1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaInternal.h"
42 #include "clang/Sema/SemaLambda.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateDeduction.h"
45 #include "llvm/ADT/APInt.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/TypeSize.h"
50 #include <optional>
51 using namespace clang;
52 using namespace sema;
53 
54 /// Handle the result of the special case name lookup for inheriting
55 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
56 /// constructor names in member using declarations, even if 'X' is not the
57 /// name of the corresponding type.
58 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
59                                               SourceLocation NameLoc,
60                                               IdentifierInfo &Name) {
61   NestedNameSpecifier *NNS = SS.getScopeRep();
62 
63   // Convert the nested-name-specifier into a type.
64   QualType Type;
65   switch (NNS->getKind()) {
66   case NestedNameSpecifier::TypeSpec:
67   case NestedNameSpecifier::TypeSpecWithTemplate:
68     Type = QualType(NNS->getAsType(), 0);
69     break;
70 
71   case NestedNameSpecifier::Identifier:
72     // Strip off the last layer of the nested-name-specifier and build a
73     // typename type for it.
74     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
75     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
76                                         NNS->getAsIdentifier());
77     break;
78 
79   case NestedNameSpecifier::Global:
80   case NestedNameSpecifier::Super:
81   case NestedNameSpecifier::Namespace:
82   case NestedNameSpecifier::NamespaceAlias:
83     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
84   }
85 
86   // This reference to the type is located entirely at the location of the
87   // final identifier in the qualified-id.
88   return CreateParsedType(Type,
89                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
90 }
91 
92 ParsedType Sema::getConstructorName(IdentifierInfo &II,
93                                     SourceLocation NameLoc,
94                                     Scope *S, CXXScopeSpec &SS,
95                                     bool EnteringContext) {
96   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
97   assert(CurClass && &II == CurClass->getIdentifier() &&
98          "not a constructor name");
99 
100   // When naming a constructor as a member of a dependent context (eg, in a
101   // friend declaration or an inherited constructor declaration), form an
102   // unresolved "typename" type.
103   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
104     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
105     return ParsedType::make(T);
106   }
107 
108   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
109     return ParsedType();
110 
111   // Find the injected-class-name declaration. Note that we make no attempt to
112   // diagnose cases where the injected-class-name is shadowed: the only
113   // declaration that can validly shadow the injected-class-name is a
114   // non-static data member, and if the class contains both a non-static data
115   // member and a constructor then it is ill-formed (we check that in
116   // CheckCompletedCXXClass).
117   CXXRecordDecl *InjectedClassName = nullptr;
118   for (NamedDecl *ND : CurClass->lookup(&II)) {
119     auto *RD = dyn_cast<CXXRecordDecl>(ND);
120     if (RD && RD->isInjectedClassName()) {
121       InjectedClassName = RD;
122       break;
123     }
124   }
125   if (!InjectedClassName) {
126     if (!CurClass->isInvalidDecl()) {
127       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
128       // properly. Work around it here for now.
129       Diag(SS.getLastQualifierNameLoc(),
130            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
131     }
132     return ParsedType();
133   }
134 
135   QualType T = Context.getTypeDeclType(InjectedClassName);
136   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
137   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
138 
139   return ParsedType::make(T);
140 }
141 
142 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
143                                    IdentifierInfo &II,
144                                    SourceLocation NameLoc,
145                                    Scope *S, CXXScopeSpec &SS,
146                                    ParsedType ObjectTypePtr,
147                                    bool EnteringContext) {
148   // Determine where to perform name lookup.
149 
150   // FIXME: This area of the standard is very messy, and the current
151   // wording is rather unclear about which scopes we search for the
152   // destructor name; see core issues 399 and 555. Issue 399 in
153   // particular shows where the current description of destructor name
154   // lookup is completely out of line with existing practice, e.g.,
155   // this appears to be ill-formed:
156   //
157   //   namespace N {
158   //     template <typename T> struct S {
159   //       ~S();
160   //     };
161   //   }
162   //
163   //   void f(N::S<int>* s) {
164   //     s->N::S<int>::~S();
165   //   }
166   //
167   // See also PR6358 and PR6359.
168   //
169   // For now, we accept all the cases in which the name given could plausibly
170   // be interpreted as a correct destructor name, issuing off-by-default
171   // extension diagnostics on the cases that don't strictly conform to the
172   // C++20 rules. This basically means we always consider looking in the
173   // nested-name-specifier prefix, the complete nested-name-specifier, and
174   // the scope, and accept if we find the expected type in any of the three
175   // places.
176 
177   if (SS.isInvalid())
178     return nullptr;
179 
180   // Whether we've failed with a diagnostic already.
181   bool Failed = false;
182 
183   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
184   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
185 
186   // If we have an object type, it's because we are in a
187   // pseudo-destructor-expression or a member access expression, and
188   // we know what type we're looking for.
189   QualType SearchType =
190       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
191 
192   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
193     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
194       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
195       if (!Type)
196         return false;
197 
198       if (SearchType.isNull() || SearchType->isDependentType())
199         return true;
200 
201       QualType T = Context.getTypeDeclType(Type);
202       return Context.hasSameUnqualifiedType(T, SearchType);
203     };
204 
205     unsigned NumAcceptableResults = 0;
206     for (NamedDecl *D : Found) {
207       if (IsAcceptableResult(D))
208         ++NumAcceptableResults;
209 
210       // Don't list a class twice in the lookup failure diagnostic if it's
211       // found by both its injected-class-name and by the name in the enclosing
212       // scope.
213       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
214         if (RD->isInjectedClassName())
215           D = cast<NamedDecl>(RD->getParent());
216 
217       if (FoundDeclSet.insert(D).second)
218         FoundDecls.push_back(D);
219     }
220 
221     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
222     // results, and all non-matching results if we have a search type. It's not
223     // clear what the right behavior is if destructor lookup hits an ambiguity,
224     // but other compilers do generally accept at least some kinds of
225     // ambiguity.
226     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
227       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
228       LookupResult::Filter F = Found.makeFilter();
229       while (F.hasNext()) {
230         NamedDecl *D = F.next();
231         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
232           Diag(D->getLocation(), diag::note_destructor_type_here)
233               << Context.getTypeDeclType(TD);
234         else
235           Diag(D->getLocation(), diag::note_destructor_nontype_here);
236 
237         if (!IsAcceptableResult(D))
238           F.erase();
239       }
240       F.done();
241     }
242 
243     if (Found.isAmbiguous())
244       Failed = true;
245 
246     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
247       if (IsAcceptableResult(Type)) {
248         QualType T = Context.getTypeDeclType(Type);
249         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
250         return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T),
251                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
252       }
253     }
254 
255     return nullptr;
256   };
257 
258   bool IsDependent = false;
259 
260   auto LookupInObjectType = [&]() -> ParsedType {
261     if (Failed || SearchType.isNull())
262       return nullptr;
263 
264     IsDependent |= SearchType->isDependentType();
265 
266     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
267     DeclContext *LookupCtx = computeDeclContext(SearchType);
268     if (!LookupCtx)
269       return nullptr;
270     LookupQualifiedName(Found, LookupCtx);
271     return CheckLookupResult(Found);
272   };
273 
274   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
275     if (Failed)
276       return nullptr;
277 
278     IsDependent |= isDependentScopeSpecifier(LookupSS);
279     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
280     if (!LookupCtx)
281       return nullptr;
282 
283     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
284     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
285       Failed = true;
286       return nullptr;
287     }
288     LookupQualifiedName(Found, LookupCtx);
289     return CheckLookupResult(Found);
290   };
291 
292   auto LookupInScope = [&]() -> ParsedType {
293     if (Failed || !S)
294       return nullptr;
295 
296     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
297     LookupName(Found, S);
298     return CheckLookupResult(Found);
299   };
300 
301   // C++2a [basic.lookup.qual]p6:
302   //   In a qualified-id of the form
303   //
304   //     nested-name-specifier[opt] type-name :: ~ type-name
305   //
306   //   the second type-name is looked up in the same scope as the first.
307   //
308   // We interpret this as meaning that if you do a dual-scope lookup for the
309   // first name, you also do a dual-scope lookup for the second name, per
310   // C++ [basic.lookup.classref]p4:
311   //
312   //   If the id-expression in a class member access is a qualified-id of the
313   //   form
314   //
315   //     class-name-or-namespace-name :: ...
316   //
317   //   the class-name-or-namespace-name following the . or -> is first looked
318   //   up in the class of the object expression and the name, if found, is used.
319   //   Otherwise, it is looked up in the context of the entire
320   //   postfix-expression.
321   //
322   // This looks in the same scopes as for an unqualified destructor name:
323   //
324   // C++ [basic.lookup.classref]p3:
325   //   If the unqualified-id is ~ type-name, the type-name is looked up
326   //   in the context of the entire postfix-expression. If the type T
327   //   of the object expression is of a class type C, the type-name is
328   //   also looked up in the scope of class C. At least one of the
329   //   lookups shall find a name that refers to cv T.
330   //
331   // FIXME: The intent is unclear here. Should type-name::~type-name look in
332   // the scope anyway if it finds a non-matching name declared in the class?
333   // If both lookups succeed and find a dependent result, which result should
334   // we retain? (Same question for p->~type-name().)
335 
336   if (NestedNameSpecifier *Prefix =
337       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
338     // This is
339     //
340     //   nested-name-specifier type-name :: ~ type-name
341     //
342     // Look for the second type-name in the nested-name-specifier.
343     CXXScopeSpec PrefixSS;
344     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
345     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
346       return T;
347   } else {
348     // This is one of
349     //
350     //   type-name :: ~ type-name
351     //   ~ type-name
352     //
353     // Look in the scope and (if any) the object type.
354     if (ParsedType T = LookupInScope())
355       return T;
356     if (ParsedType T = LookupInObjectType())
357       return T;
358   }
359 
360   if (Failed)
361     return nullptr;
362 
363   if (IsDependent) {
364     // We didn't find our type, but that's OK: it's dependent anyway.
365 
366     // FIXME: What if we have no nested-name-specifier?
367     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
368                                    SS.getWithLocInContext(Context),
369                                    II, NameLoc);
370     return ParsedType::make(T);
371   }
372 
373   // The remaining cases are all non-standard extensions imitating the behavior
374   // of various other compilers.
375   unsigned NumNonExtensionDecls = FoundDecls.size();
376 
377   if (SS.isSet()) {
378     // For compatibility with older broken C++ rules and existing code,
379     //
380     //   nested-name-specifier :: ~ type-name
381     //
382     // also looks for type-name within the nested-name-specifier.
383     if (ParsedType T = LookupInNestedNameSpec(SS)) {
384       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
385           << SS.getRange()
386           << FixItHint::CreateInsertion(SS.getEndLoc(),
387                                         ("::" + II.getName()).str());
388       return T;
389     }
390 
391     // For compatibility with other compilers and older versions of Clang,
392     //
393     //   nested-name-specifier type-name :: ~ type-name
394     //
395     // also looks for type-name in the scope. Unfortunately, we can't
396     // reasonably apply this fallback for dependent nested-name-specifiers.
397     if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
398       if (ParsedType T = LookupInScope()) {
399         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
400             << FixItHint::CreateRemoval(SS.getRange());
401         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
402             << GetTypeFromParser(T);
403         return T;
404       }
405     }
406   }
407 
408   // We didn't find anything matching; tell the user what we did find (if
409   // anything).
410 
411   // Don't tell the user about declarations we shouldn't have found.
412   FoundDecls.resize(NumNonExtensionDecls);
413 
414   // List types before non-types.
415   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
416                    [](NamedDecl *A, NamedDecl *B) {
417                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
418                             isa<TypeDecl>(B->getUnderlyingDecl());
419                    });
420 
421   // Suggest a fixit to properly name the destroyed type.
422   auto MakeFixItHint = [&]{
423     const CXXRecordDecl *Destroyed = nullptr;
424     // FIXME: If we have a scope specifier, suggest its last component?
425     if (!SearchType.isNull())
426       Destroyed = SearchType->getAsCXXRecordDecl();
427     else if (S)
428       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
429     if (Destroyed)
430       return FixItHint::CreateReplacement(SourceRange(NameLoc),
431                                           Destroyed->getNameAsString());
432     return FixItHint();
433   };
434 
435   if (FoundDecls.empty()) {
436     // FIXME: Attempt typo-correction?
437     Diag(NameLoc, diag::err_undeclared_destructor_name)
438       << &II << MakeFixItHint();
439   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
440     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
441       assert(!SearchType.isNull() &&
442              "should only reject a type result if we have a search type");
443       QualType T = Context.getTypeDeclType(TD);
444       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
445           << T << SearchType << MakeFixItHint();
446     } else {
447       Diag(NameLoc, diag::err_destructor_expr_nontype)
448           << &II << MakeFixItHint();
449     }
450   } else {
451     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
452                                       : diag::err_destructor_expr_mismatch)
453         << &II << SearchType << MakeFixItHint();
454   }
455 
456   for (NamedDecl *FoundD : FoundDecls) {
457     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
458       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
459           << Context.getTypeDeclType(TD);
460     else
461       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
462           << FoundD;
463   }
464 
465   return nullptr;
466 }
467 
468 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
469                                               ParsedType ObjectType) {
470   if (DS.getTypeSpecType() == DeclSpec::TST_error)
471     return nullptr;
472 
473   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
474     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
475     return nullptr;
476   }
477 
478   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
479          "unexpected type in getDestructorType");
480   QualType T = BuildDecltypeType(DS.getRepAsExpr());
481 
482   // If we know the type of the object, check that the correct destructor
483   // type was named now; we can give better diagnostics this way.
484   QualType SearchType = GetTypeFromParser(ObjectType);
485   if (!SearchType.isNull() && !SearchType->isDependentType() &&
486       !Context.hasSameUnqualifiedType(T, SearchType)) {
487     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
488       << T << SearchType;
489     return nullptr;
490   }
491 
492   return ParsedType::make(T);
493 }
494 
495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
496                                   const UnqualifiedId &Name, bool IsUDSuffix) {
497   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
498   if (!IsUDSuffix) {
499     // [over.literal] p8
500     //
501     // double operator""_Bq(long double);  // OK: not a reserved identifier
502     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503     IdentifierInfo *II = Name.Identifier;
504     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
505     SourceLocation Loc = Name.getEndLoc();
506     if (!PP.getSourceManager().isInSystemHeader(Loc)) {
507       if (auto Hint = FixItHint::CreateReplacement(
508               Name.getSourceRange(),
509               (StringRef("operator\"\"") + II->getName()).str());
510           isReservedInAllContexts(Status)) {
511         Diag(Loc, diag::warn_reserved_extern_symbol)
512             << II << static_cast<int>(Status) << Hint;
513       } else {
514         Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
515       }
516     }
517   }
518 
519   if (!SS.isValid())
520     return false;
521 
522   switch (SS.getScopeRep()->getKind()) {
523   case NestedNameSpecifier::Identifier:
524   case NestedNameSpecifier::TypeSpec:
525   case NestedNameSpecifier::TypeSpecWithTemplate:
526     // Per C++11 [over.literal]p2, literal operators can only be declared at
527     // namespace scope. Therefore, this unqualified-id cannot name anything.
528     // Reject it early, because we have no AST representation for this in the
529     // case where the scope is dependent.
530     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
531         << SS.getScopeRep();
532     return true;
533 
534   case NestedNameSpecifier::Global:
535   case NestedNameSpecifier::Super:
536   case NestedNameSpecifier::Namespace:
537   case NestedNameSpecifier::NamespaceAlias:
538     return false;
539   }
540 
541   llvm_unreachable("unknown nested name specifier kind");
542 }
543 
544 /// Build a C++ typeid expression with a type operand.
545 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
546                                 SourceLocation TypeidLoc,
547                                 TypeSourceInfo *Operand,
548                                 SourceLocation RParenLoc) {
549   // C++ [expr.typeid]p4:
550   //   The top-level cv-qualifiers of the lvalue expression or the type-id
551   //   that is the operand of typeid are always ignored.
552   //   If the type of the type-id is a class type or a reference to a class
553   //   type, the class shall be completely-defined.
554   Qualifiers Quals;
555   QualType T
556     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
557                                       Quals);
558   if (T->getAs<RecordType>() &&
559       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
560     return ExprError();
561 
562   if (T->isVariablyModifiedType())
563     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
564 
565   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
566     return ExprError();
567 
568   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
569                                      SourceRange(TypeidLoc, RParenLoc));
570 }
571 
572 /// Build a C++ typeid expression with an expression operand.
573 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
574                                 SourceLocation TypeidLoc,
575                                 Expr *E,
576                                 SourceLocation RParenLoc) {
577   bool WasEvaluated = false;
578   if (E && !E->isTypeDependent()) {
579     if (E->hasPlaceholderType()) {
580       ExprResult result = CheckPlaceholderExpr(E);
581       if (result.isInvalid()) return ExprError();
582       E = result.get();
583     }
584 
585     QualType T = E->getType();
586     if (const RecordType *RecordT = T->getAs<RecordType>()) {
587       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
588       // C++ [expr.typeid]p3:
589       //   [...] If the type of the expression is a class type, the class
590       //   shall be completely-defined.
591       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
592         return ExprError();
593 
594       // C++ [expr.typeid]p3:
595       //   When typeid is applied to an expression other than an glvalue of a
596       //   polymorphic class type [...] [the] expression is an unevaluated
597       //   operand. [...]
598       if (RecordD->isPolymorphic() && E->isGLValue()) {
599         if (isUnevaluatedContext()) {
600           // The operand was processed in unevaluated context, switch the
601           // context and recheck the subexpression.
602           ExprResult Result = TransformToPotentiallyEvaluated(E);
603           if (Result.isInvalid())
604             return ExprError();
605           E = Result.get();
606         }
607 
608         // We require a vtable to query the type at run time.
609         MarkVTableUsed(TypeidLoc, RecordD);
610         WasEvaluated = true;
611       }
612     }
613 
614     ExprResult Result = CheckUnevaluatedOperand(E);
615     if (Result.isInvalid())
616       return ExprError();
617     E = Result.get();
618 
619     // C++ [expr.typeid]p4:
620     //   [...] If the type of the type-id is a reference to a possibly
621     //   cv-qualified type, the result of the typeid expression refers to a
622     //   std::type_info object representing the cv-unqualified referenced
623     //   type.
624     Qualifiers Quals;
625     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
626     if (!Context.hasSameType(T, UnqualT)) {
627       T = UnqualT;
628       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
629     }
630   }
631 
632   if (E->getType()->isVariablyModifiedType())
633     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
634                      << E->getType());
635   else if (!inTemplateInstantiation() &&
636            E->HasSideEffects(Context, WasEvaluated)) {
637     // The expression operand for typeid is in an unevaluated expression
638     // context, so side effects could result in unintended consequences.
639     Diag(E->getExprLoc(), WasEvaluated
640                               ? diag::warn_side_effects_typeid
641                               : diag::warn_side_effects_unevaluated_context);
642   }
643 
644   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
645                                      SourceRange(TypeidLoc, RParenLoc));
646 }
647 
648 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
649 ExprResult
650 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
651                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
652   // typeid is not supported in OpenCL.
653   if (getLangOpts().OpenCLCPlusPlus) {
654     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
655                      << "typeid");
656   }
657 
658   // Find the std::type_info type.
659   if (!getStdNamespace())
660     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
661 
662   if (!CXXTypeInfoDecl) {
663     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
664     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
665     LookupQualifiedName(R, getStdNamespace());
666     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
667     // Microsoft's typeinfo doesn't have type_info in std but in the global
668     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
669     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
670       LookupQualifiedName(R, Context.getTranslationUnitDecl());
671       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
672     }
673     if (!CXXTypeInfoDecl)
674       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
675   }
676 
677   if (!getLangOpts().RTTI) {
678     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
679   }
680 
681   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
682 
683   if (isType) {
684     // The operand is a type; handle it as such.
685     TypeSourceInfo *TInfo = nullptr;
686     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
687                                    &TInfo);
688     if (T.isNull())
689       return ExprError();
690 
691     if (!TInfo)
692       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
693 
694     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
695   }
696 
697   // The operand is an expression.
698   ExprResult Result =
699       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
700 
701   if (!getLangOpts().RTTIData && !Result.isInvalid())
702     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
703       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
704         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
705             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
706                 DiagnosticOptions::MSVC);
707   return Result;
708 }
709 
710 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
711 /// a single GUID.
712 static void
713 getUuidAttrOfType(Sema &SemaRef, QualType QT,
714                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
715   // Optionally remove one level of pointer, reference or array indirection.
716   const Type *Ty = QT.getTypePtr();
717   if (QT->isPointerType() || QT->isReferenceType())
718     Ty = QT->getPointeeType().getTypePtr();
719   else if (QT->isArrayType())
720     Ty = Ty->getBaseElementTypeUnsafe();
721 
722   const auto *TD = Ty->getAsTagDecl();
723   if (!TD)
724     return;
725 
726   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
727     UuidAttrs.insert(Uuid);
728     return;
729   }
730 
731   // __uuidof can grab UUIDs from template arguments.
732   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
733     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
734     for (const TemplateArgument &TA : TAL.asArray()) {
735       const UuidAttr *UuidForTA = nullptr;
736       if (TA.getKind() == TemplateArgument::Type)
737         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
738       else if (TA.getKind() == TemplateArgument::Declaration)
739         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
740 
741       if (UuidForTA)
742         UuidAttrs.insert(UuidForTA);
743     }
744   }
745 }
746 
747 /// Build a Microsoft __uuidof expression with a type operand.
748 ExprResult Sema::BuildCXXUuidof(QualType Type,
749                                 SourceLocation TypeidLoc,
750                                 TypeSourceInfo *Operand,
751                                 SourceLocation RParenLoc) {
752   MSGuidDecl *Guid = nullptr;
753   if (!Operand->getType()->isDependentType()) {
754     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
755     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
756     if (UuidAttrs.empty())
757       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
758     if (UuidAttrs.size() > 1)
759       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
760     Guid = UuidAttrs.back()->getGuidDecl();
761   }
762 
763   return new (Context)
764       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
765 }
766 
767 /// Build a Microsoft __uuidof expression with an expression operand.
768 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
769                                 Expr *E, SourceLocation RParenLoc) {
770   MSGuidDecl *Guid = nullptr;
771   if (!E->getType()->isDependentType()) {
772     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
773       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
774       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
775     } else {
776       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
777       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
778       if (UuidAttrs.empty())
779         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
780       if (UuidAttrs.size() > 1)
781         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
782       Guid = UuidAttrs.back()->getGuidDecl();
783     }
784   }
785 
786   return new (Context)
787       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
788 }
789 
790 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
791 ExprResult
792 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
793                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
794   QualType GuidType = Context.getMSGuidType();
795   GuidType.addConst();
796 
797   if (isType) {
798     // The operand is a type; handle it as such.
799     TypeSourceInfo *TInfo = nullptr;
800     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
801                                    &TInfo);
802     if (T.isNull())
803       return ExprError();
804 
805     if (!TInfo)
806       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
807 
808     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
809   }
810 
811   // The operand is an expression.
812   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
813 }
814 
815 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
816 ExprResult
817 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
818   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
819          "Unknown C++ Boolean value!");
820   return new (Context)
821       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
822 }
823 
824 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
825 ExprResult
826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
827   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
828 }
829 
830 /// ActOnCXXThrow - Parse throw expressions.
831 ExprResult
832 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
833   bool IsThrownVarInScope = false;
834   if (Ex) {
835     // C++0x [class.copymove]p31:
836     //   When certain criteria are met, an implementation is allowed to omit the
837     //   copy/move construction of a class object [...]
838     //
839     //     - in a throw-expression, when the operand is the name of a
840     //       non-volatile automatic object (other than a function or catch-
841     //       clause parameter) whose scope does not extend beyond the end of the
842     //       innermost enclosing try-block (if there is one), the copy/move
843     //       operation from the operand to the exception object (15.1) can be
844     //       omitted by constructing the automatic object directly into the
845     //       exception object
846     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
847       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
848         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
849           for( ; S; S = S->getParent()) {
850             if (S->isDeclScope(Var)) {
851               IsThrownVarInScope = true;
852               break;
853             }
854 
855             // FIXME: Many of the scope checks here seem incorrect.
856             if (S->getFlags() &
857                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
858                  Scope::ObjCMethodScope | Scope::TryScope))
859               break;
860           }
861         }
862       }
863   }
864 
865   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
866 }
867 
868 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
869                                bool IsThrownVarInScope) {
870   // Don't report an error if 'throw' is used in system headers.
871   if (!getLangOpts().CXXExceptions &&
872       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
873     // Delay error emission for the OpenMP device code.
874     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
875   }
876 
877   // Exceptions aren't allowed in CUDA device code.
878   if (getLangOpts().CUDA)
879     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
880         << "throw" << CurrentCUDATarget();
881 
882   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
883     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
884 
885   if (Ex && !Ex->isTypeDependent()) {
886     // Initialize the exception result.  This implicitly weeds out
887     // abstract types or types with inaccessible copy constructors.
888 
889     // C++0x [class.copymove]p31:
890     //   When certain criteria are met, an implementation is allowed to omit the
891     //   copy/move construction of a class object [...]
892     //
893     //     - in a throw-expression, when the operand is the name of a
894     //       non-volatile automatic object (other than a function or
895     //       catch-clause
896     //       parameter) whose scope does not extend beyond the end of the
897     //       innermost enclosing try-block (if there is one), the copy/move
898     //       operation from the operand to the exception object (15.1) can be
899     //       omitted by constructing the automatic object directly into the
900     //       exception object
901     NamedReturnInfo NRInfo =
902         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
903 
904     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
905     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
906       return ExprError();
907 
908     InitializedEntity Entity =
909         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
910     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
911     if (Res.isInvalid())
912       return ExprError();
913     Ex = Res.get();
914   }
915 
916   // PPC MMA non-pointer types are not allowed as throw expr types.
917   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
918     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
919 
920   return new (Context)
921       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
922 }
923 
924 static void
925 collectPublicBases(CXXRecordDecl *RD,
926                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
927                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
928                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
929                    bool ParentIsPublic) {
930   for (const CXXBaseSpecifier &BS : RD->bases()) {
931     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
932     bool NewSubobject;
933     // Virtual bases constitute the same subobject.  Non-virtual bases are
934     // always distinct subobjects.
935     if (BS.isVirtual())
936       NewSubobject = VBases.insert(BaseDecl).second;
937     else
938       NewSubobject = true;
939 
940     if (NewSubobject)
941       ++SubobjectsSeen[BaseDecl];
942 
943     // Only add subobjects which have public access throughout the entire chain.
944     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
945     if (PublicPath)
946       PublicSubobjectsSeen.insert(BaseDecl);
947 
948     // Recurse on to each base subobject.
949     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950                        PublicPath);
951   }
952 }
953 
954 static void getUnambiguousPublicSubobjects(
955     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
956   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
957   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
958   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
959   SubobjectsSeen[RD] = 1;
960   PublicSubobjectsSeen.insert(RD);
961   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
962                      /*ParentIsPublic=*/true);
963 
964   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
965     // Skip ambiguous objects.
966     if (SubobjectsSeen[PublicSubobject] > 1)
967       continue;
968 
969     Objects.push_back(PublicSubobject);
970   }
971 }
972 
973 /// CheckCXXThrowOperand - Validate the operand of a throw.
974 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
975                                 QualType ExceptionObjectTy, Expr *E) {
976   //   If the type of the exception would be an incomplete type or a pointer
977   //   to an incomplete type other than (cv) void the program is ill-formed.
978   QualType Ty = ExceptionObjectTy;
979   bool isPointer = false;
980   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
981     Ty = Ptr->getPointeeType();
982     isPointer = true;
983   }
984 
985   // Cannot throw WebAssembly reference type.
986   if (Ty.isWebAssemblyReferenceType()) {
987     Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
988     return true;
989   }
990 
991   // Cannot throw WebAssembly table.
992   if (isPointer && Ty.isWebAssemblyReferenceType()) {
993     Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
994     return true;
995   }
996 
997   if (!isPointer || !Ty->isVoidType()) {
998     if (RequireCompleteType(ThrowLoc, Ty,
999                             isPointer ? diag::err_throw_incomplete_ptr
1000                                       : diag::err_throw_incomplete,
1001                             E->getSourceRange()))
1002       return true;
1003 
1004     if (!isPointer && Ty->isSizelessType()) {
1005       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1006       return true;
1007     }
1008 
1009     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1010                                diag::err_throw_abstract_type, E))
1011       return true;
1012   }
1013 
1014   // If the exception has class type, we need additional handling.
1015   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1016   if (!RD)
1017     return false;
1018 
1019   // If we are throwing a polymorphic class type or pointer thereof,
1020   // exception handling will make use of the vtable.
1021   MarkVTableUsed(ThrowLoc, RD);
1022 
1023   // If a pointer is thrown, the referenced object will not be destroyed.
1024   if (isPointer)
1025     return false;
1026 
1027   // If the class has a destructor, we must be able to call it.
1028   if (!RD->hasIrrelevantDestructor()) {
1029     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1030       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1031       CheckDestructorAccess(E->getExprLoc(), Destructor,
1032                             PDiag(diag::err_access_dtor_exception) << Ty);
1033       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1034         return true;
1035     }
1036   }
1037 
1038   // The MSVC ABI creates a list of all types which can catch the exception
1039   // object.  This list also references the appropriate copy constructor to call
1040   // if the object is caught by value and has a non-trivial copy constructor.
1041   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1042     // We are only interested in the public, unambiguous bases contained within
1043     // the exception object.  Bases which are ambiguous or otherwise
1044     // inaccessible are not catchable types.
1045     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1046     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1047 
1048     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1049       // Attempt to lookup the copy constructor.  Various pieces of machinery
1050       // will spring into action, like template instantiation, which means this
1051       // cannot be a simple walk of the class's decls.  Instead, we must perform
1052       // lookup and overload resolution.
1053       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1054       if (!CD || CD->isDeleted())
1055         continue;
1056 
1057       // Mark the constructor referenced as it is used by this throw expression.
1058       MarkFunctionReferenced(E->getExprLoc(), CD);
1059 
1060       // Skip this copy constructor if it is trivial, we don't need to record it
1061       // in the catchable type data.
1062       if (CD->isTrivial())
1063         continue;
1064 
1065       // The copy constructor is non-trivial, create a mapping from this class
1066       // type to this constructor.
1067       // N.B.  The selection of copy constructor is not sensitive to this
1068       // particular throw-site.  Lookup will be performed at the catch-site to
1069       // ensure that the copy constructor is, in fact, accessible (via
1070       // friendship or any other means).
1071       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1072 
1073       // We don't keep the instantiated default argument expressions around so
1074       // we must rebuild them here.
1075       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1076         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1077           return true;
1078       }
1079     }
1080   }
1081 
1082   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1083   // the runtime with no ability for the compiler to request additional
1084   // alignment. Warn if the exception type requires alignment beyond the minimum
1085   // guaranteed by the target C++ runtime.
1086   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1087     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1088     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1089     if (ExnObjAlign < TypeAlign) {
1090       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1091       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1092           << Ty << (unsigned)TypeAlign.getQuantity()
1093           << (unsigned)ExnObjAlign.getQuantity();
1094     }
1095   }
1096 
1097   return false;
1098 }
1099 
1100 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1101     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1102     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1103 
1104   QualType ClassType = ThisTy->getPointeeType();
1105   LambdaScopeInfo *CurLSI = nullptr;
1106   DeclContext *CurDC = CurSemaContext;
1107 
1108   // Iterate through the stack of lambdas starting from the innermost lambda to
1109   // the outermost lambda, checking if '*this' is ever captured by copy - since
1110   // that could change the cv-qualifiers of the '*this' object.
1111   // The object referred to by '*this' starts out with the cv-qualifiers of its
1112   // member function.  We then start with the innermost lambda and iterate
1113   // outward checking to see if any lambda performs a by-copy capture of '*this'
1114   // - and if so, any nested lambda must respect the 'constness' of that
1115   // capturing lamdbda's call operator.
1116   //
1117 
1118   // Since the FunctionScopeInfo stack is representative of the lexical
1119   // nesting of the lambda expressions during initial parsing (and is the best
1120   // place for querying information about captures about lambdas that are
1121   // partially processed) and perhaps during instantiation of function templates
1122   // that contain lambda expressions that need to be transformed BUT not
1123   // necessarily during instantiation of a nested generic lambda's function call
1124   // operator (which might even be instantiated at the end of the TU) - at which
1125   // time the DeclContext tree is mature enough to query capture information
1126   // reliably - we use a two pronged approach to walk through all the lexically
1127   // enclosing lambda expressions:
1128   //
1129   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1130   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1131   //  enclosed by the call-operator of the LSI below it on the stack (while
1132   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1133   //  the stack represents the innermost lambda.
1134   //
1135   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1136   //  represents a lambda's call operator.  If it does, we must be instantiating
1137   //  a generic lambda's call operator (represented by the Current LSI, and
1138   //  should be the only scenario where an inconsistency between the LSI and the
1139   //  DeclContext should occur), so climb out the DeclContexts if they
1140   //  represent lambdas, while querying the corresponding closure types
1141   //  regarding capture information.
1142 
1143   // 1) Climb down the function scope info stack.
