1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TypeTraits.h"
39 #include "clang/Lex/LiteralSupport.h"
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Sema/AnalysisBasedWarnings.h"
42 #include "clang/Sema/DeclSpec.h"
43 #include "clang/Sema/DelayedDiagnostic.h"
44 #include "clang/Sema/Designator.h"
45 #include "clang/Sema/EnterExpressionEvaluationContext.h"
46 #include "clang/Sema/Initialization.h"
47 #include "clang/Sema/Lookup.h"
48 #include "clang/Sema/Overload.h"
49 #include "clang/Sema/ParsedTemplate.h"
50 #include "clang/Sema/Scope.h"
51 #include "clang/Sema/ScopeInfo.h"
52 #include "clang/Sema/SemaFixItUtils.h"
53 #include "clang/Sema/SemaInternal.h"
54 #include "clang/Sema/Template.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/TypeSize.h"
61 #include <optional>
62 
63 using namespace clang;
64 using namespace sema;
65 
66 /// Determine whether the use of this declaration is valid, without
67 /// emitting diagnostics.
68 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
69   // See if this is an auto-typed variable whose initializer we are parsing.
70   if (ParsingInitForAutoVars.count(D))
71     return false;
72 
73   // See if this is a deleted function.
74   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75     if (FD->isDeleted())
76       return false;
77 
78     // If the function has a deduced return type, and we can't deduce it,
79     // then we can't use it either.
80     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
81         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
82       return false;
83 
84     // See if this is an aligned allocation/deallocation function that is
85     // unavailable.
86     if (TreatUnavailableAsInvalid &&
87         isUnavailableAlignedAllocationFunction(*FD))
88       return false;
89   }
90 
91   // See if this function is unavailable.
92   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
93       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
94     return false;
95 
96   if (isa<UnresolvedUsingIfExistsDecl>(D))
97     return false;
98 
99   return true;
100 }
101 
102 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
103   // Warn if this is used but marked unused.
104   if (const auto *A = D->getAttr<UnusedAttr>()) {
105     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
106     // should diagnose them.
107     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
108         A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
109       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
110       if (DC && !DC->hasAttr<UnusedAttr>())
111         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
112     }
113   }
114 }
115 
116 /// Emit a note explaining that this function is deleted.
117 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
118   assert(Decl && Decl->isDeleted());
119 
120   if (Decl->isDefaulted()) {
121     // If the method was explicitly defaulted, point at that declaration.
122     if (!Decl->isImplicit())
123       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
124 
125     // Try to diagnose why this special member function was implicitly
126     // deleted. This might fail, if that reason no longer applies.
127     DiagnoseDeletedDefaultedFunction(Decl);
128     return;
129   }
130 
131   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
132   if (Ctor && Ctor->isInheritingConstructor())
133     return NoteDeletedInheritingConstructor(Ctor);
134 
135   Diag(Decl->getLocation(), diag::note_availability_specified_here)
136     << Decl << 1;
137 }
138 
139 /// Determine whether a FunctionDecl was ever declared with an
140 /// explicit storage class.
141 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
142   for (auto *I : D->redecls()) {
143     if (I->getStorageClass() != SC_None)
144       return true;
145   }
146   return false;
147 }
148 
149 /// Check whether we're in an extern inline function and referring to a
150 /// variable or function with internal linkage (C11 6.7.4p3).
151 ///
152 /// This is only a warning because we used to silently accept this code, but
153 /// in many cases it will not behave correctly. This is not enabled in C++ mode
154 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
155 /// and so while there may still be user mistakes, most of the time we can't
156 /// prove that there are errors.
157 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
158                                                       const NamedDecl *D,
159                                                       SourceLocation Loc) {
160   // This is disabled under C++; there are too many ways for this to fire in
161   // contexts where the warning is a false positive, or where it is technically
162   // correct but benign.
163   if (S.getLangOpts().CPlusPlus)
164     return;
165 
166   // Check if this is an inlined function or method.
167   FunctionDecl *Current = S.getCurFunctionDecl();
168   if (!Current)
169     return;
170   if (!Current->isInlined())
171     return;
172   if (!Current->isExternallyVisible())
173     return;
174 
175   // Check if the decl has internal linkage.
176   if (D->getFormalLinkage() != Linkage::Internal)
177     return;
178 
179   // Downgrade from ExtWarn to Extension if
180   //  (1) the supposedly external inline function is in the main file,
181   //      and probably won't be included anywhere else.
182   //  (2) the thing we're referencing is a pure function.
183   //  (3) the thing we're referencing is another inline function.
184   // This last can give us false negatives, but it's better than warning on
185   // wrappers for simple C library functions.
186   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
187   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
188   if (!DowngradeWarning && UsedFn)
189     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
190 
191   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
192                                : diag::ext_internal_in_extern_inline)
193     << /*IsVar=*/!UsedFn << D;
194 
195   S.MaybeSuggestAddingStaticToDecl(Current);
196 
197   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
198       << D;
199 }
200 
201 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
202   const FunctionDecl *First = Cur->getFirstDecl();
203 
204   // Suggest "static" on the function, if possible.
205   if (!hasAnyExplicitStorageClass(First)) {
206     SourceLocation DeclBegin = First->getSourceRange().getBegin();
207     Diag(DeclBegin, diag::note_convert_inline_to_static)
208       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
209   }
210 }
211 
212 /// Determine whether the use of this declaration is valid, and
213 /// emit any corresponding diagnostics.
214 ///
215 /// This routine diagnoses various problems with referencing
216 /// declarations that can occur when using a declaration. For example,
217 /// it might warn if a deprecated or unavailable declaration is being
218 /// used, or produce an error (and return true) if a C++0x deleted
219 /// function is being used.
220 ///
221 /// \returns true if there was an error (this declaration cannot be
222 /// referenced), false otherwise.
223 ///
224 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
225                              const ObjCInterfaceDecl *UnknownObjCClass,
226                              bool ObjCPropertyAccess,
227                              bool AvoidPartialAvailabilityChecks,
228                              ObjCInterfaceDecl *ClassReceiver,
229                              bool SkipTrailingRequiresClause) {
230   SourceLocation Loc = Locs.front();
231   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
232     // If there were any diagnostics suppressed by template argument deduction,
233     // emit them now.
234     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
235     if (Pos != SuppressedDiagnostics.end()) {
236       for (const PartialDiagnosticAt &Suppressed : Pos->second)
237         Diag(Suppressed.first, Suppressed.second);
238 
239       // Clear out the list of suppressed diagnostics, so that we don't emit
240       // them again for this specialization. However, we don't obsolete this
241       // entry from the table, because we want to avoid ever emitting these
242       // diagnostics again.
243       Pos->second.clear();
244     }
245 
246     // C++ [basic.start.main]p3:
247     //   The function 'main' shall not be used within a program.
248     if (cast<FunctionDecl>(D)->isMain())
249       Diag(Loc, diag::ext_main_used);
250 
251     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
252   }
253 
254   // See if this is an auto-typed variable whose initializer we are parsing.
255   if (ParsingInitForAutoVars.count(D)) {
256     if (isa<BindingDecl>(D)) {
257       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
258         << D->getDeclName();
259     } else {
260       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
261         << D->getDeclName() << cast<VarDecl>(D)->getType();
262     }
263     return true;
264   }
265 
266   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
267     // See if this is a deleted function.
268     if (FD->isDeleted()) {
269       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
270       if (Ctor && Ctor->isInheritingConstructor())
271         Diag(Loc, diag::err_deleted_inherited_ctor_use)
272             << Ctor->getParent()
273             << Ctor->getInheritedConstructor().getConstructor()->getParent();
274       else
275         Diag(Loc, diag::err_deleted_function_use);
276       NoteDeletedFunction(FD);
277       return true;
278     }
279 
280     // [expr.prim.id]p4
281     //   A program that refers explicitly or implicitly to a function with a
282     //   trailing requires-clause whose constraint-expression is not satisfied,
283     //   other than to declare it, is ill-formed. [...]
284     //
285     // See if this is a function with constraints that need to be satisfied.
286     // Check this before deducing the return type, as it might instantiate the
287     // definition.
288     if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
289       ConstraintSatisfaction Satisfaction;
290       if (CheckFunctionConstraints(FD, Satisfaction, Loc,
291                                    /*ForOverloadResolution*/ true))
292         // A diagnostic will have already been generated (non-constant
293         // constraint expression, for example)
294         return true;
295       if (!Satisfaction.IsSatisfied) {
296         Diag(Loc,
297              diag::err_reference_to_function_with_unsatisfied_constraints)
298             << D;
299         DiagnoseUnsatisfiedConstraint(Satisfaction);
300         return true;
301       }
302     }
303 
304     // If the function has a deduced return type, and we can't deduce it,
305     // then we can't use it either.
306     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
307         DeduceReturnType(FD, Loc))
308       return true;
309 
310     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
311       return true;
312 
313   }
314 
315   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
316     // Lambdas are only default-constructible or assignable in C++2a onwards.
317     if (MD->getParent()->isLambda() &&
318         ((isa<CXXConstructorDecl>(MD) &&
319           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
320          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
321       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
322         << !isa<CXXConstructorDecl>(MD);
323     }
324   }
325 
326   auto getReferencedObjCProp = [](const NamedDecl *D) ->
327                                       const ObjCPropertyDecl * {
328     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
329       return MD->findPropertyDecl();
330     return nullptr;
331   };
332   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
333     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
334       return true;
335   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
336       return true;
337   }
338 
339   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
340   // Only the variables omp_in and omp_out are allowed in the combiner.
341   // Only the variables omp_priv and omp_orig are allowed in the
342   // initializer-clause.
343   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
344   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
345       isa<VarDecl>(D)) {
346     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
347         << getCurFunction()->HasOMPDeclareReductionCombiner;
348     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
349     return true;
350   }
351 
352   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
353   //  List-items in map clauses on this construct may only refer to the declared
354   //  variable var and entities that could be referenced by a procedure defined
355   //  at the same location.
356   // [OpenMP 5.2] Also allow iterator declared variables.
357   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
358       !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
359     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
360         << getOpenMPDeclareMapperVarName();
361     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
362     return true;
363   }
364 
365   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
366     Diag(Loc, diag::err_use_of_empty_using_if_exists);
367     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
368     return true;
369   }
370 
371   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
372                              AvoidPartialAvailabilityChecks, ClassReceiver);
373 
374   DiagnoseUnusedOfDecl(*this, D, Loc);
375 
376   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
377 
378   if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
379     if (getLangOpts().getFPEvalMethod() !=
380             LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
381         PP.getLastFPEvalPragmaLocation().isValid() &&
382         PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
383       Diag(D->getLocation(),
384            diag::err_type_available_only_in_default_eval_method)
385           << D->getName();
386   }
387 
388   if (auto *VD = dyn_cast<ValueDecl>(D))
389     checkTypeSupport(VD->getType(), Loc, VD);
390 
391   if (LangOpts.SYCLIsDevice ||
392       (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
393     if (!Context.getTargetInfo().isTLSSupported())
394       if (const auto *VD = dyn_cast<VarDecl>(D))
395         if (VD->getTLSKind() != VarDecl::TLS_None)
396           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
397   }
398 
399   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
400       !isUnevaluatedContext()) {
401     // C++ [expr.prim.req.nested] p3
402     //   A local parameter shall only appear as an unevaluated operand
403     //   (Clause 8) within the constraint-expression.
404     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
405         << D;
406     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
407     return true;
408   }
409 
410   return false;
411 }
412 
413 /// DiagnoseSentinelCalls - This routine checks whether a call or
414 /// message-send is to a declaration with the sentinel attribute, and
415 /// if so, it checks that the requirements of the sentinel are
416 /// satisfied.
417 void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
418                                  ArrayRef<Expr *> Args) {
419   const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
420   if (!Attr)
421     return;
422 
423   // The number of formal parameters of the declaration.
424   unsigned NumFormalParams;
425 
426   // The kind of declaration.  This is also an index into a %select in
427   // the diagnostic.
428   enum { CK_Function, CK_Method, CK_Block } CalleeKind;
429 
430   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
431     NumFormalParams = MD->param_size();
432     CalleeKind = CK_Method;
433   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
434     NumFormalParams = FD->param_size();
435     CalleeKind = CK_Function;
436   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
437     QualType Ty = VD->getType();
438     const FunctionType *Fn = nullptr;
439     if (const auto *PtrTy = Ty->getAs<PointerType>()) {
440       Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
441       if (!Fn)
442         return;
443       CalleeKind = CK_Function;
444     } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
445       Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
446       CalleeKind = CK_Block;
447     } else {
448       return;
449     }
450 
451     if (const auto *proto = dyn_cast<FunctionProtoType>(Fn))
452       NumFormalParams = proto->getNumParams();
453     else
454       NumFormalParams = 0;
455   } else {
456     return;
457   }
458 
459   // "NullPos" is the number of formal parameters at the end which
460   // effectively count as part of the variadic arguments.  This is
461   // useful if you would prefer to not have *any* formal parameters,
462   // but the language forces you to have at least one.
463   unsigned NullPos = Attr->getNullPos();
464   assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
465   NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
466 
467   // The number of arguments which should follow the sentinel.
468   unsigned NumArgsAfterSentinel = Attr->getSentinel();
469 
470   // If there aren't enough arguments for all the formal parameters,
471   // the sentinel, and the args after the sentinel, complain.
472   if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
473     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
474     Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
475     return;
476   }
477 
478   // Otherwise, find the sentinel expression.
479   const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
480   if (!SentinelExpr)
481     return;
482   if (SentinelExpr->isValueDependent())
483     return;
484   if (Context.isSentinelNullExpr(SentinelExpr))
485     return;
486 
487   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
488   // or 'NULL' if those are actually defined in the context.  Only use
489   // 'nil' for ObjC methods, where it's much more likely that the
490   // variadic arguments form a list of object pointers.
491   SourceLocation MissingNilLoc = getLocForEndOfToken(SentinelExpr->getEndLoc());
492   std::string NullValue;
493   if (CalleeKind == CK_Method && PP.isMacroDefined("nil"))
494     NullValue = "nil";
495   else if (getLangOpts().CPlusPlus11)
496     NullValue = "nullptr";
497   else if (PP.isMacroDefined("NULL"))
498     NullValue = "NULL";
499   else
500     NullValue = "(void*) 0";
501 
502   if (MissingNilLoc.isInvalid())
503     Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
504   else
505     Diag(MissingNilLoc, diag::warn_missing_sentinel)
506         << int(CalleeKind)
507         << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
508   Diag(D->getLocation(), diag::note_sentinel_here)
509       << int(CalleeKind) << Attr->getRange();
510 }
511 
512 SourceRange Sema::getExprRange(Expr *E) const {
513   return E ? E->getSourceRange() : SourceRange();
514 }
515 
516 //===----------------------------------------------------------------------===//
517 //  Standard Promotions and Conversions
518 //===----------------------------------------------------------------------===//
519 
520 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
521 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
522   // Handle any placeholder expressions which made it here.
523   if (E->hasPlaceholderType()) {
524     ExprResult result = CheckPlaceholderExpr(E);
525     if (result.isInvalid()) return ExprError();
526     E = result.get();
527   }
528 
529   QualType Ty = E->getType();
530   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
531 
532   if (Ty->isFunctionType()) {
533     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
534       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
535         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
536           return ExprError();
537 
538     E = ImpCastExprToType(E, Context.getPointerType(Ty),
539                           CK_FunctionToPointerDecay).get();
540   } else if (Ty->isArrayType()) {
541     // In C90 mode, arrays only promote to pointers if the array expression is
542     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
543     // type 'array of type' is converted to an expression that has type 'pointer
544     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
545     // that has type 'array of type' ...".  The relevant change is "an lvalue"
546     // (C90) to "an expression" (C99).
547     //
548     // C++ 4.2p1:
549     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
550     // T" can be converted to an rvalue of type "pointer to T".
551     //
552     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
553       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
554                                          CK_ArrayToPointerDecay);
555       if (Res.isInvalid())
556         return ExprError();
557       E = Res.get();
558     }
559   }
560   return E;
561 }
562 
563 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
564   // Check to see if we are dereferencing a null pointer.  If so,
565   // and if not volatile-qualified, this is undefined behavior that the
566   // optimizer will delete, so warn about it.  People sometimes try to use this
567   // to get a deterministic trap and are surprised by clang's behavior.  This
568   // only handles the pattern "*null", which is a very syntactic check.
569   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
570   if (UO && UO->getOpcode() == UO_Deref &&
571       UO->getSubExpr()->getType()->isPointerType()) {
572     const LangAS AS =
573         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
574     if ((!isTargetAddressSpace(AS) ||
575          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
576         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
577             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
578         !UO->getType().isVolatileQualified()) {
579       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
580                             S.PDiag(diag::warn_indirection_through_null)
581                                 << UO->getSubExpr()->getSourceRange());
582       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
583                             S.PDiag(diag::note_indirection_through_null));
584     }
585   }
586 }
587 
588 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
589                                     SourceLocation AssignLoc,
590                                     const Expr* RHS) {
591   const ObjCIvarDecl *IV = OIRE->getDecl();
592   if (!IV)
593     return;
594 
595   DeclarationName MemberName = IV->getDeclName();
596   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
597   if (!Member || !Member->isStr("isa"))
598     return;
599 
600   const Expr *Base = OIRE->getBase();
601   QualType BaseType = Base->getType();
602   if (OIRE->isArrow())
603     BaseType = BaseType->getPointeeType();
604   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
605     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
606       ObjCInterfaceDecl *ClassDeclared = nullptr;
607       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
608       if (!ClassDeclared->getSuperClass()
609           && (*ClassDeclared->ivar_begin()) == IV) {
610         if (RHS) {
611           NamedDecl *ObjectSetClass =
612             S.LookupSingleName(S.TUScope,
613                                &S.Context.Idents.get("object_setClass"),
614                                SourceLocation(), S.LookupOrdinaryName);
615           if (ObjectSetClass) {
616             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
617             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
618                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
619                                               "object_setClass(")
620                 << FixItHint::CreateReplacement(
621                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
622                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
623           }
624           else
625             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
626         } else {
627           NamedDecl *ObjectGetClass =
628             S.LookupSingleName(S.TUScope,
629                                &S.Context.Idents.get("object_getClass"),
630                                SourceLocation(), S.LookupOrdinaryName);
631           if (ObjectGetClass)
632             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
633                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
634                                               "object_getClass(")
635                 << FixItHint::CreateReplacement(
636                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
637           else
638             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
639         }
640         S.Diag(IV->getLocation(), diag::note_ivar_decl);
641       }
642     }
643 }
644 
645 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
646   // Handle any placeholder expressions which made it here.
647   if (E->hasPlaceholderType()) {
648     ExprResult result = CheckPlaceholderExpr(E);
649     if (result.isInvalid()) return ExprError();
650     E = result.get();
651   }
652 
653   // C++ [conv.lval]p1:
654   //   A glvalue of a non-function, non-array type T can be
655   //   converted to a prvalue.
656   if (!E->isGLValue()) return E;
657 
658   QualType T = E->getType();
659   assert(!T.isNull() && "r-value conversion on typeless expression?");
660 
661   // lvalue-to-rvalue conversion cannot be applied to function or array types.
662   if (T->isFunctionType() || T->isArrayType())
663     return E;
664 
665   // We don't want to throw lvalue-to-rvalue casts on top of
666   // expressions of certain types in C++.
667   if (getLangOpts().CPlusPlus &&
668       (E->getType() == Context.OverloadTy ||
669        T->isDependentType() ||
670        T->isRecordType()))
671     return E;
672 
673   // The C standard is actually really unclear on this point, and
674   // DR106 tells us what the result should be but not why.  It's
675   // generally best to say that void types just doesn't undergo
676   // lvalue-to-rvalue at all.  Note that expressions of unqualified
677   // 'void' type are never l-values, but qualified void can be.
678   if (T->isVoidType())
679     return E;
680 
681   // OpenCL usually rejects direct accesses to values of 'half' type.
682   if (getLangOpts().OpenCL &&
683       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
684       T->isHalfType()) {
685     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
686       << 0 << T;
687     return ExprError();
688   }
689 
690   CheckForNullPointerDereference(*this, E);
691   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
692     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
693                                      &Context.Idents.get("object_getClass"),
694                                      SourceLocation(), LookupOrdinaryName);
695     if (ObjectGetClass)
696       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
697           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
698           << FixItHint::CreateReplacement(
699                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
700     else
701       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
702   }
703   else if (const ObjCIvarRefExpr *OIRE =
704             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
705     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
706 
707   // C++ [conv.lval]p1:
708   //   [...] If T is a non-class type, the type of the prvalue is the
709   //   cv-unqualified version of T. Otherwise, the type of the
710   //   rvalue is T.
711   //
712   // C99 6.3.2.1p2:
713   //   If the lvalue has qualified type, the value has the unqualified
714   //   version of the type of the lvalue; otherwise, the value has the
715   //   type of the lvalue.
716   if (T.hasQualifiers())
717     T = T.getUnqualifiedType();
718 
719   // Under the MS ABI, lock down the inheritance model now.
720   if (T->isMemberPointerType() &&
721       Context.getTargetInfo().getCXXABI().isMicrosoft())
722     (void)isCompleteType(E->getExprLoc(), T);
723 
724   ExprResult Res = CheckLValueToRValueConversionOperand(E);
725   if (Res.isInvalid())
726     return Res;
727   E = Res.get();
728 
729   // Loading a __weak object implicitly retains the value, so we need a cleanup to
730   // balance that.
731   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
732     Cleanup.setExprNeedsCleanups(true);
733 
734   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
735     Cleanup.setExprNeedsCleanups(true);
736 
737   // C++ [conv.lval]p3:
738   //   If T is cv std::nullptr_t, the result is a null pointer constant.
739   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
740   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
741                                  CurFPFeatureOverrides());
742 
743   // C11 6.3.2.1p2:
744   //   ... if the lvalue has atomic type, the value has the non-atomic version
745   //   of the type of the lvalue ...
746   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
747     T = Atomic->getValueType().getUnqualifiedType();
748     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
749                                    nullptr, VK_PRValue, FPOptionsOverride());
750   }
751 
752   return Res;
753 }
754 
755 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
756   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
757   if (Res.isInvalid())
758     return ExprError();
759   Res = DefaultLvalueConversion(Res.get());
760   if (Res.isInvalid())
761     return ExprError();
762   return Res;
763 }
764 
765 /// CallExprUnaryConversions - a special case of an unary conversion
766 /// performed on a function designator of a call expression.
767 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
768   QualType Ty = E->getType();
769   ExprResult Res = E;
770   // Only do implicit cast for a function type, but not for a pointer
771   // to function type.
772   if (Ty->isFunctionType()) {
773     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
774                             CK_FunctionToPointerDecay);
775     if (Res.isInvalid())
776       return ExprError();
777   }
778   Res = DefaultLvalueConversion(Res.get());
779   if (Res.isInvalid())
780     return ExprError();
781   return Res.get();
782 }
783 
784 /// UsualUnaryConversions - Performs various conversions that are common to most
785 /// operators (C99 6.3). The conversions of array and function types are
786 /// sometimes suppressed. For example, the array->pointer conversion doesn't
787 /// apply if the array is an argument to the sizeof or address (&) operators.
788 /// In these instances, this routine should *not* be called.
789 ExprResult Sema::UsualUnaryConversions(Expr *E) {
790   // First, convert to an r-value.
791   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
792   if (Res.isInvalid())
793     return ExprError();
794   E = Res.get();
795 
796   QualType Ty = E->getType();
797   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
798 
799   LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
800   if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
801       (getLangOpts().getFPEvalMethod() !=
802            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
803        PP.getLastFPEvalPragmaLocation().isValid())) {
804     switch (EvalMethod) {
805     default:
806       llvm_unreachable("Unrecognized float evaluation method");
807       break;
808     case LangOptions::FEM_UnsetOnCommandLine:
809       llvm_unreachable("Float evaluation method should be set by now");
810       break;
811     case LangOptions::FEM_Double:
812       if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
813         // Widen the expression to double.
814         return Ty->isComplexType()
815                    ? ImpCastExprToType(E,
816                                        Context.getComplexType(Context.DoubleTy),
817                                        CK_FloatingComplexCast)
818                    : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
819       break;
820     case LangOptions::FEM_Extended:
821       if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
822         // Widen the expression to long double.
823         return Ty->isComplexType()
824                    ? ImpCastExprToType(
825                          E, Context.getComplexType(Context.LongDoubleTy),
826                          CK_FloatingComplexCast)
827                    : ImpCastExprToType(E, Context.LongDoubleTy,
828                                        CK_FloatingCast);
829       break;
830     }
831   }
832 
833   // Half FP have to be promoted to float unless it is natively supported
834   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
835     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
836 
837   // Try to perform integral promotions if the object has a theoretically
838   // promotable type.
839   if (Ty->isIntegralOrUnscopedEnumerationType()) {
840     // C99 6.3.1.1p2:
841     //
842     //   The following may be used in an expression wherever an int or
843     //   unsigned int may be used:
844     //     - an object or expression with an integer type whose integer
845     //       conversion rank is less than or equal to the rank of int
846     //       and unsigned int.
847     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
848     //
849     //   If an int can represent all values of the original type, the
850     //   value is converted to an int; otherwise, it is converted to an
851     //   unsigned int. These are called the integer promotions. All
852     //   other types are unchanged by the integer promotions.
853 
854     QualType PTy = Context.isPromotableBitField(E);
855     if (!PTy.isNull()) {
856       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
857       return E;
858     }
859     if (Context.isPromotableIntegerType(Ty)) {
860       QualType PT = Context.getPromotedIntegerType(Ty);
861       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
862       return E;
863     }
864   }
865   return E;
866 }
867 
868 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
869 /// do not have a prototype. Arguments that have type float or __fp16
870 /// are promoted to double. All other argument types are converted by
871 /// UsualUnaryConversions().
872 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
873   QualType Ty = E->getType();
874   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
875 
876   ExprResult Res = UsualUnaryConversions(E);
877   if (Res.isInvalid())
878     return ExprError();
879   E = Res.get();
880 
881   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
882   // promote to double.
883   // Note that default argument promotion applies only to float (and
884   // half/fp16); it does not apply to _Float16.
885   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
886   if (BTy && (BTy->getKind() == BuiltinType::Half ||
887               BTy->getKind() == BuiltinType::Float)) {
888     if (getLangOpts().OpenCL &&
889         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
890       if (BTy->getKind() == BuiltinType::Half) {
891         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
892       }
893     } else {
894       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
895     }
896   }
897   if (BTy &&
898       getLangOpts().getExtendIntArgs() ==
899           LangOptions::ExtendArgsKind::ExtendTo64 &&
900       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
901       Context.getTypeSizeInChars(BTy) <
902           Context.getTypeSizeInChars(Context.LongLongTy)) {
903     E = (Ty->isUnsignedIntegerType())
904             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
905                   .get()
906             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
907     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
908            "Unexpected typesize for LongLongTy");
909   }
910 
911   // C++ performs lvalue-to-rvalue conversion as a default argument
912   // promotion, even on class types, but note:
913   //   C++11 [conv.lval]p2:
914   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
915   //     operand or a subexpression thereof the value contained in the
916   //     referenced object is not accessed. Otherwise, if the glvalue
917   //     has a class type, the conversion copy-initializes a temporary
918   //     of type T from the glvalue and the result of the conversion
919   //     is a prvalue for the temporary.
920   // FIXME: add some way to gate this entire thing for correctness in
921   // potentially potentially evaluated contexts.
922   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
923     ExprResult Temp = PerformCopyInitialization(
924                        InitializedEntity::InitializeTemporary(E->getType()),
925                                                 E->getExprLoc(), E);
926     if (Temp.isInvalid())
927       return ExprError();
928     E = Temp.get();
929   }
930 
931   return E;
932 }
933 
934 /// Determine the degree of POD-ness for an expression.
935 /// Incomplete types are considered POD, since this check can be performed
936 /// when we're in an unevaluated context.
937 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
938   if (Ty->isIncompleteType()) {
939     // C++11 [expr.call]p7:
940     //   After these conversions, if the argument does not have arithmetic,
941     //   enumeration, pointer, pointer to member, or class type, the program
942     //   is ill-formed.
943     //
944     // Since we've already performed array-to-pointer and function-to-pointer
945     // decay, the only such type in C++ is cv void. This also handles
946     // initializer lists as variadic arguments.
947     if (Ty->isVoidType())
948       return VAK_Invalid;
949 
950     if (Ty->isObjCObjectType())
951       return VAK_Invalid;
952     return VAK_Valid;
953   }
954 
955   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
956     return VAK_Invalid;
957 
958   if (Context.getTargetInfo().getTriple().isWasm() &&
959       Ty.isWebAssemblyReferenceType()) {
960     return VAK_Invalid;
961   }
962 
963   if (Ty.isCXX98PODType(Context))
964     return VAK_Valid;
965 
966   // C++11 [expr.call]p7:
967   //   Passing a potentially-evaluated argument of class type (Clause 9)
968   //   having a non-trivial copy constructor, a non-trivial move constructor,
969   //   or a non-trivial destructor, with no corresponding parameter,
970   //   is conditionally-supported with implementation-defined semantics.
971   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
972     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
973       if (!Record->hasNonTrivialCopyConstructor() &&
974           !Record->hasNonTrivialMoveConstructor() &&
975           !Record->hasNonTrivialDestructor())
976         return VAK_ValidInCXX11;
977 
978   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
979     return VAK_Valid;
980 
981   if (Ty->isObjCObjectType())
982     return VAK_Invalid;
983 
984   if (getLangOpts().MSVCCompat)
985     return VAK_MSVCUndefined;
986 
987   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
988   // permitted to reject them. We should consider doing so.
989   return VAK_Undefined;
990 }
991 
992 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
993   // Don't allow one to pass an Objective-C interface to a vararg.
994   const QualType &Ty = E->getType();
995   VarArgKind VAK = isValidVarArgType(Ty);
996 
997   // Complain about passing non-POD types through varargs.
998   switch (VAK) {
999   case VAK_ValidInCXX11:
1000     DiagRuntimeBehavior(
1001         E->getBeginLoc(), nullptr,
1002         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
1003     [[fallthrough]];
1004   case VAK_Valid:
1005     if (Ty->isRecordType()) {
1006       // This is unlikely to be what the user intended. If the class has a
1007       // 'c_str' member function, the user probably meant to call that.
1008       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1009                           PDiag(diag::warn_pass_class_arg_to_vararg)
1010                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
1011     }
1012     break;
1013 
1014   case VAK_Undefined:
1015   case VAK_MSVCUndefined:
1016     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1017                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1018                             << getLangOpts().CPlusPlus11 << Ty << CT);
1019     break;
1020 
1021   case VAK_Invalid:
1022     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1023       Diag(E->getBeginLoc(),
1024            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1025           << Ty << CT;
1026     else if (Ty->isObjCObjectType())
1027       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1028                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1029                               << Ty << CT);
1030     else
1031       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1032           << isa<InitListExpr>(E) << Ty << CT;
1033     break;
1034   }
1035 }
1036 
1037 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1038 /// will create a trap if the resulting type is not a POD type.
1039 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1040                                                   FunctionDecl *FDecl) {
1041   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1042     // Strip the unbridged-cast placeholder expression off, if applicable.
1043     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1044         (CT == VariadicMethod ||
1045          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1046       E = stripARCUnbridgedCast(E);
1047 
1048     // Otherwise, do normal placeholder checking.
1049     } else {
1050       ExprResult ExprRes = CheckPlaceholderExpr(E);
1051       if (ExprRes.isInvalid())
1052         return ExprError();
1053       E = ExprRes.get();
1054     }
1055   }
1056 
1057   ExprResult ExprRes = DefaultArgumentPromotion(E);
1058   if (ExprRes.isInvalid())
1059     return ExprError();
1060 
1061   // Copy blocks to the heap.
1062   if (ExprRes.get()->getType()->isBlockPointerType())
1063     maybeExtendBlockObject(ExprRes);
1064 
1065   E = ExprRes.get();
1066 
1067   // Diagnostics regarding non-POD argument types are
1068   // emitted along with format string checking in Sema::CheckFunctionCall().
1069   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1070     // Turn this into a trap.
1071     CXXScopeSpec SS;
1072     SourceLocation TemplateKWLoc;
1073     UnqualifiedId Name;
1074     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1075                        E->getBeginLoc());
1076     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1077                                           /*HasTrailingLParen=*/true,
1078                                           /*IsAddressOfOperand=*/false);
1079     if (TrapFn.isInvalid())
1080       return ExprError();
1081 
1082     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1083                                     std::nullopt, E->getEndLoc());
1084     if (Call.isInvalid())
1085       return ExprError();
1086 
1087     ExprResult Comma =
1088         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1089     if (Comma.isInvalid())
1090       return ExprError();
1091     return Comma.get();
1092   }
1093 
1094   if (!getLangOpts().CPlusPlus &&
1095       RequireCompleteType(E->getExprLoc(), E->getType(),
1096                           diag::err_call_incomplete_argument))
1097     return ExprError();
1098 
1099   return E;
1100 }
1101 
1102 /// Converts an integer to complex float type.  Helper function of
1103 /// UsualArithmeticConversions()
1104 ///
1105 /// \return false if the integer expression is an integer type and is
1106 /// successfully converted to the complex type.
1107 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1108                                                   ExprResult &ComplexExpr,
1109                                                   QualType IntTy,
1110                                                   QualType ComplexTy,
1111                                                   bool SkipCast) {
1112   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1113   if (SkipCast) return false;
1114   if (IntTy->isIntegerType()) {
1115     QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1116     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1117     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1118                                   CK_FloatingRealToComplex);
1119   } else {
1120     assert(IntTy->isComplexIntegerType());
1121     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1122                                   CK_IntegralComplexToFloatingComplex);
1123   }
1124   return false;
1125 }
1126 
1127 // This handles complex/complex, complex/float, or float/complex.
1128 // When both operands are complex, the shorter operand is converted to the
1129 // type of the longer, and that is the type of the result. This corresponds
1130 // to what is done when combining two real floating-point operands.
1131 // The fun begins when size promotion occur across type domains.
1132 // From H&S 6.3.4: When one operand is complex and the other is a real
1133 // floating-point type, the less precise type is converted, within it's
1134 // real or complex domain, to the precision of the other type. For example,
1135 // when combining a "long double" with a "double _Complex", the
1136 // "double _Complex" is promoted to "long double _Complex".
1137 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1138                                              QualType ShorterType,
1139                                              QualType LongerType,
1140                                              bool PromotePrecision) {
1141   bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1142   QualType Result =
1143       LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1144 
1145   if (PromotePrecision) {
1146     if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1147       Shorter =
1148           S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1149     } else {
1150       if (LongerIsComplex)
1151         LongerType = LongerType->castAs<ComplexType>()->getElementType();
1152       Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1153     }
1154   }
1155   return Result;
1156 }
1157 
1158 /// Handle arithmetic conversion with complex types.  Helper function of
1159 /// UsualArithmeticConversions()
1160 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1161                                         ExprResult &RHS, QualType LHSType,
1162                                         QualType RHSType, bool IsCompAssign) {
1163   // if we have an integer operand, the result is the complex type.
1164   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1165                                              /*SkipCast=*/false))
1166     return LHSType;
1167   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1168                                              /*SkipCast=*/IsCompAssign))
1169     return RHSType;
1170 
1171   // Compute the rank of the two types, regardless of whether they are complex.
1172   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1173   if (Order < 0)
1174     // Promote the precision of the LHS if not an assignment.
1175     return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1176                                         /*PromotePrecision=*/!IsCompAssign);
1177   // Promote the precision of the RHS unless it is already the same as the LHS.
1178   return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1179                                       /*PromotePrecision=*/Order > 0);
1180 }
1181 
1182 /// Handle arithmetic conversion from integer to float.  Helper function
1183 /// of UsualArithmeticConversions()
1184 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1185                                            ExprResult &IntExpr,
1186                                            QualType FloatTy, QualType IntTy,
1187                                            bool ConvertFloat, bool ConvertInt) {
1188   if (IntTy->isIntegerType()) {
1189     if (ConvertInt)
1190       // Convert intExpr to the lhs floating point type.
1191       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1192                                     CK_IntegralToFloating);
1193     return FloatTy;
1194   }
1195 
1196   // Convert both sides to the appropriate complex float.
1197   assert(IntTy->isComplexIntegerType());
1198   QualType result = S.Context.getComplexType(FloatTy);
1199 
1200   // _Complex int -> _Complex float
1201   if (ConvertInt)
1202     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1203                                   CK_IntegralComplexToFloatingComplex);
1204 
1205   // float -> _Complex float
1206   if (ConvertFloat)
1207     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1208                                     CK_FloatingRealToComplex);
1209 
1210   return result;
1211 }
1212 
1213 /// Handle arithmethic conversion with floating point types.  Helper
1214 /// function of UsualArithmeticConversions()
1215 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1216                                       ExprResult &RHS, QualType LHSType,
1217                                       QualType RHSType, bool IsCompAssign) {
1218   bool LHSFloat = LHSType->isRealFloatingType();
1219   bool RHSFloat = RHSType->isRealFloatingType();
1220 
1221   // N1169 4.1.4: If one of the operands has a floating type and the other
1222   //              operand has a fixed-point type, the fixed-point operand
1223   //              is converted to the floating type [...]
1224   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1225     if (LHSFloat)
1226       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1227     else if (!IsCompAssign)
1228       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1229     return LHSFloat ? LHSType : RHSType;
1230   }
1231 
1232   // If we have two real floating types, convert the smaller operand
1233   // to the bigger result.
1234   if (LHSFloat && RHSFloat) {
1235     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1236     if (order > 0) {
1237       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1238       return LHSType;
1239     }
1240 
1241     assert(order < 0 && "illegal float comparison");
1242     if (!IsCompAssign)
1243       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1244     return RHSType;
1245   }
1246 
1247   if (LHSFloat) {
1248     // Half FP has to be promoted to float unless it is natively supported
1249     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1250       LHSType = S.Context.FloatTy;
1251 
1252     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1253                                       /*ConvertFloat=*/!IsCompAssign,
1254                                       /*ConvertInt=*/ true);
1255   }
1256   assert(RHSFloat);
1257   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1258                                     /*ConvertFloat=*/ true,
1259                                     /*ConvertInt=*/!IsCompAssign);
1260 }
1261 
1262 /// Diagnose attempts to convert between __float128, __ibm128 and
1263 /// long double if there is no support for such conversion.
1264 /// Helper function of UsualArithmeticConversions().
1265 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1266                                       QualType RHSType) {
1267   // No issue if either is not a floating point type.
1268   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1269     return false;
1270 
1271   // No issue if both have the same 128-bit float semantics.
1272   auto *LHSComplex = LHSType->getAs<ComplexType>();
1273   auto *RHSComplex = RHSType->getAs<ComplexType>();
1274 
1275   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1276   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1277 
1278   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1279   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1280 
1281   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1282        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1283       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1284        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1285     return false;
1286 
1287   return true;
1288 }
1289 
1290 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1291 
1292 namespace {
1293 /// These helper callbacks are placed in an anonymous namespace to
1294 /// permit their use as function template parameters.
1295 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1296   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1297 }
1298 
1299 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1300   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1301                              CK_IntegralComplexCast);
1302 }
1303 }
1304 
1305 /// Handle integer arithmetic conversions.  Helper function of
1306 /// UsualArithmeticConversions()
1307 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1308 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1309                                         ExprResult &RHS, QualType LHSType,
1310                                         QualType RHSType, bool IsCompAssign) {
1311   // The rules for this case are in C99 6.3.1.8
1312   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1313   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1314   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1315   if (LHSSigned == RHSSigned) {
1316     // Same signedness; use the higher-ranked type
1317     if (order >= 0) {
1318       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1319       return LHSType;
1320     } else if (!IsCompAssign)
1321       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1322     return RHSType;
1323   } else if (order != (LHSSigned ? 1 : -1)) {
1324     // The unsigned type has greater than or equal rank to the
1325     // signed type, so use the unsigned type
1326     if (RHSSigned) {
1327       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1328       return LHSType;
1329     } else if (!IsCompAssign)
1330       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1331     return RHSType;
1332   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1333     // The two types are different widths; if we are here, that
1334     // means the signed type is larger than the unsigned type, so
1335     // use the signed type.
1336     if (LHSSigned) {
1337       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1338       return LHSType;
1339     } else if (!IsCompAssign)
1340       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1341     return RHSType;
1342   } else {
1343     // The signed type is higher-ranked than the unsigned type,
1344     // but isn't actually any bigger (like unsigned int and long
1345     // on most 32-bit systems).  Use the unsigned type corresponding
1346     // to the signed type.
1347     QualType result =
1348       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1349     RHS = (*doRHSCast)(S, RHS.get(), result);
1350     if (!IsCompAssign)
1351       LHS = (*doLHSCast)(S, LHS.get(), result);
1352     return result;
1353   }
1354 }
1355 
1356 /// Handle conversions with GCC complex int extension.  Helper function
1357 /// of UsualArithmeticConversions()
1358 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1359                                            ExprResult &RHS, QualType LHSType,
1360                                            QualType RHSType,
1361                                            bool IsCompAssign) {
1362   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1363   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1364 
1365   if (LHSComplexInt && RHSComplexInt) {
1366     QualType LHSEltType = LHSComplexInt->getElementType();
1367     QualType RHSEltType = RHSComplexInt->getElementType();
1368     QualType ScalarType =
1369       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1370         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1371 
1372     return S.Context.getComplexType(ScalarType);
1373   }
1374 
1375   if (LHSComplexInt) {
1376     QualType LHSEltType = LHSComplexInt->getElementType();
1377     QualType ScalarType =
1378       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1379         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1380     QualType ComplexType = S.Context.getComplexType(ScalarType);
1381     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1382                               CK_IntegralRealToComplex);
1383 
1384     return ComplexType;
1385   }
1386 
1387   assert(RHSComplexInt);
1388 
1389   QualType RHSEltType = RHSComplexInt->getElementType();
1390   QualType ScalarType =
1391     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1392       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1393   QualType ComplexType = S.Context.getComplexType(ScalarType);
1394 
1395   if (!IsCompAssign)
1396     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1397                               CK_IntegralRealToComplex);
1398   return ComplexType;
1399 }
1400 
1401 /// Return the rank of a given fixed point or integer type. The value itself
1402 /// doesn't matter, but the values must be increasing with proper increasing
1403 /// rank as described in N1169 4.1.1.
1404 static unsigned GetFixedPointRank(QualType Ty) {
1405   const auto *BTy = Ty->getAs<BuiltinType>();
1406   assert(BTy && "Expected a builtin type.");
1407 
1408   switch (BTy->getKind()) {
1409   case BuiltinType::ShortFract:
1410   case BuiltinType::UShortFract:
1411   case BuiltinType::SatShortFract:
1412   case BuiltinType::SatUShortFract:
1413     return 1;
1414   case BuiltinType::Fract:
1415   case BuiltinType::UFract:
1416   case BuiltinType::SatFract:
1417   case BuiltinType::SatUFract:
1418     return 2;
1419   case BuiltinType::LongFract:
1420   case BuiltinType::ULongFract:
1421   case BuiltinType::SatLongFract:
1422   case BuiltinType::SatULongFract:
1423     return 3;
1424   case BuiltinType::ShortAccum:
1425   case BuiltinType::UShortAccum:
1426   case BuiltinType::SatShortAccum:
1427   case BuiltinType::SatUShortAccum:
1428     return 4;
1429   case BuiltinType::Accum:
1430   case BuiltinType::UAccum:
1431   case BuiltinType::SatAccum:
1432   case BuiltinType::SatUAccum:
1433     return 5;
1434   case BuiltinType::LongAccum:
1435   case BuiltinType::ULongAccum:
1436   case BuiltinType::SatLongAccum:
1437   case BuiltinType::SatULongAccum:
1438     return 6;
1439   default:
1440     if (BTy->isInteger())
1441       return 0;
1442     llvm_unreachable("Unexpected fixed point or integer type");
1443   }
1444 }
1445 
1446 /// handleFixedPointConversion - Fixed point operations between fixed
1447 /// point types and integers or other fixed point types do not fall under
1448 /// usual arithmetic conversion since these conversions could result in loss
1449 /// of precsision (N1169 4.1.4). These operations should be calculated with
1450 /// the full precision of their result type (N1169 4.1.6.2.1).
1451 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1452                                            QualType RHSTy) {
1453   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1454          "Expected at least one of the operands to be a fixed point type");
1455   assert((LHSTy->isFixedPointOrIntegerType() ||
1456           RHSTy->isFixedPointOrIntegerType()) &&
1457          "Special fixed point arithmetic operation conversions are only "
1458          "applied to ints or other fixed point types");
1459 
1460   // If one operand has signed fixed-point type and the other operand has
1461   // unsigned fixed-point type, then the unsigned fixed-point operand is
1462   // converted to its corresponding signed fixed-point type and the resulting
1463   // type is the type of the converted operand.
1464   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1465     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1466   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1467     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1468 
1469   // The result type is the type with the highest rank, whereby a fixed-point
1470   // conversion rank is always greater than an integer conversion rank; if the
1471   // type of either of the operands is a saturating fixedpoint type, the result
1472   // type shall be the saturating fixed-point type corresponding to the type
1473   // with the highest rank; the resulting value is converted (taking into
1474   // account rounding and overflow) to the precision of the resulting type.
1475   // Same ranks between signed and unsigned types are resolved earlier, so both
1476   // types are either signed or both unsigned at this point.
1477   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1478   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1479 
1480   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1481 
1482   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1483     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1484 
1485   return ResultTy;
1486 }
1487 
1488 /// Check that the usual arithmetic conversions can be performed on this pair of
1489 /// expressions that might be of enumeration type.
1490 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1491                                            SourceLocation Loc,
1492                                            Sema::ArithConvKind ACK) {
1493   // C++2a [expr.arith.conv]p1:
1494   //   If one operand is of enumeration type and the other operand is of a
1495   //   different enumeration type or a floating-point type, this behavior is
1496   //   deprecated ([depr.arith.conv.enum]).
1497   //
1498   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1499   // Eventually we will presumably reject these cases (in C++23 onwards?).
1500   QualType L = LHS->getType(), R = RHS->getType();
1501   bool LEnum = L->isUnscopedEnumerationType(),
1502        REnum = R->isUnscopedEnumerationType();
1503   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1504   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1505       (REnum && L->isFloatingType())) {
1506     S.Diag(Loc, S.getLangOpts().CPlusPlus26
1507                     ? diag::err_arith_conv_enum_float_cxx26
1508                 : S.getLangOpts().CPlusPlus20
1509                     ? diag::warn_arith_conv_enum_float_cxx20
1510                     : diag::warn_arith_conv_enum_float)
1511         << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1512         << L << R;
1513   } else if (!IsCompAssign && LEnum && REnum &&
1514              !S.Context.hasSameUnqualifiedType(L, R)) {
1515     unsigned DiagID;
1516     // In C++ 26, usual arithmetic conversions between 2 different enum types
1517     // are ill-formed.
1518     if (S.getLangOpts().CPlusPlus26)
1519       DiagID = diag::err_conv_mixed_enum_types_cxx26;
1520     else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1521              !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1522       // If either enumeration type is unnamed, it's less likely that the
1523       // user cares about this, but this situation is still deprecated in
1524       // C++2a. Use a different warning group.
1525       DiagID = S.getLangOpts().CPlusPlus20
1526                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1527                     : diag::warn_arith_conv_mixed_anon_enum_types;
1528     } else if (ACK == Sema::ACK_Conditional) {
1529       // Conditional expressions are separated out because they have
1530       // historically had a different warning flag.
1531       DiagID = S.getLangOpts().CPlusPlus20
1532                    ? diag::warn_conditional_mixed_enum_types_cxx20
1533                    : diag::warn_conditional_mixed_enum_types;
1534     } else if (ACK == Sema::ACK_Comparison) {
1535       // Comparison expressions are separated out because they have
1536       // historically had a different warning flag.
1537       DiagID = S.getLangOpts().CPlusPlus20
1538                    ? diag::warn_comparison_mixed_enum_types_cxx20
1539                    : diag::warn_comparison_mixed_enum_types;
1540     } else {
1541       DiagID = S.getLangOpts().CPlusPlus20
1542                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1543                    : diag::warn_arith_conv_mixed_enum_types;
1544     }
1545     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1546                         << (int)ACK << L << R;
1547   }
1548 }
1549 
1550 /// UsualArithmeticConversions - Performs various conversions that are common to
1551 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1552 /// routine returns the first non-arithmetic type found. The client is
1553 /// responsible for emitting appropriate error diagnostics.
1554 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1555                                           SourceLocation Loc,
1556                                           ArithConvKind ACK) {
1557   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1558 
1559   if (ACK != ACK_CompAssign) {
1560     LHS = UsualUnaryConversions(LHS.get());
1561     if (LHS.isInvalid())
1562       return QualType();
1563   }
1564 
1565   RHS = UsualUnaryConversions(RHS.get());
1566   if (RHS.isInvalid())
1567     return QualType();
1568 
1569   // For conversion purposes, we ignore any qualifiers.
1570   // For example, "const float" and "float" are equivalent.
1571   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1572   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1573 
1574   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1575   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1576     LHSType = AtomicLHS->getValueType();
1577 
1578   // If both types are identical, no conversion is needed.
1579   if (Context.hasSameType(LHSType, RHSType))
1580     return Context.getCommonSugaredType(LHSType, RHSType);
1581 
1582   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1583   // The caller can deal with this (e.g. pointer + int).
1584   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1585     return QualType();
1586 
1587   // Apply unary and bitfield promotions to the LHS's type.
1588   QualType LHSUnpromotedType = LHSType;
1589   if (Context.isPromotableIntegerType(LHSType))
1590     LHSType = Context.getPromotedIntegerType(LHSType);
1591   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1592   if (!LHSBitfieldPromoteTy.isNull())
1593     LHSType = LHSBitfieldPromoteTy;
1594   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1595     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1596 
1597   // If both types are identical, no conversion is needed.
1598   if (Context.hasSameType(LHSType, RHSType))
1599     return Context.getCommonSugaredType(LHSType, RHSType);
1600 
1601   // At this point, we have two different arithmetic types.
1602 
1603   // Diagnose attempts to convert between __ibm128, __float128 and long double
1604   // where such conversions currently can't be handled.
1605   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1606     return QualType();
1607 
1608   // Handle complex types first (C99 6.3.1.8p1).
1609   if (LHSType->isComplexType() || RHSType->isComplexType())
1610     return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1611                                    ACK == ACK_CompAssign);
1612 
1613   // Now handle "real" floating types (i.e. float, double, long double).
1614   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1615     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1616                                  ACK == ACK_CompAssign);
1617 
1618   // Handle GCC complex int extension.
1619   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1620     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1621                                       ACK == ACK_CompAssign);
1622 
1623   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1624     return handleFixedPointConversion(*this, LHSType, RHSType);
1625 
1626   // Finally, we have two differing integer types.
1627   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1628            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1629 }
1630 
1631 //===----------------------------------------------------------------------===//
1632 //  Semantic Analysis for various Expression Types
1633 //===----------------------------------------------------------------------===//
1634 
1635 
1636 ExprResult Sema::ActOnGenericSelectionExpr(
1637     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1638     bool PredicateIsExpr, void *ControllingExprOrType,
1639     ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1640   unsigned NumAssocs = ArgTypes.size();
1641   assert(NumAssocs == ArgExprs.size());
1642 
1643   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1644   for (unsigned i = 0; i < NumAssocs; ++i) {
1645     if (ArgTypes[i])
1646       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1647     else
1648       Types[i] = nullptr;
1649   }
1650 
1651   // If we have a controlling type, we need to convert it from a parsed type
1652   // into a semantic type and then pass that along.
1653   if (!PredicateIsExpr) {
1654     TypeSourceInfo *ControllingType;
1655     (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1656                             &ControllingType);
1657     assert(ControllingType && "couldn't get the type out of the parser");
1658     ControllingExprOrType = ControllingType;
1659   }
1660 
1661   ExprResult ER = CreateGenericSelectionExpr(
1662       KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1663       llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1664   delete [] Types;
1665   return ER;
1666 }
1667 
1668 ExprResult Sema::CreateGenericSelectionExpr(
1669     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1670     bool PredicateIsExpr, void *ControllingExprOrType,
1671     ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1672   unsigned NumAssocs = Types.size();
1673   assert(NumAssocs == Exprs.size());
1674   assert(ControllingExprOrType &&
1675          "Must have either a controlling expression or a controlling type");
1676 
1677   Expr *ControllingExpr = nullptr;
1678   TypeSourceInfo *ControllingType = nullptr;
1679   if (PredicateIsExpr) {
1680     // Decay and strip qualifiers for the controlling expression type, and
1681     // handle placeholder type replacement. See committee discussion from WG14
1682     // DR423.
1683     EnterExpressionEvaluationContext Unevaluated(
1684         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1685     ExprResult R = DefaultFunctionArrayLvalueConversion(
1686         reinterpret_cast<Expr *>(ControllingExprOrType));
1687     if (R.isInvalid())
1688       return ExprError();
1689     ControllingExpr = R.get();
1690   } else {
1691     // The extension form uses the type directly rather than converting it.
1692     ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1693     if (!ControllingType)
1694       return ExprError();
1695   }
1696 
1697   bool TypeErrorFound = false,
1698        IsResultDependent = ControllingExpr
1699                                ? ControllingExpr->isTypeDependent()
1700                                : ControllingType->getType()->isDependentType(),
1701        ContainsUnexpandedParameterPack =
1702            ControllingExpr
1703                ? ControllingExpr->containsUnexpandedParameterPack()
1704                : ControllingType->getType()->containsUnexpandedParameterPack();
1705 
1706   // The controlling expression is an unevaluated operand, so side effects are
1707   // likely unintended.
1708   if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1709       ControllingExpr->HasSideEffects(Context, false))
1710     Diag(ControllingExpr->getExprLoc(),
1711          diag::warn_side_effects_unevaluated_context);
1712 
1713   for (unsigned i = 0; i < NumAssocs; ++i) {
1714     if (Exprs[i]->containsUnexpandedParameterPack())
1715       ContainsUnexpandedParameterPack = true;
1716 
1717     if (Types[i]) {
1718       if (Types[i]->getType()->containsUnexpandedParameterPack())
1719         ContainsUnexpandedParameterPack = true;
1720 
1721       if (Types[i]->getType()->isDependentType()) {
1722         IsResultDependent = true;
1723       } else {
1724         // We relax the restriction on use of incomplete types and non-object
1725         // types with the type-based extension of _Generic. Allowing incomplete
1726         // objects means those can be used as "tags" for a type-safe way to map
1727         // to a value. Similarly, matching on function types rather than
1728         // function pointer types can be useful. However, the restriction on VM
1729         // types makes sense to retain as there are open questions about how
1730         // the selection can be made at compile time.
1731         //
1732         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1733         // complete object type other than a variably modified type."
1734         unsigned D = 0;
1735         if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1736           D = diag::err_assoc_type_incomplete;
1737         else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1738           D = diag::err_assoc_type_nonobject;
1739         else if (Types[i]->getType()->isVariablyModifiedType())
1740           D = diag::err_assoc_type_variably_modified;
1741         else if (ControllingExpr) {
1742           // Because the controlling expression undergoes lvalue conversion,
1743           // array conversion, and function conversion, an association which is
1744           // of array type, function type, or is qualified can never be
1745           // reached. We will warn about this so users are less surprised by
1746           // the unreachable association. However, we don't have to handle
1747           // function types; that's not an object type, so it's handled above.
1748           //
1749           // The logic is somewhat different for C++ because C++ has different
1750           // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1751           // If T is a non-class type, the type of the prvalue is the cv-
1752           // unqualified version of T. Otherwise, the type of the prvalue is T.
1753           // The result of these rules is that all qualified types in an
1754           // association in C are unreachable, and in C++, only qualified non-
1755           // class types are unreachable.
1756           //
1757           // NB: this does not apply when the first operand is a type rather
1758           // than an expression, because the type form does not undergo
1759           // conversion.
1760           unsigned Reason = 0;
1761           QualType QT = Types[i]->getType();
1762           if (QT->isArrayType())
1763             Reason = 1;
1764           else if (QT.hasQualifiers() &&
1765                    (!LangOpts.CPlusPlus || !QT->isRecordType()))
1766             Reason = 2;
1767 
1768           if (Reason)
1769             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1770                  diag::warn_unreachable_association)
1771                 << QT << (Reason - 1);
1772         }
1773 
1774         if (D != 0) {
1775           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1776             << Types[i]->getTypeLoc().getSourceRange()
1777             << Types[i]->getType();
1778           TypeErrorFound = true;
1779         }
1780 
1781         // C11 6.5.1.1p2 "No two generic associations in the same generic
1782         // selection shall specify compatible types."
1783         for (unsigned j = i+1; j < NumAssocs; ++j)
1784           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1785               Context.typesAreCompatible(Types[i]->getType(),
1786                                          Types[j]->getType())) {
1787             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1788                  diag::err_assoc_compatible_types)
1789               << Types[j]->getTypeLoc().getSourceRange()
1790               << Types[j]->getType()
1791               << Types[i]->getType();
1792             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1793                  diag::note_compat_assoc)
1794               << Types[i]->getTypeLoc().getSourceRange()
1795               << Types[i]->getType();
1796             TypeErrorFound = true;
1797           }
1798       }
1799     }
1800   }
1801   if (TypeErrorFound)
1802     return ExprError();
1803 
1804   // If we determined that the generic selection is result-dependent, don't
1805   // try to compute the result expression.
1806   if (IsResultDependent) {
1807     if (ControllingExpr)
1808       return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1809                                           Types, Exprs, DefaultLoc, RParenLoc,
1810                                           ContainsUnexpandedParameterPack);
1811     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1812                                         Exprs, DefaultLoc, RParenLoc,
1813                                         ContainsUnexpandedParameterPack);
1814   }
1815 
1816   SmallVector<unsigned, 1> CompatIndices;
1817   unsigned DefaultIndex = -1U;
1818   // Look at the canonical type of the controlling expression in case it was a
1819   // deduced type like __auto_type. However, when issuing diagnostics, use the
1820   // type the user wrote in source rather than the canonical one.
1821   for (unsigned i = 0; i < NumAssocs; ++i) {
1822     if (!Types[i])
1823       DefaultIndex = i;
1824     else if (ControllingExpr &&
1825              Context.typesAreCompatible(
1826                  ControllingExpr->getType().getCanonicalType(),
1827                  Types[i]->getType()))
1828       CompatIndices.push_back(i);
1829     else if (ControllingType &&
1830              Context.typesAreCompatible(
1831                  ControllingType->getType().getCanonicalType(),
1832                  Types[i]->getType()))
1833       CompatIndices.push_back(i);
1834   }
1835 
1836   auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1837                                        TypeSourceInfo *ControllingType) {
1838     // We strip parens here because the controlling expression is typically
1839     // parenthesized in macro definitions.
1840     if (ControllingExpr)
1841       ControllingExpr = ControllingExpr->IgnoreParens();
1842 
1843     SourceRange SR = ControllingExpr
1844                          ? ControllingExpr->getSourceRange()
1845                          : ControllingType->getTypeLoc().getSourceRange();
1846     QualType QT = ControllingExpr ? ControllingExpr->getType()
1847                                   : ControllingType->getType();
1848 
1849     return std::make_pair(SR, QT);
1850   };
1851 
1852   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1853   // type compatible with at most one of the types named in its generic
1854   // association list."
1855   if (CompatIndices.size() > 1) {
1856     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1857     SourceRange SR = P.first;
1858     Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1859         << SR << P.second << (unsigned)CompatIndices.size();
1860     for (unsigned I : CompatIndices) {
1861       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1862            diag::note_compat_assoc)
1863         << Types[I]->getTypeLoc().getSourceRange()
1864         << Types[I]->getType();
1865     }
1866     return ExprError();
1867   }
1868 
1869   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1870   // its controlling expression shall have type compatible with exactly one of
1871   // the types named in its generic association list."
1872   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1873     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1874     SourceRange SR = P.first;
1875     Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1876     return ExprError();
1877   }
1878 
1879   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1880   // type name that is compatible with the type of the controlling expression,
1881   // then the result expression of the generic selection is the expression
1882   // in that generic association. Otherwise, the result expression of the
1883   // generic selection is the expression in the default generic association."
1884   unsigned ResultIndex =
1885     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1886 
1887   if (ControllingExpr) {
1888     return GenericSelectionExpr::Create(
1889         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1890         ContainsUnexpandedParameterPack, ResultIndex);
1891   }
1892   return GenericSelectionExpr::Create(
1893       Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1894       ContainsUnexpandedParameterPack, ResultIndex);
1895 }
1896 
1897 static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1898   switch (Kind) {
1899   default:
1900     llvm_unreachable("unexpected TokenKind");
1901   case tok::kw___func__:
1902     return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1903   case tok::kw___FUNCTION__:
1904     return PredefinedIdentKind::Function;
1905   case tok::kw___FUNCDNAME__:
1906     return PredefinedIdentKind::FuncDName; // [MS]
1907   case tok::kw___FUNCSIG__:
1908     return PredefinedIdentKind::FuncSig; // [MS]
1909   case tok::kw_L__FUNCTION__:
1910     return PredefinedIdentKind::LFunction; // [MS]
1911   case tok::kw_L__FUNCSIG__:
1912     return PredefinedIdentKind::LFuncSig; // [MS]
1913   case tok::kw___PRETTY_FUNCTION__:
1914     return PredefinedIdentKind::PrettyFunction; // [GNU]
1915   }
1916 }
1917 
1918 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1919 /// to determine the value of a PredefinedExpr. This can be either a
1920 /// block, lambda, captured statement, function, otherwise a nullptr.
1921 static Decl *getPredefinedExprDecl(DeclContext *DC) {
1922   while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1923     DC = DC->getParent();
1924   return cast_or_null<Decl>(DC);
1925 }
1926 
1927 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1928 /// location of the token and the offset of the ud-suffix within it.
1929 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1930                                      unsigned Offset) {
1931   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1932                                         S.getLangOpts());
1933 }
1934 
1935 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1936 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1937 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1938                                                  IdentifierInfo *UDSuffix,
1939                                                  SourceLocation UDSuffixLoc,
1940                                                  ArrayRef<Expr*> Args,
1941                                                  SourceLocation LitEndLoc) {
1942   assert(Args.size() <= 2 && "too many arguments for literal operator");
1943 
1944   QualType ArgTy[2];
1945   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1946     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1947     if (ArgTy[ArgIdx]->isArrayType())
1948       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1949   }
1950 
1951   DeclarationName OpName =
1952     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1953   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1954   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1955 
1956   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1957   if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1958                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1959                               /*AllowStringTemplatePack*/ false,
1960                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1961     return ExprError();
1962 
1963   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1964 }
1965 
1966 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1967   // StringToks needs backing storage as it doesn't hold array elements itself
1968   std::vector<Token> ExpandedToks;
1969   if (getLangOpts().MicrosoftExt)
1970     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1971 
1972   StringLiteralParser Literal(StringToks, PP,
1973                               StringLiteralEvalMethod::Unevaluated);
1974   if (Literal.hadError)
1975     return ExprError();
1976 
1977   SmallVector<SourceLocation, 4> StringTokLocs;
1978   for (const Token &Tok : StringToks)
1979     StringTokLocs.push_back(Tok.getLocation());
1980 
1981   StringLiteral *Lit = StringLiteral::Create(
1982       Context, Literal.GetString(), StringLiteralKind::Unevaluated, false, {},
1983       &StringTokLocs[0], StringTokLocs.size());
1984 
1985   if (!Literal.getUDSuffix().empty()) {
1986     SourceLocation UDSuffixLoc =
1987         getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1988                        Literal.getUDSuffixOffset());
1989     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1990   }
1991 
1992   return Lit;
1993 }
1994 
1995 std::vector<Token>
1996 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1997   // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1998   // local macros that expand to string literals that may be concatenated.
1999   // These macros are expanded here (in Sema), because StringLiteralParser
2000   // (in Lex) doesn't know the enclosing function (because it hasn't been
2001   // parsed yet).
2002   assert(getLangOpts().MicrosoftExt);
2003 
2004   // Note: Although function local macros are defined only inside functions,
2005   // we ensure a valid `CurrentDecl` even outside of a function. This allows
2006   // expansion of macros into empty string literals without additional checks.
2007   Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
2008   if (!CurrentDecl)
2009     CurrentDecl = Context.getTranslationUnitDecl();
2010 
2011   std::vector<Token> ExpandedToks;
2012   ExpandedToks.reserve(Toks.size());
2013   for (const Token &Tok : Toks) {
2014     if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2015       assert(tok::isStringLiteral(Tok.getKind()));
2016       ExpandedToks.emplace_back(Tok);
2017       continue;
2018     }
2019     if (isa<TranslationUnitDecl>(CurrentDecl))
2020       Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2021     // Stringify predefined expression
2022     Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2023         << Tok.getKind();
2024     SmallString<64> Str;
2025     llvm::raw_svector_ostream OS(Str);
2026     Token &Exp = ExpandedToks.emplace_back();
2027     Exp.startToken();
2028     if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2029         Tok.getKind() == tok::kw_L__FUNCSIG__) {
2030       OS << 'L';
2031       Exp.setKind(tok::wide_string_literal);
2032     } else {
2033       Exp.setKind(tok::string_literal);
2034     }
2035     OS << '"'
2036        << Lexer::Stringify(PredefinedExpr::ComputeName(
2037               getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2038        << '"';
2039     PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2040   }
2041   return ExpandedToks;
2042 }
2043 
2044 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
2045 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
2046 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
2047 /// multiple tokens.  However, the common case is that StringToks points to one
2048 /// string.
2049 ///
2050 ExprResult
2051 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2052   assert(!StringToks.empty() && "Must have at least one string!");
2053 
2054   // StringToks needs backing storage as it doesn't hold array elements itself
2055   std::vector<Token> ExpandedToks;
2056   if (getLangOpts().MicrosoftExt)
2057     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2058 
2059   StringLiteralParser Literal(StringToks, PP);
2060   if (Literal.hadError)
2061     return ExprError();
2062 
2063   SmallVector<SourceLocation, 4> StringTokLocs;
2064   for (const Token &Tok : StringToks)
2065     StringTokLocs.push_back(Tok.getLocation());
2066 
2067   QualType CharTy = Context.CharTy;
2068   StringLiteralKind Kind = StringLiteralKind::Ordinary;
2069   if (Literal.isWide()) {
2070     CharTy = Context.getWideCharType();
2071     Kind = StringLiteralKind::Wide;
2072   } else if (Literal.isUTF8()) {
2073     if (getLangOpts().Char8)
2074       CharTy = Context.Char8Ty;
2075     Kind = StringLiteralKind::UTF8;
2076   } else if (Literal.isUTF16()) {
2077     CharTy = Context.Char16Ty;
2078     Kind = StringLiteralKind::UTF16;
2079   } else if (Literal.isUTF32()) {
2080     CharTy = Context.Char32Ty;
2081     Kind = StringLiteralKind::UTF32;
2082   } else if (Literal.isPascal()) {
2083     CharTy = Context.UnsignedCharTy;
2084   }
2085 
2086   // Warn on initializing an array of char from a u8 string literal; this
2087   // becomes ill-formed in C++2a.
2088   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
2089       !getLangOpts().Char8 && Kind == StringLiteralKind::UTF8) {
2090     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
2091 
2092     // Create removals for all 'u8' prefixes in the string literal(s). This
2093     // ensures C++2a compatibility (but may change the program behavior when
2094     // built by non-Clang compilers for which the execution character set is
2095     // not always UTF-8).
2096     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
2097     SourceLocation RemovalDiagLoc;
2098     for (const Token &Tok : StringToks) {
2099       if (Tok.getKind() == tok::utf8_string_literal) {
2100         if (RemovalDiagLoc.isInvalid())
2101           RemovalDiagLoc = Tok.getLocation();
2102         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2103             Tok.getLocation(),
2104             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2105                                            getSourceManager(), getLangOpts())));
2106       }
2107     }
2108     Diag(RemovalDiagLoc, RemovalDiag);
2109   }
2110 
2111   QualType StrTy =
2112       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2113 
2114   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2115   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2116                                              Kind, Literal.Pascal, StrTy,
2117                                              &StringTokLocs[0],
2118                                              StringTokLocs.size());
2119   if (Literal.getUDSuffix().empty())
2120     return Lit;
2121 
2122   // We're building a user-defined literal.
2123   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2124   SourceLocation UDSuffixLoc =
2125     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2126                    Literal.getUDSuffixOffset());
2127 
2128   // Make sure we're allowed user-defined literals here.
2129   if (!UDLScope)
2130     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2131 
2132   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2133   //   operator "" X (str, len)
2134   QualType SizeType = Context.getSizeType();
2135 
2136   DeclarationName OpName =
2137     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2138   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2139   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2140 
2141   QualType ArgTy[] = {
2142     Context.getArrayDecayedType(StrTy), SizeType
2143   };
2144 
2145   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2146   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2147                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2148                                 /*AllowStringTemplatePack*/ true,
2149                                 /*DiagnoseMissing*/ true, Lit)) {
2150 
2151   case LOLR_Cooked: {
2152     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2153     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2154                                                     StringTokLocs[0]);
2155     Expr *Args[] = { Lit, LenArg };
2156 
2157     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2158   }
2159 
2160   case LOLR_Template: {
2161     TemplateArgumentListInfo ExplicitArgs;
2162     TemplateArgument Arg(Lit);
2163     TemplateArgumentLocInfo ArgInfo(Lit);
2164     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2165     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2166                                     StringTokLocs.back(), &ExplicitArgs);
2167   }
2168 
2169   case LOLR_StringTemplatePack: {
2170     TemplateArgumentListInfo ExplicitArgs;
2171 
2172     unsigned CharBits = Context.getIntWidth(CharTy);
2173     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2174     llvm::APSInt Value(CharBits, CharIsUnsigned);
2175 
2176     TemplateArgument TypeArg(CharTy);
2177     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2178     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2179 
2180     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2181       Value = Lit->getCodeUnit(I);
2182       TemplateArgument Arg(Context, Value, CharTy);
2183       TemplateArgumentLocInfo ArgInfo;
2184       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2185     }
2186     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2187                                     StringTokLocs.back(), &ExplicitArgs);
2188   }
2189   case LOLR_Raw:
2190   case LOLR_ErrorNoDiagnostic:
2191     llvm_unreachable("unexpected literal operator lookup result");
2192   case LOLR_Error:
2193     return ExprError();
2194   }
2195   llvm_unreachable("unexpected literal operator lookup result");
2196 }
2197 
2198 DeclRefExpr *
2199 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2200                        SourceLocation Loc,
2201                        const CXXScopeSpec *SS) {
2202   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2203   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2204 }
2205 
2206 DeclRefExpr *
2207 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2208                        const DeclarationNameInfo &NameInfo,
2209                        const CXXScopeSpec *SS, NamedDecl *FoundD,
2210                        SourceLocation TemplateKWLoc,
2211                        const TemplateArgumentListInfo *TemplateArgs) {
2212   NestedNameSpecifierLoc NNS =
2213       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2214   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2215                           TemplateArgs);
2216 }
2217 
2218 // CUDA/HIP: Check whether a captured reference variable is referencing a
2219 // host variable in a device or host device lambda.
2220 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2221                                                             VarDecl *VD) {
2222   if (!S.getLangOpts().CUDA || !VD->hasInit())
2223     return false;
2224   assert(VD->getType()->isReferenceType());
2225 
2226   // Check whether the reference variable is referencing a host variable.
2227   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2228   if (!DRE)
2229     return false;
2230   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2231   if (!Referee || !Referee->hasGlobalStorage() ||
2232       Referee->hasAttr<CUDADeviceAttr>())
2233     return false;
2234 
2235   // Check whether the current function is a device or host device lambda.
2236   // Check whether the reference variable is a capture by getDeclContext()
2237   // since refersToEnclosingVariableOrCapture() is not ready at this point.
2238   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2239   if (MD && MD->getParent()->isLambda() &&
2240       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2241       VD->getDeclContext() != MD)
2242     return true;
2243 
2244   return false;
2245 }
2246 
2247 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2248   // A declaration named in an unevaluated operand never constitutes an odr-use.
2249   if (isUnevaluatedContext())
2250     return NOUR_Unevaluated;
2251 
2252   // C++2a [basic.def.odr]p4:
2253   //   A variable x whose name appears as a potentially-evaluated expression e
2254   //   is odr-used by e unless [...] x is a reference that is usable in
2255   //   constant expressions.
2256   // CUDA/HIP:
2257   //   If a reference variable referencing a host variable is captured in a
2258   //   device or host device lambda, the value of the referee must be copied
2259   //   to the capture and the reference variable must be treated as odr-use
2260   //   since the value of the referee is not known at compile time and must
2261   //   be loaded from the captured.
2262   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2263     if (VD->getType()->isReferenceType() &&
2264         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2265         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2266         VD->isUsableInConstantExpressions(Context))
2267       return NOUR_Constant;
2268   }
2269 
2270   // All remaining non-variable cases constitute an odr-use. For variables, we
2271   // need to wait and see how the expression is used.
2272   return NOUR_None;
2273 }
2274 
2275 /// BuildDeclRefExpr - Build an expression that references a
2276 /// declaration that does not require a closure capture.
2277 DeclRefExpr *
2278 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2279                        const DeclarationNameInfo &NameInfo,
2280                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2281                        SourceLocation TemplateKWLoc,
2282                        const TemplateArgumentListInfo *TemplateArgs) {
2283   bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2284                                   NeedToCaptureVariable(D, NameInfo.getLoc());
2285 
2286   DeclRefExpr *E = DeclRefExpr::Create(
2287       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2288       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2289   MarkDeclRefReferenced(E);
2290 
2291   // C++ [except.spec]p17:
2292   //   An exception-specification is considered to be needed when:
2293   //   - in an expression, the function is the unique lookup result or
2294   //     the selected member of a set of overloaded functions.
2295   //
2296   // We delay doing this until after we've built the function reference and
2297   // marked it as used so that:
2298   //  a) if the function is defaulted, we get errors from defining it before /
2299   //     instead of errors from computing its exception specification, and
2300   //  b) if the function is a defaulted comparison, we can use the body we
2301   //     build when defining it as input to the exception specification
2302   //     computation rather than computing a new body.
2303   if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2304     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2305       if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2306         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2307     }
2308   }
2309 
2310   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2311       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2312       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2313     getCurFunction()->recordUseOfWeak(E);
2314 
2315   const auto *FD = dyn_cast<FieldDecl>(D);
2316   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2317     FD = IFD->getAnonField();
2318   if (FD) {
2319     UnusedPrivateFields.remove(FD);
2320     // Just in case we're building an illegal pointer-to-member.
2321     if (FD->isBitField())
2322       E->setObjectKind(OK_BitField);
2323   }
2324 
2325   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2326   // designates a bit-field.
2327   if (const auto *BD = dyn_cast<BindingDecl>(D))
2328     if (const auto *BE = BD->getBinding())
2329       E->setObjectKind(BE->getObjectKind());
2330 
2331   return E;
2332 }
2333 
2334 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2335 /// possibly a list of template arguments.
2336 ///
2337 /// If this produces template arguments, it is permitted to call
2338 /// DecomposeTemplateName.
2339 ///
2340 /// This actually loses a lot of source location information for
2341 /// non-standard name kinds; we should consider preserving that in
2342 /// some way.
2343 void
2344 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2345                              TemplateArgumentListInfo &Buffer,
2346                              DeclarationNameInfo &NameInfo,
2347                              const TemplateArgumentListInfo *&TemplateArgs) {
2348   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2349     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2350     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2351 
2352     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2353                                        Id.TemplateId->NumArgs);
2354     translateTemplateArguments(TemplateArgsPtr, Buffer);
2355 
2356     TemplateName TName = Id.TemplateId->Template.get();
2357     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2358     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2359     TemplateArgs = &Buffer;
2360   } else {
2361     NameInfo = GetNameFromUnqualifiedId(Id);
2362     TemplateArgs = nullptr;
2363   }
2364 }
2365 
2366 static void emitEmptyLookupTypoDiagnostic(
2367     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2368     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2369     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2370   DeclContext *Ctx =
2371       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2372   if (!TC) {
2373     // Emit a special diagnostic for failed member lookups.
2374     // FIXME: computing the declaration context might fail here (?)
2375     if (Ctx)
2376       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2377                                                  << SS.getRange();
2378     else
2379       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2380     return;
2381   }
2382 
2383   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2384   bool DroppedSpecifier =
2385       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2386   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2387                         ? diag::note_implicit_param_decl
2388                         : diag::note_previous_decl;
2389   if (!Ctx)
2390     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2391                          SemaRef.PDiag(NoteID));
2392   else
2393     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2394                                  << Typo << Ctx << DroppedSpecifier
2395                                  << SS.getRange(),
2396                          SemaRef.PDiag(NoteID));
2397 }
2398 
2399 /// Diagnose a lookup that found results in an enclosing class during error
2400 /// recovery. This usually indicates that the results were found in a dependent
2401 /// base class that could not be searched as part of a template definition.
2402 /// Always issues a diagnostic (though this may be only a warning in MS
2403 /// compatibility mode).
2404 ///
2405 /// Return \c true if the error is unrecoverable, or \c false if the caller
2406 /// should attempt to recover using these lookup results.
2407 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2408   // During a default argument instantiation the CurContext points
2409   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2410   // function parameter list, hence add an explicit check.
2411   bool isDefaultArgument =
2412       !CodeSynthesisContexts.empty() &&
2413       CodeSynthesisContexts.back().Kind ==
2414           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2415   const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2416   bool isInstance = CurMethod && CurMethod->isInstance() &&
2417                     R.getNamingClass() == CurMethod->getParent() &&
2418                     !isDefaultArgument;
2419 
2420   // There are two ways we can find a class-scope declaration during template
2421   // instantiation that we did not find in the template definition: if it is a
2422   // member of a dependent base class, or if it is declared after the point of
2423   // use in the same class. Distinguish these by comparing the class in which
2424   // the member was found to the naming class of the lookup.
2425   unsigned DiagID = diag::err_found_in_dependent_base;
2426   unsigned NoteID = diag::note_member_declared_at;
2427   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2428     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2429                                       : diag::err_found_later_in_class;
2430   } else if (getLangOpts().MSVCCompat) {
2431     DiagID = diag::ext_found_in_dependent_base;
2432     NoteID = diag::note_dependent_member_use;
2433   }
2434 
2435   if (isInstance) {
2436     // Give a code modification hint to insert 'this->'.
2437     Diag(R.getNameLoc(), DiagID)
2438         << R.getLookupName()
2439         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2440     CheckCXXThisCapture(R.getNameLoc());
2441   } else {
2442     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2443     // they're not shadowed).
2444     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2445   }
2446 
2447   for (const NamedDecl *D : R)
2448     Diag(D->getLocation(), NoteID);
2449 
2450   // Return true if we are inside a default argument instantiation
2451   // and the found name refers to an instance member function, otherwise
2452   // the caller will try to create an implicit member call and this is wrong
2453   // for default arguments.
2454   //
2455   // FIXME: Is this special case necessary? We could allow the caller to
2456   // diagnose this.
2457   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2458     Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2459     return true;
2460   }
2461 
2462   // Tell the callee to try to recover.
2463   return false;
2464 }
2465 
2466 /// Diagnose an empty lookup.
2467 ///
2468 /// \return false if new lookup candidates were found
2469 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2470                                CorrectionCandidateCallback &CCC,
2471                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2472                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2473   DeclarationName Name = R.getLookupName();
2474 
2475   unsigned diagnostic = diag::err_undeclared_var_use;
2476   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2477   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2478       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2479       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2480     diagnostic = diag::err_undeclared_use;
2481     diagnostic_suggest = diag::err_undeclared_use_suggest;
2482   }
2483 
2484   // If the original lookup was an unqualified lookup, fake an
2485   // unqualified lookup.  This is useful when (for example) the
2486   // original lookup would not have found something because it was a
2487   // dependent name.
2488   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2489   while (DC) {
2490     if (isa<CXXRecordDecl>(DC)) {
2491       LookupQualifiedName(R, DC);
2492 
2493       if (!R.empty()) {
2494         // Don't give errors about ambiguities in this lookup.
2495         R.suppressDiagnostics();
2496 
2497         // If there's a best viable function among the results, only mention
2498         // that one in the notes.
2499         OverloadCandidateSet Candidates(R.getNameLoc(),
2500                                         OverloadCandidateSet::CSK_Normal);
2501         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2502         OverloadCandidateSet::iterator Best;
2503         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2504             OR_Success) {
2505           R.clear();
2506           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2507           R.resolveKind();
2508         }
2509 
2510         return DiagnoseDependentMemberLookup(R);
2511       }
2512 
2513       R.clear();
2514     }
2515 
2516     DC = DC->getLookupParent();
2517   }
2518 
2519   // We didn't find anything, so try to correct for a typo.
2520   TypoCorrection Corrected;
2521   if (S && Out) {
2522     SourceLocation TypoLoc = R.getNameLoc();
2523     assert(!ExplicitTemplateArgs &&
2524            "Diagnosing an empty lookup with explicit template args!");
2525     *Out = CorrectTypoDelayed(
2526         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2527         [=](const TypoCorrection &TC) {
2528           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2529                                         diagnostic, diagnostic_suggest);
2530         },
2531         nullptr, CTK_ErrorRecovery);
2532     if (*Out)
2533       return true;
2534   } else if (S &&
2535              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2536                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2537     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2538     bool DroppedSpecifier =
2539         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2540     R.setLookupName(Corrected.getCorrection());
2541 
2542     bool AcceptableWithRecovery = false;
2543     bool AcceptableWithoutRecovery = false;
2544     NamedDecl *ND = Corrected.getFoundDecl();
2545     if (ND) {
2546       if (Corrected.isOverloaded()) {
2547         OverloadCandidateSet OCS(R.getNameLoc(),
2548                                  OverloadCandidateSet::CSK_Normal);
2549         OverloadCandidateSet::iterator Best;
2550         for (NamedDecl *CD : Corrected) {
2551           if (FunctionTemplateDecl *FTD =
2552                    dyn_cast<FunctionTemplateDecl>(CD))
2553             AddTemplateOverloadCandidate(
2554                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2555                 Args, OCS);
2556           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2557             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2558               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2559                                    Args, OCS);
2560         }
2561         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2562         case OR_Success:
2563           ND = Best->FoundDecl;
2564           Corrected.setCorrectionDecl(ND);
2565           break;
2566         default:
2567           // FIXME: Arbitrarily pick the first declaration for the note.
2568           Corrected.setCorrectionDecl(ND);
2569           break;
2570         }
2571       }
2572       R.addDecl(ND);
2573       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2574         CXXRecordDecl *Record = nullptr;
2575         if (Corrected.getCorrectionSpecifier()) {
2576           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2577           Record = Ty->getAsCXXRecordDecl();
2578         }
2579         if (!Record)
2580           Record = cast<CXXRecordDecl>(
2581               ND->getDeclContext()->getRedeclContext());
2582         R.setNamingClass(Record);
2583       }
2584 
2585       auto *UnderlyingND = ND->getUnderlyingDecl();
2586       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2587                                isa<FunctionTemplateDecl>(UnderlyingND);
2588       // FIXME: If we ended up with a typo for a type name or
2589       // Objective-C class name, we're in trouble because the parser
2590       // is in the wrong place to recover. Suggest the typo
2591       // correction, but don't make it a fix-it since we're not going
2592       // to recover well anyway.
2593       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2594                                   getAsTypeTemplateDecl(UnderlyingND) ||
2595                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2596     } else {
2597       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2598       // because we aren't able to recover.
2599       AcceptableWithoutRecovery = true;
2600     }
2601 
2602     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2603       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2604                             ? diag::note_implicit_param_decl
2605                             : diag::note_previous_decl;
2606       if (SS.isEmpty())
2607         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2608                      PDiag(NoteID), AcceptableWithRecovery);
2609       else
2610         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2611                                   << Name << computeDeclContext(SS, false)
2612                                   << DroppedSpecifier << SS.getRange(),
2613                      PDiag(NoteID), AcceptableWithRecovery);
2614 
2615       // Tell the callee whether to try to recover.
2616       return !AcceptableWithRecovery;
2617     }
2618   }
2619   R.clear();
2620 
2621   // Emit a special diagnostic for failed member lookups.
2622   // FIXME: computing the declaration context might fail here (?)
2623   if (!SS.isEmpty()) {
2624     Diag(R.getNameLoc(), diag::err_no_member)
2625       << Name << computeDeclContext(SS, false)
2626       << SS.getRange();
2627     return true;
2628   }
2629 
2630   // Give up, we can't recover.
2631   Diag(R.getNameLoc(), diagnostic) << Name;
2632   return true;
2633 }
2634 
2635 /// In Microsoft mode, if we are inside a template class whose parent class has
2636 /// dependent base classes, and we can't resolve an unqualified identifier, then
2637 /// assume the identifier is a member of a dependent base class.  We can only
2638 /// recover successfully in static methods, instance methods, and other contexts
2639 /// where 'this' is available.  This doesn't precisely match MSVC's
2640 /// instantiation model, but it's close enough.
2641 static Expr *
2642 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2643                                DeclarationNameInfo &NameInfo,
2644                                SourceLocation TemplateKWLoc,
2645                                const TemplateArgumentListInfo *TemplateArgs) {
2646   // Only try to recover from lookup into dependent bases in static methods or
2647   // contexts where 'this' is available.
2648   QualType ThisType = S.getCurrentThisType();
2649   const CXXRecordDecl *RD = nullptr;
2650   if (!ThisType.isNull())
2651     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2652   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2653     RD = MD->getParent();
2654   if (!RD || !RD->hasAnyDependentBases())
2655     return nullptr;
2656 
2657   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2658   // is available, suggest inserting 'this->' as a fixit.
2659   SourceLocation Loc = NameInfo.getLoc();
2660   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2661   DB << NameInfo.getName() << RD;
2662 
2663   if (!ThisType.isNull()) {
2664     DB << FixItHint::CreateInsertion(Loc, "this->");
2665     return CXXDependentScopeMemberExpr::Create(
2666         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2667         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2668         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2669   }
2670 
2671   // Synthesize a fake NNS that points to the derived class.  This will
2672   // perform name lookup during template instantiation.
2673   CXXScopeSpec SS;
2674   auto *NNS =
2675       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2676   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2677   return DependentScopeDeclRefExpr::Create(
2678       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2679       TemplateArgs);
2680 }
2681 
2682 ExprResult
2683 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2684                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2685                         bool HasTrailingLParen, bool IsAddressOfOperand,
2686                         CorrectionCandidateCallback *CCC,
2687                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2688   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2689          "cannot be direct & operand and have a trailing lparen");
2690   if (SS.isInvalid())
2691     return ExprError();
2692 
2693   TemplateArgumentListInfo TemplateArgsBuffer;
2694 
2695   // Decompose the UnqualifiedId into the following data.
2696   DeclarationNameInfo NameInfo;
2697   const TemplateArgumentListInfo *TemplateArgs;
2698   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2699 
2700   DeclarationName Name = NameInfo.getName();
2701   IdentifierInfo *II = Name.getAsIdentifierInfo();
2702   SourceLocation NameLoc = NameInfo.getLoc();
2703 
2704   if (II && II->isEditorPlaceholder()) {
2705     // FIXME: When typed placeholders are supported we can create a typed
2706     // placeholder expression node.
2707     return ExprError();
2708   }
2709 
2710   // C++ [temp.dep.expr]p3:
2711   //   An id-expression is type-dependent if it contains:
2712   //     -- an identifier that was declared with a dependent type,
2713   //        (note: handled after lookup)
2714   //     -- a template-id that is dependent,
2715   //        (note: handled in BuildTemplateIdExpr)
2716   //     -- a conversion-function-id that specifies a dependent type,
2717   //     -- a nested-name-specifier that contains a class-name that
2718   //        names a dependent type.
2719   // Determine whether this is a member of an unknown specialization;
2720   // we need to handle these differently.
2721   bool DependentID = false;
2722   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2723       Name.getCXXNameType()->isDependentType()) {
2724     DependentID = true;
2725   } else if (SS.isSet()) {
2726     if (DeclContext *DC = computeDeclContext(SS, false)) {
2727       if (RequireCompleteDeclContext(SS, DC))
2728         return ExprError();
2729     } else {
2730       DependentID = true;
2731     }
2732   }
2733 
2734   if (DependentID)
2735     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2736                                       IsAddressOfOperand, TemplateArgs);
2737 
2738   // Perform the required lookup.
2739   LookupResult R(*this, NameInfo,
2740                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2741                      ? LookupObjCImplicitSelfParam
2742                      : LookupOrdinaryName);
2743   if (TemplateKWLoc.isValid() || TemplateArgs) {
2744     // Lookup the template name again to correctly establish the context in
2745     // which it was found. This is really unfortunate as we already did the
2746     // lookup to determine that it was a template name in the first place. If
2747     // this becomes a performance hit, we can work harder to preserve those
2748     // results until we get here but it's likely not worth it.
2749     bool MemberOfUnknownSpecialization;
2750     AssumedTemplateKind AssumedTemplate;
2751     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2752                            MemberOfUnknownSpecialization, TemplateKWLoc,
2753                            &AssumedTemplate))
2754       return ExprError();
2755 
2756     if (MemberOfUnknownSpecialization ||
2757         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2758       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2759                                         IsAddressOfOperand, TemplateArgs);
2760   } else {
2761     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2762     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2763 
2764     // If the result might be in a dependent base class, this is a dependent
2765     // id-expression.
2766     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2767       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2768                                         IsAddressOfOperand, TemplateArgs);
2769 
2770     // If this reference is in an Objective-C method, then we need to do
2771     // some special Objective-C lookup, too.
2772     if (IvarLookupFollowUp) {
2773       ExprResult E(LookupInObjCMethod(R, S, II, true));
2774       if (E.isInvalid())
2775         return ExprError();
2776 
2777       if (Expr *Ex = E.getAs<Expr>())
2778         return Ex;
2779     }
2780   }
2781 
2782   if (R.isAmbiguous())
2783     return ExprError();
2784 
2785   // This could be an implicitly declared function reference if the language
2786   // mode allows it as a feature.
