1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Template.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaLambda.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace sema;
44 
45 /// Handle the result of the special case name lookup for inheriting
46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47 /// constructor names in member using declarations, even if 'X' is not the
48 /// name of the corresponding type.
49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50                                               SourceLocation NameLoc,
51                                               IdentifierInfo &Name) {
52   NestedNameSpecifier *NNS = SS.getScopeRep();
53 
54   // Convert the nested-name-specifier into a type.
55   QualType Type;
56   switch (NNS->getKind()) {
57   case NestedNameSpecifier::TypeSpec:
58   case NestedNameSpecifier::TypeSpecWithTemplate:
59     Type = QualType(NNS->getAsType(), 0);
60     break;
61 
62   case NestedNameSpecifier::Identifier:
63     // Strip off the last layer of the nested-name-specifier and build a
64     // typename type for it.
65     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
66     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67                                         NNS->getAsIdentifier());
68     break;
69 
70   case NestedNameSpecifier::Global:
71   case NestedNameSpecifier::Super:
72   case NestedNameSpecifier::Namespace:
73   case NestedNameSpecifier::NamespaceAlias:
74     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
75   }
76 
77   // This reference to the type is located entirely at the location of the
78   // final identifier in the qualified-id.
79   return CreateParsedType(Type,
80                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
81 }
82 
83 ParsedType Sema::getConstructorName(IdentifierInfo &II,
84                                     SourceLocation NameLoc,
85                                     Scope *S, CXXScopeSpec &SS,
86                                     bool EnteringContext) {
87   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88   assert(CurClass && &II == CurClass->getIdentifier() &&
89          "not a constructor name");
90 
91   // When naming a constructor as a member of a dependent context (eg, in a
92   // friend declaration or an inherited constructor declaration), form an
93   // unresolved "typename" type.
94   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96     return ParsedType::make(T);
97   }
98 
99   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100     return ParsedType();
101 
102   // Find the injected-class-name declaration. Note that we make no attempt to
103   // diagnose cases where the injected-class-name is shadowed: the only
104   // declaration that can validly shadow the injected-class-name is a
105   // non-static data member, and if the class contains both a non-static data
106   // member and a constructor then it is ill-formed (we check that in
107   // CheckCompletedCXXClass).
108   CXXRecordDecl *InjectedClassName = nullptr;
109   for (NamedDecl *ND : CurClass->lookup(&II)) {
110     auto *RD = dyn_cast<CXXRecordDecl>(ND);
111     if (RD && RD->isInjectedClassName()) {
112       InjectedClassName = RD;
113       break;
114     }
115   }
116   if (!InjectedClassName) {
117     if (!CurClass->isInvalidDecl()) {
118       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119       // properly. Work around it here for now.
120       Diag(SS.getLastQualifierNameLoc(),
121            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122     }
123     return ParsedType();
124   }
125 
126   QualType T = Context.getTypeDeclType(InjectedClassName);
127   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129 
130   return ParsedType::make(T);
131 }
132 
133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134                                    IdentifierInfo &II,
135                                    SourceLocation NameLoc,
136                                    Scope *S, CXXScopeSpec &SS,
137                                    ParsedType ObjectTypePtr,
138                                    bool EnteringContext) {
139   // Determine where to perform name lookup.
140 
141   // FIXME: This area of the standard is very messy, and the current
142   // wording is rather unclear about which scopes we search for the
143   // destructor name; see core issues 399 and 555. Issue 399 in
144   // particular shows where the current description of destructor name
145   // lookup is completely out of line with existing practice, e.g.,
146   // this appears to be ill-formed:
147   //
148   //   namespace N {
149   //     template <typename T> struct S {
150   //       ~S();
151   //     };
152   //   }
153   //
154   //   void f(N::S<int>* s) {
155   //     s->N::S<int>::~S();
156   //   }
157   //
158   // See also PR6358 and PR6359.
159   //
160   // For now, we accept all the cases in which the name given could plausibly
161   // be interpreted as a correct destructor name, issuing off-by-default
162   // extension diagnostics on the cases that don't strictly conform to the
163   // C++20 rules. This basically means we always consider looking in the
164   // nested-name-specifier prefix, the complete nested-name-specifier, and
165   // the scope, and accept if we find the expected type in any of the three
166   // places.
167 
168   if (SS.isInvalid())
169     return nullptr;
170 
171   // Whether we've failed with a diagnostic already.
172   bool Failed = false;
173 
174   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176 
177   // If we have an object type, it's because we are in a
178   // pseudo-destructor-expression or a member access expression, and
179   // we know what type we're looking for.
180   QualType SearchType =
181       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182 
183   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186       if (!Type)
187         return false;
188 
189       if (SearchType.isNull() || SearchType->isDependentType())
190         return true;
191 
192       QualType T = Context.getTypeDeclType(Type);
193       return Context.hasSameUnqualifiedType(T, SearchType);
194     };
195 
196     unsigned NumAcceptableResults = 0;
197     for (NamedDecl *D : Found) {
198       if (IsAcceptableResult(D))
199         ++NumAcceptableResults;
200 
201       // Don't list a class twice in the lookup failure diagnostic if it's
202       // found by both its injected-class-name and by the name in the enclosing
203       // scope.
204       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205         if (RD->isInjectedClassName())
206           D = cast<NamedDecl>(RD->getParent());
207 
208       if (FoundDeclSet.insert(D).second)
209         FoundDecls.push_back(D);
210     }
211 
212     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213     // results, and all non-matching results if we have a search type. It's not
214     // clear what the right behavior is if destructor lookup hits an ambiguity,
215     // but other compilers do generally accept at least some kinds of
216     // ambiguity.
217     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219       LookupResult::Filter F = Found.makeFilter();
220       while (F.hasNext()) {
221         NamedDecl *D = F.next();
222         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223           Diag(D->getLocation(), diag::note_destructor_type_here)
224               << Context.getTypeDeclType(TD);
225         else
226           Diag(D->getLocation(), diag::note_destructor_nontype_here);
227 
228         if (!IsAcceptableResult(D))
229           F.erase();
230       }
231       F.done();
232     }
233 
234     if (Found.isAmbiguous())
235       Failed = true;
236 
237     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238       if (IsAcceptableResult(Type)) {
239         QualType T = Context.getTypeDeclType(Type);
240         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241         return CreateParsedType(T,
242                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
243       }
244     }
245 
246     return nullptr;
247   };
248 
249   bool IsDependent = false;
250 
251   auto LookupInObjectType = [&]() -> ParsedType {
252     if (Failed || SearchType.isNull())
253       return nullptr;
254 
255     IsDependent |= SearchType->isDependentType();
256 
257     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258     DeclContext *LookupCtx = computeDeclContext(SearchType);
259     if (!LookupCtx)
260       return nullptr;
261     LookupQualifiedName(Found, LookupCtx);
262     return CheckLookupResult(Found);
263   };
264 
265   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266     if (Failed)
267       return nullptr;
268 
269     IsDependent |= isDependentScopeSpecifier(LookupSS);
270     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271     if (!LookupCtx)
272       return nullptr;
273 
274     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276       Failed = true;
277       return nullptr;
278     }
279     LookupQualifiedName(Found, LookupCtx);
280     return CheckLookupResult(Found);
281   };
282 
283   auto LookupInScope = [&]() -> ParsedType {
284     if (Failed || !S)
285       return nullptr;
286 
287     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288     LookupName(Found, S);
289     return CheckLookupResult(Found);
290   };
291 
292   // C++2a [basic.lookup.qual]p6:
293   //   In a qualified-id of the form
294   //
295   //     nested-name-specifier[opt] type-name :: ~ type-name
296   //
297   //   the second type-name is looked up in the same scope as the first.
298   //
299   // We interpret this as meaning that if you do a dual-scope lookup for the
300   // first name, you also do a dual-scope lookup for the second name, per
301   // C++ [basic.lookup.classref]p4:
302   //
303   //   If the id-expression in a class member access is a qualified-id of the
304   //   form
305   //
306   //     class-name-or-namespace-name :: ...
307   //
308   //   the class-name-or-namespace-name following the . or -> is first looked
309   //   up in the class of the object expression and the name, if found, is used.
310   //   Otherwise, it is looked up in the context of the entire
311   //   postfix-expression.
312   //
313   // This looks in the same scopes as for an unqualified destructor name:
314   //
315   // C++ [basic.lookup.classref]p3:
316   //   If the unqualified-id is ~ type-name, the type-name is looked up
317   //   in the context of the entire postfix-expression. If the type T
318   //   of the object expression is of a class type C, the type-name is
319   //   also looked up in the scope of class C. At least one of the
320   //   lookups shall find a name that refers to cv T.
321   //
322   // FIXME: The intent is unclear here. Should type-name::~type-name look in
323   // the scope anyway if it finds a non-matching name declared in the class?
324   // If both lookups succeed and find a dependent result, which result should
325   // we retain? (Same question for p->~type-name().)
326 
327   if (NestedNameSpecifier *Prefix =
328       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329     // This is
330     //
331     //   nested-name-specifier type-name :: ~ type-name
332     //
333     // Look for the second type-name in the nested-name-specifier.
334     CXXScopeSpec PrefixSS;
335     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337       return T;
338   } else {
339     // This is one of
340     //
341     //   type-name :: ~ type-name
342     //   ~ type-name
343     //
344     // Look in the scope and (if any) the object type.
345     if (ParsedType T = LookupInScope())
346       return T;
347     if (ParsedType T = LookupInObjectType())
348       return T;
349   }
350 
351   if (Failed)
352     return nullptr;
353 
354   if (IsDependent) {
355     // We didn't find our type, but that's OK: it's dependent anyway.
356 
357     // FIXME: What if we have no nested-name-specifier?
358     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359                                    SS.getWithLocInContext(Context),
360                                    II, NameLoc);
361     return ParsedType::make(T);
362   }
363 
364   // The remaining cases are all non-standard extensions imitating the behavior
365   // of various other compilers.
366   unsigned NumNonExtensionDecls = FoundDecls.size();
367 
368   if (SS.isSet()) {
369     // For compatibility with older broken C++ rules and existing code,
370     //
371     //   nested-name-specifier :: ~ type-name
372     //
373     // also looks for type-name within the nested-name-specifier.
374     if (ParsedType T = LookupInNestedNameSpec(SS)) {
375       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376           << SS.getRange()
377           << FixItHint::CreateInsertion(SS.getEndLoc(),
378                                         ("::" + II.getName()).str());
379       return T;
380     }
381 
382     // For compatibility with other compilers and older versions of Clang,
383     //
384     //   nested-name-specifier type-name :: ~ type-name
385     //
386     // also looks for type-name in the scope. Unfortunately, we can't
387     // reasonably apply this fallback for dependent nested-name-specifiers.
388     if (SS.getScopeRep()->getPrefix()) {
389       if (ParsedType T = LookupInScope()) {
390         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391             << FixItHint::CreateRemoval(SS.getRange());
392         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393             << GetTypeFromParser(T);
394         return T;
395       }
396     }
397   }
398 
399   // We didn't find anything matching; tell the user what we did find (if
400   // anything).
401 
402   // Don't tell the user about declarations we shouldn't have found.
403   FoundDecls.resize(NumNonExtensionDecls);
404 
405   // List types before non-types.
406   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407                    [](NamedDecl *A, NamedDecl *B) {
408                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
409                             isa<TypeDecl>(B->getUnderlyingDecl());
410                    });
411 
412   // Suggest a fixit to properly name the destroyed type.
413   auto MakeFixItHint = [&]{
414     const CXXRecordDecl *Destroyed = nullptr;
415     // FIXME: If we have a scope specifier, suggest its last component?
416     if (!SearchType.isNull())
417       Destroyed = SearchType->getAsCXXRecordDecl();
418     else if (S)
419       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420     if (Destroyed)
421       return FixItHint::CreateReplacement(SourceRange(NameLoc),
422                                           Destroyed->getNameAsString());
423     return FixItHint();
424   };
425 
426   if (FoundDecls.empty()) {
427     // FIXME: Attempt typo-correction?
428     Diag(NameLoc, diag::err_undeclared_destructor_name)
429       << &II << MakeFixItHint();
430   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432       assert(!SearchType.isNull() &&
433              "should only reject a type result if we have a search type");
434       QualType T = Context.getTypeDeclType(TD);
435       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436           << T << SearchType << MakeFixItHint();
437     } else {
438       Diag(NameLoc, diag::err_destructor_expr_nontype)
439           << &II << MakeFixItHint();
440     }
441   } else {
442     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443                                       : diag::err_destructor_expr_mismatch)
444         << &II << SearchType << MakeFixItHint();
445   }
446 
447   for (NamedDecl *FoundD : FoundDecls) {
448     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450           << Context.getTypeDeclType(TD);
451     else
452       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453           << FoundD;
454   }
455 
456   return nullptr;
457 }
458 
459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460                                               ParsedType ObjectType) {
461   if (DS.getTypeSpecType() == DeclSpec::TST_error)
462     return nullptr;
463 
464   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466     return nullptr;
467   }
468 
469   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
470          "unexpected type in getDestructorType");
471   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
472 
473   // If we know the type of the object, check that the correct destructor
474   // type was named now; we can give better diagnostics this way.
475   QualType SearchType = GetTypeFromParser(ObjectType);
476   if (!SearchType.isNull() && !SearchType->isDependentType() &&
477       !Context.hasSameUnqualifiedType(T, SearchType)) {
478     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479       << T << SearchType;
480     return nullptr;
481   }
482 
483   return ParsedType::make(T);
484 }
485 
486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487                                   const UnqualifiedId &Name, bool IsUDSuffix) {
488   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
489   if (!IsUDSuffix) {
490     // [over.literal] p8
491     //
492     // double operator""_Bq(long double);  // OK: not a reserved identifier
493     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494     IdentifierInfo *II = Name.Identifier;
495     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496     SourceLocation Loc = Name.getEndLoc();
497     if (Status != ReservedIdentifierStatus::NotReserved &&
498         !PP.getSourceManager().isInSystemHeader(Loc)) {
499       Diag(Loc, diag::warn_reserved_extern_symbol)
500           << II << static_cast<int>(Status)
501           << FixItHint::CreateReplacement(
502                  Name.getSourceRange(),
503                  (StringRef("operator\"\"") + II->getName()).str());
504     }
505   }
506 
507   if (!SS.isValid())
508     return false;
509 
510   switch (SS.getScopeRep()->getKind()) {
511   case NestedNameSpecifier::Identifier:
512   case NestedNameSpecifier::TypeSpec:
513   case NestedNameSpecifier::TypeSpecWithTemplate:
514     // Per C++11 [over.literal]p2, literal operators can only be declared at
515     // namespace scope. Therefore, this unqualified-id cannot name anything.
516     // Reject it early, because we have no AST representation for this in the
517     // case where the scope is dependent.
518     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519         << SS.getScopeRep();
520     return true;
521 
522   case NestedNameSpecifier::Global:
523   case NestedNameSpecifier::Super:
524   case NestedNameSpecifier::Namespace:
525   case NestedNameSpecifier::NamespaceAlias:
526     return false;
527   }
528 
529   llvm_unreachable("unknown nested name specifier kind");
530 }
531 
532 /// Build a C++ typeid expression with a type operand.
533 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534                                 SourceLocation TypeidLoc,
535                                 TypeSourceInfo *Operand,
536                                 SourceLocation RParenLoc) {
537   // C++ [expr.typeid]p4:
538   //   The top-level cv-qualifiers of the lvalue expression or the type-id
539   //   that is the operand of typeid are always ignored.
540   //   If the type of the type-id is a class type or a reference to a class
541   //   type, the class shall be completely-defined.
542   Qualifiers Quals;
543   QualType T
544     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545                                       Quals);
546   if (T->getAs<RecordType>() &&
547       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548     return ExprError();
549 
550   if (T->isVariablyModifiedType())
551     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552 
553   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554     return ExprError();
555 
556   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557                                      SourceRange(TypeidLoc, RParenLoc));
558 }
559 
560 /// Build a C++ typeid expression with an expression operand.
561 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562                                 SourceLocation TypeidLoc,
563                                 Expr *E,
564                                 SourceLocation RParenLoc) {
565   bool WasEvaluated = false;
566   if (E && !E->isTypeDependent()) {
567     if (E->getType()->isPlaceholderType()) {
568       ExprResult result = CheckPlaceholderExpr(E);
569       if (result.isInvalid()) return ExprError();
570       E = result.get();
571     }
572 
573     QualType T = E->getType();
574     if (const RecordType *RecordT = T->getAs<RecordType>()) {
575       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576       // C++ [expr.typeid]p3:
577       //   [...] If the type of the expression is a class type, the class
578       //   shall be completely-defined.
579       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580         return ExprError();
581 
582       // C++ [expr.typeid]p3:
583       //   When typeid is applied to an expression other than an glvalue of a
584       //   polymorphic class type [...] [the] expression is an unevaluated
585       //   operand. [...]
586       if (RecordD->isPolymorphic() && E->isGLValue()) {
587         if (isUnevaluatedContext()) {
588           // The operand was processed in unevaluated context, switch the
589           // context and recheck the subexpression.
590           ExprResult Result = TransformToPotentiallyEvaluated(E);
591           if (Result.isInvalid())
592             return ExprError();
593           E = Result.get();
594         }
595 
596         // We require a vtable to query the type at run time.
597         MarkVTableUsed(TypeidLoc, RecordD);
598         WasEvaluated = true;
599       }
600     }
601 
602     ExprResult Result = CheckUnevaluatedOperand(E);
603     if (Result.isInvalid())
604       return ExprError();
605     E = Result.get();
606 
607     // C++ [expr.typeid]p4:
608     //   [...] If the type of the type-id is a reference to a possibly
609     //   cv-qualified type, the result of the typeid expression refers to a
610     //   std::type_info object representing the cv-unqualified referenced
611     //   type.
612     Qualifiers Quals;
613     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614     if (!Context.hasSameType(T, UnqualT)) {
615       T = UnqualT;
616       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617     }
618   }
619 
620   if (E->getType()->isVariablyModifiedType())
621     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622                      << E->getType());
623   else if (!inTemplateInstantiation() &&
624            E->HasSideEffects(Context, WasEvaluated)) {
625     // The expression operand for typeid is in an unevaluated expression
626     // context, so side effects could result in unintended consequences.
627     Diag(E->getExprLoc(), WasEvaluated
628                               ? diag::warn_side_effects_typeid
629                               : diag::warn_side_effects_unevaluated_context);
630   }
631 
632   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633                                      SourceRange(TypeidLoc, RParenLoc));
634 }
635 
636 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637 ExprResult
638 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640   // typeid is not supported in OpenCL.
641   if (getLangOpts().OpenCLCPlusPlus) {
642     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643                      << "typeid");
644   }
645 
646   // Find the std::type_info type.
647   if (!getStdNamespace())
648     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649 
650   if (!CXXTypeInfoDecl) {
651     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653     LookupQualifiedName(R, getStdNamespace());
654     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655     // Microsoft's typeinfo doesn't have type_info in std but in the global
656     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658       LookupQualifiedName(R, Context.getTranslationUnitDecl());
659       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660     }
661     if (!CXXTypeInfoDecl)
662       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663   }
664 
665   if (!getLangOpts().RTTI) {
666     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667   }
668 
669   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670 
671   if (isType) {
672     // The operand is a type; handle it as such.
673     TypeSourceInfo *TInfo = nullptr;
674     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675                                    &TInfo);
676     if (T.isNull())
677       return ExprError();
678 
679     if (!TInfo)
680       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681 
682     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683   }
684 
685   // The operand is an expression.
686   ExprResult Result =
687       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688 
689   if (!getLangOpts().RTTIData && !Result.isInvalid())
690     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694                 DiagnosticOptions::MSVC);
695   return Result;
696 }
697 
698 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699 /// a single GUID.
700 static void
701 getUuidAttrOfType(Sema &SemaRef, QualType QT,
702                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703   // Optionally remove one level of pointer, reference or array indirection.
704   const Type *Ty = QT.getTypePtr();
705   if (QT->isPointerType() || QT->isReferenceType())
706     Ty = QT->getPointeeType().getTypePtr();
707   else if (QT->isArrayType())
708     Ty = Ty->getBaseElementTypeUnsafe();
709 
710   const auto *TD = Ty->getAsTagDecl();
711   if (!TD)
712     return;
713 
714   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715     UuidAttrs.insert(Uuid);
716     return;
717   }
718 
719   // __uuidof can grab UUIDs from template arguments.
720   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722     for (const TemplateArgument &TA : TAL.asArray()) {
723       const UuidAttr *UuidForTA = nullptr;
724       if (TA.getKind() == TemplateArgument::Type)
725         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726       else if (TA.getKind() == TemplateArgument::Declaration)
727         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728 
729       if (UuidForTA)
730         UuidAttrs.insert(UuidForTA);
731     }
732   }
733 }
734 
735 /// Build a Microsoft __uuidof expression with a type operand.
736 ExprResult Sema::BuildCXXUuidof(QualType Type,
737                                 SourceLocation TypeidLoc,
738                                 TypeSourceInfo *Operand,
739                                 SourceLocation RParenLoc) {
740   MSGuidDecl *Guid = nullptr;
741   if (!Operand->getType()->isDependentType()) {
742     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744     if (UuidAttrs.empty())
745       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746     if (UuidAttrs.size() > 1)
747       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748     Guid = UuidAttrs.back()->getGuidDecl();
749   }
750 
751   return new (Context)
752       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753 }
754 
755 /// Build a Microsoft __uuidof expression with an expression operand.
756 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757                                 Expr *E, SourceLocation RParenLoc) {
758   MSGuidDecl *Guid = nullptr;
759   if (!E->getType()->isDependentType()) {
760     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763     } else {
764       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766       if (UuidAttrs.empty())
767         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768       if (UuidAttrs.size() > 1)
769         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770       Guid = UuidAttrs.back()->getGuidDecl();
771     }
772   }
773 
774   return new (Context)
775       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776 }
777 
778 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779 ExprResult
780 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782   QualType GuidType = Context.getMSGuidType();
783   GuidType.addConst();
784 
785   if (isType) {
786     // The operand is a type; handle it as such.
787     TypeSourceInfo *TInfo = nullptr;
788     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789                                    &TInfo);
790     if (T.isNull())
791       return ExprError();
792 
793     if (!TInfo)
794       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795 
796     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797   }
798 
799   // The operand is an expression.
800   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801 }
802 
803 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
804 ExprResult
805 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
807          "Unknown C++ Boolean value!");
808   return new (Context)
809       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810 }
811 
812 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813 ExprResult
814 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816 }
817 
818 /// ActOnCXXThrow - Parse throw expressions.
819 ExprResult
820 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821   bool IsThrownVarInScope = false;
822   if (Ex) {
823     // C++0x [class.copymove]p31:
824     //   When certain criteria are met, an implementation is allowed to omit the
825     //   copy/move construction of a class object [...]
826     //
827     //     - in a throw-expression, when the operand is the name of a
828     //       non-volatile automatic object (other than a function or catch-
829     //       clause parameter) whose scope does not extend beyond the end of the
830     //       innermost enclosing try-block (if there is one), the copy/move
831     //       operation from the operand to the exception object (15.1) can be
832     //       omitted by constructing the automatic object directly into the
833     //       exception object
834     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837           for( ; S; S = S->getParent()) {
838             if (S->isDeclScope(Var)) {
839               IsThrownVarInScope = true;
840               break;
841             }
842 
843             if (S->getFlags() &
844                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846                  Scope::TryScope))
847               break;
848           }
849         }
850       }
851   }
852 
853   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854 }
855 
856 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857                                bool IsThrownVarInScope) {
858   // Don't report an error if 'throw' is used in system headers.
859   if (!getLangOpts().CXXExceptions &&
860       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861     // Delay error emission for the OpenMP device code.
862     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863   }
864 
865   // Exceptions aren't allowed in CUDA device code.
866   if (getLangOpts().CUDA)
867     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868         << "throw" << CurrentCUDATarget();
869 
870   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872 
873   if (Ex && !Ex->isTypeDependent()) {
874     // Initialize the exception result.  This implicitly weeds out
875     // abstract types or types with inaccessible copy constructors.
876 
877     // C++0x [class.copymove]p31:
878     //   When certain criteria are met, an implementation is allowed to omit the
879     //   copy/move construction of a class object [...]
880     //
881     //     - in a throw-expression, when the operand is the name of a
882     //       non-volatile automatic object (other than a function or
883     //       catch-clause
884     //       parameter) whose scope does not extend beyond the end of the
885     //       innermost enclosing try-block (if there is one), the copy/move
886     //       operation from the operand to the exception object (15.1) can be
887     //       omitted by constructing the automatic object directly into the
888     //       exception object
889     NamedReturnInfo NRInfo =
890         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891 
892     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894       return ExprError();
895 
896     InitializedEntity Entity =
897         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899     if (Res.isInvalid())
900       return ExprError();
901     Ex = Res.get();
902   }
903 
904   // PPC MMA non-pointer types are not allowed as throw expr types.
905   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907 
908   return new (Context)
909       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910 }
911 
912 static void
913 collectPublicBases(CXXRecordDecl *RD,
914                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917                    bool ParentIsPublic) {
918   for (const CXXBaseSpecifier &BS : RD->bases()) {
919     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920     bool NewSubobject;
921     // Virtual bases constitute the same subobject.  Non-virtual bases are
922     // always distinct subobjects.
923     if (BS.isVirtual())
924       NewSubobject = VBases.insert(BaseDecl).second;
925     else
926       NewSubobject = true;
927 
928     if (NewSubobject)
929       ++SubobjectsSeen[BaseDecl];
930 
931     // Only add subobjects which have public access throughout the entire chain.
932     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933     if (PublicPath)
934       PublicSubobjectsSeen.insert(BaseDecl);
935 
936     // Recurse on to each base subobject.
937     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938                        PublicPath);
939   }
940 }
941 
942 static void getUnambiguousPublicSubobjects(
943     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947   SubobjectsSeen[RD] = 1;
948   PublicSubobjectsSeen.insert(RD);
949   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950                      /*ParentIsPublic=*/true);
951 
952   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953     // Skip ambiguous objects.
954     if (SubobjectsSeen[PublicSubobject] > 1)
955       continue;
956 
957     Objects.push_back(PublicSubobject);
958   }
959 }
960 
961 /// CheckCXXThrowOperand - Validate the operand of a throw.
962 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963                                 QualType ExceptionObjectTy, Expr *E) {
964   //   If the type of the exception would be an incomplete type or a pointer
965   //   to an incomplete type other than (cv) void the program is ill-formed.
966   QualType Ty = ExceptionObjectTy;
967   bool isPointer = false;
968   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969     Ty = Ptr->getPointeeType();
970     isPointer = true;
971   }
972   if (!isPointer || !Ty->isVoidType()) {
973     if (RequireCompleteType(ThrowLoc, Ty,
974                             isPointer ? diag::err_throw_incomplete_ptr
975                                       : diag::err_throw_incomplete,
976                             E->getSourceRange()))
977       return true;
978 
979     if (!isPointer && Ty->isSizelessType()) {
980       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981       return true;
982     }
983 
984     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985                                diag::err_throw_abstract_type, E))
986       return true;
987   }
988 
989   // If the exception has class type, we need additional handling.
990   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991   if (!RD)
992     return false;
993 
994   // If we are throwing a polymorphic class type or pointer thereof,
995   // exception handling will make use of the vtable.
996   MarkVTableUsed(ThrowLoc, RD);
997 
998   // If a pointer is thrown, the referenced object will not be destroyed.
999   if (isPointer)
1000     return false;
1001 
1002   // If the class has a destructor, we must be able to call it.
1003   if (!RD->hasIrrelevantDestructor()) {
1004     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006       CheckDestructorAccess(E->getExprLoc(), Destructor,
1007                             PDiag(diag::err_access_dtor_exception) << Ty);
1008       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009         return true;
1010     }
1011   }
1012 
1013   // The MSVC ABI creates a list of all types which can catch the exception
1014   // object.  This list also references the appropriate copy constructor to call
1015   // if the object is caught by value and has a non-trivial copy constructor.
1016   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017     // We are only interested in the public, unambiguous bases contained within
1018     // the exception object.  Bases which are ambiguous or otherwise
1019     // inaccessible are not catchable types.
1020     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022 
1023     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024       // Attempt to lookup the copy constructor.  Various pieces of machinery
1025       // will spring into action, like template instantiation, which means this
1026       // cannot be a simple walk of the class's decls.  Instead, we must perform
1027       // lookup and overload resolution.
1028       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029       if (!CD || CD->isDeleted())
1030         continue;
1031 
1032       // Mark the constructor referenced as it is used by this throw expression.
1033       MarkFunctionReferenced(E->getExprLoc(), CD);
1034 
1035       // Skip this copy constructor if it is trivial, we don't need to record it
1036       // in the catchable type data.
1037       if (CD->isTrivial())
1038         continue;
1039 
1040       // The copy constructor is non-trivial, create a mapping from this class
1041       // type to this constructor.
1042       // N.B.  The selection of copy constructor is not sensitive to this
1043       // particular throw-site.  Lookup will be performed at the catch-site to
1044       // ensure that the copy constructor is, in fact, accessible (via
1045       // friendship or any other means).
1046       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047 
1048       // We don't keep the instantiated default argument expressions around so
1049       // we must rebuild them here.
1050       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052           return true;
1053       }
1054     }
1055   }
1056 
1057   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058   // the runtime with no ability for the compiler to request additional
1059   // alignment. Warn if the exception type requires alignment beyond the minimum
1060   // guaranteed by the target C++ runtime.
1061   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064     if (ExnObjAlign < TypeAlign) {
1065       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067           << Ty << (unsigned)TypeAlign.getQuantity()
1068           << (unsigned)ExnObjAlign.getQuantity();
1069     }
1070   }
1071 
1072   return false;
1073 }
1074 
1075 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078 
1079   QualType ClassType = ThisTy->getPointeeType();
1080   LambdaScopeInfo *CurLSI = nullptr;
1081   DeclContext *CurDC = CurSemaContext;
1082 
1083   // Iterate through the stack of lambdas starting from the innermost lambda to
1084   // the outermost lambda, checking if '*this' is ever captured by copy - since
1085   // that could change the cv-qualifiers of the '*this' object.
1086   // The object referred to by '*this' starts out with the cv-qualifiers of its
1087   // member function.  We then start with the innermost lambda and iterate
1088   // outward checking to see if any lambda performs a by-copy capture of '*this'
1089   // - and if so, any nested lambda must respect the 'constness' of that
1090   // capturing lamdbda's call operator.
1091   //
1092 
1093   // Since the FunctionScopeInfo stack is representative of the lexical
1094   // nesting of the lambda expressions during initial parsing (and is the best
1095   // place for querying information about captures about lambdas that are
1096   // partially processed) and perhaps during instantiation of function templates
1097   // that contain lambda expressions that need to be transformed BUT not
1098   // necessarily during instantiation of a nested generic lambda's function call
1099   // operator (which might even be instantiated at the end of the TU) - at which
1100   // time the DeclContext tree is mature enough to query capture information
1101   // reliably - we use a two pronged approach to walk through all the lexically
1102   // enclosing lambda expressions:
1103   //
1104   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1105   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106   //  enclosed by the call-operator of the LSI below it on the stack (while
1107   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1108   //  the stack represents the innermost lambda.
1109   //
1110   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111   //  represents a lambda's call operator.  If it does, we must be instantiating
1112   //  a generic lambda's call operator (represented by the Current LSI, and
1113   //  should be the only scenario where an inconsistency between the LSI and the
1114   //  DeclContext should occur), so climb out the DeclContexts if they
1115   //  represent lambdas, while querying the corresponding closure types
1116   //  regarding capture information.
1117 
1118   // 1) Climb down the function scope info stack.
1119   for (int I = FunctionScopes.size();
1120        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125 
1126     if (!CurLSI->isCXXThisCaptured())
1127         continue;
1128 
1129     auto C = CurLSI->getCXXThisCapture();
1130 
1131     if (C.isCopyCapture()) {
1132       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133       if (CurLSI->CallOperator->isConst())
1134         ClassType.addConst();
1135       return ASTCtx.getPointerType(ClassType);
1136     }
1137   }
1138 
1139   // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1140   // happen during instantiation of its nested generic lambda call operator)
1141   if (isLambdaCallOperator(CurDC)) {
1142     assert(CurLSI && "While computing 'this' capture-type for a generic "
1143                      "lambda, we must have a corresponding LambdaScopeInfo");
1144     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1145            "While computing 'this' capture-type for a generic lambda, when we "
1146            "run out of enclosing LSI's, yet the enclosing DC is a "
1147            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1148            "lambda call oeprator");
1149     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1150 
1151     auto IsThisCaptured =
1152         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1153       IsConst = false;
1154       IsByCopy = false;
1155       for (auto &&C : Closure->captures()) {
1156         if (C.capturesThis()) {
1157           if (C.getCaptureKind() == LCK_StarThis)
1158             IsByCopy = true;
1159           if (Closure->getLambdaCallOperator()->isConst())
1160             IsConst = true;
1161           return true;
1162         }
1163       }
1164       return false;
1165     };
1166 
1167     bool IsByCopyCapture = false;
1168     bool IsConstCapture = false;
1169     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1170     while (Closure &&
1171            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1172       if (IsByCopyCapture) {
1173         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1174         if (IsConstCapture)
1175           ClassType.addConst();
1176         return ASTCtx.getPointerType(ClassType);
1177       }
1178       Closure = isLambdaCallOperator(Closure->getParent())
1179                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1180                     : nullptr;
1181     }
1182   }
1183   return ASTCtx.getPointerType(ClassType);
1184 }
1185 
1186 QualType Sema::getCurrentThisType() {
1187   DeclContext *DC = getFunctionLevelDeclContext();
1188   QualType ThisTy = CXXThisTypeOverride;
1189 
1190   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1191     if (method && method->isInstance())
1192       ThisTy = method->getThisType();
1193   }
1194 
1195   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1196       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1197 
1198     // This is a lambda call operator that is being instantiated as a default
1199     // initializer. DC must point to the enclosing class type, so we can recover
1200     // the 'this' type from it.
1201     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1202     // There are no cv-qualifiers for 'this' within default initializers,
1203     // per [expr.prim.general]p4.
1204     ThisTy = Context.getPointerType(ClassTy);
1205   }
1206 
1207   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1208   // might need to be adjusted if the lambda or any of its enclosing lambda's
1209   // captures '*this' by copy.
1210   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1211     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1212                                                     CurContext, Context);
1213   return ThisTy;
1214 }
1215 
1216 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1217                                          Decl *ContextDecl,
1218                                          Qualifiers CXXThisTypeQuals,
1219                                          bool Enabled)
1220   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1221 {
1222   if (!Enabled || !ContextDecl)
1223     return;
1224 
1225   CXXRecordDecl *Record = nullptr;
1226   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1227     Record = Template->getTemplatedDecl();
1228   else
1229     Record = cast<CXXRecordDecl>(ContextDecl);
1230 
1231   QualType T = S.Context.getRecordType(Record);
1232   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1233 
1234   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1235 
1236   this->Enabled = true;
1237 }
1238 
1239 
1240 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1241   if (Enabled) {
1242     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1243   }
1244 }
1245 
1246 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1247   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1248   assert(!LSI->isCXXThisCaptured());
1249   //  [=, this] {};   // until C++20: Error: this when = is the default
1250   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1251       !Sema.getLangOpts().CPlusPlus20)
1252     return;
1253   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1254       << FixItHint::CreateInsertion(
1255              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1256 }
1257 
1258 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1259     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1260     const bool ByCopy) {
1261   // We don't need to capture this in an unevaluated context.