1144   for (int I = FunctionScopes.size();
1145        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1146        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1147                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1148        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1149     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1150 
1151     if (!CurLSI->isCXXThisCaptured())
1152         continue;
1153 
1154     auto C = CurLSI->getCXXThisCapture();
1155 
1156     if (C.isCopyCapture()) {
1157       if (!CurLSI->Mutable)
1158         ClassType.addConst();
1159       return ASTCtx.getPointerType(ClassType);
1160     }
1161   }
1162 
1163   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1164   //    can happen during instantiation of its nested generic lambda call
1165   //    operator); 2. if we're in a lambda scope (lambda body).
1166   if (CurLSI && isLambdaCallOperator(CurDC)) {
1167     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1168            "While computing 'this' capture-type for a generic lambda, when we "
1169            "run out of enclosing LSI's, yet the enclosing DC is a "
1170            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1171            "lambda call oeprator");
1172     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1173 
1174     auto IsThisCaptured =
1175         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1176       IsConst = false;
1177       IsByCopy = false;
1178       for (auto &&C : Closure->captures()) {
1179         if (C.capturesThis()) {
1180           if (C.getCaptureKind() == LCK_StarThis)
1181             IsByCopy = true;
1182           if (Closure->getLambdaCallOperator()->isConst())
1183             IsConst = true;
1184           return true;
1185         }
1186       }
1187       return false;
1188     };
1189 
1190     bool IsByCopyCapture = false;
1191     bool IsConstCapture = false;
1192     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1193     while (Closure &&
1194            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1195       if (IsByCopyCapture) {
1196         if (IsConstCapture)
1197           ClassType.addConst();
1198         return ASTCtx.getPointerType(ClassType);
1199       }
1200       Closure = isLambdaCallOperator(Closure->getParent())
1201                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1202                     : nullptr;
1203     }
1204   }
1205   return ASTCtx.getPointerType(ClassType);
1206 }
1207 
1208 QualType Sema::getCurrentThisType() {
1209   DeclContext *DC = getFunctionLevelDeclContext();
1210   QualType ThisTy = CXXThisTypeOverride;
1211 
1212   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1213     if (method && method->isInstance())
1214       ThisTy = method->getThisType();
1215   }
1216 
1217   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1218       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1219 
1220     // This is a lambda call operator that is being instantiated as a default
1221     // initializer. DC must point to the enclosing class type, so we can recover
1222     // the 'this' type from it.
1223     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1224     // There are no cv-qualifiers for 'this' within default initializers,
1225     // per [expr.prim.general]p4.
1226     ThisTy = Context.getPointerType(ClassTy);
1227   }
1228 
1229   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1230   // might need to be adjusted if the lambda or any of its enclosing lambda's
1231   // captures '*this' by copy.
1232   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1233     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1234                                                     CurContext, Context);
1235   return ThisTy;
1236 }
1237 
1238 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1239                                          Decl *ContextDecl,
1240                                          Qualifiers CXXThisTypeQuals,
1241                                          bool Enabled)
1242   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1243 {
1244   if (!Enabled || !ContextDecl)
1245     return;
1246 
1247   CXXRecordDecl *Record = nullptr;
1248   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1249     Record = Template->getTemplatedDecl();
1250   else
1251     Record = cast<CXXRecordDecl>(ContextDecl);
1252 
1253   QualType T = S.Context.getRecordType(Record);
1254   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1255 
1256   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1257 
1258   this->Enabled = true;
1259 }
1260 
1261 
1262 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1263   if (Enabled) {
1264     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1265   }
1266 }
1267 
1268 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1269   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1270   assert(!LSI->isCXXThisCaptured());
1271   //  [=, this] {};   // until C++20: Error: this when = is the default
1272   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1273       !Sema.getLangOpts().CPlusPlus20)
1274     return;
1275   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1276       << FixItHint::CreateInsertion(
1277              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1278 }
1279 
1280 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1281     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1282     const bool ByCopy) {
1283   // We don't need to capture this in an unevaluated context.
1284   if (isUnevaluatedContext() && !Explicit)
1285     return true;
1286 
1287   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1288 
1289   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1290                                          ? *FunctionScopeIndexToStopAt
1291                                          : FunctionScopes.size() - 1;
1292 
1293   // Check that we can capture the *enclosing object* (referred to by '*this')
1294   // by the capturing-entity/closure (lambda/block/etc) at
1295   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1296 
1297   // Note: The *enclosing object* can only be captured by-value by a
1298   // closure that is a lambda, using the explicit notation:
1299   //    [*this] { ... }.
1300   // Every other capture of the *enclosing object* results in its by-reference
1301   // capture.
1302 
1303   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1304   // stack), we can capture the *enclosing object* only if:
1305   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1306   // -  or, 'L' has an implicit capture.
1307   // AND
1308   //   -- there is no enclosing closure
1309   //   -- or, there is some enclosing closure 'E' that has already captured the
1310   //      *enclosing object*, and every intervening closure (if any) between 'E'
1311   //      and 'L' can implicitly capture the *enclosing object*.
1312   //   -- or, every enclosing closure can implicitly capture the
1313   //      *enclosing object*
1314 
1315 
1316   unsigned NumCapturingClosures = 0;
1317   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1318     if (CapturingScopeInfo *CSI =
1319             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1320       if (CSI->CXXThisCaptureIndex != 0) {
1321         // 'this' is already being captured; there isn't anything more to do.
1322         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1323         break;
1324       }
1325       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1326       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1327         // This context can't implicitly capture 'this'; fail out.
1328         if (BuildAndDiagnose) {
1329           Diag(Loc, diag::err_this_capture)
1330               << (Explicit && idx == MaxFunctionScopesIndex);
1331           if (!Explicit)
1332             buildLambdaThisCaptureFixit(*this, LSI);
1333         }
1334         return true;
1335       }
1336       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1337           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1338           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1339           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1340           (Explicit && idx == MaxFunctionScopesIndex)) {
1341         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1342         // iteration through can be an explicit capture, all enclosing closures,
1343         // if any, must perform implicit captures.
1344 
1345         // This closure can capture 'this'; continue looking upwards.
1346         NumCapturingClosures++;
1347         continue;
1348       }
1349       // This context can't implicitly capture 'this'; fail out.
1350       if (BuildAndDiagnose)
1351         Diag(Loc, diag::err_this_capture)
1352             << (Explicit && idx == MaxFunctionScopesIndex);
1353 
1354       if (!Explicit)
1355         buildLambdaThisCaptureFixit(*this, LSI);
1356       return true;
1357     }
1358     break;
1359   }
1360   if (!BuildAndDiagnose) return false;
1361 
1362   // If we got here, then the closure at MaxFunctionScopesIndex on the
1363   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1364   // (including implicit by-reference captures in any enclosing closures).
1365 
1366   // In the loop below, respect the ByCopy flag only for the closure requesting
1367   // the capture (i.e. first iteration through the loop below).  Ignore it for
1368   // all enclosing closure's up to NumCapturingClosures (since they must be
1369   // implicitly capturing the *enclosing  object* by reference (see loop
1370   // above)).
1371   assert((!ByCopy ||
1372           isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1373          "Only a lambda can capture the enclosing object (referred to by "
1374          "*this) by copy");
1375   QualType ThisTy = getCurrentThisType();
1376   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1377        --idx, --NumCapturingClosures) {
1378     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1379 
1380     // The type of the corresponding data member (not a 'this' pointer if 'by
1381     // copy').
1382     QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1383 
1384     bool isNested = NumCapturingClosures > 1;
1385     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1386   }
1387   return false;
1388 }
1389 
1390 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1391   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1392   /// is a non-lvalue expression whose value is the address of the object for
1393   /// which the function is called.
1394 
1395   QualType ThisTy = getCurrentThisType();
1396   if (ThisTy.isNull())
1397     return Diag(Loc, diag::err_invalid_this_use);
1398   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1399 }
1400 
1401 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1402                              bool IsImplicit) {
1403   if (getLangOpts().HLSL && Type.getTypePtr()->isPointerType()) {
1404     auto *This = new (Context)
1405         CXXThisExpr(Loc, Type.getTypePtr()->getPointeeType(), IsImplicit);
1406     This->setValueKind(ExprValueKind::VK_LValue);
1407     MarkThisReferenced(This);
1408     return This;
1409   }
1410   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1411   MarkThisReferenced(This);
1412   return This;
1413 }
1414 
1415 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1416   CheckCXXThisCapture(This->getExprLoc());
1417 }
1418 
1419 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1420   // If we're outside the body of a member function, then we'll have a specified
1421   // type for 'this'.
1422   if (CXXThisTypeOverride.isNull())
1423     return false;
1424 
1425   // Determine whether we're looking into a class that's currently being
1426   // defined.
1427   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1428   return Class && Class->isBeingDefined();
1429 }
1430 
1431 /// Parse construction of a specified type.
1432 /// Can be interpreted either as function-style casting ("int(x)")
1433 /// or class type construction ("ClassType(x,y,z)")
1434 /// or creation of a value-initialized type ("int()").
1435 ExprResult
1436 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1437                                 SourceLocation LParenOrBraceLoc,
1438                                 MultiExprArg exprs,
1439                                 SourceLocation RParenOrBraceLoc,
1440                                 bool ListInitialization) {
1441   if (!TypeRep)
1442     return ExprError();
1443 
1444   TypeSourceInfo *TInfo;
1445   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1446   if (!TInfo)
1447     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1448 
1449   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1450                                           RParenOrBraceLoc, ListInitialization);
1451   // Avoid creating a non-type-dependent expression that contains typos.
1452   // Non-type-dependent expressions are liable to be discarded without
1453   // checking for embedded typos.
1454   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1455       !Result.get()->isTypeDependent())
1456     Result = CorrectDelayedTyposInExpr(Result.get());
1457   else if (Result.isInvalid())
1458     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1459                                 RParenOrBraceLoc, exprs, Ty);
1460   return Result;
1461 }
1462 
1463 ExprResult
1464 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1465                                 SourceLocation LParenOrBraceLoc,
1466                                 MultiExprArg Exprs,
1467                                 SourceLocation RParenOrBraceLoc,
1468                                 bool ListInitialization) {
1469   QualType Ty = TInfo->getType();
1470   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1471 
1472   assert((!ListInitialization || Exprs.size() == 1) &&
1473          "List initialization must have exactly one expression.");
1474   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1475 
1476   InitializedEntity Entity =
1477       InitializedEntity::InitializeTemporary(Context, TInfo);
1478   InitializationKind Kind =
1479       Exprs.size()
1480           ? ListInitialization
1481                 ? InitializationKind::CreateDirectList(
1482                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1483                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1484                                                    RParenOrBraceLoc)
1485           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1486                                             RParenOrBraceLoc);
1487 
1488   // C++17 [expr.type.conv]p1:
1489   //   If the type is a placeholder for a deduced class type, [...perform class
1490   //   template argument deduction...]
1491   // C++23:
1492   //   Otherwise, if the type contains a placeholder type, it is replaced by the
1493   //   type determined by placeholder type deduction.
1494   DeducedType *Deduced = Ty->getContainedDeducedType();
1495   if (Deduced && !Deduced->isDeduced() &&
1496       isa<DeducedTemplateSpecializationType>(Deduced)) {
1497     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1498                                                      Kind, Exprs);
1499     if (Ty.isNull())
1500       return ExprError();
1501     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1502   } else if (Deduced && !Deduced->isDeduced()) {
1503     MultiExprArg Inits = Exprs;
1504     if (ListInitialization) {
1505       auto *ILE = cast<InitListExpr>(Exprs[0]);
1506       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1507     }
1508 
1509     if (Inits.empty())
1510       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1511                        << Ty << FullRange);
1512     if (Inits.size() > 1) {
1513       Expr *FirstBad = Inits[1];
1514       return ExprError(Diag(FirstBad->getBeginLoc(),
1515                             diag::err_auto_expr_init_multiple_expressions)
1516                        << Ty << FullRange);
1517     }
1518     if (getLangOpts().CPlusPlus23) {
1519       if (Ty->getAs<AutoType>())
1520         Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1521     }
1522     Expr *Deduce = Inits[0];
1523     if (isa<InitListExpr>(Deduce))
1524       return ExprError(
1525           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1526           << ListInitialization << Ty << FullRange);
1527     QualType DeducedType;
1528     TemplateDeductionInfo Info(Deduce->getExprLoc());
1529     TemplateDeductionResult Result =
1530         DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1531     if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
1532       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1533                        << Ty << Deduce->getType() << FullRange
1534                        << Deduce->getSourceRange());
1535     if (DeducedType.isNull()) {
1536       assert(Result == TDK_AlreadyDiagnosed);
1537       return ExprError();
1538     }
1539 
1540     Ty = DeducedType;
1541     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1542   }
1543 
1544   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1545     return CXXUnresolvedConstructExpr::Create(
1546         Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs,
1547         RParenOrBraceLoc, ListInitialization);
1548 
1549   // C++ [expr.type.conv]p1:
1550   // If the expression list is a parenthesized single expression, the type
1551   // conversion expression is equivalent (in definedness, and if defined in
1552   // meaning) to the corresponding cast expression.
1553   if (Exprs.size() == 1 && !ListInitialization &&
1554       !isa<InitListExpr>(Exprs[0])) {
1555     Expr *Arg = Exprs[0];
1556     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1557                                       RParenOrBraceLoc);
1558   }
1559 
1560   //   For an expression of the form T(), T shall not be an array type.
1561   QualType ElemTy = Ty;
1562   if (Ty->isArrayType()) {
1563     if (!ListInitialization)
1564       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1565                          << FullRange);
1566     ElemTy = Context.getBaseElementType(Ty);
1567   }
1568 
1569   // Only construct objects with object types.
1570   // The standard doesn't explicitly forbid function types here, but that's an
1571   // obvious oversight, as there's no way to dynamically construct a function
1572   // in general.
1573   if (Ty->isFunctionType())
1574     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1575                        << Ty << FullRange);
1576 
1577   // C++17 [expr.type.conv]p2:
1578   //   If the type is cv void and the initializer is (), the expression is a
1579   //   prvalue of the specified type that performs no initialization.
1580   if (!Ty->isVoidType() &&
1581       RequireCompleteType(TyBeginLoc, ElemTy,
1582                           diag::err_invalid_incomplete_type_use, FullRange))
1583     return ExprError();
1584 
1585   //   Otherwise, the expression is a prvalue of the specified type whose
1586   //   result object is direct-initialized (11.6) with the initializer.
1587   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1588   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1589 
1590   if (Result.isInvalid())
1591     return Result;
1592 
1593   Expr *Inner = Result.get();
1594   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1595     Inner = BTE->getSubExpr();
1596   if (auto *CE = dyn_cast<ConstantExpr>(Inner);
1597       CE && CE->isImmediateInvocation())
1598     Inner = CE->getSubExpr();
1599   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1600       !isa<CXXScalarValueInitExpr>(Inner)) {
1601     // If we created a CXXTemporaryObjectExpr, that node also represents the
1602     // functional cast. Otherwise, create an explicit cast to represent
1603     // the syntactic form of a functional-style cast that was used here.
1604     //
1605     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1606     // would give a more consistent AST representation than using a
1607     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1608     // is sometimes handled by initialization and sometimes not.
1609     QualType ResultType = Result.get()->getType();
1610     SourceRange Locs = ListInitialization
1611                            ? SourceRange()
1612                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1613     Result = CXXFunctionalCastExpr::Create(
1614         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1615         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1616         Locs.getBegin(), Locs.getEnd());
1617   }
1618 
1619   return Result;
1620 }
1621 
1622 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1623   // [CUDA] Ignore this function, if we can't call it.
1624   const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1625   if (getLangOpts().CUDA) {
1626     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1627     // If it's not callable at all, it's not the right function.
1628     if (CallPreference < CFP_WrongSide)
1629       return false;
1630     if (CallPreference == CFP_WrongSide) {
1631       // Maybe. We have to check if there are better alternatives.
1632       DeclContext::lookup_result R =
1633           Method->getDeclContext()->lookup(Method->getDeclName());
1634       for (const auto *D : R) {
1635         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1636           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1637             return false;
1638         }
1639       }
1640       // We've found no better variants.
1641     }
1642   }
1643 
1644   SmallVector<const FunctionDecl*, 4> PreventedBy;
1645   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1646 
1647   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1648     return Result;
1649 
1650   // In case of CUDA, return true if none of the 1-argument deallocator
1651   // functions are actually callable.
1652   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1653     assert(FD->getNumParams() == 1 &&
1654            "Only single-operand functions should be in PreventedBy");
1655     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1656   });
1657 }
1658 
1659 /// Determine whether the given function is a non-placement
1660 /// deallocation function.
1661 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1662   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1663     return S.isUsualDeallocationFunction(Method);
1664 
1665   if (FD->getOverloadedOperator() != OO_Delete &&
1666       FD->getOverloadedOperator() != OO_Array_Delete)
1667     return false;
1668 
1669   unsigned UsualParams = 1;
1670 
1671   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1672       S.Context.hasSameUnqualifiedType(
1673           FD->getParamDecl(UsualParams)->getType(),
1674           S.Context.getSizeType()))
1675     ++UsualParams;
1676 
1677   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1678       S.Context.hasSameUnqualifiedType(
1679           FD->getParamDecl(UsualParams)->getType(),
1680           S.Context.getTypeDeclType(S.getStdAlignValT())))
1681     ++UsualParams;
1682 
1683   return UsualParams == FD->getNumParams();
1684 }
1685 
1686 namespace {
1687   struct UsualDeallocFnInfo {
1688     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1689     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1690         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1691           Destroying(false), HasSizeT(false), HasAlignValT(false),
1692           CUDAPref(Sema::CFP_Native) {
1693       // A function template declaration is never a usual deallocation function.
1694       if (!FD)
1695         return;
1696       unsigned NumBaseParams = 1;
1697       if (FD->isDestroyingOperatorDelete()) {
1698         Destroying = true;
1699         ++NumBaseParams;
1700       }
1701 
1702       if (NumBaseParams < FD->getNumParams() &&
1703           S.Context.hasSameUnqualifiedType(
1704               FD->getParamDecl(NumBaseParams)->getType(),
1705               S.Context.getSizeType())) {
1706         ++NumBaseParams;
1707         HasSizeT = true;
1708       }
1709 
1710       if (NumBaseParams < FD->getNumParams() &&
1711           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1712         ++NumBaseParams;
1713         HasAlignValT = true;
1714       }
1715 
1716       // In CUDA, determine how much we'd like / dislike to call this.
1717       if (S.getLangOpts().CUDA)
1718         if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
1719           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1720     }
1721 
1722     explicit operator bool() const { return FD; }
1723 
1724     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1725                       bool WantAlign) const {
1726       // C++ P0722:
1727       //   A destroying operator delete is preferred over a non-destroying
1728       //   operator delete.
1729       if (Destroying != Other.Destroying)
1730         return Destroying;
1731 
1732       // C++17 [expr.delete]p10:
1733       //   If the type has new-extended alignment, a function with a parameter
1734       //   of type std::align_val_t is preferred; otherwise a function without
1735       //   such a parameter is preferred
1736       if (HasAlignValT != Other.HasAlignValT)
1737         return HasAlignValT == WantAlign;
1738 
1739       if (HasSizeT != Other.HasSizeT)
1740         return HasSizeT == WantSize;
1741 
1742       // Use CUDA call preference as a tiebreaker.
1743       return CUDAPref > Other.CUDAPref;
1744     }
1745 
1746     DeclAccessPair Found;
1747     FunctionDecl *FD;
1748     bool Destroying, HasSizeT, HasAlignValT;
1749     Sema::CUDAFunctionPreference CUDAPref;
1750   };
1751 }
1752 
1753 /// Determine whether a type has new-extended alignment. This may be called when
1754 /// the type is incomplete (for a delete-expression with an incomplete pointee
1755 /// type), in which case it will conservatively return false if the alignment is
1756 /// not known.
1757 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1758   return S.getLangOpts().AlignedAllocation &&
1759          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1760              S.getASTContext().getTargetInfo().getNewAlign();
1761 }
1762 
1763 /// Select the correct "usual" deallocation function to use from a selection of
1764 /// deallocation functions (either global or class-scope).
1765 static UsualDeallocFnInfo resolveDeallocationOverload(
1766     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1767     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1768   UsualDeallocFnInfo Best;
1769 
1770   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1771     UsualDeallocFnInfo Info(S, I.getPair());
1772     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1773         Info.CUDAPref == Sema::CFP_Never)
1774       continue;
1775 
1776     if (!Best) {
1777       Best = Info;
1778       if (BestFns)
1779         BestFns->push_back(Info);
1780       continue;
1781     }
1782 
1783     if (Best.isBetterThan(Info, WantSize, WantAlign))
1784       continue;
1785 
1786     //   If more than one preferred function is found, all non-preferred
1787     //   functions are eliminated from further consideration.
1788     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1789       BestFns->clear();
1790 
1791     Best = Info;
1792     if (BestFns)
1793       BestFns->push_back(Info);
1794   }
1795 
1796   return Best;
1797 }
1798 
1799 /// Determine whether a given type is a class for which 'delete[]' would call
1800 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1801 /// we need to store the array size (even if the type is
1802 /// trivially-destructible).
1803 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1804                                          QualType allocType) {
1805   const RecordType *record =
1806     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1807   if (!record) return false;
1808 
1809   // Try to find an operator delete[] in class scope.
1810 
1811   DeclarationName deleteName =
1812     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1813   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1814   S.LookupQualifiedName(ops, record->getDecl());
1815 
1816   // We're just doing this for information.
1817   ops.suppressDiagnostics();
1818 
1819   // Very likely: there's no operator delete[].
1820   if (ops.empty()) return false;
1821 
1822   // If it's ambiguous, it should be illegal to call operator delete[]
1823   // on this thing, so it doesn't matter if we allocate extra space or not.
1824   if (ops.isAmbiguous()) return false;
1825 
1826   // C++17 [expr.delete]p10:
1827   //   If the deallocation functions have class scope, the one without a
1828   //   parameter of type std::size_t is selected.
1829   auto Best = resolveDeallocationOverload(
1830       S, ops, /*WantSize*/false,
1831       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1832   return Best && Best.HasSizeT;
1833 }
1834 
1835 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1836 ///
1837 /// E.g.:
1838 /// @code new (memory) int[size][4] @endcode
1839 /// or
1840 /// @code ::new Foo(23, "hello") @endcode
1841 ///
1842 /// \param StartLoc The first location of the expression.
1843 /// \param UseGlobal True if 'new' was prefixed with '::'.
1844 /// \param PlacementLParen Opening paren of the placement arguments.
1845 /// \param PlacementArgs Placement new arguments.
1846 /// \param PlacementRParen Closing paren of the placement arguments.
1847 /// \param TypeIdParens If the type is in parens, the source range.
1848 /// \param D The type to be allocated, as well as array dimensions.
1849 /// \param Initializer The initializing expression or initializer-list, or null
1850 ///   if there is none.
1851 ExprResult
1852 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1853                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1854                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1855                   Declarator &D, Expr *Initializer) {
1856   std::optional<Expr *> ArraySize;
1857   // If the specified type is an array, unwrap it and save the expression.
1858   if (D.getNumTypeObjects() > 0 &&
1859       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1860     DeclaratorChunk &Chunk = D.getTypeObject(0);
1861     if (D.getDeclSpec().hasAutoTypeSpec())
1862       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1863         << D.getSourceRange());
1864     if (Chunk.Arr.hasStatic)
1865       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1866         << D.getSourceRange());
1867     if (!Chunk.Arr.NumElts && !Initializer)
1868       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1869         << D.getSourceRange());
1870 
1871     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1872     D.DropFirstTypeObject();
1873   }
1874 
1875   // Every dimension shall be of constant size.
1876   if (ArraySize) {
1877     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1878       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1879         break;
1880 
1881       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1882       if (Expr *NumElts = (Expr *)Array.NumElts) {
1883         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1884           // FIXME: GCC permits constant folding here. We should either do so consistently
1885           // or not do so at all, rather than changing behavior in C++14 onwards.
1886           if (getLangOpts().CPlusPlus14) {
1887             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1888             //   shall be a converted constant expression (5.19) of type std::size_t
1889             //   and shall evaluate to a strictly positive value.
1890             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1891             Array.NumElts
1892              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1893                                                 CCEK_ArrayBound)
1894                  .get();
1895           } else {
1896             Array.NumElts =
1897                 VerifyIntegerConstantExpression(
1898                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1899                     .get();
1900           }
1901           if (!Array.NumElts)
1902             return ExprError();
1903         }
1904       }
1905     }
1906   }
1907 
1908   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1909   QualType AllocType = TInfo->getType();
1910   if (D.isInvalidType())
1911     return ExprError();
1912 
1913   SourceRange DirectInitRange;
1914   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1915     DirectInitRange = List->getSourceRange();
1916 
1917   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1918                      PlacementLParen, PlacementArgs, PlacementRParen,
1919                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1920                      Initializer);
1921 }
1922 
1923 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1924                                        Expr *Init) {
1925   if (!Init)
1926     return true;
1927   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1928     return PLE->getNumExprs() == 0;
1929   if (isa<ImplicitValueInitExpr>(Init))
1930     return true;
1931   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1932     return !CCE->isListInitialization() &&
1933            CCE->getConstructor()->isDefaultConstructor();
1934   else if (Style == CXXNewExpr::ListInit) {
1935     assert(isa<InitListExpr>(Init) &&
1936            "Shouldn't create list CXXConstructExprs for arrays.");
1937     return true;
1938   }
1939   return false;
1940 }
1941 
1942 bool
1943 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1944   if (!getLangOpts().AlignedAllocationUnavailable)
1945     return false;
1946   if (FD.isDefined())
1947     return false;
1948   std::optional<unsigned> AlignmentParam;
1949   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1950       AlignmentParam)
1951     return true;
1952   return false;
1953 }
1954 
1955 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1956 // implemented in the standard library is selected.
1957 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1958                                                 SourceLocation Loc) {
1959   if (isUnavailableAlignedAllocationFunction(FD)) {
1960     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1961     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1962         getASTContext().getTargetInfo().getPlatformName());
1963     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1964 
1965     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1966     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1967     Diag(Loc, diag::err_aligned_allocation_unavailable)
1968         << IsDelete << FD.getType().getAsString() << OSName
1969         << OSVersion.getAsString() << OSVersion.empty();
1970     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1971   }
1972 }
1973 
1974 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1975                              SourceLocation PlacementLParen,
1976                              MultiExprArg PlacementArgs,
1977                              SourceLocation PlacementRParen,
1978                              SourceRange TypeIdParens, QualType AllocType,
1979                              TypeSourceInfo *AllocTypeInfo,
1980                              std::optional<Expr *> ArraySize,
1981                              SourceRange DirectInitRange, Expr *Initializer) {
1982   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1983   SourceLocation StartLoc = Range.getBegin();
1984 
1985   CXXNewExpr::InitializationStyle initStyle;
1986   if (DirectInitRange.isValid()) {
1987     assert(Initializer && "Have parens but no initializer.");
1988     initStyle = CXXNewExpr::CallInit;
1989   } else if (Initializer && isa<InitListExpr>(Initializer))
1990     initStyle = CXXNewExpr::ListInit;
1991   else {
1992     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1993             isa<CXXConstructExpr>(Initializer)) &&
1994            "Initializer expression that cannot have been implicitly created.");
1995     initStyle = CXXNewExpr::NoInit;
1996   }
1997 
1998   MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
1999   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
2000     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
2001     Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2002   }
2003 
2004   // C++11 [expr.new]p15:
2005   //   A new-expression that creates an object of type T initializes that
2006   //   object as follows:
2007   InitializationKind Kind
2008       //     - If the new-initializer is omitted, the object is default-
2009       //       initialized (8.5); if no initialization is performed,
2010       //       the object has indeterminate value
2011       = initStyle == CXXNewExpr::NoInit
2012             ? InitializationKind::CreateDefault(TypeRange.getBegin())
2013             //     - Otherwise, the new-initializer is interpreted according to
2014             //     the
2015             //       initialization rules of 8.5 for direct-initialization.
2016             : initStyle == CXXNewExpr::ListInit
2017                   ? InitializationKind::CreateDirectList(
2018                         TypeRange.getBegin(), Initializer->getBeginLoc(),
2019                         Initializer->getEndLoc())
2020                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
2021                                                      DirectInitRange.getBegin(),
2022                                                      DirectInitRange.getEnd());
2023 
2024   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2025   auto *Deduced = AllocType->getContainedDeducedType();
2026   if (Deduced && !Deduced->isDeduced() &&
2027       isa<DeducedTemplateSpecializationType>(Deduced)) {
2028     if (ArraySize)
2029       return ExprError(
2030           Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2031                diag::err_deduced_class_template_compound_type)
2032           << /*array*/ 2
2033           << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2034 
2035     InitializedEntity Entity
2036       = InitializedEntity::InitializeNew(StartLoc, AllocType);
2037     AllocType = DeduceTemplateSpecializationFromInitializer(
2038         AllocTypeInfo, Entity, Kind, Exprs);
2039     if (AllocType.isNull())
2040       return ExprError();
2041   } else if (Deduced && !Deduced->isDeduced()) {
2042     MultiExprArg Inits = Exprs;
2043     bool Braced = (initStyle == CXXNewExpr::ListInit);
2044     if (Braced) {
2045       auto *ILE = cast<InitListExpr>(Exprs[0]);
2046       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2047     }
2048 
2049     if (initStyle == CXXNewExpr::NoInit || Inits.empty())
2050       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2051                        << AllocType << TypeRange);
2052     if (Inits.size() > 1) {
2053       Expr *FirstBad = Inits[1];
2054       return ExprError(Diag(FirstBad->getBeginLoc(),
2055                             diag::err_auto_new_ctor_multiple_expressions)
2056                        << AllocType << TypeRange);
2057     }
2058     if (Braced && !getLangOpts().CPlusPlus17)
2059       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2060           << AllocType << TypeRange;
2061     Expr *Deduce = Inits[0];
2062     if (isa<InitListExpr>(Deduce))
2063       return ExprError(
2064           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2065           << Braced << AllocType << TypeRange);
2066     QualType DeducedType;
2067     TemplateDeductionInfo Info(Deduce->getExprLoc());
2068     TemplateDeductionResult Result =
2069         DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2070     if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2071       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2072                        << AllocType << Deduce->getType() << TypeRange
2073                        << Deduce->getSourceRange());
2074     if (DeducedType.isNull()) {
2075       assert(Result == TDK_AlreadyDiagnosed);
2076       return ExprError();
2077     }
2078     AllocType = DeducedType;
2079   }
2080 
2081   // Per C++0x [expr.new]p5, the type being constructed may be a
2082   // typedef of an array type.
2083   if (!ArraySize) {
2084     if (const ConstantArrayType *Array
2085                               = Context.getAsConstantArrayType(AllocType)) {
2086       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2087                                          Context.getSizeType(),
2088                                          TypeRange.getEnd());
2089       AllocType = Array->getElementType();
2090     }
2091   }
2092 
2093   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2094     return ExprError();
2095 
2096   if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2097     return ExprError();
2098 
2099   // In ARC, infer 'retaining' for the allocated
2100   if (getLangOpts().ObjCAutoRefCount &&
2101       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2102       AllocType->isObjCLifetimeType()) {
2103     AllocType = Context.getLifetimeQualifiedType(AllocType,
2104                                     AllocType->getObjCARCImplicitLifetime());
2105   }
2106 
2107   QualType ResultType = Context.getPointerType(AllocType);
2108 
2109   if (ArraySize && *ArraySize &&
2110       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2111     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2112     if (result.isInvalid()) return ExprError();
2113     ArraySize = result.get();
2114   }
2115   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2116   //   integral or enumeration type with a non-negative value."
2117   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2118   //   enumeration type, or a class type for which a single non-explicit
2119   //   conversion function to integral or unscoped enumeration type exists.
2120   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2121   //   std::size_t.
2122   std::optional<uint64_t> KnownArraySize;
2123   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2124     ExprResult ConvertedSize;
2125     if (getLangOpts().CPlusPlus14) {
2126       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2127 
2128       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2129                                                 AA_Converting);
2130 
2131       if (!ConvertedSize.isInvalid() &&
2132           (*ArraySize)->getType()->getAs<RecordType>())
2133         // Diagnose the compatibility of this conversion.
2134         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2135           << (*ArraySize)->getType() << 0 << "'size_t'";
2136     } else {
2137       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2138       protected:
2139         Expr *ArraySize;
2140 
2141       public:
2142         SizeConvertDiagnoser(Expr *ArraySize)
2143             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2144               ArraySize(ArraySize) {}
2145 
2146         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2147                                              QualType T) override {
2148           return S.Diag(Loc, diag::err_array_size_not_integral)
2149                    << S.getLangOpts().CPlusPlus11 << T;
2150         }
2151 
2152         SemaDiagnosticBuilder diagnoseIncomplete(
2153             Sema &S, SourceLocation Loc, QualType T) override {
2154           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2155                    << T << ArraySize->getSourceRange();
2156         }
2157 
2158         SemaDiagnosticBuilder diagnoseExplicitConv(
2159             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2160           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2161         }
2162 
2163         SemaDiagnosticBuilder noteExplicitConv(
2164             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2165           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2166                    << ConvTy->isEnumeralType() << ConvTy;
2167         }
2168 
2169         SemaDiagnosticBuilder diagnoseAmbiguous(
2170             Sema &S, SourceLocation Loc, QualType T) override {
2171           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2172         }
2173 
2174         SemaDiagnosticBuilder noteAmbiguous(
2175             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2176           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2177                    << ConvTy->isEnumeralType() << ConvTy;
2178         }
2179 
2180         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2181                                                  QualType T,
2182                                                  QualType ConvTy) override {
2183           return S.Diag(Loc,
2184                         S.getLangOpts().CPlusPlus11
2185                           ? diag::warn_cxx98_compat_array_size_conversion
2186                           : diag::ext_array_size_conversion)
2187                    << T << ConvTy->isEnumeralType() << ConvTy;
2188         }
2189       } SizeDiagnoser(*ArraySize);
2190 
2191       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2192                                                           SizeDiagnoser);
2193     }
2194     if (ConvertedSize.isInvalid())
2195       return ExprError();
2196 
2197     ArraySize = ConvertedSize.get();
2198     QualType SizeType = (*ArraySize)->getType();
2199 
2200     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2201       return ExprError();
2202 
2203     // C++98 [expr.new]p7:
2204     //   The expression in a direct-new-declarator shall have integral type
2205     //   with a non-negative value.