2787   if (R.empty() && HasTrailingLParen && II &&
2788       getLangOpts().implicitFunctionsAllowed()) {
2789     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2790     if (D) R.addDecl(D);
2791   }
2792 
2793   // Determine whether this name might be a candidate for
2794   // argument-dependent lookup.
2795   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2796 
2797   if (R.empty() && !ADL) {
2798     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2799       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2800                                                    TemplateKWLoc, TemplateArgs))
2801         return E;
2802     }
2803 
2804     // Don't diagnose an empty lookup for inline assembly.
2805     if (IsInlineAsmIdentifier)
2806       return ExprError();
2807 
2808     // If this name wasn't predeclared and if this is not a function
2809     // call, diagnose the problem.
2810     TypoExpr *TE = nullptr;
2811     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2812                                                        : nullptr);
2813     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2814     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2815            "Typo correction callback misconfigured");
2816     if (CCC) {
2817       // Make sure the callback knows what the typo being diagnosed is.
2818       CCC->setTypoName(II);
2819       if (SS.isValid())
2820         CCC->setTypoNNS(SS.getScopeRep());
2821     }
2822     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2823     // a template name, but we happen to have always already looked up the name
2824     // before we get here if it must be a template name.
2825     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2826                             std::nullopt, &TE)) {
2827       if (TE && KeywordReplacement) {
2828         auto &State = getTypoExprState(TE);
2829         auto BestTC = State.Consumer->getNextCorrection();
2830         if (BestTC.isKeyword()) {
2831           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2832           if (State.DiagHandler)
2833             State.DiagHandler(BestTC);
2834           KeywordReplacement->startToken();
2835           KeywordReplacement->setKind(II->getTokenID());
2836           KeywordReplacement->setIdentifierInfo(II);
2837           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2838           // Clean up the state associated with the TypoExpr, since it has
2839           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2840           clearDelayedTypo(TE);
2841           // Signal that a correction to a keyword was performed by returning a
2842           // valid-but-null ExprResult.
2843           return (Expr*)nullptr;
2844         }
2845         State.Consumer->resetCorrectionStream();
2846       }
2847       return TE ? TE : ExprError();
2848     }
2849 
2850     assert(!R.empty() &&
2851            "DiagnoseEmptyLookup returned false but added no results");
2852 
2853     // If we found an Objective-C instance variable, let
2854     // LookupInObjCMethod build the appropriate expression to
2855     // reference the ivar.
2856     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2857       R.clear();
2858       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2859       // In a hopelessly buggy code, Objective-C instance variable
2860       // lookup fails and no expression will be built to reference it.
2861       if (!E.isInvalid() && !E.get())
2862         return ExprError();
2863       return E;
2864     }
2865   }
2866 
2867   // This is guaranteed from this point on.
2868   assert(!R.empty() || ADL);
2869 
2870   // Check whether this might be a C++ implicit instance member access.
2871   // C++ [class.mfct.non-static]p3:
2872   //   When an id-expression that is not part of a class member access
2873   //   syntax and not used to form a pointer to member is used in the
2874   //   body of a non-static member function of class X, if name lookup
2875   //   resolves the name in the id-expression to a non-static non-type
2876   //   member of some class C, the id-expression is transformed into a
2877   //   class member access expression using (*this) as the
2878   //   postfix-expression to the left of the . operator.
2879   //
2880   // But we don't actually need to do this for '&' operands if R
2881   // resolved to a function or overloaded function set, because the
2882   // expression is ill-formed if it actually works out to be a
2883   // non-static member function:
2884   //
2885   // C++ [expr.ref]p4:
2886   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2887   //   [t]he expression can be used only as the left-hand operand of a
2888   //   member function call.
2889   //
2890   // There are other safeguards against such uses, but it's important
2891   // to get this right here so that we don't end up making a
2892   // spuriously dependent expression if we're inside a dependent
2893   // instance method.
2894   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2895     bool MightBeImplicitMember;
2896     if (!IsAddressOfOperand)
2897       MightBeImplicitMember = true;
2898     else if (!SS.isEmpty())
2899       MightBeImplicitMember = false;
2900     else if (R.isOverloadedResult())
2901       MightBeImplicitMember = false;
2902     else if (R.isUnresolvableResult())
2903       MightBeImplicitMember = true;
2904     else
2905       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2906                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2907                               isa<MSPropertyDecl>(R.getFoundDecl());
2908 
2909     if (MightBeImplicitMember)
2910       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2911                                              R, TemplateArgs, S);
2912   }
2913 
2914   if (TemplateArgs || TemplateKWLoc.isValid()) {
2915 
2916     // In C++1y, if this is a variable template id, then check it
2917     // in BuildTemplateIdExpr().
2918     // The single lookup result must be a variable template declaration.
2919     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2920         Id.TemplateId->Kind == TNK_Var_template) {
2921       assert(R.getAsSingle<VarTemplateDecl>() &&
2922              "There should only be one declaration found.");
2923     }
2924 
2925     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2926   }
2927 
2928   return BuildDeclarationNameExpr(SS, R, ADL);
2929 }
2930 
2931 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2932 /// declaration name, generally during template instantiation.
2933 /// There's a large number of things which don't need to be done along
2934 /// this path.
2935 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2936     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2937     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2938   if (NameInfo.getName().isDependentName())
2939     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2940                                      NameInfo, /*TemplateArgs=*/nullptr);
2941 
2942   DeclContext *DC = computeDeclContext(SS, false);
2943   if (!DC)
2944     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2945                                      NameInfo, /*TemplateArgs=*/nullptr);
2946 
2947   if (RequireCompleteDeclContext(SS, DC))
2948     return ExprError();
2949 
2950   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2951   LookupQualifiedName(R, DC);
2952 
2953   if (R.isAmbiguous())
2954     return ExprError();
2955 
2956   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2957     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2958                                      NameInfo, /*TemplateArgs=*/nullptr);
2959 
2960   if (R.empty()) {
2961     // Don't diagnose problems with invalid record decl, the secondary no_member
2962     // diagnostic during template instantiation is likely bogus, e.g. if a class
2963     // is invalid because it's derived from an invalid base class, then missing
2964     // members were likely supposed to be inherited.
2965     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2966       if (CD->isInvalidDecl())
2967         return ExprError();
2968     Diag(NameInfo.getLoc(), diag::err_no_member)
2969       << NameInfo.getName() << DC << SS.getRange();
2970     return ExprError();
2971   }
2972 
2973   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2974     // Diagnose a missing typename if this resolved unambiguously to a type in
2975     // a dependent context.  If we can recover with a type, downgrade this to
2976     // a warning in Microsoft compatibility mode.
2977     unsigned DiagID = diag::err_typename_missing;
2978     if (RecoveryTSI && getLangOpts().MSVCCompat)
2979       DiagID = diag::ext_typename_missing;
2980     SourceLocation Loc = SS.getBeginLoc();
2981     auto D = Diag(Loc, DiagID);
2982     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2983       << SourceRange(Loc, NameInfo.getEndLoc());
2984 
2985     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2986     // context.
2987     if (!RecoveryTSI)
2988       return ExprError();
2989 
2990     // Only issue the fixit if we're prepared to recover.
2991     D << FixItHint::CreateInsertion(Loc, "typename ");
2992 
2993     // Recover by pretending this was an elaborated type.
2994     QualType Ty = Context.getTypeDeclType(TD);
2995     TypeLocBuilder TLB;
2996     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2997 
2998     QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
2999     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
3000     QTL.setElaboratedKeywordLoc(SourceLocation());
3001     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
3002 
3003     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
3004 
3005     return ExprEmpty();
3006   }
3007 
3008   // Defend against this resolving to an implicit member access. We usually
3009   // won't get here if this might be a legitimate a class member (we end up in
3010   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
3011   // a pointer-to-member or in an unevaluated context in C++11.
3012   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
3013     return BuildPossibleImplicitMemberExpr(SS,
3014                                            /*TemplateKWLoc=*/SourceLocation(),
3015                                            R, /*TemplateArgs=*/nullptr, S);
3016 
3017   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
3018 }
3019 
3020 /// The parser has read a name in, and Sema has detected that we're currently
3021 /// inside an ObjC method. Perform some additional checks and determine if we
3022 /// should form a reference to an ivar.
3023 ///
3024 /// Ideally, most of this would be done by lookup, but there's
3025 /// actually quite a lot of extra work involved.
3026 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
3027                                         IdentifierInfo *II) {
3028   SourceLocation Loc = Lookup.getNameLoc();
3029   ObjCMethodDecl *CurMethod = getCurMethodDecl();
3030 
3031   // Check for error condition which is already reported.
3032   if (!CurMethod)
3033     return DeclResult(true);
3034 
3035   // There are two cases to handle here.  1) scoped lookup could have failed,
3036   // in which case we should look for an ivar.  2) scoped lookup could have
3037   // found a decl, but that decl is outside the current instance method (i.e.
3038   // a global variable).  In these two cases, we do a lookup for an ivar with
3039   // this name, if the lookup sucedes, we replace it our current decl.
3040 
3041   // If we're in a class method, we don't normally want to look for
3042   // ivars.  But if we don't find anything else, and there's an
3043   // ivar, that's an error.
3044   bool IsClassMethod = CurMethod->isClassMethod();
3045 
3046   bool LookForIvars;
3047   if (Lookup.empty())
3048     LookForIvars = true;
3049   else if (IsClassMethod)
3050     LookForIvars = false;
3051   else
3052     LookForIvars = (Lookup.isSingleResult() &&
3053                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
3054   ObjCInterfaceDecl *IFace = nullptr;
3055   if (LookForIvars) {
3056     IFace = CurMethod->getClassInterface();
3057     ObjCInterfaceDecl *ClassDeclared;
3058     ObjCIvarDecl *IV = nullptr;
3059     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
3060       // Diagnose using an ivar in a class method.
3061       if (IsClassMethod) {
3062         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3063         return DeclResult(true);
3064       }
3065 
3066       // Diagnose the use of an ivar outside of the declaring class.
3067       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
3068           !declaresSameEntity(ClassDeclared, IFace) &&
3069           !getLangOpts().DebuggerSupport)
3070         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
3071 
3072       // Success.
3073       return IV;
3074     }
3075   } else if (CurMethod->isInstanceMethod()) {
3076     // We should warn if a local variable hides an ivar.
3077     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
3078       ObjCInterfaceDecl *ClassDeclared;
3079       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
3080         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
3081             declaresSameEntity(IFace, ClassDeclared))
3082           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
3083       }
3084     }
3085   } else if (Lookup.isSingleResult() &&
3086              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
3087     // If accessing a stand-alone ivar in a class method, this is an error.
3088     if (const ObjCIvarDecl *IV =
3089             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
3090       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3091       return DeclResult(true);
3092     }
3093   }
3094 
3095   // Didn't encounter an error, didn't find an ivar.
3096   return DeclResult(false);
3097 }
3098 
3099 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
3100                                   ObjCIvarDecl *IV) {
3101   ObjCMethodDecl *CurMethod = getCurMethodDecl();
3102   assert(CurMethod && CurMethod->isInstanceMethod() &&
3103          "should not reference ivar from this context");
3104 
3105   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
3106   assert(IFace && "should not reference ivar from this context");
3107 
3108   // If we're referencing an invalid decl, just return this as a silent
3109   // error node.  The error diagnostic was already emitted on the decl.
3110   if (IV->isInvalidDecl())
3111     return ExprError();
3112 
3113   // Check if referencing a field with __attribute__((deprecated)).
3114   if (DiagnoseUseOfDecl(IV, Loc))
3115     return ExprError();
3116 
3117   // FIXME: This should use a new expr for a direct reference, don't
3118   // turn this into Self->ivar, just return a BareIVarExpr or something.
3119   IdentifierInfo &II = Context.Idents.get("self");
3120   UnqualifiedId SelfName;
3121   SelfName.setImplicitSelfParam(&II);
3122   CXXScopeSpec SelfScopeSpec;
3123   SourceLocation TemplateKWLoc;
3124   ExprResult SelfExpr =
3125       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
3126                         /*HasTrailingLParen=*/false,
3127                         /*IsAddressOfOperand=*/false);
3128   if (SelfExpr.isInvalid())
3129     return ExprError();
3130 
3131   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
3132   if (SelfExpr.isInvalid())
3133     return ExprError();
3134 
3135   MarkAnyDeclReferenced(Loc, IV, true);
3136 
3137   ObjCMethodFamily MF = CurMethod->getMethodFamily();
3138   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
3139       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
3140     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
3141 
3142   ObjCIvarRefExpr *Result = new (Context)
3143       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
3144                       IV->getLocation(), SelfExpr.get(), true, true);
3145 
3146   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3147     if (!isUnevaluatedContext() &&
3148         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
3149       getCurFunction()->recordUseOfWeak(Result);
3150   }
3151   if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
3152     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
3153       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
3154 
3155   return Result;
3156 }
3157 
3158 /// The parser has read a name in, and Sema has detected that we're currently
3159 /// inside an ObjC method. Perform some additional checks and determine if we
3160 /// should form a reference to an ivar. If so, build an expression referencing
3161 /// that ivar.
3162 ExprResult
3163 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
3164                          IdentifierInfo *II, bool AllowBuiltinCreation) {
3165   // FIXME: Integrate this lookup step into LookupParsedName.
3166   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
3167   if (Ivar.isInvalid())
3168     return ExprError();
3169   if (Ivar.isUsable())
3170     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
3171                             cast<ObjCIvarDecl>(Ivar.get()));
3172 
3173   if (Lookup.empty() && II && AllowBuiltinCreation)
3174     LookupBuiltin(Lookup);
3175 
3176   // Sentinel value saying that we didn't do anything special.
3177   return ExprResult(false);
3178 }
3179 
3180 /// Cast a base object to a member's actual type.
3181 ///
3182 /// There are two relevant checks:
3183 ///
3184 /// C++ [class.access.base]p7:
3185 ///
3186 ///   If a class member access operator [...] is used to access a non-static
3187 ///   data member or non-static member function, the reference is ill-formed if
3188 ///   the left operand [...] cannot be implicitly converted to a pointer to the
3189 ///   naming class of the right operand.
3190 ///
3191 /// C++ [expr.ref]p7:
3192 ///
3193 ///   If E2 is a non-static data member or a non-static member function, the
3194 ///   program is ill-formed if the class of which E2 is directly a member is an
3195 ///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
3196 ///
3197 /// Note that the latter check does not consider access; the access of the
3198 /// "real" base class is checked as appropriate when checking the access of the
3199 /// member name.
3200 ExprResult
3201 Sema::PerformObjectMemberConversion(Expr *From,
3202                                     NestedNameSpecifier *Qualifier,
3203                                     NamedDecl *FoundDecl,
3204                                     NamedDecl *Member) {
3205   const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3206   if (!RD)
3207     return From;
3208 
3209   QualType DestRecordType;
3210   QualType DestType;
3211   QualType FromRecordType;
3212   QualType FromType = From->getType();
3213   bool PointerConversions = false;
3214   if (isa<FieldDecl>(Member)) {
3215     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3216     auto FromPtrType = FromType->getAs<PointerType>();
3217     DestRecordType = Context.getAddrSpaceQualType(
3218         DestRecordType, FromPtrType
3219                             ? FromType->getPointeeType().getAddressSpace()
3220                             : FromType.getAddressSpace());
3221 
3222     if (FromPtrType) {
3223       DestType = Context.getPointerType(DestRecordType);
3224       FromRecordType = FromPtrType->getPointeeType();
3225       PointerConversions = true;
3226     } else {
3227       DestType = DestRecordType;
3228       FromRecordType = FromType;
3229     }
3230   } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
3231     if (!Method->isImplicitObjectMemberFunction())
3232       return From;
3233 
3234     DestType = Method->getThisType().getNonReferenceType();
3235     DestRecordType = Method->getFunctionObjectParameterType();
3236 
3237     if (FromType->getAs<PointerType>()) {
3238       FromRecordType = FromType->getPointeeType();
3239       PointerConversions = true;
3240     } else {
3241       FromRecordType = FromType;
3242       DestType = DestRecordType;
3243     }
3244 
3245     LangAS FromAS = FromRecordType.getAddressSpace();
3246     LangAS DestAS = DestRecordType.getAddressSpace();
3247     if (FromAS != DestAS) {
3248       QualType FromRecordTypeWithoutAS =
3249           Context.removeAddrSpaceQualType(FromRecordType);
3250       QualType FromTypeWithDestAS =
3251           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3252       if (PointerConversions)
3253         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3254       From = ImpCastExprToType(From, FromTypeWithDestAS,
3255                                CK_AddressSpaceConversion, From->getValueKind())
3256                  .get();
3257     }
3258   } else {
3259     // No conversion necessary.
3260     return From;
3261   }
3262 
3263   if (DestType->isDependentType() || FromType->isDependentType())
3264     return From;
3265 
3266   // If the unqualified types are the same, no conversion is necessary.
3267   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3268     return From;
3269 
3270   SourceRange FromRange = From->getSourceRange();
3271   SourceLocation FromLoc = FromRange.getBegin();
3272 
3273   ExprValueKind VK = From->getValueKind();
3274 
3275   // C++ [class.member.lookup]p8:
3276   //   [...] Ambiguities can often be resolved by qualifying a name with its
3277   //   class name.
3278   //
3279   // If the member was a qualified name and the qualified referred to a
3280   // specific base subobject type, we'll cast to that intermediate type
3281   // first and then to the object in which the member is declared. That allows
3282   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3283   //
3284   //   class Base { public: int x; };
3285   //   class Derived1 : public Base { };
3286   //   class Derived2 : public Base { };
3287   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3288   //
3289   //   void VeryDerived::f() {
3290   //     x = 17; // error: ambiguous base subobjects
3291   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3292   //   }
3293   if (Qualifier && Qualifier->getAsType()) {
3294     QualType QType = QualType(Qualifier->getAsType(), 0);
3295     assert(QType->isRecordType() && "lookup done with non-record type");
3296 
3297     QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3298 
3299     // In C++98, the qualifier type doesn't actually have to be a base
3300     // type of the object type, in which case we just ignore it.
3301     // Otherwise build the appropriate casts.
3302     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3303       CXXCastPath BasePath;
3304       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3305                                        FromLoc, FromRange, &BasePath))
3306         return ExprError();
3307 
3308       if (PointerConversions)
3309         QType = Context.getPointerType(QType);
3310       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3311                                VK, &BasePath).get();
3312 
3313       FromType = QType;
3314       FromRecordType = QRecordType;
3315 
3316       // If the qualifier type was the same as the destination type,
3317       // we're done.
3318       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3319         return From;
3320     }
3321   }
3322 
3323   CXXCastPath BasePath;
3324   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3325                                    FromLoc, FromRange, &BasePath,
3326                                    /*IgnoreAccess=*/true))
3327     return ExprError();
3328 
3329   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3330                            VK, &BasePath);
3331 }
3332 
3333 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3334                                       const LookupResult &R,
3335                                       bool HasTrailingLParen) {
3336   // Only when used directly as the postfix-expression of a call.
3337   if (!HasTrailingLParen)
3338     return false;
3339 
3340   // Never if a scope specifier was provided.
3341   if (SS.isSet())
3342     return false;
3343 
3344   // Only in C++ or ObjC++.
3345   if (!getLangOpts().CPlusPlus)
3346     return false;
3347 
3348   // Turn off ADL when we find certain kinds of declarations during
3349   // normal lookup:
3350   for (const NamedDecl *D : R) {
3351     // C++0x [basic.lookup.argdep]p3:
3352     //     -- a declaration of a class member
3353     // Since using decls preserve this property, we check this on the
3354     // original decl.
3355     if (D->isCXXClassMember())
3356       return false;
3357 
3358     // C++0x [basic.lookup.argdep]p3:
3359     //     -- a block-scope function declaration that is not a
3360     //        using-declaration
3361     // NOTE: we also trigger this for function templates (in fact, we
3362     // don't check the decl type at all, since all other decl types
3363     // turn off ADL anyway).
3364     if (isa<UsingShadowDecl>(D))
3365       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3366     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3367       return false;
3368 
3369     // C++0x [basic.lookup.argdep]p3:
3370     //     -- a declaration that is neither a function or a function
3371     //        template
3372     // And also for builtin functions.
3373     if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3374       // But also builtin functions.
3375       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3376         return false;
3377     } else if (!isa<FunctionTemplateDecl>(D))
3378       return false;
3379   }
3380 
3381   return true;
3382 }
3383 
3384 
3385 /// Diagnoses obvious problems with the use of the given declaration
3386 /// as an expression.  This is only actually called for lookups that
3387 /// were not overloaded, and it doesn't promise that the declaration
3388 /// will in fact be used.
3389 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3390                             bool AcceptInvalid) {
3391   if (D->isInvalidDecl() && !AcceptInvalid)
3392     return true;
3393 
3394   if (isa<TypedefNameDecl>(D)) {
3395     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3396     return true;
3397   }
3398 
3399   if (isa<ObjCInterfaceDecl>(D)) {
3400     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3401     return true;
3402   }
3403 
3404   if (isa<NamespaceDecl>(D)) {
3405     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3406     return true;
3407   }
3408 
3409   return false;
3410 }
3411 
3412 // Certain multiversion types should be treated as overloaded even when there is
3413 // only one result.
3414 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3415   assert(R.isSingleResult() && "Expected only a single result");
3416   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3417   return FD &&
3418          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3419 }
3420 
3421 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3422                                           LookupResult &R, bool NeedsADL,
3423                                           bool AcceptInvalidDecl) {
3424   // If this is a single, fully-resolved result and we don't need ADL,
3425   // just build an ordinary singleton decl ref.
3426   if (!NeedsADL && R.isSingleResult() &&
3427       !R.getAsSingle<FunctionTemplateDecl>() &&
3428       !ShouldLookupResultBeMultiVersionOverload(R))
3429     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3430                                     R.getRepresentativeDecl(), nullptr,
3431                                     AcceptInvalidDecl);
3432 
3433   // We only need to check the declaration if there's exactly one
3434   // result, because in the overloaded case the results can only be
3435   // functions and function templates.
3436   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3437       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3438                       AcceptInvalidDecl))
3439     return ExprError();
3440 
3441   // Otherwise, just build an unresolved lookup expression.  Suppress
3442   // any lookup-related diagnostics; we'll hash these out later, when
3443   // we've picked a target.
3444   R.suppressDiagnostics();
3445 
3446   UnresolvedLookupExpr *ULE
3447     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3448                                    SS.getWithLocInContext(Context),
3449                                    R.getLookupNameInfo(),
3450                                    NeedsADL, R.isOverloadedResult(),
3451                                    R.begin(), R.end());
3452 
3453   return ULE;
3454 }
3455 
3456 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3457                                                         SourceLocation loc,
3458                                                         ValueDecl *var);
3459 
3460 /// Complete semantic analysis for a reference to the given declaration.
3461 ExprResult Sema::BuildDeclarationNameExpr(
3462     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3463     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3464     bool AcceptInvalidDecl) {
3465   assert(D && "Cannot refer to a NULL declaration");
3466   assert(!isa<FunctionTemplateDecl>(D) &&
3467          "Cannot refer unambiguously to a function template");
3468 
3469   SourceLocation Loc = NameInfo.getLoc();
3470   if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3471     // Recovery from invalid cases (e.g. D is an invalid Decl).
3472     // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3473     // diagnostics, as invalid decls use int as a fallback type.
3474     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3475   }
3476 
3477   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3478     // Specifically diagnose references to class templates that are missing
3479     // a template argument list.
3480     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3481     return ExprError();
3482   }
3483 
3484   // Make sure that we're referring to a value.
3485   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3486     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3487     Diag(D->getLocation(), diag::note_declared_at);
3488     return ExprError();
3489   }
3490 
3491   // Check whether this declaration can be used. Note that we suppress
3492   // this check when we're going to perform argument-dependent lookup
3493   // on this function name, because this might not be the function
3494   // that overload resolution actually selects.
3495   if (DiagnoseUseOfDecl(D, Loc))
3496     return ExprError();
3497 
3498   auto *VD = cast<ValueDecl>(D);
3499 
3500   // Only create DeclRefExpr's for valid Decl's.
3501   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3502     return ExprError();
3503 
3504   // Handle members of anonymous structs and unions.  If we got here,
3505   // and the reference is to a class member indirect field, then this
3506   // must be the subject of a pointer-to-member expression.
3507   if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3508       IndirectField && !IndirectField->isCXXClassMember())
3509     return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3510                                                     IndirectField);
3511 
3512   QualType type = VD->getType();
3513   if (type.isNull())
3514     return ExprError();
3515   ExprValueKind valueKind = VK_PRValue;
3516 
3517   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3518   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3519   // is expanded by some outer '...' in the context of the use.
3520   type = type.getNonPackExpansionType();
3521 
3522   switch (D->getKind()) {
3523     // Ignore all the non-ValueDecl kinds.
3524 #define ABSTRACT_DECL(kind)
3525 #define VALUE(type, base)
3526 #define DECL(type, base) case Decl::type:
3527 #include "clang/AST/DeclNodes.inc"
3528     llvm_unreachable("invalid value decl kind");
3529 
3530   // These shouldn't make it here.
3531   case Decl::ObjCAtDefsField:
3532     llvm_unreachable("forming non-member reference to ivar?");
3533 
3534   // Enum constants are always r-values and never references.
3535   // Unresolved using declarations are dependent.
3536   case Decl::EnumConstant:
3537   case Decl::UnresolvedUsingValue:
3538   case Decl::OMPDeclareReduction:
3539   case Decl::OMPDeclareMapper:
3540     valueKind = VK_PRValue;
3541     break;
3542 
3543   // Fields and indirect fields that got here must be for
3544   // pointer-to-member expressions; we just call them l-values for
3545   // internal consistency, because this subexpression doesn't really
3546   // exist in the high-level semantics.
3547   case Decl::Field:
3548   case Decl::IndirectField:
3549   case Decl::ObjCIvar:
3550     assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3551 
3552     // These can't have reference type in well-formed programs, but
3553     // for internal consistency we do this anyway.
3554     type = type.getNonReferenceType();
3555     valueKind = VK_LValue;
3556     break;
3557 
3558   // Non-type template parameters are either l-values or r-values
3559   // depending on the type.
3560   case Decl::NonTypeTemplateParm: {
3561     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3562       type = reftype->getPointeeType();
3563       valueKind = VK_LValue; // even if the parameter is an r-value reference
3564       break;
3565     }
3566 
3567     // [expr.prim.id.unqual]p2:
3568     //   If the entity is a template parameter object for a template
3569     //   parameter of type T, the type of the expression is const T.
3570     //   [...] The expression is an lvalue if the entity is a [...] template
3571     //   parameter object.
3572     if (type->isRecordType()) {
3573       type = type.getUnqualifiedType().withConst();
3574       valueKind = VK_LValue;
3575       break;
3576     }
3577 
3578     // For non-references, we need to strip qualifiers just in case
3579     // the template parameter was declared as 'const int' or whatever.
3580     valueKind = VK_PRValue;
3581     type = type.getUnqualifiedType();
3582     break;
3583   }
3584 
3585   case Decl::Var:
3586   case Decl::VarTemplateSpecialization:
3587   case Decl::VarTemplatePartialSpecialization:
3588   case Decl::Decomposition:
3589   case Decl::OMPCapturedExpr:
3590     // In C, "extern void blah;" is valid and is an r-value.
3591     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3592         type->isVoidType()) {
3593       valueKind = VK_PRValue;
3594       break;
3595     }
3596     [[fallthrough]];
3597 
3598   case Decl::ImplicitParam:
3599   case Decl::ParmVar: {
3600     // These are always l-values.
3601     valueKind = VK_LValue;
3602     type = type.getNonReferenceType();
3603 
3604     // FIXME: Does the addition of const really only apply in
3605     // potentially-evaluated contexts? Since the variable isn't actually
3606     // captured in an unevaluated context, it seems that the answer is no.
3607     if (!isUnevaluatedContext()) {
3608       QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3609       if (!CapturedType.isNull())
3610         type = CapturedType;
3611     }
3612 
3613     break;
3614   }
3615 
3616   case Decl::Binding:
3617     // These are always lvalues.
3618     valueKind = VK_LValue;
3619     type = type.getNonReferenceType();
3620     break;
3621 
3622   case Decl::Function: {
3623     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3624       if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3625         type = Context.BuiltinFnTy;
3626         valueKind = VK_PRValue;
3627         break;
3628       }
3629     }
3630 
3631     const FunctionType *fty = type->castAs<FunctionType>();
3632 
3633     // If we're referring to a function with an __unknown_anytype
3634     // result type, make the entire expression __unknown_anytype.
3635     if (fty->getReturnType() == Context.UnknownAnyTy) {
3636       type = Context.UnknownAnyTy;
3637       valueKind = VK_PRValue;
3638       break;
3639     }
3640 
3641     // Functions are l-values in C++.
3642     if (getLangOpts().CPlusPlus) {
3643       valueKind = VK_LValue;
3644       break;
3645     }
3646 
3647     // C99 DR 316 says that, if a function type comes from a
3648     // function definition (without a prototype), that type is only
3649     // used for checking compatibility. Therefore, when referencing
3650     // the function, we pretend that we don't have the full function
3651     // type.
3652     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3653       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3654                                             fty->getExtInfo());
3655 
3656     // Functions are r-values in C.
3657     valueKind = VK_PRValue;
3658     break;
3659   }
3660 
3661   case Decl::CXXDeductionGuide:
3662     llvm_unreachable("building reference to deduction guide");
3663 
3664   case Decl::MSProperty:
3665   case Decl::MSGuid:
3666   case Decl::TemplateParamObject:
3667     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3668     // capture in OpenMP, or duplicated between host and device?
3669     valueKind = VK_LValue;
3670     break;
3671 
3672   case Decl::UnnamedGlobalConstant:
3673     valueKind = VK_LValue;
3674     break;
3675 
3676   case Decl::CXXMethod:
3677     // If we're referring to a method with an __unknown_anytype
3678     // result type, make the entire expression __unknown_anytype.
3679     // This should only be possible with a type written directly.
3680     if (const FunctionProtoType *proto =
3681             dyn_cast<FunctionProtoType>(VD->getType()))
3682       if (proto->getReturnType() == Context.UnknownAnyTy) {
3683         type = Context.UnknownAnyTy;
3684         valueKind = VK_PRValue;
3685         break;
3686       }
3687 
3688     // C++ methods are l-values if static, r-values if non-static.
3689     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3690       valueKind = VK_LValue;
3691       break;
3692     }
3693     [[fallthrough]];
3694 
3695   case Decl::CXXConversion:
3696   case Decl::CXXDestructor:
3697   case Decl::CXXConstructor:
3698     valueKind = VK_PRValue;
3699     break;
3700   }
3701 
3702   auto *E =
3703       BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3704                        /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3705   // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3706   // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3707   // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3708   // diagnostics).
3709   if (VD->isInvalidDecl() && E)
3710     return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3711   return E;
3712 }
3713 
3714 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3715                                     SmallString<32> &Target) {
3716   Target.resize(CharByteWidth * (Source.size() + 1));
3717   char *ResultPtr = &Target[0];
3718   const llvm::UTF8 *ErrorPtr;
3719   bool success =
3720       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3721   (void)success;
3722   assert(success);
3723   Target.resize(ResultPtr - &Target[0]);
3724 }
3725 
3726 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3727                                      PredefinedIdentKind IK) {
3728   Decl *currentDecl = getPredefinedExprDecl(CurContext);
3729   if (!currentDecl) {
3730     Diag(Loc, diag::ext_predef_outside_function);
3731     currentDecl = Context.getTranslationUnitDecl();
3732   }
3733 
3734   QualType ResTy;
3735   StringLiteral *SL = nullptr;
3736   if (cast<DeclContext>(currentDecl)->isDependentContext())
3737     ResTy = Context.DependentTy;
3738   else {
3739     // Pre-defined identifiers are of type char[x], where x is the length of
3740     // the string.
3741     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3742     unsigned Length = Str.length();
3743 
3744     llvm::APInt LengthI(32, Length + 1);
3745     if (IK == PredefinedIdentKind::LFunction ||
3746         IK == PredefinedIdentKind::LFuncSig) {
3747       ResTy =
3748           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3749       SmallString<32> RawChars;
3750       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3751                               Str, RawChars);
3752       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3753                                            ArraySizeModifier::Normal,
3754                                            /*IndexTypeQuals*/ 0);
3755       SL = StringLiteral::Create(Context, RawChars, StringLiteralKind::Wide,
3756                                  /*Pascal*/ false, ResTy, Loc);
3757     } else {
3758       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3759       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3760                                            ArraySizeModifier::Normal,
3761                                            /*IndexTypeQuals*/ 0);
3762       SL = StringLiteral::Create(Context, Str, StringLiteralKind::Ordinary,
3763                                  /*Pascal*/ false, ResTy, Loc);
3764     }
3765   }
3766 
3767   return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3768                                 SL);
3769 }
3770 
3771 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3772                                                SourceLocation LParen,
3773                                                SourceLocation RParen,
3774                                                TypeSourceInfo *TSI) {
3775   return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3776 }
3777 
3778 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3779                                                SourceLocation LParen,
3780                                                SourceLocation RParen,
3781                                                ParsedType ParsedTy) {
3782   TypeSourceInfo *TSI = nullptr;
3783   QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3784 
3785   if (Ty.isNull())
3786     return ExprError();
3787   if (!TSI)
3788     TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3789 
3790   return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3791 }
3792 
3793 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3794   return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3795 }
3796 
3797 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3798   SmallString<16> CharBuffer;
3799   bool Invalid = false;
3800   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3801   if (Invalid)
3802     return ExprError();
3803 
3804   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3805                             PP, Tok.getKind());
3806   if (Literal.hadError())
3807     return ExprError();
3808 
3809   QualType Ty;
3810   if (Literal.isWide())
3811     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3812   else if (Literal.isUTF8() && getLangOpts().C23)
3813     Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3814   else if (Literal.isUTF8() && getLangOpts().Char8)
3815     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3816   else if (Literal.isUTF16())
3817     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3818   else if (Literal.isUTF32())
3819     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3820   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3821     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3822   else
3823     Ty = Context.CharTy; // 'x' -> char in C++;
3824                          // u8'x' -> char in C11-C17 and in C++ without char8_t.
3825 
3826   CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3827   if (Literal.isWide())
3828     Kind = CharacterLiteralKind::Wide;
3829   else if (Literal.isUTF16())
3830     Kind = CharacterLiteralKind::UTF16;
3831   else if (Literal.isUTF32())
3832     Kind = CharacterLiteralKind::UTF32;
3833   else if (Literal.isUTF8())
3834     Kind = CharacterLiteralKind::UTF8;
3835 
3836   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3837                                              Tok.getLocation());
3838 
3839   if (Literal.getUDSuffix().empty())
3840     return Lit;
3841 
3842   // We're building a user-defined literal.
3843   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3844   SourceLocation UDSuffixLoc =
3845     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3846 
3847   // Make sure we're allowed user-defined literals here.
3848   if (!UDLScope)
3849     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3850 
3851   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3852   //   operator "" X (ch)
3853   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3854                                         Lit, Tok.getLocation());
3855 }
3856 
3857 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3858   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3859   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3860                                 Context.IntTy, Loc);
3861 }
3862 
3863 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3864                                   QualType Ty, SourceLocation Loc) {
3865   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3866 
3867   using llvm::APFloat;
3868   APFloat Val(Format);
3869 
3870   APFloat::opStatus result = Literal.GetFloatValue(Val);
3871 
3872   // Overflow is always an error, but underflow is only an error if
3873   // we underflowed to zero (APFloat reports denormals as underflow).
3874   if ((result & APFloat::opOverflow) ||
3875       ((result & APFloat::opUnderflow) && Val.isZero())) {
3876     unsigned diagnostic;
3877     SmallString<20> buffer;
3878     if (result & APFloat::opOverflow) {
3879       diagnostic = diag::warn_float_overflow;
3880       APFloat::getLargest(Format).toString(buffer);
3881     } else {
3882       diagnostic = diag::warn_float_underflow;
3883       APFloat::getSmallest(Format).toString(buffer);
3884     }
3885 
3886     S.Diag(Loc, diagnostic)
3887       << Ty
3888       << StringRef(buffer.data(), buffer.size());
3889   }
3890 
3891   bool isExact = (result == APFloat::opOK);
3892   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3893 }
3894 
3895 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3896   assert(E && "Invalid expression");
3897 
3898   if (E->isValueDependent())
3899     return false;
3900 
3901   QualType QT = E->getType();
3902   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3903     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3904     return true;
3905   }
3906 
3907   llvm::APSInt ValueAPS;
3908   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3909 
3910   if (R.isInvalid())
3911     return true;
3912 
3913   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3914   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3915     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3916         << toString(ValueAPS, 10) << ValueIsPositive;
3917     return true;
3918   }
3919 
3920   return false;
3921 }
3922 
3923 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3924   // Fast path for a single digit (which is quite common).  A single digit
3925   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3926   if (Tok.getLength() == 1) {
3927     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3928     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3929   }
3930 
3931   SmallString<128> SpellingBuffer;
3932   // NumericLiteralParser wants to overread by one character.  Add padding to
3933   // the buffer in case the token is copied to the buffer.  If getSpelling()
3934   // returns a StringRef to the memory buffer, it should have a null char at
3935   // the EOF, so it is also safe.
3936   SpellingBuffer.resize(Tok.getLength() + 1);
3937 
3938   // Get the spelling of the token, which eliminates trigraphs, etc.
3939   bool Invalid = false;
3940   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3941   if (Invalid)
3942     return ExprError();
3943 
3944   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3945                                PP.getSourceManager(), PP.getLangOpts(),
3946                                PP.getTargetInfo(), PP.getDiagnostics());
3947   if (Literal.hadError)
3948     return ExprError();
3949 
3950   if (Literal.hasUDSuffix()) {
3951     // We're building a user-defined literal.
3952     const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3953     SourceLocation UDSuffixLoc =
3954       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3955 
3956     // Make sure we're allowed user-defined literals here.
3957     if (!UDLScope)
3958       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3959 
3960     QualType CookedTy;
3961     if (Literal.isFloatingLiteral()) {
3962       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3963       // long double, the literal is treated as a call of the form
3964       //   operator "" X (f L)
3965       CookedTy = Context.LongDoubleTy;
3966     } else {
3967       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3968       // unsigned long long, the literal is treated as a call of the form
3969       //   operator "" X (n ULL)
3970       CookedTy = Context.UnsignedLongLongTy;
3971     }
3972 
3973     DeclarationName OpName =
3974       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3975     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3976     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3977 
3978     SourceLocation TokLoc = Tok.getLocation();
3979 
3980     // Perform literal operator lookup to determine if we're building a raw
3981     // literal or a cooked one.
3982     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3983     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3984                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3985                                   /*AllowStringTemplatePack*/ false,
3986                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3987     case LOLR_ErrorNoDiagnostic:
3988       // Lookup failure for imaginary constants isn't fatal, there's still the
3989       // GNU extension producing _Complex types.
3990       break;
3991     case LOLR_Error:
3992       return ExprError();
3993     case LOLR_Cooked: {
3994       Expr *Lit;
3995       if (Literal.isFloatingLiteral()) {
3996         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3997       } else {
3998         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3999         if (Literal.GetIntegerValue(ResultVal))
4000           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4001               << /* Unsigned */ 1;
4002         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
4003                                      Tok.getLocation());
4004       }
4005       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4006     }
4007 
4008     case LOLR_Raw: {
4009       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
4010       // literal is treated as a call of the form
4011       //   operator "" X ("n")
4012       unsigned Length = Literal.getUDSuffixOffset();
4013       QualType StrTy = Context.getConstantArrayType(
4014           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
4015           llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
4016       Expr *Lit =
4017           StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
4018                                 StringLiteralKind::Ordinary,
4019                                 /*Pascal*/ false, StrTy, &TokLoc, 1);
4020       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4021     }
4022 
4023     case LOLR_Template: {
4024       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
4025       // template), L is treated as a call fo the form
4026       //   operator "" X <'c1', 'c2', ... 'ck'>()
4027       // where n is the source character sequence c1 c2 ... ck.
4028       TemplateArgumentListInfo ExplicitArgs;
4029       unsigned CharBits = Context.getIntWidth(Context.CharTy);
4030       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
4031       llvm::APSInt Value(CharBits, CharIsUnsigned);
4032       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
4033         Value = TokSpelling[I];
4034         TemplateArgument Arg(Context, Value, Context.CharTy);
4035         TemplateArgumentLocInfo ArgInfo;
4036         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
4037       }
4038       return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
4039                                       &ExplicitArgs);
4040     }
4041     case LOLR_StringTemplatePack:
4042       llvm_unreachable("unexpected literal operator lookup result");
4043     }
4044   }
4045 
4046   Expr *Res;
4047 
4048   if (Literal.isFixedPointLiteral()) {
4049     QualType Ty;
4050 
4051     if (Literal.isAccum) {
4052       if (Literal.isHalf) {
4053         Ty = Context.ShortAccumTy;
4054       } else if (Literal.isLong) {
4055         Ty = Context.LongAccumTy;
4056       } else {
4057         Ty = Context.AccumTy;
4058       }
4059     } else if (Literal.isFract) {
4060       if (Literal.isHalf) {
4061         Ty = Context.ShortFractTy;
4062       } else if (Literal.isLong) {
4063         Ty = Context.LongFractTy;
4064       } else {
4065         Ty = Context.FractTy;
4066       }
4067     }
4068 
4069     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
4070 
4071     bool isSigned = !Literal.isUnsigned;
4072     unsigned scale = Context.getFixedPointScale(Ty);
4073     unsigned bit_width = Context.getTypeInfo(Ty).Width;
4074 
4075     llvm::APInt Val(bit_width, 0, isSigned);
4076     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
4077     bool ValIsZero = Val.isZero() && !Overflowed;
4078 
4079     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
4080     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
4081       // Clause 6.4.4 - The value of a constant shall be in the range of
4082       // representable values for its type, with exception for constants of a
4083       // fract type with a value of exactly 1; such a constant shall denote
4084       // the maximal value for the type.
4085       --Val;
4086     else if (Val.ugt(MaxVal) || Overflowed)
4087       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
4088 
4089     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
4090                                               Tok.getLocation(), scale);
4091   } else if (Literal.isFloatingLiteral()) {
4092     QualType Ty;
4093     if (Literal.isHalf){
4094       if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
4095         Ty = Context.HalfTy;
4096       else {
4097         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
4098         return ExprError();
4099       }
4100     } else if (Literal.isFloat)
4101       Ty = Context.FloatTy;
4102     else if (Literal.isLong)
4103       Ty = Context.LongDoubleTy;
4104     else if (Literal.isFloat16)
4105       Ty = Context.Float16Ty;
4106     else if (Literal.isFloat128)
4107       Ty = Context.Float128Ty;
4108     else
4109       Ty = Context.DoubleTy;
4110 
4111     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
4112 
4113     if (Ty == Context.DoubleTy) {
4114       if (getLangOpts().SinglePrecisionConstants) {
4115         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
4116           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4117         }
4118       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
4119                                              "cl_khr_fp64", getLangOpts())) {
4120         // Impose single-precision float type when cl_khr_fp64 is not enabled.
4121         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
4122             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
4123         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4124       }
4125     }
4126   } else if (!Literal.isIntegerLiteral()) {
4127     return ExprError();
4128   } else {
4129     QualType Ty;
4130 
4131     // 'z/uz' literals are a C++23 feature.
4132     if (Literal.isSizeT)
4133       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
4134                                   ? getLangOpts().CPlusPlus23
4135                                         ? diag::warn_cxx20_compat_size_t_suffix
4136                                         : diag::ext_cxx23_size_t_suffix
4137                                   : diag::err_cxx23_size_t_suffix);
4138 
4139     // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
4140     // but we do not currently support the suffix in C++ mode because it's not
4141     // entirely clear whether WG21 will prefer this suffix to return a library
4142     // type such as std::bit_int instead of returning a _BitInt.
4143     if (Literal.isBitInt && !getLangOpts().CPlusPlus)
4144       PP.Diag(Tok.getLocation(), getLangOpts().C23
4145                                      ? diag::warn_c23_compat_bitint_suffix
4146                                      : diag::ext_c23_bitint_suffix);
4147 
4148     // Get the value in the widest-possible width. What is "widest" depends on
4149     // whether the literal is a bit-precise integer or not. For a bit-precise
4150     // integer type, try to scan the source to determine how many bits are
4151     // needed to represent the value. This may seem a bit expensive, but trying
4152     // to get the integer value from an overly-wide APInt is *extremely*
4153     // expensive, so the naive approach of assuming
4154     // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4155     unsigned BitsNeeded =
4156         Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
4157                                Literal.getLiteralDigits(), Literal.getRadix())
4158                          : Context.getTargetInfo().getIntMaxTWidth();
4159     llvm::APInt ResultVal(BitsNeeded, 0);
4160 
4161     if (Literal.GetIntegerValue(ResultVal)) {
4162       // If this value didn't fit into uintmax_t, error and force to ull.
4163       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4164           << /* Unsigned */ 1;
4165       Ty = Context.UnsignedLongLongTy;
4166       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
4167              "long long is not intmax_t?");
4168     } else {
4169       // If this value fits into a ULL, try to figure out what else it fits into
4170       // according to the rules of C99 6.4.4.1p5.
4171 
4172       // Octal, Hexadecimal, and integers with a U suffix are allowed to
4173       // be an unsigned int.
4174       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4175 
4176       // Check from smallest to largest, picking the smallest type we can.
4177       unsigned Width = 0;
4178 
4179       // Microsoft specific integer suffixes are explicitly sized.
4180       if (Literal.MicrosoftInteger) {
4181         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4182           Width = 8;
4183           Ty = Context.CharTy;
4184         } else {
4185           Width = Literal.MicrosoftInteger;
4186           Ty = Context.getIntTypeForBitwidth(Width,
4187                                              /*Signed=*/!Literal.isUnsigned);
4188         }
4189       }
4190 
4191       // Bit-precise integer literals are automagically-sized based on the
4192       // width required by the literal.
4193       if (Literal.isBitInt) {
4194         // The signed version has one more bit for the sign value. There are no
4195         // zero-width bit-precise integers, even if the literal value is 0.
4196         Width = std::max(ResultVal.getActiveBits(), 1u) +
4197                 (Literal.isUnsigned ? 0u : 1u);
4198 
4199         // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4200         // and reset the type to the largest supported width.
4201         unsigned int MaxBitIntWidth =
4202             Context.getTargetInfo().getMaxBitIntWidth();
4203         if (Width > MaxBitIntWidth) {
4204           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4205               << Literal.isUnsigned;
4206           Width = MaxBitIntWidth;
4207         }
4208 
4209         // Reset the result value to the smaller APInt and select the correct
4210         // type to be used. Note, we zext even for signed values because the
4211         // literal itself is always an unsigned value (a preceeding - is a
4212         // unary operator, not part of the literal).
4213         ResultVal = ResultVal.zextOrTrunc(Width);
4214         Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4215       }
4216 
4217       // Check C++23 size_t literals.
4218       if (Literal.isSizeT) {
4219         assert(!Literal.MicrosoftInteger &&
4220                "size_t literals can't be Microsoft literals");
4221         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4222             Context.getTargetInfo().getSizeType());
4223 
4224         // Does it fit in size_t?
4225         if (ResultVal.isIntN(SizeTSize)) {
4226           // Does it fit in ssize_t?
4227           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4228             Ty = Context.getSignedSizeType();
4229           else if (AllowUnsigned)
4230             Ty = Context.getSizeType();
4231           Width = SizeTSize;
4232         }
4233       }
4234 
4235       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4236           !Literal.isSizeT) {
4237         // Are int/unsigned possibilities?
4238         unsigned IntSize = Context.getTargetInfo().getIntWidth();
4239 
4240         // Does it fit in a unsigned int?
4241         if (ResultVal.isIntN(IntSize)) {
4242           // Does it fit in a signed int?
4243           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4244             Ty = Context.IntTy;
4245           else if (AllowUnsigned)
4246             Ty = Context.UnsignedIntTy;
4247           Width = IntSize;
4248         }
4249       }
4250 
4251       // Are long/unsigned long possibilities?
4252       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4253         unsigned LongSize = Context.getTargetInfo().getLongWidth();
4254 
4255         // Does it fit in a unsigned long?
4256         if (ResultVal.isIntN(LongSize)) {
4257           // Does it fit in a signed long?
4258           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4259             Ty = Context.LongTy;
4260           else if (AllowUnsigned)
4261             Ty = Context.UnsignedLongTy;
4262           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4263           // is compatible.
4264           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4265             const unsigned LongLongSize =
4266                 Context.getTargetInfo().getLongLongWidth();
4267             Diag(Tok.getLocation(),
4268                  getLangOpts().CPlusPlus
4269                      ? Literal.isLong
4270                            ? diag::warn_old_implicitly_unsigned_long_cxx
4271                            : /*C++98 UB*/ diag::
4272                                  ext_old_implicitly_unsigned_long_cxx
4273                      : diag::warn_old_implicitly_unsigned_long)
4274                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4275                                             : /*will be ill-formed*/ 1);
4276             Ty = Context.UnsignedLongTy;
4277           }
4278           Width = LongSize;
4279         }
4280       }
4281 
4282       // Check long long if needed.
4283       if (Ty.isNull() && !Literal.isSizeT) {
4284         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4285 
4286         // Does it fit in a unsigned long long?
4287         if (ResultVal.isIntN(LongLongSize)) {
4288           // Does it fit in a signed long long?
4289           // To be compatible with MSVC, hex integer literals ending with the
4290           // LL or i64 suffix are always signed in Microsoft mode.
4291           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4292               (getLangOpts().MSVCCompat && Literal.isLongLong)))
4293             Ty = Context.LongLongTy;
4294           else if (AllowUnsigned)
4295             Ty = Context.UnsignedLongLongTy;
4296           Width = LongLongSize;
4297 
4298           // 'long long' is a C99 or C++11 feature, whether the literal
4299           // explicitly specified 'long long' or we needed the extra width.
4300           if (getLangOpts().CPlusPlus)
4301             Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4302                                         ? diag::warn_cxx98_compat_longlong
4303                                         : diag::ext_cxx11_longlong);
4304           else if (!getLangOpts().C99)
4305             Diag(Tok.getLocation(), diag::ext_c99_longlong);
4306         }
4307       }
4308 
4309       // If we still couldn't decide a type, we either have 'size_t' literal
4310       // that is out of range, or a decimal literal that does not fit in a
4311       // signed long long and has no U suffix.
4312       if (Ty.isNull()) {
4313         if (Literal.isSizeT)
4314           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4315               << Literal.isUnsigned;
4316         else
4317           Diag(Tok.getLocation(),
4318                diag::ext_integer_literal_too_large_for_signed);
4319         Ty = Context.UnsignedLongLongTy;
4320         Width = Context.getTargetInfo().getLongLongWidth();
4321       }
4322 
4323       if (ResultVal.getBitWidth() != Width)
4324         ResultVal = ResultVal.trunc(Width);
4325     }
4326     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4327   }
4328 
4329   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4330   if (Literal.isImaginary) {
4331     Res = new (Context) ImaginaryLiteral(Res,
4332                                         Context.getComplexType(Res->getType()));
4333 
4334     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4335   }
4336   return Res;
4337 }
4338 
4339 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4340   assert(E && "ActOnParenExpr() missing expr");
4341   QualType ExprTy = E->getType();
4342   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4343       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4344     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4345   return new (Context) ParenExpr(L, R, E);
4346 }
4347 
4348 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4349                                          SourceLocation Loc,
4350                                          SourceRange ArgRange) {
4351   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4352   // scalar or vector data type argument..."
4353   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4354   // type (C99 6.2.5p18) or void.
4355   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4356     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4357       << T << ArgRange;
4358     return true;
4359   }
4360 
4361   assert((T->isVoidType() || !T->isIncompleteType()) &&
4362          "Scalar types should always be complete");
4363   return false;
4364 }
4365 
4366 static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4367                                                 SourceLocation Loc,
4368                                                 SourceRange ArgRange) {
4369   // builtin_vectorelements supports both fixed-sized and scalable vectors.
4370   if (!T->isVectorType() && !T->isSizelessVectorType())
4371     return S.Diag(Loc, diag::err_builtin_non_vector_type)
4372            << ""
4373            << "__builtin_vectorelements" << T << ArgRange;
4374 
4375   return false;
4376 }
4377 
4378 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4379                                            SourceLocation Loc,
4380                                            SourceRange ArgRange,
4381                                            UnaryExprOrTypeTrait TraitKind) {
4382   // Invalid types must be hard errors for SFINAE in C++.
4383   if (S.LangOpts.CPlusPlus)
4384     return true;
4385 
4386   // C99 6.5.3.4p1:
4387   if (T->isFunctionType() &&
4388       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4389        TraitKind == UETT_PreferredAlignOf)) {
4390     // sizeof(function)/alignof(function) is allowed as an extension.
4391     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4392         << getTraitSpelling(TraitKind) << ArgRange;
4393     return false;
4394   }
4395 
4396   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4397   // this is an error (OpenCL v1.1 s6.3.k)
4398   if (T->isVoidType()) {
4399     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4400                                         : diag::ext_sizeof_alignof_void_type;
4401     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4402     return false;
4403   }
4404 
4405   return true;
4406 }
4407 
4408 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4409                                              SourceLocation Loc,
4410                                              SourceRange ArgRange,
4411                                              UnaryExprOrTypeTrait TraitKind) {
4412   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4413   // runtime doesn't allow it.
4414   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4415     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4416       << T << (TraitKind == UETT_SizeOf)
4417       << ArgRange;
4418     return true;
4419   }
4420 
4421   return false;
4422 }
4423 
4424 /// Check whether E is a pointer from a decayed array type (the decayed
4425 /// pointer type is equal to T) and emit a warning if it is.
4426 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4427                                      const Expr *E) {
4428   // Don't warn if the operation changed the type.
4429   if (T != E->getType())
4430     return;
4431 
4432   // Now look for array decays.
4433   const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4434   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4435     return;
4436 
4437   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4438                                              << ICE->getType()
4439                                              << ICE->getSubExpr()->getType();
4440 }
4441 
4442 /// Check the constraints on expression operands to unary type expression
4443 /// and type traits.
4444 ///
4445 /// Completes any types necessary and validates the constraints on the operand
4446 /// expression. The logic mostly mirrors the type-based overload, but may modify
4447 /// the expression as it completes the type for that expression through template
4448 /// instantiation, etc.
4449 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4450                                             UnaryExprOrTypeTrait ExprKind) {
4451   QualType ExprTy = E->getType();
4452   assert(!ExprTy->isReferenceType());
4453 
4454   bool IsUnevaluatedOperand =
4455       (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4456        ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4457        ExprKind == UETT_VecStep);
4458   if (IsUnevaluatedOperand) {
4459     ExprResult Result = CheckUnevaluatedOperand(E);
4460     if (Result.isInvalid())
4461       return true;
4462     E = Result.get();
4463   }
4464 
4465   // The operand for sizeof and alignof is in an unevaluated expression context,
4466   // so side effects could result in unintended consequences.
4467   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4468   // used to build SFINAE gadgets.
4469   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4470   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4471       !E->isInstantiationDependent() &&
4472       !E->getType()->isVariableArrayType() &&
4473       E->HasSideEffects(Context, false))
4474     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4475 
4476   if (ExprKind == UETT_VecStep)
4477     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4478                                         E->getSourceRange());
4479 
4480   if (ExprKind == UETT_VectorElements)
4481     return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4482                                                E->getSourceRange());
4483 
4484   // Explicitly list some types as extensions.
4485   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4486                                       E->getSourceRange(), ExprKind))
4487     return false;
4488 
4489   // WebAssembly tables are always illegal operands to unary expressions and
4490   // type traits.
4491   if (Context.getTargetInfo().getTriple().isWasm() &&
4492       E->getType()->isWebAssemblyTableType()) {
4493     Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4494         << getTraitSpelling(ExprKind);
4495     return true;
4496   }
4497 
4498   // 'alignof' applied to an expression only requires the base element type of
4499   // the expression to be complete. 'sizeof' requires the expression's type to
4500   // be complete (and will attempt to complete it if it's an array of unknown
4501   // bound).
4502   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4503     if (RequireCompleteSizedType(
4504             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4505             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4506             getTraitSpelling(ExprKind), E->getSourceRange()))
4507       return true;
4508   } else {
4509     if (RequireCompleteSizedExprType(
4510             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4511             getTraitSpelling(ExprKind), E->getSourceRange()))
4512       return true;
4513   }
4514 
4515   // Completing the expression's type may have changed it.
4516   ExprTy = E->getType();
4517   assert(!ExprTy->isReferenceType());
4518 
4519   if (ExprTy->isFunctionType()) {
4520     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4521         << getTraitSpelling(ExprKind) << E->getSourceRange();
4522     return true;
4523   }
4524 
4525   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4526                                        E->getSourceRange(), ExprKind))
4527     return true;
4528 
4529   if (ExprKind == UETT_SizeOf) {
4530     if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4531       if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4532         QualType OType = PVD->getOriginalType();
4533         QualType Type = PVD->getType();
4534         if (Type->isPointerType() && OType->isArrayType()) {
4535           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4536             << Type << OType;
4537           Diag(PVD->getLocation(), diag::note_declared_at);
4538         }
4539       }
4540     }
4541 
4542     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4543     // decays into a pointer and returns an unintended result. This is most
4544     // likely a typo for "sizeof(array) op x".
4545     if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4546       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4547                                BO->getLHS());
4548       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4549                                BO->getRHS());
4550     }
4551   }
4552 
4553   return false;
4554 }
4555 
4556 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4557   // Cannot know anything else if the expression is dependent.
4558   if (E->isTypeDependent())
4559     return false;
4560 
4561   if (E->getObjectKind() == OK_BitField) {
4562     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4563        << 1 << E->getSourceRange();
4564     return true;
4565   }
4566 
4567   ValueDecl *D = nullptr;
4568   Expr *Inner = E->IgnoreParens();
4569   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4570     D = DRE->getDecl();
4571   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4572     D = ME->getMemberDecl();
4573   }
4574 
4575   // If it's a field, require the containing struct to have a
4576   // complete definition so that we can compute the layout.
4577   //
4578   // This can happen in C++11 onwards, either by naming the member
4579   // in a way that is not transformed into a member access expression
4580   // (in an unevaluated operand, for instance), or by naming the member
4581   // in a trailing-return-type.
4582   //
4583   // For the record, since __alignof__ on expressions is a GCC
4584   // extension, GCC seems to permit this but always gives the
4585   // nonsensical answer 0.
4586   //
4587   // We don't really need the layout here --- we could instead just
4588   // directly check for all the appropriate alignment-lowing
4589   // attributes --- but that would require duplicating a lot of
4590   // logic that just isn't worth duplicating for such a marginal
4591   // use-case.
4592   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4593     // Fast path this check, since we at least know the record has a
4594     // definition if we can find a member of it.
4595     if (!FD->getParent()->isCompleteDefinition()) {
4596       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4597         << E->getSourceRange();
4598       return true;
4599     }
4600 
4601     // Otherwise, if it's a field, and the field doesn't have
4602     // reference type, then it must have a complete type (or be a
4603     // flexible array member, which we explicitly want to
4604     // white-list anyway), which makes the following checks trivial.
4605     if (!FD->getType()->isReferenceType())
4606       return false;
4607   }
4608 
4609   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4610 }
4611 
4612 bool Sema::CheckVecStepExpr(Expr *E) {
4613   E = E->IgnoreParens();
4614 
4615   // Cannot know anything else if the expression is dependent.
4616   if (E->isTypeDependent())
4617     return false;
4618 
4619   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4620 }
4621 
4622 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4623                                         CapturingScopeInfo *CSI) {
4624   assert(T->isVariablyModifiedType());
4625   assert(CSI != nullptr);
4626 
4627   // We're going to walk down into the type and look for VLA expressions.
4628   do {
4629     const Type *Ty = T.getTypePtr();
4630     switch (Ty->getTypeClass()) {
4631 #define TYPE(Class, Base)
4632 #define ABSTRACT_TYPE(Class, Base)
4633 #define NON_CANONICAL_TYPE(Class, Base)
4634 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4635 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4636 #include "clang/AST/TypeNodes.inc"
4637       T = QualType();
4638       break;
4639     // These types are never variably-modified.
4640     case Type::Builtin:
4641     case Type::Complex:
4642     case Type::Vector:
4643     case Type::ExtVector:
4644     case Type::ConstantMatrix:
4645     case Type::Record:
4646     case Type::Enum:
4647     case Type::TemplateSpecialization:
4648     case Type::ObjCObject:
4649     case Type::ObjCInterface:
4650     case Type::ObjCObjectPointer:
4651     case Type::ObjCTypeParam:
4652     case Type::Pipe:
4653     case Type::BitInt:
4654       llvm_unreachable("type class is never variably-modified!");
4655     case Type::Elaborated:
4656       T = cast<ElaboratedType>(Ty)->getNamedType();
4657       break;
4658     case Type::Adjusted:
4659       T = cast<AdjustedType>(Ty)->getOriginalType();
4660       break;
4661     case Type::Decayed:
4662       T = cast<DecayedType>(Ty)->getPointeeType();
4663       break;
4664     case Type::Pointer:
4665       T = cast<PointerType>(Ty)->getPointeeType();
4666       break;
4667     case Type::BlockPointer:
4668       T = cast<BlockPointerType>(Ty)->getPointeeType();
4669       break;
4670     case Type::LValueReference:
4671     case Type::RValueReference:
4672       T = cast<ReferenceType>(Ty)->getPointeeType();
4673       break;
4674     case Type::MemberPointer:
4675       T = cast<MemberPointerType>(Ty)->getPointeeType();
4676       break;
4677     case Type::ConstantArray:
4678     case Type::IncompleteArray:
4679       // Losing element qualification here is fine.
4680       T = cast<ArrayType>(Ty)->getElementType();
4681       break;
4682     case Type::VariableArray: {
4683       // Losing element qualification here is fine.
4684       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4685 
4686       // Unknown size indication requires no size computation.
4687       // Otherwise, evaluate and record it.
4688       auto Size = VAT->getSizeExpr();
4689       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4690           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4691         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4692 
4693       T = VAT->getElementType();
4694       break;
4695     }
4696     case Type::FunctionProto:
4697     case Type::FunctionNoProto:
4698       T = cast<FunctionType>(Ty)->getReturnType();
4699       break;
4700     case Type::Paren:
4701     case Type::TypeOf:
4702     case Type::UnaryTransform:
4703     case Type::Attributed:
4704     case Type::BTFTagAttributed:
4705     case Type::SubstTemplateTypeParm:
4706     case Type::MacroQualified:
4707       // Keep walking after single level desugaring.
4708       T = T.getSingleStepDesugaredType(Context);
4709       break;
4710     case Type::Typedef:
4711       T = cast<TypedefType>(Ty)->desugar();
4712       break;
4713     case Type::Decltype:
4714       T = cast<DecltypeType>(Ty)->desugar();
4715       break;
4716     case Type::Using:
4717       T = cast<UsingType>(Ty)->desugar();
4718       break;
4719     case Type::Auto:
4720     case Type::DeducedTemplateSpecialization:
4721       T = cast<DeducedType>(Ty)->getDeducedType();
4722       break;
4723     case Type::TypeOfExpr:
4724       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4725       break;
4726     case Type::Atomic:
4727       T = cast<AtomicType>(Ty)->getValueType();
4728       break;
4729     }
4730   } while (!T.isNull() && T->isVariablyModifiedType());
4731 }
4732 
4733 /// Check the constraints on operands to unary expression and type
4734 /// traits.
4735 ///
4736 /// This will complete any types necessary, and validate the various constraints
4737 /// on those operands.
4738 ///
4739 /// The UsualUnaryConversions() function is *not* called by this routine.
4740 /// C99 6.3.2.1p[2-4] all state:
4741 ///   Except when it is the operand of the sizeof operator ...
4742 ///
4743 /// C++ [expr.sizeof]p4
4744 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4745 ///   standard conversions are not applied to the operand of sizeof.
4746 ///
4747 /// This policy is followed for all of the unary trait expressions.
4748 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4749                                             SourceLocation OpLoc,
4750                                             SourceRange ExprRange,
4751                                             UnaryExprOrTypeTrait ExprKind,
4752                                             StringRef KWName) {
4753   if (ExprType->isDependentType())
4754     return false;
4755 
4756   // C++ [expr.sizeof]p2:
4757   //     When applied to a reference or a reference type, the result
4758   //     is the size of the referenced type.
4759   // C++11 [expr.alignof]p3:
4760   //     When alignof is applied to a reference type, the result
4761   //     shall be the alignment of the referenced type.
4762   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4763     ExprType = Ref->getPointeeType();
4764 
4765   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4766   //   When alignof or _Alignof is applied to an array type, the result
4767   //   is the alignment of the element type.
4768   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4769       ExprKind == UETT_OpenMPRequiredSimdAlign)
4770     ExprType = Context.getBaseElementType(ExprType);
4771 
4772   if (ExprKind == UETT_VecStep)
4773     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4774 
4775   if (ExprKind == UETT_VectorElements)
4776     return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4777                                                ExprRange);
4778 
4779   // Explicitly list some types as extensions.
4780   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4781                                       ExprKind))
4782     return false;
4783 
4784   if (RequireCompleteSizedType(
4785           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4786           KWName, ExprRange))
4787     return true;
4788 
4789   if (ExprType->isFunctionType()) {
4790     Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4791     return true;
4792   }
4793 
4794   // WebAssembly tables are always illegal operands to unary expressions and
4795   // type traits.
4796   if (Context.getTargetInfo().getTriple().isWasm() &&
4797       ExprType->isWebAssemblyTableType()) {
4798     Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4799         << getTraitSpelling(ExprKind);
4800     return true;
4801   }
4802 
4803   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4804                                        ExprKind))
4805     return true;
4806 
4807   if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4808     if (auto *TT = ExprType->getAs<TypedefType>()) {
4809       for (auto I = FunctionScopes.rbegin(),
4810                 E = std::prev(FunctionScopes.rend());
4811            I != E; ++I) {
4812         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4813         if (CSI == nullptr)
4814           break;
4815         DeclContext *DC = nullptr;
4816         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4817           DC = LSI->CallOperator;
4818         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4819           DC = CRSI->TheCapturedDecl;
4820         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4821           DC = BSI->TheDecl;
4822         if (DC) {
4823           if (DC->containsDecl(TT->getDecl()))
4824             break;
4825           captureVariablyModifiedType(Context, ExprType, CSI);
4826         }
4827       }
4828     }
4829   }
4830 
4831   return false;
4832 }
4833 
4834 /// Build a sizeof or alignof expression given a type operand.
4835 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4836                                                 SourceLocation OpLoc,
4837                                                 UnaryExprOrTypeTrait ExprKind,
4838                                                 SourceRange R) {
4839   if (!TInfo)
4840     return ExprError();
4841 
4842   QualType T = TInfo->getType();
4843 
4844   if (!T->isDependentType() &&
4845       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4846                                        getTraitSpelling(ExprKind)))
4847     return ExprError();
4848 
4849   // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4850   // properly deal with VLAs in nested calls of sizeof and typeof.
4851   if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4852       TInfo->getType()->isVariablyModifiedType())
4853     TInfo = TransformToPotentiallyEvaluated(TInfo);
4854 
4855   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4856   return new (Context) UnaryExprOrTypeTraitExpr(
4857       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4858 }
4859 
4860 /// Build a sizeof or alignof expression given an expression
4861 /// operand.
4862 ExprResult
4863 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4864                                      UnaryExprOrTypeTrait ExprKind) {
4865   ExprResult PE = CheckPlaceholderExpr(E);
4866   if (PE.isInvalid())
4867     return ExprError();
4868 
4869   E = PE.get();
4870 
4871   // Verify that the operand is valid.
4872   bool isInvalid = false;
4873   if (E->isTypeDependent()) {
4874     // Delay type-checking for type-dependent expressions.
4875   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4876     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4877   } else if (ExprKind == UETT_VecStep) {
4878     isInvalid = CheckVecStepExpr(E);
4879   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4880       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4881       isInvalid = true;
4882   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4883     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4884     isInvalid = true;
4885   } else if (ExprKind == UETT_VectorElements) {
4886     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4887   } else {
4888     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4889   }
4890 
4891   if (isInvalid)
4892     return ExprError();
4893 
4894   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4895     PE = TransformToPotentiallyEvaluated(E);
4896     if (PE.isInvalid()) return ExprError();
4897     E = PE.get();
4898   }
4899 
4900   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4901   return new (Context) UnaryExprOrTypeTraitExpr(
4902       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4903 }
4904 
4905 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4906 /// expr and the same for @c alignof and @c __alignof
4907 /// Note that the ArgRange is invalid if isType is false.
4908 ExprResult
4909 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4910                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4911                                     void *TyOrEx, SourceRange ArgRange) {
4912   // If error parsing type, ignore.
4913   if (!TyOrEx) return ExprError();
4914 
4915   if (IsType) {
4916     TypeSourceInfo *TInfo;
4917     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4918     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4919   }
4920 
4921   Expr *ArgEx = (Expr *)TyOrEx;
4922   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4923   return Result;
4924 }
4925 
4926 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4927                                     SourceLocation OpLoc, SourceRange R) {
4928   if (!TInfo)
4929     return true;
4930   return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4931                                           UETT_AlignOf, KWName);
4932 }
4933 
4934 /// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
4935 /// _Alignas(type-name) .
4936 /// [dcl.align] An alignment-specifier of the form
4937 /// alignas(type-id) has the same effect as alignas(alignof(type-id)).
4938 ///
4939 /// [N1570 6.7.5] _Alignas(type-name) is equivalent to
4940 /// _Alignas(_Alignof(type-name)).
4941 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4942                                     SourceLocation OpLoc, SourceRange R) {
4943   TypeSourceInfo *TInfo;
4944   (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4945                           &TInfo);
4946   return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4947 }
4948 
4949 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4950                                      bool IsReal) {
4951   if (V.get()->isTypeDependent())
4952     return S.Context.DependentTy;
4953 
4954   // _Real and _Imag are only l-values for normal l-values.
4955   if (V.get()->getObjectKind() != OK_Ordinary) {
4956     V = S.DefaultLvalueConversion(V.get());
4957     if (V.isInvalid())
4958       return QualType();
4959   }
4960 
4961   // These operators return the element type of a complex type.
4962   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4963     return CT->getElementType();
4964 
4965   // Otherwise they pass through real integer and floating point types here.
4966   if (V.get()->getType()->isArithmeticType())
4967     return V.get()->getType();
4968 
4969   // Test for placeholders.
4970   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4971   if (PR.isInvalid()) return QualType();
4972   if (PR.get() != V.get()) {
4973     V = PR;
4974     return CheckRealImagOperand(S, V, Loc, IsReal);
4975   }
4976 
4977   // Reject anything else.
4978   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4979     << (IsReal ? "__real" : "__imag");
4980   return QualType();
4981 }
4982 
4983 
4984 
4985 ExprResult
4986 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4987                           tok::TokenKind Kind, Expr *Input) {
4988   UnaryOperatorKind Opc;
4989   switch (Kind) {
4990   default: llvm_unreachable("Unknown unary op!");
4991   case tok::plusplus:   Opc = UO_PostInc; break;
4992   case tok::minusminus: Opc = UO_PostDec; break;
4993   }
4994 
4995   // Since this might is a postfix expression, get rid of ParenListExprs.
4996   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4997   if (Result.isInvalid()) return ExprError();
4998   Input = Result.get();
4999 
5000   return BuildUnaryOp(S, OpLoc, Opc, Input);
5001 }
5002 
5003 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
5004 ///
5005 /// \return true on error
5006 static bool checkArithmeticOnObjCPointer(Sema &S,
5007                                          SourceLocation opLoc,
5008                                          Expr *op) {
5009   assert(op->getType()->isObjCObjectPointerType());
5010   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
5011       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
5012     return false;
5013 
5014   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
5015     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
5016     << op->getSourceRange();
5017   return true;
5018 }
5019 
5020 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
5021   auto *BaseNoParens = Base->IgnoreParens();
5022   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
5023     return MSProp->getPropertyDecl()->getType()->isArrayType();
5024   return isa<MSPropertySubscriptExpr>(BaseNoParens);
5025 }
5026 
5027 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
5028 // Typically this is DependentTy, but can sometimes be more precise.
5029 //
5030 // There are cases when we could determine a non-dependent type:
5031 //  - LHS and RHS may have non-dependent types despite being type-dependent
5032 //    (e.g. unbounded array static members of the current instantiation)
5033 //  - one may be a dependent-sized array with known element type
5034 //  - one may be a dependent-typed valid index (enum in current instantiation)
5035 //
5036 // We *always* return a dependent type, in such cases it is DependentTy.
5037 // This avoids creating type-dependent expressions with non-dependent types.
5038 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
5039 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
5040                                                const ASTContext &Ctx) {
5041   assert(LHS->isTypeDependent() || RHS->isTypeDependent());
5042   QualType LTy = LHS->getType(), RTy = RHS->getType();
5043   QualType Result = Ctx.DependentTy;
5044   if (RTy->isIntegralOrUnscopedEnumerationType()) {
5045     if (const PointerType *PT = LTy->getAs<PointerType>())
5046       Result = PT->getPointeeType();
5047     else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
5048       Result = AT->getElementType();
5049   } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
5050     if (const PointerType *PT = RTy->getAs<PointerType>())
5051       Result = PT->getPointeeType();
5052     else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
5053       Result = AT->getElementType();
5054   }
5055   // Ensure we return a dependent type.
5056   return Result->isDependentType() ? Result : Ctx.DependentTy;
5057 }
5058 
5059 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
5060 
5061 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
5062                                          SourceLocation lbLoc,
5063                                          MultiExprArg ArgExprs,
5064                                          SourceLocation rbLoc) {
5065 
5066   if (base && !base->getType().isNull() &&
5067       base->hasPlaceholderType(BuiltinType::OMPArraySection))
5068     return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
5069                                     SourceLocation(), /*Length*/ nullptr,
5070                                     /*Stride=*/nullptr, rbLoc);
5071 
5072   // Since this might be a postfix expression, get rid of ParenListExprs.
5073   if (isa<ParenListExpr>(base)) {
5074     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
5075     if (result.isInvalid())
5076       return ExprError();
5077     base = result.get();
5078   }
5079 
5080   // Check if base and idx form a MatrixSubscriptExpr.
5081   //
5082   // Helper to check for comma expressions, which are not allowed as indices for
5083   // matrix subscript expressions.
5084   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
5085     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
5086       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
5087           << SourceRange(base->getBeginLoc(), rbLoc);
5088       return true;
5089     }
5090     return false;
5091   };
5092   // The matrix subscript operator ([][])is considered a single operator.
5093   // Separating the index expressions by parenthesis is not allowed.
5094   if (base && !base->getType().isNull() &&
5095       base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
5096       !isa<MatrixSubscriptExpr>(base)) {
5097     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
5098         << SourceRange(base->getBeginLoc(), rbLoc);
5099     return ExprError();
5100   }
5101   // If the base is a MatrixSubscriptExpr, try to create a new
5102   // MatrixSubscriptExpr.
5103   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
5104   if (matSubscriptE) {
5105     assert(ArgExprs.size() == 1);
5106     if (CheckAndReportCommaError(ArgExprs.front()))
5107       return ExprError();
5108 
5109     assert(matSubscriptE->isIncomplete() &&
5110            "base has to be an incomplete matrix subscript");
5111     return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
5112                                             matSubscriptE->getRowIdx(),
5113                                             ArgExprs.front(), rbLoc);
5114   }
5115   if (base->getType()->isWebAssemblyTableType()) {
5116     Diag(base->getExprLoc(), diag::err_wasm_table_art)
5117         << SourceRange(base->getBeginLoc(), rbLoc) << 3;
5118     return ExprError();
5119   }
5120 
5121   // Handle any non-overload placeholder types in the base and index
5122   // expressions.  We can't handle overloads here because the other
5123   // operand might be an overloadable type, in which case the overload
5124   // resolution for the operator overload should get the first crack
5125   // at the overload.
5126   bool IsMSPropertySubscript = false;
5127   if (base->getType()->isNonOverloadPlaceholderType()) {
5128     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
5129     if (!IsMSPropertySubscript) {
5130       ExprResult result = CheckPlaceholderExpr(base);
5131       if (result.isInvalid())
5132         return ExprError();
5133       base = result.get();
5134     }
5135   }
5136 
5137   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5138   if (base->getType()->isMatrixType()) {
5139     assert(ArgExprs.size() == 1);
5140     if (CheckAndReportCommaError(ArgExprs.front()))
5141       return ExprError();
5142 
5143     return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
5144                                             rbLoc);
5145   }
5146 
5147   if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
5148     Expr *idx = ArgExprs[0];
5149     if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
5150         (isa<CXXOperatorCallExpr>(idx) &&
5151          cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
5152       Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
5153           << SourceRange(base->getBeginLoc(), rbLoc);
5154     }
5155   }
5156 
5157   if (ArgExprs.size() == 1 &&
5158       ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
5159     ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
5160     if (result.isInvalid())
5161       return ExprError();
5162     ArgExprs[0] = result.get();
5163   } else {
5164     if (checkArgsForPlaceholders(*this, ArgExprs))
5165       return ExprError();
5166   }
5167 
5168   // Build an unanalyzed expression if either operand is type-dependent.
5169   if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
5170       (base->isTypeDependent() ||
5171        Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
5172       !isa<PackExpansionExpr>(ArgExprs[0])) {
5173     return new (Context) ArraySubscriptExpr(
5174         base, ArgExprs.front(),
5175         getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
5176         VK_LValue, OK_Ordinary, rbLoc);
5177   }
5178 
5179   // MSDN, property (C++)
5180   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5181   // This attribute can also be used in the declaration of an empty array in a
5182   // class or structure definition. For example:
5183   // __declspec(property(get=GetX, put=PutX)) int x[];
5184   // The above statement indicates that x[] can be used with one or more array
5185   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5186   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5187   if (IsMSPropertySubscript) {
5188     assert(ArgExprs.size() == 1);
5189     // Build MS property subscript expression if base is MS property reference
5190     // or MS property subscript.
5191     return new (Context)
5192         MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
5193                                 VK_LValue, OK_Ordinary, rbLoc);
5194   }
5195 
5196   // Use C++ overloaded-operator rules if either operand has record
5197   // type.  The spec says to do this if either type is *overloadable*,
5198   // but enum types can't declare subscript operators or conversion
5199   // operators, so there's nothing interesting for overload resolution
5200   // to do if there aren't any record types involved.
5201   //
5202   // ObjC pointers have their own subscripting logic that is not tied
5203   // to overload resolution and so should not take this path.
5204   if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
5205       ((base->getType()->isRecordType() ||
5206         (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
5207          ArgExprs[0]->getType()->isRecordType())))) {
5208     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
5209   }
5210 
5211   ExprResult Res =
5212       CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
5213 
5214   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
5215     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
5216 
5217   return Res;
5218 }
5219 
5220 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5221   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
5222   InitializationKind Kind =
5223       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
5224   InitializationSequence InitSeq(*this, Entity, Kind, E);
5225   return InitSeq.Perform(*this, Entity, Kind, E);
5226 }
5227 
5228 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5229                                                   Expr *ColumnIdx,
5230                                                   SourceLocation RBLoc) {
5231   ExprResult BaseR = CheckPlaceholderExpr(Base);
5232   if (BaseR.isInvalid())
5233     return BaseR;
5234   Base = BaseR.get();
5235 
5236   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
5237   if (RowR.isInvalid())
5238     return RowR;
5239   RowIdx = RowR.get();
5240 
5241   if (!ColumnIdx)
5242     return new (Context) MatrixSubscriptExpr(
5243         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5244 
5245   // Build an unanalyzed expression if any of the operands is type-dependent.
5246   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5247       ColumnIdx->isTypeDependent())
5248     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5249                                              Context.DependentTy, RBLoc);
5250 
5251   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5252   if (ColumnR.isInvalid())
5253     return ColumnR;
5254   ColumnIdx = ColumnR.get();
5255 
5256   // Check that IndexExpr is an integer expression. If it is a constant
5257   // expression, check that it is less than Dim (= the number of elements in the
5258   // corresponding dimension).
5259   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5260                           bool IsColumnIdx) -> Expr * {
5261     if (!IndexExpr->getType()->isIntegerType() &&
5262         !IndexExpr->isTypeDependent()) {
5263       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5264           << IsColumnIdx;
5265       return nullptr;
5266     }
5267 
5268     if (std::optional<llvm::APSInt> Idx =
5269             IndexExpr->getIntegerConstantExpr(Context)) {
5270       if ((*Idx < 0 || *Idx >= Dim)) {
5271         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5272             << IsColumnIdx << Dim;
5273         return nullptr;
5274       }
5275     }
5276 
5277     ExprResult ConvExpr =
5278         tryConvertExprToType(IndexExpr, Context.getSizeType());
5279     assert(!ConvExpr.isInvalid() &&
5280            "should be able to convert any integer type to size type");
5281     return ConvExpr.get();
5282   };
5283 
5284   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5285   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5286   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5287   if (!RowIdx || !ColumnIdx)
5288     return ExprError();
5289 
5290   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5291                                            MTy->getElementType(), RBLoc);
5292 }
5293 
5294 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5295   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5296   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5297 
5298   // For expressions like `&(*s).b`, the base is recorded and what should be
5299   // checked.
5300   const MemberExpr *Member = nullptr;
5301   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5302     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5303 
5304   LastRecord.PossibleDerefs.erase(StrippedExpr);
5305 }
5306 
5307 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5308   if (isUnevaluatedContext())
5309     return;
5310 
5311   QualType ResultTy = E->getType();
5312   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5313 
5314   // Bail if the element is an array since it is not memory access.
5315   if (isa<ArrayType>(ResultTy))
5316     return;
5317 
5318   if (ResultTy->hasAttr(attr::NoDeref)) {
5319     LastRecord.PossibleDerefs.insert(E);
5320     return;
5321   }
5322 
5323   // Check if the base type is a pointer to a member access of a struct
5324   // marked with noderef.
5325   const Expr *Base = E->getBase();
5326   QualType BaseTy = Base->getType();
5327   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5328     // Not a pointer access
5329     return;
5330 
5331   const MemberExpr *Member = nullptr;
5332   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5333          Member->isArrow())
5334     Base = Member->getBase();
5335 
5336   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5337     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5338       LastRecord.PossibleDerefs.insert(E);
5339   }
5340 }
5341 
5342 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5343                                           Expr *LowerBound,
5344                                           SourceLocation ColonLocFirst,
5345                                           SourceLocation ColonLocSecond,
5346                                           Expr *Length, Expr *Stride,
5347                                           SourceLocation RBLoc) {
5348   if (Base->hasPlaceholderType() &&
5349       !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5350     ExprResult Result = CheckPlaceholderExpr(Base);
5351     if (Result.isInvalid())
5352       return ExprError();
5353     Base = Result.get();
5354   }
5355   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5356     ExprResult Result = CheckPlaceholderExpr(LowerBound);
5357     if (Result.isInvalid())
5358       return ExprError();
5359     Result = DefaultLvalueConversion(Result.get());
5360     if (Result.isInvalid())
5361       return ExprError();
5362     LowerBound = Result.get();
5363   }
5364   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5365     ExprResult Result = CheckPlaceholderExpr(Length);
5366     if (Result.isInvalid())
5367       return ExprError();
5368     Result = DefaultLvalueConversion(Result.get());
5369     if (Result.isInvalid())
5370       return ExprError();
5371     Length = Result.get();
5372   }
5373   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5374     ExprResult Result = CheckPlaceholderExpr(Stride);
5375     if (Result.isInvalid())
5376       return ExprError();
5377     Result = DefaultLvalueConversion(Result.get());
5378     if (Result.isInvalid())
5379       return ExprError();
5380     Stride = Result.get();
5381   }
5382 
5383   // Build an unanalyzed expression if either operand is type-dependent.
5384   if (Base->isTypeDependent() ||
5385       (LowerBound &&
5386        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5387       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5388       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5389     return new (Context) OMPArraySectionExpr(
5390         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5391         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5392   }
5393 
5394   // Perform default conversions.
5395   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5396   QualType ResultTy;
5397   if (OriginalTy->isAnyPointerType()) {
5398     ResultTy = OriginalTy->getPointeeType();
5399   } else if (OriginalTy->isArrayType()) {
5400     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5401   } else {
5402     return ExprError(
5403         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5404         << Base->getSourceRange());
5405   }
5406   // C99 6.5.2.1p1
5407   if (LowerBound) {
5408     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5409                                                       LowerBound);
5410     if (Res.isInvalid())
5411       return ExprError(Diag(LowerBound->getExprLoc(),
5412                             diag::err_omp_typecheck_section_not_integer)
5413                        << 0 << LowerBound->getSourceRange());
5414     LowerBound = Res.get();
5415 
5416     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5417         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5418       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5419           << 0 << LowerBound->getSourceRange();
5420   }
5421   if (Length) {
5422     auto Res =
5423         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5424     if (Res.isInvalid())
5425       return ExprError(Diag(Length->getExprLoc(),
5426                             diag::err_omp_typecheck_section_not_integer)
5427                        << 1 << Length->getSourceRange());
5428     Length = Res.get();
5429 
5430     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5431         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5432       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5433           << 1 << Length->getSourceRange();
5434   }
5435   if (Stride) {
5436     ExprResult Res =
5437         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5438     if (Res.isInvalid())
5439       return ExprError(Diag(Stride->getExprLoc(),
5440                             diag::err_omp_typecheck_section_not_integer)
5441                        << 1 << Stride->getSourceRange());
5442     Stride = Res.get();
5443 
5444     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5445         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5446       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5447           << 1 << Stride->getSourceRange();
5448   }
5449 
5450   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5451   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5452   // type. Note that functions are not objects, and that (in C99 parlance)
5453   // incomplete types are not object types.
5454   if (ResultTy->isFunctionType()) {
5455     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5456         << ResultTy << Base->getSourceRange();
5457     return ExprError();
5458   }
5459 
5460   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5461                           diag::err_omp_section_incomplete_type, Base))
5462     return ExprError();
5463 
5464   if (LowerBound && !OriginalTy->isAnyPointerType()) {
5465     Expr::EvalResult Result;
5466     if (LowerBound->EvaluateAsInt(Result, Context)) {
5467       // OpenMP 5.0, [2.1.5 Array Sections]
5468       // The array section must be a subset of the original array.
5469       llvm::APSInt LowerBoundValue = Result.Val.getInt();
5470       if (LowerBoundValue.isNegative()) {
5471         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5472             << LowerBound->getSourceRange();
5473         return ExprError();
5474       }
5475     }
5476   }
5477 
5478   if (Length) {
5479     Expr::EvalResult Result;
5480     if (Length->EvaluateAsInt(Result, Context)) {
5481       // OpenMP 5.0, [2.1.5 Array Sections]
5482       // The length must evaluate to non-negative integers.
5483       llvm::APSInt LengthValue = Result.Val.getInt();
5484       if (LengthValue.isNegative()) {
5485         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5486             << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5487             << Length->getSourceRange();
5488         return ExprError();
5489       }
5490     }
5491   } else if (ColonLocFirst.isValid() &&
5492              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5493                                       !OriginalTy->isVariableArrayType()))) {
5494     // OpenMP 5.0, [2.1.5 Array Sections]
5495     // When the size of the array dimension is not known, the length must be
5496     // specified explicitly.
5497     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5498         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5499     return ExprError();
5500   }
5501 
5502   if (Stride) {
5503     Expr::EvalResult Result;
5504     if (Stride->EvaluateAsInt(Result, Context)) {
5505       // OpenMP 5.0, [2.1.5 Array Sections]
5506       // The stride must evaluate to a positive integer.
5507       llvm::APSInt StrideValue = Result.Val.getInt();
5508       if (!StrideValue.isStrictlyPositive()) {
5509         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5510             << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5511             << Stride->getSourceRange();
5512         return ExprError();
5513       }
5514     }
5515   }
5516 
5517   if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5518     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5519     if (Result.isInvalid())
5520       return ExprError();
5521     Base = Result.get();
5522   }
5523   return new (Context) OMPArraySectionExpr(
5524       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5525       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5526 }
5527 
5528 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5529                                           SourceLocation RParenLoc,
5530                                           ArrayRef<Expr *> Dims,
5531                                           ArrayRef<SourceRange> Brackets) {
5532   if (Base->hasPlaceholderType()) {
5533     ExprResult Result = CheckPlaceholderExpr(Base);
5534     if (Result.isInvalid())
5535       return ExprError();
5536     Result = DefaultLvalueConversion(Result.get());
5537     if (Result.isInvalid())
5538       return ExprError();
5539     Base = Result.get();
5540   }
5541   QualType BaseTy = Base->getType();
5542   // Delay analysis of the types/expressions if instantiation/specialization is
5543   // required.
5544   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5545     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5546                                        LParenLoc, RParenLoc, Dims, Brackets);
5547   if (!BaseTy->isPointerType() ||
5548       (!Base->isTypeDependent() &&
5549        BaseTy->getPointeeType()->isIncompleteType()))
5550     return ExprError(Diag(Base->getExprLoc(),
5551                           diag::err_omp_non_pointer_type_array_shaping_base)
5552                      << Base->getSourceRange());
5553 
5554   SmallVector<Expr *, 4> NewDims;
5555   bool ErrorFound = false;
5556   for (Expr *Dim : Dims) {
5557     if (Dim->hasPlaceholderType()) {
5558       ExprResult Result = CheckPlaceholderExpr(Dim);
5559       if (Result.isInvalid()) {
5560         ErrorFound = true;
5561         continue;
5562       }
5563       Result = DefaultLvalueConversion(Result.get());
5564       if (Result.isInvalid()) {
5565         ErrorFound = true;
5566         continue;
5567       }
5568       Dim = Result.get();
5569     }
5570     if (!Dim->isTypeDependent()) {
5571       ExprResult Result =
5572           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5573       if (Result.isInvalid()) {
5574         ErrorFound = true;
5575         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5576             << Dim->getSourceRange();
5577         continue;
5578       }
5579       Dim = Result.get();
5580       Expr::EvalResult EvResult;
5581       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5582         // OpenMP 5.0, [2.1.4 Array Shaping]
5583         // Each si is an integral type expression that must evaluate to a
5584         // positive integer.
