3349           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3350       SmallString<32> RawChars;
3351       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3352                               Str, RawChars);
3353       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3354                                            ArrayType::Normal,
3355                                            /*IndexTypeQuals*/ 0);
3356       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3357                                  /*Pascal*/ false, ResTy, Loc);
3358     } else {
3359       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3360       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3361                                            ArrayType::Normal,
3362                                            /*IndexTypeQuals*/ 0);
3363       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3364                                  /*Pascal*/ false, ResTy, Loc);
3365     }
3366   }
3367 
3368   return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3369 }
3370 
3371 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3372   PredefinedExpr::IdentKind IK;
3373 
3374   switch (Kind) {
3375   default: llvm_unreachable("Unknown simple primary expr!");
3376   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3377   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3378   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3379   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3380   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3381   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3382   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3383   }
3384 
3385   return BuildPredefinedExpr(Loc, IK);
3386 }
3387 
3388 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3389   SmallString<16> CharBuffer;
3390   bool Invalid = false;
3391   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3392   if (Invalid)
3393     return ExprError();
3394 
3395   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3396                             PP, Tok.getKind());
3397   if (Literal.hadError())
3398     return ExprError();
3399 
3400   QualType Ty;
3401   if (Literal.isWide())
3402     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3403   else if (Literal.isUTF8() && getLangOpts().Char8)
3404     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3405   else if (Literal.isUTF16())
3406     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3407   else if (Literal.isUTF32())
3408     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3409   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3410     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3411   else
3412     Ty = Context.CharTy;  // 'x' -> char in C++
3413 
3414   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3415   if (Literal.isWide())
3416     Kind = CharacterLiteral::Wide;
3417   else if (Literal.isUTF16())
3418     Kind = CharacterLiteral::UTF16;
3419   else if (Literal.isUTF32())
3420     Kind = CharacterLiteral::UTF32;
3421   else if (Literal.isUTF8())
3422     Kind = CharacterLiteral::UTF8;
3423 
3424   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3425                                              Tok.getLocation());
3426 
3427   if (Literal.getUDSuffix().empty())
3428     return Lit;
3429 
3430   // We're building a user-defined literal.
3431   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3432   SourceLocation UDSuffixLoc =
3433     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3434 
3435   // Make sure we're allowed user-defined literals here.
3436   if (!UDLScope)
3437     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3438 
3439   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3440   //   operator "" X (ch)
3441   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3442                                         Lit, Tok.getLocation());
3443 }
3444 
3445 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3446   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3447   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3448                                 Context.IntTy, Loc);
3449 }
3450 
3451 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3452                                   QualType Ty, SourceLocation Loc) {
3453   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3454 
3455   using llvm::APFloat;
3456   APFloat Val(Format);
3457 
3458   APFloat::opStatus result = Literal.GetFloatValue(Val);
3459 
3460   // Overflow is always an error, but underflow is only an error if
3461   // we underflowed to zero (APFloat reports denormals as underflow).
3462   if ((result & APFloat::opOverflow) ||
3463       ((result & APFloat::opUnderflow) && Val.isZero())) {
3464     unsigned diagnostic;
3465     SmallString<20> buffer;
3466     if (result & APFloat::opOverflow) {
3467       diagnostic = diag::warn_float_overflow;
3468       APFloat::getLargest(Format).toString(buffer);
3469     } else {
3470       diagnostic = diag::warn_float_underflow;
3471       APFloat::getSmallest(Format).toString(buffer);
3472     }
3473 
3474     S.Diag(Loc, diagnostic)
3475       << Ty
3476       << StringRef(buffer.data(), buffer.size());
3477   }
3478 
3479   bool isExact = (result == APFloat::opOK);
3480   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3481 }
3482 
3483 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3484   assert(E && "Invalid expression");
3485 
3486   if (E->isValueDependent())
3487     return false;
3488 
3489   QualType QT = E->getType();
3490   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3491     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3492     return true;
3493   }
3494 
3495   llvm::APSInt ValueAPS;
3496   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3497 
3498   if (R.isInvalid())
3499     return true;
3500 
3501   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3502   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3503     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3504         << ValueAPS.toString(10) << ValueIsPositive;
3505     return true;
3506   }
3507 
3508   return false;
3509 }
3510 
3511 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3512   // Fast path for a single digit (which is quite common).  A single digit
3513   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3514   if (Tok.getLength() == 1) {
3515     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3516     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3517   }
3518 
3519   SmallString<128> SpellingBuffer;
3520   // NumericLiteralParser wants to overread by one character.  Add padding to
3521   // the buffer in case the token is copied to the buffer.  If getSpelling()
3522   // returns a StringRef to the memory buffer, it should have a null char at
3523   // the EOF, so it is also safe.
3524   SpellingBuffer.resize(Tok.getLength() + 1);
3525 
3526   // Get the spelling of the token, which eliminates trigraphs, etc.
3527   bool Invalid = false;
3528   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3529   if (Invalid)
3530     return ExprError();
3531 
3532   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3533   if (Literal.hadError)
3534     return ExprError();
3535 
3536   if (Literal.hasUDSuffix()) {
3537     // We're building a user-defined literal.
3538     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3539     SourceLocation UDSuffixLoc =
3540       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3541 
3542     // Make sure we're allowed user-defined literals here.
3543     if (!UDLScope)
3544       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3545 
3546     QualType CookedTy;
3547     if (Literal.isFloatingLiteral()) {
3548       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3549       // long double, the literal is treated as a call of the form
3550       //   operator "" X (f L)
3551       CookedTy = Context.LongDoubleTy;
3552     } else {
3553       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3554       // unsigned long long, the literal is treated as a call of the form
3555       //   operator "" X (n ULL)
3556       CookedTy = Context.UnsignedLongLongTy;
3557     }
3558 
3559     DeclarationName OpName =
3560       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3561     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3562     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3563 
3564     SourceLocation TokLoc = Tok.getLocation();
3565 
3566     // Perform literal operator lookup to determine if we're building a raw
3567     // literal or a cooked one.
3568     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3569     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3570                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3571                                   /*AllowStringTemplate*/ false,
3572                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3573     case LOLR_ErrorNoDiagnostic:
3574       // Lookup failure for imaginary constants isn't fatal, there's still the
3575       // GNU extension producing _Complex types.
3576       break;
3577     case LOLR_Error:
3578       return ExprError();
3579     case LOLR_Cooked: {
3580       Expr *Lit;
3581       if (Literal.isFloatingLiteral()) {
3582         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3583       } else {
3584         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3585         if (Literal.GetIntegerValue(ResultVal))
3586           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3587               << /* Unsigned */ 1;
3588         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3589                                      Tok.getLocation());
3590       }
3591       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3592     }
3593 
3594     case LOLR_Raw: {
3595       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3596       // literal is treated as a call of the form
3597       //   operator "" X ("n")
3598       unsigned Length = Literal.getUDSuffixOffset();
3599       QualType StrTy = Context.getConstantArrayType(
3600           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3601           llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3602       Expr *Lit = StringLiteral::Create(
3603           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3604           /*Pascal*/false, StrTy, &TokLoc, 1);
3605       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3606     }
3607 
3608     case LOLR_Template: {
3609       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3610       // template), L is treated as a call fo the form
3611       //   operator "" X <'c1', 'c2', ... 'ck'>()
3612       // where n is the source character sequence c1 c2 ... ck.
3613       TemplateArgumentListInfo ExplicitArgs;
3614       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3615       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3616       llvm::APSInt Value(CharBits, CharIsUnsigned);
3617       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3618         Value = TokSpelling[I];
3619         TemplateArgument Arg(Context, Value, Context.CharTy);
3620         TemplateArgumentLocInfo ArgInfo;
3621         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3622       }
3623       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3624                                       &ExplicitArgs);
3625     }
3626     case LOLR_StringTemplate:
3627       llvm_unreachable("unexpected literal operator lookup result");
3628     }
3629   }
3630 
3631   Expr *Res;
3632 
3633   if (Literal.isFixedPointLiteral()) {
3634     QualType Ty;
3635 
3636     if (Literal.isAccum) {
3637       if (Literal.isHalf) {
3638         Ty = Context.ShortAccumTy;
3639       } else if (Literal.isLong) {
3640         Ty = Context.LongAccumTy;
3641       } else {
3642         Ty = Context.AccumTy;
3643       }
3644     } else if (Literal.isFract) {
3645       if (Literal.isHalf) {
3646         Ty = Context.ShortFractTy;
3647       } else if (Literal.isLong) {
3648         Ty = Context.LongFractTy;
3649       } else {
3650         Ty = Context.FractTy;
3651       }
3652     }
3653 
3654     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3655 
3656     bool isSigned = !Literal.isUnsigned;
3657     unsigned scale = Context.getFixedPointScale(Ty);
3658     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3659 
3660     llvm::APInt Val(bit_width, 0, isSigned);
3661     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3662     bool ValIsZero = Val.isNullValue() && !Overflowed;
3663 
3664     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3665     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3666       // Clause 6.4.4 - The value of a constant shall be in the range of
3667       // representable values for its type, with exception for constants of a
3668       // fract type with a value of exactly 1; such a constant shall denote
3669       // the maximal value for the type.
3670       --Val;
3671     else if (Val.ugt(MaxVal) || Overflowed)
3672       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3673 
3674     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3675                                               Tok.getLocation(), scale);
3676   } else if (Literal.isFloatingLiteral()) {
3677     QualType Ty;
3678     if (Literal.isHalf){
3679       if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
3680         Ty = Context.HalfTy;
3681       else {
3682         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3683         return ExprError();
3684       }
3685     } else if (Literal.isFloat)
3686       Ty = Context.FloatTy;
3687     else if (Literal.isLong)
3688       Ty = Context.LongDoubleTy;
3689     else if (Literal.isFloat16)
3690       Ty = Context.Float16Ty;
3691     else if (Literal.isFloat128)
3692       Ty = Context.Float128Ty;
3693     else
3694       Ty = Context.DoubleTy;
3695 
3696     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3697 
3698     if (Ty == Context.DoubleTy) {
3699       if (getLangOpts().SinglePrecisionConstants) {
3700         const BuiltinType *BTy = Ty->getAs<BuiltinType>();
3701         if (BTy->getKind() != BuiltinType::Float) {
3702           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3703         }
3704       } else if (getLangOpts().OpenCL &&
3705                  !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
3706         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3707         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3708         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3709       }
3710     }
3711   } else if (!Literal.isIntegerLiteral()) {
3712     return ExprError();
3713   } else {
3714     QualType Ty;
3715 
3716     // 'long long' is a C99 or C++11 feature.
3717     if (!getLangOpts().C99 && Literal.isLongLong) {
3718       if (getLangOpts().CPlusPlus)
3719         Diag(Tok.getLocation(),
3720              getLangOpts().CPlusPlus11 ?
3721              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3722       else
3723         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3724     }
3725 
3726     // Get the value in the widest-possible width.
3727     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3728     llvm::APInt ResultVal(MaxWidth, 0);
3729 
3730     if (Literal.GetIntegerValue(ResultVal)) {
3731       // If this value didn't fit into uintmax_t, error and force to ull.
3732       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3733           << /* Unsigned */ 1;
3734       Ty = Context.UnsignedLongLongTy;
3735       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3736              "long long is not intmax_t?");
3737     } else {
3738       // If this value fits into a ULL, try to figure out what else it fits into
3739       // according to the rules of C99 6.4.4.1p5.
3740 
3741       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3742       // be an unsigned int.
3743       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3744 
3745       // Check from smallest to largest, picking the smallest type we can.
3746       unsigned Width = 0;
3747 
3748       // Microsoft specific integer suffixes are explicitly sized.
3749       if (Literal.MicrosoftInteger) {
3750         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3751           Width = 8;
3752           Ty = Context.CharTy;
3753         } else {
3754           Width = Literal.MicrosoftInteger;
3755           Ty = Context.getIntTypeForBitwidth(Width,
3756                                              /*Signed=*/!Literal.isUnsigned);
3757         }
3758       }
3759 
3760       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3761         // Are int/unsigned possibilities?
3762         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3763 
3764         // Does it fit in a unsigned int?
3765         if (ResultVal.isIntN(IntSize)) {
3766           // Does it fit in a signed int?
3767           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3768             Ty = Context.IntTy;
3769           else if (AllowUnsigned)
3770             Ty = Context.UnsignedIntTy;
3771           Width = IntSize;
3772         }
3773       }
3774 
3775       // Are long/unsigned long possibilities?
3776       if (Ty.isNull() && !Literal.isLongLong) {
3777         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3778 
3779         // Does it fit in a unsigned long?
3780         if (ResultVal.isIntN(LongSize)) {
3781           // Does it fit in a signed long?
3782           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3783             Ty = Context.LongTy;
3784           else if (AllowUnsigned)
3785             Ty = Context.UnsignedLongTy;
3786           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3787           // is compatible.
3788           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3789             const unsigned LongLongSize =
3790                 Context.getTargetInfo().getLongLongWidth();
3791             Diag(Tok.getLocation(),
3792                  getLangOpts().CPlusPlus
3793                      ? Literal.isLong
3794                            ? diag::warn_old_implicitly_unsigned_long_cxx
3795                            : /*C++98 UB*/ diag::
3796                                  ext_old_implicitly_unsigned_long_cxx
3797                      : diag::warn_old_implicitly_unsigned_long)
3798                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3799                                             : /*will be ill-formed*/ 1);
3800             Ty = Context.UnsignedLongTy;
3801           }
3802           Width = LongSize;
3803         }
3804       }
3805 
3806       // Check long long if needed.
3807       if (Ty.isNull()) {
3808         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3809 
3810         // Does it fit in a unsigned long long?
3811         if (ResultVal.isIntN(LongLongSize)) {
3812           // Does it fit in a signed long long?
3813           // To be compatible with MSVC, hex integer literals ending with the
3814           // LL or i64 suffix are always signed in Microsoft mode.
3815           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3816               (getLangOpts().MSVCCompat && Literal.isLongLong)))
3817             Ty = Context.LongLongTy;
3818           else if (AllowUnsigned)
3819             Ty = Context.UnsignedLongLongTy;
3820           Width = LongLongSize;
3821         }
3822       }
3823 
3824       // If we still couldn't decide a type, we probably have something that
3825       // does not fit in a signed long long, but has no U suffix.
3826       if (Ty.isNull()) {
3827         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3828         Ty = Context.UnsignedLongLongTy;
3829         Width = Context.getTargetInfo().getLongLongWidth();
3830       }
3831 
3832       if (ResultVal.getBitWidth() != Width)
3833         ResultVal = ResultVal.trunc(Width);
3834     }
3835     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3836   }
3837 
3838   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3839   if (Literal.isImaginary) {
3840     Res = new (Context) ImaginaryLiteral(Res,
3841                                         Context.getComplexType(Res->getType()));
3842 
3843     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
3844   }
3845   return Res;
3846 }
3847 
3848 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3849   assert(E && "ActOnParenExpr() missing expr");
3850   return new (Context) ParenExpr(L, R, E);
3851 }
3852 
3853 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3854                                          SourceLocation Loc,
3855                                          SourceRange ArgRange) {
3856   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3857   // scalar or vector data type argument..."
3858   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3859   // type (C99 6.2.5p18) or void.
3860   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3861     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3862       << T << ArgRange;
3863     return true;
3864   }
3865 
3866   assert((T->isVoidType() || !T->isIncompleteType()) &&
3867          "Scalar types should always be complete");
3868   return false;
3869 }
3870 
3871 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3872                                            SourceLocation Loc,
3873                                            SourceRange ArgRange,
3874                                            UnaryExprOrTypeTrait TraitKind) {
3875   // Invalid types must be hard errors for SFINAE in C++.
3876   if (S.LangOpts.CPlusPlus)
3877     return true;
3878 
3879   // C99 6.5.3.4p1:
3880   if (T->isFunctionType() &&
3881       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
3882        TraitKind == UETT_PreferredAlignOf)) {
3883     // sizeof(function)/alignof(function) is allowed as an extension.
3884     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3885       << TraitKind << ArgRange;
3886     return false;
3887   }
3888 
3889   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3890   // this is an error (OpenCL v1.1 s6.3.k)
3891   if (T->isVoidType()) {
3892     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3893                                         : diag::ext_sizeof_alignof_void_type;
3894     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3895     return false;
3896   }
3897 
3898   return true;
3899 }
3900 
3901 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3902                                              SourceLocation Loc,
3903                                              SourceRange ArgRange,
3904                                              UnaryExprOrTypeTrait TraitKind) {
3905   // Reject sizeof(interface) and sizeof(interface<proto>) if the
3906   // runtime doesn't allow it.
3907   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3908     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3909       << T << (TraitKind == UETT_SizeOf)
3910       << ArgRange;
3911     return true;
3912   }
3913 
3914   return false;
3915 }
3916 
3917 /// Check whether E is a pointer from a decayed array type (the decayed
3918 /// pointer type is equal to T) and emit a warning if it is.
3919 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3920                                      Expr *E) {
3921   // Don't warn if the operation changed the type.
3922   if (T != E->getType())
3923     return;
3924 
3925   // Now look for array decays.
3926   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3927   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3928     return;
3929 
3930   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3931                                              << ICE->getType()
3932                                              << ICE->getSubExpr()->getType();
3933 }
3934 
3935 /// Check the constraints on expression operands to unary type expression
3936 /// and type traits.
3937 ///
3938 /// Completes any types necessary and validates the constraints on the operand
3939 /// expression. The logic mostly mirrors the type-based overload, but may modify
3940 /// the expression as it completes the type for that expression through template
3941 /// instantiation, etc.
3942 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3943                                             UnaryExprOrTypeTrait ExprKind) {
3944   QualType ExprTy = E->getType();
3945   assert(!ExprTy->isReferenceType());
3946 
3947   bool IsUnevaluatedOperand =
3948       (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
3949        ExprKind == UETT_PreferredAlignOf);
3950   if (IsUnevaluatedOperand) {
3951     ExprResult Result = CheckUnevaluatedOperand(E);
3952     if (Result.isInvalid())
3953       return true;
3954     E = Result.get();
3955   }
3956 
3957   if (ExprKind == UETT_VecStep)
3958     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3959                                         E->getSourceRange());
3960 
3961   // Whitelist some types as extensions
3962   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3963                                       E->getSourceRange(), ExprKind))
3964     return false;
3965 
3966   // 'alignof' applied to an expression only requires the base element type of
3967   // the expression to be complete. 'sizeof' requires the expression's type to
3968   // be complete (and will attempt to complete it if it's an array of unknown
3969   // bound).
3970   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
3971     if (RequireCompleteType(E->getExprLoc(),
3972                             Context.getBaseElementType(E->getType()),
3973                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
3974                             E->getSourceRange()))
3975       return true;
3976   } else {
3977     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3978                                 ExprKind, E->getSourceRange()))
3979       return true;
3980   }
3981 
3982   // Completing the expression's type may have changed it.
3983   ExprTy = E->getType();
3984   assert(!ExprTy->isReferenceType());
3985 
3986   if (ExprTy->isFunctionType()) {
3987     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3988       << ExprKind << E->getSourceRange();
3989     return true;
3990   }
3991 
3992   // The operand for sizeof and alignof is in an unevaluated expression context,
3993   // so side effects could result in unintended consequences.
3994   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
3995       E->HasSideEffects(Context, false))
3996     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3997 
3998   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3999                                        E->getSourceRange(), ExprKind))
4000     return true;
4001 
4002   if (ExprKind == UETT_SizeOf) {
4003     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4004       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4005         QualType OType = PVD->getOriginalType();
4006         QualType Type = PVD->getType();
4007         if (Type->isPointerType() && OType->isArrayType()) {
4008           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4009             << Type << OType;
4010           Diag(PVD->getLocation(), diag::note_declared_at);
4011         }
4012       }
4013     }
4014 
4015     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4016     // decays into a pointer and returns an unintended result. This is most
4017     // likely a typo for "sizeof(array) op x".
4018     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4019       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4020                                BO->getLHS());
4021       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4022                                BO->getRHS());
4023     }
4024   }
4025 
4026   return false;
4027 }
4028 
4029 /// Check the constraints on operands to unary expression and type
4030 /// traits.
4031 ///
4032 /// This will complete any types necessary, and validate the various constraints
4033 /// on those operands.
4034 ///
4035 /// The UsualUnaryConversions() function is *not* called by this routine.
4036 /// C99 6.3.2.1p[2-4] all state:
4037 ///   Except when it is the operand of the sizeof operator ...
4038 ///
4039 /// C++ [expr.sizeof]p4
4040 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4041 ///   standard conversions are not applied to the operand of sizeof.
4042 ///
4043 /// This policy is followed for all of the unary trait expressions.
4044 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4045                                             SourceLocation OpLoc,
4046                                             SourceRange ExprRange,
4047                                             UnaryExprOrTypeTrait ExprKind) {
4048   if (ExprType->isDependentType())
4049     return false;
4050 
4051   // C++ [expr.sizeof]p2:
4052   //     When applied to a reference or a reference type, the result
4053   //     is the size of the referenced type.
4054   // C++11 [expr.alignof]p3:
4055   //     When alignof is applied to a reference type, the result
4056   //     shall be the alignment of the referenced type.
4057   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4058     ExprType = Ref->getPointeeType();
4059 
4060   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4061   //   When alignof or _Alignof is applied to an array type, the result
4062   //   is the alignment of the element type.
4063   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4064       ExprKind == UETT_OpenMPRequiredSimdAlign)
4065     ExprType = Context.getBaseElementType(ExprType);
4066 
4067   if (ExprKind == UETT_VecStep)
4068     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4069 
4070   // Whitelist some types as extensions
4071   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4072                                       ExprKind))
4073     return false;
4074 
4075   if (RequireCompleteType(OpLoc, ExprType,
4076                           diag::err_sizeof_alignof_incomplete_type,
4077                           ExprKind, ExprRange))
4078     return true;
4079 
4080   if (ExprType->isFunctionType()) {
4081     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4082       << ExprKind << ExprRange;
4083     return true;
4084   }
4085 
4086   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4087                                        ExprKind))
4088     return true;
4089 
4090   return false;
4091 }
4092 
4093 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4094   // Cannot know anything else if the expression is dependent.
4095   if (E->isTypeDependent())
4096     return false;
4097 
4098   if (E->getObjectKind() == OK_BitField) {
4099     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4100        << 1 << E->getSourceRange();
4101     return true;
4102   }
4103 
4104   ValueDecl *D = nullptr;
4105   Expr *Inner = E->IgnoreParens();
4106   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4107     D = DRE->getDecl();
4108   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4109     D = ME->getMemberDecl();
4110   }
4111 
4112   // If it's a field, require the containing struct to have a
4113   // complete definition so that we can compute the layout.
4114   //
4115   // This can happen in C++11 onwards, either by naming the member
4116   // in a way that is not transformed into a member access expression
4117   // (in an unevaluated operand, for instance), or by naming the member
4118   // in a trailing-return-type.
4119   //
4120   // For the record, since __alignof__ on expressions is a GCC
4121   // extension, GCC seems to permit this but always gives the
4122   // nonsensical answer 0.
4123   //
4124   // We don't really need the layout here --- we could instead just
4125   // directly check for all the appropriate alignment-lowing
4126   // attributes --- but that would require duplicating a lot of
4127   // logic that just isn't worth duplicating for such a marginal
4128   // use-case.
4129   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4130     // Fast path this check, since we at least know the record has a
4131     // definition if we can find a member of it.
4132     if (!FD->getParent()->isCompleteDefinition()) {
4133       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4134         << E->getSourceRange();
4135       return true;
4136     }
4137 
4138     // Otherwise, if it's a field, and the field doesn't have
4139     // reference type, then it must have a complete type (or be a
4140     // flexible array member, which we explicitly want to
4141     // white-list anyway), which makes the following checks trivial.
4142     if (!FD->getType()->isReferenceType())
4143       return false;
4144   }
4145 
4146   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4147 }
4148 
4149 bool Sema::CheckVecStepExpr(Expr *E) {
4150   E = E->IgnoreParens();
4151 
4152   // Cannot know anything else if the expression is dependent.
4153   if (E->isTypeDependent())
4154     return false;
4155 
4156   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4157 }
4158 
4159 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4160                                         CapturingScopeInfo *CSI) {
4161   assert(T->isVariablyModifiedType());
4162   assert(CSI != nullptr);
4163 
4164   // We're going to walk down into the type and look for VLA expressions.
4165   do {
4166     const Type *Ty = T.getTypePtr();
4167     switch (Ty->getTypeClass()) {
4168 #define TYPE(Class, Base)
4169 #define ABSTRACT_TYPE(Class, Base)
4170 #define NON_CANONICAL_TYPE(Class, Base)
4171 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4172 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4173 #include "clang/AST/TypeNodes.inc"
4174       T = QualType();
4175       break;
4176     // These types are never variably-modified.
4177     case Type::Builtin:
4178     case Type::Complex:
4179     case Type::Vector:
4180     case Type::ExtVector:
4181     case Type::Record:
4182     case Type::Enum:
4183     case Type::Elaborated:
4184     case Type::TemplateSpecialization:
4185     case Type::ObjCObject:
4186     case Type::ObjCInterface:
4187     case Type::ObjCObjectPointer:
4188     case Type::ObjCTypeParam:
4189     case Type::Pipe:
4190       llvm_unreachable("type class is never variably-modified!");
4191     case Type::Adjusted:
4192       T = cast<AdjustedType>(Ty)->getOriginalType();
4193       break;
4194     case Type::Decayed:
4195       T = cast<DecayedType>(Ty)->getPointeeType();
4196       break;
4197     case Type::Pointer:
4198       T = cast<PointerType>(Ty)->getPointeeType();
4199       break;
4200     case Type::BlockPointer:
4201       T = cast<BlockPointerType>(Ty)->getPointeeType();
4202       break;
4203     case Type::LValueReference:
4204     case Type::RValueReference:
4205       T = cast<ReferenceType>(Ty)->getPointeeType();
4206       break;
4207     case Type::MemberPointer:
4208       T = cast<MemberPointerType>(Ty)->getPointeeType();
4209       break;
4210     case Type::ConstantArray:
4211     case Type::IncompleteArray:
4212       // Losing element qualification here is fine.
4213       T = cast<ArrayType>(Ty)->getElementType();
4214       break;
4215     case Type::VariableArray: {
4216       // Losing element qualification here is fine.
4217       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4218 
4219       // Unknown size indication requires no size computation.
4220       // Otherwise, evaluate and record it.
4221       auto Size = VAT->getSizeExpr();
4222       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4223           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4224         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4225 
4226       T = VAT->getElementType();
4227       break;
4228     }
4229     case Type::FunctionProto:
4230     case Type::FunctionNoProto:
4231       T = cast<FunctionType>(Ty)->getReturnType();
4232       break;
4233     case Type::Paren:
4234     case Type::TypeOf:
4235     case Type::UnaryTransform:
4236     case Type::Attributed:
4237     case Type::SubstTemplateTypeParm:
4238     case Type::PackExpansion:
4239     case Type::MacroQualified:
4240       // Keep walking after single level desugaring.
4241       T = T.getSingleStepDesugaredType(Context);
4242       break;
4243     case Type::Typedef:
4244       T = cast<TypedefType>(Ty)->desugar();
4245       break;
4246     case Type::Decltype:
4247       T = cast<DecltypeType>(Ty)->desugar();
4248       break;
4249     case Type::Auto:
4250     case Type::DeducedTemplateSpecialization:
4251       T = cast<DeducedType>(Ty)->getDeducedType();
4252       break;
4253     case Type::TypeOfExpr:
4254       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4255       break;
4256     case Type::Atomic:
4257       T = cast<AtomicType>(Ty)->getValueType();
4258       break;
4259     }
4260   } while (!T.isNull() && T->isVariablyModifiedType());
4261 }
4262 
4263 /// Build a sizeof or alignof expression given a type operand.
4264 ExprResult
4265 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4266                                      SourceLocation OpLoc,
4267                                      UnaryExprOrTypeTrait ExprKind,
4268                                      SourceRange R) {
4269   if (!TInfo)
4270     return ExprError();
4271 
4272   QualType T = TInfo->getType();
4273 
4274   if (!T->isDependentType() &&
4275       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4276     return ExprError();
4277 
4278   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4279     if (auto *TT = T->getAs<TypedefType>()) {
4280       for (auto I = FunctionScopes.rbegin(),
4281                 E = std::prev(FunctionScopes.rend());
4282            I != E; ++I) {
4283         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4284         if (CSI == nullptr)
4285           break;
4286         DeclContext *DC = nullptr;
4287         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4288           DC = LSI->CallOperator;
4289         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4290           DC = CRSI->TheCapturedDecl;
4291         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4292           DC = BSI->TheDecl;
4293         if (DC) {
4294           if (DC->containsDecl(TT->getDecl()))
4295             break;
4296           captureVariablyModifiedType(Context, T, CSI);
4297         }
4298       }
4299     }
4300   }
4301 
4302   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4303   return new (Context) UnaryExprOrTypeTraitExpr(
4304       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4305 }
4306 
4307 /// Build a sizeof or alignof expression given an expression
4308 /// operand.
4309 ExprResult
4310 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4311                                      UnaryExprOrTypeTrait ExprKind) {
4312   ExprResult PE = CheckPlaceholderExpr(E);
4313   if (PE.isInvalid())
4314     return ExprError();
4315 
4316   E = PE.get();
4317 
4318   // Verify that the operand is valid.
4319   bool isInvalid = false;
4320   if (E->isTypeDependent()) {
4321     // Delay type-checking for type-dependent expressions.
4322   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4323     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4324   } else if (ExprKind == UETT_VecStep) {
4325     isInvalid = CheckVecStepExpr(E);
4326   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4327       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4328       isInvalid = true;
4329   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4330     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4331     isInvalid = true;
4332   } else {
4333     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4334   }
4335 
4336   if (isInvalid)
4337     return ExprError();
4338 
4339   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4340     PE = TransformToPotentiallyEvaluated(E);
4341     if (PE.isInvalid()) return ExprError();
4342     E = PE.get();
4343   }
4344 
4345   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4346   return new (Context) UnaryExprOrTypeTraitExpr(
4347       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4348 }
4349 
4350 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4351 /// expr and the same for @c alignof and @c __alignof
4352 /// Note that the ArgRange is invalid if isType is false.
4353 ExprResult
4354 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4355                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4356                                     void *TyOrEx, SourceRange ArgRange) {
4357   // If error parsing type, ignore.
4358   if (!TyOrEx) return ExprError();
4359 
4360   if (IsType) {
4361     TypeSourceInfo *TInfo;
4362     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4363     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4364   }
4365 
4366   Expr *ArgEx = (Expr *)TyOrEx;
4367   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4368   return Result;
4369 }
4370 
4371 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4372                                      bool IsReal) {
4373   if (V.get()->isTypeDependent())
4374     return S.Context.DependentTy;
4375 
4376   // _Real and _Imag are only l-values for normal l-values.
4377   if (V.get()->getObjectKind() != OK_Ordinary) {
4378     V = S.DefaultLvalueConversion(V.get());
4379     if (V.isInvalid())
4380       return QualType();
4381   }
4382 
4383   // These operators return the element type of a complex type.
4384   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4385     return CT->getElementType();
4386 
4387   // Otherwise they pass through real integer and floating point types here.
4388   if (V.get()->getType()->isArithmeticType())
4389     return V.get()->getType();
4390 
4391   // Test for placeholders.
4392   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4393   if (PR.isInvalid()) return QualType();
4394   if (PR.get() != V.get()) {
4395     V = PR;
4396     return CheckRealImagOperand(S, V, Loc, IsReal);
4397   }
4398 
4399   // Reject anything else.
4400   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4401     << (IsReal ? "__real" : "__imag");
4402   return QualType();
4403 }
4404 
4405 
4406 
4407 ExprResult
4408 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4409                           tok::TokenKind Kind, Expr *Input) {
4410   UnaryOperatorKind Opc;
4411   switch (Kind) {
4412   default: llvm_unreachable("Unknown unary op!");
4413   case tok::plusplus:   Opc = UO_PostInc; break;
4414   case tok::minusminus: Opc = UO_PostDec; break;
4415   }
4416 
4417   // Since this might is a postfix expression, get rid of ParenListExprs.
4418   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4419   if (Result.isInvalid()) return ExprError();
4420   Input = Result.get();
4421 
4422   return BuildUnaryOp(S, OpLoc, Opc, Input);
4423 }
4424 
4425 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4426 ///
4427 /// \return true on error
4428 static bool checkArithmeticOnObjCPointer(Sema &S,
4429                                          SourceLocation opLoc,
4430                                          Expr *op) {
4431   assert(op->getType()->isObjCObjectPointerType());
4432   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4433       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4434     return false;
4435 
4436   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4437     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4438     << op->getSourceRange();
4439   return true;
4440 }
4441 
4442 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4443   auto *BaseNoParens = Base->IgnoreParens();
4444   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4445     return MSProp->getPropertyDecl()->getType()->isArrayType();
4446   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4447 }
4448 
4449 ExprResult
4450 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4451                               Expr *idx, SourceLocation rbLoc) {
4452   if (base && !base->getType().isNull() &&
4453       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4454     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4455                                     /*Length=*/nullptr, rbLoc);
4456 
4457   // Since this might be a postfix expression, get rid of ParenListExprs.
4458   if (isa<ParenListExpr>(base)) {
4459     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4460     if (result.isInvalid()) return ExprError();
4461     base = result.get();
4462   }
4463 
4464   // A comma-expression as the index is deprecated in C++2a onwards.
4465   if (getLangOpts().CPlusPlus2a &&
4466       ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4467        (isa<CXXOperatorCallExpr>(idx) &&
4468         cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4469     Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4470       << SourceRange(base->getBeginLoc(), rbLoc);
4471   }
4472 
4473   // Handle any non-overload placeholder types in the base and index
4474   // expressions.  We can't handle overloads here because the other
4475   // operand might be an overloadable type, in which case the overload
4476   // resolution for the operator overload should get the first crack
4477   // at the overload.
4478   bool IsMSPropertySubscript = false;
4479   if (base->getType()->isNonOverloadPlaceholderType()) {
4480     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4481     if (!IsMSPropertySubscript) {
4482       ExprResult result = CheckPlaceholderExpr(base);
4483       if (result.isInvalid())
4484         return ExprError();
4485       base = result.get();
4486     }
4487   }
4488   if (idx->getType()->isNonOverloadPlaceholderType()) {
4489     ExprResult result = CheckPlaceholderExpr(idx);
4490     if (result.isInvalid()) return ExprError();
4491     idx = result.get();
4492   }
4493 
4494   // Build an unanalyzed expression if either operand is type-dependent.
4495   if (getLangOpts().CPlusPlus &&
4496       (base->isTypeDependent() || idx->isTypeDependent())) {
4497     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4498                                             VK_LValue, OK_Ordinary, rbLoc);
4499   }
4500 
4501   // MSDN, property (C++)
4502   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4503   // This attribute can also be used in the declaration of an empty array in a
4504   // class or structure definition. For example:
4505   // __declspec(property(get=GetX, put=PutX)) int x[];
4506   // The above statement indicates that x[] can be used with one or more array
4507   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4508   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4509   if (IsMSPropertySubscript) {
4510     // Build MS property subscript expression if base is MS property reference
4511     // or MS property subscript.
4512     return new (Context) MSPropertySubscriptExpr(
4513         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4514   }
4515 
4516   // Use C++ overloaded-operator rules if either operand has record
4517   // type.  The spec says to do this if either type is *overloadable*,
4518   // but enum types can't declare subscript operators or conversion
4519   // operators, so there's nothing interesting for overload resolution
4520   // to do if there aren't any record types involved.
4521   //
4522   // ObjC pointers have their own subscripting logic that is not tied
4523   // to overload resolution and so should not take this path.
4524   if (getLangOpts().CPlusPlus &&
4525       (base->getType()->isRecordType() ||
4526        (!base->getType()->isObjCObjectPointerType() &&
4527         idx->getType()->isRecordType()))) {
4528     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4529   }
4530 
4531   ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4532 
4533   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4534     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4535 
4536   return Res;
4537 }
4538 
4539 void Sema::CheckAddressOfNoDeref(const Expr *E) {
4540   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4541   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4542 
4543   // For expressions like `&(*s).b`, the base is recorded and what should be
4544   // checked.
4545   const MemberExpr *Member = nullptr;
4546   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4547     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4548 
4549   LastRecord.PossibleDerefs.erase(StrippedExpr);
4550 }
4551 
4552 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4553   QualType ResultTy = E->getType();
4554   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4555 
4556   // Bail if the element is an array since it is not memory access.
4557   if (isa<ArrayType>(ResultTy))
4558     return;
4559 
4560   if (ResultTy->hasAttr(attr::NoDeref)) {
4561     LastRecord.PossibleDerefs.insert(E);
4562     return;
4563   }
4564 
4565   // Check if the base type is a pointer to a member access of a struct
4566   // marked with noderef.
4567   const Expr *Base = E->getBase();
4568   QualType BaseTy = Base->getType();
4569   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4570     // Not a pointer access
4571     return;
4572 
4573   const MemberExpr *Member = nullptr;
4574   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4575          Member->isArrow())
4576     Base = Member->getBase();
4577 
4578   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4579     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4580       LastRecord.PossibleDerefs.insert(E);
4581   }
4582 }
4583 
4584 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4585                                           Expr *LowerBound,
4586                                           SourceLocation ColonLoc, Expr *Length,
4587                                           SourceLocation RBLoc) {
4588   if (Base->getType()->isPlaceholderType() &&
4589       !Base->getType()->isSpecificPlaceholderType(
4590           BuiltinType::OMPArraySection)) {
4591     ExprResult Result = CheckPlaceholderExpr(Base);
4592     if (Result.isInvalid())
4593       return ExprError();
4594     Base = Result.get();
4595   }
4596   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4597     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4598     if (Result.isInvalid())
4599       return ExprError();
4600     Result = DefaultLvalueConversion(Result.get());
4601     if (Result.isInvalid())
4602       return ExprError();
4603     LowerBound = Result.get();
4604   }
4605   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4606     ExprResult Result = CheckPlaceholderExpr(Length);
4607     if (Result.isInvalid())
4608       return ExprError();
4609     Result = DefaultLvalueConversion(Result.get());
4610     if (Result.isInvalid())
4611       return ExprError();
4612     Length = Result.get();
4613   }
4614 
4615   // Build an unanalyzed expression if either operand is type-dependent.
4616   if (Base->isTypeDependent() ||
4617       (LowerBound &&
4618        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4619       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
4620     return new (Context)
4621         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
4622                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4623   }
4624 
4625   // Perform default conversions.
4626   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4627   QualType ResultTy;
4628   if (OriginalTy->isAnyPointerType()) {
4629     ResultTy = OriginalTy->getPointeeType();
4630   } else if (OriginalTy->isArrayType()) {
4631     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4632   } else {
4633     return ExprError(
4634         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4635         << Base->getSourceRange());
4636   }
4637   // C99 6.5.2.1p1
4638   if (LowerBound) {
4639     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4640                                                       LowerBound);
4641     if (Res.isInvalid())
4642       return ExprError(Diag(LowerBound->getExprLoc(),
4643                             diag::err_omp_typecheck_section_not_integer)
4644                        << 0 << LowerBound->getSourceRange());
4645     LowerBound = Res.get();
4646 
4647     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4648         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4649       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4650           << 0 << LowerBound->getSourceRange();
4651   }
4652   if (Length) {
4653     auto Res =
4654         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4655     if (Res.isInvalid())
4656       return ExprError(Diag(Length->getExprLoc(),
4657                             diag::err_omp_typecheck_section_not_integer)
4658                        << 1 << Length->getSourceRange());
4659     Length = Res.get();
4660 
4661     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4662         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4663       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4664           << 1 << Length->getSourceRange();
4665   }
4666 
4667   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4668   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4669   // type. Note that functions are not objects, and that (in C99 parlance)
4670   // incomplete types are not object types.
4671   if (ResultTy->isFunctionType()) {
4672     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4673         << ResultTy << Base->getSourceRange();
4674     return ExprError();
4675   }
4676 
4677   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4678                           diag::err_omp_section_incomplete_type, Base))
4679     return ExprError();
4680 
4681   if (LowerBound && !OriginalTy->isAnyPointerType()) {
4682     Expr::EvalResult Result;
4683     if (LowerBound->EvaluateAsInt(Result, Context)) {
4684       // OpenMP 4.5, [2.4 Array Sections]
4685       // The array section must be a subset of the original array.
4686       llvm::APSInt LowerBoundValue = Result.Val.getInt();
4687       if (LowerBoundValue.isNegative()) {
4688         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4689             << LowerBound->getSourceRange();
4690         return ExprError();
4691       }
4692     }
4693   }
4694 
4695   if (Length) {
4696     Expr::EvalResult Result;
4697     if (Length->EvaluateAsInt(Result, Context)) {
4698       // OpenMP 4.5, [2.4 Array Sections]
4699       // The length must evaluate to non-negative integers.
4700       llvm::APSInt LengthValue = Result.Val.getInt();
4701       if (LengthValue.isNegative()) {
4702         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4703             << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4704             << Length->getSourceRange();
4705         return ExprError();
4706       }
4707     }
4708   } else if (ColonLoc.isValid() &&
4709              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4710                                       !OriginalTy->isVariableArrayType()))) {
4711     // OpenMP 4.5, [2.4 Array Sections]
4712     // When the size of the array dimension is not known, the length must be
4713     // specified explicitly.
4714     Diag(ColonLoc, diag::err_omp_section_length_undefined)
4715         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4716     return ExprError();
4717   }
4718 
4719   if (!Base->getType()->isSpecificPlaceholderType(
4720           BuiltinType::OMPArraySection)) {
4721     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
4722     if (Result.isInvalid())
4723       return ExprError();
4724     Base = Result.get();
4725   }
4726   return new (Context)
4727       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
4728                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4729 }
4730 
4731 ExprResult
4732 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
4733                                       Expr *Idx, SourceLocation RLoc) {
4734   Expr *LHSExp = Base;
4735   Expr *RHSExp = Idx;
4736 
4737   ExprValueKind VK = VK_LValue;
4738   ExprObjectKind OK = OK_Ordinary;
4739 
4740   // Per C++ core issue 1213, the result is an xvalue if either operand is
4741   // a non-lvalue array, and an lvalue otherwise.
4742   if (getLangOpts().CPlusPlus11) {
4743     for (auto *Op : {LHSExp, RHSExp}) {
4744       Op = Op->IgnoreImplicit();
4745       if (Op->getType()->isArrayType() && !Op->isLValue())
4746         VK = VK_XValue;
4747     }
4748   }
4749 
4750   // Perform default conversions.
4751   if (!LHSExp->getType()->getAs<VectorType>()) {
4752     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
4753     if (Result.isInvalid())
4754       return ExprError();
4755     LHSExp = Result.get();
4756   }
4757   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
4758   if (Result.isInvalid())
4759     return ExprError();
4760   RHSExp = Result.get();
4761 
4762   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
4763 
4764   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
4765   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
4766   // in the subscript position. As a result, we need to derive the array base
4767   // and index from the expression types.
4768   Expr *BaseExpr, *IndexExpr;
4769   QualType ResultType;
4770   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
4771     BaseExpr = LHSExp;
4772     IndexExpr = RHSExp;
4773     ResultType = Context.DependentTy;
4774   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
4775     BaseExpr = LHSExp;
4776     IndexExpr = RHSExp;
4777     ResultType = PTy->getPointeeType();
4778   } else if (const ObjCObjectPointerType *PTy =
4779                LHSTy->getAs<ObjCObjectPointerType>()) {
4780     BaseExpr = LHSExp;
4781     IndexExpr = RHSExp;
4782 
4783     // Use custom logic if this should be the pseudo-object subscript
4784     // expression.
4785     if (!LangOpts.isSubscriptPointerArithmetic())
4786       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
4787                                           nullptr);
4788 
4789     ResultType = PTy->getPointeeType();
4790   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
4791      // Handle the uncommon case of "123[Ptr]".
4792     BaseExpr = RHSExp;
4793     IndexExpr = LHSExp;
4794     ResultType = PTy->getPointeeType();
4795   } else if (const ObjCObjectPointerType *PTy =
4796                RHSTy->getAs<ObjCObjectPointerType>()) {
4797      // Handle the uncommon case of "123[Ptr]".
4798     BaseExpr = RHSExp;
4799     IndexExpr = LHSExp;
4800     ResultType = PTy->getPointeeType();
4801     if (!LangOpts.isSubscriptPointerArithmetic()) {
4802       Diag(LLoc, diag::err_subscript_nonfragile_interface)
4803         << ResultType << BaseExpr->getSourceRange();
4804       return ExprError();
4805     }
4806   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
4807     BaseExpr = LHSExp;    // vectors: V[123]
4808     IndexExpr = RHSExp;
4809     // We apply C++ DR1213 to vector subscripting too.
4810     if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
4811       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
4812       if (Materialized.isInvalid())
4813         return ExprError();
4814       LHSExp = Materialized.get();
4815     }
4816     VK = LHSExp->getValueKind();
4817     if (VK != VK_RValue)
4818       OK = OK_VectorComponent;
4819 
4820     ResultType = VTy->getElementType();
4821     QualType BaseType = BaseExpr->getType();
4822     Qualifiers BaseQuals = BaseType.getQualifiers();
4823     Qualifiers MemberQuals = ResultType.getQualifiers();
4824     Qualifiers Combined = BaseQuals + MemberQuals;
4825     if (Combined != MemberQuals)
4826       ResultType = Context.getQualifiedType(ResultType, Combined);
4827   } else if (LHSTy->isArrayType()) {
4828     // If we see an array that wasn't promoted by
4829     // DefaultFunctionArrayLvalueConversion, it must be an array that
4830     // wasn't promoted because of the C90 rule that doesn't
4831     // allow promoting non-lvalue arrays.  Warn, then
4832     // force the promotion here.
4833     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
4834         << LHSExp->getSourceRange();
4835     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
4836                                CK_ArrayToPointerDecay).get();
4837     LHSTy = LHSExp->getType();
4838 
4839     BaseExpr = LHSExp;
4840     IndexExpr = RHSExp;
4841     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
4842   } else if (RHSTy->isArrayType()) {
4843     // Same as previous, except for 123[f().a] case
4844     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
4845         << RHSExp->getSourceRange();
4846     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
4847                                CK_ArrayToPointerDecay).get();
4848     RHSTy = RHSExp->getType();
4849 
4850     BaseExpr = RHSExp;
4851     IndexExpr = LHSExp;
4852     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4853   } else {
4854     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4855        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4856   }
4857   // C99 6.5.2.1p1
4858   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4859     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4860                      << IndexExpr->getSourceRange());
4861 
4862   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4863        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4864          && !IndexExpr->isTypeDependent())
4865     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4866 
4867   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4868   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4869   // type. Note that Functions are not objects, and that (in C99 parlance)
4870   // incomplete types are not object types.
4871   if (ResultType->isFunctionType()) {
4872     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
4873         << ResultType << BaseExpr->getSourceRange();
4874     return ExprError();
4875   }
4876 
4877   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4878     // GNU extension: subscripting on pointer to void
4879     Diag(LLoc, diag::ext_gnu_subscript_void_type)
4880       << BaseExpr->getSourceRange();
4881 
4882     // C forbids expressions of unqualified void type from being l-values.
4883     // See IsCForbiddenLValueType.
4884     if (!ResultType.hasQualifiers()) VK = VK_RValue;
4885   } else if (!ResultType->isDependentType() &&
4886       RequireCompleteType(LLoc, ResultType,
4887                           diag::err_subscript_incomplete_type, BaseExpr))
4888     return ExprError();
4889 
4890   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4891          !ResultType.isCForbiddenLValueType());
4892 
4893   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
4894       FunctionScopes.size() > 1) {
4895     if (auto *TT =
4896             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
4897       for (auto I = FunctionScopes.rbegin(),
4898                 E = std::prev(FunctionScopes.rend());
4899            I != E; ++I) {
4900         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4901         if (CSI == nullptr)
4902           break;
4903         DeclContext *DC = nullptr;
4904         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4905           DC = LSI->CallOperator;
4906         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4907           DC = CRSI->TheCapturedDecl;
4908         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4909           DC = BSI->TheDecl;
4910         if (DC) {
4911           if (DC->containsDecl(TT->getDecl()))
4912             break;
4913           captureVariablyModifiedType(
4914               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
4915         }
4916       }
4917     }
4918   }
4919 
4920   return new (Context)
4921       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4922 }
4923 
4924 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
4925                                   ParmVarDecl *Param) {
4926   if (Param->hasUnparsedDefaultArg()) {
4927     Diag(CallLoc,
4928          diag::err_use_of_default_argument_to_function_declared_later) <<
4929       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4930     Diag(UnparsedDefaultArgLocs[Param],
4931          diag::note_default_argument_declared_here);
4932     return true;
4933   }
4934 
4935   if (Param->hasUninstantiatedDefaultArg()) {
4936     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4937 
4938     EnterExpressionEvaluationContext EvalContext(
4939         *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
4940 
4941     // Instantiate the expression.
4942     //
4943     // FIXME: Pass in a correct Pattern argument, otherwise
4944     // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4945     //
4946     // template<typename T>
4947     // struct A {
4948     //   static int FooImpl();
4949     //
4950     //   template<typename Tp>
4951     //   // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4952     //   // template argument list [[T], [Tp]], should be [[Tp]].
4953     //   friend A<Tp> Foo(int a);
4954     // };
4955     //
4956     // template<typename T>
4957     // A<T> Foo(int a = A<T>::FooImpl());
4958     MultiLevelTemplateArgumentList MutiLevelArgList
4959       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4960 
4961     InstantiatingTemplate Inst(*this, CallLoc, Param,
4962                                MutiLevelArgList.getInnermost());
4963     if (Inst.isInvalid())
4964       return true;
4965     if (Inst.isAlreadyInstantiating()) {
4966       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
4967       Param->setInvalidDecl();
4968       return true;
4969     }
4970 
4971     ExprResult Result;
4972     {
4973       // C++ [dcl.fct.default]p5:
4974       //   The names in the [default argument] expression are bound, and
4975       //   the semantic constraints are checked, at the point where the
4976       //   default argument expression appears.
4977       ContextRAII SavedContext(*this, FD);
4978       LocalInstantiationScope Local(*this);
4979       runWithSufficientStackSpace(CallLoc, [&] {
4980         Result = SubstInitializer(UninstExpr, MutiLevelArgList,
4981                                   /*DirectInit*/false);
4982       });
4983     }
4984     if (Result.isInvalid())
4985       return true;
4986 
4987     // Check the expression as an initializer for the parameter.
4988     InitializedEntity Entity
4989       = InitializedEntity::InitializeParameter(Context, Param);
4990     InitializationKind Kind = InitializationKind::CreateCopy(
4991         Param->getLocation(),
4992         /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
4993     Expr *ResultE = Result.getAs<Expr>();
4994 
4995     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4996     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4997     if (Result.isInvalid())
4998       return true;
4999 
5000     Result =
5001         ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
5002                             /*DiscardedValue*/ false);
5003     if (Result.isInvalid())
5004       return true;
5005 
5006     // Remember the instantiated default argument.
5007     Param->setDefaultArg(Result.getAs<Expr>());
5008     if (ASTMutationListener *L = getASTMutationListener()) {
5009       L->DefaultArgumentInstantiated(Param);
5010     }
5011   }
5012 
5013   // If the default argument expression is not set yet, we are building it now.
5014   if (!Param->hasInit()) {
5015     Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5016     Param->setInvalidDecl();
5017     return true;
5018   }
5019 
5020   // If the default expression creates temporaries, we need to
5021   // push them to the current stack of expression temporaries so they'll
5022   // be properly destroyed.
5023   // FIXME: We should really be rebuilding the default argument with new
5024   // bound temporaries; see the comment in PR5810.
5025   // We don't need to do that with block decls, though, because
5026   // blocks in default argument expression can never capture anything.
5027   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5028     // Set the "needs cleanups" bit regardless of whether there are
5029     // any explicit objects.
5030     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5031 
5032     // Append all the objects to the cleanup list.  Right now, this
5033     // should always be a no-op, because blocks in default argument
5034     // expressions should never be able to capture anything.
5035     assert(!Init->getNumObjects() &&
5036            "default argument expression has capturing blocks?");
5037   }
5038 
5039   // We already type-checked the argument, so we know it works.
5040   // Just mark all of the declarations in this potentially-evaluated expression
5041   // as being "referenced".
5042   EnterExpressionEvaluationContext EvalContext(
5043       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5044   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5045                                    /*SkipLocalVariables=*/true);
5046   return false;
5047 }
5048 
5049 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5050                                         FunctionDecl *FD, ParmVarDecl *Param) {
5051   if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5052     return ExprError();
5053   return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5054 }
5055 
5056 Sema::VariadicCallType
5057 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5058                           Expr *Fn) {
5059   if (Proto && Proto->isVariadic()) {
5060     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
5061       return VariadicConstructor;
5062     else if (Fn && Fn->getType()->isBlockPointerType())
5063       return VariadicBlock;
5064     else if (FDecl) {
5065       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5066         if (Method->isInstance())
5067           return VariadicMethod;
5068     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5069       return VariadicMethod;
5070     return VariadicFunction;
5071   }
5072   return VariadicDoesNotApply;
5073 }
5074 
5075 namespace {
5076 class FunctionCallCCC final : public FunctionCallFilterCCC {
5077 public:
5078   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5079                   unsigned NumArgs, MemberExpr *ME)
5080       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5081         FunctionName(FuncName) {}
5082 
5083   bool ValidateCandidate(const TypoCorrection &candidate) override {
5084     if (!candidate.getCorrectionSpecifier() ||
5085         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5086       return false;
5087     }
5088 
5089     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5090   }
5091 
5092   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5093     return std::make_unique<FunctionCallCCC>(*this);
5094   }
5095 
5096 private:
5097   const IdentifierInfo *const FunctionName;
5098 };
5099 }
5100 
5101 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5102                                                FunctionDecl *FDecl,
5103                                                ArrayRef<Expr *> Args) {
5104   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5105   DeclarationName FuncName = FDecl->getDeclName();
5106   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5107 
5108   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5109   if (TypoCorrection Corrected = S.CorrectTypo(
5110           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5111           S.getScopeForContext(S.CurContext), nullptr, CCC,
5112           Sema::CTK_ErrorRecovery)) {
5113     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5114       if (Corrected.isOverloaded()) {
5115         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5116         OverloadCandidateSet::iterator Best;
5117         for (NamedDecl *CD : Corrected) {
5118           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5119             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5120                                    OCS);
5121         }
5122         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5123         case OR_Success:
5124           ND = Best->FoundDecl;
5125           Corrected.setCorrectionDecl(ND);
5126           break;
5127         default:
5128           break;
5129         }
5130       }
5131       ND = ND->getUnderlyingDecl();
5132       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5133         return Corrected;
5134     }
5135   }
5136   return TypoCorrection();
5137 }
5138 
5139 /// ConvertArgumentsForCall - Converts the arguments specified in
5140 /// Args/NumArgs to the parameter types of the function FDecl with
5141 /// function prototype Proto. Call is the call expression itself, and
5142 /// Fn is the function expression. For a C++ member function, this
5143 /// routine does not attempt to convert the object argument. Returns
5144 /// true if the call is ill-formed.
5145 bool
5146 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5147                               FunctionDecl *FDecl,
5148                               const FunctionProtoType *Proto,
5149                               ArrayRef<Expr *> Args,
5150                               SourceLocation RParenLoc,
5151                               bool IsExecConfig) {
5152   // Bail out early if calling a builtin with custom typechecking.
5153   if (FDecl)
5154     if (unsigned ID = FDecl->getBuiltinID())
5155       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5156         return false;
5157 
5158   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5159   // assignment, to the types of the corresponding parameter, ...
5160   unsigned NumParams = Proto->getNumParams();
5161   bool Invalid = false;
5162   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5163   unsigned FnKind = Fn->getType()->isBlockPointerType()
5164                        ? 1 /* block */
5165                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5166                                        : 0 /* function */);
5167 
5168   // If too few arguments are available (and we don't have default
5169   // arguments for the remaining parameters), don't make the call.
5170   if (Args.size() < NumParams) {
5171     if (Args.size() < MinArgs) {
5172       TypoCorrection TC;
5173       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5174         unsigned diag_id =
5175             MinArgs == NumParams && !Proto->isVariadic()
5176                 ? diag::err_typecheck_call_too_few_args_suggest
5177                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5178         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5179                                         << static_cast<unsigned>(Args.size())
5180                                         << TC.getCorrectionRange());
5181       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5182         Diag(RParenLoc,
5183              MinArgs == NumParams && !Proto->isVariadic()
5184                  ? diag::err_typecheck_call_too_few_args_one
5185                  : diag::err_typecheck_call_too_few_args_at_least_one)
5186             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5187       else
5188         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5189                             ? diag::err_typecheck_call_too_few_args
5190                             : diag::err_typecheck_call_too_few_args_at_least)
5191             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5192             << Fn->getSourceRange();
5193 
5194       // Emit the location of the prototype.
5195       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5196         Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
5197 
5198       return true;
5199     }
5200     // We reserve space for the default arguments when we create
5201     // the call expression, before calling ConvertArgumentsForCall.
5202     assert((Call->getNumArgs() == NumParams) &&
5203            "We should have reserved space for the default arguments before!");
5204   }
5205 
5206   // If too many are passed and not variadic, error on the extras and drop
5207   // them.
5208   if (Args.size() > NumParams) {
5209     if (!Proto->isVariadic()) {
5210       TypoCorrection TC;
5211       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5212         unsigned diag_id =
5213             MinArgs == NumParams && !Proto->isVariadic()
5214                 ? diag::err_typecheck_call_too_many_args_suggest
5215                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5216         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5217                                         << static_cast<unsigned>(Args.size())
5218                                         << TC.getCorrectionRange());
5219       } else if (NumParams == 1 && FDecl &&
5220                  FDecl->getParamDecl(0)->getDeclName())
5221         Diag(Args[NumParams]->getBeginLoc(),
5222              MinArgs == NumParams
5223                  ? diag::err_typecheck_call_too_many_args_one
5224                  : diag::err_typecheck_call_too_many_args_at_most_one)
5225             << FnKind << FDecl->getParamDecl(0)
5226             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5227             << SourceRange(Args[NumParams]->getBeginLoc(),
5228                            Args.back()->getEndLoc());
5229       else
5230         Diag(Args[NumParams]->getBeginLoc(),
5231              MinArgs == NumParams
5232                  ? diag::err_typecheck_call_too_many_args
5233                  : diag::err_typecheck_call_too_many_args_at_most)
5234             << FnKind << NumParams << static_cast<unsigned>(Args.size())
5235             << Fn->getSourceRange()
5236             << SourceRange(Args[NumParams]->getBeginLoc(),
5237                            Args.back()->getEndLoc());
5238 
5239       // Emit the location of the prototype.
5240       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5241         Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
5242 
5243       // This deletes the extra arguments.
5244       Call->shrinkNumArgs(NumParams);
5245       return true;
5246     }
5247   }
5248   SmallVector<Expr *, 8> AllArgs;
5249   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5250 
5251   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5252                                    AllArgs, CallType);
5253   if (Invalid)
5254     return true;
5255   unsigned TotalNumArgs = AllArgs.size();
5256   for (unsigned i = 0; i < TotalNumArgs; ++i)
5257     Call->setArg(i, AllArgs[i]);
5258 
5259   return false;
5260 }
5261 
5262 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5263                                   const FunctionProtoType *Proto,
5264                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5265                                   SmallVectorImpl<Expr *> &AllArgs,
5266                                   VariadicCallType CallType, bool AllowExplicit,
5267                                   bool IsListInitialization) {
5268   unsigned NumParams = Proto->getNumParams();
5269   bool Invalid = false;
5270   size_t ArgIx = 0;
5271   // Continue to check argument types (even if we have too few/many args).
5272   for (unsigned i = FirstParam; i < NumParams; i++) {
5273     QualType ProtoArgType = Proto->getParamType(i);
5274 
5275     Expr *Arg;
5276     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5277     if (ArgIx < Args.size()) {
5278       Arg = Args[ArgIx++];
5279 
5280       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5281                               diag::err_call_incomplete_argument, Arg))
5282         return true;
5283 
5284       // Strip the unbridged-cast placeholder expression off, if applicable.
5285       bool CFAudited = false;
5286       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5287           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5288           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5289         Arg = stripARCUnbridgedCast(Arg);
5290       else if (getLangOpts().ObjCAutoRefCount &&
5291                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5292                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5293         CFAudited = true;
5294 
5295       if (Proto->getExtParameterInfo(i).isNoEscape())
5296         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5297           BE->getBlockDecl()->setDoesNotEscape();
5298 
5299       InitializedEntity Entity =
5300           Param ? InitializedEntity::InitializeParameter(Context, Param,
5301                                                          ProtoArgType)
5302                 : InitializedEntity::InitializeParameter(
5303                       Context, ProtoArgType, Proto->isParamConsumed(i));
5304 
5305       // Remember that parameter belongs to a CF audited API.