1262   if (isUnevaluatedContext() && !Explicit)
1263     return true;
1264 
1265   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1266 
1267   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1268                                          ? *FunctionScopeIndexToStopAt
1269                                          : FunctionScopes.size() - 1;
1270 
1271   // Check that we can capture the *enclosing object* (referred to by '*this')
1272   // by the capturing-entity/closure (lambda/block/etc) at
1273   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1274 
1275   // Note: The *enclosing object* can only be captured by-value by a
1276   // closure that is a lambda, using the explicit notation:
1277   //    [*this] { ... }.
1278   // Every other capture of the *enclosing object* results in its by-reference
1279   // capture.
1280 
1281   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1282   // stack), we can capture the *enclosing object* only if:
1283   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1284   // -  or, 'L' has an implicit capture.
1285   // AND
1286   //   -- there is no enclosing closure
1287   //   -- or, there is some enclosing closure 'E' that has already captured the
1288   //      *enclosing object*, and every intervening closure (if any) between 'E'
1289   //      and 'L' can implicitly capture the *enclosing object*.
1290   //   -- or, every enclosing closure can implicitly capture the
1291   //      *enclosing object*
1292 
1293 
1294   unsigned NumCapturingClosures = 0;
1295   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1296     if (CapturingScopeInfo *CSI =
1297             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1298       if (CSI->CXXThisCaptureIndex != 0) {
1299         // 'this' is already being captured; there isn't anything more to do.
1300         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1301         break;
1302       }
1303       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1304       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1305         // This context can't implicitly capture 'this'; fail out.
1306         if (BuildAndDiagnose) {
1307           Diag(Loc, diag::err_this_capture)
1308               << (Explicit && idx == MaxFunctionScopesIndex);
1309           if (!Explicit)
1310             buildLambdaThisCaptureFixit(*this, LSI);
1311         }
1312         return true;
1313       }
1314       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1315           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1316           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1317           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1318           (Explicit && idx == MaxFunctionScopesIndex)) {
1319         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1320         // iteration through can be an explicit capture, all enclosing closures,
1321         // if any, must perform implicit captures.
1322 
1323         // This closure can capture 'this'; continue looking upwards.
1324         NumCapturingClosures++;
1325         continue;
1326       }
1327       // This context can't implicitly capture 'this'; fail out.
1328       if (BuildAndDiagnose)
1329         Diag(Loc, diag::err_this_capture)
1330             << (Explicit && idx == MaxFunctionScopesIndex);
1331 
1332       if (!Explicit)
1333         buildLambdaThisCaptureFixit(*this, LSI);
1334       return true;
1335     }
1336     break;
1337   }
1338   if (!BuildAndDiagnose) return false;
1339 
1340   // If we got here, then the closure at MaxFunctionScopesIndex on the
1341   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1342   // (including implicit by-reference captures in any enclosing closures).
1343 
1344   // In the loop below, respect the ByCopy flag only for the closure requesting
1345   // the capture (i.e. first iteration through the loop below).  Ignore it for
1346   // all enclosing closure's up to NumCapturingClosures (since they must be
1347   // implicitly capturing the *enclosing  object* by reference (see loop
1348   // above)).
1349   assert((!ByCopy ||
1350           dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1351          "Only a lambda can capture the enclosing object (referred to by "
1352          "*this) by copy");
1353   QualType ThisTy = getCurrentThisType();
1354   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1355        --idx, --NumCapturingClosures) {
1356     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1357 
1358     // The type of the corresponding data member (not a 'this' pointer if 'by
1359     // copy').
1360     QualType CaptureType = ThisTy;
1361     if (ByCopy) {
1362       // If we are capturing the object referred to by '*this' by copy, ignore
1363       // any cv qualifiers inherited from the type of the member function for
1364       // the type of the closure-type's corresponding data member and any use
1365       // of 'this'.
1366       CaptureType = ThisTy->getPointeeType();
1367       CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1368     }
1369 
1370     bool isNested = NumCapturingClosures > 1;
1371     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1372   }
1373   return false;
1374 }
1375 
1376 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1377   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1378   /// is a non-lvalue expression whose value is the address of the object for
1379   /// which the function is called.
1380 
1381   QualType ThisTy = getCurrentThisType();
1382   if (ThisTy.isNull())
1383     return Diag(Loc, diag::err_invalid_this_use);
1384   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1385 }
1386 
1387 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1388                              bool IsImplicit) {
1389   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1390   MarkThisReferenced(This);
1391   return This;
1392 }
1393 
1394 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1395   CheckCXXThisCapture(This->getExprLoc());
1396 }
1397 
1398 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1399   // If we're outside the body of a member function, then we'll have a specified
1400   // type for 'this'.
1401   if (CXXThisTypeOverride.isNull())
1402     return false;
1403 
1404   // Determine whether we're looking into a class that's currently being
1405   // defined.
1406   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1407   return Class && Class->isBeingDefined();
1408 }
1409 
1410 /// Parse construction of a specified type.
1411 /// Can be interpreted either as function-style casting ("int(x)")
1412 /// or class type construction ("ClassType(x,y,z)")
1413 /// or creation of a value-initialized type ("int()").
1414 ExprResult
1415 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1416                                 SourceLocation LParenOrBraceLoc,
1417                                 MultiExprArg exprs,
1418                                 SourceLocation RParenOrBraceLoc,
1419                                 bool ListInitialization) {
1420   if (!TypeRep)
1421     return ExprError();
1422 
1423   TypeSourceInfo *TInfo;
1424   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1425   if (!TInfo)
1426     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1427 
1428   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1429                                           RParenOrBraceLoc, ListInitialization);
1430   // Avoid creating a non-type-dependent expression that contains typos.
1431   // Non-type-dependent expressions are liable to be discarded without
1432   // checking for embedded typos.
1433   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1434       !Result.get()->isTypeDependent())
1435     Result = CorrectDelayedTyposInExpr(Result.get());
1436   else if (Result.isInvalid())
1437     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1438                                 RParenOrBraceLoc, exprs, Ty);
1439   return Result;
1440 }
1441 
1442 ExprResult
1443 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1444                                 SourceLocation LParenOrBraceLoc,
1445                                 MultiExprArg Exprs,
1446                                 SourceLocation RParenOrBraceLoc,
1447                                 bool ListInitialization) {
1448   QualType Ty = TInfo->getType();
1449   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1450 
1451   assert((!ListInitialization ||
1452           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1453          "List initialization must have initializer list as expression.");
1454   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1455 
1456   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1457   InitializationKind Kind =
1458       Exprs.size()
1459           ? ListInitialization
1460                 ? InitializationKind::CreateDirectList(
1461                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1462                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1463                                                    RParenOrBraceLoc)
1464           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1465                                             RParenOrBraceLoc);
1466 
1467   // C++1z [expr.type.conv]p1:
1468   //   If the type is a placeholder for a deduced class type, [...perform class
1469   //   template argument deduction...]
1470   DeducedType *Deduced = Ty->getContainedDeducedType();
1471   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1472     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1473                                                      Kind, Exprs);
1474     if (Ty.isNull())
1475       return ExprError();
1476     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1477   }
1478 
1479   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1480     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1481     // directly. We work around this by dropping the locations of the braces.
1482     SourceRange Locs = ListInitialization
1483                            ? SourceRange()
1484                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1485     return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1486                                               TInfo, Locs.getBegin(), Exprs,
1487                                               Locs.getEnd());
1488   }
1489 
1490   // C++ [expr.type.conv]p1:
1491   // If the expression list is a parenthesized single expression, the type
1492   // conversion expression is equivalent (in definedness, and if defined in
1493   // meaning) to the corresponding cast expression.
1494   if (Exprs.size() == 1 && !ListInitialization &&
1495       !isa<InitListExpr>(Exprs[0])) {
1496     Expr *Arg = Exprs[0];
1497     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1498                                       RParenOrBraceLoc);
1499   }
1500 
1501   //   For an expression of the form T(), T shall not be an array type.
1502   QualType ElemTy = Ty;
1503   if (Ty->isArrayType()) {
1504     if (!ListInitialization)
1505       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1506                          << FullRange);
1507     ElemTy = Context.getBaseElementType(Ty);
1508   }
1509 
1510   // There doesn't seem to be an explicit rule against this but sanity demands
1511   // we only construct objects with object types.
1512   if (Ty->isFunctionType())
1513     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1514                        << Ty << FullRange);
1515 
1516   // C++17 [expr.type.conv]p2:
1517   //   If the type is cv void and the initializer is (), the expression is a
1518   //   prvalue of the specified type that performs no initialization.
1519   if (!Ty->isVoidType() &&
1520       RequireCompleteType(TyBeginLoc, ElemTy,
1521                           diag::err_invalid_incomplete_type_use, FullRange))
1522     return ExprError();
1523 
1524   //   Otherwise, the expression is a prvalue of the specified type whose
1525   //   result object is direct-initialized (11.6) with the initializer.
1526   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1527   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1528 
1529   if (Result.isInvalid())
1530     return Result;
1531 
1532   Expr *Inner = Result.get();
1533   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1534     Inner = BTE->getSubExpr();
1535   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1536       !isa<CXXScalarValueInitExpr>(Inner)) {
1537     // If we created a CXXTemporaryObjectExpr, that node also represents the
1538     // functional cast. Otherwise, create an explicit cast to represent
1539     // the syntactic form of a functional-style cast that was used here.
1540     //
1541     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1542     // would give a more consistent AST representation than using a
1543     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1544     // is sometimes handled by initialization and sometimes not.
1545     QualType ResultType = Result.get()->getType();
1546     SourceRange Locs = ListInitialization
1547                            ? SourceRange()
1548                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1549     Result = CXXFunctionalCastExpr::Create(
1550         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1551         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1552         Locs.getBegin(), Locs.getEnd());
1553   }
1554 
1555   return Result;
1556 }
1557 
1558 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1559   // [CUDA] Ignore this function, if we can't call it.
1560   const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1561   if (getLangOpts().CUDA) {
1562     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1563     // If it's not callable at all, it's not the right function.
1564     if (CallPreference < CFP_WrongSide)
1565       return false;
1566     if (CallPreference == CFP_WrongSide) {
1567       // Maybe. We have to check if there are better alternatives.
1568       DeclContext::lookup_result R =
1569           Method->getDeclContext()->lookup(Method->getDeclName());
1570       for (const auto *D : R) {
1571         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1572           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1573             return false;
1574         }
1575       }
1576       // We've found no better variants.
1577     }
1578   }
1579 
1580   SmallVector<const FunctionDecl*, 4> PreventedBy;
1581   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1582 
1583   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1584     return Result;
1585 
1586   // In case of CUDA, return true if none of the 1-argument deallocator
1587   // functions are actually callable.
1588   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1589     assert(FD->getNumParams() == 1 &&
1590            "Only single-operand functions should be in PreventedBy");
1591     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1592   });
1593 }
1594 
1595 /// Determine whether the given function is a non-placement
1596 /// deallocation function.
1597 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1598   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1599     return S.isUsualDeallocationFunction(Method);
1600 
1601   if (FD->getOverloadedOperator() != OO_Delete &&
1602       FD->getOverloadedOperator() != OO_Array_Delete)
1603     return false;
1604 
1605   unsigned UsualParams = 1;
1606 
1607   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1608       S.Context.hasSameUnqualifiedType(
1609           FD->getParamDecl(UsualParams)->getType(),
1610           S.Context.getSizeType()))
1611     ++UsualParams;
1612 
1613   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1614       S.Context.hasSameUnqualifiedType(
1615           FD->getParamDecl(UsualParams)->getType(),
1616           S.Context.getTypeDeclType(S.getStdAlignValT())))
1617     ++UsualParams;
1618 
1619   return UsualParams == FD->getNumParams();
1620 }
1621 
1622 namespace {
1623   struct UsualDeallocFnInfo {
1624     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1625     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1626         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1627           Destroying(false), HasSizeT(false), HasAlignValT(false),
1628           CUDAPref(Sema::CFP_Native) {
1629       // A function template declaration is never a usual deallocation function.
1630       if (!FD)
1631         return;
1632       unsigned NumBaseParams = 1;
1633       if (FD->isDestroyingOperatorDelete()) {
1634         Destroying = true;
1635         ++NumBaseParams;
1636       }
1637 
1638       if (NumBaseParams < FD->getNumParams() &&
1639           S.Context.hasSameUnqualifiedType(
1640               FD->getParamDecl(NumBaseParams)->getType(),
1641               S.Context.getSizeType())) {
1642         ++NumBaseParams;
1643         HasSizeT = true;
1644       }
1645 
1646       if (NumBaseParams < FD->getNumParams() &&
1647           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1648         ++NumBaseParams;
1649         HasAlignValT = true;
1650       }
1651 
1652       // In CUDA, determine how much we'd like / dislike to call this.
1653       if (S.getLangOpts().CUDA)
1654         if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1655           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1656     }
1657 
1658     explicit operator bool() const { return FD; }
1659 
1660     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1661                       bool WantAlign) const {
1662       // C++ P0722:
1663       //   A destroying operator delete is preferred over a non-destroying
1664       //   operator delete.
1665       if (Destroying != Other.Destroying)
1666         return Destroying;
1667 
1668       // C++17 [expr.delete]p10:
1669       //   If the type has new-extended alignment, a function with a parameter
1670       //   of type std::align_val_t is preferred; otherwise a function without
1671       //   such a parameter is preferred
1672       if (HasAlignValT != Other.HasAlignValT)
1673         return HasAlignValT == WantAlign;
1674 
1675       if (HasSizeT != Other.HasSizeT)
1676         return HasSizeT == WantSize;
1677 
1678       // Use CUDA call preference as a tiebreaker.
1679       return CUDAPref > Other.CUDAPref;
1680     }
1681 
1682     DeclAccessPair Found;
1683     FunctionDecl *FD;
1684     bool Destroying, HasSizeT, HasAlignValT;
1685     Sema::CUDAFunctionPreference CUDAPref;
1686   };
1687 }
1688 
1689 /// Determine whether a type has new-extended alignment. This may be called when
1690 /// the type is incomplete (for a delete-expression with an incomplete pointee
1691 /// type), in which case it will conservatively return false if the alignment is
1692 /// not known.
1693 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1694   return S.getLangOpts().AlignedAllocation &&
1695          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1696              S.getASTContext().getTargetInfo().getNewAlign();
1697 }
1698 
1699 /// Select the correct "usual" deallocation function to use from a selection of
1700 /// deallocation functions (either global or class-scope).
1701 static UsualDeallocFnInfo resolveDeallocationOverload(
1702     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1703     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1704   UsualDeallocFnInfo Best;
1705 
1706   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1707     UsualDeallocFnInfo Info(S, I.getPair());
1708     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1709         Info.CUDAPref == Sema::CFP_Never)
1710       continue;
1711 
1712     if (!Best) {
1713       Best = Info;
1714       if (BestFns)
1715         BestFns->push_back(Info);
1716       continue;
1717     }
1718 
1719     if (Best.isBetterThan(Info, WantSize, WantAlign))
1720       continue;
1721 
1722     //   If more than one preferred function is found, all non-preferred
1723     //   functions are eliminated from further consideration.
1724     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1725       BestFns->clear();
1726 
1727     Best = Info;
1728     if (BestFns)
1729       BestFns->push_back(Info);
1730   }
1731 
1732   return Best;
1733 }
1734 
1735 /// Determine whether a given type is a class for which 'delete[]' would call
1736 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1737 /// we need to store the array size (even if the type is
1738 /// trivially-destructible).
1739 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1740                                          QualType allocType) {
1741   const RecordType *record =
1742     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1743   if (!record) return false;
1744 
1745   // Try to find an operator delete[] in class scope.
1746 
1747   DeclarationName deleteName =
1748     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1749   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1750   S.LookupQualifiedName(ops, record->getDecl());
1751 
1752   // We're just doing this for information.
1753   ops.suppressDiagnostics();
1754 
1755   // Very likely: there's no operator delete[].
1756   if (ops.empty()) return false;
1757 
1758   // If it's ambiguous, it should be illegal to call operator delete[]
1759   // on this thing, so it doesn't matter if we allocate extra space or not.
1760   if (ops.isAmbiguous()) return false;
1761 
1762   // C++17 [expr.delete]p10:
1763   //   If the deallocation functions have class scope, the one without a
1764   //   parameter of type std::size_t is selected.
1765   auto Best = resolveDeallocationOverload(
1766       S, ops, /*WantSize*/false,
1767       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1768   return Best && Best.HasSizeT;
1769 }
1770 
1771 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1772 ///
1773 /// E.g.:
1774 /// @code new (memory) int[size][4] @endcode
1775 /// or
1776 /// @code ::new Foo(23, "hello") @endcode
1777 ///
1778 /// \param StartLoc The first location of the expression.
1779 /// \param UseGlobal True if 'new' was prefixed with '::'.
1780 /// \param PlacementLParen Opening paren of the placement arguments.
1781 /// \param PlacementArgs Placement new arguments.
1782 /// \param PlacementRParen Closing paren of the placement arguments.
1783 /// \param TypeIdParens If the type is in parens, the source range.
1784 /// \param D The type to be allocated, as well as array dimensions.
1785 /// \param Initializer The initializing expression or initializer-list, or null
1786 ///   if there is none.
1787 ExprResult
1788 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1789                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1790                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1791                   Declarator &D, Expr *Initializer) {
1792   Optional<Expr *> ArraySize;
1793   // If the specified type is an array, unwrap it and save the expression.
1794   if (D.getNumTypeObjects() > 0 &&
1795       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1796     DeclaratorChunk &Chunk = D.getTypeObject(0);
1797     if (D.getDeclSpec().hasAutoTypeSpec())
1798       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1799         << D.getSourceRange());
1800     if (Chunk.Arr.hasStatic)
1801       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1802         << D.getSourceRange());
1803     if (!Chunk.Arr.NumElts && !Initializer)
1804       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1805         << D.getSourceRange());
1806 
1807     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1808     D.DropFirstTypeObject();
1809   }
1810 
1811   // Every dimension shall be of constant size.
1812   if (ArraySize) {
1813     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1814       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1815         break;
1816 
1817       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1818       if (Expr *NumElts = (Expr *)Array.NumElts) {
1819         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1820           // FIXME: GCC permits constant folding here. We should either do so consistently
1821           // or not do so at all, rather than changing behavior in C++14 onwards.
1822           if (getLangOpts().CPlusPlus14) {
1823             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1824             //   shall be a converted constant expression (5.19) of type std::size_t
1825             //   and shall evaluate to a strictly positive value.
1826             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1827             Array.NumElts
1828              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1829                                                 CCEK_ArrayBound)
1830                  .get();
1831           } else {
1832             Array.NumElts =
1833                 VerifyIntegerConstantExpression(
1834                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1835                     .get();
1836           }
1837           if (!Array.NumElts)
1838             return ExprError();
1839         }
1840       }
1841     }
1842   }
1843 
1844   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1845   QualType AllocType = TInfo->getType();
1846   if (D.isInvalidType())
1847     return ExprError();
1848 
1849   SourceRange DirectInitRange;
1850   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1851     DirectInitRange = List->getSourceRange();
1852 
1853   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1854                      PlacementLParen, PlacementArgs, PlacementRParen,
1855                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1856                      Initializer);
1857 }
1858 
1859 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1860                                        Expr *Init) {
1861   if (!Init)
1862     return true;
1863   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1864     return PLE->getNumExprs() == 0;
1865   if (isa<ImplicitValueInitExpr>(Init))
1866     return true;
1867   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1868     return !CCE->isListInitialization() &&
1869            CCE->getConstructor()->isDefaultConstructor();
1870   else if (Style == CXXNewExpr::ListInit) {
1871     assert(isa<InitListExpr>(Init) &&
1872            "Shouldn't create list CXXConstructExprs for arrays.");
1873     return true;
1874   }
1875   return false;
1876 }
1877 
1878 bool
1879 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1880   if (!getLangOpts().AlignedAllocationUnavailable)
1881     return false;
1882   if (FD.isDefined())
1883     return false;
1884   Optional<unsigned> AlignmentParam;
1885   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1886       AlignmentParam.hasValue())
1887     return true;
1888   return false;
1889 }
1890 
1891 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1892 // implemented in the standard library is selected.
1893 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1894                                                 SourceLocation Loc) {
1895   if (isUnavailableAlignedAllocationFunction(FD)) {
1896     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1897     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1898         getASTContext().getTargetInfo().getPlatformName());
1899     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1900 
1901     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1902     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1903     Diag(Loc, diag::err_aligned_allocation_unavailable)
1904         << IsDelete << FD.getType().getAsString() << OSName
1905         << OSVersion.getAsString() << OSVersion.empty();
1906     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1907   }
1908 }
1909 
1910 ExprResult
1911 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1912                   SourceLocation PlacementLParen,
1913                   MultiExprArg PlacementArgs,
1914                   SourceLocation PlacementRParen,
1915                   SourceRange TypeIdParens,
1916                   QualType AllocType,
1917                   TypeSourceInfo *AllocTypeInfo,
1918                   Optional<Expr *> ArraySize,
1919                   SourceRange DirectInitRange,
1920                   Expr *Initializer) {
1921   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1922   SourceLocation StartLoc = Range.getBegin();
1923 
1924   CXXNewExpr::InitializationStyle initStyle;
1925   if (DirectInitRange.isValid()) {
1926     assert(Initializer && "Have parens but no initializer.");
1927     initStyle = CXXNewExpr::CallInit;
1928   } else if (Initializer && isa<InitListExpr>(Initializer))
1929     initStyle = CXXNewExpr::ListInit;
1930   else {
1931     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1932             isa<CXXConstructExpr>(Initializer)) &&
1933            "Initializer expression that cannot have been implicitly created.");
1934     initStyle = CXXNewExpr::NoInit;
1935   }
1936 
1937   Expr **Inits = &Initializer;
1938   unsigned NumInits = Initializer ? 1 : 0;
1939   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1940     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1941     Inits = List->getExprs();
1942     NumInits = List->getNumExprs();
1943   }
1944 
1945   // C++11 [expr.new]p15:
1946   //   A new-expression that creates an object of type T initializes that
1947   //   object as follows:
1948   InitializationKind Kind
1949       //     - If the new-initializer is omitted, the object is default-
1950       //       initialized (8.5); if no initialization is performed,
1951       //       the object has indeterminate value
1952       = initStyle == CXXNewExpr::NoInit
1953             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1954             //     - Otherwise, the new-initializer is interpreted according to
1955             //     the
1956             //       initialization rules of 8.5 for direct-initialization.
1957             : initStyle == CXXNewExpr::ListInit
1958                   ? InitializationKind::CreateDirectList(
1959                         TypeRange.getBegin(), Initializer->getBeginLoc(),
1960                         Initializer->getEndLoc())
1961                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
1962                                                      DirectInitRange.getBegin(),
1963                                                      DirectInitRange.getEnd());
1964 
1965   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1966   auto *Deduced = AllocType->getContainedDeducedType();
1967   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1968     if (ArraySize)
1969       return ExprError(
1970           Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1971                diag::err_deduced_class_template_compound_type)
1972           << /*array*/ 2
1973           << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1974 
1975     InitializedEntity Entity
1976       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1977     AllocType = DeduceTemplateSpecializationFromInitializer(
1978         AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1979     if (AllocType.isNull())
1980       return ExprError();
1981   } else if (Deduced) {
1982     bool Braced = (initStyle == CXXNewExpr::ListInit);
1983     if (NumInits == 1) {
1984       if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1985         Inits = p->getInits();
1986         NumInits = p->getNumInits();
1987         Braced = true;
1988       }
1989     }
1990 
1991     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1992       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1993                        << AllocType << TypeRange);
1994     if (NumInits > 1) {
1995       Expr *FirstBad = Inits[1];
1996       return ExprError(Diag(FirstBad->getBeginLoc(),
1997                             diag::err_auto_new_ctor_multiple_expressions)
1998                        << AllocType << TypeRange);
1999     }
2000     if (Braced && !getLangOpts().CPlusPlus17)
2001       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2002           << AllocType << TypeRange;
2003     Expr *Deduce = Inits[0];
2004     QualType DeducedType;
2005     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2006       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2007                        << AllocType << Deduce->getType()
2008                        << TypeRange << Deduce->getSourceRange());
2009     if (DeducedType.isNull())
2010       return ExprError();
2011     AllocType = DeducedType;
2012   }
2013 
2014   // Per C++0x [expr.new]p5, the type being constructed may be a
2015   // typedef of an array type.
2016   if (!ArraySize) {
2017     if (const ConstantArrayType *Array
2018                               = Context.getAsConstantArrayType(AllocType)) {
2019       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2020                                          Context.getSizeType(),
2021                                          TypeRange.getEnd());
2022       AllocType = Array->getElementType();
2023     }
2024   }
2025 
2026   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2027     return ExprError();
2028 
2029   // In ARC, infer 'retaining' for the allocated
2030   if (getLangOpts().ObjCAutoRefCount &&
2031       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2032       AllocType->isObjCLifetimeType()) {
2033     AllocType = Context.getLifetimeQualifiedType(AllocType,
2034                                     AllocType->getObjCARCImplicitLifetime());
2035   }
2036 
2037   QualType ResultType = Context.getPointerType(AllocType);
2038 
2039   if (ArraySize && *ArraySize &&
2040       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2041     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2042     if (result.isInvalid()) return ExprError();
2043     ArraySize = result.get();
2044   }
2045   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2046   //   integral or enumeration type with a non-negative value."
2047   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2048   //   enumeration type, or a class type for which a single non-explicit
2049   //   conversion function to integral or unscoped enumeration type exists.
2050   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2051   //   std::size_t.
2052   llvm::Optional<uint64_t> KnownArraySize;
2053   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2054     ExprResult ConvertedSize;
2055     if (getLangOpts().CPlusPlus14) {
2056       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2057 
2058       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2059                                                 AA_Converting);
2060 
2061       if (!ConvertedSize.isInvalid() &&
2062           (*ArraySize)->getType()->getAs<RecordType>())
2063         // Diagnose the compatibility of this conversion.
2064         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2065           << (*ArraySize)->getType() << 0 << "'size_t'";
2066     } else {
2067       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2068       protected:
2069         Expr *ArraySize;
2070 
2071       public:
2072         SizeConvertDiagnoser(Expr *ArraySize)
2073             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2074               ArraySize(ArraySize) {}
2075 
2076         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2077                                              QualType T) override {
2078           return S.Diag(Loc, diag::err_array_size_not_integral)
2079                    << S.getLangOpts().CPlusPlus11 << T;
2080         }
2081 
2082         SemaDiagnosticBuilder diagnoseIncomplete(
2083             Sema &S, SourceLocation Loc, QualType T) override {
2084           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2085                    << T << ArraySize->getSourceRange();
2086         }
2087 
2088         SemaDiagnosticBuilder diagnoseExplicitConv(
2089             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2090           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2091         }
2092 
2093         SemaDiagnosticBuilder noteExplicitConv(
2094             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2095           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2096                    << ConvTy->isEnumeralType() << ConvTy;
2097         }
2098 
2099         SemaDiagnosticBuilder diagnoseAmbiguous(
2100             Sema &S, SourceLocation Loc, QualType T) override {
2101           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2102         }
2103 
2104         SemaDiagnosticBuilder noteAmbiguous(
2105             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2106           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2107                    << ConvTy->isEnumeralType() << ConvTy;
2108         }
2109 
2110         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2111                                                  QualType T,
2112                                                  QualType ConvTy) override {
2113           return S.Diag(Loc,
2114                         S.getLangOpts().CPlusPlus11
2115                           ? diag::warn_cxx98_compat_array_size_conversion
2116                           : diag::ext_array_size_conversion)
2117                    << T << ConvTy->isEnumeralType() << ConvTy;
2118         }
2119       } SizeDiagnoser(*ArraySize);
2120 
2121       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2122                                                           SizeDiagnoser);
2123     }
2124     if (ConvertedSize.isInvalid())
2125       return ExprError();
2126 
2127     ArraySize = ConvertedSize.get();
2128     QualType SizeType = (*ArraySize)->getType();
2129 
2130     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2131       return ExprError();
2132 
2133     // C++98 [expr.new]p7:
2134     //   The expression in a direct-new-declarator shall have integral type
2135     //   with a non-negative value.
2136     //
2137     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2138     // per CWG1464. Otherwise, if it's not a constant, we must have an
2139     // unparenthesized array type.
2140     if (!(*ArraySize)->isValueDependent()) {
2141       // We've already performed any required implicit conversion to integer or
2142       // unscoped enumeration type.
2143       // FIXME: Per CWG1464, we are required to check the value prior to
2144       // converting to size_t. This will never find a negative array size in
2145       // C++14 onwards, because Value is always unsigned here!
2146       if (Optional<llvm::APSInt> Value =
2147               (*ArraySize)->getIntegerConstantExpr(Context)) {
2148         if (Value->isSigned() && Value->isNegative()) {
2149           return ExprError(Diag((*ArraySize)->getBeginLoc(),
2150                                 diag::err_typecheck_negative_array_size)
2151                            << (*ArraySize)->getSourceRange());
2152         }
2153 
2154         if (!AllocType->isDependentType()) {
2155           unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits(
2156               Context, AllocType, *Value);
2157           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2158             return ExprError(
2159                 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2160                 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2161         }
2162 
2163         KnownArraySize = Value->getZExtValue();
2164       } else if (TypeIdParens.isValid()) {
2165         // Can't have dynamic array size when the type-id is in parentheses.
2166         Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2167             << (*ArraySize)->getSourceRange()
2168             << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2169             << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2170 
2171         TypeIdParens = SourceRange();
2172       }
2173     }
2174 
2175     // Note that we do *not* convert the argument in any way.  It can
2176     // be signed, larger than size_t, whatever.
2177   }
2178 
2179   FunctionDecl *OperatorNew = nullptr;
2180   FunctionDecl *OperatorDelete = nullptr;
2181   unsigned Alignment =
2182       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2183   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2184   bool PassAlignment = getLangOpts().AlignedAllocation &&
2185                        Alignment > NewAlignment;
2186 
2187   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2188   if (!AllocType->isDependentType() &&
2189       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2190       FindAllocationFunctions(
2191           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2192           AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2193           OperatorNew, OperatorDelete))
2194     return ExprError();
2195 
2196   // If this is an array allocation, compute whether the usual array
2197   // deallocation function for the type has a size_t parameter.
2198   bool UsualArrayDeleteWantsSize = false;
2199   if (ArraySize && !AllocType->isDependentType())
2200     UsualArrayDeleteWantsSize =
2201         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2202 
2203   SmallVector<Expr *, 8> AllPlaceArgs;
2204   if (OperatorNew) {
2205     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2206     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2207                                                     : VariadicDoesNotApply;
2208 
2209     // We've already converted the placement args, just fill in any default
2210     // arguments. Skip the first parameter because we don't have a corresponding
2211     // argument. Skip the second parameter too if we're passing in the
2212     // alignment; we've already filled it in.
2213     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2214     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2215                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2216                                CallType))
2217       return ExprError();
2218 
2219     if (!AllPlaceArgs.empty())
2220       PlacementArgs = AllPlaceArgs;
2221 
2222     // We would like to perform some checking on the given `operator new` call,
2223     // but the PlacementArgs does not contain the implicit arguments,
2224     // namely allocation size and maybe allocation alignment,
2225     // so we need to conjure them.
2226 
2227     QualType SizeTy = Context.getSizeType();
2228     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2229 
2230     llvm::APInt SingleEltSize(
2231         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2232 
2233     // How many bytes do we want to allocate here?
2234     llvm::Optional<llvm::APInt> AllocationSize;
2235     if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2236       // For non-array operator new, we only want to allocate one element.
2237       AllocationSize = SingleEltSize;
2238     } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2239       // For array operator new, only deal with static array size case.
2240       bool Overflow;
2241       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2242                            .umul_ov(SingleEltSize, Overflow);
2243       (void)Overflow;
2244       assert(
2245           !Overflow &&
2246           "Expected that all the overflows would have been handled already.");
2247     }
2248 
2249     IntegerLiteral AllocationSizeLiteral(
2250         Context,
2251         AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)),
2252         SizeTy, SourceLocation());
2253     // Otherwise, if we failed to constant-fold the allocation size, we'll
2254     // just give up and pass-in something opaque, that isn't a null pointer.
2255     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2256                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2257 
2258     // Let's synthesize the alignment argument in case we will need it.
2259     // Since we *really* want to allocate these on stack, this is slightly ugly
2260     // because there might not be a `std::align_val_t` type.
2261     EnumDecl *StdAlignValT = getStdAlignValT();
2262     QualType AlignValT =
2263         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2264     IntegerLiteral AlignmentLiteral(
2265         Context,
2266         llvm::APInt(Context.getTypeSize(SizeTy),
2267                     Alignment / Context.getCharWidth()),
2268         SizeTy, SourceLocation());
2269     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2270                                       CK_IntegralCast, &AlignmentLiteral,
2271                                       VK_PRValue, FPOptionsOverride());
2272 
2273     // Adjust placement args by prepending conjured size and alignment exprs.
2274     llvm::SmallVector<Expr *, 8> CallArgs;
2275     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2276     CallArgs.emplace_back(AllocationSize.hasValue()
2277                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2278                               : &OpaqueAllocationSize);
2279     if (PassAlignment)
2280       CallArgs.emplace_back(&DesiredAlignment);
2281     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2282 
2283     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2284 
2285     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2286               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2287 
2288     // Warn if the type is over-aligned and is being allocated by (unaligned)
2289     // global operator new.
2290     if (PlacementArgs.empty() && !PassAlignment &&
2291         (OperatorNew->isImplicit() ||
2292          (OperatorNew->getBeginLoc().isValid() &&
2293           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2294       if (Alignment > NewAlignment)
2295         Diag(StartLoc, diag::warn_overaligned_type)
2296             << AllocType
2297             << unsigned(Alignment / Context.getCharWidth())
2298             << unsigned(NewAlignment / Context.getCharWidth());
2299     }
2300   }
2301 
2302   // Array 'new' can't have any initializers except empty parentheses.
2303   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2304   // dialect distinction.
2305   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2306     SourceRange InitRange(Inits[0]->getBeginLoc(),
2307                           Inits[NumInits - 1]->getEndLoc());
2308     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2309     return ExprError();
2310   }
2311 
2312   // If we can perform the initialization, and we've not already done so,
2313   // do it now.
2314   if (!AllocType->isDependentType() &&
2315       !Expr::hasAnyTypeDependentArguments(
2316           llvm::makeArrayRef(Inits, NumInits))) {
2317     // The type we initialize is the complete type, including the array bound.
2318     QualType InitType;
2319     if (KnownArraySize)
2320       InitType = Context.getConstantArrayType(
2321           AllocType,
2322           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2323                       *KnownArraySize),
2324           *ArraySize, ArrayType::Normal, 0);
2325     else if (ArraySize)
2326       InitType =
2327           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2328     else
2329       InitType = AllocType;
2330 
2331     InitializedEntity Entity
2332       = InitializedEntity::InitializeNew(StartLoc, InitType);
2333     InitializationSequence InitSeq(*this, Entity, Kind,
2334                                    MultiExprArg(Inits, NumInits));
2335     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2336                                           MultiExprArg(Inits, NumInits));
2337     if (FullInit.isInvalid())
2338       return ExprError();
2339 
2340     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2341     // we don't want the initialized object to be destructed.
2342     // FIXME: We should not create these in the first place.
2343     if (CXXBindTemporaryExpr *Binder =
2344             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2345       FullInit = Binder->getSubExpr();
2346 
2347     Initializer = FullInit.get();
2348 
2349     // FIXME: If we have a KnownArraySize, check that the array bound of the
2350     // initializer is no greater than that constant value.