5585         llvm::APSInt Value = EvResult.Val.getInt();
5586         if (!Value.isStrictlyPositive()) {
5587           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5588               << toString(Value, /*Radix=*/10, /*Signed=*/true)
5589               << Dim->getSourceRange();
5590           ErrorFound = true;
5591           continue;
5592         }
5593       }
5594     }
5595     NewDims.push_back(Dim);
5596   }
5597   if (ErrorFound)
5598     return ExprError();
5599   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5600                                      LParenLoc, RParenLoc, NewDims, Brackets);
5601 }
5602 
5603 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5604                                       SourceLocation LLoc, SourceLocation RLoc,
5605                                       ArrayRef<OMPIteratorData> Data) {
5606   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5607   bool IsCorrect = true;
5608   for (const OMPIteratorData &D : Data) {
5609     TypeSourceInfo *TInfo = nullptr;
5610     SourceLocation StartLoc;
5611     QualType DeclTy;
5612     if (!D.Type.getAsOpaquePtr()) {
5613       // OpenMP 5.0, 2.1.6 Iterators
5614       // In an iterator-specifier, if the iterator-type is not specified then
5615       // the type of that iterator is of int type.
5616       DeclTy = Context.IntTy;
5617       StartLoc = D.DeclIdentLoc;
5618     } else {
5619       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5620       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5621     }
5622 
5623     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5624                              DeclTy->containsUnexpandedParameterPack() ||
5625                              DeclTy->isInstantiationDependentType();
5626     if (!IsDeclTyDependent) {
5627       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5628         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5629         // The iterator-type must be an integral or pointer type.
5630         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5631             << DeclTy;
5632         IsCorrect = false;
5633         continue;
5634       }
5635       if (DeclTy.isConstant(Context)) {
5636         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5637         // The iterator-type must not be const qualified.
5638         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5639             << DeclTy;
5640         IsCorrect = false;
5641         continue;
5642       }
5643     }
5644 
5645     // Iterator declaration.
5646     assert(D.DeclIdent && "Identifier expected.");
5647     // Always try to create iterator declarator to avoid extra error messages
5648     // about unknown declarations use.
5649     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5650                                D.DeclIdent, DeclTy, TInfo, SC_None);
5651     VD->setImplicit();
5652     if (S) {
5653       // Check for conflicting previous declaration.
5654       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5655       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5656                             ForVisibleRedeclaration);
5657       Previous.suppressDiagnostics();
5658       LookupName(Previous, S);
5659 
5660       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5661                            /*AllowInlineNamespace=*/false);
5662       if (!Previous.empty()) {
5663         NamedDecl *Old = Previous.getRepresentativeDecl();
5664         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5665         Diag(Old->getLocation(), diag::note_previous_definition);
5666       } else {
5667         PushOnScopeChains(VD, S);
5668       }
5669     } else {
5670       CurContext->addDecl(VD);
5671     }
5672 
5673     /// Act on the iterator variable declaration.
5674     ActOnOpenMPIteratorVarDecl(VD);
5675 
5676     Expr *Begin = D.Range.Begin;
5677     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5678       ExprResult BeginRes =
5679           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5680       Begin = BeginRes.get();
5681     }
5682     Expr *End = D.Range.End;
5683     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5684       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5685       End = EndRes.get();
5686     }
5687     Expr *Step = D.Range.Step;
5688     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5689       if (!Step->getType()->isIntegralType(Context)) {
5690         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5691             << Step << Step->getSourceRange();
5692         IsCorrect = false;
5693         continue;
5694       }
5695       std::optional<llvm::APSInt> Result =
5696           Step->getIntegerConstantExpr(Context);
5697       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5698       // If the step expression of a range-specification equals zero, the
5699       // behavior is unspecified.
5700       if (Result && Result->isZero()) {
5701         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5702             << Step << Step->getSourceRange();
5703         IsCorrect = false;
5704         continue;
5705       }
5706     }
5707     if (!Begin || !End || !IsCorrect) {
5708       IsCorrect = false;
5709       continue;
5710     }
5711     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5712     IDElem.IteratorDecl = VD;
5713     IDElem.AssignmentLoc = D.AssignLoc;
5714     IDElem.Range.Begin = Begin;
5715     IDElem.Range.End = End;
5716     IDElem.Range.Step = Step;
5717     IDElem.ColonLoc = D.ColonLoc;
5718     IDElem.SecondColonLoc = D.SecColonLoc;
5719   }
5720   if (!IsCorrect) {
5721     // Invalidate all created iterator declarations if error is found.
5722     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5723       if (Decl *ID = D.IteratorDecl)
5724         ID->setInvalidDecl();
5725     }
5726     return ExprError();
5727   }
5728   SmallVector<OMPIteratorHelperData, 4> Helpers;
5729   if (!CurContext->isDependentContext()) {
5730     // Build number of ityeration for each iteration range.
5731     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5732     // ((Begini-Stepi-1-Endi) / -Stepi);
5733     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5734       // (Endi - Begini)
5735       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5736                                           D.Range.Begin);
5737       if(!Res.isUsable()) {
5738         IsCorrect = false;
5739         continue;
5740       }
5741       ExprResult St, St1;
5742       if (D.Range.Step) {
5743         St = D.Range.Step;
5744         // (Endi - Begini) + Stepi
5745         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5746         if (!Res.isUsable()) {
5747           IsCorrect = false;
5748           continue;
5749         }
5750         // (Endi - Begini) + Stepi - 1
5751         Res =
5752             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5753                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5754         if (!Res.isUsable()) {
5755           IsCorrect = false;
5756           continue;
5757         }
5758         // ((Endi - Begini) + Stepi - 1) / Stepi
5759         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5760         if (!Res.isUsable()) {
5761           IsCorrect = false;
5762           continue;
5763         }
5764         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5765         // (Begini - Endi)
5766         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5767                                              D.Range.Begin, D.Range.End);
5768         if (!Res1.isUsable()) {
5769           IsCorrect = false;
5770           continue;
5771         }
5772         // (Begini - Endi) - Stepi
5773         Res1 =
5774             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5775         if (!Res1.isUsable()) {
5776           IsCorrect = false;
5777           continue;
5778         }
5779         // (Begini - Endi) - Stepi - 1
5780         Res1 =
5781             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5782                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5783         if (!Res1.isUsable()) {
5784           IsCorrect = false;
5785           continue;
5786         }
5787         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5788         Res1 =
5789             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5790         if (!Res1.isUsable()) {
5791           IsCorrect = false;
5792           continue;
5793         }
5794         // Stepi > 0.
5795         ExprResult CmpRes =
5796             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5797                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5798         if (!CmpRes.isUsable()) {
5799           IsCorrect = false;
5800           continue;
5801         }
5802         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5803                                  Res.get(), Res1.get());
5804         if (!Res.isUsable()) {
5805           IsCorrect = false;
5806           continue;
5807         }
5808       }
5809       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5810       if (!Res.isUsable()) {
5811         IsCorrect = false;
5812         continue;
5813       }
5814 
5815       // Build counter update.
5816       // Build counter.
5817       auto *CounterVD =
5818           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5819                           D.IteratorDecl->getBeginLoc(), nullptr,
5820                           Res.get()->getType(), nullptr, SC_None);
5821       CounterVD->setImplicit();
5822       ExprResult RefRes =
5823           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5824                            D.IteratorDecl->getBeginLoc());
5825       // Build counter update.
5826       // I = Begini + counter * Stepi;
5827       ExprResult UpdateRes;
5828       if (D.Range.Step) {
5829         UpdateRes = CreateBuiltinBinOp(
5830             D.AssignmentLoc, BO_Mul,
5831             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5832       } else {
5833         UpdateRes = DefaultLvalueConversion(RefRes.get());
5834       }
5835       if (!UpdateRes.isUsable()) {
5836         IsCorrect = false;
5837         continue;
5838       }
5839       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5840                                      UpdateRes.get());
5841       if (!UpdateRes.isUsable()) {
5842         IsCorrect = false;
5843         continue;
5844       }
5845       ExprResult VDRes =
5846           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5847                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5848                            D.IteratorDecl->getBeginLoc());
5849       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5850                                      UpdateRes.get());
5851       if (!UpdateRes.isUsable()) {
5852         IsCorrect = false;
5853         continue;
5854       }
5855       UpdateRes =
5856           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5857       if (!UpdateRes.isUsable()) {
5858         IsCorrect = false;
5859         continue;
5860       }
5861       ExprResult CounterUpdateRes =
5862           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5863       if (!CounterUpdateRes.isUsable()) {
5864         IsCorrect = false;
5865         continue;
5866       }
5867       CounterUpdateRes =
5868           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5869       if (!CounterUpdateRes.isUsable()) {
5870         IsCorrect = false;
5871         continue;
5872       }
5873       OMPIteratorHelperData &HD = Helpers.emplace_back();
5874       HD.CounterVD = CounterVD;
5875       HD.Upper = Res.get();
5876       HD.Update = UpdateRes.get();
5877       HD.CounterUpdate = CounterUpdateRes.get();
5878     }
5879   } else {
5880     Helpers.assign(ID.size(), {});
5881   }
5882   if (!IsCorrect) {
5883     // Invalidate all created iterator declarations if error is found.
5884     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5885       if (Decl *ID = D.IteratorDecl)
5886         ID->setInvalidDecl();
5887     }
5888     return ExprError();
5889   }
5890   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5891                                  LLoc, RLoc, ID, Helpers);
5892 }
5893 
5894 ExprResult
5895 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5896                                       Expr *Idx, SourceLocation RLoc) {
5897   Expr *LHSExp = Base;
5898   Expr *RHSExp = Idx;
5899 
5900   ExprValueKind VK = VK_LValue;
5901   ExprObjectKind OK = OK_Ordinary;
5902 
5903   // Per C++ core issue 1213, the result is an xvalue if either operand is
5904   // a non-lvalue array, and an lvalue otherwise.
5905   if (getLangOpts().CPlusPlus11) {
5906     for (auto *Op : {LHSExp, RHSExp}) {
5907       Op = Op->IgnoreImplicit();
5908       if (Op->getType()->isArrayType() && !Op->isLValue())
5909         VK = VK_XValue;
5910     }
5911   }
5912 
5913   // Perform default conversions.
5914   if (!LHSExp->getType()->getAs<VectorType>()) {
5915     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5916     if (Result.isInvalid())
5917       return ExprError();
5918     LHSExp = Result.get();
5919   }
5920   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5921   if (Result.isInvalid())
5922     return ExprError();
5923   RHSExp = Result.get();
5924 
5925   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5926 
5927   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5928   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5929   // in the subscript position. As a result, we need to derive the array base
5930   // and index from the expression types.
5931   Expr *BaseExpr, *IndexExpr;
5932   QualType ResultType;
5933   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5934     BaseExpr = LHSExp;
5935     IndexExpr = RHSExp;
5936     ResultType =
5937         getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5938   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5939     BaseExpr = LHSExp;
5940     IndexExpr = RHSExp;
5941     ResultType = PTy->getPointeeType();
5942   } else if (const ObjCObjectPointerType *PTy =
5943                LHSTy->getAs<ObjCObjectPointerType>()) {
5944     BaseExpr = LHSExp;
5945     IndexExpr = RHSExp;
5946 
5947     // Use custom logic if this should be the pseudo-object subscript
5948     // expression.
5949     if (!LangOpts.isSubscriptPointerArithmetic())
5950       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5951                                           nullptr);
5952 
5953     ResultType = PTy->getPointeeType();
5954   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5955      // Handle the uncommon case of "123[Ptr]".
5956     BaseExpr = RHSExp;
5957     IndexExpr = LHSExp;
5958     ResultType = PTy->getPointeeType();
5959   } else if (const ObjCObjectPointerType *PTy =
5960                RHSTy->getAs<ObjCObjectPointerType>()) {
5961      // Handle the uncommon case of "123[Ptr]".
5962     BaseExpr = RHSExp;
5963     IndexExpr = LHSExp;
5964     ResultType = PTy->getPointeeType();
5965     if (!LangOpts.isSubscriptPointerArithmetic()) {
5966       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5967         << ResultType << BaseExpr->getSourceRange();
5968       return ExprError();
5969     }
5970   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5971     BaseExpr = LHSExp;    // vectors: V[123]
5972     IndexExpr = RHSExp;
5973     // We apply C++ DR1213 to vector subscripting too.
5974     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5975       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5976       if (Materialized.isInvalid())
5977         return ExprError();
5978       LHSExp = Materialized.get();
5979     }
5980     VK = LHSExp->getValueKind();
5981     if (VK != VK_PRValue)
5982       OK = OK_VectorComponent;
5983 
5984     ResultType = VTy->getElementType();
5985     QualType BaseType = BaseExpr->getType();
5986     Qualifiers BaseQuals = BaseType.getQualifiers();
5987     Qualifiers MemberQuals = ResultType.getQualifiers();
5988     Qualifiers Combined = BaseQuals + MemberQuals;
5989     if (Combined != MemberQuals)
5990       ResultType = Context.getQualifiedType(ResultType, Combined);
5991   } else if (LHSTy->isBuiltinType() &&
5992              LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5993     const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5994     if (BTy->isSVEBool())
5995       return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5996                        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5997 
5998     BaseExpr = LHSExp;
5999     IndexExpr = RHSExp;
6000     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
6001       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
6002       if (Materialized.isInvalid())
6003         return ExprError();
6004       LHSExp = Materialized.get();
6005     }
6006     VK = LHSExp->getValueKind();
6007     if (VK != VK_PRValue)
6008       OK = OK_VectorComponent;
6009 
6010     ResultType = BTy->getSveEltType(Context);
6011 
6012     QualType BaseType = BaseExpr->getType();
6013     Qualifiers BaseQuals = BaseType.getQualifiers();
6014     Qualifiers MemberQuals = ResultType.getQualifiers();
6015     Qualifiers Combined = BaseQuals + MemberQuals;
6016     if (Combined != MemberQuals)
6017       ResultType = Context.getQualifiedType(ResultType, Combined);
6018   } else if (LHSTy->isArrayType()) {
6019     // If we see an array that wasn't promoted by
6020     // DefaultFunctionArrayLvalueConversion, it must be an array that
6021     // wasn't promoted because of the C90 rule that doesn't
6022     // allow promoting non-lvalue arrays.  Warn, then
6023     // force the promotion here.
6024     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6025         << LHSExp->getSourceRange();
6026     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
6027                                CK_ArrayToPointerDecay).get();
6028     LHSTy = LHSExp->getType();
6029 
6030     BaseExpr = LHSExp;
6031     IndexExpr = RHSExp;
6032     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
6033   } else if (RHSTy->isArrayType()) {
6034     // Same as previous, except for 123[f().a] case
6035     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6036         << RHSExp->getSourceRange();
6037     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
6038                                CK_ArrayToPointerDecay).get();
6039     RHSTy = RHSExp->getType();
6040 
6041     BaseExpr = RHSExp;
6042     IndexExpr = LHSExp;
6043     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
6044   } else {
6045     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
6046        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
6047   }
6048   // C99 6.5.2.1p1
6049   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
6050     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
6051                      << IndexExpr->getSourceRange());
6052 
6053   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
6054        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) &&
6055       !IndexExpr->isTypeDependent()) {
6056     std::optional<llvm::APSInt> IntegerContantExpr =
6057         IndexExpr->getIntegerConstantExpr(getASTContext());
6058     if (!IntegerContantExpr.has_value() ||
6059         IntegerContantExpr.value().isNegative())
6060       Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
6061   }
6062 
6063   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
6064   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
6065   // type. Note that Functions are not objects, and that (in C99 parlance)
6066   // incomplete types are not object types.
6067   if (ResultType->isFunctionType()) {
6068     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
6069         << ResultType << BaseExpr->getSourceRange();
6070     return ExprError();
6071   }
6072 
6073   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
6074     // GNU extension: subscripting on pointer to void
6075     Diag(LLoc, diag::ext_gnu_subscript_void_type)
6076       << BaseExpr->getSourceRange();
6077 
6078     // C forbids expressions of unqualified void type from being l-values.
6079     // See IsCForbiddenLValueType.
6080     if (!ResultType.hasQualifiers())
6081       VK = VK_PRValue;
6082   } else if (!ResultType->isDependentType() &&
6083              !ResultType.isWebAssemblyReferenceType() &&
6084              RequireCompleteSizedType(
6085                  LLoc, ResultType,
6086                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
6087     return ExprError();
6088 
6089   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
6090          !ResultType.isCForbiddenLValueType());
6091 
6092   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
6093       FunctionScopes.size() > 1) {
6094     if (auto *TT =
6095             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
6096       for (auto I = FunctionScopes.rbegin(),
6097                 E = std::prev(FunctionScopes.rend());
6098            I != E; ++I) {
6099         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
6100         if (CSI == nullptr)
6101           break;
6102         DeclContext *DC = nullptr;
6103         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
6104           DC = LSI->CallOperator;
6105         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
6106           DC = CRSI->TheCapturedDecl;
6107         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
6108           DC = BSI->TheDecl;
6109         if (DC) {
6110           if (DC->containsDecl(TT->getDecl()))
6111             break;
6112           captureVariablyModifiedType(
6113               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
6114         }
6115       }
6116     }
6117   }
6118 
6119   return new (Context)
6120       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
6121 }
6122 
6123 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
6124                                   ParmVarDecl *Param, Expr *RewrittenInit,
6125                                   bool SkipImmediateInvocations) {
6126   if (Param->hasUnparsedDefaultArg()) {
6127     assert(!RewrittenInit && "Should not have a rewritten init expression yet");
6128     // If we've already cleared out the location for the default argument,
6129     // that means we're parsing it right now.
6130     if (!UnparsedDefaultArgLocs.count(Param)) {
6131       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
6132       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
6133       Param->setInvalidDecl();
6134       return true;
6135     }
6136 
6137     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
6138         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
6139     Diag(UnparsedDefaultArgLocs[Param],
6140          diag::note_default_argument_declared_here);
6141     return true;
6142   }
6143 
6144   if (Param->hasUninstantiatedDefaultArg()) {
6145     assert(!RewrittenInit && "Should not have a rewitten init expression yet");
6146     if (InstantiateDefaultArgument(CallLoc, FD, Param))
6147       return true;
6148   }
6149 
6150   Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
6151   assert(Init && "default argument but no initializer?");
6152 
6153   // If the default expression creates temporaries, we need to
6154   // push them to the current stack of expression temporaries so they'll
6155   // be properly destroyed.
6156   // FIXME: We should really be rebuilding the default argument with new
6157   // bound temporaries; see the comment in PR5810.
6158   // We don't need to do that with block decls, though, because
6159   // blocks in default argument expression can never capture anything.
6160   if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
6161     // Set the "needs cleanups" bit regardless of whether there are
6162     // any explicit objects.
6163     Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
6164     // Append all the objects to the cleanup list.  Right now, this
6165     // should always be a no-op, because blocks in default argument
6166     // expressions should never be able to capture anything.
6167     assert(!InitWithCleanup->getNumObjects() &&
6168            "default argument expression has capturing blocks?");
6169   }
6170   // C++ [expr.const]p15.1:
6171   //   An expression or conversion is in an immediate function context if it is
6172   //   potentially evaluated and [...] its innermost enclosing non-block scope
6173   //   is a function parameter scope of an immediate function.
6174   EnterExpressionEvaluationContext EvalContext(
6175       *this,
6176       FD->isImmediateFunction()
6177           ? ExpressionEvaluationContext::ImmediateFunctionContext
6178           : ExpressionEvaluationContext::PotentiallyEvaluated,
6179       Param);
6180   ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6181       SkipImmediateInvocations;
6182   runWithSufficientStackSpace(CallLoc, [&] {
6183     MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
6184   });
6185   return false;
6186 }
6187 
6188 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
6189   const ASTContext &Context;
6190   ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
6191 
6192   bool HasImmediateCalls = false;
6193   bool shouldVisitImplicitCode() const { return true; }
6194 
6195   bool VisitCallExpr(CallExpr *E) {
6196     if (const FunctionDecl *FD = E->getDirectCallee())
6197       HasImmediateCalls |= FD->isImmediateFunction();
6198     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6199   }
6200 
6201   // SourceLocExpr are not immediate invocations
6202   // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
6203   // need to be rebuilt so that they refer to the correct SourceLocation and
6204   // DeclContext.
6205   bool VisitSourceLocExpr(SourceLocExpr *E) {
6206     HasImmediateCalls = true;
6207     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6208   }
6209 
6210   // A nested lambda might have parameters with immediate invocations
6211   // in their default arguments.
6212   // The compound statement is not visited (as it does not constitute a
6213   // subexpression).
6214   // FIXME: We should consider visiting and transforming captures
6215   // with init expressions.
6216   bool VisitLambdaExpr(LambdaExpr *E) {
6217     return VisitCXXMethodDecl(E->getCallOperator());
6218   }
6219 
6220   // Blocks don't support default parameters, and, as for lambdas,
6221   // we don't consider their body a subexpression.
6222   bool VisitBlockDecl(BlockDecl *B) { return false; }
6223 
6224   bool VisitCompoundStmt(CompoundStmt *B) { return false; }
6225 
6226   bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
6227     return TraverseStmt(E->getExpr());
6228   }
6229 
6230   bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
6231     return TraverseStmt(E->getExpr());
6232   }
6233 };
6234 
6235 struct EnsureImmediateInvocationInDefaultArgs
6236     : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
6237   EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
6238       : TreeTransform(SemaRef) {}
6239 
6240   // Lambda can only have immediate invocations in the default
6241   // args of their parameters, which is transformed upon calling the closure.
6242   // The body is not a subexpression, so we have nothing to do.
6243   // FIXME: Immediate calls in capture initializers should be transformed.
6244   ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
6245   ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
6246 
6247   // Make sure we don't rebuild the this pointer as it would
6248   // cause it to incorrectly point it to the outermost class
6249   // in the case of nested struct initialization.
6250   ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
6251 };
6252 
6253 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
6254                                         FunctionDecl *FD, ParmVarDecl *Param,
6255                                         Expr *Init) {
6256   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
6257 
6258   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6259 
6260   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6261       InitializationContext =
6262           OutermostDeclarationWithDelayedImmediateInvocations();
6263   if (!InitializationContext.has_value())
6264     InitializationContext.emplace(CallLoc, Param, CurContext);
6265 
6266   if (!Init && !Param->hasUnparsedDefaultArg()) {
6267     // Mark that we are replacing a default argument first.
6268     // If we are instantiating a template we won't have to
6269     // retransform immediate calls.
6270     // C++ [expr.const]p15.1:
6271     //   An expression or conversion is in an immediate function context if it
6272     //   is potentially evaluated and [...] its innermost enclosing non-block
6273     //   scope is a function parameter scope of an immediate function.
6274     EnterExpressionEvaluationContext EvalContext(
6275         *this,
6276         FD->isImmediateFunction()
6277             ? ExpressionEvaluationContext::ImmediateFunctionContext
6278             : ExpressionEvaluationContext::PotentiallyEvaluated,
6279         Param);
6280 
6281     if (Param->hasUninstantiatedDefaultArg()) {
6282       if (InstantiateDefaultArgument(CallLoc, FD, Param))
6283         return ExprError();
6284     }
6285     // CWG2631
6286     // An immediate invocation that is not evaluated where it appears is
6287     // evaluated and checked for whether it is a constant expression at the
6288     // point where the enclosing initializer is used in a function call.
6289     ImmediateCallVisitor V(getASTContext());
6290     if (!NestedDefaultChecking)
6291       V.TraverseDecl(Param);
6292     if (V.HasImmediateCalls) {
6293       ExprEvalContexts.back().DelayedDefaultInitializationContext = {
6294           CallLoc, Param, CurContext};
6295       EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6296       ExprResult Res;
6297       runWithSufficientStackSpace(CallLoc, [&] {
6298         Res = Immediate.TransformInitializer(Param->getInit(),
6299                                              /*NotCopy=*/false);
6300       });
6301       if (Res.isInvalid())
6302         return ExprError();
6303       Res = ConvertParamDefaultArgument(Param, Res.get(),
6304                                         Res.get()->getBeginLoc());
6305       if (Res.isInvalid())
6306         return ExprError();
6307       Init = Res.get();
6308     }
6309   }
6310 
6311   if (CheckCXXDefaultArgExpr(
6312           CallLoc, FD, Param, Init,
6313           /*SkipImmediateInvocations=*/NestedDefaultChecking))
6314     return ExprError();
6315 
6316   return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
6317                                    Init, InitializationContext->Context);
6318 }
6319 
6320 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
6321   assert(Field->hasInClassInitializer());
6322 
6323   // If we might have already tried and failed to instantiate, don't try again.
6324   if (Field->isInvalidDecl())
6325     return ExprError();
6326 
6327   CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
6328 
6329   auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
6330 
6331   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6332       InitializationContext =
6333           OutermostDeclarationWithDelayedImmediateInvocations();
6334   if (!InitializationContext.has_value())
6335     InitializationContext.emplace(Loc, Field, CurContext);
6336 
6337   Expr *Init = nullptr;
6338 
6339   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6340 
6341   EnterExpressionEvaluationContext EvalContext(
6342       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
6343 
6344   if (!Field->getInClassInitializer()) {
6345     // Maybe we haven't instantiated the in-class initializer. Go check the
6346     // pattern FieldDecl to see if it has one.
6347     if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
6348       CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
6349       DeclContext::lookup_result Lookup =
6350           ClassPattern->lookup(Field->getDeclName());
6351 
6352       FieldDecl *Pattern = nullptr;
6353       for (auto *L : Lookup) {
6354         if ((Pattern = dyn_cast<FieldDecl>(L)))
6355           break;
6356       }
6357       assert(Pattern && "We must have set the Pattern!");
6358       if (!Pattern->hasInClassInitializer() ||
6359           InstantiateInClassInitializer(Loc, Field, Pattern,
6360                                         getTemplateInstantiationArgs(Field))) {
6361         Field->setInvalidDecl();
6362         return ExprError();
6363       }
6364     }
6365   }
6366 
6367   // CWG2631
6368   // An immediate invocation that is not evaluated where it appears is
6369   // evaluated and checked for whether it is a constant expression at the
6370   // point where the enclosing initializer is used in a [...] a constructor
6371   // definition, or an aggregate initialization.
6372   ImmediateCallVisitor V(getASTContext());
6373   if (!NestedDefaultChecking)
6374     V.TraverseDecl(Field);
6375   if (V.HasImmediateCalls) {
6376     ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
6377                                                                    CurContext};
6378     ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6379         NestedDefaultChecking;
6380 
6381     EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6382     ExprResult Res;
6383     runWithSufficientStackSpace(Loc, [&] {
6384       Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
6385                                            /*CXXDirectInit=*/false);
6386     });
6387     if (!Res.isInvalid())
6388       Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
6389     if (Res.isInvalid()) {
6390       Field->setInvalidDecl();
6391       return ExprError();
6392     }
6393     Init = Res.get();
6394   }
6395 
6396   if (Field->getInClassInitializer()) {
6397     Expr *E = Init ? Init : Field->getInClassInitializer();
6398     if (!NestedDefaultChecking)
6399       runWithSufficientStackSpace(Loc, [&] {
6400         MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
6401       });
6402     // C++11 [class.base.init]p7:
6403     //   The initialization of each base and member constitutes a
6404     //   full-expression.
6405     ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
6406     if (Res.isInvalid()) {
6407       Field->setInvalidDecl();
6408       return ExprError();
6409     }
6410     Init = Res.get();
6411 
6412     return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
6413                                       Field, InitializationContext->Context,
6414                                       Init);
6415   }
6416 
6417   // DR1351:
6418   //   If the brace-or-equal-initializer of a non-static data member
6419   //   invokes a defaulted default constructor of its class or of an
6420   //   enclosing class in a potentially evaluated subexpression, the
6421   //   program is ill-formed.
6422   //
6423   // This resolution is unworkable: the exception specification of the
6424   // default constructor can be needed in an unevaluated context, in
6425   // particular, in the operand of a noexcept-expression, and we can be
6426   // unable to compute an exception specification for an enclosed class.
6427   //
6428   // Any attempt to resolve the exception specification of a defaulted default
6429   // constructor before the initializer is lexically complete will ultimately
6430   // come here at which point we can diagnose it.
6431   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
6432   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
6433       << OutermostClass << Field;
6434   Diag(Field->getEndLoc(),
6435        diag::note_default_member_initializer_not_yet_parsed);
6436   // Recover by marking the field invalid, unless we're in a SFINAE context.
6437   if (!isSFINAEContext())
6438     Field->setInvalidDecl();
6439   return ExprError();
6440 }
6441 
6442 Sema::VariadicCallType
6443 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
6444                           Expr *Fn) {
6445   if (Proto && Proto->isVariadic()) {
6446     if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
6447       return VariadicConstructor;
6448     else if (Fn && Fn->getType()->isBlockPointerType())
6449       return VariadicBlock;
6450     else if (FDecl) {
6451       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6452         if (Method->isInstance())
6453           return VariadicMethod;
6454     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
6455       return VariadicMethod;
6456     return VariadicFunction;
6457   }
6458   return VariadicDoesNotApply;
6459 }
6460 
6461 namespace {
6462 class FunctionCallCCC final : public FunctionCallFilterCCC {
6463 public:
6464   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
6465                   unsigned NumArgs, MemberExpr *ME)
6466       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
6467         FunctionName(FuncName) {}
6468 
6469   bool ValidateCandidate(const TypoCorrection &candidate) override {
6470     if (!candidate.getCorrectionSpecifier() ||
6471         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
6472       return false;
6473     }
6474 
6475     return FunctionCallFilterCCC::ValidateCandidate(candidate);
6476   }
6477 
6478   std::unique_ptr<CorrectionCandidateCallback> clone() override {
6479     return std::make_unique<FunctionCallCCC>(*this);
6480   }
6481 
6482 private:
6483   const IdentifierInfo *const FunctionName;
6484 };
6485 }
6486 
6487 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
6488                                                FunctionDecl *FDecl,
6489                                                ArrayRef<Expr *> Args) {
6490   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
6491   DeclarationName FuncName = FDecl->getDeclName();
6492   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
6493 
6494   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
6495   if (TypoCorrection Corrected = S.CorrectTypo(
6496           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
6497           S.getScopeForContext(S.CurContext), nullptr, CCC,
6498           Sema::CTK_ErrorRecovery)) {
6499     if (NamedDecl *ND = Corrected.getFoundDecl()) {
6500       if (Corrected.isOverloaded()) {
6501         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
6502         OverloadCandidateSet::iterator Best;
6503         for (NamedDecl *CD : Corrected) {
6504           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
6505             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
6506                                    OCS);
6507         }
6508         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
6509         case OR_Success:
6510           ND = Best->FoundDecl;
6511           Corrected.setCorrectionDecl(ND);
6512           break;
6513         default:
6514           break;
6515         }
6516       }
6517       ND = ND->getUnderlyingDecl();
6518       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
6519         return Corrected;
6520     }
6521   }
6522   return TypoCorrection();
6523 }
6524 
6525 /// ConvertArgumentsForCall - Converts the arguments specified in
6526 /// Args/NumArgs to the parameter types of the function FDecl with
6527 /// function prototype Proto. Call is the call expression itself, and
6528 /// Fn is the function expression. For a C++ member function, this
6529 /// routine does not attempt to convert the object argument. Returns
6530 /// true if the call is ill-formed.
6531 bool
6532 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6533                               FunctionDecl *FDecl,
6534                               const FunctionProtoType *Proto,
6535                               ArrayRef<Expr *> Args,
6536                               SourceLocation RParenLoc,
6537                               bool IsExecConfig) {
6538   // Bail out early if calling a builtin with custom typechecking.
6539   if (FDecl)
6540     if (unsigned ID = FDecl->getBuiltinID())
6541       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6542         return false;
6543 
6544   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6545   // assignment, to the types of the corresponding parameter, ...
6546   bool HasExplicitObjectParameter =
6547       FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
6548   unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
6549   unsigned NumParams = Proto->getNumParams();
6550   bool Invalid = false;
6551   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6552   unsigned FnKind = Fn->getType()->isBlockPointerType()
6553                        ? 1 /* block */
6554                        : (IsExecConfig ? 3 /* kernel function (exec config) */
6555                                        : 0 /* function */);
6556 
6557   // If too few arguments are available (and we don't have default
6558   // arguments for the remaining parameters), don't make the call.
6559   if (Args.size() < NumParams) {
6560     if (Args.size() < MinArgs) {
6561       TypoCorrection TC;
6562       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6563         unsigned diag_id =
6564             MinArgs == NumParams && !Proto->isVariadic()
6565                 ? diag::err_typecheck_call_too_few_args_suggest
6566                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6567         diagnoseTypo(
6568             TC, PDiag(diag_id)
6569                     << FnKind << MinArgs - ExplicitObjectParameterOffset
6570                     << static_cast<unsigned>(Args.size()) -
6571                            ExplicitObjectParameterOffset
6572                     << HasExplicitObjectParameter << TC.getCorrectionRange());
6573       } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
6574                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
6575                      ->getDeclName())
6576         Diag(RParenLoc,
6577              MinArgs == NumParams && !Proto->isVariadic()
6578                  ? diag::err_typecheck_call_too_few_args_one
6579                  : diag::err_typecheck_call_too_few_args_at_least_one)
6580             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6581             << HasExplicitObjectParameter << Fn->getSourceRange();
6582       else
6583         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6584                             ? diag::err_typecheck_call_too_few_args
6585                             : diag::err_typecheck_call_too_few_args_at_least)
6586             << FnKind << MinArgs - ExplicitObjectParameterOffset
6587             << static_cast<unsigned>(Args.size()) -
6588                    ExplicitObjectParameterOffset
6589             << HasExplicitObjectParameter << Fn->getSourceRange();
6590 
6591       // Emit the location of the prototype.
6592       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6593         Diag(FDecl->getLocation(), diag::note_callee_decl)
6594             << FDecl << FDecl->getParametersSourceRange();
6595 
6596       return true;
6597     }
6598     // We reserve space for the default arguments when we create
6599     // the call expression, before calling ConvertArgumentsForCall.
6600     assert((Call->getNumArgs() == NumParams) &&
6601            "We should have reserved space for the default arguments before!");
6602   }
6603 
6604   // If too many are passed and not variadic, error on the extras and drop
6605   // them.
6606   if (Args.size() > NumParams) {
6607     if (!Proto->isVariadic()) {
6608       TypoCorrection TC;
6609       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6610         unsigned diag_id =
6611             MinArgs == NumParams && !Proto->isVariadic()
6612                 ? diag::err_typecheck_call_too_many_args_suggest
6613                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6614         diagnoseTypo(
6615             TC, PDiag(diag_id)
6616                     << FnKind << NumParams - ExplicitObjectParameterOffset
6617                     << static_cast<unsigned>(Args.size()) -
6618                            ExplicitObjectParameterOffset
6619                     << HasExplicitObjectParameter << TC.getCorrectionRange());
6620       } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
6621                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
6622                      ->getDeclName())
6623         Diag(Args[NumParams]->getBeginLoc(),
6624              MinArgs == NumParams
6625                  ? diag::err_typecheck_call_too_many_args_one
6626                  : diag::err_typecheck_call_too_many_args_at_most_one)
6627             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6628             << static_cast<unsigned>(Args.size()) -
6629                    ExplicitObjectParameterOffset
6630             << HasExplicitObjectParameter << Fn->getSourceRange()
6631             << SourceRange(Args[NumParams]->getBeginLoc(),
6632                            Args.back()->getEndLoc());
6633       else
6634         Diag(Args[NumParams]->getBeginLoc(),
6635              MinArgs == NumParams
6636                  ? diag::err_typecheck_call_too_many_args
6637                  : diag::err_typecheck_call_too_many_args_at_most)
6638             << FnKind << NumParams - ExplicitObjectParameterOffset
6639             << static_cast<unsigned>(Args.size()) -
6640                    ExplicitObjectParameterOffset
6641             << HasExplicitObjectParameter << Fn->getSourceRange()
6642             << SourceRange(Args[NumParams]->getBeginLoc(),
6643                            Args.back()->getEndLoc());
6644 
6645       // Emit the location of the prototype.
6646       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6647         Diag(FDecl->getLocation(), diag::note_callee_decl)
6648             << FDecl << FDecl->getParametersSourceRange();
6649 
6650       // This deletes the extra arguments.
6651       Call->shrinkNumArgs(NumParams);
6652       return true;
6653     }
6654   }
6655   SmallVector<Expr *, 8> AllArgs;
6656   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6657 
6658   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6659                                    AllArgs, CallType);
6660   if (Invalid)
6661     return true;
6662   unsigned TotalNumArgs = AllArgs.size();
6663   for (unsigned i = 0; i < TotalNumArgs; ++i)
6664     Call->setArg(i, AllArgs[i]);
6665 
6666   Call->computeDependence();
6667   return false;
6668 }
6669 
6670 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6671                                   const FunctionProtoType *Proto,
6672                                   unsigned FirstParam, ArrayRef<Expr *> Args,
6673                                   SmallVectorImpl<Expr *> &AllArgs,
6674                                   VariadicCallType CallType, bool AllowExplicit,
6675                                   bool IsListInitialization) {
6676   unsigned NumParams = Proto->getNumParams();
6677   bool Invalid = false;
6678   size_t ArgIx = 0;
6679   // Continue to check argument types (even if we have too few/many args).
6680   for (unsigned i = FirstParam; i < NumParams; i++) {
6681     QualType ProtoArgType = Proto->getParamType(i);
6682 
6683     Expr *Arg;
6684     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6685     if (ArgIx < Args.size()) {
6686       Arg = Args[ArgIx++];
6687 
6688       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6689                               diag::err_call_incomplete_argument, Arg))
6690         return true;
6691 
6692       // Strip the unbridged-cast placeholder expression off, if applicable.
6693       bool CFAudited = false;
6694       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6695           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6696           (!Param || !Param->hasAttr<CFConsumedAttr>()))
6697         Arg = stripARCUnbridgedCast(Arg);
6698       else if (getLangOpts().ObjCAutoRefCount &&
6699                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6700                (!Param || !Param->hasAttr<CFConsumedAttr>()))
6701         CFAudited = true;
6702 
6703       if (Proto->getExtParameterInfo(i).isNoEscape() &&
6704           ProtoArgType->isBlockPointerType())
6705         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6706           BE->getBlockDecl()->setDoesNotEscape();
6707 
6708       InitializedEntity Entity =
6709           Param ? InitializedEntity::InitializeParameter(Context, Param,
6710                                                          ProtoArgType)
6711                 : InitializedEntity::InitializeParameter(
6712                       Context, ProtoArgType, Proto->isParamConsumed(i));
6713 
6714       // Remember that parameter belongs to a CF audited API.
6715       if (CFAudited)
6716         Entity.setParameterCFAudited();
6717 
6718       ExprResult ArgE = PerformCopyInitialization(
6719           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6720       if (ArgE.isInvalid())
6721         return true;
6722 
6723       Arg = ArgE.getAs<Expr>();
6724     } else {
6725       assert(Param && "can't use default arguments without a known callee");
6726 
6727       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6728       if (ArgExpr.isInvalid())
6729         return true;
6730 
6731       Arg = ArgExpr.getAs<Expr>();
6732     }
6733 
6734     // Check for array bounds violations for each argument to the call. This
6735     // check only triggers warnings when the argument isn't a more complex Expr
6736     // with its own checking, such as a BinaryOperator.
6737     CheckArrayAccess(Arg);
6738 
6739     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6740     CheckStaticArrayArgument(CallLoc, Param, Arg);
6741 
6742     AllArgs.push_back(Arg);
6743   }
6744 
6745   // If this is a variadic call, handle args passed through "...".
6746   if (CallType != VariadicDoesNotApply) {
6747     // Assume that extern "C" functions with variadic arguments that
6748     // return __unknown_anytype aren't *really* variadic.
6749     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6750         FDecl->isExternC()) {
6751       for (Expr *A : Args.slice(ArgIx)) {
6752         QualType paramType; // ignored
6753         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6754         Invalid |= arg.isInvalid();
6755         AllArgs.push_back(arg.get());
6756       }
6757 
6758     // Otherwise do argument promotion, (C99 6.5.2.2p7).
6759     } else {
6760       for (Expr *A : Args.slice(ArgIx)) {
6761         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6762         Invalid |= Arg.isInvalid();
6763         AllArgs.push_back(Arg.get());
6764       }
6765     }
6766 
6767     // Check for array bounds violations.
6768     for (Expr *A : Args.slice(ArgIx))
6769       CheckArrayAccess(A);
6770   }
6771   return Invalid;
6772 }
6773 
6774 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6775   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6776   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6777     TL = DTL.getOriginalLoc();
6778   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6779     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6780       << ATL.getLocalSourceRange();
6781 }
6782 
6783 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6784 /// array parameter, check that it is non-null, and that if it is formed by
6785 /// array-to-pointer decay, the underlying array is sufficiently large.
6786 ///
6787 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6788 /// array type derivation, then for each call to the function, the value of the
6789 /// corresponding actual argument shall provide access to the first element of
6790 /// an array with at least as many elements as specified by the size expression.
6791 void
6792 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6793                                ParmVarDecl *Param,
6794                                const Expr *ArgExpr) {
6795   // Static array parameters are not supported in C++.
6796   if (!Param || getLangOpts().CPlusPlus)
6797     return;
6798 
6799   QualType OrigTy = Param->getOriginalType();
6800 
6801   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6802   if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6803     return;
6804 
6805   if (ArgExpr->isNullPointerConstant(Context,
6806                                      Expr::NPC_NeverValueDependent)) {
6807     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6808     DiagnoseCalleeStaticArrayParam(*this, Param);
6809     return;
6810   }
6811 
6812   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6813   if (!CAT)
6814     return;
6815 
6816   const ConstantArrayType *ArgCAT =
6817     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6818   if (!ArgCAT)
6819     return;
6820 
6821   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6822                                              ArgCAT->getElementType())) {
6823     if (ArgCAT->getSize().ult(CAT->getSize())) {
6824       Diag(CallLoc, diag::warn_static_array_too_small)
6825           << ArgExpr->getSourceRange()
6826           << (unsigned)ArgCAT->getSize().getZExtValue()
6827           << (unsigned)CAT->getSize().getZExtValue() << 0;
6828       DiagnoseCalleeStaticArrayParam(*this, Param);
6829     }
6830     return;
6831   }
6832 
6833   std::optional<CharUnits> ArgSize =
6834       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6835   std::optional<CharUnits> ParmSize =
6836       getASTContext().getTypeSizeInCharsIfKnown(CAT);
6837   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6838     Diag(CallLoc, diag::warn_static_array_too_small)
6839         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6840         << (unsigned)ParmSize->getQuantity() << 1;
6841     DiagnoseCalleeStaticArrayParam(*this, Param);
6842   }
6843 }
6844 
6845 /// Given a function expression of unknown-any type, try to rebuild it
6846 /// to have a function type.
6847 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6848 
6849 /// Is the given type a placeholder that we need to lower out
6850 /// immediately during argument processing?
6851 static bool isPlaceholderToRemoveAsArg(QualType type) {
6852   // Placeholders are never sugared.
6853   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6854   if (!placeholder) return false;
6855 
6856   switch (placeholder->getKind()) {
6857   // Ignore all the non-placeholder types.
6858 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6859   case BuiltinType::Id:
6860 #include "clang/Basic/OpenCLImageTypes.def"
6861 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6862   case BuiltinType::Id:
6863 #include "clang/Basic/OpenCLExtensionTypes.def"
6864   // In practice we'll never use this, since all SVE types are sugared
6865   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6866 #define SVE_TYPE(Name, Id, SingletonId) \
6867   case BuiltinType::Id:
6868 #include "clang/Basic/AArch64SVEACLETypes.def"
6869 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6870   case BuiltinType::Id:
6871 #include "clang/Basic/PPCTypes.def"
6872 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6873 #include "clang/Basic/RISCVVTypes.def"
6874 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6875 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6876 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6877 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6878 #include "clang/AST/BuiltinTypes.def"
6879     return false;
6880 
6881   // We cannot lower out overload sets; they might validly be resolved
6882   // by the call machinery.
6883   case BuiltinType::Overload:
6884     return false;
6885 
6886   // Unbridged casts in ARC can be handled in some call positions and
6887   // should be left in place.
6888   case BuiltinType::ARCUnbridgedCast:
6889     return false;
6890 
6891   // Pseudo-objects should be converted as soon as possible.
6892   case BuiltinType::PseudoObject:
6893     return true;
6894 
6895   // The debugger mode could theoretically but currently does not try
6896   // to resolve unknown-typed arguments based on known parameter types.
6897   case BuiltinType::UnknownAny:
6898     return true;
6899 
6900   // These are always invalid as call arguments and should be reported.
6901   case BuiltinType::BoundMember:
6902   case BuiltinType::BuiltinFn:
6903   case BuiltinType::IncompleteMatrixIdx:
6904   case BuiltinType::OMPArraySection:
6905   case BuiltinType::OMPArrayShaping:
6906   case BuiltinType::OMPIterator:
6907     return true;
6908 
6909   }
6910   llvm_unreachable("bad builtin type kind");
6911 }
6912 
6913 /// Check an argument list for placeholders that we won't try to
6914 /// handle later.
6915 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6916   // Apply this processing to all the arguments at once instead of
6917   // dying at the first failure.
6918   bool hasInvalid = false;
6919   for (size_t i = 0, e = args.size(); i != e; i++) {
6920     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6921       ExprResult result = S.CheckPlaceholderExpr(args[i]);
6922       if (result.isInvalid()) hasInvalid = true;
6923       else args[i] = result.get();
6924     }
6925   }
6926   return hasInvalid;
6927 }
6928 
6929 /// If a builtin function has a pointer argument with no explicit address
6930 /// space, then it should be able to accept a pointer to any address
6931 /// space as input.  In order to do this, we need to replace the
6932 /// standard builtin declaration with one that uses the same address space
6933 /// as the call.
6934 ///
6935 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6936 ///                  it does not contain any pointer arguments without
6937 ///                  an address space qualifer.  Otherwise the rewritten
6938 ///                  FunctionDecl is returned.
6939 /// TODO: Handle pointer return types.
6940 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6941                                                 FunctionDecl *FDecl,
6942                                                 MultiExprArg ArgExprs) {
6943 
6944   QualType DeclType = FDecl->getType();
6945   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6946 
6947   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6948       ArgExprs.size() < FT->getNumParams())
6949     return nullptr;
6950 
6951   bool NeedsNewDecl = false;
6952   unsigned i = 0;
6953   SmallVector<QualType, 8> OverloadParams;
6954 
6955   for (QualType ParamType : FT->param_types()) {
6956 
6957     // Convert array arguments to pointer to simplify type lookup.
6958     ExprResult ArgRes =
6959         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6960     if (ArgRes.isInvalid())
6961       return nullptr;
6962     Expr *Arg = ArgRes.get();
6963     QualType ArgType = Arg->getType();
6964     if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6965         !ArgType->isPointerType() ||
6966         !ArgType->getPointeeType().hasAddressSpace() ||
6967         isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6968       OverloadParams.push_back(ParamType);
6969       continue;
6970     }
6971 
6972     QualType PointeeType = ParamType->getPointeeType();
6973     if (PointeeType.hasAddressSpace())
6974       continue;
6975 
6976     NeedsNewDecl = true;
6977     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6978 
6979     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6980     OverloadParams.push_back(Context.getPointerType(PointeeType));
6981   }
6982 
6983   if (!NeedsNewDecl)
6984     return nullptr;
6985 
6986   FunctionProtoType::ExtProtoInfo EPI;
6987   EPI.Variadic = FT->isVariadic();
6988   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6989                                                 OverloadParams, EPI);
6990   DeclContext *Parent = FDecl->getParent();
6991   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6992       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6993       FDecl->getIdentifier(), OverloadTy,
6994       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6995       false,
6996       /*hasPrototype=*/true);
6997   SmallVector<ParmVarDecl*, 16> Params;
6998   FT = cast<FunctionProtoType>(OverloadTy);
6999   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
7000     QualType ParamType = FT->getParamType(i);
7001     ParmVarDecl *Parm =
7002         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
7003                                 SourceLocation(), nullptr, ParamType,
7004                                 /*TInfo=*/nullptr, SC_None, nullptr);
7005     Parm->setScopeInfo(0, i);
7006     Params.push_back(Parm);
7007   }
7008   OverloadDecl->setParams(Params);
7009   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
7010   return OverloadDecl;
7011 }
7012 
7013 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
7014                                     FunctionDecl *Callee,
7015                                     MultiExprArg ArgExprs) {
7016   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
7017   // similar attributes) really don't like it when functions are called with an
7018   // invalid number of args.
7019   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
7020                          /*PartialOverloading=*/false) &&
7021       !Callee->isVariadic())
7022     return;
7023   if (Callee->getMinRequiredArguments() > ArgExprs.size())
7024     return;
7025 
7026   if (const EnableIfAttr *Attr =
7027           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
7028     S.Diag(Fn->getBeginLoc(),
7029            isa<CXXMethodDecl>(Callee)
7030                ? diag::err_ovl_no_viable_member_function_in_call
7031                : diag::err_ovl_no_viable_function_in_call)
7032         << Callee << Callee->getSourceRange();
7033     S.Diag(Callee->getLocation(),
7034            diag::note_ovl_candidate_disabled_by_function_cond_attr)
7035         << Attr->getCond()->getSourceRange() << Attr->getMessage();
7036     return;
7037   }
7038 }
7039 
7040 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
7041     const UnresolvedMemberExpr *const UME, Sema &S) {
7042 
7043   const auto GetFunctionLevelDCIfCXXClass =
7044       [](Sema &S) -> const CXXRecordDecl * {
7045     const DeclContext *const DC = S.getFunctionLevelDeclContext();
7046     if (!DC || !DC->getParent())
7047       return nullptr;
7048 
7049     // If the call to some member function was made from within a member
7050     // function body 'M' return return 'M's parent.
7051     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
7052       return MD->getParent()->getCanonicalDecl();
7053     // else the call was made from within a default member initializer of a
7054     // class, so return the class.
7055     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
7056       return RD->getCanonicalDecl();
7057     return nullptr;
7058   };
7059   // If our DeclContext is neither a member function nor a class (in the
7060   // case of a lambda in a default member initializer), we can't have an
7061   // enclosing 'this'.
7062 
7063   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
7064   if (!CurParentClass)
7065     return false;
7066 
7067   // The naming class for implicit member functions call is the class in which
7068   // name lookup starts.
7069   const CXXRecordDecl *const NamingClass =
7070       UME->getNamingClass()->getCanonicalDecl();
7071   assert(NamingClass && "Must have naming class even for implicit access");
7072 
7073   // If the unresolved member functions were found in a 'naming class' that is
7074   // related (either the same or derived from) to the class that contains the
7075   // member function that itself contained the implicit member access.
7076 
7077   return CurParentClass == NamingClass ||
7078          CurParentClass->isDerivedFrom(NamingClass);
7079 }
7080 
7081 static void
7082 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7083     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
7084 
7085   if (!UME)
7086     return;
7087 
7088   LambdaScopeInfo *const CurLSI = S.getCurLambda();
7089   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
7090   // already been captured, or if this is an implicit member function call (if
7091   // it isn't, an attempt to capture 'this' should already have been made).
7092   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
7093       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
7094     return;
7095 
7096   // Check if the naming class in which the unresolved members were found is
7097   // related (same as or is a base of) to the enclosing class.
7098 
7099   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
7100     return;
7101 
7102 
7103   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
7104   // If the enclosing function is not dependent, then this lambda is
7105   // capture ready, so if we can capture this, do so.
7106   if (!EnclosingFunctionCtx->isDependentContext()) {
7107     // If the current lambda and all enclosing lambdas can capture 'this' -
7108     // then go ahead and capture 'this' (since our unresolved overload set
7109     // contains at least one non-static member function).
7110     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
7111       S.CheckCXXThisCapture(CallLoc);
7112   } else if (S.CurContext->isDependentContext()) {
7113     // ... since this is an implicit member reference, that might potentially
7114     // involve a 'this' capture, mark 'this' for potential capture in
7115     // enclosing lambdas.
7116     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
7117       CurLSI->addPotentialThisCapture(CallLoc);
7118   }
7119 }
7120 
7121 // Once a call is fully resolved, warn for unqualified calls to specific
7122 // C++ standard functions, like move and forward.
7123 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
7124                                                     const CallExpr *Call) {
7125   // We are only checking unary move and forward so exit early here.
7126   if (Call->getNumArgs() != 1)
7127     return;
7128 
7129   const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
7130   if (!E || isa<UnresolvedLookupExpr>(E))
7131     return;
7132   const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
7133   if (!DRE || !DRE->getLocation().isValid())
7134     return;
7135 
7136   if (DRE->getQualifier())
7137     return;
7138 
7139   const FunctionDecl *FD = Call->getDirectCallee();
7140   if (!FD)
7141     return;
7142 
7143   // Only warn for some functions deemed more frequent or problematic.
7144   unsigned BuiltinID = FD->getBuiltinID();
7145   if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
7146     return;
7147 
7148   S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
7149       << FD->getQualifiedNameAsString()
7150       << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
7151 }
7152 
7153 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7154                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
7155                                Expr *ExecConfig) {
7156   ExprResult Call =
7157       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7158                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
7159   if (Call.isInvalid())
7160     return Call;
7161 
7162   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
7163   // language modes.
7164   if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
7165       ULE && ULE->hasExplicitTemplateArgs() &&
7166       ULE->decls_begin() == ULE->decls_end()) {
7167     Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
7168                                ? diag::warn_cxx17_compat_adl_only_template_id
7169                                : diag::ext_adl_only_template_id)
7170         << ULE->getName();
7171   }
7172 
7173   if (LangOpts.OpenMP)
7174     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
7175                            ExecConfig);
7176   if (LangOpts.CPlusPlus) {
7177     if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
7178       DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
7179   }
7180   return Call;
7181 }
7182 
7183 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
7184 /// This provides the location of the left/right parens and a list of comma
7185 /// locations.
7186 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7187                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
7188                                Expr *ExecConfig, bool IsExecConfig,
7189                                bool AllowRecovery) {
7190   // Since this might be a postfix expression, get rid of ParenListExprs.
7191   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
7192   if (Result.isInvalid()) return ExprError();
7193   Fn = Result.get();
7194 
7195   if (checkArgsForPlaceholders(*this, ArgExprs))
7196     return ExprError();
7197 
7198   if (getLangOpts().CPlusPlus) {
7199     // If this is a pseudo-destructor expression, build the call immediately.
7200     if (isa<CXXPseudoDestructorExpr>(Fn)) {
7201       if (!ArgExprs.empty()) {
7202         // Pseudo-destructor calls should not have any arguments.
7203         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
7204             << FixItHint::CreateRemoval(
7205                    SourceRange(ArgExprs.front()->getBeginLoc(),
7206                                ArgExprs.back()->getEndLoc()));
7207       }
7208 
7209       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
7210                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7211     }
7212     if (Fn->getType() == Context.PseudoObjectTy) {
7213       ExprResult result = CheckPlaceholderExpr(Fn);
7214       if (result.isInvalid()) return ExprError();
7215       Fn = result.get();
7216     }
7217 
7218     // Determine whether this is a dependent call inside a C++ template,
7219     // in which case we won't do any semantic analysis now.
7220     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
7221       if (ExecConfig) {
7222         return CUDAKernelCallExpr::Create(Context, Fn,
7223                                           cast<CallExpr>(ExecConfig), ArgExprs,
7224                                           Context.DependentTy, VK_PRValue,
7225                                           RParenLoc, CurFPFeatureOverrides());
7226       } else {
7227 
7228         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7229             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
7230             Fn->getBeginLoc());
7231 
7232         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7233                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7234       }
7235     }
7236 
7237     // Determine whether this is a call to an object (C++ [over.call.object]).
7238     if (Fn->getType()->isRecordType())
7239       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
7240                                           RParenLoc);
7241 
7242     if (Fn->getType() == Context.UnknownAnyTy) {
7243       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7244       if (result.isInvalid()) return ExprError();
7245       Fn = result.get();
7246     }
7247 
7248     if (Fn->getType() == Context.BoundMemberTy) {
7249       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7250                                        RParenLoc, ExecConfig, IsExecConfig,
7251                                        AllowRecovery);
7252     }
7253   }
7254 
7255   // Check for overloaded calls.  This can happen even in C due to extensions.
7256   if (Fn->getType() == Context.OverloadTy) {
7257     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
7258 
7259     // We aren't supposed to apply this logic if there's an '&' involved.
7260     if (!find.HasFormOfMemberPointer) {
7261       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
7262         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7263                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7264       OverloadExpr *ovl = find.Expression;
7265       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
7266         return BuildOverloadedCallExpr(
7267             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7268             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
7269       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7270                                        RParenLoc, ExecConfig, IsExecConfig,
7271                                        AllowRecovery);
7272     }
7273   }
7274 
7275   // If we're directly calling a function, get the appropriate declaration.
7276   if (Fn->getType() == Context.UnknownAnyTy) {
7277     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7278     if (result.isInvalid()) return ExprError();
7279     Fn = result.get();
7280   }
7281 
7282   Expr *NakedFn = Fn->IgnoreParens();
7283 
7284   bool CallingNDeclIndirectly = false;
7285   NamedDecl *NDecl = nullptr;
7286   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
7287     if (UnOp->getOpcode() == UO_AddrOf) {
7288       CallingNDeclIndirectly = true;
7289       NakedFn = UnOp->getSubExpr()->IgnoreParens();
7290     }
7291   }
7292 
7293   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
7294     NDecl = DRE->getDecl();
7295 
7296     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
7297     if (FDecl && FDecl->getBuiltinID()) {
7298       // Rewrite the function decl for this builtin by replacing parameters
7299       // with no explicit address space with the address space of the arguments
7300       // in ArgExprs.
7301       if ((FDecl =
7302                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
7303         NDecl = FDecl;
7304         Fn = DeclRefExpr::Create(
7305             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
7306             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
7307             nullptr, DRE->isNonOdrUse());
7308       }
7309     }
7310   } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
7311     NDecl = ME->getMemberDecl();
7312 
7313   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
7314     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
7315                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
7316       return ExprError();
7317 
7318     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
7319 
7320     // If this expression is a call to a builtin function in HIP device
7321     // compilation, allow a pointer-type argument to default address space to be
7322     // passed as a pointer-type parameter to a non-default address space.
7323     // If Arg is declared in the default address space and Param is declared
7324     // in a non-default address space, perform an implicit address space cast to
7325     // the parameter type.
7326     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
7327         FD->getBuiltinID()) {
7328       for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
7329         ParmVarDecl *Param = FD->getParamDecl(Idx);
7330         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
7331             !ArgExprs[Idx]->getType()->isPointerType())
7332           continue;
7333 
7334         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
7335         auto ArgTy = ArgExprs[Idx]->getType();
7336         auto ArgPtTy = ArgTy->getPointeeType();
7337         auto ArgAS = ArgPtTy.getAddressSpace();
7338 
7339         // Add address space cast if target address spaces are different
7340         bool NeedImplicitASC =
7341           ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
7342           ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
7343                                               // or from specific AS which has target AS matching that of Param.
7344           getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
7345         if (!NeedImplicitASC)
7346           continue;
7347 
7348         // First, ensure that the Arg is an RValue.
7349         if (ArgExprs[Idx]->isGLValue()) {
7350           ArgExprs[Idx] = ImplicitCastExpr::Create(
7351               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
7352               nullptr, VK_PRValue, FPOptionsOverride());
7353         }
7354 
7355         // Construct a new arg type with address space of Param
7356         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
7357         ArgPtQuals.setAddressSpace(ParamAS);
7358         auto NewArgPtTy =
7359             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
7360         auto NewArgTy =
7361             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
7362                                      ArgTy.getQualifiers());
7363 
7364         // Finally perform an implicit address space cast
7365         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
7366                                           CK_AddressSpaceConversion)
7367                             .get();
7368       }
7369     }
7370   }
7371 
7372   if (Context.isDependenceAllowed() &&
7373       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
7374     assert(!getLangOpts().CPlusPlus);
7375     assert((Fn->containsErrors() ||
7376             llvm::any_of(ArgExprs,
7377                          [](clang::Expr *E) { return E->containsErrors(); })) &&
7378            "should only occur in error-recovery path.");
7379     return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7380                             VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7381   }
7382   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
7383                                ExecConfig, IsExecConfig);
7384 }
7385 
7386 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7387 //  with the specified CallArgs
7388 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
7389                                  MultiExprArg CallArgs) {
7390   StringRef Name = Context.BuiltinInfo.getName(Id);
7391   LookupResult R(*this, &Context.Idents.get(Name), Loc,
7392                  Sema::LookupOrdinaryName);
7393   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
7394 
7395   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
7396   assert(BuiltInDecl && "failed to find builtin declaration");
7397 
7398   ExprResult DeclRef =
7399       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
7400   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
7401 
7402   ExprResult Call =
7403       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
7404 
7405   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
7406   return Call.get();
7407 }
7408 
7409 /// Parse a __builtin_astype expression.
7410 ///
7411 /// __builtin_astype( value, dst type )
7412 ///
7413 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
7414                                  SourceLocation BuiltinLoc,
7415                                  SourceLocation RParenLoc) {
7416   QualType DstTy = GetTypeFromParser(ParsedDestTy);
7417   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
7418 }
7419 
7420 /// Create a new AsTypeExpr node (bitcast) from the arguments.
7421 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
7422                                  SourceLocation BuiltinLoc,
7423                                  SourceLocation RParenLoc) {
7424   ExprValueKind VK = VK_PRValue;
7425   ExprObjectKind OK = OK_Ordinary;
7426   QualType SrcTy = E->getType();
7427   if (!SrcTy->isDependentType() &&
7428       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
7429     return ExprError(
7430         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
7431         << DestTy << SrcTy << E->getSourceRange());
7432   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
7433 }
7434 
7435 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7436 /// provided arguments.
7437 ///
7438 /// __builtin_convertvector( value, dst type )
7439 ///
7440 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
7441                                         SourceLocation BuiltinLoc,
7442                                         SourceLocation RParenLoc) {
7443   TypeSourceInfo *TInfo;
7444   GetTypeFromParser(ParsedDestTy, &TInfo);
7445   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
7446 }
7447 
7448 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7449 /// i.e. an expression not of \p OverloadTy.  The expression should
7450 /// unary-convert to an expression of function-pointer or
7451 /// block-pointer type.
7452 ///
7453 /// \param NDecl the declaration being called, if available
7454 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
7455                                        SourceLocation LParenLoc,
7456                                        ArrayRef<Expr *> Args,
7457                                        SourceLocation RParenLoc, Expr *Config,
7458                                        bool IsExecConfig, ADLCallKind UsesADL) {
7459   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
7460   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
7461 
7462   // Functions with 'interrupt' attribute cannot be called directly.
7463   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
7464     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
7465     return ExprError();
7466   }
7467 
7468   // Interrupt handlers don't save off the VFP regs automatically on ARM,
7469   // so there's some risk when calling out to non-interrupt handler functions
7470   // that the callee might not preserve them. This is easy to diagnose here,
7471   // but can be very challenging to debug.
7472   // Likewise, X86 interrupt handlers may only call routines with attribute
7473   // no_caller_saved_registers since there is no efficient way to
7474   // save and restore the non-GPR state.
7475   if (auto *Caller = getCurFunctionDecl()) {
7476     if (Caller->hasAttr<ARMInterruptAttr>()) {
7477       bool VFP = Context.getTargetInfo().hasFeature("vfp");
7478       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
7479         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
7480         if (FDecl)
7481           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7482       }
7483     }
7484     if (Caller->hasAttr<AnyX86InterruptAttr>() ||
7485         Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
7486       const TargetInfo &TI = Context.getTargetInfo();
7487       bool HasNonGPRRegisters =
7488           TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
7489       if (HasNonGPRRegisters &&
7490           (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
7491         Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
7492             << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
7493         if (FDecl)
7494           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7495       }
7496     }
7497   }
7498 
7499   // Promote the function operand.
7500   // We special-case function promotion here because we only allow promoting
7501   // builtin functions to function pointers in the callee of a call.
7502   ExprResult Result;
7503   QualType ResultTy;
7504   if (BuiltinID &&
7505       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
7506     // Extract the return type from the (builtin) function pointer type.
7507     // FIXME Several builtins still have setType in
7508     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7509     // Builtins.def to ensure they are correct before removing setType calls.
7510     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
7511     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
7512     ResultTy = FDecl->getCallResultType();
7513   } else {
7514     Result = CallExprUnaryConversions(Fn);
7515     ResultTy = Context.BoolTy;
7516   }
7517   if (Result.isInvalid())
7518     return ExprError();
7519   Fn = Result.get();
7520 
7521   // Check for a valid function type, but only if it is not a builtin which
7522   // requires custom type checking. These will be handled by
7523   // CheckBuiltinFunctionCall below just after creation of the call expression.
7524   const FunctionType *FuncT = nullptr;
7525   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
7526   retry:
7527     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
7528       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7529       // have type pointer to function".
7530       FuncT = PT->getPointeeType()->getAs<FunctionType>();
7531       if (!FuncT)
7532         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7533                          << Fn->getType() << Fn->getSourceRange());
7534     } else if (const BlockPointerType *BPT =
7535                    Fn->getType()->getAs<BlockPointerType>()) {
7536       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
7537     } else {
7538       // Handle calls to expressions of unknown-any type.
7539       if (Fn->getType() == Context.UnknownAnyTy) {
7540         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
7541         if (rewrite.isInvalid())
7542           return ExprError();
7543         Fn = rewrite.get();
7544         goto retry;
7545       }
7546 
7547       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7548                        << Fn->getType() << Fn->getSourceRange());
7549     }
7550   }
7551 
7552   // Get the number of parameters in the function prototype, if any.
7553   // We will allocate space for max(Args.size(), NumParams) arguments
7554   // in the call expression.
7555   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7556   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7557 
7558   CallExpr *TheCall;
7559   if (Config) {
7560     assert(UsesADL == ADLCallKind::NotADL &&
7561            "CUDAKernelCallExpr should not use ADL");
7562     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7563                                          Args, ResultTy, VK_PRValue, RParenLoc,
7564                                          CurFPFeatureOverrides(), NumParams);
7565   } else {
7566     TheCall =
7567         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7568                          CurFPFeatureOverrides(), NumParams, UsesADL);
7569   }
7570 
7571   if (!Context.isDependenceAllowed()) {
7572     // Forget about the nulled arguments since typo correction
7573     // do not handle them well.
7574     TheCall->shrinkNumArgs(Args.size());
7575     // C cannot always handle TypoExpr nodes in builtin calls and direct
7576     // function calls as their argument checking don't necessarily handle
7577     // dependent types properly, so make sure any TypoExprs have been
7578     // dealt with.
7579     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7580     if (!Result.isUsable()) return ExprError();
7581     CallExpr *TheOldCall = TheCall;
7582     TheCall = dyn_cast<CallExpr>(Result.get());
7583     bool CorrectedTypos = TheCall != TheOldCall;
7584     if (!TheCall) return Result;
7585     Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7586 
7587     // A new call expression node was created if some typos were corrected.
7588     // However it may not have been constructed with enough storage. In this
7589     // case, rebuild the node with enough storage. The waste of space is
7590     // immaterial since this only happens when some typos were corrected.
7591     if (CorrectedTypos && Args.size() < NumParams) {
7592       if (Config)
7593         TheCall = CUDAKernelCallExpr::Create(
7594             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7595             RParenLoc, CurFPFeatureOverrides(), NumParams);
7596       else
7597         TheCall =
7598             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7599                              CurFPFeatureOverrides(), NumParams, UsesADL);
7600     }
7601     // We can now handle the nulled arguments for the default arguments.
7602     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7603   }
7604 
7605   // Bail out early if calling a builtin with custom type checking.
7606   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7607     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7608 
7609   if (getLangOpts().CUDA) {
7610     if (Config) {
7611       // CUDA: Kernel calls must be to global functions
7612       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7613         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7614             << FDecl << Fn->getSourceRange());
7615 
7616       // CUDA: Kernel function must have 'void' return type
7617       if (!FuncT->getReturnType()->isVoidType() &&
7618           !FuncT->getReturnType()->getAs<AutoType>() &&
7619           !FuncT->getReturnType()->isInstantiationDependentType())
7620         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7621             << Fn->getType() << Fn->getSourceRange());
7622     } else {
7623       // CUDA: Calls to global functions must be configured
7624       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7625         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7626             << FDecl << Fn->getSourceRange());
7627     }
7628   }
7629 
7630   // Check for a valid return type
7631   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7632                           FDecl))
7633     return ExprError();
7634 
7635   // We know the result type of the call, set it.
7636   TheCall->setType(FuncT->getCallResultType(Context));
7637   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7638 
7639   // WebAssembly tables can't be used as arguments.
7640   if (Context.getTargetInfo().getTriple().isWasm()) {
7641     for (const Expr *Arg : Args) {
7642       if (Arg && Arg->getType()->isWebAssemblyTableType()) {
7643         return ExprError(Diag(Arg->getExprLoc(),
7644                               diag::err_wasm_table_as_function_parameter));
7645       }
7646     }
7647   }
7648 
7649   if (Proto) {
7650     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7651                                 IsExecConfig))
7652       return ExprError();
7653   } else {
7654     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7655 
7656     if (FDecl) {
7657       // Check if we have too few/too many template arguments, based
7658       // on our knowledge of the function definition.
7659       const FunctionDecl *Def = nullptr;
7660       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7661         Proto = Def->getType()->getAs<FunctionProtoType>();
7662        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7663           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7664           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7665       }
7666 
7667       // If the function we're calling isn't a function prototype, but we have
7668       // a function prototype from a prior declaratiom, use that prototype.
7669       if (!FDecl->hasPrototype())
7670         Proto = FDecl->getType()->getAs<FunctionProtoType>();
7671     }
7672 
7673     // If we still haven't found a prototype to use but there are arguments to
7674     // the call, diagnose this as calling a function without a prototype.
7675     // However, if we found a function declaration, check to see if
7676     // -Wdeprecated-non-prototype was disabled where the function was declared.
7677     // If so, we will silence the diagnostic here on the assumption that this
7678     // interface is intentional and the user knows what they're doing. We will
7679     // also silence the diagnostic if there is a function declaration but it
7680     // was implicitly defined (the user already gets diagnostics about the
7681     // creation of the implicit function declaration, so the additional warning
7682     // is not helpful).
7683     if (!Proto && !Args.empty() &&
7684         (!FDecl || (!FDecl->isImplicit() &&
7685                     !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7686                                      FDecl->getLocation()))))
7687       Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7688           << (FDecl != nullptr) << FDecl;
7689 
7690     // Promote the arguments (C99 6.5.2.2p6).
7691     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7692       Expr *Arg = Args[i];
7693 
7694       if (Proto && i < Proto->getNumParams()) {
7695         InitializedEntity Entity = InitializedEntity::InitializeParameter(
7696             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7697         ExprResult ArgE =
7698             PerformCopyInitialization(Entity, SourceLocation(), Arg);
7699         if (ArgE.isInvalid())
7700           return true;
7701 
7702         Arg = ArgE.getAs<Expr>();
7703 
7704       } else {
7705         ExprResult ArgE = DefaultArgumentPromotion(Arg);
7706 
7707         if (ArgE.isInvalid())
7708           return true;
7709 
7710         Arg = ArgE.getAs<Expr>();
7711       }
7712 
7713       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7714                               diag::err_call_incomplete_argument, Arg))
7715         return ExprError();
7716 
7717       TheCall->setArg(i, Arg);
7718     }
7719     TheCall->computeDependence();
7720   }
7721 
7722   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7723     if (Method->isImplicitObjectMemberFunction())
7724       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7725                        << Fn->getSourceRange() << 0);
7726 
7727   // Check for sentinels
7728   if (NDecl)
7729     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7730 
7731   // Warn for unions passing across security boundary (CMSE).
7732   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7733     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7734       if (const auto *RT =
7735               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7736         if (RT->getDecl()->isOrContainsUnion())
7737           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7738               << 0 << i;
7739       }
7740     }
7741   }
7742 
7743   // Do special checking on direct calls to functions.
7744   if (FDecl) {
7745     if (CheckFunctionCall(FDecl, TheCall, Proto))
7746       return ExprError();
7747 
7748     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7749 
7750     if (BuiltinID)
7751       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7752   } else if (NDecl) {
7753     if (CheckPointerCall(NDecl, TheCall, Proto))
7754       return ExprError();
7755   } else {
7756     if (CheckOtherCall(TheCall, Proto))
7757       return ExprError();
7758   }
7759 
7760   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7761 }
7762 
7763 ExprResult
7764 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7765                            SourceLocation RParenLoc, Expr *InitExpr) {
7766   assert(Ty && "ActOnCompoundLiteral(): missing type");
7767   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7768 
7769   TypeSourceInfo *TInfo;
7770   QualType literalType = GetTypeFromParser(Ty, &TInfo);
7771   if (!TInfo)
7772     TInfo = Context.getTrivialTypeSourceInfo(literalType);
7773 
7774   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7775 }
7776 
7777 ExprResult
7778 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7779                                SourceLocation RParenLoc, Expr *LiteralExpr) {
7780   QualType literalType = TInfo->getType();
7781 
7782   if (literalType->isArrayType()) {
7783     if (RequireCompleteSizedType(
7784             LParenLoc, Context.getBaseElementType(literalType),
7785             diag::err_array_incomplete_or_sizeless_type,
7786             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7787       return ExprError();
7788     if (literalType->isVariableArrayType()) {
7789       // C23 6.7.10p4: An entity of variable length array type shall not be
7790       // initialized except by an empty initializer.
7791       //
7792       // The C extension warnings are issued from ParseBraceInitializer() and
7793       // do not need to be issued here. However, we continue to issue an error
7794       // in the case there are initializers or we are compiling C++. We allow
7795       // use of VLAs in C++, but it's not clear we want to allow {} to zero
7796       // init a VLA in C++ in all cases (such as with non-trivial constructors).
7797       // FIXME: should we allow this construct in C++ when it makes sense to do
7798       // so?
7799       std::optional<unsigned> NumInits;
7800       if (const auto *ILE = dyn_cast<InitListExpr>(LiteralExpr))
7801         NumInits = ILE->getNumInits();
7802       if ((LangOpts.CPlusPlus || NumInits.value_or(0)) &&
7803           !tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7804                                            diag::err_variable_object_no_init))
7805         return ExprError();
7806     }
7807   } else if (!literalType->isDependentType() &&
7808              RequireCompleteType(LParenLoc, literalType,
7809                diag::err_typecheck_decl_incomplete_type,
7810                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7811     return ExprError();
7812 
7813   InitializedEntity Entity
7814     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7815   InitializationKind Kind
7816     = InitializationKind::CreateCStyleCast(LParenLoc,
7817                                            SourceRange(LParenLoc, RParenLoc),
7818                                            /*InitList=*/true);
7819   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7820   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7821                                       &literalType);
7822   if (Result.isInvalid())
7823     return ExprError();
7824   LiteralExpr = Result.get();
7825 
7826   bool isFileScope = !CurContext->isFunctionOrMethod();
7827 
7828   // In C, compound literals are l-values for some reason.
7829   // For GCC compatibility, in C++, file-scope array compound literals with
7830   // constant initializers are also l-values, and compound literals are
7831   // otherwise prvalues.
7832   //
7833   // (GCC also treats C++ list-initialized file-scope array prvalues with
7834   // constant initializers as l-values, but that's non-conforming, so we don't
7835   // follow it there.)
7836   //
7837   // FIXME: It would be better to handle the lvalue cases as materializing and
7838   // lifetime-extending a temporary object, but our materialized temporaries
7839   // representation only supports lifetime extension from a variable, not "out
7840   // of thin air".
7841   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7842   // is bound to the result of applying array-to-pointer decay to the compound
7843   // literal.
7844   // FIXME: GCC supports compound literals of reference type, which should
7845   // obviously have a value kind derived from the kind of reference involved.
7846   ExprValueKind VK =
7847       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7848           ? VK_PRValue
7849           : VK_LValue;
7850 
7851   if (isFileScope)
7852     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7853       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7854         Expr *Init = ILE->getInit(i);
7855         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7856       }
7857 
7858   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7859                                               VK, LiteralExpr, isFileScope);
7860   if (isFileScope) {
7861     if (!LiteralExpr->isTypeDependent() &&
7862         !LiteralExpr->isValueDependent() &&
7863         !literalType->isDependentType()) // C99 6.5.2.5p3
7864       if (CheckForConstantInitializer(LiteralExpr, literalType))
7865         return ExprError();
7866   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7867              literalType.getAddressSpace() != LangAS::Default) {
7868     // Embedded-C extensions to C99 6.5.2.5:
7869     //   "If the compound literal occurs inside the body of a function, the
7870     //   type name shall not be qualified by an address-space qualifier."
7871     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7872       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7873     return ExprError();
7874   }
7875 
7876   if (!isFileScope && !getLangOpts().CPlusPlus) {
7877     // Compound literals that have automatic storage duration are destroyed at
7878     // the end of the scope in C; in C++, they're just temporaries.
7879 
7880     // Emit diagnostics if it is or contains a C union type that is non-trivial
7881     // to destruct.
7882     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7883       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7884                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7885 
7886     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7887     if (literalType.isDestructedType()) {
7888       Cleanup.setExprNeedsCleanups(true);
7889       ExprCleanupObjects.push_back(E);
7890       getCurFunction()->setHasBranchProtectedScope();
7891     }
7892   }
7893 
7894   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7895       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7896     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7897                                        E->getInitializer()->getExprLoc());
7898 
7899   return MaybeBindToTemporary(E);
7900 }
7901 
7902 ExprResult
7903 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7904                     SourceLocation RBraceLoc) {
7905   // Only produce each kind of designated initialization diagnostic once.
7906   SourceLocation FirstDesignator;
7907   bool DiagnosedArrayDesignator = false;
7908   bool DiagnosedNestedDesignator = false;
7909   bool DiagnosedMixedDesignator = false;
7910 
7911   // Check that any designated initializers are syntactically valid in the
7912   // current language mode.
7913   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7914     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7915       if (FirstDesignator.isInvalid())
7916         FirstDesignator = DIE->getBeginLoc();
7917 
7918       if (!getLangOpts().CPlusPlus)
7919         break;
7920 
7921       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7922         DiagnosedNestedDesignator = true;
7923         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7924           << DIE->getDesignatorsSourceRange();
7925       }
7926 
7927       for (auto &Desig : DIE->designators()) {
7928         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7929           DiagnosedArrayDesignator = true;
7930           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7931             << Desig.getSourceRange();
7932         }
7933       }
7934 
7935       if (!DiagnosedMixedDesignator &&
7936           !isa<DesignatedInitExpr>(InitArgList[0])) {
7937         DiagnosedMixedDesignator = true;
7938         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7939           << DIE->getSourceRange();
7940         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7941           << InitArgList[0]->getSourceRange();
7942       }
7943     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7944                isa<DesignatedInitExpr>(InitArgList[0])) {
7945       DiagnosedMixedDesignator = true;
7946       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7947       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7948         << DIE->getSourceRange();
7949       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7950         << InitArgList[I]->getSourceRange();
7951     }
7952   }
7953 
7954   if (FirstDesignator.isValid()) {
7955     // Only diagnose designated initiaization as a C++20 extension if we didn't
7956     // already diagnose use of (non-C++20) C99 designator syntax.
7957     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7958         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7959       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7960                                 ? diag::warn_cxx17_compat_designated_init
7961                                 : diag::ext_cxx_designated_init);
7962     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7963       Diag(FirstDesignator, diag::ext_designated_init);
7964     }
7965   }
7966 
7967   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7968 }
7969 
7970 ExprResult
7971 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7972                     SourceLocation RBraceLoc) {
7973   // Semantic analysis for initializers is done by ActOnDeclarator() and
7974   // CheckInitializer() - it requires knowledge of the object being initialized.
7975 
7976   // Immediately handle non-overload placeholders.  Overloads can be
7977   // resolved contextually, but everything else here can't.
7978   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7979     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7980       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7981 
7982       // Ignore failures; dropping the entire initializer list because
7983       // of one failure would be terrible for indexing/etc.
7984       if (result.isInvalid()) continue;
7985 
7986       InitArgList[I] = result.get();
7987     }
7988   }
7989 
7990   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7991                                                RBraceLoc);
7992   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7993   return E;
7994 }
7995 
7996 /// Do an explicit extend of the given block pointer if we're in ARC.
7997 void Sema::maybeExtendBlockObject(ExprResult &E) {
7998   assert(E.get()->getType()->isBlockPointerType());
7999   assert(E.get()->isPRValue());
8000 
8001   // Only do this in an r-value context.
8002   if (!getLangOpts().ObjCAutoRefCount) return;
8003 
8004   E = ImplicitCastExpr::Create(
8005       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
8006       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
8007   Cleanup.setExprNeedsCleanups(true);
8008 }
8009 
8010 /// Prepare a conversion of the given expression to an ObjC object
8011 /// pointer type.
8012 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
8013   QualType type = E.get()->getType();
8014   if (type->isObjCObjectPointerType()) {
8015     return CK_BitCast;
8016   } else if (type->isBlockPointerType()) {
8017     maybeExtendBlockObject(E);
8018     return CK_BlockPointerToObjCPointerCast;
8019   } else {
8020     assert(type->isPointerType());
8021     return CK_CPointerToObjCPointerCast;
8022   }
8023 }
8024 
8025 /// Prepares for a scalar cast, performing all the necessary stages
8026 /// except the final cast and returning the kind required.
8027 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
8028   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
8029   // Also, callers should have filtered out the invalid cases with
8030   // pointers.  Everything else should be possible.
8031 
8032   QualType SrcTy = Src.get()->getType();
8033   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
8034     return CK_NoOp;
8035 
8036   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
8037   case Type::STK_MemberPointer:
8038     llvm_unreachable("member pointer type in C");
8039 
8040   case Type::STK_CPointer:
8041   case Type::STK_BlockPointer:
8042   case Type::STK_ObjCObjectPointer:
8043     switch (DestTy->getScalarTypeKind()) {
8044     case Type::STK_CPointer: {
8045       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
8046       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
8047       if (SrcAS != DestAS)
8048         return CK_AddressSpaceConversion;
8049       if (Context.hasCvrSimilarType(SrcTy, DestTy))
8050         return CK_NoOp;
8051       return CK_BitCast;
8052     }
8053     case Type::STK_BlockPointer:
8054       return (SrcKind == Type::STK_BlockPointer
8055                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
8056     case Type::STK_ObjCObjectPointer:
8057       if (SrcKind == Type::STK_ObjCObjectPointer)
8058         return CK_BitCast;
8059       if (SrcKind == Type::STK_CPointer)
8060         return CK_CPointerToObjCPointerCast;
8061       maybeExtendBlockObject(Src);
8062       return CK_BlockPointerToObjCPointerCast;
8063     case Type::STK_Bool:
8064       return CK_PointerToBoolean;
8065     case Type::STK_Integral:
8066       return CK_PointerToIntegral;
8067     case Type::STK_Floating:
8068     case Type::STK_FloatingComplex:
8069     case Type::STK_IntegralComplex:
8070     case Type::STK_MemberPointer:
8071     case Type::STK_FixedPoint:
8072       llvm_unreachable("illegal cast from pointer");
8073     }
8074     llvm_unreachable("Should have returned before this");
8075 
8076   case Type::STK_FixedPoint:
8077     switch (DestTy->getScalarTypeKind()) {
8078     case Type::STK_FixedPoint:
8079       return CK_FixedPointCast;
8080     case Type::STK_Bool:
8081       return CK_FixedPointToBoolean;
8082     case Type::STK_Integral:
8083       return CK_FixedPointToIntegral;
8084     case Type::STK_Floating:
8085       return CK_FixedPointToFloating;
8086     case Type::STK_IntegralComplex:
8087     case Type::STK_FloatingComplex:
8088       Diag(Src.get()->getExprLoc(),
8089            diag::err_unimplemented_conversion_with_fixed_point_type)
8090           << DestTy;
8091       return CK_IntegralCast;
8092     case Type::STK_CPointer:
8093     case Type::STK_ObjCObjectPointer:
8094     case Type::STK_BlockPointer:
8095     case Type::STK_MemberPointer:
8096       llvm_unreachable("illegal cast to pointer type");
8097     }
8098     llvm_unreachable("Should have returned before this");
8099 
8100   case Type::STK_Bool: // casting from bool is like casting from an integer
8101   case Type::STK_Integral:
8102     switch (DestTy->getScalarTypeKind()) {
8103     case Type::STK_CPointer:
8104     case Type::STK_ObjCObjectPointer:
8105     case Type::STK_BlockPointer:
8106       if (Src.get()->isNullPointerConstant(Context,
8107                                            Expr::NPC_ValueDependentIsNull))
8108         return CK_NullToPointer;
8109       return CK_IntegralToPointer;
8110     case Type::STK_Bool:
8111       return CK_IntegralToBoolean;
8112     case Type::STK_Integral:
8113       return CK_IntegralCast;
8114     case Type::STK_Floating:
8115       return CK_IntegralToFloating;
8116     case Type::STK_IntegralComplex:
8117       Src = ImpCastExprToType(Src.get(),
8118                       DestTy->castAs<ComplexType>()->getElementType(),
8119                       CK_IntegralCast);
8120       return CK_IntegralRealToComplex;
8121     case Type::STK_FloatingComplex:
8122       Src = ImpCastExprToType(Src.get(),
8123                       DestTy->castAs<ComplexType>()->getElementType(),
8124                       CK_IntegralToFloating);
8125       return CK_FloatingRealToComplex;
8126     case Type::STK_MemberPointer:
8127       llvm_unreachable("member pointer type in C");
8128     case Type::STK_FixedPoint:
8129       return CK_IntegralToFixedPoint;
8130     }
8131     llvm_unreachable("Should have returned before this");
8132 
8133   case Type::STK_Floating:
8134     switch (DestTy->getScalarTypeKind()) {
8135     case Type::STK_Floating:
8136       return CK_FloatingCast;
8137     case Type::STK_Bool:
8138       return CK_FloatingToBoolean;
8139     case Type::STK_Integral:
8140       return CK_FloatingToIntegral;
8141     case Type::STK_FloatingComplex:
8142       Src = ImpCastExprToType(Src.get(),
8143                               DestTy->castAs<ComplexType>()->getElementType(),
8144                               CK_FloatingCast);
8145       return CK_FloatingRealToComplex;
8146     case Type::STK_IntegralComplex:
8147       Src = ImpCastExprToType(Src.get(),
8148                               DestTy->castAs<ComplexType>()->getElementType(),
8149                               CK_FloatingToIntegral);
8150       return CK_IntegralRealToComplex;
8151     case Type::STK_CPointer:
8152     case Type::STK_ObjCObjectPointer:
8153     case Type::STK_BlockPointer:
8154       llvm_unreachable("valid float->pointer cast?");
8155     case Type::STK_MemberPointer:
8156       llvm_unreachable("member pointer type in C");
8157     case Type::STK_FixedPoint:
8158       return CK_FloatingToFixedPoint;
8159     }
8160     llvm_unreachable("Should have returned before this");
8161 
8162   case Type::STK_FloatingComplex:
8163     switch (DestTy->getScalarTypeKind()) {
8164     case Type::STK_FloatingComplex:
8165       return CK_FloatingComplexCast;
8166     case Type::STK_IntegralComplex:
8167       return CK_FloatingComplexToIntegralComplex;
8168     case Type::STK_Floating: {
8169       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8170       if (Context.hasSameType(ET, DestTy))
8171         return CK_FloatingComplexToReal;
8172       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
8173       return CK_FloatingCast;
8174     }
8175     case Type::STK_Bool:
8176       return CK_FloatingComplexToBoolean;
8177     case Type::STK_Integral:
8178       Src = ImpCastExprToType(Src.get(),
8179                               SrcTy->castAs<ComplexType>()->getElementType(),
8180                               CK_FloatingComplexToReal);
8181       return CK_FloatingToIntegral;
8182     case Type::STK_CPointer:
8183     case Type::STK_ObjCObjectPointer:
8184     case Type::STK_BlockPointer:
8185       llvm_unreachable("valid complex float->pointer cast?");
8186     case Type::STK_MemberPointer:
8187       llvm_unreachable("member pointer type in C");
8188     case Type::STK_FixedPoint:
8189       Diag(Src.get()->getExprLoc(),
8190            diag::err_unimplemented_conversion_with_fixed_point_type)
8191           << SrcTy;
8192       return CK_IntegralCast;
8193     }
8194     llvm_unreachable("Should have returned before this");
8195 
8196   case Type::STK_IntegralComplex:
8197     switch (DestTy->getScalarTypeKind()) {
8198     case Type::STK_FloatingComplex:
8199       return CK_IntegralComplexToFloatingComplex;
8200     case Type::STK_IntegralComplex:
8201       return CK_IntegralComplexCast;
8202     case Type::STK_Integral: {
8203       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8204       if (Context.hasSameType(ET, DestTy))
8205         return CK_IntegralComplexToReal;
8206       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
8207       return CK_IntegralCast;
8208     }
8209     case Type::STK_Bool:
8210       return CK_IntegralComplexToBoolean;
8211     case Type::STK_Floating:
8212       Src = ImpCastExprToType(Src.get(),
8213                               SrcTy->castAs<ComplexType>()->getElementType(),
8214                               CK_IntegralComplexToReal);
8215       return CK_IntegralToFloating;
8216     case Type::STK_CPointer:
8217     case Type::STK_ObjCObjectPointer:
8218     case Type::STK_BlockPointer:
8219       llvm_unreachable("valid complex int->pointer cast?");
8220     case Type::STK_MemberPointer:
8221       llvm_unreachable("member pointer type in C");
8222     case Type::STK_FixedPoint:
8223       Diag(Src.get()->getExprLoc(),
8224            diag::err_unimplemented_conversion_with_fixed_point_type)
8225           << SrcTy;
8226       return CK_IntegralCast;
8227     }
8228     llvm_unreachable("Should have returned before this");
8229   }
8230 
8231   llvm_unreachable("Unhandled scalar cast");
8232 }
8233 
8234 static bool breakDownVectorType(QualType type, uint64_t &len,
8235                                 QualType &eltType) {
8236   // Vectors are simple.