5306       if (CFAudited)
5307         Entity.setParameterCFAudited();
5308 
5309       ExprResult ArgE = PerformCopyInitialization(
5310           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5311       if (ArgE.isInvalid())
5312         return true;
5313 
5314       Arg = ArgE.getAs<Expr>();
5315     } else {
5316       assert(Param && "can't use default arguments without a known callee");
5317 
5318       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5319       if (ArgExpr.isInvalid())
5320         return true;
5321 
5322       Arg = ArgExpr.getAs<Expr>();
5323     }
5324 
5325     // Check for array bounds violations for each argument to the call. This
5326     // check only triggers warnings when the argument isn't a more complex Expr
5327     // with its own checking, such as a BinaryOperator.
5328     CheckArrayAccess(Arg);
5329 
5330     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5331     CheckStaticArrayArgument(CallLoc, Param, Arg);
5332 
5333     AllArgs.push_back(Arg);
5334   }
5335 
5336   // If this is a variadic call, handle args passed through "...".
5337   if (CallType != VariadicDoesNotApply) {
5338     // Assume that extern "C" functions with variadic arguments that
5339     // return __unknown_anytype aren't *really* variadic.
5340     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5341         FDecl->isExternC()) {
5342       for (Expr *A : Args.slice(ArgIx)) {
5343         QualType paramType; // ignored
5344         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5345         Invalid |= arg.isInvalid();
5346         AllArgs.push_back(arg.get());
5347       }
5348 
5349     // Otherwise do argument promotion, (C99 6.5.2.2p7).
5350     } else {
5351       for (Expr *A : Args.slice(ArgIx)) {
5352         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5353         Invalid |= Arg.isInvalid();
5354         // Copy blocks to the heap.
5355         if (A->getType()->isBlockPointerType())
5356           maybeExtendBlockObject(Arg);
5357         AllArgs.push_back(Arg.get());
5358       }
5359     }
5360 
5361     // Check for array bounds violations.
5362     for (Expr *A : Args.slice(ArgIx))
5363       CheckArrayAccess(A);
5364   }
5365   return Invalid;
5366 }
5367 
5368 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5369   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
5370   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
5371     TL = DTL.getOriginalLoc();
5372   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
5373     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
5374       << ATL.getLocalSourceRange();
5375 }
5376 
5377 /// CheckStaticArrayArgument - If the given argument corresponds to a static
5378 /// array parameter, check that it is non-null, and that if it is formed by
5379 /// array-to-pointer decay, the underlying array is sufficiently large.
5380 ///
5381 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
5382 /// array type derivation, then for each call to the function, the value of the
5383 /// corresponding actual argument shall provide access to the first element of
5384 /// an array with at least as many elements as specified by the size expression.
5385 void
5386 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
5387                                ParmVarDecl *Param,
5388                                const Expr *ArgExpr) {
5389   // Static array parameters are not supported in C++.
5390   if (!Param || getLangOpts().CPlusPlus)
5391     return;
5392 
5393   QualType OrigTy = Param->getOriginalType();
5394 
5395   const ArrayType *AT = Context.getAsArrayType(OrigTy);
5396   if (!AT || AT->getSizeModifier() != ArrayType::Static)
5397     return;
5398 
5399   if (ArgExpr->isNullPointerConstant(Context,
5400                                      Expr::NPC_NeverValueDependent)) {
5401     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
5402     DiagnoseCalleeStaticArrayParam(*this, Param);
5403     return;
5404   }
5405 
5406   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
5407   if (!CAT)
5408     return;
5409 
5410   const ConstantArrayType *ArgCAT =
5411     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
5412   if (!ArgCAT)
5413     return;
5414 
5415   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
5416                                              ArgCAT->getElementType())) {
5417     if (ArgCAT->getSize().ult(CAT->getSize())) {
5418       Diag(CallLoc, diag::warn_static_array_too_small)
5419           << ArgExpr->getSourceRange()
5420           << (unsigned)ArgCAT->getSize().getZExtValue()
5421           << (unsigned)CAT->getSize().getZExtValue() << 0;
5422       DiagnoseCalleeStaticArrayParam(*this, Param);
5423     }
5424     return;
5425   }
5426 
5427   Optional<CharUnits> ArgSize =
5428       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
5429   Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
5430   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
5431     Diag(CallLoc, diag::warn_static_array_too_small)
5432         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
5433         << (unsigned)ParmSize->getQuantity() << 1;
5434     DiagnoseCalleeStaticArrayParam(*this, Param);
5435   }
5436 }
5437 
5438 /// Given a function expression of unknown-any type, try to rebuild it
5439 /// to have a function type.
5440 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
5441 
5442 /// Is the given type a placeholder that we need to lower out
5443 /// immediately during argument processing?
5444 static bool isPlaceholderToRemoveAsArg(QualType type) {
5445   // Placeholders are never sugared.
5446   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
5447   if (!placeholder) return false;
5448 
5449   switch (placeholder->getKind()) {
5450   // Ignore all the non-placeholder types.
5451 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
5452   case BuiltinType::Id:
5453 #include "clang/Basic/OpenCLImageTypes.def"
5454 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
5455   case BuiltinType::Id:
5456 #include "clang/Basic/OpenCLExtensionTypes.def"
5457   // In practice we'll never use this, since all SVE types are sugared
5458   // via TypedefTypes rather than exposed directly as BuiltinTypes.
5459 #define SVE_TYPE(Name, Id, SingletonId) \
5460   case BuiltinType::Id:
5461 #include "clang/Basic/AArch64SVEACLETypes.def"
5462 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
5463 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
5464 #include "clang/AST/BuiltinTypes.def"
5465     return false;
5466 
5467   // We cannot lower out overload sets; they might validly be resolved
5468   // by the call machinery.
5469   case BuiltinType::Overload:
5470     return false;
5471 
5472   // Unbridged casts in ARC can be handled in some call positions and
5473   // should be left in place.
5474   case BuiltinType::ARCUnbridgedCast:
5475     return false;
5476 
5477   // Pseudo-objects should be converted as soon as possible.
5478   case BuiltinType::PseudoObject:
5479     return true;
5480 
5481   // The debugger mode could theoretically but currently does not try
5482   // to resolve unknown-typed arguments based on known parameter types.
5483   case BuiltinType::UnknownAny:
5484     return true;
5485 
5486   // These are always invalid as call arguments and should be reported.
5487   case BuiltinType::BoundMember:
5488   case BuiltinType::BuiltinFn:
5489   case BuiltinType::OMPArraySection:
5490     return true;
5491 
5492   }
5493   llvm_unreachable("bad builtin type kind");
5494 }
5495 
5496 /// Check an argument list for placeholders that we won't try to
5497 /// handle later.
5498 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
5499   // Apply this processing to all the arguments at once instead of
5500   // dying at the first failure.
5501   bool hasInvalid = false;
5502   for (size_t i = 0, e = args.size(); i != e; i++) {
5503     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
5504       ExprResult result = S.CheckPlaceholderExpr(args[i]);
5505       if (result.isInvalid()) hasInvalid = true;
5506       else args[i] = result.get();
5507     } else if (hasInvalid) {
5508       (void)S.CorrectDelayedTyposInExpr(args[i]);
5509     }
5510   }
5511   return hasInvalid;
5512 }
5513 
5514 /// If a builtin function has a pointer argument with no explicit address
5515 /// space, then it should be able to accept a pointer to any address
5516 /// space as input.  In order to do this, we need to replace the
5517 /// standard builtin declaration with one that uses the same address space
5518 /// as the call.
5519 ///
5520 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
5521 ///                  it does not contain any pointer arguments without
5522 ///                  an address space qualifer.  Otherwise the rewritten
5523 ///                  FunctionDecl is returned.
5524 /// TODO: Handle pointer return types.
5525 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
5526                                                 FunctionDecl *FDecl,
5527                                                 MultiExprArg ArgExprs) {
5528 
5529   QualType DeclType = FDecl->getType();
5530   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
5531 
5532   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
5533       ArgExprs.size() < FT->getNumParams())
5534     return nullptr;
5535 
5536   bool NeedsNewDecl = false;
5537   unsigned i = 0;
5538   SmallVector<QualType, 8> OverloadParams;
5539 
5540   for (QualType ParamType : FT->param_types()) {
5541 
5542     // Convert array arguments to pointer to simplify type lookup.
5543     ExprResult ArgRes =
5544         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
5545     if (ArgRes.isInvalid())
5546       return nullptr;
5547     Expr *Arg = ArgRes.get();
5548     QualType ArgType = Arg->getType();
5549     if (!ParamType->isPointerType() ||
5550         ParamType.hasAddressSpace() ||
5551         !ArgType->isPointerType() ||
5552         !ArgType->getPointeeType().hasAddressSpace()) {
5553       OverloadParams.push_back(ParamType);
5554       continue;
5555     }
5556 
5557     QualType PointeeType = ParamType->getPointeeType();
5558     if (PointeeType.hasAddressSpace())
5559       continue;
5560 
5561     NeedsNewDecl = true;
5562     LangAS AS = ArgType->getPointeeType().getAddressSpace();
5563 
5564     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
5565     OverloadParams.push_back(Context.getPointerType(PointeeType));
5566   }
5567 
5568   if (!NeedsNewDecl)
5569     return nullptr;
5570 
5571   FunctionProtoType::ExtProtoInfo EPI;
5572   EPI.Variadic = FT->isVariadic();
5573   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
5574                                                 OverloadParams, EPI);
5575   DeclContext *Parent = FDecl->getParent();
5576   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
5577                                                     FDecl->getLocation(),
5578                                                     FDecl->getLocation(),
5579                                                     FDecl->getIdentifier(),
5580                                                     OverloadTy,
5581                                                     /*TInfo=*/nullptr,
5582                                                     SC_Extern, false,
5583                                                     /*hasPrototype=*/true);
5584   SmallVector<ParmVarDecl*, 16> Params;
5585   FT = cast<FunctionProtoType>(OverloadTy);
5586   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
5587     QualType ParamType = FT->getParamType(i);
5588     ParmVarDecl *Parm =
5589         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
5590                                 SourceLocation(), nullptr, ParamType,
5591                                 /*TInfo=*/nullptr, SC_None, nullptr);
5592     Parm->setScopeInfo(0, i);
5593     Params.push_back(Parm);
5594   }
5595   OverloadDecl->setParams(Params);
5596   return OverloadDecl;
5597 }
5598 
5599 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
5600                                     FunctionDecl *Callee,
5601                                     MultiExprArg ArgExprs) {
5602   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
5603   // similar attributes) really don't like it when functions are called with an
5604   // invalid number of args.
5605   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
5606                          /*PartialOverloading=*/false) &&
5607       !Callee->isVariadic())
5608     return;
5609   if (Callee->getMinRequiredArguments() > ArgExprs.size())
5610     return;
5611 
5612   if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) {
5613     S.Diag(Fn->getBeginLoc(),
5614            isa<CXXMethodDecl>(Callee)
5615                ? diag::err_ovl_no_viable_member_function_in_call
5616                : diag::err_ovl_no_viable_function_in_call)
5617         << Callee << Callee->getSourceRange();
5618     S.Diag(Callee->getLocation(),
5619            diag::note_ovl_candidate_disabled_by_function_cond_attr)
5620         << Attr->getCond()->getSourceRange() << Attr->getMessage();
5621     return;
5622   }
5623 }
5624 
5625 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
5626     const UnresolvedMemberExpr *const UME, Sema &S) {
5627 
5628   const auto GetFunctionLevelDCIfCXXClass =
5629       [](Sema &S) -> const CXXRecordDecl * {
5630     const DeclContext *const DC = S.getFunctionLevelDeclContext();
5631     if (!DC || !DC->getParent())
5632       return nullptr;
5633 
5634     // If the call to some member function was made from within a member
5635     // function body 'M' return return 'M's parent.
5636     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
5637       return MD->getParent()->getCanonicalDecl();
5638     // else the call was made from within a default member initializer of a
5639     // class, so return the class.
5640     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
5641       return RD->getCanonicalDecl();
5642     return nullptr;
5643   };
5644   // If our DeclContext is neither a member function nor a class (in the
5645   // case of a lambda in a default member initializer), we can't have an
5646   // enclosing 'this'.
5647 
5648   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
5649   if (!CurParentClass)
5650     return false;
5651 
5652   // The naming class for implicit member functions call is the class in which
5653   // name lookup starts.
5654   const CXXRecordDecl *const NamingClass =
5655       UME->getNamingClass()->getCanonicalDecl();
5656   assert(NamingClass && "Must have naming class even for implicit access");
5657 
5658   // If the unresolved member functions were found in a 'naming class' that is
5659   // related (either the same or derived from) to the class that contains the
5660   // member function that itself contained the implicit member access.
5661 
5662   return CurParentClass == NamingClass ||
5663          CurParentClass->isDerivedFrom(NamingClass);
5664 }
5665 
5666 static void
5667 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
5668     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
5669 
5670   if (!UME)
5671     return;
5672 
5673   LambdaScopeInfo *const CurLSI = S.getCurLambda();
5674   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
5675   // already been captured, or if this is an implicit member function call (if
5676   // it isn't, an attempt to capture 'this' should already have been made).
5677   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
5678       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
5679     return;
5680 
5681   // Check if the naming class in which the unresolved members were found is
5682   // related (same as or is a base of) to the enclosing class.
5683 
5684   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
5685     return;
5686 
5687 
5688   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
5689   // If the enclosing function is not dependent, then this lambda is
5690   // capture ready, so if we can capture this, do so.
5691   if (!EnclosingFunctionCtx->isDependentContext()) {
5692     // If the current lambda and all enclosing lambdas can capture 'this' -
5693     // then go ahead and capture 'this' (since our unresolved overload set
5694     // contains at least one non-static member function).
5695     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
5696       S.CheckCXXThisCapture(CallLoc);
5697   } else if (S.CurContext->isDependentContext()) {
5698     // ... since this is an implicit member reference, that might potentially
5699     // involve a 'this' capture, mark 'this' for potential capture in
5700     // enclosing lambdas.
5701     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
5702       CurLSI->addPotentialThisCapture(CallLoc);
5703   }
5704 }
5705 
5706 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5707                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
5708                                Expr *ExecConfig) {
5709   ExprResult Call =
5710       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
5711   if (Call.isInvalid())
5712     return Call;
5713 
5714   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
5715   // language modes.
5716   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
5717     if (ULE->hasExplicitTemplateArgs() &&
5718         ULE->decls_begin() == ULE->decls_end()) {
5719       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus2a
5720                                  ? diag::warn_cxx17_compat_adl_only_template_id
5721                                  : diag::ext_adl_only_template_id)
5722           << ULE->getName();
5723     }
5724   }
5725 
5726   return Call;
5727 }
5728 
5729 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
5730 /// This provides the location of the left/right parens and a list of comma
5731 /// locations.
5732 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5733                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
5734                                Expr *ExecConfig, bool IsExecConfig) {
5735   // Since this might be a postfix expression, get rid of ParenListExprs.
5736   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
5737   if (Result.isInvalid()) return ExprError();
5738   Fn = Result.get();
5739 
5740   if (checkArgsForPlaceholders(*this, ArgExprs))
5741     return ExprError();
5742 
5743   if (getLangOpts().CPlusPlus) {
5744     // If this is a pseudo-destructor expression, build the call immediately.
5745     if (isa<CXXPseudoDestructorExpr>(Fn)) {
5746       if (!ArgExprs.empty()) {
5747         // Pseudo-destructor calls should not have any arguments.
5748         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
5749             << FixItHint::CreateRemoval(
5750                    SourceRange(ArgExprs.front()->getBeginLoc(),
5751                                ArgExprs.back()->getEndLoc()));
5752       }
5753 
5754       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
5755                               VK_RValue, RParenLoc);
5756     }
5757     if (Fn->getType() == Context.PseudoObjectTy) {
5758       ExprResult result = CheckPlaceholderExpr(Fn);
5759       if (result.isInvalid()) return ExprError();
5760       Fn = result.get();
5761     }
5762 
5763     // Determine whether this is a dependent call inside a C++ template,
5764     // in which case we won't do any semantic analysis now.
5765     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
5766       if (ExecConfig) {
5767         return CUDAKernelCallExpr::Create(
5768             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
5769             Context.DependentTy, VK_RValue, RParenLoc);
5770       } else {
5771 
5772         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
5773             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
5774             Fn->getBeginLoc());
5775 
5776         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
5777                                 VK_RValue, RParenLoc);
5778       }
5779     }
5780 
5781     // Determine whether this is a call to an object (C++ [over.call.object]).
5782     if (Fn->getType()->isRecordType())
5783       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
5784                                           RParenLoc);
5785 
5786     if (Fn->getType() == Context.UnknownAnyTy) {
5787       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5788       if (result.isInvalid()) return ExprError();
5789       Fn = result.get();
5790     }
5791 
5792     if (Fn->getType() == Context.BoundMemberTy) {
5793       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5794                                        RParenLoc);
5795     }
5796   }
5797 
5798   // Check for overloaded calls.  This can happen even in C due to extensions.
5799   if (Fn->getType() == Context.OverloadTy) {
5800     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
5801 
5802     // We aren't supposed to apply this logic if there's an '&' involved.
5803     if (!find.HasFormOfMemberPointer) {
5804       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
5805         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
5806                                 VK_RValue, RParenLoc);
5807       OverloadExpr *ovl = find.Expression;
5808       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
5809         return BuildOverloadedCallExpr(
5810             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
5811             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
5812       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5813                                        RParenLoc);
5814     }
5815   }
5816 
5817   // If we're directly calling a function, get the appropriate declaration.
5818   if (Fn->getType() == Context.UnknownAnyTy) {
5819     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5820     if (result.isInvalid()) return ExprError();
5821     Fn = result.get();
5822   }
5823 
5824   Expr *NakedFn = Fn->IgnoreParens();
5825 
5826   bool CallingNDeclIndirectly = false;
5827   NamedDecl *NDecl = nullptr;
5828   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
5829     if (UnOp->getOpcode() == UO_AddrOf) {
5830       CallingNDeclIndirectly = true;
5831       NakedFn = UnOp->getSubExpr()->IgnoreParens();
5832     }
5833   }
5834 
5835   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
5836     NDecl = DRE->getDecl();
5837 
5838     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
5839     if (FDecl && FDecl->getBuiltinID()) {
5840       // Rewrite the function decl for this builtin by replacing parameters
5841       // with no explicit address space with the address space of the arguments
5842       // in ArgExprs.
5843       if ((FDecl =
5844                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
5845         NDecl = FDecl;
5846         Fn = DeclRefExpr::Create(
5847             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
5848             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
5849             nullptr, DRE->isNonOdrUse());
5850       }
5851     }
5852   } else if (isa<MemberExpr>(NakedFn))
5853     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
5854 
5855   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
5856     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
5857                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
5858       return ExprError();
5859 
5860     if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
5861       return ExprError();
5862 
5863     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
5864   }
5865 
5866   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
5867                                ExecConfig, IsExecConfig);
5868 }
5869 
5870 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
5871 ///
5872 /// __builtin_astype( value, dst type )
5873 ///
5874 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5875                                  SourceLocation BuiltinLoc,
5876                                  SourceLocation RParenLoc) {
5877   ExprValueKind VK = VK_RValue;
5878   ExprObjectKind OK = OK_Ordinary;
5879   QualType DstTy = GetTypeFromParser(ParsedDestTy);
5880   QualType SrcTy = E->getType();
5881   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5882     return ExprError(Diag(BuiltinLoc,
5883                           diag::err_invalid_astype_of_different_size)
5884                      << DstTy
5885                      << SrcTy
5886                      << E->getSourceRange());
5887   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5888 }
5889 
5890 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
5891 /// provided arguments.
5892 ///
5893 /// __builtin_convertvector( value, dst type )
5894 ///
5895 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5896                                         SourceLocation BuiltinLoc,
5897                                         SourceLocation RParenLoc) {
5898   TypeSourceInfo *TInfo;
5899   GetTypeFromParser(ParsedDestTy, &TInfo);
5900   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
5901 }
5902 
5903 /// BuildResolvedCallExpr - Build a call to a resolved expression,
5904 /// i.e. an expression not of \p OverloadTy.  The expression should
5905 /// unary-convert to an expression of function-pointer or
5906 /// block-pointer type.
5907 ///
5908 /// \param NDecl the declaration being called, if available
5909 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5910                                        SourceLocation LParenLoc,
5911                                        ArrayRef<Expr *> Args,
5912                                        SourceLocation RParenLoc, Expr *Config,
5913                                        bool IsExecConfig, ADLCallKind UsesADL) {
5914   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5915   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5916 
5917   // Functions with 'interrupt' attribute cannot be called directly.
5918   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
5919     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
5920     return ExprError();
5921   }
5922 
5923   // Interrupt handlers don't save off the VFP regs automatically on ARM,
5924   // so there's some risk when calling out to non-interrupt handler functions
5925   // that the callee might not preserve them. This is easy to diagnose here,
5926   // but can be very challenging to debug.
5927   if (auto *Caller = getCurFunctionDecl())
5928     if (Caller->hasAttr<ARMInterruptAttr>()) {
5929       bool VFP = Context.getTargetInfo().hasFeature("vfp");
5930       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
5931         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
5932     }
5933 
5934   // Promote the function operand.
5935   // We special-case function promotion here because we only allow promoting
5936   // builtin functions to function pointers in the callee of a call.
5937   ExprResult Result;
5938   QualType ResultTy;
5939   if (BuiltinID &&
5940       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
5941     // Extract the return type from the (builtin) function pointer type.
5942     // FIXME Several builtins still have setType in
5943     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
5944     // Builtins.def to ensure they are correct before removing setType calls.
5945     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
5946     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
5947     ResultTy = FDecl->getCallResultType();
5948   } else {
5949     Result = CallExprUnaryConversions(Fn);
5950     ResultTy = Context.BoolTy;
5951   }
5952   if (Result.isInvalid())
5953     return ExprError();
5954   Fn = Result.get();
5955 
5956   // Check for a valid function type, but only if it is not a builtin which
5957   // requires custom type checking. These will be handled by
5958   // CheckBuiltinFunctionCall below just after creation of the call expression.
5959   const FunctionType *FuncT = nullptr;
5960   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
5961   retry:
5962     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5963       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5964       // have type pointer to function".
5965       FuncT = PT->getPointeeType()->getAs<FunctionType>();
5966       if (!FuncT)
5967         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5968                          << Fn->getType() << Fn->getSourceRange());
5969     } else if (const BlockPointerType *BPT =
5970                    Fn->getType()->getAs<BlockPointerType>()) {
5971       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5972     } else {
5973       // Handle calls to expressions of unknown-any type.
5974       if (Fn->getType() == Context.UnknownAnyTy) {
5975         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5976         if (rewrite.isInvalid())
5977           return ExprError();
5978         Fn = rewrite.get();
5979         goto retry;
5980       }
5981 
5982       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5983                        << Fn->getType() << Fn->getSourceRange());
5984     }
5985   }
5986 
5987   // Get the number of parameters in the function prototype, if any.
5988   // We will allocate space for max(Args.size(), NumParams) arguments
5989   // in the call expression.
5990   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
5991   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
5992 
5993   CallExpr *TheCall;
5994   if (Config) {
5995     assert(UsesADL == ADLCallKind::NotADL &&
5996            "CUDAKernelCallExpr should not use ADL");
5997     TheCall =
5998         CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), Args,
5999                                    ResultTy, VK_RValue, RParenLoc, NumParams);
6000   } else {
6001     TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
6002                                RParenLoc, NumParams, UsesADL);
6003   }
6004 
6005   if (!getLangOpts().CPlusPlus) {
6006     // Forget about the nulled arguments since typo correction
6007     // do not handle them well.
6008     TheCall->shrinkNumArgs(Args.size());
6009     // C cannot always handle TypoExpr nodes in builtin calls and direct
6010     // function calls as their argument checking don't necessarily handle
6011     // dependent types properly, so make sure any TypoExprs have been
6012     // dealt with.
6013     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6014     if (!Result.isUsable()) return ExprError();
6015     CallExpr *TheOldCall = TheCall;
6016     TheCall = dyn_cast<CallExpr>(Result.get());
6017     bool CorrectedTypos = TheCall != TheOldCall;
6018     if (!TheCall) return Result;
6019     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6020 
6021     // A new call expression node was created if some typos were corrected.
6022     // However it may not have been constructed with enough storage. In this
6023     // case, rebuild the node with enough storage. The waste of space is
6024     // immaterial since this only happens when some typos were corrected.
6025     if (CorrectedTypos && Args.size() < NumParams) {
6026       if (Config)
6027         TheCall = CUDAKernelCallExpr::Create(
6028             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
6029             RParenLoc, NumParams);
6030       else
6031         TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
6032                                    RParenLoc, NumParams, UsesADL);
6033     }
6034     // We can now handle the nulled arguments for the default arguments.
6035     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6036   }
6037 
6038   // Bail out early if calling a builtin with custom type checking.
6039   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6040     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6041 
6042   if (getLangOpts().CUDA) {
6043     if (Config) {
6044       // CUDA: Kernel calls must be to global functions
6045       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6046         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6047             << FDecl << Fn->getSourceRange());
6048 
6049       // CUDA: Kernel function must have 'void' return type
6050       if (!FuncT->getReturnType()->isVoidType() &&
6051           !FuncT->getReturnType()->getAs<AutoType>() &&
6052           !FuncT->getReturnType()->isInstantiationDependentType())
6053         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6054             << Fn->getType() << Fn->getSourceRange());
6055     } else {
6056       // CUDA: Calls to global functions must be configured
6057       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6058         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6059             << FDecl << Fn->getSourceRange());
6060     }
6061   }
6062 
6063   // Check for a valid return type
6064   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6065                           FDecl))
6066     return ExprError();
6067 
6068   // We know the result type of the call, set it.
6069   TheCall->setType(FuncT->getCallResultType(Context));
6070   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6071 
6072   if (Proto) {
6073     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6074                                 IsExecConfig))
6075       return ExprError();
6076   } else {
6077     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6078 
6079     if (FDecl) {
6080       // Check if we have too few/too many template arguments, based
6081       // on our knowledge of the function definition.
6082       const FunctionDecl *Def = nullptr;
6083       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6084         Proto = Def->getType()->getAs<FunctionProtoType>();
6085        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6086           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6087           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6088       }
6089 
6090       // If the function we're calling isn't a function prototype, but we have
6091       // a function prototype from a prior declaratiom, use that prototype.
6092       if (!FDecl->hasPrototype())
6093         Proto = FDecl->getType()->getAs<FunctionProtoType>();
6094     }
6095 
6096     // Promote the arguments (C99 6.5.2.2p6).
6097     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6098       Expr *Arg = Args[i];
6099 
6100       if (Proto && i < Proto->getNumParams()) {
6101         InitializedEntity Entity = InitializedEntity::InitializeParameter(
6102             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6103         ExprResult ArgE =
6104             PerformCopyInitialization(Entity, SourceLocation(), Arg);
6105         if (ArgE.isInvalid())
6106           return true;
6107 
6108         Arg = ArgE.getAs<Expr>();
6109 
6110       } else {
6111         ExprResult ArgE = DefaultArgumentPromotion(Arg);
6112 
6113         if (ArgE.isInvalid())
6114           return true;
6115 
6116         Arg = ArgE.getAs<Expr>();
6117       }
6118 
6119       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6120                               diag::err_call_incomplete_argument, Arg))
6121         return ExprError();
6122 
6123       TheCall->setArg(i, Arg);
6124     }
6125   }
6126 
6127   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6128     if (!Method->isStatic())
6129       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6130         << Fn->getSourceRange());
6131 
6132   // Check for sentinels
6133   if (NDecl)
6134     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6135 
6136   // Do special checking on direct calls to functions.
6137   if (FDecl) {
6138     if (CheckFunctionCall(FDecl, TheCall, Proto))
6139       return ExprError();
6140 
6141     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6142 
6143     if (BuiltinID)
6144       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6145   } else if (NDecl) {
6146     if (CheckPointerCall(NDecl, TheCall, Proto))
6147       return ExprError();
6148   } else {
6149     if (CheckOtherCall(TheCall, Proto))
6150       return ExprError();
6151   }
6152 
6153   return MaybeBindToTemporary(TheCall);
6154 }
6155 
6156 ExprResult
6157 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6158                            SourceLocation RParenLoc, Expr *InitExpr) {
6159   assert(Ty && "ActOnCompoundLiteral(): missing type");
6160   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6161 
6162   TypeSourceInfo *TInfo;
6163   QualType literalType = GetTypeFromParser(Ty, &TInfo);
6164   if (!TInfo)
6165     TInfo = Context.getTrivialTypeSourceInfo(literalType);
6166 
6167   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6168 }
6169 
6170 ExprResult
6171 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6172                                SourceLocation RParenLoc, Expr *LiteralExpr) {
6173   QualType literalType = TInfo->getType();
6174 
6175   if (literalType->isArrayType()) {
6176     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
6177           diag::err_illegal_decl_array_incomplete_type,
6178           SourceRange(LParenLoc,
6179                       LiteralExpr->getSourceRange().getEnd())))
6180       return ExprError();
6181     if (literalType->isVariableArrayType())
6182       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
6183         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
6184   } else if (!literalType->isDependentType() &&
6185              RequireCompleteType(LParenLoc, literalType,
6186                diag::err_typecheck_decl_incomplete_type,
6187                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6188     return ExprError();
6189 
6190   InitializedEntity Entity
6191     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
6192   InitializationKind Kind
6193     = InitializationKind::CreateCStyleCast(LParenLoc,
6194                                            SourceRange(LParenLoc, RParenLoc),
6195                                            /*InitList=*/true);
6196   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
6197   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
6198                                       &literalType);
6199   if (Result.isInvalid())
6200     return ExprError();
6201   LiteralExpr = Result.get();
6202 
6203   bool isFileScope = !CurContext->isFunctionOrMethod();
6204 
6205   // In C, compound literals are l-values for some reason.
6206   // For GCC compatibility, in C++, file-scope array compound literals with
6207   // constant initializers are also l-values, and compound literals are
6208   // otherwise prvalues.
6209   //
6210   // (GCC also treats C++ list-initialized file-scope array prvalues with
6211   // constant initializers as l-values, but that's non-conforming, so we don't
6212   // follow it there.)
6213   //
6214   // FIXME: It would be better to handle the lvalue cases as materializing and
6215   // lifetime-extending a temporary object, but our materialized temporaries
6216   // representation only supports lifetime extension from a variable, not "out
6217   // of thin air".
6218   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
6219   // is bound to the result of applying array-to-pointer decay to the compound
6220   // literal.
6221   // FIXME: GCC supports compound literals of reference type, which should
6222   // obviously have a value kind derived from the kind of reference involved.
6223   ExprValueKind VK =
6224       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
6225           ? VK_RValue
6226           : VK_LValue;
6227 
6228   if (isFileScope)
6229     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
6230       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
6231         Expr *Init = ILE->getInit(i);
6232         ILE->setInit(i, ConstantExpr::Create(Context, Init));
6233       }
6234 
6235   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
6236                                               VK, LiteralExpr, isFileScope);
6237   if (isFileScope) {
6238     if (!LiteralExpr->isTypeDependent() &&
6239         !LiteralExpr->isValueDependent() &&
6240         !literalType->isDependentType()) // C99 6.5.2.5p3
6241       if (CheckForConstantInitializer(LiteralExpr, literalType))
6242         return ExprError();
6243   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
6244              literalType.getAddressSpace() != LangAS::Default) {
6245     // Embedded-C extensions to C99 6.5.2.5:
6246     //   "If the compound literal occurs inside the body of a function, the
6247     //   type name shall not be qualified by an address-space qualifier."
6248     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
6249       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
6250     return ExprError();
6251   }
6252 
6253   // Compound literals that have automatic storage duration are destroyed at
6254   // the end of the scope. Emit diagnostics if it is or contains a C union type
6255   // that is non-trivial to destruct.
6256   if (!isFileScope)
6257     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
6258       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
6259                             NTCUC_CompoundLiteral, NTCUK_Destruct);
6260 
6261   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
6262       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
6263     checkNonTrivialCUnionInInitializer(E->getInitializer(),
6264                                        E->getInitializer()->getExprLoc());
6265 
6266   return MaybeBindToTemporary(E);
6267 }
6268 
6269 ExprResult
6270 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6271                     SourceLocation RBraceLoc) {
6272   // Only produce each kind of designated initialization diagnostic once.
6273   SourceLocation FirstDesignator;
6274   bool DiagnosedArrayDesignator = false;
6275   bool DiagnosedNestedDesignator = false;
6276   bool DiagnosedMixedDesignator = false;
6277 
6278   // Check that any designated initializers are syntactically valid in the
6279   // current language mode.
6280   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6281     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
6282       if (FirstDesignator.isInvalid())
6283         FirstDesignator = DIE->getBeginLoc();
6284 
6285       if (!getLangOpts().CPlusPlus)
6286         break;
6287 
6288       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
6289         DiagnosedNestedDesignator = true;
6290         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
6291           << DIE->getDesignatorsSourceRange();
6292       }
6293 
6294       for (auto &Desig : DIE->designators()) {
6295         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
6296           DiagnosedArrayDesignator = true;
6297           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
6298             << Desig.getSourceRange();
6299         }
6300       }
6301 
6302       if (!DiagnosedMixedDesignator &&
6303           !isa<DesignatedInitExpr>(InitArgList[0])) {
6304         DiagnosedMixedDesignator = true;
6305         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6306           << DIE->getSourceRange();
6307         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
6308           << InitArgList[0]->getSourceRange();
6309       }
6310     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
6311                isa<DesignatedInitExpr>(InitArgList[0])) {
6312       DiagnosedMixedDesignator = true;
6313       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
6314       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6315         << DIE->getSourceRange();
6316       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
6317         << InitArgList[I]->getSourceRange();
6318     }
6319   }
6320 
6321   if (FirstDesignator.isValid()) {
6322     // Only diagnose designated initiaization as a C++20 extension if we didn't
6323     // already diagnose use of (non-C++20) C99 designator syntax.
6324     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
6325         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
6326       Diag(FirstDesignator, getLangOpts().CPlusPlus2a
6327                                 ? diag::warn_cxx17_compat_designated_init
6328                                 : diag::ext_cxx_designated_init);
6329     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
6330       Diag(FirstDesignator, diag::ext_designated_init);
6331     }
6332   }
6333 
6334   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
6335 }
6336 
6337 ExprResult
6338 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6339                     SourceLocation RBraceLoc) {
6340   // Semantic analysis for initializers is done by ActOnDeclarator() and
6341   // CheckInitializer() - it requires knowledge of the object being initialized.
6342 
6343   // Immediately handle non-overload placeholders.  Overloads can be
6344   // resolved contextually, but everything else here can't.
6345   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6346     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
6347       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
6348 
6349       // Ignore failures; dropping the entire initializer list because
6350       // of one failure would be terrible for indexing/etc.
6351       if (result.isInvalid()) continue;
6352 
6353       InitArgList[I] = result.get();
6354     }
6355   }
6356 
6357   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
6358                                                RBraceLoc);
6359   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
6360   return E;
6361 }
6362 
6363 /// Do an explicit extend of the given block pointer if we're in ARC.
6364 void Sema::maybeExtendBlockObject(ExprResult &E) {
6365   assert(E.get()->getType()->isBlockPointerType());
6366   assert(E.get()->isRValue());
6367 
6368   // Only do this in an r-value context.
6369   if (!getLangOpts().ObjCAutoRefCount) return;
6370 
6371   E = ImplicitCastExpr::Create(Context, E.get()->getType(),
6372                                CK_ARCExtendBlockObject, E.get(),
6373                                /*base path*/ nullptr, VK_RValue);
6374   Cleanup.setExprNeedsCleanups(true);
6375 }
6376 
6377 /// Prepare a conversion of the given expression to an ObjC object
6378 /// pointer type.
6379 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
6380   QualType type = E.get()->getType();
6381   if (type->isObjCObjectPointerType()) {
6382     return CK_BitCast;
6383   } else if (type->isBlockPointerType()) {
6384     maybeExtendBlockObject(E);
6385     return CK_BlockPointerToObjCPointerCast;
6386   } else {
6387     assert(type->isPointerType());
6388     return CK_CPointerToObjCPointerCast;
6389   }
6390 }
6391 
6392 /// Prepares for a scalar cast, performing all the necessary stages
6393 /// except the final cast and returning the kind required.
6394 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
6395   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
6396   // Also, callers should have filtered out the invalid cases with
6397   // pointers.  Everything else should be possible.
6398 
6399   QualType SrcTy = Src.get()->getType();
6400   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
6401     return CK_NoOp;
6402 
6403   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
6404   case Type::STK_MemberPointer:
6405     llvm_unreachable("member pointer type in C");
6406 
6407   case Type::STK_CPointer:
6408   case Type::STK_BlockPointer:
6409   case Type::STK_ObjCObjectPointer:
6410     switch (DestTy->getScalarTypeKind()) {
6411     case Type::STK_CPointer: {
6412       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
6413       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
6414       if (SrcAS != DestAS)
6415         return CK_AddressSpaceConversion;
6416       if (Context.hasCvrSimilarType(SrcTy, DestTy))
6417         return CK_NoOp;
6418       return CK_BitCast;
6419     }
6420     case Type::STK_BlockPointer:
6421       return (SrcKind == Type::STK_BlockPointer
6422                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
6423     case Type::STK_ObjCObjectPointer:
6424       if (SrcKind == Type::STK_ObjCObjectPointer)
6425         return CK_BitCast;
6426       if (SrcKind == Type::STK_CPointer)
6427         return CK_CPointerToObjCPointerCast;
6428       maybeExtendBlockObject(Src);
6429       return CK_BlockPointerToObjCPointerCast;
6430     case Type::STK_Bool:
6431       return CK_PointerToBoolean;
6432     case Type::STK_Integral:
6433       return CK_PointerToIntegral;
6434     case Type::STK_Floating:
6435     case Type::STK_FloatingComplex:
6436     case Type::STK_IntegralComplex:
6437     case Type::STK_MemberPointer:
6438     case Type::STK_FixedPoint:
6439       llvm_unreachable("illegal cast from pointer");
6440     }
6441     llvm_unreachable("Should have returned before this");
6442 
6443   case Type::STK_FixedPoint:
6444     switch (DestTy->getScalarTypeKind()) {
6445     case Type::STK_FixedPoint:
6446       return CK_FixedPointCast;
6447     case Type::STK_Bool:
6448       return CK_FixedPointToBoolean;
6449     case Type::STK_Integral:
6450       return CK_FixedPointToIntegral;
6451     case Type::STK_Floating:
6452     case Type::STK_IntegralComplex:
6453     case Type::STK_FloatingComplex:
6454       Diag(Src.get()->getExprLoc(),
6455            diag::err_unimplemented_conversion_with_fixed_point_type)
6456           << DestTy;
6457       return CK_IntegralCast;
6458     case Type::STK_CPointer:
6459     case Type::STK_ObjCObjectPointer:
6460     case Type::STK_BlockPointer:
6461     case Type::STK_MemberPointer:
6462       llvm_unreachable("illegal cast to pointer type");
6463     }
6464     llvm_unreachable("Should have returned before this");
6465 
6466   case Type::STK_Bool: // casting from bool is like casting from an integer
6467   case Type::STK_Integral:
6468     switch (DestTy->getScalarTypeKind()) {
6469     case Type::STK_CPointer:
6470     case Type::STK_ObjCObjectPointer:
6471     case Type::STK_BlockPointer:
6472       if (Src.get()->isNullPointerConstant(Context,
6473                                            Expr::NPC_ValueDependentIsNull))
6474         return CK_NullToPointer;
6475       return CK_IntegralToPointer;
6476     case Type::STK_Bool:
6477       return CK_IntegralToBoolean;
6478     case Type::STK_Integral:
6479       return CK_IntegralCast;
6480     case Type::STK_Floating:
6481       return CK_IntegralToFloating;
6482     case Type::STK_IntegralComplex:
6483       Src = ImpCastExprToType(Src.get(),
6484                       DestTy->castAs<ComplexType>()->getElementType(),
6485                       CK_IntegralCast);
6486       return CK_IntegralRealToComplex;
6487     case Type::STK_FloatingComplex:
6488       Src = ImpCastExprToType(Src.get(),
6489                       DestTy->castAs<ComplexType>()->getElementType(),
6490                       CK_IntegralToFloating);
6491       return CK_FloatingRealToComplex;
6492     case Type::STK_MemberPointer:
6493       llvm_unreachable("member pointer type in C");
6494     case Type::STK_FixedPoint:
6495       return CK_IntegralToFixedPoint;
6496     }
6497     llvm_unreachable("Should have returned before this");
6498 
6499   case Type::STK_Floating:
6500     switch (DestTy->getScalarTypeKind()) {
6501     case Type::STK_Floating:
6502       return CK_FloatingCast;
6503     case Type::STK_Bool:
6504       return CK_FloatingToBoolean;
6505     case Type::STK_Integral:
6506       return CK_FloatingToIntegral;
6507     case Type::STK_FloatingComplex:
6508       Src = ImpCastExprToType(Src.get(),
6509                               DestTy->castAs<ComplexType>()->getElementType(),
6510                               CK_FloatingCast);
6511       return CK_FloatingRealToComplex;
6512     case Type::STK_IntegralComplex:
6513       Src = ImpCastExprToType(Src.get(),
6514                               DestTy->castAs<ComplexType>()->getElementType(),
6515                               CK_FloatingToIntegral);
6516       return CK_IntegralRealToComplex;
6517     case Type::STK_CPointer:
6518     case Type::STK_ObjCObjectPointer:
6519     case Type::STK_BlockPointer:
6520       llvm_unreachable("valid float->pointer cast?");
6521     case Type::STK_MemberPointer:
6522       llvm_unreachable("member pointer type in C");
6523     case Type::STK_FixedPoint:
6524       Diag(Src.get()->getExprLoc(),
6525            diag::err_unimplemented_conversion_with_fixed_point_type)
6526           << SrcTy;
6527       return CK_IntegralCast;
6528     }
6529     llvm_unreachable("Should have returned before this");
6530 
6531   case Type::STK_FloatingComplex:
6532     switch (DestTy->getScalarTypeKind()) {
6533     case Type::STK_FloatingComplex:
6534       return CK_FloatingComplexCast;
6535     case Type::STK_IntegralComplex:
6536       return CK_FloatingComplexToIntegralComplex;
6537     case Type::STK_Floating: {
6538       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
6539       if (Context.hasSameType(ET, DestTy))
6540         return CK_FloatingComplexToReal;
6541       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
6542       return CK_FloatingCast;
6543     }
6544     case Type::STK_Bool:
6545       return CK_FloatingComplexToBoolean;
6546     case Type::STK_Integral:
6547       Src = ImpCastExprToType(Src.get(),
6548                               SrcTy->castAs<ComplexType>()->getElementType(),
6549                               CK_FloatingComplexToReal);
6550       return CK_FloatingToIntegral;
6551     case Type::STK_CPointer:
6552     case Type::STK_ObjCObjectPointer:
6553     case Type::STK_BlockPointer:
6554       llvm_unreachable("valid complex float->pointer cast?");
6555     case Type::STK_MemberPointer:
6556       llvm_unreachable("member pointer type in C");
6557     case Type::STK_FixedPoint:
6558       Diag(Src.get()->getExprLoc(),
6559            diag::err_unimplemented_conversion_with_fixed_point_type)
6560           << SrcTy;
6561       return CK_IntegralCast;
6562     }
6563     llvm_unreachable("Should have returned before this");
6564 
6565   case Type::STK_IntegralComplex:
6566     switch (DestTy->getScalarTypeKind()) {
6567     case Type::STK_FloatingComplex:
6568       return CK_IntegralComplexToFloatingComplex;
6569     case Type::STK_IntegralComplex:
6570       return CK_IntegralComplexCast;
6571     case Type::STK_Integral: {
6572       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
6573       if (Context.hasSameType(ET, DestTy))
6574         return CK_IntegralComplexToReal;
6575       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
6576       return CK_IntegralCast;
6577     }
6578     case Type::STK_Bool:
6579       return CK_IntegralComplexToBoolean;
6580     case Type::STK_Floating:
6581       Src = ImpCastExprToType(Src.get(),
6582                               SrcTy->castAs<ComplexType>()->getElementType(),
6583                               CK_IntegralComplexToReal);
6584       return CK_IntegralToFloating;
6585     case Type::STK_CPointer:
6586     case Type::STK_ObjCObjectPointer:
6587     case Type::STK_BlockPointer:
6588       llvm_unreachable("valid complex int->pointer cast?");
6589     case Type::STK_MemberPointer:
6590       llvm_unreachable("member pointer type in C");
6591     case Type::STK_FixedPoint:
6592       Diag(Src.get()->getExprLoc(),
6593            diag::err_unimplemented_conversion_with_fixed_point_type)
6594           << SrcTy;
6595       return CK_IntegralCast;
6596     }
6597     llvm_unreachable("Should have returned before this");
6598   }
6599 
6600   llvm_unreachable("Unhandled scalar cast");
6601 }
6602 
6603 static bool breakDownVectorType(QualType type, uint64_t &len,
6604                                 QualType &eltType) {
6605   // Vectors are simple.
6606   if (const VectorType *vecType = type->getAs<VectorType>()) {
6607     len = vecType->getNumElements();
6608     eltType = vecType->getElementType();
6609     assert(eltType->isScalarType());
6610     return true;
6611   }
6612 
6613   // We allow lax conversion to and from non-vector types, but only if
6614   // they're real types (i.e. non-complex, non-pointer scalar types).
6615   if (!type->isRealType()) return false;
6616 
6617   len = 1;
6618   eltType = type;
6619   return true;
6620 }
6621 
6622 /// Are the two types lax-compatible vector types?  That is, given
6623 /// that one of them is a vector, do they have equal storage sizes,
6624 /// where the storage size is the number of elements times the element
6625 /// size?
6626 ///
6627 /// This will also return false if either of the types is neither a
6628 /// vector nor a real type.
6629 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
6630   assert(destTy->isVectorType() || srcTy->isVectorType());
6631 
6632   // Disallow lax conversions between scalars and ExtVectors (these
6633   // conversions are allowed for other vector types because common headers
6634   // depend on them).  Most scalar OP ExtVector cases are handled by the
6635   // splat path anyway, which does what we want (convert, not bitcast).
6636   // What this rules out for ExtVectors is crazy things like char4*float.
6637   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
6638   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
6639 
6640   uint64_t srcLen, destLen;
6641   QualType srcEltTy, destEltTy;
6642   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
6643   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
6644 
6645   // ASTContext::getTypeSize will return the size rounded up to a
6646   // power of 2, so instead of using that, we need to use the raw
6647   // element size multiplied by the element count.
6648   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
6649   uint64_t destEltSize = Context.getTypeSize(destEltTy);
6650 
6651   return (srcLen * srcEltSize == destLen * destEltSize);
6652 }
6653 
6654 /// Is this a legal conversion between two types, one of which is
6655 /// known to be a vector type?
6656 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
6657   assert(destTy->isVectorType() || srcTy->isVectorType());
6658 
6659   switch (Context.getLangOpts().getLaxVectorConversions()) {
6660   case LangOptions::LaxVectorConversionKind::None:
6661     return false;
6662 
6663   case LangOptions::LaxVectorConversionKind::Integer:
6664     if (!srcTy->isIntegralOrEnumerationType()) {
6665       auto *Vec = srcTy->getAs<VectorType>();
6666       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
6667         return false;
6668     }
6669     if (!destTy->isIntegralOrEnumerationType()) {
6670       auto *Vec = destTy->getAs<VectorType>();
6671       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
6672         return false;
6673     }
6674     // OK, integer (vector) -> integer (vector) bitcast.
6675     break;
6676 
6677     case LangOptions::LaxVectorConversionKind::All:
6678     break;
6679   }
6680 
6681   return areLaxCompatibleVectorTypes(srcTy, destTy);
6682 }
6683 
6684 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
6685                            CastKind &Kind) {
6686   assert(VectorTy->isVectorType() && "Not a vector type!");
6687 
6688   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
6689     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
6690       return Diag(R.getBegin(),
6691                   Ty->isVectorType() ?
6692                   diag::err_invalid_conversion_between_vectors :
6693                   diag::err_invalid_conversion_between_vector_and_integer)
6694         << VectorTy << Ty << R;
6695   } else
6696     return Diag(R.getBegin(),
6697                 diag::err_invalid_conversion_between_vector_and_scalar)
6698       << VectorTy << Ty << R;
6699 
6700   Kind = CK_BitCast;
6701   return false;
6702 }
6703 
6704 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
6705   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
6706 
6707   if (DestElemTy == SplattedExpr->getType())
6708     return SplattedExpr;
6709 
6710   assert(DestElemTy->isFloatingType() ||
6711          DestElemTy->isIntegralOrEnumerationType());
6712 
6713   CastKind CK;
6714   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
6715     // OpenCL requires that we convert `true` boolean expressions to -1, but
6716     // only when splatting vectors.
6717     if (DestElemTy->isFloatingType()) {
6718       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
6719       // in two steps: boolean to signed integral, then to floating.
6720       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
6721                                                  CK_BooleanToSignedIntegral);
6722       SplattedExpr = CastExprRes.get();
6723       CK = CK_IntegralToFloating;
6724     } else {
6725       CK = CK_BooleanToSignedIntegral;
6726     }
6727   } else {
6728     ExprResult CastExprRes = SplattedExpr;
6729     CK = PrepareScalarCast(CastExprRes, DestElemTy);
6730     if (CastExprRes.isInvalid())
6731       return ExprError();
6732     SplattedExpr = CastExprRes.get();
6733   }
6734   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
6735 }
6736 
6737 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
6738                                     Expr *CastExpr, CastKind &Kind) {
6739   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
6740 
6741   QualType SrcTy = CastExpr->getType();
6742 
6743   // If SrcTy is a VectorType, the total size must match to explicitly cast to
6744   // an ExtVectorType.
6745   // In OpenCL, casts between vectors of different types are not allowed.
6746   // (See OpenCL 6.2).
6747   if (SrcTy->isVectorType()) {
6748     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
6749         (getLangOpts().OpenCL &&
6750          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
6751       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
6752         << DestTy << SrcTy << R;
6753       return ExprError();
6754     }
6755     Kind = CK_BitCast;
6756     return CastExpr;
6757   }
6758 
6759   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
6760   // conversion will take place first from scalar to elt type, and then
6761   // splat from elt type to vector.
6762   if (SrcTy->isPointerType())
6763     return Diag(R.getBegin(),
6764                 diag::err_invalid_conversion_between_vector_and_scalar)
6765       << DestTy << SrcTy << R;
6766 
6767   Kind = CK_VectorSplat;
6768   return prepareVectorSplat(DestTy, CastExpr);
6769 }
6770 
6771 ExprResult
6772 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
6773                     Declarator &D, ParsedType &Ty,
6774                     SourceLocation RParenLoc, Expr *CastExpr) {
6775   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
6776          "ActOnCastExpr(): missing type or expr");
6777 
6778   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
6779   if (D.isInvalidType())
6780     return ExprError();
6781 
6782   if (getLangOpts().CPlusPlus) {
6783     // Check that there are no default arguments (C++ only).
6784     CheckExtraCXXDefaultArguments(D);
6785   } else {
6786     // Make sure any TypoExprs have been dealt with.
6787     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
6788     if (!Res.isUsable())
6789       return ExprError();
6790     CastExpr = Res.get();
6791   }
6792 
6793   checkUnusedDeclAttributes(D);
6794 
6795   QualType castType = castTInfo->getType();
6796   Ty = CreateParsedType(castType, castTInfo);
6797 
6798   bool isVectorLiteral = false;
6799 
6800   // Check for an altivec or OpenCL literal,
6801   // i.e. all the elements are integer constants.
6802   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
6803   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
6804   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
6805        && castType->isVectorType() && (PE || PLE)) {
6806     if (PLE && PLE->getNumExprs() == 0) {
6807       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
6808       return ExprError();
6809     }
6810     if (PE || PLE->getNumExprs() == 1) {
6811       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
6812       if (!E->getType()->isVectorType())
6813         isVectorLiteral = true;
6814     }
6815     else
6816       isVectorLiteral = true;
6817   }
6818 
6819   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
6820   // then handle it as such.
6821   if (isVectorLiteral)
6822     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
6823 
6824   // If the Expr being casted is a ParenListExpr, handle it specially.
6825   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
6826   // sequence of BinOp comma operators.
6827   if (isa<ParenListExpr>(CastExpr)) {
6828     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
6829     if (Result.isInvalid()) return ExprError();
6830     CastExpr = Result.get();
6831   }
6832 
6833   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
6834       !getSourceManager().isInSystemMacro(LParenLoc))
6835     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
6836 
6837   CheckTollFreeBridgeCast(castType, CastExpr);
6838 
6839   CheckObjCBridgeRelatedCast(castType, CastExpr);
6840 
6841   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
6842 
6843   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
6844 }
6845 
6846 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
6847                                     SourceLocation RParenLoc, Expr *E,
6848                                     TypeSourceInfo *TInfo) {
6849   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
6850          "Expected paren or paren list expression");
6851 
6852   Expr **exprs;
6853   unsigned numExprs;
6854   Expr *subExpr;
6855   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
6856   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
6857     LiteralLParenLoc = PE->getLParenLoc();
6858     LiteralRParenLoc = PE->getRParenLoc();
6859     exprs = PE->getExprs();
6860     numExprs = PE->getNumExprs();
6861   } else { // isa<ParenExpr> by assertion at function entrance
6862     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
6863     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
6864     subExpr = cast<ParenExpr>(E)->getSubExpr();
6865     exprs = &subExpr;
6866     numExprs = 1;
6867   }
6868 
6869   QualType Ty = TInfo->getType();
6870   assert(Ty->isVectorType() && "Expected vector type");
6871 
6872   SmallVector<Expr *, 8> initExprs;
6873   const VectorType *VTy = Ty->castAs<VectorType>();
6874   unsigned numElems = VTy->getNumElements();
6875 
6876   // '(...)' form of vector initialization in AltiVec: the number of
6877   // initializers must be one or must match the size of the vector.
6878   // If a single value is specified in the initializer then it will be
6879   // replicated to all the components of the vector
6880   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
6881     // The number of initializers must be one or must match the size of the
6882     // vector. If a single value is specified in the initializer then it will
6883     // be replicated to all the components of the vector
6884     if (numExprs == 1) {
6885       QualType ElemTy = VTy->getElementType();
6886       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6887       if (Literal.isInvalid())
6888         return ExprError();
6889       Literal = ImpCastExprToType(Literal.get(), ElemTy,
6890                                   PrepareScalarCast(Literal, ElemTy));
6891       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6892     }
6893     else if (numExprs < numElems) {
6894       Diag(E->getExprLoc(),
6895            diag::err_incorrect_number_of_vector_initializers);
6896       return ExprError();
6897     }
6898     else
6899       initExprs.append(exprs, exprs + numExprs);
6900   }
6901   else {
6902     // For OpenCL, when the number of initializers is a single value,
6903     // it will be replicated to all components of the vector.
6904     if (getLangOpts().OpenCL &&
6905         VTy->getVectorKind() == VectorType::GenericVector &&
6906         numExprs == 1) {
6907         QualType ElemTy = VTy->getElementType();
6908         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6909         if (Literal.isInvalid())
6910           return ExprError();
6911         Literal = ImpCastExprToType(Literal.get(), ElemTy,
6912                                     PrepareScalarCast(Literal, ElemTy));
6913         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6914     }
6915 
6916     initExprs.append(exprs, exprs + numExprs);
6917   }
6918   // FIXME: This means that pretty-printing the final AST will produce curly
6919   // braces instead of the original commas.
6920   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
6921                                                    initExprs, LiteralRParenLoc);
6922   initE->setType(Ty);
6923   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
6924 }
6925 
6926 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
6927 /// the ParenListExpr into a sequence of comma binary operators.
6928 ExprResult
6929 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
6930   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
6931   if (!E)
6932     return OrigExpr;
6933 
6934   ExprResult Result(E->getExpr(0));
6935 
6936   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
6937     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
6938                         E->getExpr(i));
6939 
6940   if (Result.isInvalid()) return ExprError();
6941 
6942   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
6943 }
6944 
6945 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
6946                                     SourceLocation R,
6947                                     MultiExprArg Val) {
6948   return ParenListExpr::Create(Context, L, Val, R);
6949 }
6950 
6951 /// Emit a specialized diagnostic when one expression is a null pointer
6952 /// constant and the other is not a pointer.  Returns true if a diagnostic is
6953 /// emitted.
6954 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
6955                                       SourceLocation QuestionLoc) {
6956   Expr *NullExpr = LHSExpr;
6957   Expr *NonPointerExpr = RHSExpr;
6958   Expr::NullPointerConstantKind NullKind =
6959       NullExpr->isNullPointerConstant(Context,
6960                                       Expr::NPC_ValueDependentIsNotNull);
6961 
6962   if (NullKind == Expr::NPCK_NotNull) {
6963     NullExpr = RHSExpr;
6964     NonPointerExpr = LHSExpr;
6965     NullKind =
6966         NullExpr->isNullPointerConstant(Context,
6967                                         Expr::NPC_ValueDependentIsNotNull);
6968   }
6969 
6970   if (NullKind == Expr::NPCK_NotNull)
6971     return false;
6972 
6973   if (NullKind == Expr::NPCK_ZeroExpression)
6974     return false;
6975 
6976   if (NullKind == Expr::NPCK_ZeroLiteral) {
6977     // In this case, check to make sure that we got here from a "NULL"
6978     // string in the source code.
6979     NullExpr = NullExpr->IgnoreParenImpCasts();
6980     SourceLocation loc = NullExpr->getExprLoc();
6981     if (!findMacroSpelling(loc, "NULL"))
6982       return false;
6983   }
6984 
6985   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
6986   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
6987       << NonPointerExpr->getType() << DiagType
6988       << NonPointerExpr->getSourceRange();
6989   return true;
6990 }
6991 
6992 /// Return false if the condition expression is valid, true otherwise.
6993 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
6994   QualType CondTy = Cond->getType();
6995 
6996   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
6997   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
6998     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6999       << CondTy << Cond->getSourceRange();
7000     return true;
7001   }
7002 
7003   // C99 6.5.15p2
7004   if (CondTy->isScalarType()) return false;
7005 
7006   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7007     << CondTy << Cond->getSourceRange();
7008   return true;
7009 }
7010 
7011 /// Handle when one or both operands are void type.
7012 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7013                                          ExprResult &RHS) {
7014     Expr *LHSExpr = LHS.get();
7015     Expr *RHSExpr = RHS.get();
7016 
7017     if (!LHSExpr->getType()->isVoidType())
7018       S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7019           << RHSExpr->getSourceRange();
7020     if (!RHSExpr->getType()->isVoidType())
7021       S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7022           << LHSExpr->getSourceRange();
7023     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7024     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7025     return S.Context.VoidTy;
7026 }
7027 
7028 /// Return false if the NullExpr can be promoted to PointerTy,
7029 /// true otherwise.
7030 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7031                                         QualType PointerTy) {
7032   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7033       !NullExpr.get()->isNullPointerConstant(S.Context,
7034                                             Expr::NPC_ValueDependentIsNull))
7035     return true;
7036 
7037   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7038   return false;
7039 }
7040 
7041 /// Checks compatibility between two pointers and return the resulting
7042 /// type.
7043 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7044                                                      ExprResult &RHS,
7045                                                      SourceLocation Loc) {
7046   QualType LHSTy = LHS.get()->getType();
7047   QualType RHSTy = RHS.get()->getType();
7048 
7049   if (S.Context.hasSameType(LHSTy, RHSTy)) {
7050     // Two identical pointers types are always compatible.
7051     return LHSTy;
7052   }
7053 
7054   QualType lhptee, rhptee;
7055 
7056   // Get the pointee types.
7057   bool IsBlockPointer = false;
7058   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7059     lhptee = LHSBTy->getPointeeType();
7060     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7061     IsBlockPointer = true;
7062   } else {
7063     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7064     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7065   }
7066 
7067   // C99 6.5.15p6: If both operands are pointers to compatible types or to
7068   // differently qualified versions of compatible types, the result type is
7069   // a pointer to an appropriately qualified version of the composite
7070   // type.
7071 
7072   // Only CVR-qualifiers exist in the standard, and the differently-qualified
7073   // clause doesn't make sense for our extensions. E.g. address space 2 should
7074   // be incompatible with address space 3: they may live on different devices or
7075   // anything.
7076   Qualifiers lhQual = lhptee.getQualifiers();
7077   Qualifiers rhQual = rhptee.getQualifiers();
7078 
7079   LangAS ResultAddrSpace = LangAS::Default;
7080   LangAS LAddrSpace = lhQual.getAddressSpace();
7081   LangAS RAddrSpace = rhQual.getAddressSpace();
7082 
7083   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7084   // spaces is disallowed.
7085   if (lhQual.isAddressSpaceSupersetOf(rhQual))
7086     ResultAddrSpace = LAddrSpace;
7087   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7088     ResultAddrSpace = RAddrSpace;
7089   else {
7090     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7091         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7092         << RHS.get()->getSourceRange();
7093     return QualType();
7094   }
7095 
7096   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7097   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7098   lhQual.removeCVRQualifiers();
7099   rhQual.removeCVRQualifiers();
7100 
7101   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7102   // (C99 6.7.3) for address spaces. We assume that the check should behave in
7103   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7104   // qual types are compatible iff
7105   //  * corresponded types are compatible
7106   //  * CVR qualifiers are equal
7107   //  * address spaces are equal
7108   // Thus for conditional operator we merge CVR and address space unqualified
7109   // pointees and if there is a composite type we return a pointer to it with
7110   // merged qualifiers.