2351 
2352     if (ArraySize && !*ArraySize) {
2353       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2354       if (CAT) {
2355         // FIXME: Track that the array size was inferred rather than explicitly
2356         // specified.
2357         ArraySize = IntegerLiteral::Create(
2358             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2359       } else {
2360         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2361             << Initializer->getSourceRange();
2362       }
2363     }
2364   }
2365 
2366   // Mark the new and delete operators as referenced.
2367   if (OperatorNew) {
2368     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2369       return ExprError();
2370     MarkFunctionReferenced(StartLoc, OperatorNew);
2371   }
2372   if (OperatorDelete) {
2373     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2374       return ExprError();
2375     MarkFunctionReferenced(StartLoc, OperatorDelete);
2376   }
2377 
2378   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2379                             PassAlignment, UsualArrayDeleteWantsSize,
2380                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2381                             Initializer, ResultType, AllocTypeInfo, Range,
2382                             DirectInitRange);
2383 }
2384 
2385 /// Checks that a type is suitable as the allocated type
2386 /// in a new-expression.
2387 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2388                               SourceRange R) {
2389   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2390   //   abstract class type or array thereof.
2391   if (AllocType->isFunctionType())
2392     return Diag(Loc, diag::err_bad_new_type)
2393       << AllocType << 0 << R;
2394   else if (AllocType->isReferenceType())
2395     return Diag(Loc, diag::err_bad_new_type)
2396       << AllocType << 1 << R;
2397   else if (!AllocType->isDependentType() &&
2398            RequireCompleteSizedType(
2399                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2400     return true;
2401   else if (RequireNonAbstractType(Loc, AllocType,
2402                                   diag::err_allocation_of_abstract_type))
2403     return true;
2404   else if (AllocType->isVariablyModifiedType())
2405     return Diag(Loc, diag::err_variably_modified_new_type)
2406              << AllocType;
2407   else if (AllocType.getAddressSpace() != LangAS::Default &&
2408            !getLangOpts().OpenCLCPlusPlus)
2409     return Diag(Loc, diag::err_address_space_qualified_new)
2410       << AllocType.getUnqualifiedType()
2411       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2412   else if (getLangOpts().ObjCAutoRefCount) {
2413     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2414       QualType BaseAllocType = Context.getBaseElementType(AT);
2415       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2416           BaseAllocType->isObjCLifetimeType())
2417         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2418           << BaseAllocType;
2419     }
2420   }
2421 
2422   return false;
2423 }
2424 
2425 static bool resolveAllocationOverload(
2426     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2427     bool &PassAlignment, FunctionDecl *&Operator,
2428     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2429   OverloadCandidateSet Candidates(R.getNameLoc(),
2430                                   OverloadCandidateSet::CSK_Normal);
2431   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2432        Alloc != AllocEnd; ++Alloc) {
2433     // Even member operator new/delete are implicitly treated as
2434     // static, so don't use AddMemberCandidate.
2435     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2436 
2437     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2438       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2439                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2440                                      Candidates,
2441                                      /*SuppressUserConversions=*/false);
2442       continue;
2443     }
2444 
2445     FunctionDecl *Fn = cast<FunctionDecl>(D);
2446     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2447                            /*SuppressUserConversions=*/false);
2448   }
2449 
2450   // Do the resolution.
2451   OverloadCandidateSet::iterator Best;
2452   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2453   case OR_Success: {
2454     // Got one!
2455     FunctionDecl *FnDecl = Best->Function;
2456     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2457                                 Best->FoundDecl) == Sema::AR_inaccessible)
2458       return true;
2459 
2460     Operator = FnDecl;
2461     return false;
2462   }
2463 
2464   case OR_No_Viable_Function:
2465     // C++17 [expr.new]p13:
2466     //   If no matching function is found and the allocated object type has
2467     //   new-extended alignment, the alignment argument is removed from the
2468     //   argument list, and overload resolution is performed again.
2469     if (PassAlignment) {
2470       PassAlignment = false;
2471       AlignArg = Args[1];
2472       Args.erase(Args.begin() + 1);
2473       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2474                                        Operator, &Candidates, AlignArg,
2475                                        Diagnose);
2476     }
2477 
2478     // MSVC will fall back on trying to find a matching global operator new
2479     // if operator new[] cannot be found.  Also, MSVC will leak by not
2480     // generating a call to operator delete or operator delete[], but we
2481     // will not replicate that bug.
2482     // FIXME: Find out how this interacts with the std::align_val_t fallback
2483     // once MSVC implements it.
2484     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2485         S.Context.getLangOpts().MSVCCompat) {
2486       R.clear();
2487       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2488       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2489       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2490       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2491                                        Operator, /*Candidates=*/nullptr,
2492                                        /*AlignArg=*/nullptr, Diagnose);
2493     }
2494 
2495     if (Diagnose) {
2496       // If this is an allocation of the form 'new (p) X' for some object
2497       // pointer p (or an expression that will decay to such a pointer),
2498       // diagnose the missing inclusion of <new>.
2499       if (!R.isClassLookup() && Args.size() == 2 &&
2500           (Args[1]->getType()->isObjectPointerType() ||
2501            Args[1]->getType()->isArrayType())) {
2502         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2503             << R.getLookupName() << Range;
2504         // Listing the candidates is unlikely to be useful; skip it.
2505         return true;
2506       }
2507 
2508       // Finish checking all candidates before we note any. This checking can
2509       // produce additional diagnostics so can't be interleaved with our
2510       // emission of notes.
2511       //
2512       // For an aligned allocation, separately check the aligned and unaligned
2513       // candidates with their respective argument lists.
2514       SmallVector<OverloadCandidate*, 32> Cands;
2515       SmallVector<OverloadCandidate*, 32> AlignedCands;
2516       llvm::SmallVector<Expr*, 4> AlignedArgs;
2517       if (AlignedCandidates) {
2518         auto IsAligned = [](OverloadCandidate &C) {
2519           return C.Function->getNumParams() > 1 &&
2520                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2521         };
2522         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2523 
2524         AlignedArgs.reserve(Args.size() + 1);
2525         AlignedArgs.push_back(Args[0]);
2526         AlignedArgs.push_back(AlignArg);
2527         AlignedArgs.append(Args.begin() + 1, Args.end());
2528         AlignedCands = AlignedCandidates->CompleteCandidates(
2529             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2530 
2531         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2532                                               R.getNameLoc(), IsUnaligned);
2533       } else {
2534         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2535                                               R.getNameLoc());
2536       }
2537 
2538       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2539           << R.getLookupName() << Range;
2540       if (AlignedCandidates)
2541         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2542                                           R.getNameLoc());
2543       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2544     }
2545     return true;
2546 
2547   case OR_Ambiguous:
2548     if (Diagnose) {
2549       Candidates.NoteCandidates(
2550           PartialDiagnosticAt(R.getNameLoc(),
2551                               S.PDiag(diag::err_ovl_ambiguous_call)
2552                                   << R.getLookupName() << Range),
2553           S, OCD_AmbiguousCandidates, Args);
2554     }
2555     return true;
2556 
2557   case OR_Deleted: {
2558     if (Diagnose) {
2559       Candidates.NoteCandidates(
2560           PartialDiagnosticAt(R.getNameLoc(),
2561                               S.PDiag(diag::err_ovl_deleted_call)
2562                                   << R.getLookupName() << Range),
2563           S, OCD_AllCandidates, Args);
2564     }
2565     return true;
2566   }
2567   }
2568   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2569 }
2570 
2571 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2572                                    AllocationFunctionScope NewScope,
2573                                    AllocationFunctionScope DeleteScope,
2574                                    QualType AllocType, bool IsArray,
2575                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2576                                    FunctionDecl *&OperatorNew,
2577                                    FunctionDecl *&OperatorDelete,
2578                                    bool Diagnose) {
2579   // --- Choosing an allocation function ---
2580   // C++ 5.3.4p8 - 14 & 18
2581   // 1) If looking in AFS_Global scope for allocation functions, only look in
2582   //    the global scope. Else, if AFS_Class, only look in the scope of the
2583   //    allocated class. If AFS_Both, look in both.
2584   // 2) If an array size is given, look for operator new[], else look for
2585   //   operator new.
2586   // 3) The first argument is always size_t. Append the arguments from the
2587   //   placement form.
2588 
2589   SmallVector<Expr*, 8> AllocArgs;
2590   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2591 
2592   // We don't care about the actual value of these arguments.
2593   // FIXME: Should the Sema create the expression and embed it in the syntax
2594   // tree? Or should the consumer just recalculate the value?
2595   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2596   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2597                       Context.getTargetInfo().getPointerWidth(0)),
2598                       Context.getSizeType(),
2599                       SourceLocation());
2600   AllocArgs.push_back(&Size);
2601 
2602   QualType AlignValT = Context.VoidTy;
2603   if (PassAlignment) {
2604     DeclareGlobalNewDelete();
2605     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2606   }
2607   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2608   if (PassAlignment)
2609     AllocArgs.push_back(&Align);
2610 
2611   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2612 
2613   // C++ [expr.new]p8:
2614   //   If the allocated type is a non-array type, the allocation
2615   //   function's name is operator new and the deallocation function's
2616   //   name is operator delete. If the allocated type is an array
2617   //   type, the allocation function's name is operator new[] and the
2618   //   deallocation function's name is operator delete[].
2619   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2620       IsArray ? OO_Array_New : OO_New);
2621 
2622   QualType AllocElemType = Context.getBaseElementType(AllocType);
2623 
2624   // Find the allocation function.
2625   {
2626     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2627 
2628     // C++1z [expr.new]p9:
2629     //   If the new-expression begins with a unary :: operator, the allocation
2630     //   function's name is looked up in the global scope. Otherwise, if the
2631     //   allocated type is a class type T or array thereof, the allocation
2632     //   function's name is looked up in the scope of T.
2633     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2634       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2635 
2636     // We can see ambiguity here if the allocation function is found in
2637     // multiple base classes.
2638     if (R.isAmbiguous())
2639       return true;
2640 
2641     //   If this lookup fails to find the name, or if the allocated type is not
2642     //   a class type, the allocation function's name is looked up in the
2643     //   global scope.
2644     if (R.empty()) {
2645       if (NewScope == AFS_Class)
2646         return true;
2647 
2648       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2649     }
2650 
2651     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2652       if (PlaceArgs.empty()) {
2653         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2654       } else {
2655         Diag(StartLoc, diag::err_openclcxx_placement_new);
2656       }
2657       return true;
2658     }
2659 
2660     assert(!R.empty() && "implicitly declared allocation functions not found");
2661     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2662 
2663     // We do our own custom access checks below.
2664     R.suppressDiagnostics();
2665 
2666     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2667                                   OperatorNew, /*Candidates=*/nullptr,
2668                                   /*AlignArg=*/nullptr, Diagnose))
2669       return true;
2670   }
2671 
2672   // We don't need an operator delete if we're running under -fno-exceptions.
2673   if (!getLangOpts().Exceptions) {
2674     OperatorDelete = nullptr;
2675     return false;
2676   }
2677 
2678   // Note, the name of OperatorNew might have been changed from array to
2679   // non-array by resolveAllocationOverload.
2680   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2681       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2682           ? OO_Array_Delete
2683           : OO_Delete);
2684 
2685   // C++ [expr.new]p19:
2686   //
2687   //   If the new-expression begins with a unary :: operator, the
2688   //   deallocation function's name is looked up in the global
2689   //   scope. Otherwise, if the allocated type is a class type T or an
2690   //   array thereof, the deallocation function's name is looked up in
2691   //   the scope of T. If this lookup fails to find the name, or if
2692   //   the allocated type is not a class type or array thereof, the
2693   //   deallocation function's name is looked up in the global scope.
2694   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2695   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2696     auto *RD =
2697         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2698     LookupQualifiedName(FoundDelete, RD);
2699   }
2700   if (FoundDelete.isAmbiguous())
2701     return true; // FIXME: clean up expressions?
2702 
2703   // Filter out any destroying operator deletes. We can't possibly call such a
2704   // function in this context, because we're handling the case where the object
2705   // was not successfully constructed.
2706   // FIXME: This is not covered by the language rules yet.
2707   {
2708     LookupResult::Filter Filter = FoundDelete.makeFilter();
2709     while (Filter.hasNext()) {
2710       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2711       if (FD && FD->isDestroyingOperatorDelete())
2712         Filter.erase();
2713     }
2714     Filter.done();
2715   }
2716 
2717   bool FoundGlobalDelete = FoundDelete.empty();
2718   if (FoundDelete.empty()) {
2719     FoundDelete.clear(LookupOrdinaryName);
2720 
2721     if (DeleteScope == AFS_Class)
2722       return true;
2723 
2724     DeclareGlobalNewDelete();
2725     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2726   }
2727 
2728   FoundDelete.suppressDiagnostics();
2729 
2730   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2731 
2732   // Whether we're looking for a placement operator delete is dictated
2733   // by whether we selected a placement operator new, not by whether
2734   // we had explicit placement arguments.  This matters for things like
2735   //   struct A { void *operator new(size_t, int = 0); ... };
2736   //   A *a = new A()
2737   //
2738   // We don't have any definition for what a "placement allocation function"
2739   // is, but we assume it's any allocation function whose
2740   // parameter-declaration-clause is anything other than (size_t).
2741   //
2742   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2743   // This affects whether an exception from the constructor of an overaligned
2744   // type uses the sized or non-sized form of aligned operator delete.
2745   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2746                         OperatorNew->isVariadic();
2747 
2748   if (isPlacementNew) {
2749     // C++ [expr.new]p20:
2750     //   A declaration of a placement deallocation function matches the
2751     //   declaration of a placement allocation function if it has the
2752     //   same number of parameters and, after parameter transformations
2753     //   (8.3.5), all parameter types except the first are
2754     //   identical. [...]
2755     //
2756     // To perform this comparison, we compute the function type that
2757     // the deallocation function should have, and use that type both
2758     // for template argument deduction and for comparison purposes.
2759     QualType ExpectedFunctionType;
2760     {
2761       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2762 
2763       SmallVector<QualType, 4> ArgTypes;
2764       ArgTypes.push_back(Context.VoidPtrTy);
2765       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2766         ArgTypes.push_back(Proto->getParamType(I));
2767 
2768       FunctionProtoType::ExtProtoInfo EPI;
2769       // FIXME: This is not part of the standard's rule.
2770       EPI.Variadic = Proto->isVariadic();
2771 
2772       ExpectedFunctionType
2773         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2774     }
2775 
2776     for (LookupResult::iterator D = FoundDelete.begin(),
2777                              DEnd = FoundDelete.end();
2778          D != DEnd; ++D) {
2779       FunctionDecl *Fn = nullptr;
2780       if (FunctionTemplateDecl *FnTmpl =
2781               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2782         // Perform template argument deduction to try to match the
2783         // expected function type.
2784         TemplateDeductionInfo Info(StartLoc);
2785         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2786                                     Info))
2787           continue;
2788       } else
2789         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2790 
2791       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2792                                                   ExpectedFunctionType,
2793                                                   /*AdjustExcpetionSpec*/true),
2794                               ExpectedFunctionType))
2795         Matches.push_back(std::make_pair(D.getPair(), Fn));
2796     }
2797 
2798     if (getLangOpts().CUDA)
2799       EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2800   } else {
2801     // C++1y [expr.new]p22:
2802     //   For a non-placement allocation function, the normal deallocation
2803     //   function lookup is used
2804     //
2805     // Per [expr.delete]p10, this lookup prefers a member operator delete
2806     // without a size_t argument, but prefers a non-member operator delete
2807     // with a size_t where possible (which it always is in this case).
2808     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2809     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2810         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2811         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2812         &BestDeallocFns);
2813     if (Selected)
2814       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2815     else {
2816       // If we failed to select an operator, all remaining functions are viable
2817       // but ambiguous.
2818       for (auto Fn : BestDeallocFns)
2819         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2820     }
2821   }
2822 
2823   // C++ [expr.new]p20:
2824   //   [...] If the lookup finds a single matching deallocation
2825   //   function, that function will be called; otherwise, no
2826   //   deallocation function will be called.
2827   if (Matches.size() == 1) {
2828     OperatorDelete = Matches[0].second;
2829 
2830     // C++1z [expr.new]p23:
2831     //   If the lookup finds a usual deallocation function (3.7.4.2)
2832     //   with a parameter of type std::size_t and that function, considered
2833     //   as a placement deallocation function, would have been
2834     //   selected as a match for the allocation function, the program
2835     //   is ill-formed.
2836     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2837         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2838       UsualDeallocFnInfo Info(*this,
2839                               DeclAccessPair::make(OperatorDelete, AS_public));
2840       // Core issue, per mail to core reflector, 2016-10-09:
2841       //   If this is a member operator delete, and there is a corresponding
2842       //   non-sized member operator delete, this isn't /really/ a sized
2843       //   deallocation function, it just happens to have a size_t parameter.
2844       bool IsSizedDelete = Info.HasSizeT;
2845       if (IsSizedDelete && !FoundGlobalDelete) {
2846         auto NonSizedDelete =
2847             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2848                                         /*WantAlign*/Info.HasAlignValT);
2849         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2850             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2851           IsSizedDelete = false;
2852       }
2853 
2854       if (IsSizedDelete) {
2855         SourceRange R = PlaceArgs.empty()
2856                             ? SourceRange()
2857                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2858                                           PlaceArgs.back()->getEndLoc());
2859         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2860         if (!OperatorDelete->isImplicit())
2861           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2862               << DeleteName;
2863       }
2864     }
2865 
2866     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2867                           Matches[0].first);
2868   } else if (!Matches.empty()) {
2869     // We found multiple suitable operators. Per [expr.new]p20, that means we
2870     // call no 'operator delete' function, but we should at least warn the user.
2871     // FIXME: Suppress this warning if the construction cannot throw.
2872     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2873       << DeleteName << AllocElemType;
2874 
2875     for (auto &Match : Matches)
2876       Diag(Match.second->getLocation(),
2877            diag::note_member_declared_here) << DeleteName;
2878   }
2879 
2880   return false;
2881 }
2882 
2883 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2884 /// delete. These are:
2885 /// @code
2886 ///   // C++03:
2887 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2888 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2889 ///   void operator delete(void *) throw();
2890 ///   void operator delete[](void *) throw();
2891 ///   // C++11:
2892 ///   void* operator new(std::size_t);
2893 ///   void* operator new[](std::size_t);
2894 ///   void operator delete(void *) noexcept;
2895 ///   void operator delete[](void *) noexcept;
2896 ///   // C++1y:
2897 ///   void* operator new(std::size_t);
2898 ///   void* operator new[](std::size_t);
2899 ///   void operator delete(void *) noexcept;
2900 ///   void operator delete[](void *) noexcept;
2901 ///   void operator delete(void *, std::size_t) noexcept;
2902 ///   void operator delete[](void *, std::size_t) noexcept;
2903 /// @endcode
2904 /// Note that the placement and nothrow forms of new are *not* implicitly
2905 /// declared. Their use requires including \<new\>.
2906 void Sema::DeclareGlobalNewDelete() {
2907   if (GlobalNewDeleteDeclared)
2908     return;
2909 
2910   // The implicitly declared new and delete operators
2911   // are not supported in OpenCL.
2912   if (getLangOpts().OpenCLCPlusPlus)
2913     return;
2914 
2915   // C++ [basic.std.dynamic]p2:
2916   //   [...] The following allocation and deallocation functions (18.4) are
2917   //   implicitly declared in global scope in each translation unit of a
2918   //   program
2919   //
2920   //     C++03:
2921   //     void* operator new(std::size_t) throw(std::bad_alloc);
2922   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2923   //     void  operator delete(void*) throw();
2924   //     void  operator delete[](void*) throw();
2925   //     C++11:
2926   //     void* operator new(std::size_t);
2927   //     void* operator new[](std::size_t);
2928   //     void  operator delete(void*) noexcept;
2929   //     void  operator delete[](void*) noexcept;
2930   //     C++1y:
2931   //     void* operator new(std::size_t);
2932   //     void* operator new[](std::size_t);
2933   //     void  operator delete(void*) noexcept;
2934   //     void  operator delete[](void*) noexcept;
2935   //     void  operator delete(void*, std::size_t) noexcept;
2936   //     void  operator delete[](void*, std::size_t) noexcept;
2937   //
2938   //   These implicit declarations introduce only the function names operator
2939   //   new, operator new[], operator delete, operator delete[].
2940   //
2941   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2942   // "std" or "bad_alloc" as necessary to form the exception specification.
2943   // However, we do not make these implicit declarations visible to name
2944   // lookup.
2945   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2946     // The "std::bad_alloc" class has not yet been declared, so build it
2947     // implicitly.
2948     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2949                                         getOrCreateStdNamespace(),
2950                                         SourceLocation(), SourceLocation(),
2951                                       &PP.getIdentifierTable().get("bad_alloc"),
2952                                         nullptr);
2953     getStdBadAlloc()->setImplicit(true);
2954   }
2955   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2956     // The "std::align_val_t" enum class has not yet been declared, so build it
2957     // implicitly.
2958     auto *AlignValT = EnumDecl::Create(
2959         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2960         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2961     AlignValT->setIntegerType(Context.getSizeType());
2962     AlignValT->setPromotionType(Context.getSizeType());
2963     AlignValT->setImplicit(true);
2964     StdAlignValT = AlignValT;
2965   }
2966 
2967   GlobalNewDeleteDeclared = true;
2968 
2969   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2970   QualType SizeT = Context.getSizeType();
2971 
2972   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2973                                               QualType Return, QualType Param) {
2974     llvm::SmallVector<QualType, 3> Params;
2975     Params.push_back(Param);
2976 
2977     // Create up to four variants of the function (sized/aligned).
2978     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2979                            (Kind == OO_Delete || Kind == OO_Array_Delete);
2980     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2981 
2982     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2983     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2984     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2985       if (Sized)
2986         Params.push_back(SizeT);
2987 
2988       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2989         if (Aligned)
2990           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2991 
2992         DeclareGlobalAllocationFunction(
2993             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2994 
2995         if (Aligned)
2996           Params.pop_back();
2997       }
2998     }
2999   };
3000 
3001   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3002   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3003   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3004   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3005 }
3006 
3007 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3008 /// allocation function if it doesn't already exist.
3009 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3010                                            QualType Return,
3011                                            ArrayRef<QualType> Params) {
3012   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3013 
3014   // Check if this function is already declared.
3015   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3016   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3017        Alloc != AllocEnd; ++Alloc) {
3018     // Only look at non-template functions, as it is the predefined,
3019     // non-templated allocation function we are trying to declare here.
3020     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3021       if (Func->getNumParams() == Params.size()) {
3022         llvm::SmallVector<QualType, 3> FuncParams;
3023         for (auto *P : Func->parameters())
3024           FuncParams.push_back(
3025               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3026         if (llvm::makeArrayRef(FuncParams) == Params) {
3027           // Make the function visible to name lookup, even if we found it in
3028           // an unimported module. It either is an implicitly-declared global
3029           // allocation function, or is suppressing that function.
3030           Func->setVisibleDespiteOwningModule();
3031           return;
3032         }
3033       }
3034     }
3035   }
3036 
3037   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3038       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3039 
3040   QualType BadAllocType;
3041   bool HasBadAllocExceptionSpec
3042     = (Name.getCXXOverloadedOperator() == OO_New ||
3043        Name.getCXXOverloadedOperator() == OO_Array_New);
3044   if (HasBadAllocExceptionSpec) {
3045     if (!getLangOpts().CPlusPlus11) {
3046       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3047       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3048       EPI.ExceptionSpec.Type = EST_Dynamic;
3049       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3050     }
3051   } else {
3052     EPI.ExceptionSpec =
3053         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3054   }
3055 
3056   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3057     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3058     FunctionDecl *Alloc = FunctionDecl::Create(
3059         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
3060         FnType, /*TInfo=*/nullptr, SC_None, false, true);
3061     Alloc->setImplicit();
3062     // Global allocation functions should always be visible.
3063     Alloc->setVisibleDespiteOwningModule();
3064 
3065     Alloc->addAttr(VisibilityAttr::CreateImplicit(
3066         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3067                      ? VisibilityAttr::Hidden
3068                      : VisibilityAttr::Default));
3069 
3070     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3071     for (QualType T : Params) {
3072       ParamDecls.push_back(ParmVarDecl::Create(
3073           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3074           /*TInfo=*/nullptr, SC_None, nullptr));
3075       ParamDecls.back()->setImplicit();
3076     }
3077     Alloc->setParams(ParamDecls);
3078     if (ExtraAttr)
3079       Alloc->addAttr(ExtraAttr);
3080     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3081     Context.getTranslationUnitDecl()->addDecl(Alloc);
3082     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3083   };
3084 
3085   if (!LangOpts.CUDA)
3086     CreateAllocationFunctionDecl(nullptr);
3087   else {
3088     // Host and device get their own declaration so each can be
3089     // defined or re-declared independently.
3090     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3091     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3092   }
3093 }
3094 
3095 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3096                                                   bool CanProvideSize,
3097                                                   bool Overaligned,
3098                                                   DeclarationName Name) {
3099   DeclareGlobalNewDelete();
3100 
3101   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3102   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3103 
3104   // FIXME: It's possible for this to result in ambiguity, through a
3105   // user-declared variadic operator delete or the enable_if attribute. We
3106   // should probably not consider those cases to be usual deallocation
3107   // functions. But for now we just make an arbitrary choice in that case.
3108   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3109                                             Overaligned);
3110   assert(Result.FD && "operator delete missing from global scope?");
3111   return Result.FD;
3112 }
3113 
3114 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3115                                                           CXXRecordDecl *RD) {
3116   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3117 
3118   FunctionDecl *OperatorDelete = nullptr;
3119   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3120     return nullptr;
3121   if (OperatorDelete)
3122     return OperatorDelete;
3123 
3124   // If there's no class-specific operator delete, look up the global
3125   // non-array delete.
3126   return FindUsualDeallocationFunction(
3127       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3128       Name);
3129 }
3130 
3131 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3132                                     DeclarationName Name,
3133                                     FunctionDecl *&Operator, bool Diagnose) {
3134   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3135   // Try to find operator delete/operator delete[] in class scope.
3136   LookupQualifiedName(Found, RD);
3137 
3138   if (Found.isAmbiguous())
3139     return true;
3140 
3141   Found.suppressDiagnostics();
3142 
3143   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3144 
3145   // C++17 [expr.delete]p10:
3146   //   If the deallocation functions have class scope, the one without a
3147   //   parameter of type std::size_t is selected.
3148   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3149   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3150                               /*WantAlign*/ Overaligned, &Matches);
3151 
3152   // If we could find an overload, use it.
3153   if (Matches.size() == 1) {
3154     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3155 
3156     // FIXME: DiagnoseUseOfDecl?
3157     if (Operator->isDeleted()) {
3158       if (Diagnose) {
3159         Diag(StartLoc, diag::err_deleted_function_use);
3160         NoteDeletedFunction(Operator);
3161       }
3162       return true;
3163     }
3164 
3165     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3166                               Matches[0].Found, Diagnose) == AR_inaccessible)
3167       return true;
3168 
3169     return false;
3170   }
3171 
3172   // We found multiple suitable operators; complain about the ambiguity.
3173   // FIXME: The standard doesn't say to do this; it appears that the intent
3174   // is that this should never happen.
3175   if (!Matches.empty()) {
3176     if (Diagnose) {
3177       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3178         << Name << RD;
3179       for (auto &Match : Matches)
3180         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3181     }
3182     return true;
3183   }
3184 
3185   // We did find operator delete/operator delete[] declarations, but
3186   // none of them were suitable.
3187   if (!Found.empty()) {
3188     if (Diagnose) {
3189       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3190         << Name << RD;
3191 
3192       for (NamedDecl *D : Found)
3193         Diag(D->getUnderlyingDecl()->getLocation(),
3194              diag::note_member_declared_here) << Name;
3195     }
3196     return true;
3197   }
3198 
3199   Operator = nullptr;
3200   return false;
3201 }
3202 
3203 namespace {
3204 /// Checks whether delete-expression, and new-expression used for
3205 ///  initializing deletee have the same array form.
3206 class MismatchingNewDeleteDetector {
3207 public:
3208   enum MismatchResult {
3209     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3210     NoMismatch,
3211     /// Indicates that variable is initialized with mismatching form of \a new.
3212     VarInitMismatches,
3213     /// Indicates that member is initialized with mismatching form of \a new.
3214     MemberInitMismatches,
3215     /// Indicates that 1 or more constructors' definitions could not been
3216     /// analyzed, and they will be checked again at the end of translation unit.
3217     AnalyzeLater
3218   };
3219 
3220   /// \param EndOfTU True, if this is the final analysis at the end of
3221   /// translation unit. False, if this is the initial analysis at the point
3222   /// delete-expression was encountered.
3223   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3224       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3225         HasUndefinedConstructors(false) {}
3226 
3227   /// Checks whether pointee of a delete-expression is initialized with
3228   /// matching form of new-expression.
3229   ///
3230   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3231   /// point where delete-expression is encountered, then a warning will be
3232   /// issued immediately. If return value is \c AnalyzeLater at the point where
3233   /// delete-expression is seen, then member will be analyzed at the end of
3234   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3235   /// couldn't be analyzed. If at least one constructor initializes the member
3236   /// with matching type of new, the return value is \c NoMismatch.
3237   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3238   /// Analyzes a class member.
3239   /// \param Field Class member to analyze.
3240   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3241   /// for deleting the \p Field.
3242   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3243   FieldDecl *Field;
3244   /// List of mismatching new-expressions used for initialization of the pointee
3245   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3246   /// Indicates whether delete-expression was in array form.
3247   bool IsArrayForm;
3248 
3249 private:
3250   const bool EndOfTU;
3251   /// Indicates that there is at least one constructor without body.
3252   bool HasUndefinedConstructors;
3253   /// Returns \c CXXNewExpr from given initialization expression.
3254   /// \param E Expression used for initializing pointee in delete-expression.
3255   /// E can be a single-element \c InitListExpr consisting of new-expression.
3256   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3257   /// Returns whether member is initialized with mismatching form of
3258   /// \c new either by the member initializer or in-class initialization.
3259   ///
3260   /// If bodies of all constructors are not visible at the end of translation
3261   /// unit or at least one constructor initializes member with the matching
3262   /// form of \c new, mismatch cannot be proven, and this function will return
3263   /// \c NoMismatch.
3264   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3265   /// Returns whether variable is initialized with mismatching form of
3266   /// \c new.
3267   ///
3268   /// If variable is initialized with matching form of \c new or variable is not
3269   /// initialized with a \c new expression, this function will return true.
3270   /// If variable is initialized with mismatching form of \c new, returns false.
3271   /// \param D Variable to analyze.
3272   bool hasMatchingVarInit(const DeclRefExpr *D);
3273   /// Checks whether the constructor initializes pointee with mismatching
3274   /// form of \c new.
3275   ///
3276   /// Returns true, if member is initialized with matching form of \c new in
3277   /// member initializer list. Returns false, if member is initialized with the
3278   /// matching form of \c new in this constructor's initializer or given
3279   /// constructor isn't defined at the point where delete-expression is seen, or
3280   /// member isn't initialized by the constructor.
3281   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3282   /// Checks whether member is initialized with matching form of
3283   /// \c new in member initializer list.
3284   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3285   /// Checks whether member is initialized with mismatching form of \c new by
3286   /// in-class initializer.
3287   MismatchResult analyzeInClassInitializer();
3288 };
3289 }
3290 
3291 MismatchingNewDeleteDetector::MismatchResult
3292 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3293   NewExprs.clear();
3294   assert(DE && "Expected delete-expression");
3295   IsArrayForm = DE->isArrayForm();
3296   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3297   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3298     return analyzeMemberExpr(ME);
3299   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3300     if (!hasMatchingVarInit(D))
3301       return VarInitMismatches;
3302   }
3303   return NoMismatch;
3304 }
3305 
3306 const CXXNewExpr *
3307 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3308   assert(E != nullptr && "Expected a valid initializer expression");
3309   E = E->IgnoreParenImpCasts();
3310   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3311     if (ILE->getNumInits() == 1)
3312       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3313   }
3314 
3315   return dyn_cast_or_null<const CXXNewExpr>(E);
3316 }
3317 
3318 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3319     const CXXCtorInitializer *CI) {
3320   const CXXNewExpr *NE = nullptr;
3321   if (Field == CI->getMember() &&
3322       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3323     if (NE->isArray() == IsArrayForm)
3324       return true;
3325     else
3326       NewExprs.push_back(NE);
3327   }
3328   return false;
3329 }
3330 
3331 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3332     const CXXConstructorDecl *CD) {
3333   if (CD->isImplicit())
3334     return false;
3335   const FunctionDecl *Definition = CD;
3336   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3337     HasUndefinedConstructors = true;
3338     return EndOfTU;
3339   }
3340   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3341     if (hasMatchingNewInCtorInit(CI))
3342       return true;
3343   }
3344   return false;
3345 }
3346 
3347 MismatchingNewDeleteDetector::MismatchResult
3348 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3349   assert(Field != nullptr && "This should be called only for members");
3350   const Expr *InitExpr = Field->getInClassInitializer();
3351   if (!InitExpr)
3352     return EndOfTU ? NoMismatch : AnalyzeLater;
3353   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3354     if (NE->isArray() != IsArrayForm) {
3355       NewExprs.push_back(NE);
3356       return MemberInitMismatches;
3357     }
3358   }
3359   return NoMismatch;
3360 }
3361 
3362 MismatchingNewDeleteDetector::MismatchResult
3363 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3364                                            bool DeleteWasArrayForm) {
3365   assert(Field != nullptr && "Analysis requires a valid class member.");
3366   this->Field = Field;
3367   IsArrayForm = DeleteWasArrayForm;
3368   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3369   for (const auto *CD : RD->ctors()) {
3370     if (hasMatchingNewInCtor(CD))
3371       return NoMismatch;
3372   }
3373   if (HasUndefinedConstructors)
3374     return EndOfTU ? NoMismatch : AnalyzeLater;
3375   if (!NewExprs.empty())
3376     return MemberInitMismatches;
3377   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3378                                         : NoMismatch;
3379 }
3380 
3381 MismatchingNewDeleteDetector::MismatchResult
3382 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3383   assert(ME != nullptr && "Expected a member expression");
3384   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3385     return analyzeField(F, IsArrayForm);
3386   return NoMismatch;
3387 }
3388 
3389 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3390   const CXXNewExpr *NE = nullptr;
3391   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3392     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3393         NE->isArray() != IsArrayForm) {
3394       NewExprs.push_back(NE);
3395     }
3396   }
3397   return NewExprs.empty();
3398 }
3399 
3400 static void
3401 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3402                             const MismatchingNewDeleteDetector &Detector) {
3403   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3404   FixItHint H;
3405   if (!Detector.IsArrayForm)
3406     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3407   else {
3408     SourceLocation RSquare = Lexer::findLocationAfterToken(
3409         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3410         SemaRef.getLangOpts(), true);
3411     if (RSquare.isValid())
3412       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3413   }
3414   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3415       << Detector.IsArrayForm << H;
3416 
3417   for (const auto *NE : Detector.NewExprs)
3418     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3419         << Detector.IsArrayForm;
3420 }
3421 
3422 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3423   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3424     return;
3425   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3426   switch (Detector.analyzeDeleteExpr(DE)) {
3427   case MismatchingNewDeleteDetector::VarInitMismatches:
3428   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3429     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3430     break;
3431   }
3432   case MismatchingNewDeleteDetector::AnalyzeLater: {
3433     DeleteExprs[Detector.Field].push_back(
3434         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3435     break;
3436   }
3437   case MismatchingNewDeleteDetector::NoMismatch:
3438     break;
3439   }
3440 }
3441 
3442 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3443                                      bool DeleteWasArrayForm) {
3444   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3445   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3446   case MismatchingNewDeleteDetector::VarInitMismatches:
3447     llvm_unreachable("This analysis should have been done for class members.");
3448   case MismatchingNewDeleteDetector::AnalyzeLater:
3449     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3450                      "translation unit.");
3451   case MismatchingNewDeleteDetector::MemberInitMismatches:
3452     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3453     break;
3454   case MismatchingNewDeleteDetector::NoMismatch:
3455     break;
3456   }
3457 }
3458 
3459 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3460 /// @code ::delete ptr; @endcode
3461 /// or
3462 /// @code delete [] ptr; @endcode
3463 ExprResult
3464 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3465                      bool ArrayForm, Expr *ExE) {
3466   // C++ [expr.delete]p1:
3467   //   The operand shall have a pointer type, or a class type having a single
3468   //   non-explicit conversion function to a pointer type. The result has type
3469   //   void.