8237   if (const VectorType *vecType = type->getAs<VectorType>()) {
8238     len = vecType->getNumElements();
8239     eltType = vecType->getElementType();
8240     assert(eltType->isScalarType());
8241     return true;
8242   }
8243 
8244   // We allow lax conversion to and from non-vector types, but only if
8245   // they're real types (i.e. non-complex, non-pointer scalar types).
8246   if (!type->isRealType()) return false;
8247 
8248   len = 1;
8249   eltType = type;
8250   return true;
8251 }
8252 
8253 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
8254 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
8255 /// allowed?
8256 ///
8257 /// This will also return false if the two given types do not make sense from
8258 /// the perspective of SVE bitcasts.
8259 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
8260   assert(srcTy->isVectorType() || destTy->isVectorType());
8261 
8262   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8263     if (!FirstType->isSVESizelessBuiltinType())
8264       return false;
8265 
8266     const auto *VecTy = SecondType->getAs<VectorType>();
8267     return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
8268   };
8269 
8270   return ValidScalableConversion(srcTy, destTy) ||
8271          ValidScalableConversion(destTy, srcTy);
8272 }
8273 
8274 /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the
8275 /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV
8276 /// VLS type) allowed?
8277 ///
8278 /// This will also return false if the two given types do not make sense from
8279 /// the perspective of RVV bitcasts.
8280 bool Sema::isValidRVVBitcast(QualType srcTy, QualType destTy) {
8281   assert(srcTy->isVectorType() || destTy->isVectorType());
8282 
8283   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8284     if (!FirstType->isRVVSizelessBuiltinType())
8285       return false;
8286 
8287     const auto *VecTy = SecondType->getAs<VectorType>();
8288     return VecTy && VecTy->getVectorKind() == VectorKind::RVVFixedLengthData;
8289   };
8290 
8291   return ValidScalableConversion(srcTy, destTy) ||
8292          ValidScalableConversion(destTy, srcTy);
8293 }
8294 
8295 /// Are the two types matrix types and do they have the same dimensions i.e.
8296 /// do they have the same number of rows and the same number of columns?
8297 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
8298   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
8299     return false;
8300 
8301   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
8302   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
8303 
8304   return matSrcType->getNumRows() == matDestType->getNumRows() &&
8305          matSrcType->getNumColumns() == matDestType->getNumColumns();
8306 }
8307 
8308 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
8309   assert(DestTy->isVectorType() || SrcTy->isVectorType());
8310 
8311   uint64_t SrcLen, DestLen;
8312   QualType SrcEltTy, DestEltTy;
8313   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
8314     return false;
8315   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
8316     return false;
8317 
8318   // ASTContext::getTypeSize will return the size rounded up to a
8319   // power of 2, so instead of using that, we need to use the raw
8320   // element size multiplied by the element count.
8321   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
8322   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
8323 
8324   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
8325 }
8326 
8327 // This returns true if at least one of the types is an altivec vector.
8328 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
8329   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
8330          "expected at least one type to be a vector here");
8331 
8332   bool IsSrcTyAltivec =
8333       SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
8334                                  VectorKind::AltiVecVector) ||
8335                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8336                                  VectorKind::AltiVecBool) ||
8337                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8338                                  VectorKind::AltiVecPixel));
8339 
8340   bool IsDestTyAltivec = DestTy->isVectorType() &&
8341                          ((DestTy->castAs<VectorType>()->getVectorKind() ==
8342                            VectorKind::AltiVecVector) ||
8343                           (DestTy->castAs<VectorType>()->getVectorKind() ==
8344                            VectorKind::AltiVecBool) ||
8345                           (DestTy->castAs<VectorType>()->getVectorKind() ==
8346                            VectorKind::AltiVecPixel));
8347 
8348   return (IsSrcTyAltivec || IsDestTyAltivec);
8349 }
8350 
8351 /// Are the two types lax-compatible vector types?  That is, given
8352 /// that one of them is a vector, do they have equal storage sizes,
8353 /// where the storage size is the number of elements times the element
8354 /// size?
8355 ///
8356 /// This will also return false if either of the types is neither a
8357 /// vector nor a real type.
8358 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
8359   assert(destTy->isVectorType() || srcTy->isVectorType());
8360 
8361   // Disallow lax conversions between scalars and ExtVectors (these
8362   // conversions are allowed for other vector types because common headers
8363   // depend on them).  Most scalar OP ExtVector cases are handled by the
8364   // splat path anyway, which does what we want (convert, not bitcast).
8365   // What this rules out for ExtVectors is crazy things like char4*float.
8366   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
8367   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
8368 
8369   return areVectorTypesSameSize(srcTy, destTy);
8370 }
8371 
8372 /// Is this a legal conversion between two types, one of which is
8373 /// known to be a vector type?
8374 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
8375   assert(destTy->isVectorType() || srcTy->isVectorType());
8376 
8377   switch (Context.getLangOpts().getLaxVectorConversions()) {
8378   case LangOptions::LaxVectorConversionKind::None:
8379     return false;
8380 
8381   case LangOptions::LaxVectorConversionKind::Integer:
8382     if (!srcTy->isIntegralOrEnumerationType()) {
8383       auto *Vec = srcTy->getAs<VectorType>();
8384       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8385         return false;
8386     }
8387     if (!destTy->isIntegralOrEnumerationType()) {
8388       auto *Vec = destTy->getAs<VectorType>();
8389       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8390         return false;
8391     }
8392     // OK, integer (vector) -> integer (vector) bitcast.
8393     break;
8394 
8395     case LangOptions::LaxVectorConversionKind::All:
8396     break;
8397   }
8398 
8399   return areLaxCompatibleVectorTypes(srcTy, destTy);
8400 }
8401 
8402 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
8403                            CastKind &Kind) {
8404   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
8405     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
8406       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
8407              << DestTy << SrcTy << R;
8408     }
8409   } else if (SrcTy->isMatrixType()) {
8410     return Diag(R.getBegin(),
8411                 diag::err_invalid_conversion_between_matrix_and_type)
8412            << SrcTy << DestTy << R;
8413   } else if (DestTy->isMatrixType()) {
8414     return Diag(R.getBegin(),
8415                 diag::err_invalid_conversion_between_matrix_and_type)
8416            << DestTy << SrcTy << R;
8417   }
8418 
8419   Kind = CK_MatrixCast;
8420   return false;
8421 }
8422 
8423 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
8424                            CastKind &Kind) {
8425   assert(VectorTy->isVectorType() && "Not a vector type!");
8426 
8427   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
8428     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
8429       return Diag(R.getBegin(),
8430                   Ty->isVectorType() ?
8431                   diag::err_invalid_conversion_between_vectors :
8432                   diag::err_invalid_conversion_between_vector_and_integer)
8433         << VectorTy << Ty << R;
8434   } else
8435     return Diag(R.getBegin(),
8436                 diag::err_invalid_conversion_between_vector_and_scalar)
8437       << VectorTy << Ty << R;
8438 
8439   Kind = CK_BitCast;
8440   return false;
8441 }
8442 
8443 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
8444   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
8445 
8446   if (DestElemTy == SplattedExpr->getType())
8447     return SplattedExpr;
8448 
8449   assert(DestElemTy->isFloatingType() ||
8450          DestElemTy->isIntegralOrEnumerationType());
8451 
8452   CastKind CK;
8453   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
8454     // OpenCL requires that we convert `true` boolean expressions to -1, but
8455     // only when splatting vectors.
8456     if (DestElemTy->isFloatingType()) {
8457       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8458       // in two steps: boolean to signed integral, then to floating.
8459       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
8460                                                  CK_BooleanToSignedIntegral);
8461       SplattedExpr = CastExprRes.get();
8462       CK = CK_IntegralToFloating;
8463     } else {
8464       CK = CK_BooleanToSignedIntegral;
8465     }
8466   } else {
8467     ExprResult CastExprRes = SplattedExpr;
8468     CK = PrepareScalarCast(CastExprRes, DestElemTy);
8469     if (CastExprRes.isInvalid())
8470       return ExprError();
8471     SplattedExpr = CastExprRes.get();
8472   }
8473   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
8474 }
8475 
8476 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
8477                                     Expr *CastExpr, CastKind &Kind) {
8478   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
8479 
8480   QualType SrcTy = CastExpr->getType();
8481 
8482   // If SrcTy is a VectorType, the total size must match to explicitly cast to
8483   // an ExtVectorType.
8484   // In OpenCL, casts between vectors of different types are not allowed.
8485   // (See OpenCL 6.2).
8486   if (SrcTy->isVectorType()) {
8487     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
8488         (getLangOpts().OpenCL &&
8489          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
8490       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
8491         << DestTy << SrcTy << R;
8492       return ExprError();
8493     }
8494     Kind = CK_BitCast;
8495     return CastExpr;
8496   }
8497 
8498   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
8499   // conversion will take place first from scalar to elt type, and then
8500   // splat from elt type to vector.
8501   if (SrcTy->isPointerType())
8502     return Diag(R.getBegin(),
8503                 diag::err_invalid_conversion_between_vector_and_scalar)
8504       << DestTy << SrcTy << R;
8505 
8506   Kind = CK_VectorSplat;
8507   return prepareVectorSplat(DestTy, CastExpr);
8508 }
8509 
8510 ExprResult
8511 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
8512                     Declarator &D, ParsedType &Ty,
8513                     SourceLocation RParenLoc, Expr *CastExpr) {
8514   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
8515          "ActOnCastExpr(): missing type or expr");
8516 
8517   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
8518   if (D.isInvalidType())
8519     return ExprError();
8520 
8521   if (getLangOpts().CPlusPlus) {
8522     // Check that there are no default arguments (C++ only).
8523     CheckExtraCXXDefaultArguments(D);
8524   } else {
8525     // Make sure any TypoExprs have been dealt with.
8526     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
8527     if (!Res.isUsable())
8528       return ExprError();
8529     CastExpr = Res.get();
8530   }
8531 
8532   checkUnusedDeclAttributes(D);
8533 
8534   QualType castType = castTInfo->getType();
8535   Ty = CreateParsedType(castType, castTInfo);
8536 
8537   bool isVectorLiteral = false;
8538 
8539   // Check for an altivec or OpenCL literal,
8540   // i.e. all the elements are integer constants.
8541   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
8542   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
8543   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
8544        && castType->isVectorType() && (PE || PLE)) {
8545     if (PLE && PLE->getNumExprs() == 0) {
8546       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
8547       return ExprError();
8548     }
8549     if (PE || PLE->getNumExprs() == 1) {
8550       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
8551       if (!E->isTypeDependent() && !E->getType()->isVectorType())
8552         isVectorLiteral = true;
8553     }
8554     else
8555       isVectorLiteral = true;
8556   }
8557 
8558   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8559   // then handle it as such.
8560   if (isVectorLiteral)
8561     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
8562 
8563   // If the Expr being casted is a ParenListExpr, handle it specially.
8564   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8565   // sequence of BinOp comma operators.
8566   if (isa<ParenListExpr>(CastExpr)) {
8567     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
8568     if (Result.isInvalid()) return ExprError();
8569     CastExpr = Result.get();
8570   }
8571 
8572   if (getLangOpts().CPlusPlus && !castType->isVoidType())
8573     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
8574 
8575   CheckTollFreeBridgeCast(castType, CastExpr);
8576 
8577   CheckObjCBridgeRelatedCast(castType, CastExpr);
8578 
8579   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
8580 
8581   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
8582 }
8583 
8584 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8585                                     SourceLocation RParenLoc, Expr *E,
8586                                     TypeSourceInfo *TInfo) {
8587   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8588          "Expected paren or paren list expression");
8589 
8590   Expr **exprs;
8591   unsigned numExprs;
8592   Expr *subExpr;
8593   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8594   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8595     LiteralLParenLoc = PE->getLParenLoc();
8596     LiteralRParenLoc = PE->getRParenLoc();
8597     exprs = PE->getExprs();
8598     numExprs = PE->getNumExprs();
8599   } else { // isa<ParenExpr> by assertion at function entrance
8600     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8601     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8602     subExpr = cast<ParenExpr>(E)->getSubExpr();
8603     exprs = &subExpr;
8604     numExprs = 1;
8605   }
8606 
8607   QualType Ty = TInfo->getType();
8608   assert(Ty->isVectorType() && "Expected vector type");
8609 
8610   SmallVector<Expr *, 8> initExprs;
8611   const VectorType *VTy = Ty->castAs<VectorType>();
8612   unsigned numElems = VTy->getNumElements();
8613 
8614   // '(...)' form of vector initialization in AltiVec: the number of
8615   // initializers must be one or must match the size of the vector.
8616   // If a single value is specified in the initializer then it will be
8617   // replicated to all the components of the vector
8618   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8619                                  VTy->getElementType()))
8620     return ExprError();
8621   if (ShouldSplatAltivecScalarInCast(VTy)) {
8622     // The number of initializers must be one or must match the size of the
8623     // vector. If a single value is specified in the initializer then it will
8624     // be replicated to all the components of the vector
8625     if (numExprs == 1) {
8626       QualType ElemTy = VTy->getElementType();
8627       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8628       if (Literal.isInvalid())
8629         return ExprError();
8630       Literal = ImpCastExprToType(Literal.get(), ElemTy,
8631                                   PrepareScalarCast(Literal, ElemTy));
8632       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8633     }
8634     else if (numExprs < numElems) {
8635       Diag(E->getExprLoc(),
8636            diag::err_incorrect_number_of_vector_initializers);
8637       return ExprError();
8638     }
8639     else
8640       initExprs.append(exprs, exprs + numExprs);
8641   }
8642   else {
8643     // For OpenCL, when the number of initializers is a single value,
8644     // it will be replicated to all components of the vector.
8645     if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
8646         numExprs == 1) {
8647       QualType ElemTy = VTy->getElementType();
8648       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8649       if (Literal.isInvalid())
8650         return ExprError();
8651       Literal = ImpCastExprToType(Literal.get(), ElemTy,
8652                                   PrepareScalarCast(Literal, ElemTy));
8653       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8654     }
8655 
8656     initExprs.append(exprs, exprs + numExprs);
8657   }
8658   // FIXME: This means that pretty-printing the final AST will produce curly
8659   // braces instead of the original commas.
8660   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8661                                                    initExprs, LiteralRParenLoc);
8662   initE->setType(Ty);
8663   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8664 }
8665 
8666 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8667 /// the ParenListExpr into a sequence of comma binary operators.
8668 ExprResult
8669 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8670   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8671   if (!E)
8672     return OrigExpr;
8673 
8674   ExprResult Result(E->getExpr(0));
8675 
8676   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8677     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8678                         E->getExpr(i));
8679 
8680   if (Result.isInvalid()) return ExprError();
8681 
8682   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8683 }
8684 
8685 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8686                                     SourceLocation R,
8687                                     MultiExprArg Val) {
8688   return ParenListExpr::Create(Context, L, Val, R);
8689 }
8690 
8691 /// Emit a specialized diagnostic when one expression is a null pointer
8692 /// constant and the other is not a pointer.  Returns true if a diagnostic is
8693 /// emitted.
8694 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
8695                                       SourceLocation QuestionLoc) {
8696   Expr *NullExpr = LHSExpr;
8697   Expr *NonPointerExpr = RHSExpr;
8698   Expr::NullPointerConstantKind NullKind =
8699       NullExpr->isNullPointerConstant(Context,
8700                                       Expr::NPC_ValueDependentIsNotNull);
8701 
8702   if (NullKind == Expr::NPCK_NotNull) {
8703     NullExpr = RHSExpr;
8704     NonPointerExpr = LHSExpr;
8705     NullKind =
8706         NullExpr->isNullPointerConstant(Context,
8707                                         Expr::NPC_ValueDependentIsNotNull);
8708   }
8709 
8710   if (NullKind == Expr::NPCK_NotNull)
8711     return false;
8712 
8713   if (NullKind == Expr::NPCK_ZeroExpression)
8714     return false;
8715 
8716   if (NullKind == Expr::NPCK_ZeroLiteral) {
8717     // In this case, check to make sure that we got here from a "NULL"
8718     // string in the source code.
8719     NullExpr = NullExpr->IgnoreParenImpCasts();
8720     SourceLocation loc = NullExpr->getExprLoc();
8721     if (!findMacroSpelling(loc, "NULL"))
8722       return false;
8723   }
8724 
8725   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8726   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8727       << NonPointerExpr->getType() << DiagType
8728       << NonPointerExpr->getSourceRange();
8729   return true;
8730 }
8731 
8732 /// Return false if the condition expression is valid, true otherwise.
8733 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
8734   QualType CondTy = Cond->getType();
8735 
8736   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8737   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8738     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8739       << CondTy << Cond->getSourceRange();
8740     return true;
8741   }
8742 
8743   // C99 6.5.15p2
8744   if (CondTy->isScalarType()) return false;
8745 
8746   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8747     << CondTy << Cond->getSourceRange();
8748   return true;
8749 }
8750 
8751 /// Return false if the NullExpr can be promoted to PointerTy,
8752 /// true otherwise.
8753 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8754                                         QualType PointerTy) {
8755   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8756       !NullExpr.get()->isNullPointerConstant(S.Context,
8757                                             Expr::NPC_ValueDependentIsNull))
8758     return true;
8759 
8760   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8761   return false;
8762 }
8763 
8764 /// Checks compatibility between two pointers and return the resulting
8765 /// type.
8766 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8767                                                      ExprResult &RHS,
8768                                                      SourceLocation Loc) {
8769   QualType LHSTy = LHS.get()->getType();
8770   QualType RHSTy = RHS.get()->getType();
8771 
8772   if (S.Context.hasSameType(LHSTy, RHSTy)) {
8773     // Two identical pointers types are always compatible.
8774     return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8775   }
8776 
8777   QualType lhptee, rhptee;
8778 
8779   // Get the pointee types.
8780   bool IsBlockPointer = false;
8781   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8782     lhptee = LHSBTy->getPointeeType();
8783     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8784     IsBlockPointer = true;
8785   } else {
8786     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8787     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8788   }
8789 
8790   // C99 6.5.15p6: If both operands are pointers to compatible types or to
8791   // differently qualified versions of compatible types, the result type is
8792   // a pointer to an appropriately qualified version of the composite
8793   // type.
8794 
8795   // Only CVR-qualifiers exist in the standard, and the differently-qualified
8796   // clause doesn't make sense for our extensions. E.g. address space 2 should
8797   // be incompatible with address space 3: they may live on different devices or
8798   // anything.
8799   Qualifiers lhQual = lhptee.getQualifiers();
8800   Qualifiers rhQual = rhptee.getQualifiers();
8801 
8802   LangAS ResultAddrSpace = LangAS::Default;
8803   LangAS LAddrSpace = lhQual.getAddressSpace();
8804   LangAS RAddrSpace = rhQual.getAddressSpace();
8805 
8806   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8807   // spaces is disallowed.
8808   if (lhQual.isAddressSpaceSupersetOf(rhQual))
8809     ResultAddrSpace = LAddrSpace;
8810   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8811     ResultAddrSpace = RAddrSpace;
8812   else {
8813     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8814         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8815         << RHS.get()->getSourceRange();
8816     return QualType();
8817   }
8818 
8819   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8820   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8821   lhQual.removeCVRQualifiers();
8822   rhQual.removeCVRQualifiers();
8823 
8824   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8825   // (C99 6.7.3) for address spaces. We assume that the check should behave in
8826   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8827   // qual types are compatible iff
8828   //  * corresponded types are compatible
8829   //  * CVR qualifiers are equal
8830   //  * address spaces are equal
8831   // Thus for conditional operator we merge CVR and address space unqualified
8832   // pointees and if there is a composite type we return a pointer to it with
8833   // merged qualifiers.
8834   LHSCastKind =
8835       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8836   RHSCastKind =
8837       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8838   lhQual.removeAddressSpace();
8839   rhQual.removeAddressSpace();
8840 
8841   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8842   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8843 
8844   QualType CompositeTy = S.Context.mergeTypes(
8845       lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8846       /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8847 
8848   if (CompositeTy.isNull()) {
8849     // In this situation, we assume void* type. No especially good
8850     // reason, but this is what gcc does, and we do have to pick
8851     // to get a consistent AST.
8852     QualType incompatTy;
8853     incompatTy = S.Context.getPointerType(
8854         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8855     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8856     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8857 
8858     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8859     // for casts between types with incompatible address space qualifiers.
8860     // For the following code the compiler produces casts between global and
8861     // local address spaces of the corresponded innermost pointees:
8862     // local int *global *a;
8863     // global int *global *b;
8864     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8865     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8866         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8867         << RHS.get()->getSourceRange();
8868 
8869     return incompatTy;
8870   }
8871 
8872   // The pointer types are compatible.
8873   // In case of OpenCL ResultTy should have the address space qualifier
8874   // which is a superset of address spaces of both the 2nd and the 3rd
8875   // operands of the conditional operator.
8876   QualType ResultTy = [&, ResultAddrSpace]() {
8877     if (S.getLangOpts().OpenCL) {
8878       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8879       CompositeQuals.setAddressSpace(ResultAddrSpace);
8880       return S.Context
8881           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8882           .withCVRQualifiers(MergedCVRQual);
8883     }
8884     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8885   }();
8886   if (IsBlockPointer)
8887     ResultTy = S.Context.getBlockPointerType(ResultTy);
8888   else
8889     ResultTy = S.Context.getPointerType(ResultTy);
8890 
8891   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8892   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8893   return ResultTy;
8894 }
8895 
8896 /// Return the resulting type when the operands are both block pointers.
8897 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8898                                                           ExprResult &LHS,
8899                                                           ExprResult &RHS,
8900                                                           SourceLocation Loc) {
8901   QualType LHSTy = LHS.get()->getType();
8902   QualType RHSTy = RHS.get()->getType();
8903 
8904   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8905     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8906       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8907       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8908       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8909       return destType;
8910     }
8911     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8912       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8913       << RHS.get()->getSourceRange();
8914     return QualType();
8915   }
8916 
8917   // We have 2 block pointer types.
8918   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8919 }
8920 
8921 /// Return the resulting type when the operands are both pointers.
8922 static QualType
8923 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8924                                             ExprResult &RHS,
8925                                             SourceLocation Loc) {
8926   // get the pointer types
8927   QualType LHSTy = LHS.get()->getType();
8928   QualType RHSTy = RHS.get()->getType();
8929 
8930   // get the "pointed to" types
8931   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8932   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8933 
8934   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8935   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8936     // Figure out necessary qualifiers (C99 6.5.15p6)
8937     QualType destPointee
8938       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8939     QualType destType = S.Context.getPointerType(destPointee);
8940     // Add qualifiers if necessary.
8941     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8942     // Promote to void*.
8943     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8944     return destType;
8945   }
8946   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8947     QualType destPointee
8948       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8949     QualType destType = S.Context.getPointerType(destPointee);
8950     // Add qualifiers if necessary.
8951     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8952     // Promote to void*.
8953     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8954     return destType;
8955   }
8956 
8957   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8958 }
8959 
8960 /// Return false if the first expression is not an integer and the second
8961 /// expression is not a pointer, true otherwise.
8962 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8963                                         Expr* PointerExpr, SourceLocation Loc,
8964                                         bool IsIntFirstExpr) {
8965   if (!PointerExpr->getType()->isPointerType() ||
8966       !Int.get()->getType()->isIntegerType())
8967     return false;
8968 
8969   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8970   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8971 
8972   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8973     << Expr1->getType() << Expr2->getType()
8974     << Expr1->getSourceRange() << Expr2->getSourceRange();
8975   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8976                             CK_IntegralToPointer);
8977   return true;
8978 }
8979 
8980 /// Simple conversion between integer and floating point types.
8981 ///
8982 /// Used when handling the OpenCL conditional operator where the
8983 /// condition is a vector while the other operands are scalar.
8984 ///
8985 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8986 /// types are either integer or floating type. Between the two
8987 /// operands, the type with the higher rank is defined as the "result
8988 /// type". The other operand needs to be promoted to the same type. No
8989 /// other type promotion is allowed. We cannot use
8990 /// UsualArithmeticConversions() for this purpose, since it always
8991 /// promotes promotable types.
8992 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8993                                             ExprResult &RHS,
8994                                             SourceLocation QuestionLoc) {
8995   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8996   if (LHS.isInvalid())
8997     return QualType();
8998   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8999   if (RHS.isInvalid())
9000     return QualType();
9001 
9002   // For conversion purposes, we ignore any qualifiers.
9003   // For example, "const float" and "float" are equivalent.
9004   QualType LHSType =
9005     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
9006   QualType RHSType =
9007     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
9008 
9009   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
9010     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9011       << LHSType << LHS.get()->getSourceRange();
9012     return QualType();
9013   }
9014 
9015   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
9016     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9017       << RHSType << RHS.get()->getSourceRange();
9018     return QualType();
9019   }
9020 
9021   // If both types are identical, no conversion is needed.
9022   if (LHSType == RHSType)
9023     return LHSType;
9024 
9025   // Now handle "real" floating types (i.e. float, double, long double).
9026   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
9027     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
9028                                  /*IsCompAssign = */ false);
9029 
9030   // Finally, we have two differing integer types.
9031   return handleIntegerConversion<doIntegralCast, doIntegralCast>
9032   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
9033 }
9034 
9035 /// Convert scalar operands to a vector that matches the
9036 ///        condition in length.
9037 ///
9038 /// Used when handling the OpenCL conditional operator where the
9039 /// condition is a vector while the other operands are scalar.
9040 ///
9041 /// We first compute the "result type" for the scalar operands
9042 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
9043 /// into a vector of that type where the length matches the condition
9044 /// vector type. s6.11.6 requires that the element types of the result
9045 /// and the condition must have the same number of bits.
9046 static QualType
9047 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
9048                               QualType CondTy, SourceLocation QuestionLoc) {
9049   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
9050   if (ResTy.isNull()) return QualType();
9051 
9052   const VectorType *CV = CondTy->getAs<VectorType>();
9053   assert(CV);
9054 
9055   // Determine the vector result type
9056   unsigned NumElements = CV->getNumElements();
9057   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
9058 
9059   // Ensure that all types have the same number of bits
9060   if (S.Context.getTypeSize(CV->getElementType())
9061       != S.Context.getTypeSize(ResTy)) {
9062     // Since VectorTy is created internally, it does not pretty print
9063     // with an OpenCL name. Instead, we just print a description.
9064     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
9065     SmallString<64> Str;
9066     llvm::raw_svector_ostream OS(Str);
9067     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
9068     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9069       << CondTy << OS.str();
9070     return QualType();
9071   }
9072 
9073   // Convert operands to the vector result type
9074   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
9075   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
9076 
9077   return VectorTy;
9078 }
9079 
9080 /// Return false if this is a valid OpenCL condition vector
9081 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
9082                                        SourceLocation QuestionLoc) {
9083   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
9084   // integral type.
9085   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
9086   assert(CondTy);
9087   QualType EleTy = CondTy->getElementType();
9088   if (EleTy->isIntegerType()) return false;
9089 
9090   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
9091     << Cond->getType() << Cond->getSourceRange();
9092   return true;
9093 }
9094 
9095 /// Return false if the vector condition type and the vector
9096 ///        result type are compatible.
9097 ///
9098 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
9099 /// number of elements, and their element types have the same number
9100 /// of bits.
9101 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
9102                               SourceLocation QuestionLoc) {
9103   const VectorType *CV = CondTy->getAs<VectorType>();
9104   const VectorType *RV = VecResTy->getAs<VectorType>();
9105   assert(CV && RV);
9106 
9107   if (CV->getNumElements() != RV->getNumElements()) {
9108     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
9109       << CondTy << VecResTy;
9110     return true;
9111   }
9112 
9113   QualType CVE = CV->getElementType();
9114   QualType RVE = RV->getElementType();
9115 
9116   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
9117     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9118       << CondTy << VecResTy;
9119     return true;
9120   }
9121 
9122   return false;
9123 }
9124 
9125 /// Return the resulting type for the conditional operator in
9126 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
9127 ///        s6.3.i) when the condition is a vector type.
9128 static QualType
9129 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
9130                              ExprResult &LHS, ExprResult &RHS,
9131                              SourceLocation QuestionLoc) {
9132   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
9133   if (Cond.isInvalid())
9134     return QualType();
9135   QualType CondTy = Cond.get()->getType();
9136 
9137   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
9138     return QualType();
9139 
9140   // If either operand is a vector then find the vector type of the
9141   // result as specified in OpenCL v1.1 s6.3.i.
9142   if (LHS.get()->getType()->isVectorType() ||
9143       RHS.get()->getType()->isVectorType()) {
9144     bool IsBoolVecLang =
9145         !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
9146     QualType VecResTy =
9147         S.CheckVectorOperands(LHS, RHS, QuestionLoc,
9148                               /*isCompAssign*/ false,
9149                               /*AllowBothBool*/ true,
9150                               /*AllowBoolConversions*/ false,
9151                               /*AllowBooleanOperation*/ IsBoolVecLang,
9152                               /*ReportInvalid*/ true);
9153     if (VecResTy.isNull())
9154       return QualType();
9155     // The result type must match the condition type as specified in
9156     // OpenCL v1.1 s6.11.6.
9157     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
9158       return QualType();
9159     return VecResTy;
9160   }
9161 
9162   // Both operands are scalar.
9163   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
9164 }
9165 
9166 /// Return true if the Expr is block type
9167 static bool checkBlockType(Sema &S, const Expr *E) {
9168   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9169     QualType Ty = CE->getCallee()->getType();
9170     if (Ty->isBlockPointerType()) {
9171       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
9172       return true;
9173     }
9174   }
9175   return false;
9176 }
9177 
9178 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
9179 /// In that case, LHS = cond.
9180 /// C99 6.5.15
9181 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
9182                                         ExprResult &RHS, ExprValueKind &VK,
9183                                         ExprObjectKind &OK,
9184                                         SourceLocation QuestionLoc) {
9185 
9186   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
9187   if (!LHSResult.isUsable()) return QualType();
9188   LHS = LHSResult;
9189 
9190   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
9191   if (!RHSResult.isUsable()) return QualType();
9192   RHS = RHSResult;
9193 
9194   // C++ is sufficiently different to merit its own checker.
9195   if (getLangOpts().CPlusPlus)
9196     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
9197 
9198   VK = VK_PRValue;
9199   OK = OK_Ordinary;
9200 
9201   if (Context.isDependenceAllowed() &&
9202       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
9203        RHS.get()->isTypeDependent())) {
9204     assert(!getLangOpts().CPlusPlus);
9205     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
9206             RHS.get()->containsErrors()) &&
9207            "should only occur in error-recovery path.");
9208     return Context.DependentTy;
9209   }
9210 
9211   // The OpenCL operator with a vector condition is sufficiently
9212   // different to merit its own checker.
9213   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
9214       Cond.get()->getType()->isExtVectorType())
9215     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
9216 
9217   // First, check the condition.
9218   Cond = UsualUnaryConversions(Cond.get());
9219   if (Cond.isInvalid())
9220     return QualType();
9221   if (checkCondition(*this, Cond.get(), QuestionLoc))
9222     return QualType();
9223 
9224   // Handle vectors.
9225   if (LHS.get()->getType()->isVectorType() ||
9226       RHS.get()->getType()->isVectorType())
9227     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
9228                                /*AllowBothBool*/ true,
9229                                /*AllowBoolConversions*/ false,
9230                                /*AllowBooleanOperation*/ false,
9231                                /*ReportInvalid*/ true);
9232 
9233   QualType ResTy =
9234       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
9235   if (LHS.isInvalid() || RHS.isInvalid())
9236     return QualType();
9237 
9238   // WebAssembly tables are not allowed as conditional LHS or RHS.
9239   QualType LHSTy = LHS.get()->getType();
9240   QualType RHSTy = RHS.get()->getType();
9241   if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
9242     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
9243         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9244     return QualType();
9245   }
9246 
9247   // Diagnose attempts to convert between __ibm128, __float128 and long double
9248   // where such conversions currently can't be handled.
9249   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
9250     Diag(QuestionLoc,
9251          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
9252       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9253     return QualType();
9254   }
9255 
9256   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
9257   // selection operator (?:).
9258   if (getLangOpts().OpenCL &&
9259       ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
9260     return QualType();
9261   }
9262 
9263   // If both operands have arithmetic type, do the usual arithmetic conversions
9264   // to find a common type: C99 6.5.15p3,5.
9265   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
9266     // Disallow invalid arithmetic conversions, such as those between bit-
9267     // precise integers types of different sizes, or between a bit-precise
9268     // integer and another type.
9269     if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
9270       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9271           << LHSTy << RHSTy << LHS.get()->getSourceRange()
9272           << RHS.get()->getSourceRange();
9273       return QualType();
9274     }
9275 
9276     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
9277     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
9278 
9279     return ResTy;
9280   }
9281 
9282   // If both operands are the same structure or union type, the result is that
9283   // type.
9284   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
9285     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
9286       if (LHSRT->getDecl() == RHSRT->getDecl())
9287         // "If both the operands have structure or union type, the result has
9288         // that type."  This implies that CV qualifiers are dropped.
9289         return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
9290                                             RHSTy.getUnqualifiedType());
9291     // FIXME: Type of conditional expression must be complete in C mode.
9292   }
9293 
9294   // C99 6.5.15p5: "If both operands have void type, the result has void type."
9295   // The following || allows only one side to be void (a GCC-ism).
9296   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
9297     QualType ResTy;
9298     if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
9299       ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
9300     } else if (RHSTy->isVoidType()) {
9301       ResTy = RHSTy;
9302       Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9303           << RHS.get()->getSourceRange();
9304     } else {
9305       ResTy = LHSTy;
9306       Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9307           << LHS.get()->getSourceRange();
9308     }
9309     LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
9310     RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
9311     return ResTy;
9312   }
9313 
9314   // C23 6.5.15p7:
9315   //   ... if both the second and third operands have nullptr_t type, the
9316   //   result also has that type.
9317   if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
9318     return ResTy;
9319 
9320   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
9321   // the type of the other operand."
9322   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
9323   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
9324 
9325   // All objective-c pointer type analysis is done here.
9326   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
9327                                                         QuestionLoc);
9328   if (LHS.isInvalid() || RHS.isInvalid())
9329     return QualType();
9330   if (!compositeType.isNull())
9331     return compositeType;
9332 
9333 
9334   // Handle block pointer types.
9335   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
9336     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
9337                                                      QuestionLoc);
9338 
9339   // Check constraints for C object pointers types (C99 6.5.15p3,6).
9340   if (LHSTy->isPointerType() && RHSTy->isPointerType())
9341     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
9342                                                        QuestionLoc);
9343 
9344   // GCC compatibility: soften pointer/integer mismatch.  Note that
9345   // null pointers have been filtered out by this point.
9346   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
9347       /*IsIntFirstExpr=*/true))
9348     return RHSTy;
9349   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
9350       /*IsIntFirstExpr=*/false))
9351     return LHSTy;
9352 
9353   // Emit a better diagnostic if one of the expressions is a null pointer
9354   // constant and the other is not a pointer type. In this case, the user most
9355   // likely forgot to take the address of the other expression.
9356   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
9357     return QualType();
9358 
9359   // Finally, if the LHS and RHS types are canonically the same type, we can
9360   // use the common sugared type.
9361   if (Context.hasSameType(LHSTy, RHSTy))
9362     return Context.getCommonSugaredType(LHSTy, RHSTy);
9363 
9364   // Otherwise, the operands are not compatible.
9365   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9366     << LHSTy << RHSTy << LHS.get()->getSourceRange()
9367     << RHS.get()->getSourceRange();
9368   return QualType();
9369 }
9370 
9371 /// FindCompositeObjCPointerType - Helper method to find composite type of
9372 /// two objective-c pointer types of the two input expressions.
9373 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
9374                                             SourceLocation QuestionLoc) {
9375   QualType LHSTy = LHS.get()->getType();
9376   QualType RHSTy = RHS.get()->getType();
9377 
9378   // Handle things like Class and struct objc_class*.  Here we case the result
9379   // to the pseudo-builtin, because that will be implicitly cast back to the
9380   // redefinition type if an attempt is made to access its fields.
9381   if (LHSTy->isObjCClassType() &&
9382       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
9383     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9384     return LHSTy;
9385   }
9386   if (RHSTy->isObjCClassType() &&
9387       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
9388     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9389     return RHSTy;
9390   }
9391   // And the same for struct objc_object* / id
9392   if (LHSTy->isObjCIdType() &&
9393       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
9394     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9395     return LHSTy;
9396   }
9397   if (RHSTy->isObjCIdType() &&
9398       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
9399     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9400     return RHSTy;
9401   }
9402   // And the same for struct objc_selector* / SEL
9403   if (Context.isObjCSelType(LHSTy) &&
9404       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
9405     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
9406     return LHSTy;
9407   }
9408   if (Context.isObjCSelType(RHSTy) &&
9409       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
9410     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
9411     return RHSTy;
9412   }
9413   // Check constraints for Objective-C object pointers types.
9414   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
9415 
9416     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
9417       // Two identical object pointer types are always compatible.
9418       return LHSTy;
9419     }
9420     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
9421     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
9422     QualType compositeType = LHSTy;
9423 
9424     // If both operands are interfaces and either operand can be
9425     // assigned to the other, use that type as the composite
9426     // type. This allows
9427     //   xxx ? (A*) a : (B*) b
9428     // where B is a subclass of A.
9429     //
9430     // Additionally, as for assignment, if either type is 'id'
9431     // allow silent coercion. Finally, if the types are
9432     // incompatible then make sure to use 'id' as the composite
9433     // type so the result is acceptable for sending messages to.
9434 
9435     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9436     // It could return the composite type.
9437     if (!(compositeType =
9438           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
9439       // Nothing more to do.
9440     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
9441       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
9442     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
9443       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
9444     } else if ((LHSOPT->isObjCQualifiedIdType() ||
9445                 RHSOPT->isObjCQualifiedIdType()) &&
9446                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
9447                                                          true)) {
9448       // Need to handle "id<xx>" explicitly.
9449       // GCC allows qualified id and any Objective-C type to devolve to
9450       // id. Currently localizing to here until clear this should be
9451       // part of ObjCQualifiedIdTypesAreCompatible.
9452       compositeType = Context.getObjCIdType();
9453     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
9454       compositeType = Context.getObjCIdType();
9455     } else {
9456       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
9457       << LHSTy << RHSTy
9458       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9459       QualType incompatTy = Context.getObjCIdType();
9460       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
9461       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
9462       return incompatTy;
9463     }
9464     // The object pointer types are compatible.
9465     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
9466     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
9467     return compositeType;
9468   }
9469   // Check Objective-C object pointer types and 'void *'
9470   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
9471     if (getLangOpts().ObjCAutoRefCount) {
9472       // ARC forbids the implicit conversion of object pointers to 'void *',
9473       // so these types are not compatible.
9474       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9475           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9476       LHS = RHS = true;
9477       return QualType();
9478     }
9479     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
9480     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9481     QualType destPointee
9482     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
9483     QualType destType = Context.getPointerType(destPointee);
9484     // Add qualifiers if necessary.
9485     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
9486     // Promote to void*.
9487     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
9488     return destType;
9489   }
9490   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
9491     if (getLangOpts().ObjCAutoRefCount) {
9492       // ARC forbids the implicit conversion of object pointers to 'void *',
9493       // so these types are not compatible.
9494       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9495           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9496       LHS = RHS = true;
9497       return QualType();
9498     }
9499     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9500     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
9501     QualType destPointee
9502     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
9503     QualType destType = Context.getPointerType(destPointee);
9504     // Add qualifiers if necessary.
9505     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
9506     // Promote to void*.
9507     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
9508     return destType;
9509   }
9510   return QualType();
9511 }
9512 
9513 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9514 /// ParenRange in parentheses.
9515 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
9516                                const PartialDiagnostic &Note,
9517                                SourceRange ParenRange) {
9518   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
9519   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
9520       EndLoc.isValid()) {
9521     Self.Diag(Loc, Note)
9522       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
9523       << FixItHint::CreateInsertion(EndLoc, ")");
9524   } else {
9525     // We can't display the parentheses, so just show the bare note.
9526     Self.Diag(Loc, Note) << ParenRange;
9527   }
9528 }
9529 
9530 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
9531   return BinaryOperator::isAdditiveOp(Opc) ||
9532          BinaryOperator::isMultiplicativeOp(Opc) ||
9533          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
9534   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9535   // not any of the logical operators.  Bitwise-xor is commonly used as a
9536   // logical-xor because there is no logical-xor operator.  The logical
9537   // operators, including uses of xor, have a high false positive rate for
9538   // precedence warnings.
9539 }
9540 
9541 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9542 /// expression, either using a built-in or overloaded operator,
9543 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9544 /// expression.
9545 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
9546                                    Expr **RHSExprs) {
9547   // Don't strip parenthesis: we should not warn if E is in parenthesis.
9548   E = E->IgnoreImpCasts();
9549   E = E->IgnoreConversionOperatorSingleStep();
9550   E = E->IgnoreImpCasts();
9551   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
9552     E = MTE->getSubExpr();
9553     E = E->IgnoreImpCasts();
9554   }
9555 
9556   // Built-in binary operator.
9557   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
9558     if (IsArithmeticOp(OP->getOpcode())) {
9559       *Opcode = OP->getOpcode();
9560       *RHSExprs = OP->getRHS();
9561       return true;
9562     }
9563   }
9564 
9565   // Overloaded operator.
9566   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
9567     if (Call->getNumArgs() != 2)
9568       return false;
9569 
9570     // Make sure this is really a binary operator that is safe to pass into
9571     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9572     OverloadedOperatorKind OO = Call->getOperator();
9573     if (OO < OO_Plus || OO > OO_Arrow ||
9574         OO == OO_PlusPlus || OO == OO_MinusMinus)
9575       return false;
9576 
9577     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
9578     if (IsArithmeticOp(OpKind)) {
9579       *Opcode = OpKind;
9580       *RHSExprs = Call->getArg(1);
9581       return true;
9582     }
9583   }
9584 
9585   return false;
9586 }
9587 
9588 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9589 /// or is a logical expression such as (x==y) which has int type, but is
9590 /// commonly interpreted as boolean.
9591 static bool ExprLooksBoolean(Expr *E) {
9592   E = E->IgnoreParenImpCasts();
9593 
9594   if (E->getType()->isBooleanType())
9595     return true;
9596   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
9597     return OP->isComparisonOp() || OP->isLogicalOp();
9598   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
9599     return OP->getOpcode() == UO_LNot;
9600   if (E->getType()->isPointerType())
9601     return true;
9602   // FIXME: What about overloaded operator calls returning "unspecified boolean
9603   // type"s (commonly pointer-to-members)?
9604 
9605   return false;
9606 }
9607 
9608 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9609 /// and binary operator are mixed in a way that suggests the programmer assumed
9610 /// the conditional operator has higher precedence, for example:
9611 /// "int x = a + someBinaryCondition ? 1 : 2".
9612 static void DiagnoseConditionalPrecedence(Sema &Self,
9613                                           SourceLocation OpLoc,
9614                                           Expr *Condition,
9615                                           Expr *LHSExpr,
9616                                           Expr *RHSExpr) {
9617   BinaryOperatorKind CondOpcode;
9618   Expr *CondRHS;
9619 
9620   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9621     return;
9622   if (!ExprLooksBoolean(CondRHS))
9623     return;
9624 
9625   // The condition is an arithmetic binary expression, with a right-
9626   // hand side that looks boolean, so warn.
9627 
9628   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9629                         ? diag::warn_precedence_bitwise_conditional
9630                         : diag::warn_precedence_conditional;
9631 
9632   Self.Diag(OpLoc, DiagID)
9633       << Condition->getSourceRange()
9634       << BinaryOperator::getOpcodeStr(CondOpcode);
9635 
9636   SuggestParentheses(
9637       Self, OpLoc,
9638       Self.PDiag(diag::note_precedence_silence)
9639           << BinaryOperator::getOpcodeStr(CondOpcode),
9640       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9641 
9642   SuggestParentheses(Self, OpLoc,
9643                      Self.PDiag(diag::note_precedence_conditional_first),
9644                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9645 }
9646 
9647 /// Compute the nullability of a conditional expression.
9648 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9649                                               QualType LHSTy, QualType RHSTy,
9650                                               ASTContext &Ctx) {
9651   if (!ResTy->isAnyPointerType())
9652     return ResTy;
9653 
9654   auto GetNullability = [](QualType Ty) {
9655     std::optional<NullabilityKind> Kind = Ty->getNullability();
9656     if (Kind) {
9657       // For our purposes, treat _Nullable_result as _Nullable.
9658       if (*Kind == NullabilityKind::NullableResult)
9659         return NullabilityKind::Nullable;
9660       return *Kind;
9661     }
9662     return NullabilityKind::Unspecified;
9663   };
9664 
9665   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9666   NullabilityKind MergedKind;
9667 
9668   // Compute nullability of a binary conditional expression.
9669   if (IsBin) {
9670     if (LHSKind == NullabilityKind::NonNull)
9671       MergedKind = NullabilityKind::NonNull;
9672     else
9673       MergedKind = RHSKind;
9674   // Compute nullability of a normal conditional expression.
9675   } else {
9676     if (LHSKind == NullabilityKind::Nullable ||
9677         RHSKind == NullabilityKind::Nullable)
9678       MergedKind = NullabilityKind::Nullable;
9679     else if (LHSKind == NullabilityKind::NonNull)
9680       MergedKind = RHSKind;
9681     else if (RHSKind == NullabilityKind::NonNull)
9682       MergedKind = LHSKind;
9683     else
9684       MergedKind = NullabilityKind::Unspecified;
9685   }
9686 
9687   // Return if ResTy already has the correct nullability.
9688   if (GetNullability(ResTy) == MergedKind)
9689     return ResTy;
9690 
9691   // Strip all nullability from ResTy.
9692   while (ResTy->getNullability())
9693     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9694 
9695   // Create a new AttributedType with the new nullability kind.
9696   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9697   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9698 }
9699 
9700 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
9701 /// in the case of a the GNU conditional expr extension.
9702 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9703                                     SourceLocation ColonLoc,
9704                                     Expr *CondExpr, Expr *LHSExpr,
9705                                     Expr *RHSExpr) {
9706   if (!Context.isDependenceAllowed()) {
9707     // C cannot handle TypoExpr nodes in the condition because it
9708     // doesn't handle dependent types properly, so make sure any TypoExprs have
9709     // been dealt with before checking the operands.
9710     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9711     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9712     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9713 
9714     if (!CondResult.isUsable())
9715       return ExprError();
9716 
9717     if (LHSExpr) {
9718       if (!LHSResult.isUsable())
9719         return ExprError();
9720     }
9721 
9722     if (!RHSResult.isUsable())
9723       return ExprError();
9724 
9725     CondExpr = CondResult.get();
9726     LHSExpr = LHSResult.get();
9727     RHSExpr = RHSResult.get();
9728   }
9729 
9730   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9731   // was the condition.
9732   OpaqueValueExpr *opaqueValue = nullptr;
9733   Expr *commonExpr = nullptr;
9734   if (!LHSExpr) {
9735     commonExpr = CondExpr;
9736     // Lower out placeholder types first.  This is important so that we don't
9737     // try to capture a placeholder. This happens in few cases in C++; such
9738     // as Objective-C++'s dictionary subscripting syntax.
9739     if (commonExpr->hasPlaceholderType()) {
9740       ExprResult result = CheckPlaceholderExpr(commonExpr);
9741       if (!result.isUsable()) return ExprError();
9742       commonExpr = result.get();
9743     }
9744     // We usually want to apply unary conversions *before* saving, except
9745     // in the special case of a C++ l-value conditional.
9746     if (!(getLangOpts().CPlusPlus
9747           && !commonExpr->isTypeDependent()
9748           && commonExpr->getValueKind() == RHSExpr->getValueKind()
9749           && commonExpr->isGLValue()
9750           && commonExpr->isOrdinaryOrBitFieldObject()
9751           && RHSExpr->isOrdinaryOrBitFieldObject()
9752           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9753       ExprResult commonRes = UsualUnaryConversions(commonExpr);
9754       if (commonRes.isInvalid())
9755         return ExprError();
9756       commonExpr = commonRes.get();
9757     }
9758 
9759     // If the common expression is a class or array prvalue, materialize it
9760     // so that we can safely refer to it multiple times.
9761     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9762                                     commonExpr->getType()->isArrayType())) {
9763       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9764       if (MatExpr.isInvalid())
9765         return ExprError();
9766       commonExpr = MatExpr.get();
9767     }
9768 
9769     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9770                                                 commonExpr->getType(),
9771                                                 commonExpr->getValueKind(),
9772                                                 commonExpr->getObjectKind(),
9773                                                 commonExpr);
9774     LHSExpr = CondExpr = opaqueValue;
9775   }
9776 
9777   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9778   ExprValueKind VK = VK_PRValue;
9779   ExprObjectKind OK = OK_Ordinary;
9780   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9781   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9782                                              VK, OK, QuestionLoc);
9783   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9784       RHS.isInvalid())
9785     return ExprError();
9786 
9787   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9788                                 RHS.get());
9789 
9790   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9791 
9792   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9793                                          Context);
9794 
9795   if (!commonExpr)
9796     return new (Context)
9797         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9798                             RHS.get(), result, VK, OK);
9799 
9800   return new (Context) BinaryConditionalOperator(
9801       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9802       ColonLoc, result, VK, OK);
9803 }
9804 
9805 // Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
9806 bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType,
9807                                       AArch64SMECallConversionKind C) {
9808   unsigned FromAttributes = 0, ToAttributes = 0;
9809   if (const auto *FromFn =
9810           dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
9811     FromAttributes =
9812         FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9813   if (const auto *ToFn =
9814           dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
9815     ToAttributes =
9816         ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9817 
9818   if (FromAttributes == ToAttributes)
9819     return false;
9820 
9821   // If the '__arm_preserves_za' is the only difference between the types,
9822   // check whether we're allowed to add or remove it.
9823   if ((FromAttributes ^ ToAttributes) ==
9824       FunctionType::SME_PStateZAPreservedMask) {
9825     switch (C) {
9826     case AArch64SMECallConversionKind::MatchExactly:
9827       return true;
9828     case AArch64SMECallConversionKind::MayAddPreservesZA:
9829       return !(ToAttributes & FunctionType::SME_PStateZAPreservedMask);
9830     case AArch64SMECallConversionKind::MayDropPreservesZA:
9831       return !(FromAttributes & FunctionType::SME_PStateZAPreservedMask);
9832     }
9833   }
9834 
9835   // There has been a mismatch of attributes
9836   return true;
9837 }
9838 
9839 // Check if we have a conversion between incompatible cmse function pointer
9840 // types, that is, a conversion between a function pointer with the
9841 // cmse_nonsecure_call attribute and one without.
9842 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9843                                           QualType ToType) {
9844   if (const auto *ToFn =
9845           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9846     if (const auto *FromFn =
9847             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9848       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9849       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9850 
9851       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9852     }
9853   }
9854   return false;
9855 }
9856 
9857 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9858 // being closely modeled after the C99 spec:-). The odd characteristic of this
9859 // routine is it effectively iqnores the qualifiers on the top level pointee.
9860 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9861 // FIXME: add a couple examples in this comment.
9862 static Sema::AssignConvertType
9863 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
9864                                SourceLocation Loc) {
9865   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9866   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9867 
9868   // get the "pointed to" type (ignoring qualifiers at the top level)
9869   const Type *lhptee, *rhptee;
9870   Qualifiers lhq, rhq;
9871   std::tie(lhptee, lhq) =
9872       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9873   std::tie(rhptee, rhq) =
9874       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9875 
9876   Sema::AssignConvertType ConvTy = Sema::Compatible;
9877 
9878   // C99 6.5.16.1p1: This following citation is common to constraints
9879   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9880   // qualifiers of the type *pointed to* by the right;
9881 
9882   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9883   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9884       lhq.compatiblyIncludesObjCLifetime(rhq)) {
9885     // Ignore lifetime for further calculation.
9886     lhq.removeObjCLifetime();
9887     rhq.removeObjCLifetime();
9888   }
9889 
9890   if (!lhq.compatiblyIncludes(rhq)) {
9891     // Treat address-space mismatches as fatal.
9892     if (!lhq.isAddressSpaceSupersetOf(rhq))
9893       return Sema::IncompatiblePointerDiscardsQualifiers;
9894 
9895     // It's okay to add or remove GC or lifetime qualifiers when converting to
9896     // and from void*.
9897     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9898                         .compatiblyIncludes(
9899                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9900              && (lhptee->isVoidType() || rhptee->isVoidType()))
9901       ; // keep old
9902 
9903     // Treat lifetime mismatches as fatal.
9904     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9905       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9906 
9907     // For GCC/MS compatibility, other qualifier mismatches are treated
9908     // as still compatible in C.
9909     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9910   }
9911 
9912   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9913   // incomplete type and the other is a pointer to a qualified or unqualified
9914   // version of void...
9915   if (lhptee->isVoidType()) {
9916     if (rhptee->isIncompleteOrObjectType())
9917       return ConvTy;
9918 
9919     // As an extension, we allow cast to/from void* to function pointer.
9920     assert(rhptee->isFunctionType());
9921     return Sema::FunctionVoidPointer;
9922   }
9923 
9924   if (rhptee->isVoidType()) {
9925     if (lhptee->isIncompleteOrObjectType())
9926       return ConvTy;
9927 
9928     // As an extension, we allow cast to/from void* to function pointer.
9929     assert(lhptee->isFunctionType());
9930     return Sema::FunctionVoidPointer;
9931   }
9932 
9933   if (!S.Diags.isIgnored(
9934           diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9935           Loc) &&
9936       RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9937       !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9938     return Sema::IncompatibleFunctionPointerStrict;
9939 
9940   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9941   // unqualified versions of compatible types, ...
9942   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9943   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9944     // Check if the pointee types are compatible ignoring the sign.
9945     // We explicitly check for char so that we catch "char" vs
9946     // "unsigned char" on systems where "char" is unsigned.
9947     if (lhptee->isCharType())
9948       ltrans = S.Context.UnsignedCharTy;
9949     else if (lhptee->hasSignedIntegerRepresentation())
9950       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9951 
9952     if (rhptee->isCharType())
9953       rtrans = S.Context.UnsignedCharTy;
9954     else if (rhptee->hasSignedIntegerRepresentation())
9955       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9956 
9957     if (ltrans == rtrans) {
9958       // Types are compatible ignoring the sign. Qualifier incompatibility
9959       // takes priority over sign incompatibility because the sign
9960       // warning can be disabled.
9961       if (ConvTy != Sema::Compatible)
9962         return ConvTy;
9963 
9964       return Sema::IncompatiblePointerSign;
9965     }
9966 
9967     // If we are a multi-level pointer, it's possible that our issue is simply
9968     // one of qualification - e.g. char ** -> const char ** is not allowed. If
9969     // the eventual target type is the same and the pointers have the same
9970     // level of indirection, this must be the issue.
9971     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9972       do {
9973         std::tie(lhptee, lhq) =
9974           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9975         std::tie(rhptee, rhq) =
9976           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9977 
9978         // Inconsistent address spaces at this point is invalid, even if the
9979         // address spaces would be compatible.
9980         // FIXME: This doesn't catch address space mismatches for pointers of
9981         // different nesting levels, like:
9982         //   __local int *** a;
9983         //   int ** b = a;
9984         // It's not clear how to actually determine when such pointers are
9985         // invalidly incompatible.
9986         if (lhq.getAddressSpace() != rhq.getAddressSpace())
9987           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9988 
9989       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9990 
9991       if (lhptee == rhptee)
9992         return Sema::IncompatibleNestedPointerQualifiers;
9993     }
9994 
9995     // General pointer incompatibility takes priority over qualifiers.
9996     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9997       return Sema::IncompatibleFunctionPointer;
9998     return Sema::IncompatiblePointer;
9999   }
10000   if (!S.getLangOpts().CPlusPlus &&
10001       S.IsFunctionConversion(ltrans, rtrans, ltrans))
10002     return Sema::IncompatibleFunctionPointer;
10003   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
10004     return Sema::IncompatibleFunctionPointer;
10005   if (S.IsInvalidSMECallConversion(
10006           rtrans, ltrans,
10007           Sema::AArch64SMECallConversionKind::MayDropPreservesZA))
10008     return Sema::IncompatibleFunctionPointer;
10009   return ConvTy;
10010 }
10011 
10012 /// checkBlockPointerTypesForAssignment - This routine determines whether two
10013 /// block pointer types are compatible or whether a block and normal pointer
10014 /// are compatible. It is more restrict than comparing two function pointer
10015 // types.
10016 static Sema::AssignConvertType
10017 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
10018                                     QualType RHSType) {
10019   assert(LHSType.isCanonical() && "LHS not canonicalized!");
10020   assert(RHSType.isCanonical() && "RHS not canonicalized!");
10021 
10022   QualType lhptee, rhptee;
10023 
10024   // get the "pointed to" type (ignoring qualifiers at the top level)
10025   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
10026   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
10027 
10028   // In C++, the types have to match exactly.
10029   if (S.getLangOpts().CPlusPlus)
10030     return Sema::IncompatibleBlockPointer;
10031 
10032   Sema::AssignConvertType ConvTy = Sema::Compatible;
10033 
10034   // For blocks we enforce that qualifiers are identical.
10035   Qualifiers LQuals = lhptee.getLocalQualifiers();
10036   Qualifiers RQuals = rhptee.getLocalQualifiers();
10037   if (S.getLangOpts().OpenCL) {
10038     LQuals.removeAddressSpace();
10039     RQuals.removeAddressSpace();
10040   }
10041   if (LQuals != RQuals)
10042     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
10043 
10044   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
10045   // assignment.
10046   // The current behavior is similar to C++ lambdas. A block might be
10047   // assigned to a variable iff its return type and parameters are compatible
10048   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
10049   // an assignment. Presumably it should behave in way that a function pointer
10050   // assignment does in C, so for each parameter and return type:
10051   //  * CVR and address space of LHS should be a superset of CVR and address
10052   //  space of RHS.
10053   //  * unqualified types should be compatible.
10054   if (S.getLangOpts().OpenCL) {
10055     if (!S.Context.typesAreBlockPointerCompatible(
10056             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
10057             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
10058       return Sema::IncompatibleBlockPointer;
10059   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
10060     return Sema::IncompatibleBlockPointer;
10061 
10062   return ConvTy;
10063 }
10064 
10065 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
10066 /// for assignment compatibility.
10067 static Sema::AssignConvertType
10068 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
10069                                    QualType RHSType) {
10070   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
10071   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
10072 
10073   if (LHSType->isObjCBuiltinType()) {
10074     // Class is not compatible with ObjC object pointers.
10075     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
10076         !RHSType->isObjCQualifiedClassType())
10077       return Sema::IncompatiblePointer;
10078     return Sema::Compatible;
10079   }
10080   if (RHSType->isObjCBuiltinType()) {
10081     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
10082         !LHSType->isObjCQualifiedClassType())
10083       return Sema::IncompatiblePointer;
10084     return Sema::Compatible;
10085   }
10086   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10087   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10088 
10089   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
10090       // make an exception for id<P>
10091       !LHSType->isObjCQualifiedIdType())
10092     return Sema::CompatiblePointerDiscardsQualifiers;
10093 
10094   if (S.Context.typesAreCompatible(LHSType, RHSType))
10095     return Sema::Compatible;
10096   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
10097     return Sema::IncompatibleObjCQualifiedId;
10098   return Sema::IncompatiblePointer;
10099 }
10100 
10101 Sema::AssignConvertType
10102 Sema::CheckAssignmentConstraints(SourceLocation Loc,
10103                                  QualType LHSType, QualType RHSType) {
10104   // Fake up an opaque expression.  We don't actually care about what
10105   // cast operations are required, so if CheckAssignmentConstraints
10106   // adds casts to this they'll be wasted, but fortunately that doesn't
10107   // usually happen on valid code.
10108   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
10109   ExprResult RHSPtr = &RHSExpr;
10110   CastKind K;
10111 
10112   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
10113 }
10114 
10115 /// This helper function returns true if QT is a vector type that has element
10116 /// type ElementType.
10117 static bool isVector(QualType QT, QualType ElementType) {
10118   if (const VectorType *VT = QT->getAs<VectorType>())
10119     return VT->getElementType().getCanonicalType() == ElementType;
10120   return false;
10121 }
10122 
10123 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
10124 /// has code to accommodate several GCC extensions when type checking
10125 /// pointers. Here are some objectionable examples that GCC considers warnings:
10126 ///
10127 ///  int a, *pint;
10128 ///  short *pshort;
10129 ///  struct foo *pfoo;
10130 ///
10131 ///  pint = pshort; // warning: assignment from incompatible pointer type
10132 ///  a = pint; // warning: assignment makes integer from pointer without a cast
10133 ///  pint = a; // warning: assignment makes pointer from integer without a cast
10134 ///  pint = pfoo; // warning: assignment from incompatible pointer type
10135 ///
10136 /// As a result, the code for dealing with pointers is more complex than the
10137 /// C99 spec dictates.
10138 ///
10139 /// Sets 'Kind' for any result kind except Incompatible.
10140 Sema::AssignConvertType
10141 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
10142                                  CastKind &Kind, bool ConvertRHS) {
10143   QualType RHSType = RHS.get()->getType();
10144   QualType OrigLHSType = LHSType;
10145 
10146   // Get canonical types.  We're not formatting these types, just comparing
10147   // them.
10148   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
10149   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
10150 
10151   // Common case: no conversion required.
10152   if (LHSType == RHSType) {
10153     Kind = CK_NoOp;
10154     return Compatible;
10155   }
10156 
10157   // If the LHS has an __auto_type, there are no additional type constraints
10158   // to be worried about.
10159   if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
10160     if (AT->isGNUAutoType()) {
10161       Kind = CK_NoOp;
10162       return Compatible;
10163     }
10164   }
10165 
10166   // If we have an atomic type, try a non-atomic assignment, then just add an
10167   // atomic qualification step.
10168   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
10169     Sema::AssignConvertType result =
10170       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
10171     if (result != Compatible)
10172       return result;
10173     if (Kind != CK_NoOp && ConvertRHS)
10174       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
10175     Kind = CK_NonAtomicToAtomic;
10176     return Compatible;
10177   }
10178 
10179   // If the left-hand side is a reference type, then we are in a
10180   // (rare!) case where we've allowed the use of references in C,
10181   // e.g., as a parameter type in a built-in function. In this case,
10182   // just make sure that the type referenced is compatible with the
10183   // right-hand side type. The caller is responsible for adjusting
10184   // LHSType so that the resulting expression does not have reference
10185   // type.
10186   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
10187     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
10188       Kind = CK_LValueBitCast;
10189       return Compatible;
10190     }
10191     return Incompatible;
10192   }
10193 
10194   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
10195   // to the same ExtVector type.
10196   if (LHSType->isExtVectorType()) {
10197     if (RHSType->isExtVectorType())
10198       return Incompatible;
10199     if (RHSType->isArithmeticType()) {
10200       // CK_VectorSplat does T -> vector T, so first cast to the element type.
10201       if (ConvertRHS)
10202         RHS = prepareVectorSplat(LHSType, RHS.get());
10203       Kind = CK_VectorSplat;
10204       return Compatible;
10205     }
10206   }
10207 
10208   // Conversions to or from vector type.
10209   if (LHSType->isVectorType() || RHSType->isVectorType()) {
10210     if (LHSType->isVectorType() && RHSType->isVectorType()) {
10211       // Allow assignments of an AltiVec vector type to an equivalent GCC
10212       // vector type and vice versa
10213       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10214         Kind = CK_BitCast;
10215         return Compatible;
10216       }
10217 
10218       // If we are allowing lax vector conversions, and LHS and RHS are both
10219       // vectors, the total size only needs to be the same. This is a bitcast;
10220       // no bits are changed but the result type is different.
10221       if (isLaxVectorConversion(RHSType, LHSType)) {
10222         // The default for lax vector conversions with Altivec vectors will
10223         // change, so if we are converting between vector types where
10224         // at least one is an Altivec vector, emit a warning.
10225         if (Context.getTargetInfo().getTriple().isPPC() &&
10226             anyAltivecTypes(RHSType, LHSType) &&
10227             !Context.areCompatibleVectorTypes(RHSType, LHSType))
10228           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10229               << RHSType << LHSType;
10230         Kind = CK_BitCast;
10231         return IncompatibleVectors;
10232       }
10233     }
10234 
10235     // When the RHS comes from another lax conversion (e.g. binops between
10236     // scalars and vectors) the result is canonicalized as a vector. When the
10237     // LHS is also a vector, the lax is allowed by the condition above. Handle
10238     // the case where LHS is a scalar.
10239     if (LHSType->isScalarType()) {
10240       const VectorType *VecType = RHSType->getAs<VectorType>();
10241       if (VecType && VecType->getNumElements() == 1 &&
10242           isLaxVectorConversion(RHSType, LHSType)) {
10243         if (Context.getTargetInfo().getTriple().isPPC() &&
10244             (VecType->getVectorKind() == VectorKind::AltiVecVector ||
10245              VecType->getVectorKind() == VectorKind::AltiVecBool ||
10246              VecType->getVectorKind() == VectorKind::AltiVecPixel))
10247           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10248               << RHSType << LHSType;
10249         ExprResult *VecExpr = &RHS;
10250         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
10251         Kind = CK_BitCast;
10252         return Compatible;
10253       }
10254     }
10255 
10256     // Allow assignments between fixed-length and sizeless SVE vectors.
10257     if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
10258         (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
10259       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
10260           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
10261         Kind = CK_BitCast;
10262         return Compatible;
10263       }
10264 
10265     // Allow assignments between fixed-length and sizeless RVV vectors.
10266     if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
10267         (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
10268       if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
10269           Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
10270         Kind = CK_BitCast;
10271         return Compatible;
10272       }
10273     }
10274 
10275     return Incompatible;
10276   }
10277 
10278   // Diagnose attempts to convert between __ibm128, __float128 and long double
10279   // where such conversions currently can't be handled.
10280   if (unsupportedTypeConversion(*this, LHSType, RHSType))
10281     return Incompatible;
10282 
10283   // Disallow assigning a _Complex to a real type in C++ mode since it simply
10284   // discards the imaginary part.
10285   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
10286       !LHSType->getAs<ComplexType>())
10287     return Incompatible;
10288 
10289   // Arithmetic conversions.
10290   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
10291       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
10292     if (ConvertRHS)
10293       Kind = PrepareScalarCast(RHS, LHSType);
10294     return Compatible;
10295   }
10296 
10297   // Conversions to normal pointers.
10298   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
10299     // U* -> T*
10300     if (isa<PointerType>(RHSType)) {
10301       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10302       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
10303       if (AddrSpaceL != AddrSpaceR)
10304         Kind = CK_AddressSpaceConversion;
10305       else if (Context.hasCvrSimilarType(RHSType, LHSType))
10306         Kind = CK_NoOp;
10307       else
10308         Kind = CK_BitCast;
10309       return checkPointerTypesForAssignment(*this, LHSType, RHSType,
10310                                             RHS.get()->getBeginLoc());
10311     }
10312 
10313     // int -> T*
10314     if (RHSType->isIntegerType()) {
10315       Kind = CK_IntegralToPointer; // FIXME: null?
10316       return IntToPointer;
10317     }
10318 
10319     // C pointers are not compatible with ObjC object pointers,
10320     // with two exceptions:
10321     if (isa<ObjCObjectPointerType>(RHSType)) {
10322       //  - conversions to void*
10323       if (LHSPointer->getPointeeType()->isVoidType()) {
10324         Kind = CK_BitCast;
10325         return Compatible;
10326       }
10327 
10328       //  - conversions from 'Class' to the redefinition type
10329       if (RHSType->isObjCClassType() &&
10330           Context.hasSameType(LHSType,
10331                               Context.getObjCClassRedefinitionType())) {
10332         Kind = CK_BitCast;
10333         return Compatible;
10334       }
10335 
10336       Kind = CK_BitCast;
10337       return IncompatiblePointer;
10338     }
10339 
10340     // U^ -> void*
10341     if (RHSType->getAs<BlockPointerType>()) {
10342       if (LHSPointer->getPointeeType()->isVoidType()) {
10343         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10344         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10345                                 ->getPointeeType()
10346                                 .getAddressSpace();
10347         Kind =
10348             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10349         return Compatible;
10350       }
10351     }
10352 
10353     return Incompatible;
10354   }
10355 
10356   // Conversions to block pointers.
10357   if (isa<BlockPointerType>(LHSType)) {
10358     // U^ -> T^
10359     if (RHSType->isBlockPointerType()) {
10360       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
10361                               ->getPointeeType()
10362                               .getAddressSpace();
10363       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10364                               ->getPointeeType()
10365                               .getAddressSpace();
10366       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10367       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
10368     }
10369 
10370     // int or null -> T^
10371     if (RHSType->isIntegerType()) {
10372       Kind = CK_IntegralToPointer; // FIXME: null
10373       return IntToBlockPointer;
10374     }
10375 
10376     // id -> T^
10377     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
10378       Kind = CK_AnyPointerToBlockPointerCast;
10379       return Compatible;
10380     }
10381 
10382     // void* -> T^
10383     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
10384       if (RHSPT->getPointeeType()->isVoidType()) {
10385         Kind = CK_AnyPointerToBlockPointerCast;
10386         return Compatible;
10387       }
10388 
10389     return Incompatible;
10390   }
10391 
10392   // Conversions to Objective-C pointers.
10393   if (isa<ObjCObjectPointerType>(LHSType)) {
10394     // A* -> B*
10395     if (RHSType->isObjCObjectPointerType()) {
10396       Kind = CK_BitCast;
10397       Sema::AssignConvertType result =
10398         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
10399       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10400           result == Compatible &&
10401           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
10402         result = IncompatibleObjCWeakRef;
10403       return result;
10404     }
10405 
10406     // int or null -> A*
10407     if (RHSType->isIntegerType()) {
10408       Kind = CK_IntegralToPointer; // FIXME: null
10409       return IntToPointer;
10410     }
10411 
10412     // In general, C pointers are not compatible with ObjC object pointers,
10413     // with two exceptions:
10414     if (isa<PointerType>(RHSType)) {
10415       Kind = CK_CPointerToObjCPointerCast;
10416 
10417       //  - conversions from 'void*'
10418       if (RHSType->isVoidPointerType()) {
10419         return Compatible;
10420       }
10421 
10422       //  - conversions to 'Class' from its redefinition type
10423       if (LHSType->isObjCClassType() &&
10424           Context.hasSameType(RHSType,
10425                               Context.getObjCClassRedefinitionType())) {
10426         return Compatible;
10427       }
10428 
10429       return IncompatiblePointer;
10430     }
10431 
10432     // Only under strict condition T^ is compatible with an Objective-C pointer.
10433     if (RHSType->isBlockPointerType() &&
10434         LHSType->isBlockCompatibleObjCPointerType(Context)) {
10435       if (ConvertRHS)
10436         maybeExtendBlockObject(RHS);
10437       Kind = CK_BlockPointerToObjCPointerCast;
10438       return Compatible;
10439     }
10440 
10441     return Incompatible;
10442   }
10443 
10444   // Conversion to nullptr_t (C23 only)
10445   if (getLangOpts().C23 && LHSType->isNullPtrType() &&
10446       RHS.get()->isNullPointerConstant(Context,
10447                                        Expr::NPC_ValueDependentIsNull)) {
10448     // null -> nullptr_t
10449     Kind = CK_NullToPointer;
10450     return Compatible;
10451   }
10452 
10453   // Conversions from pointers that are not covered by the above.
10454   if (isa<PointerType>(RHSType)) {
10455     // T* -> _Bool
10456     if (LHSType == Context.BoolTy) {
10457       Kind = CK_PointerToBoolean;
10458       return Compatible;
10459     }
10460 
10461     // T* -> int
10462     if (LHSType->isIntegerType()) {
10463       Kind = CK_PointerToIntegral;
10464       return PointerToInt;
10465     }
10466 
10467     return Incompatible;
10468   }
10469 
10470   // Conversions from Objective-C pointers that are not covered by the above.
10471   if (isa<ObjCObjectPointerType>(RHSType)) {
10472     // T* -> _Bool
10473     if (LHSType == Context.BoolTy) {
10474       Kind = CK_PointerToBoolean;
10475       return Compatible;
10476     }
10477 
10478     // T* -> int
10479     if (LHSType->isIntegerType()) {
10480       Kind = CK_PointerToIntegral;
10481       return PointerToInt;
10482     }
10483 
10484     return Incompatible;
10485   }
10486 
10487   // struct A -> struct B
10488   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
10489     if (Context.typesAreCompatible(LHSType, RHSType)) {
10490       Kind = CK_NoOp;
10491       return Compatible;
10492     }
10493   }
10494 
10495   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
10496     Kind = CK_IntToOCLSampler;
10497     return Compatible;
10498   }
10499 
10500   return Incompatible;
10501 }
10502 
10503 /// Constructs a transparent union from an expression that is
10504 /// used to initialize the transparent union.
10505 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
10506                                       ExprResult &EResult, QualType UnionType,
10507                                       FieldDecl *Field) {
10508   // Build an initializer list that designates the appropriate member
10509   // of the transparent union.
10510   Expr *E = EResult.get();
10511   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
10512                                                    E, SourceLocation());
10513   Initializer->setType(UnionType);
10514   Initializer->setInitializedFieldInUnion(Field);
10515 
10516   // Build a compound literal constructing a value of the transparent
10517   // union type from this initializer list.
10518   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
10519   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
10520                                         VK_PRValue, Initializer, false);
10521 }
10522 
10523 Sema::AssignConvertType
10524 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
10525                                                ExprResult &RHS) {
10526   QualType RHSType = RHS.get()->getType();
10527 
10528   // If the ArgType is a Union type, we want to handle a potential
10529   // transparent_union GCC extension.
10530   const RecordType *UT = ArgType->getAsUnionType();
10531   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
10532     return Incompatible;
10533 
10534   // The field to initialize within the transparent union.
10535   RecordDecl *UD = UT->getDecl();
10536   FieldDecl *InitField = nullptr;
10537   // It's compatible if the expression matches any of the fields.
10538   for (auto *it : UD->fields()) {
10539     if (it->getType()->isPointerType()) {
10540       // If the transparent union contains a pointer type, we allow:
10541       // 1) void pointer
10542       // 2) null pointer constant
10543       if (RHSType->isPointerType())
10544         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
10545           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
10546           InitField = it;
10547           break;
10548         }
10549 
10550       if (RHS.get()->isNullPointerConstant(Context,
10551                                            Expr::NPC_ValueDependentIsNull)) {
10552         RHS = ImpCastExprToType(RHS.get(), it->getType(),
10553                                 CK_NullToPointer);
10554         InitField = it;
10555         break;
10556       }
10557     }
10558 
10559     CastKind Kind;
10560     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
10561           == Compatible) {
10562       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
10563       InitField = it;
10564       break;
10565     }
10566   }
10567 
10568   if (!InitField)
10569     return Incompatible;
10570 
10571   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
10572   return Compatible;
10573 }
10574 
10575 Sema::AssignConvertType
10576 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
10577                                        bool Diagnose,
10578                                        bool DiagnoseCFAudited,
10579                                        bool ConvertRHS) {
10580   // We need to be able to tell the caller whether we diagnosed a problem, if
10581   // they ask us to issue diagnostics.
10582   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
10583 
10584   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10585   // we can't avoid *all* modifications at the moment, so we need some somewhere
10586   // to put the updated value.
10587   ExprResult LocalRHS = CallerRHS;
10588   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
10589 
10590   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
10591     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
10592       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
10593           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
10594         Diag(RHS.get()->getExprLoc(),
10595              diag::warn_noderef_to_dereferenceable_pointer)
10596             << RHS.get()->getSourceRange();
10597       }
10598     }
10599   }
10600 
10601   if (getLangOpts().CPlusPlus) {
10602     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
10603       // C++ 5.17p3: If the left operand is not of class type, the
10604       // expression is implicitly converted (C++ 4) to the
10605       // cv-unqualified type of the left operand.
10606       QualType RHSType = RHS.get()->getType();
10607       if (Diagnose) {
10608         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10609                                         AA_Assigning);
10610       } else {
10611         ImplicitConversionSequence ICS =
10612             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10613                                   /*SuppressUserConversions=*/false,
10614                                   AllowedExplicit::None,
10615                                   /*InOverloadResolution=*/false,
10616                                   /*CStyle=*/false,
10617                                   /*AllowObjCWritebackConversion=*/false);
10618         if (ICS.isFailure())
10619           return Incompatible;
10620         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10621                                         ICS, AA_Assigning);
10622       }
10623       if (RHS.isInvalid())
10624         return Incompatible;
10625       Sema::AssignConvertType result = Compatible;
10626       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10627           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
10628         result = IncompatibleObjCWeakRef;
10629       return result;
10630     }
10631 
10632     // FIXME: Currently, we fall through and treat C++ classes like C
10633     // structures.
10634     // FIXME: We also fall through for atomics; not sure what should
10635     // happen there, though.
10636   } else if (RHS.get()->getType() == Context.OverloadTy) {
10637     // As a set of extensions to C, we support overloading on functions. These
10638     // functions need to be resolved here.
10639     DeclAccessPair DAP;
10640     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
10641             RHS.get(), LHSType, /*Complain=*/false, DAP))
10642       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
10643     else
10644       return Incompatible;
10645   }
10646 
10647   // This check seems unnatural, however it is necessary to ensure the proper
10648   // conversion of functions/arrays. If the conversion were done for all
10649   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10650   // expressions that suppress this implicit conversion (&, sizeof). This needs
10651   // to happen before we check for null pointer conversions because C does not
10652   // undergo the same implicit conversions as C++ does above (by the calls to
10653   // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10654   // lvalue to rvalue cast before checking for null pointer constraints. This
10655   // addresses code like: nullptr_t val; int *ptr; ptr = val;
10656   //
10657   // Suppress this for references: C++ 8.5.3p5.
10658   if (!LHSType->isReferenceType()) {
10659     // FIXME: We potentially allocate here even if ConvertRHS is false.
10660     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10661     if (RHS.isInvalid())
10662       return Incompatible;
10663   }
10664 
10665   // The constraints are expressed in terms of the atomic, qualified, or
10666   // unqualified type of the LHS.
10667   QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
10668 
10669   // C99 6.5.16.1p1: the left operand is a pointer and the right is
10670   // a null pointer constant <C23>or its type is nullptr_t;</C23>.
10671   if ((LHSTypeAfterConversion->isPointerType() ||
10672        LHSTypeAfterConversion->isObjCObjectPointerType() ||
10673        LHSTypeAfterConversion->isBlockPointerType()) &&
10674       ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
10675        RHS.get()->isNullPointerConstant(Context,
10676                                         Expr::NPC_ValueDependentIsNull))) {
10677     if (Diagnose || ConvertRHS) {
10678       CastKind Kind;
10679       CXXCastPath Path;
10680       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
10681                              /*IgnoreBaseAccess=*/false, Diagnose);
10682       if (ConvertRHS)
10683         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10684     }
10685     return Compatible;
10686   }
10687   // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
10688   // unqualified bool, and the right operand is a pointer or its type is
10689   // nullptr_t.
10690   if (getLangOpts().C23 && LHSType->isBooleanType() &&
10691       RHS.get()->getType()->isNullPtrType()) {
10692     // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
10693     // only handles nullptr -> _Bool due to needing an extra conversion
10694     // step.
10695     // We model this by converting from nullptr -> void * and then let the
10696     // conversion from void * -> _Bool happen naturally.
10697     if (Diagnose || ConvertRHS) {
10698       CastKind Kind;
10699       CXXCastPath Path;
10700       CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
10701                              /*IgnoreBaseAccess=*/false, Diagnose);
10702       if (ConvertRHS)
10703         RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
10704                                 &Path);
10705     }
10706   }
10707 
10708   // OpenCL queue_t type assignment.
10709   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10710                                  Context, Expr::NPC_ValueDependentIsNull)) {
10711     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10712     return Compatible;
10713   }
10714 
10715   CastKind Kind;
10716   Sema::AssignConvertType result =
10717     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10718 
10719   // C99 6.5.16.1p2: The value of the right operand is converted to the
10720   // type of the assignment expression.
10721   // CheckAssignmentConstraints allows the left-hand side to be a reference,
10722   // so that we can use references in built-in functions even in C.
10723   // The getNonReferenceType() call makes sure that the resulting expression
10724   // does not have reference type.
10725   if (result != Incompatible && RHS.get()->getType() != LHSType) {
10726     QualType Ty = LHSType.getNonLValueExprType(Context);
10727     Expr *E = RHS.get();
10728 
10729     // Check for various Objective-C errors. If we are not reporting
10730     // diagnostics and just checking for errors, e.g., during overload
10731     // resolution, return Incompatible to indicate the failure.
10732     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10733         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10734                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
10735       if (!Diagnose)
10736         return Incompatible;
10737     }
10738     if (getLangOpts().ObjC &&
10739         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10740                                            E->getType(), E, Diagnose) ||
10741          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10742       if (!Diagnose)
10743         return Incompatible;
10744       // Replace the expression with a corrected version and continue so we
10745       // can find further errors.
10746       RHS = E;
10747       return Compatible;
10748     }
10749 
10750     if (ConvertRHS)
10751       RHS = ImpCastExprToType(E, Ty, Kind);
10752   }
10753 
10754   return result;
10755 }
10756 
10757 namespace {
10758 /// The original operand to an operator, prior to the application of the usual
10759 /// arithmetic conversions and converting the arguments of a builtin operator
10760 /// candidate.
10761 struct OriginalOperand {
10762   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10763     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10764       Op = MTE->getSubExpr();
10765     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10766       Op = BTE->getSubExpr();
10767     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10768       Orig = ICE->getSubExprAsWritten();
10769       Conversion = ICE->getConversionFunction();
10770     }
10771   }
10772 
10773   QualType getType() const { return Orig->getType(); }
10774 
10775   Expr *Orig;
10776   NamedDecl *Conversion;
10777 };
10778 }
10779 
10780 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10781                                ExprResult &RHS) {
10782   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10783 
10784   Diag(Loc, diag::err_typecheck_invalid_operands)
10785     << OrigLHS.getType() << OrigRHS.getType()
10786     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10787 
10788   // If a user-defined conversion was applied to either of the operands prior
10789   // to applying the built-in operator rules, tell the user about it.
10790   if (OrigLHS.Conversion) {
10791     Diag(OrigLHS.Conversion->getLocation(),
10792          diag::note_typecheck_invalid_operands_converted)
10793       << 0 << LHS.get()->getType();
10794   }
10795   if (OrigRHS.Conversion) {
10796     Diag(OrigRHS.Conversion->getLocation(),
10797          diag::note_typecheck_invalid_operands_converted)
10798       << 1 << RHS.get()->getType();
10799   }
10800 
10801   return QualType();
10802 }
10803 
10804 // Diagnose cases where a scalar was implicitly converted to a vector and
10805 // diagnose the underlying types. Otherwise, diagnose the error
10806 // as invalid vector logical operands for non-C++ cases.
10807 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10808                                             ExprResult &RHS) {
10809   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10810   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10811 
10812   bool LHSNatVec = LHSType->isVectorType();
10813   bool RHSNatVec = RHSType->isVectorType();
10814 
10815   if (!(LHSNatVec && RHSNatVec)) {
10816     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10817     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10818     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10819         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10820         << Vector->getSourceRange();
10821     return QualType();
10822   }
10823 
10824   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10825       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10826       << RHS.get()->getSourceRange();
10827 
10828   return QualType();
10829 }
10830 
10831 /// Try to convert a value of non-vector type to a vector type by converting
10832 /// the type to the element type of the vector and then performing a splat.
10833 /// If the language is OpenCL, we only use conversions that promote scalar
10834 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10835 /// for float->int.
10836 ///
10837 /// OpenCL V2.0 6.2.6.p2:
10838 /// An error shall occur if any scalar operand type has greater rank
10839 /// than the type of the vector element.
10840 ///
10841 /// \param scalar - if non-null, actually perform the conversions
10842 /// \return true if the operation fails (but without diagnosing the failure)
10843 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10844                                      QualType scalarTy,
10845                                      QualType vectorEltTy,
10846                                      QualType vectorTy,
10847                                      unsigned &DiagID) {
10848   // The conversion to apply to the scalar before splatting it,
10849   // if necessary.
10850   CastKind scalarCast = CK_NoOp;
10851 
10852   if (vectorEltTy->isIntegralType(S.Context)) {
10853     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10854         (scalarTy->isIntegerType() &&
10855          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10856       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10857       return true;
10858     }
10859     if (!scalarTy->isIntegralType(S.Context))
10860       return true;
10861     scalarCast = CK_IntegralCast;
10862   } else if (vectorEltTy->isRealFloatingType()) {
10863     if (scalarTy->isRealFloatingType()) {
10864       if (S.getLangOpts().OpenCL &&
10865           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10866         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10867         return true;
10868       }
10869       scalarCast = CK_FloatingCast;
10870     }
10871     else if (scalarTy->isIntegralType(S.Context))
10872       scalarCast = CK_IntegralToFloating;
10873     else
10874       return true;
10875   } else {
10876     return true;
10877   }
10878 
10879   // Adjust scalar if desired.
10880   if (scalar) {
10881     if (scalarCast != CK_NoOp)
10882       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10883     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10884   }
10885   return false;
10886 }
10887 
10888 /// Convert vector E to a vector with the same number of elements but different
10889 /// element type.
10890 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10891   const auto *VecTy = E->getType()->getAs<VectorType>();
10892   assert(VecTy && "Expression E must be a vector");
10893   QualType NewVecTy =
10894       VecTy->isExtVectorType()
10895           ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10896           : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10897                                     VecTy->getVectorKind());
10898 
10899   // Look through the implicit cast. Return the subexpression if its type is
10900   // NewVecTy.
10901   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10902     if (ICE->getSubExpr()->getType() == NewVecTy)
10903       return ICE->getSubExpr();
10904 
10905   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10906   return S.ImpCastExprToType(E, NewVecTy, Cast);
10907 }
10908 
10909 /// Test if a (constant) integer Int can be casted to another integer type
10910 /// IntTy without losing precision.
10911 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10912                                       QualType OtherIntTy) {
10913   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10914 
10915   // Reject cases where the value of the Int is unknown as that would
10916   // possibly cause truncation, but accept cases where the scalar can be
10917   // demoted without loss of precision.
10918   Expr::EvalResult EVResult;
10919   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10920   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10921   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10922   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10923 
10924   if (CstInt) {
10925     // If the scalar is constant and is of a higher order and has more active
10926     // bits that the vector element type, reject it.
10927     llvm::APSInt Result = EVResult.Val.getInt();
10928     unsigned NumBits = IntSigned
10929                            ? (Result.isNegative() ? Result.getSignificantBits()
10930                                                   : Result.getActiveBits())
10931                            : Result.getActiveBits();
10932     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10933       return true;
10934 
10935     // If the signedness of the scalar type and the vector element type
10936     // differs and the number of bits is greater than that of the vector
10937     // element reject it.
10938     return (IntSigned != OtherIntSigned &&
10939             NumBits > S.Context.getIntWidth(OtherIntTy));
10940   }
10941 
10942   // Reject cases where the value of the scalar is not constant and it's
10943   // order is greater than that of the vector element type.
10944   return (Order < 0);
10945 }
10946 
10947 /// Test if a (constant) integer Int can be casted to floating point type
10948 /// FloatTy without losing precision.
10949 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10950                                      QualType FloatTy) {
10951   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10952 
10953   // Determine if the integer constant can be expressed as a floating point
10954   // number of the appropriate type.
10955   Expr::EvalResult EVResult;
10956   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10957 
10958   uint64_t Bits = 0;
10959   if (CstInt) {
10960     // Reject constants that would be truncated if they were converted to
10961     // the floating point type. Test by simple to/from conversion.
10962     // FIXME: Ideally the conversion to an APFloat and from an APFloat
10963     //        could be avoided if there was a convertFromAPInt method
10964     //        which could signal back if implicit truncation occurred.
10965     llvm::APSInt Result = EVResult.Val.getInt();
10966     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10967     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10968                            llvm::APFloat::rmTowardZero);
10969     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10970                              !IntTy->hasSignedIntegerRepresentation());
10971     bool Ignored = false;
10972     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10973                            &Ignored);
10974     if (Result != ConvertBack)
10975       return true;
10976   } else {
10977     // Reject types that cannot be fully encoded into the mantissa of
10978     // the float.
10979     Bits = S.Context.getTypeSize(IntTy);
10980     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10981         S.Context.getFloatTypeSemantics(FloatTy));
10982     if (Bits > FloatPrec)
10983       return true;
10984   }
10985 
10986   return false;
10987 }
10988 
10989 /// Attempt to convert and splat Scalar into a vector whose types matches
10990 /// Vector following GCC conversion rules. The rule is that implicit
10991 /// conversion can occur when Scalar can be casted to match Vector's element
10992 /// type without causing truncation of Scalar.
10993 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10994                                         ExprResult *Vector) {
10995   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10996   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10997   QualType VectorEltTy;
10998 
10999   if (const auto *VT = VectorTy->getAs<VectorType>()) {
11000     assert(!isa<ExtVectorType>(VT) &&
11001            "ExtVectorTypes should not be handled here!");
11002     VectorEltTy = VT->getElementType();
11003   } else if (VectorTy->isSveVLSBuiltinType()) {
11004     VectorEltTy =
11005         VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
11006   } else {
11007     llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
11008   }
11009 
11010   // Reject cases where the vector element type or the scalar element type are
11011   // not integral or floating point types.
11012   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
11013     return true;
11014 
11015   // The conversion to apply to the scalar before splatting it,
11016   // if necessary.
11017   CastKind ScalarCast = CK_NoOp;
11018 
11019   // Accept cases where the vector elements are integers and the scalar is
11020   // an integer.
11021   // FIXME: Notionally if the scalar was a floating point value with a precise
11022   //        integral representation, we could cast it to an appropriate integer
11023   //        type and then perform the rest of the checks here. GCC will perform
11024   //        this conversion in some cases as determined by the input language.
11025   //        We should accept it on a language independent basis.