7111   LHSCastKind =
7112       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7113   RHSCastKind =
7114       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7115   lhQual.removeAddressSpace();
7116   rhQual.removeAddressSpace();
7117 
7118   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7119   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7120 
7121   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
7122 
7123   if (CompositeTy.isNull()) {
7124     // In this situation, we assume void* type. No especially good
7125     // reason, but this is what gcc does, and we do have to pick
7126     // to get a consistent AST.
7127     QualType incompatTy;
7128     incompatTy = S.Context.getPointerType(
7129         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
7130     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
7131     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
7132 
7133     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
7134     // for casts between types with incompatible address space qualifiers.
7135     // For the following code the compiler produces casts between global and
7136     // local address spaces of the corresponded innermost pointees:
7137     // local int *global *a;
7138     // global int *global *b;
7139     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
7140     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
7141         << LHSTy << RHSTy << LHS.get()->getSourceRange()
7142         << RHS.get()->getSourceRange();
7143 
7144     return incompatTy;
7145   }
7146 
7147   // The pointer types are compatible.
7148   // In case of OpenCL ResultTy should have the address space qualifier
7149   // which is a superset of address spaces of both the 2nd and the 3rd
7150   // operands of the conditional operator.
7151   QualType ResultTy = [&, ResultAddrSpace]() {
7152     if (S.getLangOpts().OpenCL) {
7153       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
7154       CompositeQuals.setAddressSpace(ResultAddrSpace);
7155       return S.Context
7156           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
7157           .withCVRQualifiers(MergedCVRQual);
7158     }
7159     return CompositeTy.withCVRQualifiers(MergedCVRQual);
7160   }();
7161   if (IsBlockPointer)
7162     ResultTy = S.Context.getBlockPointerType(ResultTy);
7163   else
7164     ResultTy = S.Context.getPointerType(ResultTy);
7165 
7166   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
7167   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
7168   return ResultTy;
7169 }
7170 
7171 /// Return the resulting type when the operands are both block pointers.
7172 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
7173                                                           ExprResult &LHS,
7174                                                           ExprResult &RHS,
7175                                                           SourceLocation Loc) {
7176   QualType LHSTy = LHS.get()->getType();
7177   QualType RHSTy = RHS.get()->getType();
7178 
7179   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
7180     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
7181       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
7182       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7183       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7184       return destType;
7185     }
7186     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
7187       << LHSTy << RHSTy << LHS.get()->getSourceRange()
7188       << RHS.get()->getSourceRange();
7189     return QualType();
7190   }
7191 
7192   // We have 2 block pointer types.
7193   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7194 }
7195 
7196 /// Return the resulting type when the operands are both pointers.
7197 static QualType
7198 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
7199                                             ExprResult &RHS,
7200                                             SourceLocation Loc) {
7201   // get the pointer types
7202   QualType LHSTy = LHS.get()->getType();
7203   QualType RHSTy = RHS.get()->getType();
7204 
7205   // get the "pointed to" types
7206   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7207   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7208 
7209   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
7210   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
7211     // Figure out necessary qualifiers (C99 6.5.15p6)
7212     QualType destPointee
7213       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7214     QualType destType = S.Context.getPointerType(destPointee);
7215     // Add qualifiers if necessary.
7216     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7217     // Promote to void*.
7218     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7219     return destType;
7220   }
7221   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
7222     QualType destPointee
7223       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7224     QualType destType = S.Context.getPointerType(destPointee);
7225     // Add qualifiers if necessary.
7226     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7227     // Promote to void*.
7228     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7229     return destType;
7230   }
7231 
7232   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7233 }
7234 
7235 /// Return false if the first expression is not an integer and the second
7236 /// expression is not a pointer, true otherwise.
7237 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
7238                                         Expr* PointerExpr, SourceLocation Loc,
7239                                         bool IsIntFirstExpr) {
7240   if (!PointerExpr->getType()->isPointerType() ||
7241       !Int.get()->getType()->isIntegerType())
7242     return false;
7243 
7244   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
7245   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
7246 
7247   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
7248     << Expr1->getType() << Expr2->getType()
7249     << Expr1->getSourceRange() << Expr2->getSourceRange();
7250   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
7251                             CK_IntegralToPointer);
7252   return true;
7253 }
7254 
7255 /// Simple conversion between integer and floating point types.
7256 ///
7257 /// Used when handling the OpenCL conditional operator where the
7258 /// condition is a vector while the other operands are scalar.
7259 ///
7260 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
7261 /// types are either integer or floating type. Between the two
7262 /// operands, the type with the higher rank is defined as the "result
7263 /// type". The other operand needs to be promoted to the same type. No
7264 /// other type promotion is allowed. We cannot use
7265 /// UsualArithmeticConversions() for this purpose, since it always
7266 /// promotes promotable types.
7267 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
7268                                             ExprResult &RHS,
7269                                             SourceLocation QuestionLoc) {
7270   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
7271   if (LHS.isInvalid())
7272     return QualType();
7273   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
7274   if (RHS.isInvalid())
7275     return QualType();
7276 
7277   // For conversion purposes, we ignore any qualifiers.
7278   // For example, "const float" and "float" are equivalent.
7279   QualType LHSType =
7280     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
7281   QualType RHSType =
7282     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
7283 
7284   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
7285     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7286       << LHSType << LHS.get()->getSourceRange();
7287     return QualType();
7288   }
7289 
7290   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
7291     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7292       << RHSType << RHS.get()->getSourceRange();
7293     return QualType();
7294   }
7295 
7296   // If both types are identical, no conversion is needed.
7297   if (LHSType == RHSType)
7298     return LHSType;
7299 
7300   // Now handle "real" floating types (i.e. float, double, long double).
7301   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
7302     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
7303                                  /*IsCompAssign = */ false);
7304 
7305   // Finally, we have two differing integer types.
7306   return handleIntegerConversion<doIntegralCast, doIntegralCast>
7307   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
7308 }
7309 
7310 /// Convert scalar operands to a vector that matches the
7311 ///        condition in length.
7312 ///
7313 /// Used when handling the OpenCL conditional operator where the
7314 /// condition is a vector while the other operands are scalar.
7315 ///
7316 /// We first compute the "result type" for the scalar operands
7317 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
7318 /// into a vector of that type where the length matches the condition
7319 /// vector type. s6.11.6 requires that the element types of the result
7320 /// and the condition must have the same number of bits.
7321 static QualType
7322 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
7323                               QualType CondTy, SourceLocation QuestionLoc) {
7324   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
7325   if (ResTy.isNull()) return QualType();
7326 
7327   const VectorType *CV = CondTy->getAs<VectorType>();
7328   assert(CV);
7329 
7330   // Determine the vector result type
7331   unsigned NumElements = CV->getNumElements();
7332   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
7333 
7334   // Ensure that all types have the same number of bits
7335   if (S.Context.getTypeSize(CV->getElementType())
7336       != S.Context.getTypeSize(ResTy)) {
7337     // Since VectorTy is created internally, it does not pretty print
7338     // with an OpenCL name. Instead, we just print a description.
7339     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
7340     SmallString<64> Str;
7341     llvm::raw_svector_ostream OS(Str);
7342     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
7343     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
7344       << CondTy << OS.str();
7345     return QualType();
7346   }
7347 
7348   // Convert operands to the vector result type
7349   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
7350   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
7351 
7352   return VectorTy;
7353 }
7354 
7355 /// Return false if this is a valid OpenCL condition vector
7356 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
7357                                        SourceLocation QuestionLoc) {
7358   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
7359   // integral type.
7360   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
7361   assert(CondTy);
7362   QualType EleTy = CondTy->getElementType();
7363   if (EleTy->isIntegerType()) return false;
7364 
7365   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7366     << Cond->getType() << Cond->getSourceRange();
7367   return true;
7368 }
7369 
7370 /// Return false if the vector condition type and the vector
7371 ///        result type are compatible.
7372 ///
7373 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
7374 /// number of elements, and their element types have the same number
7375 /// of bits.
7376 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
7377                               SourceLocation QuestionLoc) {
7378   const VectorType *CV = CondTy->getAs<VectorType>();
7379   const VectorType *RV = VecResTy->getAs<VectorType>();
7380   assert(CV && RV);
7381 
7382   if (CV->getNumElements() != RV->getNumElements()) {
7383     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
7384       << CondTy << VecResTy;
7385     return true;
7386   }
7387 
7388   QualType CVE = CV->getElementType();
7389   QualType RVE = RV->getElementType();
7390 
7391   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
7392     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
7393       << CondTy << VecResTy;
7394     return true;
7395   }
7396 
7397   return false;
7398 }
7399 
7400 /// Return the resulting type for the conditional operator in
7401 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
7402 ///        s6.3.i) when the condition is a vector type.
7403 static QualType
7404 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
7405                              ExprResult &LHS, ExprResult &RHS,
7406                              SourceLocation QuestionLoc) {
7407   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
7408   if (Cond.isInvalid())
7409     return QualType();
7410   QualType CondTy = Cond.get()->getType();
7411 
7412   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
7413     return QualType();
7414 
7415   // If either operand is a vector then find the vector type of the
7416   // result as specified in OpenCL v1.1 s6.3.i.
7417   if (LHS.get()->getType()->isVectorType() ||
7418       RHS.get()->getType()->isVectorType()) {
7419     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
7420                                               /*isCompAssign*/false,
7421                                               /*AllowBothBool*/true,
7422                                               /*AllowBoolConversions*/false);
7423     if (VecResTy.isNull()) return QualType();
7424     // The result type must match the condition type as specified in
7425     // OpenCL v1.1 s6.11.6.
7426     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
7427       return QualType();
7428     return VecResTy;
7429   }
7430 
7431   // Both operands are scalar.
7432   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
7433 }
7434 
7435 /// Return true if the Expr is block type
7436 static bool checkBlockType(Sema &S, const Expr *E) {
7437   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
7438     QualType Ty = CE->getCallee()->getType();
7439     if (Ty->isBlockPointerType()) {
7440       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
7441       return true;
7442     }
7443   }
7444   return false;
7445 }
7446 
7447 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
7448 /// In that case, LHS = cond.
7449 /// C99 6.5.15
7450 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
7451                                         ExprResult &RHS, ExprValueKind &VK,
7452                                         ExprObjectKind &OK,
7453                                         SourceLocation QuestionLoc) {
7454 
7455   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
7456   if (!LHSResult.isUsable()) return QualType();
7457   LHS = LHSResult;
7458 
7459   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
7460   if (!RHSResult.isUsable()) return QualType();
7461   RHS = RHSResult;
7462 
7463   // C++ is sufficiently different to merit its own checker.
7464   if (getLangOpts().CPlusPlus)
7465     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
7466 
7467   VK = VK_RValue;
7468   OK = OK_Ordinary;
7469 
7470   // The OpenCL operator with a vector condition is sufficiently
7471   // different to merit its own checker.
7472   if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
7473     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
7474 
7475   // First, check the condition.
7476   Cond = UsualUnaryConversions(Cond.get());
7477   if (Cond.isInvalid())
7478     return QualType();
7479   if (checkCondition(*this, Cond.get(), QuestionLoc))
7480     return QualType();
7481 
7482   // Now check the two expressions.
7483   if (LHS.get()->getType()->isVectorType() ||
7484       RHS.get()->getType()->isVectorType())
7485     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
7486                                /*AllowBothBool*/true,
7487                                /*AllowBoolConversions*/false);
7488 
7489   QualType ResTy =
7490       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
7491   if (LHS.isInvalid() || RHS.isInvalid())
7492     return QualType();
7493 
7494   QualType LHSTy = LHS.get()->getType();
7495   QualType RHSTy = RHS.get()->getType();
7496 
7497   // Diagnose attempts to convert between __float128 and long double where
7498   // such conversions currently can't be handled.
7499   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
7500     Diag(QuestionLoc,
7501          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
7502       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7503     return QualType();
7504   }
7505 
7506   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
7507   // selection operator (?:).
7508   if (getLangOpts().OpenCL &&
7509       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
7510     return QualType();
7511   }
7512 
7513   // If both operands have arithmetic type, do the usual arithmetic conversions
7514   // to find a common type: C99 6.5.15p3,5.
7515   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
7516     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
7517     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
7518 
7519     return ResTy;
7520   }
7521 
7522   // If both operands are the same structure or union type, the result is that
7523   // type.
7524   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
7525     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
7526       if (LHSRT->getDecl() == RHSRT->getDecl())
7527         // "If both the operands have structure or union type, the result has
7528         // that type."  This implies that CV qualifiers are dropped.
7529         return LHSTy.getUnqualifiedType();
7530     // FIXME: Type of conditional expression must be complete in C mode.
7531   }
7532 
7533   // C99 6.5.15p5: "If both operands have void type, the result has void type."
7534   // The following || allows only one side to be void (a GCC-ism).
7535   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
7536     return checkConditionalVoidType(*this, LHS, RHS);
7537   }
7538 
7539   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
7540   // the type of the other operand."
7541   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
7542   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
7543 
7544   // All objective-c pointer type analysis is done here.
7545   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
7546                                                         QuestionLoc);
7547   if (LHS.isInvalid() || RHS.isInvalid())
7548     return QualType();
7549   if (!compositeType.isNull())
7550     return compositeType;
7551 
7552 
7553   // Handle block pointer types.
7554   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
7555     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
7556                                                      QuestionLoc);
7557 
7558   // Check constraints for C object pointers types (C99 6.5.15p3,6).
7559   if (LHSTy->isPointerType() && RHSTy->isPointerType())
7560     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
7561                                                        QuestionLoc);
7562 
7563   // GCC compatibility: soften pointer/integer mismatch.  Note that
7564   // null pointers have been filtered out by this point.
7565   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
7566       /*IsIntFirstExpr=*/true))
7567     return RHSTy;
7568   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
7569       /*IsIntFirstExpr=*/false))
7570     return LHSTy;
7571 
7572   // Emit a better diagnostic if one of the expressions is a null pointer
7573   // constant and the other is not a pointer type. In this case, the user most
7574   // likely forgot to take the address of the other expression.
7575   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
7576     return QualType();
7577 
7578   // Otherwise, the operands are not compatible.
7579   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
7580     << LHSTy << RHSTy << LHS.get()->getSourceRange()
7581     << RHS.get()->getSourceRange();
7582   return QualType();
7583 }
7584 
7585 /// FindCompositeObjCPointerType - Helper method to find composite type of
7586 /// two objective-c pointer types of the two input expressions.
7587 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
7588                                             SourceLocation QuestionLoc) {
7589   QualType LHSTy = LHS.get()->getType();
7590   QualType RHSTy = RHS.get()->getType();
7591 
7592   // Handle things like Class and struct objc_class*.  Here we case the result
7593   // to the pseudo-builtin, because that will be implicitly cast back to the
7594   // redefinition type if an attempt is made to access its fields.
7595   if (LHSTy->isObjCClassType() &&
7596       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
7597     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
7598     return LHSTy;
7599   }
7600   if (RHSTy->isObjCClassType() &&
7601       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
7602     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
7603     return RHSTy;
7604   }
7605   // And the same for struct objc_object* / id
7606   if (LHSTy->isObjCIdType() &&
7607       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
7608     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
7609     return LHSTy;
7610   }
7611   if (RHSTy->isObjCIdType() &&
7612       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
7613     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
7614     return RHSTy;
7615   }
7616   // And the same for struct objc_selector* / SEL
7617   if (Context.isObjCSelType(LHSTy) &&
7618       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
7619     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
7620     return LHSTy;
7621   }
7622   if (Context.isObjCSelType(RHSTy) &&
7623       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
7624     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
7625     return RHSTy;
7626   }
7627   // Check constraints for Objective-C object pointers types.
7628   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
7629 
7630     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
7631       // Two identical object pointer types are always compatible.
7632       return LHSTy;
7633     }
7634     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
7635     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
7636     QualType compositeType = LHSTy;
7637 
7638     // If both operands are interfaces and either operand can be
7639     // assigned to the other, use that type as the composite
7640     // type. This allows
7641     //   xxx ? (A*) a : (B*) b
7642     // where B is a subclass of A.
7643     //
7644     // Additionally, as for assignment, if either type is 'id'
7645     // allow silent coercion. Finally, if the types are
7646     // incompatible then make sure to use 'id' as the composite
7647     // type so the result is acceptable for sending messages to.
7648 
7649     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
7650     // It could return the composite type.
7651     if (!(compositeType =
7652           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
7653       // Nothing more to do.
7654     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
7655       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
7656     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
7657       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
7658     } else if ((LHSOPT->isObjCQualifiedIdType() ||
7659                 RHSOPT->isObjCQualifiedIdType()) &&
7660                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
7661                                                          true)) {
7662       // Need to handle "id<xx>" explicitly.
7663       // GCC allows qualified id and any Objective-C type to devolve to
7664       // id. Currently localizing to here until clear this should be
7665       // part of ObjCQualifiedIdTypesAreCompatible.
7666       compositeType = Context.getObjCIdType();
7667     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
7668       compositeType = Context.getObjCIdType();
7669     } else {
7670       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
7671       << LHSTy << RHSTy
7672       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7673       QualType incompatTy = Context.getObjCIdType();
7674       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
7675       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
7676       return incompatTy;
7677     }
7678     // The object pointer types are compatible.
7679     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
7680     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
7681     return compositeType;
7682   }
7683   // Check Objective-C object pointer types and 'void *'
7684   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
7685     if (getLangOpts().ObjCAutoRefCount) {
7686       // ARC forbids the implicit conversion of object pointers to 'void *',
7687       // so these types are not compatible.
7688       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
7689           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7690       LHS = RHS = true;
7691       return QualType();
7692     }
7693     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7694     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
7695     QualType destPointee
7696     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7697     QualType destType = Context.getPointerType(destPointee);
7698     // Add qualifiers if necessary.
7699     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7700     // Promote to void*.
7701     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7702     return destType;
7703   }
7704   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
7705     if (getLangOpts().ObjCAutoRefCount) {
7706       // ARC forbids the implicit conversion of object pointers to 'void *',
7707       // so these types are not compatible.
7708       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
7709           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7710       LHS = RHS = true;
7711       return QualType();
7712     }
7713     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
7714     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7715     QualType destPointee
7716     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7717     QualType destType = Context.getPointerType(destPointee);
7718     // Add qualifiers if necessary.
7719     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7720     // Promote to void*.
7721     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7722     return destType;
7723   }
7724   return QualType();
7725 }
7726 
7727 /// SuggestParentheses - Emit a note with a fixit hint that wraps
7728 /// ParenRange in parentheses.
7729 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
7730                                const PartialDiagnostic &Note,
7731                                SourceRange ParenRange) {
7732   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
7733   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
7734       EndLoc.isValid()) {
7735     Self.Diag(Loc, Note)
7736       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
7737       << FixItHint::CreateInsertion(EndLoc, ")");
7738   } else {
7739     // We can't display the parentheses, so just show the bare note.
7740     Self.Diag(Loc, Note) << ParenRange;
7741   }
7742 }
7743 
7744 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
7745   return BinaryOperator::isAdditiveOp(Opc) ||
7746          BinaryOperator::isMultiplicativeOp(Opc) ||
7747          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
7748   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
7749   // not any of the logical operators.  Bitwise-xor is commonly used as a
7750   // logical-xor because there is no logical-xor operator.  The logical
7751   // operators, including uses of xor, have a high false positive rate for
7752   // precedence warnings.
7753 }
7754 
7755 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
7756 /// expression, either using a built-in or overloaded operator,
7757 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
7758 /// expression.
7759 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
7760                                    Expr **RHSExprs) {
7761   // Don't strip parenthesis: we should not warn if E is in parenthesis.
7762   E = E->IgnoreImpCasts();
7763   E = E->IgnoreConversionOperator();
7764   E = E->IgnoreImpCasts();
7765   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
7766     E = MTE->getSubExpr();
7767     E = E->IgnoreImpCasts();
7768   }
7769 
7770   // Built-in binary operator.
7771   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
7772     if (IsArithmeticOp(OP->getOpcode())) {
7773       *Opcode = OP->getOpcode();
7774       *RHSExprs = OP->getRHS();
7775       return true;
7776     }
7777   }
7778 
7779   // Overloaded operator.
7780   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
7781     if (Call->getNumArgs() != 2)
7782       return false;
7783 
7784     // Make sure this is really a binary operator that is safe to pass into
7785     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
7786     OverloadedOperatorKind OO = Call->getOperator();
7787     if (OO < OO_Plus || OO > OO_Arrow ||
7788         OO == OO_PlusPlus || OO == OO_MinusMinus)
7789       return false;
7790 
7791     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
7792     if (IsArithmeticOp(OpKind)) {
7793       *Opcode = OpKind;
7794       *RHSExprs = Call->getArg(1);
7795       return true;
7796     }
7797   }
7798 
7799   return false;
7800 }
7801 
7802 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
7803 /// or is a logical expression such as (x==y) which has int type, but is
7804 /// commonly interpreted as boolean.
7805 static bool ExprLooksBoolean(Expr *E) {
7806   E = E->IgnoreParenImpCasts();
7807 
7808   if (E->getType()->isBooleanType())
7809     return true;
7810   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
7811     return OP->isComparisonOp() || OP->isLogicalOp();
7812   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
7813     return OP->getOpcode() == UO_LNot;
7814   if (E->getType()->isPointerType())
7815     return true;
7816   // FIXME: What about overloaded operator calls returning "unspecified boolean
7817   // type"s (commonly pointer-to-members)?
7818 
7819   return false;
7820 }
7821 
7822 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
7823 /// and binary operator are mixed in a way that suggests the programmer assumed
7824 /// the conditional operator has higher precedence, for example:
7825 /// "int x = a + someBinaryCondition ? 1 : 2".
7826 static void DiagnoseConditionalPrecedence(Sema &Self,
7827                                           SourceLocation OpLoc,
7828                                           Expr *Condition,
7829                                           Expr *LHSExpr,
7830                                           Expr *RHSExpr) {
7831   BinaryOperatorKind CondOpcode;
7832   Expr *CondRHS;
7833 
7834   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
7835     return;
7836   if (!ExprLooksBoolean(CondRHS))
7837     return;
7838 
7839   // The condition is an arithmetic binary expression, with a right-
7840   // hand side that looks boolean, so warn.
7841 
7842   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
7843                         ? diag::warn_precedence_bitwise_conditional
7844                         : diag::warn_precedence_conditional;
7845 
7846   Self.Diag(OpLoc, DiagID)
7847       << Condition->getSourceRange()
7848       << BinaryOperator::getOpcodeStr(CondOpcode);
7849 
7850   SuggestParentheses(
7851       Self, OpLoc,
7852       Self.PDiag(diag::note_precedence_silence)
7853           << BinaryOperator::getOpcodeStr(CondOpcode),
7854       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
7855 
7856   SuggestParentheses(Self, OpLoc,
7857                      Self.PDiag(diag::note_precedence_conditional_first),
7858                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
7859 }
7860 
7861 /// Compute the nullability of a conditional expression.
7862 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
7863                                               QualType LHSTy, QualType RHSTy,
7864                                               ASTContext &Ctx) {
7865   if (!ResTy->isAnyPointerType())
7866     return ResTy;
7867 
7868   auto GetNullability = [&Ctx](QualType Ty) {
7869     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
7870     if (Kind)
7871       return *Kind;
7872     return NullabilityKind::Unspecified;
7873   };
7874 
7875   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
7876   NullabilityKind MergedKind;
7877 
7878   // Compute nullability of a binary conditional expression.
7879   if (IsBin) {
7880     if (LHSKind == NullabilityKind::NonNull)
7881       MergedKind = NullabilityKind::NonNull;
7882     else
7883       MergedKind = RHSKind;
7884   // Compute nullability of a normal conditional expression.
7885   } else {
7886     if (LHSKind == NullabilityKind::Nullable ||
7887         RHSKind == NullabilityKind::Nullable)
7888       MergedKind = NullabilityKind::Nullable;
7889     else if (LHSKind == NullabilityKind::NonNull)
7890       MergedKind = RHSKind;
7891     else if (RHSKind == NullabilityKind::NonNull)
7892       MergedKind = LHSKind;
7893     else
7894       MergedKind = NullabilityKind::Unspecified;
7895   }
7896 
7897   // Return if ResTy already has the correct nullability.
7898   if (GetNullability(ResTy) == MergedKind)
7899     return ResTy;
7900 
7901   // Strip all nullability from ResTy.
7902   while (ResTy->getNullability(Ctx))
7903     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
7904 
7905   // Create a new AttributedType with the new nullability kind.
7906   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
7907   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
7908 }
7909 
7910 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
7911 /// in the case of a the GNU conditional expr extension.
7912 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
7913                                     SourceLocation ColonLoc,
7914                                     Expr *CondExpr, Expr *LHSExpr,
7915                                     Expr *RHSExpr) {
7916   if (!getLangOpts().CPlusPlus) {
7917     // C cannot handle TypoExpr nodes in the condition because it
7918     // doesn't handle dependent types properly, so make sure any TypoExprs have
7919     // been dealt with before checking the operands.
7920     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
7921     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
7922     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
7923 
7924     if (!CondResult.isUsable())
7925       return ExprError();
7926 
7927     if (LHSExpr) {
7928       if (!LHSResult.isUsable())
7929         return ExprError();
7930     }
7931 
7932     if (!RHSResult.isUsable())
7933       return ExprError();
7934 
7935     CondExpr = CondResult.get();
7936     LHSExpr = LHSResult.get();
7937     RHSExpr = RHSResult.get();
7938   }
7939 
7940   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
7941   // was the condition.
7942   OpaqueValueExpr *opaqueValue = nullptr;
7943   Expr *commonExpr = nullptr;
7944   if (!LHSExpr) {
7945     commonExpr = CondExpr;
7946     // Lower out placeholder types first.  This is important so that we don't
7947     // try to capture a placeholder. This happens in few cases in C++; such
7948     // as Objective-C++'s dictionary subscripting syntax.
7949     if (commonExpr->hasPlaceholderType()) {
7950       ExprResult result = CheckPlaceholderExpr(commonExpr);
7951       if (!result.isUsable()) return ExprError();
7952       commonExpr = result.get();
7953     }
7954     // We usually want to apply unary conversions *before* saving, except
7955     // in the special case of a C++ l-value conditional.
7956     if (!(getLangOpts().CPlusPlus
7957           && !commonExpr->isTypeDependent()
7958           && commonExpr->getValueKind() == RHSExpr->getValueKind()
7959           && commonExpr->isGLValue()
7960           && commonExpr->isOrdinaryOrBitFieldObject()
7961           && RHSExpr->isOrdinaryOrBitFieldObject()
7962           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
7963       ExprResult commonRes = UsualUnaryConversions(commonExpr);
7964       if (commonRes.isInvalid())
7965         return ExprError();
7966       commonExpr = commonRes.get();
7967     }
7968 
7969     // If the common expression is a class or array prvalue, materialize it
7970     // so that we can safely refer to it multiple times.
7971     if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
7972                                    commonExpr->getType()->isArrayType())) {
7973       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
7974       if (MatExpr.isInvalid())
7975         return ExprError();
7976       commonExpr = MatExpr.get();
7977     }
7978 
7979     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
7980                                                 commonExpr->getType(),
7981                                                 commonExpr->getValueKind(),
7982                                                 commonExpr->getObjectKind(),
7983                                                 commonExpr);
7984     LHSExpr = CondExpr = opaqueValue;
7985   }
7986 
7987   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
7988   ExprValueKind VK = VK_RValue;
7989   ExprObjectKind OK = OK_Ordinary;
7990   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
7991   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
7992                                              VK, OK, QuestionLoc);
7993   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
7994       RHS.isInvalid())
7995     return ExprError();
7996 
7997   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
7998                                 RHS.get());
7999 
8000   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8001 
8002   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8003                                          Context);
8004 
8005   if (!commonExpr)
8006     return new (Context)
8007         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8008                             RHS.get(), result, VK, OK);
8009 
8010   return new (Context) BinaryConditionalOperator(
8011       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8012       ColonLoc, result, VK, OK);
8013 }
8014 
8015 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8016 // being closely modeled after the C99 spec:-). The odd characteristic of this
8017 // routine is it effectively iqnores the qualifiers on the top level pointee.
8018 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8019 // FIXME: add a couple examples in this comment.
8020 static Sema::AssignConvertType
8021 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8022   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8023   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8024 
8025   // get the "pointed to" type (ignoring qualifiers at the top level)
8026   const Type *lhptee, *rhptee;
8027   Qualifiers lhq, rhq;
8028   std::tie(lhptee, lhq) =
8029       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8030   std::tie(rhptee, rhq) =
8031       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8032 
8033   Sema::AssignConvertType ConvTy = Sema::Compatible;
8034 
8035   // C99 6.5.16.1p1: This following citation is common to constraints
8036   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8037   // qualifiers of the type *pointed to* by the right;
8038 
8039   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8040   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8041       lhq.compatiblyIncludesObjCLifetime(rhq)) {
8042     // Ignore lifetime for further calculation.
8043     lhq.removeObjCLifetime();
8044     rhq.removeObjCLifetime();
8045   }
8046 
8047   if (!lhq.compatiblyIncludes(rhq)) {
8048     // Treat address-space mismatches as fatal.
8049     if (!lhq.isAddressSpaceSupersetOf(rhq))
8050       return Sema::IncompatiblePointerDiscardsQualifiers;
8051 
8052     // It's okay to add or remove GC or lifetime qualifiers when converting to
8053     // and from void*.
8054     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8055                         .compatiblyIncludes(
8056                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
8057              && (lhptee->isVoidType() || rhptee->isVoidType()))
8058       ; // keep old
8059 
8060     // Treat lifetime mismatches as fatal.
8061     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8062       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8063 
8064     // For GCC/MS compatibility, other qualifier mismatches are treated
8065     // as still compatible in C.
8066     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8067   }
8068 
8069   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8070   // incomplete type and the other is a pointer to a qualified or unqualified
8071   // version of void...
8072   if (lhptee->isVoidType()) {
8073     if (rhptee->isIncompleteOrObjectType())
8074       return ConvTy;
8075 
8076     // As an extension, we allow cast to/from void* to function pointer.
8077     assert(rhptee->isFunctionType());
8078     return Sema::FunctionVoidPointer;
8079   }
8080 
8081   if (rhptee->isVoidType()) {
8082     if (lhptee->isIncompleteOrObjectType())
8083       return ConvTy;
8084 
8085     // As an extension, we allow cast to/from void* to function pointer.
8086     assert(lhptee->isFunctionType());
8087     return Sema::FunctionVoidPointer;
8088   }
8089 
8090   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8091   // unqualified versions of compatible types, ...
8092   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8093   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
8094     // Check if the pointee types are compatible ignoring the sign.
8095     // We explicitly check for char so that we catch "char" vs
8096     // "unsigned char" on systems where "char" is unsigned.
8097     if (lhptee->isCharType())
8098       ltrans = S.Context.UnsignedCharTy;
8099     else if (lhptee->hasSignedIntegerRepresentation())
8100       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
8101 
8102     if (rhptee->isCharType())
8103       rtrans = S.Context.UnsignedCharTy;
8104     else if (rhptee->hasSignedIntegerRepresentation())
8105       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
8106 
8107     if (ltrans == rtrans) {
8108       // Types are compatible ignoring the sign. Qualifier incompatibility
8109       // takes priority over sign incompatibility because the sign
8110       // warning can be disabled.
8111       if (ConvTy != Sema::Compatible)
8112         return ConvTy;
8113 
8114       return Sema::IncompatiblePointerSign;
8115     }
8116 
8117     // If we are a multi-level pointer, it's possible that our issue is simply
8118     // one of qualification - e.g. char ** -> const char ** is not allowed. If
8119     // the eventual target type is the same and the pointers have the same
8120     // level of indirection, this must be the issue.
8121     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
8122       do {
8123         std::tie(lhptee, lhq) =
8124           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
8125         std::tie(rhptee, rhq) =
8126           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
8127 
8128         // Inconsistent address spaces at this point is invalid, even if the
8129         // address spaces would be compatible.
8130         // FIXME: This doesn't catch address space mismatches for pointers of
8131         // different nesting levels, like:
8132         //   __local int *** a;
8133         //   int ** b = a;
8134         // It's not clear how to actually determine when such pointers are
8135         // invalidly incompatible.
8136         if (lhq.getAddressSpace() != rhq.getAddressSpace())
8137           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8138 
8139       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
8140 
8141       if (lhptee == rhptee)
8142         return Sema::IncompatibleNestedPointerQualifiers;
8143     }
8144 
8145     // General pointer incompatibility takes priority over qualifiers.
8146     return Sema::IncompatiblePointer;
8147   }
8148   if (!S.getLangOpts().CPlusPlus &&
8149       S.IsFunctionConversion(ltrans, rtrans, ltrans))
8150     return Sema::IncompatiblePointer;
8151   return ConvTy;
8152 }
8153 
8154 /// checkBlockPointerTypesForAssignment - This routine determines whether two
8155 /// block pointer types are compatible or whether a block and normal pointer
8156 /// are compatible. It is more restrict than comparing two function pointer
8157 // types.
8158 static Sema::AssignConvertType
8159 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8160                                     QualType RHSType) {
8161   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8162   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8163 
8164   QualType lhptee, rhptee;
8165 
8166   // get the "pointed to" type (ignoring qualifiers at the top level)
8167   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
8168   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
8169 
8170   // In C++, the types have to match exactly.
8171   if (S.getLangOpts().CPlusPlus)
8172     return Sema::IncompatibleBlockPointer;
8173 
8174   Sema::AssignConvertType ConvTy = Sema::Compatible;
8175 
8176   // For blocks we enforce that qualifiers are identical.
8177   Qualifiers LQuals = lhptee.getLocalQualifiers();
8178   Qualifiers RQuals = rhptee.getLocalQualifiers();
8179   if (S.getLangOpts().OpenCL) {
8180     LQuals.removeAddressSpace();
8181     RQuals.removeAddressSpace();
8182   }
8183   if (LQuals != RQuals)
8184     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8185 
8186   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
8187   // assignment.
8188   // The current behavior is similar to C++ lambdas. A block might be
8189   // assigned to a variable iff its return type and parameters are compatible
8190   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
8191   // an assignment. Presumably it should behave in way that a function pointer
8192   // assignment does in C, so for each parameter and return type:
8193   //  * CVR and address space of LHS should be a superset of CVR and address
8194   //  space of RHS.
8195   //  * unqualified types should be compatible.
8196   if (S.getLangOpts().OpenCL) {
8197     if (!S.Context.typesAreBlockPointerCompatible(
8198             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
8199             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
8200       return Sema::IncompatibleBlockPointer;
8201   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
8202     return Sema::IncompatibleBlockPointer;
8203 
8204   return ConvTy;
8205 }
8206 
8207 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
8208 /// for assignment compatibility.
8209 static Sema::AssignConvertType
8210 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
8211                                    QualType RHSType) {
8212   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
8213   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
8214 
8215   if (LHSType->isObjCBuiltinType()) {
8216     // Class is not compatible with ObjC object pointers.
8217     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
8218         !RHSType->isObjCQualifiedClassType())
8219       return Sema::IncompatiblePointer;
8220     return Sema::Compatible;
8221   }
8222   if (RHSType->isObjCBuiltinType()) {
8223     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
8224         !LHSType->isObjCQualifiedClassType())
8225       return Sema::IncompatiblePointer;
8226     return Sema::Compatible;
8227   }
8228   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8229   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8230 
8231   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
8232       // make an exception for id<P>
8233       !LHSType->isObjCQualifiedIdType())
8234     return Sema::CompatiblePointerDiscardsQualifiers;
8235 
8236   if (S.Context.typesAreCompatible(LHSType, RHSType))
8237     return Sema::Compatible;
8238   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
8239     return Sema::IncompatibleObjCQualifiedId;
8240   return Sema::IncompatiblePointer;
8241 }
8242 
8243 Sema::AssignConvertType
8244 Sema::CheckAssignmentConstraints(SourceLocation Loc,
8245                                  QualType LHSType, QualType RHSType) {
8246   // Fake up an opaque expression.  We don't actually care about what
8247   // cast operations are required, so if CheckAssignmentConstraints
8248   // adds casts to this they'll be wasted, but fortunately that doesn't
8249   // usually happen on valid code.
8250   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
8251   ExprResult RHSPtr = &RHSExpr;
8252   CastKind K;
8253 
8254   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
8255 }
8256 
8257 /// This helper function returns true if QT is a vector type that has element
8258 /// type ElementType.
8259 static bool isVector(QualType QT, QualType ElementType) {
8260   if (const VectorType *VT = QT->getAs<VectorType>())
8261     return VT->getElementType() == ElementType;
8262   return false;
8263 }
8264 
8265 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
8266 /// has code to accommodate several GCC extensions when type checking
8267 /// pointers. Here are some objectionable examples that GCC considers warnings:
8268 ///
8269 ///  int a, *pint;
8270 ///  short *pshort;
8271 ///  struct foo *pfoo;
8272 ///
8273 ///  pint = pshort; // warning: assignment from incompatible pointer type
8274 ///  a = pint; // warning: assignment makes integer from pointer without a cast
8275 ///  pint = a; // warning: assignment makes pointer from integer without a cast
8276 ///  pint = pfoo; // warning: assignment from incompatible pointer type
8277 ///
8278 /// As a result, the code for dealing with pointers is more complex than the
8279 /// C99 spec dictates.
8280 ///
8281 /// Sets 'Kind' for any result kind except Incompatible.
8282 Sema::AssignConvertType
8283 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
8284                                  CastKind &Kind, bool ConvertRHS) {
8285   QualType RHSType = RHS.get()->getType();
8286   QualType OrigLHSType = LHSType;
8287 
8288   // Get canonical types.  We're not formatting these types, just comparing
8289   // them.
8290   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
8291   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
8292 
8293   // Common case: no conversion required.
8294   if (LHSType == RHSType) {
8295     Kind = CK_NoOp;
8296     return Compatible;
8297   }
8298 
8299   // If we have an atomic type, try a non-atomic assignment, then just add an
8300   // atomic qualification step.
8301   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
8302     Sema::AssignConvertType result =
8303       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
8304     if (result != Compatible)
8305       return result;
8306     if (Kind != CK_NoOp && ConvertRHS)
8307       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
8308     Kind = CK_NonAtomicToAtomic;
8309     return Compatible;
8310   }
8311 
8312   // If the left-hand side is a reference type, then we are in a
8313   // (rare!) case where we've allowed the use of references in C,
8314   // e.g., as a parameter type in a built-in function. In this case,
8315   // just make sure that the type referenced is compatible with the
8316   // right-hand side type. The caller is responsible for adjusting
8317   // LHSType so that the resulting expression does not have reference
8318   // type.
8319   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
8320     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
8321       Kind = CK_LValueBitCast;
8322       return Compatible;
8323     }
8324     return Incompatible;
8325   }
8326 
8327   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
8328   // to the same ExtVector type.
8329   if (LHSType->isExtVectorType()) {
8330     if (RHSType->isExtVectorType())
8331       return Incompatible;
8332     if (RHSType->isArithmeticType()) {
8333       // CK_VectorSplat does T -> vector T, so first cast to the element type.
8334       if (ConvertRHS)
8335         RHS = prepareVectorSplat(LHSType, RHS.get());
8336       Kind = CK_VectorSplat;
8337       return Compatible;
8338     }
8339   }
8340 
8341   // Conversions to or from vector type.
8342   if (LHSType->isVectorType() || RHSType->isVectorType()) {
8343     if (LHSType->isVectorType() && RHSType->isVectorType()) {
8344       // Allow assignments of an AltiVec vector type to an equivalent GCC
8345       // vector type and vice versa
8346       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
8347         Kind = CK_BitCast;
8348         return Compatible;
8349       }
8350 
8351       // If we are allowing lax vector conversions, and LHS and RHS are both
8352       // vectors, the total size only needs to be the same. This is a bitcast;
8353       // no bits are changed but the result type is different.
8354       if (isLaxVectorConversion(RHSType, LHSType)) {
8355         Kind = CK_BitCast;
8356         return IncompatibleVectors;
8357       }
8358     }
8359 
8360     // When the RHS comes from another lax conversion (e.g. binops between
8361     // scalars and vectors) the result is canonicalized as a vector. When the
8362     // LHS is also a vector, the lax is allowed by the condition above. Handle
8363     // the case where LHS is a scalar.
8364     if (LHSType->isScalarType()) {
8365       const VectorType *VecType = RHSType->getAs<VectorType>();
8366       if (VecType && VecType->getNumElements() == 1 &&
8367           isLaxVectorConversion(RHSType, LHSType)) {
8368         ExprResult *VecExpr = &RHS;
8369         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
8370         Kind = CK_BitCast;
8371         return Compatible;
8372       }
8373     }
8374 
8375     return Incompatible;
8376   }
8377 
8378   // Diagnose attempts to convert between __float128 and long double where
8379   // such conversions currently can't be handled.
8380   if (unsupportedTypeConversion(*this, LHSType, RHSType))
8381     return Incompatible;
8382 
8383   // Disallow assigning a _Complex to a real type in C++ mode since it simply
8384   // discards the imaginary part.
8385   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
8386       !LHSType->getAs<ComplexType>())
8387     return Incompatible;
8388 
8389   // Arithmetic conversions.
8390   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
8391       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
8392     if (ConvertRHS)
8393       Kind = PrepareScalarCast(RHS, LHSType);
8394     return Compatible;
8395   }
8396 
8397   // Conversions to normal pointers.
8398   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
8399     // U* -> T*
8400     if (isa<PointerType>(RHSType)) {
8401       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
8402       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
8403       if (AddrSpaceL != AddrSpaceR)
8404         Kind = CK_AddressSpaceConversion;
8405       else if (Context.hasCvrSimilarType(RHSType, LHSType))
8406         Kind = CK_NoOp;
8407       else
8408         Kind = CK_BitCast;
8409       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
8410     }
8411 
8412     // int -> T*
8413     if (RHSType->isIntegerType()) {
8414       Kind = CK_IntegralToPointer; // FIXME: null?
8415       return IntToPointer;
8416     }
8417 
8418     // C pointers are not compatible with ObjC object pointers,
8419     // with two exceptions:
8420     if (isa<ObjCObjectPointerType>(RHSType)) {
8421       //  - conversions to void*
8422       if (LHSPointer->getPointeeType()->isVoidType()) {
8423         Kind = CK_BitCast;
8424         return Compatible;
8425       }
8426 
8427       //  - conversions from 'Class' to the redefinition type
8428       if (RHSType->isObjCClassType() &&
8429           Context.hasSameType(LHSType,
8430                               Context.getObjCClassRedefinitionType())) {
8431         Kind = CK_BitCast;
8432         return Compatible;
8433       }
8434 
8435       Kind = CK_BitCast;
8436       return IncompatiblePointer;
8437     }
8438 
8439     // U^ -> void*
8440     if (RHSType->getAs<BlockPointerType>()) {
8441       if (LHSPointer->getPointeeType()->isVoidType()) {
8442         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
8443         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
8444                                 ->getPointeeType()
8445                                 .getAddressSpace();
8446         Kind =
8447             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
8448         return Compatible;
8449       }
8450     }
8451 
8452     return Incompatible;
8453   }
8454 
8455   // Conversions to block pointers.
8456   if (isa<BlockPointerType>(LHSType)) {
8457     // U^ -> T^
8458     if (RHSType->isBlockPointerType()) {
8459       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
8460                               ->getPointeeType()
8461                               .getAddressSpace();
8462       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
8463                               ->getPointeeType()
8464                               .getAddressSpace();
8465       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
8466       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
8467     }
8468 
8469     // int or null -> T^
8470     if (RHSType->isIntegerType()) {
8471       Kind = CK_IntegralToPointer; // FIXME: null
8472       return IntToBlockPointer;
8473     }
8474 
8475     // id -> T^
8476     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
8477       Kind = CK_AnyPointerToBlockPointerCast;
8478       return Compatible;
8479     }
8480 
8481     // void* -> T^
8482     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
8483       if (RHSPT->getPointeeType()->isVoidType()) {
8484         Kind = CK_AnyPointerToBlockPointerCast;
8485         return Compatible;
8486       }
8487 
8488     return Incompatible;
8489   }
8490 
8491   // Conversions to Objective-C pointers.
8492   if (isa<ObjCObjectPointerType>(LHSType)) {
8493     // A* -> B*
8494     if (RHSType->isObjCObjectPointerType()) {
8495       Kind = CK_BitCast;
8496       Sema::AssignConvertType result =
8497         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
8498       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8499           result == Compatible &&
8500           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
8501         result = IncompatibleObjCWeakRef;
8502       return result;
8503     }
8504 
8505     // int or null -> A*
8506     if (RHSType->isIntegerType()) {
8507       Kind = CK_IntegralToPointer; // FIXME: null
8508       return IntToPointer;
8509     }
8510 
8511     // In general, C pointers are not compatible with ObjC object pointers,
8512     // with two exceptions:
8513     if (isa<PointerType>(RHSType)) {
8514       Kind = CK_CPointerToObjCPointerCast;
8515 
8516       //  - conversions from 'void*'
8517       if (RHSType->isVoidPointerType()) {
8518         return Compatible;
8519       }
8520 
8521       //  - conversions to 'Class' from its redefinition type
8522       if (LHSType->isObjCClassType() &&
8523           Context.hasSameType(RHSType,
8524                               Context.getObjCClassRedefinitionType())) {
8525         return Compatible;
8526       }
8527 
8528       return IncompatiblePointer;
8529     }
8530 
8531     // Only under strict condition T^ is compatible with an Objective-C pointer.
8532     if (RHSType->isBlockPointerType() &&
8533         LHSType->isBlockCompatibleObjCPointerType(Context)) {
8534       if (ConvertRHS)
8535         maybeExtendBlockObject(RHS);
8536       Kind = CK_BlockPointerToObjCPointerCast;
8537       return Compatible;
8538     }
8539 
8540     return Incompatible;
8541   }
8542 
8543   // Conversions from pointers that are not covered by the above.
8544   if (isa<PointerType>(RHSType)) {
8545     // T* -> _Bool
8546     if (LHSType == Context.BoolTy) {
8547       Kind = CK_PointerToBoolean;
8548       return Compatible;
8549     }
8550 
8551     // T* -> int
8552     if (LHSType->isIntegerType()) {
8553       Kind = CK_PointerToIntegral;
8554       return PointerToInt;
8555     }
8556 
8557     return Incompatible;
8558   }
8559 
8560   // Conversions from Objective-C pointers that are not covered by the above.
8561   if (isa<ObjCObjectPointerType>(RHSType)) {
8562     // T* -> _Bool
8563     if (LHSType == Context.BoolTy) {
8564       Kind = CK_PointerToBoolean;
8565       return Compatible;
8566     }
8567 
8568     // T* -> int
8569     if (LHSType->isIntegerType()) {
8570       Kind = CK_PointerToIntegral;
8571       return PointerToInt;
8572     }
8573 
8574     return Incompatible;
8575   }
8576 
8577   // struct A -> struct B
8578   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
8579     if (Context.typesAreCompatible(LHSType, RHSType)) {
8580       Kind = CK_NoOp;
8581       return Compatible;
8582     }
8583   }
8584 
8585   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
8586     Kind = CK_IntToOCLSampler;
8587     return Compatible;
8588   }
8589 
8590   return Incompatible;
8591 }
8592 
8593 /// Constructs a transparent union from an expression that is
8594 /// used to initialize the transparent union.
8595 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
8596                                       ExprResult &EResult, QualType UnionType,
8597                                       FieldDecl *Field) {
8598   // Build an initializer list that designates the appropriate member
8599   // of the transparent union.
8600   Expr *E = EResult.get();
8601   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
8602                                                    E, SourceLocation());
8603   Initializer->setType(UnionType);
8604   Initializer->setInitializedFieldInUnion(Field);
8605 
8606   // Build a compound literal constructing a value of the transparent
8607   // union type from this initializer list.
8608   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
8609   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
8610                                         VK_RValue, Initializer, false);
8611 }
8612 
8613 Sema::AssignConvertType
8614 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
8615                                                ExprResult &RHS) {
8616   QualType RHSType = RHS.get()->getType();
8617 
8618   // If the ArgType is a Union type, we want to handle a potential
8619   // transparent_union GCC extension.
8620   const RecordType *UT = ArgType->getAsUnionType();
8621   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
8622     return Incompatible;
8623 
8624   // The field to initialize within the transparent union.
8625   RecordDecl *UD = UT->getDecl();
8626   FieldDecl *InitField = nullptr;
8627   // It's compatible if the expression matches any of the fields.
8628   for (auto *it : UD->fields()) {
8629     if (it->getType()->isPointerType()) {
8630       // If the transparent union contains a pointer type, we allow:
8631       // 1) void pointer
8632       // 2) null pointer constant
8633       if (RHSType->isPointerType())
8634         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
8635           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
8636           InitField = it;
8637           break;
8638         }
8639 
8640       if (RHS.get()->isNullPointerConstant(Context,
8641                                            Expr::NPC_ValueDependentIsNull)) {
8642         RHS = ImpCastExprToType(RHS.get(), it->getType(),
8643                                 CK_NullToPointer);
8644         InitField = it;
8645         break;
8646       }
8647     }
8648 
8649     CastKind Kind;
8650     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
8651           == Compatible) {
8652       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
8653       InitField = it;
8654       break;
8655     }
8656   }
8657 
8658   if (!InitField)
8659     return Incompatible;
8660 
8661   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
8662   return Compatible;
8663 }
8664 
8665 Sema::AssignConvertType
8666 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
8667                                        bool Diagnose,
8668                                        bool DiagnoseCFAudited,
8669                                        bool ConvertRHS) {
8670   // We need to be able to tell the caller whether we diagnosed a problem, if
8671   // they ask us to issue diagnostics.
8672   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
8673 
8674   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
8675   // we can't avoid *all* modifications at the moment, so we need some somewhere
8676   // to put the updated value.
8677   ExprResult LocalRHS = CallerRHS;
8678   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
8679 
8680   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
8681     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
8682       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8683           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8684         Diag(RHS.get()->getExprLoc(),
8685              diag::warn_noderef_to_dereferenceable_pointer)
8686             << RHS.get()->getSourceRange();
8687       }
8688     }
8689   }
8690 
8691   if (getLangOpts().CPlusPlus) {
8692     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
8693       // C++ 5.17p3: If the left operand is not of class type, the
8694       // expression is implicitly converted (C++ 4) to the
8695       // cv-unqualified type of the left operand.
8696       QualType RHSType = RHS.get()->getType();
8697       if (Diagnose) {
8698         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8699                                         AA_Assigning);
8700       } else {
8701         ImplicitConversionSequence ICS =
8702             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8703                                   /*SuppressUserConversions=*/false,
8704                                   /*AllowExplicit=*/false,
8705                                   /*InOverloadResolution=*/false,
8706                                   /*CStyle=*/false,
8707                                   /*AllowObjCWritebackConversion=*/false);
8708         if (ICS.isFailure())
8709           return Incompatible;
8710         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8711                                         ICS, AA_Assigning);
8712       }
8713       if (RHS.isInvalid())
8714         return Incompatible;
8715       Sema::AssignConvertType result = Compatible;
8716       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8717           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
8718         result = IncompatibleObjCWeakRef;
8719       return result;
8720     }
8721 
8722     // FIXME: Currently, we fall through and treat C++ classes like C
8723     // structures.
8724     // FIXME: We also fall through for atomics; not sure what should
8725     // happen there, though.
8726   } else if (RHS.get()->getType() == Context.OverloadTy) {
8727     // As a set of extensions to C, we support overloading on functions. These
8728     // functions need to be resolved here.
8729     DeclAccessPair DAP;
8730     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
8731             RHS.get(), LHSType, /*Complain=*/false, DAP))
8732       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
8733     else
8734       return Incompatible;
8735   }
8736 
8737   // C99 6.5.16.1p1: the left operand is a pointer and the right is
8738   // a null pointer constant.
8739   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
8740        LHSType->isBlockPointerType()) &&
8741       RHS.get()->isNullPointerConstant(Context,
8742                                        Expr::NPC_ValueDependentIsNull)) {
8743     if (Diagnose || ConvertRHS) {
8744       CastKind Kind;
8745       CXXCastPath Path;
8746       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
8747                              /*IgnoreBaseAccess=*/false, Diagnose);
8748       if (ConvertRHS)
8749         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
8750     }
8751     return Compatible;
8752   }
8753 
8754   // OpenCL queue_t type assignment.
8755   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
8756                                  Context, Expr::NPC_ValueDependentIsNull)) {
8757     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
8758     return Compatible;
8759   }
8760 
8761   // This check seems unnatural, however it is necessary to ensure the proper
8762   // conversion of functions/arrays. If the conversion were done for all
8763   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
8764   // expressions that suppress this implicit conversion (&, sizeof).
8765   //
8766   // Suppress this for references: C++ 8.5.3p5.
8767   if (!LHSType->isReferenceType()) {
8768     // FIXME: We potentially allocate here even if ConvertRHS is false.
8769     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
8770     if (RHS.isInvalid())
8771       return Incompatible;
8772   }
8773   CastKind Kind;
8774   Sema::AssignConvertType result =
8775     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
8776 
8777   // C99 6.5.16.1p2: The value of the right operand is converted to the
8778   // type of the assignment expression.
8779   // CheckAssignmentConstraints allows the left-hand side to be a reference,
8780   // so that we can use references in built-in functions even in C.
8781   // The getNonReferenceType() call makes sure that the resulting expression
8782   // does not have reference type.
8783   if (result != Incompatible && RHS.get()->getType() != LHSType) {
8784     QualType Ty = LHSType.getNonLValueExprType(Context);
8785     Expr *E = RHS.get();
8786 
8787     // Check for various Objective-C errors. If we are not reporting
8788     // diagnostics and just checking for errors, e.g., during overload
8789     // resolution, return Incompatible to indicate the failure.
8790     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8791         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
8792                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
8793       if (!Diagnose)
8794         return Incompatible;
8795     }
8796     if (getLangOpts().ObjC &&
8797         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
8798                                            E->getType(), E, Diagnose) ||
8799          ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) {
8800       if (!Diagnose)
8801         return Incompatible;
8802       // Replace the expression with a corrected version and continue so we
8803       // can find further errors.
8804       RHS = E;
8805       return Compatible;
8806     }
8807 
8808     if (ConvertRHS)
8809       RHS = ImpCastExprToType(E, Ty, Kind);
8810   }
8811 
8812   return result;
8813 }
8814 
8815 namespace {
8816 /// The original operand to an operator, prior to the application of the usual
8817 /// arithmetic conversions and converting the arguments of a builtin operator
8818 /// candidate.
8819 struct OriginalOperand {
8820   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
8821     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
8822       Op = MTE->getSubExpr();
8823     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
8824       Op = BTE->getSubExpr();
8825     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
8826       Orig = ICE->getSubExprAsWritten();
8827       Conversion = ICE->getConversionFunction();
8828     }
8829   }
8830 
8831   QualType getType() const { return Orig->getType(); }
8832 
8833   Expr *Orig;
8834   NamedDecl *Conversion;
8835 };
8836 }
8837 
8838 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
8839                                ExprResult &RHS) {
8840   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
8841 
8842   Diag(Loc, diag::err_typecheck_invalid_operands)
8843     << OrigLHS.getType() << OrigRHS.getType()
8844     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8845 
8846   // If a user-defined conversion was applied to either of the operands prior
8847   // to applying the built-in operator rules, tell the user about it.
8848   if (OrigLHS.Conversion) {
8849     Diag(OrigLHS.Conversion->getLocation(),
8850          diag::note_typecheck_invalid_operands_converted)
8851       << 0 << LHS.get()->getType();
8852   }
8853   if (OrigRHS.Conversion) {
8854     Diag(OrigRHS.Conversion->getLocation(),
8855          diag::note_typecheck_invalid_operands_converted)
8856       << 1 << RHS.get()->getType();
8857   }
8858 
8859   return QualType();
8860 }
8861 
8862 // Diagnose cases where a scalar was implicitly converted to a vector and
8863 // diagnose the underlying types. Otherwise, diagnose the error
8864 // as invalid vector logical operands for non-C++ cases.
8865 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
8866                                             ExprResult &RHS) {
8867   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
8868   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
8869 
8870   bool LHSNatVec = LHSType->isVectorType();
8871   bool RHSNatVec = RHSType->isVectorType();
8872 
8873   if (!(LHSNatVec && RHSNatVec)) {
8874     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
8875     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
8876     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
8877         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
8878         << Vector->getSourceRange();
8879     return QualType();
8880   }
8881 
8882   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
8883       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
8884       << RHS.get()->getSourceRange();
8885 
8886   return QualType();
8887 }
8888 
8889 /// Try to convert a value of non-vector type to a vector type by converting
8890 /// the type to the element type of the vector and then performing a splat.
8891 /// If the language is OpenCL, we only use conversions that promote scalar
8892 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
8893 /// for float->int.
8894 ///
8895 /// OpenCL V2.0 6.2.6.p2:
8896 /// An error shall occur if any scalar operand type has greater rank
8897 /// than the type of the vector element.
8898 ///
8899 /// \param scalar - if non-null, actually perform the conversions
8900 /// \return true if the operation fails (but without diagnosing the failure)
8901 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
8902                                      QualType scalarTy,
8903                                      QualType vectorEltTy,
8904                                      QualType vectorTy,
8905                                      unsigned &DiagID) {
8906   // The conversion to apply to the scalar before splatting it,
8907   // if necessary.
8908   CastKind scalarCast = CK_NoOp;
8909 
8910   if (vectorEltTy->isIntegralType(S.Context)) {
8911     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
8912         (scalarTy->isIntegerType() &&
8913          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
8914       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
8915       return true;
8916     }
8917     if (!scalarTy->isIntegralType(S.Context))
8918       return true;
8919     scalarCast = CK_IntegralCast;
8920   } else if (vectorEltTy->isRealFloatingType()) {
8921     if (scalarTy->isRealFloatingType()) {
8922       if (S.getLangOpts().OpenCL &&
8923           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
8924         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
8925         return true;
8926       }
8927       scalarCast = CK_FloatingCast;
8928     }
8929     else if (scalarTy->isIntegralType(S.Context))
8930       scalarCast = CK_IntegralToFloating;
8931     else
8932       return true;
8933   } else {
8934     return true;
8935   }
8936 
8937   // Adjust scalar if desired.
8938   if (scalar) {
8939     if (scalarCast != CK_NoOp)
8940       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
8941     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
8942   }
8943   return false;
8944 }
8945 
8946 /// Convert vector E to a vector with the same number of elements but different
8947 /// element type.
8948 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
8949   const auto *VecTy = E->getType()->getAs<VectorType>();
8950   assert(VecTy && "Expression E must be a vector");
8951   QualType NewVecTy = S.Context.getVectorType(ElementType,
8952                                               VecTy->getNumElements(),
8953                                               VecTy->getVectorKind());
8954 
8955   // Look through the implicit cast. Return the subexpression if its type is
8956   // NewVecTy.
8957   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
8958     if (ICE->getSubExpr()->getType() == NewVecTy)
8959       return ICE->getSubExpr();
8960 
8961   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
8962   return S.ImpCastExprToType(E, NewVecTy, Cast);
8963 }
8964 
8965 /// Test if a (constant) integer Int can be casted to another integer type
8966 /// IntTy without losing precision.
8967 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
8968                                       QualType OtherIntTy) {
8969   QualType IntTy = Int->get()->getType().getUnqualifiedType();
8970 
8971   // Reject cases where the value of the Int is unknown as that would
8972   // possibly cause truncation, but accept cases where the scalar can be
8973   // demoted without loss of precision.
8974   Expr::EvalResult EVResult;
8975   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
8976   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
8977   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
8978   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
8979 
8980   if (CstInt) {
8981     // If the scalar is constant and is of a higher order and has more active
8982     // bits that the vector element type, reject it.
8983     llvm::APSInt Result = EVResult.Val.getInt();
8984     unsigned NumBits = IntSigned
8985                            ? (Result.isNegative() ? Result.getMinSignedBits()
8986                                                   : Result.getActiveBits())
8987                            : Result.getActiveBits();
8988     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
8989       return true;
8990 
8991     // If the signedness of the scalar type and the vector element type
8992     // differs and the number of bits is greater than that of the vector
8993     // element reject it.
8994     return (IntSigned != OtherIntSigned &&
8995             NumBits > S.Context.getIntWidth(OtherIntTy));
8996   }
8997 
8998   // Reject cases where the value of the scalar is not constant and it's
8999   // order is greater than that of the vector element type.
9000   return (Order < 0);
9001 }
9002 
9003 /// Test if a (constant) integer Int can be casted to floating point type
9004 /// FloatTy without losing precision.
9005 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9006                                      QualType FloatTy) {
9007   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9008 
9009   // Determine if the integer constant can be expressed as a floating point
9010   // number of the appropriate type.
9011   Expr::EvalResult EVResult;
9012   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9013 
9014   uint64_t Bits = 0;
9015   if (CstInt) {
9016     // Reject constants that would be truncated if they were converted to
9017     // the floating point type. Test by simple to/from conversion.
9018     // FIXME: Ideally the conversion to an APFloat and from an APFloat
9019     //        could be avoided if there was a convertFromAPInt method
9020     //        which could signal back if implicit truncation occurred.