3470   //
3471   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3472 
3473   ExprResult Ex = ExE;
3474   FunctionDecl *OperatorDelete = nullptr;
3475   bool ArrayFormAsWritten = ArrayForm;
3476   bool UsualArrayDeleteWantsSize = false;
3477 
3478   if (!Ex.get()->isTypeDependent()) {
3479     // Perform lvalue-to-rvalue cast, if needed.
3480     Ex = DefaultLvalueConversion(Ex.get());
3481     if (Ex.isInvalid())
3482       return ExprError();
3483 
3484     QualType Type = Ex.get()->getType();
3485 
3486     class DeleteConverter : public ContextualImplicitConverter {
3487     public:
3488       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3489 
3490       bool match(QualType ConvType) override {
3491         // FIXME: If we have an operator T* and an operator void*, we must pick
3492         // the operator T*.
3493         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3494           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3495             return true;
3496         return false;
3497       }
3498 
3499       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3500                                             QualType T) override {
3501         return S.Diag(Loc, diag::err_delete_operand) << T;
3502       }
3503 
3504       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3505                                                QualType T) override {
3506         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3507       }
3508 
3509       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3510                                                  QualType T,
3511                                                  QualType ConvTy) override {
3512         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3513       }
3514 
3515       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3516                                              QualType ConvTy) override {
3517         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3518           << ConvTy;
3519       }
3520 
3521       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3522                                               QualType T) override {
3523         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3524       }
3525 
3526       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3527                                           QualType ConvTy) override {
3528         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3529           << ConvTy;
3530       }
3531 
3532       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3533                                                QualType T,
3534                                                QualType ConvTy) override {
3535         llvm_unreachable("conversion functions are permitted");
3536       }
3537     } Converter;
3538 
3539     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3540     if (Ex.isInvalid())
3541       return ExprError();
3542     Type = Ex.get()->getType();
3543     if (!Converter.match(Type))
3544       // FIXME: PerformContextualImplicitConversion should return ExprError
3545       //        itself in this case.
3546       return ExprError();
3547 
3548     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3549     QualType PointeeElem = Context.getBaseElementType(Pointee);
3550 
3551     if (Pointee.getAddressSpace() != LangAS::Default &&
3552         !getLangOpts().OpenCLCPlusPlus)
3553       return Diag(Ex.get()->getBeginLoc(),
3554                   diag::err_address_space_qualified_delete)
3555              << Pointee.getUnqualifiedType()
3556              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3557 
3558     CXXRecordDecl *PointeeRD = nullptr;
3559     if (Pointee->isVoidType() && !isSFINAEContext()) {
3560       // The C++ standard bans deleting a pointer to a non-object type, which
3561       // effectively bans deletion of "void*". However, most compilers support
3562       // this, so we treat it as a warning unless we're in a SFINAE context.
3563       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3564         << Type << Ex.get()->getSourceRange();
3565     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3566                Pointee->isSizelessType()) {
3567       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3568         << Type << Ex.get()->getSourceRange());
3569     } else if (!Pointee->isDependentType()) {
3570       // FIXME: This can result in errors if the definition was imported from a
3571       // module but is hidden.
3572       if (!RequireCompleteType(StartLoc, Pointee,
3573                                diag::warn_delete_incomplete, Ex.get())) {
3574         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3575           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3576       }
3577     }
3578 
3579     if (Pointee->isArrayType() && !ArrayForm) {
3580       Diag(StartLoc, diag::warn_delete_array_type)
3581           << Type << Ex.get()->getSourceRange()
3582           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3583       ArrayForm = true;
3584     }
3585 
3586     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3587                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3588 
3589     if (PointeeRD) {
3590       if (!UseGlobal &&
3591           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3592                                    OperatorDelete))
3593         return ExprError();
3594 
3595       // If we're allocating an array of records, check whether the
3596       // usual operator delete[] has a size_t parameter.
3597       if (ArrayForm) {
3598         // If the user specifically asked to use the global allocator,
3599         // we'll need to do the lookup into the class.
3600         if (UseGlobal)
3601           UsualArrayDeleteWantsSize =
3602             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3603 
3604         // Otherwise, the usual operator delete[] should be the
3605         // function we just found.
3606         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3607           UsualArrayDeleteWantsSize =
3608             UsualDeallocFnInfo(*this,
3609                                DeclAccessPair::make(OperatorDelete, AS_public))
3610               .HasSizeT;
3611       }
3612 
3613       if (!PointeeRD->hasIrrelevantDestructor())
3614         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3615           MarkFunctionReferenced(StartLoc,
3616                                     const_cast<CXXDestructorDecl*>(Dtor));
3617           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3618             return ExprError();
3619         }
3620 
3621       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3622                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3623                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3624                            SourceLocation());
3625     }
3626 
3627     if (!OperatorDelete) {
3628       if (getLangOpts().OpenCLCPlusPlus) {
3629         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3630         return ExprError();
3631       }
3632 
3633       bool IsComplete = isCompleteType(StartLoc, Pointee);
3634       bool CanProvideSize =
3635           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3636                          Pointee.isDestructedType());
3637       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3638 
3639       // Look for a global declaration.
3640       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3641                                                      Overaligned, DeleteName);
3642     }
3643 
3644     MarkFunctionReferenced(StartLoc, OperatorDelete);
3645 
3646     // Check access and ambiguity of destructor if we're going to call it.
3647     // Note that this is required even for a virtual delete.
3648     bool IsVirtualDelete = false;
3649     if (PointeeRD) {
3650       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3651         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3652                               PDiag(diag::err_access_dtor) << PointeeElem);
3653         IsVirtualDelete = Dtor->isVirtual();
3654       }
3655     }
3656 
3657     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3658 
3659     // Convert the operand to the type of the first parameter of operator
3660     // delete. This is only necessary if we selected a destroying operator
3661     // delete that we are going to call (non-virtually); converting to void*
3662     // is trivial and left to AST consumers to handle.
3663     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3664     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3665       Qualifiers Qs = Pointee.getQualifiers();
3666       if (Qs.hasCVRQualifiers()) {
3667         // Qualifiers are irrelevant to this conversion; we're only looking
3668         // for access and ambiguity.
3669         Qs.removeCVRQualifiers();
3670         QualType Unqual = Context.getPointerType(
3671             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3672         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3673       }
3674       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3675       if (Ex.isInvalid())
3676         return ExprError();
3677     }
3678   }
3679 
3680   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3681       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3682       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3683   AnalyzeDeleteExprMismatch(Result);
3684   return Result;
3685 }
3686 
3687 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3688                                             bool IsDelete,
3689                                             FunctionDecl *&Operator) {
3690 
3691   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3692       IsDelete ? OO_Delete : OO_New);
3693 
3694   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3695   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3696   assert(!R.empty() && "implicitly declared allocation functions not found");
3697   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3698 
3699   // We do our own custom access checks below.
3700   R.suppressDiagnostics();
3701 
3702   SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3703   OverloadCandidateSet Candidates(R.getNameLoc(),
3704                                   OverloadCandidateSet::CSK_Normal);
3705   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3706        FnOvl != FnOvlEnd; ++FnOvl) {
3707     // Even member operator new/delete are implicitly treated as
3708     // static, so don't use AddMemberCandidate.
3709     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3710 
3711     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3712       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3713                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3714                                      Candidates,
3715                                      /*SuppressUserConversions=*/false);
3716       continue;
3717     }
3718 
3719     FunctionDecl *Fn = cast<FunctionDecl>(D);
3720     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3721                            /*SuppressUserConversions=*/false);
3722   }
3723 
3724   SourceRange Range = TheCall->getSourceRange();
3725 
3726   // Do the resolution.
3727   OverloadCandidateSet::iterator Best;
3728   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3729   case OR_Success: {
3730     // Got one!
3731     FunctionDecl *FnDecl = Best->Function;
3732     assert(R.getNamingClass() == nullptr &&
3733            "class members should not be considered");
3734 
3735     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3736       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3737           << (IsDelete ? 1 : 0) << Range;
3738       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3739           << R.getLookupName() << FnDecl->getSourceRange();
3740       return true;
3741     }
3742 
3743     Operator = FnDecl;
3744     return false;
3745   }
3746 
3747   case OR_No_Viable_Function:
3748     Candidates.NoteCandidates(
3749         PartialDiagnosticAt(R.getNameLoc(),
3750                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3751                                 << R.getLookupName() << Range),
3752         S, OCD_AllCandidates, Args);
3753     return true;
3754 
3755   case OR_Ambiguous:
3756     Candidates.NoteCandidates(
3757         PartialDiagnosticAt(R.getNameLoc(),
3758                             S.PDiag(diag::err_ovl_ambiguous_call)
3759                                 << R.getLookupName() << Range),
3760         S, OCD_AmbiguousCandidates, Args);
3761     return true;
3762 
3763   case OR_Deleted: {
3764     Candidates.NoteCandidates(
3765         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3766                                                 << R.getLookupName() << Range),
3767         S, OCD_AllCandidates, Args);
3768     return true;
3769   }
3770   }
3771   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3772 }
3773 
3774 ExprResult
3775 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3776                                              bool IsDelete) {
3777   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3778   if (!getLangOpts().CPlusPlus) {
3779     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3780         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3781         << "C++";
3782     return ExprError();
3783   }
3784   // CodeGen assumes it can find the global new and delete to call,
3785   // so ensure that they are declared.
3786   DeclareGlobalNewDelete();
3787 
3788   FunctionDecl *OperatorNewOrDelete = nullptr;
3789   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3790                                       OperatorNewOrDelete))
3791     return ExprError();
3792   assert(OperatorNewOrDelete && "should be found");
3793 
3794   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3795   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3796 
3797   TheCall->setType(OperatorNewOrDelete->getReturnType());
3798   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3799     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3800     InitializedEntity Entity =
3801         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3802     ExprResult Arg = PerformCopyInitialization(
3803         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3804     if (Arg.isInvalid())
3805       return ExprError();
3806     TheCall->setArg(i, Arg.get());
3807   }
3808   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3809   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3810          "Callee expected to be implicit cast to a builtin function pointer");
3811   Callee->setType(OperatorNewOrDelete->getType());
3812 
3813   return TheCallResult;
3814 }
3815 
3816 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3817                                 bool IsDelete, bool CallCanBeVirtual,
3818                                 bool WarnOnNonAbstractTypes,
3819                                 SourceLocation DtorLoc) {
3820   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3821     return;
3822 
3823   // C++ [expr.delete]p3:
3824   //   In the first alternative (delete object), if the static type of the
3825   //   object to be deleted is different from its dynamic type, the static
3826   //   type shall be a base class of the dynamic type of the object to be
3827   //   deleted and the static type shall have a virtual destructor or the
3828   //   behavior is undefined.
3829   //
3830   const CXXRecordDecl *PointeeRD = dtor->getParent();
3831   // Note: a final class cannot be derived from, no issue there
3832   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3833     return;
3834 
3835   // If the superclass is in a system header, there's nothing that can be done.
3836   // The `delete` (where we emit the warning) can be in a system header,
3837   // what matters for this warning is where the deleted type is defined.
3838   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3839     return;
3840 
3841   QualType ClassType = dtor->getThisType()->getPointeeType();
3842   if (PointeeRD->isAbstract()) {
3843     // If the class is abstract, we warn by default, because we're
3844     // sure the code has undefined behavior.
3845     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3846                                                            << ClassType;
3847   } else if (WarnOnNonAbstractTypes) {
3848     // Otherwise, if this is not an array delete, it's a bit suspect,
3849     // but not necessarily wrong.
3850     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3851                                                   << ClassType;
3852   }
3853   if (!IsDelete) {
3854     std::string TypeStr;
3855     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3856     Diag(DtorLoc, diag::note_delete_non_virtual)
3857         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3858   }
3859 }
3860 
3861 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3862                                                    SourceLocation StmtLoc,
3863                                                    ConditionKind CK) {
3864   ExprResult E =
3865       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3866   if (E.isInvalid())
3867     return ConditionError();
3868   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3869                          CK == ConditionKind::ConstexprIf);
3870 }
3871 
3872 /// Check the use of the given variable as a C++ condition in an if,
3873 /// while, do-while, or switch statement.
3874 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3875                                         SourceLocation StmtLoc,
3876                                         ConditionKind CK) {
3877   if (ConditionVar->isInvalidDecl())
3878     return ExprError();
3879 
3880   QualType T = ConditionVar->getType();
3881 
3882   // C++ [stmt.select]p2:
3883   //   The declarator shall not specify a function or an array.
3884   if (T->isFunctionType())
3885     return ExprError(Diag(ConditionVar->getLocation(),
3886                           diag::err_invalid_use_of_function_type)
3887                        << ConditionVar->getSourceRange());
3888   else if (T->isArrayType())
3889     return ExprError(Diag(ConditionVar->getLocation(),
3890                           diag::err_invalid_use_of_array_type)
3891                      << ConditionVar->getSourceRange());
3892 
3893   ExprResult Condition = BuildDeclRefExpr(
3894       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3895       ConditionVar->getLocation());
3896 
3897   switch (CK) {
3898   case ConditionKind::Boolean:
3899     return CheckBooleanCondition(StmtLoc, Condition.get());
3900 
3901   case ConditionKind::ConstexprIf:
3902     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3903 
3904   case ConditionKind::Switch:
3905     return CheckSwitchCondition(StmtLoc, Condition.get());
3906   }
3907 
3908   llvm_unreachable("unexpected condition kind");
3909 }
3910 
3911 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3912 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3913   // C++11 6.4p4:
3914   // The value of a condition that is an initialized declaration in a statement
3915   // other than a switch statement is the value of the declared variable
3916   // implicitly converted to type bool. If that conversion is ill-formed, the
3917   // program is ill-formed.
3918   // The value of a condition that is an expression is the value of the
3919   // expression, implicitly converted to bool.
3920   //
3921   // C++2b 8.5.2p2
3922   // If the if statement is of the form if constexpr, the value of the condition
3923   // is contextually converted to bool and the converted expression shall be
3924   // a constant expression.
3925   //
3926 
3927   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3928   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3929     return E;
3930 
3931   // FIXME: Return this value to the caller so they don't need to recompute it.
3932   llvm::APSInt Cond;
3933   E = VerifyIntegerConstantExpression(
3934       E.get(), &Cond,
3935       diag::err_constexpr_if_condition_expression_is_not_constant);
3936   return E;
3937 }
3938 
3939 /// Helper function to determine whether this is the (deprecated) C++
3940 /// conversion from a string literal to a pointer to non-const char or
3941 /// non-const wchar_t (for narrow and wide string literals,
3942 /// respectively).
3943 bool
3944 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3945   // Look inside the implicit cast, if it exists.
3946   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3947     From = Cast->getSubExpr();
3948 
3949   // A string literal (2.13.4) that is not a wide string literal can
3950   // be converted to an rvalue of type "pointer to char"; a wide
3951   // string literal can be converted to an rvalue of type "pointer
3952   // to wchar_t" (C++ 4.2p2).
3953   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3954     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3955       if (const BuiltinType *ToPointeeType
3956           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3957         // This conversion is considered only when there is an
3958         // explicit appropriate pointer target type (C++ 4.2p2).
3959         if (!ToPtrType->getPointeeType().hasQualifiers()) {
3960           switch (StrLit->getKind()) {
3961             case StringLiteral::UTF8:
3962             case StringLiteral::UTF16:
3963             case StringLiteral::UTF32:
3964               // We don't allow UTF literals to be implicitly converted
3965               break;
3966             case StringLiteral::Ascii:
3967               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3968                       ToPointeeType->getKind() == BuiltinType::Char_S);
3969             case StringLiteral::Wide:
3970               return Context.typesAreCompatible(Context.getWideCharType(),
3971                                                 QualType(ToPointeeType, 0));
3972           }
3973         }
3974       }
3975 
3976   return false;
3977 }
3978 
3979 static ExprResult BuildCXXCastArgument(Sema &S,
3980                                        SourceLocation CastLoc,
3981                                        QualType Ty,
3982                                        CastKind Kind,
3983                                        CXXMethodDecl *Method,
3984                                        DeclAccessPair FoundDecl,
3985                                        bool HadMultipleCandidates,
3986                                        Expr *From) {
3987   switch (Kind) {
3988   default: llvm_unreachable("Unhandled cast kind!");
3989   case CK_ConstructorConversion: {
3990     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3991     SmallVector<Expr*, 8> ConstructorArgs;
3992 
3993     if (S.RequireNonAbstractType(CastLoc, Ty,
3994                                  diag::err_allocation_of_abstract_type))
3995       return ExprError();
3996 
3997     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
3998                                   ConstructorArgs))
3999       return ExprError();
4000 
4001     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4002                              InitializedEntity::InitializeTemporary(Ty));
4003     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4004       return ExprError();
4005 
4006     ExprResult Result = S.BuildCXXConstructExpr(
4007         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4008         ConstructorArgs, HadMultipleCandidates,
4009         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4010         CXXConstructExpr::CK_Complete, SourceRange());
4011     if (Result.isInvalid())
4012       return ExprError();
4013 
4014     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4015   }
4016 
4017   case CK_UserDefinedConversion: {
4018     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4019 
4020     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4021     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4022       return ExprError();
4023 
4024     // Create an implicit call expr that calls it.
4025     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4026     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4027                                                  HadMultipleCandidates);
4028     if (Result.isInvalid())
4029       return ExprError();
4030     // Record usage of conversion in an implicit cast.
4031     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4032                                       CK_UserDefinedConversion, Result.get(),
4033                                       nullptr, Result.get()->getValueKind(),
4034                                       S.CurFPFeatureOverrides());
4035 
4036     return S.MaybeBindToTemporary(Result.get());
4037   }
4038   }
4039 }
4040 
4041 /// PerformImplicitConversion - Perform an implicit conversion of the
4042 /// expression From to the type ToType using the pre-computed implicit
4043 /// conversion sequence ICS. Returns the converted
4044 /// expression. Action is the kind of conversion we're performing,
4045 /// used in the error message.
4046 ExprResult
4047 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4048                                 const ImplicitConversionSequence &ICS,
4049                                 AssignmentAction Action,
4050                                 CheckedConversionKind CCK) {
4051   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4052   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4053     return From;
4054 
4055   switch (ICS.getKind()) {
4056   case ImplicitConversionSequence::StandardConversion: {
4057     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4058                                                Action, CCK);
4059     if (Res.isInvalid())
4060       return ExprError();
4061     From = Res.get();
4062     break;
4063   }
4064 
4065   case ImplicitConversionSequence::UserDefinedConversion: {
4066 
4067       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4068       CastKind CastKind;
4069       QualType BeforeToType;
4070       assert(FD && "no conversion function for user-defined conversion seq");
4071       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4072         CastKind = CK_UserDefinedConversion;
4073 
4074         // If the user-defined conversion is specified by a conversion function,
4075         // the initial standard conversion sequence converts the source type to
4076         // the implicit object parameter of the conversion function.
4077         BeforeToType = Context.getTagDeclType(Conv->getParent());
4078       } else {
4079         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4080         CastKind = CK_ConstructorConversion;
4081         // Do no conversion if dealing with ... for the first conversion.
4082         if (!ICS.UserDefined.EllipsisConversion) {
4083           // If the user-defined conversion is specified by a constructor, the
4084           // initial standard conversion sequence converts the source type to
4085           // the type required by the argument of the constructor
4086           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4087         }
4088       }
4089       // Watch out for ellipsis conversion.
4090       if (!ICS.UserDefined.EllipsisConversion) {
4091         ExprResult Res =
4092           PerformImplicitConversion(From, BeforeToType,
4093                                     ICS.UserDefined.Before, AA_Converting,
4094                                     CCK);
4095         if (Res.isInvalid())
4096           return ExprError();
4097         From = Res.get();
4098       }
4099 
4100       ExprResult CastArg = BuildCXXCastArgument(
4101           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4102           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4103           ICS.UserDefined.HadMultipleCandidates, From);
4104 
4105       if (CastArg.isInvalid())
4106         return ExprError();
4107 
4108       From = CastArg.get();
4109 
4110       // C++ [over.match.oper]p7:
4111       //   [...] the second standard conversion sequence of a user-defined
4112       //   conversion sequence is not applied.
4113       if (CCK == CCK_ForBuiltinOverloadedOp)
4114         return From;
4115 
4116       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4117                                        AA_Converting, CCK);
4118   }
4119 
4120   case ImplicitConversionSequence::AmbiguousConversion:
4121     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4122                           PDiag(diag::err_typecheck_ambiguous_condition)
4123                             << From->getSourceRange());
4124     return ExprError();
4125 
4126   case ImplicitConversionSequence::EllipsisConversion:
4127     llvm_unreachable("Cannot perform an ellipsis conversion");
4128 
4129   case ImplicitConversionSequence::BadConversion:
4130     Sema::AssignConvertType ConvTy =
4131         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4132     bool Diagnosed = DiagnoseAssignmentResult(
4133         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4134         ToType, From->getType(), From, Action);
4135     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4136     return ExprError();
4137   }
4138 
4139   // Everything went well.
4140   return From;
4141 }
4142 
4143 /// PerformImplicitConversion - Perform an implicit conversion of the
4144 /// expression From to the type ToType by following the standard
4145 /// conversion sequence SCS. Returns the converted
4146 /// expression. Flavor is the context in which we're performing this
4147 /// conversion, for use in error messages.
4148 ExprResult
4149 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4150                                 const StandardConversionSequence& SCS,
4151                                 AssignmentAction Action,
4152                                 CheckedConversionKind CCK) {
4153   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4154 
4155   // Overall FIXME: we are recomputing too many types here and doing far too
4156   // much extra work. What this means is that we need to keep track of more
4157   // information that is computed when we try the implicit conversion initially,
4158   // so that we don't need to recompute anything here.
4159   QualType FromType = From->getType();
4160 
4161   if (SCS.CopyConstructor) {
4162     // FIXME: When can ToType be a reference type?
4163     assert(!ToType->isReferenceType());
4164     if (SCS.Second == ICK_Derived_To_Base) {
4165       SmallVector<Expr*, 8> ConstructorArgs;
4166       if (CompleteConstructorCall(
4167               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4168               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4169         return ExprError();
4170       return BuildCXXConstructExpr(
4171           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4172           SCS.FoundCopyConstructor, SCS.CopyConstructor,
4173           ConstructorArgs, /*HadMultipleCandidates*/ false,
4174           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4175           CXXConstructExpr::CK_Complete, SourceRange());
4176     }
4177     return BuildCXXConstructExpr(
4178         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4179         SCS.FoundCopyConstructor, SCS.CopyConstructor,
4180         From, /*HadMultipleCandidates*/ false,
4181         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4182         CXXConstructExpr::CK_Complete, SourceRange());
4183   }
4184 
4185   // Resolve overloaded function references.
4186   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4187     DeclAccessPair Found;
4188     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4189                                                           true, Found);
4190     if (!Fn)
4191       return ExprError();
4192 
4193     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4194       return ExprError();
4195 
4196     From = FixOverloadedFunctionReference(From, Found, Fn);
4197     FromType = From->getType();
4198   }
4199 
4200   // If we're converting to an atomic type, first convert to the corresponding
4201   // non-atomic type.
4202   QualType ToAtomicType;
4203   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4204     ToAtomicType = ToType;
4205     ToType = ToAtomic->getValueType();
4206   }
4207 
4208   QualType InitialFromType = FromType;
4209   // Perform the first implicit conversion.
4210   switch (SCS.First) {
4211   case ICK_Identity:
4212     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4213       FromType = FromAtomic->getValueType().getUnqualifiedType();
4214       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4215                                       From, /*BasePath=*/nullptr, VK_PRValue,
4216                                       FPOptionsOverride());
4217     }
4218     break;
4219 
4220   case ICK_Lvalue_To_Rvalue: {
4221     assert(From->getObjectKind() != OK_ObjCProperty);
4222     ExprResult FromRes = DefaultLvalueConversion(From);
4223     if (FromRes.isInvalid())
4224       return ExprError();
4225 
4226     From = FromRes.get();
4227     FromType = From->getType();
4228     break;
4229   }
4230 
4231   case ICK_Array_To_Pointer:
4232     FromType = Context.getArrayDecayedType(FromType);
4233     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4234                              /*BasePath=*/nullptr, CCK)
4235                .get();
4236     break;
4237 
4238   case ICK_Function_To_Pointer:
4239     FromType = Context.getPointerType(FromType);
4240     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4241                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4242                .get();
4243     break;
4244 
4245   default:
4246     llvm_unreachable("Improper first standard conversion");
4247   }
4248 
4249   // Perform the second implicit conversion
4250   switch (SCS.Second) {
4251   case ICK_Identity:
4252     // C++ [except.spec]p5:
4253     //   [For] assignment to and initialization of pointers to functions,
4254     //   pointers to member functions, and references to functions: the
4255     //   target entity shall allow at least the exceptions allowed by the
4256     //   source value in the assignment or initialization.
4257     switch (Action) {
4258     case AA_Assigning:
4259     case AA_Initializing:
4260       // Note, function argument passing and returning are initialization.
4261     case AA_Passing:
4262     case AA_Returning:
4263     case AA_Sending:
4264     case AA_Passing_CFAudited:
4265       if (CheckExceptionSpecCompatibility(From, ToType))
4266         return ExprError();
4267       break;
4268 
4269     case AA_Casting:
4270     case AA_Converting:
4271       // Casts and implicit conversions are not initialization, so are not
4272       // checked for exception specification mismatches.
4273       break;
4274     }
4275     // Nothing else to do.
4276     break;
4277 
4278   case ICK_Integral_Promotion:
4279   case ICK_Integral_Conversion:
4280     if (ToType->isBooleanType()) {
4281       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4282              SCS.Second == ICK_Integral_Promotion &&
4283              "only enums with fixed underlying type can promote to bool");
4284       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4285                                /*BasePath=*/nullptr, CCK)
4286                  .get();
4287     } else {
4288       From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4289                                /*BasePath=*/nullptr, CCK)
4290                  .get();
4291     }
4292     break;
4293 
4294   case ICK_Floating_Promotion:
4295   case ICK_Floating_Conversion:
4296     From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4297                              /*BasePath=*/nullptr, CCK)
4298                .get();
4299     break;
4300 
4301   case ICK_Complex_Promotion:
4302   case ICK_Complex_Conversion: {
4303     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4304     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4305     CastKind CK;
4306     if (FromEl->isRealFloatingType()) {
4307       if (ToEl->isRealFloatingType())
4308         CK = CK_FloatingComplexCast;
4309       else
4310         CK = CK_FloatingComplexToIntegralComplex;
4311     } else if (ToEl->isRealFloatingType()) {
4312       CK = CK_IntegralComplexToFloatingComplex;
4313     } else {
4314       CK = CK_IntegralComplexCast;
4315     }
4316     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4317                              CCK)
4318                .get();
4319     break;
4320   }
4321 
4322   case ICK_Floating_Integral:
4323     if (ToType->isRealFloatingType())
4324       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4325                                /*BasePath=*/nullptr, CCK)
4326                  .get();
4327     else
4328       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4329                                /*BasePath=*/nullptr, CCK)
4330                  .get();
4331     break;
4332 
4333   case ICK_Compatible_Conversion:
4334     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4335                              /*BasePath=*/nullptr, CCK).get();
4336     break;
4337 
4338   case ICK_Writeback_Conversion:
4339   case ICK_Pointer_Conversion: {
4340     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4341       // Diagnose incompatible Objective-C conversions
4342       if (Action == AA_Initializing || Action == AA_Assigning)
4343         Diag(From->getBeginLoc(),
4344              diag::ext_typecheck_convert_incompatible_pointer)
4345             << ToType << From->getType() << Action << From->getSourceRange()
4346             << 0;
4347       else
4348         Diag(From->getBeginLoc(),
4349              diag::ext_typecheck_convert_incompatible_pointer)
4350             << From->getType() << ToType << Action << From->getSourceRange()
4351             << 0;
4352 
4353       if (From->getType()->isObjCObjectPointerType() &&
4354           ToType->isObjCObjectPointerType())
4355         EmitRelatedResultTypeNote(From);
4356     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4357                !CheckObjCARCUnavailableWeakConversion(ToType,
4358                                                       From->getType())) {
4359       if (Action == AA_Initializing)
4360         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4361       else
4362         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4363             << (Action == AA_Casting) << From->getType() << ToType
4364             << From->getSourceRange();
4365     }
4366 
4367     // Defer address space conversion to the third conversion.
4368     QualType FromPteeType = From->getType()->getPointeeType();
4369     QualType ToPteeType = ToType->getPointeeType();
4370     QualType NewToType = ToType;
4371     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4372         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4373       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4374       NewToType = Context.getAddrSpaceQualType(NewToType,
4375                                                FromPteeType.getAddressSpace());
4376       if (ToType->isObjCObjectPointerType())
4377         NewToType = Context.getObjCObjectPointerType(NewToType);
4378       else if (ToType->isBlockPointerType())
4379         NewToType = Context.getBlockPointerType(NewToType);
4380       else
4381         NewToType = Context.getPointerType(NewToType);
4382     }
4383 
4384     CastKind Kind;
4385     CXXCastPath BasePath;
4386     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4387       return ExprError();
4388 
4389     // Make sure we extend blocks if necessary.
4390     // FIXME: doing this here is really ugly.
4391     if (Kind == CK_BlockPointerToObjCPointerCast) {
4392       ExprResult E = From;
4393       (void) PrepareCastToObjCObjectPointer(E);
4394       From = E.get();
4395     }
4396     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4397       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4398     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4399                .get();
4400     break;
4401   }
4402 
4403   case ICK_Pointer_Member: {
4404     CastKind Kind;
4405     CXXCastPath BasePath;
4406     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4407       return ExprError();
4408     if (CheckExceptionSpecCompatibility(From, ToType))
4409       return ExprError();
4410 
4411     // We may not have been able to figure out what this member pointer resolved
4412     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4413     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4414       (void)isCompleteType(From->getExprLoc(), From->getType());
4415       (void)isCompleteType(From->getExprLoc(), ToType);
4416     }
4417 
4418     From =
4419         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4420     break;
4421   }
4422 
4423   case ICK_Boolean_Conversion:
4424     // Perform half-to-boolean conversion via float.
4425     if (From->getType()->isHalfType()) {
4426       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4427       FromType = Context.FloatTy;
4428     }
4429 
4430     From = ImpCastExprToType(From, Context.BoolTy,
4431                              ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4432                              /*BasePath=*/nullptr, CCK)
4433                .get();
4434     break;
4435 
4436   case ICK_Derived_To_Base: {
4437     CXXCastPath BasePath;
4438     if (CheckDerivedToBaseConversion(
4439             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4440             From->getSourceRange(), &BasePath, CStyle))
4441       return ExprError();
4442 
4443     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4444                       CK_DerivedToBase, From->getValueKind(),
4445                       &BasePath, CCK).get();
4446     break;
4447   }
4448 
4449   case ICK_Vector_Conversion:
4450     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4451                              /*BasePath=*/nullptr, CCK)
4452                .get();
4453     break;
4454 
4455   case ICK_SVE_Vector_Conversion:
4456     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4457                              /*BasePath=*/nullptr, CCK)
4458                .get();
4459     break;
4460 
4461   case ICK_Vector_Splat: {
4462     // Vector splat from any arithmetic type to a vector.
4463     Expr *Elem = prepareVectorSplat(ToType, From).get();
4464     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4465                              /*BasePath=*/nullptr, CCK)
4466                .get();
4467     break;
4468   }
4469 
4470   case ICK_Complex_Real:
4471     // Case 1.  x -> _Complex y
4472     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4473       QualType ElType = ToComplex->getElementType();
4474       bool isFloatingComplex = ElType->isRealFloatingType();
4475 
4476       // x -> y
4477       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4478         // do nothing
4479       } else if (From->getType()->isRealFloatingType()) {
4480         From = ImpCastExprToType(From, ElType,
4481                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4482       } else {
4483         assert(From->getType()->isIntegerType());
4484         From = ImpCastExprToType(From, ElType,
4485                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4486       }
4487       // y -> _Complex y
4488       From = ImpCastExprToType(From, ToType,
4489                    isFloatingComplex ? CK_FloatingRealToComplex
4490                                      : CK_IntegralRealToComplex).get();
4491 
4492     // Case 2.  _Complex x -> y
4493     } else {
4494       auto *FromComplex = From->getType()->castAs<ComplexType>();
4495       QualType ElType = FromComplex->getElementType();
4496       bool isFloatingComplex = ElType->isRealFloatingType();
4497 
4498       // _Complex x -> x
4499       From = ImpCastExprToType(From, ElType,
4500                                isFloatingComplex ? CK_FloatingComplexToReal
4501                                                  : CK_IntegralComplexToReal,
4502                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4503                  .get();
4504 
4505       // x -> y
4506       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4507         // do nothing
4508       } else if (ToType->isRealFloatingType()) {
4509         From = ImpCastExprToType(From, ToType,
4510                                  isFloatingComplex ? CK_FloatingCast
4511                                                    : CK_IntegralToFloating,
4512                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4513                    .get();
4514       } else {
4515         assert(ToType->isIntegerType());
4516         From = ImpCastExprToType(From, ToType,
4517                                  isFloatingComplex ? CK_FloatingToIntegral
4518                                                    : CK_IntegralCast,
4519                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4520                    .get();
4521       }
4522     }
4523     break;
4524 
4525   case ICK_Block_Pointer_Conversion: {
4526     LangAS AddrSpaceL =
4527         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4528     LangAS AddrSpaceR =
4529         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4530     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4531            "Invalid cast");
4532     CastKind Kind =
4533         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4534     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4535                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4536                .get();
4537     break;
4538   }
4539 
4540   case ICK_TransparentUnionConversion: {
4541     ExprResult FromRes = From;
4542     Sema::AssignConvertType ConvTy =
4543       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4544     if (FromRes.isInvalid())
4545       return ExprError();
4546     From = FromRes.get();
4547     assert ((ConvTy == Sema::Compatible) &&
4548             "Improper transparent union conversion");
4549     (void)ConvTy;
4550     break;
4551   }
4552 
4553   case ICK_Zero_Event_Conversion:
4554   case ICK_Zero_Queue_Conversion:
4555     From = ImpCastExprToType(From, ToType,
4556                              CK_ZeroToOCLOpaqueType,
4557                              From->getValueKind()).get();
4558     break;
4559 
4560   case ICK_Lvalue_To_Rvalue:
4561   case ICK_Array_To_Pointer:
4562   case ICK_Function_To_Pointer:
4563   case ICK_Function_Conversion:
4564   case ICK_Qualification:
4565   case ICK_Num_Conversion_Kinds:
4566   case ICK_C_Only_Conversion:
4567   case ICK_Incompatible_Pointer_Conversion:
4568     llvm_unreachable("Improper second standard conversion");
4569   }
4570 
4571   switch (SCS.Third) {
4572   case ICK_Identity:
4573     // Nothing to do.