11026   if (VectorEltTy->isIntegralType(S.Context) &&
11027       ScalarTy->isIntegralType(S.Context) &&
11028       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
11029 
11030     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
11031       return true;
11032 
11033     ScalarCast = CK_IntegralCast;
11034   } else if (VectorEltTy->isIntegralType(S.Context) &&
11035              ScalarTy->isRealFloatingType()) {
11036     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
11037       ScalarCast = CK_FloatingToIntegral;
11038     else
11039       return true;
11040   } else if (VectorEltTy->isRealFloatingType()) {
11041     if (ScalarTy->isRealFloatingType()) {
11042 
11043       // Reject cases where the scalar type is not a constant and has a higher
11044       // Order than the vector element type.
11045       llvm::APFloat Result(0.0);
11046 
11047       // Determine whether this is a constant scalar. In the event that the
11048       // value is dependent (and thus cannot be evaluated by the constant
11049       // evaluator), skip the evaluation. This will then diagnose once the
11050       // expression is instantiated.
11051       bool CstScalar = Scalar->get()->isValueDependent() ||
11052                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
11053       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
11054       if (!CstScalar && Order < 0)
11055         return true;
11056 
11057       // If the scalar cannot be safely casted to the vector element type,
11058       // reject it.
11059       if (CstScalar) {
11060         bool Truncated = false;
11061         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
11062                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
11063         if (Truncated)
11064           return true;
11065       }
11066 
11067       ScalarCast = CK_FloatingCast;
11068     } else if (ScalarTy->isIntegralType(S.Context)) {
11069       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
11070         return true;
11071 
11072       ScalarCast = CK_IntegralToFloating;
11073     } else
11074       return true;
11075   } else if (ScalarTy->isEnumeralType())
11076     return true;
11077 
11078   // Adjust scalar if desired.
11079   if (ScalarCast != CK_NoOp)
11080     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
11081   *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
11082   return false;
11083 }
11084 
11085 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11086                                    SourceLocation Loc, bool IsCompAssign,
11087                                    bool AllowBothBool,
11088                                    bool AllowBoolConversions,
11089                                    bool AllowBoolOperation,
11090                                    bool ReportInvalid) {
11091   if (!IsCompAssign) {
11092     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11093     if (LHS.isInvalid())
11094       return QualType();
11095   }
11096   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11097   if (RHS.isInvalid())
11098     return QualType();
11099 
11100   // For conversion purposes, we ignore any qualifiers.
11101   // For example, "const float" and "float" are equivalent.
11102   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11103   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11104 
11105   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
11106   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
11107   assert(LHSVecType || RHSVecType);
11108 
11109   // AltiVec-style "vector bool op vector bool" combinations are allowed
11110   // for some operators but not others.
11111   if (!AllowBothBool && LHSVecType &&
11112       LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
11113       RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11114     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11115 
11116   // This operation may not be performed on boolean vectors.
11117   if (!AllowBoolOperation &&
11118       (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
11119     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11120 
11121   // If the vector types are identical, return.
11122   if (Context.hasSameType(LHSType, RHSType))
11123     return Context.getCommonSugaredType(LHSType, RHSType);
11124 
11125   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
11126   if (LHSVecType && RHSVecType &&
11127       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
11128     if (isa<ExtVectorType>(LHSVecType)) {
11129       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11130       return LHSType;
11131     }
11132 
11133     if (!IsCompAssign)
11134       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11135     return RHSType;
11136   }
11137 
11138   // AllowBoolConversions says that bool and non-bool AltiVec vectors
11139   // can be mixed, with the result being the non-bool type.  The non-bool
11140   // operand must have integer element type.
11141   if (AllowBoolConversions && LHSVecType && RHSVecType &&
11142       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
11143       (Context.getTypeSize(LHSVecType->getElementType()) ==
11144        Context.getTypeSize(RHSVecType->getElementType()))) {
11145     if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11146         LHSVecType->getElementType()->isIntegerType() &&
11147         RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
11148       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11149       return LHSType;
11150     }
11151     if (!IsCompAssign &&
11152         LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
11153         RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11154         RHSVecType->getElementType()->isIntegerType()) {
11155       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11156       return RHSType;
11157     }
11158   }
11159 
11160   // Expressions containing fixed-length and sizeless SVE/RVV vectors are
11161   // invalid since the ambiguity can affect the ABI.
11162   auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
11163                                unsigned &SVEorRVV) {
11164     const VectorType *VecType = SecondType->getAs<VectorType>();
11165     SVEorRVV = 0;
11166     if (FirstType->isSizelessBuiltinType() && VecType) {
11167       if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11168           VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
11169         return true;
11170       if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData) {
11171         SVEorRVV = 1;
11172         return true;
11173       }
11174     }
11175 
11176     return false;
11177   };
11178 
11179   unsigned SVEorRVV;
11180   if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
11181       IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
11182     Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
11183         << SVEorRVV << LHSType << RHSType;
11184     return QualType();
11185   }
11186 
11187   // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
11188   // invalid since the ambiguity can affect the ABI.
11189   auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
11190                                   unsigned &SVEorRVV) {
11191     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
11192     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
11193 
11194     SVEorRVV = 0;
11195     if (FirstVecType && SecondVecType) {
11196       if (FirstVecType->getVectorKind() == VectorKind::Generic) {
11197         if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11198             SecondVecType->getVectorKind() ==
11199                 VectorKind::SveFixedLengthPredicate)
11200           return true;
11201         if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData) {
11202           SVEorRVV = 1;
11203           return true;
11204         }
11205       }
11206       return false;
11207     }
11208 
11209     if (SecondVecType &&
11210         SecondVecType->getVectorKind() == VectorKind::Generic) {
11211       if (FirstType->isSVESizelessBuiltinType())
11212         return true;
11213       if (FirstType->isRVVSizelessBuiltinType()) {
11214         SVEorRVV = 1;
11215         return true;
11216       }
11217     }
11218 
11219     return false;
11220   };
11221 
11222   if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
11223       IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
11224     Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
11225         << SVEorRVV << LHSType << RHSType;
11226     return QualType();
11227   }
11228 
11229   // If there's a vector type and a scalar, try to convert the scalar to
11230   // the vector element type and splat.
11231   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
11232   if (!RHSVecType) {
11233     if (isa<ExtVectorType>(LHSVecType)) {
11234       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
11235                                     LHSVecType->getElementType(), LHSType,
11236                                     DiagID))
11237         return LHSType;
11238     } else {
11239       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11240         return LHSType;
11241     }
11242   }
11243   if (!LHSVecType) {
11244     if (isa<ExtVectorType>(RHSVecType)) {
11245       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
11246                                     LHSType, RHSVecType->getElementType(),
11247                                     RHSType, DiagID))
11248         return RHSType;
11249     } else {
11250       if (LHS.get()->isLValue() ||
11251           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11252         return RHSType;
11253     }
11254   }
11255 
11256   // FIXME: The code below also handles conversion between vectors and
11257   // non-scalars, we should break this down into fine grained specific checks
11258   // and emit proper diagnostics.
11259   QualType VecType = LHSVecType ? LHSType : RHSType;
11260   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
11261   QualType OtherType = LHSVecType ? RHSType : LHSType;
11262   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
11263   if (isLaxVectorConversion(OtherType, VecType)) {
11264     if (Context.getTargetInfo().getTriple().isPPC() &&
11265         anyAltivecTypes(RHSType, LHSType) &&
11266         !Context.areCompatibleVectorTypes(RHSType, LHSType))
11267       Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
11268     // If we're allowing lax vector conversions, only the total (data) size
11269     // needs to be the same. For non compound assignment, if one of the types is
11270     // scalar, the result is always the vector type.
11271     if (!IsCompAssign) {
11272       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
11273       return VecType;
11274     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
11275     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
11276     // type. Note that this is already done by non-compound assignments in
11277     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
11278     // <1 x T> -> T. The result is also a vector type.
11279     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
11280                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
11281       ExprResult *RHSExpr = &RHS;
11282       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
11283       return VecType;
11284     }
11285   }
11286 
11287   // Okay, the expression is invalid.
11288 
11289   // If there's a non-vector, non-real operand, diagnose that.
11290   if ((!RHSVecType && !RHSType->isRealType()) ||
11291       (!LHSVecType && !LHSType->isRealType())) {
11292     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11293       << LHSType << RHSType
11294       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11295     return QualType();
11296   }
11297 
11298   // OpenCL V1.1 6.2.6.p1:
11299   // If the operands are of more than one vector type, then an error shall
11300   // occur. Implicit conversions between vector types are not permitted, per
11301   // section 6.2.1.
11302   if (getLangOpts().OpenCL &&
11303       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
11304       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
11305     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
11306                                                            << RHSType;
11307     return QualType();
11308   }
11309 
11310 
11311   // If there is a vector type that is not a ExtVector and a scalar, we reach
11312   // this point if scalar could not be converted to the vector's element type
11313   // without truncation.
11314   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
11315       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
11316     QualType Scalar = LHSVecType ? RHSType : LHSType;
11317     QualType Vector = LHSVecType ? LHSType : RHSType;
11318     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
11319     Diag(Loc,
11320          diag::err_typecheck_vector_not_convertable_implict_truncation)
11321         << ScalarOrVector << Scalar << Vector;
11322 
11323     return QualType();
11324   }
11325 
11326   // Otherwise, use the generic diagnostic.
11327   Diag(Loc, DiagID)
11328     << LHSType << RHSType
11329     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11330   return QualType();
11331 }
11332 
11333 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
11334                                            SourceLocation Loc,
11335                                            bool IsCompAssign,
11336                                            ArithConvKind OperationKind) {
11337   if (!IsCompAssign) {
11338     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11339     if (LHS.isInvalid())
11340       return QualType();
11341   }
11342   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11343   if (RHS.isInvalid())
11344     return QualType();
11345 
11346   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11347   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11348 
11349   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11350   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11351 
11352   unsigned DiagID = diag::err_typecheck_invalid_operands;
11353   if ((OperationKind == ACK_Arithmetic) &&
11354       ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11355        (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
11356     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11357                       << RHS.get()->getSourceRange();
11358     return QualType();
11359   }
11360 
11361   if (Context.hasSameType(LHSType, RHSType))
11362     return LHSType;
11363 
11364   if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
11365     if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11366       return LHSType;
11367   }
11368   if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
11369     if (LHS.get()->isLValue() ||
11370         !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11371       return RHSType;
11372   }
11373 
11374   if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
11375       (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
11376     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11377         << LHSType << RHSType << LHS.get()->getSourceRange()
11378         << RHS.get()->getSourceRange();
11379     return QualType();
11380   }
11381 
11382   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11383       Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11384           Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
11385     Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11386         << LHSType << RHSType << LHS.get()->getSourceRange()
11387         << RHS.get()->getSourceRange();
11388     return QualType();
11389   }
11390 
11391   if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
11392     QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
11393     QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
11394     bool ScalarOrVector =
11395         LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
11396 
11397     Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
11398         << ScalarOrVector << Scalar << Vector;
11399 
11400     return QualType();
11401   }
11402 
11403   Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11404                     << RHS.get()->getSourceRange();
11405   return QualType();
11406 }
11407 
11408 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
11409 // expression.  These are mainly cases where the null pointer is used as an
11410 // integer instead of a pointer.
11411 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
11412                                 SourceLocation Loc, bool IsCompare) {
11413   // The canonical way to check for a GNU null is with isNullPointerConstant,
11414   // but we use a bit of a hack here for speed; this is a relatively
11415   // hot path, and isNullPointerConstant is slow.
11416   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
11417   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
11418 
11419   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
11420 
11421   // Avoid analyzing cases where the result will either be invalid (and
11422   // diagnosed as such) or entirely valid and not something to warn about.
11423   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
11424       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
11425     return;
11426 
11427   // Comparison operations would not make sense with a null pointer no matter
11428   // what the other expression is.
11429   if (!IsCompare) {
11430     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
11431         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
11432         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
11433     return;
11434   }
11435 
11436   // The rest of the operations only make sense with a null pointer
11437   // if the other expression is a pointer.
11438   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
11439       NonNullType->canDecayToPointerType())
11440     return;
11441 
11442   S.Diag(Loc, diag::warn_null_in_comparison_operation)
11443       << LHSNull /* LHS is NULL */ << NonNullType
11444       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11445 }
11446 
11447 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
11448                                           SourceLocation Loc) {
11449   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
11450   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
11451   if (!LUE || !RUE)
11452     return;
11453   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
11454       RUE->getKind() != UETT_SizeOf)
11455     return;
11456 
11457   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
11458   QualType LHSTy = LHSArg->getType();
11459   QualType RHSTy;
11460 
11461   if (RUE->isArgumentType())
11462     RHSTy = RUE->getArgumentType().getNonReferenceType();
11463   else
11464     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
11465 
11466   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
11467     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
11468       return;
11469 
11470     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
11471     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11472       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11473         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
11474             << LHSArgDecl;
11475     }
11476   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
11477     QualType ArrayElemTy = ArrayTy->getElementType();
11478     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
11479         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
11480         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
11481         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
11482       return;
11483     S.Diag(Loc, diag::warn_division_sizeof_array)
11484         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
11485     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11486       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11487         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
11488             << LHSArgDecl;
11489     }
11490 
11491     S.Diag(Loc, diag::note_precedence_silence) << RHS;
11492   }
11493 }
11494 
11495 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
11496                                                ExprResult &RHS,
11497                                                SourceLocation Loc, bool IsDiv) {
11498   // Check for division/remainder by zero.
11499   Expr::EvalResult RHSValue;
11500   if (!RHS.get()->isValueDependent() &&
11501       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
11502       RHSValue.Val.getInt() == 0)
11503     S.DiagRuntimeBehavior(Loc, RHS.get(),
11504                           S.PDiag(diag::warn_remainder_division_by_zero)
11505                             << IsDiv << RHS.get()->getSourceRange());
11506 }
11507 
11508 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
11509                                            SourceLocation Loc,
11510                                            bool IsCompAssign, bool IsDiv) {
11511   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11512 
11513   QualType LHSTy = LHS.get()->getType();
11514   QualType RHSTy = RHS.get()->getType();
11515   if (LHSTy->isVectorType() || RHSTy->isVectorType())
11516     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11517                                /*AllowBothBool*/ getLangOpts().AltiVec,
11518                                /*AllowBoolConversions*/ false,
11519                                /*AllowBooleanOperation*/ false,
11520                                /*ReportInvalid*/ true);
11521   if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
11522     return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11523                                        ACK_Arithmetic);
11524   if (!IsDiv &&
11525       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
11526     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
11527   // For division, only matrix-by-scalar is supported. Other combinations with
11528   // matrix types are invalid.
11529   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
11530     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
11531 
11532   QualType compType = UsualArithmeticConversions(
11533       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11534   if (LHS.isInvalid() || RHS.isInvalid())
11535     return QualType();
11536 
11537 
11538   if (compType.isNull() || !compType->isArithmeticType())
11539     return InvalidOperands(Loc, LHS, RHS);
11540   if (IsDiv) {
11541     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
11542     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
11543   }
11544   return compType;
11545 }
11546 
11547 QualType Sema::CheckRemainderOperands(
11548   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
11549   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11550 
11551   if (LHS.get()->getType()->isVectorType() ||
11552       RHS.get()->getType()->isVectorType()) {
11553     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11554         RHS.get()->getType()->hasIntegerRepresentation())
11555       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11556                                  /*AllowBothBool*/ getLangOpts().AltiVec,
11557                                  /*AllowBoolConversions*/ false,
11558                                  /*AllowBooleanOperation*/ false,
11559                                  /*ReportInvalid*/ true);
11560     return InvalidOperands(Loc, LHS, RHS);
11561   }
11562 
11563   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11564       RHS.get()->getType()->isSveVLSBuiltinType()) {
11565     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11566         RHS.get()->getType()->hasIntegerRepresentation())
11567       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11568                                          ACK_Arithmetic);
11569 
11570     return InvalidOperands(Loc, LHS, RHS);
11571   }
11572 
11573   QualType compType = UsualArithmeticConversions(
11574       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11575   if (LHS.isInvalid() || RHS.isInvalid())
11576     return QualType();
11577 
11578   if (compType.isNull() || !compType->isIntegerType())
11579     return InvalidOperands(Loc, LHS, RHS);
11580   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
11581   return compType;
11582 }
11583 
11584 /// Diagnose invalid arithmetic on two void pointers.
11585 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
11586                                                 Expr *LHSExpr, Expr *RHSExpr) {
11587   S.Diag(Loc, S.getLangOpts().CPlusPlus
11588                 ? diag::err_typecheck_pointer_arith_void_type
11589                 : diag::ext_gnu_void_ptr)
11590     << 1 /* two pointers */ << LHSExpr->getSourceRange()
11591                             << RHSExpr->getSourceRange();
11592 }
11593 
11594 /// Diagnose invalid arithmetic on a void pointer.
11595 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
11596                                             Expr *Pointer) {
11597   S.Diag(Loc, S.getLangOpts().CPlusPlus
11598                 ? diag::err_typecheck_pointer_arith_void_type
11599                 : diag::ext_gnu_void_ptr)
11600     << 0 /* one pointer */ << Pointer->getSourceRange();
11601 }
11602 
11603 /// Diagnose invalid arithmetic on a null pointer.
11604 ///
11605 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11606 /// idiom, which we recognize as a GNU extension.
11607 ///
11608 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11609                                             Expr *Pointer, bool IsGNUIdiom) {
11610   if (IsGNUIdiom)
11611     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11612       << Pointer->getSourceRange();
11613   else
11614     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11615       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11616 }
11617 
11618 /// Diagnose invalid subraction on a null pointer.
11619 ///
11620 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11621                                              Expr *Pointer, bool BothNull) {
11622   // Null - null is valid in C++ [expr.add]p7
11623   if (BothNull && S.getLangOpts().CPlusPlus)
11624     return;
11625 
11626   // Is this s a macro from a system header?
11627   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
11628     return;
11629 
11630   S.DiagRuntimeBehavior(Loc, Pointer,
11631                         S.PDiag(diag::warn_pointer_sub_null_ptr)
11632                             << S.getLangOpts().CPlusPlus
11633                             << Pointer->getSourceRange());
11634 }
11635 
11636 /// Diagnose invalid arithmetic on two function pointers.
11637 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11638                                                     Expr *LHS, Expr *RHS) {
11639   assert(LHS->getType()->isAnyPointerType());
11640   assert(RHS->getType()->isAnyPointerType());
11641   S.Diag(Loc, S.getLangOpts().CPlusPlus
11642                 ? diag::err_typecheck_pointer_arith_function_type
11643                 : diag::ext_gnu_ptr_func_arith)
11644     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11645     // We only show the second type if it differs from the first.
11646     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11647                                                    RHS->getType())
11648     << RHS->getType()->getPointeeType()
11649     << LHS->getSourceRange() << RHS->getSourceRange();
11650 }
11651 
11652 /// Diagnose invalid arithmetic on a function pointer.
11653 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11654                                                 Expr *Pointer) {
11655   assert(Pointer->getType()->isAnyPointerType());
11656   S.Diag(Loc, S.getLangOpts().CPlusPlus
11657                 ? diag::err_typecheck_pointer_arith_function_type
11658                 : diag::ext_gnu_ptr_func_arith)
11659     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11660     << 0 /* one pointer, so only one type */
11661     << Pointer->getSourceRange();
11662 }
11663 
11664 /// Emit error if Operand is incomplete pointer type
11665 ///
11666 /// \returns True if pointer has incomplete type
11667 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11668                                                  Expr *Operand) {
11669   QualType ResType = Operand->getType();
11670   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11671     ResType = ResAtomicType->getValueType();
11672 
11673   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
11674   QualType PointeeTy = ResType->getPointeeType();
11675   return S.RequireCompleteSizedType(
11676       Loc, PointeeTy,
11677       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11678       Operand->getSourceRange());
11679 }
11680 
11681 /// Check the validity of an arithmetic pointer operand.
11682 ///
11683 /// If the operand has pointer type, this code will check for pointer types
11684 /// which are invalid in arithmetic operations. These will be diagnosed
11685 /// appropriately, including whether or not the use is supported as an
11686 /// extension.
11687 ///
11688 /// \returns True when the operand is valid to use (even if as an extension).
11689 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11690                                             Expr *Operand) {
11691   QualType ResType = Operand->getType();
11692   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11693     ResType = ResAtomicType->getValueType();
11694 
11695   if (!ResType->isAnyPointerType()) return true;
11696 
11697   QualType PointeeTy = ResType->getPointeeType();
11698   if (PointeeTy->isVoidType()) {
11699     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
11700     return !S.getLangOpts().CPlusPlus;
11701   }
11702   if (PointeeTy->isFunctionType()) {
11703     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
11704     return !S.getLangOpts().CPlusPlus;
11705   }
11706 
11707   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11708 
11709   return true;
11710 }
11711 
11712 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11713 /// operands.
11714 ///
11715 /// This routine will diagnose any invalid arithmetic on pointer operands much
11716 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11717 /// for emitting a single diagnostic even for operations where both LHS and RHS
11718 /// are (potentially problematic) pointers.
11719 ///
11720 /// \returns True when the operand is valid to use (even if as an extension).
11721 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11722                                                 Expr *LHSExpr, Expr *RHSExpr) {
11723   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11724   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11725   if (!isLHSPointer && !isRHSPointer) return true;
11726 
11727   QualType LHSPointeeTy, RHSPointeeTy;
11728   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11729   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11730 
11731   // if both are pointers check if operation is valid wrt address spaces
11732   if (isLHSPointer && isRHSPointer) {
11733     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11734       S.Diag(Loc,
11735              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11736           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11737           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11738       return false;
11739     }
11740   }
11741 
11742   // Check for arithmetic on pointers to incomplete types.
11743   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11744   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11745   if (isLHSVoidPtr || isRHSVoidPtr) {
11746     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11747     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11748     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11749 
11750     return !S.getLangOpts().CPlusPlus;
11751   }
11752 
11753   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11754   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11755   if (isLHSFuncPtr || isRHSFuncPtr) {
11756     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11757     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11758                                                                 RHSExpr);
11759     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11760 
11761     return !S.getLangOpts().CPlusPlus;
11762   }
11763 
11764   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11765     return false;
11766   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11767     return false;
11768 
11769   return true;
11770 }
11771 
11772 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11773 /// literal.
11774 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11775                                   Expr *LHSExpr, Expr *RHSExpr) {
11776   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11777   Expr* IndexExpr = RHSExpr;
11778   if (!StrExpr) {
11779     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11780     IndexExpr = LHSExpr;
11781   }
11782 
11783   bool IsStringPlusInt = StrExpr &&
11784       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11785   if (!IsStringPlusInt || IndexExpr->isValueDependent())
11786     return;
11787 
11788   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11789   Self.Diag(OpLoc, diag::warn_string_plus_int)
11790       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11791 
11792   // Only print a fixit for "str" + int, not for int + "str".
11793   if (IndexExpr == RHSExpr) {
11794     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11795     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11796         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11797         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11798         << FixItHint::CreateInsertion(EndLoc, "]");
11799   } else
11800     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11801 }
11802 
11803 /// Emit a warning when adding a char literal to a string.
11804 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11805                                    Expr *LHSExpr, Expr *RHSExpr) {
11806   const Expr *StringRefExpr = LHSExpr;
11807   const CharacterLiteral *CharExpr =
11808       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11809 
11810   if (!CharExpr) {
11811     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11812     StringRefExpr = RHSExpr;
11813   }
11814 
11815   if (!CharExpr || !StringRefExpr)
11816     return;
11817 
11818   const QualType StringType = StringRefExpr->getType();
11819 
11820   // Return if not a PointerType.
11821   if (!StringType->isAnyPointerType())
11822     return;
11823 
11824   // Return if not a CharacterType.
11825   if (!StringType->getPointeeType()->isAnyCharacterType())
11826     return;
11827 
11828   ASTContext &Ctx = Self.getASTContext();
11829   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11830 
11831   const QualType CharType = CharExpr->getType();
11832   if (!CharType->isAnyCharacterType() &&
11833       CharType->isIntegerType() &&
11834       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11835     Self.Diag(OpLoc, diag::warn_string_plus_char)
11836         << DiagRange << Ctx.CharTy;
11837   } else {
11838     Self.Diag(OpLoc, diag::warn_string_plus_char)
11839         << DiagRange << CharExpr->getType();
11840   }
11841 
11842   // Only print a fixit for str + char, not for char + str.
11843   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11844     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11845     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11846         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11847         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11848         << FixItHint::CreateInsertion(EndLoc, "]");
11849   } else {
11850     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11851   }
11852 }
11853 
11854 /// Emit error when two pointers are incompatible.
11855 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11856                                            Expr *LHSExpr, Expr *RHSExpr) {
11857   assert(LHSExpr->getType()->isAnyPointerType());
11858   assert(RHSExpr->getType()->isAnyPointerType());
11859   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11860     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11861     << RHSExpr->getSourceRange();
11862 }
11863 
11864 // C99 6.5.6
11865 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11866                                      SourceLocation Loc, BinaryOperatorKind Opc,
11867                                      QualType* CompLHSTy) {
11868   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11869 
11870   if (LHS.get()->getType()->isVectorType() ||
11871       RHS.get()->getType()->isVectorType()) {
11872     QualType compType =
11873         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11874                             /*AllowBothBool*/ getLangOpts().AltiVec,
11875                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11876                             /*AllowBooleanOperation*/ false,
11877                             /*ReportInvalid*/ true);
11878     if (CompLHSTy) *CompLHSTy = compType;
11879     return compType;
11880   }
11881 
11882   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11883       RHS.get()->getType()->isSveVLSBuiltinType()) {
11884     QualType compType =
11885         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11886     if (CompLHSTy)
11887       *CompLHSTy = compType;
11888     return compType;
11889   }
11890 
11891   if (LHS.get()->getType()->isConstantMatrixType() ||
11892       RHS.get()->getType()->isConstantMatrixType()) {
11893     QualType compType =
11894         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11895     if (CompLHSTy)
11896       *CompLHSTy = compType;
11897     return compType;
11898   }
11899 
11900   QualType compType = UsualArithmeticConversions(
11901       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11902   if (LHS.isInvalid() || RHS.isInvalid())
11903     return QualType();
11904 
11905   // Diagnose "string literal" '+' int and string '+' "char literal".
11906   if (Opc == BO_Add) {
11907     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11908     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11909   }
11910 
11911   // handle the common case first (both operands are arithmetic).
11912   if (!compType.isNull() && compType->isArithmeticType()) {
11913     if (CompLHSTy) *CompLHSTy = compType;
11914     return compType;
11915   }
11916 
11917   // Type-checking.  Ultimately the pointer's going to be in PExp;
11918   // note that we bias towards the LHS being the pointer.
11919   Expr *PExp = LHS.get(), *IExp = RHS.get();
11920 
11921   bool isObjCPointer;
11922   if (PExp->getType()->isPointerType()) {
11923     isObjCPointer = false;
11924   } else if (PExp->getType()->isObjCObjectPointerType()) {
11925     isObjCPointer = true;
11926   } else {
11927     std::swap(PExp, IExp);
11928     if (PExp->getType()->isPointerType()) {
11929       isObjCPointer = false;
11930     } else if (PExp->getType()->isObjCObjectPointerType()) {
11931       isObjCPointer = true;
11932     } else {
11933       return InvalidOperands(Loc, LHS, RHS);
11934     }
11935   }
11936   assert(PExp->getType()->isAnyPointerType());
11937 
11938   if (!IExp->getType()->isIntegerType())
11939     return InvalidOperands(Loc, LHS, RHS);
11940 
11941   // Adding to a null pointer results in undefined behavior.
11942   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11943           Context, Expr::NPC_ValueDependentIsNotNull)) {
11944     // In C++ adding zero to a null pointer is defined.
11945     Expr::EvalResult KnownVal;
11946     if (!getLangOpts().CPlusPlus ||
11947         (!IExp->isValueDependent() &&
11948          (!IExp->EvaluateAsInt(KnownVal, Context) ||
11949           KnownVal.Val.getInt() != 0))) {
11950       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11951       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11952           Context, BO_Add, PExp, IExp);
11953       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11954     }
11955   }
11956 
11957   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11958     return QualType();
11959 
11960   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11961     return QualType();
11962 
11963   // Check array bounds for pointer arithemtic
11964   CheckArrayAccess(PExp, IExp);
11965 
11966   if (CompLHSTy) {
11967     QualType LHSTy = Context.isPromotableBitField(LHS.get());
11968     if (LHSTy.isNull()) {
11969       LHSTy = LHS.get()->getType();
11970       if (Context.isPromotableIntegerType(LHSTy))
11971         LHSTy = Context.getPromotedIntegerType(LHSTy);
11972     }
11973     *CompLHSTy = LHSTy;
11974   }
11975 
11976   return PExp->getType();
11977 }
11978 
11979 // C99 6.5.6
11980 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11981                                         SourceLocation Loc,
11982                                         QualType* CompLHSTy) {
11983   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11984 
11985   if (LHS.get()->getType()->isVectorType() ||
11986       RHS.get()->getType()->isVectorType()) {
11987     QualType compType =
11988         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11989                             /*AllowBothBool*/ getLangOpts().AltiVec,
11990                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11991                             /*AllowBooleanOperation*/ false,
11992                             /*ReportInvalid*/ true);
11993     if (CompLHSTy) *CompLHSTy = compType;
11994     return compType;
11995   }
11996 
11997   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11998       RHS.get()->getType()->isSveVLSBuiltinType()) {
11999     QualType compType =
12000         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
12001     if (CompLHSTy)
12002       *CompLHSTy = compType;
12003     return compType;
12004   }
12005 
12006   if (LHS.get()->getType()->isConstantMatrixType() ||
12007       RHS.get()->getType()->isConstantMatrixType()) {
12008     QualType compType =
12009         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
12010     if (CompLHSTy)
12011       *CompLHSTy = compType;
12012     return compType;
12013   }
12014 
12015   QualType compType = UsualArithmeticConversions(
12016       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
12017   if (LHS.isInvalid() || RHS.isInvalid())
12018     return QualType();
12019 
12020   // Enforce type constraints: C99 6.5.6p3.
12021 
12022   // Handle the common case first (both operands are arithmetic).
12023   if (!compType.isNull() && compType->isArithmeticType()) {
12024     if (CompLHSTy) *CompLHSTy = compType;
12025     return compType;
12026   }
12027 
12028   // Either ptr - int   or   ptr - ptr.
12029   if (LHS.get()->getType()->isAnyPointerType()) {
12030     QualType lpointee = LHS.get()->getType()->getPointeeType();
12031 
12032     // Diagnose bad cases where we step over interface counts.
12033     if (LHS.get()->getType()->isObjCObjectPointerType() &&
12034         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
12035       return QualType();
12036 
12037     // The result type of a pointer-int computation is the pointer type.
12038     if (RHS.get()->getType()->isIntegerType()) {
12039       // Subtracting from a null pointer should produce a warning.
12040       // The last argument to the diagnose call says this doesn't match the
12041       // GNU int-to-pointer idiom.
12042       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
12043                                            Expr::NPC_ValueDependentIsNotNull)) {
12044         // In C++ adding zero to a null pointer is defined.
12045         Expr::EvalResult KnownVal;
12046         if (!getLangOpts().CPlusPlus ||
12047             (!RHS.get()->isValueDependent() &&
12048              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
12049               KnownVal.Val.getInt() != 0))) {
12050           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
12051         }
12052       }
12053 
12054       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
12055         return QualType();
12056 
12057       // Check array bounds for pointer arithemtic
12058       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
12059                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
12060 
12061       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12062       return LHS.get()->getType();
12063     }
12064 
12065     // Handle pointer-pointer subtractions.
12066     if (const PointerType *RHSPTy
12067           = RHS.get()->getType()->getAs<PointerType>()) {
12068       QualType rpointee = RHSPTy->getPointeeType();
12069 
12070       if (getLangOpts().CPlusPlus) {
12071         // Pointee types must be the same: C++ [expr.add]
12072         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
12073           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12074         }
12075       } else {
12076         // Pointee types must be compatible C99 6.5.6p3
12077         if (!Context.typesAreCompatible(
12078                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
12079                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
12080           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12081           return QualType();
12082         }
12083       }
12084 
12085       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
12086                                                LHS.get(), RHS.get()))
12087         return QualType();
12088 
12089       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12090           Context, Expr::NPC_ValueDependentIsNotNull);
12091       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12092           Context, Expr::NPC_ValueDependentIsNotNull);
12093 
12094       // Subtracting nullptr or from nullptr is suspect
12095       if (LHSIsNullPtr)
12096         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
12097       if (RHSIsNullPtr)
12098         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
12099 
12100       // The pointee type may have zero size.  As an extension, a structure or
12101       // union may have zero size or an array may have zero length.  In this
12102       // case subtraction does not make sense.
12103       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
12104         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
12105         if (ElementSize.isZero()) {
12106           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
12107             << rpointee.getUnqualifiedType()
12108             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12109         }
12110       }
12111 
12112       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12113       return Context.getPointerDiffType();
12114     }
12115   }
12116 
12117   return InvalidOperands(Loc, LHS, RHS);
12118 }
12119 
12120 static bool isScopedEnumerationType(QualType T) {
12121   if (const EnumType *ET = T->getAs<EnumType>())
12122     return ET->getDecl()->isScoped();
12123   return false;
12124 }
12125 
12126 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
12127                                    SourceLocation Loc, BinaryOperatorKind Opc,
12128                                    QualType LHSType) {
12129   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
12130   // so skip remaining warnings as we don't want to modify values within Sema.
12131   if (S.getLangOpts().OpenCL)
12132     return;
12133 
12134   // Check right/shifter operand
12135   Expr::EvalResult RHSResult;
12136   if (RHS.get()->isValueDependent() ||
12137       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
12138     return;
12139   llvm::APSInt Right = RHSResult.Val.getInt();
12140 
12141   if (Right.isNegative()) {
12142     S.DiagRuntimeBehavior(Loc, RHS.get(),
12143                           S.PDiag(diag::warn_shift_negative)
12144                             << RHS.get()->getSourceRange());
12145     return;
12146   }
12147 
12148   QualType LHSExprType = LHS.get()->getType();
12149   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
12150   if (LHSExprType->isBitIntType())
12151     LeftSize = S.Context.getIntWidth(LHSExprType);
12152   else if (LHSExprType->isFixedPointType()) {
12153     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
12154     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
12155   }
12156   if (Right.uge(LeftSize)) {
12157     S.DiagRuntimeBehavior(Loc, RHS.get(),
12158                           S.PDiag(diag::warn_shift_gt_typewidth)
12159                             << RHS.get()->getSourceRange());
12160     return;
12161   }
12162 
12163   // FIXME: We probably need to handle fixed point types specially here.
12164   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
12165     return;
12166 
12167   // When left shifting an ICE which is signed, we can check for overflow which
12168   // according to C++ standards prior to C++2a has undefined behavior
12169   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
12170   // more than the maximum value representable in the result type, so never
12171   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
12172   // expression is still probably a bug.)
12173   Expr::EvalResult LHSResult;
12174   if (LHS.get()->isValueDependent() ||
12175       LHSType->hasUnsignedIntegerRepresentation() ||
12176       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
12177     return;
12178   llvm::APSInt Left = LHSResult.Val.getInt();
12179 
12180   // Don't warn if signed overflow is defined, then all the rest of the
12181   // diagnostics will not be triggered because the behavior is defined.
12182   // Also don't warn in C++20 mode (and newer), as signed left shifts
12183   // always wrap and never overflow.
12184   if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
12185     return;
12186 
12187   // If LHS does not have a non-negative value then, the
12188   // behavior is undefined before C++2a. Warn about it.
12189   if (Left.isNegative()) {
12190     S.DiagRuntimeBehavior(Loc, LHS.get(),
12191                           S.PDiag(diag::warn_shift_lhs_negative)
12192                             << LHS.get()->getSourceRange());
12193     return;
12194   }
12195 
12196   llvm::APInt ResultBits =
12197       static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
12198   if (ResultBits.ule(LeftSize))
12199     return;
12200   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
12201   Result = Result.shl(Right);
12202 
12203   // Print the bit representation of the signed integer as an unsigned
12204   // hexadecimal number.
12205   SmallString<40> HexResult;
12206   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
12207 
12208   // If we are only missing a sign bit, this is less likely to result in actual
12209   // bugs -- if the result is cast back to an unsigned type, it will have the
12210   // expected value. Thus we place this behind a different warning that can be
12211   // turned off separately if needed.
12212   if (ResultBits - 1 == LeftSize) {
12213     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
12214         << HexResult << LHSType
12215         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12216     return;
12217   }
12218 
12219   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
12220       << HexResult.str() << Result.getSignificantBits() << LHSType
12221       << Left.getBitWidth() << LHS.get()->getSourceRange()
12222       << RHS.get()->getSourceRange();
12223 }
12224 
12225 /// Return the resulting type when a vector is shifted
12226 ///        by a scalar or vector shift amount.
12227 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
12228                                  SourceLocation Loc, bool IsCompAssign) {
12229   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
12230   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
12231       !LHS.get()->getType()->isVectorType()) {
12232     S.Diag(Loc, diag::err_shift_rhs_only_vector)
12233       << RHS.get()->getType() << LHS.get()->getType()
12234       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12235     return QualType();
12236   }
12237 
12238   if (!IsCompAssign) {
12239     LHS = S.UsualUnaryConversions(LHS.get());
12240     if (LHS.isInvalid()) return QualType();
12241   }
12242 
12243   RHS = S.UsualUnaryConversions(RHS.get());
12244   if (RHS.isInvalid()) return QualType();
12245 
12246   QualType LHSType = LHS.get()->getType();
12247   // Note that LHS might be a scalar because the routine calls not only in
12248   // OpenCL case.
12249   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
12250   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
12251 
12252   // Note that RHS might not be a vector.
12253   QualType RHSType = RHS.get()->getType();
12254   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
12255   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
12256 
12257   // Do not allow shifts for boolean vectors.
12258   if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
12259       (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
12260     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12261         << LHS.get()->getType() << RHS.get()->getType()
12262         << LHS.get()->getSourceRange();
12263     return QualType();
12264   }
12265 
12266   // The operands need to be integers.
12267   if (!LHSEleType->isIntegerType()) {
12268     S.Diag(Loc, diag::err_typecheck_expect_int)
12269       << LHS.get()->getType() << LHS.get()->getSourceRange();
12270     return QualType();
12271   }
12272 
12273   if (!RHSEleType->isIntegerType()) {
12274     S.Diag(Loc, diag::err_typecheck_expect_int)
12275       << RHS.get()->getType() << RHS.get()->getSourceRange();
12276     return QualType();
12277   }
12278 
12279   if (!LHSVecTy) {
12280     assert(RHSVecTy);
12281     if (IsCompAssign)
12282       return RHSType;
12283     if (LHSEleType != RHSEleType) {
12284       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
12285       LHSEleType = RHSEleType;
12286     }
12287     QualType VecTy =
12288         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
12289     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
12290     LHSType = VecTy;
12291   } else if (RHSVecTy) {
12292     // OpenCL v1.1 s6.3.j says that for vector types, the operators
12293     // are applied component-wise. So if RHS is a vector, then ensure
12294     // that the number of elements is the same as LHS...
12295     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
12296       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12297         << LHS.get()->getType() << RHS.get()->getType()
12298         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12299       return QualType();
12300     }
12301     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
12302       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
12303       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
12304       if (LHSBT != RHSBT &&
12305           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
12306         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
12307             << LHS.get()->getType() << RHS.get()->getType()
12308             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12309       }
12310     }
12311   } else {
12312     // ...else expand RHS to match the number of elements in LHS.
12313     QualType VecTy =
12314       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
12315     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12316   }
12317 
12318   return LHSType;
12319 }
12320 
12321 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
12322                                          ExprResult &RHS, SourceLocation Loc,
12323                                          bool IsCompAssign) {
12324   if (!IsCompAssign) {
12325     LHS = S.UsualUnaryConversions(LHS.get());
12326     if (LHS.isInvalid())
12327       return QualType();
12328   }
12329 
12330   RHS = S.UsualUnaryConversions(RHS.get());
12331   if (RHS.isInvalid())
12332     return QualType();
12333 
12334   QualType LHSType = LHS.get()->getType();
12335   const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
12336   QualType LHSEleType = LHSType->isSveVLSBuiltinType()
12337                             ? LHSBuiltinTy->getSveEltType(S.getASTContext())
12338                             : LHSType;
12339 
12340   // Note that RHS might not be a vector
12341   QualType RHSType = RHS.get()->getType();
12342   const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
12343   QualType RHSEleType = RHSType->isSveVLSBuiltinType()
12344                             ? RHSBuiltinTy->getSveEltType(S.getASTContext())
12345                             : RHSType;
12346 
12347   if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
12348       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
12349     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12350         << LHSType << RHSType << LHS.get()->getSourceRange();
12351     return QualType();
12352   }
12353 
12354   if (!LHSEleType->isIntegerType()) {
12355     S.Diag(Loc, diag::err_typecheck_expect_int)
12356         << LHS.get()->getType() << LHS.get()->getSourceRange();
12357     return QualType();
12358   }
12359 
12360   if (!RHSEleType->isIntegerType()) {
12361     S.Diag(Loc, diag::err_typecheck_expect_int)
12362         << RHS.get()->getType() << RHS.get()->getSourceRange();
12363     return QualType();
12364   }
12365 
12366   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
12367       (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
12368        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
12369     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12370         << LHSType << RHSType << LHS.get()->getSourceRange()
12371         << RHS.get()->getSourceRange();
12372     return QualType();
12373   }
12374 
12375   if (!LHSType->isSveVLSBuiltinType()) {
12376     assert(RHSType->isSveVLSBuiltinType());
12377     if (IsCompAssign)
12378       return RHSType;
12379     if (LHSEleType != RHSEleType) {
12380       LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
12381       LHSEleType = RHSEleType;
12382     }
12383     const llvm::ElementCount VecSize =
12384         S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
12385     QualType VecTy =
12386         S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
12387     LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
12388     LHSType = VecTy;
12389   } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
12390     if (S.Context.getTypeSize(RHSBuiltinTy) !=
12391         S.Context.getTypeSize(LHSBuiltinTy)) {
12392       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12393           << LHSType << RHSType << LHS.get()->getSourceRange()
12394           << RHS.get()->getSourceRange();
12395       return QualType();
12396     }
12397   } else {
12398     const llvm::ElementCount VecSize =
12399         S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
12400     if (LHSEleType != RHSEleType) {
12401       RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
12402       RHSEleType = LHSEleType;
12403     }
12404     QualType VecTy =
12405         S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
12406     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12407   }
12408 
12409   return LHSType;
12410 }
12411 
12412 // C99 6.5.7
12413 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
12414                                   SourceLocation Loc, BinaryOperatorKind Opc,
12415                                   bool IsCompAssign) {
12416   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12417 
12418   // Vector shifts promote their scalar inputs to vector type.
12419   if (LHS.get()->getType()->isVectorType() ||
12420       RHS.get()->getType()->isVectorType()) {
12421     if (LangOpts.ZVector) {
12422       // The shift operators for the z vector extensions work basically
12423       // like general shifts, except that neither the LHS nor the RHS is
12424       // allowed to be a "vector bool".
12425       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
12426         if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12427           return InvalidOperands(Loc, LHS, RHS);
12428       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
12429         if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12430           return InvalidOperands(Loc, LHS, RHS);
12431     }
12432     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12433   }
12434 
12435   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12436       RHS.get()->getType()->isSveVLSBuiltinType())
12437     return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12438 
12439   // Shifts don't perform usual arithmetic conversions, they just do integer
12440   // promotions on each operand. C99 6.5.7p3
12441 
12442   // For the LHS, do usual unary conversions, but then reset them away
12443   // if this is a compound assignment.
12444   ExprResult OldLHS = LHS;
12445   LHS = UsualUnaryConversions(LHS.get());
12446   if (LHS.isInvalid())
12447     return QualType();
12448   QualType LHSType = LHS.get()->getType();
12449   if (IsCompAssign) LHS = OldLHS;
12450 
12451   // The RHS is simpler.
12452   RHS = UsualUnaryConversions(RHS.get());
12453   if (RHS.isInvalid())
12454     return QualType();
12455   QualType RHSType = RHS.get()->getType();
12456 
12457   // C99 6.5.7p2: Each of the operands shall have integer type.
12458   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12459   if ((!LHSType->isFixedPointOrIntegerType() &&
12460        !LHSType->hasIntegerRepresentation()) ||
12461       !RHSType->hasIntegerRepresentation())
12462     return InvalidOperands(Loc, LHS, RHS);
12463 
12464   // C++0x: Don't allow scoped enums. FIXME: Use something better than
12465   // hasIntegerRepresentation() above instead of this.
12466   if (isScopedEnumerationType(LHSType) ||
12467       isScopedEnumerationType(RHSType)) {
12468     return InvalidOperands(Loc, LHS, RHS);
12469   }
12470   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
12471 
12472   // "The type of the result is that of the promoted left operand."
12473   return LHSType;
12474 }
12475 
12476 /// Diagnose bad pointer comparisons.
12477 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
12478                                               ExprResult &LHS, ExprResult &RHS,
12479                                               bool IsError) {
12480   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
12481                       : diag::ext_typecheck_comparison_of_distinct_pointers)
12482     << LHS.get()->getType() << RHS.get()->getType()
12483     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12484 }
12485 
12486 /// Returns false if the pointers are converted to a composite type,
12487 /// true otherwise.
12488 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
12489                                            ExprResult &LHS, ExprResult &RHS) {
12490   // C++ [expr.rel]p2:
12491   //   [...] Pointer conversions (4.10) and qualification
12492   //   conversions (4.4) are performed on pointer operands (or on
12493   //   a pointer operand and a null pointer constant) to bring
12494   //   them to their composite pointer type. [...]
12495   //
12496   // C++ [expr.eq]p1 uses the same notion for (in)equality
12497   // comparisons of pointers.
12498 
12499   QualType LHSType = LHS.get()->getType();
12500   QualType RHSType = RHS.get()->getType();
12501   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
12502          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
12503 
12504   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
12505   if (T.isNull()) {
12506     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
12507         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
12508       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
12509     else
12510       S.InvalidOperands(Loc, LHS, RHS);
12511     return true;
12512   }
12513 
12514   return false;
12515 }
12516 
12517 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
12518                                                     ExprResult &LHS,
12519                                                     ExprResult &RHS,
12520                                                     bool IsError) {
12521   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
12522                       : diag::ext_typecheck_comparison_of_fptr_to_void)
12523     << LHS.get()->getType() << RHS.get()->getType()
12524     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12525 }
12526 
12527 static bool isObjCObjectLiteral(ExprResult &E) {
12528   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
12529   case Stmt::ObjCArrayLiteralClass:
12530   case Stmt::ObjCDictionaryLiteralClass:
12531   case Stmt::ObjCStringLiteralClass:
12532   case Stmt::ObjCBoxedExprClass:
12533     return true;
12534   default:
12535     // Note that ObjCBoolLiteral is NOT an object literal!
12536     return false;
12537   }
12538 }
12539 
12540 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
12541   const ObjCObjectPointerType *Type =
12542     LHS->getType()->getAs<ObjCObjectPointerType>();
12543 
12544   // If this is not actually an Objective-C object, bail out.
12545   if (!Type)
12546     return false;
12547 
12548   // Get the LHS object's interface type.
12549   QualType InterfaceType = Type->getPointeeType();
12550 
12551   // If the RHS isn't an Objective-C object, bail out.
12552   if (!RHS->getType()->isObjCObjectPointerType())
12553     return false;
12554 
12555   // Try to find the -isEqual: method.
12556   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
12557   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
12558                                                       InterfaceType,
12559                                                       /*IsInstance=*/true);
12560   if (!Method) {
12561     if (Type->isObjCIdType()) {
12562       // For 'id', just check the global pool.
12563       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
12564                                                   /*receiverId=*/true);
12565     } else {
12566       // Check protocols.
12567       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
12568                                              /*IsInstance=*/true);
12569     }
12570   }
12571 
12572   if (!Method)
12573     return false;
12574 
12575   QualType T = Method->parameters()[0]->getType();
12576   if (!T->isObjCObjectPointerType())
12577     return false;
12578 
12579   QualType R = Method->getReturnType();
12580   if (!R->isScalarType())
12581     return false;
12582 
12583   return true;
12584 }
12585 
12586 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
12587   FromE = FromE->IgnoreParenImpCasts();
12588   switch (FromE->getStmtClass()) {
12589     default:
12590       break;
12591     case Stmt::ObjCStringLiteralClass:
12592       // "string literal"
12593       return LK_String;
12594     case Stmt::ObjCArrayLiteralClass:
12595       // "array literal"
12596       return LK_Array;
12597     case Stmt::ObjCDictionaryLiteralClass:
12598       // "dictionary literal"
12599       return LK_Dictionary;
12600     case Stmt::BlockExprClass:
12601       return LK_Block;
12602     case Stmt::ObjCBoxedExprClass: {
12603       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
12604       switch (Inner->getStmtClass()) {
12605         case Stmt::IntegerLiteralClass:
12606         case Stmt::FloatingLiteralClass:
12607         case Stmt::CharacterLiteralClass:
12608         case Stmt::ObjCBoolLiteralExprClass:
12609         case Stmt::CXXBoolLiteralExprClass:
12610           // "numeric literal"
12611           return LK_Numeric;
12612         case Stmt::ImplicitCastExprClass: {
12613           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
12614           // Boolean literals can be represented by implicit casts.
12615           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
12616             return LK_Numeric;
12617           break;
12618         }
12619         default:
12620           break;
12621       }
12622       return LK_Boxed;
12623     }
12624   }
12625   return LK_None;
12626 }
12627 
12628 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12629                                           ExprResult &LHS, ExprResult &RHS,
12630                                           BinaryOperator::Opcode Opc){
12631   Expr *Literal;
12632   Expr *Other;
12633   if (isObjCObjectLiteral(LHS)) {
12634     Literal = LHS.get();
12635     Other = RHS.get();
12636   } else {
12637     Literal = RHS.get();
12638     Other = LHS.get();
12639   }
12640 
12641   // Don't warn on comparisons against nil.
12642   Other = Other->IgnoreParenCasts();
12643   if (Other->isNullPointerConstant(S.getASTContext(),
12644                                    Expr::NPC_ValueDependentIsNotNull))
12645     return;
12646 
12647   // This should be kept in sync with warn_objc_literal_comparison.
12648   // LK_String should always be after the other literals, since it has its own
12649   // warning flag.
12650   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
12651   assert(LiteralKind != Sema::LK_Block);
12652   if (LiteralKind == Sema::LK_None) {
12653     llvm_unreachable("Unknown Objective-C object literal kind");
12654   }
12655 
12656   if (LiteralKind == Sema::LK_String)
12657     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12658       << Literal->getSourceRange();
12659   else
12660     S.Diag(Loc, diag::warn_objc_literal_comparison)
12661       << LiteralKind << Literal->getSourceRange();
12662 
12663   if (BinaryOperator::isEqualityOp(Opc) &&
12664       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
12665     SourceLocation Start = LHS.get()->getBeginLoc();
12666     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
12667     CharSourceRange OpRange =
12668       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12669 
12670     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12671       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12672       << FixItHint::CreateReplacement(OpRange, " isEqual:")
12673       << FixItHint::CreateInsertion(End, "]");
12674   }
12675 }
12676 
12677 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12678 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12679                                            ExprResult &RHS, SourceLocation Loc,
12680                                            BinaryOperatorKind Opc) {
12681   // Check that left hand side is !something.
12682   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
12683   if (!UO || UO->getOpcode() != UO_LNot) return;
12684 
12685   // Only check if the right hand side is non-bool arithmetic type.
12686   if (RHS.get()->isKnownToHaveBooleanValue()) return;
12687 
12688   // Make sure that the something in !something is not bool.
12689   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12690   if (SubExpr->isKnownToHaveBooleanValue()) return;
12691 
12692   // Emit warning.
12693   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12694   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12695       << Loc << IsBitwiseOp;
12696 
12697   // First note suggest !(x < y)
12698   SourceLocation FirstOpen = SubExpr->getBeginLoc();
12699   SourceLocation FirstClose = RHS.get()->getEndLoc();
12700   FirstClose = S.getLocForEndOfToken(FirstClose);
12701   if (FirstClose.isInvalid())
12702     FirstOpen = SourceLocation();
12703   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12704       << IsBitwiseOp
12705       << FixItHint::CreateInsertion(FirstOpen, "(")
12706       << FixItHint::CreateInsertion(FirstClose, ")");
12707 
12708   // Second note suggests (!x) < y
12709   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12710   SourceLocation SecondClose = LHS.get()->getEndLoc();
12711   SecondClose = S.getLocForEndOfToken(SecondClose);
12712   if (SecondClose.isInvalid())
12713     SecondOpen = SourceLocation();
12714   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12715       << FixItHint::CreateInsertion(SecondOpen, "(")
12716       << FixItHint::CreateInsertion(SecondClose, ")");
12717 }
12718 
12719 // Returns true if E refers to a non-weak array.
12720 static bool checkForArray(const Expr *E) {
12721   const ValueDecl *D = nullptr;
12722   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12723     D = DR->getDecl();
12724   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12725     if (Mem->isImplicitAccess())
12726       D = Mem->getMemberDecl();
12727   }
12728   if (!D)
12729     return false;
12730   return D->getType()->isArrayType() && !D->isWeak();
12731 }
12732 
12733 /// Diagnose some forms of syntactically-obvious tautological comparison.
12734 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12735                                            Expr *LHS, Expr *RHS,
12736                                            BinaryOperatorKind Opc) {
12737   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12738   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12739 
12740   QualType LHSType = LHS->getType();
12741   QualType RHSType = RHS->getType();
12742   if (LHSType->hasFloatingRepresentation() ||
12743       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12744       S.inTemplateInstantiation())
12745     return;
12746 
12747   // WebAssembly Tables cannot be compared, therefore shouldn't emit
12748   // Tautological diagnostics.
12749   if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
12750     return;
12751 
12752   // Comparisons between two array types are ill-formed for operator<=>, so
12753   // we shouldn't emit any additional warnings about it.
12754   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12755     return;
12756 
12757   // For non-floating point types, check for self-comparisons of the form
12758   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12759   // often indicate logic errors in the program.
12760   //
12761   // NOTE: Don't warn about comparison expressions resulting from macro
12762   // expansion. Also don't warn about comparisons which are only self
12763   // comparisons within a template instantiation. The warnings should catch
12764   // obvious cases in the definition of the template anyways. The idea is to
12765   // warn when the typed comparison operator will always evaluate to the same
12766   // result.
12767 
12768   // Used for indexing into %select in warn_comparison_always
12769   enum {
12770     AlwaysConstant,
12771     AlwaysTrue,
12772     AlwaysFalse,
12773     AlwaysEqual, // std::strong_ordering::equal from operator<=>
12774   };
12775 
12776   // C++2a [depr.array.comp]:
12777   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12778   //   operands of array type are deprecated.
12779   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12780       RHSStripped->getType()->isArrayType()) {
12781     S.Diag(Loc, diag::warn_depr_array_comparison)
12782         << LHS->getSourceRange() << RHS->getSourceRange()
12783         << LHSStripped->getType() << RHSStripped->getType();
12784     // Carry on to produce the tautological comparison warning, if this
12785     // expression is potentially-evaluated, we can resolve the array to a
12786     // non-weak declaration, and so on.
12787   }
12788 
12789   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12790     if (Expr::isSameComparisonOperand(LHS, RHS)) {
12791       unsigned Result;
12792       switch (Opc) {
12793       case BO_EQ:
12794       case BO_LE:
12795       case BO_GE:
12796         Result = AlwaysTrue;
12797         break;
12798       case BO_NE:
12799       case BO_LT:
12800       case BO_GT:
12801         Result = AlwaysFalse;
12802         break;
12803       case BO_Cmp:
12804         Result = AlwaysEqual;
12805         break;
12806       default:
12807         Result = AlwaysConstant;
12808         break;
12809       }
12810       S.DiagRuntimeBehavior(Loc, nullptr,
12811                             S.PDiag(diag::warn_comparison_always)
12812                                 << 0 /*self-comparison*/
12813                                 << Result);
12814     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12815       // What is it always going to evaluate to?
12816       unsigned Result;
12817       switch (Opc) {
12818       case BO_EQ: // e.g. array1 == array2
12819         Result = AlwaysFalse;
12820         break;
12821       case BO_NE: // e.g. array1 != array2
12822         Result = AlwaysTrue;
12823         break;
12824       default: // e.g. array1 <= array2
12825         // The best we can say is 'a constant'
12826         Result = AlwaysConstant;
12827         break;
12828       }
12829       S.DiagRuntimeBehavior(Loc, nullptr,
12830                             S.PDiag(diag::warn_comparison_always)
12831                                 << 1 /*array comparison*/
12832                                 << Result);
12833     }
12834   }
12835 
12836   if (isa<CastExpr>(LHSStripped))
12837     LHSStripped = LHSStripped->IgnoreParenCasts();
12838   if (isa<CastExpr>(RHSStripped))
12839     RHSStripped = RHSStripped->IgnoreParenCasts();
12840 
12841   // Warn about comparisons against a string constant (unless the other
12842   // operand is null); the user probably wants string comparison function.
12843   Expr *LiteralString = nullptr;
12844   Expr *LiteralStringStripped = nullptr;
12845   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12846       !RHSStripped->isNullPointerConstant(S.Context,
12847                                           Expr::NPC_ValueDependentIsNull)) {
12848     LiteralString = LHS;
12849     LiteralStringStripped = LHSStripped;
12850   } else if ((isa<StringLiteral>(RHSStripped) ||
12851               isa<ObjCEncodeExpr>(RHSStripped)) &&
12852              !LHSStripped->isNullPointerConstant(S.Context,
12853                                           Expr::NPC_ValueDependentIsNull)) {
12854     LiteralString = RHS;
12855     LiteralStringStripped = RHSStripped;
12856   }
12857 
12858   if (LiteralString) {
12859     S.DiagRuntimeBehavior(Loc, nullptr,
12860                           S.PDiag(diag::warn_stringcompare)
12861                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
12862                               << LiteralString->getSourceRange());
12863   }
12864 }
12865 
12866 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12867   switch (CK) {
12868   default: {
12869 #ifndef NDEBUG
12870     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12871                  << "\n";
12872 #endif
12873     llvm_unreachable("unhandled cast kind");
12874   }
12875   case CK_UserDefinedConversion:
12876     return ICK_Identity;
12877   case CK_LValueToRValue:
12878     return ICK_Lvalue_To_Rvalue;
12879   case CK_ArrayToPointerDecay:
12880     return ICK_Array_To_Pointer;
12881   case CK_FunctionToPointerDecay:
12882     return ICK_Function_To_Pointer;
12883   case CK_IntegralCast:
12884     return ICK_Integral_Conversion;
12885   case CK_FloatingCast:
12886     return ICK_Floating_Conversion;
12887   case CK_IntegralToFloating:
12888   case CK_FloatingToIntegral:
12889     return ICK_Floating_Integral;
12890   case CK_IntegralComplexCast:
12891   case CK_FloatingComplexCast:
12892   case CK_FloatingComplexToIntegralComplex:
12893   case CK_IntegralComplexToFloatingComplex:
12894     return ICK_Complex_Conversion;
12895   case CK_FloatingComplexToReal:
12896   case CK_FloatingRealToComplex:
12897   case CK_IntegralComplexToReal:
12898   case CK_IntegralRealToComplex:
12899     return ICK_Complex_Real;
12900   }
12901 }
12902 
12903 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12904                                              QualType FromType,
12905                                              SourceLocation Loc) {
12906   // Check for a narrowing implicit conversion.
12907   StandardConversionSequence SCS;
12908   SCS.setAsIdentityConversion();
12909   SCS.setToType(0, FromType);
12910   SCS.setToType(1, ToType);
12911   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12912     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12913 
12914   APValue PreNarrowingValue;
12915   QualType PreNarrowingType;
12916   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12917                                PreNarrowingType,
12918                                /*IgnoreFloatToIntegralConversion*/ true)) {
12919   case NK_Dependent_Narrowing:
12920     // Implicit conversion to a narrower type, but the expression is
12921     // value-dependent so we can't tell whether it's actually narrowing.
12922   case NK_Not_Narrowing:
12923     return false;
12924 
12925   case NK_Constant_Narrowing:
12926     // Implicit conversion to a narrower type, and the value is not a constant
12927     // expression.
12928     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12929         << /*Constant*/ 1
12930         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12931     return true;
12932 
12933   case NK_Variable_Narrowing:
12934     // Implicit conversion to a narrower type, and the value is not a constant
12935     // expression.
12936   case NK_Type_Narrowing:
12937     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12938         << /*Constant*/ 0 << FromType << ToType;
12939     // TODO: It's not a constant expression, but what if the user intended it
12940     // to be? Can we produce notes to help them figure out why it isn't?
12941     return true;
12942   }
12943   llvm_unreachable("unhandled case in switch");
12944 }
12945 
12946 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12947                                                          ExprResult &LHS,
12948                                                          ExprResult &RHS,
12949                                                          SourceLocation Loc) {
12950   QualType LHSType = LHS.get()->getType();
12951   QualType RHSType = RHS.get()->getType();
12952   // Dig out the original argument type and expression before implicit casts
12953   // were applied. These are the types/expressions we need to check the
12954   // [expr.spaceship] requirements against.
12955   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12956   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12957   QualType LHSStrippedType = LHSStripped.get()->getType();
12958   QualType RHSStrippedType = RHSStripped.get()->getType();
12959 
12960   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12961   // other is not, the program is ill-formed.
12962   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12963     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12964     return QualType();
12965   }
12966 
12967   // FIXME: Consider combining this with checkEnumArithmeticConversions.
12968   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12969                     RHSStrippedType->isEnumeralType();
12970   if (NumEnumArgs == 1) {
12971     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12972     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12973     if (OtherTy->hasFloatingRepresentation()) {
12974       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12975       return QualType();
12976     }
12977   }
12978   if (NumEnumArgs == 2) {
12979     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12980     // type E, the operator yields the result of converting the operands
12981     // to the underlying type of E and applying <=> to the converted operands.
12982     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12983       S.InvalidOperands(Loc, LHS, RHS);
12984       return QualType();
12985     }
12986     QualType IntType =
12987         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12988     assert(IntType->isArithmeticType());
12989 
12990     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12991     // promote the boolean type, and all other promotable integer types, to
12992     // avoid this.
12993     if (S.Context.isPromotableIntegerType(IntType))
12994       IntType = S.Context.getPromotedIntegerType(IntType);
12995 
12996     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12997     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12998     LHSType = RHSType = IntType;
12999   }
13000 
13001   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
13002   // usual arithmetic conversions are applied to the operands.
13003   QualType Type =
13004       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
13005   if (LHS.isInvalid() || RHS.isInvalid())
13006     return QualType();
13007   if (Type.isNull())
13008     return S.InvalidOperands(Loc, LHS, RHS);
13009 
13010   std::optional<ComparisonCategoryType> CCT =
13011       getComparisonCategoryForBuiltinCmp(Type);
13012   if (!CCT)
13013     return S.InvalidOperands(Loc, LHS, RHS);
13014 
13015   bool HasNarrowing = checkThreeWayNarrowingConversion(
13016       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
13017   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
13018                                                    RHS.get()->getBeginLoc());
13019   if (HasNarrowing)
13020     return QualType();
13021 
13022   assert(!Type.isNull() && "composite type for <=> has not been set");
13023 
13024   return S.CheckComparisonCategoryType(
13025       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
13026 }
13027 
13028 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
13029                                                  ExprResult &RHS,
13030                                                  SourceLocation Loc,
13031                                                  BinaryOperatorKind Opc) {
13032   if (Opc == BO_Cmp)
13033     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
13034 
13035   // C99 6.5.8p3 / C99 6.5.9p4
13036   QualType Type =
13037       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
13038   if (LHS.isInvalid() || RHS.isInvalid())
13039     return QualType();
13040   if (Type.isNull())
13041     return S.InvalidOperands(Loc, LHS, RHS);
13042   assert(Type->isArithmeticType() || Type->isEnumeralType());
13043 
13044   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
13045     return S.InvalidOperands(Loc, LHS, RHS);
13046 
13047   // Check for comparisons of floating point operands using != and ==.
13048   if (Type->hasFloatingRepresentation())
13049     S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13050 
13051   // The result of comparisons is 'bool' in C++, 'int' in C.
13052   return S.Context.getLogicalOperationType();
13053 }
13054 
13055 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
13056   if (!NullE.get()->getType()->isAnyPointerType())
13057     return;
13058   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
13059   if (!E.get()->getType()->isAnyPointerType() &&
13060       E.get()->isNullPointerConstant(Context,
13061                                      Expr::NPC_ValueDependentIsNotNull) ==
13062         Expr::NPCK_ZeroExpression) {
13063     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
13064       if (CL->getValue() == 0)
13065         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13066             << NullValue
13067             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13068                                             NullValue ? "NULL" : "(void *)0");
13069     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
13070         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
13071         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
13072         if (T == Context.CharTy)
13073           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13074               << NullValue
13075               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13076                                               NullValue ? "NULL" : "(void *)0");
13077       }
13078   }
13079 }
13080 
13081 // C99 6.5.8, C++ [expr.rel]
13082 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
13083                                     SourceLocation Loc,
13084                                     BinaryOperatorKind Opc) {
13085   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
13086   bool IsThreeWay = Opc == BO_Cmp;
13087   bool IsOrdered = IsRelational || IsThreeWay;
13088   auto IsAnyPointerType = [](ExprResult E) {
13089     QualType Ty = E.get()->getType();
13090     return Ty->isPointerType() || Ty->isMemberPointerType();
13091   };
13092 
13093   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
13094   // type, array-to-pointer, ..., conversions are performed on both operands to
13095   // bring them to their composite type.
13096   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
13097   // any type-related checks.
13098   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
13099     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13100     if (LHS.isInvalid())
13101       return QualType();
13102     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13103     if (RHS.isInvalid())
13104       return QualType();
13105   } else {
13106     LHS = DefaultLvalueConversion(LHS.get());
13107     if (LHS.isInvalid())
13108       return QualType();
13109     RHS = DefaultLvalueConversion(RHS.get());
13110     if (RHS.isInvalid())
13111       return QualType();
13112   }
13113 
13114   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
13115   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
13116     CheckPtrComparisonWithNullChar(LHS, RHS);
13117     CheckPtrComparisonWithNullChar(RHS, LHS);
13118   }
13119 
13120   // Handle vector comparisons separately.
13121   if (LHS.get()->getType()->isVectorType() ||
13122       RHS.get()->getType()->isVectorType())
13123     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
13124 
13125   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13126       RHS.get()->getType()->isSveVLSBuiltinType())
13127     return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
13128 
13129   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13130   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13131 
13132   QualType LHSType = LHS.get()->getType();
13133   QualType RHSType = RHS.get()->getType();
13134   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
13135       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
13136     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
13137 
13138   if ((LHSType->isPointerType() &&
13139        LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
13140       (RHSType->isPointerType() &&
13141        RHSType->getPointeeType().isWebAssemblyReferenceType()))
13142     return InvalidOperands(Loc, LHS, RHS);
13143 
13144   const Expr::NullPointerConstantKind LHSNullKind =
13145       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13146   const Expr::NullPointerConstantKind RHSNullKind =
13147       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13148   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
13149   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
13150 
13151   auto computeResultTy = [&]() {
13152     if (Opc != BO_Cmp)
13153       return Context.getLogicalOperationType();
13154     assert(getLangOpts().CPlusPlus);
13155     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
13156 
13157     QualType CompositeTy = LHS.get()->getType();
13158     assert(!CompositeTy->isReferenceType());
13159 
13160     std::optional<ComparisonCategoryType> CCT =
13161         getComparisonCategoryForBuiltinCmp(CompositeTy);
13162     if (!CCT)
13163       return InvalidOperands(Loc, LHS, RHS);
13164 
13165     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
13166       // P0946R0: Comparisons between a null pointer constant and an object
13167       // pointer result in std::strong_equality, which is ill-formed under
13168       // P1959R0.
13169       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
13170           << (LHSIsNull ? LHS.get()->getSourceRange()
13171                         : RHS.get()->getSourceRange());
13172       return QualType();
13173     }
13174 
13175     return CheckComparisonCategoryType(
13176         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
13177   };
13178 
13179   if (!IsOrdered && LHSIsNull != RHSIsNull) {
13180     bool IsEquality = Opc == BO_EQ;
13181     if (RHSIsNull)
13182       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
13183                                    RHS.get()->getSourceRange());
13184     else
13185       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
13186                                    LHS.get()->getSourceRange());
13187   }
13188 
13189   if (IsOrdered && LHSType->isFunctionPointerType() &&
13190       RHSType->isFunctionPointerType()) {
13191     // Valid unless a relational comparison of function pointers
13192     bool IsError = Opc == BO_Cmp;
13193     auto DiagID =
13194         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
13195         : getLangOpts().CPlusPlus
13196             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
13197             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
13198     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
13199                       << RHS.get()->getSourceRange();
13200     if (IsError)
13201       return QualType();
13202   }
13203 
13204   if ((LHSType->isIntegerType() && !LHSIsNull) ||
13205       (RHSType->isIntegerType() && !RHSIsNull)) {
13206     // Skip normal pointer conversion checks in this case; we have better
13207     // diagnostics for this below.
13208   } else if (getLangOpts().CPlusPlus) {
13209     // Equality comparison of a function pointer to a void pointer is invalid,
13210     // but we allow it as an extension.
13211     // FIXME: If we really want to allow this, should it be part of composite
13212     // pointer type computation so it works in conditionals too?
13213     if (!IsOrdered &&
13214         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
13215          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
13216       // This is a gcc extension compatibility comparison.
13217       // In a SFINAE context, we treat this as a hard error to maintain
13218       // conformance with the C++ standard.
13219       diagnoseFunctionPointerToVoidComparison(
13220           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
13221 
13222       if (isSFINAEContext())
13223         return QualType();
13224 
13225       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13226       return computeResultTy();
13227     }
13228 
13229     // C++ [expr.eq]p2:
13230     //   If at least one operand is a pointer [...] bring them to their
13231     //   composite pointer type.
13232     // C++ [expr.spaceship]p6
13233     //  If at least one of the operands is of pointer type, [...] bring them
13234     //  to their composite pointer type.
13235     // C++ [expr.rel]p2:
13236     //   If both operands are pointers, [...] bring them to their composite
13237     //   pointer type.
13238     // For <=>, the only valid non-pointer types are arrays and functions, and
13239     // we already decayed those, so this is really the same as the relational
13240     // comparison rule.
13241     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
13242             (IsOrdered ? 2 : 1) &&
13243         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
13244                                          RHSType->isObjCObjectPointerType()))) {
13245       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13246         return QualType();
13247       return computeResultTy();
13248     }
13249   } else if (LHSType->isPointerType() &&
13250              RHSType->isPointerType()) { // C99 6.5.8p2
13251     // All of the following pointer-related warnings are GCC extensions, except
13252     // when handling null pointer constants.
13253     QualType LCanPointeeTy =
13254       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13255     QualType RCanPointeeTy =
13256       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13257 
13258     // C99 6.5.9p2 and C99 6.5.8p2
13259     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
13260                                    RCanPointeeTy.getUnqualifiedType())) {
13261       if (IsRelational) {
13262         // Pointers both need to point to complete or incomplete types
13263         if ((LCanPointeeTy->isIncompleteType() !=
13264              RCanPointeeTy->isIncompleteType()) &&
13265             !getLangOpts().C11) {
13266           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
13267               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
13268               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
13269               << RCanPointeeTy->isIncompleteType();
13270         }
13271       }
13272     } else if (!IsRelational &&
13273                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
13274       // Valid unless comparison between non-null pointer and function pointer
13275       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
13276           && !LHSIsNull && !RHSIsNull)
13277         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
13278                                                 /*isError*/false);
13279     } else {
13280       // Invalid
13281       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
13282     }
13283     if (LCanPointeeTy != RCanPointeeTy) {
13284       // Treat NULL constant as a special case in OpenCL.
13285       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
13286         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
13287           Diag(Loc,
13288                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
13289               << LHSType << RHSType << 0 /* comparison */
13290               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
13291         }
13292       }
13293       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
13294       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
13295       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
13296                                                : CK_BitCast;
13297       if (LHSIsNull && !RHSIsNull)
13298         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
13299       else
13300         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
13301     }
13302     return computeResultTy();
13303   }
13304 
13305 
13306   // C++ [expr.eq]p4:
13307   //   Two operands of type std::nullptr_t or one operand of type
13308   //   std::nullptr_t and the other a null pointer constant compare
13309   //   equal.
13310   // C23 6.5.9p5:
13311   //   If both operands have type nullptr_t or one operand has type nullptr_t
13312   //   and the other is a null pointer constant, they compare equal if the
13313   //   former is a null pointer.
13314   if (!IsOrdered && LHSIsNull && RHSIsNull) {
13315     if (LHSType->isNullPtrType()) {
13316       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13317       return computeResultTy();
13318     }
13319     if (RHSType->isNullPtrType()) {
13320       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13321       return computeResultTy();
13322     }
13323   }
13324 
13325   if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
13326     // C23 6.5.9p6:
13327     //   Otherwise, at least one operand is a pointer. If one is a pointer and
13328     //   the other is a null pointer constant or has type nullptr_t, they
13329     //   compare equal
13330     if (LHSIsNull && RHSType->isPointerType()) {
13331       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13332       return computeResultTy();
13333     }
13334     if (RHSIsNull && LHSType->isPointerType()) {
13335       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13336       return computeResultTy();
13337     }
13338   }
13339 
13340   // Comparison of Objective-C pointers and block pointers against nullptr_t.
13341   // These aren't covered by the composite pointer type rules.
13342   if (!IsOrdered && RHSType->isNullPtrType() &&
13343       (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
13344     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13345     return computeResultTy();
13346   }
13347   if (!IsOrdered && LHSType->isNullPtrType() &&
13348       (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
13349     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13350     return computeResultTy();
13351   }
13352 
13353   if (getLangOpts().CPlusPlus) {
13354     if (IsRelational &&
13355         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
13356          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
13357       // HACK: Relational comparison of nullptr_t against a pointer type is
13358       // invalid per DR583, but we allow it within std::less<> and friends,
13359       // since otherwise common uses of it break.
13360       // FIXME: Consider removing this hack once LWG fixes std::less<> and
13361       // friends to have std::nullptr_t overload candidates.
13362       DeclContext *DC = CurContext;
13363       if (isa<FunctionDecl>(DC))
13364         DC = DC->getParent();
13365       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
13366         if (CTSD->isInStdNamespace() &&
13367             llvm::StringSwitch<bool>(CTSD->getName())
13368                 .Cases("less", "less_equal", "greater", "greater_equal", true)
13369                 .Default(false)) {
13370           if (RHSType->isNullPtrType())
13371             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13372           else
13373             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13374           return computeResultTy();
13375         }
13376       }
13377     }
13378 
13379     // C++ [expr.eq]p2:
13380     //   If at least one operand is a pointer to member, [...] bring them to
13381     //   their composite pointer type.
13382     if (!IsOrdered &&
13383         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
13384       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13385         return QualType();
13386       else
13387         return computeResultTy();
13388     }
13389   }
13390 
13391   // Handle block pointer types.
13392   if (!IsOrdered && LHSType->isBlockPointerType() &&
13393       RHSType->isBlockPointerType()) {
13394     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
13395     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
13396 
13397     if (!LHSIsNull && !RHSIsNull &&
13398         !Context.typesAreCompatible(lpointee, rpointee)) {
13399       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13400         << LHSType << RHSType << LHS.get()->getSourceRange()
13401         << RHS.get()->getSourceRange();
13402     }
13403     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13404     return computeResultTy();
13405   }
13406 
13407   // Allow block pointers to be compared with null pointer constants.
13408   if (!IsOrdered
13409       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
13410           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
13411     if (!LHSIsNull && !RHSIsNull) {
13412       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
13413              ->getPointeeType()->isVoidType())
13414             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
13415                 ->getPointeeType()->isVoidType())))
13416         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13417           << LHSType << RHSType << LHS.get()->getSourceRange()
13418           << RHS.get()->getSourceRange();
13419     }
13420     if (LHSIsNull && !RHSIsNull)
13421       LHS = ImpCastExprToType(LHS.get(), RHSType,
13422                               RHSType->isPointerType() ? CK_BitCast
13423                                 : CK_AnyPointerToBlockPointerCast);
13424     else
13425       RHS = ImpCastExprToType(RHS.get(), LHSType,
13426                               LHSType->isPointerType() ? CK_BitCast
13427                                 : CK_AnyPointerToBlockPointerCast);
13428     return computeResultTy();
13429   }
13430 
13431   if (LHSType->isObjCObjectPointerType() ||
13432       RHSType->isObjCObjectPointerType()) {
13433     const PointerType *LPT = LHSType->getAs<PointerType>();
13434     const PointerType *RPT = RHSType->getAs<PointerType>();
13435     if (LPT || RPT) {
13436       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
13437       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
13438 
13439       if (!LPtrToVoid && !RPtrToVoid &&
13440           !Context.typesAreCompatible(LHSType, RHSType)) {
13441         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13442                                           /*isError*/false);
13443       }
13444       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
13445       // the RHS, but we have test coverage for this behavior.
13446       // FIXME: Consider using convertPointersToCompositeType in C++.
13447       if (LHSIsNull && !RHSIsNull) {
13448         Expr *E = LHS.get();
13449         if (getLangOpts().ObjCAutoRefCount)
13450           CheckObjCConversion(SourceRange(), RHSType, E,
13451                               CCK_ImplicitConversion);
13452         LHS = ImpCastExprToType(E, RHSType,
13453                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13454       }
13455       else {
13456         Expr *E = RHS.get();
13457         if (getLangOpts().ObjCAutoRefCount)
13458           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
13459                               /*Diagnose=*/true,
13460                               /*DiagnoseCFAudited=*/false, Opc);
13461         RHS = ImpCastExprToType(E, LHSType,
13462                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13463       }
13464       return computeResultTy();
13465     }
13466     if (LHSType->isObjCObjectPointerType() &&
13467         RHSType->isObjCObjectPointerType()) {
13468       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
13469         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13470                                           /*isError*/false);
13471       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
13472         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
13473 
13474       if (LHSIsNull && !RHSIsNull)
13475         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
13476       else
13477         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13478       return computeResultTy();
13479     }
13480 
13481     if (!IsOrdered && LHSType->isBlockPointerType() &&
13482         RHSType->isBlockCompatibleObjCPointerType(Context)) {
13483       LHS = ImpCastExprToType(LHS.get(), RHSType,
13484                               CK_BlockPointerToObjCPointerCast);
13485       return computeResultTy();
13486     } else if (!IsOrdered &&
13487                LHSType->isBlockCompatibleObjCPointerType(Context) &&
13488                RHSType->isBlockPointerType()) {
13489       RHS = ImpCastExprToType(RHS.get(), LHSType,
13490                               CK_BlockPointerToObjCPointerCast);
13491       return computeResultTy();
13492     }
13493   }
13494   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
13495       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
13496     unsigned DiagID = 0;
13497     bool isError = false;
13498     if (LangOpts.DebuggerSupport) {
13499       // Under a debugger, allow the comparison of pointers to integers,
13500       // since users tend to want to compare addresses.
13501     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
13502                (RHSIsNull && RHSType->isIntegerType())) {
13503       if (IsOrdered) {
13504         isError = getLangOpts().CPlusPlus;
13505         DiagID =
13506           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13507                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
13508       }
13509     } else if (getLangOpts().CPlusPlus) {
13510       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
13511       isError = true;
13512     } else if (IsOrdered)
13513       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
13514     else
13515       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
13516 
13517     if (DiagID) {
13518       Diag(Loc, DiagID)
13519         << LHSType << RHSType << LHS.get()->getSourceRange()
13520         << RHS.get()->getSourceRange();
13521       if (isError)
13522         return QualType();
13523     }
13524 
13525     if (LHSType->isIntegerType())
13526       LHS = ImpCastExprToType(LHS.get(), RHSType,
13527                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13528     else
13529       RHS = ImpCastExprToType(RHS.get(), LHSType,
13530                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13531     return computeResultTy();
13532   }
13533 
13534   // Handle block pointers.
13535   if (!IsOrdered && RHSIsNull
13536       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
13537     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13538     return computeResultTy();
13539   }
13540   if (!IsOrdered && LHSIsNull
13541       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
13542     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13543     return computeResultTy();
13544   }
13545 
13546   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13547     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
13548       return computeResultTy();
13549     }
13550 
13551     if (LHSType->isQueueT() && RHSType->isQueueT()) {
13552       return computeResultTy();
13553     }
13554 
13555     if (LHSIsNull && RHSType->isQueueT()) {
13556       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13557       return computeResultTy();
13558     }
13559 
13560     if (LHSType->isQueueT() && RHSIsNull) {
13561       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13562       return computeResultTy();
13563     }
13564   }
13565 
13566   return InvalidOperands(Loc, LHS, RHS);
13567 }
13568 
13569 // Return a signed ext_vector_type that is of identical size and number of
13570 // elements. For floating point vectors, return an integer type of identical
13571 // size and number of elements. In the non ext_vector_type case, search from
13572 // the largest type to the smallest type to avoid cases where long long == long,
13573 // where long gets picked over long long.
13574 QualType Sema::GetSignedVectorType(QualType V) {
13575   const VectorType *VTy = V->castAs<VectorType>();
13576   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
13577 
13578   if (isa<ExtVectorType>(VTy)) {
13579     if (VTy->isExtVectorBoolType())
13580       return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
13581     if (TypeSize == Context.getTypeSize(Context.CharTy))
13582       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
13583     if (TypeSize == Context.getTypeSize(Context.ShortTy))
13584       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
13585     if (TypeSize == Context.getTypeSize(Context.IntTy))
13586       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
13587     if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13588       return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
13589     if (TypeSize == Context.getTypeSize(Context.LongTy))
13590       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
13591     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13592            "Unhandled vector element size in vector compare");
13593     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
13594   }
13595 
13596   if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13597     return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
13598                                  VectorKind::Generic);
13599   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13600     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
13601                                  VectorKind::Generic);
13602   if (TypeSize == Context.getTypeSize(Context.LongTy))
13603     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
13604                                  VectorKind::Generic);
13605   if (TypeSize == Context.getTypeSize(Context.IntTy))
13606     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
13607                                  VectorKind::Generic);
13608   if (TypeSize == Context.getTypeSize(Context.ShortTy))
13609     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
13610                                  VectorKind::Generic);
13611   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13612          "Unhandled vector element size in vector compare");
13613   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
13614                                VectorKind::Generic);
13615 }
13616 
13617 QualType Sema::GetSignedSizelessVectorType(QualType V) {
13618   const BuiltinType *VTy = V->castAs<BuiltinType>();
13619   assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13620 
13621   const QualType ETy = V->getSveEltType(Context);
13622   const auto TypeSize = Context.getTypeSize(ETy);
13623 
13624   const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
13625   const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
13626   return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
13627 }
13628 
13629 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13630 /// operates on extended vector types.  Instead of producing an IntTy result,
13631 /// like a scalar comparison, a vector comparison produces a vector of integer
13632 /// types.
13633 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13634                                           SourceLocation Loc,
13635                                           BinaryOperatorKind Opc) {
13636   if (Opc == BO_Cmp) {
13637     Diag(Loc, diag::err_three_way_vector_comparison);
13638     return QualType();
13639   }
13640 
13641   // Check to make sure we're operating on vectors of the same type and width,
13642   // Allowing one side to be a scalar of element type.
13643   QualType vType =
13644       CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
13645                           /*AllowBothBool*/ true,
13646                           /*AllowBoolConversions*/ getLangOpts().ZVector,
13647                           /*AllowBooleanOperation*/ true,
13648                           /*ReportInvalid*/ true);
13649   if (vType.isNull())
13650     return vType;
13651 
13652   QualType LHSType = LHS.get()->getType();
13653 
13654   // Determine the return type of a vector compare. By default clang will return
13655   // a scalar for all vector compares except vector bool and vector pixel.
13656   // With the gcc compiler we will always return a vector type and with the xl
13657   // compiler we will always return a scalar type. This switch allows choosing
13658   // which behavior is prefered.
13659   if (getLangOpts().AltiVec) {
13660     switch (getLangOpts().getAltivecSrcCompat()) {
13661     case LangOptions::AltivecSrcCompatKind::Mixed:
13662       // If AltiVec, the comparison results in a numeric type, i.e.
13663       // bool for C++, int for C
13664       if (vType->castAs<VectorType>()->getVectorKind() ==
13665           VectorKind::AltiVecVector)
13666         return Context.getLogicalOperationType();
13667       else
13668         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13669       break;
13670     case LangOptions::AltivecSrcCompatKind::GCC:
13671       // For GCC we always return the vector type.
13672       break;
13673     case LangOptions::AltivecSrcCompatKind::XL:
13674       return Context.getLogicalOperationType();
13675       break;
13676     }
13677   }
13678 
13679   // For non-floating point types, check for self-comparisons of the form
13680   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13681   // often indicate logic errors in the program.
13682   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13683 
13684   // Check for comparisons of floating point operands using != and ==.
13685   if (LHSType->hasFloatingRepresentation()) {
13686     assert(RHS.get()->getType()->hasFloatingRepresentation());
13687     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13688   }
13689 
13690   // Return a signed type for the vector.
13691   return GetSignedVectorType(vType);
13692 }
13693 
13694 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13695                                                   ExprResult &RHS,
13696                                                   SourceLocation Loc,
13697                                                   BinaryOperatorKind Opc) {
13698   if (Opc == BO_Cmp) {
13699     Diag(Loc, diag::err_three_way_vector_comparison);
13700     return QualType();
13701   }
13702 
13703   // Check to make sure we're operating on vectors of the same type and width,
13704   // Allowing one side to be a scalar of element type.
13705   QualType vType = CheckSizelessVectorOperands(
13706       LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
13707 
13708   if (vType.isNull())
13709     return vType;
13710 
13711   QualType LHSType = LHS.get()->getType();
13712 
13713   // For non-floating point types, check for self-comparisons of the form
13714   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13715   // often indicate logic errors in the program.
13716   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13717 
13718   // Check for comparisons of floating point operands using != and ==.
13719   if (LHSType->hasFloatingRepresentation()) {
13720     assert(RHS.get()->getType()->hasFloatingRepresentation());
13721     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13722   }
13723 
13724   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13725   const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13726 
13727   if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13728       RHSBuiltinTy->isSVEBool())
13729     return LHSType;
13730 
13731   // Return a signed type for the vector.
13732   return GetSignedSizelessVectorType(vType);
13733 }
13734 
13735 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13736                                     const ExprResult &XorRHS,
13737                                     const SourceLocation Loc) {
13738   // Do not diagnose macros.
13739   if (Loc.isMacroID())
13740     return;
13741 
13742   // Do not diagnose if both LHS and RHS are macros.
13743   if (XorLHS.get()->getExprLoc().isMacroID() &&
13744       XorRHS.get()->getExprLoc().isMacroID())
13745     return;
13746 
13747   bool Negative = false;
13748   bool ExplicitPlus = false;
13749   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13750   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13751 
13752   if (!LHSInt)
13753     return;
13754   if (!RHSInt) {
13755     // Check negative literals.
13756     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13757       UnaryOperatorKind Opc = UO->getOpcode();
13758       if (Opc != UO_Minus && Opc != UO_Plus)
13759         return;
13760       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13761       if (!RHSInt)
13762         return;
13763       Negative = (Opc == UO_Minus);
13764       ExplicitPlus = !Negative;
13765     } else {
13766       return;
13767     }
13768   }
13769 
13770   const llvm::APInt &LeftSideValue = LHSInt->getValue();
13771   llvm::APInt RightSideValue = RHSInt->getValue();
13772   if (LeftSideValue != 2 && LeftSideValue != 10)
13773     return;
13774 
13775   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13776     return;
13777 
13778   CharSourceRange ExprRange = CharSourceRange::getCharRange(
13779       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13780   llvm::StringRef ExprStr =
13781       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13782 
13783   CharSourceRange XorRange =
13784       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13785   llvm::StringRef XorStr =
13786       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13787   // Do not diagnose if xor keyword/macro is used.
13788   if (XorStr == "xor")
13789     return;
13790 
13791   std::string LHSStr = std::string(Lexer::getSourceText(
13792       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13793       S.getSourceManager(), S.getLangOpts()));
13794   std::string RHSStr = std::string(Lexer::getSourceText(
13795       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13796       S.getSourceManager(), S.getLangOpts()));
13797 
13798   if (Negative) {
13799     RightSideValue = -RightSideValue;
13800     RHSStr = "-" + RHSStr;
13801   } else if (ExplicitPlus) {
13802     RHSStr = "+" + RHSStr;
13803   }
13804 
13805   StringRef LHSStrRef = LHSStr;
13806   StringRef RHSStrRef = RHSStr;
13807   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13808   // literals.
13809   if (LHSStrRef.starts_with("0b") || LHSStrRef.starts_with("0B") ||
13810       RHSStrRef.starts_with("0b") || RHSStrRef.starts_with("0B") ||
13811       LHSStrRef.starts_with("0x") || LHSStrRef.starts_with("0X") ||
13812       RHSStrRef.starts_with("0x") || RHSStrRef.starts_with("0X") ||
13813       (LHSStrRef.size() > 1 && LHSStrRef.starts_with("0")) ||
13814       (RHSStrRef.size() > 1 && RHSStrRef.starts_with("0")) ||
13815       LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13816     return;
13817 
13818   bool SuggestXor =
13819       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13820   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13821   int64_t RightSideIntValue = RightSideValue.getSExtValue();
13822   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13823     std::string SuggestedExpr = "1 << " + RHSStr;
13824     bool Overflow = false;
13825     llvm::APInt One = (LeftSideValue - 1);
13826     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13827     if (Overflow) {
13828       if (RightSideIntValue < 64)
13829         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13830             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13831             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13832       else if (RightSideIntValue == 64)
13833         S.Diag(Loc, diag::warn_xor_used_as_pow)
13834             << ExprStr << toString(XorValue, 10, true);
13835       else
13836         return;
13837     } else {
13838       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13839           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13840           << toString(PowValue, 10, true)
13841           << FixItHint::CreateReplacement(
13842                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13843     }
13844 
13845     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13846         << ("0x2 ^ " + RHSStr) << SuggestXor;
13847   } else if (LeftSideValue == 10) {
13848     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13849     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13850         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13851         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13852     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13853         << ("0xA ^ " + RHSStr) << SuggestXor;
13854   }
13855 }
13856 
13857 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13858                                           SourceLocation Loc) {
13859   // Ensure that either both operands are of the same vector type, or
13860   // one operand is of a vector type and the other is of its element type.