2206     //
2207     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2208     // per CWG1464. Otherwise, if it's not a constant, we must have an
2209     // unparenthesized array type.
2210 
2211     // We've already performed any required implicit conversion to integer or
2212     // unscoped enumeration type.
2213     // FIXME: Per CWG1464, we are required to check the value prior to
2214     // converting to size_t. This will never find a negative array size in
2215     // C++14 onwards, because Value is always unsigned here!
2216     if (std::optional<llvm::APSInt> Value =
2217             (*ArraySize)->getIntegerConstantExpr(Context)) {
2218       if (Value->isSigned() && Value->isNegative()) {
2219         return ExprError(Diag((*ArraySize)->getBeginLoc(),
2220                               diag::err_typecheck_negative_array_size)
2221                          << (*ArraySize)->getSourceRange());
2222       }
2223 
2224       if (!AllocType->isDependentType()) {
2225         unsigned ActiveSizeBits =
2226             ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2227         if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2228           return ExprError(
2229               Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2230               << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2231       }
2232 
2233       KnownArraySize = Value->getZExtValue();
2234     } else if (TypeIdParens.isValid()) {
2235       // Can't have dynamic array size when the type-id is in parentheses.
2236       Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2237           << (*ArraySize)->getSourceRange()
2238           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2239           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2240 
2241       TypeIdParens = SourceRange();
2242     }
2243 
2244     // Note that we do *not* convert the argument in any way.  It can
2245     // be signed, larger than size_t, whatever.
2246   }
2247 
2248   FunctionDecl *OperatorNew = nullptr;
2249   FunctionDecl *OperatorDelete = nullptr;
2250   unsigned Alignment =
2251       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2252   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2253   bool PassAlignment = getLangOpts().AlignedAllocation &&
2254                        Alignment > NewAlignment;
2255 
2256   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2257   if (!AllocType->isDependentType() &&
2258       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2259       FindAllocationFunctions(
2260           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2261           AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2262           OperatorNew, OperatorDelete))
2263     return ExprError();
2264 
2265   // If this is an array allocation, compute whether the usual array
2266   // deallocation function for the type has a size_t parameter.
2267   bool UsualArrayDeleteWantsSize = false;
2268   if (ArraySize && !AllocType->isDependentType())
2269     UsualArrayDeleteWantsSize =
2270         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2271 
2272   SmallVector<Expr *, 8> AllPlaceArgs;
2273   if (OperatorNew) {
2274     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2275     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2276                                                     : VariadicDoesNotApply;
2277 
2278     // We've already converted the placement args, just fill in any default
2279     // arguments. Skip the first parameter because we don't have a corresponding
2280     // argument. Skip the second parameter too if we're passing in the
2281     // alignment; we've already filled it in.
2282     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2283     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2284                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2285                                CallType))
2286       return ExprError();
2287 
2288     if (!AllPlaceArgs.empty())
2289       PlacementArgs = AllPlaceArgs;
2290 
2291     // We would like to perform some checking on the given `operator new` call,
2292     // but the PlacementArgs does not contain the implicit arguments,
2293     // namely allocation size and maybe allocation alignment,
2294     // so we need to conjure them.
2295 
2296     QualType SizeTy = Context.getSizeType();
2297     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2298 
2299     llvm::APInt SingleEltSize(
2300         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2301 
2302     // How many bytes do we want to allocate here?
2303     std::optional<llvm::APInt> AllocationSize;
2304     if (!ArraySize && !AllocType->isDependentType()) {
2305       // For non-array operator new, we only want to allocate one element.
2306       AllocationSize = SingleEltSize;
2307     } else if (KnownArraySize && !AllocType->isDependentType()) {
2308       // For array operator new, only deal with static array size case.
2309       bool Overflow;
2310       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2311                            .umul_ov(SingleEltSize, Overflow);
2312       (void)Overflow;
2313       assert(
2314           !Overflow &&
2315           "Expected that all the overflows would have been handled already.");
2316     }
2317 
2318     IntegerLiteral AllocationSizeLiteral(
2319         Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2320         SizeTy, SourceLocation());
2321     // Otherwise, if we failed to constant-fold the allocation size, we'll
2322     // just give up and pass-in something opaque, that isn't a null pointer.
2323     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2324                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2325 
2326     // Let's synthesize the alignment argument in case we will need it.
2327     // Since we *really* want to allocate these on stack, this is slightly ugly
2328     // because there might not be a `std::align_val_t` type.
2329     EnumDecl *StdAlignValT = getStdAlignValT();
2330     QualType AlignValT =
2331         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2332     IntegerLiteral AlignmentLiteral(
2333         Context,
2334         llvm::APInt(Context.getTypeSize(SizeTy),
2335                     Alignment / Context.getCharWidth()),
2336         SizeTy, SourceLocation());
2337     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2338                                       CK_IntegralCast, &AlignmentLiteral,
2339                                       VK_PRValue, FPOptionsOverride());
2340 
2341     // Adjust placement args by prepending conjured size and alignment exprs.
2342     llvm::SmallVector<Expr *, 8> CallArgs;
2343     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2344     CallArgs.emplace_back(AllocationSize
2345                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2346                               : &OpaqueAllocationSize);
2347     if (PassAlignment)
2348       CallArgs.emplace_back(&DesiredAlignment);
2349     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2350 
2351     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2352 
2353     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2354               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2355 
2356     // Warn if the type is over-aligned and is being allocated by (unaligned)
2357     // global operator new.
2358     if (PlacementArgs.empty() && !PassAlignment &&
2359         (OperatorNew->isImplicit() ||
2360          (OperatorNew->getBeginLoc().isValid() &&
2361           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2362       if (Alignment > NewAlignment)
2363         Diag(StartLoc, diag::warn_overaligned_type)
2364             << AllocType
2365             << unsigned(Alignment / Context.getCharWidth())
2366             << unsigned(NewAlignment / Context.getCharWidth());
2367     }
2368   }
2369 
2370   // Array 'new' can't have any initializers except empty parentheses.
2371   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2372   // dialect distinction.
2373   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2374     SourceRange InitRange(Exprs.front()->getBeginLoc(),
2375                           Exprs.back()->getEndLoc());
2376     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2377     return ExprError();
2378   }
2379 
2380   // If we can perform the initialization, and we've not already done so,
2381   // do it now.
2382   if (!AllocType->isDependentType() &&
2383       !Expr::hasAnyTypeDependentArguments(Exprs)) {
2384     // The type we initialize is the complete type, including the array bound.
2385     QualType InitType;
2386     if (KnownArraySize)
2387       InitType = Context.getConstantArrayType(
2388           AllocType,
2389           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2390                       *KnownArraySize),
2391           *ArraySize, ArrayType::Normal, 0);
2392     else if (ArraySize)
2393       InitType =
2394           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2395     else
2396       InitType = AllocType;
2397 
2398     InitializedEntity Entity
2399       = InitializedEntity::InitializeNew(StartLoc, InitType);
2400     InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2401     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2402     if (FullInit.isInvalid())
2403       return ExprError();
2404 
2405     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2406     // we don't want the initialized object to be destructed.
2407     // FIXME: We should not create these in the first place.
2408     if (CXXBindTemporaryExpr *Binder =
2409             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2410       FullInit = Binder->getSubExpr();
2411 
2412     Initializer = FullInit.get();
2413 
2414     // FIXME: If we have a KnownArraySize, check that the array bound of the
2415     // initializer is no greater than that constant value.
2416 
2417     if (ArraySize && !*ArraySize) {
2418       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2419       if (CAT) {
2420         // FIXME: Track that the array size was inferred rather than explicitly
2421         // specified.
2422         ArraySize = IntegerLiteral::Create(
2423             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2424       } else {
2425         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2426             << Initializer->getSourceRange();
2427       }
2428     }
2429   }
2430 
2431   // Mark the new and delete operators as referenced.
2432   if (OperatorNew) {
2433     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2434       return ExprError();
2435     MarkFunctionReferenced(StartLoc, OperatorNew);
2436   }
2437   if (OperatorDelete) {
2438     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2439       return ExprError();
2440     MarkFunctionReferenced(StartLoc, OperatorDelete);
2441   }
2442 
2443   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2444                             PassAlignment, UsualArrayDeleteWantsSize,
2445                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2446                             Initializer, ResultType, AllocTypeInfo, Range,
2447                             DirectInitRange);
2448 }
2449 
2450 /// Checks that a type is suitable as the allocated type
2451 /// in a new-expression.
2452 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2453                               SourceRange R) {
2454   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2455   //   abstract class type or array thereof.
2456   if (AllocType->isFunctionType())
2457     return Diag(Loc, diag::err_bad_new_type)
2458       << AllocType << 0 << R;
2459   else if (AllocType->isReferenceType())
2460     return Diag(Loc, diag::err_bad_new_type)
2461       << AllocType << 1 << R;
2462   else if (!AllocType->isDependentType() &&
2463            RequireCompleteSizedType(
2464                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2465     return true;
2466   else if (RequireNonAbstractType(Loc, AllocType,
2467                                   diag::err_allocation_of_abstract_type))
2468     return true;
2469   else if (AllocType->isVariablyModifiedType())
2470     return Diag(Loc, diag::err_variably_modified_new_type)
2471              << AllocType;
2472   else if (AllocType.getAddressSpace() != LangAS::Default &&
2473            !getLangOpts().OpenCLCPlusPlus)
2474     return Diag(Loc, diag::err_address_space_qualified_new)
2475       << AllocType.getUnqualifiedType()
2476       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2477   else if (getLangOpts().ObjCAutoRefCount) {
2478     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2479       QualType BaseAllocType = Context.getBaseElementType(AT);
2480       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2481           BaseAllocType->isObjCLifetimeType())
2482         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2483           << BaseAllocType;
2484     }
2485   }
2486 
2487   return false;
2488 }
2489 
2490 static bool resolveAllocationOverload(
2491     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2492     bool &PassAlignment, FunctionDecl *&Operator,
2493     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2494   OverloadCandidateSet Candidates(R.getNameLoc(),
2495                                   OverloadCandidateSet::CSK_Normal);
2496   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2497        Alloc != AllocEnd; ++Alloc) {
2498     // Even member operator new/delete are implicitly treated as
2499     // static, so don't use AddMemberCandidate.
2500     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2501 
2502     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2503       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2504                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2505                                      Candidates,
2506                                      /*SuppressUserConversions=*/false);
2507       continue;
2508     }
2509 
2510     FunctionDecl *Fn = cast<FunctionDecl>(D);
2511     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2512                            /*SuppressUserConversions=*/false);
2513   }
2514 
2515   // Do the resolution.
2516   OverloadCandidateSet::iterator Best;
2517   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2518   case OR_Success: {
2519     // Got one!
2520     FunctionDecl *FnDecl = Best->Function;
2521     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2522                                 Best->FoundDecl) == Sema::AR_inaccessible)
2523       return true;
2524 
2525     Operator = FnDecl;
2526     return false;
2527   }
2528 
2529   case OR_No_Viable_Function:
2530     // C++17 [expr.new]p13:
2531     //   If no matching function is found and the allocated object type has
2532     //   new-extended alignment, the alignment argument is removed from the
2533     //   argument list, and overload resolution is performed again.
2534     if (PassAlignment) {
2535       PassAlignment = false;
2536       AlignArg = Args[1];
2537       Args.erase(Args.begin() + 1);
2538       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2539                                        Operator, &Candidates, AlignArg,
2540                                        Diagnose);
2541     }
2542 
2543     // MSVC will fall back on trying to find a matching global operator new
2544     // if operator new[] cannot be found.  Also, MSVC will leak by not
2545     // generating a call to operator delete or operator delete[], but we
2546     // will not replicate that bug.
2547     // FIXME: Find out how this interacts with the std::align_val_t fallback
2548     // once MSVC implements it.
2549     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2550         S.Context.getLangOpts().MSVCCompat) {
2551       R.clear();
2552       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2553       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2554       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2555       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2556                                        Operator, /*Candidates=*/nullptr,
2557                                        /*AlignArg=*/nullptr, Diagnose);
2558     }
2559 
2560     if (Diagnose) {
2561       // If this is an allocation of the form 'new (p) X' for some object
2562       // pointer p (or an expression that will decay to such a pointer),
2563       // diagnose the missing inclusion of <new>.
2564       if (!R.isClassLookup() && Args.size() == 2 &&
2565           (Args[1]->getType()->isObjectPointerType() ||
2566            Args[1]->getType()->isArrayType())) {
2567         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2568             << R.getLookupName() << Range;
2569         // Listing the candidates is unlikely to be useful; skip it.
2570         return true;
2571       }
2572 
2573       // Finish checking all candidates before we note any. This checking can
2574       // produce additional diagnostics so can't be interleaved with our
2575       // emission of notes.
2576       //
2577       // For an aligned allocation, separately check the aligned and unaligned
2578       // candidates with their respective argument lists.
2579       SmallVector<OverloadCandidate*, 32> Cands;
2580       SmallVector<OverloadCandidate*, 32> AlignedCands;
2581       llvm::SmallVector<Expr*, 4> AlignedArgs;
2582       if (AlignedCandidates) {
2583         auto IsAligned = [](OverloadCandidate &C) {
2584           return C.Function->getNumParams() > 1 &&
2585                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2586         };
2587         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2588 
2589         AlignedArgs.reserve(Args.size() + 1);
2590         AlignedArgs.push_back(Args[0]);
2591         AlignedArgs.push_back(AlignArg);
2592         AlignedArgs.append(Args.begin() + 1, Args.end());
2593         AlignedCands = AlignedCandidates->CompleteCandidates(
2594             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2595 
2596         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2597                                               R.getNameLoc(), IsUnaligned);
2598       } else {
2599         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2600                                               R.getNameLoc());
2601       }
2602 
2603       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2604           << R.getLookupName() << Range;
2605       if (AlignedCandidates)
2606         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2607                                           R.getNameLoc());
2608       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2609     }
2610     return true;
2611 
2612   case OR_Ambiguous:
2613     if (Diagnose) {
2614       Candidates.NoteCandidates(
2615           PartialDiagnosticAt(R.getNameLoc(),
2616                               S.PDiag(diag::err_ovl_ambiguous_call)
2617                                   << R.getLookupName() << Range),
2618           S, OCD_AmbiguousCandidates, Args);
2619     }
2620     return true;
2621 
2622   case OR_Deleted: {
2623     if (Diagnose) {
2624       Candidates.NoteCandidates(
2625           PartialDiagnosticAt(R.getNameLoc(),
2626                               S.PDiag(diag::err_ovl_deleted_call)
2627                                   << R.getLookupName() << Range),
2628           S, OCD_AllCandidates, Args);
2629     }
2630     return true;
2631   }
2632   }
2633   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2634 }
2635 
2636 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2637                                    AllocationFunctionScope NewScope,
2638                                    AllocationFunctionScope DeleteScope,
2639                                    QualType AllocType, bool IsArray,
2640                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2641                                    FunctionDecl *&OperatorNew,
2642                                    FunctionDecl *&OperatorDelete,
2643                                    bool Diagnose) {
2644   // --- Choosing an allocation function ---
2645   // C++ 5.3.4p8 - 14 & 18
2646   // 1) If looking in AFS_Global scope for allocation functions, only look in
2647   //    the global scope. Else, if AFS_Class, only look in the scope of the
2648   //    allocated class. If AFS_Both, look in both.
2649   // 2) If an array size is given, look for operator new[], else look for
2650   //   operator new.
2651   // 3) The first argument is always size_t. Append the arguments from the
2652   //   placement form.
2653 
2654   SmallVector<Expr*, 8> AllocArgs;
2655   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2656 
2657   // We don't care about the actual value of these arguments.
2658   // FIXME: Should the Sema create the expression and embed it in the syntax
2659   // tree? Or should the consumer just recalculate the value?
2660   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2661   QualType SizeTy = Context.getSizeType();
2662   unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2663   IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy,
2664                       SourceLocation());
2665   AllocArgs.push_back(&Size);
2666 
2667   QualType AlignValT = Context.VoidTy;
2668   if (PassAlignment) {
2669     DeclareGlobalNewDelete();
2670     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2671   }
2672   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2673   if (PassAlignment)
2674     AllocArgs.push_back(&Align);
2675 
2676   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2677 
2678   // C++ [expr.new]p8:
2679   //   If the allocated type is a non-array type, the allocation
2680   //   function's name is operator new and the deallocation function's
2681   //   name is operator delete. If the allocated type is an array
2682   //   type, the allocation function's name is operator new[] and the
2683   //   deallocation function's name is operator delete[].
2684   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2685       IsArray ? OO_Array_New : OO_New);
2686 
2687   QualType AllocElemType = Context.getBaseElementType(AllocType);
2688 
2689   // Find the allocation function.
2690   {
2691     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2692 
2693     // C++1z [expr.new]p9:
2694     //   If the new-expression begins with a unary :: operator, the allocation
2695     //   function's name is looked up in the global scope. Otherwise, if the
2696     //   allocated type is a class type T or array thereof, the allocation
2697     //   function's name is looked up in the scope of T.
2698     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2699       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2700 
2701     // We can see ambiguity here if the allocation function is found in
2702     // multiple base classes.
2703     if (R.isAmbiguous())
2704       return true;
2705 
2706     //   If this lookup fails to find the name, or if the allocated type is not
2707     //   a class type, the allocation function's name is looked up in the
2708     //   global scope.
2709     if (R.empty()) {
2710       if (NewScope == AFS_Class)
2711         return true;
2712 
2713       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2714     }
2715 
2716     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2717       if (PlaceArgs.empty()) {
2718         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2719       } else {
2720         Diag(StartLoc, diag::err_openclcxx_placement_new);
2721       }
2722       return true;
2723     }
2724 
2725     assert(!R.empty() && "implicitly declared allocation functions not found");
2726     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2727 
2728     // We do our own custom access checks below.
2729     R.suppressDiagnostics();
2730 
2731     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2732                                   OperatorNew, /*Candidates=*/nullptr,
2733                                   /*AlignArg=*/nullptr, Diagnose))
2734       return true;
2735   }
2736 
2737   // We don't need an operator delete if we're running under -fno-exceptions.
2738   if (!getLangOpts().Exceptions) {
2739     OperatorDelete = nullptr;
2740     return false;
2741   }
2742 
2743   // Note, the name of OperatorNew might have been changed from array to
2744   // non-array by resolveAllocationOverload.
2745   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2746       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2747           ? OO_Array_Delete
2748           : OO_Delete);
2749 
2750   // C++ [expr.new]p19:
2751   //
2752   //   If the new-expression begins with a unary :: operator, the
2753   //   deallocation function's name is looked up in the global
2754   //   scope. Otherwise, if the allocated type is a class type T or an
2755   //   array thereof, the deallocation function's name is looked up in
2756   //   the scope of T. If this lookup fails to find the name, or if
2757   //   the allocated type is not a class type or array thereof, the
2758   //   deallocation function's name is looked up in the global scope.
2759   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2760   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2761     auto *RD =
2762         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2763     LookupQualifiedName(FoundDelete, RD);
2764   }
2765   if (FoundDelete.isAmbiguous())
2766     return true; // FIXME: clean up expressions?
2767 
2768   // Filter out any destroying operator deletes. We can't possibly call such a
2769   // function in this context, because we're handling the case where the object
2770   // was not successfully constructed.
2771   // FIXME: This is not covered by the language rules yet.
2772   {
2773     LookupResult::Filter Filter = FoundDelete.makeFilter();
2774     while (Filter.hasNext()) {
2775       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2776       if (FD && FD->isDestroyingOperatorDelete())
2777         Filter.erase();
2778     }
2779     Filter.done();
2780   }
2781 
2782   bool FoundGlobalDelete = FoundDelete.empty();
2783   if (FoundDelete.empty()) {
2784     FoundDelete.clear(LookupOrdinaryName);
2785 
2786     if (DeleteScope == AFS_Class)
2787       return true;
2788 
2789     DeclareGlobalNewDelete();
2790     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2791   }
2792 
2793   FoundDelete.suppressDiagnostics();
2794 
2795   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2796 
2797   // Whether we're looking for a placement operator delete is dictated
2798   // by whether we selected a placement operator new, not by whether
2799   // we had explicit placement arguments.  This matters for things like
2800   //   struct A { void *operator new(size_t, int = 0); ... };
2801   //   A *a = new A()
2802   //
2803   // We don't have any definition for what a "placement allocation function"
2804   // is, but we assume it's any allocation function whose
2805   // parameter-declaration-clause is anything other than (size_t).
2806   //
2807   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2808   // This affects whether an exception from the constructor of an overaligned
2809   // type uses the sized or non-sized form of aligned operator delete.
2810   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2811                         OperatorNew->isVariadic();
2812 
2813   if (isPlacementNew) {
2814     // C++ [expr.new]p20:
2815     //   A declaration of a placement deallocation function matches the
2816     //   declaration of a placement allocation function if it has the
2817     //   same number of parameters and, after parameter transformations
2818     //   (8.3.5), all parameter types except the first are
2819     //   identical. [...]
2820     //
2821     // To perform this comparison, we compute the function type that
2822     // the deallocation function should have, and use that type both
2823     // for template argument deduction and for comparison purposes.
2824     QualType ExpectedFunctionType;
2825     {
2826       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2827 
2828       SmallVector<QualType, 4> ArgTypes;
2829       ArgTypes.push_back(Context.VoidPtrTy);
2830       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2831         ArgTypes.push_back(Proto->getParamType(I));
2832 
2833       FunctionProtoType::ExtProtoInfo EPI;
2834       // FIXME: This is not part of the standard's rule.
2835       EPI.Variadic = Proto->isVariadic();
2836 
2837       ExpectedFunctionType
2838         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2839     }
2840 
2841     for (LookupResult::iterator D = FoundDelete.begin(),
2842                              DEnd = FoundDelete.end();
2843          D != DEnd; ++D) {
2844       FunctionDecl *Fn = nullptr;
2845       if (FunctionTemplateDecl *FnTmpl =
2846               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2847         // Perform template argument deduction to try to match the
2848         // expected function type.
2849         TemplateDeductionInfo Info(StartLoc);
2850         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2851                                     Info))
2852           continue;
2853       } else
2854         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2855 
2856       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2857                                                   ExpectedFunctionType,
2858                                                   /*AdjustExcpetionSpec*/true),
2859                               ExpectedFunctionType))
2860         Matches.push_back(std::make_pair(D.getPair(), Fn));
2861     }
2862 
2863     if (getLangOpts().CUDA)
2864       EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2865                                Matches);
2866   } else {
2867     // C++1y [expr.new]p22:
2868     //   For a non-placement allocation function, the normal deallocation
2869     //   function lookup is used
2870     //
2871     // Per [expr.delete]p10, this lookup prefers a member operator delete
2872     // without a size_t argument, but prefers a non-member operator delete
2873     // with a size_t where possible (which it always is in this case).
2874     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2875     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2876         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2877         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2878         &BestDeallocFns);
2879     if (Selected)
2880       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2881     else {
2882       // If we failed to select an operator, all remaining functions are viable
2883       // but ambiguous.
2884       for (auto Fn : BestDeallocFns)
2885         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2886     }
2887   }
2888 
2889   // C++ [expr.new]p20:
2890   //   [...] If the lookup finds a single matching deallocation
2891   //   function, that function will be called; otherwise, no
2892   //   deallocation function will be called.
2893   if (Matches.size() == 1) {
2894     OperatorDelete = Matches[0].second;
2895 
2896     // C++1z [expr.new]p23:
2897     //   If the lookup finds a usual deallocation function (3.7.4.2)
2898     //   with a parameter of type std::size_t and that function, considered
2899     //   as a placement deallocation function, would have been
2900     //   selected as a match for the allocation function, the program
2901     //   is ill-formed.
2902     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2903         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2904       UsualDeallocFnInfo Info(*this,
2905                               DeclAccessPair::make(OperatorDelete, AS_public));
2906       // Core issue, per mail to core reflector, 2016-10-09:
2907       //   If this is a member operator delete, and there is a corresponding
2908       //   non-sized member operator delete, this isn't /really/ a sized
2909       //   deallocation function, it just happens to have a size_t parameter.
2910       bool IsSizedDelete = Info.HasSizeT;
2911       if (IsSizedDelete && !FoundGlobalDelete) {
2912         auto NonSizedDelete =
2913             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2914                                         /*WantAlign*/Info.HasAlignValT);
2915         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2916             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2917           IsSizedDelete = false;
2918       }
2919 
2920       if (IsSizedDelete) {
2921         SourceRange R = PlaceArgs.empty()
2922                             ? SourceRange()
2923                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2924                                           PlaceArgs.back()->getEndLoc());
2925         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2926         if (!OperatorDelete->isImplicit())
2927           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2928               << DeleteName;
2929       }
2930     }
2931 
2932     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2933                           Matches[0].first);
2934   } else if (!Matches.empty()) {
2935     // We found multiple suitable operators. Per [expr.new]p20, that means we
2936     // call no 'operator delete' function, but we should at least warn the user.
2937     // FIXME: Suppress this warning if the construction cannot throw.
2938     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2939       << DeleteName << AllocElemType;
2940 
2941     for (auto &Match : Matches)
2942       Diag(Match.second->getLocation(),
2943            diag::note_member_declared_here) << DeleteName;
2944   }
2945 
2946   return false;
2947 }
2948 
2949 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2950 /// delete. These are:
2951 /// @code
2952 ///   // C++03:
2953 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2954 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2955 ///   void operator delete(void *) throw();
2956 ///   void operator delete[](void *) throw();
2957 ///   // C++11:
2958 ///   void* operator new(std::size_t);
2959 ///   void* operator new[](std::size_t);
2960 ///   void operator delete(void *) noexcept;
2961 ///   void operator delete[](void *) noexcept;
2962 ///   // C++1y:
2963 ///   void* operator new(std::size_t);
2964 ///   void* operator new[](std::size_t);
2965 ///   void operator delete(void *) noexcept;
2966 ///   void operator delete[](void *) noexcept;
2967 ///   void operator delete(void *, std::size_t) noexcept;
2968 ///   void operator delete[](void *, std::size_t) noexcept;
2969 /// @endcode
2970 /// Note that the placement and nothrow forms of new are *not* implicitly
2971 /// declared. Their use requires including \<new\>.
2972 void Sema::DeclareGlobalNewDelete() {
2973   if (GlobalNewDeleteDeclared)
2974     return;
2975 
2976   // The implicitly declared new and delete operators
2977   // are not supported in OpenCL.
2978   if (getLangOpts().OpenCLCPlusPlus)
2979     return;
2980 
2981   // C++ [basic.stc.dynamic.general]p2:
2982   //   The library provides default definitions for the global allocation
2983   //   and deallocation functions. Some global allocation and deallocation
2984   //   functions are replaceable ([new.delete]); these are attached to the
2985   //   global module ([module.unit]).
2986   if (getLangOpts().CPlusPlusModules && getCurrentModule())
2987     PushGlobalModuleFragment(SourceLocation());
2988 
2989   // C++ [basic.std.dynamic]p2:
2990   //   [...] The following allocation and deallocation functions (18.4) are
2991   //   implicitly declared in global scope in each translation unit of a
2992   //   program
2993   //
2994   //     C++03:
2995   //     void* operator new(std::size_t) throw(std::bad_alloc);
2996   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2997   //     void  operator delete(void*) throw();
2998   //     void  operator delete[](void*) throw();
2999   //     C++11:
3000   //     void* operator new(std::size_t);
3001   //     void* operator new[](std::size_t);
3002   //     void  operator delete(void*) noexcept;
3003   //     void  operator delete[](void*) noexcept;
3004   //     C++1y:
3005   //     void* operator new(std::size_t);
3006   //     void* operator new[](std::size_t);
3007   //     void  operator delete(void*) noexcept;
3008   //     void  operator delete[](void*) noexcept;
3009   //     void  operator delete(void*, std::size_t) noexcept;
3010   //     void  operator delete[](void*, std::size_t) noexcept;
3011   //
3012   //   These implicit declarations introduce only the function names operator
3013   //   new, operator new[], operator delete, operator delete[].
3014   //
3015   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3016   // "std" or "bad_alloc" as necessary to form the exception specification.
3017   // However, we do not make these implicit declarations visible to name
3018   // lookup.
3019   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3020     // The "std::bad_alloc" class has not yet been declared, so build it
3021     // implicitly.
3022     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
3023                                         getOrCreateStdNamespace(),
3024                                         SourceLocation(), SourceLocation(),
3025                                       &PP.getIdentifierTable().get("bad_alloc"),
3026                                         nullptr);
3027     getStdBadAlloc()->setImplicit(true);
3028 
3029     // The implicitly declared "std::bad_alloc" should live in global module
3030     // fragment.
3031     if (TheGlobalModuleFragment) {
3032       getStdBadAlloc()->setModuleOwnershipKind(
3033           Decl::ModuleOwnershipKind::ReachableWhenImported);
3034       getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3035     }
3036   }
3037   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3038     // The "std::align_val_t" enum class has not yet been declared, so build it
3039     // implicitly.
3040     auto *AlignValT = EnumDecl::Create(
3041         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3042         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3043 
3044     // The implicitly declared "std::align_val_t" should live in global module
3045     // fragment.
3046     if (TheGlobalModuleFragment) {
3047       AlignValT->setModuleOwnershipKind(
3048           Decl::ModuleOwnershipKind::ReachableWhenImported);
3049       AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3050     }
3051 
3052     AlignValT->setIntegerType(Context.getSizeType());
3053     AlignValT->setPromotionType(Context.getSizeType());
3054     AlignValT->setImplicit(true);
3055 
3056     StdAlignValT = AlignValT;
3057   }
3058 
3059   GlobalNewDeleteDeclared = true;
3060 
3061   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3062   QualType SizeT = Context.getSizeType();
3063 
3064   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3065                                               QualType Return, QualType Param) {
3066     llvm::SmallVector<QualType, 3> Params;
3067     Params.push_back(Param);
3068 
3069     // Create up to four variants of the function (sized/aligned).
3070     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3071                            (Kind == OO_Delete || Kind == OO_Array_Delete);
3072     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3073 
3074     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3075     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3076     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3077       if (Sized)
3078         Params.push_back(SizeT);
3079 
3080       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3081         if (Aligned)
3082           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3083 
3084         DeclareGlobalAllocationFunction(
3085             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3086 
3087         if (Aligned)
3088           Params.pop_back();
3089       }
3090     }
3091   };
3092 
3093   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3094   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3095   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3096   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3097 
3098   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3099     PopGlobalModuleFragment();
3100 }
3101 
3102 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3103 /// allocation function if it doesn't already exist.
3104 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3105                                            QualType Return,
3106                                            ArrayRef<QualType> Params) {
3107   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3108 
3109   // Check if this function is already declared.
3110   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3111   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3112        Alloc != AllocEnd; ++Alloc) {
3113     // Only look at non-template functions, as it is the predefined,
3114     // non-templated allocation function we are trying to declare here.
3115     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3116       if (Func->getNumParams() == Params.size()) {
3117         llvm::SmallVector<QualType, 3> FuncParams;
3118         for (auto *P : Func->parameters())
3119           FuncParams.push_back(
3120               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3121         if (llvm::ArrayRef(FuncParams) == Params) {
3122           // Make the function visible to name lookup, even if we found it in
3123           // an unimported module. It either is an implicitly-declared global
3124           // allocation function, or is suppressing that function.
3125           Func->setVisibleDespiteOwningModule();
3126           return;
3127         }
3128       }
3129     }
3130   }
3131 
3132   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3133       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3134 
3135   QualType BadAllocType;
3136   bool HasBadAllocExceptionSpec
3137     = (Name.getCXXOverloadedOperator() == OO_New ||
3138        Name.getCXXOverloadedOperator() == OO_Array_New);
3139   if (HasBadAllocExceptionSpec) {
3140     if (!getLangOpts().CPlusPlus11) {
3141       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3142       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3143       EPI.ExceptionSpec.Type = EST_Dynamic;
3144       EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3145     }
3146     if (getLangOpts().NewInfallible) {
3147       EPI.ExceptionSpec.Type = EST_DynamicNone;
3148     }
3149   } else {
3150     EPI.ExceptionSpec =
3151         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3152   }
3153 
3154   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3155     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3156     FunctionDecl *Alloc = FunctionDecl::Create(
3157         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3158         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3159         true);
3160     Alloc->setImplicit();
3161     // Global allocation functions should always be visible.
3162     Alloc->setVisibleDespiteOwningModule();
3163 
3164     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3165         !getLangOpts().CheckNew)
3166       Alloc->addAttr(
3167           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3168 
3169     // C++ [basic.stc.dynamic.general]p2:
3170     //   The library provides default definitions for the global allocation
3171     //   and deallocation functions. Some global allocation and deallocation
3172     //   functions are replaceable ([new.delete]); these are attached to the
3173     //   global module ([module.unit]).