4574     break;
4575 
4576   case ICK_Function_Conversion:
4577     // If both sides are functions (or pointers/references to them), there could
4578     // be incompatible exception declarations.
4579     if (CheckExceptionSpecCompatibility(From, ToType))
4580       return ExprError();
4581 
4582     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4583                              /*BasePath=*/nullptr, CCK)
4584                .get();
4585     break;
4586 
4587   case ICK_Qualification: {
4588     ExprValueKind VK = From->getValueKind();
4589     CastKind CK = CK_NoOp;
4590 
4591     if (ToType->isReferenceType() &&
4592         ToType->getPointeeType().getAddressSpace() !=
4593             From->getType().getAddressSpace())
4594       CK = CK_AddressSpaceConversion;
4595 
4596     if (ToType->isPointerType() &&
4597         ToType->getPointeeType().getAddressSpace() !=
4598             From->getType()->getPointeeType().getAddressSpace())
4599       CK = CK_AddressSpaceConversion;
4600 
4601     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4602                              /*BasePath=*/nullptr, CCK)
4603                .get();
4604 
4605     if (SCS.DeprecatedStringLiteralToCharPtr &&
4606         !getLangOpts().WritableStrings) {
4607       Diag(From->getBeginLoc(),
4608            getLangOpts().CPlusPlus11
4609                ? diag::ext_deprecated_string_literal_conversion
4610                : diag::warn_deprecated_string_literal_conversion)
4611           << ToType.getNonReferenceType();
4612     }
4613 
4614     break;
4615   }
4616 
4617   default:
4618     llvm_unreachable("Improper third standard conversion");
4619   }
4620 
4621   // If this conversion sequence involved a scalar -> atomic conversion, perform
4622   // that conversion now.
4623   if (!ToAtomicType.isNull()) {
4624     assert(Context.hasSameType(
4625         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4626     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4627                              VK_PRValue, nullptr, CCK)
4628                .get();
4629   }
4630 
4631   // Materialize a temporary if we're implicitly converting to a reference
4632   // type. This is not required by the C++ rules but is necessary to maintain
4633   // AST invariants.
4634   if (ToType->isReferenceType() && From->isPRValue()) {
4635     ExprResult Res = TemporaryMaterializationConversion(From);
4636     if (Res.isInvalid())
4637       return ExprError();
4638     From = Res.get();
4639   }
4640 
4641   // If this conversion sequence succeeded and involved implicitly converting a
4642   // _Nullable type to a _Nonnull one, complain.
4643   if (!isCast(CCK))
4644     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4645                                         From->getBeginLoc());
4646 
4647   return From;
4648 }
4649 
4650 /// Check the completeness of a type in a unary type trait.
4651 ///
4652 /// If the particular type trait requires a complete type, tries to complete
4653 /// it. If completing the type fails, a diagnostic is emitted and false
4654 /// returned. If completing the type succeeds or no completion was required,
4655 /// returns true.
4656 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4657                                                 SourceLocation Loc,
4658                                                 QualType ArgTy) {
4659   // C++0x [meta.unary.prop]p3:
4660   //   For all of the class templates X declared in this Clause, instantiating
4661   //   that template with a template argument that is a class template
4662   //   specialization may result in the implicit instantiation of the template
4663   //   argument if and only if the semantics of X require that the argument
4664   //   must be a complete type.
4665   // We apply this rule to all the type trait expressions used to implement
4666   // these class templates. We also try to follow any GCC documented behavior
4667   // in these expressions to ensure portability of standard libraries.
4668   switch (UTT) {
4669   default: llvm_unreachable("not a UTT");
4670     // is_complete_type somewhat obviously cannot require a complete type.
4671   case UTT_IsCompleteType:
4672     // Fall-through
4673 
4674     // These traits are modeled on the type predicates in C++0x
4675     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4676     // requiring a complete type, as whether or not they return true cannot be
4677     // impacted by the completeness of the type.
4678   case UTT_IsVoid:
4679   case UTT_IsIntegral:
4680   case UTT_IsFloatingPoint:
4681   case UTT_IsArray:
4682   case UTT_IsPointer:
4683   case UTT_IsLvalueReference:
4684   case UTT_IsRvalueReference:
4685   case UTT_IsMemberFunctionPointer:
4686   case UTT_IsMemberObjectPointer:
4687   case UTT_IsEnum:
4688   case UTT_IsUnion:
4689   case UTT_IsClass:
4690   case UTT_IsFunction:
4691   case UTT_IsReference:
4692   case UTT_IsArithmetic:
4693   case UTT_IsFundamental:
4694   case UTT_IsObject:
4695   case UTT_IsScalar:
4696   case UTT_IsCompound:
4697   case UTT_IsMemberPointer:
4698     // Fall-through
4699 
4700     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4701     // which requires some of its traits to have the complete type. However,
4702     // the completeness of the type cannot impact these traits' semantics, and
4703     // so they don't require it. This matches the comments on these traits in
4704     // Table 49.
4705   case UTT_IsConst:
4706   case UTT_IsVolatile:
4707   case UTT_IsSigned:
4708   case UTT_IsUnsigned:
4709 
4710   // This type trait always returns false, checking the type is moot.
4711   case UTT_IsInterfaceClass:
4712     return true;
4713 
4714   // C++14 [meta.unary.prop]:
4715   //   If T is a non-union class type, T shall be a complete type.
4716   case UTT_IsEmpty:
4717   case UTT_IsPolymorphic:
4718   case UTT_IsAbstract:
4719     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4720       if (!RD->isUnion())
4721         return !S.RequireCompleteType(
4722             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4723     return true;
4724 
4725   // C++14 [meta.unary.prop]:
4726   //   If T is a class type, T shall be a complete type.
4727   case UTT_IsFinal:
4728   case UTT_IsSealed:
4729     if (ArgTy->getAsCXXRecordDecl())
4730       return !S.RequireCompleteType(
4731           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4732     return true;
4733 
4734   // C++1z [meta.unary.prop]:
4735   //   remove_all_extents_t<T> shall be a complete type or cv void.
4736   case UTT_IsAggregate:
4737   case UTT_IsTrivial:
4738   case UTT_IsTriviallyCopyable:
4739   case UTT_IsStandardLayout:
4740   case UTT_IsPOD:
4741   case UTT_IsLiteral:
4742   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4743   // or an array of unknown bound. But GCC actually imposes the same constraints
4744   // as above.
4745   case UTT_HasNothrowAssign:
4746   case UTT_HasNothrowMoveAssign:
4747   case UTT_HasNothrowConstructor:
4748   case UTT_HasNothrowCopy:
4749   case UTT_HasTrivialAssign:
4750   case UTT_HasTrivialMoveAssign:
4751   case UTT_HasTrivialDefaultConstructor:
4752   case UTT_HasTrivialMoveConstructor:
4753   case UTT_HasTrivialCopy:
4754   case UTT_HasTrivialDestructor:
4755   case UTT_HasVirtualDestructor:
4756     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4757     LLVM_FALLTHROUGH;
4758 
4759   // C++1z [meta.unary.prop]:
4760   //   T shall be a complete type, cv void, or an array of unknown bound.
4761   case UTT_IsDestructible:
4762   case UTT_IsNothrowDestructible:
4763   case UTT_IsTriviallyDestructible:
4764   case UTT_HasUniqueObjectRepresentations:
4765     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4766       return true;
4767 
4768     return !S.RequireCompleteType(
4769         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4770   }
4771 }
4772 
4773 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4774                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4775                                bool (CXXRecordDecl::*HasTrivial)() const,
4776                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4777                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4778 {
4779   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4780   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4781     return true;
4782 
4783   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4784   DeclarationNameInfo NameInfo(Name, KeyLoc);
4785   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4786   if (Self.LookupQualifiedName(Res, RD)) {
4787     bool FoundOperator = false;
4788     Res.suppressDiagnostics();
4789     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4790          Op != OpEnd; ++Op) {
4791       if (isa<FunctionTemplateDecl>(*Op))
4792         continue;
4793 
4794       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4795       if((Operator->*IsDesiredOp)()) {
4796         FoundOperator = true;
4797         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4798         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4799         if (!CPT || !CPT->isNothrow())
4800           return false;
4801       }
4802     }
4803     return FoundOperator;
4804   }
4805   return false;
4806 }
4807 
4808 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4809                                    SourceLocation KeyLoc, QualType T) {
4810   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4811 
4812   ASTContext &C = Self.Context;
4813   switch(UTT) {
4814   default: llvm_unreachable("not a UTT");
4815     // Type trait expressions corresponding to the primary type category
4816     // predicates in C++0x [meta.unary.cat].
4817   case UTT_IsVoid:
4818     return T->isVoidType();
4819   case UTT_IsIntegral:
4820     return T->isIntegralType(C);
4821   case UTT_IsFloatingPoint:
4822     return T->isFloatingType();
4823   case UTT_IsArray:
4824     return T->isArrayType();
4825   case UTT_IsPointer:
4826     return T->isAnyPointerType();
4827   case UTT_IsLvalueReference:
4828     return T->isLValueReferenceType();
4829   case UTT_IsRvalueReference:
4830     return T->isRValueReferenceType();
4831   case UTT_IsMemberFunctionPointer:
4832     return T->isMemberFunctionPointerType();
4833   case UTT_IsMemberObjectPointer:
4834     return T->isMemberDataPointerType();
4835   case UTT_IsEnum:
4836     return T->isEnumeralType();
4837   case UTT_IsUnion:
4838     return T->isUnionType();
4839   case UTT_IsClass:
4840     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4841   case UTT_IsFunction:
4842     return T->isFunctionType();
4843 
4844     // Type trait expressions which correspond to the convenient composition
4845     // predicates in C++0x [meta.unary.comp].
4846   case UTT_IsReference:
4847     return T->isReferenceType();
4848   case UTT_IsArithmetic:
4849     return T->isArithmeticType() && !T->isEnumeralType();
4850   case UTT_IsFundamental:
4851     return T->isFundamentalType();
4852   case UTT_IsObject:
4853     return T->isObjectType();
4854   case UTT_IsScalar:
4855     // Note: semantic analysis depends on Objective-C lifetime types to be
4856     // considered scalar types. However, such types do not actually behave
4857     // like scalar types at run time (since they may require retain/release
4858     // operations), so we report them as non-scalar.
4859     if (T->isObjCLifetimeType()) {
4860       switch (T.getObjCLifetime()) {
4861       case Qualifiers::OCL_None:
4862       case Qualifiers::OCL_ExplicitNone:
4863         return true;
4864 
4865       case Qualifiers::OCL_Strong:
4866       case Qualifiers::OCL_Weak:
4867       case Qualifiers::OCL_Autoreleasing:
4868         return false;
4869       }
4870     }
4871 
4872     return T->isScalarType();
4873   case UTT_IsCompound:
4874     return T->isCompoundType();
4875   case UTT_IsMemberPointer:
4876     return T->isMemberPointerType();
4877 
4878     // Type trait expressions which correspond to the type property predicates
4879     // in C++0x [meta.unary.prop].
4880   case UTT_IsConst:
4881     return T.isConstQualified();
4882   case UTT_IsVolatile:
4883     return T.isVolatileQualified();
4884   case UTT_IsTrivial:
4885     return T.isTrivialType(C);
4886   case UTT_IsTriviallyCopyable:
4887     return T.isTriviallyCopyableType(C);
4888   case UTT_IsStandardLayout:
4889     return T->isStandardLayoutType();
4890   case UTT_IsPOD:
4891     return T.isPODType(C);
4892   case UTT_IsLiteral:
4893     return T->isLiteralType(C);
4894   case UTT_IsEmpty:
4895     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4896       return !RD->isUnion() && RD->isEmpty();
4897     return false;
4898   case UTT_IsPolymorphic:
4899     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4900       return !RD->isUnion() && RD->isPolymorphic();
4901     return false;
4902   case UTT_IsAbstract:
4903     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4904       return !RD->isUnion() && RD->isAbstract();
4905     return false;
4906   case UTT_IsAggregate:
4907     // Report vector extensions and complex types as aggregates because they
4908     // support aggregate initialization. GCC mirrors this behavior for vectors
4909     // but not _Complex.
4910     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4911            T->isAnyComplexType();
4912   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4913   // even then only when it is used with the 'interface struct ...' syntax
4914   // Clang doesn't support /CLR which makes this type trait moot.
4915   case UTT_IsInterfaceClass:
4916     return false;
4917   case UTT_IsFinal:
4918   case UTT_IsSealed:
4919     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4920       return RD->hasAttr<FinalAttr>();
4921     return false;
4922   case UTT_IsSigned:
4923     // Enum types should always return false.
4924     // Floating points should always return true.
4925     return T->isFloatingType() ||
4926            (T->isSignedIntegerType() && !T->isEnumeralType());
4927   case UTT_IsUnsigned:
4928     // Enum types should always return false.
4929     return T->isUnsignedIntegerType() && !T->isEnumeralType();
4930 
4931     // Type trait expressions which query classes regarding their construction,
4932     // destruction, and copying. Rather than being based directly on the
4933     // related type predicates in the standard, they are specified by both
4934     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4935     // specifications.
4936     //
4937     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4938     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4939     //
4940     // Note that these builtins do not behave as documented in g++: if a class
4941     // has both a trivial and a non-trivial special member of a particular kind,
4942     // they return false! For now, we emulate this behavior.
4943     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4944     // does not correctly compute triviality in the presence of multiple special
4945     // members of the same kind. Revisit this once the g++ bug is fixed.
4946   case UTT_HasTrivialDefaultConstructor:
4947     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4948     //   If __is_pod (type) is true then the trait is true, else if type is
4949     //   a cv class or union type (or array thereof) with a trivial default
4950     //   constructor ([class.ctor]) then the trait is true, else it is false.
4951     if (T.isPODType(C))
4952       return true;
4953     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4954       return RD->hasTrivialDefaultConstructor() &&
4955              !RD->hasNonTrivialDefaultConstructor();
4956     return false;
4957   case UTT_HasTrivialMoveConstructor:
4958     //  This trait is implemented by MSVC 2012 and needed to parse the
4959     //  standard library headers. Specifically this is used as the logic
4960     //  behind std::is_trivially_move_constructible (20.9.4.3).
4961     if (T.isPODType(C))
4962       return true;
4963     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4964       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4965     return false;
4966   case UTT_HasTrivialCopy:
4967     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4968     //   If __is_pod (type) is true or type is a reference type then
4969     //   the trait is true, else if type is a cv class or union type
4970     //   with a trivial copy constructor ([class.copy]) then the trait
4971     //   is true, else it is false.
4972     if (T.isPODType(C) || T->isReferenceType())
4973       return true;
4974     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4975       return RD->hasTrivialCopyConstructor() &&
4976              !RD->hasNonTrivialCopyConstructor();
4977     return false;
4978   case UTT_HasTrivialMoveAssign:
4979     //  This trait is implemented by MSVC 2012 and needed to parse the
4980     //  standard library headers. Specifically it is used as the logic
4981     //  behind std::is_trivially_move_assignable (20.9.4.3)
4982     if (T.isPODType(C))
4983       return true;
4984     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4985       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4986     return false;
4987   case UTT_HasTrivialAssign:
4988     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4989     //   If type is const qualified or is a reference type then the
4990     //   trait is false. Otherwise if __is_pod (type) is true then the
4991     //   trait is true, else if type is a cv class or union type with
4992     //   a trivial copy assignment ([class.copy]) then the trait is
4993     //   true, else it is false.
4994     // Note: the const and reference restrictions are interesting,
4995     // given that const and reference members don't prevent a class
4996     // from having a trivial copy assignment operator (but do cause
4997     // errors if the copy assignment operator is actually used, q.v.
4998     // [class.copy]p12).
4999 
5000     if (T.isConstQualified())
5001       return false;
5002     if (T.isPODType(C))
5003       return true;
5004     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5005       return RD->hasTrivialCopyAssignment() &&
5006              !RD->hasNonTrivialCopyAssignment();
5007     return false;
5008   case UTT_IsDestructible:
5009   case UTT_IsTriviallyDestructible:
5010   case UTT_IsNothrowDestructible:
5011     // C++14 [meta.unary.prop]:
5012     //   For reference types, is_destructible<T>::value is true.
5013     if (T->isReferenceType())
5014       return true;
5015 
5016     // Objective-C++ ARC: autorelease types don't require destruction.
5017     if (T->isObjCLifetimeType() &&
5018         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5019       return true;
5020 
5021     // C++14 [meta.unary.prop]:
5022     //   For incomplete types and function types, is_destructible<T>::value is
5023     //   false.
5024     if (T->isIncompleteType() || T->isFunctionType())
5025       return false;
5026 
5027     // A type that requires destruction (via a non-trivial destructor or ARC
5028     // lifetime semantics) is not trivially-destructible.
5029     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5030       return false;
5031 
5032     // C++14 [meta.unary.prop]:
5033     //   For object types and given U equal to remove_all_extents_t<T>, if the
5034     //   expression std::declval<U&>().~U() is well-formed when treated as an
5035     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5036     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5037       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5038       if (!Destructor)
5039         return false;
5040       //  C++14 [dcl.fct.def.delete]p2:
5041       //    A program that refers to a deleted function implicitly or
5042       //    explicitly, other than to declare it, is ill-formed.
5043       if (Destructor->isDeleted())
5044         return false;
5045       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5046         return false;
5047       if (UTT == UTT_IsNothrowDestructible) {
5048         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5049         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5050         if (!CPT || !CPT->isNothrow())
5051           return false;
5052       }
5053     }
5054     return true;
5055 
5056   case UTT_HasTrivialDestructor:
5057     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5058     //   If __is_pod (type) is true or type is a reference type
5059     //   then the trait is true, else if type is a cv class or union
5060     //   type (or array thereof) with a trivial destructor
5061     //   ([class.dtor]) then the trait is true, else it is
5062     //   false.
5063     if (T.isPODType(C) || T->isReferenceType())
5064       return true;
5065 
5066     // Objective-C++ ARC: autorelease types don't require destruction.
5067     if (T->isObjCLifetimeType() &&
5068         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5069       return true;
5070 
5071     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5072       return RD->hasTrivialDestructor();
5073     return false;
5074   // TODO: Propagate nothrowness for implicitly declared special members.
5075   case UTT_HasNothrowAssign:
5076     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5077     //   If type is const qualified or is a reference type then the
5078     //   trait is false. Otherwise if __has_trivial_assign (type)
5079     //   is true then the trait is true, else if type is a cv class
5080     //   or union type with copy assignment operators that are known
5081     //   not to throw an exception then the trait is true, else it is
5082     //   false.
5083     if (C.getBaseElementType(T).isConstQualified())
5084       return false;
5085     if (T->isReferenceType())
5086       return false;
5087     if (T.isPODType(C) || T->isObjCLifetimeType())
5088       return true;
5089 
5090     if (const RecordType *RT = T->getAs<RecordType>())
5091       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5092                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5093                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5094                                 &CXXMethodDecl::isCopyAssignmentOperator);
5095     return false;
5096   case UTT_HasNothrowMoveAssign:
5097     //  This trait is implemented by MSVC 2012 and needed to parse the
5098     //  standard library headers. Specifically this is used as the logic
5099     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5100     if (T.isPODType(C))
5101       return true;
5102 
5103     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5104       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5105                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5106                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5107                                 &CXXMethodDecl::isMoveAssignmentOperator);
5108     return false;
5109   case UTT_HasNothrowCopy:
5110     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5111     //   If __has_trivial_copy (type) is true then the trait is true, else
5112     //   if type is a cv class or union type with copy constructors that are
5113     //   known not to throw an exception then the trait is true, else it is
5114     //   false.
5115     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5116       return true;
5117     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5118       if (RD->hasTrivialCopyConstructor() &&
5119           !RD->hasNonTrivialCopyConstructor())
5120         return true;
5121 
5122       bool FoundConstructor = false;
5123       unsigned FoundTQs;
5124       for (const auto *ND : Self.LookupConstructors(RD)) {
5125         // A template constructor is never a copy constructor.
5126         // FIXME: However, it may actually be selected at the actual overload
5127         // resolution point.
5128         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5129           continue;
5130         // UsingDecl itself is not a constructor
5131         if (isa<UsingDecl>(ND))
5132           continue;
5133         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5134         if (Constructor->isCopyConstructor(FoundTQs)) {
5135           FoundConstructor = true;
5136           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5137           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5138           if (!CPT)
5139             return false;
5140           // TODO: check whether evaluating default arguments can throw.
5141           // For now, we'll be conservative and assume that they can throw.
5142           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5143             return false;
5144         }
5145       }
5146 
5147       return FoundConstructor;
5148     }
5149     return false;
5150   case UTT_HasNothrowConstructor:
5151     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5152     //   If __has_trivial_constructor (type) is true then the trait is
5153     //   true, else if type is a cv class or union type (or array
5154     //   thereof) with a default constructor that is known not to
5155     //   throw an exception then the trait is true, else it is false.
5156     if (T.isPODType(C) || T->isObjCLifetimeType())
5157       return true;
5158     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5159       if (RD->hasTrivialDefaultConstructor() &&
5160           !RD->hasNonTrivialDefaultConstructor())
5161         return true;
5162 
5163       bool FoundConstructor = false;
5164       for (const auto *ND : Self.LookupConstructors(RD)) {
5165         // FIXME: In C++0x, a constructor template can be a default constructor.
5166         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5167           continue;
5168         // UsingDecl itself is not a constructor
5169         if (isa<UsingDecl>(ND))
5170           continue;
5171         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5172         if (Constructor->isDefaultConstructor()) {
5173           FoundConstructor = true;
5174           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5175           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5176           if (!CPT)
5177             return false;
5178           // FIXME: check whether evaluating default arguments can throw.
5179           // For now, we'll be conservative and assume that they can throw.
5180           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5181             return false;
5182         }
5183       }
5184       return FoundConstructor;
5185     }
5186     return false;
5187   case UTT_HasVirtualDestructor:
5188     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5189     //   If type is a class type with a virtual destructor ([class.dtor])
5190     //   then the trait is true, else it is false.
5191     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5192       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5193         return Destructor->isVirtual();
5194     return false;
5195 
5196     // These type trait expressions are modeled on the specifications for the
5197     // Embarcadero C++0x type trait functions:
5198     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5199   case UTT_IsCompleteType:
5200     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5201     //   Returns True if and only if T is a complete type at the point of the
5202     //   function call.
5203     return !T->isIncompleteType();
5204   case UTT_HasUniqueObjectRepresentations:
5205     return C.hasUniqueObjectRepresentations(T);
5206   }
5207 }
5208 
5209 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5210                                     QualType RhsT, SourceLocation KeyLoc);
5211 
5212 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5213                               ArrayRef<TypeSourceInfo *> Args,
5214                               SourceLocation RParenLoc) {
5215   if (Kind <= UTT_Last)
5216     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5217 
5218   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5219   // traits to avoid duplication.
5220   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5221     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5222                                    Args[1]->getType(), RParenLoc);
5223 
5224   switch (Kind) {
5225   case clang::BTT_ReferenceBindsToTemporary:
5226   case clang::TT_IsConstructible:
5227   case clang::TT_IsNothrowConstructible:
5228   case clang::TT_IsTriviallyConstructible: {
5229     // C++11 [meta.unary.prop]:
5230     //   is_trivially_constructible is defined as:
5231     //
5232     //     is_constructible<T, Args...>::value is true and the variable
5233     //     definition for is_constructible, as defined below, is known to call
5234     //     no operation that is not trivial.
5235     //
5236     //   The predicate condition for a template specialization
5237     //   is_constructible<T, Args...> shall be satisfied if and only if the
5238     //   following variable definition would be well-formed for some invented
5239     //   variable t:
5240     //
5241     //     T t(create<Args>()...);
5242     assert(!Args.empty());
5243 
5244     // Precondition: T and all types in the parameter pack Args shall be
5245     // complete types, (possibly cv-qualified) void, or arrays of
5246     // unknown bound.
5247     for (const auto *TSI : Args) {
5248       QualType ArgTy = TSI->getType();
5249       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5250         continue;
5251 
5252       if (S.RequireCompleteType(KWLoc, ArgTy,
5253           diag::err_incomplete_type_used_in_type_trait_expr))
5254         return false;
5255     }
5256 
5257     // Make sure the first argument is not incomplete nor a function type.
5258     QualType T = Args[0]->getType();
5259     if (T->isIncompleteType() || T->isFunctionType())
5260       return false;
5261 
5262     // Make sure the first argument is not an abstract type.
5263     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5264     if (RD && RD->isAbstract())
5265       return false;
5266 
5267     llvm::BumpPtrAllocator OpaqueExprAllocator;
5268     SmallVector<Expr *, 2> ArgExprs;
5269     ArgExprs.reserve(Args.size() - 1);
5270     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5271       QualType ArgTy = Args[I]->getType();
5272       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5273         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5274       ArgExprs.push_back(
5275           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5276               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5277                               ArgTy.getNonLValueExprType(S.Context),
5278                               Expr::getValueKindForType(ArgTy)));
5279     }
5280 
5281     // Perform the initialization in an unevaluated context within a SFINAE
5282     // trap at translation unit scope.
5283     EnterExpressionEvaluationContext Unevaluated(
5284         S, Sema::ExpressionEvaluationContext::Unevaluated);
5285     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5286     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5287     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
5288     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5289                                                                  RParenLoc));
5290     InitializationSequence Init(S, To, InitKind, ArgExprs);
5291     if (Init.Failed())
5292       return false;
5293 
5294     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5295     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5296       return false;
5297 
5298     if (Kind == clang::TT_IsConstructible)
5299       return true;
5300 
5301     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5302       if (!T->isReferenceType())
5303         return false;
5304 
5305       return !Init.isDirectReferenceBinding();
5306     }
5307 
5308     if (Kind == clang::TT_IsNothrowConstructible)
5309       return S.canThrow(Result.get()) == CT_Cannot;
5310 
5311     if (Kind == clang::TT_IsTriviallyConstructible) {
5312       // Under Objective-C ARC and Weak, if the destination has non-trivial
5313       // Objective-C lifetime, this is a non-trivial construction.
5314       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5315         return false;
5316 
5317       // The initialization succeeded; now make sure there are no non-trivial
5318       // calls.
5319       return !Result.get()->hasNonTrivialCall(S.Context);
5320     }
5321 
5322     llvm_unreachable("unhandled type trait");
5323     return false;
5324   }
5325     default: llvm_unreachable("not a TT");
5326   }
5327 
5328   return false;
5329 }
5330 
5331 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5332                                 ArrayRef<TypeSourceInfo *> Args,
5333                                 SourceLocation RParenLoc) {
5334   QualType ResultType = Context.getLogicalOperationType();
5335 
5336   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5337                                *this, Kind, KWLoc, Args[0]->getType()))
5338     return ExprError();
5339 
5340   bool Dependent = false;
5341   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5342     if (Args[I]->getType()->isDependentType()) {
5343       Dependent = true;
5344       break;
5345     }
5346   }
5347 
5348   bool Result = false;
5349   if (!Dependent)
5350     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5351 
5352   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5353                                RParenLoc, Result);
5354 }
5355 
5356 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5357                                 ArrayRef<ParsedType> Args,
5358                                 SourceLocation RParenLoc) {
5359   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5360   ConvertedArgs.reserve(Args.size());
5361 
5362   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5363     TypeSourceInfo *TInfo;
5364     QualType T = GetTypeFromParser(Args[I], &TInfo);
5365     if (!TInfo)
5366       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5367 
5368     ConvertedArgs.push_back(TInfo);
5369   }
5370 
5371   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5372 }
5373 
5374 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5375                                     QualType RhsT, SourceLocation KeyLoc) {
5376   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5377          "Cannot evaluate traits of dependent types");
5378 
5379   switch(BTT) {
5380   case BTT_IsBaseOf: {
5381     // C++0x [meta.rel]p2
5382     // Base is a base class of Derived without regard to cv-qualifiers or
5383     // Base and Derived are not unions and name the same class type without
5384     // regard to cv-qualifiers.
5385 
5386     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5387     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5388     if (!rhsRecord || !lhsRecord) {
5389       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5390       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5391       if (!LHSObjTy || !RHSObjTy)
5392         return false;
5393 
5394       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5395       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5396       if (!BaseInterface || !DerivedInterface)
5397         return false;
5398 
5399       if (Self.RequireCompleteType(
5400               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5401         return false;
5402 
5403       return BaseInterface->isSuperClassOf(DerivedInterface);
5404     }
5405 
5406     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5407              == (lhsRecord == rhsRecord));
5408 
5409     // Unions are never base classes, and never have base classes.
5410     // It doesn't matter if they are complete or not. See PR#41843
5411     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5412       return false;
5413     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5414       return false;
5415 
5416     if (lhsRecord == rhsRecord)
5417       return true;
5418 
5419     // C++0x [meta.rel]p2:
5420     //   If Base and Derived are class types and are different types
5421     //   (ignoring possible cv-qualifiers) then Derived shall be a
5422     //   complete type.
5423     if (Self.RequireCompleteType(KeyLoc, RhsT,
5424                           diag::err_incomplete_type_used_in_type_trait_expr))
5425       return false;
5426 
5427     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5428       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5429   }
5430   case BTT_IsSame:
5431     return Self.Context.hasSameType(LhsT, RhsT);
5432   case BTT_TypeCompatible: {
5433     // GCC ignores cv-qualifiers on arrays for this builtin.
5434     Qualifiers LhsQuals, RhsQuals;
5435     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5436     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5437     return Self.Context.typesAreCompatible(Lhs, Rhs);
5438   }
5439   case BTT_IsConvertible:
5440   case BTT_IsConvertibleTo: {
5441     // C++0x [meta.rel]p4:
5442     //   Given the following function prototype:
5443     //
5444     //     template <class T>
5445     //       typename add_rvalue_reference<T>::type create();
5446     //
5447     //   the predicate condition for a template specialization
5448     //   is_convertible<From, To> shall be satisfied if and only if
5449     //   the return expression in the following code would be
5450     //   well-formed, including any implicit conversions to the return
5451     //   type of the function:
5452     //
5453     //     To test() {
5454     //       return create<From>();
5455     //     }
5456     //
5457     //   Access checking is performed as if in a context unrelated to To and
5458     //   From. Only the validity of the immediate context of the expression
5459     //   of the return-statement (including conversions to the return type)
5460     //   is considered.
5461     //
5462     // We model the initialization as a copy-initialization of a temporary
5463     // of the appropriate type, which for this expression is identical to the
5464     // return statement (since NRVO doesn't apply).
5465 
5466     // Functions aren't allowed to return function or array types.
5467     if (RhsT->isFunctionType() || RhsT->isArrayType())
5468       return false;
5469 
5470     // A return statement in a void function must have void type.
5471     if (RhsT->isVoidType())
5472       return LhsT->isVoidType();
5473 
5474     // A function definition requires a complete, non-abstract return type.
5475     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5476       return false;
5477 
5478     // Compute the result of add_rvalue_reference.
5479     if (LhsT->isObjectType() || LhsT->isFunctionType())
5480       LhsT = Self.Context.getRValueReferenceType(LhsT);
5481 
5482     // Build a fake source and destination for initialization.
5483     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5484     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5485                          Expr::getValueKindForType(LhsT));
5486     Expr *FromPtr = &From;
5487     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5488                                                            SourceLocation()));
5489 
5490     // Perform the initialization in an unevaluated context within a SFINAE
5491     // trap at translation unit scope.
5492     EnterExpressionEvaluationContext Unevaluated(
5493         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5494     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5495     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5496     InitializationSequence Init(Self, To, Kind, FromPtr);
5497     if (Init.Failed())
5498       return false;
5499 
5500     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5501     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5502   }
5503 
5504   case BTT_IsAssignable:
5505   case BTT_IsNothrowAssignable:
5506   case BTT_IsTriviallyAssignable: {
5507     // C++11 [meta.unary.prop]p3:
5508     //   is_trivially_assignable is defined as:
5509     //     is_assignable<T, U>::value is true and the assignment, as defined by
5510     //     is_assignable, is known to call no operation that is not trivial
5511     //
5512     //   is_assignable is defined as:
5513     //     The expression declval<T>() = declval<U>() is well-formed when
5514     //     treated as an unevaluated operand (Clause 5).
5515     //
5516     //   For both, T and U shall be complete types, (possibly cv-qualified)
5517     //   void, or arrays of unknown bound.
5518     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5519         Self.RequireCompleteType(KeyLoc, LhsT,
5520           diag::err_incomplete_type_used_in_type_trait_expr))
5521       return false;
5522     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5523         Self.RequireCompleteType(KeyLoc, RhsT,
5524           diag::err_incomplete_type_used_in_type_trait_expr))
5525       return false;
5526 
5527     // cv void is never assignable.
5528     if (LhsT->isVoidType() || RhsT->isVoidType())
5529       return false;
5530 
5531     // Build expressions that emulate the effect of declval<T>() and
5532     // declval<U>().
5533     if (LhsT->isObjectType() || LhsT->isFunctionType())
5534       LhsT = Self.Context.getRValueReferenceType(LhsT);
5535     if (RhsT->isObjectType() || RhsT->isFunctionType())
5536       RhsT = Self.Context.getRValueReferenceType(RhsT);
5537     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5538                         Expr::getValueKindForType(LhsT));
5539     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5540                         Expr::getValueKindForType(RhsT));
5541 
5542     // Attempt the assignment in an unevaluated context within a SFINAE
5543     // trap at translation unit scope.
5544     EnterExpressionEvaluationContext Unevaluated(
5545         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5546     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5547     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5548     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5549                                         &Rhs);
5550     if (Result.isInvalid())
5551       return false;
5552 
5553     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5554     Self.CheckUnusedVolatileAssignment(Result.get());
5555 
5556     if (SFINAE.hasErrorOccurred())
5557       return false;
5558 
5559     if (BTT == BTT_IsAssignable)
5560       return true;
5561 
5562     if (BTT == BTT_IsNothrowAssignable)
5563       return Self.canThrow(Result.get()) == CT_Cannot;
5564 
5565     if (BTT == BTT_IsTriviallyAssignable) {
5566       // Under Objective-C ARC and Weak, if the destination has non-trivial
5567       // Objective-C lifetime, this is a non-trivial assignment.