13861   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13862                                        /*AllowBothBool*/ true,
13863                                        /*AllowBoolConversions*/ false,
13864                                        /*AllowBooleanOperation*/ false,
13865                                        /*ReportInvalid*/ false);
13866   if (vType.isNull())
13867     return InvalidOperands(Loc, LHS, RHS);
13868   if (getLangOpts().OpenCL &&
13869       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13870       vType->hasFloatingRepresentation())
13871     return InvalidOperands(Loc, LHS, RHS);
13872   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13873   //        usage of the logical operators && and || with vectors in C. This
13874   //        check could be notionally dropped.
13875   if (!getLangOpts().CPlusPlus &&
13876       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13877     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13878 
13879   return GetSignedVectorType(LHS.get()->getType());
13880 }
13881 
13882 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13883                                               SourceLocation Loc,
13884                                               bool IsCompAssign) {
13885   if (!IsCompAssign) {
13886     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13887     if (LHS.isInvalid())
13888       return QualType();
13889   }
13890   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13891   if (RHS.isInvalid())
13892     return QualType();
13893 
13894   // For conversion purposes, we ignore any qualifiers.
13895   // For example, "const float" and "float" are equivalent.
13896   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13897   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13898 
13899   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13900   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13901   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13902 
13903   if (Context.hasSameType(LHSType, RHSType))
13904     return Context.getCommonSugaredType(LHSType, RHSType);
13905 
13906   // Type conversion may change LHS/RHS. Keep copies to the original results, in
13907   // case we have to return InvalidOperands.
13908   ExprResult OriginalLHS = LHS;
13909   ExprResult OriginalRHS = RHS;
13910   if (LHSMatType && !RHSMatType) {
13911     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13912     if (!RHS.isInvalid())
13913       return LHSType;
13914 
13915     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13916   }
13917 
13918   if (!LHSMatType && RHSMatType) {
13919     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13920     if (!LHS.isInvalid())
13921       return RHSType;
13922     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13923   }
13924 
13925   return InvalidOperands(Loc, LHS, RHS);
13926 }
13927 
13928 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13929                                            SourceLocation Loc,
13930                                            bool IsCompAssign) {
13931   if (!IsCompAssign) {
13932     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13933     if (LHS.isInvalid())
13934       return QualType();
13935   }
13936   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13937   if (RHS.isInvalid())
13938     return QualType();
13939 
13940   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13941   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13942   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13943 
13944   if (LHSMatType && RHSMatType) {
13945     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13946       return InvalidOperands(Loc, LHS, RHS);
13947 
13948     if (Context.hasSameType(LHSMatType, RHSMatType))
13949       return Context.getCommonSugaredType(
13950           LHS.get()->getType().getUnqualifiedType(),
13951           RHS.get()->getType().getUnqualifiedType());
13952 
13953     QualType LHSELTy = LHSMatType->getElementType(),
13954              RHSELTy = RHSMatType->getElementType();
13955     if (!Context.hasSameType(LHSELTy, RHSELTy))
13956       return InvalidOperands(Loc, LHS, RHS);
13957 
13958     return Context.getConstantMatrixType(
13959         Context.getCommonSugaredType(LHSELTy, RHSELTy),
13960         LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13961   }
13962   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13963 }
13964 
13965 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13966   switch (Opc) {
13967   default:
13968     return false;
13969   case BO_And:
13970   case BO_AndAssign:
13971   case BO_Or:
13972   case BO_OrAssign:
13973   case BO_Xor:
13974   case BO_XorAssign:
13975     return true;
13976   }
13977 }
13978 
13979 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13980                                            SourceLocation Loc,
13981                                            BinaryOperatorKind Opc) {
13982   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13983 
13984   bool IsCompAssign =
13985       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13986 
13987   bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13988 
13989   if (LHS.get()->getType()->isVectorType() ||
13990       RHS.get()->getType()->isVectorType()) {
13991     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13992         RHS.get()->getType()->hasIntegerRepresentation())
13993       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13994                                  /*AllowBothBool*/ true,
13995                                  /*AllowBoolConversions*/ getLangOpts().ZVector,
13996                                  /*AllowBooleanOperation*/ LegalBoolVecOperator,
13997                                  /*ReportInvalid*/ true);
13998     return InvalidOperands(Loc, LHS, RHS);
13999   }
14000 
14001   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
14002       RHS.get()->getType()->isSveVLSBuiltinType()) {
14003     if (LHS.get()->getType()->hasIntegerRepresentation() &&
14004         RHS.get()->getType()->hasIntegerRepresentation())
14005       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
14006                                          ACK_BitwiseOp);
14007     return InvalidOperands(Loc, LHS, RHS);
14008   }
14009 
14010   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
14011       RHS.get()->getType()->isSveVLSBuiltinType()) {
14012     if (LHS.get()->getType()->hasIntegerRepresentation() &&
14013         RHS.get()->getType()->hasIntegerRepresentation())
14014       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
14015                                          ACK_BitwiseOp);
14016     return InvalidOperands(Loc, LHS, RHS);
14017   }
14018 
14019   if (Opc == BO_And)
14020     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
14021 
14022   if (LHS.get()->getType()->hasFloatingRepresentation() ||
14023       RHS.get()->getType()->hasFloatingRepresentation())
14024     return InvalidOperands(Loc, LHS, RHS);
14025 
14026   ExprResult LHSResult = LHS, RHSResult = RHS;
14027   QualType compType = UsualArithmeticConversions(
14028       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
14029   if (LHSResult.isInvalid() || RHSResult.isInvalid())
14030     return QualType();
14031   LHS = LHSResult.get();
14032   RHS = RHSResult.get();
14033 
14034   if (Opc == BO_Xor)
14035     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
14036 
14037   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
14038     return compType;
14039   return InvalidOperands(Loc, LHS, RHS);
14040 }
14041 
14042 // C99 6.5.[13,14]
14043 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
14044                                            SourceLocation Loc,
14045                                            BinaryOperatorKind Opc) {
14046   // Check vector operands differently.
14047   if (LHS.get()->getType()->isVectorType() ||
14048       RHS.get()->getType()->isVectorType())
14049     return CheckVectorLogicalOperands(LHS, RHS, Loc);
14050 
14051   bool EnumConstantInBoolContext = false;
14052   for (const ExprResult &HS : {LHS, RHS}) {
14053     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
14054       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
14055       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
14056         EnumConstantInBoolContext = true;
14057     }
14058   }
14059 
14060   if (EnumConstantInBoolContext)
14061     Diag(Loc, diag::warn_enum_constant_in_bool_context);
14062 
14063   // WebAssembly tables can't be used with logical operators.
14064   QualType LHSTy = LHS.get()->getType();
14065   QualType RHSTy = RHS.get()->getType();
14066   const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
14067   const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
14068   if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
14069       (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
14070     return InvalidOperands(Loc, LHS, RHS);
14071   }
14072 
14073   // Diagnose cases where the user write a logical and/or but probably meant a
14074   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
14075   // is a constant.
14076   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
14077       !LHS.get()->getType()->isBooleanType() &&
14078       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
14079       // Don't warn in macros or template instantiations.
14080       !Loc.isMacroID() && !inTemplateInstantiation()) {
14081     // If the RHS can be constant folded, and if it constant folds to something
14082     // that isn't 0 or 1 (which indicate a potential logical operation that
14083     // happened to fold to true/false) then warn.
14084     // Parens on the RHS are ignored.
14085     Expr::EvalResult EVResult;
14086     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
14087       llvm::APSInt Result = EVResult.Val.getInt();
14088       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
14089            !RHS.get()->getExprLoc().isMacroID()) ||
14090           (Result != 0 && Result != 1)) {
14091         Diag(Loc, diag::warn_logical_instead_of_bitwise)
14092             << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
14093         // Suggest replacing the logical operator with the bitwise version
14094         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
14095             << (Opc == BO_LAnd ? "&" : "|")
14096             << FixItHint::CreateReplacement(
14097                    SourceRange(Loc, getLocForEndOfToken(Loc)),
14098                    Opc == BO_LAnd ? "&" : "|");
14099         if (Opc == BO_LAnd)
14100           // Suggest replacing "Foo() && kNonZero" with "Foo()"
14101           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
14102               << FixItHint::CreateRemoval(
14103                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
14104                                  RHS.get()->getEndLoc()));
14105       }
14106     }
14107   }
14108 
14109   if (!Context.getLangOpts().CPlusPlus) {
14110     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
14111     // not operate on the built-in scalar and vector float types.
14112     if (Context.getLangOpts().OpenCL &&
14113         Context.getLangOpts().OpenCLVersion < 120) {
14114       if (LHS.get()->getType()->isFloatingType() ||
14115           RHS.get()->getType()->isFloatingType())
14116         return InvalidOperands(Loc, LHS, RHS);
14117     }
14118 
14119     LHS = UsualUnaryConversions(LHS.get());
14120     if (LHS.isInvalid())
14121       return QualType();
14122 
14123     RHS = UsualUnaryConversions(RHS.get());
14124     if (RHS.isInvalid())
14125       return QualType();
14126 
14127     if (!LHS.get()->getType()->isScalarType() ||
14128         !RHS.get()->getType()->isScalarType())
14129       return InvalidOperands(Loc, LHS, RHS);
14130 
14131     return Context.IntTy;
14132   }
14133 
14134   // The following is safe because we only use this method for
14135   // non-overloadable operands.
14136 
14137   // C++ [expr.log.and]p1
14138   // C++ [expr.log.or]p1
14139   // The operands are both contextually converted to type bool.
14140   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
14141   if (LHSRes.isInvalid())
14142     return InvalidOperands(Loc, LHS, RHS);
14143   LHS = LHSRes;
14144 
14145   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
14146   if (RHSRes.isInvalid())
14147     return InvalidOperands(Loc, LHS, RHS);
14148   RHS = RHSRes;
14149 
14150   // C++ [expr.log.and]p2
14151   // C++ [expr.log.or]p2
14152   // The result is a bool.
14153   return Context.BoolTy;
14154 }
14155 
14156 static bool IsReadonlyMessage(Expr *E, Sema &S) {
14157   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
14158   if (!ME) return false;
14159   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
14160   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
14161       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
14162   if (!Base) return false;
14163   return Base->getMethodDecl() != nullptr;
14164 }
14165 
14166 /// Is the given expression (which must be 'const') a reference to a
14167 /// variable which was originally non-const, but which has become
14168 /// 'const' due to being captured within a block?
14169 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
14170 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
14171   assert(E->isLValue() && E->getType().isConstQualified());
14172   E = E->IgnoreParens();
14173 
14174   // Must be a reference to a declaration from an enclosing scope.
14175   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14176   if (!DRE) return NCCK_None;
14177   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
14178 
14179   // The declaration must be a variable which is not declared 'const'.
14180   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
14181   if (!var) return NCCK_None;
14182   if (var->getType().isConstQualified()) return NCCK_None;
14183   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
14184 
14185   // Decide whether the first capture was for a block or a lambda.
14186   DeclContext *DC = S.CurContext, *Prev = nullptr;
14187   // Decide whether the first capture was for a block or a lambda.
14188   while (DC) {
14189     // For init-capture, it is possible that the variable belongs to the
14190     // template pattern of the current context.
14191     if (auto *FD = dyn_cast<FunctionDecl>(DC))
14192       if (var->isInitCapture() &&
14193           FD->getTemplateInstantiationPattern() == var->getDeclContext())
14194         break;
14195     if (DC == var->getDeclContext())
14196       break;
14197     Prev = DC;
14198     DC = DC->getParent();
14199   }
14200   // Unless we have an init-capture, we've gone one step too far.
14201   if (!var->isInitCapture())
14202     DC = Prev;
14203   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
14204 }
14205 
14206 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
14207   Ty = Ty.getNonReferenceType();
14208   if (IsDereference && Ty->isPointerType())
14209     Ty = Ty->getPointeeType();
14210   return !Ty.isConstQualified();
14211 }
14212 
14213 // Update err_typecheck_assign_const and note_typecheck_assign_const
14214 // when this enum is changed.
14215 enum {
14216   ConstFunction,
14217   ConstVariable,
14218   ConstMember,
14219   ConstMethod,
14220   NestedConstMember,
14221   ConstUnknown,  // Keep as last element
14222 };
14223 
14224 /// Emit the "read-only variable not assignable" error and print notes to give
14225 /// more information about why the variable is not assignable, such as pointing
14226 /// to the declaration of a const variable, showing that a method is const, or
14227 /// that the function is returning a const reference.
14228 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
14229                                     SourceLocation Loc) {
14230   SourceRange ExprRange = E->getSourceRange();
14231 
14232   // Only emit one error on the first const found.  All other consts will emit
14233   // a note to the error.
14234   bool DiagnosticEmitted = false;
14235 
14236   // Track if the current expression is the result of a dereference, and if the
14237   // next checked expression is the result of a dereference.
14238   bool IsDereference = false;
14239   bool NextIsDereference = false;
14240 
14241   // Loop to process MemberExpr chains.
14242   while (true) {
14243     IsDereference = NextIsDereference;
14244 
14245     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
14246     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14247       NextIsDereference = ME->isArrow();
14248       const ValueDecl *VD = ME->getMemberDecl();
14249       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
14250         // Mutable fields can be modified even if the class is const.
14251         if (Field->isMutable()) {
14252           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
14253           break;
14254         }
14255 
14256         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
14257           if (!DiagnosticEmitted) {
14258             S.Diag(Loc, diag::err_typecheck_assign_const)
14259                 << ExprRange << ConstMember << false /*static*/ << Field
14260                 << Field->getType();
14261             DiagnosticEmitted = true;
14262           }
14263           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14264               << ConstMember << false /*static*/ << Field << Field->getType()
14265               << Field->getSourceRange();
14266         }
14267         E = ME->getBase();
14268         continue;
14269       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
14270         if (VDecl->getType().isConstQualified()) {
14271           if (!DiagnosticEmitted) {
14272             S.Diag(Loc, diag::err_typecheck_assign_const)
14273                 << ExprRange << ConstMember << true /*static*/ << VDecl
14274                 << VDecl->getType();
14275             DiagnosticEmitted = true;
14276           }
14277           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14278               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
14279               << VDecl->getSourceRange();
14280         }
14281         // Static fields do not inherit constness from parents.
14282         break;
14283       }
14284       break; // End MemberExpr
14285     } else if (const ArraySubscriptExpr *ASE =
14286                    dyn_cast<ArraySubscriptExpr>(E)) {
14287       E = ASE->getBase()->IgnoreParenImpCasts();
14288       continue;
14289     } else if (const ExtVectorElementExpr *EVE =
14290                    dyn_cast<ExtVectorElementExpr>(E)) {
14291       E = EVE->getBase()->IgnoreParenImpCasts();
14292       continue;
14293     }
14294     break;
14295   }
14296 
14297   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
14298     // Function calls
14299     const FunctionDecl *FD = CE->getDirectCallee();
14300     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
14301       if (!DiagnosticEmitted) {
14302         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14303                                                       << ConstFunction << FD;
14304         DiagnosticEmitted = true;
14305       }
14306       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
14307              diag::note_typecheck_assign_const)
14308           << ConstFunction << FD << FD->getReturnType()
14309           << FD->getReturnTypeSourceRange();
14310     }
14311   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14312     // Point to variable declaration.
14313     if (const ValueDecl *VD = DRE->getDecl()) {
14314       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
14315         if (!DiagnosticEmitted) {
14316           S.Diag(Loc, diag::err_typecheck_assign_const)
14317               << ExprRange << ConstVariable << VD << VD->getType();
14318           DiagnosticEmitted = true;
14319         }
14320         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14321             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
14322       }
14323     }
14324   } else if (isa<CXXThisExpr>(E)) {
14325     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
14326       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
14327         if (MD->isConst()) {
14328           if (!DiagnosticEmitted) {
14329             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14330                                                           << ConstMethod << MD;
14331             DiagnosticEmitted = true;
14332           }
14333           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
14334               << ConstMethod << MD << MD->getSourceRange();
14335         }
14336       }
14337     }
14338   }
14339 
14340   if (DiagnosticEmitted)
14341     return;
14342 
14343   // Can't determine a more specific message, so display the generic error.
14344   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
14345 }
14346 
14347 enum OriginalExprKind {
14348   OEK_Variable,
14349   OEK_Member,
14350   OEK_LValue
14351 };
14352 
14353 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
14354                                          const RecordType *Ty,
14355                                          SourceLocation Loc, SourceRange Range,
14356                                          OriginalExprKind OEK,
14357                                          bool &DiagnosticEmitted) {
14358   std::vector<const RecordType *> RecordTypeList;
14359   RecordTypeList.push_back(Ty);
14360   unsigned NextToCheckIndex = 0;
14361   // We walk the record hierarchy breadth-first to ensure that we print
14362   // diagnostics in field nesting order.
14363   while (RecordTypeList.size() > NextToCheckIndex) {
14364     bool IsNested = NextToCheckIndex > 0;
14365     for (const FieldDecl *Field :
14366          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
14367       // First, check every field for constness.
14368       QualType FieldTy = Field->getType();
14369       if (FieldTy.isConstQualified()) {
14370         if (!DiagnosticEmitted) {
14371           S.Diag(Loc, diag::err_typecheck_assign_const)
14372               << Range << NestedConstMember << OEK << VD
14373               << IsNested << Field;
14374           DiagnosticEmitted = true;
14375         }
14376         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
14377             << NestedConstMember << IsNested << Field
14378             << FieldTy << Field->getSourceRange();
14379       }
14380 
14381       // Then we append it to the list to check next in order.
14382       FieldTy = FieldTy.getCanonicalType();
14383       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
14384         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
14385           RecordTypeList.push_back(FieldRecTy);
14386       }
14387     }
14388     ++NextToCheckIndex;
14389   }
14390 }
14391 
14392 /// Emit an error for the case where a record we are trying to assign to has a
14393 /// const-qualified field somewhere in its hierarchy.
14394 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
14395                                          SourceLocation Loc) {
14396   QualType Ty = E->getType();
14397   assert(Ty->isRecordType() && "lvalue was not record?");
14398   SourceRange Range = E->getSourceRange();
14399   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
14400   bool DiagEmitted = false;
14401 
14402   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
14403     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
14404             Range, OEK_Member, DiagEmitted);
14405   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14406     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
14407             Range, OEK_Variable, DiagEmitted);
14408   else
14409     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
14410             Range, OEK_LValue, DiagEmitted);
14411   if (!DiagEmitted)
14412     DiagnoseConstAssignment(S, E, Loc);
14413 }
14414 
14415 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
14416 /// emit an error and return true.  If so, return false.
14417 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
14418   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
14419 
14420   S.CheckShadowingDeclModification(E, Loc);
14421 
14422   SourceLocation OrigLoc = Loc;
14423   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
14424                                                               &Loc);
14425   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
14426     IsLV = Expr::MLV_InvalidMessageExpression;
14427   if (IsLV == Expr::MLV_Valid)
14428     return false;
14429 
14430   unsigned DiagID = 0;
14431   bool NeedType = false;
14432   switch (IsLV) { // C99 6.5.16p2
14433   case Expr::MLV_ConstQualified:
14434     // Use a specialized diagnostic when we're assigning to an object
14435     // from an enclosing function or block.
14436     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
14437       if (NCCK == NCCK_Block)
14438         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
14439       else
14440         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
14441       break;
14442     }
14443 
14444     // In ARC, use some specialized diagnostics for occasions where we
14445     // infer 'const'.  These are always pseudo-strong variables.
14446     if (S.getLangOpts().ObjCAutoRefCount) {
14447       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
14448       if (declRef && isa<VarDecl>(declRef->getDecl())) {
14449         VarDecl *var = cast<VarDecl>(declRef->getDecl());
14450 
14451         // Use the normal diagnostic if it's pseudo-__strong but the
14452         // user actually wrote 'const'.
14453         if (var->isARCPseudoStrong() &&
14454             (!var->getTypeSourceInfo() ||
14455              !var->getTypeSourceInfo()->getType().isConstQualified())) {
14456           // There are three pseudo-strong cases:
14457           //  - self
14458           ObjCMethodDecl *method = S.getCurMethodDecl();
14459           if (method && var == method->getSelfDecl()) {
14460             DiagID = method->isClassMethod()
14461               ? diag::err_typecheck_arc_assign_self_class_method
14462               : diag::err_typecheck_arc_assign_self;
14463 
14464           //  - Objective-C externally_retained attribute.
14465           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
14466                      isa<ParmVarDecl>(var)) {
14467             DiagID = diag::err_typecheck_arc_assign_externally_retained;
14468 
14469           //  - fast enumeration variables
14470           } else {
14471             DiagID = diag::err_typecheck_arr_assign_enumeration;
14472           }
14473 
14474           SourceRange Assign;
14475           if (Loc != OrigLoc)
14476             Assign = SourceRange(OrigLoc, OrigLoc);
14477           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14478           // We need to preserve the AST regardless, so migration tool
14479           // can do its job.
14480           return false;
14481         }
14482       }
14483     }
14484 
14485     // If none of the special cases above are triggered, then this is a
14486     // simple const assignment.
14487     if (DiagID == 0) {
14488       DiagnoseConstAssignment(S, E, Loc);
14489       return true;
14490     }
14491 
14492     break;
14493   case Expr::MLV_ConstAddrSpace:
14494     DiagnoseConstAssignment(S, E, Loc);
14495     return true;
14496   case Expr::MLV_ConstQualifiedField:
14497     DiagnoseRecursiveConstFields(S, E, Loc);
14498     return true;
14499   case Expr::MLV_ArrayType:
14500   case Expr::MLV_ArrayTemporary:
14501     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
14502     NeedType = true;
14503     break;
14504   case Expr::MLV_NotObjectType:
14505     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
14506     NeedType = true;
14507     break;
14508   case Expr::MLV_LValueCast:
14509     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
14510     break;
14511   case Expr::MLV_Valid:
14512     llvm_unreachable("did not take early return for MLV_Valid");
14513   case Expr::MLV_InvalidExpression:
14514   case Expr::MLV_MemberFunction:
14515   case Expr::MLV_ClassTemporary:
14516     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
14517     break;
14518   case Expr::MLV_IncompleteType:
14519   case Expr::MLV_IncompleteVoidType:
14520     return S.RequireCompleteType(Loc, E->getType(),
14521              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
14522   case Expr::MLV_DuplicateVectorComponents:
14523     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
14524     break;
14525   case Expr::MLV_NoSetterProperty:
14526     llvm_unreachable("readonly properties should be processed differently");
14527   case Expr::MLV_InvalidMessageExpression:
14528     DiagID = diag::err_readonly_message_assignment;
14529     break;
14530   case Expr::MLV_SubObjCPropertySetting:
14531     DiagID = diag::err_no_subobject_property_setting;
14532     break;
14533   }
14534 
14535   SourceRange Assign;
14536   if (Loc != OrigLoc)
14537     Assign = SourceRange(OrigLoc, OrigLoc);
14538   if (NeedType)
14539     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14540   else
14541     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14542   return true;
14543 }
14544 
14545 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14546                                          SourceLocation Loc,
14547                                          Sema &Sema) {
14548   if (Sema.inTemplateInstantiation())
14549     return;
14550   if (Sema.isUnevaluatedContext())
14551     return;
14552   if (Loc.isInvalid() || Loc.isMacroID())
14553     return;
14554   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14555     return;
14556 
14557   // C / C++ fields
14558   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
14559   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
14560   if (ML && MR) {
14561     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
14562       return;
14563     const ValueDecl *LHSDecl =
14564         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14565     const ValueDecl *RHSDecl =
14566         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14567     if (LHSDecl != RHSDecl)
14568       return;
14569     if (LHSDecl->getType().isVolatileQualified())
14570       return;
14571     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14572       if (RefTy->getPointeeType().isVolatileQualified())
14573         return;
14574 
14575     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14576   }
14577 
14578   // Objective-C instance variables
14579   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
14580   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
14581   if (OL && OR && OL->getDecl() == OR->getDecl()) {
14582     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
14583     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
14584     if (RL && RR && RL->getDecl() == RR->getDecl())
14585       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14586   }
14587 }
14588 
14589 // C99 6.5.16.1
14590 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14591                                        SourceLocation Loc,
14592                                        QualType CompoundType,
14593                                        BinaryOperatorKind Opc) {
14594   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14595 
14596   // Verify that LHS is a modifiable lvalue, and emit error if not.
14597   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
14598     return QualType();
14599 
14600   QualType LHSType = LHSExpr->getType();
14601   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14602                                              CompoundType;
14603   // OpenCL v1.2 s6.1.1.1 p2:
14604   // The half data type can only be used to declare a pointer to a buffer that
14605   // contains half values
14606   if (getLangOpts().OpenCL &&
14607       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14608       LHSType->isHalfType()) {
14609     Diag(Loc, diag::err_opencl_half_load_store) << 1
14610         << LHSType.getUnqualifiedType();
14611     return QualType();
14612   }
14613 
14614   // WebAssembly tables can't be used on RHS of an assignment expression.
14615   if (RHSType->isWebAssemblyTableType()) {
14616     Diag(Loc, diag::err_wasm_table_art) << 0;
14617     return QualType();
14618   }
14619 
14620   AssignConvertType ConvTy;
14621   if (CompoundType.isNull()) {
14622     Expr *RHSCheck = RHS.get();
14623 
14624     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
14625 
14626     QualType LHSTy(LHSType);
14627     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
14628     if (RHS.isInvalid())
14629       return QualType();
14630     // Special case of NSObject attributes on c-style pointer types.
14631     if (ConvTy == IncompatiblePointer &&
14632         ((Context.isObjCNSObjectType(LHSType) &&
14633           RHSType->isObjCObjectPointerType()) ||
14634          (Context.isObjCNSObjectType(RHSType) &&
14635           LHSType->isObjCObjectPointerType())))
14636       ConvTy = Compatible;
14637 
14638     if (ConvTy == Compatible &&
14639         LHSType->isObjCObjectType())
14640         Diag(Loc, diag::err_objc_object_assignment)
14641           << LHSType;
14642 
14643     // If the RHS is a unary plus or minus, check to see if they = and + are
14644     // right next to each other.  If so, the user may have typo'd "x =+ 4"
14645     // instead of "x += 4".
14646     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
14647       RHSCheck = ICE->getSubExpr();
14648     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
14649       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14650           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14651           // Only if the two operators are exactly adjacent.
14652           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
14653           // And there is a space or other character before the subexpr of the
14654           // unary +/-.  We don't want to warn on "x=-1".
14655           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
14656           UO->getSubExpr()->getBeginLoc().isFileID()) {
14657         Diag(Loc, diag::warn_not_compound_assign)
14658           << (UO->getOpcode() == UO_Plus ? "+" : "-")
14659           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14660       }
14661     }
14662 
14663     if (ConvTy == Compatible) {
14664       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14665         // Warn about retain cycles where a block captures the LHS, but
14666         // not if the LHS is a simple variable into which the block is
14667         // being stored...unless that variable can be captured by reference!
14668         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14669         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
14670         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14671           checkRetainCycles(LHSExpr, RHS.get());
14672       }
14673 
14674       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14675           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14676         // It is safe to assign a weak reference into a strong variable.
14677         // Although this code can still have problems:
14678         //   id x = self.weakProp;
14679         //   id y = self.weakProp;
14680         // we do not warn to warn spuriously when 'x' and 'y' are on separate
14681         // paths through the function. This should be revisited if
14682         // -Wrepeated-use-of-weak is made flow-sensitive.
14683         // For ObjCWeak only, we do not warn if the assign is to a non-weak
14684         // variable, which will be valid for the current autorelease scope.
14685         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14686                              RHS.get()->getBeginLoc()))
14687           getCurFunction()->markSafeWeakUse(RHS.get());
14688 
14689       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14690         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
14691       }
14692     }
14693   } else {
14694     // Compound assignment "x += y"
14695     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14696   }
14697 
14698   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
14699                                RHS.get(), AA_Assigning))
14700     return QualType();
14701 
14702   CheckForNullPointerDereference(*this, LHSExpr);
14703 
14704   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14705     if (CompoundType.isNull()) {
14706       // C++2a [expr.ass]p5:
14707       //   A simple-assignment whose left operand is of a volatile-qualified
14708       //   type is deprecated unless the assignment is either a discarded-value
14709       //   expression or an unevaluated operand
14710       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
14711     }
14712   }
14713 
14714   // C11 6.5.16p3: The type of an assignment expression is the type of the
14715   // left operand would have after lvalue conversion.
14716   // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14717   // qualified type, the value has the unqualified version of the type of the
14718   // lvalue; additionally, if the lvalue has atomic type, the value has the
14719   // non-atomic version of the type of the lvalue.
14720   // C++ 5.17p1: the type of the assignment expression is that of its left
14721   // operand.
14722   return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14723 }
14724 
14725 // Scenarios to ignore if expression E is:
14726 // 1. an explicit cast expression into void
14727 // 2. a function call expression that returns void
14728 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14729   E = E->IgnoreParens();
14730 
14731   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
14732     if (CE->getCastKind() == CK_ToVoid) {
14733       return true;
14734     }
14735 
14736     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14737     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14738         CE->getSubExpr()->getType()->isDependentType()) {
14739       return true;
14740     }
14741   }
14742 
14743   if (const auto *CE = dyn_cast<CallExpr>(E))
14744     return CE->getCallReturnType(Context)->isVoidType();
14745   return false;
14746 }
14747 
14748 // Look for instances where it is likely the comma operator is confused with
14749 // another operator.  There is an explicit list of acceptable expressions for
14750 // the left hand side of the comma operator, otherwise emit a warning.
14751 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14752   // No warnings in macros
14753   if (Loc.isMacroID())
14754     return;
14755 
14756   // Don't warn in template instantiations.
14757   if (inTemplateInstantiation())
14758     return;
14759 
14760   // Scope isn't fine-grained enough to explicitly list the specific cases, so
14761   // instead, skip more than needed, then call back into here with the
14762   // CommaVisitor in SemaStmt.cpp.
14763   // The listed locations are the initialization and increment portions
14764   // of a for loop.  The additional checks are on the condition of
14765   // if statements, do/while loops, and for loops.
14766   // Differences in scope flags for C89 mode requires the extra logic.
14767   const unsigned ForIncrementFlags =
14768       getLangOpts().C99 || getLangOpts().CPlusPlus
14769           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14770           : Scope::ContinueScope | Scope::BreakScope;
14771   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14772   const unsigned ScopeFlags = getCurScope()->getFlags();
14773   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14774       (ScopeFlags & ForInitFlags) == ForInitFlags)
14775     return;
14776 
14777   // If there are multiple comma operators used together, get the RHS of the
14778   // of the comma operator as the LHS.
14779   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14780     if (BO->getOpcode() != BO_Comma)
14781       break;
14782     LHS = BO->getRHS();
14783   }
14784 
14785   // Only allow some expressions on LHS to not warn.
14786   if (IgnoreCommaOperand(LHS, Context))
14787     return;
14788 
14789   Diag(Loc, diag::warn_comma_operator);
14790   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14791       << LHS->getSourceRange()
14792       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14793                                     LangOpts.CPlusPlus ? "static_cast<void>("
14794                                                        : "(void)(")
14795       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14796                                     ")");
14797 }
14798 
14799 // C99 6.5.17
14800 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14801                                    SourceLocation Loc) {
14802   LHS = S.CheckPlaceholderExpr(LHS.get());
14803   RHS = S.CheckPlaceholderExpr(RHS.get());
14804   if (LHS.isInvalid() || RHS.isInvalid())
14805     return QualType();
14806 
14807   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14808   // operands, but not unary promotions.
14809   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14810 
14811   // So we treat the LHS as a ignored value, and in C++ we allow the
14812   // containing site to determine what should be done with the RHS.
14813   LHS = S.IgnoredValueConversions(LHS.get());
14814   if (LHS.isInvalid())
14815     return QualType();
14816 
14817   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14818 
14819   if (!S.getLangOpts().CPlusPlus) {
14820     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14821     if (RHS.isInvalid())
14822       return QualType();
14823     if (!RHS.get()->getType()->isVoidType())
14824       S.RequireCompleteType(Loc, RHS.get()->getType(),
14825                             diag::err_incomplete_type);
14826   }
14827 
14828   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14829     S.DiagnoseCommaOperator(LHS.get(), Loc);
14830 
14831   return RHS.get()->getType();
14832 }
14833 
14834 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14835 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14836 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14837                                                ExprValueKind &VK,
14838                                                ExprObjectKind &OK,
14839                                                SourceLocation OpLoc,
14840                                                bool IsInc, bool IsPrefix) {
14841   if (Op->isTypeDependent())
14842     return S.Context.DependentTy;
14843 
14844   QualType ResType = Op->getType();
14845   // Atomic types can be used for increment / decrement where the non-atomic
14846   // versions can, so ignore the _Atomic() specifier for the purpose of
14847   // checking.
14848   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14849     ResType = ResAtomicType->getValueType();
14850 
14851   assert(!ResType.isNull() && "no type for increment/decrement expression");
14852 
14853   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14854     // Decrement of bool is not allowed.
14855     if (!IsInc) {
14856       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14857       return QualType();
14858     }
14859     // Increment of bool sets it to true, but is deprecated.
14860     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14861                                               : diag::warn_increment_bool)
14862       << Op->getSourceRange();
14863   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14864     // Error on enum increments and decrements in C++ mode
14865     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14866     return QualType();
14867   } else if (ResType->isRealType()) {
14868     // OK!
14869   } else if (ResType->isPointerType()) {
14870     // C99 6.5.2.4p2, 6.5.6p2
14871     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14872       return QualType();
14873   } else if (ResType->isObjCObjectPointerType()) {
14874     // On modern runtimes, ObjC pointer arithmetic is forbidden.
14875     // Otherwise, we just need a complete type.
14876     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14877         checkArithmeticOnObjCPointer(S, OpLoc, Op))
14878       return QualType();
14879   } else if (ResType->isAnyComplexType()) {
14880     // C99 does not support ++/-- on complex types, we allow as an extension.
14881     S.Diag(OpLoc, diag::ext_integer_increment_complex)
14882       << ResType << Op->getSourceRange();
14883   } else if (ResType->isPlaceholderType()) {
14884     ExprResult PR = S.CheckPlaceholderExpr(Op);
14885     if (PR.isInvalid()) return QualType();
14886     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14887                                           IsInc, IsPrefix);
14888   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14889     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14890   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14891              (ResType->castAs<VectorType>()->getVectorKind() !=
14892               VectorKind::AltiVecBool)) {
14893     // The z vector extensions allow ++ and -- for non-bool vectors.
14894   } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
14895              ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14896     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14897   } else {
14898     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14899       << ResType << int(IsInc) << Op->getSourceRange();
14900     return QualType();
14901   }
14902   // At this point, we know we have a real, complex or pointer type.
14903   // Now make sure the operand is a modifiable lvalue.
14904   if (CheckForModifiableLvalue(Op, OpLoc, S))
14905     return QualType();
14906   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14907     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14908     //   An operand with volatile-qualified type is deprecated
14909     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14910         << IsInc << ResType;
14911   }
14912   // In C++, a prefix increment is the same type as the operand. Otherwise
14913   // (in C or with postfix), the increment is the unqualified type of the
14914   // operand.
14915   if (IsPrefix && S.getLangOpts().CPlusPlus) {
14916     VK = VK_LValue;
14917     OK = Op->getObjectKind();
14918     return ResType;
14919   } else {
14920     VK = VK_PRValue;
14921     return ResType.getUnqualifiedType();
14922   }
14923 }
14924 
14925 
14926 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14927 /// This routine allows us to typecheck complex/recursive expressions
14928 /// where the declaration is needed for type checking. We only need to
14929 /// handle cases when the expression references a function designator
14930 /// or is an lvalue. Here are some examples:
14931 ///  - &(x) => x
14932 ///  - &*****f => f for f a function designator.
14933 ///  - &s.xx => s
14934 ///  - &s.zz[1].yy -> s, if zz is an array
14935 ///  - *(x + 1) -> x, if x is an array
14936 ///  - &"123"[2] -> 0
14937 ///  - & __real__ x -> x
14938 ///
14939 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14940 /// members.
14941 static ValueDecl *getPrimaryDecl(Expr *E) {
14942   switch (E->getStmtClass()) {
14943   case Stmt::DeclRefExprClass:
14944     return cast<DeclRefExpr>(E)->getDecl();
14945   case Stmt::MemberExprClass:
14946     // If this is an arrow operator, the address is an offset from
14947     // the base's value, so the object the base refers to is
14948     // irrelevant.
14949     if (cast<MemberExpr>(E)->isArrow())
14950       return nullptr;
14951     // Otherwise, the expression refers to a part of the base
14952     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14953   case Stmt::ArraySubscriptExprClass: {
14954     // FIXME: This code shouldn't be necessary!  We should catch the implicit
14955     // promotion of register arrays earlier.
14956     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14957     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14958       if (ICE->getSubExpr()->getType()->isArrayType())
14959         return getPrimaryDecl(ICE->getSubExpr());
14960     }
14961     return nullptr;
14962   }
14963   case Stmt::UnaryOperatorClass: {
14964     UnaryOperator *UO = cast<UnaryOperator>(E);
14965 
14966     switch(UO->getOpcode()) {
14967     case UO_Real:
14968     case UO_Imag:
14969     case UO_Extension:
14970       return getPrimaryDecl(UO->getSubExpr());
14971     default:
14972       return nullptr;
14973     }
14974   }
14975   case Stmt::ParenExprClass:
14976     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14977   case Stmt::ImplicitCastExprClass:
14978     // If the result of an implicit cast is an l-value, we care about
14979     // the sub-expression; otherwise, the result here doesn't matter.
14980     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14981   case Stmt::CXXUuidofExprClass:
14982     return cast<CXXUuidofExpr>(E)->getGuidDecl();
14983   default:
14984     return nullptr;
14985   }
14986 }
14987 
14988 namespace {
14989 enum {
14990   AO_Bit_Field = 0,
14991   AO_Vector_Element = 1,
14992   AO_Property_Expansion = 2,
14993   AO_Register_Variable = 3,
14994   AO_Matrix_Element = 4,
14995   AO_No_Error = 5
14996 };
14997 }
14998 /// Diagnose invalid operand for address of operations.
14999 ///
15000 /// \param Type The type of operand which cannot have its address taken.
15001 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
15002                                          Expr *E, unsigned Type) {
15003   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
15004 }
15005 
15006 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
15007                                                  const Expr *Op,
15008                                                  const CXXMethodDecl *MD) {
15009   const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
15010 
15011   if (Op != DRE)
15012     return Diag(OpLoc, diag::err_parens_pointer_member_function)
15013            << Op->getSourceRange();
15014 
15015   // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
15016   if (isa<CXXDestructorDecl>(MD))
15017     return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
15018            << DRE->getSourceRange();
15019 
15020   if (DRE->getQualifier())
15021     return false;
15022 
15023   if (MD->getParent()->getName().empty())
15024     return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15025            << DRE->getSourceRange();
15026 
15027   SmallString<32> Str;
15028   StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
15029   return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15030          << DRE->getSourceRange()
15031          << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
15032 }
15033 
15034 /// CheckAddressOfOperand - The operand of & must be either a function
15035 /// designator or an lvalue designating an object. If it is an lvalue, the
15036 /// object cannot be declared with storage class register or be a bit field.
15037 /// Note: The usual conversions are *not* applied to the operand of the &
15038 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
15039 /// In C++, the operand might be an overloaded function name, in which case
15040 /// we allow the '&' but retain the overloaded-function type.
15041 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
15042   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
15043     if (PTy->getKind() == BuiltinType::Overload) {
15044       Expr *E = OrigOp.get()->IgnoreParens();
15045       if (!isa<OverloadExpr>(E)) {
15046         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
15047         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
15048           << OrigOp.get()->getSourceRange();
15049         return QualType();
15050       }
15051 
15052       OverloadExpr *Ovl = cast<OverloadExpr>(E);
15053       if (isa<UnresolvedMemberExpr>(Ovl))
15054         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
15055           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15056             << OrigOp.get()->getSourceRange();
15057           return QualType();
15058         }
15059 
15060       return Context.OverloadTy;
15061     }
15062 
15063     if (PTy->getKind() == BuiltinType::UnknownAny)
15064       return Context.UnknownAnyTy;
15065 
15066     if (PTy->getKind() == BuiltinType::BoundMember) {
15067       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15068         << OrigOp.get()->getSourceRange();
15069       return QualType();
15070     }
15071 
15072     OrigOp = CheckPlaceholderExpr(OrigOp.get());
15073     if (OrigOp.isInvalid()) return QualType();
15074   }
15075 
15076   if (OrigOp.get()->isTypeDependent())
15077     return Context.DependentTy;
15078 
15079   assert(!OrigOp.get()->hasPlaceholderType());
15080 
15081   // Make sure to ignore parentheses in subsequent checks
15082   Expr *op = OrigOp.get()->IgnoreParens();
15083 
15084   // In OpenCL captures for blocks called as lambda functions
15085   // are located in the private address space. Blocks used in
15086   // enqueue_kernel can be located in a different address space
15087   // depending on a vendor implementation. Thus preventing
15088   // taking an address of the capture to avoid invalid AS casts.
15089   if (LangOpts.OpenCL) {
15090     auto* VarRef = dyn_cast<DeclRefExpr>(op);
15091     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
15092       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
15093       return QualType();
15094     }
15095   }
15096 
15097   if (getLangOpts().C99) {
15098     // Implement C99-only parts of addressof rules.
15099     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
15100       if (uOp->getOpcode() == UO_Deref)
15101         // Per C99 6.5.3.2, the address of a deref always returns a valid result
15102         // (assuming the deref expression is valid).
15103         return uOp->getSubExpr()->getType();
15104     }
15105     // Technically, there should be a check for array subscript
15106     // expressions here, but the result of one is always an lvalue anyway.
15107   }
15108   ValueDecl *dcl = getPrimaryDecl(op);
15109 
15110   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
15111     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
15112                                            op->getBeginLoc()))
15113       return QualType();
15114 
15115   Expr::LValueClassification lval = op->ClassifyLValue(Context);
15116   unsigned AddressOfError = AO_No_Error;
15117 
15118   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
15119     bool sfinae = (bool)isSFINAEContext();
15120     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
15121                                   : diag::ext_typecheck_addrof_temporary)
15122       << op->getType() << op->getSourceRange();
15123     if (sfinae)
15124       return QualType();
15125     // Materialize the temporary as an lvalue so that we can take its address.
15126     OrigOp = op =
15127         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
15128   } else if (isa<ObjCSelectorExpr>(op)) {
15129     return Context.getPointerType(op->getType());
15130   } else if (lval == Expr::LV_MemberFunction) {
15131     // If it's an instance method, make a member pointer.
15132     // The expression must have exactly the form &A::foo.
15133 
15134     // If the underlying expression isn't a decl ref, give up.
15135     if (!isa<DeclRefExpr>(op)) {
15136       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15137         << OrigOp.get()->getSourceRange();
15138       return QualType();
15139     }
15140     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
15141     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
15142 
15143     CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15144 
15145     QualType MPTy = Context.getMemberPointerType(
15146         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
15147     // Under the MS ABI, lock down the inheritance model now.
15148     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15149       (void)isCompleteType(OpLoc, MPTy);
15150     return MPTy;
15151   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
15152     // C99 6.5.3.2p1
15153     // The operand must be either an l-value or a function designator
15154     if (!op->getType()->isFunctionType()) {
15155       // Use a special diagnostic for loads from property references.
15156       if (isa<PseudoObjectExpr>(op)) {
15157         AddressOfError = AO_Property_Expansion;
15158       } else {
15159         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
15160           << op->getType() << op->getSourceRange();
15161         return QualType();
15162       }
15163     } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
15164       if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
15165         CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15166     }
15167 
15168   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
15169     // The operand cannot be a bit-field
15170     AddressOfError = AO_Bit_Field;
15171   } else if (op->getObjectKind() == OK_VectorComponent) {
15172     // The operand cannot be an element of a vector
15173     AddressOfError = AO_Vector_Element;
15174   } else if (op->getObjectKind() == OK_MatrixComponent) {
15175     // The operand cannot be an element of a matrix.
15176     AddressOfError = AO_Matrix_Element;
15177   } else if (dcl) { // C99 6.5.3.2p1
15178     // We have an lvalue with a decl. Make sure the decl is not declared
15179     // with the register storage-class specifier.
15180     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
15181       // in C++ it is not error to take address of a register
15182       // variable (c++03 7.1.1P3)
15183       if (vd->getStorageClass() == SC_Register &&
15184           !getLangOpts().CPlusPlus) {
15185         AddressOfError = AO_Register_Variable;
15186       }
15187     } else if (isa<MSPropertyDecl>(dcl)) {
15188       AddressOfError = AO_Property_Expansion;
15189     } else if (isa<FunctionTemplateDecl>(dcl)) {
15190       return Context.OverloadTy;
15191     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
15192       // Okay: we can take the address of a field.
15193       // Could be a pointer to member, though, if there is an explicit
15194       // scope qualifier for the class.
15195       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
15196         DeclContext *Ctx = dcl->getDeclContext();
15197         if (Ctx && Ctx->isRecord()) {
15198           if (dcl->getType()->isReferenceType()) {
15199             Diag(OpLoc,
15200                  diag::err_cannot_form_pointer_to_member_of_reference_type)
15201               << dcl->getDeclName() << dcl->getType();
15202             return QualType();
15203           }
15204 
15205           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
15206             Ctx = Ctx->getParent();
15207 
15208           QualType MPTy = Context.getMemberPointerType(
15209               op->getType(),
15210               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
15211           // Under the MS ABI, lock down the inheritance model now.
15212           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15213             (void)isCompleteType(OpLoc, MPTy);
15214           return MPTy;
15215         }
15216       }
15217     } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
15218                     MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
15219       llvm_unreachable("Unknown/unexpected decl type");
15220   }
15221 
15222   if (AddressOfError != AO_No_Error) {
15223     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
15224     return QualType();
15225   }
15226 
15227   if (lval == Expr::LV_IncompleteVoidType) {
15228     // Taking the address of a void variable is technically illegal, but we
15229     // allow it in cases which are otherwise valid.
15230     // Example: "extern void x; void* y = &x;".
15231     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
15232   }
15233 
15234   // If the operand has type "type", the result has type "pointer to type".
15235   if (op->getType()->isObjCObjectType())
15236     return Context.getObjCObjectPointerType(op->getType());
15237 
15238   // Cannot take the address of WebAssembly references or tables.
15239   if (Context.getTargetInfo().getTriple().isWasm()) {
15240     QualType OpTy = op->getType();
15241     if (OpTy.isWebAssemblyReferenceType()) {
15242       Diag(OpLoc, diag::err_wasm_ca_reference)
15243           << 1 << OrigOp.get()->getSourceRange();
15244       return QualType();
15245     }
15246     if (OpTy->isWebAssemblyTableType()) {
15247       Diag(OpLoc, diag::err_wasm_table_pr)
15248           << 1 << OrigOp.get()->getSourceRange();
15249       return QualType();
15250     }
15251   }
15252 
15253   CheckAddressOfPackedMember(op);
15254 
15255   return Context.getPointerType(op->getType());
15256 }
15257 
15258 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
15259   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
15260   if (!DRE)
15261     return;
15262   const Decl *D = DRE->getDecl();
15263   if (!D)
15264     return;
15265   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
15266   if (!Param)
15267     return;
15268   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
15269     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
15270       return;
15271   if (FunctionScopeInfo *FD = S.getCurFunction())
15272     FD->ModifiedNonNullParams.insert(Param);
15273 }
15274 
15275 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
15276 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
15277                                         SourceLocation OpLoc,
15278                                         bool IsAfterAmp = false) {
15279   if (Op->isTypeDependent())
15280     return S.Context.DependentTy;
15281 
15282   ExprResult ConvResult = S.UsualUnaryConversions(Op);
15283   if (ConvResult.isInvalid())
15284     return QualType();
15285   Op = ConvResult.get();
15286   QualType OpTy = Op->getType();
15287   QualType Result;
15288 
15289   if (isa<CXXReinterpretCastExpr>(Op)) {
15290     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
15291     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
15292                                      Op->getSourceRange());
15293   }
15294 
15295   if (const PointerType *PT = OpTy->getAs<PointerType>())
15296   {
15297     Result = PT->getPointeeType();
15298   }
15299   else if (const ObjCObjectPointerType *OPT =
15300              OpTy->getAs<ObjCObjectPointerType>())
15301     Result = OPT->getPointeeType();
15302   else {
15303     ExprResult PR = S.CheckPlaceholderExpr(Op);
15304     if (PR.isInvalid()) return QualType();
15305     if (PR.get() != Op)
15306       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
15307   }
15308 
15309   if (Result.isNull()) {
15310     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
15311       << OpTy << Op->getSourceRange();
15312     return QualType();
15313   }
15314 
15315   if (Result->isVoidType()) {
15316     // C++ [expr.unary.op]p1:
15317     //   [...] the expression to which [the unary * operator] is applied shall
15318     //   be a pointer to an object type, or a pointer to a function type
15319     LangOptions LO = S.getLangOpts();
15320     if (LO.CPlusPlus)
15321       S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
15322           << OpTy << Op->getSourceRange();
15323     else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
15324       S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
15325           << OpTy << Op->getSourceRange();
15326   }
15327 
15328   // Dereferences are usually l-values...
15329   VK = VK_LValue;
15330 
15331   // ...except that certain expressions are never l-values in C.
15332   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
15333     VK = VK_PRValue;
15334 
15335   return Result;
15336 }
15337 
15338 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
15339   BinaryOperatorKind Opc;
15340   switch (Kind) {
15341   default: llvm_unreachable("Unknown binop!");
15342   case tok::periodstar:           Opc = BO_PtrMemD; break;
15343   case tok::arrowstar:            Opc = BO_PtrMemI; break;
15344   case tok::star:                 Opc = BO_Mul; break;
15345   case tok::slash:                Opc = BO_Div; break;
15346   case tok::percent:              Opc = BO_Rem; break;
15347   case tok::plus:                 Opc = BO_Add; break;
15348   case tok::minus:                Opc = BO_Sub; break;
15349   case tok::lessless:             Opc = BO_Shl; break;
15350   case tok::greatergreater:       Opc = BO_Shr; break;
15351   case tok::lessequal:            Opc = BO_LE; break;
15352   case tok::less:                 Opc = BO_LT; break;
15353   case tok::greaterequal:         Opc = BO_GE; break;
15354   case tok::greater:              Opc = BO_GT; break;
15355   case tok::exclaimequal:         Opc = BO_NE; break;
15356   case tok::equalequal:           Opc = BO_EQ; break;
15357   case tok::spaceship:            Opc = BO_Cmp; break;
15358   case tok::amp:                  Opc = BO_And; break;
15359   case tok::caret:                Opc = BO_Xor; break;
15360   case tok::pipe:                 Opc = BO_Or; break;
15361   case tok::ampamp:               Opc = BO_LAnd; break;
15362   case tok::pipepipe:             Opc = BO_LOr; break;
15363   case tok::equal:                Opc = BO_Assign; break;
15364   case tok::starequal:            Opc = BO_MulAssign; break;
15365   case tok::slashequal:           Opc = BO_DivAssign; break;
15366   case tok::percentequal:         Opc = BO_RemAssign; break;
15367   case tok::plusequal:            Opc = BO_AddAssign; break;
15368   case tok::minusequal:           Opc = BO_SubAssign; break;
15369   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
15370   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
15371   case tok::ampequal:             Opc = BO_AndAssign; break;
15372   case tok::caretequal:           Opc = BO_XorAssign; break;
15373   case tok::pipeequal:            Opc = BO_OrAssign; break;
15374   case tok::comma:                Opc = BO_Comma; break;
15375   }
15376   return Opc;
15377 }
15378 
15379 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
15380   tok::TokenKind Kind) {
15381   UnaryOperatorKind Opc;
15382   switch (Kind) {
15383   default: llvm_unreachable("Unknown unary op!");
15384   case tok::plusplus:     Opc = UO_PreInc; break;
15385   case tok::minusminus:   Opc = UO_PreDec; break;
15386   case tok::amp:          Opc = UO_AddrOf; break;
15387   case tok::star:         Opc = UO_Deref; break;
15388   case tok::plus:         Opc = UO_Plus; break;
15389   case tok::minus:        Opc = UO_Minus; break;
15390   case tok::tilde:        Opc = UO_Not; break;
15391   case tok::exclaim:      Opc = UO_LNot; break;
15392   case tok::kw___real:    Opc = UO_Real; break;
15393   case tok::kw___imag:    Opc = UO_Imag; break;
15394   case tok::kw___extension__: Opc = UO_Extension; break;
15395   }
15396   return Opc;
15397 }
15398 
15399 const FieldDecl *
15400 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
15401   // Explore the case for adding 'this->' to the LHS of a self assignment, very
15402   // common for setters.
15403   // struct A {
15404   // int X;
15405   // -void setX(int X) { X = X; }
15406   // +void setX(int X) { this->X = X; }
15407   // };
15408 
15409   // Only consider parameters for self assignment fixes.
15410   if (!isa<ParmVarDecl>(SelfAssigned))
15411     return nullptr;
15412   const auto *Method =
15413       dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
15414   if (!Method)
15415     return nullptr;
15416 
15417   const CXXRecordDecl *Parent = Method->getParent();
15418   // In theory this is fixable if the lambda explicitly captures this, but
15419   // that's added complexity that's rarely going to be used.
15420   if (Parent->isLambda())
15421     return nullptr;
15422 
15423   // FIXME: Use an actual Lookup operation instead of just traversing fields
15424   // in order to get base class fields.
15425   auto Field =
15426       llvm::find_if(Parent->fields(),
15427                     [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
15428                       return F->getDeclName() == Name;
15429                     });
15430   return (Field != Parent->field_end()) ? *Field : nullptr;
15431 }
15432 
15433 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
15434 /// This warning suppressed in the event of macro expansions.
15435 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
15436                                    SourceLocation OpLoc, bool IsBuiltin) {
15437   if (S.inTemplateInstantiation())
15438     return;
15439   if (S.isUnevaluatedContext())
15440     return;
15441   if (OpLoc.isInvalid() || OpLoc.isMacroID())
15442     return;
15443   LHSExpr = LHSExpr->IgnoreParenImpCasts();
15444   RHSExpr = RHSExpr->IgnoreParenImpCasts();
15445   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15446   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15447   if (!LHSDeclRef || !RHSDeclRef ||
15448       LHSDeclRef->getLocation().isMacroID() ||
15449       RHSDeclRef->getLocation().isMacroID())
15450     return;
15451   const ValueDecl *LHSDecl =
15452     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
15453   const ValueDecl *RHSDecl =
15454     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
15455   if (LHSDecl != RHSDecl)
15456     return;
15457   if (LHSDecl->getType().isVolatileQualified())
15458     return;
15459   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
15460     if (RefTy->getPointeeType().isVolatileQualified())
15461       return;
15462 
15463   auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
15464                                       : diag::warn_self_assignment_overloaded)
15465               << LHSDeclRef->getType() << LHSExpr->getSourceRange()
15466               << RHSExpr->getSourceRange();
15467   if (const FieldDecl *SelfAssignField =
15468           S.getSelfAssignmentClassMemberCandidate(RHSDecl))
15469     Diag << 1 << SelfAssignField
15470          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
15471   else
15472     Diag << 0;
15473 }
15474 
15475 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
15476 /// is usually indicative of introspection within the Objective-C pointer.
15477 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
15478                                           SourceLocation OpLoc) {
15479   if (!S.getLangOpts().ObjC)
15480     return;
15481 
15482   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
15483   const Expr *LHS = L.get();
15484   const Expr *RHS = R.get();
15485 
15486   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15487     ObjCPointerExpr = LHS;
15488     OtherExpr = RHS;
15489   }
15490   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15491     ObjCPointerExpr = RHS;
15492     OtherExpr = LHS;
15493   }
15494 
15495   // This warning is deliberately made very specific to reduce false
15496   // positives with logic that uses '&' for hashing.  This logic mainly
15497   // looks for code trying to introspect into tagged pointers, which
15498   // code should generally never do.
15499   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
15500     unsigned Diag = diag::warn_objc_pointer_masking;
15501     // Determine if we are introspecting the result of performSelectorXXX.
15502     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
15503     // Special case messages to -performSelector and friends, which
15504     // can return non-pointer values boxed in a pointer value.
15505     // Some clients may wish to silence warnings in this subcase.
15506     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
15507       Selector S = ME->getSelector();
15508       StringRef SelArg0 = S.getNameForSlot(0);
15509       if (SelArg0.starts_with("performSelector"))
15510         Diag = diag::warn_objc_pointer_masking_performSelector;
15511     }
15512 
15513     S.Diag(OpLoc, Diag)
15514       << ObjCPointerExpr->getSourceRange();
15515   }
15516 }
15517 
15518 static NamedDecl *getDeclFromExpr(Expr *E) {
15519   if (!E)
15520     return nullptr;
15521   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
15522     return DRE->getDecl();
15523   if (auto *ME = dyn_cast<MemberExpr>(E))
15524     return ME->getMemberDecl();
15525   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
15526     return IRE->getDecl();
15527   return nullptr;
15528 }
15529 
15530 // This helper function promotes a binary operator's operands (which are of a
15531 // half vector type) to a vector of floats and then truncates the result to
15532 // a vector of either half or short.
15533 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15534                                       BinaryOperatorKind Opc, QualType ResultTy,
15535                                       ExprValueKind VK, ExprObjectKind OK,
15536                                       bool IsCompAssign, SourceLocation OpLoc,
15537                                       FPOptionsOverride FPFeatures) {
15538   auto &Context = S.getASTContext();
15539   assert((isVector(ResultTy, Context.HalfTy) ||
15540           isVector(ResultTy, Context.ShortTy)) &&
15541          "Result must be a vector of half or short");
15542   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15543          isVector(RHS.get()->getType(), Context.HalfTy) &&
15544          "both operands expected to be a half vector");
15545 
15546   RHS = convertVector(RHS.get(), Context.FloatTy, S);
15547   QualType BinOpResTy = RHS.get()->getType();
15548 
15549   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15550   // change BinOpResTy to a vector of ints.
15551   if (isVector(ResultTy, Context.ShortTy))
15552     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
15553 
15554   if (IsCompAssign)
15555     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15556                                           ResultTy, VK, OK, OpLoc, FPFeatures,
15557                                           BinOpResTy, BinOpResTy);
15558 
15559   LHS = convertVector(LHS.get(), Context.FloatTy, S);
15560   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15561                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
15562   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15563 }
15564 
15565 static std::pair<ExprResult, ExprResult>
15566 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15567                            Expr *RHSExpr) {
15568   ExprResult LHS = LHSExpr, RHS = RHSExpr;
15569   if (!S.Context.isDependenceAllowed()) {
15570     // C cannot handle TypoExpr nodes on either side of a binop because it
15571     // doesn't handle dependent types properly, so make sure any TypoExprs have
15572     // been dealt with before checking the operands.
15573     LHS = S.CorrectDelayedTyposInExpr(LHS);
15574     RHS = S.CorrectDelayedTyposInExpr(
15575         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15576         [Opc, LHS](Expr *E) {
15577           if (Opc != BO_Assign)
15578             return ExprResult(E);
15579           // Avoid correcting the RHS to the same Expr as the LHS.
15580           Decl *D = getDeclFromExpr(E);
15581           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15582         });
15583   }
15584   return std::make_pair(LHS, RHS);
15585 }
15586 
15587 /// Returns true if conversion between vectors of halfs and vectors of floats
15588 /// is needed.
15589 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15590                                      Expr *E0, Expr *E1 = nullptr) {
15591   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15592       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15593     return false;
15594 
15595   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15596     QualType Ty = E->IgnoreImplicit()->getType();
15597 
15598     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15599     // to vectors of floats. Although the element type of the vectors is __fp16,
15600     // the vectors shouldn't be treated as storage-only types. See the
15601     // discussion here: https://reviews.llvm.org/rG825235c140e7
15602     if (const VectorType *VT = Ty->getAs<VectorType>()) {
15603       if (VT->getVectorKind() == VectorKind::Neon)
15604         return false;
15605       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15606     }
15607     return false;
15608   };
15609 
15610   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15611 }
15612 
15613 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15614 /// operator @p Opc at location @c TokLoc. This routine only supports
15615 /// built-in operations; ActOnBinOp handles overloaded operators.
15616 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15617                                     BinaryOperatorKind Opc,
15618                                     Expr *LHSExpr, Expr *RHSExpr) {
15619   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
15620     // The syntax only allows initializer lists on the RHS of assignment,
15621     // so we don't need to worry about accepting invalid code for
15622     // non-assignment operators.
15623     // C++11 5.17p9:
15624     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15625     //   of x = {} is x = T().
15626     InitializationKind Kind = InitializationKind::CreateDirectList(
15627         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15628     InitializedEntity Entity =
15629         InitializedEntity::InitializeTemporary(LHSExpr->getType());
15630     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15631     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
15632     if (Init.isInvalid())
15633       return Init;
15634     RHSExpr = Init.get();
15635   }
15636 
15637   ExprResult LHS = LHSExpr, RHS = RHSExpr;
15638   QualType ResultTy;     // Result type of the binary operator.
15639   // The following two variables are used for compound assignment operators
15640   QualType CompLHSTy;    // Type of LHS after promotions for computation
15641   QualType CompResultTy; // Type of computation result
15642   ExprValueKind VK = VK_PRValue;
15643   ExprObjectKind OK = OK_Ordinary;
15644   bool ConvertHalfVec = false;
15645 
15646   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15647   if (!LHS.isUsable() || !RHS.isUsable())
15648     return ExprError();
15649 
15650   if (getLangOpts().OpenCL) {
15651     QualType LHSTy = LHSExpr->getType();
15652     QualType RHSTy = RHSExpr->getType();
15653     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15654     // the ATOMIC_VAR_INIT macro.
15655     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15656       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15657       if (BO_Assign == Opc)
15658         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15659       else
15660         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15661       return ExprError();
15662     }
15663 
15664     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15665     // only with a builtin functions and therefore should be disallowed here.
15666     if (LHSTy->isImageType() || RHSTy->isImageType() ||
15667         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15668         LHSTy->isPipeType() || RHSTy->isPipeType() ||
15669         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15670       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15671       return ExprError();
15672     }
15673   }
15674 
15675   checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15676   checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15677 
15678   switch (Opc) {
15679   case BO_Assign:
15680     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
15681     if (getLangOpts().CPlusPlus &&
15682         LHS.get()->getObjectKind() != OK_ObjCProperty) {
15683       VK = LHS.get()->getValueKind();
15684       OK = LHS.get()->getObjectKind();
15685     }
15686     if (!ResultTy.isNull()) {
15687       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15688       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
15689 
15690       // Avoid copying a block to the heap if the block is assigned to a local
15691       // auto variable that is declared in the same scope as the block. This
15692       // optimization is unsafe if the local variable is declared in an outer
15693       // scope. For example:
15694       //
15695       // BlockTy b;
15696       // {
15697       //   b = ^{...};
15698       // }
15699       // // It is unsafe to invoke the block here if it wasn't copied to the
15700       // // heap.
15701       // b();
15702 
15703       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
15704         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
15705           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
15706             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15707               BE->getBlockDecl()->setCanAvoidCopyToHeap();
15708 
15709       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15710         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
15711                               NTCUC_Assignment, NTCUK_Copy);
15712     }
15713     RecordModifiableNonNullParam(*this, LHS.get());
15714     break;
15715   case BO_PtrMemD:
15716   case BO_PtrMemI:
15717     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15718                                             Opc == BO_PtrMemI);
15719     break;
15720   case BO_Mul:
15721   case BO_Div:
15722     ConvertHalfVec = true;
15723     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
15724                                            Opc == BO_Div);
15725     break;
15726   case BO_Rem:
15727     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
15728     break;
15729   case BO_Add:
15730     ConvertHalfVec = true;
15731     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
15732     break;
15733   case BO_Sub:
15734     ConvertHalfVec = true;
15735     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
15736     break;
15737   case BO_Shl:
15738   case BO_Shr:
15739     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
15740     break;
15741   case BO_LE:
15742   case BO_LT:
15743   case BO_GE:
15744   case BO_GT:
15745     ConvertHalfVec = true;
15746     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15747     break;
15748   case BO_EQ:
15749   case BO_NE:
15750     ConvertHalfVec = true;
15751     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15752     break;
15753   case BO_Cmp:
15754     ConvertHalfVec = true;
15755     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15756     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15757     break;
15758   case BO_And:
15759     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
15760     [[fallthrough]];
15761   case BO_Xor:
15762   case BO_Or:
15763     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15764     break;
15765   case BO_LAnd:
15766   case BO_LOr:
15767     ConvertHalfVec = true;
15768     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
15769     break;
15770   case BO_MulAssign:
15771   case BO_DivAssign:
15772     ConvertHalfVec = true;
15773     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
15774                                                Opc == BO_DivAssign);
15775     CompLHSTy = CompResultTy;
15776     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15777       ResultTy =
15778           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15779     break;
15780   case BO_RemAssign:
15781     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
15782     CompLHSTy = CompResultTy;
15783     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15784       ResultTy =
15785           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15786     break;
15787   case BO_AddAssign:
15788     ConvertHalfVec = true;
15789     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15790     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15791       ResultTy =
15792           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15793     break;
15794   case BO_SubAssign:
15795     ConvertHalfVec = true;
15796     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15797     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15798       ResultTy =
15799           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15800     break;
15801   case BO_ShlAssign:
15802   case BO_ShrAssign:
15803     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15804     CompLHSTy = CompResultTy;
15805     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15806       ResultTy =
15807           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15808     break;
15809   case BO_AndAssign:
15810   case BO_OrAssign: // fallthrough
15811     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15812     [[fallthrough]];
15813   case BO_XorAssign:
15814     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15815     CompLHSTy = CompResultTy;
15816     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15817       ResultTy =
15818           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15819     break;
15820   case BO_Comma:
15821     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15822     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15823       VK = RHS.get()->getValueKind();
15824       OK = RHS.get()->getObjectKind();
15825     }
15826     break;
15827   }
15828   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15829     return ExprError();
15830 
15831   // Some of the binary operations require promoting operands of half vector to
15832   // float vectors and truncating the result back to half vector. For now, we do
15833   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15834   // arm64).
15835   assert(
15836       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15837                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
15838       "both sides are half vectors or neither sides are");
15839   ConvertHalfVec =
15840       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15841 
15842   // Check for array bounds violations for both sides of the BinaryOperator
15843   CheckArrayAccess(LHS.get());
15844   CheckArrayAccess(RHS.get());
15845 
15846   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15847     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15848                                                  &Context.Idents.get("object_setClass"),
15849                                                  SourceLocation(), LookupOrdinaryName);
15850     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15851       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15852       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15853           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15854                                         "object_setClass(")
15855           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15856                                           ",")
15857           << FixItHint::CreateInsertion(RHSLocEnd, ")");
15858     }
15859     else
15860       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15861   }
15862   else if (const ObjCIvarRefExpr *OIRE =
15863            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15864     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15865 
15866   // Opc is not a compound assignment if CompResultTy is null.
15867   if (CompResultTy.isNull()) {
15868     if (ConvertHalfVec)
15869       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15870                                  OpLoc, CurFPFeatureOverrides());
15871     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15872                                   VK, OK, OpLoc, CurFPFeatureOverrides());
15873   }
15874 
15875   // Handle compound assignments.
15876   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15877       OK_ObjCProperty) {
15878     VK = VK_LValue;
15879     OK = LHS.get()->getObjectKind();
15880   }
15881 
15882   // The LHS is not converted to the result type for fixed-point compound
15883   // assignment as the common type is computed on demand. Reset the CompLHSTy
15884   // to the LHS type we would have gotten after unary conversions.
15885   if (CompResultTy->isFixedPointType())
15886     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15887 
15888   if (ConvertHalfVec)
15889     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15890                                OpLoc, CurFPFeatureOverrides());
15891 
15892   return CompoundAssignOperator::Create(
15893       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15894       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15895 }
15896 
15897 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15898 /// operators are mixed in a way that suggests that the programmer forgot that
15899 /// comparison operators have higher precedence. The most typical example of
15900 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15901 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15902                                       SourceLocation OpLoc, Expr *LHSExpr,
15903                                       Expr *RHSExpr) {
15904   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15905   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15906 
15907   // Check that one of the sides is a comparison operator and the other isn't.
15908   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15909   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15910   if (isLeftComp == isRightComp)
15911     return;
15912 
15913   // Bitwise operations are sometimes used as eager logical ops.
15914   // Don't diagnose this.
15915   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15916   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15917   if (isLeftBitwise || isRightBitwise)
15918     return;
15919 
15920   SourceRange DiagRange = isLeftComp
15921                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15922                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
15923   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15924   SourceRange ParensRange =
15925       isLeftComp
15926           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15927           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15928 
15929   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15930     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15931   SuggestParentheses(Self, OpLoc,
15932     Self.PDiag(diag::note_precedence_silence) << OpStr,
15933     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15934   SuggestParentheses(Self, OpLoc,
15935     Self.PDiag(diag::note_precedence_bitwise_first)
15936       << BinaryOperator::getOpcodeStr(Opc),
15937     ParensRange);
15938 }
15939 
15940 /// It accepts a '&&' expr that is inside a '||' one.
15941 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15942 /// in parentheses.
15943 static void
15944 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15945                                        BinaryOperator *Bop) {
15946   assert(Bop->getOpcode() == BO_LAnd);
15947   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15948       << Bop->getSourceRange() << OpLoc;
15949   SuggestParentheses(Self, Bop->getOperatorLoc(),
15950     Self.PDiag(diag::note_precedence_silence)
15951       << Bop->getOpcodeStr(),
15952     Bop->getSourceRange());
15953 }
15954 
15955 /// Look for '&&' in the left hand of a '||' expr.
15956 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15957                                              Expr *LHSExpr, Expr *RHSExpr) {
15958   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15959     if (Bop->getOpcode() == BO_LAnd) {
15960       // If it's "string_literal && a || b" don't warn since the precedence
15961       // doesn't matter.
15962       if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15963         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15964     } else if (Bop->getOpcode() == BO_LOr) {
15965       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15966         // If it's "a || b && string_literal || c" we didn't warn earlier for
15967         // "a || b && string_literal", but warn now.
15968         if (RBop->getOpcode() == BO_LAnd &&
15969             isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15970           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15971       }
15972     }
15973   }
15974 }
15975 
15976 /// Look for '&&' in the right hand of a '||' expr.
15977 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15978                                              Expr *LHSExpr, Expr *RHSExpr) {
15979   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15980     if (Bop->getOpcode() == BO_LAnd) {
15981       // If it's "a || b && string_literal" don't warn since the precedence
15982       // doesn't matter.
15983       if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15984         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15985     }
15986   }
15987 }
15988 
15989 /// Look for bitwise op in the left or right hand of a bitwise op with
15990 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15991 /// the '&' expression in parentheses.
15992 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15993                                          SourceLocation OpLoc, Expr *SubExpr) {
15994   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15995     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15996       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15997         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15998         << Bop->getSourceRange() << OpLoc;
15999       SuggestParentheses(S, Bop->getOperatorLoc(),
16000         S.PDiag(diag::note_precedence_silence)
16001           << Bop->getOpcodeStr(),
16002         Bop->getSourceRange());
16003     }
16004   }
16005 }
16006 
16007 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
16008                                     Expr *SubExpr, StringRef Shift) {
16009   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
16010     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
16011       StringRef Op = Bop->getOpcodeStr();
16012       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
16013           << Bop->getSourceRange() << OpLoc << Shift << Op;
16014       SuggestParentheses(S, Bop->getOperatorLoc(),
16015           S.PDiag(diag::note_precedence_silence) << Op,
16016           Bop->getSourceRange());
16017     }
16018   }
16019 }
16020 
16021 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
16022                                  Expr *LHSExpr, Expr *RHSExpr) {
16023   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
16024   if (!OCE)
16025     return;
16026 
16027   FunctionDecl *FD = OCE->getDirectCallee();
16028   if (!FD || !FD->isOverloadedOperator())
16029     return;
16030 
16031   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
16032   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
16033     return;
16034 
16035   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
16036       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
16037       << (Kind == OO_LessLess);
16038   SuggestParentheses(S, OCE->getOperatorLoc(),
16039                      S.PDiag(diag::note_precedence_silence)
16040                          << (Kind == OO_LessLess ? "<<" : ">>"),
16041                      OCE->getSourceRange());
16042   SuggestParentheses(
16043       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
16044       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
16045 }
16046 
16047 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
16048 /// precedence.
16049 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
16050                                     SourceLocation OpLoc, Expr *LHSExpr,
16051                                     Expr *RHSExpr){
16052   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
16053   if (BinaryOperator::isBitwiseOp(Opc))
16054     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
16055 
16056   // Diagnose "arg1 & arg2 | arg3"
16057   if ((Opc == BO_Or || Opc == BO_Xor) &&
16058       !OpLoc.isMacroID()/* Don't warn in macros. */) {
16059     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
16060     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
16061   }
16062 
16063   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
16064   // We don't warn for 'assert(a || b && "bad")' since this is safe.
16065   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
16066     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
16067     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
16068   }
16069 
16070   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
16071       || Opc == BO_Shr) {
16072     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
16073     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
16074     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
16075   }
16076 
16077   // Warn on overloaded shift operators and comparisons, such as:
16078   // cout << 5 == 4;
16079   if (BinaryOperator::isComparisonOp(Opc))
16080     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
16081 }
16082 
16083 // Binary Operators.  'Tok' is the token for the operator.
16084 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
16085                             tok::TokenKind Kind,
16086                             Expr *LHSExpr, Expr *RHSExpr) {
16087   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
16088   assert(LHSExpr && "ActOnBinOp(): missing left expression");
16089   assert(RHSExpr && "ActOnBinOp(): missing right expression");
16090 
16091   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
16092   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
16093 
16094   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
16095 }
16096 
16097 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
16098                        UnresolvedSetImpl &Functions) {
16099   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
16100   if (OverOp != OO_None && OverOp != OO_Equal)
16101     LookupOverloadedOperatorName(OverOp, S, Functions);
16102 
16103   // In C++20 onwards, we may have a second operator to look up.
16104   if (getLangOpts().CPlusPlus20) {
16105     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
16106       LookupOverloadedOperatorName(ExtraOp, S, Functions);
16107   }
16108 }
16109 
16110 /// Build an overloaded binary operator expression in the given scope.
16111 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
16112                                        BinaryOperatorKind Opc,
16113                                        Expr *LHS, Expr *RHS) {
16114   switch (Opc) {
16115   case BO_Assign:
16116     // In the non-overloaded case, we warn about self-assignment (x = x) for
16117     // both simple assignment and certain compound assignments where algebra
16118     // tells us the operation yields a constant result.  When the operator is
16119     // overloaded, we can't do the latter because we don't want to assume that
16120     // those algebraic identities still apply; for example, a path-building
16121     // library might use operator/= to append paths.  But it's still reasonable
16122     // to assume that simple assignment is just moving/copying values around
16123     // and so self-assignment is likely a bug.
16124     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
16125     [[fallthrough]];
16126   case BO_DivAssign:
16127   case BO_RemAssign:
16128   case BO_SubAssign:
16129   case BO_AndAssign:
16130   case BO_OrAssign:
16131   case BO_XorAssign:
16132     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
16133     break;
16134   default:
16135     break;
16136   }
16137 
16138   // Find all of the overloaded operators visible from this point.
16139   UnresolvedSet<16> Functions;
16140   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
16141 
16142   // Build the (potentially-overloaded, potentially-dependent)
16143   // binary operation.
16144   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
16145 }
16146 
16147 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
16148                             BinaryOperatorKind Opc,
16149                             Expr *LHSExpr, Expr *RHSExpr) {
16150   ExprResult LHS, RHS;
16151   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
16152   if (!LHS.isUsable() || !RHS.isUsable())
16153     return ExprError();
16154   LHSExpr = LHS.get();
16155   RHSExpr = RHS.get();
16156 
16157   // We want to end up calling one of checkPseudoObjectAssignment
16158   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
16159   // both expressions are overloadable or either is type-dependent),
16160   // or CreateBuiltinBinOp (in any other case).  We also want to get
16161   // any placeholder types out of the way.
16162 
16163   // Handle pseudo-objects in the LHS.
16164   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
16165     // Assignments with a pseudo-object l-value need special analysis.
16166     if (pty->getKind() == BuiltinType::PseudoObject &&
16167         BinaryOperator::isAssignmentOp(Opc))
16168       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
16169 
16170     // Don't resolve overloads if the other type is overloadable.
16171     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
16172       // We can't actually test that if we still have a placeholder,
16173       // though.  Fortunately, none of the exceptions we see in that
16174       // code below are valid when the LHS is an overload set.  Note
16175       // that an overload set can be dependently-typed, but it never
16176       // instantiates to having an overloadable type.
16177       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16178       if (resolvedRHS.isInvalid()) return ExprError();
16179       RHSExpr = resolvedRHS.get();
16180 
16181       if (RHSExpr->isTypeDependent() ||
16182           RHSExpr->getType()->isOverloadableType())
16183         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16184     }
16185 
16186     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
16187     // template, diagnose the missing 'template' keyword instead of diagnosing
16188     // an invalid use of a bound member function.
16189     //
16190     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
16191     // to C++1z [over.over]/1.4, but we already checked for that case above.
16192     if (Opc == BO_LT && inTemplateInstantiation() &&
16193         (pty->getKind() == BuiltinType::BoundMember ||
16194          pty->getKind() == BuiltinType::Overload)) {
16195       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
16196       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
16197           llvm::any_of(OE->decls(), [](NamedDecl *ND) {
16198             return isa<FunctionTemplateDecl>(ND);
16199           })) {
16200         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
16201                                 : OE->getNameLoc(),
16202              diag::err_template_kw_missing)
16203           << OE->getName().getAsString() << "";
16204         return ExprError();
16205       }
16206     }
16207 
16208     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
16209     if (LHS.isInvalid()) return ExprError();
16210     LHSExpr = LHS.get();
16211   }
16212 
16213   // Handle pseudo-objects in the RHS.
16214   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
16215     // An overload in the RHS can potentially be resolved by the type
16216     // being assigned to.
16217     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
16218       if (getLangOpts().CPlusPlus &&
16219           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
16220            LHSExpr->getType()->isOverloadableType()))
16221         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16222 
16223       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16224     }
16225 
16226     // Don't resolve overloads if the other type is overloadable.
16227     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
16228         LHSExpr->getType()->isOverloadableType())
16229       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16230 
16231     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16232     if (!resolvedRHS.isUsable()) return ExprError();
16233     RHSExpr = resolvedRHS.get();
16234   }
16235 
16236   if (getLangOpts().CPlusPlus) {
16237     // If either expression is type-dependent, always build an
16238     // overloaded op.
16239     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
16240       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16241 
16242     // Otherwise, build an overloaded op if either expression has an
16243     // overloadable type.
16244     if (LHSExpr->getType()->isOverloadableType() ||
16245         RHSExpr->getType()->isOverloadableType())
16246       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16247   }
16248 
16249   if (getLangOpts().RecoveryAST &&
16250       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
16251     assert(!getLangOpts().CPlusPlus);
16252     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
16253            "Should only occur in error-recovery path.");
16254     if (BinaryOperator::isCompoundAssignmentOp(Opc))
16255       // C [6.15.16] p3:
16256       // An assignment expression has the value of the left operand after the
16257       // assignment, but is not an lvalue.
16258       return CompoundAssignOperator::Create(
16259           Context, LHSExpr, RHSExpr, Opc,
16260           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
16261           OpLoc, CurFPFeatureOverrides());
16262     QualType ResultType;
16263     switch (Opc) {
16264     case BO_Assign:
16265       ResultType = LHSExpr->getType().getUnqualifiedType();
16266       break;
16267     case BO_LT:
16268     case BO_GT:
16269     case BO_LE:
16270     case BO_GE:
16271     case BO_EQ:
16272     case BO_NE:
16273     case BO_LAnd:
16274     case BO_LOr:
16275       // These operators have a fixed result type regardless of operands.
16276       ResultType = Context.IntTy;
16277       break;
16278     case BO_Comma:
16279       ResultType = RHSExpr->getType();
16280       break;
16281     default:
16282       ResultType = Context.DependentTy;
16283       break;
16284     }
16285     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
16286                                   VK_PRValue, OK_Ordinary, OpLoc,
16287                                   CurFPFeatureOverrides());
16288   }
16289 
16290   // Build a built-in binary operation.
16291   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16292 }
16293 
16294 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
16295   if (T.isNull() || T->isDependentType())
16296     return false;
16297 
16298   if (!Ctx.isPromotableIntegerType(T))
16299     return true;
16300 
16301   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
16302 }
16303 
16304 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
16305                                       UnaryOperatorKind Opc, Expr *InputExpr,
16306                                       bool IsAfterAmp) {
16307   ExprResult Input = InputExpr;
16308   ExprValueKind VK = VK_PRValue;
16309   ExprObjectKind OK = OK_Ordinary;
16310   QualType resultType;
16311   bool CanOverflow = false;
16312 
16313   bool ConvertHalfVec = false;
16314   if (getLangOpts().OpenCL) {
16315     QualType Ty = InputExpr->getType();
16316     // The only legal unary operation for atomics is '&'.
16317     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
16318     // OpenCL special types - image, sampler, pipe, and blocks are to be used
16319     // only with a builtin functions and therefore should be disallowed here.
16320         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
16321         || Ty->isBlockPointerType())) {
16322       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16323                        << InputExpr->getType()
16324                        << Input.get()->getSourceRange());
16325     }
16326   }
16327 
16328   if (getLangOpts().HLSL && OpLoc.isValid()) {
16329     if (Opc == UO_AddrOf)
16330       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
16331     if (Opc == UO_Deref)
16332       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
16333   }
16334 
16335   switch (Opc) {
16336   case UO_PreInc:
16337   case UO_PreDec:
16338   case UO_PostInc:
16339   case UO_PostDec:
16340     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
16341                                                 OpLoc,
16342                                                 Opc == UO_PreInc ||
16343                                                 Opc == UO_PostInc,
16344                                                 Opc == UO_PreInc ||
16345                                                 Opc == UO_PreDec);
16346     CanOverflow = isOverflowingIntegerType(Context, resultType);
16347     break;
16348   case UO_AddrOf:
16349     resultType = CheckAddressOfOperand(Input, OpLoc);
16350     CheckAddressOfNoDeref(InputExpr);
16351     RecordModifiableNonNullParam(*this, InputExpr);
16352     break;
16353   case UO_Deref: {
16354     Input = DefaultFunctionArrayLvalueConversion(Input.get());
16355     if (Input.isInvalid()) return ExprError();
16356     resultType =
16357         CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
16358     break;
16359   }
16360   case UO_Plus:
16361   case UO_Minus:
16362     CanOverflow = Opc == UO_Minus &&
16363                   isOverflowingIntegerType(Context, Input.get()->getType());
16364     Input = UsualUnaryConversions(Input.get());
16365     if (Input.isInvalid()) return ExprError();
16366     // Unary plus and minus require promoting an operand of half vector to a
16367     // float vector and truncating the result back to a half vector. For now, we
16368     // do this only when HalfArgsAndReturns is set (that is, when the target is
16369     // arm or arm64).
16370     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
16371 
16372     // If the operand is a half vector, promote it to a float vector.
16373     if (ConvertHalfVec)
16374       Input = convertVector(Input.get(), Context.FloatTy, *this);
16375     resultType = Input.get()->getType();
16376     if (resultType->isDependentType())
16377       break;
16378     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
16379       break;
16380     else if (resultType->isVectorType() &&
16381              // The z vector extensions don't allow + or - with bool vectors.
16382              (!Context.getLangOpts().ZVector ||
16383               resultType->castAs<VectorType>()->getVectorKind() !=
16384                   VectorKind::AltiVecBool))
16385       break;
16386     else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
16387       break;
16388     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
16389              Opc == UO_Plus &&
16390              resultType->isPointerType())
16391       break;
16392 
16393     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16394       << resultType << Input.get()->getSourceRange());
16395 
16396   case UO_Not: // bitwise complement
16397     Input = UsualUnaryConversions(Input.get());
16398     if (Input.isInvalid())
16399       return ExprError();
16400     resultType = Input.get()->getType();
16401     if (resultType->isDependentType())
16402       break;
16403     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
16404     if (resultType->isComplexType() || resultType->isComplexIntegerType())
16405       // C99 does not support '~' for complex conjugation.
16406       Diag(OpLoc, diag::ext_integer_complement_complex)
16407           << resultType << Input.get()->getSourceRange();
16408     else if (resultType->hasIntegerRepresentation())
16409       break;
16410     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
16411       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
16412       // on vector float types.
16413       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16414       if (!T->isIntegerType())
16415         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16416                           << resultType << Input.get()->getSourceRange());
16417     } else {
16418       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16419                        << resultType << Input.get()->getSourceRange());
16420     }
16421     break;
16422 
16423   case UO_LNot: // logical negation
16424     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
16425     Input = DefaultFunctionArrayLvalueConversion(Input.get());
16426     if (Input.isInvalid()) return ExprError();
16427     resultType = Input.get()->getType();
16428 
16429     // Though we still have to promote half FP to float...
16430     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
16431       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
16432       resultType = Context.FloatTy;
16433     }
16434 
16435     // WebAsembly tables can't be used in unary expressions.
16436     if (resultType->isPointerType() &&
16437         resultType->getPointeeType().isWebAssemblyReferenceType()) {
16438       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16439                        << resultType << Input.get()->getSourceRange());
16440     }
16441 
16442     if (resultType->isDependentType())
16443       break;
16444     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
16445       // C99 6.5.3.3p1: ok, fallthrough;
16446       if (Context.getLangOpts().CPlusPlus) {
16447         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
16448         // operand contextually converted to bool.
16449         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
16450                                   ScalarTypeToBooleanCastKind(resultType));
16451       } else if (Context.getLangOpts().OpenCL &&
16452                  Context.getLangOpts().OpenCLVersion < 120) {
16453         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16454         // operate on scalar float types.
16455         if (!resultType->isIntegerType() && !resultType->isPointerType())
16456           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16457                            << resultType << Input.get()->getSourceRange());
16458       }
16459     } else if (resultType->isExtVectorType()) {
16460       if (Context.getLangOpts().OpenCL &&
16461           Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
16462         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16463         // operate on vector float types.
16464         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16465         if (!T->isIntegerType())
16466           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16467                            << resultType << Input.get()->getSourceRange());
16468       }
16469       // Vector logical not returns the signed variant of the operand type.
16470       resultType = GetSignedVectorType(resultType);
16471       break;
16472     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
16473       const VectorType *VTy = resultType->castAs<VectorType>();
16474       if (VTy->getVectorKind() != VectorKind::Generic)
16475         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16476                          << resultType << Input.get()->getSourceRange());
16477 
16478       // Vector logical not returns the signed variant of the operand type.
16479       resultType = GetSignedVectorType(resultType);
16480       break;
16481     } else {
16482       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16483         << resultType << Input.get()->getSourceRange());
16484     }
16485 
16486     // LNot always has type int. C99 6.5.3.3p5.
16487     // In C++, it's bool. C++ 5.3.1p8
16488     resultType = Context.getLogicalOperationType();
16489     break;
16490   case UO_Real:
16491   case UO_Imag:
16492     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
16493     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
16494     // complex l-values to ordinary l-values and all other values to r-values.
16495     if (Input.isInvalid()) return ExprError();
16496     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
16497       if (Input.get()->isGLValue() &&
16498           Input.get()->getObjectKind() == OK_Ordinary)
16499         VK = Input.get()->getValueKind();
16500     } else if (!getLangOpts().CPlusPlus) {
16501       // In C, a volatile scalar is read by __imag. In C++, it is not.
16502       Input = DefaultLvalueConversion(Input.get());
16503     }
16504     break;
16505   case UO_Extension:
16506     resultType = Input.get()->getType();
16507     VK = Input.get()->getValueKind();
16508     OK = Input.get()->getObjectKind();
16509     break;
16510   case UO_Coawait:
16511     // It's unnecessary to represent the pass-through operator co_await in the
16512     // AST; just return the input expression instead.
16513     assert(!Input.get()->getType()->isDependentType() &&
16514                    "the co_await expression must be non-dependant before "
16515                    "building operator co_await");
16516     return Input;
16517   }
16518   if (resultType.isNull() || Input.isInvalid())
16519     return ExprError();
16520 
16521   // Check for array bounds violations in the operand of the UnaryOperator,
16522   // except for the '*' and '&' operators that have to be handled specially
16523   // by CheckArrayAccess (as there are special cases like &array[arraysize]
16524   // that are explicitly defined as valid by the standard).
16525   if (Opc != UO_AddrOf && Opc != UO_Deref)
16526     CheckArrayAccess(Input.get());
16527 
16528   auto *UO =
16529       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
16530                             OpLoc, CanOverflow, CurFPFeatureOverrides());
16531 
16532   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16533       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16534       !isUnevaluatedContext())
16535     ExprEvalContexts.back().PossibleDerefs.insert(UO);
16536 
16537   // Convert the result back to a half vector.
16538   if (ConvertHalfVec)
16539     return convertVector(UO, Context.HalfTy, *this);
16540   return UO;
16541 }
16542 
16543 /// Determine whether the given expression is a qualified member
16544 /// access expression, of a form that could be turned into a pointer to member
16545 /// with the address-of operator.
16546 bool Sema::isQualifiedMemberAccess(Expr *E) {
16547   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16548     if (!DRE->getQualifier())
16549       return false;
16550 
16551     ValueDecl *VD = DRE->getDecl();
16552     if (!VD->isCXXClassMember())
16553       return false;
16554 
16555     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
16556       return true;
16557     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
16558       return Method->isImplicitObjectMemberFunction();
16559 
16560     return false;
16561   }
16562 
16563   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
16564     if (!ULE->getQualifier())
16565       return false;
16566 
16567     for (NamedDecl *D : ULE->decls()) {
16568       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16569         if (Method->isImplicitObjectMemberFunction())
16570           return true;
16571       } else {
16572         // Overload set does not contain methods.