3174     //
3175     // In the language wording, these functions are attched to the global
3176     // module all the time. But in the implementation, the global module
3177     // is only meaningful when we're in a module unit. So here we attach
3178     // these allocation functions to global module conditionally.
3179     if (TheGlobalModuleFragment) {
3180       Alloc->setModuleOwnershipKind(
3181           Decl::ModuleOwnershipKind::ReachableWhenImported);
3182       Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3183     }
3184 
3185     Alloc->addAttr(VisibilityAttr::CreateImplicit(
3186         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3187                      ? VisibilityAttr::Hidden
3188                      : VisibilityAttr::Default));
3189 
3190     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3191     for (QualType T : Params) {
3192       ParamDecls.push_back(ParmVarDecl::Create(
3193           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3194           /*TInfo=*/nullptr, SC_None, nullptr));
3195       ParamDecls.back()->setImplicit();
3196     }
3197     Alloc->setParams(ParamDecls);
3198     if (ExtraAttr)
3199       Alloc->addAttr(ExtraAttr);
3200     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3201     Context.getTranslationUnitDecl()->addDecl(Alloc);
3202     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3203   };
3204 
3205   if (!LangOpts.CUDA)
3206     CreateAllocationFunctionDecl(nullptr);
3207   else {
3208     // Host and device get their own declaration so each can be
3209     // defined or re-declared independently.
3210     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3211     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3212   }
3213 }
3214 
3215 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3216                                                   bool CanProvideSize,
3217                                                   bool Overaligned,
3218                                                   DeclarationName Name) {
3219   DeclareGlobalNewDelete();
3220 
3221   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3222   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3223 
3224   // FIXME: It's possible for this to result in ambiguity, through a
3225   // user-declared variadic operator delete or the enable_if attribute. We
3226   // should probably not consider those cases to be usual deallocation
3227   // functions. But for now we just make an arbitrary choice in that case.
3228   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3229                                             Overaligned);
3230   assert(Result.FD && "operator delete missing from global scope?");
3231   return Result.FD;
3232 }
3233 
3234 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3235                                                           CXXRecordDecl *RD) {
3236   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3237 
3238   FunctionDecl *OperatorDelete = nullptr;
3239   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3240     return nullptr;
3241   if (OperatorDelete)
3242     return OperatorDelete;
3243 
3244   // If there's no class-specific operator delete, look up the global
3245   // non-array delete.
3246   return FindUsualDeallocationFunction(
3247       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3248       Name);
3249 }
3250 
3251 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3252                                     DeclarationName Name,
3253                                     FunctionDecl *&Operator, bool Diagnose,
3254                                     bool WantSize, bool WantAligned) {
3255   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3256   // Try to find operator delete/operator delete[] in class scope.
3257   LookupQualifiedName(Found, RD);
3258 
3259   if (Found.isAmbiguous())
3260     return true;
3261 
3262   Found.suppressDiagnostics();
3263 
3264   bool Overaligned =
3265       WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3266 
3267   // C++17 [expr.delete]p10:
3268   //   If the deallocation functions have class scope, the one without a
3269   //   parameter of type std::size_t is selected.
3270   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3271   resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3272                               /*WantAlign*/ Overaligned, &Matches);
3273 
3274   // If we could find an overload, use it.
3275   if (Matches.size() == 1) {
3276     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3277 
3278     // FIXME: DiagnoseUseOfDecl?
3279     if (Operator->isDeleted()) {
3280       if (Diagnose) {
3281         Diag(StartLoc, diag::err_deleted_function_use);
3282         NoteDeletedFunction(Operator);
3283       }
3284       return true;
3285     }
3286 
3287     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3288                               Matches[0].Found, Diagnose) == AR_inaccessible)
3289       return true;
3290 
3291     return false;
3292   }
3293 
3294   // We found multiple suitable operators; complain about the ambiguity.
3295   // FIXME: The standard doesn't say to do this; it appears that the intent
3296   // is that this should never happen.
3297   if (!Matches.empty()) {
3298     if (Diagnose) {
3299       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3300         << Name << RD;
3301       for (auto &Match : Matches)
3302         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3303     }
3304     return true;
3305   }
3306 
3307   // We did find operator delete/operator delete[] declarations, but
3308   // none of them were suitable.
3309   if (!Found.empty()) {
3310     if (Diagnose) {
3311       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3312         << Name << RD;
3313 
3314       for (NamedDecl *D : Found)
3315         Diag(D->getUnderlyingDecl()->getLocation(),
3316              diag::note_member_declared_here) << Name;
3317     }
3318     return true;
3319   }
3320 
3321   Operator = nullptr;
3322   return false;
3323 }
3324 
3325 namespace {
3326 /// Checks whether delete-expression, and new-expression used for
3327 ///  initializing deletee have the same array form.
3328 class MismatchingNewDeleteDetector {
3329 public:
3330   enum MismatchResult {
3331     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3332     NoMismatch,
3333     /// Indicates that variable is initialized with mismatching form of \a new.
3334     VarInitMismatches,
3335     /// Indicates that member is initialized with mismatching form of \a new.
3336     MemberInitMismatches,
3337     /// Indicates that 1 or more constructors' definitions could not been
3338     /// analyzed, and they will be checked again at the end of translation unit.
3339     AnalyzeLater
3340   };
3341 
3342   /// \param EndOfTU True, if this is the final analysis at the end of
3343   /// translation unit. False, if this is the initial analysis at the point
3344   /// delete-expression was encountered.
3345   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3346       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3347         HasUndefinedConstructors(false) {}
3348 
3349   /// Checks whether pointee of a delete-expression is initialized with
3350   /// matching form of new-expression.
3351   ///
3352   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3353   /// point where delete-expression is encountered, then a warning will be
3354   /// issued immediately. If return value is \c AnalyzeLater at the point where
3355   /// delete-expression is seen, then member will be analyzed at the end of
3356   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3357   /// couldn't be analyzed. If at least one constructor initializes the member
3358   /// with matching type of new, the return value is \c NoMismatch.
3359   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3360   /// Analyzes a class member.
3361   /// \param Field Class member to analyze.
3362   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3363   /// for deleting the \p Field.
3364   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3365   FieldDecl *Field;
3366   /// List of mismatching new-expressions used for initialization of the pointee
3367   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3368   /// Indicates whether delete-expression was in array form.
3369   bool IsArrayForm;
3370 
3371 private:
3372   const bool EndOfTU;
3373   /// Indicates that there is at least one constructor without body.
3374   bool HasUndefinedConstructors;
3375   /// Returns \c CXXNewExpr from given initialization expression.
3376   /// \param E Expression used for initializing pointee in delete-expression.
3377   /// E can be a single-element \c InitListExpr consisting of new-expression.
3378   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3379   /// Returns whether member is initialized with mismatching form of
3380   /// \c new either by the member initializer or in-class initialization.
3381   ///
3382   /// If bodies of all constructors are not visible at the end of translation
3383   /// unit or at least one constructor initializes member with the matching
3384   /// form of \c new, mismatch cannot be proven, and this function will return
3385   /// \c NoMismatch.
3386   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3387   /// Returns whether variable is initialized with mismatching form of
3388   /// \c new.
3389   ///
3390   /// If variable is initialized with matching form of \c new or variable is not
3391   /// initialized with a \c new expression, this function will return true.
3392   /// If variable is initialized with mismatching form of \c new, returns false.
3393   /// \param D Variable to analyze.
3394   bool hasMatchingVarInit(const DeclRefExpr *D);
3395   /// Checks whether the constructor initializes pointee with mismatching
3396   /// form of \c new.
3397   ///
3398   /// Returns true, if member is initialized with matching form of \c new in
3399   /// member initializer list. Returns false, if member is initialized with the
3400   /// matching form of \c new in this constructor's initializer or given
3401   /// constructor isn't defined at the point where delete-expression is seen, or
3402   /// member isn't initialized by the constructor.
3403   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3404   /// Checks whether member is initialized with matching form of
3405   /// \c new in member initializer list.
3406   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3407   /// Checks whether member is initialized with mismatching form of \c new by
3408   /// in-class initializer.
3409   MismatchResult analyzeInClassInitializer();
3410 };
3411 }
3412 
3413 MismatchingNewDeleteDetector::MismatchResult
3414 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3415   NewExprs.clear();
3416   assert(DE && "Expected delete-expression");
3417   IsArrayForm = DE->isArrayForm();
3418   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3419   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3420     return analyzeMemberExpr(ME);
3421   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3422     if (!hasMatchingVarInit(D))
3423       return VarInitMismatches;
3424   }
3425   return NoMismatch;
3426 }
3427 
3428 const CXXNewExpr *
3429 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3430   assert(E != nullptr && "Expected a valid initializer expression");
3431   E = E->IgnoreParenImpCasts();
3432   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3433     if (ILE->getNumInits() == 1)
3434       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3435   }
3436 
3437   return dyn_cast_or_null<const CXXNewExpr>(E);
3438 }
3439 
3440 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3441     const CXXCtorInitializer *CI) {
3442   const CXXNewExpr *NE = nullptr;
3443   if (Field == CI->getMember() &&
3444       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3445     if (NE->isArray() == IsArrayForm)
3446       return true;
3447     else
3448       NewExprs.push_back(NE);
3449   }
3450   return false;
3451 }
3452 
3453 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3454     const CXXConstructorDecl *CD) {
3455   if (CD->isImplicit())
3456     return false;
3457   const FunctionDecl *Definition = CD;
3458   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3459     HasUndefinedConstructors = true;
3460     return EndOfTU;
3461   }
3462   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3463     if (hasMatchingNewInCtorInit(CI))
3464       return true;
3465   }
3466   return false;
3467 }
3468 
3469 MismatchingNewDeleteDetector::MismatchResult
3470 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3471   assert(Field != nullptr && "This should be called only for members");
3472   const Expr *InitExpr = Field->getInClassInitializer();
3473   if (!InitExpr)
3474     return EndOfTU ? NoMismatch : AnalyzeLater;
3475   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3476     if (NE->isArray() != IsArrayForm) {
3477       NewExprs.push_back(NE);
3478       return MemberInitMismatches;
3479     }
3480   }
3481   return NoMismatch;
3482 }
3483 
3484 MismatchingNewDeleteDetector::MismatchResult
3485 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3486                                            bool DeleteWasArrayForm) {
3487   assert(Field != nullptr && "Analysis requires a valid class member.");
3488   this->Field = Field;
3489   IsArrayForm = DeleteWasArrayForm;
3490   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3491   for (const auto *CD : RD->ctors()) {
3492     if (hasMatchingNewInCtor(CD))
3493       return NoMismatch;
3494   }
3495   if (HasUndefinedConstructors)
3496     return EndOfTU ? NoMismatch : AnalyzeLater;
3497   if (!NewExprs.empty())
3498     return MemberInitMismatches;
3499   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3500                                         : NoMismatch;
3501 }
3502 
3503 MismatchingNewDeleteDetector::MismatchResult
3504 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3505   assert(ME != nullptr && "Expected a member expression");
3506   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3507     return analyzeField(F, IsArrayForm);
3508   return NoMismatch;
3509 }
3510 
3511 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3512   const CXXNewExpr *NE = nullptr;
3513   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3514     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3515         NE->isArray() != IsArrayForm) {
3516       NewExprs.push_back(NE);
3517     }
3518   }
3519   return NewExprs.empty();
3520 }
3521 
3522 static void
3523 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3524                             const MismatchingNewDeleteDetector &Detector) {
3525   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3526   FixItHint H;
3527   if (!Detector.IsArrayForm)
3528     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3529   else {
3530     SourceLocation RSquare = Lexer::findLocationAfterToken(
3531         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3532         SemaRef.getLangOpts(), true);
3533     if (RSquare.isValid())
3534       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3535   }
3536   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3537       << Detector.IsArrayForm << H;
3538 
3539   for (const auto *NE : Detector.NewExprs)
3540     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3541         << Detector.IsArrayForm;
3542 }
3543 
3544 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3545   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3546     return;
3547   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3548   switch (Detector.analyzeDeleteExpr(DE)) {
3549   case MismatchingNewDeleteDetector::VarInitMismatches:
3550   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3551     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3552     break;
3553   }
3554   case MismatchingNewDeleteDetector::AnalyzeLater: {
3555     DeleteExprs[Detector.Field].push_back(
3556         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3557     break;
3558   }
3559   case MismatchingNewDeleteDetector::NoMismatch:
3560     break;
3561   }
3562 }
3563 
3564 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3565                                      bool DeleteWasArrayForm) {
3566   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3567   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3568   case MismatchingNewDeleteDetector::VarInitMismatches:
3569     llvm_unreachable("This analysis should have been done for class members.");
3570   case MismatchingNewDeleteDetector::AnalyzeLater:
3571     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3572                      "translation unit.");
3573   case MismatchingNewDeleteDetector::MemberInitMismatches:
3574     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3575     break;
3576   case MismatchingNewDeleteDetector::NoMismatch:
3577     break;
3578   }
3579 }
3580 
3581 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3582 /// @code ::delete ptr; @endcode
3583 /// or
3584 /// @code delete [] ptr; @endcode
3585 ExprResult
3586 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3587                      bool ArrayForm, Expr *ExE) {
3588   // C++ [expr.delete]p1:
3589   //   The operand shall have a pointer type, or a class type having a single
3590   //   non-explicit conversion function to a pointer type. The result has type
3591   //   void.
3592   //
3593   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3594 
3595   ExprResult Ex = ExE;
3596   FunctionDecl *OperatorDelete = nullptr;
3597   bool ArrayFormAsWritten = ArrayForm;
3598   bool UsualArrayDeleteWantsSize = false;
3599 
3600   if (!Ex.get()->isTypeDependent()) {
3601     // Perform lvalue-to-rvalue cast, if needed.
3602     Ex = DefaultLvalueConversion(Ex.get());
3603     if (Ex.isInvalid())
3604       return ExprError();
3605 
3606     QualType Type = Ex.get()->getType();
3607 
3608     class DeleteConverter : public ContextualImplicitConverter {
3609     public:
3610       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3611 
3612       bool match(QualType ConvType) override {
3613         // FIXME: If we have an operator T* and an operator void*, we must pick
3614         // the operator T*.
3615         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3616           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3617             return true;
3618         return false;
3619       }
3620 
3621       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3622                                             QualType T) override {
3623         return S.Diag(Loc, diag::err_delete_operand) << T;
3624       }
3625 
3626       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3627                                                QualType T) override {
3628         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3629       }
3630 
3631       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3632                                                  QualType T,
3633                                                  QualType ConvTy) override {
3634         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3635       }
3636 
3637       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3638                                              QualType ConvTy) override {
3639         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3640           << ConvTy;
3641       }
3642 
3643       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3644                                               QualType T) override {
3645         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3646       }
3647 
3648       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3649                                           QualType ConvTy) override {
3650         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3651           << ConvTy;
3652       }
3653 
3654       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3655                                                QualType T,
3656                                                QualType ConvTy) override {
3657         llvm_unreachable("conversion functions are permitted");
3658       }
3659     } Converter;
3660 
3661     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3662     if (Ex.isInvalid())
3663       return ExprError();
3664     Type = Ex.get()->getType();
3665     if (!Converter.match(Type))
3666       // FIXME: PerformContextualImplicitConversion should return ExprError
3667       //        itself in this case.
3668       return ExprError();
3669 
3670     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3671     QualType PointeeElem = Context.getBaseElementType(Pointee);
3672 
3673     if (Pointee.getAddressSpace() != LangAS::Default &&
3674         !getLangOpts().OpenCLCPlusPlus)
3675       return Diag(Ex.get()->getBeginLoc(),
3676                   diag::err_address_space_qualified_delete)
3677              << Pointee.getUnqualifiedType()
3678              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3679 
3680     CXXRecordDecl *PointeeRD = nullptr;
3681     if (Pointee->isVoidType() && !isSFINAEContext()) {
3682       // The C++ standard bans deleting a pointer to a non-object type, which
3683       // effectively bans deletion of "void*". However, most compilers support
3684       // this, so we treat it as a warning unless we're in a SFINAE context.
3685       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3686         << Type << Ex.get()->getSourceRange();
3687     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3688                Pointee->isSizelessType()) {
3689       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3690         << Type << Ex.get()->getSourceRange());
3691     } else if (!Pointee->isDependentType()) {
3692       // FIXME: This can result in errors if the definition was imported from a
3693       // module but is hidden.
3694       if (!RequireCompleteType(StartLoc, Pointee,
3695                                diag::warn_delete_incomplete, Ex.get())) {
3696         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3697           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3698       }
3699     }
3700 
3701     if (Pointee->isArrayType() && !ArrayForm) {
3702       Diag(StartLoc, diag::warn_delete_array_type)
3703           << Type << Ex.get()->getSourceRange()
3704           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3705       ArrayForm = true;
3706     }
3707 
3708     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3709                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3710 
3711     if (PointeeRD) {
3712       if (!UseGlobal &&
3713           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3714                                    OperatorDelete))
3715         return ExprError();
3716 
3717       // If we're allocating an array of records, check whether the
3718       // usual operator delete[] has a size_t parameter.
3719       if (ArrayForm) {
3720         // If the user specifically asked to use the global allocator,
3721         // we'll need to do the lookup into the class.
3722         if (UseGlobal)
3723           UsualArrayDeleteWantsSize =
3724             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3725 
3726         // Otherwise, the usual operator delete[] should be the
3727         // function we just found.
3728         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3729           UsualArrayDeleteWantsSize =
3730             UsualDeallocFnInfo(*this,
3731                                DeclAccessPair::make(OperatorDelete, AS_public))
3732               .HasSizeT;
3733       }
3734 
3735       if (!PointeeRD->hasIrrelevantDestructor())
3736         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3737           MarkFunctionReferenced(StartLoc,
3738                                     const_cast<CXXDestructorDecl*>(Dtor));
3739           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3740             return ExprError();
3741         }
3742 
3743       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3744                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3745                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3746                            SourceLocation());
3747     }
3748 
3749     if (!OperatorDelete) {
3750       if (getLangOpts().OpenCLCPlusPlus) {
3751         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3752         return ExprError();
3753       }
3754 
3755       bool IsComplete = isCompleteType(StartLoc, Pointee);
3756       bool CanProvideSize =
3757           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3758                          Pointee.isDestructedType());
3759       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3760 
3761       // Look for a global declaration.
3762       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3763                                                      Overaligned, DeleteName);
3764     }
3765 
3766     MarkFunctionReferenced(StartLoc, OperatorDelete);
3767 
3768     // Check access and ambiguity of destructor if we're going to call it.
3769     // Note that this is required even for a virtual delete.
3770     bool IsVirtualDelete = false;
3771     if (PointeeRD) {
3772       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3773         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3774                               PDiag(diag::err_access_dtor) << PointeeElem);
3775         IsVirtualDelete = Dtor->isVirtual();
3776       }
3777     }
3778 
3779     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3780 
3781     // Convert the operand to the type of the first parameter of operator
3782     // delete. This is only necessary if we selected a destroying operator
3783     // delete that we are going to call (non-virtually); converting to void*
3784     // is trivial and left to AST consumers to handle.
3785     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3786     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3787       Qualifiers Qs = Pointee.getQualifiers();
3788       if (Qs.hasCVRQualifiers()) {
3789         // Qualifiers are irrelevant to this conversion; we're only looking
3790         // for access and ambiguity.
3791         Qs.removeCVRQualifiers();
3792         QualType Unqual = Context.getPointerType(
3793             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3794         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3795       }
3796       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3797       if (Ex.isInvalid())
3798         return ExprError();
3799     }
3800   }
3801 
3802   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3803       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3804       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3805   AnalyzeDeleteExprMismatch(Result);
3806   return Result;
3807 }
3808 
3809 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3810                                             bool IsDelete,
3811                                             FunctionDecl *&Operator) {
3812 
3813   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3814       IsDelete ? OO_Delete : OO_New);
3815 
3816   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3817   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3818   assert(!R.empty() && "implicitly declared allocation functions not found");
3819   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3820 
3821   // We do our own custom access checks below.
3822   R.suppressDiagnostics();
3823 
3824   SmallVector<Expr *, 8> Args(TheCall->arguments());
3825   OverloadCandidateSet Candidates(R.getNameLoc(),
3826                                   OverloadCandidateSet::CSK_Normal);
3827   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3828        FnOvl != FnOvlEnd; ++FnOvl) {
3829     // Even member operator new/delete are implicitly treated as
3830     // static, so don't use AddMemberCandidate.
3831     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3832 
3833     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3834       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3835                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3836                                      Candidates,
3837                                      /*SuppressUserConversions=*/false);
3838       continue;
3839     }
3840 
3841     FunctionDecl *Fn = cast<FunctionDecl>(D);
3842     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3843                            /*SuppressUserConversions=*/false);
3844   }
3845 
3846   SourceRange Range = TheCall->getSourceRange();
3847 
3848   // Do the resolution.
3849   OverloadCandidateSet::iterator Best;
3850   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3851   case OR_Success: {
3852     // Got one!
3853     FunctionDecl *FnDecl = Best->Function;
3854     assert(R.getNamingClass() == nullptr &&
3855            "class members should not be considered");
3856 
3857     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3858       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3859           << (IsDelete ? 1 : 0) << Range;
3860       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3861           << R.getLookupName() << FnDecl->getSourceRange();
3862       return true;
3863     }
3864 
3865     Operator = FnDecl;
3866     return false;
3867   }
3868 
3869   case OR_No_Viable_Function:
3870     Candidates.NoteCandidates(
3871         PartialDiagnosticAt(R.getNameLoc(),
3872                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3873                                 << R.getLookupName() << Range),
3874         S, OCD_AllCandidates, Args);
3875     return true;
3876 
3877   case OR_Ambiguous:
3878     Candidates.NoteCandidates(
3879         PartialDiagnosticAt(R.getNameLoc(),
3880                             S.PDiag(diag::err_ovl_ambiguous_call)
3881                                 << R.getLookupName() << Range),
3882         S, OCD_AmbiguousCandidates, Args);
3883     return true;
3884 
3885   case OR_Deleted: {
3886     Candidates.NoteCandidates(
3887         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3888                                                 << R.getLookupName() << Range),
3889         S, OCD_AllCandidates, Args);
3890     return true;
3891   }
3892   }
3893   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3894 }
3895 
3896 ExprResult
3897 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3898                                              bool IsDelete) {
3899   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3900   if (!getLangOpts().CPlusPlus) {
3901     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3902         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3903         << "C++";
3904     return ExprError();
3905   }
3906   // CodeGen assumes it can find the global new and delete to call,
3907   // so ensure that they are declared.
3908   DeclareGlobalNewDelete();
3909 
3910   FunctionDecl *OperatorNewOrDelete = nullptr;
3911   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3912                                       OperatorNewOrDelete))
3913     return ExprError();
3914   assert(OperatorNewOrDelete && "should be found");
3915 
3916   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3917   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3918 
3919   TheCall->setType(OperatorNewOrDelete->getReturnType());
3920   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3921     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3922     InitializedEntity Entity =
3923         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3924     ExprResult Arg = PerformCopyInitialization(
3925         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3926     if (Arg.isInvalid())
3927       return ExprError();
3928     TheCall->setArg(i, Arg.get());
3929   }
3930   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3931   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3932          "Callee expected to be implicit cast to a builtin function pointer");
3933   Callee->setType(OperatorNewOrDelete->getType());
3934 
3935   return TheCallResult;
3936 }
3937 
3938 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3939                                 bool IsDelete, bool CallCanBeVirtual,
3940                                 bool WarnOnNonAbstractTypes,
3941                                 SourceLocation DtorLoc) {
3942   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3943     return;
3944 
3945   // C++ [expr.delete]p3:
3946   //   In the first alternative (delete object), if the static type of the
3947   //   object to be deleted is different from its dynamic type, the static
3948   //   type shall be a base class of the dynamic type of the object to be
3949   //   deleted and the static type shall have a virtual destructor or the
3950   //   behavior is undefined.
3951   //
3952   const CXXRecordDecl *PointeeRD = dtor->getParent();
3953   // Note: a final class cannot be derived from, no issue there
3954   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3955     return;
3956 
3957   // If the superclass is in a system header, there's nothing that can be done.
3958   // The `delete` (where we emit the warning) can be in a system header,
3959   // what matters for this warning is where the deleted type is defined.
3960   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3961     return;
3962 
3963   QualType ClassType = dtor->getThisType()->getPointeeType();
3964   if (PointeeRD->isAbstract()) {
3965     // If the class is abstract, we warn by default, because we're
3966     // sure the code has undefined behavior.
3967     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3968                                                            << ClassType;
3969   } else if (WarnOnNonAbstractTypes) {
3970     // Otherwise, if this is not an array delete, it's a bit suspect,
3971     // but not necessarily wrong.
3972     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3973                                                   << ClassType;
3974   }
3975   if (!IsDelete) {
3976     std::string TypeStr;
3977     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3978     Diag(DtorLoc, diag::note_delete_non_virtual)
3979         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3980   }
3981 }
3982 
3983 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3984                                                    SourceLocation StmtLoc,
3985                                                    ConditionKind CK) {
3986   ExprResult E =
3987       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3988   if (E.isInvalid())
3989     return ConditionError();
3990   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3991                          CK == ConditionKind::ConstexprIf);
3992 }
3993 
3994 /// Check the use of the given variable as a C++ condition in an if,
3995 /// while, do-while, or switch statement.
3996 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3997                                         SourceLocation StmtLoc,
3998                                         ConditionKind CK) {
3999   if (ConditionVar->isInvalidDecl())
4000     return ExprError();
4001 
4002   QualType T = ConditionVar->getType();
4003 
4004   // C++ [stmt.select]p2:
4005   //   The declarator shall not specify a function or an array.
4006   if (T->isFunctionType())
4007     return ExprError(Diag(ConditionVar->getLocation(),
4008                           diag::err_invalid_use_of_function_type)
4009                        << ConditionVar->getSourceRange());
4010   else if (T->isArrayType())
4011     return ExprError(Diag(ConditionVar->getLocation(),
4012                           diag::err_invalid_use_of_array_type)
4013                      << ConditionVar->getSourceRange());
4014 
4015   ExprResult Condition = BuildDeclRefExpr(
4016       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4017       ConditionVar->getLocation());
4018 
4019   switch (CK) {
4020   case ConditionKind::Boolean:
4021     return CheckBooleanCondition(StmtLoc, Condition.get());
4022 
4023   case ConditionKind::ConstexprIf:
4024     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4025 
4026   case ConditionKind::Switch:
4027     return CheckSwitchCondition(StmtLoc, Condition.get());
4028   }
4029 
4030   llvm_unreachable("unexpected condition kind");
4031 }
4032 
4033 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
4034 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4035   // C++11 6.4p4:
4036   // The value of a condition that is an initialized declaration in a statement
4037   // other than a switch statement is the value of the declared variable
4038   // implicitly converted to type bool. If that conversion is ill-formed, the
4039   // program is ill-formed.
4040   // The value of a condition that is an expression is the value of the
4041   // expression, implicitly converted to bool.
4042   //
4043   // C++23 8.5.2p2
4044   // If the if statement is of the form if constexpr, the value of the condition
4045   // is contextually converted to bool and the converted expression shall be
4046   // a constant expression.
4047   //
4048 
4049   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4050   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4051     return E;
4052 
4053   // FIXME: Return this value to the caller so they don't need to recompute it.
4054   llvm::APSInt Cond;
4055   E = VerifyIntegerConstantExpression(
4056       E.get(), &Cond,
4057       diag::err_constexpr_if_condition_expression_is_not_constant);
4058   return E;
4059 }
4060 
4061 /// Helper function to determine whether this is the (deprecated) C++
4062 /// conversion from a string literal to a pointer to non-const char or
4063 /// non-const wchar_t (for narrow and wide string literals,
4064 /// respectively).
4065 bool
4066 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4067   // Look inside the implicit cast, if it exists.
4068   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4069     From = Cast->getSubExpr();
4070 
4071   // A string literal (2.13.4) that is not a wide string literal can
4072   // be converted to an rvalue of type "pointer to char"; a wide
4073   // string literal can be converted to an rvalue of type "pointer
4074   // to wchar_t" (C++ 4.2p2).
4075   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4076     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4077       if (const BuiltinType *ToPointeeType
4078           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4079         // This conversion is considered only when there is an
4080         // explicit appropriate pointer target type (C++ 4.2p2).
4081         if (!ToPtrType->getPointeeType().hasQualifiers()) {
4082           switch (StrLit->getKind()) {
4083             case StringLiteral::UTF8:
4084             case StringLiteral::UTF16:
4085             case StringLiteral::UTF32:
4086               // We don't allow UTF literals to be implicitly converted
4087               break;
4088             case StringLiteral::Ordinary:
4089               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4090                       ToPointeeType->getKind() == BuiltinType::Char_S);
4091             case StringLiteral::Wide:
4092               return Context.typesAreCompatible(Context.getWideCharType(),
4093                                                 QualType(ToPointeeType, 0));
4094             case StringLiteral::Unevaluated:
4095               assert(false && "Unevaluated string literal in expression");
4096               break;
4097           }
4098         }
4099       }
4100 
4101   return false;
4102 }
4103 
4104 static ExprResult BuildCXXCastArgument(Sema &S,
4105                                        SourceLocation CastLoc,
4106                                        QualType Ty,
4107                                        CastKind Kind,
4108                                        CXXMethodDecl *Method,
4109                                        DeclAccessPair FoundDecl,
4110                                        bool HadMultipleCandidates,
4111                                        Expr *From) {
4112   switch (Kind) {
4113   default: llvm_unreachable("Unhandled cast kind!");
4114   case CK_ConstructorConversion: {
4115     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4116     SmallVector<Expr*, 8> ConstructorArgs;
4117 
4118     if (S.RequireNonAbstractType(CastLoc, Ty,
4119                                  diag::err_allocation_of_abstract_type))
4120       return ExprError();
4121 
4122     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4123                                   ConstructorArgs))
4124       return ExprError();
4125 
4126     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4127                              InitializedEntity::InitializeTemporary(Ty));
4128     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4129       return ExprError();
4130 
4131     ExprResult Result = S.BuildCXXConstructExpr(
4132         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4133         ConstructorArgs, HadMultipleCandidates,
4134         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4135         CXXConstructExpr::CK_Complete, SourceRange());
4136     if (Result.isInvalid())
4137       return ExprError();
4138 
4139     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4140   }
4141 
4142   case CK_UserDefinedConversion: {
4143     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4144 
4145     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4146     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4147       return ExprError();
4148 
4149     // Create an implicit call expr that calls it.
4150     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4151     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4152                                                  HadMultipleCandidates);
4153     if (Result.isInvalid())
4154       return ExprError();
4155     // Record usage of conversion in an implicit cast.
4156     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4157                                       CK_UserDefinedConversion, Result.get(),
4158                                       nullptr, Result.get()->getValueKind(),
4159                                       S.CurFPFeatureOverrides());
4160 
4161     return S.MaybeBindToTemporary(Result.get());
4162   }
4163   }
4164 }
4165 
4166 /// PerformImplicitConversion - Perform an implicit conversion of the
4167 /// expression From to the type ToType using the pre-computed implicit
4168 /// conversion sequence ICS. Returns the converted
4169 /// expression. Action is the kind of conversion we're performing,
4170 /// used in the error message.
4171 ExprResult
4172 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4173                                 const ImplicitConversionSequence &ICS,
4174                                 AssignmentAction Action,
4175                                 CheckedConversionKind CCK) {
4176   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4177   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4178     return From;
4179 
4180   switch (ICS.getKind()) {
4181   case ImplicitConversionSequence::StandardConversion: {
4182     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4183                                                Action, CCK);
4184     if (Res.isInvalid())
4185       return ExprError();
4186     From = Res.get();
4187     break;
4188   }
4189 
4190   case ImplicitConversionSequence::UserDefinedConversion: {
4191 
4192       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4193       CastKind CastKind;
4194       QualType BeforeToType;
4195       assert(FD && "no conversion function for user-defined conversion seq");
4196       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4197         CastKind = CK_UserDefinedConversion;
4198 
4199         // If the user-defined conversion is specified by a conversion function,
4200         // the initial standard conversion sequence converts the source type to
4201         // the implicit object parameter of the conversion function.
4202         BeforeToType = Context.getTagDeclType(Conv->getParent());
4203       } else {
4204         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4205         CastKind = CK_ConstructorConversion;
4206         // Do no conversion if dealing with ... for the first conversion.
4207         if (!ICS.UserDefined.EllipsisConversion) {
4208           // If the user-defined conversion is specified by a constructor, the
4209           // initial standard conversion sequence converts the source type to
4210           // the type required by the argument of the constructor
4211           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4212         }
4213       }
4214       // Watch out for ellipsis conversion.
4215       if (!ICS.UserDefined.EllipsisConversion) {
4216         ExprResult Res =
4217           PerformImplicitConversion(From, BeforeToType,
4218                                     ICS.UserDefined.Before, AA_Converting,
4219                                     CCK);
4220         if (Res.isInvalid())
4221           return ExprError();
4222         From = Res.get();
4223       }
4224 
4225       ExprResult CastArg = BuildCXXCastArgument(
4226           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4227           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4228           ICS.UserDefined.HadMultipleCandidates, From);
4229 
4230       if (CastArg.isInvalid())
4231         return ExprError();
4232 
4233       From = CastArg.get();
4234 
4235       // C++ [over.match.oper]p7:
4236       //   [...] the second standard conversion sequence of a user-defined
4237       //   conversion sequence is not applied.