5568       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5569         return false;
5570 
5571       return !Result.get()->hasNonTrivialCall(Self.Context);
5572     }
5573 
5574     llvm_unreachable("unhandled type trait");
5575     return false;
5576   }
5577     default: llvm_unreachable("not a BTT");
5578   }
5579   llvm_unreachable("Unknown type trait or not implemented");
5580 }
5581 
5582 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5583                                      SourceLocation KWLoc,
5584                                      ParsedType Ty,
5585                                      Expr* DimExpr,
5586                                      SourceLocation RParen) {
5587   TypeSourceInfo *TSInfo;
5588   QualType T = GetTypeFromParser(Ty, &TSInfo);
5589   if (!TSInfo)
5590     TSInfo = Context.getTrivialTypeSourceInfo(T);
5591 
5592   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5593 }
5594 
5595 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5596                                            QualType T, Expr *DimExpr,
5597                                            SourceLocation KeyLoc) {
5598   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5599 
5600   switch(ATT) {
5601   case ATT_ArrayRank:
5602     if (T->isArrayType()) {
5603       unsigned Dim = 0;
5604       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5605         ++Dim;
5606         T = AT->getElementType();
5607       }
5608       return Dim;
5609     }
5610     return 0;
5611 
5612   case ATT_ArrayExtent: {
5613     llvm::APSInt Value;
5614     uint64_t Dim;
5615     if (Self.VerifyIntegerConstantExpression(
5616                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5617             .isInvalid())
5618       return 0;
5619     if (Value.isSigned() && Value.isNegative()) {
5620       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5621         << DimExpr->getSourceRange();
5622       return 0;
5623     }
5624     Dim = Value.getLimitedValue();
5625 
5626     if (T->isArrayType()) {
5627       unsigned D = 0;
5628       bool Matched = false;
5629       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5630         if (Dim == D) {
5631           Matched = true;
5632           break;
5633         }
5634         ++D;
5635         T = AT->getElementType();
5636       }
5637 
5638       if (Matched && T->isArrayType()) {
5639         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5640           return CAT->getSize().getLimitedValue();
5641       }
5642     }
5643     return 0;
5644   }
5645   }
5646   llvm_unreachable("Unknown type trait or not implemented");
5647 }
5648 
5649 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5650                                      SourceLocation KWLoc,
5651                                      TypeSourceInfo *TSInfo,
5652                                      Expr* DimExpr,
5653                                      SourceLocation RParen) {
5654   QualType T = TSInfo->getType();
5655 
5656   // FIXME: This should likely be tracked as an APInt to remove any host
5657   // assumptions about the width of size_t on the target.
5658   uint64_t Value = 0;
5659   if (!T->isDependentType())
5660     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5661 
5662   // While the specification for these traits from the Embarcadero C++
5663   // compiler's documentation says the return type is 'unsigned int', Clang
5664   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5665   // compiler, there is no difference. On several other platforms this is an
5666   // important distinction.
5667   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5668                                           RParen, Context.getSizeType());
5669 }
5670 
5671 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5672                                       SourceLocation KWLoc,
5673                                       Expr *Queried,
5674                                       SourceLocation RParen) {
5675   // If error parsing the expression, ignore.
5676   if (!Queried)
5677     return ExprError();
5678 
5679   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5680 
5681   return Result;
5682 }
5683 
5684 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5685   switch (ET) {
5686   case ET_IsLValueExpr: return E->isLValue();
5687   case ET_IsRValueExpr:
5688     return E->isPRValue();
5689   }
5690   llvm_unreachable("Expression trait not covered by switch");
5691 }
5692 
5693 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5694                                       SourceLocation KWLoc,
5695                                       Expr *Queried,
5696                                       SourceLocation RParen) {
5697   if (Queried->isTypeDependent()) {
5698     // Delay type-checking for type-dependent expressions.
5699   } else if (Queried->getType()->isPlaceholderType()) {
5700     ExprResult PE = CheckPlaceholderExpr(Queried);
5701     if (PE.isInvalid()) return ExprError();
5702     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5703   }
5704 
5705   bool Value = EvaluateExpressionTrait(ET, Queried);
5706 
5707   return new (Context)
5708       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5709 }
5710 
5711 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5712                                             ExprValueKind &VK,
5713                                             SourceLocation Loc,
5714                                             bool isIndirect) {
5715   assert(!LHS.get()->getType()->isPlaceholderType() &&
5716          !RHS.get()->getType()->isPlaceholderType() &&
5717          "placeholders should have been weeded out by now");
5718 
5719   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5720   // temporary materialization conversion otherwise.
5721   if (isIndirect)
5722     LHS = DefaultLvalueConversion(LHS.get());
5723   else if (LHS.get()->isPRValue())
5724     LHS = TemporaryMaterializationConversion(LHS.get());
5725   if (LHS.isInvalid())
5726     return QualType();
5727 
5728   // The RHS always undergoes lvalue conversions.
5729   RHS = DefaultLvalueConversion(RHS.get());
5730   if (RHS.isInvalid()) return QualType();
5731 
5732   const char *OpSpelling = isIndirect ? "->*" : ".*";
5733   // C++ 5.5p2
5734   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5735   //   be of type "pointer to member of T" (where T is a completely-defined
5736   //   class type) [...]
5737   QualType RHSType = RHS.get()->getType();
5738   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5739   if (!MemPtr) {
5740     Diag(Loc, diag::err_bad_memptr_rhs)
5741       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5742     return QualType();
5743   }
5744 
5745   QualType Class(MemPtr->getClass(), 0);
5746 
5747   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5748   // member pointer points must be completely-defined. However, there is no
5749   // reason for this semantic distinction, and the rule is not enforced by
5750   // other compilers. Therefore, we do not check this property, as it is
5751   // likely to be considered a defect.
5752 
5753   // C++ 5.5p2
5754   //   [...] to its first operand, which shall be of class T or of a class of
5755   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5756   //   such a class]
5757   QualType LHSType = LHS.get()->getType();
5758   if (isIndirect) {
5759     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5760       LHSType = Ptr->getPointeeType();
5761     else {
5762       Diag(Loc, diag::err_bad_memptr_lhs)
5763         << OpSpelling << 1 << LHSType
5764         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5765       return QualType();
5766     }
5767   }
5768 
5769   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5770     // If we want to check the hierarchy, we need a complete type.
5771     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5772                             OpSpelling, (int)isIndirect)) {
5773       return QualType();
5774     }
5775 
5776     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5777       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5778         << (int)isIndirect << LHS.get()->getType();
5779       return QualType();
5780     }
5781 
5782     CXXCastPath BasePath;
5783     if (CheckDerivedToBaseConversion(
5784             LHSType, Class, Loc,
5785             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5786             &BasePath))
5787       return QualType();
5788 
5789     // Cast LHS to type of use.
5790     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5791     if (isIndirect)
5792       UseType = Context.getPointerType(UseType);
5793     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5794     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5795                             &BasePath);
5796   }
5797 
5798   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5799     // Diagnose use of pointer-to-member type which when used as
5800     // the functional cast in a pointer-to-member expression.
5801     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5802      return QualType();
5803   }
5804 
5805   // C++ 5.5p2
5806   //   The result is an object or a function of the type specified by the
5807   //   second operand.
5808   // The cv qualifiers are the union of those in the pointer and the left side,
5809   // in accordance with 5.5p5 and 5.2.5.
5810   QualType Result = MemPtr->getPointeeType();
5811   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5812 
5813   // C++0x [expr.mptr.oper]p6:
5814   //   In a .* expression whose object expression is an rvalue, the program is
5815   //   ill-formed if the second operand is a pointer to member function with
5816   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5817   //   expression is an lvalue, the program is ill-formed if the second operand
5818   //   is a pointer to member function with ref-qualifier &&.
5819   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5820     switch (Proto->getRefQualifier()) {
5821     case RQ_None:
5822       // Do nothing
5823       break;
5824 
5825     case RQ_LValue:
5826       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5827         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5828         // is (exactly) 'const'.
5829         if (Proto->isConst() && !Proto->isVolatile())
5830           Diag(Loc, getLangOpts().CPlusPlus20
5831                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5832                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5833         else
5834           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5835               << RHSType << 1 << LHS.get()->getSourceRange();
5836       }
5837       break;
5838 
5839     case RQ_RValue:
5840       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5841         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5842           << RHSType << 0 << LHS.get()->getSourceRange();
5843       break;
5844     }
5845   }
5846 
5847   // C++ [expr.mptr.oper]p6:
5848   //   The result of a .* expression whose second operand is a pointer
5849   //   to a data member is of the same value category as its
5850   //   first operand. The result of a .* expression whose second
5851   //   operand is a pointer to a member function is a prvalue. The
5852   //   result of an ->* expression is an lvalue if its second operand
5853   //   is a pointer to data member and a prvalue otherwise.
5854   if (Result->isFunctionType()) {
5855     VK = VK_PRValue;
5856     return Context.BoundMemberTy;
5857   } else if (isIndirect) {
5858     VK = VK_LValue;
5859   } else {
5860     VK = LHS.get()->getValueKind();
5861   }
5862 
5863   return Result;
5864 }
5865 
5866 /// Try to convert a type to another according to C++11 5.16p3.
5867 ///
5868 /// This is part of the parameter validation for the ? operator. If either
5869 /// value operand is a class type, the two operands are attempted to be
5870 /// converted to each other. This function does the conversion in one direction.
5871 /// It returns true if the program is ill-formed and has already been diagnosed
5872 /// as such.
5873 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5874                                 SourceLocation QuestionLoc,
5875                                 bool &HaveConversion,
5876                                 QualType &ToType) {
5877   HaveConversion = false;
5878   ToType = To->getType();
5879 
5880   InitializationKind Kind =
5881       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5882   // C++11 5.16p3
5883   //   The process for determining whether an operand expression E1 of type T1
5884   //   can be converted to match an operand expression E2 of type T2 is defined
5885   //   as follows:
5886   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5887   //      implicitly converted to type "lvalue reference to T2", subject to the
5888   //      constraint that in the conversion the reference must bind directly to
5889   //      an lvalue.
5890   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5891   //      implicitly converted to the type "rvalue reference to R2", subject to
5892   //      the constraint that the reference must bind directly.
5893   if (To->isLValue() || To->isXValue()) {
5894     QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5895                                 : Self.Context.getRValueReferenceType(ToType);
5896 
5897     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5898 
5899     InitializationSequence InitSeq(Self, Entity, Kind, From);
5900     if (InitSeq.isDirectReferenceBinding()) {
5901       ToType = T;
5902       HaveConversion = true;
5903       return false;
5904     }
5905 
5906     if (InitSeq.isAmbiguous())
5907       return InitSeq.Diagnose(Self, Entity, Kind, From);
5908   }
5909 
5910   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
5911   //      -- if E1 and E2 have class type, and the underlying class types are
5912   //         the same or one is a base class of the other:
5913   QualType FTy = From->getType();
5914   QualType TTy = To->getType();
5915   const RecordType *FRec = FTy->getAs<RecordType>();
5916   const RecordType *TRec = TTy->getAs<RecordType>();
5917   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5918                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5919   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5920                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5921     //         E1 can be converted to match E2 if the class of T2 is the
5922     //         same type as, or a base class of, the class of T1, and
5923     //         [cv2 > cv1].
5924     if (FRec == TRec || FDerivedFromT) {
5925       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5926         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5927         InitializationSequence InitSeq(Self, Entity, Kind, From);
5928         if (InitSeq) {
5929           HaveConversion = true;
5930           return false;
5931         }
5932 
5933         if (InitSeq.isAmbiguous())
5934           return InitSeq.Diagnose(Self, Entity, Kind, From);
5935       }
5936     }
5937 
5938     return false;
5939   }
5940 
5941   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5942   //        implicitly converted to the type that expression E2 would have
5943   //        if E2 were converted to an rvalue (or the type it has, if E2 is
5944   //        an rvalue).
5945   //
5946   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5947   // to the array-to-pointer or function-to-pointer conversions.
5948   TTy = TTy.getNonLValueExprType(Self.Context);
5949 
5950   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5951   InitializationSequence InitSeq(Self, Entity, Kind, From);
5952   HaveConversion = !InitSeq.Failed();
5953   ToType = TTy;
5954   if (InitSeq.isAmbiguous())
5955     return InitSeq.Diagnose(Self, Entity, Kind, From);
5956 
5957   return false;
5958 }
5959 
5960 /// Try to find a common type for two according to C++0x 5.16p5.
5961 ///
5962 /// This is part of the parameter validation for the ? operator. If either
5963 /// value operand is a class type, overload resolution is used to find a
5964 /// conversion to a common type.
5965 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5966                                     SourceLocation QuestionLoc) {
5967   Expr *Args[2] = { LHS.get(), RHS.get() };
5968   OverloadCandidateSet CandidateSet(QuestionLoc,
5969                                     OverloadCandidateSet::CSK_Operator);
5970   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5971                                     CandidateSet);
5972 
5973   OverloadCandidateSet::iterator Best;
5974   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5975     case OR_Success: {
5976       // We found a match. Perform the conversions on the arguments and move on.
5977       ExprResult LHSRes = Self.PerformImplicitConversion(
5978           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5979           Sema::AA_Converting);
5980       if (LHSRes.isInvalid())
5981         break;
5982       LHS = LHSRes;
5983 
5984       ExprResult RHSRes = Self.PerformImplicitConversion(
5985           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5986           Sema::AA_Converting);
5987       if (RHSRes.isInvalid())
5988         break;
5989       RHS = RHSRes;
5990       if (Best->Function)
5991         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5992       return false;
5993     }
5994 
5995     case OR_No_Viable_Function:
5996 
5997       // Emit a better diagnostic if one of the expressions is a null pointer
5998       // constant and the other is a pointer type. In this case, the user most
5999       // likely forgot to take the address of the other expression.
6000       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6001         return true;
6002 
6003       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6004         << LHS.get()->getType() << RHS.get()->getType()
6005         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6006       return true;
6007 
6008     case OR_Ambiguous:
6009       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6010         << LHS.get()->getType() << RHS.get()->getType()
6011         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6012       // FIXME: Print the possible common types by printing the return types of
6013       // the viable candidates.
6014       break;
6015 
6016     case OR_Deleted:
6017       llvm_unreachable("Conditional operator has only built-in overloads");
6018   }
6019   return true;
6020 }
6021 
6022 /// Perform an "extended" implicit conversion as returned by
6023 /// TryClassUnification.
6024 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6025   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6026   InitializationKind Kind =
6027       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6028   Expr *Arg = E.get();
6029   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6030   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6031   if (Result.isInvalid())
6032     return true;
6033 
6034   E = Result;
6035   return false;
6036 }
6037 
6038 // Check the condition operand of ?: to see if it is valid for the GCC
6039 // extension.
6040 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6041                                                  QualType CondTy) {
6042   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6043     return false;
6044   const QualType EltTy =
6045       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6046   assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() &&
6047          "Vectors cant be boolean or enum types");
6048   return EltTy->isIntegralType(Ctx);
6049 }
6050 
6051 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6052                                            ExprResult &RHS,
6053                                            SourceLocation QuestionLoc) {
6054   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6055   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6056 
6057   QualType CondType = Cond.get()->getType();
6058   const auto *CondVT = CondType->castAs<VectorType>();
6059   QualType CondElementTy = CondVT->getElementType();
6060   unsigned CondElementCount = CondVT->getNumElements();
6061   QualType LHSType = LHS.get()->getType();
6062   const auto *LHSVT = LHSType->getAs<VectorType>();
6063   QualType RHSType = RHS.get()->getType();
6064   const auto *RHSVT = RHSType->getAs<VectorType>();
6065 
6066   QualType ResultType;
6067 
6068 
6069   if (LHSVT && RHSVT) {
6070     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6071       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6072           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6073       return {};
6074     }
6075 
6076     // If both are vector types, they must be the same type.
6077     if (!Context.hasSameType(LHSType, RHSType)) {
6078       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6079           << LHSType << RHSType;
6080       return {};
6081     }
6082     ResultType = LHSType;
6083   } else if (LHSVT || RHSVT) {
6084     ResultType = CheckVectorOperands(
6085         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6086         /*AllowBoolConversions*/ false);
6087     if (ResultType.isNull())
6088       return {};
6089   } else {
6090     // Both are scalar.
6091     QualType ResultElementTy;
6092     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6093     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6094 
6095     if (Context.hasSameType(LHSType, RHSType))
6096       ResultElementTy = LHSType;
6097     else
6098       ResultElementTy =
6099           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6100 
6101     if (ResultElementTy->isEnumeralType()) {
6102       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6103           << ResultElementTy;
6104       return {};
6105     }
6106     if (CondType->isExtVectorType())
6107       ResultType =
6108           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6109     else
6110       ResultType = Context.getVectorType(
6111           ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6112 
6113     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6114     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6115   }
6116 
6117   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6118          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6119          "Result should have been a vector type");
6120   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6121   QualType ResultElementTy = ResultVectorTy->getElementType();
6122   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6123 
6124   if (ResultElementCount != CondElementCount) {
6125     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6126                                                          << ResultType;
6127     return {};
6128   }
6129 
6130   if (Context.getTypeSize(ResultElementTy) !=
6131       Context.getTypeSize(CondElementTy)) {
6132     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6133                                                                  << ResultType;
6134     return {};
6135   }
6136 
6137   return ResultType;
6138 }
6139 
6140 /// Check the operands of ?: under C++ semantics.
6141 ///
6142 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6143 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6144 ///
6145 /// This function also implements GCC's vector extension and the
6146 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6147 /// permit the use of a?b:c where the type of a is that of a integer vector with
6148 /// the same number of elements and size as the vectors of b and c. If one of
6149 /// either b or c is a scalar it is implicitly converted to match the type of
6150 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6151 /// scalars, then b and c are checked and converted to the type of a if
6152 /// possible.
6153 ///
6154 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6155 /// For the GCC extension, the ?: operator is evaluated as
6156 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6157 /// For the OpenCL extensions, the ?: operator is evaluated as
6158 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6159 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
6160 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6161                                            ExprResult &RHS, ExprValueKind &VK,
6162                                            ExprObjectKind &OK,
6163                                            SourceLocation QuestionLoc) {
6164   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6165   // pointers.
6166 
6167   // Assume r-value.
6168   VK = VK_PRValue;
6169   OK = OK_Ordinary;
6170   bool IsVectorConditional =
6171       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6172 
6173   // C++11 [expr.cond]p1
6174   //   The first expression is contextually converted to bool.
6175   if (!Cond.get()->isTypeDependent()) {
6176     ExprResult CondRes = IsVectorConditional
6177                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6178                              : CheckCXXBooleanCondition(Cond.get());
6179     if (CondRes.isInvalid())
6180       return QualType();
6181     Cond = CondRes;
6182   } else {
6183     // To implement C++, the first expression typically doesn't alter the result
6184     // type of the conditional, however the GCC compatible vector extension
6185     // changes the result type to be that of the conditional. Since we cannot
6186     // know if this is a vector extension here, delay the conversion of the
6187     // LHS/RHS below until later.
6188     return Context.DependentTy;
6189   }
6190 
6191 
6192   // Either of the arguments dependent?
6193   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6194     return Context.DependentTy;
6195 
6196   // C++11 [expr.cond]p2
6197   //   If either the second or the third operand has type (cv) void, ...
6198   QualType LTy = LHS.get()->getType();
6199   QualType RTy = RHS.get()->getType();
6200   bool LVoid = LTy->isVoidType();
6201   bool RVoid = RTy->isVoidType();
6202   if (LVoid || RVoid) {
6203     //   ... one of the following shall hold:
6204     //   -- The second or the third operand (but not both) is a (possibly
6205     //      parenthesized) throw-expression; the result is of the type
6206     //      and value category of the other.
6207     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6208     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6209 
6210     // Void expressions aren't legal in the vector-conditional expressions.
6211     if (IsVectorConditional) {
6212       SourceRange DiagLoc =
6213           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6214       bool IsThrow = LVoid ? LThrow : RThrow;
6215       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6216           << DiagLoc << IsThrow;
6217       return QualType();
6218     }
6219 
6220     if (LThrow != RThrow) {
6221       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6222       VK = NonThrow->getValueKind();
6223       // DR (no number yet): the result is a bit-field if the
6224       // non-throw-expression operand is a bit-field.
6225       OK = NonThrow->getObjectKind();
6226       return NonThrow->getType();
6227     }
6228 
6229     //   -- Both the second and third operands have type void; the result is of
6230     //      type void and is a prvalue.
6231     if (LVoid && RVoid)
6232       return Context.VoidTy;
6233 
6234     // Neither holds, error.
6235     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6236       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6237       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6238     return QualType();
6239   }
6240 
6241   // Neither is void.
6242   if (IsVectorConditional)
6243     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6244 
6245   // C++11 [expr.cond]p3
6246   //   Otherwise, if the second and third operand have different types, and
6247   //   either has (cv) class type [...] an attempt is made to convert each of
6248   //   those operands to the type of the other.
6249   if (!Context.hasSameType(LTy, RTy) &&
6250       (LTy->isRecordType() || RTy->isRecordType())) {
6251     // These return true if a single direction is already ambiguous.
6252     QualType L2RType, R2LType;
6253     bool HaveL2R, HaveR2L;
6254     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6255       return QualType();
6256     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6257       return QualType();
6258 
6259     //   If both can be converted, [...] the program is ill-formed.
6260     if (HaveL2R && HaveR2L) {
6261       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6262         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6263       return QualType();
6264     }
6265 
6266     //   If exactly one conversion is possible, that conversion is applied to
6267     //   the chosen operand and the converted operands are used in place of the
6268     //   original operands for the remainder of this section.
6269     if (HaveL2R) {
6270       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6271         return QualType();
6272       LTy = LHS.get()->getType();
6273     } else if (HaveR2L) {
6274       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6275         return QualType();
6276       RTy = RHS.get()->getType();
6277     }
6278   }
6279 
6280   // C++11 [expr.cond]p3
6281   //   if both are glvalues of the same value category and the same type except
6282   //   for cv-qualification, an attempt is made to convert each of those
6283   //   operands to the type of the other.
6284   // FIXME:
6285   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6286   //   one of the operands is reference-compatible with the other, in order
6287   //   to support conditionals between functions differing in noexcept. This
6288   //   will similarly cover difference in array bounds after P0388R4.
6289   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6290   //   that instead?
6291   ExprValueKind LVK = LHS.get()->getValueKind();
6292   ExprValueKind RVK = RHS.get()->getValueKind();
6293   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6294     // DerivedToBase was already handled by the class-specific case above.
6295     // FIXME: Should we allow ObjC conversions here?
6296     const ReferenceConversions AllowedConversions =
6297         ReferenceConversions::Qualification |
6298         ReferenceConversions::NestedQualification |
6299         ReferenceConversions::Function;
6300 
6301     ReferenceConversions RefConv;
6302     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6303             Ref_Compatible &&
6304         !(RefConv & ~AllowedConversions) &&
6305         // [...] subject to the constraint that the reference must bind
6306         // directly [...]
6307         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6308       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6309       RTy = RHS.get()->getType();
6310     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6311                    Ref_Compatible &&
6312                !(RefConv & ~AllowedConversions) &&
6313                !LHS.get()->refersToBitField() &&
6314                !LHS.get()->refersToVectorElement()) {
6315       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6316       LTy = LHS.get()->getType();
6317     }
6318   }
6319 
6320   // C++11 [expr.cond]p4
6321   //   If the second and third operands are glvalues of the same value
6322   //   category and have the same type, the result is of that type and
6323   //   value category and it is a bit-field if the second or the third
6324   //   operand is a bit-field, or if both are bit-fields.
6325   // We only extend this to bitfields, not to the crazy other kinds of
6326   // l-values.
6327   bool Same = Context.hasSameType(LTy, RTy);
6328   if (Same && LVK == RVK && LVK != VK_PRValue &&
6329       LHS.get()->isOrdinaryOrBitFieldObject() &&
6330       RHS.get()->isOrdinaryOrBitFieldObject()) {
6331     VK = LHS.get()->getValueKind();
6332     if (LHS.get()->getObjectKind() == OK_BitField ||
6333         RHS.get()->getObjectKind() == OK_BitField)
6334       OK = OK_BitField;
6335 
6336     // If we have function pointer types, unify them anyway to unify their
6337     // exception specifications, if any.
6338     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6339       Qualifiers Qs = LTy.getQualifiers();
6340       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
6341                                      /*ConvertArgs*/false);
6342       LTy = Context.getQualifiedType(LTy, Qs);
6343 
6344       assert(!LTy.isNull() && "failed to find composite pointer type for "
6345                               "canonically equivalent function ptr types");
6346       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
6347     }
6348 
6349     return LTy;
6350   }
6351 
6352   // C++11 [expr.cond]p5
6353   //   Otherwise, the result is a prvalue. If the second and third operands
6354   //   do not have the same type, and either has (cv) class type, ...
6355   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6356     //   ... overload resolution is used to determine the conversions (if any)
6357     //   to be applied to the operands. If the overload resolution fails, the
6358     //   program is ill-formed.
6359     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6360       return QualType();
6361   }
6362 
6363   // C++11 [expr.cond]p6
6364   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6365   //   conversions are performed on the second and third operands.
6366   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6367   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6368   if (LHS.isInvalid() || RHS.isInvalid())
6369     return QualType();
6370   LTy = LHS.get()->getType();
6371   RTy = RHS.get()->getType();
6372 
6373   //   After those conversions, one of the following shall hold:
6374   //   -- The second and third operands have the same type; the result
6375   //      is of that type. If the operands have class type, the result
6376   //      is a prvalue temporary of the result type, which is
6377   //      copy-initialized from either the second operand or the third
6378   //      operand depending on the value of the first operand.
6379   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
6380     if (LTy->isRecordType()) {
6381       // The operands have class type. Make a temporary copy.
6382       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
6383 
6384       ExprResult LHSCopy = PerformCopyInitialization(Entity,
6385                                                      SourceLocation(),
6386                                                      LHS);
6387       if (LHSCopy.isInvalid())
6388         return QualType();
6389 
6390       ExprResult RHSCopy = PerformCopyInitialization(Entity,
6391                                                      SourceLocation(),
6392                                                      RHS);
6393       if (RHSCopy.isInvalid())
6394         return QualType();
6395 
6396       LHS = LHSCopy;
6397       RHS = RHSCopy;
6398     }
6399 
6400     // If we have function pointer types, unify them anyway to unify their
6401     // exception specifications, if any.
6402     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6403       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
6404       assert(!LTy.isNull() && "failed to find composite pointer type for "
6405                               "canonically equivalent function ptr types");
6406     }
6407 
6408     return LTy;
6409   }
6410 
6411   // Extension: conditional operator involving vector types.
6412   if (LTy->isVectorType() || RTy->isVectorType())
6413     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6414                                /*AllowBothBool*/true,
6415                                /*AllowBoolConversions*/false);
6416 
6417   //   -- The second and third operands have arithmetic or enumeration type;
6418   //      the usual arithmetic conversions are performed to bring them to a
6419   //      common type, and the result is of that type.
6420   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6421     QualType ResTy =
6422         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6423     if (LHS.isInvalid() || RHS.isInvalid())
6424       return QualType();
6425     if (ResTy.isNull()) {
6426       Diag(QuestionLoc,
6427            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6428         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6429       return QualType();
6430     }
6431 
6432     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6433     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6434 
6435     return ResTy;
6436   }
6437 
6438   //   -- The second and third operands have pointer type, or one has pointer
6439   //      type and the other is a null pointer constant, or both are null
6440   //      pointer constants, at least one of which is non-integral; pointer
6441   //      conversions and qualification conversions are performed to bring them
6442   //      to their composite pointer type. The result is of the composite
6443   //      pointer type.
6444   //   -- The second and third operands have pointer to member type, or one has
6445   //      pointer to member type and the other is a null pointer constant;
6446   //      pointer to member conversions and qualification conversions are
6447   //      performed to bring them to a common type, whose cv-qualification
6448   //      shall match the cv-qualification of either the second or the third
6449   //      operand. The result is of the common type.
6450   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6451   if (!Composite.isNull())
6452     return Composite;
6453 
6454   // Similarly, attempt to find composite type of two objective-c pointers.
6455   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6456   if (LHS.isInvalid() || RHS.isInvalid())
6457     return QualType();
6458   if (!Composite.isNull())
6459     return Composite;
6460 
6461   // Check if we are using a null with a non-pointer type.
6462   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6463     return QualType();
6464 
6465   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6466     << LHS.get()->getType() << RHS.get()->getType()
6467     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6468   return QualType();
6469 }
6470 
6471 static FunctionProtoType::ExceptionSpecInfo
6472 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6473                     FunctionProtoType::ExceptionSpecInfo ESI2,
6474                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6475   ExceptionSpecificationType EST1 = ESI1.Type;
6476   ExceptionSpecificationType EST2 = ESI2.Type;
6477 
6478   // If either of them can throw anything, that is the result.
6479   if (EST1 == EST_None) return ESI1;
6480   if (EST2 == EST_None) return ESI2;
6481   if (EST1 == EST_MSAny) return ESI1;
6482   if (EST2 == EST_MSAny) return ESI2;
6483   if (EST1 == EST_NoexceptFalse) return ESI1;
6484   if (EST2 == EST_NoexceptFalse) return ESI2;
6485 
6486   // If either of them is non-throwing, the result is the other.
6487   if (EST1 == EST_NoThrow) return ESI2;
6488   if (EST2 == EST_NoThrow) return ESI1;
6489   if (EST1 == EST_DynamicNone) return ESI2;
6490   if (EST2 == EST_DynamicNone) return ESI1;
6491   if (EST1 == EST_BasicNoexcept) return ESI2;
6492   if (EST2 == EST_BasicNoexcept) return ESI1;
6493   if (EST1 == EST_NoexceptTrue) return ESI2;
6494   if (EST2 == EST_NoexceptTrue) return ESI1;
6495 
6496   // If we're left with value-dependent computed noexcept expressions, we're
6497   // stuck. Before C++17, we can just drop the exception specification entirely,
6498   // since it's not actually part of the canonical type. And this should never
6499   // happen in C++17, because it would mean we were computing the composite
6500   // pointer type of dependent types, which should never happen.
6501   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6502     assert(!S.getLangOpts().CPlusPlus17 &&
6503            "computing composite pointer type of dependent types");
6504     return FunctionProtoType::ExceptionSpecInfo();
6505   }
6506 
6507   // Switch over the possibilities so that people adding new values know to
6508   // update this function.
6509   switch (EST1) {
6510   case EST_None:
6511   case EST_DynamicNone:
6512   case EST_MSAny:
6513   case EST_BasicNoexcept:
6514   case EST_DependentNoexcept:
6515   case EST_NoexceptFalse:
6516   case EST_NoexceptTrue:
6517   case EST_NoThrow:
6518     llvm_unreachable("handled above");
6519 
6520   case EST_Dynamic: {
6521     // This is the fun case: both exception specifications are dynamic. Form
6522     // the union of the two lists.
6523     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6524     llvm::SmallPtrSet<QualType, 8> Found;
6525     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6526       for (QualType E : Exceptions)
6527         if (Found.insert(S.Context.getCanonicalType(E)).second)
6528           ExceptionTypeStorage.push_back(E);
6529 
6530     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6531     Result.Exceptions = ExceptionTypeStorage;
6532     return Result;
6533   }
6534 
6535   case EST_Unevaluated:
6536   case EST_Uninstantiated:
6537   case EST_Unparsed:
6538     llvm_unreachable("shouldn't see unresolved exception specifications here");
6539   }
6540 
6541   llvm_unreachable("invalid ExceptionSpecificationType");
6542 }
6543 
6544 /// Find a merged pointer type and convert the two expressions to it.
6545 ///
6546 /// This finds the composite pointer type for \p E1 and \p E2 according to
6547 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6548 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6549 /// is \c true).
6550 ///
6551 /// \param Loc The location of the operator requiring these two expressions to
6552 /// be converted to the composite pointer type.
6553 ///
6554 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6555 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6556                                         Expr *&E1, Expr *&E2,
6557                                         bool ConvertArgs) {
6558   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6559 
6560   // C++1z [expr]p14:
6561   //   The composite pointer type of two operands p1 and p2 having types T1
6562   //   and T2
6563   QualType T1 = E1->getType(), T2 = E2->getType();
6564 
6565   //   where at least one is a pointer or pointer to member type or
6566   //   std::nullptr_t is:
6567   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6568                          T1->isNullPtrType();
6569   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6570                          T2->isNullPtrType();
6571   if (!T1IsPointerLike && !T2IsPointerLike)
6572     return QualType();
6573 
6574   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6575   // This can't actually happen, following the standard, but we also use this
6576   // to implement the end of [expr.conv], which hits this case.
6577   //
6578   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6579   if (T1IsPointerLike &&
6580       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6581     if (ConvertArgs)
6582       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6583                                          ? CK_NullToMemberPointer
6584                                          : CK_NullToPointer).get();
6585     return T1;
6586   }
6587   if (T2IsPointerLike &&
6588       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6589     if (ConvertArgs)
6590       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6591                                          ? CK_NullToMemberPointer
6592                                          : CK_NullToPointer).get();
6593     return T2;
6594   }
6595 
6596   // Now both have to be pointers or member pointers.
6597   if (!T1IsPointerLike || !T2IsPointerLike)
6598     return QualType();
6599   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6600          "nullptr_t should be a null pointer constant");
6601 
6602   struct Step {
6603     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6604     // Qualifiers to apply under the step kind.
6605     Qualifiers Quals;
6606     /// The class for a pointer-to-member; a constant array type with a bound
6607     /// (if any) for an array.
6608     const Type *ClassOrBound;
6609 
6610     Step(Kind K, const Type *ClassOrBound = nullptr)
6611         : K(K), Quals(), ClassOrBound(ClassOrBound) {}
6612     QualType rebuild(ASTContext &Ctx, QualType T) const {
6613       T = Ctx.getQualifiedType(T, Quals);
6614       switch (K) {
6615       case Pointer:
6616         return Ctx.getPointerType(T);
6617       case MemberPointer:
6618         return Ctx.getMemberPointerType(T, ClassOrBound);
6619       case ObjCPointer:
6620         return Ctx.getObjCObjectPointerType(T);
6621       case Array:
6622         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6623           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6624                                           ArrayType::Normal, 0);
6625         else
6626           return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6627       }
6628       llvm_unreachable("unknown step kind");
6629     }
6630   };
6631 
6632   SmallVector<Step, 8> Steps;
6633 
6634   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6635   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6636   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6637   //    respectively;
6638   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6639   //    to member of C2 of type cv2 U2" for some non-function type U, where
6640   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6641   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6642   //    respectively;
6643   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6644   //    T2;
6645   //
6646   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6647   // and to prepare to form the cv-combined type if so.
6648   QualType Composite1 = T1;
6649   QualType Composite2 = T2;
6650   unsigned NeedConstBefore = 0;
6651   while (true) {
6652     assert(!Composite1.isNull() && !Composite2.isNull());
6653 
6654     Qualifiers Q1, Q2;
6655     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6656     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6657 
6658     // Top-level qualifiers are ignored. Merge at all lower levels.
6659     if (!Steps.empty()) {
6660       // Find the qualifier union: (approximately) the unique minimal set of
6661       // qualifiers that is compatible with both types.
6662       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6663                                                   Q2.getCVRUQualifiers());
6664 
6665       // Under one level of pointer or pointer-to-member, we can change to an
6666       // unambiguous compatible address space.
6667       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6668         Quals.setAddressSpace(Q1.getAddressSpace());
6669       } else if (Steps.size() == 1) {
6670         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6671         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6672         if (MaybeQ1 == MaybeQ2)
6673           return QualType(); // No unique best address space.
6674         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6675                                       : Q2.getAddressSpace());
6676       } else {
6677         return QualType();
6678       }
6679 
6680       // FIXME: In C, we merge __strong and none to __strong at the top level.
6681       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6682         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6683       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6684         assert(Steps.size() == 1);
6685       else
6686         return QualType();
6687 
6688       // Mismatched lifetime qualifiers never compatibly include each other.
6689       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6690         Quals.setObjCLifetime(Q1.getObjCLifetime());
6691       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6692         assert(Steps.size() == 1);
6693       else
6694         return QualType();
6695 
6696       Steps.back().Quals = Quals;
6697       if (Q1 != Quals || Q2 != Quals)
6698         NeedConstBefore = Steps.size() - 1;
6699     }
6700 
6701     // FIXME: Can we unify the following with UnwrapSimilarTypes?