9021     llvm::APSInt Result = EVResult.Val.getInt();
9022     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9023     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9024                            llvm::APFloat::rmTowardZero);
9025     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9026                              !IntTy->hasSignedIntegerRepresentation());
9027     bool Ignored = false;
9028     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9029                            &Ignored);
9030     if (Result != ConvertBack)
9031       return true;
9032   } else {
9033     // Reject types that cannot be fully encoded into the mantissa of
9034     // the float.
9035     Bits = S.Context.getTypeSize(IntTy);
9036     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9037         S.Context.getFloatTypeSemantics(FloatTy));
9038     if (Bits > FloatPrec)
9039       return true;
9040   }
9041 
9042   return false;
9043 }
9044 
9045 /// Attempt to convert and splat Scalar into a vector whose types matches
9046 /// Vector following GCC conversion rules. The rule is that implicit
9047 /// conversion can occur when Scalar can be casted to match Vector's element
9048 /// type without causing truncation of Scalar.
9049 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9050                                         ExprResult *Vector) {
9051   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9052   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9053   const VectorType *VT = VectorTy->getAs<VectorType>();
9054 
9055   assert(!isa<ExtVectorType>(VT) &&
9056          "ExtVectorTypes should not be handled here!");
9057 
9058   QualType VectorEltTy = VT->getElementType();
9059 
9060   // Reject cases where the vector element type or the scalar element type are
9061   // not integral or floating point types.
9062   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9063     return true;
9064 
9065   // The conversion to apply to the scalar before splatting it,
9066   // if necessary.
9067   CastKind ScalarCast = CK_NoOp;
9068 
9069   // Accept cases where the vector elements are integers and the scalar is
9070   // an integer.
9071   // FIXME: Notionally if the scalar was a floating point value with a precise
9072   //        integral representation, we could cast it to an appropriate integer
9073   //        type and then perform the rest of the checks here. GCC will perform
9074   //        this conversion in some cases as determined by the input language.
9075   //        We should accept it on a language independent basis.
9076   if (VectorEltTy->isIntegralType(S.Context) &&
9077       ScalarTy->isIntegralType(S.Context) &&
9078       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
9079 
9080     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
9081       return true;
9082 
9083     ScalarCast = CK_IntegralCast;
9084   } else if (VectorEltTy->isIntegralType(S.Context) &&
9085              ScalarTy->isRealFloatingType()) {
9086     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
9087       ScalarCast = CK_FloatingToIntegral;
9088     else
9089       return true;
9090   } else if (VectorEltTy->isRealFloatingType()) {
9091     if (ScalarTy->isRealFloatingType()) {
9092 
9093       // Reject cases where the scalar type is not a constant and has a higher
9094       // Order than the vector element type.
9095       llvm::APFloat Result(0.0);
9096       bool CstScalar = Scalar->get()->EvaluateAsFloat(Result, S.Context);
9097       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
9098       if (!CstScalar && Order < 0)
9099         return true;
9100 
9101       // If the scalar cannot be safely casted to the vector element type,
9102       // reject it.
9103       if (CstScalar) {
9104         bool Truncated = false;
9105         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
9106                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
9107         if (Truncated)
9108           return true;
9109       }
9110 
9111       ScalarCast = CK_FloatingCast;
9112     } else if (ScalarTy->isIntegralType(S.Context)) {
9113       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
9114         return true;
9115 
9116       ScalarCast = CK_IntegralToFloating;
9117     } else
9118       return true;
9119   }
9120 
9121   // Adjust scalar if desired.
9122   if (Scalar) {
9123     if (ScalarCast != CK_NoOp)
9124       *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
9125     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
9126   }
9127   return false;
9128 }
9129 
9130 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
9131                                    SourceLocation Loc, bool IsCompAssign,
9132                                    bool AllowBothBool,
9133                                    bool AllowBoolConversions) {
9134   if (!IsCompAssign) {
9135     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
9136     if (LHS.isInvalid())
9137       return QualType();
9138   }
9139   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
9140   if (RHS.isInvalid())
9141     return QualType();
9142 
9143   // For conversion purposes, we ignore any qualifiers.
9144   // For example, "const float" and "float" are equivalent.
9145   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
9146   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
9147 
9148   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
9149   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
9150   assert(LHSVecType || RHSVecType);
9151 
9152   // AltiVec-style "vector bool op vector bool" combinations are allowed
9153   // for some operators but not others.
9154   if (!AllowBothBool &&
9155       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9156       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
9157     return InvalidOperands(Loc, LHS, RHS);
9158 
9159   // If the vector types are identical, return.
9160   if (Context.hasSameType(LHSType, RHSType))
9161     return LHSType;
9162 
9163   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
9164   if (LHSVecType && RHSVecType &&
9165       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9166     if (isa<ExtVectorType>(LHSVecType)) {
9167       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9168       return LHSType;
9169     }
9170 
9171     if (!IsCompAssign)
9172       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9173     return RHSType;
9174   }
9175 
9176   // AllowBoolConversions says that bool and non-bool AltiVec vectors
9177   // can be mixed, with the result being the non-bool type.  The non-bool
9178   // operand must have integer element type.
9179   if (AllowBoolConversions && LHSVecType && RHSVecType &&
9180       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
9181       (Context.getTypeSize(LHSVecType->getElementType()) ==
9182        Context.getTypeSize(RHSVecType->getElementType()))) {
9183     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9184         LHSVecType->getElementType()->isIntegerType() &&
9185         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
9186       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9187       return LHSType;
9188     }
9189     if (!IsCompAssign &&
9190         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9191         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9192         RHSVecType->getElementType()->isIntegerType()) {
9193       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9194       return RHSType;
9195     }
9196   }
9197 
9198   // If there's a vector type and a scalar, try to convert the scalar to
9199   // the vector element type and splat.
9200   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
9201   if (!RHSVecType) {
9202     if (isa<ExtVectorType>(LHSVecType)) {
9203       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
9204                                     LHSVecType->getElementType(), LHSType,
9205                                     DiagID))
9206         return LHSType;
9207     } else {
9208       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
9209         return LHSType;
9210     }
9211   }
9212   if (!LHSVecType) {
9213     if (isa<ExtVectorType>(RHSVecType)) {
9214       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
9215                                     LHSType, RHSVecType->getElementType(),
9216                                     RHSType, DiagID))
9217         return RHSType;
9218     } else {
9219       if (LHS.get()->getValueKind() == VK_LValue ||
9220           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
9221         return RHSType;
9222     }
9223   }
9224 
9225   // FIXME: The code below also handles conversion between vectors and
9226   // non-scalars, we should break this down into fine grained specific checks
9227   // and emit proper diagnostics.
9228   QualType VecType = LHSVecType ? LHSType : RHSType;
9229   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
9230   QualType OtherType = LHSVecType ? RHSType : LHSType;
9231   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
9232   if (isLaxVectorConversion(OtherType, VecType)) {
9233     // If we're allowing lax vector conversions, only the total (data) size
9234     // needs to be the same. For non compound assignment, if one of the types is
9235     // scalar, the result is always the vector type.
9236     if (!IsCompAssign) {
9237       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
9238       return VecType;
9239     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
9240     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
9241     // type. Note that this is already done by non-compound assignments in
9242     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
9243     // <1 x T> -> T. The result is also a vector type.
9244     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
9245                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
9246       ExprResult *RHSExpr = &RHS;
9247       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
9248       return VecType;
9249     }
9250   }
9251 
9252   // Okay, the expression is invalid.
9253 
9254   // If there's a non-vector, non-real operand, diagnose that.
9255   if ((!RHSVecType && !RHSType->isRealType()) ||
9256       (!LHSVecType && !LHSType->isRealType())) {
9257     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
9258       << LHSType << RHSType
9259       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9260     return QualType();
9261   }
9262 
9263   // OpenCL V1.1 6.2.6.p1:
9264   // If the operands are of more than one vector type, then an error shall
9265   // occur. Implicit conversions between vector types are not permitted, per
9266   // section 6.2.1.
9267   if (getLangOpts().OpenCL &&
9268       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
9269       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
9270     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
9271                                                            << RHSType;
9272     return QualType();
9273   }
9274 
9275 
9276   // If there is a vector type that is not a ExtVector and a scalar, we reach
9277   // this point if scalar could not be converted to the vector's element type
9278   // without truncation.
9279   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
9280       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
9281     QualType Scalar = LHSVecType ? RHSType : LHSType;
9282     QualType Vector = LHSVecType ? LHSType : RHSType;
9283     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
9284     Diag(Loc,
9285          diag::err_typecheck_vector_not_convertable_implict_truncation)
9286         << ScalarOrVector << Scalar << Vector;
9287 
9288     return QualType();
9289   }
9290 
9291   // Otherwise, use the generic diagnostic.
9292   Diag(Loc, DiagID)
9293     << LHSType << RHSType
9294     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9295   return QualType();
9296 }
9297 
9298 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
9299 // expression.  These are mainly cases where the null pointer is used as an
9300 // integer instead of a pointer.
9301 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
9302                                 SourceLocation Loc, bool IsCompare) {
9303   // The canonical way to check for a GNU null is with isNullPointerConstant,
9304   // but we use a bit of a hack here for speed; this is a relatively
9305   // hot path, and isNullPointerConstant is slow.
9306   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
9307   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
9308 
9309   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
9310 
9311   // Avoid analyzing cases where the result will either be invalid (and
9312   // diagnosed as such) or entirely valid and not something to warn about.
9313   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
9314       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
9315     return;
9316 
9317   // Comparison operations would not make sense with a null pointer no matter
9318   // what the other expression is.
9319   if (!IsCompare) {
9320     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
9321         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
9322         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
9323     return;
9324   }
9325 
9326   // The rest of the operations only make sense with a null pointer
9327   // if the other expression is a pointer.
9328   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
9329       NonNullType->canDecayToPointerType())
9330     return;
9331 
9332   S.Diag(Loc, diag::warn_null_in_comparison_operation)
9333       << LHSNull /* LHS is NULL */ << NonNullType
9334       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9335 }
9336 
9337 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
9338                                           SourceLocation Loc) {
9339   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
9340   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
9341   if (!LUE || !RUE)
9342     return;
9343   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
9344       RUE->getKind() != UETT_SizeOf)
9345     return;
9346 
9347   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
9348   QualType LHSTy = LHSArg->getType();
9349   QualType RHSTy;
9350 
9351   if (RUE->isArgumentType())
9352     RHSTy = RUE->getArgumentType();
9353   else
9354     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
9355 
9356   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
9357     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
9358       return;
9359 
9360     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
9361     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
9362       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
9363         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
9364             << LHSArgDecl;
9365     }
9366   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
9367     QualType ArrayElemTy = ArrayTy->getElementType();
9368     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
9369         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
9370         ArrayElemTy->isCharType() ||
9371         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
9372       return;
9373     S.Diag(Loc, diag::warn_division_sizeof_array)
9374         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
9375     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
9376       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
9377         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
9378             << LHSArgDecl;
9379     }
9380 
9381     S.Diag(Loc, diag::note_precedence_silence) << RHS;
9382   }
9383 }
9384 
9385 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
9386                                                ExprResult &RHS,
9387                                                SourceLocation Loc, bool IsDiv) {
9388   // Check for division/remainder by zero.
9389   Expr::EvalResult RHSValue;
9390   if (!RHS.get()->isValueDependent() &&
9391       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
9392       RHSValue.Val.getInt() == 0)
9393     S.DiagRuntimeBehavior(Loc, RHS.get(),
9394                           S.PDiag(diag::warn_remainder_division_by_zero)
9395                             << IsDiv << RHS.get()->getSourceRange());
9396 }
9397 
9398 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
9399                                            SourceLocation Loc,
9400                                            bool IsCompAssign, bool IsDiv) {
9401   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9402 
9403   if (LHS.get()->getType()->isVectorType() ||
9404       RHS.get()->getType()->isVectorType())
9405     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9406                                /*AllowBothBool*/getLangOpts().AltiVec,
9407                                /*AllowBoolConversions*/false);
9408 
9409   QualType compType = UsualArithmeticConversions(
9410       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
9411   if (LHS.isInvalid() || RHS.isInvalid())
9412     return QualType();
9413 
9414 
9415   if (compType.isNull() || !compType->isArithmeticType())
9416     return InvalidOperands(Loc, LHS, RHS);
9417   if (IsDiv) {
9418     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
9419     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
9420   }
9421   return compType;
9422 }
9423 
9424 QualType Sema::CheckRemainderOperands(
9425   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
9426   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9427 
9428   if (LHS.get()->getType()->isVectorType() ||
9429       RHS.get()->getType()->isVectorType()) {
9430     if (LHS.get()->getType()->hasIntegerRepresentation() &&
9431         RHS.get()->getType()->hasIntegerRepresentation())
9432       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9433                                  /*AllowBothBool*/getLangOpts().AltiVec,
9434                                  /*AllowBoolConversions*/false);
9435     return InvalidOperands(Loc, LHS, RHS);
9436   }
9437 
9438   QualType compType = UsualArithmeticConversions(
9439       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
9440   if (LHS.isInvalid() || RHS.isInvalid())
9441     return QualType();
9442 
9443   if (compType.isNull() || !compType->isIntegerType())
9444     return InvalidOperands(Loc, LHS, RHS);
9445   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
9446   return compType;
9447 }
9448 
9449 /// Diagnose invalid arithmetic on two void pointers.
9450 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
9451                                                 Expr *LHSExpr, Expr *RHSExpr) {
9452   S.Diag(Loc, S.getLangOpts().CPlusPlus
9453                 ? diag::err_typecheck_pointer_arith_void_type
9454                 : diag::ext_gnu_void_ptr)
9455     << 1 /* two pointers */ << LHSExpr->getSourceRange()
9456                             << RHSExpr->getSourceRange();
9457 }
9458 
9459 /// Diagnose invalid arithmetic on a void pointer.
9460 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
9461                                             Expr *Pointer) {
9462   S.Diag(Loc, S.getLangOpts().CPlusPlus
9463                 ? diag::err_typecheck_pointer_arith_void_type
9464                 : diag::ext_gnu_void_ptr)
9465     << 0 /* one pointer */ << Pointer->getSourceRange();
9466 }
9467 
9468 /// Diagnose invalid arithmetic on a null pointer.
9469 ///
9470 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
9471 /// idiom, which we recognize as a GNU extension.
9472 ///
9473 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
9474                                             Expr *Pointer, bool IsGNUIdiom) {
9475   if (IsGNUIdiom)
9476     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
9477       << Pointer->getSourceRange();
9478   else
9479     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
9480       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
9481 }
9482 
9483 /// Diagnose invalid arithmetic on two function pointers.
9484 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
9485                                                     Expr *LHS, Expr *RHS) {
9486   assert(LHS->getType()->isAnyPointerType());
9487   assert(RHS->getType()->isAnyPointerType());
9488   S.Diag(Loc, S.getLangOpts().CPlusPlus
9489                 ? diag::err_typecheck_pointer_arith_function_type
9490                 : diag::ext_gnu_ptr_func_arith)
9491     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
9492     // We only show the second type if it differs from the first.
9493     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
9494                                                    RHS->getType())
9495     << RHS->getType()->getPointeeType()
9496     << LHS->getSourceRange() << RHS->getSourceRange();
9497 }
9498 
9499 /// Diagnose invalid arithmetic on a function pointer.
9500 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
9501                                                 Expr *Pointer) {
9502   assert(Pointer->getType()->isAnyPointerType());
9503   S.Diag(Loc, S.getLangOpts().CPlusPlus
9504                 ? diag::err_typecheck_pointer_arith_function_type
9505                 : diag::ext_gnu_ptr_func_arith)
9506     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
9507     << 0 /* one pointer, so only one type */
9508     << Pointer->getSourceRange();
9509 }
9510 
9511 /// Emit error if Operand is incomplete pointer type
9512 ///
9513 /// \returns True if pointer has incomplete type
9514 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
9515                                                  Expr *Operand) {
9516   QualType ResType = Operand->getType();
9517   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
9518     ResType = ResAtomicType->getValueType();
9519 
9520   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
9521   QualType PointeeTy = ResType->getPointeeType();
9522   return S.RequireCompleteType(Loc, PointeeTy,
9523                                diag::err_typecheck_arithmetic_incomplete_type,
9524                                PointeeTy, Operand->getSourceRange());
9525 }
9526 
9527 /// Check the validity of an arithmetic pointer operand.
9528 ///
9529 /// If the operand has pointer type, this code will check for pointer types
9530 /// which are invalid in arithmetic operations. These will be diagnosed
9531 /// appropriately, including whether or not the use is supported as an
9532 /// extension.
9533 ///
9534 /// \returns True when the operand is valid to use (even if as an extension).
9535 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
9536                                             Expr *Operand) {
9537   QualType ResType = Operand->getType();
9538   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
9539     ResType = ResAtomicType->getValueType();
9540 
9541   if (!ResType->isAnyPointerType()) return true;
9542 
9543   QualType PointeeTy = ResType->getPointeeType();
9544   if (PointeeTy->isVoidType()) {
9545     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
9546     return !S.getLangOpts().CPlusPlus;
9547   }
9548   if (PointeeTy->isFunctionType()) {
9549     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
9550     return !S.getLangOpts().CPlusPlus;
9551   }
9552 
9553   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
9554 
9555   return true;
9556 }
9557 
9558 /// Check the validity of a binary arithmetic operation w.r.t. pointer
9559 /// operands.
9560 ///
9561 /// This routine will diagnose any invalid arithmetic on pointer operands much
9562 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
9563 /// for emitting a single diagnostic even for operations where both LHS and RHS
9564 /// are (potentially problematic) pointers.
9565 ///
9566 /// \returns True when the operand is valid to use (even if as an extension).
9567 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
9568                                                 Expr *LHSExpr, Expr *RHSExpr) {
9569   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
9570   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
9571   if (!isLHSPointer && !isRHSPointer) return true;
9572 
9573   QualType LHSPointeeTy, RHSPointeeTy;
9574   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
9575   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
9576 
9577   // if both are pointers check if operation is valid wrt address spaces
9578   if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
9579     const PointerType *lhsPtr = LHSExpr->getType()->castAs<PointerType>();
9580     const PointerType *rhsPtr = RHSExpr->getType()->castAs<PointerType>();
9581     if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
9582       S.Diag(Loc,
9583              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
9584           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
9585           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
9586       return false;
9587     }
9588   }
9589 
9590   // Check for arithmetic on pointers to incomplete types.
9591   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
9592   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
9593   if (isLHSVoidPtr || isRHSVoidPtr) {
9594     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
9595     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
9596     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
9597 
9598     return !S.getLangOpts().CPlusPlus;
9599   }
9600 
9601   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
9602   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
9603   if (isLHSFuncPtr || isRHSFuncPtr) {
9604     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
9605     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
9606                                                                 RHSExpr);
9607     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
9608 
9609     return !S.getLangOpts().CPlusPlus;
9610   }
9611 
9612   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
9613     return false;
9614   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
9615     return false;
9616 
9617   return true;
9618 }
9619 
9620 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
9621 /// literal.
9622 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
9623                                   Expr *LHSExpr, Expr *RHSExpr) {
9624   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
9625   Expr* IndexExpr = RHSExpr;
9626   if (!StrExpr) {
9627     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
9628     IndexExpr = LHSExpr;
9629   }
9630 
9631   bool IsStringPlusInt = StrExpr &&
9632       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
9633   if (!IsStringPlusInt || IndexExpr->isValueDependent())
9634     return;
9635 
9636   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
9637   Self.Diag(OpLoc, diag::warn_string_plus_int)
9638       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
9639 
9640   // Only print a fixit for "str" + int, not for int + "str".
9641   if (IndexExpr == RHSExpr) {
9642     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
9643     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
9644         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
9645         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
9646         << FixItHint::CreateInsertion(EndLoc, "]");
9647   } else
9648     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
9649 }
9650 
9651 /// Emit a warning when adding a char literal to a string.
9652 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
9653                                    Expr *LHSExpr, Expr *RHSExpr) {
9654   const Expr *StringRefExpr = LHSExpr;
9655   const CharacterLiteral *CharExpr =
9656       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
9657 
9658   if (!CharExpr) {
9659     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
9660     StringRefExpr = RHSExpr;
9661   }
9662 
9663   if (!CharExpr || !StringRefExpr)
9664     return;
9665 
9666   const QualType StringType = StringRefExpr->getType();
9667 
9668   // Return if not a PointerType.
9669   if (!StringType->isAnyPointerType())
9670     return;
9671 
9672   // Return if not a CharacterType.
9673   if (!StringType->getPointeeType()->isAnyCharacterType())
9674     return;
9675 
9676   ASTContext &Ctx = Self.getASTContext();
9677   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
9678 
9679   const QualType CharType = CharExpr->getType();
9680   if (!CharType->isAnyCharacterType() &&
9681       CharType->isIntegerType() &&
9682       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
9683     Self.Diag(OpLoc, diag::warn_string_plus_char)
9684         << DiagRange << Ctx.CharTy;
9685   } else {
9686     Self.Diag(OpLoc, diag::warn_string_plus_char)
9687         << DiagRange << CharExpr->getType();
9688   }
9689 
9690   // Only print a fixit for str + char, not for char + str.
9691   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
9692     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
9693     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
9694         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
9695         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
9696         << FixItHint::CreateInsertion(EndLoc, "]");
9697   } else {
9698     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
9699   }
9700 }
9701 
9702 /// Emit error when two pointers are incompatible.
9703 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
9704                                            Expr *LHSExpr, Expr *RHSExpr) {
9705   assert(LHSExpr->getType()->isAnyPointerType());
9706   assert(RHSExpr->getType()->isAnyPointerType());
9707   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
9708     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
9709     << RHSExpr->getSourceRange();
9710 }
9711 
9712 // C99 6.5.6
9713 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
9714                                      SourceLocation Loc, BinaryOperatorKind Opc,
9715                                      QualType* CompLHSTy) {
9716   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9717 
9718   if (LHS.get()->getType()->isVectorType() ||
9719       RHS.get()->getType()->isVectorType()) {
9720     QualType compType = CheckVectorOperands(
9721         LHS, RHS, Loc, CompLHSTy,
9722         /*AllowBothBool*/getLangOpts().AltiVec,
9723         /*AllowBoolConversions*/getLangOpts().ZVector);
9724     if (CompLHSTy) *CompLHSTy = compType;
9725     return compType;
9726   }
9727 
9728   QualType compType = UsualArithmeticConversions(
9729       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
9730   if (LHS.isInvalid() || RHS.isInvalid())
9731     return QualType();
9732 
9733   // Diagnose "string literal" '+' int and string '+' "char literal".
9734   if (Opc == BO_Add) {
9735     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
9736     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
9737   }
9738 
9739   // handle the common case first (both operands are arithmetic).
9740   if (!compType.isNull() && compType->isArithmeticType()) {
9741     if (CompLHSTy) *CompLHSTy = compType;
9742     return compType;
9743   }
9744 
9745   // Type-checking.  Ultimately the pointer's going to be in PExp;
9746   // note that we bias towards the LHS being the pointer.
9747   Expr *PExp = LHS.get(), *IExp = RHS.get();
9748 
9749   bool isObjCPointer;
9750   if (PExp->getType()->isPointerType()) {
9751     isObjCPointer = false;
9752   } else if (PExp->getType()->isObjCObjectPointerType()) {
9753     isObjCPointer = true;
9754   } else {
9755     std::swap(PExp, IExp);
9756     if (PExp->getType()->isPointerType()) {
9757       isObjCPointer = false;
9758     } else if (PExp->getType()->isObjCObjectPointerType()) {
9759       isObjCPointer = true;
9760     } else {
9761       return InvalidOperands(Loc, LHS, RHS);
9762     }
9763   }
9764   assert(PExp->getType()->isAnyPointerType());
9765 
9766   if (!IExp->getType()->isIntegerType())
9767     return InvalidOperands(Loc, LHS, RHS);
9768 
9769   // Adding to a null pointer results in undefined behavior.
9770   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
9771           Context, Expr::NPC_ValueDependentIsNotNull)) {
9772     // In C++ adding zero to a null pointer is defined.
9773     Expr::EvalResult KnownVal;
9774     if (!getLangOpts().CPlusPlus ||
9775         (!IExp->isValueDependent() &&
9776          (!IExp->EvaluateAsInt(KnownVal, Context) ||
9777           KnownVal.Val.getInt() != 0))) {
9778       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
9779       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
9780           Context, BO_Add, PExp, IExp);
9781       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
9782     }
9783   }
9784 
9785   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
9786     return QualType();
9787 
9788   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
9789     return QualType();
9790 
9791   // Check array bounds for pointer arithemtic
9792   CheckArrayAccess(PExp, IExp);
9793 
9794   if (CompLHSTy) {
9795     QualType LHSTy = Context.isPromotableBitField(LHS.get());
9796     if (LHSTy.isNull()) {
9797       LHSTy = LHS.get()->getType();
9798       if (LHSTy->isPromotableIntegerType())
9799         LHSTy = Context.getPromotedIntegerType(LHSTy);
9800     }
9801     *CompLHSTy = LHSTy;
9802   }
9803 
9804   return PExp->getType();
9805 }
9806 
9807 // C99 6.5.6
9808 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
9809                                         SourceLocation Loc,
9810                                         QualType* CompLHSTy) {
9811   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9812 
9813   if (LHS.get()->getType()->isVectorType() ||
9814       RHS.get()->getType()->isVectorType()) {
9815     QualType compType = CheckVectorOperands(
9816         LHS, RHS, Loc, CompLHSTy,
9817         /*AllowBothBool*/getLangOpts().AltiVec,
9818         /*AllowBoolConversions*/getLangOpts().ZVector);
9819     if (CompLHSTy) *CompLHSTy = compType;
9820     return compType;
9821   }
9822 
9823   QualType compType = UsualArithmeticConversions(
9824       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
9825   if (LHS.isInvalid() || RHS.isInvalid())
9826     return QualType();
9827 
9828   // Enforce type constraints: C99 6.5.6p3.
9829 
9830   // Handle the common case first (both operands are arithmetic).
9831   if (!compType.isNull() && compType->isArithmeticType()) {
9832     if (CompLHSTy) *CompLHSTy = compType;
9833     return compType;
9834   }
9835 
9836   // Either ptr - int   or   ptr - ptr.
9837   if (LHS.get()->getType()->isAnyPointerType()) {
9838     QualType lpointee = LHS.get()->getType()->getPointeeType();
9839 
9840     // Diagnose bad cases where we step over interface counts.
9841     if (LHS.get()->getType()->isObjCObjectPointerType() &&
9842         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
9843       return QualType();
9844 
9845     // The result type of a pointer-int computation is the pointer type.
9846     if (RHS.get()->getType()->isIntegerType()) {
9847       // Subtracting from a null pointer should produce a warning.
9848       // The last argument to the diagnose call says this doesn't match the
9849       // GNU int-to-pointer idiom.
9850       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
9851                                            Expr::NPC_ValueDependentIsNotNull)) {
9852         // In C++ adding zero to a null pointer is defined.
9853         Expr::EvalResult KnownVal;
9854         if (!getLangOpts().CPlusPlus ||
9855             (!RHS.get()->isValueDependent() &&
9856              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
9857               KnownVal.Val.getInt() != 0))) {
9858           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
9859         }
9860       }
9861 
9862       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
9863         return QualType();
9864 
9865       // Check array bounds for pointer arithemtic
9866       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
9867                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
9868 
9869       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
9870       return LHS.get()->getType();
9871     }
9872 
9873     // Handle pointer-pointer subtractions.
9874     if (const PointerType *RHSPTy
9875           = RHS.get()->getType()->getAs<PointerType>()) {
9876       QualType rpointee = RHSPTy->getPointeeType();
9877 
9878       if (getLangOpts().CPlusPlus) {
9879         // Pointee types must be the same: C++ [expr.add]
9880         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
9881           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
9882         }
9883       } else {
9884         // Pointee types must be compatible C99 6.5.6p3
9885         if (!Context.typesAreCompatible(
9886                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
9887                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
9888           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
9889           return QualType();
9890         }
9891       }
9892 
9893       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
9894                                                LHS.get(), RHS.get()))
9895         return QualType();
9896 
9897       // FIXME: Add warnings for nullptr - ptr.
9898 
9899       // The pointee type may have zero size.  As an extension, a structure or
9900       // union may have zero size or an array may have zero length.  In this
9901       // case subtraction does not make sense.
9902       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
9903         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
9904         if (ElementSize.isZero()) {
9905           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
9906             << rpointee.getUnqualifiedType()
9907             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9908         }
9909       }
9910 
9911       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
9912       return Context.getPointerDiffType();
9913     }
9914   }
9915 
9916   return InvalidOperands(Loc, LHS, RHS);
9917 }
9918 
9919 static bool isScopedEnumerationType(QualType T) {
9920   if (const EnumType *ET = T->getAs<EnumType>())
9921     return ET->getDecl()->isScoped();
9922   return false;
9923 }
9924 
9925 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
9926                                    SourceLocation Loc, BinaryOperatorKind Opc,
9927                                    QualType LHSType) {
9928   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
9929   // so skip remaining warnings as we don't want to modify values within Sema.
9930   if (S.getLangOpts().OpenCL)
9931     return;
9932 
9933   // Check right/shifter operand
9934   Expr::EvalResult RHSResult;
9935   if (RHS.get()->isValueDependent() ||
9936       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
9937     return;
9938   llvm::APSInt Right = RHSResult.Val.getInt();
9939 
9940   if (Right.isNegative()) {
9941     S.DiagRuntimeBehavior(Loc, RHS.get(),
9942                           S.PDiag(diag::warn_shift_negative)
9943                             << RHS.get()->getSourceRange());
9944     return;
9945   }
9946   llvm::APInt LeftBits(Right.getBitWidth(),
9947                        S.Context.getTypeSize(LHS.get()->getType()));
9948   if (Right.uge(LeftBits)) {
9949     S.DiagRuntimeBehavior(Loc, RHS.get(),
9950                           S.PDiag(diag::warn_shift_gt_typewidth)
9951                             << RHS.get()->getSourceRange());
9952     return;
9953   }
9954   if (Opc != BO_Shl)
9955     return;
9956 
9957   // When left shifting an ICE which is signed, we can check for overflow which
9958   // according to C++ standards prior to C++2a has undefined behavior
9959   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
9960   // more than the maximum value representable in the result type, so never
9961   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
9962   // expression is still probably a bug.)
9963   Expr::EvalResult LHSResult;
9964   if (LHS.get()->isValueDependent() ||
9965       LHSType->hasUnsignedIntegerRepresentation() ||
9966       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
9967     return;
9968   llvm::APSInt Left = LHSResult.Val.getInt();
9969 
9970   // If LHS does not have a signed type and non-negative value
9971   // then, the behavior is undefined before C++2a. Warn about it.
9972   if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
9973       !S.getLangOpts().CPlusPlus2a) {
9974     S.DiagRuntimeBehavior(Loc, LHS.get(),
9975                           S.PDiag(diag::warn_shift_lhs_negative)
9976                             << LHS.get()->getSourceRange());
9977     return;
9978   }
9979 
9980   llvm::APInt ResultBits =
9981       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
9982   if (LeftBits.uge(ResultBits))
9983     return;
9984   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
9985   Result = Result.shl(Right);
9986 
9987   // Print the bit representation of the signed integer as an unsigned
9988   // hexadecimal number.
9989   SmallString<40> HexResult;
9990   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
9991 
9992   // If we are only missing a sign bit, this is less likely to result in actual
9993   // bugs -- if the result is cast back to an unsigned type, it will have the
9994   // expected value. Thus we place this behind a different warning that can be
9995   // turned off separately if needed.
9996   if (LeftBits == ResultBits - 1) {
9997     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
9998         << HexResult << LHSType
9999         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10000     return;
10001   }
10002 
10003   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
10004     << HexResult.str() << Result.getMinSignedBits() << LHSType
10005     << Left.getBitWidth() << LHS.get()->getSourceRange()
10006     << RHS.get()->getSourceRange();
10007 }
10008 
10009 /// Return the resulting type when a vector is shifted
10010 ///        by a scalar or vector shift amount.
10011 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
10012                                  SourceLocation Loc, bool IsCompAssign) {
10013   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
10014   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
10015       !LHS.get()->getType()->isVectorType()) {
10016     S.Diag(Loc, diag::err_shift_rhs_only_vector)
10017       << RHS.get()->getType() << LHS.get()->getType()
10018       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10019     return QualType();
10020   }
10021 
10022   if (!IsCompAssign) {
10023     LHS = S.UsualUnaryConversions(LHS.get());
10024     if (LHS.isInvalid()) return QualType();
10025   }
10026 
10027   RHS = S.UsualUnaryConversions(RHS.get());
10028   if (RHS.isInvalid()) return QualType();
10029 
10030   QualType LHSType = LHS.get()->getType();
10031   // Note that LHS might be a scalar because the routine calls not only in
10032   // OpenCL case.
10033   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
10034   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
10035 
10036   // Note that RHS might not be a vector.
10037   QualType RHSType = RHS.get()->getType();
10038   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
10039   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
10040 
10041   // The operands need to be integers.
10042   if (!LHSEleType->isIntegerType()) {
10043     S.Diag(Loc, diag::err_typecheck_expect_int)
10044       << LHS.get()->getType() << LHS.get()->getSourceRange();
10045     return QualType();
10046   }
10047 
10048   if (!RHSEleType->isIntegerType()) {
10049     S.Diag(Loc, diag::err_typecheck_expect_int)
10050       << RHS.get()->getType() << RHS.get()->getSourceRange();
10051     return QualType();
10052   }
10053 
10054   if (!LHSVecTy) {
10055     assert(RHSVecTy);
10056     if (IsCompAssign)
10057       return RHSType;
10058     if (LHSEleType != RHSEleType) {
10059       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
10060       LHSEleType = RHSEleType;
10061     }
10062     QualType VecTy =
10063         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
10064     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
10065     LHSType = VecTy;
10066   } else if (RHSVecTy) {
10067     // OpenCL v1.1 s6.3.j says that for vector types, the operators
10068     // are applied component-wise. So if RHS is a vector, then ensure
10069     // that the number of elements is the same as LHS...
10070     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
10071       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10072         << LHS.get()->getType() << RHS.get()->getType()
10073         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10074       return QualType();
10075     }
10076     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
10077       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
10078       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
10079       if (LHSBT != RHSBT &&
10080           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
10081         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
10082             << LHS.get()->getType() << RHS.get()->getType()
10083             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10084       }
10085     }
10086   } else {
10087     // ...else expand RHS to match the number of elements in LHS.
10088     QualType VecTy =
10089       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
10090     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
10091   }
10092 
10093   return LHSType;
10094 }
10095 
10096 // C99 6.5.7
10097 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
10098                                   SourceLocation Loc, BinaryOperatorKind Opc,
10099                                   bool IsCompAssign) {
10100   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10101 
10102   // Vector shifts promote their scalar inputs to vector type.
10103   if (LHS.get()->getType()->isVectorType() ||
10104       RHS.get()->getType()->isVectorType()) {
10105     if (LangOpts.ZVector) {
10106       // The shift operators for the z vector extensions work basically
10107       // like general shifts, except that neither the LHS nor the RHS is
10108       // allowed to be a "vector bool".
10109       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
10110         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
10111           return InvalidOperands(Loc, LHS, RHS);
10112       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
10113         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10114           return InvalidOperands(Loc, LHS, RHS);
10115     }
10116     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
10117   }
10118 
10119   // Shifts don't perform usual arithmetic conversions, they just do integer
10120   // promotions on each operand. C99 6.5.7p3
10121 
10122   // For the LHS, do usual unary conversions, but then reset them away
10123   // if this is a compound assignment.
10124   ExprResult OldLHS = LHS;
10125   LHS = UsualUnaryConversions(LHS.get());
10126   if (LHS.isInvalid())
10127     return QualType();
10128   QualType LHSType = LHS.get()->getType();
10129   if (IsCompAssign) LHS = OldLHS;
10130 
10131   // The RHS is simpler.
10132   RHS = UsualUnaryConversions(RHS.get());
10133   if (RHS.isInvalid())
10134     return QualType();
10135   QualType RHSType = RHS.get()->getType();
10136 
10137   // C99 6.5.7p2: Each of the operands shall have integer type.
10138   if (!LHSType->hasIntegerRepresentation() ||
10139       !RHSType->hasIntegerRepresentation())
10140     return InvalidOperands(Loc, LHS, RHS);
10141 
10142   // C++0x: Don't allow scoped enums. FIXME: Use something better than
10143   // hasIntegerRepresentation() above instead of this.
10144   if (isScopedEnumerationType(LHSType) ||
10145       isScopedEnumerationType(RHSType)) {
10146     return InvalidOperands(Loc, LHS, RHS);
10147   }
10148   // Sanity-check shift operands
10149   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
10150 
10151   // "The type of the result is that of the promoted left operand."
10152   return LHSType;
10153 }
10154 
10155 /// Diagnose bad pointer comparisons.
10156 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
10157                                               ExprResult &LHS, ExprResult &RHS,
10158                                               bool IsError) {
10159   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
10160                       : diag::ext_typecheck_comparison_of_distinct_pointers)
10161     << LHS.get()->getType() << RHS.get()->getType()
10162     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10163 }
10164 
10165 /// Returns false if the pointers are converted to a composite type,
10166 /// true otherwise.
10167 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
10168                                            ExprResult &LHS, ExprResult &RHS) {
10169   // C++ [expr.rel]p2:
10170   //   [...] Pointer conversions (4.10) and qualification
10171   //   conversions (4.4) are performed on pointer operands (or on
10172   //   a pointer operand and a null pointer constant) to bring
10173   //   them to their composite pointer type. [...]
10174   //
10175   // C++ [expr.eq]p1 uses the same notion for (in)equality
10176   // comparisons of pointers.
10177 
10178   QualType LHSType = LHS.get()->getType();
10179   QualType RHSType = RHS.get()->getType();
10180   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
10181          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
10182 
10183   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
10184   if (T.isNull()) {
10185     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
10186         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
10187       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
10188     else
10189       S.InvalidOperands(Loc, LHS, RHS);
10190     return true;
10191   }
10192 
10193   return false;
10194 }
10195 
10196 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
10197                                                     ExprResult &LHS,
10198                                                     ExprResult &RHS,
10199                                                     bool IsError) {
10200   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
10201                       : diag::ext_typecheck_comparison_of_fptr_to_void)
10202     << LHS.get()->getType() << RHS.get()->getType()
10203     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10204 }
10205 
10206 static bool isObjCObjectLiteral(ExprResult &E) {
10207   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
10208   case Stmt::ObjCArrayLiteralClass:
10209   case Stmt::ObjCDictionaryLiteralClass:
10210   case Stmt::ObjCStringLiteralClass:
10211   case Stmt::ObjCBoxedExprClass:
10212     return true;
10213   default:
10214     // Note that ObjCBoolLiteral is NOT an object literal!
10215     return false;
10216   }
10217 }
10218 
10219 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
10220   const ObjCObjectPointerType *Type =
10221     LHS->getType()->getAs<ObjCObjectPointerType>();
10222 
10223   // If this is not actually an Objective-C object, bail out.
10224   if (!Type)
10225     return false;
10226 
10227   // Get the LHS object's interface type.
10228   QualType InterfaceType = Type->getPointeeType();
10229 
10230   // If the RHS isn't an Objective-C object, bail out.
10231   if (!RHS->getType()->isObjCObjectPointerType())
10232     return false;
10233 
10234   // Try to find the -isEqual: method.
10235   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
10236   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
10237                                                       InterfaceType,
10238                                                       /*IsInstance=*/true);
10239   if (!Method) {
10240     if (Type->isObjCIdType()) {
10241       // For 'id', just check the global pool.
10242       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
10243                                                   /*receiverId=*/true);
10244     } else {
10245       // Check protocols.
10246       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
10247                                              /*IsInstance=*/true);
10248     }
10249   }
10250 
10251   if (!Method)
10252     return false;
10253 
10254   QualType T = Method->parameters()[0]->getType();
10255   if (!T->isObjCObjectPointerType())
10256     return false;
10257 
10258   QualType R = Method->getReturnType();
10259   if (!R->isScalarType())
10260     return false;
10261 
10262   return true;
10263 }
10264 
10265 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
10266   FromE = FromE->IgnoreParenImpCasts();
10267   switch (FromE->getStmtClass()) {
10268     default:
10269       break;
10270     case Stmt::ObjCStringLiteralClass:
10271       // "string literal"
10272       return LK_String;
10273     case Stmt::ObjCArrayLiteralClass:
10274       // "array literal"
10275       return LK_Array;
10276     case Stmt::ObjCDictionaryLiteralClass:
10277       // "dictionary literal"
10278       return LK_Dictionary;
10279     case Stmt::BlockExprClass:
10280       return LK_Block;
10281     case Stmt::ObjCBoxedExprClass: {
10282       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
10283       switch (Inner->getStmtClass()) {
10284         case Stmt::IntegerLiteralClass:
10285         case Stmt::FloatingLiteralClass:
10286         case Stmt::CharacterLiteralClass:
10287         case Stmt::ObjCBoolLiteralExprClass:
10288         case Stmt::CXXBoolLiteralExprClass:
10289           // "numeric literal"
10290           return LK_Numeric;
10291         case Stmt::ImplicitCastExprClass: {
10292           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
10293           // Boolean literals can be represented by implicit casts.
10294           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
10295             return LK_Numeric;
10296           break;
10297         }
10298         default:
10299           break;
10300       }
10301       return LK_Boxed;
10302     }
10303   }
10304   return LK_None;
10305 }
10306 
10307 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
10308                                           ExprResult &LHS, ExprResult &RHS,
10309                                           BinaryOperator::Opcode Opc){
10310   Expr *Literal;
10311   Expr *Other;
10312   if (isObjCObjectLiteral(LHS)) {
10313     Literal = LHS.get();
10314     Other = RHS.get();
10315   } else {
10316     Literal = RHS.get();
10317     Other = LHS.get();
10318   }
10319 
10320   // Don't warn on comparisons against nil.
10321   Other = Other->IgnoreParenCasts();
10322   if (Other->isNullPointerConstant(S.getASTContext(),
10323                                    Expr::NPC_ValueDependentIsNotNull))
10324     return;
10325 
10326   // This should be kept in sync with warn_objc_literal_comparison.
10327   // LK_String should always be after the other literals, since it has its own
10328   // warning flag.
10329   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
10330   assert(LiteralKind != Sema::LK_Block);
10331   if (LiteralKind == Sema::LK_None) {
10332     llvm_unreachable("Unknown Objective-C object literal kind");
10333   }
10334 
10335   if (LiteralKind == Sema::LK_String)
10336     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
10337       << Literal->getSourceRange();
10338   else
10339     S.Diag(Loc, diag::warn_objc_literal_comparison)
10340       << LiteralKind << Literal->getSourceRange();
10341 
10342   if (BinaryOperator::isEqualityOp(Opc) &&
10343       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
10344     SourceLocation Start = LHS.get()->getBeginLoc();
10345     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
10346     CharSourceRange OpRange =
10347       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
10348 
10349     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
10350       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
10351       << FixItHint::CreateReplacement(OpRange, " isEqual:")
10352       << FixItHint::CreateInsertion(End, "]");
10353   }
10354 }
10355 
10356 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
10357 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
10358                                            ExprResult &RHS, SourceLocation Loc,
10359                                            BinaryOperatorKind Opc) {
10360   // Check that left hand side is !something.
10361   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
10362   if (!UO || UO->getOpcode() != UO_LNot) return;
10363 
10364   // Only check if the right hand side is non-bool arithmetic type.
10365   if (RHS.get()->isKnownToHaveBooleanValue()) return;
10366 
10367   // Make sure that the something in !something is not bool.
10368   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
10369   if (SubExpr->isKnownToHaveBooleanValue()) return;
10370 
10371   // Emit warning.
10372   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
10373   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
10374       << Loc << IsBitwiseOp;
10375 
10376   // First note suggest !(x < y)
10377   SourceLocation FirstOpen = SubExpr->getBeginLoc();
10378   SourceLocation FirstClose = RHS.get()->getEndLoc();
10379   FirstClose = S.getLocForEndOfToken(FirstClose);
10380   if (FirstClose.isInvalid())
10381     FirstOpen = SourceLocation();
10382   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
10383       << IsBitwiseOp
10384       << FixItHint::CreateInsertion(FirstOpen, "(")
10385       << FixItHint::CreateInsertion(FirstClose, ")");
10386 
10387   // Second note suggests (!x) < y
10388   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
10389   SourceLocation SecondClose = LHS.get()->getEndLoc();
10390   SecondClose = S.getLocForEndOfToken(SecondClose);
10391   if (SecondClose.isInvalid())
10392     SecondOpen = SourceLocation();
10393   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
10394       << FixItHint::CreateInsertion(SecondOpen, "(")
10395       << FixItHint::CreateInsertion(SecondClose, ")");
10396 }
10397 
10398 // Returns true if E refers to a non-weak array.
10399 static bool checkForArray(const Expr *E) {
10400   const ValueDecl *D = nullptr;
10401   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
10402     D = DR->getDecl();
10403   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
10404     if (Mem->isImplicitAccess())
10405       D = Mem->getMemberDecl();
10406   }
10407   if (!D)
10408     return false;
10409   return D->getType()->isArrayType() && !D->isWeak();
10410 }
10411 
10412 /// Diagnose some forms of syntactically-obvious tautological comparison.
10413 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
10414                                            Expr *LHS, Expr *RHS,
10415                                            BinaryOperatorKind Opc) {
10416   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
10417   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
10418 
10419   QualType LHSType = LHS->getType();
10420   QualType RHSType = RHS->getType();
10421   if (LHSType->hasFloatingRepresentation() ||
10422       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
10423       S.inTemplateInstantiation())
10424     return;
10425 
10426   // Comparisons between two array types are ill-formed for operator<=>, so
10427   // we shouldn't emit any additional warnings about it.
10428   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
10429     return;
10430 
10431   // For non-floating point types, check for self-comparisons of the form
10432   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
10433   // often indicate logic errors in the program.
10434   //
10435   // NOTE: Don't warn about comparison expressions resulting from macro
10436   // expansion. Also don't warn about comparisons which are only self
10437   // comparisons within a template instantiation. The warnings should catch
10438   // obvious cases in the definition of the template anyways. The idea is to
10439   // warn when the typed comparison operator will always evaluate to the same
10440   // result.
10441 
10442   // Used for indexing into %select in warn_comparison_always
10443   enum {
10444     AlwaysConstant,
10445     AlwaysTrue,
10446     AlwaysFalse,
10447     AlwaysEqual, // std::strong_ordering::equal from operator<=>
10448   };
10449 
10450   // C++2a [depr.array.comp]:
10451   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
10452   //   operands of array type are deprecated.
10453   if (S.getLangOpts().CPlusPlus2a && LHSStripped->getType()->isArrayType() &&
10454       RHSStripped->getType()->isArrayType()) {
10455     S.Diag(Loc, diag::warn_depr_array_comparison)
10456         << LHS->getSourceRange() << RHS->getSourceRange()
10457         << LHSStripped->getType() << RHSStripped->getType();
10458     // Carry on to produce the tautological comparison warning, if this
10459     // expression is potentially-evaluated, we can resolve the array to a
10460     // non-weak declaration, and so on.
10461   }
10462 
10463   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
10464     if (Expr::isSameComparisonOperand(LHS, RHS)) {
10465       unsigned Result;
10466       switch (Opc) {
10467       case BO_EQ:
10468       case BO_LE:
10469       case BO_GE:
10470         Result = AlwaysTrue;
10471         break;
10472       case BO_NE:
10473       case BO_LT:
10474       case BO_GT:
10475         Result = AlwaysFalse;
10476         break;
10477       case BO_Cmp:
10478         Result = AlwaysEqual;
10479         break;
10480       default:
10481         Result = AlwaysConstant;
10482         break;
10483       }
10484       S.DiagRuntimeBehavior(Loc, nullptr,
10485                             S.PDiag(diag::warn_comparison_always)
10486                                 << 0 /*self-comparison*/
10487                                 << Result);
10488     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
10489       // What is it always going to evaluate to?
10490       unsigned Result;
10491       switch (Opc) {
10492       case BO_EQ: // e.g. array1 == array2
10493         Result = AlwaysFalse;
10494         break;
10495       case BO_NE: // e.g. array1 != array2
10496         Result = AlwaysTrue;
10497         break;
10498       default: // e.g. array1 <= array2
10499         // The best we can say is 'a constant'
10500         Result = AlwaysConstant;
10501         break;
10502       }
10503       S.DiagRuntimeBehavior(Loc, nullptr,
10504                             S.PDiag(diag::warn_comparison_always)
10505                                 << 1 /*array comparison*/
10506                                 << Result);
10507     }
10508   }
10509 
10510   if (isa<CastExpr>(LHSStripped))
10511     LHSStripped = LHSStripped->IgnoreParenCasts();
10512   if (isa<CastExpr>(RHSStripped))
10513     RHSStripped = RHSStripped->IgnoreParenCasts();
10514 
10515   // Warn about comparisons against a string constant (unless the other
10516   // operand is null); the user probably wants string comparison function.
10517   Expr *LiteralString = nullptr;
10518   Expr *LiteralStringStripped = nullptr;
10519   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
10520       !RHSStripped->isNullPointerConstant(S.Context,
10521                                           Expr::NPC_ValueDependentIsNull)) {
10522     LiteralString = LHS;
10523     LiteralStringStripped = LHSStripped;
10524   } else if ((isa<StringLiteral>(RHSStripped) ||
10525               isa<ObjCEncodeExpr>(RHSStripped)) &&
10526              !LHSStripped->isNullPointerConstant(S.Context,
10527                                           Expr::NPC_ValueDependentIsNull)) {
10528     LiteralString = RHS;
10529     LiteralStringStripped = RHSStripped;
10530   }
10531 
10532   if (LiteralString) {
10533     S.DiagRuntimeBehavior(Loc, nullptr,
10534                           S.PDiag(diag::warn_stringcompare)
10535                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
10536                               << LiteralString->getSourceRange());
10537   }
10538 }
10539 
10540 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
10541   switch (CK) {
10542   default: {
10543 #ifndef NDEBUG
10544     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
10545                  << "\n";
10546 #endif
10547     llvm_unreachable("unhandled cast kind");
10548   }
10549   case CK_UserDefinedConversion:
10550     return ICK_Identity;
10551   case CK_LValueToRValue:
10552     return ICK_Lvalue_To_Rvalue;
10553   case CK_ArrayToPointerDecay:
10554     return ICK_Array_To_Pointer;
10555   case CK_FunctionToPointerDecay:
10556     return ICK_Function_To_Pointer;
10557   case CK_IntegralCast:
10558     return ICK_Integral_Conversion;
10559   case CK_FloatingCast:
10560     return ICK_Floating_Conversion;
10561   case CK_IntegralToFloating:
10562   case CK_FloatingToIntegral:
10563     return ICK_Floating_Integral;
10564   case CK_IntegralComplexCast:
10565   case CK_FloatingComplexCast:
10566   case CK_FloatingComplexToIntegralComplex:
10567   case CK_IntegralComplexToFloatingComplex:
10568     return ICK_Complex_Conversion;
10569   case CK_FloatingComplexToReal:
10570   case CK_FloatingRealToComplex:
10571   case CK_IntegralComplexToReal:
10572   case CK_IntegralRealToComplex:
10573     return ICK_Complex_Real;
10574   }
10575 }
10576 
10577 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
10578                                              QualType FromType,
10579                                              SourceLocation Loc) {
10580   // Check for a narrowing implicit conversion.
10581   StandardConversionSequence SCS;
10582   SCS.setAsIdentityConversion();
10583   SCS.setToType(0, FromType);
10584   SCS.setToType(1, ToType);
10585   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10586     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
10587 
10588   APValue PreNarrowingValue;
10589   QualType PreNarrowingType;
10590   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
10591                                PreNarrowingType,
10592                                /*IgnoreFloatToIntegralConversion*/ true)) {
10593   case NK_Dependent_Narrowing:
10594     // Implicit conversion to a narrower type, but the expression is
10595     // value-dependent so we can't tell whether it's actually narrowing.
10596   case NK_Not_Narrowing:
10597     return false;
10598 
10599   case NK_Constant_Narrowing:
10600     // Implicit conversion to a narrower type, and the value is not a constant
10601     // expression.
10602     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
10603         << /*Constant*/ 1
10604         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
10605     return true;
10606 
10607   case NK_Variable_Narrowing:
10608     // Implicit conversion to a narrower type, and the value is not a constant
10609     // expression.
10610   case NK_Type_Narrowing:
10611     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
10612         << /*Constant*/ 0 << FromType << ToType;
10613     // TODO: It's not a constant expression, but what if the user intended it
10614     // to be? Can we produce notes to help them figure out why it isn't?
10615     return true;
10616   }
10617   llvm_unreachable("unhandled case in switch");
10618 }
10619 
10620 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
10621                                                          ExprResult &LHS,
10622                                                          ExprResult &RHS,
10623                                                          SourceLocation Loc) {
10624   QualType LHSType = LHS.get()->getType();
10625   QualType RHSType = RHS.get()->getType();
10626   // Dig out the original argument type and expression before implicit casts
10627   // were applied. These are the types/expressions we need to check the
10628   // [expr.spaceship] requirements against.
10629   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
10630   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
10631   QualType LHSStrippedType = LHSStripped.get()->getType();
10632   QualType RHSStrippedType = RHSStripped.get()->getType();
10633 
10634   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
10635   // other is not, the program is ill-formed.
10636   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
10637     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
10638     return QualType();
10639   }
10640 
10641   // FIXME: Consider combining this with checkEnumArithmeticConversions.
10642   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
10643                     RHSStrippedType->isEnumeralType();
10644   if (NumEnumArgs == 1) {
10645     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
10646     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
10647     if (OtherTy->hasFloatingRepresentation()) {
10648       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
10649       return QualType();
10650     }
10651   }
10652   if (NumEnumArgs == 2) {
10653     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
10654     // type E, the operator yields the result of converting the operands
10655     // to the underlying type of E and applying <=> to the converted operands.
10656     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
10657       S.InvalidOperands(Loc, LHS, RHS);
10658       return QualType();
10659     }
10660     QualType IntType =
10661         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
10662     assert(IntType->isArithmeticType());
10663 
10664     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
10665     // promote the boolean type, and all other promotable integer types, to
10666     // avoid this.
10667     if (IntType->isPromotableIntegerType())
10668       IntType = S.Context.getPromotedIntegerType(IntType);
10669 
10670     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
10671     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
10672     LHSType = RHSType = IntType;
10673   }
10674 
10675   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
10676   // usual arithmetic conversions are applied to the operands.
10677   QualType Type =
10678       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
10679   if (LHS.isInvalid() || RHS.isInvalid())
10680     return QualType();
10681   if (Type.isNull())
10682     return S.InvalidOperands(Loc, LHS, RHS);
10683 
10684   Optional<ComparisonCategoryType> CCT =
10685       getComparisonCategoryForBuiltinCmp(Type);
10686   if (!CCT)
10687     return S.InvalidOperands(Loc, LHS, RHS);
10688 
10689   bool HasNarrowing = checkThreeWayNarrowingConversion(
10690       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
10691   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
10692                                                    RHS.get()->getBeginLoc());
10693   if (HasNarrowing)
10694     return QualType();
10695 
10696   assert(!Type.isNull() && "composite type for <=> has not been set");
10697 
10698   return S.CheckComparisonCategoryType(
10699       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
10700 }
10701 
10702 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
10703                                                  ExprResult &RHS,
10704                                                  SourceLocation Loc,
10705                                                  BinaryOperatorKind Opc) {
10706   if (Opc == BO_Cmp)
10707     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
10708 
10709   // C99 6.5.8p3 / C99 6.5.9p4
10710   QualType Type =
10711       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
10712   if (LHS.isInvalid() || RHS.isInvalid())
10713     return QualType();
10714   if (Type.isNull())
10715     return S.InvalidOperands(Loc, LHS, RHS);
10716   assert(Type->isArithmeticType() || Type->isEnumeralType());
10717 
10718   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
10719     return S.InvalidOperands(Loc, LHS, RHS);
10720 
10721   // Check for comparisons of floating point operands using != and ==.
10722   if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
10723     S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
10724 
10725   // The result of comparisons is 'bool' in C++, 'int' in C.
10726   return S.Context.getLogicalOperationType();
10727 }
10728 
10729 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
10730   if (!NullE.get()->getType()->isAnyPointerType())
10731     return;
10732   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
10733   if (!E.get()->getType()->isAnyPointerType() &&
10734       E.get()->isNullPointerConstant(Context,
10735                                      Expr::NPC_ValueDependentIsNotNull) ==
10736         Expr::NPCK_ZeroExpression) {
10737     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
10738       if (CL->getValue() == 0)
10739         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
10740             << NullValue
10741             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
10742                                             NullValue ? "NULL" : "(void *)0");
10743     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
10744         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
10745         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
10746         if (T == Context.CharTy)
10747           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
10748               << NullValue
10749               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
10750                                               NullValue ? "NULL" : "(void *)0");
10751       }
10752   }
10753 }
10754 
10755 // C99 6.5.8, C++ [expr.rel]
10756 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
10757                                     SourceLocation Loc,
10758                                     BinaryOperatorKind Opc) {
10759   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
10760   bool IsThreeWay = Opc == BO_Cmp;
10761   bool IsOrdered = IsRelational || IsThreeWay;
10762   auto IsAnyPointerType = [](ExprResult E) {
10763     QualType Ty = E.get()->getType();
10764     return Ty->isPointerType() || Ty->isMemberPointerType();
10765   };
10766 
10767   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
10768   // type, array-to-pointer, ..., conversions are performed on both operands to
10769   // bring them to their composite type.
10770   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
10771   // any type-related checks.
10772   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
10773     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10774     if (LHS.isInvalid())
10775       return QualType();
10776     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10777     if (RHS.isInvalid())
10778       return QualType();
10779   } else {
10780     LHS = DefaultLvalueConversion(LHS.get());
10781     if (LHS.isInvalid())
10782       return QualType();
10783     RHS = DefaultLvalueConversion(RHS.get());
10784     if (RHS.isInvalid())
10785       return QualType();
10786   }
10787 
10788   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
10789   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
10790     CheckPtrComparisonWithNullChar(LHS, RHS);
10791     CheckPtrComparisonWithNullChar(RHS, LHS);
10792   }
10793 
10794   // Handle vector comparisons separately.
10795   if (LHS.get()->getType()->isVectorType() ||
10796       RHS.get()->getType()->isVectorType())
10797     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
10798 
10799   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
10800   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
10801 
10802   QualType LHSType = LHS.get()->getType();
10803   QualType RHSType = RHS.get()->getType();
10804   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
10805       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
10806     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
10807 
10808   const Expr::NullPointerConstantKind LHSNullKind =
10809       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
10810   const Expr::NullPointerConstantKind RHSNullKind =
10811       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
10812   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
10813   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
10814 
10815   auto computeResultTy = [&]() {
10816     if (Opc != BO_Cmp)
10817       return Context.getLogicalOperationType();
10818     assert(getLangOpts().CPlusPlus);
10819     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
10820 
10821     QualType CompositeTy = LHS.get()->getType();
10822     assert(!CompositeTy->isReferenceType());
10823 
10824     Optional<ComparisonCategoryType> CCT =
10825         getComparisonCategoryForBuiltinCmp(CompositeTy);
10826     if (!CCT)
10827       return InvalidOperands(Loc, LHS, RHS);
10828 
10829     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
10830       // P0946R0: Comparisons between a null pointer constant and an object
10831       // pointer result in std::strong_equality, which is ill-formed under
10832       // P1959R0.
10833       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
10834           << (LHSIsNull ? LHS.get()->getSourceRange()
10835                         : RHS.get()->getSourceRange());
10836       return QualType();
10837     }
10838 
10839     return CheckComparisonCategoryType(
10840         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
10841   };
10842 
10843   if (!IsOrdered && LHSIsNull != RHSIsNull) {
10844     bool IsEquality = Opc == BO_EQ;
10845     if (RHSIsNull)
10846       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
10847                                    RHS.get()->getSourceRange());
10848     else
10849       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
10850                                    LHS.get()->getSourceRange());
10851   }
10852 
10853   if ((LHSType->isIntegerType() && !LHSIsNull) ||
10854       (RHSType->isIntegerType() && !RHSIsNull)) {
10855     // Skip normal pointer conversion checks in this case; we have better
10856     // diagnostics for this below.
10857   } else if (getLangOpts().CPlusPlus) {
10858     // Equality comparison of a function pointer to a void pointer is invalid,
10859     // but we allow it as an extension.
10860     // FIXME: If we really want to allow this, should it be part of composite
10861     // pointer type computation so it works in conditionals too?
10862     if (!IsOrdered &&
10863         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
10864          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
10865       // This is a gcc extension compatibility comparison.
10866       // In a SFINAE context, we treat this as a hard error to maintain
10867       // conformance with the C++ standard.
10868       diagnoseFunctionPointerToVoidComparison(
10869           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
10870 
10871       if (isSFINAEContext())
10872         return QualType();
10873 
10874       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10875       return computeResultTy();
10876     }
10877 
10878     // C++ [expr.eq]p2:
10879     //   If at least one operand is a pointer [...] bring them to their
10880     //   composite pointer type.