4238       if (CCK == CCK_ForBuiltinOverloadedOp)
4239         return From;
4240 
4241       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4242                                        AA_Converting, CCK);
4243   }
4244 
4245   case ImplicitConversionSequence::AmbiguousConversion:
4246     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4247                           PDiag(diag::err_typecheck_ambiguous_condition)
4248                             << From->getSourceRange());
4249     return ExprError();
4250 
4251   case ImplicitConversionSequence::EllipsisConversion:
4252   case ImplicitConversionSequence::StaticObjectArgumentConversion:
4253     llvm_unreachable("bad conversion");
4254 
4255   case ImplicitConversionSequence::BadConversion:
4256     Sema::AssignConvertType ConvTy =
4257         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4258     bool Diagnosed = DiagnoseAssignmentResult(
4259         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4260         ToType, From->getType(), From, Action);
4261     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4262     return ExprError();
4263   }
4264 
4265   // Everything went well.
4266   return From;
4267 }
4268 
4269 /// PerformImplicitConversion - Perform an implicit conversion of the
4270 /// expression From to the type ToType by following the standard
4271 /// conversion sequence SCS. Returns the converted
4272 /// expression. Flavor is the context in which we're performing this
4273 /// conversion, for use in error messages.
4274 ExprResult
4275 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4276                                 const StandardConversionSequence& SCS,
4277                                 AssignmentAction Action,
4278                                 CheckedConversionKind CCK) {
4279   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4280 
4281   // Overall FIXME: we are recomputing too many types here and doing far too
4282   // much extra work. What this means is that we need to keep track of more
4283   // information that is computed when we try the implicit conversion initially,
4284   // so that we don't need to recompute anything here.
4285   QualType FromType = From->getType();
4286 
4287   if (SCS.CopyConstructor) {
4288     // FIXME: When can ToType be a reference type?
4289     assert(!ToType->isReferenceType());
4290     if (SCS.Second == ICK_Derived_To_Base) {
4291       SmallVector<Expr*, 8> ConstructorArgs;
4292       if (CompleteConstructorCall(
4293               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4294               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4295         return ExprError();
4296       return BuildCXXConstructExpr(
4297           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4298           SCS.FoundCopyConstructor, SCS.CopyConstructor,
4299           ConstructorArgs, /*HadMultipleCandidates*/ false,
4300           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4301           CXXConstructExpr::CK_Complete, SourceRange());
4302     }
4303     return BuildCXXConstructExpr(
4304         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4305         SCS.FoundCopyConstructor, SCS.CopyConstructor,
4306         From, /*HadMultipleCandidates*/ false,
4307         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4308         CXXConstructExpr::CK_Complete, SourceRange());
4309   }
4310 
4311   // Resolve overloaded function references.
4312   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4313     DeclAccessPair Found;
4314     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4315                                                           true, Found);
4316     if (!Fn)
4317       return ExprError();
4318 
4319     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4320       return ExprError();
4321 
4322     From = FixOverloadedFunctionReference(From, Found, Fn);
4323 
4324     // We might get back another placeholder expression if we resolved to a
4325     // builtin.
4326     ExprResult Checked = CheckPlaceholderExpr(From);
4327     if (Checked.isInvalid())
4328       return ExprError();
4329 
4330     From = Checked.get();
4331     FromType = From->getType();
4332   }
4333 
4334   // If we're converting to an atomic type, first convert to the corresponding
4335   // non-atomic type.
4336   QualType ToAtomicType;
4337   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4338     ToAtomicType = ToType;
4339     ToType = ToAtomic->getValueType();
4340   }
4341 
4342   QualType InitialFromType = FromType;
4343   // Perform the first implicit conversion.
4344   switch (SCS.First) {
4345   case ICK_Identity:
4346     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4347       FromType = FromAtomic->getValueType().getUnqualifiedType();
4348       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4349                                       From, /*BasePath=*/nullptr, VK_PRValue,
4350                                       FPOptionsOverride());
4351     }
4352     break;
4353 
4354   case ICK_Lvalue_To_Rvalue: {
4355     assert(From->getObjectKind() != OK_ObjCProperty);
4356     ExprResult FromRes = DefaultLvalueConversion(From);
4357     if (FromRes.isInvalid())
4358       return ExprError();
4359 
4360     From = FromRes.get();
4361     FromType = From->getType();
4362     break;
4363   }
4364 
4365   case ICK_Array_To_Pointer:
4366     FromType = Context.getArrayDecayedType(FromType);
4367     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4368                              /*BasePath=*/nullptr, CCK)
4369                .get();
4370     break;
4371 
4372   case ICK_Function_To_Pointer:
4373     FromType = Context.getPointerType(FromType);
4374     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4375                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4376                .get();
4377     break;
4378 
4379   default:
4380     llvm_unreachable("Improper first standard conversion");
4381   }
4382 
4383   // Perform the second implicit conversion
4384   switch (SCS.Second) {
4385   case ICK_Identity:
4386     // C++ [except.spec]p5:
4387     //   [For] assignment to and initialization of pointers to functions,
4388     //   pointers to member functions, and references to functions: the
4389     //   target entity shall allow at least the exceptions allowed by the
4390     //   source value in the assignment or initialization.
4391     switch (Action) {
4392     case AA_Assigning:
4393     case AA_Initializing:
4394       // Note, function argument passing and returning are initialization.
4395     case AA_Passing:
4396     case AA_Returning:
4397     case AA_Sending:
4398     case AA_Passing_CFAudited:
4399       if (CheckExceptionSpecCompatibility(From, ToType))
4400         return ExprError();
4401       break;
4402 
4403     case AA_Casting:
4404     case AA_Converting:
4405       // Casts and implicit conversions are not initialization, so are not
4406       // checked for exception specification mismatches.
4407       break;
4408     }
4409     // Nothing else to do.
4410     break;
4411 
4412   case ICK_Integral_Promotion:
4413   case ICK_Integral_Conversion:
4414     if (ToType->isBooleanType()) {
4415       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4416              SCS.Second == ICK_Integral_Promotion &&
4417              "only enums with fixed underlying type can promote to bool");
4418       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4419                                /*BasePath=*/nullptr, CCK)
4420                  .get();
4421     } else {
4422       From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4423                                /*BasePath=*/nullptr, CCK)
4424                  .get();
4425     }
4426     break;
4427 
4428   case ICK_Floating_Promotion:
4429   case ICK_Floating_Conversion:
4430     From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4431                              /*BasePath=*/nullptr, CCK)
4432                .get();
4433     break;
4434 
4435   case ICK_Complex_Promotion:
4436   case ICK_Complex_Conversion: {
4437     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4438     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4439     CastKind CK;
4440     if (FromEl->isRealFloatingType()) {
4441       if (ToEl->isRealFloatingType())
4442         CK = CK_FloatingComplexCast;
4443       else
4444         CK = CK_FloatingComplexToIntegralComplex;
4445     } else if (ToEl->isRealFloatingType()) {
4446       CK = CK_IntegralComplexToFloatingComplex;
4447     } else {
4448       CK = CK_IntegralComplexCast;
4449     }
4450     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4451                              CCK)
4452                .get();
4453     break;
4454   }
4455 
4456   case ICK_Floating_Integral:
4457     if (ToType->isRealFloatingType())
4458       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4459                                /*BasePath=*/nullptr, CCK)
4460                  .get();
4461     else
4462       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4463                                /*BasePath=*/nullptr, CCK)
4464                  .get();
4465     break;
4466 
4467   case ICK_Compatible_Conversion:
4468     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4469                              /*BasePath=*/nullptr, CCK).get();
4470     break;
4471 
4472   case ICK_Writeback_Conversion:
4473   case ICK_Pointer_Conversion: {
4474     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4475       // Diagnose incompatible Objective-C conversions
4476       if (Action == AA_Initializing || Action == AA_Assigning)
4477         Diag(From->getBeginLoc(),
4478              diag::ext_typecheck_convert_incompatible_pointer)
4479             << ToType << From->getType() << Action << From->getSourceRange()
4480             << 0;
4481       else
4482         Diag(From->getBeginLoc(),
4483              diag::ext_typecheck_convert_incompatible_pointer)
4484             << From->getType() << ToType << Action << From->getSourceRange()
4485             << 0;
4486 
4487       if (From->getType()->isObjCObjectPointerType() &&
4488           ToType->isObjCObjectPointerType())
4489         EmitRelatedResultTypeNote(From);
4490     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4491                !CheckObjCARCUnavailableWeakConversion(ToType,
4492                                                       From->getType())) {
4493       if (Action == AA_Initializing)
4494         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4495       else
4496         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4497             << (Action == AA_Casting) << From->getType() << ToType
4498             << From->getSourceRange();
4499     }
4500 
4501     // Defer address space conversion to the third conversion.
4502     QualType FromPteeType = From->getType()->getPointeeType();
4503     QualType ToPteeType = ToType->getPointeeType();
4504     QualType NewToType = ToType;
4505     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4506         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4507       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4508       NewToType = Context.getAddrSpaceQualType(NewToType,
4509                                                FromPteeType.getAddressSpace());
4510       if (ToType->isObjCObjectPointerType())
4511         NewToType = Context.getObjCObjectPointerType(NewToType);
4512       else if (ToType->isBlockPointerType())
4513         NewToType = Context.getBlockPointerType(NewToType);
4514       else
4515         NewToType = Context.getPointerType(NewToType);
4516     }
4517 
4518     CastKind Kind;
4519     CXXCastPath BasePath;
4520     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4521       return ExprError();
4522 
4523     // Make sure we extend blocks if necessary.
4524     // FIXME: doing this here is really ugly.
4525     if (Kind == CK_BlockPointerToObjCPointerCast) {
4526       ExprResult E = From;
4527       (void) PrepareCastToObjCObjectPointer(E);
4528       From = E.get();
4529     }
4530     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4531       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4532     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4533                .get();
4534     break;
4535   }
4536 
4537   case ICK_Pointer_Member: {
4538     CastKind Kind;
4539     CXXCastPath BasePath;
4540     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4541       return ExprError();
4542     if (CheckExceptionSpecCompatibility(From, ToType))
4543       return ExprError();
4544 
4545     // We may not have been able to figure out what this member pointer resolved
4546     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4547     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4548       (void)isCompleteType(From->getExprLoc(), From->getType());
4549       (void)isCompleteType(From->getExprLoc(), ToType);
4550     }
4551 
4552     From =
4553         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4554     break;
4555   }
4556 
4557   case ICK_Boolean_Conversion:
4558     // Perform half-to-boolean conversion via float.
4559     if (From->getType()->isHalfType()) {
4560       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4561       FromType = Context.FloatTy;
4562     }
4563 
4564     From = ImpCastExprToType(From, Context.BoolTy,
4565                              ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4566                              /*BasePath=*/nullptr, CCK)
4567                .get();
4568     break;
4569 
4570   case ICK_Derived_To_Base: {
4571     CXXCastPath BasePath;
4572     if (CheckDerivedToBaseConversion(
4573             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4574             From->getSourceRange(), &BasePath, CStyle))
4575       return ExprError();
4576 
4577     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4578                       CK_DerivedToBase, From->getValueKind(),
4579                       &BasePath, CCK).get();
4580     break;
4581   }
4582 
4583   case ICK_Vector_Conversion:
4584     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4585                              /*BasePath=*/nullptr, CCK)
4586                .get();
4587     break;
4588 
4589   case ICK_SVE_Vector_Conversion:
4590   case ICK_RVV_Vector_Conversion:
4591     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4592                              /*BasePath=*/nullptr, CCK)
4593                .get();
4594     break;
4595 
4596   case ICK_Vector_Splat: {
4597     // Vector splat from any arithmetic type to a vector.
4598     Expr *Elem = prepareVectorSplat(ToType, From).get();
4599     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4600                              /*BasePath=*/nullptr, CCK)
4601                .get();
4602     break;
4603   }
4604 
4605   case ICK_Complex_Real:
4606     // Case 1.  x -> _Complex y
4607     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4608       QualType ElType = ToComplex->getElementType();
4609       bool isFloatingComplex = ElType->isRealFloatingType();
4610 
4611       // x -> y
4612       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4613         // do nothing
4614       } else if (From->getType()->isRealFloatingType()) {
4615         From = ImpCastExprToType(From, ElType,
4616                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4617       } else {
4618         assert(From->getType()->isIntegerType());
4619         From = ImpCastExprToType(From, ElType,
4620                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4621       }
4622       // y -> _Complex y
4623       From = ImpCastExprToType(From, ToType,
4624                    isFloatingComplex ? CK_FloatingRealToComplex
4625                                      : CK_IntegralRealToComplex).get();
4626 
4627     // Case 2.  _Complex x -> y
4628     } else {
4629       auto *FromComplex = From->getType()->castAs<ComplexType>();
4630       QualType ElType = FromComplex->getElementType();
4631       bool isFloatingComplex = ElType->isRealFloatingType();
4632 
4633       // _Complex x -> x
4634       From = ImpCastExprToType(From, ElType,
4635                                isFloatingComplex ? CK_FloatingComplexToReal
4636                                                  : CK_IntegralComplexToReal,
4637                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4638                  .get();
4639 
4640       // x -> y
4641       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4642         // do nothing
4643       } else if (ToType->isRealFloatingType()) {
4644         From = ImpCastExprToType(From, ToType,
4645                                  isFloatingComplex ? CK_FloatingCast
4646                                                    : CK_IntegralToFloating,
4647                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4648                    .get();
4649       } else {
4650         assert(ToType->isIntegerType());
4651         From = ImpCastExprToType(From, ToType,
4652                                  isFloatingComplex ? CK_FloatingToIntegral
4653                                                    : CK_IntegralCast,
4654                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4655                    .get();
4656       }
4657     }
4658     break;
4659 
4660   case ICK_Block_Pointer_Conversion: {
4661     LangAS AddrSpaceL =
4662         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4663     LangAS AddrSpaceR =
4664         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4665     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4666            "Invalid cast");
4667     CastKind Kind =
4668         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4669     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4670                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4671                .get();
4672     break;
4673   }
4674 
4675   case ICK_TransparentUnionConversion: {
4676     ExprResult FromRes = From;
4677     Sema::AssignConvertType ConvTy =
4678       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4679     if (FromRes.isInvalid())
4680       return ExprError();
4681     From = FromRes.get();
4682     assert ((ConvTy == Sema::Compatible) &&
4683             "Improper transparent union conversion");
4684     (void)ConvTy;
4685     break;
4686   }
4687 
4688   case ICK_Zero_Event_Conversion:
4689   case ICK_Zero_Queue_Conversion:
4690     From = ImpCastExprToType(From, ToType,
4691                              CK_ZeroToOCLOpaqueType,
4692                              From->getValueKind()).get();
4693     break;
4694 
4695   case ICK_Lvalue_To_Rvalue:
4696   case ICK_Array_To_Pointer:
4697   case ICK_Function_To_Pointer:
4698   case ICK_Function_Conversion:
4699   case ICK_Qualification:
4700   case ICK_Num_Conversion_Kinds:
4701   case ICK_C_Only_Conversion:
4702   case ICK_Incompatible_Pointer_Conversion:
4703     llvm_unreachable("Improper second standard conversion");
4704   }
4705 
4706   switch (SCS.Third) {
4707   case ICK_Identity:
4708     // Nothing to do.
4709     break;
4710 
4711   case ICK_Function_Conversion:
4712     // If both sides are functions (or pointers/references to them), there could
4713     // be incompatible exception declarations.
4714     if (CheckExceptionSpecCompatibility(From, ToType))
4715       return ExprError();
4716 
4717     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4718                              /*BasePath=*/nullptr, CCK)
4719                .get();
4720     break;
4721 
4722   case ICK_Qualification: {
4723     ExprValueKind VK = From->getValueKind();
4724     CastKind CK = CK_NoOp;
4725 
4726     if (ToType->isReferenceType() &&
4727         ToType->getPointeeType().getAddressSpace() !=
4728             From->getType().getAddressSpace())
4729       CK = CK_AddressSpaceConversion;
4730 
4731     if (ToType->isPointerType() &&
4732         ToType->getPointeeType().getAddressSpace() !=
4733             From->getType()->getPointeeType().getAddressSpace())
4734       CK = CK_AddressSpaceConversion;
4735 
4736     if (!isCast(CCK) &&
4737         !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4738         From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4739       Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4740           << InitialFromType << ToType;
4741     }
4742 
4743     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4744                              /*BasePath=*/nullptr, CCK)
4745                .get();
4746 
4747     if (SCS.DeprecatedStringLiteralToCharPtr &&
4748         !getLangOpts().WritableStrings) {
4749       Diag(From->getBeginLoc(),
4750            getLangOpts().CPlusPlus11
4751                ? diag::ext_deprecated_string_literal_conversion
4752                : diag::warn_deprecated_string_literal_conversion)
4753           << ToType.getNonReferenceType();
4754     }
4755 
4756     break;
4757   }
4758 
4759   default:
4760     llvm_unreachable("Improper third standard conversion");
4761   }
4762 
4763   // If this conversion sequence involved a scalar -> atomic conversion, perform
4764   // that conversion now.
4765   if (!ToAtomicType.isNull()) {
4766     assert(Context.hasSameType(
4767         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4768     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4769                              VK_PRValue, nullptr, CCK)
4770                .get();
4771   }
4772 
4773   // Materialize a temporary if we're implicitly converting to a reference
4774   // type. This is not required by the C++ rules but is necessary to maintain
4775   // AST invariants.
4776   if (ToType->isReferenceType() && From->isPRValue()) {
4777     ExprResult Res = TemporaryMaterializationConversion(From);
4778     if (Res.isInvalid())
4779       return ExprError();
4780     From = Res.get();
4781   }
4782 
4783   // If this conversion sequence succeeded and involved implicitly converting a
4784   // _Nullable type to a _Nonnull one, complain.
4785   if (!isCast(CCK))
4786     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4787                                         From->getBeginLoc());
4788 
4789   return From;
4790 }
4791 
4792 /// Check the completeness of a type in a unary type trait.
4793 ///
4794 /// If the particular type trait requires a complete type, tries to complete
4795 /// it. If completing the type fails, a diagnostic is emitted and false
4796 /// returned. If completing the type succeeds or no completion was required,
4797 /// returns true.
4798 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4799                                                 SourceLocation Loc,
4800                                                 QualType ArgTy) {
4801   // C++0x [meta.unary.prop]p3:
4802   //   For all of the class templates X declared in this Clause, instantiating
4803   //   that template with a template argument that is a class template
4804   //   specialization may result in the implicit instantiation of the template
4805   //   argument if and only if the semantics of X require that the argument
4806   //   must be a complete type.
4807   // We apply this rule to all the type trait expressions used to implement
4808   // these class templates. We also try to follow any GCC documented behavior
4809   // in these expressions to ensure portability of standard libraries.
4810   switch (UTT) {
4811   default: llvm_unreachable("not a UTT");
4812     // is_complete_type somewhat obviously cannot require a complete type.
4813   case UTT_IsCompleteType:
4814     // Fall-through
4815 
4816     // These traits are modeled on the type predicates in C++0x
4817     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4818     // requiring a complete type, as whether or not they return true cannot be
4819     // impacted by the completeness of the type.
4820   case UTT_IsVoid:
4821   case UTT_IsIntegral:
4822   case UTT_IsFloatingPoint:
4823   case UTT_IsArray:
4824   case UTT_IsBoundedArray:
4825   case UTT_IsPointer:
4826   case UTT_IsNullPointer:
4827   case UTT_IsReferenceable:
4828   case UTT_IsLvalueReference:
4829   case UTT_IsRvalueReference:
4830   case UTT_IsMemberFunctionPointer:
4831   case UTT_IsMemberObjectPointer:
4832   case UTT_IsEnum:
4833   case UTT_IsScopedEnum:
4834   case UTT_IsUnion:
4835   case UTT_IsClass:
4836   case UTT_IsFunction:
4837   case UTT_IsReference:
4838   case UTT_IsArithmetic:
4839   case UTT_IsFundamental:
4840   case UTT_IsObject:
4841   case UTT_IsScalar:
4842   case UTT_IsCompound:
4843   case UTT_IsMemberPointer:
4844     // Fall-through
4845 
4846     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4847     // which requires some of its traits to have the complete type. However,
4848     // the completeness of the type cannot impact these traits' semantics, and
4849     // so they don't require it. This matches the comments on these traits in
4850     // Table 49.
4851   case UTT_IsConst:
4852   case UTT_IsVolatile:
4853   case UTT_IsSigned:
4854   case UTT_IsUnboundedArray:
4855   case UTT_IsUnsigned:
4856 
4857   // This type trait always returns false, checking the type is moot.
4858   case UTT_IsInterfaceClass:
4859     return true;
4860 
4861   // C++14 [meta.unary.prop]:
4862   //   If T is a non-union class type, T shall be a complete type.
4863   case UTT_IsEmpty:
4864   case UTT_IsPolymorphic:
4865   case UTT_IsAbstract:
4866     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4867       if (!RD->isUnion())
4868         return !S.RequireCompleteType(
4869             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4870     return true;
4871 
4872   // C++14 [meta.unary.prop]:
4873   //   If T is a class type, T shall be a complete type.
4874   case UTT_IsFinal:
4875   case UTT_IsSealed:
4876     if (ArgTy->getAsCXXRecordDecl())
4877       return !S.RequireCompleteType(
4878           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4879     return true;
4880 
4881   // LWG3823: T shall be an array type, a complete type, or cv void.
4882   case UTT_IsAggregate:
4883     if (ArgTy->isArrayType() || ArgTy->isVoidType())
4884       return true;
4885 
4886     return !S.RequireCompleteType(
4887         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4888 
4889   // C++1z [meta.unary.prop]:
4890   //   remove_all_extents_t<T> shall be a complete type or cv void.
4891   case UTT_IsTrivial:
4892   case UTT_IsTriviallyCopyable:
4893   case UTT_IsStandardLayout:
4894   case UTT_IsPOD:
4895   case UTT_IsLiteral:
4896   // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
4897   // impose the same constraints.
4898   case UTT_IsTriviallyRelocatable:
4899   case UTT_IsTriviallyEqualityComparable:
4900   case UTT_CanPassInRegs:
4901   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4902   // or an array of unknown bound. But GCC actually imposes the same constraints
4903   // as above.
4904   case UTT_HasNothrowAssign:
4905   case UTT_HasNothrowMoveAssign:
4906   case UTT_HasNothrowConstructor:
4907   case UTT_HasNothrowCopy:
4908   case UTT_HasTrivialAssign:
4909   case UTT_HasTrivialMoveAssign:
4910   case UTT_HasTrivialDefaultConstructor:
4911   case UTT_HasTrivialMoveConstructor:
4912   case UTT_HasTrivialCopy:
4913   case UTT_HasTrivialDestructor:
4914   case UTT_HasVirtualDestructor:
4915     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4916     [[fallthrough]];
4917 
4918   // C++1z [meta.unary.prop]:
4919   //   T shall be a complete type, cv void, or an array of unknown bound.
4920   case UTT_IsDestructible:
4921   case UTT_IsNothrowDestructible:
4922   case UTT_IsTriviallyDestructible:
4923   case UTT_HasUniqueObjectRepresentations:
4924     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4925       return true;
4926 
4927     return !S.RequireCompleteType(
4928         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4929   }
4930 }
4931 
4932 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4933                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4934                                bool (CXXRecordDecl::*HasTrivial)() const,
4935                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4936                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4937 {
4938   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4939   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4940     return true;
4941 
4942   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4943   DeclarationNameInfo NameInfo(Name, KeyLoc);
4944   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4945   if (Self.LookupQualifiedName(Res, RD)) {
4946     bool FoundOperator = false;
4947     Res.suppressDiagnostics();
4948     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4949          Op != OpEnd; ++Op) {
4950       if (isa<FunctionTemplateDecl>(*Op))
4951         continue;
4952 
4953       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4954       if((Operator->*IsDesiredOp)()) {
4955         FoundOperator = true;
4956         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4957         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4958         if (!CPT || !CPT->isNothrow())
4959           return false;
4960       }
4961     }
4962     return FoundOperator;
4963   }
4964   return false;
4965 }
4966 
4967 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4968                                    SourceLocation KeyLoc, QualType T) {
4969   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4970 
4971   ASTContext &C = Self.Context;
4972   switch(UTT) {
4973   default: llvm_unreachable("not a UTT");
4974     // Type trait expressions corresponding to the primary type category
4975     // predicates in C++0x [meta.unary.cat].
4976   case UTT_IsVoid:
4977     return T->isVoidType();
4978   case UTT_IsIntegral:
4979     return T->isIntegralType(C);
4980   case UTT_IsFloatingPoint:
4981     return T->isFloatingType();
4982   case UTT_IsArray:
4983     return T->isArrayType();
4984   case UTT_IsBoundedArray:
4985     if (!T->isVariableArrayType()) {
4986       return T->isArrayType() && !T->isIncompleteArrayType();
4987     }
4988 
4989     Self.Diag(KeyLoc, diag::err_vla_unsupported)
4990         << 1 << tok::kw___is_bounded_array;
4991     return false;
4992   case UTT_IsUnboundedArray:
4993     if (!T->isVariableArrayType()) {
4994       return T->isIncompleteArrayType();
4995     }
4996 
4997     Self.Diag(KeyLoc, diag::err_vla_unsupported)
4998         << 1 << tok::kw___is_unbounded_array;
4999     return false;
5000   case UTT_IsPointer:
5001     return T->isAnyPointerType();
5002   case UTT_IsNullPointer:
5003     return T->isNullPtrType();
5004   case UTT_IsLvalueReference:
5005     return T->isLValueReferenceType();
5006   case UTT_IsRvalueReference:
5007     return T->isRValueReferenceType();
5008   case UTT_IsMemberFunctionPointer:
5009     return T->isMemberFunctionPointerType();
5010   case UTT_IsMemberObjectPointer:
5011     return T->isMemberDataPointerType();
5012   case UTT_IsEnum:
5013     return T->isEnumeralType();
5014   case UTT_IsScopedEnum:
5015     return T->isScopedEnumeralType();
5016   case UTT_IsUnion:
5017     return T->isUnionType();
5018   case UTT_IsClass:
5019     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5020   case UTT_IsFunction:
5021     return T->isFunctionType();
5022 
5023     // Type trait expressions which correspond to the convenient composition
5024     // predicates in C++0x [meta.unary.comp].
5025   case UTT_IsReference:
5026     return T->isReferenceType();
5027   case UTT_IsArithmetic:
5028     return T->isArithmeticType() && !T->isEnumeralType();
5029   case UTT_IsFundamental:
5030     return T->isFundamentalType();
5031   case UTT_IsObject:
5032     return T->isObjectType();
5033   case UTT_IsScalar:
5034     // Note: semantic analysis depends on Objective-C lifetime types to be
5035     // considered scalar types. However, such types do not actually behave
5036     // like scalar types at run time (since they may require retain/release
5037     // operations), so we report them as non-scalar.
5038     if (T->isObjCLifetimeType()) {
5039       switch (T.getObjCLifetime()) {
5040       case Qualifiers::OCL_None:
5041       case Qualifiers::OCL_ExplicitNone:
5042         return true;
5043 
5044       case Qualifiers::OCL_Strong:
5045       case Qualifiers::OCL_Weak:
5046       case Qualifiers::OCL_Autoreleasing:
5047         return false;
5048       }
5049     }
5050 
5051     return T->isScalarType();
5052   case UTT_IsCompound:
5053     return T->isCompoundType();
5054   case UTT_IsMemberPointer:
5055     return T->isMemberPointerType();
5056 
5057     // Type trait expressions which correspond to the type property predicates
5058     // in C++0x [meta.unary.prop].
5059   case UTT_IsConst:
5060     return T.isConstQualified();
5061   case UTT_IsVolatile:
5062     return T.isVolatileQualified();
5063   case UTT_IsTrivial:
5064     return T.isTrivialType(C);
5065   case UTT_IsTriviallyCopyable:
5066     return T.isTriviallyCopyableType(C);
5067   case UTT_IsStandardLayout:
5068     return T->isStandardLayoutType();
5069   case UTT_IsPOD:
5070     return T.isPODType(C);
5071   case UTT_IsLiteral:
5072     return T->isLiteralType(C);
5073   case UTT_IsEmpty:
5074     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5075       return !RD->isUnion() && RD->isEmpty();
5076     return false;
5077   case UTT_IsPolymorphic:
5078     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5079       return !RD->isUnion() && RD->isPolymorphic();
5080     return false;
5081   case UTT_IsAbstract:
5082     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5083       return !RD->isUnion() && RD->isAbstract();
5084     return false;
5085   case UTT_IsAggregate:
5086     // Report vector extensions and complex types as aggregates because they
5087     // support aggregate initialization. GCC mirrors this behavior for vectors
5088     // but not _Complex.
5089     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5090            T->isAnyComplexType();
5091   // __is_interface_class only returns true when CL is invoked in /CLR mode and
5092   // even then only when it is used with the 'interface struct ...' syntax
5093   // Clang doesn't support /CLR which makes this type trait moot.
5094   case UTT_IsInterfaceClass:
5095     return false;
5096   case UTT_IsFinal:
5097   case UTT_IsSealed:
5098     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5099       return RD->hasAttr<FinalAttr>();
5100     return false;
5101   case UTT_IsSigned:
5102     // Enum types should always return false.
5103     // Floating points should always return true.
5104     return T->isFloatingType() ||
5105            (T->isSignedIntegerType() && !T->isEnumeralType());
5106   case UTT_IsUnsigned:
5107     // Enum types should always return false.
5108     return T->isUnsignedIntegerType() && !T->isEnumeralType();
5109 
5110     // Type trait expressions which query classes regarding their construction,
5111     // destruction, and copying. Rather than being based directly on the
5112     // related type predicates in the standard, they are specified by both
5113     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5114     // specifications.
5115     //
5116     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5117     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5118     //
5119     // Note that these builtins do not behave as documented in g++: if a class
5120     // has both a trivial and a non-trivial special member of a particular kind,
5121     // they return false! For now, we emulate this behavior.
5122     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5123     // does not correctly compute triviality in the presence of multiple special
5124     // members of the same kind. Revisit this once the g++ bug is fixed.
5125   case UTT_HasTrivialDefaultConstructor:
5126     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5127     //   If __is_pod (type) is true then the trait is true, else if type is
5128     //   a cv class or union type (or array thereof) with a trivial default
5129     //   constructor ([class.ctor]) then the trait is true, else it is false.
5130     if (T.isPODType(C))
5131       return true;
5132     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5133       return RD->hasTrivialDefaultConstructor() &&
5134              !RD->hasNonTrivialDefaultConstructor();
5135     return false;
5136   case UTT_HasTrivialMoveConstructor:
5137     //  This trait is implemented by MSVC 2012 and needed to parse the
5138     //  standard library headers. Specifically this is used as the logic
5139     //  behind std::is_trivially_move_constructible (20.9.4.3).
5140     if (T.isPODType(C))
5141       return true;
5142     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5143       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5144     return false;
5145   case UTT_HasTrivialCopy:
5146     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5147     //   If __is_pod (type) is true or type is a reference type then
5148     //   the trait is true, else if type is a cv class or union type
5149     //   with a trivial copy constructor ([class.copy]) then the trait
5150     //   is true, else it is false.
5151     if (T.isPODType(C) || T->isReferenceType())
5152       return true;
5153     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5154       return RD->hasTrivialCopyConstructor() &&
5155              !RD->hasNonTrivialCopyConstructor();
5156     return false;
5157   case UTT_HasTrivialMoveAssign:
5158     //  This trait is implemented by MSVC 2012 and needed to parse the
5159     //  standard library headers. Specifically it is used as the logic
5160     //  behind std::is_trivially_move_assignable (20.9.4.3)
5161     if (T.isPODType(C))
5162       return true;
5163     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5164       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5165     return false;
5166   case UTT_HasTrivialAssign:
5167     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5168     //   If type is const qualified or is a reference type then the
5169     //   trait is false. Otherwise if __is_pod (type) is true then the
5170     //   trait is true, else if type is a cv class or union type with
5171     //   a trivial copy assignment ([class.copy]) then the trait is
5172     //   true, else it is false.
5173     // Note: the const and reference restrictions are interesting,
5174     // given that const and reference members don't prevent a class
5175     // from having a trivial copy assignment operator (but do cause
5176     // errors if the copy assignment operator is actually used, q.v.
5177     // [class.copy]p12).
5178 
5179     if (T.isConstQualified())
5180       return false;
5181     if (T.isPODType(C))
5182       return true;
5183     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5184       return RD->hasTrivialCopyAssignment() &&
5185              !RD->hasNonTrivialCopyAssignment();
5186     return false;
5187   case UTT_IsDestructible:
5188   case UTT_IsTriviallyDestructible:
5189   case UTT_IsNothrowDestructible:
5190     // C++14 [meta.unary.prop]:
5191     //   For reference types, is_destructible<T>::value is true.
5192     if (T->isReferenceType())
5193       return true;
5194 
5195     // Objective-C++ ARC: autorelease types don't require destruction.
5196     if (T->isObjCLifetimeType() &&
5197         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5198       return true;
5199 
5200     // C++14 [meta.unary.prop]:
5201     //   For incomplete types and function types, is_destructible<T>::value is
5202     //   false.