6702     const PointerType *Ptr1, *Ptr2;
6703     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6704         (Ptr2 = Composite2->getAs<PointerType>())) {
6705       Composite1 = Ptr1->getPointeeType();
6706       Composite2 = Ptr2->getPointeeType();
6707       Steps.emplace_back(Step::Pointer);
6708       continue;
6709     }
6710 
6711     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6712     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6713         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6714       Composite1 = ObjPtr1->getPointeeType();
6715       Composite2 = ObjPtr2->getPointeeType();
6716       Steps.emplace_back(Step::ObjCPointer);
6717       continue;
6718     }
6719 
6720     const MemberPointerType *MemPtr1, *MemPtr2;
6721     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6722         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6723       Composite1 = MemPtr1->getPointeeType();
6724       Composite2 = MemPtr2->getPointeeType();
6725 
6726       // At the top level, we can perform a base-to-derived pointer-to-member
6727       // conversion:
6728       //
6729       //  - [...] where C1 is reference-related to C2 or C2 is
6730       //    reference-related to C1
6731       //
6732       // (Note that the only kinds of reference-relatedness in scope here are
6733       // "same type or derived from".) At any other level, the class must
6734       // exactly match.
6735       const Type *Class = nullptr;
6736       QualType Cls1(MemPtr1->getClass(), 0);
6737       QualType Cls2(MemPtr2->getClass(), 0);
6738       if (Context.hasSameType(Cls1, Cls2))
6739         Class = MemPtr1->getClass();
6740       else if (Steps.empty())
6741         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
6742                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
6743       if (!Class)
6744         return QualType();
6745 
6746       Steps.emplace_back(Step::MemberPointer, Class);
6747       continue;
6748     }
6749 
6750     // Special case: at the top level, we can decompose an Objective-C pointer
6751     // and a 'cv void *'. Unify the qualifiers.
6752     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
6753                            Composite2->isObjCObjectPointerType()) ||
6754                           (Composite1->isObjCObjectPointerType() &&
6755                            Composite2->isVoidPointerType()))) {
6756       Composite1 = Composite1->getPointeeType();
6757       Composite2 = Composite2->getPointeeType();
6758       Steps.emplace_back(Step::Pointer);
6759       continue;
6760     }
6761 
6762     // FIXME: arrays
6763 
6764     // FIXME: block pointer types?
6765 
6766     // Cannot unwrap any more types.
6767     break;
6768   }
6769 
6770   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
6771   //    "pointer to function", where the function types are otherwise the same,
6772   //    "pointer to function";
6773   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
6774   //    type is "pointer to member of C2 of type noexcept function", and C1
6775   //    is reference-related to C2 or C2 is reference-related to C1, where
6776   //    the function types are otherwise the same, "pointer to member of C2 of
6777   //    type function" or "pointer to member of C1 of type function",
6778   //    respectively;
6779   //
6780   // We also support 'noreturn' here, so as a Clang extension we generalize the
6781   // above to:
6782   //
6783   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
6784   //    "pointer to member function" and the pointee types can be unified
6785   //    by a function pointer conversion, that conversion is applied
6786   //    before checking the following rules.
6787   //
6788   // We've already unwrapped down to the function types, and we want to merge
6789   // rather than just convert, so do this ourselves rather than calling
6790   // IsFunctionConversion.
6791   //
6792   // FIXME: In order to match the standard wording as closely as possible, we
6793   // currently only do this under a single level of pointers. Ideally, we would
6794   // allow this in general, and set NeedConstBefore to the relevant depth on
6795   // the side(s) where we changed anything. If we permit that, we should also
6796   // consider this conversion when determining type similarity and model it as
6797   // a qualification conversion.
6798   if (Steps.size() == 1) {
6799     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6800       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6801         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6802         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6803 
6804         // The result is noreturn if both operands are.
6805         bool Noreturn =
6806             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6807         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6808         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6809 
6810         // The result is nothrow if both operands are.
6811         SmallVector<QualType, 8> ExceptionTypeStorage;
6812         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6813             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6814                                 ExceptionTypeStorage);
6815 
6816         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6817                                              FPT1->getParamTypes(), EPI1);
6818         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6819                                              FPT2->getParamTypes(), EPI2);
6820       }
6821     }
6822   }
6823 
6824   // There are some more conversions we can perform under exactly one pointer.
6825   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
6826       !Context.hasSameType(Composite1, Composite2)) {
6827     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
6828     //    "pointer to cv2 T", where T is an object type or void,
6829     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
6830     if (Composite1->isVoidType() && Composite2->isObjectType())
6831       Composite2 = Composite1;
6832     else if (Composite2->isVoidType() && Composite1->isObjectType())
6833       Composite1 = Composite2;
6834     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6835     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6836     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
6837     //    T1, respectively;
6838     //
6839     // The "similar type" handling covers all of this except for the "T1 is a
6840     // base class of T2" case in the definition of reference-related.
6841     else if (IsDerivedFrom(Loc, Composite1, Composite2))
6842       Composite1 = Composite2;
6843     else if (IsDerivedFrom(Loc, Composite2, Composite1))
6844       Composite2 = Composite1;
6845   }
6846 
6847   // At this point, either the inner types are the same or we have failed to
6848   // find a composite pointer type.
6849   if (!Context.hasSameType(Composite1, Composite2))
6850     return QualType();
6851 
6852   // Per C++ [conv.qual]p3, add 'const' to every level before the last
6853   // differing qualifier.
6854   for (unsigned I = 0; I != NeedConstBefore; ++I)
6855     Steps[I].Quals.addConst();
6856 
6857   // Rebuild the composite type.
6858   QualType Composite = Composite1;
6859   for (auto &S : llvm::reverse(Steps))
6860     Composite = S.rebuild(Context, Composite);
6861 
6862   if (ConvertArgs) {
6863     // Convert the expressions to the composite pointer type.
6864     InitializedEntity Entity =
6865         InitializedEntity::InitializeTemporary(Composite);
6866     InitializationKind Kind =
6867         InitializationKind::CreateCopy(Loc, SourceLocation());
6868 
6869     InitializationSequence E1ToC(*this, Entity, Kind, E1);
6870     if (!E1ToC)
6871       return QualType();
6872 
6873     InitializationSequence E2ToC(*this, Entity, Kind, E2);
6874     if (!E2ToC)
6875       return QualType();
6876 
6877     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
6878     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
6879     if (E1Result.isInvalid())
6880       return QualType();
6881     E1 = E1Result.get();
6882 
6883     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
6884     if (E2Result.isInvalid())
6885       return QualType();
6886     E2 = E2Result.get();
6887   }
6888 
6889   return Composite;
6890 }
6891 
6892 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6893   if (!E)
6894     return ExprError();
6895 
6896   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6897 
6898   // If the result is a glvalue, we shouldn't bind it.
6899   if (E->isGLValue())
6900     return E;
6901 
6902   // In ARC, calls that return a retainable type can return retained,
6903   // in which case we have to insert a consuming cast.
6904   if (getLangOpts().ObjCAutoRefCount &&
6905       E->getType()->isObjCRetainableType()) {
6906 
6907     bool ReturnsRetained;
6908 
6909     // For actual calls, we compute this by examining the type of the
6910     // called value.
6911     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6912       Expr *Callee = Call->getCallee()->IgnoreParens();
6913       QualType T = Callee->getType();
6914 
6915       if (T == Context.BoundMemberTy) {
6916         // Handle pointer-to-members.
6917         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6918           T = BinOp->getRHS()->getType();
6919         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6920           T = Mem->getMemberDecl()->getType();
6921       }
6922 
6923       if (const PointerType *Ptr = T->getAs<PointerType>())
6924         T = Ptr->getPointeeType();
6925       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6926         T = Ptr->getPointeeType();
6927       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6928         T = MemPtr->getPointeeType();
6929 
6930       auto *FTy = T->castAs<FunctionType>();
6931       ReturnsRetained = FTy->getExtInfo().getProducesResult();
6932 
6933     // ActOnStmtExpr arranges things so that StmtExprs of retainable
6934     // type always produce a +1 object.
6935     } else if (isa<StmtExpr>(E)) {
6936       ReturnsRetained = true;
6937 
6938     // We hit this case with the lambda conversion-to-block optimization;
6939     // we don't want any extra casts here.
6940     } else if (isa<CastExpr>(E) &&
6941                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6942       return E;
6943 
6944     // For message sends and property references, we try to find an
6945     // actual method.  FIXME: we should infer retention by selector in
6946     // cases where we don't have an actual method.
6947     } else {
6948       ObjCMethodDecl *D = nullptr;
6949       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6950         D = Send->getMethodDecl();
6951       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6952         D = BoxedExpr->getBoxingMethod();
6953       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6954         // Don't do reclaims if we're using the zero-element array
6955         // constant.
6956         if (ArrayLit->getNumElements() == 0 &&
6957             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6958           return E;
6959 
6960         D = ArrayLit->getArrayWithObjectsMethod();
6961       } else if (ObjCDictionaryLiteral *DictLit
6962                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
6963         // Don't do reclaims if we're using the zero-element dictionary
6964         // constant.
6965         if (DictLit->getNumElements() == 0 &&
6966             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6967           return E;
6968 
6969         D = DictLit->getDictWithObjectsMethod();
6970       }
6971 
6972       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6973 
6974       // Don't do reclaims on performSelector calls; despite their
6975       // return type, the invoked method doesn't necessarily actually
6976       // return an object.
6977       if (!ReturnsRetained &&
6978           D && D->getMethodFamily() == OMF_performSelector)
6979         return E;
6980     }
6981 
6982     // Don't reclaim an object of Class type.
6983     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6984       return E;
6985 
6986     Cleanup.setExprNeedsCleanups(true);
6987 
6988     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6989                                    : CK_ARCReclaimReturnedObject);
6990     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6991                                     VK_PRValue, FPOptionsOverride());
6992   }
6993 
6994   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
6995     Cleanup.setExprNeedsCleanups(true);
6996 
6997   if (!getLangOpts().CPlusPlus)
6998     return E;
6999 
7000   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7001   // a fast path for the common case that the type is directly a RecordType.
7002   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7003   const RecordType *RT = nullptr;
7004   while (!RT) {
7005     switch (T->getTypeClass()) {
7006     case Type::Record:
7007       RT = cast<RecordType>(T);
7008       break;
7009     case Type::ConstantArray:
7010     case Type::IncompleteArray:
7011     case Type::VariableArray:
7012     case Type::DependentSizedArray:
7013       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7014       break;
7015     default:
7016       return E;
7017     }
7018   }
7019 
7020   // That should be enough to guarantee that this type is complete, if we're
7021   // not processing a decltype expression.
7022   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7023   if (RD->isInvalidDecl() || RD->isDependentContext())
7024     return E;
7025 
7026   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7027                     ExpressionEvaluationContextRecord::EK_Decltype;
7028   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7029 
7030   if (Destructor) {
7031     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7032     CheckDestructorAccess(E->getExprLoc(), Destructor,
7033                           PDiag(diag::err_access_dtor_temp)
7034                             << E->getType());
7035     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7036       return ExprError();
7037 
7038     // If destructor is trivial, we can avoid the extra copy.
7039     if (Destructor->isTrivial())
7040       return E;
7041 
7042     // We need a cleanup, but we don't need to remember the temporary.
7043     Cleanup.setExprNeedsCleanups(true);
7044   }
7045 
7046   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7047   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7048 
7049   if (IsDecltype)
7050     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7051 
7052   return Bind;
7053 }
7054 
7055 ExprResult
7056 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7057   if (SubExpr.isInvalid())
7058     return ExprError();
7059 
7060   return MaybeCreateExprWithCleanups(SubExpr.get());
7061 }
7062 
7063 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7064   assert(SubExpr && "subexpression can't be null!");
7065 
7066   CleanupVarDeclMarking();
7067 
7068   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7069   assert(ExprCleanupObjects.size() >= FirstCleanup);
7070   assert(Cleanup.exprNeedsCleanups() ||
7071          ExprCleanupObjects.size() == FirstCleanup);
7072   if (!Cleanup.exprNeedsCleanups())
7073     return SubExpr;
7074 
7075   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7076                                      ExprCleanupObjects.size() - FirstCleanup);
7077 
7078   auto *E = ExprWithCleanups::Create(
7079       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7080   DiscardCleanupsInEvaluationContext();
7081 
7082   return E;
7083 }
7084 
7085 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7086   assert(SubStmt && "sub-statement can't be null!");
7087 
7088   CleanupVarDeclMarking();
7089 
7090   if (!Cleanup.exprNeedsCleanups())
7091     return SubStmt;
7092 
7093   // FIXME: In order to attach the temporaries, wrap the statement into
7094   // a StmtExpr; currently this is only used for asm statements.
7095   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7096   // a new AsmStmtWithTemporaries.
7097   CompoundStmt *CompStmt = CompoundStmt::Create(
7098       Context, SubStmt, SourceLocation(), SourceLocation());
7099   Expr *E = new (Context)
7100       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7101                /*FIXME TemplateDepth=*/0);
7102   return MaybeCreateExprWithCleanups(E);
7103 }
7104 
7105 /// Process the expression contained within a decltype. For such expressions,
7106 /// certain semantic checks on temporaries are delayed until this point, and
7107 /// are omitted for the 'topmost' call in the decltype expression. If the
7108 /// topmost call bound a temporary, strip that temporary off the expression.
7109 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7110   assert(ExprEvalContexts.back().ExprContext ==
7111              ExpressionEvaluationContextRecord::EK_Decltype &&
7112          "not in a decltype expression");
7113 
7114   ExprResult Result = CheckPlaceholderExpr(E);
7115   if (Result.isInvalid())
7116     return ExprError();
7117   E = Result.get();
7118 
7119   // C++11 [expr.call]p11:
7120   //   If a function call is a prvalue of object type,
7121   // -- if the function call is either
7122   //   -- the operand of a decltype-specifier, or
7123   //   -- the right operand of a comma operator that is the operand of a
7124   //      decltype-specifier,
7125   //   a temporary object is not introduced for the prvalue.
7126 
7127   // Recursively rebuild ParenExprs and comma expressions to strip out the
7128   // outermost CXXBindTemporaryExpr, if any.
7129   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7130     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7131     if (SubExpr.isInvalid())
7132       return ExprError();
7133     if (SubExpr.get() == PE->getSubExpr())
7134       return E;
7135     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7136   }
7137   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7138     if (BO->getOpcode() == BO_Comma) {
7139       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7140       if (RHS.isInvalid())
7141         return ExprError();
7142       if (RHS.get() == BO->getRHS())
7143         return E;
7144       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7145                                     BO->getType(), BO->getValueKind(),
7146                                     BO->getObjectKind(), BO->getOperatorLoc(),
7147                                     BO->getFPFeatures(getLangOpts()));
7148     }
7149   }
7150 
7151   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7152   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7153                               : nullptr;
7154   if (TopCall)
7155     E = TopCall;
7156   else
7157     TopBind = nullptr;
7158 
7159   // Disable the special decltype handling now.
7160   ExprEvalContexts.back().ExprContext =
7161       ExpressionEvaluationContextRecord::EK_Other;
7162 
7163   Result = CheckUnevaluatedOperand(E);
7164   if (Result.isInvalid())
7165     return ExprError();
7166   E = Result.get();
7167 
7168   // In MS mode, don't perform any extra checking of call return types within a
7169   // decltype expression.
7170   if (getLangOpts().MSVCCompat)
7171     return E;
7172 
7173   // Perform the semantic checks we delayed until this point.
7174   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7175        I != N; ++I) {
7176     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7177     if (Call == TopCall)
7178       continue;
7179 
7180     if (CheckCallReturnType(Call->getCallReturnType(Context),
7181                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7182       return ExprError();
7183   }
7184 
7185   // Now all relevant types are complete, check the destructors are accessible
7186   // and non-deleted, and annotate them on the temporaries.
7187   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7188        I != N; ++I) {
7189     CXXBindTemporaryExpr *Bind =
7190       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7191     if (Bind == TopBind)
7192       continue;
7193 
7194     CXXTemporary *Temp = Bind->getTemporary();
7195 
7196     CXXRecordDecl *RD =
7197       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7198     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7199     Temp->setDestructor(Destructor);
7200 
7201     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7202     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7203                           PDiag(diag::err_access_dtor_temp)
7204                             << Bind->getType());
7205     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7206       return ExprError();
7207 
7208     // We need a cleanup, but we don't need to remember the temporary.
7209     Cleanup.setExprNeedsCleanups(true);
7210   }
7211 
7212   // Possibly strip off the top CXXBindTemporaryExpr.
7213   return E;
7214 }
7215 
7216 /// Note a set of 'operator->' functions that were used for a member access.
7217 static void noteOperatorArrows(Sema &S,
7218                                ArrayRef<FunctionDecl *> OperatorArrows) {
7219   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7220   // FIXME: Make this configurable?
7221   unsigned Limit = 9;
7222   if (OperatorArrows.size() > Limit) {
7223     // Produce Limit-1 normal notes and one 'skipping' note.
7224     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7225     SkipCount = OperatorArrows.size() - (Limit - 1);
7226   }
7227 
7228   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7229     if (I == SkipStart) {
7230       S.Diag(OperatorArrows[I]->getLocation(),
7231              diag::note_operator_arrows_suppressed)
7232           << SkipCount;
7233       I += SkipCount;
7234     } else {
7235       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7236           << OperatorArrows[I]->getCallResultType();
7237       ++I;
7238     }
7239   }
7240 }
7241 
7242 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7243                                               SourceLocation OpLoc,
7244                                               tok::TokenKind OpKind,
7245                                               ParsedType &ObjectType,
7246                                               bool &MayBePseudoDestructor) {
7247   // Since this might be a postfix expression, get rid of ParenListExprs.
7248   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7249   if (Result.isInvalid()) return ExprError();
7250   Base = Result.get();
7251 
7252   Result = CheckPlaceholderExpr(Base);
7253   if (Result.isInvalid()) return ExprError();
7254   Base = Result.get();
7255 
7256   QualType BaseType = Base->getType();
7257   MayBePseudoDestructor = false;
7258   if (BaseType->isDependentType()) {
7259     // If we have a pointer to a dependent type and are using the -> operator,
7260     // the object type is the type that the pointer points to. We might still
7261     // have enough information about that type to do something useful.
7262     if (OpKind == tok::arrow)
7263       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7264         BaseType = Ptr->getPointeeType();
7265 
7266     ObjectType = ParsedType::make(BaseType);
7267     MayBePseudoDestructor = true;
7268     return Base;
7269   }
7270 
7271   // C++ [over.match.oper]p8:
7272   //   [...] When operator->returns, the operator-> is applied  to the value
7273   //   returned, with the original second operand.
7274   if (OpKind == tok::arrow) {
7275     QualType StartingType = BaseType;
7276     bool NoArrowOperatorFound = false;
7277     bool FirstIteration = true;
7278     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7279     // The set of types we've considered so far.
7280     llvm::SmallPtrSet<CanQualType,8> CTypes;
7281     SmallVector<FunctionDecl*, 8> OperatorArrows;
7282     CTypes.insert(Context.getCanonicalType(BaseType));
7283 
7284     while (BaseType->isRecordType()) {
7285       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7286         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7287           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7288         noteOperatorArrows(*this, OperatorArrows);
7289         Diag(OpLoc, diag::note_operator_arrow_depth)
7290           << getLangOpts().ArrowDepth;
7291         return ExprError();
7292       }
7293 
7294       Result = BuildOverloadedArrowExpr(
7295           S, Base, OpLoc,
7296           // When in a template specialization and on the first loop iteration,
7297           // potentially give the default diagnostic (with the fixit in a
7298           // separate note) instead of having the error reported back to here
7299           // and giving a diagnostic with a fixit attached to the error itself.
7300           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7301               ? nullptr
7302               : &NoArrowOperatorFound);
7303       if (Result.isInvalid()) {
7304         if (NoArrowOperatorFound) {
7305           if (FirstIteration) {
7306             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7307               << BaseType << 1 << Base->getSourceRange()
7308               << FixItHint::CreateReplacement(OpLoc, ".");
7309             OpKind = tok::period;
7310             break;
7311           }
7312           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7313             << BaseType << Base->getSourceRange();
7314           CallExpr *CE = dyn_cast<CallExpr>(Base);
7315           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7316             Diag(CD->getBeginLoc(),
7317                  diag::note_member_reference_arrow_from_operator_arrow);
7318           }
7319         }
7320         return ExprError();
7321       }
7322       Base = Result.get();
7323       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7324         OperatorArrows.push_back(OpCall->getDirectCallee());
7325       BaseType = Base->getType();
7326       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7327       if (!CTypes.insert(CBaseType).second) {
7328         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7329         noteOperatorArrows(*this, OperatorArrows);
7330         return ExprError();
7331       }
7332       FirstIteration = false;
7333     }
7334 
7335     if (OpKind == tok::arrow) {
7336       if (BaseType->isPointerType())
7337         BaseType = BaseType->getPointeeType();
7338       else if (auto *AT = Context.getAsArrayType(BaseType))
7339         BaseType = AT->getElementType();
7340     }
7341   }
7342 
7343   // Objective-C properties allow "." access on Objective-C pointer types,
7344   // so adjust the base type to the object type itself.
7345   if (BaseType->isObjCObjectPointerType())
7346     BaseType = BaseType->getPointeeType();
7347 
7348   // C++ [basic.lookup.classref]p2:
7349   //   [...] If the type of the object expression is of pointer to scalar
7350   //   type, the unqualified-id is looked up in the context of the complete
7351   //   postfix-expression.
7352   //
7353   // This also indicates that we could be parsing a pseudo-destructor-name.
7354   // Note that Objective-C class and object types can be pseudo-destructor
7355   // expressions or normal member (ivar or property) access expressions, and
7356   // it's legal for the type to be incomplete if this is a pseudo-destructor
7357   // call.  We'll do more incomplete-type checks later in the lookup process,
7358   // so just skip this check for ObjC types.
7359   if (!BaseType->isRecordType()) {
7360     ObjectType = ParsedType::make(BaseType);
7361     MayBePseudoDestructor = true;
7362     return Base;
7363   }
7364 
7365   // The object type must be complete (or dependent), or
7366   // C++11 [expr.prim.general]p3:
7367   //   Unlike the object expression in other contexts, *this is not required to
7368   //   be of complete type for purposes of class member access (5.2.5) outside
7369   //   the member function body.
7370   if (!BaseType->isDependentType() &&
7371       !isThisOutsideMemberFunctionBody(BaseType) &&
7372       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
7373     return ExprError();
7374 
7375   // C++ [basic.lookup.classref]p2:
7376   //   If the id-expression in a class member access (5.2.5) is an
7377   //   unqualified-id, and the type of the object expression is of a class
7378   //   type C (or of pointer to a class type C), the unqualified-id is looked
7379   //   up in the scope of class C. [...]
7380   ObjectType = ParsedType::make(BaseType);
7381   return Base;
7382 }
7383 
7384 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7385                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7386   if (Base->hasPlaceholderType()) {
7387     ExprResult result = S.CheckPlaceholderExpr(Base);
7388     if (result.isInvalid()) return true;
7389     Base = result.get();
7390   }
7391   ObjectType = Base->getType();
7392 
7393   // C++ [expr.pseudo]p2:
7394   //   The left-hand side of the dot operator shall be of scalar type. The
7395   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7396   //   This scalar type is the object type.
7397   // Note that this is rather different from the normal handling for the
7398   // arrow operator.
7399   if (OpKind == tok::arrow) {
7400     // The operator requires a prvalue, so perform lvalue conversions.
7401     // Only do this if we might plausibly end with a pointer, as otherwise
7402     // this was likely to be intended to be a '.'.
7403     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7404         ObjectType->isFunctionType()) {
7405       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7406       if (BaseResult.isInvalid())
7407         return true;
7408       Base = BaseResult.get();
7409       ObjectType = Base->getType();
7410     }
7411 
7412     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7413       ObjectType = Ptr->getPointeeType();
7414     } else if (!Base->isTypeDependent()) {
7415       // The user wrote "p->" when they probably meant "p."; fix it.
7416       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7417         << ObjectType << true
7418         << FixItHint::CreateReplacement(OpLoc, ".");
7419       if (S.isSFINAEContext())
7420         return true;
7421 
7422       OpKind = tok::period;
7423     }
7424   }
7425 
7426   return false;
7427 }
7428 
7429 /// Check if it's ok to try and recover dot pseudo destructor calls on
7430 /// pointer objects.
7431 static bool
7432 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7433                                                    QualType DestructedType) {
7434   // If this is a record type, check if its destructor is callable.
7435   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7436     if (RD->hasDefinition())
7437       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7438         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7439     return false;
7440   }
7441 
7442   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7443   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7444          DestructedType->isVectorType();
7445 }
7446 
7447 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7448                                            SourceLocation OpLoc,
7449                                            tok::TokenKind OpKind,
7450                                            const CXXScopeSpec &SS,
7451                                            TypeSourceInfo *ScopeTypeInfo,
7452                                            SourceLocation CCLoc,
7453                                            SourceLocation TildeLoc,
7454                                          PseudoDestructorTypeStorage Destructed) {
7455   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7456 
7457   QualType ObjectType;
7458   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7459     return ExprError();
7460 
7461   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7462       !ObjectType->isVectorType()) {
7463     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7464       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7465     else {
7466       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7467         << ObjectType << Base->getSourceRange();
7468       return ExprError();
7469     }
7470   }
7471 
7472   // C++ [expr.pseudo]p2:
7473   //   [...] The cv-unqualified versions of the object type and of the type
7474   //   designated by the pseudo-destructor-name shall be the same type.
7475   if (DestructedTypeInfo) {
7476     QualType DestructedType = DestructedTypeInfo->getType();
7477     SourceLocation DestructedTypeStart
7478       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
7479     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7480       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7481         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7482         //   Foo *foo;
7483         //   foo.~Foo();
7484         if (OpKind == tok::period && ObjectType->isPointerType() &&
7485             Context.hasSameUnqualifiedType(DestructedType,
7486                                            ObjectType->getPointeeType())) {
7487           auto Diagnostic =
7488               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7489               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7490 
7491           // Issue a fixit only when the destructor is valid.
7492           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7493                   *this, DestructedType))
7494             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7495 
7496           // Recover by setting the object type to the destructed type and the
7497           // operator to '->'.
7498           ObjectType = DestructedType;
7499           OpKind = tok::arrow;
7500         } else {
7501           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7502               << ObjectType << DestructedType << Base->getSourceRange()
7503               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7504 
7505           // Recover by setting the destructed type to the object type.
7506           DestructedType = ObjectType;
7507           DestructedTypeInfo =
7508               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7509           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7510         }
7511       } else if (DestructedType.getObjCLifetime() !=
7512                                                 ObjectType.getObjCLifetime()) {
7513 
7514         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7515           // Okay: just pretend that the user provided the correctly-qualified
7516           // type.
7517         } else {
7518           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7519             << ObjectType << DestructedType << Base->getSourceRange()
7520             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7521         }
7522 
7523         // Recover by setting the destructed type to the object type.
7524         DestructedType = ObjectType;
7525         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7526                                                            DestructedTypeStart);
7527         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7528       }
7529     }
7530   }
7531 
7532   // C++ [expr.pseudo]p2:
7533   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7534   //   form
7535   //
7536   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7537   //
7538   //   shall designate the same scalar type.
7539   if (ScopeTypeInfo) {
7540     QualType ScopeType = ScopeTypeInfo->getType();
7541     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7542         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7543 
7544       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
7545            diag::err_pseudo_dtor_type_mismatch)
7546         << ObjectType << ScopeType << Base->getSourceRange()
7547         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
7548 
7549       ScopeType = QualType();
7550       ScopeTypeInfo = nullptr;
7551     }
7552   }
7553 
7554   Expr *Result
7555     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7556                                             OpKind == tok::arrow, OpLoc,
7557                                             SS.getWithLocInContext(Context),
7558                                             ScopeTypeInfo,
7559                                             CCLoc,
7560                                             TildeLoc,
7561                                             Destructed);
7562 
7563   return Result;
7564 }
7565 
7566 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7567                                            SourceLocation OpLoc,
7568                                            tok::TokenKind OpKind,
7569                                            CXXScopeSpec &SS,
7570                                            UnqualifiedId &FirstTypeName,
7571                                            SourceLocation CCLoc,
7572                                            SourceLocation TildeLoc,
7573                                            UnqualifiedId &SecondTypeName) {
7574   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7575           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7576          "Invalid first type name in pseudo-destructor");
7577   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7578           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7579          "Invalid second type name in pseudo-destructor");
7580 
7581   QualType ObjectType;
7582   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7583     return ExprError();
7584 
7585   // Compute the object type that we should use for name lookup purposes. Only
7586   // record types and dependent types matter.
7587   ParsedType ObjectTypePtrForLookup;
7588   if (!SS.isSet()) {
7589     if (ObjectType->isRecordType())
7590       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7591     else if (ObjectType->isDependentType())
7592       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7593   }
7594 
7595   // Convert the name of the type being destructed (following the ~) into a
7596   // type (with source-location information).
7597   QualType DestructedType;
7598   TypeSourceInfo *DestructedTypeInfo = nullptr;
7599   PseudoDestructorTypeStorage Destructed;
7600   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7601     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7602                                SecondTypeName.StartLocation,
7603                                S, &SS, true, false, ObjectTypePtrForLookup,
7604                                /*IsCtorOrDtorName*/true);
7605     if (!T &&
7606         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7607          (!SS.isSet() && ObjectType->isDependentType()))) {
7608       // The name of the type being destroyed is a dependent name, and we
7609       // couldn't find anything useful in scope. Just store the identifier and
7610       // it's location, and we'll perform (qualified) name lookup again at
7611       // template instantiation time.
7612       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7613                                                SecondTypeName.StartLocation);
7614     } else if (!T) {
7615       Diag(SecondTypeName.StartLocation,
7616            diag::err_pseudo_dtor_destructor_non_type)
7617         << SecondTypeName.Identifier << ObjectType;
7618       if (isSFINAEContext())
7619         return ExprError();
7620 
7621       // Recover by assuming we had the right type all along.
7622       DestructedType = ObjectType;
7623     } else
7624       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7625   } else {
7626     // Resolve the template-id to a type.
7627     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7628     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7629                                        TemplateId->NumArgs);
7630     TypeResult T = ActOnTemplateIdType(S,
7631                                        SS,
7632                                        TemplateId->TemplateKWLoc,
7633                                        TemplateId->Template,
7634                                        TemplateId->Name,
7635                                        TemplateId->TemplateNameLoc,
7636                                        TemplateId->LAngleLoc,
7637                                        TemplateArgsPtr,
7638                                        TemplateId->RAngleLoc,
7639                                        /*IsCtorOrDtorName*/true);
7640     if (T.isInvalid() || !T.get()) {
7641       // Recover by assuming we had the right type all along.
7642       DestructedType = ObjectType;
7643     } else
7644       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7645   }
7646 
7647   // If we've performed some kind of recovery, (re-)build the type source
7648   // information.
7649   if (!DestructedType.isNull()) {
7650     if (!DestructedTypeInfo)
7651       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7652                                                   SecondTypeName.StartLocation);
7653     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7654   }
7655 
7656   // Convert the name of the scope type (the type prior to '::') into a type.
7657   TypeSourceInfo *ScopeTypeInfo = nullptr;
7658   QualType ScopeType;
7659   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7660       FirstTypeName.Identifier) {
7661     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7662       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7663                                  FirstTypeName.StartLocation,
7664                                  S, &SS, true, false, ObjectTypePtrForLookup,
7665                                  /*IsCtorOrDtorName*/true);
7666       if (!T) {
7667         Diag(FirstTypeName.StartLocation,
7668              diag::err_pseudo_dtor_destructor_non_type)
7669           << FirstTypeName.Identifier << ObjectType;
7670 
7671         if (isSFINAEContext())
7672           return ExprError();
7673 
7674         // Just drop this type. It's unnecessary anyway.
7675         ScopeType = QualType();
7676       } else
7677         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7678     } else {
7679       // Resolve the template-id to a type.
7680       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7681       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7682                                          TemplateId->NumArgs);
7683       TypeResult T = ActOnTemplateIdType(S,
7684                                          SS,
7685                                          TemplateId->TemplateKWLoc,
7686                                          TemplateId->Template,
7687                                          TemplateId->Name,
7688                                          TemplateId->TemplateNameLoc,
7689                                          TemplateId->LAngleLoc,
7690                                          TemplateArgsPtr,
7691                                          TemplateId->RAngleLoc,
7692                                          /*IsCtorOrDtorName*/true);
7693       if (T.isInvalid() || !T.get()) {
7694         // Recover by dropping this type.
7695         ScopeType = QualType();
7696       } else
7697         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7698     }
7699   }
7700 
7701   if (!ScopeType.isNull() && !ScopeTypeInfo)
7702     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7703                                                   FirstTypeName.StartLocation);
7704 
7705 
7706   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7707                                    ScopeTypeInfo, CCLoc, TildeLoc,
7708                                    Destructed);
7709 }
7710 
7711 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7712                                            SourceLocation OpLoc,
7713                                            tok::TokenKind OpKind,
7714                                            SourceLocation TildeLoc,
7715                                            const DeclSpec& DS) {
7716   QualType ObjectType;
7717   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7718     return ExprError();
7719 
7720   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7721     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7722     return true;
7723   }
7724 
7725   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7726                                  false);
7727 
7728   TypeLocBuilder TLB;
7729   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7730   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7731   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7732   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7733 
7734   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7735                                    nullptr, SourceLocation(), TildeLoc,
7736                                    Destructed);
7737 }
7738 
7739 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7740                                         CXXConversionDecl *Method,
7741                                         bool HadMultipleCandidates) {
7742   // Convert the expression to match the conversion function's implicit object
7743   // parameter.
7744   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7745                                           FoundDecl, Method);
7746   if (Exp.isInvalid())
7747     return true;
7748 
7749   if (Method->getParent()->isLambda() &&
7750       Method->getConversionType()->isBlockPointerType()) {
7751     // This is a lambda conversion to block pointer; check if the argument
7752     // was a LambdaExpr.
7753     Expr *SubE = E;
7754     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7755     if (CE && CE->getCastKind() == CK_NoOp)
7756       SubE = CE->getSubExpr();
7757     SubE = SubE->IgnoreParens();
7758     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7759       SubE = BE->getSubExpr();
7760     if (isa<LambdaExpr>(SubE)) {
7761       // For the conversion to block pointer on a lambda expression, we
7762       // construct a special BlockLiteral instead; this doesn't really make
7763       // a difference in ARC, but outside of ARC the resulting block literal
7764       // follows the normal lifetime rules for block literals instead of being
7765       // autoreleased.
7766       PushExpressionEvaluationContext(
7767           ExpressionEvaluationContext::PotentiallyEvaluated);
7768       ExprResult BlockExp = BuildBlockForLambdaConversion(
7769           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7770       PopExpressionEvaluationContext();
7771 
7772       // FIXME: This note should be produced by a CodeSynthesisContext.
7773       if (BlockExp.isInvalid())
7774         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7775       return BlockExp;
7776     }
7777   }
7778 
7779   MemberExpr *ME =
7780       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7781                       NestedNameSpecifierLoc(), SourceLocation(), Method,
7782                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7783                       HadMultipleCandidates, DeclarationNameInfo(),
7784                       Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
7785 
7786   QualType ResultType = Method->getReturnType();
7787   ExprValueKind VK = Expr::getValueKindForType(ResultType);
7788   ResultType = ResultType.getNonLValueExprType(Context);
7789 
7790   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7791       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
7792       CurFPFeatureOverrides());
7793 
7794   if (CheckFunctionCall(Method, CE,
7795                         Method->getType()->castAs<FunctionProtoType>()))
7796     return ExprError();
7797 
7798   return CheckForImmediateInvocation(CE, CE->getMethodDecl());
7799 }
7800 
7801 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7802                                       SourceLocation RParen) {
7803   // If the operand is an unresolved lookup expression, the expression is ill-
7804   // formed per [over.over]p1, because overloaded function names cannot be used
7805   // without arguments except in explicit contexts.