10881     // C++ [expr.spaceship]p6
10882     //  If at least one of the operands is of pointer type, [...] bring them
10883     //  to their composite pointer type.
10884     // C++ [expr.rel]p2:
10885     //   If both operands are pointers, [...] bring them to their composite
10886     //   pointer type.
10887     // For <=>, the only valid non-pointer types are arrays and functions, and
10888     // we already decayed those, so this is really the same as the relational
10889     // comparison rule.
10890     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
10891             (IsOrdered ? 2 : 1) &&
10892         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
10893                                          RHSType->isObjCObjectPointerType()))) {
10894       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
10895         return QualType();
10896       return computeResultTy();
10897     }
10898   } else if (LHSType->isPointerType() &&
10899              RHSType->isPointerType()) { // C99 6.5.8p2
10900     // All of the following pointer-related warnings are GCC extensions, except
10901     // when handling null pointer constants.
10902     QualType LCanPointeeTy =
10903       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
10904     QualType RCanPointeeTy =
10905       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
10906 
10907     // C99 6.5.9p2 and C99 6.5.8p2
10908     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
10909                                    RCanPointeeTy.getUnqualifiedType())) {
10910       // Valid unless a relational comparison of function pointers
10911       if (IsRelational && LCanPointeeTy->isFunctionType()) {
10912         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
10913           << LHSType << RHSType << LHS.get()->getSourceRange()
10914           << RHS.get()->getSourceRange();
10915       }
10916     } else if (!IsRelational &&
10917                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
10918       // Valid unless comparison between non-null pointer and function pointer
10919       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
10920           && !LHSIsNull && !RHSIsNull)
10921         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
10922                                                 /*isError*/false);
10923     } else {
10924       // Invalid
10925       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
10926     }
10927     if (LCanPointeeTy != RCanPointeeTy) {
10928       // Treat NULL constant as a special case in OpenCL.
10929       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
10930         const PointerType *LHSPtr = LHSType->castAs<PointerType>();
10931         if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->castAs<PointerType>())) {
10932           Diag(Loc,
10933                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10934               << LHSType << RHSType << 0 /* comparison */
10935               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10936         }
10937       }
10938       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
10939       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
10940       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
10941                                                : CK_BitCast;
10942       if (LHSIsNull && !RHSIsNull)
10943         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
10944       else
10945         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
10946     }
10947     return computeResultTy();
10948   }
10949 
10950   if (getLangOpts().CPlusPlus) {
10951     // C++ [expr.eq]p4:
10952     //   Two operands of type std::nullptr_t or one operand of type
10953     //   std::nullptr_t and the other a null pointer constant compare equal.
10954     if (!IsOrdered && LHSIsNull && RHSIsNull) {
10955       if (LHSType->isNullPtrType()) {
10956         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10957         return computeResultTy();
10958       }
10959       if (RHSType->isNullPtrType()) {
10960         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10961         return computeResultTy();
10962       }
10963     }
10964 
10965     // Comparison of Objective-C pointers and block pointers against nullptr_t.
10966     // These aren't covered by the composite pointer type rules.
10967     if (!IsOrdered && RHSType->isNullPtrType() &&
10968         (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
10969       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10970       return computeResultTy();
10971     }
10972     if (!IsOrdered && LHSType->isNullPtrType() &&
10973         (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
10974       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10975       return computeResultTy();
10976     }
10977 
10978     if (IsRelational &&
10979         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
10980          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
10981       // HACK: Relational comparison of nullptr_t against a pointer type is
10982       // invalid per DR583, but we allow it within std::less<> and friends,
10983       // since otherwise common uses of it break.
10984       // FIXME: Consider removing this hack once LWG fixes std::less<> and
10985       // friends to have std::nullptr_t overload candidates.
10986       DeclContext *DC = CurContext;
10987       if (isa<FunctionDecl>(DC))
10988         DC = DC->getParent();
10989       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
10990         if (CTSD->isInStdNamespace() &&
10991             llvm::StringSwitch<bool>(CTSD->getName())
10992                 .Cases("less", "less_equal", "greater", "greater_equal", true)
10993                 .Default(false)) {
10994           if (RHSType->isNullPtrType())
10995             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10996           else
10997             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10998           return computeResultTy();
10999         }
11000       }
11001     }
11002 
11003     // C++ [expr.eq]p2:
11004     //   If at least one operand is a pointer to member, [...] bring them to
11005     //   their composite pointer type.
11006     if (!IsOrdered &&
11007         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
11008       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11009         return QualType();
11010       else
11011         return computeResultTy();
11012     }
11013   }
11014 
11015   // Handle block pointer types.
11016   if (!IsOrdered && LHSType->isBlockPointerType() &&
11017       RHSType->isBlockPointerType()) {
11018     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
11019     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
11020 
11021     if (!LHSIsNull && !RHSIsNull &&
11022         !Context.typesAreCompatible(lpointee, rpointee)) {
11023       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11024         << LHSType << RHSType << LHS.get()->getSourceRange()
11025         << RHS.get()->getSourceRange();
11026     }
11027     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11028     return computeResultTy();
11029   }
11030 
11031   // Allow block pointers to be compared with null pointer constants.
11032   if (!IsOrdered
11033       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
11034           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
11035     if (!LHSIsNull && !RHSIsNull) {
11036       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
11037              ->getPointeeType()->isVoidType())
11038             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
11039                 ->getPointeeType()->isVoidType())))
11040         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11041           << LHSType << RHSType << LHS.get()->getSourceRange()
11042           << RHS.get()->getSourceRange();
11043     }
11044     if (LHSIsNull && !RHSIsNull)
11045       LHS = ImpCastExprToType(LHS.get(), RHSType,
11046                               RHSType->isPointerType() ? CK_BitCast
11047                                 : CK_AnyPointerToBlockPointerCast);
11048     else
11049       RHS = ImpCastExprToType(RHS.get(), LHSType,
11050                               LHSType->isPointerType() ? CK_BitCast
11051                                 : CK_AnyPointerToBlockPointerCast);
11052     return computeResultTy();
11053   }
11054 
11055   if (LHSType->isObjCObjectPointerType() ||
11056       RHSType->isObjCObjectPointerType()) {
11057     const PointerType *LPT = LHSType->getAs<PointerType>();
11058     const PointerType *RPT = RHSType->getAs<PointerType>();
11059     if (LPT || RPT) {
11060       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
11061       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
11062 
11063       if (!LPtrToVoid && !RPtrToVoid &&
11064           !Context.typesAreCompatible(LHSType, RHSType)) {
11065         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11066                                           /*isError*/false);
11067       }
11068       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
11069       // the RHS, but we have test coverage for this behavior.
11070       // FIXME: Consider using convertPointersToCompositeType in C++.
11071       if (LHSIsNull && !RHSIsNull) {
11072         Expr *E = LHS.get();
11073         if (getLangOpts().ObjCAutoRefCount)
11074           CheckObjCConversion(SourceRange(), RHSType, E,
11075                               CCK_ImplicitConversion);
11076         LHS = ImpCastExprToType(E, RHSType,
11077                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11078       }
11079       else {
11080         Expr *E = RHS.get();
11081         if (getLangOpts().ObjCAutoRefCount)
11082           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
11083                               /*Diagnose=*/true,
11084                               /*DiagnoseCFAudited=*/false, Opc);
11085         RHS = ImpCastExprToType(E, LHSType,
11086                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11087       }
11088       return computeResultTy();
11089     }
11090     if (LHSType->isObjCObjectPointerType() &&
11091         RHSType->isObjCObjectPointerType()) {
11092       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
11093         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11094                                           /*isError*/false);
11095       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
11096         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
11097 
11098       if (LHSIsNull && !RHSIsNull)
11099         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11100       else
11101         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11102       return computeResultTy();
11103     }
11104 
11105     if (!IsOrdered && LHSType->isBlockPointerType() &&
11106         RHSType->isBlockCompatibleObjCPointerType(Context)) {
11107       LHS = ImpCastExprToType(LHS.get(), RHSType,
11108                               CK_BlockPointerToObjCPointerCast);
11109       return computeResultTy();
11110     } else if (!IsOrdered &&
11111                LHSType->isBlockCompatibleObjCPointerType(Context) &&
11112                RHSType->isBlockPointerType()) {
11113       RHS = ImpCastExprToType(RHS.get(), LHSType,
11114                               CK_BlockPointerToObjCPointerCast);
11115       return computeResultTy();
11116     }
11117   }
11118   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
11119       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
11120     unsigned DiagID = 0;
11121     bool isError = false;
11122     if (LangOpts.DebuggerSupport) {
11123       // Under a debugger, allow the comparison of pointers to integers,
11124       // since users tend to want to compare addresses.
11125     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
11126                (RHSIsNull && RHSType->isIntegerType())) {
11127       if (IsOrdered) {
11128         isError = getLangOpts().CPlusPlus;
11129         DiagID =
11130           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
11131                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
11132       }
11133     } else if (getLangOpts().CPlusPlus) {
11134       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
11135       isError = true;
11136     } else if (IsOrdered)
11137       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
11138     else
11139       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
11140 
11141     if (DiagID) {
11142       Diag(Loc, DiagID)
11143         << LHSType << RHSType << LHS.get()->getSourceRange()
11144         << RHS.get()->getSourceRange();
11145       if (isError)
11146         return QualType();
11147     }
11148 
11149     if (LHSType->isIntegerType())
11150       LHS = ImpCastExprToType(LHS.get(), RHSType,
11151                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11152     else
11153       RHS = ImpCastExprToType(RHS.get(), LHSType,
11154                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11155     return computeResultTy();
11156   }
11157 
11158   // Handle block pointers.
11159   if (!IsOrdered && RHSIsNull
11160       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
11161     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11162     return computeResultTy();
11163   }
11164   if (!IsOrdered && LHSIsNull
11165       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
11166     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11167     return computeResultTy();
11168   }
11169 
11170   if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
11171     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
11172       return computeResultTy();
11173     }
11174 
11175     if (LHSType->isQueueT() && RHSType->isQueueT()) {
11176       return computeResultTy();
11177     }
11178 
11179     if (LHSIsNull && RHSType->isQueueT()) {
11180       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11181       return computeResultTy();
11182     }
11183 
11184     if (LHSType->isQueueT() && RHSIsNull) {
11185       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11186       return computeResultTy();
11187     }
11188   }
11189 
11190   return InvalidOperands(Loc, LHS, RHS);
11191 }
11192 
11193 // Return a signed ext_vector_type that is of identical size and number of
11194 // elements. For floating point vectors, return an integer type of identical
11195 // size and number of elements. In the non ext_vector_type case, search from
11196 // the largest type to the smallest type to avoid cases where long long == long,
11197 // where long gets picked over long long.
11198 QualType Sema::GetSignedVectorType(QualType V) {
11199   const VectorType *VTy = V->castAs<VectorType>();
11200   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
11201 
11202   if (isa<ExtVectorType>(VTy)) {
11203     if (TypeSize == Context.getTypeSize(Context.CharTy))
11204       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
11205     else if (TypeSize == Context.getTypeSize(Context.ShortTy))
11206       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
11207     else if (TypeSize == Context.getTypeSize(Context.IntTy))
11208       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
11209     else if (TypeSize == Context.getTypeSize(Context.LongTy))
11210       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
11211     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
11212            "Unhandled vector element size in vector compare");
11213     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
11214   }
11215 
11216   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
11217     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
11218                                  VectorType::GenericVector);
11219   else if (TypeSize == Context.getTypeSize(Context.LongTy))
11220     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
11221                                  VectorType::GenericVector);
11222   else if (TypeSize == Context.getTypeSize(Context.IntTy))
11223     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
11224                                  VectorType::GenericVector);
11225   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
11226     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
11227                                  VectorType::GenericVector);
11228   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
11229          "Unhandled vector element size in vector compare");
11230   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
11231                                VectorType::GenericVector);
11232 }
11233 
11234 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
11235 /// operates on extended vector types.  Instead of producing an IntTy result,
11236 /// like a scalar comparison, a vector comparison produces a vector of integer
11237 /// types.
11238 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11239                                           SourceLocation Loc,
11240                                           BinaryOperatorKind Opc) {
11241   if (Opc == BO_Cmp) {
11242     Diag(Loc, diag::err_three_way_vector_comparison);
11243     return QualType();
11244   }
11245 
11246   // Check to make sure we're operating on vectors of the same type and width,
11247   // Allowing one side to be a scalar of element type.
11248   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
11249                               /*AllowBothBool*/true,
11250                               /*AllowBoolConversions*/getLangOpts().ZVector);
11251   if (vType.isNull())
11252     return vType;
11253 
11254   QualType LHSType = LHS.get()->getType();
11255 
11256   // If AltiVec, the comparison results in a numeric type, i.e.
11257   // bool for C++, int for C
11258   if (getLangOpts().AltiVec &&
11259       vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
11260     return Context.getLogicalOperationType();
11261 
11262   // For non-floating point types, check for self-comparisons of the form
11263   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11264   // often indicate logic errors in the program.
11265   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11266 
11267   // Check for comparisons of floating point operands using != and ==.
11268   if (BinaryOperator::isEqualityOp(Opc) &&
11269       LHSType->hasFloatingRepresentation()) {
11270     assert(RHS.get()->getType()->hasFloatingRepresentation());
11271     CheckFloatComparison(Loc, LHS.get(), RHS.get());
11272   }
11273 
11274   // Return a signed type for the vector.
11275   return GetSignedVectorType(vType);
11276 }
11277 
11278 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
11279                                     const ExprResult &XorRHS,
11280                                     const SourceLocation Loc) {
11281   // Do not diagnose macros.
11282   if (Loc.isMacroID())
11283     return;
11284 
11285   bool Negative = false;
11286   bool ExplicitPlus = false;
11287   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
11288   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
11289 
11290   if (!LHSInt)
11291     return;
11292   if (!RHSInt) {
11293     // Check negative literals.
11294     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
11295       UnaryOperatorKind Opc = UO->getOpcode();
11296       if (Opc != UO_Minus && Opc != UO_Plus)
11297         return;
11298       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
11299       if (!RHSInt)
11300         return;
11301       Negative = (Opc == UO_Minus);
11302       ExplicitPlus = !Negative;
11303     } else {
11304       return;
11305     }
11306   }
11307 
11308   const llvm::APInt &LeftSideValue = LHSInt->getValue();
11309   llvm::APInt RightSideValue = RHSInt->getValue();
11310   if (LeftSideValue != 2 && LeftSideValue != 10)
11311     return;
11312 
11313   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
11314     return;
11315 
11316   CharSourceRange ExprRange = CharSourceRange::getCharRange(
11317       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
11318   llvm::StringRef ExprStr =
11319       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
11320 
11321   CharSourceRange XorRange =
11322       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11323   llvm::StringRef XorStr =
11324       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
11325   // Do not diagnose if xor keyword/macro is used.
11326   if (XorStr == "xor")
11327     return;
11328 
11329   std::string LHSStr = Lexer::getSourceText(
11330       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
11331       S.getSourceManager(), S.getLangOpts());
11332   std::string RHSStr = Lexer::getSourceText(
11333       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
11334       S.getSourceManager(), S.getLangOpts());
11335 
11336   if (Negative) {
11337     RightSideValue = -RightSideValue;
11338     RHSStr = "-" + RHSStr;
11339   } else if (ExplicitPlus) {
11340     RHSStr = "+" + RHSStr;
11341   }
11342 
11343   StringRef LHSStrRef = LHSStr;
11344   StringRef RHSStrRef = RHSStr;
11345   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
11346   // literals.
11347   if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
11348       RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
11349       LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
11350       RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
11351       (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
11352       (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
11353       LHSStrRef.find('\'') != StringRef::npos ||
11354       RHSStrRef.find('\'') != StringRef::npos)
11355     return;
11356 
11357   bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
11358   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
11359   int64_t RightSideIntValue = RightSideValue.getSExtValue();
11360   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
11361     std::string SuggestedExpr = "1 << " + RHSStr;
11362     bool Overflow = false;
11363     llvm::APInt One = (LeftSideValue - 1);
11364     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
11365     if (Overflow) {
11366       if (RightSideIntValue < 64)
11367         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
11368             << ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
11369             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
11370       else if (RightSideIntValue == 64)
11371         S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true);
11372       else
11373         return;
11374     } else {
11375       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
11376           << ExprStr << XorValue.toString(10, true) << SuggestedExpr
11377           << PowValue.toString(10, true)
11378           << FixItHint::CreateReplacement(
11379                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
11380     }
11381 
11382     S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor;
11383   } else if (LeftSideValue == 10) {
11384     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
11385     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
11386         << ExprStr << XorValue.toString(10, true) << SuggestedValue
11387         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
11388     S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor;
11389   }
11390 }
11391 
11392 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11393                                           SourceLocation Loc) {
11394   // Ensure that either both operands are of the same vector type, or
11395   // one operand is of a vector type and the other is of its element type.
11396   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
11397                                        /*AllowBothBool*/true,
11398                                        /*AllowBoolConversions*/false);
11399   if (vType.isNull())
11400     return InvalidOperands(Loc, LHS, RHS);
11401   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
11402       !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
11403     return InvalidOperands(Loc, LHS, RHS);
11404   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
11405   //        usage of the logical operators && and || with vectors in C. This
11406   //        check could be notionally dropped.
11407   if (!getLangOpts().CPlusPlus &&
11408       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
11409     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
11410 
11411   return GetSignedVectorType(LHS.get()->getType());
11412 }
11413 
11414 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
11415                                            SourceLocation Loc,
11416                                            BinaryOperatorKind Opc) {
11417   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11418 
11419   bool IsCompAssign =
11420       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
11421 
11422   if (LHS.get()->getType()->isVectorType() ||
11423       RHS.get()->getType()->isVectorType()) {
11424     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11425         RHS.get()->getType()->hasIntegerRepresentation())
11426       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11427                         /*AllowBothBool*/true,
11428                         /*AllowBoolConversions*/getLangOpts().ZVector);
11429     return InvalidOperands(Loc, LHS, RHS);
11430   }
11431 
11432   if (Opc == BO_And)
11433     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11434 
11435   if (LHS.get()->getType()->hasFloatingRepresentation() ||
11436       RHS.get()->getType()->hasFloatingRepresentation())
11437     return InvalidOperands(Loc, LHS, RHS);
11438 
11439   ExprResult LHSResult = LHS, RHSResult = RHS;
11440   QualType compType = UsualArithmeticConversions(
11441       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
11442   if (LHSResult.isInvalid() || RHSResult.isInvalid())
11443     return QualType();
11444   LHS = LHSResult.get();
11445   RHS = RHSResult.get();
11446 
11447   if (Opc == BO_Xor)
11448     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
11449 
11450   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
11451     return compType;
11452   return InvalidOperands(Loc, LHS, RHS);
11453 }
11454 
11455 // C99 6.5.[13,14]
11456 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11457                                            SourceLocation Loc,
11458                                            BinaryOperatorKind Opc) {
11459   // Check vector operands differently.
11460   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
11461     return CheckVectorLogicalOperands(LHS, RHS, Loc);
11462 
11463   bool EnumConstantInBoolContext = false;
11464   for (const ExprResult &HS : {LHS, RHS}) {
11465     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
11466       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
11467       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
11468         EnumConstantInBoolContext = true;
11469     }
11470   }
11471 
11472   if (EnumConstantInBoolContext)
11473     Diag(Loc, diag::warn_enum_constant_in_bool_context);
11474 
11475   // Diagnose cases where the user write a logical and/or but probably meant a
11476   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
11477   // is a constant.
11478   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
11479       !LHS.get()->getType()->isBooleanType() &&
11480       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
11481       // Don't warn in macros or template instantiations.
11482       !Loc.isMacroID() && !inTemplateInstantiation()) {
11483     // If the RHS can be constant folded, and if it constant folds to something
11484     // that isn't 0 or 1 (which indicate a potential logical operation that
11485     // happened to fold to true/false) then warn.
11486     // Parens on the RHS are ignored.
11487     Expr::EvalResult EVResult;
11488     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
11489       llvm::APSInt Result = EVResult.Val.getInt();
11490       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
11491            !RHS.get()->getExprLoc().isMacroID()) ||
11492           (Result != 0 && Result != 1)) {
11493         Diag(Loc, diag::warn_logical_instead_of_bitwise)
11494           << RHS.get()->getSourceRange()
11495           << (Opc == BO_LAnd ? "&&" : "||");
11496         // Suggest replacing the logical operator with the bitwise version
11497         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
11498             << (Opc == BO_LAnd ? "&" : "|")
11499             << FixItHint::CreateReplacement(SourceRange(
11500                                                  Loc, getLocForEndOfToken(Loc)),
11501                                             Opc == BO_LAnd ? "&" : "|");
11502         if (Opc == BO_LAnd)
11503           // Suggest replacing "Foo() && kNonZero" with "Foo()"
11504           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
11505               << FixItHint::CreateRemoval(
11506                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
11507                                  RHS.get()->getEndLoc()));
11508       }
11509     }
11510   }
11511 
11512   if (!Context.getLangOpts().CPlusPlus) {
11513     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
11514     // not operate on the built-in scalar and vector float types.
11515     if (Context.getLangOpts().OpenCL &&
11516         Context.getLangOpts().OpenCLVersion < 120) {
11517       if (LHS.get()->getType()->isFloatingType() ||
11518           RHS.get()->getType()->isFloatingType())
11519         return InvalidOperands(Loc, LHS, RHS);
11520     }
11521 
11522     LHS = UsualUnaryConversions(LHS.get());
11523     if (LHS.isInvalid())
11524       return QualType();
11525 
11526     RHS = UsualUnaryConversions(RHS.get());
11527     if (RHS.isInvalid())
11528       return QualType();
11529 
11530     if (!LHS.get()->getType()->isScalarType() ||
11531         !RHS.get()->getType()->isScalarType())
11532       return InvalidOperands(Loc, LHS, RHS);
11533 
11534     return Context.IntTy;
11535   }
11536 
11537   // The following is safe because we only use this method for
11538   // non-overloadable operands.
11539 
11540   // C++ [expr.log.and]p1
11541   // C++ [expr.log.or]p1
11542   // The operands are both contextually converted to type bool.
11543   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
11544   if (LHSRes.isInvalid())
11545     return InvalidOperands(Loc, LHS, RHS);
11546   LHS = LHSRes;
11547 
11548   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
11549   if (RHSRes.isInvalid())
11550     return InvalidOperands(Loc, LHS, RHS);
11551   RHS = RHSRes;
11552 
11553   // C++ [expr.log.and]p2
11554   // C++ [expr.log.or]p2
11555   // The result is a bool.
11556   return Context.BoolTy;
11557 }
11558 
11559 static bool IsReadonlyMessage(Expr *E, Sema &S) {
11560   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
11561   if (!ME) return false;
11562   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
11563   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
11564       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
11565   if (!Base) return false;
11566   return Base->getMethodDecl() != nullptr;
11567 }
11568 
11569 /// Is the given expression (which must be 'const') a reference to a
11570 /// variable which was originally non-const, but which has become
11571 /// 'const' due to being captured within a block?
11572 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
11573 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
11574   assert(E->isLValue() && E->getType().isConstQualified());
11575   E = E->IgnoreParens();
11576 
11577   // Must be a reference to a declaration from an enclosing scope.
11578   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
11579   if (!DRE) return NCCK_None;
11580   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
11581 
11582   // The declaration must be a variable which is not declared 'const'.
11583   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
11584   if (!var) return NCCK_None;
11585   if (var->getType().isConstQualified()) return NCCK_None;
11586   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
11587 
11588   // Decide whether the first capture was for a block or a lambda.
11589   DeclContext *DC = S.CurContext, *Prev = nullptr;
11590   // Decide whether the first capture was for a block or a lambda.
11591   while (DC) {
11592     // For init-capture, it is possible that the variable belongs to the
11593     // template pattern of the current context.
11594     if (auto *FD = dyn_cast<FunctionDecl>(DC))
11595       if (var->isInitCapture() &&
11596           FD->getTemplateInstantiationPattern() == var->getDeclContext())
11597         break;
11598     if (DC == var->getDeclContext())
11599       break;
11600     Prev = DC;
11601     DC = DC->getParent();
11602   }
11603   // Unless we have an init-capture, we've gone one step too far.
11604   if (!var->isInitCapture())
11605     DC = Prev;
11606   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
11607 }
11608 
11609 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
11610   Ty = Ty.getNonReferenceType();
11611   if (IsDereference && Ty->isPointerType())
11612     Ty = Ty->getPointeeType();
11613   return !Ty.isConstQualified();
11614 }
11615 
11616 // Update err_typecheck_assign_const and note_typecheck_assign_const
11617 // when this enum is changed.
11618 enum {
11619   ConstFunction,
11620   ConstVariable,
11621   ConstMember,
11622   ConstMethod,
11623   NestedConstMember,
11624   ConstUnknown,  // Keep as last element
11625 };
11626 
11627 /// Emit the "read-only variable not assignable" error and print notes to give
11628 /// more information about why the variable is not assignable, such as pointing
11629 /// to the declaration of a const variable, showing that a method is const, or
11630 /// that the function is returning a const reference.
11631 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
11632                                     SourceLocation Loc) {
11633   SourceRange ExprRange = E->getSourceRange();
11634 
11635   // Only emit one error on the first const found.  All other consts will emit
11636   // a note to the error.
11637   bool DiagnosticEmitted = false;
11638 
11639   // Track if the current expression is the result of a dereference, and if the
11640   // next checked expression is the result of a dereference.
11641   bool IsDereference = false;
11642   bool NextIsDereference = false;
11643 
11644   // Loop to process MemberExpr chains.
11645   while (true) {
11646     IsDereference = NextIsDereference;
11647 
11648     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
11649     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
11650       NextIsDereference = ME->isArrow();
11651       const ValueDecl *VD = ME->getMemberDecl();
11652       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
11653         // Mutable fields can be modified even if the class is const.
11654         if (Field->isMutable()) {
11655           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
11656           break;
11657         }
11658 
11659         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
11660           if (!DiagnosticEmitted) {
11661             S.Diag(Loc, diag::err_typecheck_assign_const)
11662                 << ExprRange << ConstMember << false /*static*/ << Field
11663                 << Field->getType();
11664             DiagnosticEmitted = true;
11665           }
11666           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11667               << ConstMember << false /*static*/ << Field << Field->getType()
11668               << Field->getSourceRange();
11669         }
11670         E = ME->getBase();
11671         continue;
11672       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
11673         if (VDecl->getType().isConstQualified()) {
11674           if (!DiagnosticEmitted) {
11675             S.Diag(Loc, diag::err_typecheck_assign_const)
11676                 << ExprRange << ConstMember << true /*static*/ << VDecl
11677                 << VDecl->getType();
11678             DiagnosticEmitted = true;
11679           }
11680           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11681               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
11682               << VDecl->getSourceRange();
11683         }
11684         // Static fields do not inherit constness from parents.
11685         break;
11686       }
11687       break; // End MemberExpr
11688     } else if (const ArraySubscriptExpr *ASE =
11689                    dyn_cast<ArraySubscriptExpr>(E)) {
11690       E = ASE->getBase()->IgnoreParenImpCasts();
11691       continue;
11692     } else if (const ExtVectorElementExpr *EVE =
11693                    dyn_cast<ExtVectorElementExpr>(E)) {
11694       E = EVE->getBase()->IgnoreParenImpCasts();
11695       continue;
11696     }
11697     break;
11698   }
11699 
11700   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
11701     // Function calls
11702     const FunctionDecl *FD = CE->getDirectCallee();
11703     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
11704       if (!DiagnosticEmitted) {
11705         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
11706                                                       << ConstFunction << FD;
11707         DiagnosticEmitted = true;
11708       }
11709       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
11710              diag::note_typecheck_assign_const)
11711           << ConstFunction << FD << FD->getReturnType()
11712           << FD->getReturnTypeSourceRange();
11713     }
11714   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11715     // Point to variable declaration.
11716     if (const ValueDecl *VD = DRE->getDecl()) {
11717       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
11718         if (!DiagnosticEmitted) {
11719           S.Diag(Loc, diag::err_typecheck_assign_const)
11720               << ExprRange << ConstVariable << VD << VD->getType();
11721           DiagnosticEmitted = true;
11722         }
11723         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11724             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
11725       }
11726     }
11727   } else if (isa<CXXThisExpr>(E)) {
11728     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
11729       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
11730         if (MD->isConst()) {
11731           if (!DiagnosticEmitted) {
11732             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
11733                                                           << ConstMethod << MD;
11734             DiagnosticEmitted = true;
11735           }
11736           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
11737               << ConstMethod << MD << MD->getSourceRange();
11738         }
11739       }
11740     }
11741   }
11742 
11743   if (DiagnosticEmitted)
11744     return;
11745 
11746   // Can't determine a more specific message, so display the generic error.
11747   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
11748 }
11749 
11750 enum OriginalExprKind {
11751   OEK_Variable,
11752   OEK_Member,
11753   OEK_LValue
11754 };
11755 
11756 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
11757                                          const RecordType *Ty,
11758                                          SourceLocation Loc, SourceRange Range,
11759                                          OriginalExprKind OEK,
11760                                          bool &DiagnosticEmitted) {
11761   std::vector<const RecordType *> RecordTypeList;
11762   RecordTypeList.push_back(Ty);
11763   unsigned NextToCheckIndex = 0;
11764   // We walk the record hierarchy breadth-first to ensure that we print
11765   // diagnostics in field nesting order.
11766   while (RecordTypeList.size() > NextToCheckIndex) {
11767     bool IsNested = NextToCheckIndex > 0;
11768     for (const FieldDecl *Field :
11769          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
11770       // First, check every field for constness.
11771       QualType FieldTy = Field->getType();
11772       if (FieldTy.isConstQualified()) {
11773         if (!DiagnosticEmitted) {
11774           S.Diag(Loc, diag::err_typecheck_assign_const)
11775               << Range << NestedConstMember << OEK << VD
11776               << IsNested << Field;
11777           DiagnosticEmitted = true;
11778         }
11779         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
11780             << NestedConstMember << IsNested << Field
11781             << FieldTy << Field->getSourceRange();
11782       }
11783 
11784       // Then we append it to the list to check next in order.
11785       FieldTy = FieldTy.getCanonicalType();
11786       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
11787         if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
11788           RecordTypeList.push_back(FieldRecTy);
11789       }
11790     }
11791     ++NextToCheckIndex;
11792   }
11793 }
11794 
11795 /// Emit an error for the case where a record we are trying to assign to has a
11796 /// const-qualified field somewhere in its hierarchy.
11797 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
11798                                          SourceLocation Loc) {
11799   QualType Ty = E->getType();
11800   assert(Ty->isRecordType() && "lvalue was not record?");
11801   SourceRange Range = E->getSourceRange();
11802   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
11803   bool DiagEmitted = false;
11804 
11805   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
11806     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
11807             Range, OEK_Member, DiagEmitted);
11808   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
11809     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
11810             Range, OEK_Variable, DiagEmitted);
11811   else
11812     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
11813             Range, OEK_LValue, DiagEmitted);
11814   if (!DiagEmitted)
11815     DiagnoseConstAssignment(S, E, Loc);
11816 }
11817 
11818 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
11819 /// emit an error and return true.  If so, return false.
11820 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
11821   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
11822 
11823   S.CheckShadowingDeclModification(E, Loc);
11824 
11825   SourceLocation OrigLoc = Loc;
11826   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
11827                                                               &Loc);
11828   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
11829     IsLV = Expr::MLV_InvalidMessageExpression;
11830   if (IsLV == Expr::MLV_Valid)
11831     return false;
11832 
11833   unsigned DiagID = 0;
11834   bool NeedType = false;
11835   switch (IsLV) { // C99 6.5.16p2
11836   case Expr::MLV_ConstQualified:
11837     // Use a specialized diagnostic when we're assigning to an object
11838     // from an enclosing function or block.
11839     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
11840       if (NCCK == NCCK_Block)
11841         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
11842       else
11843         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
11844       break;
11845     }
11846 
11847     // In ARC, use some specialized diagnostics for occasions where we
11848     // infer 'const'.  These are always pseudo-strong variables.
11849     if (S.getLangOpts().ObjCAutoRefCount) {
11850       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
11851       if (declRef && isa<VarDecl>(declRef->getDecl())) {
11852         VarDecl *var = cast<VarDecl>(declRef->getDecl());
11853 
11854         // Use the normal diagnostic if it's pseudo-__strong but the
11855         // user actually wrote 'const'.
11856         if (var->isARCPseudoStrong() &&
11857             (!var->getTypeSourceInfo() ||
11858              !var->getTypeSourceInfo()->getType().isConstQualified())) {
11859           // There are three pseudo-strong cases:
11860           //  - self
11861           ObjCMethodDecl *method = S.getCurMethodDecl();
11862           if (method && var == method->getSelfDecl()) {
11863             DiagID = method->isClassMethod()
11864               ? diag::err_typecheck_arc_assign_self_class_method
11865               : diag::err_typecheck_arc_assign_self;
11866 
11867           //  - Objective-C externally_retained attribute.
11868           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
11869                      isa<ParmVarDecl>(var)) {
11870             DiagID = diag::err_typecheck_arc_assign_externally_retained;
11871 
11872           //  - fast enumeration variables
11873           } else {
11874             DiagID = diag::err_typecheck_arr_assign_enumeration;
11875           }
11876 
11877           SourceRange Assign;
11878           if (Loc != OrigLoc)
11879             Assign = SourceRange(OrigLoc, OrigLoc);
11880           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
11881           // We need to preserve the AST regardless, so migration tool
11882           // can do its job.
11883           return false;
11884         }
11885       }
11886     }
11887 
11888     // If none of the special cases above are triggered, then this is a
11889     // simple const assignment.
11890     if (DiagID == 0) {
11891       DiagnoseConstAssignment(S, E, Loc);
11892       return true;
11893     }
11894 
11895     break;
11896   case Expr::MLV_ConstAddrSpace:
11897     DiagnoseConstAssignment(S, E, Loc);
11898     return true;
11899   case Expr::MLV_ConstQualifiedField:
11900     DiagnoseRecursiveConstFields(S, E, Loc);
11901     return true;
11902   case Expr::MLV_ArrayType:
11903   case Expr::MLV_ArrayTemporary:
11904     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
11905     NeedType = true;
11906     break;
11907   case Expr::MLV_NotObjectType:
11908     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
11909     NeedType = true;
11910     break;
11911   case Expr::MLV_LValueCast:
11912     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
11913     break;
11914   case Expr::MLV_Valid:
11915     llvm_unreachable("did not take early return for MLV_Valid");
11916   case Expr::MLV_InvalidExpression:
11917   case Expr::MLV_MemberFunction:
11918   case Expr::MLV_ClassTemporary:
11919     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
11920     break;
11921   case Expr::MLV_IncompleteType:
11922   case Expr::MLV_IncompleteVoidType:
11923     return S.RequireCompleteType(Loc, E->getType(),
11924              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
11925   case Expr::MLV_DuplicateVectorComponents:
11926     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
11927     break;
11928   case Expr::MLV_NoSetterProperty:
11929     llvm_unreachable("readonly properties should be processed differently");
11930   case Expr::MLV_InvalidMessageExpression:
11931     DiagID = diag::err_readonly_message_assignment;
11932     break;
11933   case Expr::MLV_SubObjCPropertySetting:
11934     DiagID = diag::err_no_subobject_property_setting;
11935     break;
11936   }
11937 
11938   SourceRange Assign;
11939   if (Loc != OrigLoc)
11940     Assign = SourceRange(OrigLoc, OrigLoc);
11941   if (NeedType)
11942     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
11943   else
11944     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
11945   return true;
11946 }
11947 
11948 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
11949                                          SourceLocation Loc,
11950                                          Sema &Sema) {
11951   if (Sema.inTemplateInstantiation())
11952     return;
11953   if (Sema.isUnevaluatedContext())
11954     return;
11955   if (Loc.isInvalid() || Loc.isMacroID())
11956     return;
11957   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
11958     return;
11959 
11960   // C / C++ fields
11961   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
11962   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
11963   if (ML && MR) {
11964     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
11965       return;
11966     const ValueDecl *LHSDecl =
11967         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
11968     const ValueDecl *RHSDecl =
11969         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
11970     if (LHSDecl != RHSDecl)
11971       return;
11972     if (LHSDecl->getType().isVolatileQualified())
11973       return;
11974     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
11975       if (RefTy->getPointeeType().isVolatileQualified())
11976         return;
11977 
11978     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
11979   }
11980 
11981   // Objective-C instance variables
11982   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
11983   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
11984   if (OL && OR && OL->getDecl() == OR->getDecl()) {
11985     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
11986     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
11987     if (RL && RR && RL->getDecl() == RR->getDecl())
11988       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
11989   }
11990 }
11991 
11992 // C99 6.5.16.1
11993 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
11994                                        SourceLocation Loc,
11995                                        QualType CompoundType) {
11996   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
11997 
11998   // Verify that LHS is a modifiable lvalue, and emit error if not.
11999   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
12000     return QualType();
12001 
12002   QualType LHSType = LHSExpr->getType();
12003   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
12004                                              CompoundType;
12005   // OpenCL v1.2 s6.1.1.1 p2:
12006   // The half data type can only be used to declare a pointer to a buffer that
12007   // contains half values
12008   if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
12009     LHSType->isHalfType()) {
12010     Diag(Loc, diag::err_opencl_half_load_store) << 1
12011         << LHSType.getUnqualifiedType();
12012     return QualType();
12013   }
12014 
12015   AssignConvertType ConvTy;
12016   if (CompoundType.isNull()) {
12017     Expr *RHSCheck = RHS.get();
12018 
12019     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
12020 
12021     QualType LHSTy(LHSType);
12022     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
12023     if (RHS.isInvalid())
12024       return QualType();
12025     // Special case of NSObject attributes on c-style pointer types.
12026     if (ConvTy == IncompatiblePointer &&
12027         ((Context.isObjCNSObjectType(LHSType) &&
12028           RHSType->isObjCObjectPointerType()) ||
12029          (Context.isObjCNSObjectType(RHSType) &&
12030           LHSType->isObjCObjectPointerType())))
12031       ConvTy = Compatible;
12032 
12033     if (ConvTy == Compatible &&
12034         LHSType->isObjCObjectType())
12035         Diag(Loc, diag::err_objc_object_assignment)
12036           << LHSType;
12037 
12038     // If the RHS is a unary plus or minus, check to see if they = and + are
12039     // right next to each other.  If so, the user may have typo'd "x =+ 4"
12040     // instead of "x += 4".
12041     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
12042       RHSCheck = ICE->getSubExpr();
12043     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
12044       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
12045           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
12046           // Only if the two operators are exactly adjacent.
12047           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
12048           // And there is a space or other character before the subexpr of the
12049           // unary +/-.  We don't want to warn on "x=-1".
12050           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
12051           UO->getSubExpr()->getBeginLoc().isFileID()) {
12052         Diag(Loc, diag::warn_not_compound_assign)
12053           << (UO->getOpcode() == UO_Plus ? "+" : "-")
12054           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
12055       }
12056     }
12057 
12058     if (ConvTy == Compatible) {
12059       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
12060         // Warn about retain cycles where a block captures the LHS, but
12061         // not if the LHS is a simple variable into which the block is
12062         // being stored...unless that variable can be captured by reference!
12063         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
12064         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
12065         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
12066           checkRetainCycles(LHSExpr, RHS.get());
12067       }
12068 
12069       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
12070           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
12071         // It is safe to assign a weak reference into a strong variable.
12072         // Although this code can still have problems:
12073         //   id x = self.weakProp;
12074         //   id y = self.weakProp;
12075         // we do not warn to warn spuriously when 'x' and 'y' are on separate
12076         // paths through the function. This should be revisited if
12077         // -Wrepeated-use-of-weak is made flow-sensitive.
12078         // For ObjCWeak only, we do not warn if the assign is to a non-weak
12079         // variable, which will be valid for the current autorelease scope.
12080         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12081                              RHS.get()->getBeginLoc()))
12082           getCurFunction()->markSafeWeakUse(RHS.get());
12083 
12084       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
12085         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
12086       }
12087     }
12088   } else {
12089     // Compound assignment "x += y"
12090     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
12091   }
12092 
12093   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
12094                                RHS.get(), AA_Assigning))
12095     return QualType();
12096 
12097   CheckForNullPointerDereference(*this, LHSExpr);
12098 
12099   if (getLangOpts().CPlusPlus2a && LHSType.isVolatileQualified()) {
12100     if (CompoundType.isNull()) {
12101       // C++2a [expr.ass]p5:
12102       //   A simple-assignment whose left operand is of a volatile-qualified
12103       //   type is deprecated unless the assignment is either a discarded-value
12104       //   expression or an unevaluated operand
12105       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
12106     } else {
12107       // C++2a [expr.ass]p6:
12108       //   [Compound-assignment] expressions are deprecated if E1 has
12109       //   volatile-qualified type
12110       Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
12111     }
12112   }
12113 
12114   // C99 6.5.16p3: The type of an assignment expression is the type of the
12115   // left operand unless the left operand has qualified type, in which case
12116   // it is the unqualified version of the type of the left operand.
12117   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
12118   // is converted to the type of the assignment expression (above).
12119   // C++ 5.17p1: the type of the assignment expression is that of its left
12120   // operand.
12121   return (getLangOpts().CPlusPlus
12122           ? LHSType : LHSType.getUnqualifiedType());
12123 }
12124 
12125 // Only ignore explicit casts to void.
12126 static bool IgnoreCommaOperand(const Expr *E) {
12127   E = E->IgnoreParens();
12128 
12129   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
12130     if (CE->getCastKind() == CK_ToVoid) {
12131       return true;
12132     }
12133 
12134     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
12135     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
12136         CE->getSubExpr()->getType()->isDependentType()) {
12137       return true;
12138     }
12139   }
12140 
12141   return false;
12142 }
12143 
12144 // Look for instances where it is likely the comma operator is confused with
12145 // another operator.  There is a whitelist of acceptable expressions for the
12146 // left hand side of the comma operator, otherwise emit a warning.
12147 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
12148   // No warnings in macros
12149   if (Loc.isMacroID())
12150     return;
12151 
12152   // Don't warn in template instantiations.
12153   if (inTemplateInstantiation())
12154     return;
12155 
12156   // Scope isn't fine-grained enough to whitelist the specific cases, so
12157   // instead, skip more than needed, then call back into here with the
12158   // CommaVisitor in SemaStmt.cpp.
12159   // The whitelisted locations are the initialization and increment portions
12160   // of a for loop.  The additional checks are on the condition of
12161   // if statements, do/while loops, and for loops.
12162   // Differences in scope flags for C89 mode requires the extra logic.
12163   const unsigned ForIncrementFlags =
12164       getLangOpts().C99 || getLangOpts().CPlusPlus
12165           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
12166           : Scope::ContinueScope | Scope::BreakScope;
12167   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
12168   const unsigned ScopeFlags = getCurScope()->getFlags();
12169   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
12170       (ScopeFlags & ForInitFlags) == ForInitFlags)
12171     return;
12172 
12173   // If there are multiple comma operators used together, get the RHS of the
12174   // of the comma operator as the LHS.
12175   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
12176     if (BO->getOpcode() != BO_Comma)
12177       break;
12178     LHS = BO->getRHS();
12179   }
12180 
12181   // Only allow some expressions on LHS to not warn.
12182   if (IgnoreCommaOperand(LHS))
12183     return;
12184 
12185   Diag(Loc, diag::warn_comma_operator);
12186   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
12187       << LHS->getSourceRange()
12188       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
12189                                     LangOpts.CPlusPlus ? "static_cast<void>("
12190                                                        : "(void)(")
12191       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
12192                                     ")");
12193 }
12194 
12195 // C99 6.5.17
12196 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
12197                                    SourceLocation Loc) {
12198   LHS = S.CheckPlaceholderExpr(LHS.get());
12199   RHS = S.CheckPlaceholderExpr(RHS.get());
12200   if (LHS.isInvalid() || RHS.isInvalid())
12201     return QualType();
12202 
12203   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
12204   // operands, but not unary promotions.
12205   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
12206 
12207   // So we treat the LHS as a ignored value, and in C++ we allow the
12208   // containing site to determine what should be done with the RHS.
12209   LHS = S.IgnoredValueConversions(LHS.get());
12210   if (LHS.isInvalid())
12211     return QualType();
12212 
12213   S.DiagnoseUnusedExprResult(LHS.get());
12214 
12215   if (!S.getLangOpts().CPlusPlus) {
12216     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
12217     if (RHS.isInvalid())
12218       return QualType();
12219     if (!RHS.get()->getType()->isVoidType())
12220       S.RequireCompleteType(Loc, RHS.get()->getType(),
12221                             diag::err_incomplete_type);
12222   }
12223 
12224   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
12225     S.DiagnoseCommaOperator(LHS.get(), Loc);
12226 
12227   return RHS.get()->getType();
12228 }
12229 
12230 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
12231 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
12232 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
12233                                                ExprValueKind &VK,
12234                                                ExprObjectKind &OK,
12235                                                SourceLocation OpLoc,
12236                                                bool IsInc, bool IsPrefix) {
12237   if (Op->isTypeDependent())
12238     return S.Context.DependentTy;
12239 
12240   QualType ResType = Op->getType();
12241   // Atomic types can be used for increment / decrement where the non-atomic
12242   // versions can, so ignore the _Atomic() specifier for the purpose of
12243   // checking.
12244   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
12245     ResType = ResAtomicType->getValueType();
12246 
12247   assert(!ResType.isNull() && "no type for increment/decrement expression");
12248 
12249   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
12250     // Decrement of bool is not allowed.
12251     if (!IsInc) {
12252       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
12253       return QualType();
12254     }
12255     // Increment of bool sets it to true, but is deprecated.
12256     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
12257                                               : diag::warn_increment_bool)
12258       << Op->getSourceRange();
12259   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
12260     // Error on enum increments and decrements in C++ mode
12261     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
12262     return QualType();
12263   } else if (ResType->isRealType()) {
12264     // OK!
12265   } else if (ResType->isPointerType()) {
12266     // C99 6.5.2.4p2, 6.5.6p2
12267     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
12268       return QualType();
12269   } else if (ResType->isObjCObjectPointerType()) {
12270     // On modern runtimes, ObjC pointer arithmetic is forbidden.
12271     // Otherwise, we just need a complete type.
12272     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
12273         checkArithmeticOnObjCPointer(S, OpLoc, Op))
12274       return QualType();
12275   } else if (ResType->isAnyComplexType()) {
12276     // C99 does not support ++/-- on complex types, we allow as an extension.
12277     S.Diag(OpLoc, diag::ext_integer_increment_complex)
12278       << ResType << Op->getSourceRange();
12279   } else if (ResType->isPlaceholderType()) {
12280     ExprResult PR = S.CheckPlaceholderExpr(Op);
12281     if (PR.isInvalid()) return QualType();
12282     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
12283                                           IsInc, IsPrefix);
12284   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
12285     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
12286   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
12287              (ResType->castAs<VectorType>()->getVectorKind() !=
12288               VectorType::AltiVecBool)) {
12289     // The z vector extensions allow ++ and -- for non-bool vectors.
12290   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
12291             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
12292     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
12293   } else {
12294     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
12295       << ResType << int(IsInc) << Op->getSourceRange();
12296     return QualType();
12297   }
12298   // At this point, we know we have a real, complex or pointer type.
12299   // Now make sure the operand is a modifiable lvalue.
12300   if (CheckForModifiableLvalue(Op, OpLoc, S))
12301     return QualType();
12302   if (S.getLangOpts().CPlusPlus2a && ResType.isVolatileQualified()) {
12303     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
12304     //   An operand with volatile-qualified type is deprecated
12305     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
12306         << IsInc << ResType;
12307   }
12308   // In C++, a prefix increment is the same type as the operand. Otherwise
12309   // (in C or with postfix), the increment is the unqualified type of the
12310   // operand.
12311   if (IsPrefix && S.getLangOpts().CPlusPlus) {
12312     VK = VK_LValue;
12313     OK = Op->getObjectKind();
12314     return ResType;
12315   } else {
12316     VK = VK_RValue;
12317     return ResType.getUnqualifiedType();
12318   }
12319 }
12320 
12321 
12322 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
12323 /// This routine allows us to typecheck complex/recursive expressions
12324 /// where the declaration is needed for type checking. We only need to
12325 /// handle cases when the expression references a function designator
12326 /// or is an lvalue. Here are some examples:
12327 ///  - &(x) => x
12328 ///  - &*****f => f for f a function designator.
12329 ///  - &s.xx => s
12330 ///  - &s.zz[1].yy -> s, if zz is an array
12331 ///  - *(x + 1) -> x, if x is an array
12332 ///  - &"123"[2] -> 0
12333 ///  - & __real__ x -> x
12334 static ValueDecl *getPrimaryDecl(Expr *E) {
12335   switch (E->getStmtClass()) {
12336   case Stmt::DeclRefExprClass:
12337     return cast<DeclRefExpr>(E)->getDecl();
12338   case Stmt::MemberExprClass:
12339     // If this is an arrow operator, the address is an offset from
12340     // the base's value, so the object the base refers to is
12341     // irrelevant.
12342     if (cast<MemberExpr>(E)->isArrow())
12343       return nullptr;
12344     // Otherwise, the expression refers to a part of the base
12345     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
12346   case Stmt::ArraySubscriptExprClass: {
12347     // FIXME: This code shouldn't be necessary!  We should catch the implicit
12348     // promotion of register arrays earlier.
12349     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
12350     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
12351       if (ICE->getSubExpr()->getType()->isArrayType())
12352         return getPrimaryDecl(ICE->getSubExpr());
12353     }
12354     return nullptr;
12355   }
12356   case Stmt::UnaryOperatorClass: {
12357     UnaryOperator *UO = cast<UnaryOperator>(E);
12358 
12359     switch(UO->getOpcode()) {
12360     case UO_Real:
12361     case UO_Imag:
12362     case UO_Extension:
12363       return getPrimaryDecl(UO->getSubExpr());
12364     default:
12365       return nullptr;
12366     }
12367   }
12368   case Stmt::ParenExprClass:
12369     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
12370   case Stmt::ImplicitCastExprClass:
12371     // If the result of an implicit cast is an l-value, we care about
12372     // the sub-expression; otherwise, the result here doesn't matter.
12373     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
12374   default:
12375     return nullptr;
12376   }
12377 }
12378 
12379 namespace {
12380   enum {
12381     AO_Bit_Field = 0,
12382     AO_Vector_Element = 1,
12383     AO_Property_Expansion = 2,
12384     AO_Register_Variable = 3,
12385     AO_No_Error = 4
12386   };
12387 }
12388 /// Diagnose invalid operand for address of operations.
12389 ///
12390 /// \param Type The type of operand which cannot have its address taken.
12391 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
12392                                          Expr *E, unsigned Type) {
12393   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
12394 }
12395 
12396 /// CheckAddressOfOperand - The operand of & must be either a function
12397 /// designator or an lvalue designating an object. If it is an lvalue, the
12398 /// object cannot be declared with storage class register or be a bit field.
12399 /// Note: The usual conversions are *not* applied to the operand of the &
12400 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
12401 /// In C++, the operand might be an overloaded function name, in which case
12402 /// we allow the '&' but retain the overloaded-function type.
12403 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
12404   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
12405     if (PTy->getKind() == BuiltinType::Overload) {
12406       Expr *E = OrigOp.get()->IgnoreParens();
12407       if (!isa<OverloadExpr>(E)) {
12408         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
12409         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
12410           << OrigOp.get()->getSourceRange();
12411         return QualType();
12412       }
12413 
12414       OverloadExpr *Ovl = cast<OverloadExpr>(E);
12415       if (isa<UnresolvedMemberExpr>(Ovl))
12416         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
12417           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
12418             << OrigOp.get()->getSourceRange();
12419           return QualType();
12420         }
12421 
12422       return Context.OverloadTy;
12423     }
12424 
12425     if (PTy->getKind() == BuiltinType::UnknownAny)
12426       return Context.UnknownAnyTy;
12427 
12428     if (PTy->getKind() == BuiltinType::BoundMember) {
12429       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
12430         << OrigOp.get()->getSourceRange();
12431       return QualType();
12432     }
12433 
12434     OrigOp = CheckPlaceholderExpr(OrigOp.get());
12435     if (OrigOp.isInvalid()) return QualType();
12436   }
12437 
12438   if (OrigOp.get()->isTypeDependent())
12439     return Context.DependentTy;
12440 
12441   assert(!OrigOp.get()->getType()->isPlaceholderType());
12442 
12443   // Make sure to ignore parentheses in subsequent checks
12444   Expr *op = OrigOp.get()->IgnoreParens();
12445 
12446   // In OpenCL captures for blocks called as lambda functions
12447   // are located in the private address space. Blocks used in
12448   // enqueue_kernel can be located in a different address space
12449   // depending on a vendor implementation. Thus preventing
12450   // taking an address of the capture to avoid invalid AS casts.
12451   if (LangOpts.OpenCL) {
12452     auto* VarRef = dyn_cast<DeclRefExpr>(op);
12453     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
12454       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
12455       return QualType();
12456     }
12457   }
12458 
12459   if (getLangOpts().C99) {
12460     // Implement C99-only parts of addressof rules.
12461     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
12462       if (uOp->getOpcode() == UO_Deref)
12463         // Per C99 6.5.3.2, the address of a deref always returns a valid result
12464         // (assuming the deref expression is valid).
12465         return uOp->getSubExpr()->getType();
12466     }
12467     // Technically, there should be a check for array subscript
12468     // expressions here, but the result of one is always an lvalue anyway.
12469   }
12470   ValueDecl *dcl = getPrimaryDecl(op);
12471 
12472   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
12473     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12474                                            op->getBeginLoc()))
12475       return QualType();
12476 
12477   Expr::LValueClassification lval = op->ClassifyLValue(Context);
12478   unsigned AddressOfError = AO_No_Error;
12479 
12480   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
12481     bool sfinae = (bool)isSFINAEContext();
12482     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
12483                                   : diag::ext_typecheck_addrof_temporary)
12484       << op->getType() << op->getSourceRange();
12485     if (sfinae)
12486       return QualType();
12487     // Materialize the temporary as an lvalue so that we can take its address.
12488     OrigOp = op =
12489         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
12490   } else if (isa<ObjCSelectorExpr>(op)) {
12491     return Context.getPointerType(op->getType());
12492   } else if (lval == Expr::LV_MemberFunction) {
12493     // If it's an instance method, make a member pointer.
12494     // The expression must have exactly the form &A::foo.
12495 
12496     // If the underlying expression isn't a decl ref, give up.
12497     if (!isa<DeclRefExpr>(op)) {
12498       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
12499         << OrigOp.get()->getSourceRange();
12500       return QualType();
12501     }
12502     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
12503     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
12504 
12505     // The id-expression was parenthesized.
12506     if (OrigOp.get() != DRE) {
12507       Diag(OpLoc, diag::err_parens_pointer_member_function)
12508         << OrigOp.get()->getSourceRange();
12509 
12510     // The method was named without a qualifier.
12511     } else if (!DRE->getQualifier()) {
12512       if (MD->getParent()->getName().empty())
12513         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
12514           << op->getSourceRange();
12515       else {
12516         SmallString<32> Str;
12517         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
12518         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
12519           << op->getSourceRange()
12520           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
12521       }
12522     }
12523 
12524     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
12525     if (isa<CXXDestructorDecl>(MD))
12526       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
12527 
12528     QualType MPTy = Context.getMemberPointerType(
12529         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
12530     // Under the MS ABI, lock down the inheritance model now.
12531     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
12532       (void)isCompleteType(OpLoc, MPTy);
12533     return MPTy;
12534   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
12535     // C99 6.5.3.2p1
12536     // The operand must be either an l-value or a function designator
12537     if (!op->getType()->isFunctionType()) {
12538       // Use a special diagnostic for loads from property references.
12539       if (isa<PseudoObjectExpr>(op)) {
12540         AddressOfError = AO_Property_Expansion;
12541       } else {
12542         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
12543           << op->getType() << op->getSourceRange();
12544         return QualType();
12545       }
12546     }
12547   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
12548     // The operand cannot be a bit-field
12549     AddressOfError = AO_Bit_Field;
12550   } else if (op->getObjectKind() == OK_VectorComponent) {
12551     // The operand cannot be an element of a vector
12552     AddressOfError = AO_Vector_Element;
12553   } else if (dcl) { // C99 6.5.3.2p1
12554     // We have an lvalue with a decl. Make sure the decl is not declared
12555     // with the register storage-class specifier.
12556     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
12557       // in C++ it is not error to take address of a register
12558       // variable (c++03 7.1.1P3)
12559       if (vd->getStorageClass() == SC_Register &&
12560           !getLangOpts().CPlusPlus) {
12561         AddressOfError = AO_Register_Variable;
12562       }
12563     } else if (isa<MSPropertyDecl>(dcl)) {
12564       AddressOfError = AO_Property_Expansion;
12565     } else if (isa<FunctionTemplateDecl>(dcl)) {
12566       return Context.OverloadTy;
12567     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
12568       // Okay: we can take the address of a field.
12569       // Could be a pointer to member, though, if there is an explicit
12570       // scope qualifier for the class.
12571       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
12572         DeclContext *Ctx = dcl->getDeclContext();
12573         if (Ctx && Ctx->isRecord()) {
12574           if (dcl->getType()->isReferenceType()) {
12575             Diag(OpLoc,
12576                  diag::err_cannot_form_pointer_to_member_of_reference_type)
12577               << dcl->getDeclName() << dcl->getType();
12578             return QualType();
12579           }
12580 
12581           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
12582             Ctx = Ctx->getParent();
12583 
12584           QualType MPTy = Context.getMemberPointerType(
12585               op->getType(),
12586               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
12587           // Under the MS ABI, lock down the inheritance model now.
12588           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
12589             (void)isCompleteType(OpLoc, MPTy);
12590           return MPTy;
12591         }
12592       }
12593     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
12594                !isa<BindingDecl>(dcl))
12595       llvm_unreachable("Unknown/unexpected decl type");
12596   }
12597 
12598   if (AddressOfError != AO_No_Error) {
12599     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
12600     return QualType();
12601   }
12602 
12603   if (lval == Expr::LV_IncompleteVoidType) {
12604     // Taking the address of a void variable is technically illegal, but we
12605     // allow it in cases which are otherwise valid.
12606     // Example: "extern void x; void* y = &x;".
12607     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
12608   }
12609 
12610   // If the operand has type "type", the result has type "pointer to type".
12611   if (op->getType()->isObjCObjectType())
12612     return Context.getObjCObjectPointerType(op->getType());
12613 
12614   CheckAddressOfPackedMember(op);
12615 
12616   return Context.getPointerType(op->getType());
12617 }
12618 
12619 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
12620   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
12621   if (!DRE)
12622     return;
12623   const Decl *D = DRE->getDecl();
12624   if (!D)
12625     return;
12626   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
12627   if (!Param)
12628     return;
12629   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
12630     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
12631       return;
12632   if (FunctionScopeInfo *FD = S.getCurFunction())
12633     if (!FD->ModifiedNonNullParams.count(Param))
12634       FD->ModifiedNonNullParams.insert(Param);
12635 }
12636 
12637 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
12638 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
12639                                         SourceLocation OpLoc) {
12640   if (Op->isTypeDependent())
12641     return S.Context.DependentTy;
12642 
12643   ExprResult ConvResult = S.UsualUnaryConversions(Op);
12644   if (ConvResult.isInvalid())
12645     return QualType();
12646   Op = ConvResult.get();
12647   QualType OpTy = Op->getType();
12648   QualType Result;
12649 
12650   if (isa<CXXReinterpretCastExpr>(Op)) {
12651     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
12652     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
12653                                      Op->getSourceRange());
12654   }
12655 
12656   if (const PointerType *PT = OpTy->getAs<PointerType>())
12657   {
12658     Result = PT->getPointeeType();
12659   }
12660   else if (const ObjCObjectPointerType *OPT =
12661              OpTy->getAs<ObjCObjectPointerType>())
12662     Result = OPT->getPointeeType();
12663   else {
12664     ExprResult PR = S.CheckPlaceholderExpr(Op);
12665     if (PR.isInvalid()) return QualType();
12666     if (PR.get() != Op)
12667       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
12668   }
12669 
12670   if (Result.isNull()) {
12671     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
12672       << OpTy << Op->getSourceRange();
12673     return QualType();
12674   }
12675 
12676   // Note that per both C89 and C99, indirection is always legal, even if Result
12677   // is an incomplete type or void.  It would be possible to warn about
12678   // dereferencing a void pointer, but it's completely well-defined, and such a
12679   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
12680   // for pointers to 'void' but is fine for any other pointer type:
12681   //
12682   // C++ [expr.unary.op]p1:
12683   //   [...] the expression to which [the unary * operator] is applied shall
12684   //   be a pointer to an object type, or a pointer to a function type
12685   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
12686     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
12687       << OpTy << Op->getSourceRange();
12688 
12689   // Dereferences are usually l-values...
12690   VK = VK_LValue;
12691 
12692   // ...except that certain expressions are never l-values in C.