5203     if (T->isIncompleteType() || T->isFunctionType())
5204       return false;
5205 
5206     // A type that requires destruction (via a non-trivial destructor or ARC
5207     // lifetime semantics) is not trivially-destructible.
5208     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5209       return false;
5210 
5211     // C++14 [meta.unary.prop]:
5212     //   For object types and given U equal to remove_all_extents_t<T>, if the
5213     //   expression std::declval<U&>().~U() is well-formed when treated as an
5214     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5215     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5216       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5217       if (!Destructor)
5218         return false;
5219       //  C++14 [dcl.fct.def.delete]p2:
5220       //    A program that refers to a deleted function implicitly or
5221       //    explicitly, other than to declare it, is ill-formed.
5222       if (Destructor->isDeleted())
5223         return false;
5224       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5225         return false;
5226       if (UTT == UTT_IsNothrowDestructible) {
5227         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5228         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5229         if (!CPT || !CPT->isNothrow())
5230           return false;
5231       }
5232     }
5233     return true;
5234 
5235   case UTT_HasTrivialDestructor:
5236     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5237     //   If __is_pod (type) is true or type is a reference type
5238     //   then the trait is true, else if type is a cv class or union
5239     //   type (or array thereof) with a trivial destructor
5240     //   ([class.dtor]) then the trait is true, else it is
5241     //   false.
5242     if (T.isPODType(C) || T->isReferenceType())
5243       return true;
5244 
5245     // Objective-C++ ARC: autorelease types don't require destruction.
5246     if (T->isObjCLifetimeType() &&
5247         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5248       return true;
5249 
5250     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5251       return RD->hasTrivialDestructor();
5252     return false;
5253   // TODO: Propagate nothrowness for implicitly declared special members.
5254   case UTT_HasNothrowAssign:
5255     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5256     //   If type is const qualified or is a reference type then the
5257     //   trait is false. Otherwise if __has_trivial_assign (type)
5258     //   is true then the trait is true, else if type is a cv class
5259     //   or union type with copy assignment operators that are known
5260     //   not to throw an exception then the trait is true, else it is
5261     //   false.
5262     if (C.getBaseElementType(T).isConstQualified())
5263       return false;
5264     if (T->isReferenceType())
5265       return false;
5266     if (T.isPODType(C) || T->isObjCLifetimeType())
5267       return true;
5268 
5269     if (const RecordType *RT = T->getAs<RecordType>())
5270       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5271                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5272                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5273                                 &CXXMethodDecl::isCopyAssignmentOperator);
5274     return false;
5275   case UTT_HasNothrowMoveAssign:
5276     //  This trait is implemented by MSVC 2012 and needed to parse the
5277     //  standard library headers. Specifically this is used as the logic
5278     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5279     if (T.isPODType(C))
5280       return true;
5281 
5282     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5283       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5284                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5285                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5286                                 &CXXMethodDecl::isMoveAssignmentOperator);
5287     return false;
5288   case UTT_HasNothrowCopy:
5289     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5290     //   If __has_trivial_copy (type) is true then the trait is true, else
5291     //   if type is a cv class or union type with copy constructors that are
5292     //   known not to throw an exception then the trait is true, else it is
5293     //   false.
5294     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5295       return true;
5296     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5297       if (RD->hasTrivialCopyConstructor() &&
5298           !RD->hasNonTrivialCopyConstructor())
5299         return true;
5300 
5301       bool FoundConstructor = false;
5302       unsigned FoundTQs;
5303       for (const auto *ND : Self.LookupConstructors(RD)) {
5304         // A template constructor is never a copy constructor.
5305         // FIXME: However, it may actually be selected at the actual overload
5306         // resolution point.
5307         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5308           continue;
5309         // UsingDecl itself is not a constructor
5310         if (isa<UsingDecl>(ND))
5311           continue;
5312         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5313         if (Constructor->isCopyConstructor(FoundTQs)) {
5314           FoundConstructor = true;
5315           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5316           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5317           if (!CPT)
5318             return false;
5319           // TODO: check whether evaluating default arguments can throw.
5320           // For now, we'll be conservative and assume that they can throw.
5321           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5322             return false;
5323         }
5324       }
5325 
5326       return FoundConstructor;
5327     }
5328     return false;
5329   case UTT_HasNothrowConstructor:
5330     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5331     //   If __has_trivial_constructor (type) is true then the trait is
5332     //   true, else if type is a cv class or union type (or array
5333     //   thereof) with a default constructor that is known not to
5334     //   throw an exception then the trait is true, else it is false.
5335     if (T.isPODType(C) || T->isObjCLifetimeType())
5336       return true;
5337     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5338       if (RD->hasTrivialDefaultConstructor() &&
5339           !RD->hasNonTrivialDefaultConstructor())
5340         return true;
5341 
5342       bool FoundConstructor = false;
5343       for (const auto *ND : Self.LookupConstructors(RD)) {
5344         // FIXME: In C++0x, a constructor template can be a default constructor.
5345         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5346           continue;
5347         // UsingDecl itself is not a constructor
5348         if (isa<UsingDecl>(ND))
5349           continue;
5350         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5351         if (Constructor->isDefaultConstructor()) {
5352           FoundConstructor = true;
5353           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5354           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5355           if (!CPT)
5356             return false;
5357           // FIXME: check whether evaluating default arguments can throw.
5358           // For now, we'll be conservative and assume that they can throw.
5359           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5360             return false;
5361         }
5362       }
5363       return FoundConstructor;
5364     }
5365     return false;
5366   case UTT_HasVirtualDestructor:
5367     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5368     //   If type is a class type with a virtual destructor ([class.dtor])
5369     //   then the trait is true, else it is false.
5370     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5371       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5372         return Destructor->isVirtual();
5373     return false;
5374 
5375     // These type trait expressions are modeled on the specifications for the
5376     // Embarcadero C++0x type trait functions:
5377     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5378   case UTT_IsCompleteType:
5379     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5380     //   Returns True if and only if T is a complete type at the point of the
5381     //   function call.
5382     return !T->isIncompleteType();
5383   case UTT_HasUniqueObjectRepresentations:
5384     return C.hasUniqueObjectRepresentations(T);
5385   case UTT_IsTriviallyRelocatable:
5386     return T.isTriviallyRelocatableType(C);
5387   case UTT_IsReferenceable:
5388     return T.isReferenceable();
5389   case UTT_CanPassInRegs:
5390     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5391       return RD->canPassInRegisters();
5392     Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5393     return false;
5394   case UTT_IsTriviallyEqualityComparable:
5395     return T.isTriviallyEqualityComparableType(C);
5396   }
5397 }
5398 
5399 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5400                                     QualType RhsT, SourceLocation KeyLoc);
5401 
5402 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5403                                      SourceLocation KWLoc,
5404                                      ArrayRef<TypeSourceInfo *> Args,
5405                                      SourceLocation RParenLoc,
5406                                      bool IsDependent) {
5407   if (IsDependent)
5408     return false;
5409 
5410   if (Kind <= UTT_Last)
5411     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5412 
5413   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5414   // traits to avoid duplication.
5415   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5416     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5417                                    Args[1]->getType(), RParenLoc);
5418 
5419   switch (Kind) {
5420   case clang::BTT_ReferenceBindsToTemporary:
5421   case clang::TT_IsConstructible:
5422   case clang::TT_IsNothrowConstructible:
5423   case clang::TT_IsTriviallyConstructible: {
5424     // C++11 [meta.unary.prop]:
5425     //   is_trivially_constructible is defined as:
5426     //
5427     //     is_constructible<T, Args...>::value is true and the variable
5428     //     definition for is_constructible, as defined below, is known to call
5429     //     no operation that is not trivial.
5430     //
5431     //   The predicate condition for a template specialization
5432     //   is_constructible<T, Args...> shall be satisfied if and only if the
5433     //   following variable definition would be well-formed for some invented
5434     //   variable t:
5435     //
5436     //     T t(create<Args>()...);
5437     assert(!Args.empty());
5438 
5439     // Precondition: T and all types in the parameter pack Args shall be
5440     // complete types, (possibly cv-qualified) void, or arrays of
5441     // unknown bound.
5442     for (const auto *TSI : Args) {
5443       QualType ArgTy = TSI->getType();
5444       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5445         continue;
5446 
5447       if (S.RequireCompleteType(KWLoc, ArgTy,
5448           diag::err_incomplete_type_used_in_type_trait_expr))
5449         return false;
5450     }
5451 
5452     // Make sure the first argument is not incomplete nor a function type.
5453     QualType T = Args[0]->getType();
5454     if (T->isIncompleteType() || T->isFunctionType())
5455       return false;
5456 
5457     // Make sure the first argument is not an abstract type.
5458     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5459     if (RD && RD->isAbstract())
5460       return false;
5461 
5462     llvm::BumpPtrAllocator OpaqueExprAllocator;
5463     SmallVector<Expr *, 2> ArgExprs;
5464     ArgExprs.reserve(Args.size() - 1);
5465     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5466       QualType ArgTy = Args[I]->getType();
5467       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5468         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5469       ArgExprs.push_back(
5470           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5471               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5472                               ArgTy.getNonLValueExprType(S.Context),
5473                               Expr::getValueKindForType(ArgTy)));
5474     }
5475 
5476     // Perform the initialization in an unevaluated context within a SFINAE
5477     // trap at translation unit scope.
5478     EnterExpressionEvaluationContext Unevaluated(
5479         S, Sema::ExpressionEvaluationContext::Unevaluated);
5480     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5481     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5482     InitializedEntity To(
5483         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5484     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5485                                                                  RParenLoc));
5486     InitializationSequence Init(S, To, InitKind, ArgExprs);
5487     if (Init.Failed())
5488       return false;
5489 
5490     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5491     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5492       return false;
5493 
5494     if (Kind == clang::TT_IsConstructible)
5495       return true;
5496 
5497     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5498       if (!T->isReferenceType())
5499         return false;
5500 
5501       return !Init.isDirectReferenceBinding();
5502     }
5503 
5504     if (Kind == clang::TT_IsNothrowConstructible)
5505       return S.canThrow(Result.get()) == CT_Cannot;
5506 
5507     if (Kind == clang::TT_IsTriviallyConstructible) {
5508       // Under Objective-C ARC and Weak, if the destination has non-trivial
5509       // Objective-C lifetime, this is a non-trivial construction.
5510       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5511         return false;
5512 
5513       // The initialization succeeded; now make sure there are no non-trivial
5514       // calls.
5515       return !Result.get()->hasNonTrivialCall(S.Context);
5516     }
5517 
5518     llvm_unreachable("unhandled type trait");
5519     return false;
5520   }
5521     default: llvm_unreachable("not a TT");
5522   }
5523 
5524   return false;
5525 }
5526 
5527 namespace {
5528 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5529                                 SourceLocation KWLoc) {
5530   TypeTrait Replacement;
5531   switch (Kind) {
5532     case UTT_HasNothrowAssign:
5533     case UTT_HasNothrowMoveAssign:
5534       Replacement = BTT_IsNothrowAssignable;
5535       break;
5536     case UTT_HasNothrowCopy:
5537     case UTT_HasNothrowConstructor:
5538       Replacement = TT_IsNothrowConstructible;
5539       break;
5540     case UTT_HasTrivialAssign:
5541     case UTT_HasTrivialMoveAssign:
5542       Replacement = BTT_IsTriviallyAssignable;
5543       break;
5544     case UTT_HasTrivialCopy:
5545       Replacement = UTT_IsTriviallyCopyable;
5546       break;
5547     case UTT_HasTrivialDefaultConstructor:
5548     case UTT_HasTrivialMoveConstructor:
5549       Replacement = TT_IsTriviallyConstructible;
5550       break;
5551     case UTT_HasTrivialDestructor:
5552       Replacement = UTT_IsTriviallyDestructible;
5553       break;
5554     default:
5555       return;
5556   }
5557   S.Diag(KWLoc, diag::warn_deprecated_builtin)
5558     << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5559 }
5560 }
5561 
5562 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5563   if (Arity && N != Arity) {
5564     Diag(Loc, diag::err_type_trait_arity)
5565         << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5566     return false;
5567   }
5568 
5569   if (!Arity && N == 0) {
5570     Diag(Loc, diag::err_type_trait_arity)
5571         << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5572     return false;
5573   }
5574   return true;
5575 }
5576 
5577 enum class TypeTraitReturnType {
5578   Bool,
5579 };
5580 
5581 static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
5582   return TypeTraitReturnType::Bool;
5583 }
5584 
5585 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5586                                 ArrayRef<TypeSourceInfo *> Args,
5587                                 SourceLocation RParenLoc) {
5588   if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5589     return ExprError();
5590 
5591   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5592                                *this, Kind, KWLoc, Args[0]->getType()))
5593     return ExprError();
5594 
5595   DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5596 
5597   bool Dependent = false;
5598   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5599     if (Args[I]->getType()->isDependentType()) {
5600       Dependent = true;
5601       break;
5602     }
5603   }
5604 
5605   switch (GetReturnType(Kind)) {
5606   case TypeTraitReturnType::Bool: {
5607     bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc,
5608                                            Dependent);
5609     return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(),
5610                                  KWLoc, Kind, Args, RParenLoc, Result);
5611   }
5612   }
5613   llvm_unreachable("unhandled type trait return type");
5614 }
5615 
5616 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5617                                 ArrayRef<ParsedType> Args,
5618                                 SourceLocation RParenLoc) {
5619   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5620   ConvertedArgs.reserve(Args.size());
5621 
5622   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5623     TypeSourceInfo *TInfo;
5624     QualType T = GetTypeFromParser(Args[I], &TInfo);
5625     if (!TInfo)
5626       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5627 
5628     ConvertedArgs.push_back(TInfo);
5629   }
5630 
5631   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5632 }
5633 
5634 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5635                                     QualType RhsT, SourceLocation KeyLoc) {
5636   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5637          "Cannot evaluate traits of dependent types");
5638 
5639   switch(BTT) {
5640   case BTT_IsBaseOf: {
5641     // C++0x [meta.rel]p2
5642     // Base is a base class of Derived without regard to cv-qualifiers or
5643     // Base and Derived are not unions and name the same class type without
5644     // regard to cv-qualifiers.
5645 
5646     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5647     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5648     if (!rhsRecord || !lhsRecord) {
5649       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5650       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5651       if (!LHSObjTy || !RHSObjTy)
5652         return false;
5653 
5654       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5655       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5656       if (!BaseInterface || !DerivedInterface)
5657         return false;
5658 
5659       if (Self.RequireCompleteType(
5660               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5661         return false;
5662 
5663       return BaseInterface->isSuperClassOf(DerivedInterface);
5664     }
5665 
5666     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5667              == (lhsRecord == rhsRecord));
5668 
5669     // Unions are never base classes, and never have base classes.
5670     // It doesn't matter if they are complete or not. See PR#41843
5671     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5672       return false;
5673     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5674       return false;
5675 
5676     if (lhsRecord == rhsRecord)
5677       return true;
5678 
5679     // C++0x [meta.rel]p2:
5680     //   If Base and Derived are class types and are different types
5681     //   (ignoring possible cv-qualifiers) then Derived shall be a
5682     //   complete type.
5683     if (Self.RequireCompleteType(KeyLoc, RhsT,
5684                           diag::err_incomplete_type_used_in_type_trait_expr))
5685       return false;
5686 
5687     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5688       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5689   }
5690   case BTT_IsSame:
5691     return Self.Context.hasSameType(LhsT, RhsT);
5692   case BTT_TypeCompatible: {
5693     // GCC ignores cv-qualifiers on arrays for this builtin.
5694     Qualifiers LhsQuals, RhsQuals;
5695     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5696     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5697     return Self.Context.typesAreCompatible(Lhs, Rhs);
5698   }
5699   case BTT_IsConvertible:
5700   case BTT_IsConvertibleTo: {
5701     // C++0x [meta.rel]p4:
5702     //   Given the following function prototype:
5703     //
5704     //     template <class T>
5705     //       typename add_rvalue_reference<T>::type create();
5706     //
5707     //   the predicate condition for a template specialization
5708     //   is_convertible<From, To> shall be satisfied if and only if
5709     //   the return expression in the following code would be
5710     //   well-formed, including any implicit conversions to the return
5711     //   type of the function:
5712     //
5713     //     To test() {
5714     //       return create<From>();
5715     //     }
5716     //
5717     //   Access checking is performed as if in a context unrelated to To and
5718     //   From. Only the validity of the immediate context of the expression
5719     //   of the return-statement (including conversions to the return type)
5720     //   is considered.
5721     //
5722     // We model the initialization as a copy-initialization of a temporary
5723     // of the appropriate type, which for this expression is identical to the
5724     // return statement (since NRVO doesn't apply).
5725 
5726     // Functions aren't allowed to return function or array types.
5727     if (RhsT->isFunctionType() || RhsT->isArrayType())
5728       return false;
5729 
5730     // A return statement in a void function must have void type.
5731     if (RhsT->isVoidType())
5732       return LhsT->isVoidType();
5733 
5734     // A function definition requires a complete, non-abstract return type.
5735     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5736       return false;
5737 
5738     // Compute the result of add_rvalue_reference.
5739     if (LhsT->isObjectType() || LhsT->isFunctionType())
5740       LhsT = Self.Context.getRValueReferenceType(LhsT);
5741 
5742     // Build a fake source and destination for initialization.
5743     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5744     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5745                          Expr::getValueKindForType(LhsT));
5746     Expr *FromPtr = &From;
5747     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5748                                                            SourceLocation()));
5749 
5750     // Perform the initialization in an unevaluated context within a SFINAE
5751     // trap at translation unit scope.
5752     EnterExpressionEvaluationContext Unevaluated(
5753         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5754     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5755     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5756     InitializationSequence Init(Self, To, Kind, FromPtr);
5757     if (Init.Failed())
5758       return false;
5759 
5760     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5761     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5762   }
5763 
5764   case BTT_IsAssignable:
5765   case BTT_IsNothrowAssignable:
5766   case BTT_IsTriviallyAssignable: {
5767     // C++11 [meta.unary.prop]p3:
5768     //   is_trivially_assignable is defined as:
5769     //     is_assignable<T, U>::value is true and the assignment, as defined by
5770     //     is_assignable, is known to call no operation that is not trivial
5771     //
5772     //   is_assignable is defined as:
5773     //     The expression declval<T>() = declval<U>() is well-formed when
5774     //     treated as an unevaluated operand (Clause 5).
5775     //
5776     //   For both, T and U shall be complete types, (possibly cv-qualified)
5777     //   void, or arrays of unknown bound.
5778     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5779         Self.RequireCompleteType(KeyLoc, LhsT,
5780           diag::err_incomplete_type_used_in_type_trait_expr))
5781       return false;
5782     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5783         Self.RequireCompleteType(KeyLoc, RhsT,
5784           diag::err_incomplete_type_used_in_type_trait_expr))
5785       return false;
5786 
5787     // cv void is never assignable.
5788     if (LhsT->isVoidType() || RhsT->isVoidType())
5789       return false;
5790 
5791     // Build expressions that emulate the effect of declval<T>() and
5792     // declval<U>().
5793     if (LhsT->isObjectType() || LhsT->isFunctionType())
5794       LhsT = Self.Context.getRValueReferenceType(LhsT);
5795     if (RhsT->isObjectType() || RhsT->isFunctionType())
5796       RhsT = Self.Context.getRValueReferenceType(RhsT);
5797     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5798                         Expr::getValueKindForType(LhsT));
5799     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5800                         Expr::getValueKindForType(RhsT));
5801 
5802     // Attempt the assignment in an unevaluated context within a SFINAE
5803     // trap at translation unit scope.
5804     EnterExpressionEvaluationContext Unevaluated(
5805         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5806     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5807     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5808     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5809                                         &Rhs);
5810     if (Result.isInvalid())
5811       return false;
5812 
5813     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5814     Self.CheckUnusedVolatileAssignment(Result.get());
5815 
5816     if (SFINAE.hasErrorOccurred())
5817       return false;
5818 
5819     if (BTT == BTT_IsAssignable)
5820       return true;
5821 
5822     if (BTT == BTT_IsNothrowAssignable)
5823       return Self.canThrow(Result.get()) == CT_Cannot;
5824 
5825     if (BTT == BTT_IsTriviallyAssignable) {
5826       // Under Objective-C ARC and Weak, if the destination has non-trivial
5827       // Objective-C lifetime, this is a non-trivial assignment.
5828       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5829         return false;
5830 
5831       return !Result.get()->hasNonTrivialCall(Self.Context);
5832     }
5833 
5834     llvm_unreachable("unhandled type trait");
5835     return false;
5836   }
5837     default: llvm_unreachable("not a BTT");
5838   }
5839   llvm_unreachable("Unknown type trait or not implemented");
5840 }
5841 
5842 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5843                                      SourceLocation KWLoc,
5844                                      ParsedType Ty,
5845                                      Expr* DimExpr,
5846                                      SourceLocation RParen) {
5847   TypeSourceInfo *TSInfo;
5848   QualType T = GetTypeFromParser(Ty, &TSInfo);
5849   if (!TSInfo)
5850     TSInfo = Context.getTrivialTypeSourceInfo(T);
5851 
5852   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5853 }
5854 
5855 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5856                                            QualType T, Expr *DimExpr,
5857                                            SourceLocation KeyLoc) {
5858   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5859 
5860   switch(ATT) {
5861   case ATT_ArrayRank:
5862     if (T->isArrayType()) {
5863       unsigned Dim = 0;
5864       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5865         ++Dim;
5866         T = AT->getElementType();
5867       }
5868       return Dim;
5869     }
5870     return 0;
5871 
5872   case ATT_ArrayExtent: {
5873     llvm::APSInt Value;
5874     uint64_t Dim;
5875     if (Self.VerifyIntegerConstantExpression(
5876                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5877             .isInvalid())
5878       return 0;
5879     if (Value.isSigned() && Value.isNegative()) {
5880       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5881         << DimExpr->getSourceRange();
5882       return 0;
5883     }
5884     Dim = Value.getLimitedValue();
5885 
5886     if (T->isArrayType()) {
5887       unsigned D = 0;
5888       bool Matched = false;
5889       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5890         if (Dim == D) {
5891           Matched = true;
5892           break;
5893         }
5894         ++D;
5895         T = AT->getElementType();
5896       }
5897 
5898       if (Matched && T->isArrayType()) {
5899         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5900           return CAT->getSize().getLimitedValue();
5901       }
5902     }
5903     return 0;
5904   }
5905   }
5906   llvm_unreachable("Unknown type trait or not implemented");
5907 }
5908 
5909 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5910                                      SourceLocation KWLoc,
5911                                      TypeSourceInfo *TSInfo,
5912                                      Expr* DimExpr,
5913                                      SourceLocation RParen) {
5914   QualType T = TSInfo->getType();
5915 
5916   // FIXME: This should likely be tracked as an APInt to remove any host
5917   // assumptions about the width of size_t on the target.
5918   uint64_t Value = 0;
5919   if (!T->isDependentType())
5920     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5921 
5922   // While the specification for these traits from the Embarcadero C++
5923   // compiler's documentation says the return type is 'unsigned int', Clang
5924   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5925   // compiler, there is no difference. On several other platforms this is an
5926   // important distinction.
5927   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5928                                           RParen, Context.getSizeType());
5929 }
5930 
5931 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5932                                       SourceLocation KWLoc,
5933                                       Expr *Queried,
5934                                       SourceLocation RParen) {
5935   // If error parsing the expression, ignore.
5936   if (!Queried)
5937     return ExprError();
5938 
5939   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5940 
5941   return Result;
5942 }
5943 
5944 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5945   switch (ET) {
5946   case ET_IsLValueExpr: return E->isLValue();
5947   case ET_IsRValueExpr:
5948     return E->isPRValue();
5949   }
5950   llvm_unreachable("Expression trait not covered by switch");
5951 }
5952 
5953 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5954                                       SourceLocation KWLoc,
5955                                       Expr *Queried,
5956                                       SourceLocation RParen) {
5957   if (Queried->isTypeDependent()) {
5958     // Delay type-checking for type-dependent expressions.
5959   } else if (Queried->hasPlaceholderType()) {
5960     ExprResult PE = CheckPlaceholderExpr(Queried);
5961     if (PE.isInvalid()) return ExprError();
5962     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5963   }
5964 
5965   bool Value = EvaluateExpressionTrait(ET, Queried);
5966 
5967   return new (Context)
5968       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5969 }
5970 
5971 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5972                                             ExprValueKind &VK,
5973                                             SourceLocation Loc,
5974                                             bool isIndirect) {
5975   assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
5976          "placeholders should have been weeded out by now");
5977 
5978   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5979   // temporary materialization conversion otherwise.
5980   if (isIndirect)
5981     LHS = DefaultLvalueConversion(LHS.get());
5982   else if (LHS.get()->isPRValue())
5983     LHS = TemporaryMaterializationConversion(LHS.get());
5984   if (LHS.isInvalid())
5985     return QualType();
5986 
5987   // The RHS always undergoes lvalue conversions.
5988   RHS = DefaultLvalueConversion(RHS.get());
5989   if (RHS.isInvalid()) return QualType();
5990 
5991   const char *OpSpelling = isIndirect ? "->*" : ".*";
5992   // C++ 5.5p2
5993   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5994   //   be of type "pointer to member of T" (where T is a completely-defined
5995   //   class type) [...]
5996   QualType RHSType = RHS.get()->getType();
5997   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5998   if (!MemPtr) {
5999     Diag(Loc, diag::err_bad_memptr_rhs)
6000       << OpSpelling << RHSType << RHS.get()->getSourceRange();
6001     return QualType();
6002   }
6003 
6004   QualType Class(MemPtr->getClass(), 0);
6005 
6006   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6007   // member pointer points must be completely-defined. However, there is no
6008   // reason for this semantic distinction, and the rule is not enforced by
6009   // other compilers. Therefore, we do not check this property, as it is
6010   // likely to be considered a defect.
6011 
6012   // C++ 5.5p2
6013   //   [...] to its first operand, which shall be of class T or of a class of
6014   //   which T is an unambiguous and accessible base class. [p3: a pointer to
6015   //   such a class]
6016   QualType LHSType = LHS.get()->getType();
6017   if (isIndirect) {
6018     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6019       LHSType = Ptr->getPointeeType();
6020     else {
6021       Diag(Loc, diag::err_bad_memptr_lhs)
6022         << OpSpelling << 1 << LHSType
6023         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6024       return QualType();
6025     }
6026   }
6027 
6028   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6029     // If we want to check the hierarchy, we need a complete type.
6030     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6031                             OpSpelling, (int)isIndirect)) {
6032       return QualType();
6033     }
6034 
6035     if (!IsDerivedFrom(Loc, LHSType, Class)) {
6036       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6037         << (int)isIndirect << LHS.get()->getType();
6038       return QualType();
6039     }
6040 
6041     CXXCastPath BasePath;
6042     if (CheckDerivedToBaseConversion(
6043             LHSType, Class, Loc,
6044             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6045             &BasePath))
6046       return QualType();
6047 
6048     // Cast LHS to type of use.
6049     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6050     if (isIndirect)
6051       UseType = Context.getPointerType(UseType);
6052     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6053     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6054                             &BasePath);
6055   }
6056 
6057   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6058     // Diagnose use of pointer-to-member type which when used as
6059     // the functional cast in a pointer-to-member expression.
6060     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6061      return QualType();
6062   }
6063 
6064   // C++ 5.5p2
6065   //   The result is an object or a function of the type specified by the
6066   //   second operand.
6067   // The cv qualifiers are the union of those in the pointer and the left side,
6068   // in accordance with 5.5p5 and 5.2.5.
6069   QualType Result = MemPtr->getPointeeType();
6070   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6071 
6072   // C++0x [expr.mptr.oper]p6:
6073   //   In a .* expression whose object expression is an rvalue, the program is
6074   //   ill-formed if the second operand is a pointer to member function with
6075   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
6076   //   expression is an lvalue, the program is ill-formed if the second operand
6077   //   is a pointer to member function with ref-qualifier &&.
6078   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6079     switch (Proto->getRefQualifier()) {
6080     case RQ_None:
6081       // Do nothing
6082       break;
6083 
6084     case RQ_LValue:
6085       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6086         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6087         // is (exactly) 'const'.
6088         if (Proto->isConst() && !Proto->isVolatile())
6089           Diag(Loc, getLangOpts().CPlusPlus20
6090                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6091                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
6092         else
6093           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6094               << RHSType << 1 << LHS.get()->getSourceRange();
6095       }
6096       break;
6097 
6098     case RQ_RValue:
6099       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6100         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6101           << RHSType << 0 << LHS.get()->getSourceRange();
6102       break;
6103     }
6104   }
6105 
6106   // C++ [expr.mptr.oper]p6:
6107   //   The result of a .* expression whose second operand is a pointer
6108   //   to a data member is of the same value category as its
6109   //   first operand. The result of a .* expression whose second
6110   //   operand is a pointer to a member function is a prvalue. The
6111   //   result of an ->* expression is an lvalue if its second operand
6112   //   is a pointer to data member and a prvalue otherwise.
6113   if (Result->isFunctionType()) {
6114     VK = VK_PRValue;
6115     return Context.BoundMemberTy;
6116   } else if (isIndirect) {
6117     VK = VK_LValue;
6118   } else {
6119     VK = LHS.get()->getValueKind();
6120   }
6121 
6122   return Result;
6123 }
6124 
6125 /// Try to convert a type to another according to C++11 5.16p3.
6126 ///
6127 /// This is part of the parameter validation for the ? operator. If either
6128 /// value operand is a class type, the two operands are attempted to be
6129 /// converted to each other. This function does the conversion in one direction.
6130 /// It returns true if the program is ill-formed and has already been diagnosed
6131 /// as such.
6132 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6133                                 SourceLocation QuestionLoc,
6134                                 bool &HaveConversion,
6135                                 QualType &ToType) {
6136   HaveConversion = false;
6137   ToType = To->getType();
6138 
6139   InitializationKind Kind =
6140       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6141   // C++11 5.16p3
6142   //   The process for determining whether an operand expression E1 of type T1
6143   //   can be converted to match an operand expression E2 of type T2 is defined
6144   //   as follows:
6145   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6146   //      implicitly converted to type "lvalue reference to T2", subject to the
6147   //      constraint that in the conversion the reference must bind directly to
6148   //      an lvalue.
6149   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6150   //      implicitly converted to the type "rvalue reference to R2", subject to
6151   //      the constraint that the reference must bind directly.
6152   if (To->isGLValue()) {
6153     QualType T = Self.Context.getReferenceQualifiedType(To);
6154     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6155 
6156     InitializationSequence InitSeq(Self, Entity, Kind, From);
6157     if (InitSeq.isDirectReferenceBinding()) {
6158       ToType = T;
6159       HaveConversion = true;
6160       return false;
6161     }
6162 
6163     if (InitSeq.isAmbiguous())
6164       return InitSeq.Diagnose(Self, Entity, Kind, From);
6165   }
6166 
6167   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
6168   //      -- if E1 and E2 have class type, and the underlying class types are
6169   //         the same or one is a base class of the other:
6170   QualType FTy = From->getType();
6171   QualType TTy = To->getType();
6172   const RecordType *FRec = FTy->getAs<RecordType>();
6173   const RecordType *TRec = TTy->getAs<RecordType>();
6174   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6175                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6176   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6177                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6178     //         E1 can be converted to match E2 if the class of T2 is the
6179     //         same type as, or a base class of, the class of T1, and
6180     //         [cv2 > cv1].
6181     if (FRec == TRec || FDerivedFromT) {
6182       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6183         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6184         InitializationSequence InitSeq(Self, Entity, Kind, From);
6185         if (InitSeq) {
6186           HaveConversion = true;
6187           return false;
6188         }
6189 
6190         if (InitSeq.isAmbiguous())
6191           return InitSeq.Diagnose(Self, Entity, Kind, From);
6192       }
6193     }
6194 
6195     return false;
6196   }
6197 
6198   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
6199   //        implicitly converted to the type that expression E2 would have
6200   //        if E2 were converted to an rvalue (or the type it has, if E2 is
6201   //        an rvalue).
6202   //
6203   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6204   // to the array-to-pointer or function-to-pointer conversions.
6205   TTy = TTy.getNonLValueExprType(Self.Context);
6206 
6207   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6208   InitializationSequence InitSeq(Self, Entity, Kind, From);
6209   HaveConversion = !InitSeq.Failed();
6210   ToType = TTy;
6211   if (InitSeq.isAmbiguous())
6212     return InitSeq.Diagnose(Self, Entity, Kind, From);
6213 
6214   return false;
6215 }
6216 
6217 /// Try to find a common type for two according to C++0x 5.16p5.
6218 ///
6219 /// This is part of the parameter validation for the ? operator. If either
6220 /// value operand is a class type, overload resolution is used to find a
6221 /// conversion to a common type.
6222 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6223                                     SourceLocation QuestionLoc) {
6224   Expr *Args[2] = { LHS.get(), RHS.get() };
6225   OverloadCandidateSet CandidateSet(QuestionLoc,
6226                                     OverloadCandidateSet::CSK_Operator);
6227   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6228                                     CandidateSet);
6229 
6230   OverloadCandidateSet::iterator Best;
6231   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6232     case OR_Success: {
6233       // We found a match. Perform the conversions on the arguments and move on.