16573         break;
16574       }
16575     }
16576 
16577     return false;
16578   }
16579 
16580   return false;
16581 }
16582 
16583 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16584                               UnaryOperatorKind Opc, Expr *Input,
16585                               bool IsAfterAmp) {
16586   // First things first: handle placeholders so that the
16587   // overloaded-operator check considers the right type.
16588   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16589     // Increment and decrement of pseudo-object references.
16590     if (pty->getKind() == BuiltinType::PseudoObject &&
16591         UnaryOperator::isIncrementDecrementOp(Opc))
16592       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
16593 
16594     // extension is always a builtin operator.
16595     if (Opc == UO_Extension)
16596       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16597 
16598     // & gets special logic for several kinds of placeholder.
16599     // The builtin code knows what to do.
16600     if (Opc == UO_AddrOf &&
16601         (pty->getKind() == BuiltinType::Overload ||
16602          pty->getKind() == BuiltinType::UnknownAny ||
16603          pty->getKind() == BuiltinType::BoundMember))
16604       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16605 
16606     // Anything else needs to be handled now.
16607     ExprResult Result = CheckPlaceholderExpr(Input);
16608     if (Result.isInvalid()) return ExprError();
16609     Input = Result.get();
16610   }
16611 
16612   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16613       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16614       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
16615     // Find all of the overloaded operators visible from this point.
16616     UnresolvedSet<16> Functions;
16617     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16618     if (S && OverOp != OO_None)
16619       LookupOverloadedOperatorName(OverOp, S, Functions);
16620 
16621     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
16622   }
16623 
16624   return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
16625 }
16626 
16627 // Unary Operators.  'Tok' is the token for the operator.
16628 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16629                               Expr *Input, bool IsAfterAmp) {
16630   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
16631                       IsAfterAmp);
16632 }
16633 
16634 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
16635 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16636                                 LabelDecl *TheDecl) {
16637   TheDecl->markUsed(Context);
16638   // Create the AST node.  The address of a label always has type 'void*'.
16639   auto *Res = new (Context) AddrLabelExpr(
16640       OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16641 
16642   if (getCurFunction())
16643     getCurFunction()->AddrLabels.push_back(Res);
16644 
16645   return Res;
16646 }
16647 
16648 void Sema::ActOnStartStmtExpr() {
16649   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
16650   // Make sure we diagnose jumping into a statement expression.
16651   setFunctionHasBranchProtectedScope();
16652 }
16653 
16654 void Sema::ActOnStmtExprError() {
16655   // Note that function is also called by TreeTransform when leaving a
16656   // StmtExpr scope without rebuilding anything.
16657 
16658   DiscardCleanupsInEvaluationContext();
16659   PopExpressionEvaluationContext();
16660 }
16661 
16662 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16663                                SourceLocation RPLoc) {
16664   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
16665 }
16666 
16667 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16668                                SourceLocation RPLoc, unsigned TemplateDepth) {
16669   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16670   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
16671 
16672   if (hasAnyUnrecoverableErrorsInThisFunction())
16673     DiscardCleanupsInEvaluationContext();
16674   assert(!Cleanup.exprNeedsCleanups() &&
16675          "cleanups within StmtExpr not correctly bound!");
16676   PopExpressionEvaluationContext();
16677 
16678   // FIXME: there are a variety of strange constraints to enforce here, for
16679   // example, it is not possible to goto into a stmt expression apparently.
16680   // More semantic analysis is needed.
16681 
16682   // If there are sub-stmts in the compound stmt, take the type of the last one
16683   // as the type of the stmtexpr.
16684   QualType Ty = Context.VoidTy;
16685   bool StmtExprMayBindToTemp = false;
16686   if (!Compound->body_empty()) {
16687     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16688     if (const auto *LastStmt =
16689             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
16690       if (const Expr *Value = LastStmt->getExprStmt()) {
16691         StmtExprMayBindToTemp = true;
16692         Ty = Value->getType();
16693       }
16694     }
16695   }
16696 
16697   // FIXME: Check that expression type is complete/non-abstract; statement
16698   // expressions are not lvalues.
16699   Expr *ResStmtExpr =
16700       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16701   if (StmtExprMayBindToTemp)
16702     return MaybeBindToTemporary(ResStmtExpr);
16703   return ResStmtExpr;
16704 }
16705 
16706 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16707   if (ER.isInvalid())
16708     return ExprError();
16709 
16710   // Do function/array conversion on the last expression, but not
16711   // lvalue-to-rvalue.  However, initialize an unqualified type.
16712   ER = DefaultFunctionArrayConversion(ER.get());
16713   if (ER.isInvalid())
16714     return ExprError();
16715   Expr *E = ER.get();
16716 
16717   if (E->isTypeDependent())
16718     return E;
16719 
16720   // In ARC, if the final expression ends in a consume, splice
16721   // the consume out and bind it later.  In the alternate case
16722   // (when dealing with a retainable type), the result
16723   // initialization will create a produce.  In both cases the
16724   // result will be +1, and we'll need to balance that out with
16725   // a bind.
16726   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
16727   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16728     return Cast->getSubExpr();
16729 
16730   // FIXME: Provide a better location for the initialization.
16731   return PerformCopyInitialization(
16732       InitializedEntity::InitializeStmtExprResult(
16733           E->getBeginLoc(), E->getType().getUnqualifiedType()),
16734       SourceLocation(), E);
16735 }
16736 
16737 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16738                                       TypeSourceInfo *TInfo,
16739                                       ArrayRef<OffsetOfComponent> Components,
16740                                       SourceLocation RParenLoc) {
16741   QualType ArgTy = TInfo->getType();
16742   bool Dependent = ArgTy->isDependentType();
16743   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16744 
16745   // We must have at least one component that refers to the type, and the first
16746   // one is known to be a field designator.  Verify that the ArgTy represents
16747   // a struct/union/class.
16748   if (!Dependent && !ArgTy->isRecordType())
16749     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16750                        << ArgTy << TypeRange);
16751 
16752   // Type must be complete per C99 7.17p3 because a declaring a variable
16753   // with an incomplete type would be ill-formed.
16754   if (!Dependent
16755       && RequireCompleteType(BuiltinLoc, ArgTy,
16756                              diag::err_offsetof_incomplete_type, TypeRange))
16757     return ExprError();
16758 
16759   bool DidWarnAboutNonPOD = false;
16760   QualType CurrentType = ArgTy;
16761   SmallVector<OffsetOfNode, 4> Comps;
16762   SmallVector<Expr*, 4> Exprs;
16763   for (const OffsetOfComponent &OC : Components) {
16764     if (OC.isBrackets) {
16765       // Offset of an array sub-field.  TODO: Should we allow vector elements?
16766       if (!CurrentType->isDependentType()) {
16767         const ArrayType *AT = Context.getAsArrayType(CurrentType);
16768         if(!AT)
16769           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16770                            << CurrentType);
16771         CurrentType = AT->getElementType();
16772       } else
16773         CurrentType = Context.DependentTy;
16774 
16775       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
16776       if (IdxRval.isInvalid())
16777         return ExprError();
16778       Expr *Idx = IdxRval.get();
16779 
16780       // The expression must be an integral expression.
16781       // FIXME: An integral constant expression?
16782       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16783           !Idx->getType()->isIntegerType())
16784         return ExprError(
16785             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16786             << Idx->getSourceRange());
16787 
16788       // Record this array index.
16789       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16790       Exprs.push_back(Idx);
16791       continue;
16792     }
16793 
16794     // Offset of a field.
16795     if (CurrentType->isDependentType()) {
16796       // We have the offset of a field, but we can't look into the dependent
16797       // type. Just record the identifier of the field.
16798       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16799       CurrentType = Context.DependentTy;
16800       continue;
16801     }
16802 
16803     // We need to have a complete type to look into.
16804     if (RequireCompleteType(OC.LocStart, CurrentType,
16805                             diag::err_offsetof_incomplete_type))
16806       return ExprError();
16807 
16808     // Look for the designated field.
16809     const RecordType *RC = CurrentType->getAs<RecordType>();
16810     if (!RC)
16811       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16812                        << CurrentType);
16813     RecordDecl *RD = RC->getDecl();
16814 
16815     // C++ [lib.support.types]p5:
16816     //   The macro offsetof accepts a restricted set of type arguments in this
16817     //   International Standard. type shall be a POD structure or a POD union
16818     //   (clause 9).
16819     // C++11 [support.types]p4:
16820     //   If type is not a standard-layout class (Clause 9), the results are
16821     //   undefined.
16822     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16823       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16824       unsigned DiagID =
16825         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16826                             : diag::ext_offsetof_non_pod_type;
16827 
16828       if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
16829         Diag(BuiltinLoc, DiagID)
16830             << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
16831         DidWarnAboutNonPOD = true;
16832       }
16833     }
16834 
16835     // Look for the field.
16836     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16837     LookupQualifiedName(R, RD);
16838     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16839     IndirectFieldDecl *IndirectMemberDecl = nullptr;
16840     if (!MemberDecl) {
16841       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16842         MemberDecl = IndirectMemberDecl->getAnonField();
16843     }
16844 
16845     if (!MemberDecl) {
16846       // Lookup could be ambiguous when looking up a placeholder variable
16847       // __builtin_offsetof(S, _).
16848       // In that case we would already have emitted a diagnostic
16849       if (!R.isAmbiguous())
16850         Diag(BuiltinLoc, diag::err_no_member)
16851             << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
16852       return ExprError();
16853     }
16854 
16855     // C99 7.17p3:
16856     //   (If the specified member is a bit-field, the behavior is undefined.)
16857     //
16858     // We diagnose this as an error.
16859     if (MemberDecl->isBitField()) {
16860       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16861         << MemberDecl->getDeclName()
16862         << SourceRange(BuiltinLoc, RParenLoc);
16863       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16864       return ExprError();
16865     }
16866 
16867     RecordDecl *Parent = MemberDecl->getParent();
16868     if (IndirectMemberDecl)
16869       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16870 
16871     // If the member was found in a base class, introduce OffsetOfNodes for
16872     // the base class indirections.
16873     CXXBasePaths Paths;
16874     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16875                       Paths)) {
16876       if (Paths.getDetectedVirtual()) {
16877         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16878           << MemberDecl->getDeclName()
16879           << SourceRange(BuiltinLoc, RParenLoc);
16880         return ExprError();
16881       }
16882 
16883       CXXBasePath &Path = Paths.front();
16884       for (const CXXBasePathElement &B : Path)
16885         Comps.push_back(OffsetOfNode(B.Base));
16886     }
16887 
16888     if (IndirectMemberDecl) {
16889       for (auto *FI : IndirectMemberDecl->chain()) {
16890         assert(isa<FieldDecl>(FI));
16891         Comps.push_back(OffsetOfNode(OC.LocStart,
16892                                      cast<FieldDecl>(FI), OC.LocEnd));
16893       }
16894     } else
16895       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16896 
16897     CurrentType = MemberDecl->getType().getNonReferenceType();
16898   }
16899 
16900   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16901                               Comps, Exprs, RParenLoc);
16902 }
16903 
16904 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16905                                       SourceLocation BuiltinLoc,
16906                                       SourceLocation TypeLoc,
16907                                       ParsedType ParsedArgTy,
16908                                       ArrayRef<OffsetOfComponent> Components,
16909                                       SourceLocation RParenLoc) {
16910 
16911   TypeSourceInfo *ArgTInfo;
16912   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16913   if (ArgTy.isNull())
16914     return ExprError();
16915 
16916   if (!ArgTInfo)
16917     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16918 
16919   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16920 }
16921 
16922 
16923 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16924                                  Expr *CondExpr,
16925                                  Expr *LHSExpr, Expr *RHSExpr,
16926                                  SourceLocation RPLoc) {
16927   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16928 
16929   ExprValueKind VK = VK_PRValue;
16930   ExprObjectKind OK = OK_Ordinary;
16931   QualType resType;
16932   bool CondIsTrue = false;
16933   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16934     resType = Context.DependentTy;
16935   } else {
16936     // The conditional expression is required to be a constant expression.
16937     llvm::APSInt condEval(32);
16938     ExprResult CondICE = VerifyIntegerConstantExpression(
16939         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16940     if (CondICE.isInvalid())
16941       return ExprError();
16942     CondExpr = CondICE.get();
16943     CondIsTrue = condEval.getZExtValue();
16944 
16945     // If the condition is > zero, then the AST type is the same as the LHSExpr.
16946     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16947 
16948     resType = ActiveExpr->getType();
16949     VK = ActiveExpr->getValueKind();
16950     OK = ActiveExpr->getObjectKind();
16951   }
16952 
16953   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16954                                   resType, VK, OK, RPLoc, CondIsTrue);
16955 }
16956 
16957 //===----------------------------------------------------------------------===//
16958 // Clang Extensions.
16959 //===----------------------------------------------------------------------===//
16960 
16961 /// ActOnBlockStart - This callback is invoked when a block literal is started.
16962 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16963   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16964 
16965   if (LangOpts.CPlusPlus) {
16966     MangleNumberingContext *MCtx;
16967     Decl *ManglingContextDecl;
16968     std::tie(MCtx, ManglingContextDecl) =
16969         getCurrentMangleNumberContext(Block->getDeclContext());
16970     if (MCtx) {
16971       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16972       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16973     }
16974   }
16975 
16976   PushBlockScope(CurScope, Block);
16977   CurContext->addDecl(Block);
16978   if (CurScope)
16979     PushDeclContext(CurScope, Block);
16980   else
16981     CurContext = Block;
16982 
16983   getCurBlock()->HasImplicitReturnType = true;
16984 
16985   // Enter a new evaluation context to insulate the block from any
16986   // cleanups from the enclosing full-expression.
16987   PushExpressionEvaluationContext(
16988       ExpressionEvaluationContext::PotentiallyEvaluated);
16989 }
16990 
16991 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16992                                Scope *CurScope) {
16993   assert(ParamInfo.getIdentifier() == nullptr &&
16994          "block-id should have no identifier!");
16995   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16996   BlockScopeInfo *CurBlock = getCurBlock();
16997 
16998   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
16999   QualType T = Sig->getType();
17000 
17001   // FIXME: We should allow unexpanded parameter packs here, but that would,
17002   // in turn, make the block expression contain unexpanded parameter packs.
17003   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
17004     // Drop the parameters.
17005     FunctionProtoType::ExtProtoInfo EPI;
17006     EPI.HasTrailingReturn = false;
17007     EPI.TypeQuals.addConst();
17008     T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
17009     Sig = Context.getTrivialTypeSourceInfo(T);
17010   }
17011 
17012   // GetTypeForDeclarator always produces a function type for a block
17013   // literal signature.  Furthermore, it is always a FunctionProtoType
17014   // unless the function was written with a typedef.
17015   assert(T->isFunctionType() &&
17016          "GetTypeForDeclarator made a non-function block signature");
17017 
17018   // Look for an explicit signature in that function type.
17019   FunctionProtoTypeLoc ExplicitSignature;
17020 
17021   if ((ExplicitSignature = Sig->getTypeLoc()
17022                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
17023 
17024     // Check whether that explicit signature was synthesized by
17025     // GetTypeForDeclarator.  If so, don't save that as part of the
17026     // written signature.
17027     if (ExplicitSignature.getLocalRangeBegin() ==
17028         ExplicitSignature.getLocalRangeEnd()) {
17029       // This would be much cheaper if we stored TypeLocs instead of
17030       // TypeSourceInfos.
17031       TypeLoc Result = ExplicitSignature.getReturnLoc();
17032       unsigned Size = Result.getFullDataSize();
17033       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
17034       Sig->getTypeLoc().initializeFullCopy(Result, Size);
17035 
17036       ExplicitSignature = FunctionProtoTypeLoc();
17037     }
17038   }
17039 
17040   CurBlock->TheDecl->setSignatureAsWritten(Sig);
17041   CurBlock->FunctionType = T;
17042 
17043   const auto *Fn = T->castAs<FunctionType>();
17044   QualType RetTy = Fn->getReturnType();
17045   bool isVariadic =
17046       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
17047 
17048   CurBlock->TheDecl->setIsVariadic(isVariadic);
17049 
17050   // Context.DependentTy is used as a placeholder for a missing block
17051   // return type.  TODO:  what should we do with declarators like:
17052   //   ^ * { ... }
17053   // If the answer is "apply template argument deduction"....
17054   if (RetTy != Context.DependentTy) {
17055     CurBlock->ReturnType = RetTy;
17056     CurBlock->TheDecl->setBlockMissingReturnType(false);
17057     CurBlock->HasImplicitReturnType = false;
17058   }
17059 
17060   // Push block parameters from the declarator if we had them.
17061   SmallVector<ParmVarDecl*, 8> Params;
17062   if (ExplicitSignature) {
17063     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
17064       ParmVarDecl *Param = ExplicitSignature.getParam(I);
17065       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
17066           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
17067         // Diagnose this as an extension in C17 and earlier.
17068         if (!getLangOpts().C23)
17069           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
17070       }
17071       Params.push_back(Param);
17072     }
17073 
17074   // Fake up parameter variables if we have a typedef, like
17075   //   ^ fntype { ... }
17076   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
17077     for (const auto &I : Fn->param_types()) {
17078       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
17079           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
17080       Params.push_back(Param);
17081     }
17082   }
17083 
17084   // Set the parameters on the block decl.
17085   if (!Params.empty()) {
17086     CurBlock->TheDecl->setParams(Params);
17087     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
17088                              /*CheckParameterNames=*/false);
17089   }
17090 
17091   // Finally we can process decl attributes.
17092   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
17093 
17094   // Put the parameter variables in scope.
17095   for (auto *AI : CurBlock->TheDecl->parameters()) {
17096     AI->setOwningFunction(CurBlock->TheDecl);
17097 
17098     // If this has an identifier, add it to the scope stack.
17099     if (AI->getIdentifier()) {
17100       CheckShadow(CurBlock->TheScope, AI);
17101 
17102       PushOnScopeChains(AI, CurBlock->TheScope);
17103     }
17104 
17105     if (AI->isInvalidDecl())
17106       CurBlock->TheDecl->setInvalidDecl();
17107   }
17108 }
17109 
17110 /// ActOnBlockError - If there is an error parsing a block, this callback
17111 /// is invoked to pop the information about the block from the action impl.
17112 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
17113   // Leave the expression-evaluation context.
17114   DiscardCleanupsInEvaluationContext();
17115   PopExpressionEvaluationContext();
17116 
17117   // Pop off CurBlock, handle nested blocks.
17118   PopDeclContext();
17119   PopFunctionScopeInfo();
17120 }
17121 
17122 /// ActOnBlockStmtExpr - This is called when the body of a block statement
17123 /// literal was successfully completed.  ^(int x){...}
17124 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
17125                                     Stmt *Body, Scope *CurScope) {
17126   // If blocks are disabled, emit an error.
17127   if (!LangOpts.Blocks)
17128     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
17129 
17130   // Leave the expression-evaluation context.
17131   if (hasAnyUnrecoverableErrorsInThisFunction())
17132     DiscardCleanupsInEvaluationContext();
17133   assert(!Cleanup.exprNeedsCleanups() &&
17134          "cleanups within block not correctly bound!");
17135   PopExpressionEvaluationContext();
17136 
17137   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
17138   BlockDecl *BD = BSI->TheDecl;
17139 
17140   if (BSI->HasImplicitReturnType)
17141     deduceClosureReturnType(*BSI);
17142 
17143   QualType RetTy = Context.VoidTy;
17144   if (!BSI->ReturnType.isNull())
17145     RetTy = BSI->ReturnType;
17146 
17147   bool NoReturn = BD->hasAttr<NoReturnAttr>();
17148   QualType BlockTy;
17149 
17150   // If the user wrote a function type in some form, try to use that.
17151   if (!BSI->FunctionType.isNull()) {
17152     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
17153 
17154     FunctionType::ExtInfo Ext = FTy->getExtInfo();
17155     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
17156 
17157     // Turn protoless block types into nullary block types.
17158     if (isa<FunctionNoProtoType>(FTy)) {
17159       FunctionProtoType::ExtProtoInfo EPI;
17160       EPI.ExtInfo = Ext;
17161       BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17162 
17163       // Otherwise, if we don't need to change anything about the function type,
17164       // preserve its sugar structure.
17165     } else if (FTy->getReturnType() == RetTy &&
17166                (!NoReturn || FTy->getNoReturnAttr())) {
17167       BlockTy = BSI->FunctionType;
17168 
17169     // Otherwise, make the minimal modifications to the function type.
17170     } else {
17171       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
17172       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
17173       EPI.TypeQuals = Qualifiers();
17174       EPI.ExtInfo = Ext;
17175       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
17176     }
17177 
17178   // If we don't have a function type, just build one from nothing.
17179   } else {
17180     FunctionProtoType::ExtProtoInfo EPI;
17181     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
17182     BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17183   }
17184 
17185   DiagnoseUnusedParameters(BD->parameters());
17186   BlockTy = Context.getBlockPointerType(BlockTy);
17187 
17188   // If needed, diagnose invalid gotos and switches in the block.
17189   if (getCurFunction()->NeedsScopeChecking() &&
17190       !PP.isCodeCompletionEnabled())
17191     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
17192 
17193   BD->setBody(cast<CompoundStmt>(Body));
17194 
17195   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
17196     DiagnoseUnguardedAvailabilityViolations(BD);
17197 
17198   // Try to apply the named return value optimization. We have to check again
17199   // if we can do this, though, because blocks keep return statements around
17200   // to deduce an implicit return type.
17201   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
17202       !BD->isDependentContext())
17203     computeNRVO(Body, BSI);
17204 
17205   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
17206       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
17207     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
17208                           NTCUK_Destruct|NTCUK_Copy);
17209 
17210   PopDeclContext();
17211 
17212   // Set the captured variables on the block.
17213   SmallVector<BlockDecl::Capture, 4> Captures;
17214   for (Capture &Cap : BSI->Captures) {
17215     if (Cap.isInvalid() || Cap.isThisCapture())
17216       continue;
17217     // Cap.getVariable() is always a VarDecl because
17218     // blocks cannot capture structured bindings or other ValueDecl kinds.
17219     auto *Var = cast<VarDecl>(Cap.getVariable());
17220     Expr *CopyExpr = nullptr;
17221     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
17222       if (const RecordType *Record =
17223               Cap.getCaptureType()->getAs<RecordType>()) {
17224         // The capture logic needs the destructor, so make sure we mark it.
17225         // Usually this is unnecessary because most local variables have
17226         // their destructors marked at declaration time, but parameters are
17227         // an exception because it's technically only the call site that
17228         // actually requires the destructor.
17229         if (isa<ParmVarDecl>(Var))
17230           FinalizeVarWithDestructor(Var, Record);
17231 
17232         // Enter a separate potentially-evaluated context while building block
17233         // initializers to isolate their cleanups from those of the block
17234         // itself.
17235         // FIXME: Is this appropriate even when the block itself occurs in an
17236         // unevaluated operand?
17237         EnterExpressionEvaluationContext EvalContext(
17238             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
17239 
17240         SourceLocation Loc = Cap.getLocation();
17241 
17242         ExprResult Result = BuildDeclarationNameExpr(
17243             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
17244 
17245         // According to the blocks spec, the capture of a variable from
17246         // the stack requires a const copy constructor.  This is not true
17247         // of the copy/move done to move a __block variable to the heap.
17248         if (!Result.isInvalid() &&
17249             !Result.get()->getType().isConstQualified()) {
17250           Result = ImpCastExprToType(Result.get(),
17251                                      Result.get()->getType().withConst(),
17252                                      CK_NoOp, VK_LValue);
17253         }
17254 
17255         if (!Result.isInvalid()) {
17256           Result = PerformCopyInitialization(
17257               InitializedEntity::InitializeBlock(Var->getLocation(),
17258                                                  Cap.getCaptureType()),
17259               Loc, Result.get());
17260         }
17261 
17262         // Build a full-expression copy expression if initialization
17263         // succeeded and used a non-trivial constructor.  Recover from
17264         // errors by pretending that the copy isn't necessary.
17265         if (!Result.isInvalid() &&
17266             !cast<CXXConstructExpr>(Result.get())->getConstructor()
17267                 ->isTrivial()) {
17268           Result = MaybeCreateExprWithCleanups(Result);
17269           CopyExpr = Result.get();
17270         }
17271       }
17272     }
17273 
17274     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
17275                               CopyExpr);
17276     Captures.push_back(NewCap);
17277   }
17278   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
17279 
17280   // Pop the block scope now but keep it alive to the end of this function.
17281   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
17282   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
17283 
17284   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
17285 
17286   // If the block isn't obviously global, i.e. it captures anything at
17287   // all, then we need to do a few things in the surrounding context:
17288   if (Result->getBlockDecl()->hasCaptures()) {
17289     // First, this expression has a new cleanup object.
17290     ExprCleanupObjects.push_back(Result->getBlockDecl());
17291     Cleanup.setExprNeedsCleanups(true);
17292 
17293     // It also gets a branch-protected scope if any of the captured
17294     // variables needs destruction.
17295     for (const auto &CI : Result->getBlockDecl()->captures()) {
17296       const VarDecl *var = CI.getVariable();
17297       if (var->getType().isDestructedType() != QualType::DK_none) {
17298         setFunctionHasBranchProtectedScope();
17299         break;
17300       }
17301     }
17302   }
17303 
17304   if (getCurFunction())
17305     getCurFunction()->addBlock(BD);
17306 
17307   if (BD->isInvalidDecl())
17308     return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
17309                               {Result}, Result->getType());
17310   return Result;
17311 }
17312 
17313 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
17314                             SourceLocation RPLoc) {
17315   TypeSourceInfo *TInfo;
17316   GetTypeFromParser(Ty, &TInfo);
17317   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
17318 }
17319 
17320 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
17321                                 Expr *E, TypeSourceInfo *TInfo,
17322                                 SourceLocation RPLoc) {
17323   Expr *OrigExpr = E;
17324   bool IsMS = false;
17325 
17326   // CUDA device code does not support varargs.
17327   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
17328     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
17329       CUDAFunctionTarget T = IdentifyCUDATarget(F);
17330       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
17331         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
17332     }
17333   }
17334 
17335   // NVPTX does not support va_arg expression.
17336   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
17337       Context.getTargetInfo().getTriple().isNVPTX())
17338     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
17339 
17340   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
17341   // as Microsoft ABI on an actual Microsoft platform, where
17342   // __builtin_ms_va_list and __builtin_va_list are the same.)
17343   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
17344       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
17345     QualType MSVaListType = Context.getBuiltinMSVaListType();
17346     if (Context.hasSameType(MSVaListType, E->getType())) {
17347       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
17348         return ExprError();
17349       IsMS = true;
17350     }
17351   }
17352 
17353   // Get the va_list type
17354   QualType VaListType = Context.getBuiltinVaListType();
17355   if (!IsMS) {
17356     if (VaListType->isArrayType()) {
17357       // Deal with implicit array decay; for example, on x86-64,
17358       // va_list is an array, but it's supposed to decay to
17359       // a pointer for va_arg.
17360       VaListType = Context.getArrayDecayedType(VaListType);
17361       // Make sure the input expression also decays appropriately.
17362       ExprResult Result = UsualUnaryConversions(E);
17363       if (Result.isInvalid())
17364         return ExprError();
17365       E = Result.get();
17366     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
17367       // If va_list is a record type and we are compiling in C++ mode,
17368       // check the argument using reference binding.
17369       InitializedEntity Entity = InitializedEntity::InitializeParameter(
17370           Context, Context.getLValueReferenceType(VaListType), false);
17371       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
17372       if (Init.isInvalid())
17373         return ExprError();
17374       E = Init.getAs<Expr>();
17375     } else {
17376       // Otherwise, the va_list argument must be an l-value because
17377       // it is modified by va_arg.
17378       if (!E->isTypeDependent() &&
17379           CheckForModifiableLvalue(E, BuiltinLoc, *this))
17380         return ExprError();
17381     }
17382   }
17383 
17384   if (!IsMS && !E->isTypeDependent() &&
17385       !Context.hasSameType(VaListType, E->getType()))
17386     return ExprError(
17387         Diag(E->getBeginLoc(),
17388              diag::err_first_argument_to_va_arg_not_of_type_va_list)
17389         << OrigExpr->getType() << E->getSourceRange());
17390 
17391   if (!TInfo->getType()->isDependentType()) {
17392     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
17393                             diag::err_second_parameter_to_va_arg_incomplete,
17394                             TInfo->getTypeLoc()))
17395       return ExprError();
17396 
17397     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
17398                                TInfo->getType(),
17399                                diag::err_second_parameter_to_va_arg_abstract,
17400                                TInfo->getTypeLoc()))
17401       return ExprError();
17402 
17403     if (!TInfo->getType().isPODType(Context)) {
17404       Diag(TInfo->getTypeLoc().getBeginLoc(),
17405            TInfo->getType()->isObjCLifetimeType()
17406              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
17407              : diag::warn_second_parameter_to_va_arg_not_pod)
17408         << TInfo->getType()
17409         << TInfo->getTypeLoc().getSourceRange();
17410     }
17411 
17412     // Check for va_arg where arguments of the given type will be promoted
17413     // (i.e. this va_arg is guaranteed to have undefined behavior).
17414     QualType PromoteType;
17415     if (Context.isPromotableIntegerType(TInfo->getType())) {
17416       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
17417       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
17418       // and C23 7.16.1.1p2 says, in part:
17419       //   If type is not compatible with the type of the actual next argument
17420       //   (as promoted according to the default argument promotions), the
17421       //   behavior is undefined, except for the following cases:
17422       //     - both types are pointers to qualified or unqualified versions of
17423       //       compatible types;
17424       //     - one type is compatible with a signed integer type, the other
17425       //       type is compatible with the corresponding unsigned integer type,
17426       //       and the value is representable in both types;
17427       //     - one type is pointer to qualified or unqualified void and the
17428       //       other is a pointer to a qualified or unqualified character type;
17429       //     - or, the type of the next argument is nullptr_t and type is a
17430       //       pointer type that has the same representation and alignment
17431       //       requirements as a pointer to a character type.
17432       // Given that type compatibility is the primary requirement (ignoring
17433       // qualifications), you would think we could call typesAreCompatible()
17434       // directly to test this. However, in C++, that checks for *same type*,
17435       // which causes false positives when passing an enumeration type to
17436       // va_arg. Instead, get the underlying type of the enumeration and pass
17437       // that.
17438       QualType UnderlyingType = TInfo->getType();
17439       if (const auto *ET = UnderlyingType->getAs<EnumType>())
17440         UnderlyingType = ET->getDecl()->getIntegerType();
17441       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17442                                      /*CompareUnqualified*/ true))
17443         PromoteType = QualType();
17444 
17445       // If the types are still not compatible, we need to test whether the
17446       // promoted type and the underlying type are the same except for
17447       // signedness. Ask the AST for the correctly corresponding type and see
17448       // if that's compatible.
17449       if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
17450           PromoteType->isUnsignedIntegerType() !=
17451               UnderlyingType->isUnsignedIntegerType()) {
17452         UnderlyingType =
17453             UnderlyingType->isUnsignedIntegerType()
17454                 ? Context.getCorrespondingSignedType(UnderlyingType)
17455                 : Context.getCorrespondingUnsignedType(UnderlyingType);
17456         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17457                                        /*CompareUnqualified*/ true))
17458           PromoteType = QualType();
17459       }
17460     }
17461     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
17462       PromoteType = Context.DoubleTy;
17463     if (!PromoteType.isNull())
17464       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
17465                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
17466                           << TInfo->getType()
17467                           << PromoteType
17468                           << TInfo->getTypeLoc().getSourceRange());
17469   }
17470 
17471   QualType T = TInfo->getType().getNonLValueExprType(Context);
17472   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
17473 }
17474 
17475 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
17476   // The type of __null will be int or long, depending on the size of
17477   // pointers on the target.
17478   QualType Ty;
17479   unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
17480   if (pw == Context.getTargetInfo().getIntWidth())
17481     Ty = Context.IntTy;
17482   else if (pw == Context.getTargetInfo().getLongWidth())
17483     Ty = Context.LongTy;
17484   else if (pw == Context.getTargetInfo().getLongLongWidth())
17485     Ty = Context.LongLongTy;
17486   else {
17487     llvm_unreachable("I don't know size of pointer!");
17488   }
17489 
17490   return new (Context) GNUNullExpr(Ty, TokenLoc);
17491 }
17492 
17493 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
17494   CXXRecordDecl *ImplDecl = nullptr;
17495 
17496   // Fetch the std::source_location::__impl decl.
17497   if (NamespaceDecl *Std = S.getStdNamespace()) {
17498     LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
17499                           Loc, Sema::LookupOrdinaryName);
17500     if (S.LookupQualifiedName(ResultSL, Std)) {
17501       if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
17502         LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
17503                                 Loc, Sema::LookupOrdinaryName);
17504         if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
17505             S.LookupQualifiedName(ResultImpl, SLDecl)) {
17506           ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
17507         }
17508       }
17509     }
17510   }
17511 
17512   if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
17513     S.Diag(Loc, diag::err_std_source_location_impl_not_found);
17514     return nullptr;
17515   }
17516 
17517   // Verify that __impl is a trivial struct type, with no base classes, and with
17518   // only the four expected fields.
17519   if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
17520       ImplDecl->getNumBases() != 0) {
17521     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17522     return nullptr;
17523   }
17524 
17525   unsigned Count = 0;
17526   for (FieldDecl *F : ImplDecl->fields()) {
17527     StringRef Name = F->getName();
17528 
17529     if (Name == "_M_file_name") {
17530       if (F->getType() !=
17531           S.Context.getPointerType(S.Context.CharTy.withConst()))
17532         break;
17533       Count++;
17534     } else if (Name == "_M_function_name") {
17535       if (F->getType() !=
17536           S.Context.getPointerType(S.Context.CharTy.withConst()))
17537         break;
17538       Count++;
17539     } else if (Name == "_M_line") {
17540       if (!F->getType()->isIntegerType())
17541         break;
17542       Count++;
17543     } else if (Name == "_M_column") {
17544       if (!F->getType()->isIntegerType())
17545         break;
17546       Count++;
17547     } else {
17548       Count = 100; // invalid
17549       break;
17550     }
17551   }
17552   if (Count != 4) {
17553     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17554     return nullptr;
17555   }
17556 
17557   return ImplDecl;
17558 }
17559 
17560 ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
17561                                     SourceLocation BuiltinLoc,
17562                                     SourceLocation RPLoc) {
17563   QualType ResultTy;
17564   switch (Kind) {
17565   case SourceLocIdentKind::File:
17566   case SourceLocIdentKind::FileName:
17567   case SourceLocIdentKind::Function:
17568   case SourceLocIdentKind::FuncSig: {
17569     QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
17570     ResultTy =
17571         Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17572     break;
17573   }
17574   case SourceLocIdentKind::Line:
17575   case SourceLocIdentKind::Column:
17576     ResultTy = Context.UnsignedIntTy;
17577     break;
17578   case SourceLocIdentKind::SourceLocStruct:
17579     if (!StdSourceLocationImplDecl) {
17580       StdSourceLocationImplDecl =
17581           LookupStdSourceLocationImpl(*this, BuiltinLoc);
17582       if (!StdSourceLocationImplDecl)
17583         return ExprError();
17584     }
17585     ResultTy = Context.getPointerType(
17586         Context.getRecordType(StdSourceLocationImplDecl).withConst());
17587     break;
17588   }
17589 
17590   return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
17591 }
17592 
17593 ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
17594                                     SourceLocation BuiltinLoc,
17595                                     SourceLocation RPLoc,
17596                                     DeclContext *ParentContext) {
17597   return new (Context)
17598       SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17599 }
17600 
17601 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
17602                                         bool Diagnose) {
17603   if (!getLangOpts().ObjC)
17604     return false;
17605 
17606   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
17607   if (!PT)
17608     return false;
17609   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
17610 
17611   // Ignore any parens, implicit casts (should only be
17612   // array-to-pointer decays), and not-so-opaque values.  The last is
17613   // important for making this trigger for property assignments.
17614   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
17615   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
17616     if (OV->getSourceExpr())
17617       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
17618 
17619   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
17620     if (!PT->isObjCIdType() &&
17621         !(ID && ID->getIdentifier()->isStr("NSString")))
17622       return false;
17623     if (!SL->isOrdinary())
17624       return false;
17625 
17626     if (Diagnose) {
17627       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
17628           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
17629       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
17630     }
17631     return true;
17632   }
17633 
17634   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
17635       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
17636       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
17637       !SrcExpr->isNullPointerConstant(
17638           getASTContext(), Expr::NPC_NeverValueDependent)) {
17639     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
17640       return false;
17641     if (Diagnose) {
17642       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
17643           << /*number*/1
17644           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
17645       Expr *NumLit =
17646           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
17647       if (NumLit)
17648         Exp = NumLit;
17649     }
17650     return true;
17651   }
17652 
17653   return false;
17654 }
17655 
17656 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17657                                               const Expr *SrcExpr) {
17658   if (!DstType->isFunctionPointerType() ||
17659       !SrcExpr->getType()->isFunctionType())
17660     return false;
17661 
17662   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
17663   if (!DRE)
17664     return false;
17665 
17666   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
17667   if (!FD)
17668     return false;
17669 
17670   return !S.checkAddressOfFunctionIsAvailable(FD,
17671                                               /*Complain=*/true,
17672                                               SrcExpr->getBeginLoc());
17673 }
17674 
17675 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17676                                     SourceLocation Loc,
17677                                     QualType DstType, QualType SrcType,
17678                                     Expr *SrcExpr, AssignmentAction Action,
17679                                     bool *Complained) {
17680   if (Complained)
17681     *Complained = false;
17682 
17683   // Decode the result (notice that AST's are still created for extensions).
17684   bool CheckInferredResultType = false;
17685   bool isInvalid = false;
17686   unsigned DiagKind = 0;
17687   ConversionFixItGenerator ConvHints;
17688   bool MayHaveConvFixit = false;
17689   bool MayHaveFunctionDiff = false;
17690   const ObjCInterfaceDecl *IFace = nullptr;
17691   const ObjCProtocolDecl *PDecl = nullptr;
17692 
17693   switch (ConvTy) {
17694   case Compatible:
17695       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17696       return false;
17697 
17698   case PointerToInt:
17699     if (getLangOpts().CPlusPlus) {
17700       DiagKind = diag::err_typecheck_convert_pointer_int;
17701       isInvalid = true;
17702     } else {
17703       DiagKind = diag::ext_typecheck_convert_pointer_int;
17704     }
17705     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17706     MayHaveConvFixit = true;
17707     break;
17708   case IntToPointer:
17709     if (getLangOpts().CPlusPlus) {
17710       DiagKind = diag::err_typecheck_convert_int_pointer;
17711       isInvalid = true;
17712     } else {
17713       DiagKind = diag::ext_typecheck_convert_int_pointer;
17714     }
17715     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17716     MayHaveConvFixit = true;
17717     break;
17718   case IncompatibleFunctionPointerStrict:
17719     DiagKind =
17720         diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17721     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17722     MayHaveConvFixit = true;
17723     break;
17724   case IncompatibleFunctionPointer:
17725     if (getLangOpts().CPlusPlus) {
17726       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17727       isInvalid = true;
17728     } else {
17729       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17730     }
17731     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17732     MayHaveConvFixit = true;
17733     break;
17734   case IncompatiblePointer:
17735     if (Action == AA_Passing_CFAudited) {
17736       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17737     } else if (getLangOpts().CPlusPlus) {
17738       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17739       isInvalid = true;
17740     } else {
17741       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17742     }
17743     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17744       SrcType->isObjCObjectPointerType();
17745     if (!CheckInferredResultType) {
17746       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17747     } else if (CheckInferredResultType) {
17748       SrcType = SrcType.getUnqualifiedType();
17749       DstType = DstType.getUnqualifiedType();
17750     }
17751     MayHaveConvFixit = true;
17752     break;
17753   case IncompatiblePointerSign:
17754     if (getLangOpts().CPlusPlus) {
17755       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17756       isInvalid = true;
17757     } else {
17758       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17759     }
17760     break;
17761   case FunctionVoidPointer:
17762     if (getLangOpts().CPlusPlus) {
17763       DiagKind = diag::err_typecheck_convert_pointer_void_func;
17764       isInvalid = true;
17765     } else {
17766       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17767     }
17768     break;
17769   case IncompatiblePointerDiscardsQualifiers: {
17770     // Perform array-to-pointer decay if necessary.
17771     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
17772 
17773     isInvalid = true;
17774 
17775     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17776     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17777     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17778       DiagKind = diag::err_typecheck_incompatible_address_space;
17779       break;
17780 
17781     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17782       DiagKind = diag::err_typecheck_incompatible_ownership;
17783       break;
17784     }
17785 
17786     llvm_unreachable("unknown error case for discarding qualifiers!");
17787     // fallthrough
17788   }
17789   case CompatiblePointerDiscardsQualifiers:
17790     // If the qualifiers lost were because we were applying the
17791     // (deprecated) C++ conversion from a string literal to a char*
17792     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
17793     // Ideally, this check would be performed in
17794     // checkPointerTypesForAssignment. However, that would require a
17795     // bit of refactoring (so that the second argument is an
17796     // expression, rather than a type), which should be done as part
17797     // of a larger effort to fix checkPointerTypesForAssignment for
17798     // C++ semantics.
17799     if (getLangOpts().CPlusPlus &&
17800         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
17801       return false;
17802     if (getLangOpts().CPlusPlus) {
17803       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
17804       isInvalid = true;
17805     } else {
17806       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
17807     }
17808 
17809     break;
17810   case IncompatibleNestedPointerQualifiers:
17811     if (getLangOpts().CPlusPlus) {
17812       isInvalid = true;
17813       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17814     } else {
17815       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17816     }
17817     break;
17818   case IncompatibleNestedPointerAddressSpaceMismatch:
17819     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17820     isInvalid = true;
17821     break;
17822   case IntToBlockPointer:
17823     DiagKind = diag::err_int_to_block_pointer;
17824     isInvalid = true;
17825     break;
17826   case IncompatibleBlockPointer:
17827     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17828     isInvalid = true;
17829     break;
17830   case IncompatibleObjCQualifiedId: {
17831     if (SrcType->isObjCQualifiedIdType()) {
17832       const ObjCObjectPointerType *srcOPT =
17833                 SrcType->castAs<ObjCObjectPointerType>();
17834       for (auto *srcProto : srcOPT->quals()) {
17835         PDecl = srcProto;
17836         break;
17837       }
17838       if (const ObjCInterfaceType *IFaceT =
17839             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17840         IFace = IFaceT->getDecl();
17841     }
17842     else if (DstType->isObjCQualifiedIdType()) {
17843       const ObjCObjectPointerType *dstOPT =
17844         DstType->castAs<ObjCObjectPointerType>();
17845       for (auto *dstProto : dstOPT->quals()) {
17846         PDecl = dstProto;
17847         break;
17848       }
17849       if (const ObjCInterfaceType *IFaceT =
17850             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17851         IFace = IFaceT->getDecl();
17852     }
17853     if (getLangOpts().CPlusPlus) {
17854       DiagKind = diag::err_incompatible_qualified_id;
17855       isInvalid = true;
17856     } else {
17857       DiagKind = diag::warn_incompatible_qualified_id;
17858     }
17859     break;
17860   }
17861   case IncompatibleVectors:
17862     if (getLangOpts().CPlusPlus) {
17863       DiagKind = diag::err_incompatible_vectors;
17864       isInvalid = true;
17865     } else {
17866       DiagKind = diag::warn_incompatible_vectors;
17867     }
17868     break;
17869   case IncompatibleObjCWeakRef:
17870     DiagKind = diag::err_arc_weak_unavailable_assign;
17871     isInvalid = true;
17872     break;
17873   case Incompatible:
17874     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17875       if (Complained)
17876         *Complained = true;
17877       return true;
17878     }
17879 
17880     DiagKind = diag::err_typecheck_convert_incompatible;
17881     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17882     MayHaveConvFixit = true;
17883     isInvalid = true;
17884     MayHaveFunctionDiff = true;
17885     break;
17886   }
17887 
17888   QualType FirstType, SecondType;
17889   switch (Action) {
17890   case AA_Assigning:
17891   case AA_Initializing:
17892     // The destination type comes first.
17893     FirstType = DstType;
17894     SecondType = SrcType;
17895     break;
17896 
17897   case AA_Returning:
17898   case AA_Passing:
17899   case AA_Passing_CFAudited:
17900   case AA_Converting:
17901   case AA_Sending:
17902   case AA_Casting:
17903     // The source type comes first.
17904     FirstType = SrcType;
17905     SecondType = DstType;
17906     break;
17907   }
17908 
17909   PartialDiagnostic FDiag = PDiag(DiagKind);
17910   AssignmentAction ActionForDiag = Action;
17911   if (Action == AA_Passing_CFAudited)
17912     ActionForDiag = AA_Passing;
17913 
17914   FDiag << FirstType << SecondType << ActionForDiag
17915         << SrcExpr->getSourceRange();
17916 
17917   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17918       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17919     auto isPlainChar = [](const clang::Type *Type) {
17920       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17921              Type->isSpecificBuiltinType(BuiltinType::Char_U);
17922     };
17923     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17924               isPlainChar(SecondType->getPointeeOrArrayElementType()));
17925   }
17926 
17927   // If we can fix the conversion, suggest the FixIts.
17928   if (!ConvHints.isNull()) {
17929     for (FixItHint &H : ConvHints.Hints)
17930       FDiag << H;
17931   }
17932 
17933   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17934 
17935   if (MayHaveFunctionDiff)
17936     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17937 
17938   Diag(Loc, FDiag);
17939   if ((DiagKind == diag::warn_incompatible_qualified_id ||
17940        DiagKind == diag::err_incompatible_qualified_id) &&
17941       PDecl && IFace && !IFace->hasDefinition())
17942     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17943         << IFace << PDecl;
17944 
17945   if (SecondType == Context.OverloadTy)
17946     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17947                               FirstType, /*TakingAddress=*/true);
17948 
17949   if (CheckInferredResultType)
17950     EmitRelatedResultTypeNote(SrcExpr);
17951 
17952   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17953     EmitRelatedResultTypeNoteForReturn(DstType);
17954 
17955   if (Complained)
17956     *Complained = true;
17957   return isInvalid;
17958 }
17959 
17960 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17961                                                  llvm::APSInt *Result,
17962                                                  AllowFoldKind CanFold) {
17963   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17964   public:
17965     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17966                                              QualType T) override {
17967       return S.Diag(Loc, diag::err_ice_not_integral)
17968              << T << S.LangOpts.CPlusPlus;
17969     }
17970     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17971       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17972     }
17973   } Diagnoser;
17974 
17975   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17976 }
17977 
17978 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17979                                                  llvm::APSInt *Result,
17980                                                  unsigned DiagID,
17981                                                  AllowFoldKind CanFold) {
17982   class IDDiagnoser : public VerifyICEDiagnoser {
17983     unsigned DiagID;
17984 
17985   public:
17986     IDDiagnoser(unsigned DiagID)
17987       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17988 
17989     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17990       return S.Diag(Loc, DiagID);
17991     }
17992   } Diagnoser(DiagID);
17993 
17994   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17995 }
17996 
17997 Sema::SemaDiagnosticBuilder
17998 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17999                                              QualType T) {
18000   return diagnoseNotICE(S, Loc);
18001 }
18002 
18003 Sema::SemaDiagnosticBuilder
18004 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
18005   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
18006 }
18007 
18008 ExprResult
18009 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
18010                                       VerifyICEDiagnoser &Diagnoser,
18011                                       AllowFoldKind CanFold) {
18012   SourceLocation DiagLoc = E->getBeginLoc();
18013 
18014   if (getLangOpts().CPlusPlus11) {
18015     // C++11 [expr.const]p5:
18016     //   If an expression of literal class type is used in a context where an
18017     //   integral constant expression is required, then that class type shall
18018     //   have a single non-explicit conversion function to an integral or
18019     //   unscoped enumeration type
18020     ExprResult Converted;
18021     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
18022       VerifyICEDiagnoser &BaseDiagnoser;
18023     public:
18024       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
18025           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
18026                                 BaseDiagnoser.Suppress, true),
18027             BaseDiagnoser(BaseDiagnoser) {}
18028 
18029       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
18030                                            QualType T) override {
18031         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
18032       }
18033 
18034       SemaDiagnosticBuilder diagnoseIncomplete(
18035           Sema &S, SourceLocation Loc, QualType T) override {
18036         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
18037       }
18038 
18039       SemaDiagnosticBuilder diagnoseExplicitConv(
18040           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18041         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
18042       }
18043 
18044       SemaDiagnosticBuilder noteExplicitConv(
18045           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18046         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18047                  << ConvTy->isEnumeralType() << ConvTy;
18048       }
18049 
18050       SemaDiagnosticBuilder diagnoseAmbiguous(
18051           Sema &S, SourceLocation Loc, QualType T) override {
18052         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
18053       }
18054 
18055       SemaDiagnosticBuilder noteAmbiguous(
18056           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18057         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18058                  << ConvTy->isEnumeralType() << ConvTy;
18059       }
18060 
18061       SemaDiagnosticBuilder diagnoseConversion(
18062           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18063         llvm_unreachable("conversion functions are permitted");
18064       }
18065     } ConvertDiagnoser(Diagnoser);
18066 
18067     Converted = PerformContextualImplicitConversion(DiagLoc, E,
18068                                                     ConvertDiagnoser);
18069     if (Converted.isInvalid())
18070       return Converted;
18071     E = Converted.get();
18072     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
18073       return ExprError();
18074   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
18075     // An ICE must be of integral or unscoped enumeration type.
18076     if (!Diagnoser.Suppress)
18077       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
18078           << E->getSourceRange();
18079     return ExprError();
18080   }
18081 
18082   ExprResult RValueExpr = DefaultLvalueConversion(E);
18083   if (RValueExpr.isInvalid())
18084     return ExprError();
18085 
18086   E = RValueExpr.get();
18087 
18088   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
18089   // in the non-ICE case.
18090   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
18091     if (Result)
18092       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
18093     if (!isa<ConstantExpr>(E))
18094       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
18095                  : ConstantExpr::Create(Context, E);
18096     return E;
18097   }
18098 
18099   Expr::EvalResult EvalResult;
18100   SmallVector<PartialDiagnosticAt, 8> Notes;
18101   EvalResult.Diag = &Notes;
18102 
18103   // Try to evaluate the expression, and produce diagnostics explaining why it's
18104   // not a constant expression as a side-effect.
18105   bool Folded =
18106       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
18107       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
18108 
18109   if (!isa<ConstantExpr>(E))
18110     E = ConstantExpr::Create(Context, E, EvalResult.Val);
18111 
18112   // In C++11, we can rely on diagnostics being produced for any expression
18113   // which is not a constant expression. If no diagnostics were produced, then
18114   // this is a constant expression.
18115   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
18116     if (Result)
18117       *Result = EvalResult.Val.getInt();
18118     return E;
18119   }
18120 
18121   // If our only note is the usual "invalid subexpression" note, just point
18122   // the caret at its location rather than producing an essentially
18123   // redundant note.
18124   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
18125         diag::note_invalid_subexpr_in_const_expr) {
18126     DiagLoc = Notes[0].first;
18127     Notes.clear();
18128   }
18129 
18130   if (!Folded || !CanFold) {
18131     if (!Diagnoser.Suppress) {
18132       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
18133       for (const PartialDiagnosticAt &Note : Notes)
18134         Diag(Note.first, Note.second);
18135     }
18136 
18137     return ExprError();
18138   }
18139 
18140   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
18141   for (const PartialDiagnosticAt &Note : Notes)
18142     Diag(Note.first, Note.second);
18143 
18144   if (Result)
18145     *Result = EvalResult.Val.getInt();
18146   return E;
18147 }
18148 
18149 namespace {
18150   // Handle the case where we conclude a expression which we speculatively
18151   // considered to be unevaluated is actually evaluated.
18152   class TransformToPE : public TreeTransform<TransformToPE> {
18153     typedef TreeTransform<TransformToPE> BaseTransform;
18154 
18155   public:
18156     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
18157 
18158     // Make sure we redo semantic analysis
18159     bool AlwaysRebuild() { return true; }
18160     bool ReplacingOriginal() { return true; }
18161 
18162     // We need to special-case DeclRefExprs referring to FieldDecls which
18163     // are not part of a member pointer formation; normal TreeTransforming
18164     // doesn't catch this case because of the way we represent them in the AST.
18165     // FIXME: This is a bit ugly; is it really the best way to handle this
18166     // case?
18167     //
18168     // Error on DeclRefExprs referring to FieldDecls.
18169     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18170       if (isa<FieldDecl>(E->getDecl()) &&
18171           !SemaRef.isUnevaluatedContext())
18172         return SemaRef.Diag(E->getLocation(),
18173                             diag::err_invalid_non_static_member_use)
18174             << E->getDecl() << E->getSourceRange();
18175 
18176       return BaseTransform::TransformDeclRefExpr(E);
18177     }
18178 
18179     // Exception: filter out member pointer formation
18180     ExprResult TransformUnaryOperator(UnaryOperator *E) {
18181       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
18182         return E;
18183 
18184       return BaseTransform::TransformUnaryOperator(E);
18185     }
18186 
18187     // The body of a lambda-expression is in a separate expression evaluation
18188     // context so never needs to be transformed.
18189     // FIXME: Ideally we wouldn't transform the closure type either, and would
18190     // just recreate the capture expressions and lambda expression.
18191     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
18192       return SkipLambdaBody(E, Body);
18193     }
18194   };
18195 }
18196 
18197 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
18198   assert(isUnevaluatedContext() &&
18199          "Should only transform unevaluated expressions");
18200   ExprEvalContexts.back().Context =
18201       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
18202   if (isUnevaluatedContext())
18203     return E;
18204   return TransformToPE(*this).TransformExpr(E);
18205 }
18206 
18207 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
18208   assert(isUnevaluatedContext() &&
18209          "Should only transform unevaluated expressions");
18210   ExprEvalContexts.back().Context =
18211       ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
18212   if (isUnevaluatedContext())
18213     return TInfo;
18214   return TransformToPE(*this).TransformType(TInfo);
18215 }
18216 
18217 void
18218 Sema::PushExpressionEvaluationContext(
18219     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
18220     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18221   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
18222                                 LambdaContextDecl, ExprContext);
18223 
18224   // Discarded statements and immediate contexts nested in other
18225   // discarded statements or immediate context are themselves
18226   // a discarded statement or an immediate context, respectively.
18227   ExprEvalContexts.back().InDiscardedStatement =
18228       ExprEvalContexts[ExprEvalContexts.size() - 2]
18229           .isDiscardedStatementContext();
18230 
18231   // C++23 [expr.const]/p15
18232   // An expression or conversion is in an immediate function context if [...]
18233   // it is a subexpression of a manifestly constant-evaluated expression or
18234   // conversion.
18235   const auto &Prev = ExprEvalContexts[ExprEvalContexts.size() - 2];
18236   ExprEvalContexts.back().InImmediateFunctionContext =
18237       Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
18238 
18239   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
18240       Prev.InImmediateEscalatingFunctionContext;
18241 
18242   Cleanup.reset();
18243   if (!MaybeODRUseExprs.empty())
18244     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
18245 }
18246 
18247 void
18248 Sema::PushExpressionEvaluationContext(
18249     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
18250     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18251   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
18252   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
18253 }
18254 
18255 namespace {
18256 
18257 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
18258   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
18259   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
18260     if (E->getOpcode() == UO_Deref)
18261       return CheckPossibleDeref(S, E->getSubExpr());
18262   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
18263     return CheckPossibleDeref(S, E->getBase());
18264   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
18265     return CheckPossibleDeref(S, E->getBase());
18266   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
18267     QualType Inner;
18268     QualType Ty = E->getType();
18269     if (const auto *Ptr = Ty->getAs<PointerType>())
18270       Inner = Ptr->getPointeeType();
18271     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
18272       Inner = Arr->getElementType();
18273     else
18274       return nullptr;
18275 
18276     if (Inner->hasAttr(attr::NoDeref))
18277       return E;
18278   }
18279   return nullptr;
18280 }
18281 
18282 } // namespace
18283 
18284 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
18285   for (const Expr *E : Rec.PossibleDerefs) {
18286     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
18287     if (DeclRef) {
18288       const ValueDecl *Decl = DeclRef->getDecl();
18289       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
18290           << Decl->getName() << E->getSourceRange();
18291       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
18292     } else {
18293       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
18294           << E->getSourceRange();
18295     }
18296   }
18297   Rec.PossibleDerefs.clear();
18298 }
18299 
18300 /// Check whether E, which is either a discarded-value expression or an
18301 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
18302 /// and if so, remove it from the list of volatile-qualified assignments that
18303 /// we are going to warn are deprecated.
18304 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
18305   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
18306     return;
18307 
18308   // Note: ignoring parens here is not justified by the standard rules, but
18309   // ignoring parentheses seems like a more reasonable approach, and this only
18310   // drives a deprecation warning so doesn't affect conformance.
18311   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
18312     if (BO->getOpcode() == BO_Assign) {
18313       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
18314       llvm::erase(LHSs, BO->getLHS());
18315     }
18316   }
18317 }
18318 
18319 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
18320   assert(!FunctionScopes.empty() && "Expected a function scope");
18321   assert(getLangOpts().CPlusPlus20 &&
18322          ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18323          "Cannot mark an immediate escalating expression outside of an "
18324          "immediate escalating context");
18325   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
18326       Call && Call->getCallee()) {
18327     if (auto *DeclRef =
18328             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18329       DeclRef->setIsImmediateEscalating(true);
18330   } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
18331     Ctr->setIsImmediateEscalating(true);
18332   } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
18333     DeclRef->setIsImmediateEscalating(true);
18334   } else {
18335     assert(false && "expected an immediately escalating expression");
18336   }
18337   getCurFunction()->FoundImmediateEscalatingExpression = true;
18338 }
18339 
18340 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
18341   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
18342       !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
18343       isCheckingDefaultArgumentOrInitializer() ||
18344       RebuildingImmediateInvocation || isImmediateFunctionContext())
18345     return E;
18346 
18347   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
18348   /// It's OK if this fails; we'll also remove this in
18349   /// HandleImmediateInvocations, but catching it here allows us to avoid
18350   /// walking the AST looking for it in simple cases.
18351   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
18352     if (auto *DeclRef =
18353             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18354       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
18355 
18356   // C++23 [expr.const]/p16
18357   // An expression or conversion is immediate-escalating if it is not initially
18358   // in an immediate function context and it is [...] an immediate invocation
18359   // that is not a constant expression and is not a subexpression of an
18360   // immediate invocation.
18361   APValue Cached;
18362   auto CheckConstantExpressionAndKeepResult = [&]() {
18363     llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18364     Expr::EvalResult Eval;
18365     Eval.Diag = &Notes;
18366     bool Res = E.get()->EvaluateAsConstantExpr(
18367         Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
18368     if (Res && Notes.empty()) {
18369       Cached = std::move(Eval.Val);
18370       return true;
18371     }
18372     return false;
18373   };
18374 
18375   if (!E.get()->isValueDependent() &&
18376       ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18377       !CheckConstantExpressionAndKeepResult()) {
18378     MarkExpressionAsImmediateEscalating(E.get());
18379     return E;
18380   }
18381 
18382   if (Cleanup.exprNeedsCleanups()) {
18383     // Since an immediate invocation is a full expression itself - it requires
18384     // an additional ExprWithCleanups node, but it can participate to a bigger
18385     // full expression which actually requires cleanups to be run after so
18386     // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
18387     // may discard cleanups for outer expression too early.
18388 
18389     // Note that ExprWithCleanups created here must always have empty cleanup
18390     // objects:
18391     // - compound literals do not create cleanup objects in C++ and immediate
18392     // invocations are C++-only.
18393     // - blocks are not allowed inside constant expressions and compiler will
18394     // issue an error if they appear there.
18395     //
18396     // Hence, in correct code any cleanup objects created inside current
18397     // evaluation context must be outside the immediate invocation.
18398     E = ExprWithCleanups::Create(getASTContext(), E.get(),
18399                                  Cleanup.cleanupsHaveSideEffects(), {});
18400   }
18401 
18402   ConstantExpr *Res = ConstantExpr::Create(
18403       getASTContext(), E.get(),
18404       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
18405                                    getASTContext()),
18406       /*IsImmediateInvocation*/ true);
18407   if (Cached.hasValue())
18408     Res->MoveIntoResult(Cached, getASTContext());
18409   /// Value-dependent constant expressions should not be immediately
18410   /// evaluated until they are instantiated.
18411   if (!Res->isValueDependent())
18412     ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
18413   return Res;
18414 }
18415 
18416 static void EvaluateAndDiagnoseImmediateInvocation(
18417     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
18418   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18419   Expr::EvalResult Eval;
18420   Eval.Diag = &Notes;
18421   ConstantExpr *CE = Candidate.getPointer();
18422   bool Result = CE->EvaluateAsConstantExpr(
18423       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
18424   if (!Result || !Notes.empty()) {
18425     SemaRef.FailedImmediateInvocations.insert(CE);
18426     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
18427     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
18428       InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
18429     FunctionDecl *FD = nullptr;
18430     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
18431       FD = cast<FunctionDecl>(Call->getCalleeDecl());
18432     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
18433       FD = Call->getConstructor();
18434     else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
18435       FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
18436 
18437     assert(FD && FD->isImmediateFunction() &&
18438            "could not find an immediate function in this expression");
18439     if (FD->isInvalidDecl())
18440       return;
18441     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
18442         << FD << FD->isConsteval();
18443     if (auto Context =
18444             SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18445       SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18446           << Context->Decl;
18447       SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18448     }
18449     if (!FD->isConsteval())
18450       SemaRef.DiagnoseImmediateEscalatingReason(FD);
18451     for (auto &Note : Notes)
18452       SemaRef.Diag(Note.first, Note.second);
18453     return;
18454   }
18455   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
18456 }
18457 
18458 static void RemoveNestedImmediateInvocation(
18459     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
18460     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
18461   struct ComplexRemove : TreeTransform<ComplexRemove> {
18462     using Base = TreeTransform<ComplexRemove>;
18463     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18464     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
18465     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
18466         CurrentII;
18467     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
18468                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
18469                   SmallVector<Sema::ImmediateInvocationCandidate,
18470                               4>::reverse_iterator Current)
18471         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
18472     void RemoveImmediateInvocation(ConstantExpr* E) {
18473       auto It = std::find_if(CurrentII, IISet.rend(),
18474                              [E](Sema::ImmediateInvocationCandidate Elem) {
18475                                return Elem.getPointer() == E;
18476                              });
18477       // It is possible that some subexpression of the current immediate
18478       // invocation was handled from another expression evaluation context. Do
18479       // not handle the current immediate invocation if some of its
18480       // subexpressions failed before.
18481       if (It == IISet.rend()) {
18482         if (SemaRef.FailedImmediateInvocations.contains(E))
18483           CurrentII->setInt(1);
18484       } else {
18485         It->setInt(1); // Mark as deleted
18486       }
18487     }
18488     ExprResult TransformConstantExpr(ConstantExpr *E) {
18489       if (!E->isImmediateInvocation())
18490         return Base::TransformConstantExpr(E);
18491       RemoveImmediateInvocation(E);
18492       return Base::TransformExpr(E->getSubExpr());
18493     }
18494     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18495     /// we need to remove its DeclRefExpr from the DRSet.
18496     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
18497       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
18498       return Base::TransformCXXOperatorCallExpr(E);
18499     }
18500     /// Base::TransformUserDefinedLiteral doesn't preserve the
18501     /// UserDefinedLiteral node.
18502     ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
18503     /// Base::TransformInitializer skips ConstantExpr so we need to visit them
18504     /// here.
18505     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
18506       if (!Init)
18507         return Init;
18508       /// ConstantExpr are the first layer of implicit node to be removed so if
18509       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18510       if (auto *CE = dyn_cast<ConstantExpr>(Init))
18511         if (CE->isImmediateInvocation())
18512           RemoveImmediateInvocation(CE);
18513       return Base::TransformInitializer(Init, NotCopyInit);
18514     }
18515     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18516       DRSet.erase(E);
18517       return E;
18518     }
18519     ExprResult TransformLambdaExpr(LambdaExpr *E) {
18520       // Do not rebuild lambdas to avoid creating a new type.
18521       // Lambdas have already been processed inside their eval context.
18522       return E;
18523     }
18524     bool AlwaysRebuild() { return false; }
18525     bool ReplacingOriginal() { return true; }
18526     bool AllowSkippingCXXConstructExpr() {
18527       bool Res = AllowSkippingFirstCXXConstructExpr;
18528       AllowSkippingFirstCXXConstructExpr = true;
18529       return Res;
18530     }
18531     bool AllowSkippingFirstCXXConstructExpr = true;
18532   } Transformer(SemaRef, Rec.ReferenceToConsteval,
18533                 Rec.ImmediateInvocationCandidates, It);
18534 
18535   /// CXXConstructExpr with a single argument are getting skipped by
18536   /// TreeTransform in some situtation because they could be implicit. This
18537   /// can only occur for the top-level CXXConstructExpr because it is used
18538   /// nowhere in the expression being transformed therefore will not be rebuilt.
18539   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18540   /// skipping the first CXXConstructExpr.
18541   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
18542     Transformer.AllowSkippingFirstCXXConstructExpr = false;
18543 
18544   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
18545   // The result may not be usable in case of previous compilation errors.
18546   // In this case evaluation of the expression may result in crash so just
18547   // don't do anything further with the result.
18548   if (Res.isUsable()) {
18549     Res = SemaRef.MaybeCreateExprWithCleanups(Res);
18550     It->getPointer()->setSubExpr(Res.get());
18551   }
18552 }
18553 
18554 static void
18555 HandleImmediateInvocations(Sema &SemaRef,
18556                            Sema::ExpressionEvaluationContextRecord &Rec) {
18557   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
18558        Rec.ReferenceToConsteval.size() == 0) ||
18559       SemaRef.RebuildingImmediateInvocation)
18560     return;
18561 
18562   /// When we have more than 1 ImmediateInvocationCandidates or previously
18563   /// failed immediate invocations, we need to check for nested
18564   /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18565   /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18566   /// invocation.
18567   if (Rec.ImmediateInvocationCandidates.size() > 1 ||
18568       !SemaRef.FailedImmediateInvocations.empty()) {
18569 
18570     /// Prevent sema calls during the tree transform from adding pointers that
18571     /// are already in the sets.
18572     llvm::SaveAndRestore DisableIITracking(
18573         SemaRef.RebuildingImmediateInvocation, true);
18574 
18575     /// Prevent diagnostic during tree transfrom as they are duplicates
18576     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
18577 
18578     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
18579          It != Rec.ImmediateInvocationCandidates.rend(); It++)
18580       if (!It->getInt())
18581         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
18582   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
18583              Rec.ReferenceToConsteval.size()) {
18584     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
18585       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18586       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
18587       bool VisitDeclRefExpr(DeclRefExpr *E) {
18588         DRSet.erase(E);
18589         return DRSet.size();
18590       }
18591     } Visitor(Rec.ReferenceToConsteval);
18592     Visitor.TraverseStmt(
18593         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
18594   }
18595   for (auto CE : Rec.ImmediateInvocationCandidates)
18596     if (!CE.getInt())
18597       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
18598   for (auto *DR : Rec.ReferenceToConsteval) {
18599     // If the expression is immediate escalating, it is not an error;
18600     // The outer context itself becomes immediate and further errors,
18601     // if any, will be handled by DiagnoseImmediateEscalatingReason.
18602     if (DR->isImmediateEscalating())
18603       continue;
18604     auto *FD = cast<FunctionDecl>(DR->getDecl());
18605     const NamedDecl *ND = FD;
18606     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
18607         MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
18608       ND = MD->getParent();
18609 
18610     // C++23 [expr.const]/p16
18611     // An expression or conversion is immediate-escalating if it is not
18612     // initially in an immediate function context and it is [...] a
18613     // potentially-evaluated id-expression that denotes an immediate function
18614     // that is not a subexpression of an immediate invocation.
18615     bool ImmediateEscalating = false;
18616     bool IsPotentiallyEvaluated =
18617         Rec.Context ==
18618             Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
18619         Rec.Context ==
18620             Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
18621     if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
18622       ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
18623 
18624     if (!Rec.InImmediateEscalatingFunctionContext ||
18625         (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
18626       SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
18627           << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
18628       SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
18629       if (auto Context =
18630               SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18631         SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18632             << Context->Decl;
18633         SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18634       }
18635       if (FD->isImmediateEscalating() && !FD->isConsteval())
18636         SemaRef.DiagnoseImmediateEscalatingReason(FD);
18637 
18638     } else {
18639       SemaRef.MarkExpressionAsImmediateEscalating(DR);
18640     }
18641   }
18642 }
18643 
18644 void Sema::PopExpressionEvaluationContext() {
18645   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
18646   unsigned NumTypos = Rec.NumTypos;
18647 
18648   if (!Rec.Lambdas.empty()) {
18649     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
18650     if (!getLangOpts().CPlusPlus20 &&
18651         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
18652          Rec.isUnevaluated() ||
18653          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
18654       unsigned D;
18655       if (Rec.isUnevaluated()) {
18656         // C++11 [expr.prim.lambda]p2:
18657         //   A lambda-expression shall not appear in an unevaluated operand
18658         //   (Clause 5).
18659         D = diag::err_lambda_unevaluated_operand;
18660       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
18661         // C++1y [expr.const]p2:
18662         //   A conditional-expression e is a core constant expression unless the
18663         //   evaluation of e, following the rules of the abstract machine, would
18664         //   evaluate [...] a lambda-expression.
18665         D = diag::err_lambda_in_constant_expression;
18666       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18667         // C++17 [expr.prim.lamda]p2:
18668         // A lambda-expression shall not appear [...] in a template-argument.
18669         D = diag::err_lambda_in_invalid_context;
18670       } else
18671         llvm_unreachable("Couldn't infer lambda error message.");
18672 
18673       for (const auto *L : Rec.Lambdas)
18674         Diag(L->getBeginLoc(), D);
18675     }
18676   }
18677 
18678   WarnOnPendingNoDerefs(Rec);
18679   HandleImmediateInvocations(*this, Rec);
18680 
18681   // Warn on any volatile-qualified simple-assignments that are not discarded-
18682   // value expressions nor unevaluated operands (those cases get removed from
18683   // this list by CheckUnusedVolatileAssignment).
18684   for (auto *BO : Rec.VolatileAssignmentLHSs)
18685     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18686         << BO->getType();
18687 
18688   // When are coming out of an unevaluated context, clear out any
18689   // temporaries that we may have created as part of the evaluation of
18690   // the expression in that context: they aren't relevant because they
18691   // will never be constructed.
18692   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18693     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18694                              ExprCleanupObjects.end());
18695     Cleanup = Rec.ParentCleanup;
18696     CleanupVarDeclMarking();
18697     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
18698   // Otherwise, merge the contexts together.
18699   } else {
18700     Cleanup.mergeFrom(Rec.ParentCleanup);
18701     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
18702                             Rec.SavedMaybeODRUseExprs.end());
18703   }
18704 
18705   // Pop the current expression evaluation context off the stack.
18706   ExprEvalContexts.pop_back();
18707 
18708   // The global expression evaluation context record is never popped.
18709   ExprEvalContexts.back().NumTypos += NumTypos;
18710 }
18711 
18712 void Sema::DiscardCleanupsInEvaluationContext() {
18713   ExprCleanupObjects.erase(
18714          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18715          ExprCleanupObjects.end());
18716   Cleanup.reset();
18717   MaybeODRUseExprs.clear();
18718 }
18719 
18720 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18721   ExprResult Result = CheckPlaceholderExpr(E);
18722   if (Result.isInvalid())
18723     return ExprError();
18724   E = Result.get();
18725   if (!E->getType()->isVariablyModifiedType())
18726     return E;
18727   return TransformToPotentiallyEvaluated(E);
18728 }
18729 
18730 /// Are we in a context that is potentially constant evaluated per C++20
18731 /// [expr.const]p12?
18732 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18733   /// C++2a [expr.const]p12:
18734   //   An expression or conversion is potentially constant evaluated if it is
18735   switch (SemaRef.ExprEvalContexts.back().Context) {
18736     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18737     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18738 
18739       // -- a manifestly constant-evaluated expression,
18740     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18741     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18742     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18743       // -- a potentially-evaluated expression,
18744     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18745       // -- an immediate subexpression of a braced-init-list,
18746 
18747       // -- [FIXME] an expression of the form & cast-expression that occurs
18748       //    within a templated entity
18749       // -- a subexpression of one of the above that is not a subexpression of
18750       // a nested unevaluated operand.
18751       return true;
18752 
18753     case Sema::ExpressionEvaluationContext::Unevaluated:
18754     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18755       // Expressions in this context are never evaluated.
18756       return false;
18757   }
18758   llvm_unreachable("Invalid context");
18759 }
18760 
18761 /// Return true if this function has a calling convention that requires mangling
18762 /// in the size of the parameter pack.
18763 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18764   // These manglings don't do anything on non-Windows or non-x86 platforms, so
18765   // we don't need parameter type sizes.
18766   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
18767   if (!TT.isOSWindows() || !TT.isX86())
18768     return false;
18769 
18770   // If this is C++ and this isn't an extern "C" function, parameters do not
18771   // need to be complete. In this case, C++ mangling will apply, which doesn't
18772   // use the size of the parameters.
18773   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18774     return false;
18775 
18776   // Stdcall, fastcall, and vectorcall need this special treatment.
18777   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18778   switch (CC) {
18779   case CC_X86StdCall:
18780   case CC_X86FastCall:
18781   case CC_X86VectorCall:
18782     return true;
18783   default:
18784     break;
18785   }
18786   return false;
18787 }
18788 
18789 /// Require that all of the parameter types of function be complete. Normally,
18790 /// parameter types are only required to be complete when a function is called
18791 /// or defined, but to mangle functions with certain calling conventions, the
18792 /// mangler needs to know the size of the parameter list. In this situation,
18793 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18794 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18795 /// result in a linker error. Clang doesn't implement this behavior, and instead
18796 /// attempts to error at compile time.
18797 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18798                                                   SourceLocation Loc) {
18799   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18800     FunctionDecl *FD;
18801     ParmVarDecl *Param;
18802 
18803   public:
18804     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18805         : FD(FD), Param(Param) {}
18806 
18807     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18808       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18809       StringRef CCName;
18810       switch (CC) {
18811       case CC_X86StdCall:
18812         CCName = "stdcall";
18813         break;
18814       case CC_X86FastCall:
18815         CCName = "fastcall";
18816         break;
18817       case CC_X86VectorCall:
18818         CCName = "vectorcall";
18819         break;
18820       default:
18821         llvm_unreachable("CC does not need mangling");
18822       }
18823 
18824       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18825           << Param->getDeclName() << FD->getDeclName() << CCName;
18826     }
18827   };
18828 
18829   for (ParmVarDecl *Param : FD->parameters()) {
18830     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18831     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18832   }
18833 }
18834 
18835 namespace {
18836 enum class OdrUseContext {
18837   /// Declarations in this context are not odr-used.
18838   None,
18839   /// Declarations in this context are formally odr-used, but this is a
18840   /// dependent context.
18841   Dependent,
18842   /// Declarations in this context are odr-used but not actually used (yet).
18843   FormallyOdrUsed,
18844   /// Declarations in this context are used.
18845   Used
18846 };
18847 }
18848 
18849 /// Are we within a context in which references to resolved functions or to
18850 /// variables result in odr-use?
18851 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18852   OdrUseContext Result;
18853 
18854   switch (SemaRef.ExprEvalContexts.back().Context) {
18855     case Sema::ExpressionEvaluationContext::Unevaluated:
18856     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18857     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18858       return OdrUseContext::None;
18859 
18860     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18861     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18862     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18863       Result = OdrUseContext::Used;
18864       break;
18865 
18866     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18867       Result = OdrUseContext::FormallyOdrUsed;
18868       break;
18869 
18870     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18871       // A default argument formally results in odr-use, but doesn't actually
18872       // result in a use in any real sense until it itself is used.
18873       Result = OdrUseContext::FormallyOdrUsed;
18874       break;
18875   }
18876 
18877   if (SemaRef.CurContext->isDependentContext())
18878     return OdrUseContext::Dependent;
18879 
18880   return Result;
18881 }
18882 
18883 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18884   if (!Func->isConstexpr())
18885     return false;
18886 
18887   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18888     return true;
18889   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18890   return CCD && CCD->getInheritedConstructor();
18891 }
18892 
18893 /// Mark a function referenced, and check whether it is odr-used
18894 /// (C++ [basic.def.odr]p2, C99 6.9p3)
18895 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18896                                   bool MightBeOdrUse) {
18897   assert(Func && "No function?");
18898 
18899   Func->setReferenced();
18900 
18901   // Recursive functions aren't really used until they're used from some other
18902   // context.
18903   bool IsRecursiveCall = CurContext == Func;
18904 
18905   // C++11 [basic.def.odr]p3:
18906   //   A function whose name appears as a potentially-evaluated expression is
18907   //   odr-used if it is the unique lookup result or the selected member of a
18908   //   set of overloaded functions [...].
18909   //
18910   // We (incorrectly) mark overload resolution as an unevaluated context, so we
18911   // can just check that here.
18912   OdrUseContext OdrUse =
18913       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18914   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18915     OdrUse = OdrUseContext::FormallyOdrUsed;
18916 
18917   // Trivial default constructors and destructors are never actually used.
18918   // FIXME: What about other special members?
18919   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18920       OdrUse == OdrUseContext::Used) {
18921     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18922       if (Constructor->isDefaultConstructor())
18923         OdrUse = OdrUseContext::FormallyOdrUsed;
18924     if (isa<CXXDestructorDecl>(Func))
18925       OdrUse = OdrUseContext::FormallyOdrUsed;
18926   }
18927 
18928   // C++20 [expr.const]p12:
18929   //   A function [...] is needed for constant evaluation if it is [...] a
18930   //   constexpr function that is named by an expression that is potentially
18931   //   constant evaluated
18932   bool NeededForConstantEvaluation =
18933       isPotentiallyConstantEvaluatedContext(*this) &&
18934       isImplicitlyDefinableConstexprFunction(Func);
18935 
18936   // Determine whether we require a function definition to exist, per
18937   // C++11 [temp.inst]p3:
18938   //   Unless a function template specialization has been explicitly
18939   //   instantiated or explicitly specialized, the function template
18940   //   specialization is implicitly instantiated when the specialization is
18941   //   referenced in a context that requires a function definition to exist.
18942   // C++20 [temp.inst]p7:
18943   //   The existence of a definition of a [...] function is considered to
18944   //   affect the semantics of the program if the [...] function is needed for
18945   //   constant evaluation by an expression
18946   // C++20 [basic.def.odr]p10:
18947   //   Every program shall contain exactly one definition of every non-inline
18948   //   function or variable that is odr-used in that program outside of a
18949   //   discarded statement
18950   // C++20 [special]p1:
18951   //   The implementation will implicitly define [defaulted special members]
18952   //   if they are odr-used or needed for constant evaluation.
18953   //
18954   // Note that we skip the implicit instantiation of templates that are only
18955   // used in unused default arguments or by recursive calls to themselves.
18956   // This is formally non-conforming, but seems reasonable in practice.
18957   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18958                                              NeededForConstantEvaluation);
18959 
18960   // C++14 [temp.expl.spec]p6:
18961   //   If a template [...] is explicitly specialized then that specialization
18962   //   shall be declared before the first use of that specialization that would
18963   //   cause an implicit instantiation to take place, in every translation unit
18964   //   in which such a use occurs
18965   if (NeedDefinition &&
18966       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18967        Func->getMemberSpecializationInfo()))
18968     checkSpecializationReachability(Loc, Func);
18969 
18970   if (getLangOpts().CUDA)
18971     CheckCUDACall(Loc, Func);
18972 
18973   // If we need a definition, try to create one.
18974   if (NeedDefinition && !Func->getBody()) {
18975     runWithSufficientStackSpace(Loc, [&] {
18976       if (CXXConstructorDecl *Constructor =
18977               dyn_cast<CXXConstructorDecl>(Func)) {
18978         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18979         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18980           if (Constructor->isDefaultConstructor()) {
18981             if (Constructor->isTrivial() &&
18982                 !Constructor->hasAttr<DLLExportAttr>())
18983               return;
18984             DefineImplicitDefaultConstructor(Loc, Constructor);
18985           } else if (Constructor->isCopyConstructor()) {
18986             DefineImplicitCopyConstructor(Loc, Constructor);
18987           } else if (Constructor->isMoveConstructor()) {
18988             DefineImplicitMoveConstructor(Loc, Constructor);
18989           }
18990         } else if (Constructor->getInheritedConstructor()) {
18991           DefineInheritingConstructor(Loc, Constructor);
18992         }
18993       } else if (CXXDestructorDecl *Destructor =
18994                      dyn_cast<CXXDestructorDecl>(Func)) {
18995         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18996         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18997           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18998             return;
18999           DefineImplicitDestructor(Loc, Destructor);
19000         }
19001         if (Destructor->isVirtual() && getLangOpts().AppleKext)
19002           MarkVTableUsed(Loc, Destructor->getParent());
19003       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
19004         if (MethodDecl->isOverloadedOperator() &&
19005             MethodDecl->getOverloadedOperator() == OO_Equal) {
19006           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
19007           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
19008             if (MethodDecl->isCopyAssignmentOperator())
19009               DefineImplicitCopyAssignment(Loc, MethodDecl);
19010             else if (MethodDecl->isMoveAssignmentOperator())
19011               DefineImplicitMoveAssignment(Loc, MethodDecl);
19012           }
19013         } else if (isa<CXXConversionDecl>(MethodDecl) &&
19014                    MethodDecl->getParent()->isLambda()) {
19015           CXXConversionDecl *Conversion =
19016               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
19017           if (Conversion->isLambdaToBlockPointerConversion())
19018             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
19019           else
19020             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
19021         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
19022           MarkVTableUsed(Loc, MethodDecl->getParent());
19023       }
19024 
19025       if (Func->isDefaulted() && !Func->isDeleted()) {
19026         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
19027         if (DCK != DefaultedComparisonKind::None)
19028           DefineDefaultedComparison(Loc, Func, DCK);
19029       }
19030 
19031       // Implicit instantiation of function templates and member functions of
19032       // class templates.
19033       if (Func->isImplicitlyInstantiable()) {
19034         TemplateSpecializationKind TSK =
19035             Func->getTemplateSpecializationKindForInstantiation();
19036         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
19037         bool FirstInstantiation = PointOfInstantiation.isInvalid();
19038         if (FirstInstantiation) {
19039           PointOfInstantiation = Loc;
19040           if (auto *MSI = Func->getMemberSpecializationInfo())
19041             MSI->setPointOfInstantiation(Loc);
19042             // FIXME: Notify listener.
19043           else
19044             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19045         } else if (TSK != TSK_ImplicitInstantiation) {
19046           // Use the point of use as the point of instantiation, instead of the
19047           // point of explicit instantiation (which we track as the actual point
19048           // of instantiation). This gives better backtraces in diagnostics.
19049           PointOfInstantiation = Loc;
19050         }
19051 
19052         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
19053             Func->isConstexpr()) {
19054           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
19055               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
19056               CodeSynthesisContexts.size())
19057             PendingLocalImplicitInstantiations.push_back(
19058                 std::make_pair(Func, PointOfInstantiation));
19059           else if (Func->isConstexpr())
19060             // Do not defer instantiations of constexpr functions, to avoid the
19061             // expression evaluator needing to call back into Sema if it sees a
19062             // call to such a function.
19063             InstantiateFunctionDefinition(PointOfInstantiation, Func);
19064           else {
19065             Func->setInstantiationIsPending(true);
19066             PendingInstantiations.push_back(
19067                 std::make_pair(Func, PointOfInstantiation));
19068             // Notify the consumer that a function was implicitly instantiated.
19069             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
19070           }
19071         }
19072       } else {
19073         // Walk redefinitions, as some of them may be instantiable.
19074         for (auto *i : Func->redecls()) {
19075           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
19076             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
19077         }
19078       }
19079     });
19080   }
19081 
19082   // If a constructor was defined in the context of a default parameter
19083   // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
19084   // context), its initializers may not be referenced yet.
19085   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
19086     EnterExpressionEvaluationContext EvalContext(
19087         *this,
19088         Constructor->isImmediateFunction()
19089             ? ExpressionEvaluationContext::ImmediateFunctionContext
19090             : ExpressionEvaluationContext::PotentiallyEvaluated,
19091         Constructor);
19092     for (CXXCtorInitializer *Init : Constructor->inits()) {
19093       if (Init->isInClassMemberInitializer())
19094         runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
19095           MarkDeclarationsReferencedInExpr(Init->getInit());
19096         });
19097     }
19098   }
19099 
19100   // C++14 [except.spec]p17:
19101   //   An exception-specification is considered to be needed when:
19102   //   - the function is odr-used or, if it appears in an unevaluated operand,
19103   //     would be odr-used if the expression were potentially-evaluated;
19104   //
19105   // Note, we do this even if MightBeOdrUse is false. That indicates that the
19106   // function is a pure virtual function we're calling, and in that case the
19107   // function was selected by overload resolution and we need to resolve its
19108   // exception specification for a different reason.
19109   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
19110   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
19111     ResolveExceptionSpec(Loc, FPT);
19112 
19113   // A callee could be called by a host function then by a device function.
19114   // If we only try recording once, we will miss recording the use on device
19115   // side. Therefore keep trying until it is recorded.
19116   if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
19117       !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
19118     CUDARecordImplicitHostDeviceFuncUsedByDevice(Func);
19119 
19120   // If this is the first "real" use, act on that.
19121   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
19122     // Keep track of used but undefined functions.
19123     if (!Func->isDefined()) {
19124       if (mightHaveNonExternalLinkage(Func))
19125         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19126       else if (Func->getMostRecentDecl()->isInlined() &&
19127                !LangOpts.GNUInline &&
19128                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
19129         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19130       else if (isExternalWithNoLinkageType(Func))
19131         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19132     }
19133 
19134     // Some x86 Windows calling conventions mangle the size of the parameter
19135     // pack into the name. Computing the size of the parameters requires the
19136     // parameter types to be complete. Check that now.
19137     if (funcHasParameterSizeMangling(*this, Func))
19138       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
19139 
19140     // In the MS C++ ABI, the compiler emits destructor variants where they are
19141     // used. If the destructor is used here but defined elsewhere, mark the
19142     // virtual base destructors referenced. If those virtual base destructors
19143     // are inline, this will ensure they are defined when emitting the complete
19144     // destructor variant. This checking may be redundant if the destructor is
19145     // provided later in this TU.
19146     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
19147       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
19148         CXXRecordDecl *Parent = Dtor->getParent();
19149         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
19150           CheckCompleteDestructorVariant(Loc, Dtor);
19151       }
19152     }
19153 
19154     Func->markUsed(Context);
19155   }
19156 }
19157 
19158 /// Directly mark a variable odr-used. Given a choice, prefer to use
19159 /// MarkVariableReferenced since it does additional checks and then
19160 /// calls MarkVarDeclODRUsed.
19161 /// If the variable must be captured:
19162 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
19163 ///  - else capture it in the DeclContext that maps to the
19164 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
19165 static void
19166 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
19167                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
19168   // Keep track of used but undefined variables.
19169   // FIXME: We shouldn't suppress this warning for static data members.
19170   VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
19171   assert(Var && "expected a capturable variable");
19172 
19173   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
19174       (!Var->isExternallyVisible() || Var->isInline() ||
19175        SemaRef.isExternalWithNoLinkageType(Var)) &&
19176       !(Var->isStaticDataMember() && Var->hasInit())) {
19177     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
19178     if (old.isInvalid())
19179       old = Loc;
19180   }
19181   QualType CaptureType, DeclRefType;
19182   if (SemaRef.LangOpts.OpenMP)
19183     SemaRef.tryCaptureOpenMPLambdas(V);
19184   SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
19185                              /*EllipsisLoc*/ SourceLocation(),
19186                              /*BuildAndDiagnose*/ true, CaptureType,
19187                              DeclRefType, FunctionScopeIndexToStopAt);
19188 
19189   if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
19190     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
19191     auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
19192     auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
19193     if (VarTarget == Sema::CVT_Host &&
19194         (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
19195          UserTarget == Sema::CFT_Global)) {
19196       // Diagnose ODR-use of host global variables in device functions.
19197       // Reference of device global variables in host functions is allowed
19198       // through shadow variables therefore it is not diagnosed.
19199       if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
19200         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
19201             << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
19202         SemaRef.targetDiag(Var->getLocation(),
19203                            Var->getType().isConstQualified()
19204                                ? diag::note_cuda_const_var_unpromoted
19205                                : diag::note_cuda_host_var);
19206       }
19207     } else if (VarTarget == Sema::CVT_Device &&
19208                !Var->hasAttr<CUDASharedAttr>() &&
19209                (UserTarget == Sema::CFT_Host ||
19210                 UserTarget == Sema::CFT_HostDevice)) {
19211       // Record a CUDA/HIP device side variable if it is ODR-used
19212       // by host code. This is done conservatively, when the variable is
19213       // referenced in any of the following contexts:
19214       //   - a non-function context
19215       //   - a host function
19216       //   - a host device function
19217       // This makes the ODR-use of the device side variable by host code to
19218       // be visible in the device compilation for the compiler to be able to
19219       // emit template variables instantiated by host code only and to
19220       // externalize the static device side variable ODR-used by host code.
19221       if (!Var->hasExternalStorage())
19222         SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
19223       else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
19224         SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
19225     }
19226   }
19227 
19228   V->markUsed(SemaRef.Context);
19229 }
19230 
19231 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
19232                                              SourceLocation Loc,
19233                                              unsigned CapturingScopeIndex) {
19234   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
19235 }
19236 
19237 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
19238                                                  ValueDecl *var) {
19239   DeclContext *VarDC = var->getDeclContext();
19240 
19241   //  If the parameter still belongs to the translation unit, then
19242   //  we're actually just using one parameter in the declaration of
19243   //  the next.