12693   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
12694     VK = VK_RValue;
12695 
12696   return Result;
12697 }
12698 
12699 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
12700   BinaryOperatorKind Opc;
12701   switch (Kind) {
12702   default: llvm_unreachable("Unknown binop!");
12703   case tok::periodstar:           Opc = BO_PtrMemD; break;
12704   case tok::arrowstar:            Opc = BO_PtrMemI; break;
12705   case tok::star:                 Opc = BO_Mul; break;
12706   case tok::slash:                Opc = BO_Div; break;
12707   case tok::percent:              Opc = BO_Rem; break;
12708   case tok::plus:                 Opc = BO_Add; break;
12709   case tok::minus:                Opc = BO_Sub; break;
12710   case tok::lessless:             Opc = BO_Shl; break;
12711   case tok::greatergreater:       Opc = BO_Shr; break;
12712   case tok::lessequal:            Opc = BO_LE; break;
12713   case tok::less:                 Opc = BO_LT; break;
12714   case tok::greaterequal:         Opc = BO_GE; break;
12715   case tok::greater:              Opc = BO_GT; break;
12716   case tok::exclaimequal:         Opc = BO_NE; break;
12717   case tok::equalequal:           Opc = BO_EQ; break;
12718   case tok::spaceship:            Opc = BO_Cmp; break;
12719   case tok::amp:                  Opc = BO_And; break;
12720   case tok::caret:                Opc = BO_Xor; break;
12721   case tok::pipe:                 Opc = BO_Or; break;
12722   case tok::ampamp:               Opc = BO_LAnd; break;
12723   case tok::pipepipe:             Opc = BO_LOr; break;
12724   case tok::equal:                Opc = BO_Assign; break;
12725   case tok::starequal:            Opc = BO_MulAssign; break;
12726   case tok::slashequal:           Opc = BO_DivAssign; break;
12727   case tok::percentequal:         Opc = BO_RemAssign; break;
12728   case tok::plusequal:            Opc = BO_AddAssign; break;
12729   case tok::minusequal:           Opc = BO_SubAssign; break;
12730   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
12731   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
12732   case tok::ampequal:             Opc = BO_AndAssign; break;
12733   case tok::caretequal:           Opc = BO_XorAssign; break;
12734   case tok::pipeequal:            Opc = BO_OrAssign; break;
12735   case tok::comma:                Opc = BO_Comma; break;
12736   }
12737   return Opc;
12738 }
12739 
12740 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
12741   tok::TokenKind Kind) {
12742   UnaryOperatorKind Opc;
12743   switch (Kind) {
12744   default: llvm_unreachable("Unknown unary op!");
12745   case tok::plusplus:     Opc = UO_PreInc; break;
12746   case tok::minusminus:   Opc = UO_PreDec; break;
12747   case tok::amp:          Opc = UO_AddrOf; break;
12748   case tok::star:         Opc = UO_Deref; break;
12749   case tok::plus:         Opc = UO_Plus; break;
12750   case tok::minus:        Opc = UO_Minus; break;
12751   case tok::tilde:        Opc = UO_Not; break;
12752   case tok::exclaim:      Opc = UO_LNot; break;
12753   case tok::kw___real:    Opc = UO_Real; break;
12754   case tok::kw___imag:    Opc = UO_Imag; break;
12755   case tok::kw___extension__: Opc = UO_Extension; break;
12756   }
12757   return Opc;
12758 }
12759 
12760 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
12761 /// This warning suppressed in the event of macro expansions.
12762 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
12763                                    SourceLocation OpLoc, bool IsBuiltin) {
12764   if (S.inTemplateInstantiation())
12765     return;
12766   if (S.isUnevaluatedContext())
12767     return;
12768   if (OpLoc.isInvalid() || OpLoc.isMacroID())
12769     return;
12770   LHSExpr = LHSExpr->IgnoreParenImpCasts();
12771   RHSExpr = RHSExpr->IgnoreParenImpCasts();
12772   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
12773   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
12774   if (!LHSDeclRef || !RHSDeclRef ||
12775       LHSDeclRef->getLocation().isMacroID() ||
12776       RHSDeclRef->getLocation().isMacroID())
12777     return;
12778   const ValueDecl *LHSDecl =
12779     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
12780   const ValueDecl *RHSDecl =
12781     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
12782   if (LHSDecl != RHSDecl)
12783     return;
12784   if (LHSDecl->getType().isVolatileQualified())
12785     return;
12786   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
12787     if (RefTy->getPointeeType().isVolatileQualified())
12788       return;
12789 
12790   S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
12791                           : diag::warn_self_assignment_overloaded)
12792       << LHSDeclRef->getType() << LHSExpr->getSourceRange()
12793       << RHSExpr->getSourceRange();
12794 }
12795 
12796 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
12797 /// is usually indicative of introspection within the Objective-C pointer.
12798 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
12799                                           SourceLocation OpLoc) {
12800   if (!S.getLangOpts().ObjC)
12801     return;
12802 
12803   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
12804   const Expr *LHS = L.get();
12805   const Expr *RHS = R.get();
12806 
12807   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
12808     ObjCPointerExpr = LHS;
12809     OtherExpr = RHS;
12810   }
12811   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
12812     ObjCPointerExpr = RHS;
12813     OtherExpr = LHS;
12814   }
12815 
12816   // This warning is deliberately made very specific to reduce false
12817   // positives with logic that uses '&' for hashing.  This logic mainly
12818   // looks for code trying to introspect into tagged pointers, which
12819   // code should generally never do.
12820   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
12821     unsigned Diag = diag::warn_objc_pointer_masking;
12822     // Determine if we are introspecting the result of performSelectorXXX.
12823     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
12824     // Special case messages to -performSelector and friends, which
12825     // can return non-pointer values boxed in a pointer value.
12826     // Some clients may wish to silence warnings in this subcase.
12827     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
12828       Selector S = ME->getSelector();
12829       StringRef SelArg0 = S.getNameForSlot(0);
12830       if (SelArg0.startswith("performSelector"))
12831         Diag = diag::warn_objc_pointer_masking_performSelector;
12832     }
12833 
12834     S.Diag(OpLoc, Diag)
12835       << ObjCPointerExpr->getSourceRange();
12836   }
12837 }
12838 
12839 static NamedDecl *getDeclFromExpr(Expr *E) {
12840   if (!E)
12841     return nullptr;
12842   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
12843     return DRE->getDecl();
12844   if (auto *ME = dyn_cast<MemberExpr>(E))
12845     return ME->getMemberDecl();
12846   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
12847     return IRE->getDecl();
12848   return nullptr;
12849 }
12850 
12851 // This helper function promotes a binary operator's operands (which are of a
12852 // half vector type) to a vector of floats and then truncates the result to
12853 // a vector of either half or short.
12854 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
12855                                       BinaryOperatorKind Opc, QualType ResultTy,
12856                                       ExprValueKind VK, ExprObjectKind OK,
12857                                       bool IsCompAssign, SourceLocation OpLoc,
12858                                       FPOptions FPFeatures) {
12859   auto &Context = S.getASTContext();
12860   assert((isVector(ResultTy, Context.HalfTy) ||
12861           isVector(ResultTy, Context.ShortTy)) &&
12862          "Result must be a vector of half or short");
12863   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
12864          isVector(RHS.get()->getType(), Context.HalfTy) &&
12865          "both operands expected to be a half vector");
12866 
12867   RHS = convertVector(RHS.get(), Context.FloatTy, S);
12868   QualType BinOpResTy = RHS.get()->getType();
12869 
12870   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
12871   // change BinOpResTy to a vector of ints.
12872   if (isVector(ResultTy, Context.ShortTy))
12873     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
12874 
12875   if (IsCompAssign)
12876     return new (Context) CompoundAssignOperator(
12877         LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, BinOpResTy, BinOpResTy,
12878         OpLoc, FPFeatures);
12879 
12880   LHS = convertVector(LHS.get(), Context.FloatTy, S);
12881   auto *BO = new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, BinOpResTy,
12882                                           VK, OK, OpLoc, FPFeatures);
12883   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
12884 }
12885 
12886 static std::pair<ExprResult, ExprResult>
12887 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
12888                            Expr *RHSExpr) {
12889   ExprResult LHS = LHSExpr, RHS = RHSExpr;
12890   if (!S.getLangOpts().CPlusPlus) {
12891     // C cannot handle TypoExpr nodes on either side of a binop because it
12892     // doesn't handle dependent types properly, so make sure any TypoExprs have
12893     // been dealt with before checking the operands.
12894     LHS = S.CorrectDelayedTyposInExpr(LHS);
12895     RHS = S.CorrectDelayedTyposInExpr(RHS, [Opc, LHS](Expr *E) {
12896       if (Opc != BO_Assign)
12897         return ExprResult(E);
12898       // Avoid correcting the RHS to the same Expr as the LHS.
12899       Decl *D = getDeclFromExpr(E);
12900       return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
12901     });
12902   }
12903   return std::make_pair(LHS, RHS);
12904 }
12905 
12906 /// Returns true if conversion between vectors of halfs and vectors of floats
12907 /// is needed.
12908 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
12909                                      QualType SrcType) {
12910   return OpRequiresConversion && !Ctx.getLangOpts().NativeHalfType &&
12911          !Ctx.getTargetInfo().useFP16ConversionIntrinsics() &&
12912          isVector(SrcType, Ctx.HalfTy);
12913 }
12914 
12915 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
12916 /// operator @p Opc at location @c TokLoc. This routine only supports
12917 /// built-in operations; ActOnBinOp handles overloaded operators.
12918 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
12919                                     BinaryOperatorKind Opc,
12920                                     Expr *LHSExpr, Expr *RHSExpr) {
12921   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
12922     // The syntax only allows initializer lists on the RHS of assignment,
12923     // so we don't need to worry about accepting invalid code for
12924     // non-assignment operators.
12925     // C++11 5.17p9:
12926     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
12927     //   of x = {} is x = T().
12928     InitializationKind Kind = InitializationKind::CreateDirectList(
12929         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
12930     InitializedEntity Entity =
12931         InitializedEntity::InitializeTemporary(LHSExpr->getType());
12932     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
12933     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
12934     if (Init.isInvalid())
12935       return Init;
12936     RHSExpr = Init.get();
12937   }
12938 
12939   ExprResult LHS = LHSExpr, RHS = RHSExpr;
12940   QualType ResultTy;     // Result type of the binary operator.
12941   // The following two variables are used for compound assignment operators
12942   QualType CompLHSTy;    // Type of LHS after promotions for computation
12943   QualType CompResultTy; // Type of computation result
12944   ExprValueKind VK = VK_RValue;
12945   ExprObjectKind OK = OK_Ordinary;
12946   bool ConvertHalfVec = false;
12947 
12948   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
12949   if (!LHS.isUsable() || !RHS.isUsable())
12950     return ExprError();
12951 
12952   if (getLangOpts().OpenCL) {
12953     QualType LHSTy = LHSExpr->getType();
12954     QualType RHSTy = RHSExpr->getType();
12955     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
12956     // the ATOMIC_VAR_INIT macro.
12957     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
12958       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
12959       if (BO_Assign == Opc)
12960         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
12961       else
12962         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
12963       return ExprError();
12964     }
12965 
12966     // OpenCL special types - image, sampler, pipe, and blocks are to be used
12967     // only with a builtin functions and therefore should be disallowed here.
12968     if (LHSTy->isImageType() || RHSTy->isImageType() ||
12969         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
12970         LHSTy->isPipeType() || RHSTy->isPipeType() ||
12971         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
12972       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
12973       return ExprError();
12974     }
12975   }
12976 
12977   // Diagnose operations on the unsupported types for OpenMP device compilation.
12978   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
12979     if (Opc != BO_Assign && Opc != BO_Comma) {
12980       checkOpenMPDeviceExpr(LHSExpr);
12981       checkOpenMPDeviceExpr(RHSExpr);
12982     }
12983   }
12984 
12985   switch (Opc) {
12986   case BO_Assign:
12987     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
12988     if (getLangOpts().CPlusPlus &&
12989         LHS.get()->getObjectKind() != OK_ObjCProperty) {
12990       VK = LHS.get()->getValueKind();
12991       OK = LHS.get()->getObjectKind();
12992     }
12993     if (!ResultTy.isNull()) {
12994       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
12995       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
12996 
12997       // Avoid copying a block to the heap if the block is assigned to a local
12998       // auto variable that is declared in the same scope as the block. This
12999       // optimization is unsafe if the local variable is declared in an outer
13000       // scope. For example:
13001       //
13002       // BlockTy b;
13003       // {
13004       //   b = ^{...};
13005       // }
13006       // // It is unsafe to invoke the block here if it wasn't copied to the
13007       // // heap.
13008       // b();
13009 
13010       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
13011         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
13012           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
13013             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
13014               BE->getBlockDecl()->setCanAvoidCopyToHeap();
13015 
13016       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
13017         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
13018                               NTCUC_Assignment, NTCUK_Copy);
13019     }
13020     RecordModifiableNonNullParam(*this, LHS.get());
13021     break;
13022   case BO_PtrMemD:
13023   case BO_PtrMemI:
13024     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
13025                                             Opc == BO_PtrMemI);
13026     break;
13027   case BO_Mul:
13028   case BO_Div:
13029     ConvertHalfVec = true;
13030     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
13031                                            Opc == BO_Div);
13032     break;
13033   case BO_Rem:
13034     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
13035     break;
13036   case BO_Add:
13037     ConvertHalfVec = true;
13038     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
13039     break;
13040   case BO_Sub:
13041     ConvertHalfVec = true;
13042     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
13043     break;
13044   case BO_Shl:
13045   case BO_Shr:
13046     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
13047     break;
13048   case BO_LE:
13049   case BO_LT:
13050   case BO_GE:
13051   case BO_GT:
13052     ConvertHalfVec = true;
13053     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13054     break;
13055   case BO_EQ:
13056   case BO_NE:
13057     ConvertHalfVec = true;
13058     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13059     break;
13060   case BO_Cmp:
13061     ConvertHalfVec = true;
13062     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13063     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
13064     break;
13065   case BO_And:
13066     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
13067     LLVM_FALLTHROUGH;
13068   case BO_Xor:
13069   case BO_Or:
13070     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
13071     break;
13072   case BO_LAnd:
13073   case BO_LOr:
13074     ConvertHalfVec = true;
13075     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
13076     break;
13077   case BO_MulAssign:
13078   case BO_DivAssign:
13079     ConvertHalfVec = true;
13080     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
13081                                                Opc == BO_DivAssign);
13082     CompLHSTy = CompResultTy;
13083     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13084       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13085     break;
13086   case BO_RemAssign:
13087     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
13088     CompLHSTy = CompResultTy;
13089     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13090       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13091     break;
13092   case BO_AddAssign:
13093     ConvertHalfVec = true;
13094     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
13095     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13096       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13097     break;
13098   case BO_SubAssign:
13099     ConvertHalfVec = true;
13100     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
13101     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13102       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13103     break;
13104   case BO_ShlAssign:
13105   case BO_ShrAssign:
13106     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
13107     CompLHSTy = CompResultTy;
13108     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13109       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13110     break;
13111   case BO_AndAssign:
13112   case BO_OrAssign: // fallthrough
13113     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
13114     LLVM_FALLTHROUGH;
13115   case BO_XorAssign:
13116     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
13117     CompLHSTy = CompResultTy;
13118     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13119       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13120     break;
13121   case BO_Comma:
13122     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
13123     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
13124       VK = RHS.get()->getValueKind();
13125       OK = RHS.get()->getObjectKind();
13126     }
13127     break;
13128   }
13129   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
13130     return ExprError();
13131 
13132   if (ResultTy->isRealFloatingType() &&
13133       (getLangOpts().getFPRoundingMode() != LangOptions::FPR_ToNearest ||
13134        getLangOpts().getFPExceptionMode() != LangOptions::FPE_Ignore))
13135     // Mark the current function as usng floating point constrained intrinsics
13136     if (FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
13137       F->setUsesFPIntrin(true);
13138     }
13139 
13140   // Some of the binary operations require promoting operands of half vector to
13141   // float vectors and truncating the result back to half vector. For now, we do
13142   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
13143   // arm64).
13144   assert(isVector(RHS.get()->getType(), Context.HalfTy) ==
13145          isVector(LHS.get()->getType(), Context.HalfTy) &&
13146          "both sides are half vectors or neither sides are");
13147   ConvertHalfVec = needsConversionOfHalfVec(ConvertHalfVec, Context,
13148                                             LHS.get()->getType());
13149 
13150   // Check for array bounds violations for both sides of the BinaryOperator
13151   CheckArrayAccess(LHS.get());
13152   CheckArrayAccess(RHS.get());
13153 
13154   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
13155     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
13156                                                  &Context.Idents.get("object_setClass"),
13157                                                  SourceLocation(), LookupOrdinaryName);
13158     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
13159       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
13160       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
13161           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
13162                                         "object_setClass(")
13163           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
13164                                           ",")
13165           << FixItHint::CreateInsertion(RHSLocEnd, ")");
13166     }
13167     else
13168       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
13169   }
13170   else if (const ObjCIvarRefExpr *OIRE =
13171            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
13172     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
13173 
13174   // Opc is not a compound assignment if CompResultTy is null.
13175   if (CompResultTy.isNull()) {
13176     if (ConvertHalfVec)
13177       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
13178                                  OpLoc, FPFeatures);
13179     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
13180                                         OK, OpLoc, FPFeatures);
13181   }
13182 
13183   // Handle compound assignments.
13184   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
13185       OK_ObjCProperty) {
13186     VK = VK_LValue;
13187     OK = LHS.get()->getObjectKind();
13188   }
13189 
13190   if (ConvertHalfVec)
13191     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
13192                                OpLoc, FPFeatures);
13193 
13194   return new (Context) CompoundAssignOperator(
13195       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
13196       OpLoc, FPFeatures);
13197 }
13198 
13199 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
13200 /// operators are mixed in a way that suggests that the programmer forgot that
13201 /// comparison operators have higher precedence. The most typical example of
13202 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
13203 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
13204                                       SourceLocation OpLoc, Expr *LHSExpr,
13205                                       Expr *RHSExpr) {
13206   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
13207   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
13208 
13209   // Check that one of the sides is a comparison operator and the other isn't.
13210   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
13211   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
13212   if (isLeftComp == isRightComp)
13213     return;
13214 
13215   // Bitwise operations are sometimes used as eager logical ops.
13216   // Don't diagnose this.
13217   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
13218   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
13219   if (isLeftBitwise || isRightBitwise)
13220     return;
13221 
13222   SourceRange DiagRange = isLeftComp
13223                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
13224                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
13225   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
13226   SourceRange ParensRange =
13227       isLeftComp
13228           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
13229           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
13230 
13231   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
13232     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
13233   SuggestParentheses(Self, OpLoc,
13234     Self.PDiag(diag::note_precedence_silence) << OpStr,
13235     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
13236   SuggestParentheses(Self, OpLoc,
13237     Self.PDiag(diag::note_precedence_bitwise_first)
13238       << BinaryOperator::getOpcodeStr(Opc),
13239     ParensRange);
13240 }
13241 
13242 /// It accepts a '&&' expr that is inside a '||' one.
13243 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
13244 /// in parentheses.
13245 static void
13246 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
13247                                        BinaryOperator *Bop) {
13248   assert(Bop->getOpcode() == BO_LAnd);
13249   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
13250       << Bop->getSourceRange() << OpLoc;
13251   SuggestParentheses(Self, Bop->getOperatorLoc(),
13252     Self.PDiag(diag::note_precedence_silence)
13253       << Bop->getOpcodeStr(),
13254     Bop->getSourceRange());
13255 }
13256 
13257 /// Returns true if the given expression can be evaluated as a constant
13258 /// 'true'.
13259 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
13260   bool Res;
13261   return !E->isValueDependent() &&
13262          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
13263 }
13264 
13265 /// Returns true if the given expression can be evaluated as a constant
13266 /// 'false'.
13267 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
13268   bool Res;
13269   return !E->isValueDependent() &&
13270          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
13271 }
13272 
13273 /// Look for '&&' in the left hand of a '||' expr.
13274 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
13275                                              Expr *LHSExpr, Expr *RHSExpr) {
13276   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
13277     if (Bop->getOpcode() == BO_LAnd) {
13278       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
13279       if (EvaluatesAsFalse(S, RHSExpr))
13280         return;
13281       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
13282       if (!EvaluatesAsTrue(S, Bop->getLHS()))
13283         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
13284     } else if (Bop->getOpcode() == BO_LOr) {
13285       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
13286         // If it's "a || b && 1 || c" we didn't warn earlier for
13287         // "a || b && 1", but warn now.
13288         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
13289           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
13290       }
13291     }
13292   }
13293 }
13294 
13295 /// Look for '&&' in the right hand of a '||' expr.
13296 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
13297                                              Expr *LHSExpr, Expr *RHSExpr) {
13298   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
13299     if (Bop->getOpcode() == BO_LAnd) {
13300       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
13301       if (EvaluatesAsFalse(S, LHSExpr))
13302         return;
13303       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
13304       if (!EvaluatesAsTrue(S, Bop->getRHS()))
13305         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
13306     }
13307   }
13308 }
13309 
13310 /// Look for bitwise op in the left or right hand of a bitwise op with
13311 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
13312 /// the '&' expression in parentheses.
13313 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
13314                                          SourceLocation OpLoc, Expr *SubExpr) {
13315   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
13316     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
13317       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
13318         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
13319         << Bop->getSourceRange() << OpLoc;
13320       SuggestParentheses(S, Bop->getOperatorLoc(),
13321         S.PDiag(diag::note_precedence_silence)
13322           << Bop->getOpcodeStr(),
13323         Bop->getSourceRange());
13324     }
13325   }
13326 }
13327 
13328 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
13329                                     Expr *SubExpr, StringRef Shift) {
13330   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
13331     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
13332       StringRef Op = Bop->getOpcodeStr();
13333       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
13334           << Bop->getSourceRange() << OpLoc << Shift << Op;
13335       SuggestParentheses(S, Bop->getOperatorLoc(),
13336           S.PDiag(diag::note_precedence_silence) << Op,
13337           Bop->getSourceRange());
13338     }
13339   }
13340 }
13341 
13342 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
13343                                  Expr *LHSExpr, Expr *RHSExpr) {
13344   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
13345   if (!OCE)
13346     return;
13347 
13348   FunctionDecl *FD = OCE->getDirectCallee();
13349   if (!FD || !FD->isOverloadedOperator())
13350     return;
13351 
13352   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
13353   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
13354     return;
13355 
13356   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
13357       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
13358       << (Kind == OO_LessLess);
13359   SuggestParentheses(S, OCE->getOperatorLoc(),
13360                      S.PDiag(diag::note_precedence_silence)
13361                          << (Kind == OO_LessLess ? "<<" : ">>"),
13362                      OCE->getSourceRange());
13363   SuggestParentheses(
13364       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
13365       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
13366 }
13367 
13368 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
13369 /// precedence.
13370 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
13371                                     SourceLocation OpLoc, Expr *LHSExpr,
13372                                     Expr *RHSExpr){
13373   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
13374   if (BinaryOperator::isBitwiseOp(Opc))
13375     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
13376 
13377   // Diagnose "arg1 & arg2 | arg3"
13378   if ((Opc == BO_Or || Opc == BO_Xor) &&
13379       !OpLoc.isMacroID()/* Don't warn in macros. */) {
13380     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
13381     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
13382   }
13383 
13384   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
13385   // We don't warn for 'assert(a || b && "bad")' since this is safe.
13386   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
13387     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
13388     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
13389   }
13390 
13391   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
13392       || Opc == BO_Shr) {
13393     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
13394     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
13395     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
13396   }
13397 
13398   // Warn on overloaded shift operators and comparisons, such as:
13399   // cout << 5 == 4;
13400   if (BinaryOperator::isComparisonOp(Opc))
13401     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
13402 }
13403 
13404 // Binary Operators.  'Tok' is the token for the operator.
13405 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
13406                             tok::TokenKind Kind,
13407                             Expr *LHSExpr, Expr *RHSExpr) {
13408   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
13409   assert(LHSExpr && "ActOnBinOp(): missing left expression");
13410   assert(RHSExpr && "ActOnBinOp(): missing right expression");
13411 
13412   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
13413   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
13414 
13415   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
13416 }
13417 
13418 /// Build an overloaded binary operator expression in the given scope.
13419 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
13420                                        BinaryOperatorKind Opc,
13421                                        Expr *LHS, Expr *RHS) {
13422   switch (Opc) {
13423   case BO_Assign:
13424   case BO_DivAssign:
13425   case BO_RemAssign:
13426   case BO_SubAssign:
13427   case BO_AndAssign:
13428   case BO_OrAssign:
13429   case BO_XorAssign:
13430     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
13431     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
13432     break;
13433   default:
13434     break;
13435   }
13436 
13437   // Find all of the overloaded operators visible from this
13438   // point. We perform both an operator-name lookup from the local
13439   // scope and an argument-dependent lookup based on the types of
13440   // the arguments.
13441   UnresolvedSet<16> Functions;
13442   OverloadedOperatorKind OverOp
13443     = BinaryOperator::getOverloadedOperator(Opc);
13444   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
13445     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
13446                                    RHS->getType(), Functions);
13447 
13448   // In C++20 onwards, we may have a second operator to look up.
13449   if (S.getLangOpts().CPlusPlus2a) {
13450     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
13451       S.LookupOverloadedOperatorName(ExtraOp, Sc, LHS->getType(),
13452                                      RHS->getType(), Functions);
13453   }
13454 
13455   // Build the (potentially-overloaded, potentially-dependent)
13456   // binary operation.
13457   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
13458 }
13459 
13460 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
13461                             BinaryOperatorKind Opc,
13462                             Expr *LHSExpr, Expr *RHSExpr) {
13463   ExprResult LHS, RHS;
13464   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
13465   if (!LHS.isUsable() || !RHS.isUsable())
13466     return ExprError();
13467   LHSExpr = LHS.get();
13468   RHSExpr = RHS.get();
13469 
13470   // We want to end up calling one of checkPseudoObjectAssignment
13471   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
13472   // both expressions are overloadable or either is type-dependent),
13473   // or CreateBuiltinBinOp (in any other case).  We also want to get
13474   // any placeholder types out of the way.
13475 
13476   // Handle pseudo-objects in the LHS.
13477   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
13478     // Assignments with a pseudo-object l-value need special analysis.
13479     if (pty->getKind() == BuiltinType::PseudoObject &&
13480         BinaryOperator::isAssignmentOp(Opc))
13481       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
13482 
13483     // Don't resolve overloads if the other type is overloadable.
13484     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
13485       // We can't actually test that if we still have a placeholder,
13486       // though.  Fortunately, none of the exceptions we see in that
13487       // code below are valid when the LHS is an overload set.  Note
13488       // that an overload set can be dependently-typed, but it never
13489       // instantiates to having an overloadable type.
13490       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
13491       if (resolvedRHS.isInvalid()) return ExprError();
13492       RHSExpr = resolvedRHS.get();
13493 
13494       if (RHSExpr->isTypeDependent() ||
13495           RHSExpr->getType()->isOverloadableType())
13496         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13497     }
13498 
13499     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
13500     // template, diagnose the missing 'template' keyword instead of diagnosing
13501     // an invalid use of a bound member function.
13502     //
13503     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
13504     // to C++1z [over.over]/1.4, but we already checked for that case above.
13505     if (Opc == BO_LT && inTemplateInstantiation() &&
13506         (pty->getKind() == BuiltinType::BoundMember ||
13507          pty->getKind() == BuiltinType::Overload)) {
13508       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
13509       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
13510           std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
13511             return isa<FunctionTemplateDecl>(ND);
13512           })) {
13513         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
13514                                 : OE->getNameLoc(),
13515              diag::err_template_kw_missing)
13516           << OE->getName().getAsString() << "";
13517         return ExprError();
13518       }
13519     }
13520 
13521     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
13522     if (LHS.isInvalid()) return ExprError();
13523     LHSExpr = LHS.get();
13524   }
13525 
13526   // Handle pseudo-objects in the RHS.
13527   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
13528     // An overload in the RHS can potentially be resolved by the type
13529     // being assigned to.
13530     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
13531       if (getLangOpts().CPlusPlus &&
13532           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
13533            LHSExpr->getType()->isOverloadableType()))
13534         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13535 
13536       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
13537     }
13538 
13539     // Don't resolve overloads if the other type is overloadable.
13540     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
13541         LHSExpr->getType()->isOverloadableType())
13542       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13543 
13544     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
13545     if (!resolvedRHS.isUsable()) return ExprError();
13546     RHSExpr = resolvedRHS.get();
13547   }
13548 
13549   if (getLangOpts().CPlusPlus) {
13550     // If either expression is type-dependent, always build an
13551     // overloaded op.
13552     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
13553       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13554 
13555     // Otherwise, build an overloaded op if either expression has an
13556     // overloadable type.
13557     if (LHSExpr->getType()->isOverloadableType() ||
13558         RHSExpr->getType()->isOverloadableType())
13559       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13560   }
13561 
13562   // Build a built-in binary operation.
13563   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
13564 }
13565 
13566 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
13567   if (T.isNull() || T->isDependentType())
13568     return false;
13569 
13570   if (!T->isPromotableIntegerType())
13571     return true;
13572 
13573   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
13574 }
13575 
13576 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
13577                                       UnaryOperatorKind Opc,
13578                                       Expr *InputExpr) {
13579   ExprResult Input = InputExpr;
13580   ExprValueKind VK = VK_RValue;
13581   ExprObjectKind OK = OK_Ordinary;
13582   QualType resultType;
13583   bool CanOverflow = false;
13584 
13585   bool ConvertHalfVec = false;
13586   if (getLangOpts().OpenCL) {
13587     QualType Ty = InputExpr->getType();
13588     // The only legal unary operation for atomics is '&'.
13589     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
13590     // OpenCL special types - image, sampler, pipe, and blocks are to be used
13591     // only with a builtin functions and therefore should be disallowed here.
13592         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
13593         || Ty->isBlockPointerType())) {
13594       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13595                        << InputExpr->getType()
13596                        << Input.get()->getSourceRange());
13597     }
13598   }
13599   // Diagnose operations on the unsupported types for OpenMP device compilation.
13600   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
13601     if (UnaryOperator::isIncrementDecrementOp(Opc) ||
13602         UnaryOperator::isArithmeticOp(Opc))
13603       checkOpenMPDeviceExpr(InputExpr);
13604   }
13605 
13606   switch (Opc) {
13607   case UO_PreInc:
13608   case UO_PreDec:
13609   case UO_PostInc:
13610   case UO_PostDec:
13611     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
13612                                                 OpLoc,
13613                                                 Opc == UO_PreInc ||
13614                                                 Opc == UO_PostInc,
13615                                                 Opc == UO_PreInc ||
13616                                                 Opc == UO_PreDec);
13617     CanOverflow = isOverflowingIntegerType(Context, resultType);
13618     break;
13619   case UO_AddrOf:
13620     resultType = CheckAddressOfOperand(Input, OpLoc);
13621     CheckAddressOfNoDeref(InputExpr);
13622     RecordModifiableNonNullParam(*this, InputExpr);
13623     break;
13624   case UO_Deref: {
13625     Input = DefaultFunctionArrayLvalueConversion(Input.get());
13626     if (Input.isInvalid()) return ExprError();
13627     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
13628     break;
13629   }
13630   case UO_Plus:
13631   case UO_Minus:
13632     CanOverflow = Opc == UO_Minus &&
13633                   isOverflowingIntegerType(Context, Input.get()->getType());
13634     Input = UsualUnaryConversions(Input.get());
13635     if (Input.isInvalid()) return ExprError();
13636     // Unary plus and minus require promoting an operand of half vector to a
13637     // float vector and truncating the result back to a half vector. For now, we
13638     // do this only when HalfArgsAndReturns is set (that is, when the target is
13639     // arm or arm64).
13640     ConvertHalfVec =
13641         needsConversionOfHalfVec(true, Context, Input.get()->getType());
13642 
13643     // If the operand is a half vector, promote it to a float vector.
13644     if (ConvertHalfVec)
13645       Input = convertVector(Input.get(), Context.FloatTy, *this);
13646     resultType = Input.get()->getType();
13647     if (resultType->isDependentType())
13648       break;
13649     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
13650       break;
13651     else if (resultType->isVectorType() &&
13652              // The z vector extensions don't allow + or - with bool vectors.
13653              (!Context.getLangOpts().ZVector ||
13654               resultType->castAs<VectorType>()->getVectorKind() !=
13655               VectorType::AltiVecBool))
13656       break;
13657     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
13658              Opc == UO_Plus &&
13659              resultType->isPointerType())
13660       break;
13661 
13662     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13663       << resultType << Input.get()->getSourceRange());
13664 
13665   case UO_Not: // bitwise complement
13666     Input = UsualUnaryConversions(Input.get());
13667     if (Input.isInvalid())
13668       return ExprError();
13669     resultType = Input.get()->getType();
13670     if (resultType->isDependentType())
13671       break;
13672     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
13673     if (resultType->isComplexType() || resultType->isComplexIntegerType())
13674       // C99 does not support '~' for complex conjugation.
13675       Diag(OpLoc, diag::ext_integer_complement_complex)
13676           << resultType << Input.get()->getSourceRange();
13677     else if (resultType->hasIntegerRepresentation())
13678       break;
13679     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
13680       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
13681       // on vector float types.
13682       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
13683       if (!T->isIntegerType())
13684         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13685                           << resultType << Input.get()->getSourceRange());
13686     } else {
13687       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13688                        << resultType << Input.get()->getSourceRange());
13689     }
13690     break;
13691 
13692   case UO_LNot: // logical negation
13693     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
13694     Input = DefaultFunctionArrayLvalueConversion(Input.get());
13695     if (Input.isInvalid()) return ExprError();
13696     resultType = Input.get()->getType();
13697 
13698     // Though we still have to promote half FP to float...
13699     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
13700       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
13701       resultType = Context.FloatTy;
13702     }
13703 
13704     if (resultType->isDependentType())
13705       break;
13706     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
13707       // C99 6.5.3.3p1: ok, fallthrough;
13708       if (Context.getLangOpts().CPlusPlus) {
13709         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
13710         // operand contextually converted to bool.
13711         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
13712                                   ScalarTypeToBooleanCastKind(resultType));
13713       } else if (Context.getLangOpts().OpenCL &&
13714                  Context.getLangOpts().OpenCLVersion < 120) {
13715         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
13716         // operate on scalar float types.
13717         if (!resultType->isIntegerType() && !resultType->isPointerType())
13718           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13719                            << resultType << Input.get()->getSourceRange());
13720       }
13721     } else if (resultType->isExtVectorType()) {
13722       if (Context.getLangOpts().OpenCL &&
13723           Context.getLangOpts().OpenCLVersion < 120 &&
13724           !Context.getLangOpts().OpenCLCPlusPlus) {
13725         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
13726         // operate on vector float types.
13727         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
13728         if (!T->isIntegerType())
13729           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13730                            << resultType << Input.get()->getSourceRange());
13731       }
13732       // Vector logical not returns the signed variant of the operand type.
13733       resultType = GetSignedVectorType(resultType);
13734       break;
13735     } else {
13736       // FIXME: GCC's vector extension permits the usage of '!' with a vector
13737       //        type in C++. We should allow that here too.
13738       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13739         << resultType << Input.get()->getSourceRange());
13740     }
13741 
13742     // LNot always has type int. C99 6.5.3.3p5.
13743     // In C++, it's bool. C++ 5.3.1p8
13744     resultType = Context.getLogicalOperationType();
13745     break;
13746   case UO_Real:
13747   case UO_Imag:
13748     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
13749     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
13750     // complex l-values to ordinary l-values and all other values to r-values.
13751     if (Input.isInvalid()) return ExprError();
13752     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
13753       if (Input.get()->getValueKind() != VK_RValue &&
13754           Input.get()->getObjectKind() == OK_Ordinary)
13755         VK = Input.get()->getValueKind();
13756     } else if (!getLangOpts().CPlusPlus) {
13757       // In C, a volatile scalar is read by __imag. In C++, it is not.
13758       Input = DefaultLvalueConversion(Input.get());
13759     }
13760     break;
13761   case UO_Extension:
13762     resultType = Input.get()->getType();
13763     VK = Input.get()->getValueKind();
13764     OK = Input.get()->getObjectKind();
13765     break;
13766   case UO_Coawait:
13767     // It's unnecessary to represent the pass-through operator co_await in the
13768     // AST; just return the input expression instead.
13769     assert(!Input.get()->getType()->isDependentType() &&
13770                    "the co_await expression must be non-dependant before "
13771                    "building operator co_await");
13772     return Input;
13773   }
13774   if (resultType.isNull() || Input.isInvalid())
13775     return ExprError();
13776 
13777   // Check for array bounds violations in the operand of the UnaryOperator,
13778   // except for the '*' and '&' operators that have to be handled specially
13779   // by CheckArrayAccess (as there are special cases like &array[arraysize]
13780   // that are explicitly defined as valid by the standard).
13781   if (Opc != UO_AddrOf && Opc != UO_Deref)
13782     CheckArrayAccess(Input.get());
13783 
13784   auto *UO = new (Context)
13785       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc, CanOverflow);
13786 
13787   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
13788       !isa<ArrayType>(UO->getType().getDesugaredType(Context)))
13789     ExprEvalContexts.back().PossibleDerefs.insert(UO);
13790 
13791   // Convert the result back to a half vector.
13792   if (ConvertHalfVec)
13793     return convertVector(UO, Context.HalfTy, *this);
13794   return UO;
13795 }
13796 
13797 /// Determine whether the given expression is a qualified member
13798 /// access expression, of a form that could be turned into a pointer to member
13799 /// with the address-of operator.
13800 bool Sema::isQualifiedMemberAccess(Expr *E) {
13801   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13802     if (!DRE->getQualifier())
13803       return false;
13804 
13805     ValueDecl *VD = DRE->getDecl();
13806     if (!VD->isCXXClassMember())
13807       return false;
13808 
13809     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
13810       return true;
13811     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
13812       return Method->isInstance();
13813 
13814     return false;
13815   }
13816 
13817   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13818     if (!ULE->getQualifier())
13819       return false;
13820 
13821     for (NamedDecl *D : ULE->decls()) {
13822       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
13823         if (Method->isInstance())
13824           return true;
13825       } else {
13826         // Overload set does not contain methods.
13827         break;
13828       }
13829     }
13830 
13831     return false;
13832   }
13833 
13834   return false;
13835 }
13836 
13837 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
13838                               UnaryOperatorKind Opc, Expr *Input) {
13839   // First things first: handle placeholders so that the
13840   // overloaded-operator check considers the right type.
13841   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
13842     // Increment and decrement of pseudo-object references.
13843     if (pty->getKind() == BuiltinType::PseudoObject &&
13844         UnaryOperator::isIncrementDecrementOp(Opc))
13845       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
13846 
13847     // extension is always a builtin operator.
13848     if (Opc == UO_Extension)
13849       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13850 
13851     // & gets special logic for several kinds of placeholder.
13852     // The builtin code knows what to do.
13853     if (Opc == UO_AddrOf &&
13854         (pty->getKind() == BuiltinType::Overload ||
13855          pty->getKind() == BuiltinType::UnknownAny ||
13856          pty->getKind() == BuiltinType::BoundMember))
13857       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13858 
13859     // Anything else needs to be handled now.
13860     ExprResult Result = CheckPlaceholderExpr(Input);
13861     if (Result.isInvalid()) return ExprError();
13862     Input = Result.get();
13863   }
13864 
13865   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
13866       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
13867       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
13868     // Find all of the overloaded operators visible from this
13869     // point. We perform both an operator-name lookup from the local
13870     // scope and an argument-dependent lookup based on the types of
13871     // the arguments.
13872     UnresolvedSet<16> Functions;
13873     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
13874     if (S && OverOp != OO_None)
13875       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
13876                                    Functions);
13877 
13878     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
13879   }
13880 
13881   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13882 }
13883 
13884 // Unary Operators.  'Tok' is the token for the operator.
13885 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
13886                               tok::TokenKind Op, Expr *Input) {
13887   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
13888 }
13889 
13890 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
13891 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
13892                                 LabelDecl *TheDecl) {
13893   TheDecl->markUsed(Context);
13894   // Create the AST node.  The address of a label always has type 'void*'.
13895   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
13896                                      Context.getPointerType(Context.VoidTy));
13897 }
13898 
13899 void Sema::ActOnStartStmtExpr() {
13900   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13901 }
13902 
13903 void Sema::ActOnStmtExprError() {
13904   // Note that function is also called by TreeTransform when leaving a
13905   // StmtExpr scope without rebuilding anything.
13906 
13907   DiscardCleanupsInEvaluationContext();
13908   PopExpressionEvaluationContext();
13909 }
13910 
13911 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
13912                                SourceLocation RPLoc) {
13913   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
13914 }
13915 
13916 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
13917                                SourceLocation RPLoc, unsigned TemplateDepth) {
13918   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
13919   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
13920 
13921   if (hasAnyUnrecoverableErrorsInThisFunction())
13922     DiscardCleanupsInEvaluationContext();
13923   assert(!Cleanup.exprNeedsCleanups() &&
13924          "cleanups within StmtExpr not correctly bound!");
13925   PopExpressionEvaluationContext();
13926 
13927   // FIXME: there are a variety of strange constraints to enforce here, for
13928   // example, it is not possible to goto into a stmt expression apparently.
13929   // More semantic analysis is needed.
13930 
13931   // If there are sub-stmts in the compound stmt, take the type of the last one
13932   // as the type of the stmtexpr.
13933   QualType Ty = Context.VoidTy;
13934   bool StmtExprMayBindToTemp = false;
13935   if (!Compound->body_empty()) {
13936     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
13937     if (const auto *LastStmt =
13938             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
13939       if (const Expr *Value = LastStmt->getExprStmt()) {
13940         StmtExprMayBindToTemp = true;
13941         Ty = Value->getType();
13942       }
13943     }
13944   }
13945 
13946   // FIXME: Check that expression type is complete/non-abstract; statement
13947   // expressions are not lvalues.
13948   Expr *ResStmtExpr =
13949       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
13950   if (StmtExprMayBindToTemp)
13951     return MaybeBindToTemporary(ResStmtExpr);
13952   return ResStmtExpr;
13953 }
13954 
13955 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
13956   if (ER.isInvalid())
13957     return ExprError();
13958 
13959   // Do function/array conversion on the last expression, but not
13960   // lvalue-to-rvalue.  However, initialize an unqualified type.
13961   ER = DefaultFunctionArrayConversion(ER.get());
13962   if (ER.isInvalid())
13963     return ExprError();
13964   Expr *E = ER.get();
13965 
13966   if (E->isTypeDependent())
13967     return E;
13968 
13969   // In ARC, if the final expression ends in a consume, splice
13970   // the consume out and bind it later.  In the alternate case
13971   // (when dealing with a retainable type), the result
13972   // initialization will create a produce.  In both cases the
13973   // result will be +1, and we'll need to balance that out with
13974   // a bind.
13975   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
13976   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
13977     return Cast->getSubExpr();
13978 
13979   // FIXME: Provide a better location for the initialization.
13980   return PerformCopyInitialization(
13981       InitializedEntity::InitializeStmtExprResult(
13982           E->getBeginLoc(), E->getType().getUnqualifiedType()),
13983       SourceLocation(), E);
13984 }
13985 
13986 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
13987                                       TypeSourceInfo *TInfo,
13988                                       ArrayRef<OffsetOfComponent> Components,
13989                                       SourceLocation RParenLoc) {
13990   QualType ArgTy = TInfo->getType();
13991   bool Dependent = ArgTy->isDependentType();
13992   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
13993 
13994   // We must have at least one component that refers to the type, and the first
13995   // one is known to be a field designator.  Verify that the ArgTy represents
13996   // a struct/union/class.
13997   if (!Dependent && !ArgTy->isRecordType())
13998     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
13999                        << ArgTy << TypeRange);
14000 
14001   // Type must be complete per C99 7.17p3 because a declaring a variable
14002   // with an incomplete type would be ill-formed.
14003   if (!Dependent
14004       && RequireCompleteType(BuiltinLoc, ArgTy,
14005                              diag::err_offsetof_incomplete_type, TypeRange))
14006     return ExprError();
14007 
14008   bool DidWarnAboutNonPOD = false;
14009   QualType CurrentType = ArgTy;
14010   SmallVector<OffsetOfNode, 4> Comps;
14011   SmallVector<Expr*, 4> Exprs;
14012   for (const OffsetOfComponent &OC : Components) {
14013     if (OC.isBrackets) {
14014       // Offset of an array sub-field.  TODO: Should we allow vector elements?
14015       if (!CurrentType->isDependentType()) {
14016         const ArrayType *AT = Context.getAsArrayType(CurrentType);
14017         if(!AT)
14018           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
14019                            << CurrentType);
14020         CurrentType = AT->getElementType();
14021       } else
14022         CurrentType = Context.DependentTy;
14023 
14024       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
14025       if (IdxRval.isInvalid())
14026         return ExprError();
14027       Expr *Idx = IdxRval.get();
14028 
14029       // The expression must be an integral expression.
14030       // FIXME: An integral constant expression?
14031       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
14032           !Idx->getType()->isIntegerType())
14033         return ExprError(
14034             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
14035             << Idx->getSourceRange());
14036 
14037       // Record this array index.
14038       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
14039       Exprs.push_back(Idx);
14040       continue;
14041     }
14042 
14043     // Offset of a field.
14044     if (CurrentType->isDependentType()) {
14045       // We have the offset of a field, but we can't look into the dependent
14046       // type. Just record the identifier of the field.
14047       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
14048       CurrentType = Context.DependentTy;
14049       continue;
14050     }
14051 
14052     // We need to have a complete type to look into.
14053     if (RequireCompleteType(OC.LocStart, CurrentType,
14054                             diag::err_offsetof_incomplete_type))
14055       return ExprError();
14056 
14057     // Look for the designated field.
14058     const RecordType *RC = CurrentType->getAs<RecordType>();
14059     if (!RC)
14060       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
14061                        << CurrentType);
14062     RecordDecl *RD = RC->getDecl();
14063 
14064     // C++ [lib.support.types]p5:
14065     //   The macro offsetof accepts a restricted set of type arguments in this
14066     //   International Standard. type shall be a POD structure or a POD union
14067     //   (clause 9).
14068     // C++11 [support.types]p4:
14069     //   If type is not a standard-layout class (Clause 9), the results are
14070     //   undefined.
14071     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14072       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
14073       unsigned DiagID =
14074         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
14075                             : diag::ext_offsetof_non_pod_type;
14076 
14077       if (!IsSafe && !DidWarnAboutNonPOD &&
14078           DiagRuntimeBehavior(BuiltinLoc, nullptr,
14079                               PDiag(DiagID)
14080                               << SourceRange(Components[0].LocStart, OC.LocEnd)
14081                               << CurrentType))
14082         DidWarnAboutNonPOD = true;
14083     }
14084 
14085     // Look for the field.
14086     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
14087     LookupQualifiedName(R, RD);
14088     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
14089     IndirectFieldDecl *IndirectMemberDecl = nullptr;
14090     if (!MemberDecl) {
14091       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
14092         MemberDecl = IndirectMemberDecl->getAnonField();
14093     }
14094 
14095     if (!MemberDecl)
14096       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
14097                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
14098                                                               OC.LocEnd));
14099 
14100     // C99 7.17p3:
14101     //   (If the specified member is a bit-field, the behavior is undefined.)
14102     //
14103     // We diagnose this as an error.
14104     if (MemberDecl->isBitField()) {
14105       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
14106         << MemberDecl->getDeclName()
14107         << SourceRange(BuiltinLoc, RParenLoc);
14108       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
14109       return ExprError();
14110     }
14111 
14112     RecordDecl *Parent = MemberDecl->getParent();
14113     if (IndirectMemberDecl)
14114       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
14115 
14116     // If the member was found in a base class, introduce OffsetOfNodes for
14117     // the base class indirections.
14118     CXXBasePaths Paths;
14119     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
14120                       Paths)) {
14121       if (Paths.getDetectedVirtual()) {
14122         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
14123           << MemberDecl->getDeclName()
14124           << SourceRange(BuiltinLoc, RParenLoc);
14125         return ExprError();
14126       }
14127 
14128       CXXBasePath &Path = Paths.front();
14129       for (const CXXBasePathElement &B : Path)
14130         Comps.push_back(OffsetOfNode(B.Base));
14131     }
14132 
14133     if (IndirectMemberDecl) {
14134       for (auto *FI : IndirectMemberDecl->chain()) {
14135         assert(isa<FieldDecl>(FI));
14136         Comps.push_back(OffsetOfNode(OC.LocStart,
14137                                      cast<FieldDecl>(FI), OC.LocEnd));
14138       }
14139     } else
14140       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
14141 
14142     CurrentType = MemberDecl->getType().getNonReferenceType();
14143   }
14144 
14145   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
14146                               Comps, Exprs, RParenLoc);
14147 }
14148 
14149 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
14150                                       SourceLocation BuiltinLoc,
14151                                       SourceLocation TypeLoc,
14152                                       ParsedType ParsedArgTy,
14153                                       ArrayRef<OffsetOfComponent> Components,
14154                                       SourceLocation RParenLoc) {
14155 
14156   TypeSourceInfo *ArgTInfo;
14157   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
14158   if (ArgTy.isNull())
14159     return ExprError();
14160 
14161   if (!ArgTInfo)
14162     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
14163 
14164   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
14165 }
14166 
14167 
14168 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
14169                                  Expr *CondExpr,
14170                                  Expr *LHSExpr, Expr *RHSExpr,
14171                                  SourceLocation RPLoc) {
14172   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
14173 
14174   ExprValueKind VK = VK_RValue;
14175   ExprObjectKind OK = OK_Ordinary;
14176   QualType resType;
14177   bool ValueDependent = false;
14178   bool CondIsTrue = false;
14179   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
14180     resType = Context.DependentTy;
14181     ValueDependent = true;
14182   } else {
14183     // The conditional expression is required to be a constant expression.
14184     llvm::APSInt condEval(32);
14185     ExprResult CondICE
14186       = VerifyIntegerConstantExpression(CondExpr, &condEval,
14187           diag::err_typecheck_choose_expr_requires_constant, false);
14188     if (CondICE.isInvalid())
14189       return ExprError();
14190     CondExpr = CondICE.get();
14191     CondIsTrue = condEval.getZExtValue();
14192 
14193     // If the condition is > zero, then the AST type is the same as the LHSExpr.
14194     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
14195 
14196     resType = ActiveExpr->getType();
14197     ValueDependent = ActiveExpr->isValueDependent();
14198     VK = ActiveExpr->getValueKind();
14199     OK = ActiveExpr->getObjectKind();
14200   }
14201 
14202   return new (Context)
14203       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
14204                  CondIsTrue, resType->isDependentType(), ValueDependent);
14205 }
14206 
14207 //===----------------------------------------------------------------------===//
14208 // Clang Extensions.
14209 //===----------------------------------------------------------------------===//
14210 
14211 /// ActOnBlockStart - This callback is invoked when a block literal is started.
14212 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
14213   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
14214 
14215   if (LangOpts.CPlusPlus) {
14216     MangleNumberingContext *MCtx;
14217     Decl *ManglingContextDecl;
14218     std::tie(MCtx, ManglingContextDecl) =
14219         getCurrentMangleNumberContext(Block->getDeclContext());
14220     if (MCtx) {
14221       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
14222       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
14223     }
14224   }
14225 
14226   PushBlockScope(CurScope, Block);
14227   CurContext->addDecl(Block);
14228   if (CurScope)
14229     PushDeclContext(CurScope, Block);
14230   else
14231     CurContext = Block;
14232 
14233   getCurBlock()->HasImplicitReturnType = true;
14234 
14235   // Enter a new evaluation context to insulate the block from any
14236   // cleanups from the enclosing full-expression.
14237   PushExpressionEvaluationContext(
14238       ExpressionEvaluationContext::PotentiallyEvaluated);
14239 }
14240 
14241 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
14242                                Scope *CurScope) {
14243   assert(ParamInfo.getIdentifier() == nullptr &&
14244          "block-id should have no identifier!");
14245   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext);
14246   BlockScopeInfo *CurBlock = getCurBlock();
14247 
14248   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
14249   QualType T = Sig->getType();
14250 
14251   // FIXME: We should allow unexpanded parameter packs here, but that would,
14252   // in turn, make the block expression contain unexpanded parameter packs.
14253   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
14254     // Drop the parameters.
14255     FunctionProtoType::ExtProtoInfo EPI;
14256     EPI.HasTrailingReturn = false;
14257     EPI.TypeQuals.addConst();
14258     T = Context.getFunctionType(Context.DependentTy, None, EPI);
14259     Sig = Context.getTrivialTypeSourceInfo(T);
14260   }
14261 
14262   // GetTypeForDeclarator always produces a function type for a block
14263   // literal signature.  Furthermore, it is always a FunctionProtoType
14264   // unless the function was written with a typedef.
14265   assert(T->isFunctionType() &&
14266          "GetTypeForDeclarator made a non-function block signature");
14267 
14268   // Look for an explicit signature in that function type.
14269   FunctionProtoTypeLoc ExplicitSignature;
14270 
14271   if ((ExplicitSignature = Sig->getTypeLoc()
14272                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
14273 
14274     // Check whether that explicit signature was synthesized by
14275     // GetTypeForDeclarator.  If so, don't save that as part of the
14276     // written signature.
14277     if (ExplicitSignature.getLocalRangeBegin() ==
14278         ExplicitSignature.getLocalRangeEnd()) {
14279       // This would be much cheaper if we stored TypeLocs instead of
14280       // TypeSourceInfos.
14281       TypeLoc Result = ExplicitSignature.getReturnLoc();
14282       unsigned Size = Result.getFullDataSize();
14283       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
14284       Sig->getTypeLoc().initializeFullCopy(Result, Size);
14285 
14286       ExplicitSignature = FunctionProtoTypeLoc();
14287     }
14288   }
14289 
14290   CurBlock->TheDecl->setSignatureAsWritten(Sig);
14291   CurBlock->FunctionType = T;
14292 
14293   const FunctionType *Fn = T->getAs<FunctionType>();
14294   QualType RetTy = Fn->getReturnType();
14295   bool isVariadic =
14296     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
14297 
14298   CurBlock->TheDecl->setIsVariadic(isVariadic);
14299 
14300   // Context.DependentTy is used as a placeholder for a missing block
14301   // return type.  TODO:  what should we do with declarators like:
14302   //   ^ * { ... }
14303   // If the answer is "apply template argument deduction"....
14304   if (RetTy != Context.DependentTy) {
14305     CurBlock->ReturnType = RetTy;
14306     CurBlock->TheDecl->setBlockMissingReturnType(false);
14307     CurBlock->HasImplicitReturnType = false;
14308   }
14309 
14310   // Push block parameters from the declarator if we had them.
14311   SmallVector<ParmVarDecl*, 8> Params;
14312   if (ExplicitSignature) {
14313     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
14314       ParmVarDecl *Param = ExplicitSignature.getParam(I);
14315       if (Param->getIdentifier() == nullptr &&
14316           !Param->isImplicit() &&
14317           !Param->isInvalidDecl() &&
14318           !getLangOpts().CPlusPlus)
14319         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
14320       Params.push_back(Param);
14321     }
14322 
14323   // Fake up parameter variables if we have a typedef, like
14324   //   ^ fntype { ... }
14325   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
14326     for (const auto &I : Fn->param_types()) {
14327       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
14328           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
14329       Params.push_back(Param);
14330     }
14331   }
14332 
14333   // Set the parameters on the block decl.
14334   if (!Params.empty()) {
14335     CurBlock->TheDecl->setParams(Params);
14336     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
14337                              /*CheckParameterNames=*/false);
14338   }
14339 
14340   // Finally we can process decl attributes.
14341   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
14342 
14343   // Put the parameter variables in scope.
14344   for (auto AI : CurBlock->TheDecl->parameters()) {
14345     AI->setOwningFunction(CurBlock->TheDecl);
14346 
14347     // If this has an identifier, add it to the scope stack.
14348     if (AI->getIdentifier()) {
14349       CheckShadow(CurBlock->TheScope, AI);
14350 
14351       PushOnScopeChains(AI, CurBlock->TheScope);
14352     }
14353   }
14354 }
14355 
14356 /// ActOnBlockError - If there is an error parsing a block, this callback
14357 /// is invoked to pop the information about the block from the action impl.
14358 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
14359   // Leave the expression-evaluation context.
14360   DiscardCleanupsInEvaluationContext();
14361   PopExpressionEvaluationContext();
14362 
14363   // Pop off CurBlock, handle nested blocks.
14364   PopDeclContext();
14365   PopFunctionScopeInfo();
14366 }
14367 
14368 /// ActOnBlockStmtExpr - This is called when the body of a block statement
14369 /// literal was successfully completed.  ^(int x){...}
14370 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
14371                                     Stmt *Body, Scope *CurScope) {
14372   // If blocks are disabled, emit an error.
14373   if (!LangOpts.Blocks)
14374     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
14375 
14376   // Leave the expression-evaluation context.
14377   if (hasAnyUnrecoverableErrorsInThisFunction())
14378     DiscardCleanupsInEvaluationContext();
14379   assert(!Cleanup.exprNeedsCleanups() &&
14380          "cleanups within block not correctly bound!");
14381   PopExpressionEvaluationContext();
14382 
14383   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
14384   BlockDecl *BD = BSI->TheDecl;
14385 
14386   if (BSI->HasImplicitReturnType)
14387     deduceClosureReturnType(*BSI);
14388 
14389   QualType RetTy = Context.VoidTy;
14390   if (!BSI->ReturnType.isNull())
14391     RetTy = BSI->ReturnType;
14392 
14393   bool NoReturn = BD->hasAttr<NoReturnAttr>();
14394   QualType BlockTy;
14395 
14396   // If the user wrote a function type in some form, try to use that.
14397   if (!BSI->FunctionType.isNull()) {
14398     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
14399 
14400     FunctionType::ExtInfo Ext = FTy->getExtInfo();
14401     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
14402 
14403     // Turn protoless block types into nullary block types.
14404     if (isa<FunctionNoProtoType>(FTy)) {
14405       FunctionProtoType::ExtProtoInfo EPI;
14406       EPI.ExtInfo = Ext;
14407       BlockTy = Context.getFunctionType(RetTy, None, EPI);
14408 
14409     // Otherwise, if we don't need to change anything about the function type,
14410     // preserve its sugar structure.
14411     } else if (FTy->getReturnType() == RetTy &&
14412                (!NoReturn || FTy->getNoReturnAttr())) {
14413       BlockTy = BSI->FunctionType;
14414 
14415     // Otherwise, make the minimal modifications to the function type.
14416     } else {
14417       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
14418       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
14419       EPI.TypeQuals = Qualifiers();
14420       EPI.ExtInfo = Ext;
14421       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
14422     }
14423 
14424   // If we don't have a function type, just build one from nothing.
14425   } else {
14426     FunctionProtoType::ExtProtoInfo EPI;
14427     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
14428     BlockTy = Context.getFunctionType(RetTy, None, EPI);
14429   }
14430 
14431   DiagnoseUnusedParameters(BD->parameters());
14432   BlockTy = Context.getBlockPointerType(BlockTy);
14433 
14434   // If needed, diagnose invalid gotos and switches in the block.
14435   if (getCurFunction()->NeedsScopeChecking() &&
14436       !PP.isCodeCompletionEnabled())
14437     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
14438 
14439   BD->setBody(cast<CompoundStmt>(Body));
14440 
14441   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
14442     DiagnoseUnguardedAvailabilityViolations(BD);
14443 
14444   // Try to apply the named return value optimization. We have to check again
14445   // if we can do this, though, because blocks keep return statements around
14446   // to deduce an implicit return type.
14447   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
14448       !BD->isDependentContext())
14449     computeNRVO(Body, BSI);
14450 
14451   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
14452       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
14453     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
14454                           NTCUK_Destruct|NTCUK_Copy);
14455 
14456   PopDeclContext();
14457 
14458   // Pop the block scope now but keep it alive to the end of this function.
14459   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14460   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
14461 
14462   // Set the captured variables on the block.
14463   SmallVector<BlockDecl::Capture, 4> Captures;
14464   for (Capture &Cap : BSI->Captures) {
14465     if (Cap.isInvalid() || Cap.isThisCapture())
14466       continue;
14467 
14468     VarDecl *Var = Cap.getVariable();
14469     Expr *CopyExpr = nullptr;
14470     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
14471       if (const RecordType *Record =
14472               Cap.getCaptureType()->getAs<RecordType>()) {
14473         // The capture logic needs the destructor, so make sure we mark it.
14474         // Usually this is unnecessary because most local variables have
14475         // their destructors marked at declaration time, but parameters are
14476         // an exception because it's technically only the call site that
14477         // actually requires the destructor.
14478         if (isa<ParmVarDecl>(Var))
14479           FinalizeVarWithDestructor(Var, Record);
14480 
14481         // Enter a separate potentially-evaluated context while building block
14482         // initializers to isolate their cleanups from those of the block
14483         // itself.
14484         // FIXME: Is this appropriate even when the block itself occurs in an
14485         // unevaluated operand?
14486         EnterExpressionEvaluationContext EvalContext(
14487             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
14488 
14489         SourceLocation Loc = Cap.getLocation();
14490 
14491         ExprResult Result = BuildDeclarationNameExpr(
14492             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
14493 
14494         // According to the blocks spec, the capture of a variable from
14495         // the stack requires a const copy constructor.  This is not true
14496         // of the copy/move done to move a __block variable to the heap.