6234       ExprResult LHSRes = Self.PerformImplicitConversion(
6235           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6236           Sema::AA_Converting);
6237       if (LHSRes.isInvalid())
6238         break;
6239       LHS = LHSRes;
6240 
6241       ExprResult RHSRes = Self.PerformImplicitConversion(
6242           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6243           Sema::AA_Converting);
6244       if (RHSRes.isInvalid())
6245         break;
6246       RHS = RHSRes;
6247       if (Best->Function)
6248         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6249       return false;
6250     }
6251 
6252     case OR_No_Viable_Function:
6253 
6254       // Emit a better diagnostic if one of the expressions is a null pointer
6255       // constant and the other is a pointer type. In this case, the user most
6256       // likely forgot to take the address of the other expression.
6257       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6258         return true;
6259 
6260       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6261         << LHS.get()->getType() << RHS.get()->getType()
6262         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6263       return true;
6264 
6265     case OR_Ambiguous:
6266       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6267         << LHS.get()->getType() << RHS.get()->getType()
6268         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6269       // FIXME: Print the possible common types by printing the return types of
6270       // the viable candidates.
6271       break;
6272 
6273     case OR_Deleted:
6274       llvm_unreachable("Conditional operator has only built-in overloads");
6275   }
6276   return true;
6277 }
6278 
6279 /// Perform an "extended" implicit conversion as returned by
6280 /// TryClassUnification.
6281 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6282   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6283   InitializationKind Kind =
6284       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6285   Expr *Arg = E.get();
6286   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6287   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6288   if (Result.isInvalid())
6289     return true;
6290 
6291   E = Result;
6292   return false;
6293 }
6294 
6295 // Check the condition operand of ?: to see if it is valid for the GCC
6296 // extension.
6297 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6298                                                  QualType CondTy) {
6299   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6300     return false;
6301   const QualType EltTy =
6302       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6303   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6304   return EltTy->isIntegralType(Ctx);
6305 }
6306 
6307 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6308                                                          QualType CondTy) {
6309   if (!CondTy->isVLSTBuiltinType())
6310     return false;
6311   const QualType EltTy =
6312       cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6313   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6314   return EltTy->isIntegralType(Ctx);
6315 }
6316 
6317 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6318                                            ExprResult &RHS,
6319                                            SourceLocation QuestionLoc) {
6320   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6321   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6322 
6323   QualType CondType = Cond.get()->getType();
6324   const auto *CondVT = CondType->castAs<VectorType>();
6325   QualType CondElementTy = CondVT->getElementType();
6326   unsigned CondElementCount = CondVT->getNumElements();
6327   QualType LHSType = LHS.get()->getType();
6328   const auto *LHSVT = LHSType->getAs<VectorType>();
6329   QualType RHSType = RHS.get()->getType();
6330   const auto *RHSVT = RHSType->getAs<VectorType>();
6331 
6332   QualType ResultType;
6333 
6334 
6335   if (LHSVT && RHSVT) {
6336     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6337       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6338           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6339       return {};
6340     }
6341 
6342     // If both are vector types, they must be the same type.
6343     if (!Context.hasSameType(LHSType, RHSType)) {
6344       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6345           << LHSType << RHSType;
6346       return {};
6347     }
6348     ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6349   } else if (LHSVT || RHSVT) {
6350     ResultType = CheckVectorOperands(
6351         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6352         /*AllowBoolConversions*/ false,
6353         /*AllowBoolOperation*/ true,
6354         /*ReportInvalid*/ true);
6355     if (ResultType.isNull())
6356       return {};
6357   } else {
6358     // Both are scalar.
6359     LHSType = LHSType.getUnqualifiedType();
6360     RHSType = RHSType.getUnqualifiedType();
6361     QualType ResultElementTy =
6362         Context.hasSameType(LHSType, RHSType)
6363             ? Context.getCommonSugaredType(LHSType, RHSType)
6364             : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6365                                          ACK_Conditional);
6366 
6367     if (ResultElementTy->isEnumeralType()) {
6368       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6369           << ResultElementTy;
6370       return {};
6371     }
6372     if (CondType->isExtVectorType())
6373       ResultType =
6374           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6375     else
6376       ResultType = Context.getVectorType(
6377           ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6378 
6379     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6380     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6381   }
6382 
6383   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6384          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6385          "Result should have been a vector type");
6386   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6387   QualType ResultElementTy = ResultVectorTy->getElementType();
6388   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6389 
6390   if (ResultElementCount != CondElementCount) {
6391     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6392                                                          << ResultType;
6393     return {};
6394   }
6395 
6396   if (Context.getTypeSize(ResultElementTy) !=
6397       Context.getTypeSize(CondElementTy)) {
6398     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6399                                                                  << ResultType;
6400     return {};
6401   }
6402 
6403   return ResultType;
6404 }
6405 
6406 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6407                                                    ExprResult &LHS,
6408                                                    ExprResult &RHS,
6409                                                    SourceLocation QuestionLoc) {
6410   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6411   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6412 
6413   QualType CondType = Cond.get()->getType();
6414   const auto *CondBT = CondType->castAs<BuiltinType>();
6415   QualType CondElementTy = CondBT->getSveEltType(Context);
6416   llvm::ElementCount CondElementCount =
6417       Context.getBuiltinVectorTypeInfo(CondBT).EC;
6418 
6419   QualType LHSType = LHS.get()->getType();
6420   const auto *LHSBT =
6421       LHSType->isVLSTBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6422   QualType RHSType = RHS.get()->getType();
6423   const auto *RHSBT =
6424       RHSType->isVLSTBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6425 
6426   QualType ResultType;
6427 
6428   if (LHSBT && RHSBT) {
6429     // If both are sizeless vector types, they must be the same type.
6430     if (!Context.hasSameType(LHSType, RHSType)) {
6431       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6432           << LHSType << RHSType;
6433       return QualType();
6434     }
6435     ResultType = LHSType;
6436   } else if (LHSBT || RHSBT) {
6437     ResultType = CheckSizelessVectorOperands(
6438         LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6439     if (ResultType.isNull())
6440       return QualType();
6441   } else {
6442     // Both are scalar so splat
6443     QualType ResultElementTy;
6444     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6445     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6446 
6447     if (Context.hasSameType(LHSType, RHSType))
6448       ResultElementTy = LHSType;
6449     else
6450       ResultElementTy =
6451           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6452 
6453     if (ResultElementTy->isEnumeralType()) {
6454       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6455           << ResultElementTy;
6456       return QualType();
6457     }
6458 
6459     ResultType = Context.getScalableVectorType(
6460         ResultElementTy, CondElementCount.getKnownMinValue());
6461 
6462     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6463     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6464   }
6465 
6466   assert(!ResultType.isNull() && ResultType->isVLSTBuiltinType() &&
6467          "Result should have been a vector type");
6468   auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6469   QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6470   llvm::ElementCount ResultElementCount =
6471       Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6472 
6473   if (ResultElementCount != CondElementCount) {
6474     Diag(QuestionLoc, diag::err_conditional_vector_size)
6475         << CondType << ResultType;
6476     return QualType();
6477   }
6478 
6479   if (Context.getTypeSize(ResultElementTy) !=
6480       Context.getTypeSize(CondElementTy)) {
6481     Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6482         << CondType << ResultType;
6483     return QualType();
6484   }
6485 
6486   return ResultType;
6487 }
6488 
6489 /// Check the operands of ?: under C++ semantics.
6490 ///
6491 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6492 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6493 ///
6494 /// This function also implements GCC's vector extension and the
6495 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6496 /// permit the use of a?b:c where the type of a is that of a integer vector with
6497 /// the same number of elements and size as the vectors of b and c. If one of
6498 /// either b or c is a scalar it is implicitly converted to match the type of
6499 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6500 /// scalars, then b and c are checked and converted to the type of a if
6501 /// possible.
6502 ///
6503 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6504 /// For the GCC extension, the ?: operator is evaluated as
6505 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6506 /// For the OpenCL extensions, the ?: operator is evaluated as
6507 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6508 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
6509 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6510                                            ExprResult &RHS, ExprValueKind &VK,
6511                                            ExprObjectKind &OK,
6512                                            SourceLocation QuestionLoc) {
6513   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6514   // pointers.
6515 
6516   // Assume r-value.
6517   VK = VK_PRValue;
6518   OK = OK_Ordinary;
6519   bool IsVectorConditional =
6520       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6521 
6522   bool IsSizelessVectorConditional =
6523       isValidSizelessVectorForConditionalCondition(Context,
6524                                                    Cond.get()->getType());
6525 
6526   // C++11 [expr.cond]p1
6527   //   The first expression is contextually converted to bool.
6528   if (!Cond.get()->isTypeDependent()) {
6529     ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6530                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6531                              : CheckCXXBooleanCondition(Cond.get());
6532     if (CondRes.isInvalid())
6533       return QualType();
6534     Cond = CondRes;
6535   } else {
6536     // To implement C++, the first expression typically doesn't alter the result
6537     // type of the conditional, however the GCC compatible vector extension
6538     // changes the result type to be that of the conditional. Since we cannot
6539     // know if this is a vector extension here, delay the conversion of the
6540     // LHS/RHS below until later.
6541     return Context.DependentTy;
6542   }
6543 
6544 
6545   // Either of the arguments dependent?
6546   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6547     return Context.DependentTy;
6548 
6549   // C++11 [expr.cond]p2
6550   //   If either the second or the third operand has type (cv) void, ...
6551   QualType LTy = LHS.get()->getType();
6552   QualType RTy = RHS.get()->getType();
6553   bool LVoid = LTy->isVoidType();
6554   bool RVoid = RTy->isVoidType();
6555   if (LVoid || RVoid) {
6556     //   ... one of the following shall hold:
6557     //   -- The second or the third operand (but not both) is a (possibly
6558     //      parenthesized) throw-expression; the result is of the type
6559     //      and value category of the other.
6560     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6561     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6562 
6563     // Void expressions aren't legal in the vector-conditional expressions.
6564     if (IsVectorConditional) {
6565       SourceRange DiagLoc =
6566           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6567       bool IsThrow = LVoid ? LThrow : RThrow;
6568       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6569           << DiagLoc << IsThrow;
6570       return QualType();
6571     }
6572 
6573     if (LThrow != RThrow) {
6574       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6575       VK = NonThrow->getValueKind();
6576       // DR (no number yet): the result is a bit-field if the
6577       // non-throw-expression operand is a bit-field.
6578       OK = NonThrow->getObjectKind();
6579       return NonThrow->getType();
6580     }
6581 
6582     //   -- Both the second and third operands have type void; the result is of
6583     //      type void and is a prvalue.
6584     if (LVoid && RVoid)
6585       return Context.getCommonSugaredType(LTy, RTy);
6586 
6587     // Neither holds, error.
6588     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6589       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6590       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6591     return QualType();
6592   }
6593 
6594   // Neither is void.
6595   if (IsVectorConditional)
6596     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6597 
6598   if (IsSizelessVectorConditional)
6599     return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6600 
6601   // WebAssembly tables are not allowed as conditional LHS or RHS.
6602   if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
6603     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
6604         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6605     return QualType();
6606   }
6607 
6608   // C++11 [expr.cond]p3
6609   //   Otherwise, if the second and third operand have different types, and
6610   //   either has (cv) class type [...] an attempt is made to convert each of
6611   //   those operands to the type of the other.
6612   if (!Context.hasSameType(LTy, RTy) &&
6613       (LTy->isRecordType() || RTy->isRecordType())) {
6614     // These return true if a single direction is already ambiguous.
6615     QualType L2RType, R2LType;
6616     bool HaveL2R, HaveR2L;
6617     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6618       return QualType();
6619     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6620       return QualType();
6621 
6622     //   If both can be converted, [...] the program is ill-formed.
6623     if (HaveL2R && HaveR2L) {
6624       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6625         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6626       return QualType();
6627     }
6628 
6629     //   If exactly one conversion is possible, that conversion is applied to
6630     //   the chosen operand and the converted operands are used in place of the
6631     //   original operands for the remainder of this section.
6632     if (HaveL2R) {
6633       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6634         return QualType();
6635       LTy = LHS.get()->getType();
6636     } else if (HaveR2L) {
6637       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6638         return QualType();
6639       RTy = RHS.get()->getType();
6640     }
6641   }
6642 
6643   // C++11 [expr.cond]p3
6644   //   if both are glvalues of the same value category and the same type except
6645   //   for cv-qualification, an attempt is made to convert each of those
6646   //   operands to the type of the other.
6647   // FIXME:
6648   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6649   //   one of the operands is reference-compatible with the other, in order
6650   //   to support conditionals between functions differing in noexcept. This
6651   //   will similarly cover difference in array bounds after P0388R4.
6652   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6653   //   that instead?
6654   ExprValueKind LVK = LHS.get()->getValueKind();
6655   ExprValueKind RVK = RHS.get()->getValueKind();
6656   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6657     // DerivedToBase was already handled by the class-specific case above.
6658     // FIXME: Should we allow ObjC conversions here?
6659     const ReferenceConversions AllowedConversions =
6660         ReferenceConversions::Qualification |
6661         ReferenceConversions::NestedQualification |
6662         ReferenceConversions::Function;
6663 
6664     ReferenceConversions RefConv;
6665     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6666             Ref_Compatible &&
6667         !(RefConv & ~AllowedConversions) &&
6668         // [...] subject to the constraint that the reference must bind
6669         // directly [...]
6670         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6671       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6672       RTy = RHS.get()->getType();
6673     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6674                    Ref_Compatible &&
6675                !(RefConv & ~AllowedConversions) &&
6676                !LHS.get()->refersToBitField() &&
6677                !LHS.get()->refersToVectorElement()) {
6678       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6679       LTy = LHS.get()->getType();
6680     }
6681   }
6682 
6683   // C++11 [expr.cond]p4
6684   //   If the second and third operands are glvalues of the same value
6685   //   category and have the same type, the result is of that type and
6686   //   value category and it is a bit-field if the second or the third
6687   //   operand is a bit-field, or if both are bit-fields.
6688   // We only extend this to bitfields, not to the crazy other kinds of
6689   // l-values.
6690   bool Same = Context.hasSameType(LTy, RTy);
6691   if (Same && LVK == RVK && LVK != VK_PRValue &&
6692       LHS.get()->isOrdinaryOrBitFieldObject() &&
6693       RHS.get()->isOrdinaryOrBitFieldObject()) {
6694     VK = LHS.get()->getValueKind();
6695     if (LHS.get()->getObjectKind() == OK_BitField ||
6696         RHS.get()->getObjectKind() == OK_BitField)
6697       OK = OK_BitField;
6698     return Context.getCommonSugaredType(LTy, RTy);
6699   }
6700 
6701   // C++11 [expr.cond]p5
6702   //   Otherwise, the result is a prvalue. If the second and third operands
6703   //   do not have the same type, and either has (cv) class type, ...
6704   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6705     //   ... overload resolution is used to determine the conversions (if any)
6706     //   to be applied to the operands. If the overload resolution fails, the
6707     //   program is ill-formed.
6708     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6709       return QualType();
6710   }
6711 
6712   // C++11 [expr.cond]p6
6713   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6714   //   conversions are performed on the second and third operands.
6715   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6716   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6717   if (LHS.isInvalid() || RHS.isInvalid())
6718     return QualType();
6719   LTy = LHS.get()->getType();
6720   RTy = RHS.get()->getType();
6721 
6722   //   After those conversions, one of the following shall hold:
6723   //   -- The second and third operands have the same type; the result
6724   //      is of that type. If the operands have class type, the result
6725   //      is a prvalue temporary of the result type, which is
6726   //      copy-initialized from either the second operand or the third
6727   //      operand depending on the value of the first operand.
6728   if (Context.hasSameType(LTy, RTy)) {
6729     if (LTy->isRecordType()) {
6730       // The operands have class type. Make a temporary copy.
6731       ExprResult LHSCopy = PerformCopyInitialization(
6732           InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
6733       if (LHSCopy.isInvalid())
6734         return QualType();
6735 
6736       ExprResult RHSCopy = PerformCopyInitialization(
6737           InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
6738       if (RHSCopy.isInvalid())
6739         return QualType();
6740 
6741       LHS = LHSCopy;
6742       RHS = RHSCopy;
6743     }
6744     return Context.getCommonSugaredType(LTy, RTy);
6745   }
6746 
6747   // Extension: conditional operator involving vector types.
6748   if (LTy->isVectorType() || RTy->isVectorType())
6749     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6750                                /*AllowBothBool*/ true,
6751                                /*AllowBoolConversions*/ false,
6752                                /*AllowBoolOperation*/ false,
6753                                /*ReportInvalid*/ true);
6754 
6755   //   -- The second and third operands have arithmetic or enumeration type;
6756   //      the usual arithmetic conversions are performed to bring them to a
6757   //      common type, and the result is of that type.
6758   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6759     QualType ResTy =
6760         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6761     if (LHS.isInvalid() || RHS.isInvalid())
6762       return QualType();
6763     if (ResTy.isNull()) {
6764       Diag(QuestionLoc,
6765            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6766         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6767       return QualType();
6768     }
6769 
6770     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6771     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6772 
6773     return ResTy;
6774   }
6775 
6776   //   -- The second and third operands have pointer type, or one has pointer
6777   //      type and the other is a null pointer constant, or both are null
6778   //      pointer constants, at least one of which is non-integral; pointer
6779   //      conversions and qualification conversions are performed to bring them
6780   //      to their composite pointer type. The result is of the composite
6781   //      pointer type.
6782   //   -- The second and third operands have pointer to member type, or one has
6783   //      pointer to member type and the other is a null pointer constant;
6784   //      pointer to member conversions and qualification conversions are
6785   //      performed to bring them to a common type, whose cv-qualification
6786   //      shall match the cv-qualification of either the second or the third
6787   //      operand. The result is of the common type.
6788   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6789   if (!Composite.isNull())
6790     return Composite;
6791 
6792   // Similarly, attempt to find composite type of two objective-c pointers.
6793   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6794   if (LHS.isInvalid() || RHS.isInvalid())
6795     return QualType();
6796   if (!Composite.isNull())
6797     return Composite;
6798 
6799   // Check if we are using a null with a non-pointer type.
6800   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6801     return QualType();
6802 
6803   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6804     << LHS.get()->getType() << RHS.get()->getType()
6805     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6806   return QualType();
6807 }
6808 
6809 /// Find a merged pointer type and convert the two expressions to it.
6810 ///
6811 /// This finds the composite pointer type for \p E1 and \p E2 according to
6812 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6813 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6814 /// is \c true).
6815 ///
6816 /// \param Loc The location of the operator requiring these two expressions to
6817 /// be converted to the composite pointer type.
6818 ///
6819 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6820 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6821                                         Expr *&E1, Expr *&E2,
6822                                         bool ConvertArgs) {
6823   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6824 
6825   // C++1z [expr]p14:
6826   //   The composite pointer type of two operands p1 and p2 having types T1
6827   //   and T2
6828   QualType T1 = E1->getType(), T2 = E2->getType();
6829 
6830   //   where at least one is a pointer or pointer to member type or
6831   //   std::nullptr_t is:
6832   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6833                          T1->isNullPtrType();
6834   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6835                          T2->isNullPtrType();
6836   if (!T1IsPointerLike && !T2IsPointerLike)
6837     return QualType();
6838 
6839   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6840   // This can't actually happen, following the standard, but we also use this
6841   // to implement the end of [expr.conv], which hits this case.
6842   //
6843   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6844   if (T1IsPointerLike &&
6845       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6846     if (ConvertArgs)
6847       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6848                                          ? CK_NullToMemberPointer
6849                                          : CK_NullToPointer).get();
6850     return T1;
6851   }
6852   if (T2IsPointerLike &&
6853       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6854     if (ConvertArgs)
6855       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6856                                          ? CK_NullToMemberPointer
6857                                          : CK_NullToPointer).get();
6858     return T2;
6859   }
6860 
6861   // Now both have to be pointers or member pointers.
6862   if (!T1IsPointerLike || !T2IsPointerLike)
6863     return QualType();
6864   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6865          "nullptr_t should be a null pointer constant");
6866 
6867   struct Step {
6868     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6869     // Qualifiers to apply under the step kind.
6870     Qualifiers Quals;
6871     /// The class for a pointer-to-member; a constant array type with a bound
6872     /// (if any) for an array.
6873     const Type *ClassOrBound;
6874 
6875     Step(Kind K, const Type *ClassOrBound = nullptr)
6876         : K(K), ClassOrBound(ClassOrBound) {}
6877     QualType rebuild(ASTContext &Ctx, QualType T) const {
6878       T = Ctx.getQualifiedType(T, Quals);
6879       switch (K) {
6880       case Pointer:
6881         return Ctx.getPointerType(T);
6882       case MemberPointer:
6883         return Ctx.getMemberPointerType(T, ClassOrBound);
6884       case ObjCPointer:
6885         return Ctx.getObjCObjectPointerType(T);
6886       case Array:
6887         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6888           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6889                                           ArrayType::Normal, 0);
6890         else
6891           return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6892       }
6893       llvm_unreachable("unknown step kind");
6894     }
6895   };
6896 
6897   SmallVector<Step, 8> Steps;
6898 
6899   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6900   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6901   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6902   //    respectively;
6903   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6904   //    to member of C2 of type cv2 U2" for some non-function type U, where
6905   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6906   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6907   //    respectively;
6908   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6909   //    T2;
6910   //
6911   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6912   // and to prepare to form the cv-combined type if so.
6913   QualType Composite1 = T1;
6914   QualType Composite2 = T2;
6915   unsigned NeedConstBefore = 0;
6916   while (true) {
6917     assert(!Composite1.isNull() && !Composite2.isNull());
6918 
6919     Qualifiers Q1, Q2;
6920     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6921     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6922 
6923     // Top-level qualifiers are ignored. Merge at all lower levels.
6924     if (!Steps.empty()) {
6925       // Find the qualifier union: (approximately) the unique minimal set of
6926       // qualifiers that is compatible with both types.
6927       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6928                                                   Q2.getCVRUQualifiers());
6929 
6930       // Under one level of pointer or pointer-to-member, we can change to an
6931       // unambiguous compatible address space.
6932       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6933         Quals.setAddressSpace(Q1.getAddressSpace());
6934       } else if (Steps.size() == 1) {
6935         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6936         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6937         if (MaybeQ1 == MaybeQ2) {
6938           // Exception for ptr size address spaces. Should be able to choose
6939           // either address space during comparison.
6940           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6941               isPtrSizeAddressSpace(Q2.getAddressSpace()))
6942             MaybeQ1 = true;
6943           else
6944             return QualType(); // No unique best address space.
6945         }
6946         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6947                                       : Q2.getAddressSpace());
6948       } else {
6949         return QualType();
6950       }
6951 
6952       // FIXME: In C, we merge __strong and none to __strong at the top level.
6953       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6954         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6955       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6956         assert(Steps.size() == 1);
6957       else
6958         return QualType();
6959 
6960       // Mismatched lifetime qualifiers never compatibly include each other.
6961       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6962         Quals.setObjCLifetime(Q1.getObjCLifetime());
6963       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6964         assert(Steps.size() == 1);
6965       else
6966         return QualType();
6967 
6968       Steps.back().Quals = Quals;
6969       if (Q1 != Quals || Q2 != Quals)
6970         NeedConstBefore = Steps.size() - 1;
6971     }
6972 
6973     // FIXME: Can we unify the following with UnwrapSimilarTypes?
6974 
6975     const ArrayType *Arr1, *Arr2;
6976     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
6977         (Arr2 = Context.getAsArrayType(Composite2))) {
6978       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
6979       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
6980       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
6981         Composite1 = Arr1->getElementType();
6982         Composite2 = Arr2->getElementType();
6983         Steps.emplace_back(Step::Array, CAT1);
6984         continue;
6985       }
6986       bool IAT1 = isa<IncompleteArrayType>(Arr1);
6987       bool IAT2 = isa<IncompleteArrayType>(Arr2);
6988       if ((IAT1 && IAT2) ||
6989           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
6990            ((bool)CAT1 != (bool)CAT2) &&
6991            (Steps.empty() || Steps.back().K != Step::Array))) {
6992         // In C++20 onwards, we can unify an array of N T with an array of
6993         // a different or unknown bound. But we can't form an array whose
6994         // element type is an array of unknown bound by doing so.
6995         Composite1 = Arr1->getElementType();
6996         Composite2 = Arr2->getElementType();
6997         Steps.emplace_back(Step::Array);
6998         if (CAT1 || CAT2)
6999           NeedConstBefore = Steps.size();
7000         continue;
7001       }
7002     }
7003 
7004     const PointerType *Ptr1, *Ptr2;
7005     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7006         (Ptr2 = Composite2->getAs<PointerType>())) {
7007       Composite1 = Ptr1->getPointeeType();
7008       Composite2 = Ptr2->getPointeeType();
7009       Steps.emplace_back(Step::Pointer);
7010       continue;
7011     }
7012 
7013     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7014     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7015         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7016       Composite1 = ObjPtr1->getPointeeType();
7017       Composite2 = ObjPtr2->getPointeeType();
7018       Steps.emplace_back(Step::ObjCPointer);
7019       continue;
7020     }
7021 
7022     const MemberPointerType *MemPtr1, *MemPtr2;
7023     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7024         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7025       Composite1 = MemPtr1->getPointeeType();
7026       Composite2 = MemPtr2->getPointeeType();
7027 
7028       // At the top level, we can perform a base-to-derived pointer-to-member
7029       // conversion:
7030       //
7031       //  - [...] where C1 is reference-related to C2 or C2 is
7032       //    reference-related to C1
7033       //
7034       // (Note that the only kinds of reference-relatedness in scope here are
7035       // "same type or derived from".) At any other level, the class must
7036       // exactly match.
7037       const Type *Class = nullptr;
7038       QualType Cls1(MemPtr1->getClass(), 0);
7039       QualType Cls2(MemPtr2->getClass(), 0);
7040       if (Context.hasSameType(Cls1, Cls2))
7041         Class = MemPtr1->getClass();
7042       else if (Steps.empty())
7043         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7044                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7045       if (!Class)
7046         return QualType();
7047 
7048       Steps.emplace_back(Step::MemberPointer, Class);
7049       continue;
7050     }
7051 
7052     // Special case: at the top level, we can decompose an Objective-C pointer
7053     // and a 'cv void *'. Unify the qualifiers.
7054     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7055                            Composite2->isObjCObjectPointerType()) ||
7056                           (Composite1->isObjCObjectPointerType() &&
7057                            Composite2->isVoidPointerType()))) {
7058       Composite1 = Composite1->getPointeeType();
7059       Composite2 = Composite2->getPointeeType();
7060       Steps.emplace_back(Step::Pointer);
7061       continue;
7062     }
7063 
7064     // FIXME: block pointer types?
7065 
7066     // Cannot unwrap any more types.
7067     break;
7068   }
7069 
7070   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
7071   //    "pointer to function", where the function types are otherwise the same,
7072   //    "pointer to function";
7073   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
7074   //    type is "pointer to member of C2 of type noexcept function", and C1
7075   //    is reference-related to C2 or C2 is reference-related to C1, where
7076   //    the function types are otherwise the same, "pointer to member of C2 of
7077   //    type function" or "pointer to member of C1 of type function",
7078   //    respectively;
7079   //
7080   // We also support 'noreturn' here, so as a Clang extension we generalize the
7081   // above to:
7082   //
7083   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
7084   //    "pointer to member function" and the pointee types can be unified
7085   //    by a function pointer conversion, that conversion is applied
7086   //    before checking the following rules.
7087   //
7088   // We've already unwrapped down to the function types, and we want to merge
7089   // rather than just convert, so do this ourselves rather than calling
7090   // IsFunctionConversion.
7091   //
7092   // FIXME: In order to match the standard wording as closely as possible, we
7093   // currently only do this under a single level of pointers. Ideally, we would
7094   // allow this in general, and set NeedConstBefore to the relevant depth on
7095   // the side(s) where we changed anything. If we permit that, we should also
7096   // consider this conversion when determining type similarity and model it as
7097   // a qualification conversion.
7098   if (Steps.size() == 1) {
7099     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7100       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7101         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7102         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7103 
7104         // The result is noreturn if both operands are.
7105         bool Noreturn =
7106             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7107         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7108         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7109 
7110         // The result is nothrow if both operands are.
7111         SmallVector<QualType, 8> ExceptionTypeStorage;
7112         EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7113             EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7114             getLangOpts().CPlusPlus17);
7115 
7116         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7117                                              FPT1->getParamTypes(), EPI1);
7118         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7119                                              FPT2->getParamTypes(), EPI2);
7120       }
7121     }
7122   }
7123 
7124   // There are some more conversions we can perform under exactly one pointer.
7125   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7126       !Context.hasSameType(Composite1, Composite2)) {
7127     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
7128     //    "pointer to cv2 T", where T is an object type or void,
7129     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7130     if (Composite1->isVoidType() && Composite2->isObjectType())
7131       Composite2 = Composite1;
7132     else if (Composite2->isVoidType() && Composite1->isObjectType())
7133       Composite1 = Composite2;
7134     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7135     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7136     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7137     //    T1, respectively;
7138     //
7139     // The "similar type" handling covers all of this except for the "T1 is a
7140     // base class of T2" case in the definition of reference-related.
7141     else if (IsDerivedFrom(Loc, Composite1, Composite2))
7142       Composite1 = Composite2;
7143     else if (IsDerivedFrom(Loc, Composite2, Composite1))
7144       Composite2 = Composite1;
7145   }
7146 
7147   // At this point, either the inner types are the same or we have failed to
7148   // find a composite pointer type.
7149   if (!Context.hasSameType(Composite1, Composite2))
7150     return QualType();
7151 
7152   // Per C++ [conv.qual]p3, add 'const' to every level before the last
7153   // differing qualifier.
7154   for (unsigned I = 0; I != NeedConstBefore; ++I)
7155     Steps[I].Quals.addConst();
7156 
7157   // Rebuild the composite type.
7158   QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7159   for (auto &S : llvm::reverse(Steps))
7160     Composite = S.rebuild(Context, Composite);
7161 
7162   if (ConvertArgs) {
7163     // Convert the expressions to the composite pointer type.
7164     InitializedEntity Entity =
7165         InitializedEntity::InitializeTemporary(Composite);
7166     InitializationKind Kind =
7167         InitializationKind::CreateCopy(Loc, SourceLocation());
7168 
7169     InitializationSequence E1ToC(*this, Entity, Kind, E1);
7170     if (!E1ToC)
7171       return QualType();
7172 
7173     InitializationSequence E2ToC(*this, Entity, Kind, E2);
7174     if (!E2ToC)
7175       return QualType();
7176 
7177     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7178     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7179     if (E1Result.isInvalid())
7180       return QualType();
7181     E1 = E1Result.get();
7182 
7183     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7184     if (E2Result.isInvalid())
7185       return QualType();
7186     E2 = E2Result.get();
7187   }
7188 
7189   return Composite;
7190 }
7191 
7192 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7193   if (!E)
7194     return ExprError();
7195 
7196   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7197 
7198   // If the result is a glvalue, we shouldn't bind it.
7199   if (E->isGLValue())
7200     return E;
7201 
7202   // In ARC, calls that return a retainable type can return retained,
7203   // in which case we have to insert a consuming cast.
7204   if (getLangOpts().ObjCAutoRefCount &&
7205       E->getType()->isObjCRetainableType()) {
7206 
7207     bool ReturnsRetained;
7208 
7209     // For actual calls, we compute this by examining the type of the
7210     // called value.
7211     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7212       Expr *Callee = Call->getCallee()->IgnoreParens();
7213       QualType T = Callee->getType();
7214 
7215       if (T == Context.BoundMemberTy) {
7216         // Handle pointer-to-members.
7217         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7218           T = BinOp->getRHS()->getType();
7219         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7220           T = Mem->getMemberDecl()->getType();
7221       }
7222 
7223       if (const PointerType *Ptr = T->getAs<PointerType>())
7224         T = Ptr->getPointeeType();
7225       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7226         T = Ptr->getPointeeType();
7227       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7228         T = MemPtr->getPointeeType();
7229 
7230       auto *FTy = T->castAs<FunctionType>();
7231       ReturnsRetained = FTy->getExtInfo().getProducesResult();
7232 
7233     // ActOnStmtExpr arranges things so that StmtExprs of retainable
7234     // type always produce a +1 object.
7235     } else if (isa<StmtExpr>(E)) {
7236       ReturnsRetained = true;
7237 
7238     // We hit this case with the lambda conversion-to-block optimization;
7239     // we don't want any extra casts here.
7240     } else if (isa<CastExpr>(E) &&
7241                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7242       return E;
7243 
7244     // For message sends and property references, we try to find an
7245     // actual method.  FIXME: we should infer retention by selector in
7246     // cases where we don't have an actual method.
7247     } else {
7248       ObjCMethodDecl *D = nullptr;
7249       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7250         D = Send->getMethodDecl();
7251       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7252         D = BoxedExpr->getBoxingMethod();
7253       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7254         // Don't do reclaims if we're using the zero-element array
7255         // constant.
7256         if (ArrayLit->getNumElements() == 0 &&
7257             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7258           return E;
7259 
7260         D = ArrayLit->getArrayWithObjectsMethod();
7261       } else if (ObjCDictionaryLiteral *DictLit
7262                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7263         // Don't do reclaims if we're using the zero-element dictionary
7264         // constant.
7265         if (DictLit->getNumElements() == 0 &&
7266             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7267           return E;
7268 
7269         D = DictLit->getDictWithObjectsMethod();
7270       }
7271 
7272       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7273 
7274       // Don't do reclaims on performSelector calls; despite their
7275       // return type, the invoked method doesn't necessarily actually
7276       // return an object.