19244   if (isa<ParmVarDecl>(var) &&
19245       isa<TranslationUnitDecl>(VarDC))
19246     return;
19247 
19248   // For C code, don't diagnose about capture if we're not actually in code
19249   // right now; it's impossible to write a non-constant expression outside of
19250   // function context, so we'll get other (more useful) diagnostics later.
19251   //
19252   // For C++, things get a bit more nasty... it would be nice to suppress this
19253   // diagnostic for certain cases like using a local variable in an array bound
19254   // for a member of a local class, but the correct predicate is not obvious.
19255   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
19256     return;
19257 
19258   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
19259   unsigned ContextKind = 3; // unknown
19260   if (isa<CXXMethodDecl>(VarDC) &&
19261       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
19262     ContextKind = 2;
19263   } else if (isa<FunctionDecl>(VarDC)) {
19264     ContextKind = 0;
19265   } else if (isa<BlockDecl>(VarDC)) {
19266     ContextKind = 1;
19267   }
19268 
19269   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
19270     << var << ValueKind << ContextKind << VarDC;
19271   S.Diag(var->getLocation(), diag::note_entity_declared_at)
19272       << var;
19273 
19274   // FIXME: Add additional diagnostic info about class etc. which prevents
19275   // capture.
19276 }
19277 
19278 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
19279                                                  ValueDecl *Var,
19280                                                  bool &SubCapturesAreNested,
19281                                                  QualType &CaptureType,
19282                                                  QualType &DeclRefType) {
19283   // Check whether we've already captured it.
19284   if (CSI->CaptureMap.count(Var)) {
19285     // If we found a capture, any subcaptures are nested.
19286     SubCapturesAreNested = true;
19287 
19288     // Retrieve the capture type for this variable.
19289     CaptureType = CSI->getCapture(Var).getCaptureType();
19290 
19291     // Compute the type of an expression that refers to this variable.
19292     DeclRefType = CaptureType.getNonReferenceType();
19293 
19294     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
19295     // are mutable in the sense that user can change their value - they are
19296     // private instances of the captured declarations.
19297     const Capture &Cap = CSI->getCapture(Var);
19298     if (Cap.isCopyCapture() &&
19299         !(isa<LambdaScopeInfo>(CSI) &&
19300           !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
19301         !(isa<CapturedRegionScopeInfo>(CSI) &&
19302           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
19303       DeclRefType.addConst();
19304     return true;
19305   }
19306   return false;
19307 }
19308 
19309 // Only block literals, captured statements, and lambda expressions can
19310 // capture; other scopes don't work.
19311 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
19312                                                       ValueDecl *Var,
19313                                                       SourceLocation Loc,
19314                                                       const bool Diagnose,
19315                                                       Sema &S) {
19316   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
19317     return getLambdaAwareParentOfDeclContext(DC);
19318 
19319   VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
19320   if (Underlying) {
19321     if (Underlying->hasLocalStorage() && Diagnose)
19322       diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19323   }
19324   return nullptr;
19325 }
19326 
19327 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19328 // certain types of variables (unnamed, variably modified types etc.)
19329 // so check for eligibility.
19330 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
19331                                  SourceLocation Loc, const bool Diagnose,
19332                                  Sema &S) {
19333 
19334   assert((isa<VarDecl, BindingDecl>(Var)) &&
19335          "Only variables and structured bindings can be captured");
19336 
19337   bool IsBlock = isa<BlockScopeInfo>(CSI);
19338   bool IsLambda = isa<LambdaScopeInfo>(CSI);
19339 
19340   // Lambdas are not allowed to capture unnamed variables
19341   // (e.g. anonymous unions).
19342   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
19343   // assuming that's the intent.
19344   if (IsLambda && !Var->getDeclName()) {
19345     if (Diagnose) {
19346       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
19347       S.Diag(Var->getLocation(), diag::note_declared_at);
19348     }
19349     return false;
19350   }
19351 
19352   // Prohibit variably-modified types in blocks; they're difficult to deal with.
19353   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
19354     if (Diagnose) {
19355       S.Diag(Loc, diag::err_ref_vm_type);
19356       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19357     }
19358     return false;
19359   }
19360   // Prohibit structs with flexible array members too.
19361   // We cannot capture what is in the tail end of the struct.
19362   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
19363     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
19364       if (Diagnose) {
19365         if (IsBlock)
19366           S.Diag(Loc, diag::err_ref_flexarray_type);
19367         else
19368           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
19369         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19370       }
19371       return false;
19372     }
19373   }
19374   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19375   // Lambdas and captured statements are not allowed to capture __block
19376   // variables; they don't support the expected semantics.
19377   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
19378     if (Diagnose) {
19379       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
19380       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19381     }
19382     return false;
19383   }
19384   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
19385   if (S.getLangOpts().OpenCL && IsBlock &&
19386       Var->getType()->isBlockPointerType()) {
19387     if (Diagnose)
19388       S.Diag(Loc, diag::err_opencl_block_ref_block);
19389     return false;
19390   }
19391 
19392   if (isa<BindingDecl>(Var)) {
19393     if (!IsLambda || !S.getLangOpts().CPlusPlus) {
19394       if (Diagnose)
19395         diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19396       return false;
19397     } else if (Diagnose && S.getLangOpts().CPlusPlus) {
19398       S.Diag(Loc, S.LangOpts.CPlusPlus20
19399                       ? diag::warn_cxx17_compat_capture_binding
19400                       : diag::ext_capture_binding)
19401           << Var;
19402       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19403     }
19404   }
19405 
19406   return true;
19407 }
19408 
19409 // Returns true if the capture by block was successful.
19410 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
19411                            SourceLocation Loc, const bool BuildAndDiagnose,
19412                            QualType &CaptureType, QualType &DeclRefType,
19413                            const bool Nested, Sema &S, bool Invalid) {
19414   bool ByRef = false;
19415 
19416   // Blocks are not allowed to capture arrays, excepting OpenCL.
19417   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
19418   // (decayed to pointers).
19419   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
19420     if (BuildAndDiagnose) {
19421       S.Diag(Loc, diag::err_ref_array_type);
19422       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19423       Invalid = true;
19424     } else {
19425       return false;
19426     }
19427   }
19428 
19429   // Forbid the block-capture of autoreleasing variables.
19430   if (!Invalid &&
19431       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19432     if (BuildAndDiagnose) {
19433       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
19434         << /*block*/ 0;
19435       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19436       Invalid = true;
19437     } else {
19438       return false;
19439     }
19440   }
19441 
19442   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19443   if (const auto *PT = CaptureType->getAs<PointerType>()) {
19444     QualType PointeeTy = PT->getPointeeType();
19445 
19446     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
19447         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
19448         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
19449       if (BuildAndDiagnose) {
19450         SourceLocation VarLoc = Var->getLocation();
19451         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
19452         S.Diag(VarLoc, diag::note_declare_parameter_strong);
19453       }
19454     }
19455   }
19456 
19457   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19458   if (HasBlocksAttr || CaptureType->isReferenceType() ||
19459       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
19460     // Block capture by reference does not change the capture or
19461     // declaration reference types.
19462     ByRef = true;
19463   } else {
19464     // Block capture by copy introduces 'const'.
19465     CaptureType = CaptureType.getNonReferenceType().withConst();
19466     DeclRefType = CaptureType;
19467   }
19468 
19469   // Actually capture the variable.
19470   if (BuildAndDiagnose)
19471     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
19472                     CaptureType, Invalid);
19473 
19474   return !Invalid;
19475 }
19476 
19477 /// Capture the given variable in the captured region.
19478 static bool captureInCapturedRegion(
19479     CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
19480     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
19481     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
19482     bool IsTopScope, Sema &S, bool Invalid) {
19483   // By default, capture variables by reference.
19484   bool ByRef = true;
19485   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19486     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19487   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
19488     // Using an LValue reference type is consistent with Lambdas (see below).
19489     if (S.isOpenMPCapturedDecl(Var)) {
19490       bool HasConst = DeclRefType.isConstQualified();
19491       DeclRefType = DeclRefType.getUnqualifiedType();
19492       // Don't lose diagnostics about assignments to const.
19493       if (HasConst)
19494         DeclRefType.addConst();
19495     }
19496     // Do not capture firstprivates in tasks.
19497     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
19498         OMPC_unknown)
19499       return true;
19500     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
19501                                     RSI->OpenMPCaptureLevel);
19502   }
19503 
19504   if (ByRef)
19505     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19506   else
19507     CaptureType = DeclRefType;
19508 
19509   // Actually capture the variable.
19510   if (BuildAndDiagnose)
19511     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
19512                     Loc, SourceLocation(), CaptureType, Invalid);
19513 
19514   return !Invalid;
19515 }
19516 
19517 /// Capture the given variable in the lambda.
19518 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
19519                             SourceLocation Loc, const bool BuildAndDiagnose,
19520                             QualType &CaptureType, QualType &DeclRefType,
19521                             const bool RefersToCapturedVariable,
19522                             const Sema::TryCaptureKind Kind,
19523                             SourceLocation EllipsisLoc, const bool IsTopScope,
19524                             Sema &S, bool Invalid) {
19525   // Determine whether we are capturing by reference or by value.
19526   bool ByRef = false;
19527   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19528     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19529   } else {
19530     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
19531   }
19532 
19533   BindingDecl *BD = dyn_cast<BindingDecl>(Var);
19534   // FIXME: We should support capturing structured bindings in OpenMP.
19535   if (!Invalid && BD && S.LangOpts.OpenMP) {
19536     if (BuildAndDiagnose) {
19537       S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
19538       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19539     }
19540     Invalid = true;
19541   }
19542 
19543   if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
19544       CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
19545     S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
19546     Invalid = true;
19547   }
19548 
19549   // Compute the type of the field that will capture this variable.
19550   if (ByRef) {
19551     // C++11 [expr.prim.lambda]p15:
19552     //   An entity is captured by reference if it is implicitly or
19553     //   explicitly captured but not captured by copy. It is
19554     //   unspecified whether additional unnamed non-static data
19555     //   members are declared in the closure type for entities
19556     //   captured by reference.
19557     //
19558     // FIXME: It is not clear whether we want to build an lvalue reference
19559     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19560     // to do the former, while EDG does the latter. Core issue 1249 will
19561     // clarify, but for now we follow GCC because it's a more permissive and
19562     // easily defensible position.
19563     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19564   } else {
19565     // C++11 [expr.prim.lambda]p14:
19566     //   For each entity captured by copy, an unnamed non-static
19567     //   data member is declared in the closure type. The
19568     //   declaration order of these members is unspecified. The type
19569     //   of such a data member is the type of the corresponding
19570     //   captured entity if the entity is not a reference to an
19571     //   object, or the referenced type otherwise. [Note: If the
19572     //   captured entity is a reference to a function, the
19573     //   corresponding data member is also a reference to a
19574     //   function. - end note ]
19575     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
19576       if (!RefType->getPointeeType()->isFunctionType())
19577         CaptureType = RefType->getPointeeType();
19578     }
19579 
19580     // Forbid the lambda copy-capture of autoreleasing variables.
19581     if (!Invalid &&
19582         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19583       if (BuildAndDiagnose) {
19584         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
19585         S.Diag(Var->getLocation(), diag::note_previous_decl)
19586           << Var->getDeclName();
19587         Invalid = true;
19588       } else {
19589         return false;
19590       }
19591     }
19592 
19593     // Make sure that by-copy captures are of a complete and non-abstract type.
19594     if (!Invalid && BuildAndDiagnose) {
19595       if (!CaptureType->isDependentType() &&
19596           S.RequireCompleteSizedType(
19597               Loc, CaptureType,
19598               diag::err_capture_of_incomplete_or_sizeless_type,
19599               Var->getDeclName()))
19600         Invalid = true;
19601       else if (S.RequireNonAbstractType(Loc, CaptureType,
19602                                         diag::err_capture_of_abstract_type))
19603         Invalid = true;
19604     }
19605   }
19606 
19607   // Compute the type of a reference to this captured variable.
19608   if (ByRef)
19609     DeclRefType = CaptureType.getNonReferenceType();
19610   else {
19611     // C++ [expr.prim.lambda]p5:
19612     //   The closure type for a lambda-expression has a public inline
19613     //   function call operator [...]. This function call operator is
19614     //   declared const (9.3.1) if and only if the lambda-expression's
19615     //   parameter-declaration-clause is not followed by mutable.
19616     DeclRefType = CaptureType.getNonReferenceType();
19617     bool Const = LSI->lambdaCaptureShouldBeConst();
19618     if (Const && !CaptureType->isReferenceType())
19619       DeclRefType.addConst();
19620   }
19621 
19622   // Add the capture.
19623   if (BuildAndDiagnose)
19624     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
19625                     Loc, EllipsisLoc, CaptureType, Invalid);
19626 
19627   return !Invalid;
19628 }
19629 
19630 static bool canCaptureVariableByCopy(ValueDecl *Var,
19631                                      const ASTContext &Context) {
19632   // Offer a Copy fix even if the type is dependent.
19633   if (Var->getType()->isDependentType())
19634     return true;
19635   QualType T = Var->getType().getNonReferenceType();
19636   if (T.isTriviallyCopyableType(Context))
19637     return true;
19638   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
19639 
19640     if (!(RD = RD->getDefinition()))
19641       return false;
19642     if (RD->hasSimpleCopyConstructor())
19643       return true;
19644     if (RD->hasUserDeclaredCopyConstructor())
19645       for (CXXConstructorDecl *Ctor : RD->ctors())
19646         if (Ctor->isCopyConstructor())
19647           return !Ctor->isDeleted();
19648   }
19649   return false;
19650 }
19651 
19652 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19653 /// default capture. Fixes may be omitted if they aren't allowed by the
19654 /// standard, for example we can't emit a default copy capture fix-it if we
19655 /// already explicitly copy capture capture another variable.
19656 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
19657                                     ValueDecl *Var) {
19658   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
19659   // Don't offer Capture by copy of default capture by copy fixes if Var is
19660   // known not to be copy constructible.
19661   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
19662 
19663   SmallString<32> FixBuffer;
19664   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
19665   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
19666     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
19667     if (ShouldOfferCopyFix) {
19668       // Offer fixes to insert an explicit capture for the variable.
19669       // [] -> [VarName]
19670       // [OtherCapture] -> [OtherCapture, VarName]
19671       FixBuffer.assign({Separator, Var->getName()});
19672       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19673           << Var << /*value*/ 0
19674           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19675     }
19676     // As above but capture by reference.
19677     FixBuffer.assign({Separator, "&", Var->getName()});
19678     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19679         << Var << /*reference*/ 1
19680         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19681   }
19682 
19683   // Only try to offer default capture if there are no captures excluding this
19684   // and init captures.
19685   // [this]: OK.
19686   // [X = Y]: OK.
19687   // [&A, &B]: Don't offer.
19688   // [A, B]: Don't offer.
19689   if (llvm::any_of(LSI->Captures, [](Capture &C) {
19690         return !C.isThisCapture() && !C.isInitCapture();
19691       }))
19692     return;
19693 
19694   // The default capture specifiers, '=' or '&', must appear first in the
19695   // capture body.
19696   SourceLocation DefaultInsertLoc =
19697       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
19698 
19699   if (ShouldOfferCopyFix) {
19700     bool CanDefaultCopyCapture = true;
19701     // [=, *this] OK since c++17
19702     // [=, this] OK since c++20
19703     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19704       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19705                                   ? LSI->getCXXThisCapture().isCopyCapture()
19706                                   : false;
19707     // We can't use default capture by copy if any captures already specified
19708     // capture by copy.
19709     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
19710           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19711         })) {
19712       FixBuffer.assign({"=", Separator});
19713       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19714           << /*value*/ 0
19715           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19716     }
19717   }
19718 
19719   // We can't use default capture by reference if any captures already specified
19720   // capture by reference.
19721   if (llvm::none_of(LSI->Captures, [](Capture &C) {
19722         return !C.isInitCapture() && C.isReferenceCapture() &&
19723                !C.isThisCapture();
19724       })) {
19725     FixBuffer.assign({"&", Separator});
19726     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19727         << /*reference*/ 1
19728         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19729   }
19730 }
19731 
19732 bool Sema::tryCaptureVariable(
19733     ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19734     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19735     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19736   // An init-capture is notionally from the context surrounding its
19737   // declaration, but its parent DC is the lambda class.
19738   DeclContext *VarDC = Var->getDeclContext();
19739   DeclContext *DC = CurContext;
19740 
19741   // tryCaptureVariable is called every time a DeclRef is formed,
19742   // it can therefore have non-negigible impact on performances.
19743   // For local variables and when there is no capturing scope,
19744   // we can bailout early.
19745   if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
19746     return true;
19747 
19748   const auto *VD = dyn_cast<VarDecl>(Var);
19749   if (VD) {
19750     if (VD->isInitCapture())
19751       VarDC = VarDC->getParent();
19752   } else {
19753     VD = Var->getPotentiallyDecomposedVarDecl();
19754   }
19755   assert(VD && "Cannot capture a null variable");
19756 
19757   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19758       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19759   // We need to sync up the Declaration Context with the
19760   // FunctionScopeIndexToStopAt
19761   if (FunctionScopeIndexToStopAt) {
19762     unsigned FSIndex = FunctionScopes.size() - 1;
19763     while (FSIndex != MaxFunctionScopesIndex) {
19764       DC = getLambdaAwareParentOfDeclContext(DC);
19765       --FSIndex;
19766     }
19767   }
19768 
19769   // Capture global variables if it is required to use private copy of this
19770   // variable.
19771   bool IsGlobal = !VD->hasLocalStorage();
19772   if (IsGlobal &&
19773       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19774                                                 MaxFunctionScopesIndex)))
19775     return true;
19776 
19777   if (isa<VarDecl>(Var))
19778     Var = cast<VarDecl>(Var->getCanonicalDecl());
19779 
19780   // Walk up the stack to determine whether we can capture the variable,
19781   // performing the "simple" checks that don't depend on type. We stop when
19782   // we've either hit the declared scope of the variable or find an existing
19783   // capture of that variable.  We start from the innermost capturing-entity
19784   // (the DC) and ensure that all intervening capturing-entities
19785   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19786   // declcontext can either capture the variable or have already captured
19787   // the variable.
19788   CaptureType = Var->getType();
19789   DeclRefType = CaptureType.getNonReferenceType();
19790   bool Nested = false;
19791   bool Explicit = (Kind != TryCapture_Implicit);
19792   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19793   do {
19794 
19795     LambdaScopeInfo *LSI = nullptr;
19796     if (!FunctionScopes.empty())
19797       LSI = dyn_cast_or_null<LambdaScopeInfo>(
19798           FunctionScopes[FunctionScopesIndex]);
19799 
19800     bool IsInScopeDeclarationContext =
19801         !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19802 
19803     if (LSI && !LSI->AfterParameterList) {
19804       // This allows capturing parameters from a default value which does not
19805       // seems correct
19806       if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
19807         return true;
19808     }
19809     // If the variable is declared in the current context, there is no need to
19810     // capture it.
19811     if (IsInScopeDeclarationContext &&
19812         FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19813       return true;
19814 
19815     // Only block literals, captured statements, and lambda expressions can
19816     // capture; other scopes don't work.
19817     DeclContext *ParentDC =
19818         !IsInScopeDeclarationContext
19819             ? DC->getParent()
19820             : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
19821                                                 BuildAndDiagnose, *this);
19822     // We need to check for the parent *first* because, if we *have*
19823     // private-captured a global variable, we need to recursively capture it in
19824     // intermediate blocks, lambdas, etc.
19825     if (!ParentDC) {
19826       if (IsGlobal) {
19827         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19828         break;
19829       }
19830       return true;
19831     }
19832 
19833     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
19834     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19835 
19836     // Check whether we've already captured it.
19837     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19838                                              DeclRefType)) {
19839       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19840       break;
19841     }
19842 
19843     // When evaluating some attributes (like enable_if) we might refer to a
19844     // function parameter appertaining to the same declaration as that
19845     // attribute.
19846     if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
19847         Parm && Parm->getDeclContext() == DC)
19848       return true;
19849 
19850     // If we are instantiating a generic lambda call operator body,
19851     // we do not want to capture new variables.  What was captured
19852     // during either a lambdas transformation or initial parsing
19853     // should be used.
19854     if (isGenericLambdaCallOperatorSpecialization(DC)) {
19855       if (BuildAndDiagnose) {
19856         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19857         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19858           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19859           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19860           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19861           buildLambdaCaptureFixit(*this, LSI, Var);
19862         } else
19863           diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19864       }
19865       return true;
19866     }
19867 
19868     // Try to capture variable-length arrays types.
19869     if (Var->getType()->isVariablyModifiedType()) {
19870       // We're going to walk down into the type and look for VLA
19871       // expressions.
19872       QualType QTy = Var->getType();
19873       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19874         QTy = PVD->getOriginalType();
19875       captureVariablyModifiedType(Context, QTy, CSI);
19876     }
19877 
19878     if (getLangOpts().OpenMP) {
19879       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19880         // OpenMP private variables should not be captured in outer scope, so
19881         // just break here. Similarly, global variables that are captured in a
19882         // target region should not be captured outside the scope of the region.
19883         if (RSI->CapRegionKind == CR_OpenMP) {
19884           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
19885               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19886           // If the variable is private (i.e. not captured) and has variably
19887           // modified type, we still need to capture the type for correct
19888           // codegen in all regions, associated with the construct. Currently,
19889           // it is captured in the innermost captured region only.
19890           if (IsOpenMPPrivateDecl != OMPC_unknown &&
19891               Var->getType()->isVariablyModifiedType()) {
19892             QualType QTy = Var->getType();
19893             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19894               QTy = PVD->getOriginalType();
19895             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
19896                  I < E; ++I) {
19897               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19898                   FunctionScopes[FunctionScopesIndex - I]);
19899               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19900                      "Wrong number of captured regions associated with the "
19901                      "OpenMP construct.");
19902               captureVariablyModifiedType(Context, QTy, OuterRSI);
19903             }
19904           }
19905           bool IsTargetCap =
19906               IsOpenMPPrivateDecl != OMPC_private &&
19907               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19908                                          RSI->OpenMPCaptureLevel);
19909           // Do not capture global if it is not privatized in outer regions.
19910           bool IsGlobalCap =
19911               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
19912                                                      RSI->OpenMPCaptureLevel);
19913 
19914           // When we detect target captures we are looking from inside the
19915           // target region, therefore we need to propagate the capture from the
19916           // enclosing region. Therefore, the capture is not initially nested.
19917           if (IsTargetCap)
19918             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
19919 
19920           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19921               (IsGlobal && !IsGlobalCap)) {
19922             Nested = !IsTargetCap;
19923             bool HasConst = DeclRefType.isConstQualified();
19924             DeclRefType = DeclRefType.getUnqualifiedType();
19925             // Don't lose diagnostics about assignments to const.
19926             if (HasConst)
19927               DeclRefType.addConst();
19928             CaptureType = Context.getLValueReferenceType(DeclRefType);
19929             break;
19930           }
19931         }
19932       }
19933     }
19934     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19935       // No capture-default, and this is not an explicit capture
19936       // so cannot capture this variable.
19937       if (BuildAndDiagnose) {
19938         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19939         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19940         auto *LSI = cast<LambdaScopeInfo>(CSI);
19941         if (LSI->Lambda) {
19942           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19943           buildLambdaCaptureFixit(*this, LSI, Var);
19944         }
19945         // FIXME: If we error out because an outer lambda can not implicitly
19946         // capture a variable that an inner lambda explicitly captures, we
19947         // should have the inner lambda do the explicit capture - because
19948         // it makes for cleaner diagnostics later.  This would purely be done
19949         // so that the diagnostic does not misleadingly claim that a variable
19950         // can not be captured by a lambda implicitly even though it is captured
19951         // explicitly.  Suggestion:
19952         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19953         //    at the function head
19954         //  - cache the StartingDeclContext - this must be a lambda
19955         //  - captureInLambda in the innermost lambda the variable.
19956       }
19957       return true;
19958     }
19959     Explicit = false;
19960     FunctionScopesIndex--;
19961     if (IsInScopeDeclarationContext)
19962       DC = ParentDC;
19963   } while (!VarDC->Equals(DC));
19964 
19965   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19966   // computing the type of the capture at each step, checking type-specific
19967   // requirements, and adding captures if requested.
19968   // If the variable had already been captured previously, we start capturing
19969   // at the lambda nested within that one.
19970   bool Invalid = false;
19971   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19972        ++I) {
19973     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19974 
19975     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19976     // certain types of variables (unnamed, variably modified types etc.)
19977     // so check for eligibility.
19978     if (!Invalid)
19979       Invalid =
19980           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19981 
19982     // After encountering an error, if we're actually supposed to capture, keep
19983     // capturing in nested contexts to suppress any follow-on diagnostics.
19984     if (Invalid && !BuildAndDiagnose)
19985       return true;
19986 
19987     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19988       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19989                                DeclRefType, Nested, *this, Invalid);
19990       Nested = true;
19991     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19992       Invalid = !captureInCapturedRegion(
19993           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19994           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19995       Nested = true;
19996     } else {
19997       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19998       Invalid =
19999           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
20000                            DeclRefType, Nested, Kind, EllipsisLoc,
20001                            /*IsTopScope*/ I == N - 1, *this, Invalid);
20002       Nested = true;
20003     }
20004 
20005     if (Invalid && !BuildAndDiagnose)
20006       return true;
20007   }
20008   return Invalid;
20009 }
20010 
20011 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
20012                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
20013   QualType CaptureType;
20014   QualType DeclRefType;
20015   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
20016                             /*BuildAndDiagnose=*/true, CaptureType,
20017                             DeclRefType, nullptr);
20018 }
20019 
20020 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
20021   QualType CaptureType;
20022   QualType DeclRefType;
20023   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20024                              /*BuildAndDiagnose=*/false, CaptureType,
20025                              DeclRefType, nullptr);
20026 }
20027 
20028 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
20029   QualType CaptureType;
20030   QualType DeclRefType;
20031 
20032   // Determine whether we can capture this variable.
20033   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20034                          /*BuildAndDiagnose=*/false, CaptureType,
20035                          DeclRefType, nullptr))
20036     return QualType();
20037 
20038   return DeclRefType;
20039 }
20040 
20041 namespace {
20042 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
20043 // The produced TemplateArgumentListInfo* points to data stored within this
20044 // object, so should only be used in contexts where the pointer will not be
20045 // used after the CopiedTemplateArgs object is destroyed.
20046 class CopiedTemplateArgs {
20047   bool HasArgs;
20048   TemplateArgumentListInfo TemplateArgStorage;
20049 public:
20050   template<typename RefExpr>
20051   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
20052     if (HasArgs)
20053       E->copyTemplateArgumentsInto(TemplateArgStorage);
20054   }
20055   operator TemplateArgumentListInfo*()
20056 #ifdef __has_cpp_attribute
20057 #if __has_cpp_attribute(clang::lifetimebound)
20058   [[clang::lifetimebound]]
20059 #endif
20060 #endif
20061   {
20062     return HasArgs ? &TemplateArgStorage : nullptr;
20063   }
20064 };
20065 }
20066 
20067 /// Walk the set of potential results of an expression and mark them all as
20068 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
20069 ///
20070 /// \return A new expression if we found any potential results, ExprEmpty() if
20071 ///         not, and ExprError() if we diagnosed an error.
20072 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
20073                                                       NonOdrUseReason NOUR) {
20074   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
20075   // an object that satisfies the requirements for appearing in a
20076   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
20077   // is immediately applied."  This function handles the lvalue-to-rvalue
20078   // conversion part.
20079   //
20080   // If we encounter a node that claims to be an odr-use but shouldn't be, we
20081   // transform it into the relevant kind of non-odr-use node and rebuild the
20082   // tree of nodes leading to it.
20083   //
20084   // This is a mini-TreeTransform that only transforms a restricted subset of
20085   // nodes (and only certain operands of them).
20086 
20087   // Rebuild a subexpression.
20088   auto Rebuild = [&](Expr *Sub) {
20089     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
20090   };
20091 
20092   // Check whether a potential result satisfies the requirements of NOUR.
20093   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
20094     // Any entity other than a VarDecl is always odr-used whenever it's named
20095     // in a potentially-evaluated expression.
20096     auto *VD = dyn_cast<VarDecl>(D);
20097     if (!VD)
20098       return true;
20099 
20100     // C++2a [basic.def.odr]p4:
20101     //   A variable x whose name appears as a potentially-evalauted expression
20102     //   e is odr-used by e unless
20103     //   -- x is a reference that is usable in constant expressions, or
20104     //   -- x is a variable of non-reference type that is usable in constant
20105     //      expressions and has no mutable subobjects, and e is an element of
20106     //      the set of potential results of an expression of
20107     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
20108     //      conversion is applied, or
20109     //   -- x is a variable of non-reference type, and e is an element of the
20110     //      set of potential results of a discarded-value expression to which
20111     //      the lvalue-to-rvalue conversion is not applied
20112     //
20113     // We check the first bullet and the "potentially-evaluated" condition in
20114     // BuildDeclRefExpr. We check the type requirements in the second bullet
20115     // in CheckLValueToRValueConversionOperand below.
20116     switch (NOUR) {
20117     case NOUR_None:
20118     case NOUR_Unevaluated:
20119       llvm_unreachable("unexpected non-odr-use-reason");
20120 
20121     case NOUR_Constant:
20122       // Constant references were handled when they were built.
20123       if (VD->getType()->isReferenceType())
20124         return true;
20125       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
20126         if (RD->hasMutableFields())
20127           return true;
20128       if (!VD->isUsableInConstantExpressions(S.Context))
20129         return true;
20130       break;
20131 
20132     case NOUR_Discarded:
20133       if (VD->getType()->isReferenceType())
20134         return true;
20135       break;
20136     }
20137     return false;
20138   };
20139 
20140   // Mark that this expression does not constitute an odr-use.
20141   auto MarkNotOdrUsed = [&] {
20142     S.MaybeODRUseExprs.remove(E);
20143     if (LambdaScopeInfo *LSI = S.getCurLambda())
20144       LSI->markVariableExprAsNonODRUsed(E);
20145   };
20146 
20147   // C++2a [basic.def.odr]p2:
20148   //   The set of potential results of an expression e is defined as follows:
20149   switch (E->getStmtClass()) {
20150   //   -- If e is an id-expression, ...
20151   case Expr::DeclRefExprClass: {
20152     auto *DRE = cast<DeclRefExpr>(E);
20153     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
20154       break;
20155 
20156     // Rebuild as a non-odr-use DeclRefExpr.
20157     MarkNotOdrUsed();
20158     return DeclRefExpr::Create(
20159         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
20160         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
20161         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
20162         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
20163   }
20164 
20165   case Expr::FunctionParmPackExprClass: {
20166     auto *FPPE = cast<FunctionParmPackExpr>(E);
20167     // If any of the declarations in the pack is odr-used, then the expression
20168     // as a whole constitutes an odr-use.
20169     for (VarDecl *D : *FPPE)
20170       if (IsPotentialResultOdrUsed(D))
20171         return ExprEmpty();
20172 
20173     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
20174     // nothing cares about whether we marked this as an odr-use, but it might
20175     // be useful for non-compiler tools.
20176     MarkNotOdrUsed();
20177     break;
20178   }
20179 
20180   //   -- If e is a subscripting operation with an array operand...
20181   case Expr::ArraySubscriptExprClass: {
20182     auto *ASE = cast<ArraySubscriptExpr>(E);
20183     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
20184     if (!OldBase->getType()->isArrayType())
20185       break;
20186     ExprResult Base = Rebuild(OldBase);
20187     if (!Base.isUsable())
20188       return Base;
20189     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
20190     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
20191     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
20192     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
20193                                      ASE->getRBracketLoc());
20194   }
20195 
20196   case Expr::MemberExprClass: {
20197     auto *ME = cast<MemberExpr>(E);
20198     // -- If e is a class member access expression [...] naming a non-static
20199     //    data member...
20200     if (isa<FieldDecl>(ME->getMemberDecl())) {
20201       ExprResult Base = Rebuild(ME->getBase());
20202       if (!Base.isUsable())
20203         return Base;
20204       return MemberExpr::Create(
20205           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
20206           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
20207           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
20208           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
20209           ME->getObjectKind(), ME->isNonOdrUse());
20210     }
20211 
20212     if (ME->getMemberDecl()->isCXXInstanceMember())
20213       break;
20214 
20215     // -- If e is a class member access expression naming a static data member,
20216     //    ...
20217     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
20218       break;
20219 
20220     // Rebuild as a non-odr-use MemberExpr.
20221     MarkNotOdrUsed();
20222     return MemberExpr::Create(
20223         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
20224         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
20225         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
20226         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
20227   }
20228 
20229   case Expr::BinaryOperatorClass: {
20230     auto *BO = cast<BinaryOperator>(E);
20231     Expr *LHS = BO->getLHS();
20232     Expr *RHS = BO->getRHS();
20233     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
20234     if (BO->getOpcode() == BO_PtrMemD) {
20235       ExprResult Sub = Rebuild(LHS);
20236       if (!Sub.isUsable())
20237         return Sub;
20238       LHS = Sub.get();
20239     //   -- If e is a comma expression, ...
20240     } else if (BO->getOpcode() == BO_Comma) {
20241       ExprResult Sub = Rebuild(RHS);
20242       if (!Sub.isUsable())
20243         return Sub;
20244       RHS = Sub.get();
20245     } else {
20246       break;
20247     }
20248     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
20249                         LHS, RHS);
20250   }
20251 
20252   //   -- If e has the form (e1)...
20253   case Expr::ParenExprClass: {
20254     auto *PE = cast<ParenExpr>(E);
20255     ExprResult Sub = Rebuild(PE->getSubExpr());
20256     if (!Sub.isUsable())
20257       return Sub;
20258     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
20259   }
20260 
20261   //   -- If e is a glvalue conditional expression, ...
20262   // We don't apply this to a binary conditional operator. FIXME: Should we?
20263   case Expr::ConditionalOperatorClass: {
20264     auto *CO = cast<ConditionalOperator>(E);
20265     ExprResult LHS = Rebuild(CO->getLHS());
20266     if (LHS.isInvalid())
20267       return ExprError();
20268     ExprResult RHS = Rebuild(CO->getRHS());
20269     if (RHS.isInvalid())
20270       return ExprError();
20271     if (!LHS.isUsable() && !RHS.isUsable())
20272       return ExprEmpty();
20273     if (!LHS.isUsable())
20274       LHS = CO->getLHS();
20275     if (!RHS.isUsable())
20276       RHS = CO->getRHS();
20277     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
20278                                 CO->getCond(), LHS.get(), RHS.get());
20279   }
20280 
20281   // [Clang extension]
20282   //   -- If e has the form __extension__ e1...
20283   case Expr::UnaryOperatorClass: {
20284     auto *UO = cast<UnaryOperator>(E);
20285     if (UO->getOpcode() != UO_Extension)
20286       break;
20287     ExprResult Sub = Rebuild(UO->getSubExpr());
20288     if (!Sub.isUsable())
20289       return Sub;
20290     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
20291                           Sub.get());
20292   }
20293 
20294   // [Clang extension]
20295   //   -- If e has the form _Generic(...), the set of potential results is the
20296   //      union of the sets of potential results of the associated expressions.
20297   case Expr::GenericSelectionExprClass: {
20298     auto *GSE = cast<GenericSelectionExpr>(E);
20299 
20300     SmallVector<Expr *, 4> AssocExprs;
20301     bool AnyChanged = false;
20302     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
20303       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
20304       if (AssocExpr.isInvalid())
20305         return ExprError();
20306       if (AssocExpr.isUsable()) {
20307         AssocExprs.push_back(AssocExpr.get());
20308         AnyChanged = true;
20309       } else {
20310         AssocExprs.push_back(OrigAssocExpr);
20311       }
20312     }
20313 
20314     void *ExOrTy = nullptr;
20315     bool IsExpr = GSE->isExprPredicate();
20316     if (IsExpr)
20317       ExOrTy = GSE->getControllingExpr();
20318     else
20319       ExOrTy = GSE->getControllingType();
20320     return AnyChanged ? S.CreateGenericSelectionExpr(
20321                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
20322                             GSE->getRParenLoc(), IsExpr, ExOrTy,
20323                             GSE->getAssocTypeSourceInfos(), AssocExprs)
20324                       : ExprEmpty();
20325   }
20326 
20327   // [Clang extension]
20328   //   -- If e has the form __builtin_choose_expr(...), the set of potential
20329   //      results is the union of the sets of potential results of the
20330   //      second and third subexpressions.
20331   case Expr::ChooseExprClass: {
20332     auto *CE = cast<ChooseExpr>(E);
20333 
20334     ExprResult LHS = Rebuild(CE->getLHS());
20335     if (LHS.isInvalid())
20336       return ExprError();
20337 
20338     ExprResult RHS = Rebuild(CE->getLHS());
20339     if (RHS.isInvalid())
20340       return ExprError();
20341 
20342     if (!LHS.get() && !RHS.get())
20343       return ExprEmpty();
20344     if (!LHS.isUsable())
20345       LHS = CE->getLHS();
20346     if (!RHS.isUsable())
20347       RHS = CE->getRHS();
20348 
20349     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
20350                              RHS.get(), CE->getRParenLoc());
20351   }
20352 
20353   // Step through non-syntactic nodes.
20354   case Expr::ConstantExprClass: {
20355     auto *CE = cast<ConstantExpr>(E);
20356     ExprResult Sub = Rebuild(CE->getSubExpr());
20357     if (!Sub.isUsable())
20358       return Sub;
20359     return ConstantExpr::Create(S.Context, Sub.get());
20360   }
20361 
20362   // We could mostly rely on the recursive rebuilding to rebuild implicit
20363   // casts, but not at the top level, so rebuild them here.
20364   case Expr::ImplicitCastExprClass: {
20365     auto *ICE = cast<ImplicitCastExpr>(E);
20366     // Only step through the narrow set of cast kinds we expect to encounter.
20367     // Anything else suggests we've left the region in which potential results
20368     // can be found.
20369     switch (ICE->getCastKind()) {
20370     case CK_NoOp:
20371     case CK_DerivedToBase:
20372     case CK_UncheckedDerivedToBase: {
20373       ExprResult Sub = Rebuild(ICE->getSubExpr());
20374       if (!Sub.isUsable())
20375         return Sub;
20376       CXXCastPath Path(ICE->path());
20377       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
20378                                  ICE->getValueKind(), &Path);
20379     }
20380 
20381     default:
20382       break;
20383     }
20384     break;
20385   }
20386 
20387   default:
20388     break;
20389   }
20390 
20391   // Can't traverse through this node. Nothing to do.
20392   return ExprEmpty();
20393 }
20394 
20395 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
20396   // Check whether the operand is or contains an object of non-trivial C union
20397   // type.
20398   if (E->getType().isVolatileQualified() &&
20399       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20400        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20401     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
20402                           Sema::NTCUC_LValueToRValueVolatile,
20403                           NTCUK_Destruct|NTCUK_Copy);
20404 
20405   // C++2a [basic.def.odr]p4:
20406   //   [...] an expression of non-volatile-qualified non-class type to which
20407   //   the lvalue-to-rvalue conversion is applied [...]
20408   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
20409     return E;
20410 
20411   ExprResult Result =
20412       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
20413   if (Result.isInvalid())
20414     return ExprError();
20415   return Result.get() ? Result : E;
20416 }
20417 
20418 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
20419   Res = CorrectDelayedTyposInExpr(Res);
20420 
20421   if (!Res.isUsable())
20422     return Res;
20423 
20424   // If a constant-expression is a reference to a variable where we delay
20425   // deciding whether it is an odr-use, just assume we will apply the
20426   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
20427   // (a non-type template argument), we have special handling anyway.
20428   return CheckLValueToRValueConversionOperand(Res.get());
20429 }
20430 
20431 void Sema::CleanupVarDeclMarking() {
20432   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20433   // call.
20434   MaybeODRUseExprSet LocalMaybeODRUseExprs;
20435   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
20436 
20437   for (Expr *E : LocalMaybeODRUseExprs) {
20438     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
20439       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
20440                          DRE->getLocation(), *this);
20441     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
20442       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
20443                          *this);
20444     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
20445       for (VarDecl *VD : *FP)
20446         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
20447     } else {
20448       llvm_unreachable("Unexpected expression");
20449     }
20450   }
20451 
20452   assert(MaybeODRUseExprs.empty() &&
20453          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20454 }
20455 
20456 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
20457                                    ValueDecl *Var, Expr *E) {
20458   VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
20459   if (!VD)
20460     return;
20461 
20462   const bool RefersToEnclosingScope =
20463       (SemaRef.CurContext != VD->getDeclContext() &&
20464        VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
20465   if (RefersToEnclosingScope) {
20466     LambdaScopeInfo *const LSI =
20467         SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20468     if (LSI && (!LSI->CallOperator ||
20469                 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
20470       // If a variable could potentially be odr-used, defer marking it so
20471       // until we finish analyzing the full expression for any
20472       // lvalue-to-rvalue
20473       // or discarded value conversions that would obviate odr-use.
20474       // Add it to the list of potential captures that will be analyzed
20475       // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20476       // unless the variable is a reference that was initialized by a constant
20477       // expression (this will never need to be captured or odr-used).
20478       //
20479       // FIXME: We can simplify this a lot after implementing P0588R1.
20480       assert(E && "Capture variable should be used in an expression.");
20481       if (!Var->getType()->isReferenceType() ||
20482           !VD->isUsableInConstantExpressions(SemaRef.Context))
20483         LSI->addPotentialCapture(E->IgnoreParens());
20484     }
20485   }
20486 }
20487 
20488 static void DoMarkVarDeclReferenced(
20489     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
20490     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20491   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
20492           isa<FunctionParmPackExpr>(E)) &&
20493          "Invalid Expr argument to DoMarkVarDeclReferenced");
20494   Var->setReferenced();
20495 
20496   if (Var->isInvalidDecl())
20497     return;
20498 
20499   auto *MSI = Var->getMemberSpecializationInfo();
20500   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
20501                                        : Var->getTemplateSpecializationKind();
20502 
20503   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20504   bool UsableInConstantExpr =
20505       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
20506 
20507   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
20508     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
20509   }
20510 
20511   // C++20 [expr.const]p12:
20512   //   A variable [...] is needed for constant evaluation if it is [...] a
20513   //   variable whose name appears as a potentially constant evaluated
20514   //   expression that is either a contexpr variable or is of non-volatile
20515   //   const-qualified integral type or of reference type
20516   bool NeededForConstantEvaluation =
20517       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
20518 
20519   bool NeedDefinition =
20520       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
20521 
20522   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
20523          "Can't instantiate a partial template specialization.");
20524 
20525   // If this might be a member specialization of a static data member, check
20526   // the specialization is visible. We already did the checks for variable
20527   // template specializations when we created them.
20528   if (NeedDefinition && TSK != TSK_Undeclared &&
20529       !isa<VarTemplateSpecializationDecl>(Var))
20530     SemaRef.checkSpecializationVisibility(Loc, Var);
20531 
20532   // Perform implicit instantiation of static data members, static data member
20533   // templates of class templates, and variable template specializations. Delay
20534   // instantiations of variable templates, except for those that could be used
20535   // in a constant expression.
20536   if (NeedDefinition && isTemplateInstantiation(TSK)) {
20537     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20538     // instantiation declaration if a variable is usable in a constant
20539     // expression (among other cases).
20540     bool TryInstantiating =
20541         TSK == TSK_ImplicitInstantiation ||
20542         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
20543 
20544     if (TryInstantiating) {
20545       SourceLocation PointOfInstantiation =
20546           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
20547       bool FirstInstantiation = PointOfInstantiation.isInvalid();
20548       if (FirstInstantiation) {
20549         PointOfInstantiation = Loc;
20550         if (MSI)
20551           MSI->setPointOfInstantiation(PointOfInstantiation);
20552           // FIXME: Notify listener.
20553         else
20554           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
20555       }
20556 
20557       if (UsableInConstantExpr) {
20558         // Do not defer instantiations of variables that could be used in a
20559         // constant expression.
20560         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
20561           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
20562         });
20563 
20564         // Re-set the member to trigger a recomputation of the dependence bits
20565         // for the expression.
20566         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20567           DRE->setDecl(DRE->getDecl());
20568         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
20569           ME->setMemberDecl(ME->getMemberDecl());
20570       } else if (FirstInstantiation) {
20571         SemaRef.PendingInstantiations
20572             .push_back(std::make_pair(Var, PointOfInstantiation));
20573       } else {
20574         bool Inserted = false;
20575         for (auto &I : SemaRef.SavedPendingInstantiations) {
20576           auto Iter = llvm::find_if(
20577               I, [Var](const Sema::PendingImplicitInstantiation &P) {
20578                 return P.first == Var;
20579               });
20580           if (Iter != I.end()) {
20581             SemaRef.PendingInstantiations.push_back(*Iter);
20582             I.erase(Iter);
20583             Inserted = true;
20584             break;
20585           }
20586         }
20587 
20588         // FIXME: For a specialization of a variable template, we don't
20589         // distinguish between "declaration and type implicitly instantiated"
20590         // and "implicit instantiation of definition requested", so we have
20591         // no direct way to avoid enqueueing the pending instantiation
20592         // multiple times.
20593         if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
20594           SemaRef.PendingInstantiations
20595             .push_back(std::make_pair(Var, PointOfInstantiation));
20596       }
20597     }
20598   }
20599 
20600   // C++2a [basic.def.odr]p4:
20601   //   A variable x whose name appears as a potentially-evaluated expression e
20602   //   is odr-used by e unless
20603   //   -- x is a reference that is usable in constant expressions
20604   //   -- x is a variable of non-reference type that is usable in constant
20605   //      expressions and has no mutable subobjects [FIXME], and e is an
20606   //      element of the set of potential results of an expression of
20607   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
20608   //      conversion is applied
20609   //   -- x is a variable of non-reference type, and e is an element of the set
20610   //      of potential results of a discarded-value expression to which the
20611   //      lvalue-to-rvalue conversion is not applied [FIXME]
20612   //
20613   // We check the first part of the second bullet here, and
20614   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20615   // FIXME: To get the third bullet right, we need to delay this even for
20616   // variables that are not usable in constant expressions.
20617 
20618   // If we already know this isn't an odr-use, there's nothing more to do.
20619   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20620     if (DRE->isNonOdrUse())
20621       return;
20622   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
20623     if (ME->isNonOdrUse())
20624       return;
20625 
20626   switch (OdrUse) {
20627   case OdrUseContext::None:
20628     // In some cases, a variable may not have been marked unevaluated, if it
20629     // appears in a defaukt initializer.
20630     assert((!E || isa<FunctionParmPackExpr>(E) ||
20631             SemaRef.isUnevaluatedContext()) &&
20632            "missing non-odr-use marking for unevaluated decl ref");
20633     break;
20634 
20635   case OdrUseContext::FormallyOdrUsed:
20636     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20637     // behavior.
20638     break;
20639 
20640   case OdrUseContext::Used:
20641     // If we might later find that this expression isn't actually an odr-use,
20642     // delay the marking.
20643     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
20644       SemaRef.MaybeODRUseExprs.insert(E);
20645     else
20646       MarkVarDeclODRUsed(Var, Loc, SemaRef);
20647     break;
20648 
20649   case OdrUseContext::Dependent:
20650     // If this is a dependent context, we don't need to mark variables as
20651     // odr-used, but we may still need to track them for lambda capture.
20652     // FIXME: Do we also need to do this inside dependent typeid expressions
20653     // (which are modeled as unevaluated at this point)?
20654     DoMarkPotentialCapture(SemaRef, Loc, Var, E);
20655     break;
20656   }
20657 }
20658 
20659 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
20660                                         BindingDecl *BD, Expr *E) {
20661   BD->setReferenced();
20662 
20663   if (BD->isInvalidDecl())
20664     return;
20665 
20666   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20667   if (OdrUse == OdrUseContext::Used) {
20668     QualType CaptureType, DeclRefType;
20669     SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
20670                                /*EllipsisLoc*/ SourceLocation(),
20671                                /*BuildAndDiagnose*/ true, CaptureType,
20672                                DeclRefType,
20673                                /*FunctionScopeIndexToStopAt*/ nullptr);
20674   } else if (OdrUse == OdrUseContext::Dependent) {
20675     DoMarkPotentialCapture(SemaRef, Loc, BD, E);
20676   }
20677 }
20678 
20679 /// Mark a variable referenced, and check whether it is odr-used
20680 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
20681 /// used directly for normal expressions referring to VarDecl.
20682 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
20683   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
20684 }
20685 
20686 // C++ [temp.dep.expr]p3:
20687 //   An id-expression is type-dependent if it contains:
20688 //     - an identifier associated by name lookup with an entity captured by copy
20689 //       in a lambda-expression that has an explicit object parameter whose type
20690 //       is dependent ([dcl.fct]),
20691 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
20692     Sema &SemaRef, ValueDecl *D, Expr *E) {
20693   auto *ID = dyn_cast<DeclRefExpr>(E);
20694   if (!ID || ID->isTypeDependent())
20695     return;
20696 
20697   auto IsDependent = [&]() {
20698     const LambdaScopeInfo *LSI = SemaRef.getCurLambda();
20699     if (!LSI)
20700       return false;
20701     if (!LSI->ExplicitObjectParameter ||
20702         !LSI->ExplicitObjectParameter->getType()->isDependentType())
20703       return false;
20704     if (!LSI->CaptureMap.count(D))
20705       return false;
20706     const Capture &Cap = LSI->getCapture(D);
20707     return !Cap.isCopyCapture();
20708   }();
20709 
20710   ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
20711       IsDependent, SemaRef.getASTContext());
20712 }
20713 
20714 static void
20715 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
20716                    bool MightBeOdrUse,
20717                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20718   if (SemaRef.isInOpenMPDeclareTargetContext())
20719     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
20720 
20721   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
20722     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20723     if (SemaRef.getLangOpts().CPlusPlus)
20724       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20725                                                                        Var, E);
20726     return;
20727   }
20728 
20729   if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
20730     DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
20731     if (SemaRef.getLangOpts().CPlusPlus)
20732       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20733                                                                        Decl, E);
20734     return;
20735   }
20736   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20737 
20738   // If this is a call to a method via a cast, also mark the method in the
20739   // derived class used in case codegen can devirtualize the call.
20740   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
20741   if (!ME)
20742     return;
20743   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
20744   if (!MD)
20745     return;
20746   // Only attempt to devirtualize if this is truly a virtual call.
20747   bool IsVirtualCall = MD->isVirtual() &&
20748                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
20749   if (!IsVirtualCall)
20750     return;
20751 
20752   // If it's possible to devirtualize the call, mark the called function
20753   // referenced.
20754   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20755       ME->getBase(), SemaRef.getLangOpts().AppleKext);
20756   if (DM)
20757     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
20758 }
20759 
20760 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
20761 ///
20762 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
20763 /// handled with care if the DeclRefExpr is not newly-created.
20764 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20765   // TODO: update this with DR# once a defect report is filed.
20766   // C++11 defect. The address of a pure member should not be an ODR use, even
20767   // if it's a qualified reference.
20768   bool OdrUse = true;
20769   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
20770     if (Method->isVirtual() &&
20771         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
20772       OdrUse = false;
20773 
20774   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
20775     if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20776         !isImmediateFunctionContext() &&
20777         !isCheckingDefaultArgumentOrInitializer() &&
20778         FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20779         !FD->isDependentContext())
20780       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
20781   }
20782   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20783                      RefsMinusAssignments);
20784 }
20785 
20786 /// Perform reference-marking and odr-use handling for a MemberExpr.
20787 void Sema::MarkMemberReferenced(MemberExpr *E) {
20788   // C++11 [basic.def.odr]p2:
20789   //   A non-overloaded function whose name appears as a potentially-evaluated
20790   //   expression or a member of a set of candidate functions, if selected by
20791   //   overload resolution when referred to from a potentially-evaluated
20792   //   expression, is odr-used, unless it is a pure virtual function and its
20793   //   name is not explicitly qualified.
20794   bool MightBeOdrUse = true;
20795   if (E->performsVirtualDispatch(getLangOpts())) {
20796     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20797       if (Method->isPure())
20798         MightBeOdrUse = false;
20799   }
20800   SourceLocation Loc =
20801       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20802   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20803                      RefsMinusAssignments);
20804 }
20805 
20806 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
20807 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20808   for (VarDecl *VD : *E)
20809     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20810                        RefsMinusAssignments);
20811 }
20812 
20813 /// Perform marking for a reference to an arbitrary declaration.  It
20814 /// marks the declaration referenced, and performs odr-use checking for
20815 /// functions and variables. This method should not be used when building a
20816 /// normal expression which refers to a variable.
20817 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20818                                  bool MightBeOdrUse) {
20819   if (MightBeOdrUse) {
20820     if (auto *VD = dyn_cast<VarDecl>(D)) {
20821       MarkVariableReferenced(Loc, VD);
20822       return;
20823     }
20824   }
20825   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20826     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20827     return;
20828   }
20829   D->setReferenced();
20830 }
20831 
20832 namespace {
20833   // Mark all of the declarations used by a type as referenced.
20834   // FIXME: Not fully implemented yet! We need to have a better understanding
20835   // of when we're entering a context we should not recurse into.
20836   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20837   // TreeTransforms rebuilding the type in a new context. Rather than
20838   // duplicating the TreeTransform logic, we should consider reusing it here.
20839   // Currently that causes problems when rebuilding LambdaExprs.
20840   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
20841     Sema &S;
20842     SourceLocation Loc;
20843 
20844   public:
20845     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
20846 
20847     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
20848 
20849     bool TraverseTemplateArgument(const TemplateArgument &Arg);
20850   };
20851 }
20852 
20853 bool MarkReferencedDecls::TraverseTemplateArgument(
20854     const TemplateArgument &Arg) {
20855   {
20856     // A non-type template argument is a constant-evaluated context.
20857     EnterExpressionEvaluationContext Evaluated(
20858         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20859     if (Arg.getKind() == TemplateArgument::Declaration) {
20860       if (Decl *D = Arg.getAsDecl())
20861         S.MarkAnyDeclReferenced(Loc, D, true);
20862     } else if (Arg.getKind() == TemplateArgument::Expression) {
20863       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20864     }
20865   }
20866 
20867   return Inherited::TraverseTemplateArgument(Arg);
20868 }
20869 
20870 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20871   MarkReferencedDecls Marker(*this, Loc);
20872   Marker.TraverseType(T);
20873 }
20874 
20875 namespace {
20876 /// Helper class that marks all of the declarations referenced by
20877 /// potentially-evaluated subexpressions as "referenced".
20878 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20879 public:
20880   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20881   bool SkipLocalVariables;
20882   ArrayRef<const Expr *> StopAt;
20883 
20884   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20885                       ArrayRef<const Expr *> StopAt)
20886       : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20887 
20888   void visitUsedDecl(SourceLocation Loc, Decl *D) {
20889     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20890   }
20891 
20892   void Visit(Expr *E) {
20893     if (llvm::is_contained(StopAt, E))
20894       return;
20895     Inherited::Visit(E);
20896   }
20897 
20898   void VisitConstantExpr(ConstantExpr *E) {
20899     // Don't mark declarations within a ConstantExpression, as this expression
20900     // will be evaluated and folded to a value.
20901   }
20902 
20903   void VisitDeclRefExpr(DeclRefExpr *E) {
20904     // If we were asked not to visit local variables, don't.
20905     if (SkipLocalVariables) {
20906       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20907         if (VD->hasLocalStorage())
20908           return;
20909     }
20910 
20911     // FIXME: This can trigger the instantiation of the initializer of a
20912     // variable, which can cause the expression to become value-dependent
20913     // or error-dependent. Do we need to propagate the new dependence bits?
20914     S.MarkDeclRefReferenced(E);
20915   }
20916 
20917   void VisitMemberExpr(MemberExpr *E) {
20918     S.MarkMemberReferenced(E);
20919     Visit(E->getBase());
20920   }
20921 };
20922 } // namespace
20923 
20924 /// Mark any declarations that appear within this expression or any
20925 /// potentially-evaluated subexpressions as "referenced".
20926 ///
20927 /// \param SkipLocalVariables If true, don't mark local variables as
20928 /// 'referenced'.
20929 /// \param StopAt Subexpressions that we shouldn't recurse into.
20930 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20931                                             bool SkipLocalVariables,
20932                                             ArrayRef<const Expr*> StopAt) {
20933   EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20934 }
20935 
20936 /// Emit a diagnostic when statements are reachable.
20937 /// FIXME: check for reachability even in expressions for which we don't build a
20938 ///        CFG (eg, in the initializer of a global or in a constant expression).
20939 ///        For example,
20940 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20941 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20942                            const PartialDiagnostic &PD) {
20943   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20944     if (!FunctionScopes.empty())
20945       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20946           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20947     return true;
20948   }
20949 
20950   // The initializer of a constexpr variable or of the first declaration of a
20951   // static data member is not syntactically a constant evaluated constant,
20952   // but nonetheless is always required to be a constant expression, so we
20953   // can skip diagnosing.
20954   // FIXME: Using the mangling context here is a hack.
20955   if (auto *VD = dyn_cast_or_null<VarDecl>(
20956           ExprEvalContexts.back().ManglingContextDecl)) {
20957     if (VD->isConstexpr() ||
20958         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20959       return false;
20960     // FIXME: For any other kind of variable, we should build a CFG for its
20961     // initializer and check whether the context in question is reachable.
20962   }
20963 
20964   Diag(Loc, PD);
20965   return true;
20966 }
20967 
20968 /// Emit a diagnostic that describes an effect on the run-time behavior
20969 /// of the program being compiled.
20970 ///
20971 /// This routine emits the given diagnostic when the code currently being
20972 /// type-checked is "potentially evaluated", meaning that there is a
20973 /// possibility that the code will actually be executable. Code in sizeof()
20974 /// expressions, code used only during overload resolution, etc., are not
20975 /// potentially evaluated. This routine will suppress such diagnostics or,
20976 /// in the absolutely nutty case of potentially potentially evaluated
20977 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20978 /// later.
20979 ///
20980 /// This routine should be used for all diagnostics that describe the run-time
20981 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20982 /// Failure to do so will likely result in spurious diagnostics or failures
20983 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20984 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20985                                const PartialDiagnostic &PD) {
20986 
20987   if (ExprEvalContexts.back().isDiscardedStatementContext())
20988     return false;
20989 
20990   switch (ExprEvalContexts.back().Context) {
20991   case ExpressionEvaluationContext::Unevaluated:
20992   case ExpressionEvaluationContext::UnevaluatedList:
20993   case ExpressionEvaluationContext::UnevaluatedAbstract:
20994   case ExpressionEvaluationContext::DiscardedStatement:
20995     // The argument will never be evaluated, so don't complain.
20996     break;
20997 
20998   case ExpressionEvaluationContext::ConstantEvaluated:
20999   case ExpressionEvaluationContext::ImmediateFunctionContext:
21000     // Relevant diagnostics should be produced by constant evaluation.
21001     break;
21002 
21003   case ExpressionEvaluationContext::PotentiallyEvaluated:
21004   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
21005     return DiagIfReachable(Loc, Stmts, PD);
21006   }
21007 
21008   return false;
21009 }
21010 
21011 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
21012                                const PartialDiagnostic &PD) {
21013   return DiagRuntimeBehavior(
21014       Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
21015 }
21016 
21017 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
21018                                CallExpr *CE, FunctionDecl *FD) {
21019   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
21020     return false;
21021 
21022   // If we're inside a decltype's expression, don't check for a valid return
21023   // type or construct temporaries until we know whether this is the last call.
21024   if (ExprEvalContexts.back().ExprContext ==
21025       ExpressionEvaluationContextRecord::EK_Decltype) {
21026     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
21027     return false;
21028   }
21029 
21030   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
21031     FunctionDecl *FD;
21032     CallExpr *CE;
21033 
21034   public:
21035     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
21036       : FD(FD), CE(CE) { }
21037 
21038     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
21039       if (!FD) {
21040         S.Diag(Loc, diag::err_call_incomplete_return)
21041           << T << CE->getSourceRange();
21042         return;
21043       }
21044 
21045       S.Diag(Loc, diag::err_call_function_incomplete_return)
21046           << CE->getSourceRange() << FD << T;
21047       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
21048           << FD->getDeclName();
21049     }
21050   } Diagnoser(FD, CE);
21051 
21052   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
21053     return true;
21054 
21055   return false;
21056 }
21057 
21058 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
21059 // will prevent this condition from triggering, which is what we want.
21060 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
21061   SourceLocation Loc;
21062 
21063   unsigned diagnostic = diag::warn_condition_is_assignment;
21064   bool IsOrAssign = false;
21065 
21066   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
21067     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
21068       return;
21069 
21070     IsOrAssign = Op->getOpcode() == BO_OrAssign;
21071 
21072     // Greylist some idioms by putting them into a warning subcategory.
21073     if (ObjCMessageExpr *ME
21074           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
21075       Selector Sel = ME->getSelector();
21076 
21077       // self = [<foo> init...]
21078       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
21079         diagnostic = diag::warn_condition_is_idiomatic_assignment;
21080 
21081       // <foo> = [<bar> nextObject]
21082       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
21083         diagnostic = diag::warn_condition_is_idiomatic_assignment;
21084     }
21085 
21086     Loc = Op->getOperatorLoc();
21087   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
21088     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
21089       return;
21090 
21091     IsOrAssign = Op->getOperator() == OO_PipeEqual;
21092     Loc = Op->getOperatorLoc();
21093   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
21094     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
21095   else {
21096     // Not an assignment.
21097     return;
21098   }
21099 
21100   Diag(Loc, diagnostic) << E->getSourceRange();
21101 
21102   SourceLocation Open = E->getBeginLoc();
21103   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
21104   Diag(Loc, diag::note_condition_assign_silence)
21105         << FixItHint::CreateInsertion(Open, "(")
21106         << FixItHint::CreateInsertion(Close, ")");
21107 
21108   if (IsOrAssign)
21109     Diag(Loc, diag::note_condition_or_assign_to_comparison)
21110       << FixItHint::CreateReplacement(Loc, "!=");
21111   else
21112     Diag(Loc, diag::note_condition_assign_to_comparison)
21113       << FixItHint::CreateReplacement(Loc, "==");
21114 }
21115 
21116 /// Redundant parentheses over an equality comparison can indicate
21117 /// that the user intended an assignment used as condition.
21118 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
21119   // Don't warn if the parens came from a macro.
21120   SourceLocation parenLoc = ParenE->getBeginLoc();
21121   if (parenLoc.isInvalid() || parenLoc.isMacroID())
21122     return;
21123   // Don't warn for dependent expressions.
21124   if (ParenE->isTypeDependent())
21125     return;
21126 
21127   Expr *E = ParenE->IgnoreParens();
21128 
21129   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
21130     if (opE->getOpcode() == BO_EQ &&
21131         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
21132                                                            == Expr::MLV_Valid) {
21133       SourceLocation Loc = opE->getOperatorLoc();
21134 
21135       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
21136       SourceRange ParenERange = ParenE->getSourceRange();
21137       Diag(Loc, diag::note_equality_comparison_silence)
21138         << FixItHint::CreateRemoval(ParenERange.getBegin())
21139         << FixItHint::CreateRemoval(ParenERange.getEnd());
21140       Diag(Loc, diag::note_equality_comparison_to_assign)
21141         << FixItHint::CreateReplacement(Loc, "=");
21142     }
21143 }
21144 
21145 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
21146                                        bool IsConstexpr) {
21147   DiagnoseAssignmentAsCondition(E);
21148   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
21149     DiagnoseEqualityWithExtraParens(parenE);
21150 
21151   ExprResult result = CheckPlaceholderExpr(E);
21152   if (result.isInvalid()) return ExprError();
21153   E = result.get();
21154 
21155   if (!E->isTypeDependent()) {
21156     if (getLangOpts().CPlusPlus)
21157       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
21158 
21159     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
21160     if (ERes.isInvalid())
21161       return ExprError();
21162     E = ERes.get();
21163 
21164     QualType T = E->getType();
21165     if (!T->isScalarType()) { // C99 6.8.4.1p1
21166       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
21167         << T << E->getSourceRange();
21168       return ExprError();
21169     }
21170     CheckBoolLikeConversion(E, Loc);
21171   }
21172 
21173   return E;
21174 }
21175 
21176 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
21177                                            Expr *SubExpr, ConditionKind CK,
21178                                            bool MissingOK) {
21179   // MissingOK indicates whether having no condition expression is valid
21180   // (for loop) or invalid (e.g. while loop).
21181   if (!SubExpr)
21182     return MissingOK ? ConditionResult() : ConditionError();
21183 
21184   ExprResult Cond;
21185   switch (CK) {
21186   case ConditionKind::Boolean:
21187     Cond = CheckBooleanCondition(Loc, SubExpr);
21188     break;
21189 
21190   case ConditionKind::ConstexprIf:
21191     Cond = CheckBooleanCondition(Loc, SubExpr, true);
21192     break;
21193 
21194   case ConditionKind::Switch:
21195     Cond = CheckSwitchCondition(Loc, SubExpr);
21196     break;
21197   }
21198   if (Cond.isInvalid()) {
21199     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
21200                               {SubExpr}, PreferredConditionType(CK));
21201     if (!Cond.get())
21202       return ConditionError();
21203   }
21204   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
21205   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
21206   if (!FullExpr.get())
21207     return ConditionError();
21208 
21209   return ConditionResult(*this, nullptr, FullExpr,
21210                          CK == ConditionKind::ConstexprIf);
21211 }
21212 
21213 namespace {
21214   /// A visitor for rebuilding a call to an __unknown_any expression
21215   /// to have an appropriate type.
21216   struct RebuildUnknownAnyFunction
21217     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
21218 
21219     Sema &S;
21220 
21221     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
21222 
21223     ExprResult VisitStmt(Stmt *S) {
21224       llvm_unreachable("unexpected statement!");
21225     }
21226 
21227     ExprResult VisitExpr(Expr *E) {
21228       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
21229         << E->getSourceRange();
21230       return ExprError();
21231     }
21232 
21233     /// Rebuild an expression which simply semantically wraps another
21234     /// expression which it shares the type and value kind of.
21235     template <class T> ExprResult rebuildSugarExpr(T *E) {
21236       ExprResult SubResult = Visit(E->getSubExpr());
21237       if (SubResult.isInvalid()) return ExprError();
21238 
21239       Expr *SubExpr = SubResult.get();
21240       E->setSubExpr(SubExpr);
21241       E->setType(SubExpr->getType());
21242       E->setValueKind(SubExpr->getValueKind());
21243       assert(E->getObjectKind() == OK_Ordinary);
21244       return E;
21245     }
21246 
21247     ExprResult VisitParenExpr(ParenExpr *E) {
21248       return rebuildSugarExpr(E);
21249     }
21250 
21251     ExprResult VisitUnaryExtension(UnaryOperator *E) {
21252       return rebuildSugarExpr(E);
21253     }
21254 
21255     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21256       ExprResult SubResult = Visit(E->getSubExpr());
21257       if (SubResult.isInvalid()) return ExprError();
21258 
21259       Expr *SubExpr = SubResult.get();
21260       E->setSubExpr(SubExpr);
21261       E->setType(S.Context.getPointerType(SubExpr->getType()));
21262       assert(E->isPRValue());
21263       assert(E->getObjectKind() == OK_Ordinary);
21264       return E;
21265     }
21266 
21267     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
21268       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
21269 
21270       E->setType(VD->getType());
21271 
21272       assert(E->isPRValue());
21273       if (S.getLangOpts().CPlusPlus &&
21274           !(isa<CXXMethodDecl>(VD) &&
21275             cast<CXXMethodDecl>(VD)->isInstance()))
21276         E->setValueKind(VK_LValue);
21277 
21278       return E;
21279     }
21280 
21281     ExprResult VisitMemberExpr(MemberExpr *E) {
21282       return resolveDecl(E, E->getMemberDecl());
21283     }
21284 
21285     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21286       return resolveDecl(E, E->getDecl());
21287     }
21288   };
21289 }
21290 
21291 /// Given a function expression of unknown-any type, try to rebuild it
21292 /// to have a function type.
21293 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
21294   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
21295   if (Result.isInvalid()) return ExprError();
21296   return S.DefaultFunctionArrayConversion(Result.get());
21297 }
21298 
21299 namespace {
21300   /// A visitor for rebuilding an expression of type __unknown_anytype
21301   /// into one which resolves the type directly on the referring
21302   /// expression.  Strict preservation of the original source
21303   /// structure is not a goal.
21304   struct RebuildUnknownAnyExpr
21305     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
21306 
21307     Sema &S;
21308 
21309     /// The current destination type.
21310     QualType DestType;
21311 
21312     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
21313       : S(S), DestType(CastType) {}
21314 
21315     ExprResult VisitStmt(Stmt *S) {
21316       llvm_unreachable("unexpected statement!");
21317     }
21318 
21319     ExprResult VisitExpr(Expr *E) {
21320       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21321         << E->getSourceRange();
21322       return ExprError();
21323     }
21324 
21325     ExprResult VisitCallExpr(CallExpr *E);
21326     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
21327 
21328     /// Rebuild an expression which simply semantically wraps another
21329     /// expression which it shares the type and value kind of.
21330     template <class T> ExprResult rebuildSugarExpr(T *E) {
21331       ExprResult SubResult = Visit(E->getSubExpr());
21332       if (SubResult.isInvalid()) return ExprError();
21333       Expr *SubExpr = SubResult.get();
21334       E->setSubExpr(SubExpr);
21335       E->setType(SubExpr->getType());
21336       E->setValueKind(SubExpr->getValueKind());
21337       assert(E->getObjectKind() == OK_Ordinary);
21338       return E;
21339     }
21340 
21341     ExprResult VisitParenExpr(ParenExpr *E) {
21342       return rebuildSugarExpr(E);
21343     }
21344 
21345     ExprResult VisitUnaryExtension(UnaryOperator *E) {
21346       return rebuildSugarExpr(E);
21347     }
21348 
21349     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21350       const PointerType *Ptr = DestType->getAs<PointerType>();
21351       if (!Ptr) {
21352         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
21353           << E->getSourceRange();
21354         return ExprError();
21355       }
21356 
21357       if (isa<CallExpr>(E->getSubExpr())) {
21358         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
21359           << E->getSourceRange();
21360         return ExprError();
21361       }
21362 
21363       assert(E->isPRValue());
21364       assert(E->getObjectKind() == OK_Ordinary);
21365       E->setType(DestType);
21366 
21367       // Build the sub-expression as if it were an object of the pointee type.
21368       DestType = Ptr->getPointeeType();
21369       ExprResult SubResult = Visit(E->getSubExpr());
21370       if (SubResult.isInvalid()) return ExprError();
21371       E->setSubExpr(SubResult.get());
21372       return E;
21373     }
21374 
21375     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
21376 
21377     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
21378 
21379     ExprResult VisitMemberExpr(MemberExpr *E) {
21380       return resolveDecl(E, E->getMemberDecl());
21381     }
21382 
21383     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21384       return resolveDecl(E, E->getDecl());
21385     }
21386   };
21387 }
21388 
21389 /// Rebuilds a call expression which yielded __unknown_anytype.
21390 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
21391   Expr *CalleeExpr = E->getCallee();
21392 
21393   enum FnKind {
21394     FK_MemberFunction,
21395     FK_FunctionPointer,
21396     FK_BlockPointer
21397   };
21398 
21399   FnKind Kind;
21400   QualType CalleeType = CalleeExpr->getType();
21401   if (CalleeType == S.Context.BoundMemberTy) {
21402     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
21403     Kind = FK_MemberFunction;
21404     CalleeType = Expr::findBoundMemberType(CalleeExpr);
21405   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
21406     CalleeType = Ptr->getPointeeType();
21407     Kind = FK_FunctionPointer;
21408   } else {
21409     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
21410     Kind = FK_BlockPointer;
21411   }
21412   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
21413 
21414   // Verify that this is a legal result type of a function.
21415   if (DestType->isArrayType() || DestType->isFunctionType()) {
21416     unsigned diagID = diag::err_func_returning_array_function;
21417     if (Kind == FK_BlockPointer)
21418       diagID = diag::err_block_returning_array_function;
21419 
21420     S.Diag(E->getExprLoc(), diagID)
21421       << DestType->isFunctionType() << DestType;
21422     return ExprError();
21423   }
21424 
21425   // Otherwise, go ahead and set DestType as the call's result.
21426   E->setType(DestType.getNonLValueExprType(S.Context));
21427   E->setValueKind(Expr::getValueKindForType(DestType));
21428   assert(E->getObjectKind() == OK_Ordinary);
21429 
21430   // Rebuild the function type, replacing the result type with DestType.
21431   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
21432   if (Proto) {
21433     // __unknown_anytype(...) is a special case used by the debugger when
21434     // it has no idea what a function's signature is.
21435     //
21436     // We want to build this call essentially under the K&R
21437     // unprototyped rules, but making a FunctionNoProtoType in C++
21438     // would foul up all sorts of assumptions.  However, we cannot
21439     // simply pass all arguments as variadic arguments, nor can we
21440     // portably just call the function under a non-variadic type; see
21441     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21442     // However, it turns out that in practice it is generally safe to
21443     // call a function declared as "A foo(B,C,D);" under the prototype
21444     // "A foo(B,C,D,...);".  The only known exception is with the
21445     // Windows ABI, where any variadic function is implicitly cdecl
21446     // regardless of its normal CC.  Therefore we change the parameter
21447     // types to match the types of the arguments.
21448     //
21449     // This is a hack, but it is far superior to moving the
21450     // corresponding target-specific code from IR-gen to Sema/AST.
21451 
21452     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
21453     SmallVector<QualType, 8> ArgTypes;
21454     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
21455       ArgTypes.reserve(E->getNumArgs());
21456       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
21457         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
21458       }
21459       ParamTypes = ArgTypes;
21460     }
21461     DestType = S.Context.getFunctionType(DestType, ParamTypes,
21462                                          Proto->getExtProtoInfo());
21463   } else {
21464     DestType = S.Context.getFunctionNoProtoType(DestType,
21465                                                 FnType->getExtInfo());
21466   }
21467 
21468   // Rebuild the appropriate pointer-to-function type.
21469   switch (Kind) {
21470   case FK_MemberFunction:
21471     // Nothing to do.
21472     break;
21473 
21474   case FK_FunctionPointer:
21475     DestType = S.Context.getPointerType(DestType);
21476     break;
21477 
21478   case FK_BlockPointer:
21479     DestType = S.Context.getBlockPointerType(DestType);
21480     break;
21481   }
21482 
21483   // Finally, we can recurse.
21484   ExprResult CalleeResult = Visit(CalleeExpr);
21485   if (!CalleeResult.isUsable()) return ExprError();
21486   E->setCallee(CalleeResult.get());
21487 
21488   // Bind a temporary if necessary.
21489   return S.MaybeBindToTemporary(E);
21490 }
21491 
21492 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
21493   // Verify that this is a legal result type of a call.
21494   if (DestType->isArrayType() || DestType->isFunctionType()) {
21495     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
21496       << DestType->isFunctionType() << DestType;
21497     return ExprError();
21498   }
21499 
21500   // Rewrite the method result type if available.
21501   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
21502     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
21503     Method->setReturnType(DestType);
21504   }
21505 
21506   // Change the type of the message.
21507   E->setType(DestType.getNonReferenceType());
21508   E->setValueKind(Expr::getValueKindForType(DestType));
21509 
21510   return S.MaybeBindToTemporary(E);
21511 }
21512 
21513 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
21514   // The only case we should ever see here is a function-to-pointer decay.
21515   if (E->getCastKind() == CK_FunctionToPointerDecay) {
21516     assert(E->isPRValue());
21517     assert(E->getObjectKind() == OK_Ordinary);
21518 
21519     E->setType(DestType);
21520 
21521     // Rebuild the sub-expression as the pointee (function) type.
21522     DestType = DestType->castAs<PointerType>()->getPointeeType();
21523 
21524     ExprResult Result = Visit(E->getSubExpr());
21525     if (!Result.isUsable()) return ExprError();
21526 
21527     E->setSubExpr(Result.get());
21528     return E;
21529   } else if (E->getCastKind() == CK_LValueToRValue) {
21530     assert(E->isPRValue());
21531     assert(E->getObjectKind() == OK_Ordinary);
21532 
21533     assert(isa<BlockPointerType>(E->getType()));
21534 
21535     E->setType(DestType);
21536 
21537     // The sub-expression has to be a lvalue reference, so rebuild it as such.
21538     DestType = S.Context.getLValueReferenceType(DestType);
21539 
21540     ExprResult Result = Visit(E->getSubExpr());
21541     if (!Result.isUsable()) return ExprError();
21542 
21543     E->setSubExpr(Result.get());
21544     return E;
21545   } else {
21546     llvm_unreachable("Unhandled cast type!");
21547   }
21548 }
21549 
21550 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
21551   ExprValueKind ValueKind = VK_LValue;
21552   QualType Type = DestType;
21553 
21554   // We know how to make this work for certain kinds of decls:
21555 
21556   //  - functions
21557   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
21558     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
21559       DestType = Ptr->getPointeeType();
21560       ExprResult Result = resolveDecl(E, VD);
21561       if (Result.isInvalid()) return ExprError();
21562       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
21563                                  VK_PRValue);
21564     }
21565 
21566     if (!Type->isFunctionType()) {
21567       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
21568         << VD << E->getSourceRange();
21569       return ExprError();
21570     }
21571     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
21572       // We must match the FunctionDecl's type to the hack introduced in
21573       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21574       // type. See the lengthy commentary in that routine.
21575       QualType FDT = FD->getType();
21576       const FunctionType *FnType = FDT->castAs<FunctionType>();
21577       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
21578       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
21579       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
21580         SourceLocation Loc = FD->getLocation();
21581         FunctionDecl *NewFD = FunctionDecl::Create(
21582             S.Context, FD->getDeclContext(), Loc, Loc,
21583             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
21584             SC_None, S.getCurFPFeatures().isFPConstrained(),
21585             false /*isInlineSpecified*/, FD->hasPrototype(),
21586             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
21587 
21588         if (FD->getQualifier())
21589           NewFD->setQualifierInfo(FD->getQualifierLoc());
21590 
21591         SmallVector<ParmVarDecl*, 16> Params;
21592         for (const auto &AI : FT->param_types()) {
21593           ParmVarDecl *Param =
21594             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
21595           Param->setScopeInfo(0, Params.size());
21596           Params.push_back(Param);
21597         }
21598         NewFD->setParams(Params);
21599         DRE->setDecl(NewFD);
21600         VD = DRE->getDecl();
21601       }
21602     }
21603 
21604     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
21605       if (MD->isInstance()) {
21606         ValueKind = VK_PRValue;
21607         Type = S.Context.BoundMemberTy;
21608       }
21609 
21610     // Function references aren't l-values in C.
21611     if (!S.getLangOpts().CPlusPlus)
21612       ValueKind = VK_PRValue;
21613 
21614   //  - variables
21615   } else if (isa<VarDecl>(VD)) {
21616     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
21617       Type = RefTy->getPointeeType();
21618     } else if (Type->isFunctionType()) {
21619       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
21620         << VD << E->getSourceRange();
21621       return ExprError();
21622     }
21623 
21624   //  - nothing else
21625   } else {
21626     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
21627       << VD << E->getSourceRange();
21628     return ExprError();
21629   }
21630 
21631   // Modifying the declaration like this is friendly to IR-gen but
21632   // also really dangerous.
21633   VD->setType(DestType);
21634   E->setType(Type);
21635   E->setValueKind(ValueKind);
21636   return E;
21637 }
21638 
21639 /// Check a cast of an unknown-any type.  We intentionally only
21640 /// trigger this for C-style casts.
21641 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
21642                                      Expr *CastExpr, CastKind &CastKind,
21643                                      ExprValueKind &VK, CXXCastPath &Path) {
21644   // The type we're casting to must be either void or complete.
21645   if (!CastType->isVoidType() &&
21646       RequireCompleteType(TypeRange.getBegin(), CastType,
21647                           diag::err_typecheck_cast_to_incomplete))
21648     return ExprError();
21649 
21650   // Rewrite the casted expression from scratch.
21651   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
21652   if (!result.isUsable()) return ExprError();
21653 
21654   CastExpr = result.get();
21655   VK = CastExpr->getValueKind();
21656   CastKind = CK_NoOp;
21657 
21658   return CastExpr;
21659 }
21660 
21661 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
21662   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
21663 }
21664 
21665 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
21666                                     Expr *arg, QualType &paramType) {
21667   // If the syntactic form of the argument is not an explicit cast of
21668   // any sort, just do default argument promotion.
21669   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
21670   if (!castArg) {
21671     ExprResult result = DefaultArgumentPromotion(arg);
21672     if (result.isInvalid()) return ExprError();
21673     paramType = result.get()->getType();
21674     return result;
21675   }
21676 
21677   // Otherwise, use the type that was written in the explicit cast.
21678   assert(!arg->hasPlaceholderType());
21679   paramType = castArg->getTypeAsWritten();
21680 
21681   // Copy-initialize a parameter of that type.
21682   InitializedEntity entity =
21683     InitializedEntity::InitializeParameter(Context, paramType,
21684                                            /*consumed*/ false);
21685   return PerformCopyInitialization(entity, callLoc, arg);
21686 }
21687 
21688 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
21689   Expr *orig = E;
21690   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
21691   while (true) {
21692     E = E->IgnoreParenImpCasts();
21693     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
21694       E = call->getCallee();
21695       diagID = diag::err_uncasted_call_of_unknown_any;
21696     } else {
21697       break;
21698     }
21699   }
21700 
21701   SourceLocation loc;
21702   NamedDecl *d;
21703   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
21704     loc = ref->getLocation();
21705     d = ref->getDecl();
21706   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
21707     loc = mem->getMemberLoc();
21708     d = mem->getMemberDecl();
21709   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
21710     diagID = diag::err_uncasted_call_of_unknown_any;
21711     loc = msg->getSelectorStartLoc();
21712     d = msg->getMethodDecl();
21713     if (!d) {
21714       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
21715         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
21716         << orig->getSourceRange();
21717       return ExprError();
21718     }
21719   } else {
21720     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21721       << E->getSourceRange();
21722     return ExprError();
21723   }
21724 
21725   S.Diag(loc, diagID) << d << orig->getSourceRange();
21726 
21727   // Never recoverable.
21728   return ExprError();
21729 }
21730 
21731 /// Check for operands with placeholder types and complain if found.
21732 /// Returns ExprError() if there was an error and no recovery was possible.
21733 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
21734   if (!Context.isDependenceAllowed()) {
21735     // C cannot handle TypoExpr nodes on either side of a binop because it
21736     // doesn't handle dependent types properly, so make sure any TypoExprs have
21737     // been dealt with before checking the operands.
21738     ExprResult Result = CorrectDelayedTyposInExpr(E);
21739     if (!Result.isUsable()) return ExprError();
21740     E = Result.get();
21741   }
21742 
21743   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21744   if (!placeholderType) return E;
21745 
21746   switch (placeholderType->getKind()) {
21747 
21748   // Overloaded expressions.
21749   case BuiltinType::Overload: {
21750     // Try to resolve a single function template specialization.
21751     // This is obligatory.
21752     ExprResult Result = E;
21753     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
21754       return Result;
21755 
21756     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21757     // leaves Result unchanged on failure.
21758     Result = E;
21759     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
21760       return Result;
21761 
21762     // If that failed, try to recover with a call.
21763     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
21764                          /*complain*/ true);
21765     return Result;
21766   }
21767 
21768   // Bound member functions.
21769   case BuiltinType::BoundMember: {
21770     ExprResult result = E;
21771     const Expr *BME = E->IgnoreParens();
21772     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
21773     // Try to give a nicer diagnostic if it is a bound member that we recognize.
21774     if (isa<CXXPseudoDestructorExpr>(BME)) {
21775       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21776     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
21777       if (ME->getMemberNameInfo().getName().getNameKind() ==
21778           DeclarationName::CXXDestructorName)
21779         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21780     }
21781     tryToRecoverWithCall(result, PD,
21782                          /*complain*/ true);
21783     return result;
21784   }
21785 
21786   // ARC unbridged casts.
21787   case BuiltinType::ARCUnbridgedCast: {
21788     Expr *realCast = stripARCUnbridgedCast(E);
21789     diagnoseARCUnbridgedCast(realCast);
21790     return realCast;
21791   }
21792 
21793   // Expressions of unknown type.
21794   case BuiltinType::UnknownAny:
21795     return diagnoseUnknownAnyExpr(*this, E);
21796 
21797   // Pseudo-objects.
21798   case BuiltinType::PseudoObject:
21799     return checkPseudoObjectRValue(E);
21800 
21801   case BuiltinType::BuiltinFn: {
21802     // Accept __noop without parens by implicitly converting it to a call expr.
21803     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21804     if (DRE) {
21805       auto *FD = cast<FunctionDecl>(DRE->getDecl());
21806       unsigned BuiltinID = FD->getBuiltinID();
21807       if (BuiltinID == Builtin::BI__noop) {
21808         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21809                               CK_BuiltinFnToFnPtr)
21810                 .get();
21811         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21812                                 VK_PRValue, SourceLocation(),
21813                                 FPOptionsOverride());
21814       }
21815 
21816       if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21817         // Any use of these other than a direct call is ill-formed as of C++20,
21818         // because they are not addressable functions. In earlier language
21819         // modes, warn and force an instantiation of the real body.
21820         Diag(E->getBeginLoc(),
21821              getLangOpts().CPlusPlus20
21822                  ? diag::err_use_of_unaddressable_function
21823                  : diag::warn_cxx20_compat_use_of_unaddressable_function);
21824         if (FD->isImplicitlyInstantiable()) {
21825           // Require a definition here because a normal attempt at
21826           // instantiation for a builtin will be ignored, and we won't try
21827           // again later. We assume that the definition of the template
21828           // precedes this use.
21829           InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21830                                         /*Recursive=*/false,
21831                                         /*DefinitionRequired=*/true,
21832                                         /*AtEndOfTU=*/false);
21833         }
21834         // Produce a properly-typed reference to the function.
21835         CXXScopeSpec SS;
21836         SS.Adopt(DRE->getQualifierLoc());
21837         TemplateArgumentListInfo TemplateArgs;
21838         DRE->copyTemplateArgumentsInto(TemplateArgs);
21839         return BuildDeclRefExpr(
21840             FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21841             DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21842             DRE->getTemplateKeywordLoc(),
21843             DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21844       }
21845     }
21846 
21847     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21848     return ExprError();
21849   }
21850 
21851   case BuiltinType::IncompleteMatrixIdx:
21852     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21853              ->getRowIdx()
21854              ->getBeginLoc(),
21855          diag::err_matrix_incomplete_index);
21856     return ExprError();
21857 
21858   // Expressions of unknown type.
21859   case BuiltinType::OMPArraySection:
21860     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
21861     return ExprError();
21862 
21863   // Expressions of unknown type.
21864   case BuiltinType::OMPArrayShaping:
21865     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21866 
21867   case BuiltinType::OMPIterator:
21868     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21869 
21870   // Everything else should be impossible.
21871 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21872   case BuiltinType::Id:
21873 #include "clang/Basic/OpenCLImageTypes.def"
21874 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21875   case BuiltinType::Id:
21876 #include "clang/Basic/OpenCLExtensionTypes.def"
21877 #define SVE_TYPE(Name, Id, SingletonId) \
21878   case BuiltinType::Id:
21879 #include "clang/Basic/AArch64SVEACLETypes.def"
21880 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21881   case BuiltinType::Id:
21882 #include "clang/Basic/PPCTypes.def"
21883 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21884 #include "clang/Basic/RISCVVTypes.def"
21885 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21886 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21887 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21888 #define PLACEHOLDER_TYPE(Id, SingletonId)
21889 #include "clang/AST/BuiltinTypes.def"
21890     break;
21891   }
21892 
21893   llvm_unreachable("invalid placeholder type!");
21894 }
21895 
21896 bool Sema::CheckCaseExpression(Expr *E) {
21897   if (E->isTypeDependent())
21898     return true;
21899   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21900     return E->getType()->isIntegralOrEnumerationType();
21901   return false;
21902 }
21903 
21904 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21905 ExprResult
21906 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
21907   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
21908          "Unknown Objective-C Boolean value!");
21909   QualType BoolT = Context.ObjCBuiltinBoolTy;
21910   if (!Context.getBOOLDecl()) {
21911     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
21912                         Sema::LookupOrdinaryName);
21913     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
21914       NamedDecl *ND = Result.getFoundDecl();
21915       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
21916         Context.setBOOLDecl(TD);
21917     }
21918   }
21919   if (Context.getBOOLDecl())
21920     BoolT = Context.getBOOLType();
21921   return new (Context)
21922       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
21923 }
21924 
21925 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
21926     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
21927     SourceLocation RParen) {
21928   auto FindSpecVersion =
21929       [&](StringRef Platform) -> std::optional<VersionTuple> {
21930     auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21931       return Spec.getPlatform() == Platform;
21932     });
21933     // Transcribe the "ios" availability check to "maccatalyst" when compiling
21934     // for "maccatalyst" if "maccatalyst" is not specified.
21935     if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
21936       Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21937         return Spec.getPlatform() == "ios";
21938       });
21939     }
21940     if (Spec == AvailSpecs.end())
21941       return std::nullopt;
21942     return Spec->getVersion();
21943   };
21944 
21945   VersionTuple Version;
21946   if (auto MaybeVersion =
21947           FindSpecVersion(Context.getTargetInfo().getPlatformName()))
21948     Version = *MaybeVersion;
21949 
21950   // The use of `@available` in the enclosing context should be analyzed to
21951   // warn when it's used inappropriately (i.e. not if(@available)).
21952   if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
21953     Context->HasPotentialAvailabilityViolations = true;
21954 
21955   return new (Context)
21956       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
21957 }
21958 
21959 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21960                                     ArrayRef<Expr *> SubExprs, QualType T) {
21961   if (!Context.getLangOpts().RecoveryAST)
21962     return ExprError();
21963 
21964   if (isSFINAEContext())
21965     return ExprError();
21966 
21967   if (T.isNull() || T->isUndeducedType() ||
21968       !Context.getLangOpts().RecoveryASTType)
21969     // We don't know the concrete type, fallback to dependent type.
21970     T = Context.DependentTy;
21971 
21972   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
21973 }
21974