14497         if (!Result.isInvalid() &&
14498             !Result.get()->getType().isConstQualified()) {
14499           Result = ImpCastExprToType(Result.get(),
14500                                      Result.get()->getType().withConst(),
14501                                      CK_NoOp, VK_LValue);
14502         }
14503 
14504         if (!Result.isInvalid()) {
14505           Result = PerformCopyInitialization(
14506               InitializedEntity::InitializeBlock(Var->getLocation(),
14507                                                  Cap.getCaptureType(), false),
14508               Loc, Result.get());
14509         }
14510 
14511         // Build a full-expression copy expression if initialization
14512         // succeeded and used a non-trivial constructor.  Recover from
14513         // errors by pretending that the copy isn't necessary.
14514         if (!Result.isInvalid() &&
14515             !cast<CXXConstructExpr>(Result.get())->getConstructor()
14516                 ->isTrivial()) {
14517           Result = MaybeCreateExprWithCleanups(Result);
14518           CopyExpr = Result.get();
14519         }
14520       }
14521     }
14522 
14523     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
14524                               CopyExpr);
14525     Captures.push_back(NewCap);
14526   }
14527   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
14528 
14529   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
14530 
14531   // If the block isn't obviously global, i.e. it captures anything at
14532   // all, then we need to do a few things in the surrounding context:
14533   if (Result->getBlockDecl()->hasCaptures()) {
14534     // First, this expression has a new cleanup object.
14535     ExprCleanupObjects.push_back(Result->getBlockDecl());
14536     Cleanup.setExprNeedsCleanups(true);
14537 
14538     // It also gets a branch-protected scope if any of the captured
14539     // variables needs destruction.
14540     for (const auto &CI : Result->getBlockDecl()->captures()) {
14541       const VarDecl *var = CI.getVariable();
14542       if (var->getType().isDestructedType() != QualType::DK_none) {
14543         setFunctionHasBranchProtectedScope();
14544         break;
14545       }
14546     }
14547   }
14548 
14549   if (getCurFunction())
14550     getCurFunction()->addBlock(BD);
14551 
14552   return Result;
14553 }
14554 
14555 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
14556                             SourceLocation RPLoc) {
14557   TypeSourceInfo *TInfo;
14558   GetTypeFromParser(Ty, &TInfo);
14559   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
14560 }
14561 
14562 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
14563                                 Expr *E, TypeSourceInfo *TInfo,
14564                                 SourceLocation RPLoc) {
14565   Expr *OrigExpr = E;
14566   bool IsMS = false;
14567 
14568   // CUDA device code does not support varargs.
14569   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
14570     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
14571       CUDAFunctionTarget T = IdentifyCUDATarget(F);
14572       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
14573         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
14574     }
14575   }
14576 
14577   // NVPTX does not support va_arg expression.
14578   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
14579       Context.getTargetInfo().getTriple().isNVPTX())
14580     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
14581 
14582   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
14583   // as Microsoft ABI on an actual Microsoft platform, where
14584   // __builtin_ms_va_list and __builtin_va_list are the same.)
14585   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
14586       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
14587     QualType MSVaListType = Context.getBuiltinMSVaListType();
14588     if (Context.hasSameType(MSVaListType, E->getType())) {
14589       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
14590         return ExprError();
14591       IsMS = true;
14592     }
14593   }
14594 
14595   // Get the va_list type
14596   QualType VaListType = Context.getBuiltinVaListType();
14597   if (!IsMS) {
14598     if (VaListType->isArrayType()) {
14599       // Deal with implicit array decay; for example, on x86-64,
14600       // va_list is an array, but it's supposed to decay to
14601       // a pointer for va_arg.
14602       VaListType = Context.getArrayDecayedType(VaListType);
14603       // Make sure the input expression also decays appropriately.
14604       ExprResult Result = UsualUnaryConversions(E);
14605       if (Result.isInvalid())
14606         return ExprError();
14607       E = Result.get();
14608     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
14609       // If va_list is a record type and we are compiling in C++ mode,
14610       // check the argument using reference binding.
14611       InitializedEntity Entity = InitializedEntity::InitializeParameter(
14612           Context, Context.getLValueReferenceType(VaListType), false);
14613       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
14614       if (Init.isInvalid())
14615         return ExprError();
14616       E = Init.getAs<Expr>();
14617     } else {
14618       // Otherwise, the va_list argument must be an l-value because
14619       // it is modified by va_arg.
14620       if (!E->isTypeDependent() &&
14621           CheckForModifiableLvalue(E, BuiltinLoc, *this))
14622         return ExprError();
14623     }
14624   }
14625 
14626   if (!IsMS && !E->isTypeDependent() &&
14627       !Context.hasSameType(VaListType, E->getType()))
14628     return ExprError(
14629         Diag(E->getBeginLoc(),
14630              diag::err_first_argument_to_va_arg_not_of_type_va_list)
14631         << OrigExpr->getType() << E->getSourceRange());
14632 
14633   if (!TInfo->getType()->isDependentType()) {
14634     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
14635                             diag::err_second_parameter_to_va_arg_incomplete,
14636                             TInfo->getTypeLoc()))
14637       return ExprError();
14638 
14639     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
14640                                TInfo->getType(),
14641                                diag::err_second_parameter_to_va_arg_abstract,
14642                                TInfo->getTypeLoc()))
14643       return ExprError();
14644 
14645     if (!TInfo->getType().isPODType(Context)) {
14646       Diag(TInfo->getTypeLoc().getBeginLoc(),
14647            TInfo->getType()->isObjCLifetimeType()
14648              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
14649              : diag::warn_second_parameter_to_va_arg_not_pod)
14650         << TInfo->getType()
14651         << TInfo->getTypeLoc().getSourceRange();
14652     }
14653 
14654     // Check for va_arg where arguments of the given type will be promoted
14655     // (i.e. this va_arg is guaranteed to have undefined behavior).
14656     QualType PromoteType;
14657     if (TInfo->getType()->isPromotableIntegerType()) {
14658       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
14659       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
14660         PromoteType = QualType();
14661     }
14662     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
14663       PromoteType = Context.DoubleTy;
14664     if (!PromoteType.isNull())
14665       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
14666                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
14667                           << TInfo->getType()
14668                           << PromoteType
14669                           << TInfo->getTypeLoc().getSourceRange());
14670   }
14671 
14672   QualType T = TInfo->getType().getNonLValueExprType(Context);
14673   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
14674 }
14675 
14676 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
14677   // The type of __null will be int or long, depending on the size of
14678   // pointers on the target.
14679   QualType Ty;
14680   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
14681   if (pw == Context.getTargetInfo().getIntWidth())
14682     Ty = Context.IntTy;
14683   else if (pw == Context.getTargetInfo().getLongWidth())
14684     Ty = Context.LongTy;
14685   else if (pw == Context.getTargetInfo().getLongLongWidth())
14686     Ty = Context.LongLongTy;
14687   else {
14688     llvm_unreachable("I don't know size of pointer!");
14689   }
14690 
14691   return new (Context) GNUNullExpr(Ty, TokenLoc);
14692 }
14693 
14694 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
14695                                     SourceLocation BuiltinLoc,
14696                                     SourceLocation RPLoc) {
14697   return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
14698 }
14699 
14700 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
14701                                     SourceLocation BuiltinLoc,
14702                                     SourceLocation RPLoc,
14703                                     DeclContext *ParentContext) {
14704   return new (Context)
14705       SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
14706 }
14707 
14708 bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp,
14709                                               bool Diagnose) {
14710   if (!getLangOpts().ObjC)
14711     return false;
14712 
14713   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
14714   if (!PT)
14715     return false;
14716 
14717   if (!PT->isObjCIdType()) {
14718     // Check if the destination is the 'NSString' interface.
14719     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
14720     if (!ID || !ID->getIdentifier()->isStr("NSString"))
14721       return false;
14722   }
14723 
14724   // Ignore any parens, implicit casts (should only be
14725   // array-to-pointer decays), and not-so-opaque values.  The last is
14726   // important for making this trigger for property assignments.
14727   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
14728   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
14729     if (OV->getSourceExpr())
14730       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
14731 
14732   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
14733   if (!SL || !SL->isAscii())
14734     return false;
14735   if (Diagnose) {
14736     Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
14737         << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
14738     Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
14739   }
14740   return true;
14741 }
14742 
14743 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
14744                                               const Expr *SrcExpr) {
14745   if (!DstType->isFunctionPointerType() ||
14746       !SrcExpr->getType()->isFunctionType())
14747     return false;
14748 
14749   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
14750   if (!DRE)
14751     return false;
14752 
14753   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
14754   if (!FD)
14755     return false;
14756 
14757   return !S.checkAddressOfFunctionIsAvailable(FD,
14758                                               /*Complain=*/true,
14759                                               SrcExpr->getBeginLoc());
14760 }
14761 
14762 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
14763                                     SourceLocation Loc,
14764                                     QualType DstType, QualType SrcType,
14765                                     Expr *SrcExpr, AssignmentAction Action,
14766                                     bool *Complained) {
14767   if (Complained)
14768     *Complained = false;
14769 
14770   // Decode the result (notice that AST's are still created for extensions).
14771   bool CheckInferredResultType = false;
14772   bool isInvalid = false;
14773   unsigned DiagKind = 0;
14774   FixItHint Hint;
14775   ConversionFixItGenerator ConvHints;
14776   bool MayHaveConvFixit = false;
14777   bool MayHaveFunctionDiff = false;
14778   const ObjCInterfaceDecl *IFace = nullptr;
14779   const ObjCProtocolDecl *PDecl = nullptr;
14780 
14781   switch (ConvTy) {
14782   case Compatible:
14783       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
14784       return false;
14785 
14786   case PointerToInt:
14787     DiagKind = diag::ext_typecheck_convert_pointer_int;
14788     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14789     MayHaveConvFixit = true;
14790     break;
14791   case IntToPointer:
14792     DiagKind = diag::ext_typecheck_convert_int_pointer;
14793     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14794     MayHaveConvFixit = true;
14795     break;
14796   case IncompatiblePointer:
14797     if (Action == AA_Passing_CFAudited)
14798       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
14799     else if (SrcType->isFunctionPointerType() &&
14800              DstType->isFunctionPointerType())
14801       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
14802     else
14803       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
14804 
14805     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
14806       SrcType->isObjCObjectPointerType();
14807     if (Hint.isNull() && !CheckInferredResultType) {
14808       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14809     }
14810     else if (CheckInferredResultType) {
14811       SrcType = SrcType.getUnqualifiedType();
14812       DstType = DstType.getUnqualifiedType();
14813     }
14814     MayHaveConvFixit = true;
14815     break;
14816   case IncompatiblePointerSign:
14817     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
14818     break;
14819   case FunctionVoidPointer:
14820     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
14821     break;
14822   case IncompatiblePointerDiscardsQualifiers: {
14823     // Perform array-to-pointer decay if necessary.
14824     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
14825 
14826     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
14827     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
14828     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
14829       DiagKind = diag::err_typecheck_incompatible_address_space;
14830       break;
14831 
14832     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
14833       DiagKind = diag::err_typecheck_incompatible_ownership;
14834       break;
14835     }
14836 
14837     llvm_unreachable("unknown error case for discarding qualifiers!");
14838     // fallthrough
14839   }
14840   case CompatiblePointerDiscardsQualifiers:
14841     // If the qualifiers lost were because we were applying the
14842     // (deprecated) C++ conversion from a string literal to a char*
14843     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
14844     // Ideally, this check would be performed in
14845     // checkPointerTypesForAssignment. However, that would require a
14846     // bit of refactoring (so that the second argument is an
14847     // expression, rather than a type), which should be done as part
14848     // of a larger effort to fix checkPointerTypesForAssignment for
14849     // C++ semantics.
14850     if (getLangOpts().CPlusPlus &&
14851         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
14852       return false;
14853     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
14854     break;
14855   case IncompatibleNestedPointerQualifiers:
14856     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
14857     break;
14858   case IncompatibleNestedPointerAddressSpaceMismatch:
14859     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
14860     break;
14861   case IntToBlockPointer:
14862     DiagKind = diag::err_int_to_block_pointer;
14863     break;
14864   case IncompatibleBlockPointer:
14865     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
14866     break;
14867   case IncompatibleObjCQualifiedId: {
14868     if (SrcType->isObjCQualifiedIdType()) {
14869       const ObjCObjectPointerType *srcOPT =
14870                 SrcType->castAs<ObjCObjectPointerType>();
14871       for (auto *srcProto : srcOPT->quals()) {
14872         PDecl = srcProto;
14873         break;
14874       }
14875       if (const ObjCInterfaceType *IFaceT =
14876             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
14877         IFace = IFaceT->getDecl();
14878     }
14879     else if (DstType->isObjCQualifiedIdType()) {
14880       const ObjCObjectPointerType *dstOPT =
14881         DstType->castAs<ObjCObjectPointerType>();
14882       for (auto *dstProto : dstOPT->quals()) {
14883         PDecl = dstProto;
14884         break;
14885       }
14886       if (const ObjCInterfaceType *IFaceT =
14887             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
14888         IFace = IFaceT->getDecl();
14889     }
14890     DiagKind = diag::warn_incompatible_qualified_id;
14891     break;
14892   }
14893   case IncompatibleVectors:
14894     DiagKind = diag::warn_incompatible_vectors;
14895     break;
14896   case IncompatibleObjCWeakRef:
14897     DiagKind = diag::err_arc_weak_unavailable_assign;
14898     break;
14899   case Incompatible:
14900     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
14901       if (Complained)
14902         *Complained = true;
14903       return true;
14904     }
14905 
14906     DiagKind = diag::err_typecheck_convert_incompatible;
14907     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14908     MayHaveConvFixit = true;
14909     isInvalid = true;
14910     MayHaveFunctionDiff = true;
14911     break;
14912   }
14913 
14914   QualType FirstType, SecondType;
14915   switch (Action) {
14916   case AA_Assigning:
14917   case AA_Initializing:
14918     // The destination type comes first.
14919     FirstType = DstType;
14920     SecondType = SrcType;
14921     break;
14922 
14923   case AA_Returning:
14924   case AA_Passing:
14925   case AA_Passing_CFAudited:
14926   case AA_Converting:
14927   case AA_Sending:
14928   case AA_Casting:
14929     // The source type comes first.
14930     FirstType = SrcType;
14931     SecondType = DstType;
14932     break;
14933   }
14934 
14935   PartialDiagnostic FDiag = PDiag(DiagKind);
14936   if (Action == AA_Passing_CFAudited)
14937     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
14938   else
14939     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
14940 
14941   // If we can fix the conversion, suggest the FixIts.
14942   assert(ConvHints.isNull() || Hint.isNull());
14943   if (!ConvHints.isNull()) {
14944     for (FixItHint &H : ConvHints.Hints)
14945       FDiag << H;
14946   } else {
14947     FDiag << Hint;
14948   }
14949   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
14950 
14951   if (MayHaveFunctionDiff)
14952     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
14953 
14954   Diag(Loc, FDiag);
14955   if (DiagKind == diag::warn_incompatible_qualified_id &&
14956       PDecl && IFace && !IFace->hasDefinition())
14957       Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
14958         << IFace << PDecl;
14959 
14960   if (SecondType == Context.OverloadTy)
14961     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
14962                               FirstType, /*TakingAddress=*/true);
14963 
14964   if (CheckInferredResultType)
14965     EmitRelatedResultTypeNote(SrcExpr);
14966 
14967   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
14968     EmitRelatedResultTypeNoteForReturn(DstType);
14969 
14970   if (Complained)
14971     *Complained = true;
14972   return isInvalid;
14973 }
14974 
14975 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
14976                                                  llvm::APSInt *Result) {
14977   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
14978   public:
14979     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
14980       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
14981     }
14982   } Diagnoser;
14983 
14984   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
14985 }
14986 
14987 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
14988                                                  llvm::APSInt *Result,
14989                                                  unsigned DiagID,
14990                                                  bool AllowFold) {
14991   class IDDiagnoser : public VerifyICEDiagnoser {
14992     unsigned DiagID;
14993 
14994   public:
14995     IDDiagnoser(unsigned DiagID)
14996       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
14997 
14998     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
14999       S.Diag(Loc, DiagID) << SR;
15000     }
15001   } Diagnoser(DiagID);
15002 
15003   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
15004 }
15005 
15006 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
15007                                             SourceRange SR) {
15008   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
15009 }
15010 
15011 ExprResult
15012 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
15013                                       VerifyICEDiagnoser &Diagnoser,
15014                                       bool AllowFold) {
15015   SourceLocation DiagLoc = E->getBeginLoc();
15016 
15017   if (getLangOpts().CPlusPlus11) {
15018     // C++11 [expr.const]p5:
15019     //   If an expression of literal class type is used in a context where an
15020     //   integral constant expression is required, then that class type shall
15021     //   have a single non-explicit conversion function to an integral or
15022     //   unscoped enumeration type
15023     ExprResult Converted;
15024     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
15025     public:
15026       CXX11ConvertDiagnoser(bool Silent)
15027           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
15028                                 Silent, true) {}
15029 
15030       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
15031                                            QualType T) override {
15032         return S.Diag(Loc, diag::err_ice_not_integral) << T;
15033       }
15034 
15035       SemaDiagnosticBuilder diagnoseIncomplete(
15036           Sema &S, SourceLocation Loc, QualType T) override {
15037         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
15038       }
15039 
15040       SemaDiagnosticBuilder diagnoseExplicitConv(
15041           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
15042         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
15043       }
15044 
15045       SemaDiagnosticBuilder noteExplicitConv(
15046           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
15047         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
15048                  << ConvTy->isEnumeralType() << ConvTy;
15049       }
15050 
15051       SemaDiagnosticBuilder diagnoseAmbiguous(
15052           Sema &S, SourceLocation Loc, QualType T) override {
15053         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
15054       }
15055 
15056       SemaDiagnosticBuilder noteAmbiguous(
15057           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
15058         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
15059                  << ConvTy->isEnumeralType() << ConvTy;
15060       }
15061 
15062       SemaDiagnosticBuilder diagnoseConversion(
15063           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
15064         llvm_unreachable("conversion functions are permitted");
15065       }
15066     } ConvertDiagnoser(Diagnoser.Suppress);
15067 
15068     Converted = PerformContextualImplicitConversion(DiagLoc, E,
15069                                                     ConvertDiagnoser);
15070     if (Converted.isInvalid())
15071       return Converted;
15072     E = Converted.get();
15073     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
15074       return ExprError();
15075   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15076     // An ICE must be of integral or unscoped enumeration type.
15077     if (!Diagnoser.Suppress)
15078       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
15079     return ExprError();
15080   }
15081 
15082   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
15083   // in the non-ICE case.
15084   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
15085     if (Result)
15086       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
15087     if (!isa<ConstantExpr>(E))
15088       E = ConstantExpr::Create(Context, E);
15089     return E;
15090   }
15091 
15092   Expr::EvalResult EvalResult;
15093   SmallVector<PartialDiagnosticAt, 8> Notes;
15094   EvalResult.Diag = &Notes;
15095 
15096   // Try to evaluate the expression, and produce diagnostics explaining why it's
15097   // not a constant expression as a side-effect.
15098   bool Folded =
15099       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
15100       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
15101 
15102   if (!isa<ConstantExpr>(E))
15103     E = ConstantExpr::Create(Context, E, EvalResult.Val);
15104 
15105   // In C++11, we can rely on diagnostics being produced for any expression
15106   // which is not a constant expression. If no diagnostics were produced, then
15107   // this is a constant expression.
15108   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
15109     if (Result)
15110       *Result = EvalResult.Val.getInt();
15111     return E;
15112   }
15113 
15114   // If our only note is the usual "invalid subexpression" note, just point
15115   // the caret at its location rather than producing an essentially
15116   // redundant note.
15117   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
15118         diag::note_invalid_subexpr_in_const_expr) {
15119     DiagLoc = Notes[0].first;
15120     Notes.clear();
15121   }
15122 
15123   if (!Folded || !AllowFold) {
15124     if (!Diagnoser.Suppress) {
15125       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
15126       for (const PartialDiagnosticAt &Note : Notes)
15127         Diag(Note.first, Note.second);
15128     }
15129 
15130     return ExprError();
15131   }
15132 
15133   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
15134   for (const PartialDiagnosticAt &Note : Notes)
15135     Diag(Note.first, Note.second);
15136 
15137   if (Result)
15138     *Result = EvalResult.Val.getInt();
15139   return E;
15140 }
15141 
15142 namespace {
15143   // Handle the case where we conclude a expression which we speculatively
15144   // considered to be unevaluated is actually evaluated.
15145   class TransformToPE : public TreeTransform<TransformToPE> {
15146     typedef TreeTransform<TransformToPE> BaseTransform;
15147 
15148   public:
15149     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
15150 
15151     // Make sure we redo semantic analysis
15152     bool AlwaysRebuild() { return true; }
15153     bool ReplacingOriginal() { return true; }
15154 
15155     // We need to special-case DeclRefExprs referring to FieldDecls which
15156     // are not part of a member pointer formation; normal TreeTransforming
15157     // doesn't catch this case because of the way we represent them in the AST.
15158     // FIXME: This is a bit ugly; is it really the best way to handle this
15159     // case?
15160     //
15161     // Error on DeclRefExprs referring to FieldDecls.
15162     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
15163       if (isa<FieldDecl>(E->getDecl()) &&
15164           !SemaRef.isUnevaluatedContext())
15165         return SemaRef.Diag(E->getLocation(),
15166                             diag::err_invalid_non_static_member_use)
15167             << E->getDecl() << E->getSourceRange();
15168 
15169       return BaseTransform::TransformDeclRefExpr(E);
15170     }
15171 
15172     // Exception: filter out member pointer formation
15173     ExprResult TransformUnaryOperator(UnaryOperator *E) {
15174       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
15175         return E;
15176 
15177       return BaseTransform::TransformUnaryOperator(E);
15178     }
15179 
15180     // The body of a lambda-expression is in a separate expression evaluation
15181     // context so never needs to be transformed.
15182     // FIXME: Ideally we wouldn't transform the closure type either, and would
15183     // just recreate the capture expressions and lambda expression.
15184     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
15185       return SkipLambdaBody(E, Body);
15186     }
15187   };
15188 }
15189 
15190 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
15191   assert(isUnevaluatedContext() &&
15192          "Should only transform unevaluated expressions");
15193   ExprEvalContexts.back().Context =
15194       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
15195   if (isUnevaluatedContext())
15196     return E;
15197   return TransformToPE(*this).TransformExpr(E);
15198 }
15199 
15200 void
15201 Sema::PushExpressionEvaluationContext(
15202     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
15203     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
15204   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
15205                                 LambdaContextDecl, ExprContext);
15206   Cleanup.reset();
15207   if (!MaybeODRUseExprs.empty())
15208     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
15209 }
15210 
15211 void
15212 Sema::PushExpressionEvaluationContext(
15213     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
15214     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
15215   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
15216   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
15217 }
15218 
15219 namespace {
15220 
15221 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
15222   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
15223   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
15224     if (E->getOpcode() == UO_Deref)
15225       return CheckPossibleDeref(S, E->getSubExpr());
15226   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
15227     return CheckPossibleDeref(S, E->getBase());
15228   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
15229     return CheckPossibleDeref(S, E->getBase());
15230   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
15231     QualType Inner;
15232     QualType Ty = E->getType();
15233     if (const auto *Ptr = Ty->getAs<PointerType>())
15234       Inner = Ptr->getPointeeType();
15235     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
15236       Inner = Arr->getElementType();
15237     else
15238       return nullptr;
15239 
15240     if (Inner->hasAttr(attr::NoDeref))
15241       return E;
15242   }
15243   return nullptr;
15244 }
15245 
15246 } // namespace
15247 
15248 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
15249   for (const Expr *E : Rec.PossibleDerefs) {
15250     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
15251     if (DeclRef) {
15252       const ValueDecl *Decl = DeclRef->getDecl();
15253       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
15254           << Decl->getName() << E->getSourceRange();
15255       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
15256     } else {
15257       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
15258           << E->getSourceRange();
15259     }
15260   }
15261   Rec.PossibleDerefs.clear();
15262 }
15263 
15264 /// Check whether E, which is either a discarded-value expression or an
15265 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
15266 /// and if so, remove it from the list of volatile-qualified assignments that
15267 /// we are going to warn are deprecated.
15268 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
15269   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus2a)
15270     return;
15271 
15272   // Note: ignoring parens here is not justified by the standard rules, but
15273   // ignoring parentheses seems like a more reasonable approach, and this only
15274   // drives a deprecation warning so doesn't affect conformance.
15275   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
15276     if (BO->getOpcode() == BO_Assign) {
15277       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
15278       LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
15279                  LHSs.end());
15280     }
15281   }
15282 }
15283 
15284 void Sema::PopExpressionEvaluationContext() {
15285   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
15286   unsigned NumTypos = Rec.NumTypos;
15287 
15288   if (!Rec.Lambdas.empty()) {
15289     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
15290     if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
15291         (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
15292       unsigned D;
15293       if (Rec.isUnevaluated()) {
15294         // C++11 [expr.prim.lambda]p2:
15295         //   A lambda-expression shall not appear in an unevaluated operand
15296         //   (Clause 5).
15297         D = diag::err_lambda_unevaluated_operand;
15298       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
15299         // C++1y [expr.const]p2:
15300         //   A conditional-expression e is a core constant expression unless the
15301         //   evaluation of e, following the rules of the abstract machine, would
15302         //   evaluate [...] a lambda-expression.
15303         D = diag::err_lambda_in_constant_expression;
15304       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
15305         // C++17 [expr.prim.lamda]p2:
15306         // A lambda-expression shall not appear [...] in a template-argument.
15307         D = diag::err_lambda_in_invalid_context;
15308       } else
15309         llvm_unreachable("Couldn't infer lambda error message.");
15310 
15311       for (const auto *L : Rec.Lambdas)
15312         Diag(L->getBeginLoc(), D);
15313     }
15314   }
15315 
15316   WarnOnPendingNoDerefs(Rec);
15317 
15318   // Warn on any volatile-qualified simple-assignments that are not discarded-
15319   // value expressions nor unevaluated operands (those cases get removed from
15320   // this list by CheckUnusedVolatileAssignment).
15321   for (auto *BO : Rec.VolatileAssignmentLHSs)
15322     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
15323         << BO->getType();
15324 
15325   // When are coming out of an unevaluated context, clear out any
15326   // temporaries that we may have created as part of the evaluation of
15327   // the expression in that context: they aren't relevant because they
15328   // will never be constructed.
15329   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
15330     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
15331                              ExprCleanupObjects.end());
15332     Cleanup = Rec.ParentCleanup;
15333     CleanupVarDeclMarking();
15334     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
15335   // Otherwise, merge the contexts together.
15336   } else {
15337     Cleanup.mergeFrom(Rec.ParentCleanup);
15338     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
15339                             Rec.SavedMaybeODRUseExprs.end());
15340   }
15341 
15342   // Pop the current expression evaluation context off the stack.
15343   ExprEvalContexts.pop_back();
15344 
15345   // The global expression evaluation context record is never popped.
15346   ExprEvalContexts.back().NumTypos += NumTypos;
15347 }
15348 
15349 void Sema::DiscardCleanupsInEvaluationContext() {
15350   ExprCleanupObjects.erase(
15351          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
15352          ExprCleanupObjects.end());
15353   Cleanup.reset();
15354   MaybeODRUseExprs.clear();
15355 }
15356 
15357 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
15358   ExprResult Result = CheckPlaceholderExpr(E);
15359   if (Result.isInvalid())
15360     return ExprError();
15361   E = Result.get();
15362   if (!E->getType()->isVariablyModifiedType())
15363     return E;
15364   return TransformToPotentiallyEvaluated(E);
15365 }
15366 
15367 /// Are we in a context that is potentially constant evaluated per C++20
15368 /// [expr.const]p12?
15369 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
15370   /// C++2a [expr.const]p12:
15371   //   An expression or conversion is potentially constant evaluated if it is
15372   switch (SemaRef.ExprEvalContexts.back().Context) {
15373     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
15374       // -- a manifestly constant-evaluated expression,
15375     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
15376     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
15377     case Sema::ExpressionEvaluationContext::DiscardedStatement:
15378       // -- a potentially-evaluated expression,
15379     case Sema::ExpressionEvaluationContext::UnevaluatedList:
15380       // -- an immediate subexpression of a braced-init-list,
15381 
15382       // -- [FIXME] an expression of the form & cast-expression that occurs
15383       //    within a templated entity
15384       // -- a subexpression of one of the above that is not a subexpression of
15385       // a nested unevaluated operand.
15386       return true;
15387 
15388     case Sema::ExpressionEvaluationContext::Unevaluated:
15389     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
15390       // Expressions in this context are never evaluated.
15391       return false;
15392   }
15393   llvm_unreachable("Invalid context");
15394 }
15395 
15396 /// Return true if this function has a calling convention that requires mangling
15397 /// in the size of the parameter pack.
15398 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
15399   // These manglings don't do anything on non-Windows or non-x86 platforms, so
15400   // we don't need parameter type sizes.
15401   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
15402   if (!TT.isOSWindows() || !TT.isX86())
15403     return false;
15404 
15405   // If this is C++ and this isn't an extern "C" function, parameters do not
15406   // need to be complete. In this case, C++ mangling will apply, which doesn't
15407   // use the size of the parameters.
15408   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
15409     return false;
15410 
15411   // Stdcall, fastcall, and vectorcall need this special treatment.
15412   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
15413   switch (CC) {
15414   case CC_X86StdCall:
15415   case CC_X86FastCall:
15416   case CC_X86VectorCall:
15417     return true;
15418   default:
15419     break;
15420   }
15421   return false;
15422 }
15423 
15424 /// Require that all of the parameter types of function be complete. Normally,
15425 /// parameter types are only required to be complete when a function is called
15426 /// or defined, but to mangle functions with certain calling conventions, the
15427 /// mangler needs to know the size of the parameter list. In this situation,
15428 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
15429 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
15430 /// result in a linker error. Clang doesn't implement this behavior, and instead
15431 /// attempts to error at compile time.
15432 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
15433                                                   SourceLocation Loc) {
15434   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
15435     FunctionDecl *FD;
15436     ParmVarDecl *Param;
15437 
15438   public:
15439     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
15440         : FD(FD), Param(Param) {}
15441 
15442     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
15443       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
15444       StringRef CCName;
15445       switch (CC) {
15446       case CC_X86StdCall:
15447         CCName = "stdcall";
15448         break;
15449       case CC_X86FastCall:
15450         CCName = "fastcall";
15451         break;
15452       case CC_X86VectorCall:
15453         CCName = "vectorcall";
15454         break;
15455       default:
15456         llvm_unreachable("CC does not need mangling");
15457       }
15458 
15459       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
15460           << Param->getDeclName() << FD->getDeclName() << CCName;
15461     }
15462   };
15463 
15464   for (ParmVarDecl *Param : FD->parameters()) {
15465     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
15466     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
15467   }
15468 }
15469 
15470 namespace {
15471 enum class OdrUseContext {
15472   /// Declarations in this context are not odr-used.
15473   None,
15474   /// Declarations in this context are formally odr-used, but this is a
15475   /// dependent context.
15476   Dependent,
15477   /// Declarations in this context are odr-used but not actually used (yet).
15478   FormallyOdrUsed,
15479   /// Declarations in this context are used.
15480   Used
15481 };
15482 }
15483 
15484 /// Are we within a context in which references to resolved functions or to
15485 /// variables result in odr-use?
15486 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
15487   OdrUseContext Result;
15488 
15489   switch (SemaRef.ExprEvalContexts.back().Context) {
15490     case Sema::ExpressionEvaluationContext::Unevaluated:
15491     case Sema::ExpressionEvaluationContext::UnevaluatedList:
15492     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
15493       return OdrUseContext::None;
15494 
15495     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
15496     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
15497       Result = OdrUseContext::Used;
15498       break;
15499 
15500     case Sema::ExpressionEvaluationContext::DiscardedStatement:
15501       Result = OdrUseContext::FormallyOdrUsed;
15502       break;
15503 
15504     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
15505       // A default argument formally results in odr-use, but doesn't actually
15506       // result in a use in any real sense until it itself is used.
15507       Result = OdrUseContext::FormallyOdrUsed;
15508       break;
15509   }
15510 
15511   if (SemaRef.CurContext->isDependentContext())
15512     return OdrUseContext::Dependent;
15513 
15514   return Result;
15515 }
15516 
15517 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
15518   return Func->isConstexpr() &&
15519          (Func->isImplicitlyInstantiable() || !Func->isUserProvided());
15520 }
15521 
15522 /// Mark a function referenced, and check whether it is odr-used
15523 /// (C++ [basic.def.odr]p2, C99 6.9p3)
15524 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
15525                                   bool MightBeOdrUse) {
15526   assert(Func && "No function?");
15527 
15528   Func->setReferenced();
15529 
15530   // Recursive functions aren't really used until they're used from some other
15531   // context.
15532   bool IsRecursiveCall = CurContext == Func;
15533 
15534   // C++11 [basic.def.odr]p3:
15535   //   A function whose name appears as a potentially-evaluated expression is
15536   //   odr-used if it is the unique lookup result or the selected member of a
15537   //   set of overloaded functions [...].
15538   //
15539   // We (incorrectly) mark overload resolution as an unevaluated context, so we
15540   // can just check that here.
15541   OdrUseContext OdrUse =
15542       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
15543   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
15544     OdrUse = OdrUseContext::FormallyOdrUsed;
15545 
15546   // Trivial default constructors and destructors are never actually used.
15547   // FIXME: What about other special members?
15548   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
15549       OdrUse == OdrUseContext::Used) {
15550     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
15551       if (Constructor->isDefaultConstructor())
15552         OdrUse = OdrUseContext::FormallyOdrUsed;
15553     if (isa<CXXDestructorDecl>(Func))
15554       OdrUse = OdrUseContext::FormallyOdrUsed;
15555   }
15556 
15557   // C++20 [expr.const]p12:
15558   //   A function [...] is needed for constant evaluation if it is [...] a
15559   //   constexpr function that is named by an expression that is potentially
15560   //   constant evaluated
15561   bool NeededForConstantEvaluation =
15562       isPotentiallyConstantEvaluatedContext(*this) &&
15563       isImplicitlyDefinableConstexprFunction(Func);
15564 
15565   // Determine whether we require a function definition to exist, per
15566   // C++11 [temp.inst]p3:
15567   //   Unless a function template specialization has been explicitly
15568   //   instantiated or explicitly specialized, the function template
15569   //   specialization is implicitly instantiated when the specialization is
15570   //   referenced in a context that requires a function definition to exist.
15571   // C++20 [temp.inst]p7:
15572   //   The existence of a definition of a [...] function is considered to
15573   //   affect the semantics of the program if the [...] function is needed for
15574   //   constant evaluation by an expression
15575   // C++20 [basic.def.odr]p10:
15576   //   Every program shall contain exactly one definition of every non-inline
15577   //   function or variable that is odr-used in that program outside of a
15578   //   discarded statement
15579   // C++20 [special]p1:
15580   //   The implementation will implicitly define [defaulted special members]
15581   //   if they are odr-used or needed for constant evaluation.
15582   //
15583   // Note that we skip the implicit instantiation of templates that are only
15584   // used in unused default arguments or by recursive calls to themselves.
15585   // This is formally non-conforming, but seems reasonable in practice.
15586   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
15587                                              NeededForConstantEvaluation);
15588 
15589   // C++14 [temp.expl.spec]p6:
15590   //   If a template [...] is explicitly specialized then that specialization
15591   //   shall be declared before the first use of that specialization that would
15592   //   cause an implicit instantiation to take place, in every translation unit
15593   //   in which such a use occurs
15594   if (NeedDefinition &&
15595       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
15596        Func->getMemberSpecializationInfo()))
15597     checkSpecializationVisibility(Loc, Func);
15598 
15599   if (getLangOpts().CUDA)
15600     CheckCUDACall(Loc, Func);
15601 
15602   // If we need a definition, try to create one.
15603   if (NeedDefinition && !Func->getBody()) {
15604     runWithSufficientStackSpace(Loc, [&] {
15605       if (CXXConstructorDecl *Constructor =
15606               dyn_cast<CXXConstructorDecl>(Func)) {
15607         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
15608         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
15609           if (Constructor->isDefaultConstructor()) {
15610             if (Constructor->isTrivial() &&
15611                 !Constructor->hasAttr<DLLExportAttr>())
15612               return;
15613             DefineImplicitDefaultConstructor(Loc, Constructor);
15614           } else if (Constructor->isCopyConstructor()) {
15615             DefineImplicitCopyConstructor(Loc, Constructor);
15616           } else if (Constructor->isMoveConstructor()) {
15617             DefineImplicitMoveConstructor(Loc, Constructor);
15618           }
15619         } else if (Constructor->getInheritedConstructor()) {
15620           DefineInheritingConstructor(Loc, Constructor);
15621         }
15622       } else if (CXXDestructorDecl *Destructor =
15623                      dyn_cast<CXXDestructorDecl>(Func)) {
15624         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
15625         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
15626           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
15627             return;
15628           DefineImplicitDestructor(Loc, Destructor);
15629         }
15630         if (Destructor->isVirtual() && getLangOpts().AppleKext)
15631           MarkVTableUsed(Loc, Destructor->getParent());
15632       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
15633         if (MethodDecl->isOverloadedOperator() &&
15634             MethodDecl->getOverloadedOperator() == OO_Equal) {
15635           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
15636           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
15637             if (MethodDecl->isCopyAssignmentOperator())
15638               DefineImplicitCopyAssignment(Loc, MethodDecl);
15639             else if (MethodDecl->isMoveAssignmentOperator())
15640               DefineImplicitMoveAssignment(Loc, MethodDecl);
15641           }
15642         } else if (isa<CXXConversionDecl>(MethodDecl) &&
15643                    MethodDecl->getParent()->isLambda()) {
15644           CXXConversionDecl *Conversion =
15645               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
15646           if (Conversion->isLambdaToBlockPointerConversion())
15647             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
15648           else
15649             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
15650         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
15651           MarkVTableUsed(Loc, MethodDecl->getParent());
15652       }
15653 
15654       if (Func->isDefaulted() && !Func->isDeleted()) {
15655         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
15656         if (DCK != DefaultedComparisonKind::None)
15657           DefineDefaultedComparison(Loc, Func, DCK);
15658       }
15659 
15660       // Implicit instantiation of function templates and member functions of
15661       // class templates.
15662       if (Func->isImplicitlyInstantiable()) {
15663         TemplateSpecializationKind TSK =
15664             Func->getTemplateSpecializationKindForInstantiation();
15665         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
15666         bool FirstInstantiation = PointOfInstantiation.isInvalid();
15667         if (FirstInstantiation) {
15668           PointOfInstantiation = Loc;
15669           Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
15670         } else if (TSK != TSK_ImplicitInstantiation) {
15671           // Use the point of use as the point of instantiation, instead of the
15672           // point of explicit instantiation (which we track as the actual point
15673           // of instantiation). This gives better backtraces in diagnostics.
15674           PointOfInstantiation = Loc;
15675         }
15676 
15677         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
15678             Func->isConstexpr()) {
15679           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
15680               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
15681               CodeSynthesisContexts.size())
15682             PendingLocalImplicitInstantiations.push_back(
15683                 std::make_pair(Func, PointOfInstantiation));
15684           else if (Func->isConstexpr())
15685             // Do not defer instantiations of constexpr functions, to avoid the
15686             // expression evaluator needing to call back into Sema if it sees a
15687             // call to such a function.
15688             InstantiateFunctionDefinition(PointOfInstantiation, Func);
15689           else {
15690             Func->setInstantiationIsPending(true);
15691             PendingInstantiations.push_back(
15692                 std::make_pair(Func, PointOfInstantiation));
15693             // Notify the consumer that a function was implicitly instantiated.
15694             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
15695           }
15696         }
15697       } else {
15698         // Walk redefinitions, as some of them may be instantiable.
15699         for (auto i : Func->redecls()) {
15700           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
15701             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
15702         }
15703       }
15704     });
15705   }
15706 
15707   // C++14 [except.spec]p17:
15708   //   An exception-specification is considered to be needed when:
15709   //   - the function is odr-used or, if it appears in an unevaluated operand,
15710   //     would be odr-used if the expression were potentially-evaluated;
15711   //
15712   // Note, we do this even if MightBeOdrUse is false. That indicates that the
15713   // function is a pure virtual function we're calling, and in that case the
15714   // function was selected by overload resolution and we need to resolve its
15715   // exception specification for a different reason.
15716   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
15717   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
15718     ResolveExceptionSpec(Loc, FPT);
15719 
15720   // If this is the first "real" use, act on that.
15721   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
15722     // Keep track of used but undefined functions.
15723     if (!Func->isDefined()) {
15724       if (mightHaveNonExternalLinkage(Func))
15725         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15726       else if (Func->getMostRecentDecl()->isInlined() &&
15727                !LangOpts.GNUInline &&
15728                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
15729         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15730       else if (isExternalWithNoLinkageType(Func))
15731         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15732     }
15733 
15734     // Some x86 Windows calling conventions mangle the size of the parameter
15735     // pack into the name. Computing the size of the parameters requires the
15736     // parameter types to be complete. Check that now.
15737     if (funcHasParameterSizeMangling(*this, Func))
15738       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
15739 
15740     Func->markUsed(Context);
15741   }
15742 
15743   if (LangOpts.OpenMP) {
15744     markOpenMPDeclareVariantFuncsReferenced(Loc, Func, MightBeOdrUse);
15745     if (LangOpts.OpenMPIsDevice)
15746       checkOpenMPDeviceFunction(Loc, Func);
15747     else
15748       checkOpenMPHostFunction(Loc, Func);
15749   }
15750 }
15751 
15752 /// Directly mark a variable odr-used. Given a choice, prefer to use
15753 /// MarkVariableReferenced since it does additional checks and then
15754 /// calls MarkVarDeclODRUsed.
15755 /// If the variable must be captured:
15756 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
15757 ///  - else capture it in the DeclContext that maps to the
15758 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
15759 static void
15760 MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
15761                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
15762   // Keep track of used but undefined variables.
15763   // FIXME: We shouldn't suppress this warning for static data members.
15764   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
15765       (!Var->isExternallyVisible() || Var->isInline() ||
15766        SemaRef.isExternalWithNoLinkageType(Var)) &&
15767       !(Var->isStaticDataMember() && Var->hasInit())) {
15768     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
15769     if (old.isInvalid())
15770       old = Loc;
15771   }
15772   QualType CaptureType, DeclRefType;
15773   if (SemaRef.LangOpts.OpenMP)
15774     SemaRef.tryCaptureOpenMPLambdas(Var);
15775   SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
15776     /*EllipsisLoc*/ SourceLocation(),
15777     /*BuildAndDiagnose*/ true,
15778     CaptureType, DeclRefType,
15779     FunctionScopeIndexToStopAt);
15780 
15781   Var->markUsed(SemaRef.Context);
15782 }
15783 
15784 void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
15785                                              SourceLocation Loc,
15786                                              unsigned CapturingScopeIndex) {
15787   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
15788 }
15789 
15790 static void
15791 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
15792                                    ValueDecl *var, DeclContext *DC) {
15793   DeclContext *VarDC = var->getDeclContext();
15794 
15795   //  If the parameter still belongs to the translation unit, then
15796   //  we're actually just using one parameter in the declaration of
15797   //  the next.
15798   if (isa<ParmVarDecl>(var) &&
15799       isa<TranslationUnitDecl>(VarDC))
15800     return;
15801 
15802   // For C code, don't diagnose about capture if we're not actually in code
15803   // right now; it's impossible to write a non-constant expression outside of
15804   // function context, so we'll get other (more useful) diagnostics later.
15805   //
15806   // For C++, things get a bit more nasty... it would be nice to suppress this
15807   // diagnostic for certain cases like using a local variable in an array bound
15808   // for a member of a local class, but the correct predicate is not obvious.
15809   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
15810     return;
15811 
15812   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
15813   unsigned ContextKind = 3; // unknown
15814   if (isa<CXXMethodDecl>(VarDC) &&
15815       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
15816     ContextKind = 2;
15817   } else if (isa<FunctionDecl>(VarDC)) {
15818     ContextKind = 0;
15819   } else if (isa<BlockDecl>(VarDC)) {
15820     ContextKind = 1;
15821   }
15822 
15823   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
15824     << var << ValueKind << ContextKind << VarDC;
15825   S.Diag(var->getLocation(), diag::note_entity_declared_at)
15826       << var;
15827 
15828   // FIXME: Add additional diagnostic info about class etc. which prevents
15829   // capture.
15830 }
15831 
15832 
15833 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
15834                                       bool &SubCapturesAreNested,
15835                                       QualType &CaptureType,
15836                                       QualType &DeclRefType) {
15837    // Check whether we've already captured it.
15838   if (CSI->CaptureMap.count(Var)) {
15839     // If we found a capture, any subcaptures are nested.
15840     SubCapturesAreNested = true;
15841 
15842     // Retrieve the capture type for this variable.
15843     CaptureType = CSI->getCapture(Var).getCaptureType();
15844 
15845     // Compute the type of an expression that refers to this variable.
15846     DeclRefType = CaptureType.getNonReferenceType();
15847 
15848     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
15849     // are mutable in the sense that user can change their value - they are
15850     // private instances of the captured declarations.
15851     const Capture &Cap = CSI->getCapture(Var);
15852     if (Cap.isCopyCapture() &&
15853         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
15854         !(isa<CapturedRegionScopeInfo>(CSI) &&
15855           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
15856       DeclRefType.addConst();
15857     return true;
15858   }
15859   return false;
15860 }
15861 
15862 // Only block literals, captured statements, and lambda expressions can
15863 // capture; other scopes don't work.
15864 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
15865                                  SourceLocation Loc,
15866                                  const bool Diagnose, Sema &S) {
15867   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
15868     return getLambdaAwareParentOfDeclContext(DC);
15869   else if (Var->hasLocalStorage()) {
15870     if (Diagnose)
15871        diagnoseUncapturableValueReference(S, Loc, Var, DC);
15872   }
15873   return nullptr;
15874 }
15875 
15876 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
15877 // certain types of variables (unnamed, variably modified types etc.)
15878 // so check for eligibility.
15879 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
15880                                  SourceLocation Loc,
15881                                  const bool Diagnose, Sema &S) {
15882 
15883   bool IsBlock = isa<BlockScopeInfo>(CSI);
15884   bool IsLambda = isa<LambdaScopeInfo>(CSI);
15885 
15886   // Lambdas are not allowed to capture unnamed variables
15887   // (e.g. anonymous unions).
15888   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
15889   // assuming that's the intent.
15890   if (IsLambda && !Var->getDeclName()) {
15891     if (Diagnose) {
15892       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
15893       S.Diag(Var->getLocation(), diag::note_declared_at);
15894     }
15895     return false;
15896   }
15897 
15898   // Prohibit variably-modified types in blocks; they're difficult to deal with.
15899   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
15900     if (Diagnose) {
15901       S.Diag(Loc, diag::err_ref_vm_type);
15902       S.Diag(Var->getLocation(), diag::note_previous_decl)
15903         << Var->getDeclName();
15904     }
15905     return false;
15906   }
15907   // Prohibit structs with flexible array members too.
15908   // We cannot capture what is in the tail end of the struct.
15909   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
15910     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
15911       if (Diagnose) {
15912         if (IsBlock)
15913           S.Diag(Loc, diag::err_ref_flexarray_type);
15914         else
15915           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
15916             << Var->getDeclName();
15917         S.Diag(Var->getLocation(), diag::note_previous_decl)
15918           << Var->getDeclName();
15919       }
15920       return false;
15921     }
15922   }
15923   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
15924   // Lambdas and captured statements are not allowed to capture __block
15925   // variables; they don't support the expected semantics.
15926   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
15927     if (Diagnose) {
15928       S.Diag(Loc, diag::err_capture_block_variable)
15929         << Var->getDeclName() << !IsLambda;
15930       S.Diag(Var->getLocation(), diag::note_previous_decl)
15931         << Var->getDeclName();
15932     }
15933     return false;
15934   }
15935   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
15936   if (S.getLangOpts().OpenCL && IsBlock &&
15937       Var->getType()->isBlockPointerType()) {
15938     if (Diagnose)
15939       S.Diag(Loc, diag::err_opencl_block_ref_block);
15940     return false;
15941   }
15942 
15943   return true;
15944 }
15945 
15946 // Returns true if the capture by block was successful.
15947 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
15948                                  SourceLocation Loc,
15949                                  const bool BuildAndDiagnose,
15950                                  QualType &CaptureType,
15951                                  QualType &DeclRefType,
15952                                  const bool Nested,
15953                                  Sema &S, bool Invalid) {
15954   bool ByRef = false;
15955 
15956   // Blocks are not allowed to capture arrays, excepting OpenCL.
15957   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
15958   // (decayed to pointers).
15959   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
15960     if (BuildAndDiagnose) {
15961       S.Diag(Loc, diag::err_ref_array_type);
15962       S.Diag(Var->getLocation(), diag::note_previous_decl)
15963       << Var->getDeclName();
15964       Invalid = true;
15965     } else {
15966       return false;
15967     }
15968   }
15969 
15970   // Forbid the block-capture of autoreleasing variables.
15971   if (!Invalid &&
15972       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
15973     if (BuildAndDiagnose) {
15974       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
15975         << /*block*/ 0;
15976       S.Diag(Var->getLocation(), diag::note_previous_decl)
15977         << Var->getDeclName();
15978       Invalid = true;
15979     } else {
15980       return false;
15981     }
15982   }
15983 
15984   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
15985   if (const auto *PT = CaptureType->getAs<PointerType>()) {
15986     QualType PointeeTy = PT->getPointeeType();
15987 
15988     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
15989         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
15990         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
15991       if (BuildAndDiagnose) {
15992         SourceLocation VarLoc = Var->getLocation();
15993         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
15994         S.Diag(VarLoc, diag::note_declare_parameter_strong);
15995       }
15996     }
15997   }
15998 
15999   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
16000   if (HasBlocksAttr || CaptureType->isReferenceType() ||
16001       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
16002     // Block capture by reference does not change the capture or
16003     // declaration reference types.
16004     ByRef = true;
16005   } else {
16006     // Block capture by copy introduces 'const'.
16007     CaptureType = CaptureType.getNonReferenceType().withConst();
16008     DeclRefType = CaptureType;
16009   }
16010 
16011   // Actually capture the variable.
16012   if (BuildAndDiagnose)
16013     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
16014                     CaptureType, Invalid);
16015 
16016   return !Invalid;
16017 }
16018 
16019 
16020 /// Capture the given variable in the captured region.
16021 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
16022                                     VarDecl *Var,
16023                                     SourceLocation Loc,
16024                                     const bool BuildAndDiagnose,
16025                                     QualType &CaptureType,
16026                                     QualType &DeclRefType,
16027                                     const bool RefersToCapturedVariable,
16028                                     Sema &S, bool Invalid) {
16029   // By default, capture variables by reference.
16030   bool ByRef = true;
16031   // Using an LValue reference type is consistent with Lambdas (see below).
16032   if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
16033     if (S.isOpenMPCapturedDecl(Var)) {
16034       bool HasConst = DeclRefType.isConstQualified();
16035       DeclRefType = DeclRefType.getUnqualifiedType();
16036       // Don't lose diagnostics about assignments to const.
16037       if (HasConst)
16038         DeclRefType.addConst();
16039     }
16040     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
16041                                     RSI->OpenMPCaptureLevel);
16042   }
16043 
16044   if (ByRef)
16045     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
16046   else
16047     CaptureType = DeclRefType;
16048 
16049   // Actually capture the variable.
16050   if (BuildAndDiagnose)
16051     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
16052                     Loc, SourceLocation(), CaptureType, Invalid);
16053 
16054   return !Invalid;
16055 }
16056 
16057 /// Capture the given variable in the lambda.
16058 static bool captureInLambda(LambdaScopeInfo *LSI,
16059                             VarDecl *Var,
16060                             SourceLocation Loc,
16061                             const bool BuildAndDiagnose,
16062                             QualType &CaptureType,
16063                             QualType &DeclRefType,
16064                             const bool RefersToCapturedVariable,
16065                             const Sema::TryCaptureKind Kind,
16066                             SourceLocation EllipsisLoc,
16067                             const bool IsTopScope,
16068                             Sema &S, bool Invalid) {
16069   // Determine whether we are capturing by reference or by value.
16070   bool ByRef = false;
16071   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
16072     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
16073   } else {
16074     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
16075   }
16076 
16077   // Compute the type of the field that will capture this variable.
16078   if (ByRef) {
16079     // C++11 [expr.prim.lambda]p15:
16080     //   An entity is captured by reference if it is implicitly or
16081     //   explicitly captured but not captured by copy. It is
16082     //   unspecified whether additional unnamed non-static data
16083     //   members are declared in the closure type for entities
16084     //   captured by reference.
16085     //
16086     // FIXME: It is not clear whether we want to build an lvalue reference
16087     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
16088     // to do the former, while EDG does the latter. Core issue 1249 will
16089     // clarify, but for now we follow GCC because it's a more permissive and
16090     // easily defensible position.
16091     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
16092   } else {
16093     // C++11 [expr.prim.lambda]p14:
16094     //   For each entity captured by copy, an unnamed non-static
16095     //   data member is declared in the closure type. The
16096     //   declaration order of these members is unspecified. The type
16097     //   of such a data member is the type of the corresponding
16098     //   captured entity if the entity is not a reference to an
16099     //   object, or the referenced type otherwise. [Note: If the
16100     //   captured entity is a reference to a function, the
16101     //   corresponding data member is also a reference to a
16102     //   function. - end note ]
16103     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
16104       if (!RefType->getPointeeType()->isFunctionType())
16105         CaptureType = RefType->getPointeeType();
16106     }
16107 
16108     // Forbid the lambda copy-capture of autoreleasing variables.
16109     if (!Invalid &&
16110         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
16111       if (BuildAndDiagnose) {
16112         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
16113         S.Diag(Var->getLocation(), diag::note_previous_decl)
16114           << Var->getDeclName();
16115         Invalid = true;
16116       } else {
16117         return false;
16118       }
16119     }
16120 
16121     // Make sure that by-copy captures are of a complete and non-abstract type.
16122     if (!Invalid && BuildAndDiagnose) {
16123       if (!CaptureType->isDependentType() &&
16124           S.RequireCompleteType(Loc, CaptureType,
16125                                 diag::err_capture_of_incomplete_type,
16126                                 Var->getDeclName()))
16127         Invalid = true;
16128       else if (S.RequireNonAbstractType(Loc, CaptureType,
16129                                         diag::err_capture_of_abstract_type))
16130         Invalid = true;
16131     }
16132   }
16133 
16134   // Compute the type of a reference to this captured variable.
16135   if (ByRef)
16136     DeclRefType = CaptureType.getNonReferenceType();
16137   else {
16138     // C++ [expr.prim.lambda]p5:
16139     //   The closure type for a lambda-expression has a public inline
16140     //   function call operator [...]. This function call operator is
16141     //   declared const (9.3.1) if and only if the lambda-expression's
16142     //   parameter-declaration-clause is not followed by mutable.
16143     DeclRefType = CaptureType.getNonReferenceType();
16144     if (!LSI->Mutable && !CaptureType->isReferenceType())
16145       DeclRefType.addConst();
16146   }
16147 
16148   // Add the capture.
16149   if (BuildAndDiagnose)
16150     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
16151                     Loc, EllipsisLoc, CaptureType, Invalid);
16152 
16153   return !Invalid;
16154 }
16155 
16156 bool Sema::tryCaptureVariable(
16157     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
16158     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
16159     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
16160   // An init-capture is notionally from the context surrounding its
16161   // declaration, but its parent DC is the lambda class.
16162   DeclContext *VarDC = Var->getDeclContext();
16163   if (Var->isInitCapture())
16164     VarDC = VarDC->getParent();
16165 
16166   DeclContext *DC = CurContext;
16167   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
16168       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
16169   // We need to sync up the Declaration Context with the
16170   // FunctionScopeIndexToStopAt
16171   if (FunctionScopeIndexToStopAt) {
16172     unsigned FSIndex = FunctionScopes.size() - 1;
16173     while (FSIndex != MaxFunctionScopesIndex) {
16174       DC = getLambdaAwareParentOfDeclContext(DC);
16175       --FSIndex;
16176     }
16177   }
16178 
16179 
16180   // If the variable is declared in the current context, there is no need to
16181   // capture it.
16182   if (VarDC == DC) return true;
16183 
16184   // Capture global variables if it is required to use private copy of this
16185   // variable.
16186   bool IsGlobal = !Var->hasLocalStorage();
16187   if (IsGlobal &&
16188       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
16189                                                 MaxFunctionScopesIndex)))
16190     return true;
16191   Var = Var->getCanonicalDecl();
16192 
16193   // Walk up the stack to determine whether we can capture the variable,
16194   // performing the "simple" checks that don't depend on type. We stop when
16195   // we've either hit the declared scope of the variable or find an existing
16196   // capture of that variable.  We start from the innermost capturing-entity
16197   // (the DC) and ensure that all intervening capturing-entities
16198   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
16199   // declcontext can either capture the variable or have already captured
16200   // the variable.
16201   CaptureType = Var->getType();
16202   DeclRefType = CaptureType.getNonReferenceType();
16203   bool Nested = false;
16204   bool Explicit = (Kind != TryCapture_Implicit);
16205   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
16206   do {
16207     // Only block literals, captured statements, and lambda expressions can
16208     // capture; other scopes don't work.
16209     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
16210                                                               ExprLoc,
16211                                                               BuildAndDiagnose,
16212                                                               *this);
16213     // We need to check for the parent *first* because, if we *have*
16214     // private-captured a global variable, we need to recursively capture it in
16215     // intermediate blocks, lambdas, etc.
16216     if (!ParentDC) {
16217       if (IsGlobal) {
16218         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
16219         break;
16220       }
16221       return true;
16222     }
16223 
16224     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
16225     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
16226 
16227 
16228     // Check whether we've already captured it.
16229     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
16230                                              DeclRefType)) {
16231       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
16232       break;
16233     }
16234     // If we are instantiating a generic lambda call operator body,
16235     // we do not want to capture new variables.  What was captured
16236     // during either a lambdas transformation or initial parsing
16237     // should be used.
16238     if (isGenericLambdaCallOperatorSpecialization(DC)) {
16239       if (BuildAndDiagnose) {
16240         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
16241         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
16242           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
16243           Diag(Var->getLocation(), diag::note_previous_decl)
16244              << Var->getDeclName();
16245           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
16246         } else
16247           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
16248       }
16249       return true;
16250     }
16251 
16252     // Try to capture variable-length arrays types.
16253     if (Var->getType()->isVariablyModifiedType()) {
16254       // We're going to walk down into the type and look for VLA
16255       // expressions.
16256       QualType QTy = Var->getType();
16257       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
16258         QTy = PVD->getOriginalType();
16259       captureVariablyModifiedType(Context, QTy, CSI);
16260     }
16261 
16262     if (getLangOpts().OpenMP) {
16263       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
16264         // OpenMP private variables should not be captured in outer scope, so
16265         // just break here. Similarly, global variables that are captured in a
16266         // target region should not be captured outside the scope of the region.
16267         if (RSI->CapRegionKind == CR_OpenMP) {
16268           bool IsOpenMPPrivateDecl = isOpenMPPrivateDecl(Var, RSI->OpenMPLevel);
16269           // If the variable is private (i.e. not captured) and has variably
16270           // modified type, we still need to capture the type for correct
16271           // codegen in all regions, associated with the construct. Currently,
16272           // it is captured in the innermost captured region only.
16273           if (IsOpenMPPrivateDecl && Var->getType()->isVariablyModifiedType()) {
16274             QualType QTy = Var->getType();
16275             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
16276               QTy = PVD->getOriginalType();
16277             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
16278                  I < E; ++I) {
16279               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
16280                   FunctionScopes[FunctionScopesIndex - I]);
16281               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
16282                      "Wrong number of captured regions associated with the "
16283                      "OpenMP construct.");
16284               captureVariablyModifiedType(Context, QTy, OuterRSI);
16285             }
16286           }
16287           bool IsTargetCap = !IsOpenMPPrivateDecl &&
16288                              isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel);
16289           // When we detect target captures we are looking from inside the
16290           // target region, therefore we need to propagate the capture from the
16291           // enclosing region. Therefore, the capture is not initially nested.
16292           if (IsTargetCap)
16293             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
16294 
16295           if (IsTargetCap || IsOpenMPPrivateDecl) {
16296             Nested = !IsTargetCap;
16297             DeclRefType = DeclRefType.getUnqualifiedType();
16298             CaptureType = Context.getLValueReferenceType(DeclRefType);
16299             break;
16300           }
16301         }
16302       }
16303     }
16304     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
16305       // No capture-default, and this is not an explicit capture
16306       // so cannot capture this variable.