7806   ExprResult R = CheckPlaceholderExpr(Operand);
7807   if (R.isInvalid())
7808     return R;
7809 
7810   R = CheckUnevaluatedOperand(R.get());
7811   if (R.isInvalid())
7812     return ExprError();
7813 
7814   Operand = R.get();
7815 
7816   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
7817       Operand->HasSideEffects(Context, false)) {
7818     // The expression operand for noexcept is in an unevaluated expression
7819     // context, so side effects could result in unintended consequences.
7820     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7821   }
7822 
7823   CanThrowResult CanThrow = canThrow(Operand);
7824   return new (Context)
7825       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7826 }
7827 
7828 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7829                                    Expr *Operand, SourceLocation RParen) {
7830   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7831 }
7832 
7833 static void MaybeDecrementCount(
7834     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
7835   DeclRefExpr *LHS = nullptr;
7836   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7837     if (BO->getLHS()->getType()->isDependentType() ||
7838         BO->getRHS()->getType()->isDependentType()) {
7839       if (BO->getOpcode() != BO_Assign)
7840         return;
7841     } else if (!BO->isAssignmentOp())
7842       return;
7843     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
7844   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
7845     if (COCE->getOperator() != OO_Equal)
7846       return;
7847     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
7848   }
7849   if (!LHS)
7850     return;
7851   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
7852   if (!VD)
7853     return;
7854   auto iter = RefsMinusAssignments.find(VD);
7855   if (iter == RefsMinusAssignments.end())
7856     return;
7857   iter->getSecond()--;
7858 }
7859 
7860 /// Perform the conversions required for an expression used in a
7861 /// context that ignores the result.
7862 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7863   MaybeDecrementCount(E, RefsMinusAssignments);
7864 
7865   if (E->hasPlaceholderType()) {
7866     ExprResult result = CheckPlaceholderExpr(E);
7867     if (result.isInvalid()) return E;
7868     E = result.get();
7869   }
7870 
7871   // C99 6.3.2.1:
7872   //   [Except in specific positions,] an lvalue that does not have
7873   //   array type is converted to the value stored in the
7874   //   designated object (and is no longer an lvalue).
7875   if (E->isPRValue()) {
7876     // In C, function designators (i.e. expressions of function type)
7877     // are r-values, but we still want to do function-to-pointer decay
7878     // on them.  This is both technically correct and convenient for
7879     // some clients.
7880     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7881       return DefaultFunctionArrayConversion(E);
7882 
7883     return E;
7884   }
7885 
7886   if (getLangOpts().CPlusPlus) {
7887     // The C++11 standard defines the notion of a discarded-value expression;
7888     // normally, we don't need to do anything to handle it, but if it is a
7889     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7890     // conversion.
7891     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
7892       ExprResult Res = DefaultLvalueConversion(E);
7893       if (Res.isInvalid())
7894         return E;
7895       E = Res.get();
7896     } else {
7897       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7898       // it occurs as a discarded-value expression.
7899       CheckUnusedVolatileAssignment(E);
7900     }
7901 
7902     // C++1z:
7903     //   If the expression is a prvalue after this optional conversion, the
7904     //   temporary materialization conversion is applied.
7905     //
7906     // We skip this step: IR generation is able to synthesize the storage for
7907     // itself in the aggregate case, and adding the extra node to the AST is
7908     // just clutter.
7909     // FIXME: We don't emit lifetime markers for the temporaries due to this.
7910     // FIXME: Do any other AST consumers care about this?
7911     return E;
7912   }
7913 
7914   // GCC seems to also exclude expressions of incomplete enum type.
7915   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7916     if (!T->getDecl()->isComplete()) {
7917       // FIXME: stupid workaround for a codegen bug!
7918       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7919       return E;
7920     }
7921   }
7922 
7923   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7924   if (Res.isInvalid())
7925     return E;
7926   E = Res.get();
7927 
7928   if (!E->getType()->isVoidType())
7929     RequireCompleteType(E->getExprLoc(), E->getType(),
7930                         diag::err_incomplete_type);
7931   return E;
7932 }
7933 
7934 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
7935   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7936   // it occurs as an unevaluated operand.
7937   CheckUnusedVolatileAssignment(E);
7938 
7939   return E;
7940 }
7941 
7942 // If we can unambiguously determine whether Var can never be used
7943 // in a constant expression, return true.
7944 //  - if the variable and its initializer are non-dependent, then
7945 //    we can unambiguously check if the variable is a constant expression.
7946 //  - if the initializer is not value dependent - we can determine whether
7947 //    it can be used to initialize a constant expression.  If Init can not
7948 //    be used to initialize a constant expression we conclude that Var can
7949 //    never be a constant expression.
7950 //  - FXIME: if the initializer is dependent, we can still do some analysis and
7951 //    identify certain cases unambiguously as non-const by using a Visitor:
7952 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
7953 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
7954 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7955     ASTContext &Context) {
7956   if (isa<ParmVarDecl>(Var)) return true;
7957   const VarDecl *DefVD = nullptr;
7958 
7959   // If there is no initializer - this can not be a constant expression.
7960   if (!Var->getAnyInitializer(DefVD)) return true;
7961   assert(DefVD);
7962   if (DefVD->isWeak()) return false;
7963   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
7964 
7965   Expr *Init = cast<Expr>(Eval->Value);
7966 
7967   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
7968     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
7969     // of value-dependent expressions, and use it here to determine whether the
7970     // initializer is a potential constant expression.
7971     return false;
7972   }
7973 
7974   return !Var->isUsableInConstantExpressions(Context);
7975 }
7976 
7977 /// Check if the current lambda has any potential captures
7978 /// that must be captured by any of its enclosing lambdas that are ready to
7979 /// capture. If there is a lambda that can capture a nested
7980 /// potential-capture, go ahead and do so.  Also, check to see if any
7981 /// variables are uncaptureable or do not involve an odr-use so do not
7982 /// need to be captured.
7983 
7984 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7985     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7986 
7987   assert(!S.isUnevaluatedContext());
7988   assert(S.CurContext->isDependentContext());
7989 #ifndef NDEBUG
7990   DeclContext *DC = S.CurContext;
7991   while (DC && isa<CapturedDecl>(DC))
7992     DC = DC->getParent();
7993   assert(
7994       CurrentLSI->CallOperator == DC &&
7995       "The current call operator must be synchronized with Sema's CurContext");
7996 #endif // NDEBUG
7997 
7998   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7999 
8000   // All the potentially captureable variables in the current nested
8001   // lambda (within a generic outer lambda), must be captured by an
8002   // outer lambda that is enclosed within a non-dependent context.
8003   CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
8004     // If the variable is clearly identified as non-odr-used and the full
8005     // expression is not instantiation dependent, only then do we not
8006     // need to check enclosing lambda's for speculative captures.
8007     // For e.g.:
8008     // Even though 'x' is not odr-used, it should be captured.
8009     // int test() {
8010     //   const int x = 10;
8011     //   auto L = [=](auto a) {
8012     //     (void) +x + a;
8013     //   };
8014     // }
8015     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8016         !IsFullExprInstantiationDependent)
8017       return;
8018 
8019     // If we have a capture-capable lambda for the variable, go ahead and
8020     // capture the variable in that lambda (and all its enclosing lambdas).
8021     if (const Optional<unsigned> Index =
8022             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8023                 S.FunctionScopes, Var, S))
8024       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
8025                                           Index.getValue());
8026     const bool IsVarNeverAConstantExpression =
8027         VariableCanNeverBeAConstantExpression(Var, S.Context);
8028     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8029       // This full expression is not instantiation dependent or the variable
8030       // can not be used in a constant expression - which means
8031       // this variable must be odr-used here, so diagnose a
8032       // capture violation early, if the variable is un-captureable.
8033       // This is purely for diagnosing errors early.  Otherwise, this
8034       // error would get diagnosed when the lambda becomes capture ready.
8035       QualType CaptureType, DeclRefType;
8036       SourceLocation ExprLoc = VarExpr->getExprLoc();
8037       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8038                           /*EllipsisLoc*/ SourceLocation(),
8039                           /*BuildAndDiagnose*/false, CaptureType,
8040                           DeclRefType, nullptr)) {
8041         // We will never be able to capture this variable, and we need
8042         // to be able to in any and all instantiations, so diagnose it.
8043         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8044                           /*EllipsisLoc*/ SourceLocation(),
8045                           /*BuildAndDiagnose*/true, CaptureType,
8046                           DeclRefType, nullptr);
8047       }
8048     }
8049   });
8050 
8051   // Check if 'this' needs to be captured.
8052   if (CurrentLSI->hasPotentialThisCapture()) {
8053     // If we have a capture-capable lambda for 'this', go ahead and capture
8054     // 'this' in that lambda (and all its enclosing lambdas).
8055     if (const Optional<unsigned> Index =
8056             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8057                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8058       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
8059       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8060                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8061                             &FunctionScopeIndexOfCapturableLambda);
8062     }
8063   }
8064 
8065   // Reset all the potential captures at the end of each full-expression.
8066   CurrentLSI->clearPotentialCaptures();
8067 }
8068 
8069 static ExprResult attemptRecovery(Sema &SemaRef,
8070                                   const TypoCorrectionConsumer &Consumer,
8071                                   const TypoCorrection &TC) {
8072   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8073                  Consumer.getLookupResult().getLookupKind());
8074   const CXXScopeSpec *SS = Consumer.getSS();
8075   CXXScopeSpec NewSS;
8076 
8077   // Use an approprate CXXScopeSpec for building the expr.
8078   if (auto *NNS = TC.getCorrectionSpecifier())
8079     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8080   else if (SS && !TC.WillReplaceSpecifier())
8081     NewSS = *SS;
8082 
8083   if (auto *ND = TC.getFoundDecl()) {
8084     R.setLookupName(ND->getDeclName());
8085     R.addDecl(ND);
8086     if (ND->isCXXClassMember()) {
8087       // Figure out the correct naming class to add to the LookupResult.
8088       CXXRecordDecl *Record = nullptr;
8089       if (auto *NNS = TC.getCorrectionSpecifier())
8090         Record = NNS->getAsType()->getAsCXXRecordDecl();
8091       if (!Record)
8092         Record =
8093             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8094       if (Record)
8095         R.setNamingClass(Record);
8096 
8097       // Detect and handle the case where the decl might be an implicit
8098       // member.
8099       bool MightBeImplicitMember;
8100       if (!Consumer.isAddressOfOperand())
8101         MightBeImplicitMember = true;
8102       else if (!NewSS.isEmpty())
8103         MightBeImplicitMember = false;
8104       else if (R.isOverloadedResult())
8105         MightBeImplicitMember = false;
8106       else if (R.isUnresolvableResult())
8107         MightBeImplicitMember = true;
8108       else
8109         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8110                                 isa<IndirectFieldDecl>(ND) ||
8111                                 isa<MSPropertyDecl>(ND);
8112 
8113       if (MightBeImplicitMember)
8114         return SemaRef.BuildPossibleImplicitMemberExpr(
8115             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8116             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8117     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8118       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8119                                         Ivar->getIdentifier());
8120     }
8121   }
8122 
8123   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8124                                           /*AcceptInvalidDecl*/ true);
8125 }
8126 
8127 namespace {
8128 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8129   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8130 
8131 public:
8132   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8133       : TypoExprs(TypoExprs) {}
8134   bool VisitTypoExpr(TypoExpr *TE) {
8135     TypoExprs.insert(TE);
8136     return true;
8137   }
8138 };
8139 
8140 class TransformTypos : public TreeTransform<TransformTypos> {
8141   typedef TreeTransform<TransformTypos> BaseTransform;
8142 
8143   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8144                      // process of being initialized.
8145   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8146   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8147   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8148   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8149 
8150   /// Emit diagnostics for all of the TypoExprs encountered.
8151   ///
8152   /// If the TypoExprs were successfully corrected, then the diagnostics should
8153   /// suggest the corrections. Otherwise the diagnostics will not suggest
8154   /// anything (having been passed an empty TypoCorrection).
8155   ///
8156   /// If we've failed to correct due to ambiguous corrections, we need to
8157   /// be sure to pass empty corrections and replacements. Otherwise it's
8158   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8159   /// and we don't want to report those diagnostics.
8160   void EmitAllDiagnostics(bool IsAmbiguous) {
8161     for (TypoExpr *TE : TypoExprs) {
8162       auto &State = SemaRef.getTypoExprState(TE);
8163       if (State.DiagHandler) {
8164         TypoCorrection TC = IsAmbiguous
8165             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8166         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8167 
8168         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8169         // TypoCorrection, replacing the existing decls. This ensures the right
8170         // NamedDecl is used in diagnostics e.g. in the case where overload
8171         // resolution was used to select one from several possible decls that
8172         // had been stored in the TypoCorrection.
8173         if (auto *ND = getDeclFromExpr(
8174                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8175           TC.setCorrectionDecl(ND);
8176 
8177         State.DiagHandler(TC);
8178       }
8179       SemaRef.clearDelayedTypo(TE);
8180     }
8181   }
8182 
8183   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8184   /// We allow advancement of the correction stream by removing it from the
8185   /// TransformCache which allows `TransformTypoExpr` to advance during the
8186   /// next transformation attempt.
8187   ///
8188   /// Any substitution attempts for the previous TypoExprs (which must have been
8189   /// finished) will need to be retried since it's possible that they will now
8190   /// be invalid given the latest advancement.
8191   ///
8192   /// We need to be sure that we're making progress - it's possible that the
8193   /// tree is so malformed that the transform never makes it to the
8194   /// `TransformTypoExpr`.
8195   ///
8196   /// Returns true if there are any untried correction combinations.
8197   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8198     for (auto TE : TypoExprs) {
8199       auto &State = SemaRef.getTypoExprState(TE);
8200       TransformCache.erase(TE);
8201       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8202         return false;
8203       if (!State.Consumer->finished())
8204         return true;
8205       State.Consumer->resetCorrectionStream();
8206     }
8207     return false;
8208   }
8209 
8210   NamedDecl *getDeclFromExpr(Expr *E) {
8211     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8212       E = OverloadResolution[OE];
8213 
8214     if (!E)
8215       return nullptr;
8216     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8217       return DRE->getFoundDecl();
8218     if (auto *ME = dyn_cast<MemberExpr>(E))
8219       return ME->getFoundDecl();
8220     // FIXME: Add any other expr types that could be be seen by the delayed typo
8221     // correction TreeTransform for which the corresponding TypoCorrection could
8222     // contain multiple decls.
8223     return nullptr;
8224   }
8225 
8226   ExprResult TryTransform(Expr *E) {
8227     Sema::SFINAETrap Trap(SemaRef);
8228     ExprResult Res = TransformExpr(E);
8229     if (Trap.hasErrorOccurred() || Res.isInvalid())
8230       return ExprError();
8231 
8232     return ExprFilter(Res.get());
8233   }
8234 
8235   // Since correcting typos may intoduce new TypoExprs, this function
8236   // checks for new TypoExprs and recurses if it finds any. Note that it will
8237   // only succeed if it is able to correct all typos in the given expression.
8238   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8239     if (Res.isInvalid()) {
8240       return Res;
8241     }
8242     // Check to see if any new TypoExprs were created. If so, we need to recurse
8243     // to check their validity.
8244     Expr *FixedExpr = Res.get();
8245 
8246     auto SavedTypoExprs = std::move(TypoExprs);
8247     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8248     TypoExprs.clear();
8249     AmbiguousTypoExprs.clear();
8250 
8251     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8252     if (!TypoExprs.empty()) {
8253       // Recurse to handle newly created TypoExprs. If we're not able to
8254       // handle them, discard these TypoExprs.
8255       ExprResult RecurResult =
8256           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8257       if (RecurResult.isInvalid()) {
8258         Res = ExprError();
8259         // Recursive corrections didn't work, wipe them away and don't add
8260         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8261         // since we don't want to clear them twice. Note: it's possible the
8262         // TypoExprs were created recursively and thus won't be in our
8263         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8264         auto &SemaTypoExprs = SemaRef.TypoExprs;
8265         for (auto TE : TypoExprs) {
8266           TransformCache.erase(TE);
8267           SemaRef.clearDelayedTypo(TE);
8268 
8269           auto SI = find(SemaTypoExprs, TE);
8270           if (SI != SemaTypoExprs.end()) {
8271             SemaTypoExprs.erase(SI);
8272           }
8273         }
8274       } else {
8275         // TypoExpr is valid: add newly created TypoExprs since we were
8276         // able to correct them.
8277         Res = RecurResult;
8278         SavedTypoExprs.set_union(TypoExprs);
8279       }
8280     }
8281 
8282     TypoExprs = std::move(SavedTypoExprs);
8283     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8284 
8285     return Res;
8286   }
8287 
8288   // Try to transform the given expression, looping through the correction
8289   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8290   //
8291   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8292   // true and this method immediately will return an `ExprError`.
8293   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8294     ExprResult Res;
8295     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8296     SemaRef.TypoExprs.clear();
8297 
8298     while (true) {
8299       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8300 
8301       // Recursion encountered an ambiguous correction. This means that our
8302       // correction itself is ambiguous, so stop now.
8303       if (IsAmbiguous)
8304         break;
8305 
8306       // If the transform is still valid after checking for any new typos,
8307       // it's good to go.
8308       if (!Res.isInvalid())
8309         break;
8310 
8311       // The transform was invalid, see if we have any TypoExprs with untried
8312       // correction candidates.
8313       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8314         break;
8315     }
8316 
8317     // If we found a valid result, double check to make sure it's not ambiguous.
8318     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8319       auto SavedTransformCache =
8320           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8321 
8322       // Ensure none of the TypoExprs have multiple typo correction candidates
8323       // with the same edit length that pass all the checks and filters.
8324       while (!AmbiguousTypoExprs.empty()) {
8325         auto TE  = AmbiguousTypoExprs.back();
8326 
8327         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8328         // and invalidating our TypoExprState, so always fetch it instead of storing.
8329         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8330 
8331         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8332         TypoCorrection Next;
8333         do {
8334           // Fetch the next correction by erasing the typo from the cache and calling
8335           // `TryTransform` which will iterate through corrections in
8336           // `TransformTypoExpr`.
8337           TransformCache.erase(TE);
8338           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8339 
8340           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8341             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8342             SavedTransformCache.erase(TE);
8343             Res = ExprError();
8344             IsAmbiguous = true;
8345             break;
8346           }
8347         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8348                  Next.getEditDistance(false) == TC.getEditDistance(false));
8349 
8350         if (IsAmbiguous)
8351           break;
8352 
8353         AmbiguousTypoExprs.remove(TE);
8354         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8355         TransformCache[TE] = SavedTransformCache[TE];
8356       }
8357       TransformCache = std::move(SavedTransformCache);
8358     }
8359 
8360     // Wipe away any newly created TypoExprs that we don't know about. Since we
8361     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8362     // possible if a `TypoExpr` is created during a transformation but then
8363     // fails before we can discover it.
8364     auto &SemaTypoExprs = SemaRef.TypoExprs;
8365     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8366       auto TE = *Iterator;
8367       auto FI = find(TypoExprs, TE);
8368       if (FI != TypoExprs.end()) {
8369         Iterator++;
8370         continue;
8371       }
8372       SemaRef.clearDelayedTypo(TE);
8373       Iterator = SemaTypoExprs.erase(Iterator);
8374     }
8375     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8376 
8377     return Res;
8378   }
8379 
8380 public:
8381   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8382       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8383 
8384   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8385                                    MultiExprArg Args,
8386                                    SourceLocation RParenLoc,
8387                                    Expr *ExecConfig = nullptr) {
8388     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8389                                                  RParenLoc, ExecConfig);
8390     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8391       if (Result.isUsable()) {
8392         Expr *ResultCall = Result.get();
8393         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8394           ResultCall = BE->getSubExpr();
8395         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8396           OverloadResolution[OE] = CE->getCallee();
8397       }
8398     }
8399     return Result;
8400   }
8401 
8402   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8403 
8404   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8405 
8406   ExprResult Transform(Expr *E) {
8407     bool IsAmbiguous = false;
8408     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8409 
8410     if (!Res.isUsable())
8411       FindTypoExprs(TypoExprs).TraverseStmt(E);
8412 
8413     EmitAllDiagnostics(IsAmbiguous);
8414 
8415     return Res;
8416   }
8417 
8418   ExprResult TransformTypoExpr(TypoExpr *E) {
8419     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8420     // cached transformation result if there is one and the TypoExpr isn't the
8421     // first one that was encountered.
8422     auto &CacheEntry = TransformCache[E];
8423     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8424       return CacheEntry;
8425     }
8426 
8427     auto &State = SemaRef.getTypoExprState(E);
8428     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8429 
8430     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8431     // typo correction and return it.
8432     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8433       if (InitDecl && TC.getFoundDecl() == InitDecl)
8434         continue;
8435       // FIXME: If we would typo-correct to an invalid declaration, it's
8436       // probably best to just suppress all errors from this typo correction.
8437       ExprResult NE = State.RecoveryHandler ?
8438           State.RecoveryHandler(SemaRef, E, TC) :
8439           attemptRecovery(SemaRef, *State.Consumer, TC);
8440       if (!NE.isInvalid()) {
8441         // Check whether there may be a second viable correction with the same
8442         // edit distance; if so, remember this TypoExpr may have an ambiguous
8443         // correction so it can be more thoroughly vetted later.
8444         TypoCorrection Next;
8445         if ((Next = State.Consumer->peekNextCorrection()) &&
8446             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8447           AmbiguousTypoExprs.insert(E);
8448         } else {
8449           AmbiguousTypoExprs.remove(E);
8450         }
8451         assert(!NE.isUnset() &&
8452                "Typo was transformed into a valid-but-null ExprResult");
8453         return CacheEntry = NE;
8454       }
8455     }
8456     return CacheEntry = ExprError();
8457   }
8458 };
8459 }
8460 
8461 ExprResult
8462 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8463                                 bool RecoverUncorrectedTypos,
8464                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8465   // If the current evaluation context indicates there are uncorrected typos
8466   // and the current expression isn't guaranteed to not have typos, try to
8467   // resolve any TypoExpr nodes that might be in the expression.
8468   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8469       (E->isTypeDependent() || E->isValueDependent() ||
8470        E->isInstantiationDependent())) {
8471     auto TyposResolved = DelayedTypos.size();
8472     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8473     TyposResolved -= DelayedTypos.size();
8474     if (Result.isInvalid() || Result.get() != E) {
8475       ExprEvalContexts.back().NumTypos -= TyposResolved;
8476       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8477         struct TyposReplace : TreeTransform<TyposReplace> {
8478           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8479           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8480             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8481                                                     E->getEndLoc(), {});
8482           }
8483         } TT(*this);
8484         return TT.TransformExpr(E);
8485       }
8486       return Result;
8487     }
8488     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8489   }
8490   return E;
8491 }
8492 
8493 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8494                                      bool DiscardedValue,
8495                                      bool IsConstexpr) {
8496   ExprResult FullExpr = FE;
8497 
8498   if (!FullExpr.get())
8499     return ExprError();
8500 
8501   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
8502     return ExprError();
8503 
8504   if (DiscardedValue) {
8505     // Top-level expressions default to 'id' when we're in a debugger.
8506     if (getLangOpts().DebuggerCastResultToId &&
8507         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8508       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8509       if (FullExpr.isInvalid())
8510         return ExprError();
8511     }
8512 
8513     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8514     if (FullExpr.isInvalid())
8515       return ExprError();
8516 
8517     FullExpr = IgnoredValueConversions(FullExpr.get());
8518     if (FullExpr.isInvalid())
8519       return ExprError();
8520 
8521     DiagnoseUnusedExprResult(FullExpr.get());
8522   }
8523 
8524   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8525                                        /*RecoverUncorrectedTypos=*/true);
8526   if (FullExpr.isInvalid())
8527     return ExprError();
8528 
8529   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8530 
8531   // At the end of this full expression (which could be a deeply nested
8532   // lambda), if there is a potential capture within the nested lambda,
8533   // have the outer capture-able lambda try and capture it.
8534   // Consider the following code:
8535   // void f(int, int);
8536   // void f(const int&, double);
8537   // void foo() {
8538   //  const int x = 10, y = 20;
8539   //  auto L = [=](auto a) {
8540   //      auto M = [=](auto b) {
8541   //         f(x, b); <-- requires x to be captured by L and M
8542   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8543   //      };
8544   //   };
8545   // }
8546 
8547   // FIXME: Also consider what happens for something like this that involves
8548   // the gnu-extension statement-expressions or even lambda-init-captures:
8549   //   void f() {
8550   //     const int n = 0;
8551   //     auto L =  [&](auto a) {
8552   //       +n + ({ 0; a; });
8553   //     };
8554   //   }
8555   //
8556   // Here, we see +n, and then the full-expression 0; ends, so we don't
8557   // capture n (and instead remove it from our list of potential captures),
8558   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8559   // for us to see that we need to capture n after all.
8560 
8561   LambdaScopeInfo *const CurrentLSI =
8562       getCurLambda(/*IgnoreCapturedRegions=*/true);
8563   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8564   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8565   // for an example of the code that might cause this asynchrony.
8566   // By ensuring we are in the context of a lambda's call operator
8567   // we can fix the bug (we only need to check whether we need to capture
8568   // if we are within a lambda's body); but per the comments in that
8569   // PR, a proper fix would entail :
8570   //   "Alternative suggestion:
8571   //   - Add to Sema an integer holding the smallest (outermost) scope
8572   //     index that we are *lexically* within, and save/restore/set to
8573   //     FunctionScopes.size() in InstantiatingTemplate's
8574   //     constructor/destructor.
8575   //  - Teach the handful of places that iterate over FunctionScopes to
8576   //    stop at the outermost enclosing lexical scope."
8577   DeclContext *DC = CurContext;
8578   while (DC && isa<CapturedDecl>(DC))
8579     DC = DC->getParent();
8580   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8581   if (IsInLambdaDeclContext && CurrentLSI &&
8582       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8583     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8584                                                               *this);
8585   return MaybeCreateExprWithCleanups(FullExpr);
8586 }
8587 
8588 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8589   if (!FullStmt) return StmtError();
8590 
8591   return MaybeCreateStmtWithCleanups(FullStmt);
8592 }
8593 
8594 Sema::IfExistsResult
8595 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8596                                    CXXScopeSpec &SS,
8597                                    const DeclarationNameInfo &TargetNameInfo) {
8598   DeclarationName TargetName = TargetNameInfo.getName();
8599   if (!TargetName)
8600     return IER_DoesNotExist;
8601 
8602   // If the name itself is dependent, then the result is dependent.
8603   if (TargetName.isDependentName())
8604     return IER_Dependent;
8605 
8606   // Do the redeclaration lookup in the current scope.
8607   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8608                  Sema::NotForRedeclaration);
8609   LookupParsedName(R, S, &SS);
8610   R.suppressDiagnostics();
8611 
8612   switch (R.getResultKind()) {
8613   case LookupResult::Found:
8614   case LookupResult::FoundOverloaded:
8615   case LookupResult::FoundUnresolvedValue:
8616   case LookupResult::Ambiguous:
8617     return IER_Exists;
8618 
8619   case LookupResult::NotFound:
8620     return IER_DoesNotExist;
8621 
8622   case LookupResult::NotFoundInCurrentInstantiation:
8623     return IER_Dependent;
8624   }
8625 
8626   llvm_unreachable("Invalid LookupResult Kind!");
8627 }
8628 
8629 Sema::IfExistsResult
8630 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8631                                    bool IsIfExists, CXXScopeSpec &SS,
8632                                    UnqualifiedId &Name) {
8633   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8634 
8635   // Check for an unexpanded parameter pack.
8636   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8637   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8638       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8639     return IER_Error;
8640 
8641   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8642 }
8643 
8644 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8645   return BuildExprRequirement(E, /*IsSimple=*/true,
8646                               /*NoexceptLoc=*/SourceLocation(),
8647                               /*ReturnTypeRequirement=*/{});
8648 }
8649 
8650 concepts::Requirement *
8651 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8652                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8653                            TemplateIdAnnotation *TemplateId) {
8654   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8655          "Exactly one of TypeName and TemplateId must be specified.");
8656   TypeSourceInfo *TSI = nullptr;
8657   if (TypeName) {
8658     QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8659                                    SS.getWithLocInContext(Context), *TypeName,
8660                                    NameLoc, &TSI, /*DeducedTypeContext=*/false);
8661     if (T.isNull())
8662       return nullptr;
8663   } else {
8664     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8665                                TemplateId->NumArgs);
8666     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8667                                      TemplateId->TemplateKWLoc,
8668                                      TemplateId->Template, TemplateId->Name,
8669                                      TemplateId->TemplateNameLoc,
8670                                      TemplateId->LAngleLoc, ArgsPtr,
8671                                      TemplateId->RAngleLoc);
8672     if (T.isInvalid())
8673       return nullptr;
8674     if (GetTypeFromParser(T.get(), &TSI).isNull())
8675       return nullptr;
8676   }
8677   return BuildTypeRequirement(TSI);
8678 }
8679 
8680 concepts::Requirement *
8681 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8682   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8683                               /*ReturnTypeRequirement=*/{});
8684 }
8685 
8686 concepts::Requirement *
8687 Sema::ActOnCompoundRequirement(
8688     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8689     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8690   // C++2a [expr.prim.req.compound] p1.3.3
8691   //   [..] the expression is deduced against an invented function template
8692   //   F [...] F is a void function template with a single type template
8693   //   parameter T declared with the constrained-parameter. Form a new
8694   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
8695   //   around the constrained-parameter. F has a single parameter whose
8696   //   type-specifier is cv T followed by the abstract-declarator. [...]
8697   //
8698   // The cv part is done in the calling function - we get the concept with
8699   // arguments and the abstract declarator with the correct CV qualification and
8700   // have to synthesize T and the single parameter of F.
8701   auto &II = Context.Idents.get("expr-type");
8702   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8703                                               SourceLocation(),
8704                                               SourceLocation(), Depth,
8705                                               /*Index=*/0, &II,
8706                                               /*Typename=*/true,
8707                                               /*ParameterPack=*/false,
8708                                               /*HasTypeConstraint=*/true);
8709 
8710   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8711                           /*EllpsisLoc=*/SourceLocation(),
8712                           /*AllowUnexpandedPack=*/true))
8713     // Just produce a requirement with no type requirements.
8714     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8715 
8716   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8717                                             SourceLocation(),
8718                                             ArrayRef<NamedDecl *>(TParam),
8719                                             SourceLocation(),
8720                                             /*RequiresClause=*/nullptr);
8721   return BuildExprRequirement(
8722       E, /*IsSimple=*/false, NoexceptLoc,
8723       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
8724 }
8725 
8726 concepts::ExprRequirement *
8727 Sema::BuildExprRequirement(
8728     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
8729     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8730   auto Status = concepts::ExprRequirement::SS_Satisfied;
8731   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
8732   if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
8733     Status = concepts::ExprRequirement::SS_Dependent;
8734   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
8735     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
8736   else if (ReturnTypeRequirement.isSubstitutionFailure())
8737     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
8738   else if (ReturnTypeRequirement.isTypeConstraint()) {
8739     // C++2a [expr.prim.req]p1.3.3
8740     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
8741     //     be satisfied.
8742     TemplateParameterList *TPL =
8743         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
8744     QualType MatchedType =
8745         getDecltypeForParenthesizedExpr(E).getCanonicalType();
8746     llvm::SmallVector<TemplateArgument, 1> Args;
8747     Args.push_back(TemplateArgument(MatchedType));
8748     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
8749     MultiLevelTemplateArgumentList MLTAL(TAL);
8750     for (unsigned I = 0; I < TPL->getDepth(); ++I)
8751       MLTAL.addOuterRetainedLevel();
8752     Expr *IDC =
8753         cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
8754             ->getImmediatelyDeclaredConstraint();
8755     ExprResult Constraint = SubstExpr(IDC, MLTAL);
8756     assert(!Constraint.isInvalid() &&
8757            "Substitution cannot fail as it is simply putting a type template "
8758            "argument into a concept specialization expression's parameter.");
8759 
8760     SubstitutedConstraintExpr =
8761         cast<ConceptSpecializationExpr>(Constraint.get());
8762     if (!SubstitutedConstraintExpr->isSatisfied())
8763       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
8764   }
8765   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
8766                                                  ReturnTypeRequirement, Status,
8767                                                  SubstitutedConstraintExpr);
8768 }
8769 
8770 concepts::ExprRequirement *
8771 Sema::BuildExprRequirement(
8772     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
8773     bool IsSimple, SourceLocation NoexceptLoc,
8774     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8775   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
8776                                                  IsSimple, NoexceptLoc,
8777                                                  ReturnTypeRequirement);
8778 }
8779 
8780 concepts::TypeRequirement *
8781 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
8782   return new (Context) concepts::TypeRequirement(Type);
8783 }
8784 
8785 concepts::TypeRequirement *
8786 Sema::BuildTypeRequirement(
8787     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8788   return new (Context) concepts::TypeRequirement(SubstDiag);
8789 }
8790 
8791 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
8792   return BuildNestedRequirement(Constraint);
8793 }
8794 
8795 concepts::NestedRequirement *
8796 Sema::BuildNestedRequirement(Expr *Constraint) {
8797   ConstraintSatisfaction Satisfaction;
8798   if (!Constraint->isInstantiationDependent() &&
8799       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
8800                                   Constraint->getSourceRange(), Satisfaction))
8801     return nullptr;
8802   return new (Context) concepts::NestedRequirement(Context, Constraint,
8803                                                    Satisfaction);
8804 }
8805 
8806 concepts::NestedRequirement *
8807 Sema::BuildNestedRequirement(
8808     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8809   return new (Context) concepts::NestedRequirement(SubstDiag);
8810 }
8811 
8812 RequiresExprBodyDecl *
8813 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
8814                              ArrayRef<ParmVarDecl *> LocalParameters,
8815                              Scope *BodyScope) {
8816   assert(BodyScope);
8817 
8818   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
8819                                                             RequiresKWLoc);
8820 
8821   PushDeclContext(BodyScope, Body);
8822 
8823   for (ParmVarDecl *Param : LocalParameters) {
8824     if (Param->hasDefaultArg())
8825       // C++2a [expr.prim.req] p4
8826       //     [...] A local parameter of a requires-expression shall not have a
8827       //     default argument. [...]
8828       Diag(Param->getDefaultArgRange().getBegin(),
8829            diag::err_requires_expr_local_parameter_default_argument);
8830     // Ignore default argument and move on
8831 
8832     Param->setDeclContext(Body);
8833     // If this has an identifier, add it to the scope stack.
8834     if (Param->getIdentifier()) {
8835       CheckShadow(BodyScope, Param);
8836       PushOnScopeChains(Param, BodyScope);
8837     }
8838   }
8839   return Body;
8840 }
8841 
8842 void Sema::ActOnFinishRequiresExpr() {
8843   assert(CurContext && "DeclContext imbalance!");
8844   CurContext = CurContext->getLexicalParent();
8845   assert(CurContext && "Popped translation unit!");
8846 }
8847 
8848 ExprResult
8849 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8850                         RequiresExprBodyDecl *Body,
8851                         ArrayRef<ParmVarDecl *> LocalParameters,
8852                         ArrayRef<concepts::Requirement *> Requirements,
8853                         SourceLocation ClosingBraceLoc) {
8854   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
8855                                   Requirements, ClosingBraceLoc);
8856   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
8857     return ExprError();
8858   return RE;
8859 }
8860