16307       if (BuildAndDiagnose) {
16308         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
16309         Diag(Var->getLocation(), diag::note_previous_decl)
16310           << Var->getDeclName();
16311         if (cast<LambdaScopeInfo>(CSI)->Lambda)
16312           Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
16313                diag::note_lambda_decl);
16314         // FIXME: If we error out because an outer lambda can not implicitly
16315         // capture a variable that an inner lambda explicitly captures, we
16316         // should have the inner lambda do the explicit capture - because
16317         // it makes for cleaner diagnostics later.  This would purely be done
16318         // so that the diagnostic does not misleadingly claim that a variable
16319         // can not be captured by a lambda implicitly even though it is captured
16320         // explicitly.  Suggestion:
16321         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
16322         //    at the function head
16323         //  - cache the StartingDeclContext - this must be a lambda
16324         //  - captureInLambda in the innermost lambda the variable.
16325       }
16326       return true;
16327     }
16328 
16329     FunctionScopesIndex--;
16330     DC = ParentDC;
16331     Explicit = false;
16332   } while (!VarDC->Equals(DC));
16333 
16334   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
16335   // computing the type of the capture at each step, checking type-specific
16336   // requirements, and adding captures if requested.
16337   // If the variable had already been captured previously, we start capturing
16338   // at the lambda nested within that one.
16339   bool Invalid = false;
16340   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
16341        ++I) {
16342     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
16343 
16344     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
16345     // certain types of variables (unnamed, variably modified types etc.)
16346     // so check for eligibility.
16347     if (!Invalid)
16348       Invalid =
16349           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
16350 
16351     // After encountering an error, if we're actually supposed to capture, keep
16352     // capturing in nested contexts to suppress any follow-on diagnostics.
16353     if (Invalid && !BuildAndDiagnose)
16354       return true;
16355 
16356     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
16357       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
16358                                DeclRefType, Nested, *this, Invalid);
16359       Nested = true;
16360     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
16361       Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
16362                                          CaptureType, DeclRefType, Nested,
16363                                          *this, Invalid);
16364       Nested = true;
16365     } else {
16366       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
16367       Invalid =
16368           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
16369                            DeclRefType, Nested, Kind, EllipsisLoc,
16370                            /*IsTopScope*/ I == N - 1, *this, Invalid);
16371       Nested = true;
16372     }
16373 
16374     if (Invalid && !BuildAndDiagnose)
16375       return true;
16376   }
16377   return Invalid;
16378 }
16379 
16380 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
16381                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
16382   QualType CaptureType;
16383   QualType DeclRefType;
16384   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
16385                             /*BuildAndDiagnose=*/true, CaptureType,
16386                             DeclRefType, nullptr);
16387 }
16388 
16389 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
16390   QualType CaptureType;
16391   QualType DeclRefType;
16392   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
16393                              /*BuildAndDiagnose=*/false, CaptureType,
16394                              DeclRefType, nullptr);
16395 }
16396 
16397 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
16398   QualType CaptureType;
16399   QualType DeclRefType;
16400 
16401   // Determine whether we can capture this variable.
16402   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
16403                          /*BuildAndDiagnose=*/false, CaptureType,
16404                          DeclRefType, nullptr))
16405     return QualType();
16406 
16407   return DeclRefType;
16408 }
16409 
16410 namespace {
16411 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
16412 // The produced TemplateArgumentListInfo* points to data stored within this
16413 // object, so should only be used in contexts where the pointer will not be
16414 // used after the CopiedTemplateArgs object is destroyed.
16415 class CopiedTemplateArgs {
16416   bool HasArgs;
16417   TemplateArgumentListInfo TemplateArgStorage;
16418 public:
16419   template<typename RefExpr>
16420   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
16421     if (HasArgs)
16422       E->copyTemplateArgumentsInto(TemplateArgStorage);
16423   }
16424   operator TemplateArgumentListInfo*()
16425 #ifdef __has_cpp_attribute
16426 #if __has_cpp_attribute(clang::lifetimebound)
16427   [[clang::lifetimebound]]
16428 #endif
16429 #endif
16430   {
16431     return HasArgs ? &TemplateArgStorage : nullptr;
16432   }
16433 };
16434 }
16435 
16436 /// Walk the set of potential results of an expression and mark them all as
16437 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
16438 ///
16439 /// \return A new expression if we found any potential results, ExprEmpty() if
16440 ///         not, and ExprError() if we diagnosed an error.
16441 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
16442                                                       NonOdrUseReason NOUR) {
16443   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
16444   // an object that satisfies the requirements for appearing in a
16445   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
16446   // is immediately applied."  This function handles the lvalue-to-rvalue
16447   // conversion part.
16448   //
16449   // If we encounter a node that claims to be an odr-use but shouldn't be, we
16450   // transform it into the relevant kind of non-odr-use node and rebuild the
16451   // tree of nodes leading to it.
16452   //
16453   // This is a mini-TreeTransform that only transforms a restricted subset of
16454   // nodes (and only certain operands of them).
16455 
16456   // Rebuild a subexpression.
16457   auto Rebuild = [&](Expr *Sub) {
16458     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
16459   };
16460 
16461   // Check whether a potential result satisfies the requirements of NOUR.
16462   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
16463     // Any entity other than a VarDecl is always odr-used whenever it's named
16464     // in a potentially-evaluated expression.
16465     auto *VD = dyn_cast<VarDecl>(D);
16466     if (!VD)
16467       return true;
16468 
16469     // C++2a [basic.def.odr]p4:
16470     //   A variable x whose name appears as a potentially-evalauted expression
16471     //   e is odr-used by e unless
16472     //   -- x is a reference that is usable in constant expressions, or
16473     //   -- x is a variable of non-reference type that is usable in constant
16474     //      expressions and has no mutable subobjects, and e is an element of
16475     //      the set of potential results of an expression of
16476     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
16477     //      conversion is applied, or
16478     //   -- x is a variable of non-reference type, and e is an element of the
16479     //      set of potential results of a discarded-value expression to which
16480     //      the lvalue-to-rvalue conversion is not applied
16481     //
16482     // We check the first bullet and the "potentially-evaluated" condition in
16483     // BuildDeclRefExpr. We check the type requirements in the second bullet
16484     // in CheckLValueToRValueConversionOperand below.
16485     switch (NOUR) {
16486     case NOUR_None:
16487     case NOUR_Unevaluated:
16488       llvm_unreachable("unexpected non-odr-use-reason");
16489 
16490     case NOUR_Constant:
16491       // Constant references were handled when they were built.
16492       if (VD->getType()->isReferenceType())
16493         return true;
16494       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
16495         if (RD->hasMutableFields())
16496           return true;
16497       if (!VD->isUsableInConstantExpressions(S.Context))
16498         return true;
16499       break;
16500 
16501     case NOUR_Discarded:
16502       if (VD->getType()->isReferenceType())
16503         return true;
16504       break;
16505     }
16506     return false;
16507   };
16508 
16509   // Mark that this expression does not constitute an odr-use.
16510   auto MarkNotOdrUsed = [&] {
16511     S.MaybeODRUseExprs.erase(E);
16512     if (LambdaScopeInfo *LSI = S.getCurLambda())
16513       LSI->markVariableExprAsNonODRUsed(E);
16514   };
16515 
16516   // C++2a [basic.def.odr]p2:
16517   //   The set of potential results of an expression e is defined as follows:
16518   switch (E->getStmtClass()) {
16519   //   -- If e is an id-expression, ...
16520   case Expr::DeclRefExprClass: {
16521     auto *DRE = cast<DeclRefExpr>(E);
16522     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
16523       break;
16524 
16525     // Rebuild as a non-odr-use DeclRefExpr.
16526     MarkNotOdrUsed();
16527     return DeclRefExpr::Create(
16528         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
16529         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
16530         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
16531         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
16532   }
16533 
16534   case Expr::FunctionParmPackExprClass: {
16535     auto *FPPE = cast<FunctionParmPackExpr>(E);
16536     // If any of the declarations in the pack is odr-used, then the expression
16537     // as a whole constitutes an odr-use.
16538     for (VarDecl *D : *FPPE)
16539       if (IsPotentialResultOdrUsed(D))
16540         return ExprEmpty();
16541 
16542     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
16543     // nothing cares about whether we marked this as an odr-use, but it might
16544     // be useful for non-compiler tools.
16545     MarkNotOdrUsed();
16546     break;
16547   }
16548 
16549   //   -- If e is a subscripting operation with an array operand...
16550   case Expr::ArraySubscriptExprClass: {
16551     auto *ASE = cast<ArraySubscriptExpr>(E);
16552     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
16553     if (!OldBase->getType()->isArrayType())
16554       break;
16555     ExprResult Base = Rebuild(OldBase);
16556     if (!Base.isUsable())
16557       return Base;
16558     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
16559     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
16560     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
16561     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
16562                                      ASE->getRBracketLoc());
16563   }
16564 
16565   case Expr::MemberExprClass: {
16566     auto *ME = cast<MemberExpr>(E);
16567     // -- If e is a class member access expression [...] naming a non-static
16568     //    data member...
16569     if (isa<FieldDecl>(ME->getMemberDecl())) {
16570       ExprResult Base = Rebuild(ME->getBase());
16571       if (!Base.isUsable())
16572         return Base;
16573       return MemberExpr::Create(
16574           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
16575           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
16576           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
16577           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
16578           ME->getObjectKind(), ME->isNonOdrUse());
16579     }
16580 
16581     if (ME->getMemberDecl()->isCXXInstanceMember())
16582       break;
16583 
16584     // -- If e is a class member access expression naming a static data member,
16585     //    ...
16586     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
16587       break;
16588 
16589     // Rebuild as a non-odr-use MemberExpr.
16590     MarkNotOdrUsed();
16591     return MemberExpr::Create(
16592         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
16593         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
16594         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
16595         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
16596     return ExprEmpty();
16597   }
16598 
16599   case Expr::BinaryOperatorClass: {
16600     auto *BO = cast<BinaryOperator>(E);
16601     Expr *LHS = BO->getLHS();
16602     Expr *RHS = BO->getRHS();
16603     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
16604     if (BO->getOpcode() == BO_PtrMemD) {
16605       ExprResult Sub = Rebuild(LHS);
16606       if (!Sub.isUsable())
16607         return Sub;
16608       LHS = Sub.get();
16609     //   -- If e is a comma expression, ...
16610     } else if (BO->getOpcode() == BO_Comma) {
16611       ExprResult Sub = Rebuild(RHS);
16612       if (!Sub.isUsable())
16613         return Sub;
16614       RHS = Sub.get();
16615     } else {
16616       break;
16617     }
16618     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
16619                         LHS, RHS);
16620   }
16621 
16622   //   -- If e has the form (e1)...
16623   case Expr::ParenExprClass: {
16624     auto *PE = cast<ParenExpr>(E);
16625     ExprResult Sub = Rebuild(PE->getSubExpr());
16626     if (!Sub.isUsable())
16627       return Sub;
16628     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
16629   }
16630 
16631   //   -- If e is a glvalue conditional expression, ...
16632   // We don't apply this to a binary conditional operator. FIXME: Should we?
16633   case Expr::ConditionalOperatorClass: {
16634     auto *CO = cast<ConditionalOperator>(E);
16635     ExprResult LHS = Rebuild(CO->getLHS());
16636     if (LHS.isInvalid())
16637       return ExprError();
16638     ExprResult RHS = Rebuild(CO->getRHS());
16639     if (RHS.isInvalid())
16640       return ExprError();
16641     if (!LHS.isUsable() && !RHS.isUsable())
16642       return ExprEmpty();
16643     if (!LHS.isUsable())
16644       LHS = CO->getLHS();
16645     if (!RHS.isUsable())
16646       RHS = CO->getRHS();
16647     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
16648                                 CO->getCond(), LHS.get(), RHS.get());
16649   }
16650 
16651   // [Clang extension]
16652   //   -- If e has the form __extension__ e1...
16653   case Expr::UnaryOperatorClass: {
16654     auto *UO = cast<UnaryOperator>(E);
16655     if (UO->getOpcode() != UO_Extension)
16656       break;
16657     ExprResult Sub = Rebuild(UO->getSubExpr());
16658     if (!Sub.isUsable())
16659       return Sub;
16660     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
16661                           Sub.get());
16662   }
16663 
16664   // [Clang extension]
16665   //   -- If e has the form _Generic(...), the set of potential results is the
16666   //      union of the sets of potential results of the associated expressions.
16667   case Expr::GenericSelectionExprClass: {
16668     auto *GSE = cast<GenericSelectionExpr>(E);
16669 
16670     SmallVector<Expr *, 4> AssocExprs;
16671     bool AnyChanged = false;
16672     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
16673       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
16674       if (AssocExpr.isInvalid())
16675         return ExprError();
16676       if (AssocExpr.isUsable()) {
16677         AssocExprs.push_back(AssocExpr.get());
16678         AnyChanged = true;
16679       } else {
16680         AssocExprs.push_back(OrigAssocExpr);
16681       }
16682     }
16683 
16684     return AnyChanged ? S.CreateGenericSelectionExpr(
16685                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
16686                             GSE->getRParenLoc(), GSE->getControllingExpr(),
16687                             GSE->getAssocTypeSourceInfos(), AssocExprs)
16688                       : ExprEmpty();
16689   }
16690 
16691   // [Clang extension]
16692   //   -- If e has the form __builtin_choose_expr(...), the set of potential
16693   //      results is the union of the sets of potential results of the
16694   //      second and third subexpressions.
16695   case Expr::ChooseExprClass: {
16696     auto *CE = cast<ChooseExpr>(E);
16697 
16698     ExprResult LHS = Rebuild(CE->getLHS());
16699     if (LHS.isInvalid())
16700       return ExprError();
16701 
16702     ExprResult RHS = Rebuild(CE->getLHS());
16703     if (RHS.isInvalid())
16704       return ExprError();
16705 
16706     if (!LHS.get() && !RHS.get())
16707       return ExprEmpty();
16708     if (!LHS.isUsable())
16709       LHS = CE->getLHS();
16710     if (!RHS.isUsable())
16711       RHS = CE->getRHS();
16712 
16713     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
16714                              RHS.get(), CE->getRParenLoc());
16715   }
16716 
16717   // Step through non-syntactic nodes.
16718   case Expr::ConstantExprClass: {
16719     auto *CE = cast<ConstantExpr>(E);
16720     ExprResult Sub = Rebuild(CE->getSubExpr());
16721     if (!Sub.isUsable())
16722       return Sub;
16723     return ConstantExpr::Create(S.Context, Sub.get());
16724   }
16725 
16726   // We could mostly rely on the recursive rebuilding to rebuild implicit
16727   // casts, but not at the top level, so rebuild them here.
16728   case Expr::ImplicitCastExprClass: {
16729     auto *ICE = cast<ImplicitCastExpr>(E);
16730     // Only step through the narrow set of cast kinds we expect to encounter.
16731     // Anything else suggests we've left the region in which potential results
16732     // can be found.
16733     switch (ICE->getCastKind()) {
16734     case CK_NoOp:
16735     case CK_DerivedToBase:
16736     case CK_UncheckedDerivedToBase: {
16737       ExprResult Sub = Rebuild(ICE->getSubExpr());
16738       if (!Sub.isUsable())
16739         return Sub;
16740       CXXCastPath Path(ICE->path());
16741       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
16742                                  ICE->getValueKind(), &Path);
16743     }
16744 
16745     default:
16746       break;
16747     }
16748     break;
16749   }
16750 
16751   default:
16752     break;
16753   }
16754 
16755   // Can't traverse through this node. Nothing to do.
16756   return ExprEmpty();
16757 }
16758 
16759 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
16760   // Check whether the operand is or contains an object of non-trivial C union
16761   // type.
16762   if (E->getType().isVolatileQualified() &&
16763       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
16764        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
16765     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
16766                           Sema::NTCUC_LValueToRValueVolatile,
16767                           NTCUK_Destruct|NTCUK_Copy);
16768 
16769   // C++2a [basic.def.odr]p4:
16770   //   [...] an expression of non-volatile-qualified non-class type to which
16771   //   the lvalue-to-rvalue conversion is applied [...]
16772   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
16773     return E;
16774 
16775   ExprResult Result =
16776       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
16777   if (Result.isInvalid())
16778     return ExprError();
16779   return Result.get() ? Result : E;
16780 }
16781 
16782 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
16783   Res = CorrectDelayedTyposInExpr(Res);
16784 
16785   if (!Res.isUsable())
16786     return Res;
16787 
16788   // If a constant-expression is a reference to a variable where we delay
16789   // deciding whether it is an odr-use, just assume we will apply the
16790   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
16791   // (a non-type template argument), we have special handling anyway.
16792   return CheckLValueToRValueConversionOperand(Res.get());
16793 }
16794 
16795 void Sema::CleanupVarDeclMarking() {
16796   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
16797   // call.
16798   MaybeODRUseExprSet LocalMaybeODRUseExprs;
16799   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
16800 
16801   for (Expr *E : LocalMaybeODRUseExprs) {
16802     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
16803       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
16804                          DRE->getLocation(), *this);
16805     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
16806       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
16807                          *this);
16808     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
16809       for (VarDecl *VD : *FP)
16810         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
16811     } else {
16812       llvm_unreachable("Unexpected expression");
16813     }
16814   }
16815 
16816   assert(MaybeODRUseExprs.empty() &&
16817          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
16818 }
16819 
16820 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
16821                                     VarDecl *Var, Expr *E) {
16822   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
16823           isa<FunctionParmPackExpr>(E)) &&
16824          "Invalid Expr argument to DoMarkVarDeclReferenced");
16825   Var->setReferenced();
16826 
16827   if (Var->isInvalidDecl())
16828     return;
16829 
16830   auto *MSI = Var->getMemberSpecializationInfo();
16831   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
16832                                        : Var->getTemplateSpecializationKind();
16833 
16834   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
16835   bool UsableInConstantExpr =
16836       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
16837 
16838   // C++20 [expr.const]p12:
16839   //   A variable [...] is needed for constant evaluation if it is [...] a
16840   //   variable whose name appears as a potentially constant evaluated
16841   //   expression that is either a contexpr variable or is of non-volatile
16842   //   const-qualified integral type or of reference type
16843   bool NeededForConstantEvaluation =
16844       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
16845 
16846   bool NeedDefinition =
16847       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
16848 
16849   VarTemplateSpecializationDecl *VarSpec =
16850       dyn_cast<VarTemplateSpecializationDecl>(Var);
16851   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
16852          "Can't instantiate a partial template specialization.");
16853 
16854   // If this might be a member specialization of a static data member, check
16855   // the specialization is visible. We already did the checks for variable
16856   // template specializations when we created them.
16857   if (NeedDefinition && TSK != TSK_Undeclared &&
16858       !isa<VarTemplateSpecializationDecl>(Var))
16859     SemaRef.checkSpecializationVisibility(Loc, Var);
16860 
16861   // Perform implicit instantiation of static data members, static data member
16862   // templates of class templates, and variable template specializations. Delay
16863   // instantiations of variable templates, except for those that could be used
16864   // in a constant expression.
16865   if (NeedDefinition && isTemplateInstantiation(TSK)) {
16866     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
16867     // instantiation declaration if a variable is usable in a constant
16868     // expression (among other cases).
16869     bool TryInstantiating =
16870         TSK == TSK_ImplicitInstantiation ||
16871         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
16872 
16873     if (TryInstantiating) {
16874       SourceLocation PointOfInstantiation =
16875           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
16876       bool FirstInstantiation = PointOfInstantiation.isInvalid();
16877       if (FirstInstantiation) {
16878         PointOfInstantiation = Loc;
16879         if (MSI)
16880           MSI->setPointOfInstantiation(PointOfInstantiation);
16881         else
16882           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
16883       }
16884 
16885       bool InstantiationDependent = false;
16886       bool IsNonDependent =
16887           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
16888                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
16889                   : true;
16890 
16891       // Do not instantiate specializations that are still type-dependent.
16892       if (IsNonDependent) {
16893         if (UsableInConstantExpr) {
16894           // Do not defer instantiations of variables that could be used in a
16895           // constant expression.
16896           SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
16897             SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
16898           });
16899         } else if (FirstInstantiation ||
16900                    isa<VarTemplateSpecializationDecl>(Var)) {
16901           // FIXME: For a specialization of a variable template, we don't
16902           // distinguish between "declaration and type implicitly instantiated"
16903           // and "implicit instantiation of definition requested", so we have
16904           // no direct way to avoid enqueueing the pending instantiation
16905           // multiple times.
16906           SemaRef.PendingInstantiations
16907               .push_back(std::make_pair(Var, PointOfInstantiation));
16908         }
16909       }
16910     }
16911   }
16912 
16913   // C++2a [basic.def.odr]p4:
16914   //   A variable x whose name appears as a potentially-evaluated expression e
16915   //   is odr-used by e unless
16916   //   -- x is a reference that is usable in constant expressions
16917   //   -- x is a variable of non-reference type that is usable in constant
16918   //      expressions and has no mutable subobjects [FIXME], and e is an
16919   //      element of the set of potential results of an expression of
16920   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
16921   //      conversion is applied
16922   //   -- x is a variable of non-reference type, and e is an element of the set
16923   //      of potential results of a discarded-value expression to which the
16924   //      lvalue-to-rvalue conversion is not applied [FIXME]
16925   //
16926   // We check the first part of the second bullet here, and
16927   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
16928   // FIXME: To get the third bullet right, we need to delay this even for
16929   // variables that are not usable in constant expressions.
16930 
16931   // If we already know this isn't an odr-use, there's nothing more to do.
16932   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
16933     if (DRE->isNonOdrUse())
16934       return;
16935   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
16936     if (ME->isNonOdrUse())
16937       return;
16938 
16939   switch (OdrUse) {
16940   case OdrUseContext::None:
16941     assert((!E || isa<FunctionParmPackExpr>(E)) &&
16942            "missing non-odr-use marking for unevaluated decl ref");
16943     break;
16944 
16945   case OdrUseContext::FormallyOdrUsed:
16946     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
16947     // behavior.
16948     break;
16949 
16950   case OdrUseContext::Used:
16951     // If we might later find that this expression isn't actually an odr-use,
16952     // delay the marking.
16953     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
16954       SemaRef.MaybeODRUseExprs.insert(E);
16955     else
16956       MarkVarDeclODRUsed(Var, Loc, SemaRef);
16957     break;
16958 
16959   case OdrUseContext::Dependent:
16960     // If this is a dependent context, we don't need to mark variables as
16961     // odr-used, but we may still need to track them for lambda capture.
16962     // FIXME: Do we also need to do this inside dependent typeid expressions
16963     // (which are modeled as unevaluated at this point)?
16964     const bool RefersToEnclosingScope =
16965         (SemaRef.CurContext != Var->getDeclContext() &&
16966          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
16967     if (RefersToEnclosingScope) {
16968       LambdaScopeInfo *const LSI =
16969           SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
16970       if (LSI && (!LSI->CallOperator ||
16971                   !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
16972         // If a variable could potentially be odr-used, defer marking it so
16973         // until we finish analyzing the full expression for any
16974         // lvalue-to-rvalue
16975         // or discarded value conversions that would obviate odr-use.
16976         // Add it to the list of potential captures that will be analyzed
16977         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
16978         // unless the variable is a reference that was initialized by a constant
16979         // expression (this will never need to be captured or odr-used).
16980         //
16981         // FIXME: We can simplify this a lot after implementing P0588R1.
16982         assert(E && "Capture variable should be used in an expression.");
16983         if (!Var->getType()->isReferenceType() ||
16984             !Var->isUsableInConstantExpressions(SemaRef.Context))
16985           LSI->addPotentialCapture(E->IgnoreParens());
16986       }
16987     }
16988     break;
16989   }
16990 }
16991 
16992 /// Mark a variable referenced, and check whether it is odr-used
16993 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
16994 /// used directly for normal expressions referring to VarDecl.
16995 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
16996   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
16997 }
16998 
16999 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
17000                                Decl *D, Expr *E, bool MightBeOdrUse) {
17001   if (SemaRef.isInOpenMPDeclareTargetContext())
17002     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
17003 
17004   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
17005     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
17006     return;
17007   }
17008 
17009   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
17010 
17011   // If this is a call to a method via a cast, also mark the method in the
17012   // derived class used in case codegen can devirtualize the call.
17013   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
17014   if (!ME)
17015     return;
17016   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
17017   if (!MD)
17018     return;
17019   // Only attempt to devirtualize if this is truly a virtual call.
17020   bool IsVirtualCall = MD->isVirtual() &&
17021                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
17022   if (!IsVirtualCall)
17023     return;
17024 
17025   // If it's possible to devirtualize the call, mark the called function
17026   // referenced.
17027   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
17028       ME->getBase(), SemaRef.getLangOpts().AppleKext);
17029   if (DM)
17030     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
17031 }
17032 
17033 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
17034 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
17035   // TODO: update this with DR# once a defect report is filed.
17036   // C++11 defect. The address of a pure member should not be an ODR use, even
17037   // if it's a qualified reference.
17038   bool OdrUse = true;
17039   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
17040     if (Method->isVirtual() &&
17041         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
17042       OdrUse = false;
17043   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
17044 }
17045 
17046 /// Perform reference-marking and odr-use handling for a MemberExpr.
17047 void Sema::MarkMemberReferenced(MemberExpr *E) {
17048   // C++11 [basic.def.odr]p2:
17049   //   A non-overloaded function whose name appears as a potentially-evaluated
17050   //   expression or a member of a set of candidate functions, if selected by
17051   //   overload resolution when referred to from a potentially-evaluated
17052   //   expression, is odr-used, unless it is a pure virtual function and its
17053   //   name is not explicitly qualified.
17054   bool MightBeOdrUse = true;
17055   if (E->performsVirtualDispatch(getLangOpts())) {
17056     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
17057       if (Method->isPure())
17058         MightBeOdrUse = false;
17059   }
17060   SourceLocation Loc =
17061       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
17062   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
17063 }
17064 
17065 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
17066 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
17067   for (VarDecl *VD : *E)
17068     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
17069 }
17070 
17071 /// Perform marking for a reference to an arbitrary declaration.  It
17072 /// marks the declaration referenced, and performs odr-use checking for
17073 /// functions and variables. This method should not be used when building a
17074 /// normal expression which refers to a variable.
17075 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
17076                                  bool MightBeOdrUse) {
17077   if (MightBeOdrUse) {
17078     if (auto *VD = dyn_cast<VarDecl>(D)) {
17079       MarkVariableReferenced(Loc, VD);
17080       return;
17081     }
17082   }
17083   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
17084     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
17085     return;
17086   }
17087   D->setReferenced();
17088 }
17089 
17090 namespace {
17091   // Mark all of the declarations used by a type as referenced.
17092   // FIXME: Not fully implemented yet! We need to have a better understanding
17093   // of when we're entering a context we should not recurse into.
17094   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
17095   // TreeTransforms rebuilding the type in a new context. Rather than
17096   // duplicating the TreeTransform logic, we should consider reusing it here.
17097   // Currently that causes problems when rebuilding LambdaExprs.
17098   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
17099     Sema &S;
17100     SourceLocation Loc;
17101 
17102   public:
17103     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
17104 
17105     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
17106 
17107     bool TraverseTemplateArgument(const TemplateArgument &Arg);
17108   };
17109 }
17110 
17111 bool MarkReferencedDecls::TraverseTemplateArgument(
17112     const TemplateArgument &Arg) {
17113   {
17114     // A non-type template argument is a constant-evaluated context.
17115     EnterExpressionEvaluationContext Evaluated(
17116         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
17117     if (Arg.getKind() == TemplateArgument::Declaration) {
17118       if (Decl *D = Arg.getAsDecl())
17119         S.MarkAnyDeclReferenced(Loc, D, true);
17120     } else if (Arg.getKind() == TemplateArgument::Expression) {
17121       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
17122     }
17123   }
17124 
17125   return Inherited::TraverseTemplateArgument(Arg);
17126 }
17127 
17128 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
17129   MarkReferencedDecls Marker(*this, Loc);
17130   Marker.TraverseType(T);
17131 }
17132 
17133 namespace {
17134   /// Helper class that marks all of the declarations referenced by
17135   /// potentially-evaluated subexpressions as "referenced".
17136   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
17137     Sema &S;
17138     bool SkipLocalVariables;
17139 
17140   public:
17141     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
17142 
17143     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
17144       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
17145 
17146     void VisitDeclRefExpr(DeclRefExpr *E) {
17147       // If we were asked not to visit local variables, don't.
17148       if (SkipLocalVariables) {
17149         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
17150           if (VD->hasLocalStorage())
17151             return;
17152       }
17153 
17154       S.MarkDeclRefReferenced(E);
17155     }
17156 
17157     void VisitMemberExpr(MemberExpr *E) {
17158       S.MarkMemberReferenced(E);
17159       Inherited::VisitMemberExpr(E);
17160     }
17161 
17162     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
17163       S.MarkFunctionReferenced(
17164           E->getBeginLoc(),
17165           const_cast<CXXDestructorDecl *>(E->getTemporary()->getDestructor()));
17166       Visit(E->getSubExpr());
17167     }
17168 
17169     void VisitCXXNewExpr(CXXNewExpr *E) {
17170       if (E->getOperatorNew())
17171         S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorNew());
17172       if (E->getOperatorDelete())
17173         S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
17174       Inherited::VisitCXXNewExpr(E);
17175     }
17176 
17177     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
17178       if (E->getOperatorDelete())
17179         S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
17180       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
17181       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
17182         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
17183         S.MarkFunctionReferenced(E->getBeginLoc(), S.LookupDestructor(Record));
17184       }
17185 
17186       Inherited::VisitCXXDeleteExpr(E);
17187     }
17188 
17189     void VisitCXXConstructExpr(CXXConstructExpr *E) {
17190       S.MarkFunctionReferenced(E->getBeginLoc(), E->getConstructor());
17191       Inherited::VisitCXXConstructExpr(E);
17192     }
17193 
17194     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
17195       Visit(E->getExpr());
17196     }
17197   };
17198 }
17199 
17200 /// Mark any declarations that appear within this expression or any
17201 /// potentially-evaluated subexpressions as "referenced".
17202 ///
17203 /// \param SkipLocalVariables If true, don't mark local variables as
17204 /// 'referenced'.
17205 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
17206                                             bool SkipLocalVariables) {
17207   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
17208 }
17209 
17210 /// Emit a diagnostic that describes an effect on the run-time behavior
17211 /// of the program being compiled.
17212 ///
17213 /// This routine emits the given diagnostic when the code currently being
17214 /// type-checked is "potentially evaluated", meaning that there is a
17215 /// possibility that the code will actually be executable. Code in sizeof()
17216 /// expressions, code used only during overload resolution, etc., are not
17217 /// potentially evaluated. This routine will suppress such diagnostics or,
17218 /// in the absolutely nutty case of potentially potentially evaluated
17219 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
17220 /// later.
17221 ///
17222 /// This routine should be used for all diagnostics that describe the run-time
17223 /// behavior of a program, such as passing a non-POD value through an ellipsis.
17224 /// Failure to do so will likely result in spurious diagnostics or failures
17225 /// during overload resolution or within sizeof/alignof/typeof/typeid.
17226 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
17227                                const PartialDiagnostic &PD) {
17228   switch (ExprEvalContexts.back().Context) {
17229   case ExpressionEvaluationContext::Unevaluated:
17230   case ExpressionEvaluationContext::UnevaluatedList:
17231   case ExpressionEvaluationContext::UnevaluatedAbstract:
17232   case ExpressionEvaluationContext::DiscardedStatement:
17233     // The argument will never be evaluated, so don't complain.
17234     break;
17235 
17236   case ExpressionEvaluationContext::ConstantEvaluated:
17237     // Relevant diagnostics should be produced by constant evaluation.
17238     break;
17239 
17240   case ExpressionEvaluationContext::PotentiallyEvaluated:
17241   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17242     if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
17243       FunctionScopes.back()->PossiblyUnreachableDiags.
17244         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
17245       return true;
17246     }
17247 
17248     // The initializer of a constexpr variable or of the first declaration of a
17249     // static data member is not syntactically a constant evaluated constant,
17250     // but nonetheless is always required to be a constant expression, so we
17251     // can skip diagnosing.
17252     // FIXME: Using the mangling context here is a hack.
17253     if (auto *VD = dyn_cast_or_null<VarDecl>(
17254             ExprEvalContexts.back().ManglingContextDecl)) {
17255       if (VD->isConstexpr() ||
17256           (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
17257         break;
17258       // FIXME: For any other kind of variable, we should build a CFG for its
17259       // initializer and check whether the context in question is reachable.
17260     }
17261 
17262     Diag(Loc, PD);
17263     return true;
17264   }
17265 
17266   return false;
17267 }
17268 
17269 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
17270                                const PartialDiagnostic &PD) {
17271   return DiagRuntimeBehavior(
17272       Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
17273 }
17274 
17275 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
17276                                CallExpr *CE, FunctionDecl *FD) {
17277   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
17278     return false;
17279 
17280   // If we're inside a decltype's expression, don't check for a valid return
17281   // type or construct temporaries until we know whether this is the last call.
17282   if (ExprEvalContexts.back().ExprContext ==
17283       ExpressionEvaluationContextRecord::EK_Decltype) {
17284     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
17285     return false;
17286   }
17287 
17288   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
17289     FunctionDecl *FD;
17290     CallExpr *CE;
17291 
17292   public:
17293     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
17294       : FD(FD), CE(CE) { }
17295 
17296     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17297       if (!FD) {
17298         S.Diag(Loc, diag::err_call_incomplete_return)
17299           << T << CE->getSourceRange();
17300         return;
17301       }
17302 
17303       S.Diag(Loc, diag::err_call_function_incomplete_return)
17304         << CE->getSourceRange() << FD->getDeclName() << T;
17305       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
17306           << FD->getDeclName();
17307     }
17308   } Diagnoser(FD, CE);
17309 
17310   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
17311     return true;
17312 
17313   return false;
17314 }
17315 
17316 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
17317 // will prevent this condition from triggering, which is what we want.
17318 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
17319   SourceLocation Loc;
17320 
17321   unsigned diagnostic = diag::warn_condition_is_assignment;
17322   bool IsOrAssign = false;
17323 
17324   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
17325     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
17326       return;
17327 
17328     IsOrAssign = Op->getOpcode() == BO_OrAssign;
17329 
17330     // Greylist some idioms by putting them into a warning subcategory.
17331     if (ObjCMessageExpr *ME
17332           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
17333       Selector Sel = ME->getSelector();
17334 
17335       // self = [<foo> init...]
17336       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
17337         diagnostic = diag::warn_condition_is_idiomatic_assignment;
17338 
17339       // <foo> = [<bar> nextObject]
17340       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
17341         diagnostic = diag::warn_condition_is_idiomatic_assignment;
17342     }
17343 
17344     Loc = Op->getOperatorLoc();
17345   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
17346     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
17347       return;
17348 
17349     IsOrAssign = Op->getOperator() == OO_PipeEqual;
17350     Loc = Op->getOperatorLoc();
17351   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
17352     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
17353   else {
17354     // Not an assignment.
17355     return;
17356   }
17357 
17358   Diag(Loc, diagnostic) << E->getSourceRange();
17359 
17360   SourceLocation Open = E->getBeginLoc();
17361   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
17362   Diag(Loc, diag::note_condition_assign_silence)
17363         << FixItHint::CreateInsertion(Open, "(")
17364         << FixItHint::CreateInsertion(Close, ")");
17365 
17366   if (IsOrAssign)
17367     Diag(Loc, diag::note_condition_or_assign_to_comparison)
17368       << FixItHint::CreateReplacement(Loc, "!=");
17369   else
17370     Diag(Loc, diag::note_condition_assign_to_comparison)
17371       << FixItHint::CreateReplacement(Loc, "==");
17372 }
17373 
17374 /// Redundant parentheses over an equality comparison can indicate
17375 /// that the user intended an assignment used as condition.
17376 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
17377   // Don't warn if the parens came from a macro.
17378   SourceLocation parenLoc = ParenE->getBeginLoc();
17379   if (parenLoc.isInvalid() || parenLoc.isMacroID())
17380     return;
17381   // Don't warn for dependent expressions.
17382   if (ParenE->isTypeDependent())
17383     return;
17384 
17385   Expr *E = ParenE->IgnoreParens();
17386 
17387   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
17388     if (opE->getOpcode() == BO_EQ &&
17389         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
17390                                                            == Expr::MLV_Valid) {
17391       SourceLocation Loc = opE->getOperatorLoc();
17392 
17393       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
17394       SourceRange ParenERange = ParenE->getSourceRange();
17395       Diag(Loc, diag::note_equality_comparison_silence)
17396         << FixItHint::CreateRemoval(ParenERange.getBegin())
17397         << FixItHint::CreateRemoval(ParenERange.getEnd());
17398       Diag(Loc, diag::note_equality_comparison_to_assign)
17399         << FixItHint::CreateReplacement(Loc, "=");
17400     }
17401 }
17402 
17403 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
17404                                        bool IsConstexpr) {
17405   DiagnoseAssignmentAsCondition(E);
17406   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
17407     DiagnoseEqualityWithExtraParens(parenE);
17408 
17409   ExprResult result = CheckPlaceholderExpr(E);
17410   if (result.isInvalid()) return ExprError();
17411   E = result.get();
17412 
17413   if (!E->isTypeDependent()) {
17414     if (getLangOpts().CPlusPlus)
17415       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
17416 
17417     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
17418     if (ERes.isInvalid())
17419       return ExprError();
17420     E = ERes.get();
17421 
17422     QualType T = E->getType();
17423     if (!T->isScalarType()) { // C99 6.8.4.1p1
17424       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
17425         << T << E->getSourceRange();
17426       return ExprError();
17427     }
17428     CheckBoolLikeConversion(E, Loc);
17429   }
17430 
17431   return E;
17432 }
17433 
17434 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
17435                                            Expr *SubExpr, ConditionKind CK) {
17436   // Empty conditions are valid in for-statements.
17437   if (!SubExpr)
17438     return ConditionResult();
17439 
17440   ExprResult Cond;
17441   switch (CK) {
17442   case ConditionKind::Boolean:
17443     Cond = CheckBooleanCondition(Loc, SubExpr);
17444     break;
17445 
17446   case ConditionKind::ConstexprIf:
17447     Cond = CheckBooleanCondition(Loc, SubExpr, true);
17448     break;
17449 
17450   case ConditionKind::Switch:
17451     Cond = CheckSwitchCondition(Loc, SubExpr);
17452     break;
17453   }
17454   if (Cond.isInvalid())
17455     return ConditionError();
17456 
17457   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
17458   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
17459   if (!FullExpr.get())
17460     return ConditionError();
17461 
17462   return ConditionResult(*this, nullptr, FullExpr,
17463                          CK == ConditionKind::ConstexprIf);
17464 }
17465 
17466 namespace {
17467   /// A visitor for rebuilding a call to an __unknown_any expression
17468   /// to have an appropriate type.
17469   struct RebuildUnknownAnyFunction
17470     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
17471 
17472     Sema &S;
17473 
17474     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
17475 
17476     ExprResult VisitStmt(Stmt *S) {
17477       llvm_unreachable("unexpected statement!");
17478     }
17479 
17480     ExprResult VisitExpr(Expr *E) {
17481       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
17482         << E->getSourceRange();
17483       return ExprError();
17484     }
17485 
17486     /// Rebuild an expression which simply semantically wraps another
17487     /// expression which it shares the type and value kind of.
17488     template <class T> ExprResult rebuildSugarExpr(T *E) {
17489       ExprResult SubResult = Visit(E->getSubExpr());
17490       if (SubResult.isInvalid()) return ExprError();
17491 
17492       Expr *SubExpr = SubResult.get();
17493       E->setSubExpr(SubExpr);
17494       E->setType(SubExpr->getType());
17495       E->setValueKind(SubExpr->getValueKind());
17496       assert(E->getObjectKind() == OK_Ordinary);
17497       return E;
17498     }
17499 
17500     ExprResult VisitParenExpr(ParenExpr *E) {
17501       return rebuildSugarExpr(E);
17502     }
17503 
17504     ExprResult VisitUnaryExtension(UnaryOperator *E) {
17505       return rebuildSugarExpr(E);
17506     }
17507 
17508     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
17509       ExprResult SubResult = Visit(E->getSubExpr());
17510       if (SubResult.isInvalid()) return ExprError();
17511 
17512       Expr *SubExpr = SubResult.get();
17513       E->setSubExpr(SubExpr);
17514       E->setType(S.Context.getPointerType(SubExpr->getType()));
17515       assert(E->getValueKind() == VK_RValue);
17516       assert(E->getObjectKind() == OK_Ordinary);
17517       return E;
17518     }
17519 
17520     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
17521       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
17522 
17523       E->setType(VD->getType());
17524 
17525       assert(E->getValueKind() == VK_RValue);
17526       if (S.getLangOpts().CPlusPlus &&
17527           !(isa<CXXMethodDecl>(VD) &&
17528             cast<CXXMethodDecl>(VD)->isInstance()))
17529         E->setValueKind(VK_LValue);
17530 
17531       return E;
17532     }
17533 
17534     ExprResult VisitMemberExpr(MemberExpr *E) {
17535       return resolveDecl(E, E->getMemberDecl());
17536     }
17537 
17538     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
17539       return resolveDecl(E, E->getDecl());
17540     }
17541   };
17542 }
17543 
17544 /// Given a function expression of unknown-any type, try to rebuild it
17545 /// to have a function type.
17546 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
17547   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
17548   if (Result.isInvalid()) return ExprError();
17549   return S.DefaultFunctionArrayConversion(Result.get());
17550 }
17551 
17552 namespace {
17553   /// A visitor for rebuilding an expression of type __unknown_anytype
17554   /// into one which resolves the type directly on the referring
17555   /// expression.  Strict preservation of the original source
17556   /// structure is not a goal.
17557   struct RebuildUnknownAnyExpr
17558     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
17559 
17560     Sema &S;
17561 
17562     /// The current destination type.
17563     QualType DestType;
17564 
17565     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
17566       : S(S), DestType(CastType) {}
17567 
17568     ExprResult VisitStmt(Stmt *S) {
17569       llvm_unreachable("unexpected statement!");
17570     }
17571 
17572     ExprResult VisitExpr(Expr *E) {
17573       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
17574         << E->getSourceRange();
17575       return ExprError();
17576     }
17577 
17578     ExprResult VisitCallExpr(CallExpr *E);
17579     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
17580 
17581     /// Rebuild an expression which simply semantically wraps another
17582     /// expression which it shares the type and value kind of.
17583     template <class T> ExprResult rebuildSugarExpr(T *E) {
17584       ExprResult SubResult = Visit(E->getSubExpr());
17585       if (SubResult.isInvalid()) return ExprError();
17586       Expr *SubExpr = SubResult.get();
17587       E->setSubExpr(SubExpr);
17588       E->setType(SubExpr->getType());
17589       E->setValueKind(SubExpr->getValueKind());
17590       assert(E->getObjectKind() == OK_Ordinary);
17591       return E;
17592     }
17593 
17594     ExprResult VisitParenExpr(ParenExpr *E) {
17595       return rebuildSugarExpr(E);
17596     }
17597 
17598     ExprResult VisitUnaryExtension(UnaryOperator *E) {
17599       return rebuildSugarExpr(E);
17600     }
17601 
17602     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
17603       const PointerType *Ptr = DestType->getAs<PointerType>();
17604       if (!Ptr) {
17605         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
17606           << E->getSourceRange();
17607         return ExprError();
17608       }
17609 
17610       if (isa<CallExpr>(E->getSubExpr())) {
17611         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
17612           << E->getSourceRange();
17613         return ExprError();
17614       }
17615 
17616       assert(E->getValueKind() == VK_RValue);
17617       assert(E->getObjectKind() == OK_Ordinary);
17618       E->setType(DestType);
17619 
17620       // Build the sub-expression as if it were an object of the pointee type.
17621       DestType = Ptr->getPointeeType();
17622       ExprResult SubResult = Visit(E->getSubExpr());
17623       if (SubResult.isInvalid()) return ExprError();
17624       E->setSubExpr(SubResult.get());
17625       return E;
17626     }
17627 
17628     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
17629 
17630     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
17631 
17632     ExprResult VisitMemberExpr(MemberExpr *E) {
17633       return resolveDecl(E, E->getMemberDecl());
17634     }
17635 
17636     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
17637       return resolveDecl(E, E->getDecl());
17638     }
17639   };
17640 }
17641 
17642 /// Rebuilds a call expression which yielded __unknown_anytype.
17643 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
17644   Expr *CalleeExpr = E->getCallee();
17645 
17646   enum FnKind {
17647     FK_MemberFunction,
17648     FK_FunctionPointer,
17649     FK_BlockPointer
17650   };
17651 
17652   FnKind Kind;
17653   QualType CalleeType = CalleeExpr->getType();
17654   if (CalleeType == S.Context.BoundMemberTy) {
17655     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
17656     Kind = FK_MemberFunction;
17657     CalleeType = Expr::findBoundMemberType(CalleeExpr);
17658   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
17659     CalleeType = Ptr->getPointeeType();
17660     Kind = FK_FunctionPointer;
17661   } else {
17662     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
17663     Kind = FK_BlockPointer;
17664   }
17665   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
17666 
17667   // Verify that this is a legal result type of a function.
17668   if (DestType->isArrayType() || DestType->isFunctionType()) {
17669     unsigned diagID = diag::err_func_returning_array_function;
17670     if (Kind == FK_BlockPointer)
17671       diagID = diag::err_block_returning_array_function;
17672 
17673     S.Diag(E->getExprLoc(), diagID)
17674       << DestType->isFunctionType() << DestType;
17675     return ExprError();
17676   }
17677 
17678   // Otherwise, go ahead and set DestType as the call's result.
17679   E->setType(DestType.getNonLValueExprType(S.Context));
17680   E->setValueKind(Expr::getValueKindForType(DestType));
17681   assert(E->getObjectKind() == OK_Ordinary);
17682 
17683   // Rebuild the function type, replacing the result type with DestType.
17684   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
17685   if (Proto) {
17686     // __unknown_anytype(...) is a special case used by the debugger when
17687     // it has no idea what a function's signature is.
17688     //
17689     // We want to build this call essentially under the K&R
17690     // unprototyped rules, but making a FunctionNoProtoType in C++
17691     // would foul up all sorts of assumptions.  However, we cannot
17692     // simply pass all arguments as variadic arguments, nor can we
17693     // portably just call the function under a non-variadic type; see
17694     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
17695     // However, it turns out that in practice it is generally safe to
17696     // call a function declared as "A foo(B,C,D);" under the prototype
17697     // "A foo(B,C,D,...);".  The only known exception is with the
17698     // Windows ABI, where any variadic function is implicitly cdecl
17699     // regardless of its normal CC.  Therefore we change the parameter
17700     // types to match the types of the arguments.
17701     //
17702     // This is a hack, but it is far superior to moving the
17703     // corresponding target-specific code from IR-gen to Sema/AST.
17704 
17705     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
17706     SmallVector<QualType, 8> ArgTypes;
17707     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
17708       ArgTypes.reserve(E->getNumArgs());
17709       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
17710         Expr *Arg = E->getArg(i);
17711         QualType ArgType = Arg->getType();
17712         if (E->isLValue()) {
17713           ArgType = S.Context.getLValueReferenceType(ArgType);
17714         } else if (E->isXValue()) {
17715           ArgType = S.Context.getRValueReferenceType(ArgType);
17716         }
17717         ArgTypes.push_back(ArgType);
17718       }
17719       ParamTypes = ArgTypes;
17720     }
17721     DestType = S.Context.getFunctionType(DestType, ParamTypes,
17722                                          Proto->getExtProtoInfo());
17723   } else {
17724     DestType = S.Context.getFunctionNoProtoType(DestType,
17725                                                 FnType->getExtInfo());
17726   }
17727 
17728   // Rebuild the appropriate pointer-to-function type.
17729   switch (Kind) {
17730   case FK_MemberFunction:
17731     // Nothing to do.
17732     break;
17733 
17734   case FK_FunctionPointer:
17735     DestType = S.Context.getPointerType(DestType);
17736     break;
17737 
17738   case FK_BlockPointer:
17739     DestType = S.Context.getBlockPointerType(DestType);
17740     break;
17741   }
17742 
17743   // Finally, we can recurse.
17744   ExprResult CalleeResult = Visit(CalleeExpr);
17745   if (!CalleeResult.isUsable()) return ExprError();
17746   E->setCallee(CalleeResult.get());
17747 
17748   // Bind a temporary if necessary.
17749   return S.MaybeBindToTemporary(E);
17750 }
17751 
17752 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
17753   // Verify that this is a legal result type of a call.
17754   if (DestType->isArrayType() || DestType->isFunctionType()) {
17755     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
17756       << DestType->isFunctionType() << DestType;
17757     return ExprError();
17758   }
17759 
17760   // Rewrite the method result type if available.
17761   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
17762     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
17763     Method->setReturnType(DestType);
17764   }
17765 
17766   // Change the type of the message.
17767   E->setType(DestType.getNonReferenceType());
17768   E->setValueKind(Expr::getValueKindForType(DestType));
17769 
17770   return S.MaybeBindToTemporary(E);
17771 }
17772 
17773 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
17774   // The only case we should ever see here is a function-to-pointer decay.
17775   if (E->getCastKind() == CK_FunctionToPointerDecay) {
17776     assert(E->getValueKind() == VK_RValue);
17777     assert(E->getObjectKind() == OK_Ordinary);
17778 
17779     E->setType(DestType);
17780 
17781     // Rebuild the sub-expression as the pointee (function) type.
17782     DestType = DestType->castAs<PointerType>()->getPointeeType();
17783 
17784     ExprResult Result = Visit(E->getSubExpr());
17785     if (!Result.isUsable()) return ExprError();
17786 
17787     E->setSubExpr(Result.get());
17788     return E;
17789   } else if (E->getCastKind() == CK_LValueToRValue) {
17790     assert(E->getValueKind() == VK_RValue);
17791     assert(E->getObjectKind() == OK_Ordinary);
17792 
17793     assert(isa<BlockPointerType>(E->getType()));
17794 
17795     E->setType(DestType);
17796 
17797     // The sub-expression has to be a lvalue reference, so rebuild it as such.
17798     DestType = S.Context.getLValueReferenceType(DestType);
17799 
17800     ExprResult Result = Visit(E->getSubExpr());
17801     if (!Result.isUsable()) return ExprError();
17802 
17803     E->setSubExpr(Result.get());
17804     return E;
17805   } else {
17806     llvm_unreachable("Unhandled cast type!");
17807   }
17808 }
17809 
17810 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
17811   ExprValueKind ValueKind = VK_LValue;
17812   QualType Type = DestType;
17813 
17814   // We know how to make this work for certain kinds of decls:
17815 
17816   //  - functions
17817   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
17818     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
17819       DestType = Ptr->getPointeeType();
17820       ExprResult Result = resolveDecl(E, VD);
17821       if (Result.isInvalid()) return ExprError();
17822       return S.ImpCastExprToType(Result.get(), Type,
17823                                  CK_FunctionToPointerDecay, VK_RValue);
17824     }
17825 
17826     if (!Type->isFunctionType()) {
17827       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
17828         << VD << E->getSourceRange();
17829       return ExprError();
17830     }
17831     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
17832       // We must match the FunctionDecl's type to the hack introduced in
17833       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
17834       // type. See the lengthy commentary in that routine.
17835       QualType FDT = FD->getType();
17836       const FunctionType *FnType = FDT->castAs<FunctionType>();
17837       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
17838       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
17839       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
17840         SourceLocation Loc = FD->getLocation();
17841         FunctionDecl *NewFD = FunctionDecl::Create(
17842             S.Context, FD->getDeclContext(), Loc, Loc,
17843             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
17844             SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
17845             /*ConstexprKind*/ CSK_unspecified);
17846 
17847         if (FD->getQualifier())
17848           NewFD->setQualifierInfo(FD->getQualifierLoc());
17849 
17850         SmallVector<ParmVarDecl*, 16> Params;
17851         for (const auto &AI : FT->param_types()) {
17852           ParmVarDecl *Param =
17853             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
17854           Param->setScopeInfo(0, Params.size());
17855           Params.push_back(Param);
17856         }
17857         NewFD->setParams(Params);
17858         DRE->setDecl(NewFD);
17859         VD = DRE->getDecl();
17860       }
17861     }
17862 
17863     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
17864       if (MD->isInstance()) {
17865         ValueKind = VK_RValue;
17866         Type = S.Context.BoundMemberTy;
17867       }
17868 
17869     // Function references aren't l-values in C.
17870     if (!S.getLangOpts().CPlusPlus)
17871       ValueKind = VK_RValue;
17872 
17873   //  - variables
17874   } else if (isa<VarDecl>(VD)) {
17875     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
17876       Type = RefTy->getPointeeType();
17877     } else if (Type->isFunctionType()) {
17878       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
17879         << VD << E->getSourceRange();
17880       return ExprError();
17881     }
17882 
17883   //  - nothing else
17884   } else {
17885     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
17886       << VD << E->getSourceRange();
17887     return ExprError();
17888   }
17889 
17890   // Modifying the declaration like this is friendly to IR-gen but
17891   // also really dangerous.
17892   VD->setType(DestType);
17893   E->setType(Type);
17894   E->setValueKind(ValueKind);
17895   return E;
17896 }
17897 
17898 /// Check a cast of an unknown-any type.  We intentionally only
17899 /// trigger this for C-style casts.
17900 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
17901                                      Expr *CastExpr, CastKind &CastKind,
17902                                      ExprValueKind &VK, CXXCastPath &Path) {
17903   // The type we're casting to must be either void or complete.
17904   if (!CastType->isVoidType() &&
17905       RequireCompleteType(TypeRange.getBegin(), CastType,
17906                           diag::err_typecheck_cast_to_incomplete))
17907     return ExprError();
17908 
17909   // Rewrite the casted expression from scratch.
17910   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
17911   if (!result.isUsable()) return ExprError();
17912 
17913   CastExpr = result.get();
17914   VK = CastExpr->getValueKind();
17915   CastKind = CK_NoOp;
17916 
17917   return CastExpr;
17918 }
17919 
17920 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
17921   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
17922 }
17923 
17924 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
17925                                     Expr *arg, QualType &paramType) {
17926   // If the syntactic form of the argument is not an explicit cast of
17927   // any sort, just do default argument promotion.
17928   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
17929   if (!castArg) {
17930     ExprResult result = DefaultArgumentPromotion(arg);
17931     if (result.isInvalid()) return ExprError();
17932     paramType = result.get()->getType();
17933     return result;
17934   }
17935 
17936   // Otherwise, use the type that was written in the explicit cast.
17937   assert(!arg->hasPlaceholderType());
17938   paramType = castArg->getTypeAsWritten();
17939 
17940   // Copy-initialize a parameter of that type.
17941   InitializedEntity entity =
17942     InitializedEntity::InitializeParameter(Context, paramType,
17943                                            /*consumed*/ false);
17944   return PerformCopyInitialization(entity, callLoc, arg);
17945 }
17946 
17947 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
17948   Expr *orig = E;
17949   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
17950   while (true) {
17951     E = E->IgnoreParenImpCasts();
17952     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
17953       E = call->getCallee();
17954       diagID = diag::err_uncasted_call_of_unknown_any;
17955     } else {
17956       break;
17957     }
17958   }
17959 
17960   SourceLocation loc;
17961   NamedDecl *d;
17962   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
17963     loc = ref->getLocation();
17964     d = ref->getDecl();
17965   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
17966     loc = mem->getMemberLoc();
17967     d = mem->getMemberDecl();
17968   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
17969     diagID = diag::err_uncasted_call_of_unknown_any;
17970     loc = msg->getSelectorStartLoc();
17971     d = msg->getMethodDecl();
17972     if (!d) {
17973       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
17974         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
17975         << orig->getSourceRange();
17976       return ExprError();
17977     }
17978   } else {
17979     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
17980       << E->getSourceRange();
17981     return ExprError();
17982   }
17983 
17984   S.Diag(loc, diagID) << d << orig->getSourceRange();
17985 
17986   // Never recoverable.
17987   return ExprError();
17988 }
17989 
17990 /// Check for operands with placeholder types and complain if found.
17991 /// Returns ExprError() if there was an error and no recovery was possible.
17992 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
17993   if (!getLangOpts().CPlusPlus) {
17994     // C cannot handle TypoExpr nodes on either side of a binop because it
17995     // doesn't handle dependent types properly, so make sure any TypoExprs have
17996     // been dealt with before checking the operands.
17997     ExprResult Result = CorrectDelayedTyposInExpr(E);
17998     if (!Result.isUsable()) return ExprError();
17999     E = Result.get();
18000   }
18001 
18002   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
18003   if (!placeholderType) return E;
18004 
18005   switch (placeholderType->getKind()) {
18006 
18007   // Overloaded expressions.
18008   case BuiltinType::Overload: {
18009     // Try to resolve a single function template specialization.
18010     // This is obligatory.
18011     ExprResult Result = E;
18012     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
18013       return Result;
18014 
18015     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
18016     // leaves Result unchanged on failure.
18017     Result = E;
18018     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
18019       return Result;
18020 
18021     // If that failed, try to recover with a call.
18022     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
18023                          /*complain*/ true);
18024     return Result;
18025   }
18026 
18027   // Bound member functions.
18028   case BuiltinType::BoundMember: {
18029     ExprResult result = E;
18030     const Expr *BME = E->IgnoreParens();
18031     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
18032     // Try to give a nicer diagnostic if it is a bound member that we recognize.
18033     if (isa<CXXPseudoDestructorExpr>(BME)) {
18034       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
18035     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
18036       if (ME->getMemberNameInfo().getName().getNameKind() ==
18037           DeclarationName::CXXDestructorName)
18038         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
18039     }
18040     tryToRecoverWithCall(result, PD,
18041                          /*complain*/ true);
18042     return result;
18043   }
18044 
18045   // ARC unbridged casts.
18046   case BuiltinType::ARCUnbridgedCast: {
18047     Expr *realCast = stripARCUnbridgedCast(E);
18048     diagnoseARCUnbridgedCast(realCast);
18049     return realCast;
18050   }
18051 
18052   // Expressions of unknown type.
18053   case BuiltinType::UnknownAny:
18054     return diagnoseUnknownAnyExpr(*this, E);
18055 
18056   // Pseudo-objects.
18057   case BuiltinType::PseudoObject:
18058     return checkPseudoObjectRValue(E);
18059 
18060   case BuiltinType::BuiltinFn: {
18061     // Accept __noop without parens by implicitly converting it to a call expr.
18062     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
18063     if (DRE) {
18064       auto *FD = cast<FunctionDecl>(DRE->getDecl());
18065       if (FD->getBuiltinID() == Builtin::BI__noop) {
18066         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
18067                               CK_BuiltinFnToFnPtr)
18068                 .get();
18069         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
18070                                 VK_RValue, SourceLocation());
18071       }
18072     }
18073 
18074     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
18075     return ExprError();
18076   }
18077 
18078   // Expressions of unknown type.
18079   case BuiltinType::OMPArraySection:
18080     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
18081     return ExprError();
18082 
18083   // Everything else should be impossible.
18084 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
18085   case BuiltinType::Id:
18086 #include "clang/Basic/OpenCLImageTypes.def"
18087 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
18088   case BuiltinType::Id:
18089 #include "clang/Basic/OpenCLExtensionTypes.def"
18090 #define SVE_TYPE(Name, Id, SingletonId) \
18091   case BuiltinType::Id:
18092 #include "clang/Basic/AArch64SVEACLETypes.def"
18093 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
18094 #define PLACEHOLDER_TYPE(Id, SingletonId)
18095 #include "clang/AST/BuiltinTypes.def"
18096     break;
18097   }
18098 
18099   llvm_unreachable("invalid placeholder type!");
18100 }
18101 
18102 bool Sema::CheckCaseExpression(Expr *E) {
18103   if (E->isTypeDependent())
18104     return true;
18105   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
18106     return E->getType()->isIntegralOrEnumerationType();
18107   return false;
18108 }
18109 
18110 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
18111 ExprResult
18112 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
18113   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
18114          "Unknown Objective-C Boolean value!");
18115   QualType BoolT = Context.ObjCBuiltinBoolTy;
18116   if (!Context.getBOOLDecl()) {
18117     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
18118                         Sema::LookupOrdinaryName);
18119     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
18120       NamedDecl *ND = Result.getFoundDecl();
18121       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
18122         Context.setBOOLDecl(TD);
18123     }
18124   }
18125   if (Context.getBOOLDecl())
18126     BoolT = Context.getBOOLType();
18127   return new (Context)
18128       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
18129 }
18130 
18131 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
18132     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
18133     SourceLocation RParen) {
18134 
18135   StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
18136 
18137   auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
18138     return Spec.getPlatform() == Platform;
18139   });
18140 
18141   VersionTuple Version;
18142   if (Spec != AvailSpecs.end())
18143     Version = Spec->getVersion();
18144 
18145   // The use of `@available` in the enclosing function should be analyzed to
18146   // warn when it's used inappropriately (i.e. not if(@available)).
18147   if (getCurFunctionOrMethodDecl())
18148     getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
18149   else if (getCurBlock() || getCurLambda())
18150     getCurFunction()->HasPotentialAvailabilityViolations = true;
18151 
18152   return new (Context)
18153       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
18154 }
18155 
18156 bool Sema::IsDependentFunctionNameExpr(Expr *E) {
18157   assert(E->isTypeDependent());
18158   return isa<UnresolvedLookupExpr>(E);
18159 }
18160