7277       if (!ReturnsRetained &&
7278           D && D->getMethodFamily() == OMF_performSelector)
7279         return E;
7280     }
7281 
7282     // Don't reclaim an object of Class type.
7283     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7284       return E;
7285 
7286     Cleanup.setExprNeedsCleanups(true);
7287 
7288     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7289                                    : CK_ARCReclaimReturnedObject);
7290     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7291                                     VK_PRValue, FPOptionsOverride());
7292   }
7293 
7294   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7295     Cleanup.setExprNeedsCleanups(true);
7296 
7297   if (!getLangOpts().CPlusPlus)
7298     return E;
7299 
7300   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7301   // a fast path for the common case that the type is directly a RecordType.
7302   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7303   const RecordType *RT = nullptr;
7304   while (!RT) {
7305     switch (T->getTypeClass()) {
7306     case Type::Record:
7307       RT = cast<RecordType>(T);
7308       break;
7309     case Type::ConstantArray:
7310     case Type::IncompleteArray:
7311     case Type::VariableArray:
7312     case Type::DependentSizedArray:
7313       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7314       break;
7315     default:
7316       return E;
7317     }
7318   }
7319 
7320   // That should be enough to guarantee that this type is complete, if we're
7321   // not processing a decltype expression.
7322   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7323   if (RD->isInvalidDecl() || RD->isDependentContext())
7324     return E;
7325 
7326   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7327                     ExpressionEvaluationContextRecord::EK_Decltype;
7328   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7329 
7330   if (Destructor) {
7331     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7332     CheckDestructorAccess(E->getExprLoc(), Destructor,
7333                           PDiag(diag::err_access_dtor_temp)
7334                             << E->getType());
7335     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7336       return ExprError();
7337 
7338     // If destructor is trivial, we can avoid the extra copy.
7339     if (Destructor->isTrivial())
7340       return E;
7341 
7342     // We need a cleanup, but we don't need to remember the temporary.
7343     Cleanup.setExprNeedsCleanups(true);
7344   }
7345 
7346   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7347   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7348 
7349   if (IsDecltype)
7350     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7351 
7352   return Bind;
7353 }
7354 
7355 ExprResult
7356 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7357   if (SubExpr.isInvalid())
7358     return ExprError();
7359 
7360   return MaybeCreateExprWithCleanups(SubExpr.get());
7361 }
7362 
7363 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7364   assert(SubExpr && "subexpression can't be null!");
7365 
7366   CleanupVarDeclMarking();
7367 
7368   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7369   assert(ExprCleanupObjects.size() >= FirstCleanup);
7370   assert(Cleanup.exprNeedsCleanups() ||
7371          ExprCleanupObjects.size() == FirstCleanup);
7372   if (!Cleanup.exprNeedsCleanups())
7373     return SubExpr;
7374 
7375   auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7376                                  ExprCleanupObjects.size() - FirstCleanup);
7377 
7378   auto *E = ExprWithCleanups::Create(
7379       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7380   DiscardCleanupsInEvaluationContext();
7381 
7382   return E;
7383 }
7384 
7385 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7386   assert(SubStmt && "sub-statement can't be null!");
7387 
7388   CleanupVarDeclMarking();
7389 
7390   if (!Cleanup.exprNeedsCleanups())
7391     return SubStmt;
7392 
7393   // FIXME: In order to attach the temporaries, wrap the statement into
7394   // a StmtExpr; currently this is only used for asm statements.
7395   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7396   // a new AsmStmtWithTemporaries.
7397   CompoundStmt *CompStmt =
7398       CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7399                            SourceLocation(), SourceLocation());
7400   Expr *E = new (Context)
7401       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7402                /*FIXME TemplateDepth=*/0);
7403   return MaybeCreateExprWithCleanups(E);
7404 }
7405 
7406 /// Process the expression contained within a decltype. For such expressions,
7407 /// certain semantic checks on temporaries are delayed until this point, and
7408 /// are omitted for the 'topmost' call in the decltype expression. If the
7409 /// topmost call bound a temporary, strip that temporary off the expression.
7410 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7411   assert(ExprEvalContexts.back().ExprContext ==
7412              ExpressionEvaluationContextRecord::EK_Decltype &&
7413          "not in a decltype expression");
7414 
7415   ExprResult Result = CheckPlaceholderExpr(E);
7416   if (Result.isInvalid())
7417     return ExprError();
7418   E = Result.get();
7419 
7420   // C++11 [expr.call]p11:
7421   //   If a function call is a prvalue of object type,
7422   // -- if the function call is either
7423   //   -- the operand of a decltype-specifier, or
7424   //   -- the right operand of a comma operator that is the operand of a
7425   //      decltype-specifier,
7426   //   a temporary object is not introduced for the prvalue.
7427 
7428   // Recursively rebuild ParenExprs and comma expressions to strip out the
7429   // outermost CXXBindTemporaryExpr, if any.
7430   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7431     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7432     if (SubExpr.isInvalid())
7433       return ExprError();
7434     if (SubExpr.get() == PE->getSubExpr())
7435       return E;
7436     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7437   }
7438   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7439     if (BO->getOpcode() == BO_Comma) {
7440       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7441       if (RHS.isInvalid())
7442         return ExprError();
7443       if (RHS.get() == BO->getRHS())
7444         return E;
7445       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7446                                     BO->getType(), BO->getValueKind(),
7447                                     BO->getObjectKind(), BO->getOperatorLoc(),
7448                                     BO->getFPFeatures());
7449     }
7450   }
7451 
7452   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7453   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7454                               : nullptr;
7455   if (TopCall)
7456     E = TopCall;
7457   else
7458     TopBind = nullptr;
7459 
7460   // Disable the special decltype handling now.
7461   ExprEvalContexts.back().ExprContext =
7462       ExpressionEvaluationContextRecord::EK_Other;
7463 
7464   Result = CheckUnevaluatedOperand(E);
7465   if (Result.isInvalid())
7466     return ExprError();
7467   E = Result.get();
7468 
7469   // In MS mode, don't perform any extra checking of call return types within a
7470   // decltype expression.
7471   if (getLangOpts().MSVCCompat)
7472     return E;
7473 
7474   // Perform the semantic checks we delayed until this point.
7475   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7476        I != N; ++I) {
7477     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7478     if (Call == TopCall)
7479       continue;
7480 
7481     if (CheckCallReturnType(Call->getCallReturnType(Context),
7482                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7483       return ExprError();
7484   }
7485 
7486   // Now all relevant types are complete, check the destructors are accessible
7487   // and non-deleted, and annotate them on the temporaries.
7488   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7489        I != N; ++I) {
7490     CXXBindTemporaryExpr *Bind =
7491       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7492     if (Bind == TopBind)
7493       continue;
7494 
7495     CXXTemporary *Temp = Bind->getTemporary();
7496 
7497     CXXRecordDecl *RD =
7498       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7499     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7500     Temp->setDestructor(Destructor);
7501 
7502     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7503     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7504                           PDiag(diag::err_access_dtor_temp)
7505                             << Bind->getType());
7506     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7507       return ExprError();
7508 
7509     // We need a cleanup, but we don't need to remember the temporary.
7510     Cleanup.setExprNeedsCleanups(true);
7511   }
7512 
7513   // Possibly strip off the top CXXBindTemporaryExpr.
7514   return E;
7515 }
7516 
7517 /// Note a set of 'operator->' functions that were used for a member access.
7518 static void noteOperatorArrows(Sema &S,
7519                                ArrayRef<FunctionDecl *> OperatorArrows) {
7520   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7521   // FIXME: Make this configurable?
7522   unsigned Limit = 9;
7523   if (OperatorArrows.size() > Limit) {
7524     // Produce Limit-1 normal notes and one 'skipping' note.
7525     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7526     SkipCount = OperatorArrows.size() - (Limit - 1);
7527   }
7528 
7529   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7530     if (I == SkipStart) {
7531       S.Diag(OperatorArrows[I]->getLocation(),
7532              diag::note_operator_arrows_suppressed)
7533           << SkipCount;
7534       I += SkipCount;
7535     } else {
7536       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7537           << OperatorArrows[I]->getCallResultType();
7538       ++I;
7539     }
7540   }
7541 }
7542 
7543 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7544                                               SourceLocation OpLoc,
7545                                               tok::TokenKind OpKind,
7546                                               ParsedType &ObjectType,
7547                                               bool &MayBePseudoDestructor) {
7548   // Since this might be a postfix expression, get rid of ParenListExprs.
7549   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7550   if (Result.isInvalid()) return ExprError();
7551   Base = Result.get();
7552 
7553   Result = CheckPlaceholderExpr(Base);
7554   if (Result.isInvalid()) return ExprError();
7555   Base = Result.get();
7556 
7557   QualType BaseType = Base->getType();
7558   MayBePseudoDestructor = false;
7559   if (BaseType->isDependentType()) {
7560     // If we have a pointer to a dependent type and are using the -> operator,
7561     // the object type is the type that the pointer points to. We might still
7562     // have enough information about that type to do something useful.
7563     if (OpKind == tok::arrow)
7564       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7565         BaseType = Ptr->getPointeeType();
7566 
7567     ObjectType = ParsedType::make(BaseType);
7568     MayBePseudoDestructor = true;
7569     return Base;
7570   }
7571 
7572   // C++ [over.match.oper]p8:
7573   //   [...] When operator->returns, the operator-> is applied  to the value
7574   //   returned, with the original second operand.
7575   if (OpKind == tok::arrow) {
7576     QualType StartingType = BaseType;
7577     bool NoArrowOperatorFound = false;
7578     bool FirstIteration = true;
7579     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7580     // The set of types we've considered so far.
7581     llvm::SmallPtrSet<CanQualType,8> CTypes;
7582     SmallVector<FunctionDecl*, 8> OperatorArrows;
7583     CTypes.insert(Context.getCanonicalType(BaseType));
7584 
7585     while (BaseType->isRecordType()) {
7586       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7587         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7588           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7589         noteOperatorArrows(*this, OperatorArrows);
7590         Diag(OpLoc, diag::note_operator_arrow_depth)
7591           << getLangOpts().ArrowDepth;
7592         return ExprError();
7593       }
7594 
7595       Result = BuildOverloadedArrowExpr(
7596           S, Base, OpLoc,
7597           // When in a template specialization and on the first loop iteration,
7598           // potentially give the default diagnostic (with the fixit in a
7599           // separate note) instead of having the error reported back to here
7600           // and giving a diagnostic with a fixit attached to the error itself.
7601           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7602               ? nullptr
7603               : &NoArrowOperatorFound);
7604       if (Result.isInvalid()) {
7605         if (NoArrowOperatorFound) {
7606           if (FirstIteration) {
7607             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7608               << BaseType << 1 << Base->getSourceRange()
7609               << FixItHint::CreateReplacement(OpLoc, ".");
7610             OpKind = tok::period;
7611             break;
7612           }
7613           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7614             << BaseType << Base->getSourceRange();
7615           CallExpr *CE = dyn_cast<CallExpr>(Base);
7616           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7617             Diag(CD->getBeginLoc(),
7618                  diag::note_member_reference_arrow_from_operator_arrow);
7619           }
7620         }
7621         return ExprError();
7622       }
7623       Base = Result.get();
7624       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7625         OperatorArrows.push_back(OpCall->getDirectCallee());
7626       BaseType = Base->getType();
7627       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7628       if (!CTypes.insert(CBaseType).second) {
7629         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7630         noteOperatorArrows(*this, OperatorArrows);
7631         return ExprError();
7632       }
7633       FirstIteration = false;
7634     }
7635 
7636     if (OpKind == tok::arrow) {
7637       if (BaseType->isPointerType())
7638         BaseType = BaseType->getPointeeType();
7639       else if (auto *AT = Context.getAsArrayType(BaseType))
7640         BaseType = AT->getElementType();
7641     }
7642   }
7643 
7644   // Objective-C properties allow "." access on Objective-C pointer types,
7645   // so adjust the base type to the object type itself.
7646   if (BaseType->isObjCObjectPointerType())
7647     BaseType = BaseType->getPointeeType();
7648 
7649   // C++ [basic.lookup.classref]p2:
7650   //   [...] If the type of the object expression is of pointer to scalar
7651   //   type, the unqualified-id is looked up in the context of the complete
7652   //   postfix-expression.
7653   //
7654   // This also indicates that we could be parsing a pseudo-destructor-name.
7655   // Note that Objective-C class and object types can be pseudo-destructor
7656   // expressions or normal member (ivar or property) access expressions, and
7657   // it's legal for the type to be incomplete if this is a pseudo-destructor
7658   // call.  We'll do more incomplete-type checks later in the lookup process,
7659   // so just skip this check for ObjC types.
7660   if (!BaseType->isRecordType()) {
7661     ObjectType = ParsedType::make(BaseType);
7662     MayBePseudoDestructor = true;
7663     return Base;
7664   }
7665 
7666   // The object type must be complete (or dependent), or
7667   // C++11 [expr.prim.general]p3:
7668   //   Unlike the object expression in other contexts, *this is not required to
7669   //   be of complete type for purposes of class member access (5.2.5) outside
7670   //   the member function body.
7671   if (!BaseType->isDependentType() &&
7672       !isThisOutsideMemberFunctionBody(BaseType) &&
7673       RequireCompleteType(OpLoc, BaseType,
7674                           diag::err_incomplete_member_access)) {
7675     return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7676   }
7677 
7678   // C++ [basic.lookup.classref]p2:
7679   //   If the id-expression in a class member access (5.2.5) is an
7680   //   unqualified-id, and the type of the object expression is of a class
7681   //   type C (or of pointer to a class type C), the unqualified-id is looked
7682   //   up in the scope of class C. [...]
7683   ObjectType = ParsedType::make(BaseType);
7684   return Base;
7685 }
7686 
7687 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7688                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7689   if (Base->hasPlaceholderType()) {
7690     ExprResult result = S.CheckPlaceholderExpr(Base);
7691     if (result.isInvalid()) return true;
7692     Base = result.get();
7693   }
7694   ObjectType = Base->getType();
7695 
7696   // C++ [expr.pseudo]p2:
7697   //   The left-hand side of the dot operator shall be of scalar type. The
7698   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7699   //   This scalar type is the object type.
7700   // Note that this is rather different from the normal handling for the
7701   // arrow operator.
7702   if (OpKind == tok::arrow) {
7703     // The operator requires a prvalue, so perform lvalue conversions.
7704     // Only do this if we might plausibly end with a pointer, as otherwise
7705     // this was likely to be intended to be a '.'.
7706     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7707         ObjectType->isFunctionType()) {
7708       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7709       if (BaseResult.isInvalid())
7710         return true;
7711       Base = BaseResult.get();
7712       ObjectType = Base->getType();
7713     }
7714 
7715     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7716       ObjectType = Ptr->getPointeeType();
7717     } else if (!Base->isTypeDependent()) {
7718       // The user wrote "p->" when they probably meant "p."; fix it.
7719       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7720         << ObjectType << true
7721         << FixItHint::CreateReplacement(OpLoc, ".");
7722       if (S.isSFINAEContext())
7723         return true;
7724 
7725       OpKind = tok::period;
7726     }
7727   }
7728 
7729   return false;
7730 }
7731 
7732 /// Check if it's ok to try and recover dot pseudo destructor calls on
7733 /// pointer objects.
7734 static bool
7735 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7736                                                    QualType DestructedType) {
7737   // If this is a record type, check if its destructor is callable.
7738   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7739     if (RD->hasDefinition())
7740       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7741         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7742     return false;
7743   }
7744 
7745   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7746   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7747          DestructedType->isVectorType();
7748 }
7749 
7750 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7751                                            SourceLocation OpLoc,
7752                                            tok::TokenKind OpKind,
7753                                            const CXXScopeSpec &SS,
7754                                            TypeSourceInfo *ScopeTypeInfo,
7755                                            SourceLocation CCLoc,
7756                                            SourceLocation TildeLoc,
7757                                          PseudoDestructorTypeStorage Destructed) {
7758   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7759 
7760   QualType ObjectType;
7761   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7762     return ExprError();
7763 
7764   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7765       !ObjectType->isVectorType()) {
7766     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7767       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7768     else {
7769       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7770         << ObjectType << Base->getSourceRange();
7771       return ExprError();
7772     }
7773   }
7774 
7775   // C++ [expr.pseudo]p2:
7776   //   [...] The cv-unqualified versions of the object type and of the type
7777   //   designated by the pseudo-destructor-name shall be the same type.
7778   if (DestructedTypeInfo) {
7779     QualType DestructedType = DestructedTypeInfo->getType();
7780     SourceLocation DestructedTypeStart =
7781         DestructedTypeInfo->getTypeLoc().getBeginLoc();
7782     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7783       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7784         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7785         //   Foo *foo;
7786         //   foo.~Foo();
7787         if (OpKind == tok::period && ObjectType->isPointerType() &&
7788             Context.hasSameUnqualifiedType(DestructedType,
7789                                            ObjectType->getPointeeType())) {
7790           auto Diagnostic =
7791               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7792               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7793 
7794           // Issue a fixit only when the destructor is valid.
7795           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7796                   *this, DestructedType))
7797             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7798 
7799           // Recover by setting the object type to the destructed type and the
7800           // operator to '->'.
7801           ObjectType = DestructedType;
7802           OpKind = tok::arrow;
7803         } else {
7804           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7805               << ObjectType << DestructedType << Base->getSourceRange()
7806               << DestructedTypeInfo->getTypeLoc().getSourceRange();
7807 
7808           // Recover by setting the destructed type to the object type.
7809           DestructedType = ObjectType;
7810           DestructedTypeInfo =
7811               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7812           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7813         }
7814       } else if (DestructedType.getObjCLifetime() !=
7815                                                 ObjectType.getObjCLifetime()) {
7816 
7817         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7818           // Okay: just pretend that the user provided the correctly-qualified
7819           // type.
7820         } else {
7821           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7822               << ObjectType << DestructedType << Base->getSourceRange()
7823               << DestructedTypeInfo->getTypeLoc().getSourceRange();
7824         }
7825 
7826         // Recover by setting the destructed type to the object type.
7827         DestructedType = ObjectType;
7828         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7829                                                            DestructedTypeStart);
7830         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7831       }
7832     }
7833   }
7834 
7835   // C++ [expr.pseudo]p2:
7836   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7837   //   form
7838   //
7839   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7840   //
7841   //   shall designate the same scalar type.
7842   if (ScopeTypeInfo) {
7843     QualType ScopeType = ScopeTypeInfo->getType();
7844     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7845         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7846 
7847       Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
7848            diag::err_pseudo_dtor_type_mismatch)
7849           << ObjectType << ScopeType << Base->getSourceRange()
7850           << ScopeTypeInfo->getTypeLoc().getSourceRange();
7851 
7852       ScopeType = QualType();
7853       ScopeTypeInfo = nullptr;
7854     }
7855   }
7856 
7857   Expr *Result
7858     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7859                                             OpKind == tok::arrow, OpLoc,
7860                                             SS.getWithLocInContext(Context),
7861                                             ScopeTypeInfo,
7862                                             CCLoc,
7863                                             TildeLoc,
7864                                             Destructed);
7865 
7866   return Result;
7867 }
7868 
7869 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7870                                            SourceLocation OpLoc,
7871                                            tok::TokenKind OpKind,
7872                                            CXXScopeSpec &SS,
7873                                            UnqualifiedId &FirstTypeName,
7874                                            SourceLocation CCLoc,
7875                                            SourceLocation TildeLoc,
7876                                            UnqualifiedId &SecondTypeName) {
7877   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7878           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7879          "Invalid first type name in pseudo-destructor");
7880   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7881           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7882          "Invalid second type name in pseudo-destructor");
7883 
7884   QualType ObjectType;
7885   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7886     return ExprError();
7887 
7888   // Compute the object type that we should use for name lookup purposes. Only
7889   // record types and dependent types matter.
7890   ParsedType ObjectTypePtrForLookup;
7891   if (!SS.isSet()) {
7892     if (ObjectType->isRecordType())
7893       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7894     else if (ObjectType->isDependentType())
7895       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7896   }
7897 
7898   // Convert the name of the type being destructed (following the ~) into a
7899   // type (with source-location information).
7900   QualType DestructedType;
7901   TypeSourceInfo *DestructedTypeInfo = nullptr;
7902   PseudoDestructorTypeStorage Destructed;
7903   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7904     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7905                                SecondTypeName.StartLocation,
7906                                S, &SS, true, false, ObjectTypePtrForLookup,
7907                                /*IsCtorOrDtorName*/true);
7908     if (!T &&
7909         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7910          (!SS.isSet() && ObjectType->isDependentType()))) {
7911       // The name of the type being destroyed is a dependent name, and we
7912       // couldn't find anything useful in scope. Just store the identifier and
7913       // it's location, and we'll perform (qualified) name lookup again at
7914       // template instantiation time.
7915       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7916                                                SecondTypeName.StartLocation);
7917     } else if (!T) {
7918       Diag(SecondTypeName.StartLocation,
7919            diag::err_pseudo_dtor_destructor_non_type)
7920         << SecondTypeName.Identifier << ObjectType;
7921       if (isSFINAEContext())
7922         return ExprError();
7923 
7924       // Recover by assuming we had the right type all along.
7925       DestructedType = ObjectType;
7926     } else
7927       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7928   } else {
7929     // Resolve the template-id to a type.
7930     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7931     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7932                                        TemplateId->NumArgs);
7933     TypeResult T = ActOnTemplateIdType(S,
7934                                        SS,
7935                                        TemplateId->TemplateKWLoc,
7936                                        TemplateId->Template,
7937                                        TemplateId->Name,
7938                                        TemplateId->TemplateNameLoc,
7939                                        TemplateId->LAngleLoc,
7940                                        TemplateArgsPtr,
7941                                        TemplateId->RAngleLoc,
7942                                        /*IsCtorOrDtorName*/true);
7943     if (T.isInvalid() || !T.get()) {
7944       // Recover by assuming we had the right type all along.
7945       DestructedType = ObjectType;
7946     } else
7947       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7948   }
7949 
7950   // If we've performed some kind of recovery, (re-)build the type source
7951   // information.
7952   if (!DestructedType.isNull()) {
7953     if (!DestructedTypeInfo)
7954       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7955                                                   SecondTypeName.StartLocation);
7956     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7957   }
7958 
7959   // Convert the name of the scope type (the type prior to '::') into a type.
7960   TypeSourceInfo *ScopeTypeInfo = nullptr;
7961   QualType ScopeType;
7962   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7963       FirstTypeName.Identifier) {
7964     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7965       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7966                                  FirstTypeName.StartLocation,
7967                                  S, &SS, true, false, ObjectTypePtrForLookup,
7968                                  /*IsCtorOrDtorName*/true);
7969       if (!T) {
7970         Diag(FirstTypeName.StartLocation,
7971              diag::err_pseudo_dtor_destructor_non_type)
7972           << FirstTypeName.Identifier << ObjectType;
7973 
7974         if (isSFINAEContext())
7975           return ExprError();
7976 
7977         // Just drop this type. It's unnecessary anyway.
7978         ScopeType = QualType();
7979       } else
7980         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7981     } else {
7982       // Resolve the template-id to a type.
7983       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7984       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7985                                          TemplateId->NumArgs);
7986       TypeResult T = ActOnTemplateIdType(S,
7987                                          SS,
7988                                          TemplateId->TemplateKWLoc,
7989                                          TemplateId->Template,
7990                                          TemplateId->Name,
7991                                          TemplateId->TemplateNameLoc,
7992                                          TemplateId->LAngleLoc,
7993                                          TemplateArgsPtr,
7994                                          TemplateId->RAngleLoc,
7995                                          /*IsCtorOrDtorName*/true);
7996       if (T.isInvalid() || !T.get()) {
7997         // Recover by dropping this type.
7998         ScopeType = QualType();
7999       } else
8000         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
8001     }
8002   }
8003 
8004   if (!ScopeType.isNull() && !ScopeTypeInfo)
8005     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
8006                                                   FirstTypeName.StartLocation);
8007 
8008 
8009   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8010                                    ScopeTypeInfo, CCLoc, TildeLoc,
8011                                    Destructed);
8012 }
8013 
8014 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8015                                            SourceLocation OpLoc,
8016                                            tok::TokenKind OpKind,
8017                                            SourceLocation TildeLoc,
8018                                            const DeclSpec& DS) {
8019   QualType ObjectType;
8020   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8021     return ExprError();
8022 
8023   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
8024     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8025     return true;
8026   }
8027 
8028   QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8029 
8030   TypeLocBuilder TLB;
8031   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8032   DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8033   DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8034   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8035   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8036 
8037   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8038                                    nullptr, SourceLocation(), TildeLoc,
8039                                    Destructed);
8040 }
8041 
8042 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
8043                                         CXXConversionDecl *Method,
8044                                         bool HadMultipleCandidates) {
8045   // Convert the expression to match the conversion function's implicit object
8046   // parameter.
8047   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
8048                                           FoundDecl, Method);
8049   if (Exp.isInvalid())
8050     return true;
8051 
8052   if (Method->getParent()->isLambda() &&
8053       Method->getConversionType()->isBlockPointerType()) {
8054     // This is a lambda conversion to block pointer; check if the argument
8055     // was a LambdaExpr.
8056     Expr *SubE = E;
8057     CastExpr *CE = dyn_cast<CastExpr>(SubE);
8058     if (CE && CE->getCastKind() == CK_NoOp)
8059       SubE = CE->getSubExpr();
8060     SubE = SubE->IgnoreParens();
8061     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
8062       SubE = BE->getSubExpr();
8063     if (isa<LambdaExpr>(SubE)) {
8064       // For the conversion to block pointer on a lambda expression, we
8065       // construct a special BlockLiteral instead; this doesn't really make
8066       // a difference in ARC, but outside of ARC the resulting block literal
8067       // follows the normal lifetime rules for block literals instead of being
8068       // autoreleased.
8069       PushExpressionEvaluationContext(
8070           ExpressionEvaluationContext::PotentiallyEvaluated);
8071       ExprResult BlockExp = BuildBlockForLambdaConversion(
8072           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
8073       PopExpressionEvaluationContext();
8074 
8075       // FIXME: This note should be produced by a CodeSynthesisContext.
8076       if (BlockExp.isInvalid())
8077         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
8078       return BlockExp;
8079     }
8080   }
8081 
8082   MemberExpr *ME =
8083       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
8084                       NestedNameSpecifierLoc(), SourceLocation(), Method,
8085                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
8086                       HadMultipleCandidates, DeclarationNameInfo(),
8087                       Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
8088 
8089   QualType ResultType = Method->getReturnType();
8090   ExprValueKind VK = Expr::getValueKindForType(ResultType);
8091   ResultType = ResultType.getNonLValueExprType(Context);
8092 
8093   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
8094       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
8095       CurFPFeatureOverrides());
8096 
8097   if (CheckFunctionCall(Method, CE,
8098                         Method->getType()->castAs<FunctionProtoType>()))
8099     return ExprError();
8100 
8101   return CheckForImmediateInvocation(CE, CE->getMethodDecl());
8102 }
8103 
8104 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8105                                       SourceLocation RParen) {
8106   // If the operand is an unresolved lookup expression, the expression is ill-
8107   // formed per [over.over]p1, because overloaded function names cannot be used
8108   // without arguments except in explicit contexts.
8109   ExprResult R = CheckPlaceholderExpr(Operand);
8110   if (R.isInvalid())
8111     return R;
8112 
8113   R = CheckUnevaluatedOperand(R.get());
8114   if (R.isInvalid())
8115     return ExprError();
8116 
8117   Operand = R.get();
8118 
8119   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8120       Operand->HasSideEffects(Context, false)) {
8121     // The expression operand for noexcept is in an unevaluated expression
8122     // context, so side effects could result in unintended consequences.
8123     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8124   }
8125 
8126   CanThrowResult CanThrow = canThrow(Operand);
8127   return new (Context)
8128       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8129 }
8130 
8131 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8132                                    Expr *Operand, SourceLocation RParen) {
8133   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8134 }
8135 
8136 static void MaybeDecrementCount(
8137     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8138   DeclRefExpr *LHS = nullptr;
8139   bool IsCompoundAssign = false;
8140   bool isIncrementDecrementUnaryOp = false;
8141   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8142     if (BO->getLHS()->getType()->isDependentType() ||
8143         BO->getRHS()->getType()->isDependentType()) {
8144       if (BO->getOpcode() != BO_Assign)
8145         return;
8146     } else if (!BO->isAssignmentOp())
8147       return;
8148     else
8149       IsCompoundAssign = BO->isCompoundAssignmentOp();
8150     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8151   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8152     if (COCE->getOperator() != OO_Equal)
8153       return;
8154     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8155   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8156     if (!UO->isIncrementDecrementOp())
8157       return;
8158     isIncrementDecrementUnaryOp = true;
8159     LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8160   }
8161   if (!LHS)
8162     return;
8163   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8164   if (!VD)
8165     return;
8166   // Don't decrement RefsMinusAssignments if volatile variable with compound
8167   // assignment (+=, ...) or increment/decrement unary operator to avoid
8168   // potential unused-but-set-variable warning.
8169   if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8170       VD->getType().isVolatileQualified())
8171     return;
8172   auto iter = RefsMinusAssignments.find(VD);
8173   if (iter == RefsMinusAssignments.end())
8174     return;
8175   iter->getSecond()--;
8176 }
8177 
8178 /// Perform the conversions required for an expression used in a
8179 /// context that ignores the result.
8180 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8181   MaybeDecrementCount(E, RefsMinusAssignments);
8182 
8183   if (E->hasPlaceholderType()) {
8184     ExprResult result = CheckPlaceholderExpr(E);
8185     if (result.isInvalid()) return E;
8186     E = result.get();
8187   }
8188 
8189   // C99 6.3.2.1:
8190   //   [Except in specific positions,] an lvalue that does not have
8191   //   array type is converted to the value stored in the
8192   //   designated object (and is no longer an lvalue).
8193   if (E->isPRValue()) {
8194     // In C, function designators (i.e. expressions of function type)
8195     // are r-values, but we still want to do function-to-pointer decay
8196     // on them.  This is both technically correct and convenient for
8197     // some clients.
8198     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8199       return DefaultFunctionArrayConversion(E);
8200 
8201     return E;
8202   }
8203 
8204   if (getLangOpts().CPlusPlus) {
8205     // The C++11 standard defines the notion of a discarded-value expression;
8206     // normally, we don't need to do anything to handle it, but if it is a
8207     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8208     // conversion.
8209     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8210       ExprResult Res = DefaultLvalueConversion(E);
8211       if (Res.isInvalid())
8212         return E;
8213       E = Res.get();
8214     } else {
8215       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8216       // it occurs as a discarded-value expression.
8217       CheckUnusedVolatileAssignment(E);
8218     }
8219 
8220     // C++1z:
8221     //   If the expression is a prvalue after this optional conversion, the
8222     //   temporary materialization conversion is applied.
8223     //
8224     // We skip this step: IR generation is able to synthesize the storage for
8225     // itself in the aggregate case, and adding the extra node to the AST is
8226     // just clutter.
8227     // FIXME: We don't emit lifetime markers for the temporaries due to this.
8228     // FIXME: Do any other AST consumers care about this?
8229     return E;
8230   }
8231 
8232   // GCC seems to also exclude expressions of incomplete enum type.
8233   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8234     if (!T->getDecl()->isComplete()) {
8235       // FIXME: stupid workaround for a codegen bug!
8236       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8237       return E;
8238     }
8239   }
8240 
8241   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8242   if (Res.isInvalid())
8243     return E;
8244   E = Res.get();
8245 
8246   if (!E->getType()->isVoidType())
8247     RequireCompleteType(E->getExprLoc(), E->getType(),
8248                         diag::err_incomplete_type);
8249   return E;
8250 }
8251 
8252 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8253   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8254   // it occurs as an unevaluated operand.
8255   CheckUnusedVolatileAssignment(E);
8256 
8257   return E;
8258 }
8259 
8260 // If we can unambiguously determine whether Var can never be used
8261 // in a constant expression, return true.
8262 //  - if the variable and its initializer are non-dependent, then
8263 //    we can unambiguously check if the variable is a constant expression.
8264 //  - if the initializer is not value dependent - we can determine whether
8265 //    it can be used to initialize a constant expression.  If Init can not
8266 //    be used to initialize a constant expression we conclude that Var can
8267 //    never be a constant expression.
8268 //  - FXIME: if the initializer is dependent, we can still do some analysis and
8269 //    identify certain cases unambiguously as non-const by using a Visitor:
8270 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
8271 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8272 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8273     ASTContext &Context) {
8274   if (isa<ParmVarDecl>(Var)) return true;
8275   const VarDecl *DefVD = nullptr;
8276 
8277   // If there is no initializer - this can not be a constant expression.
8278   const Expr *Init = Var->getAnyInitializer(DefVD);
8279   if (!Init)
8280     return true;
8281   assert(DefVD);
8282   if (DefVD->isWeak())
8283     return false;
8284 
8285   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8286     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8287     // of value-dependent expressions, and use it here to determine whether the
8288     // initializer is a potential constant expression.
8289     return false;
8290   }
8291 
8292   return !Var->isUsableInConstantExpressions(Context);
8293 }
8294 
8295 /// Check if the current lambda has any potential captures
8296 /// that must be captured by any of its enclosing lambdas that are ready to
8297 /// capture. If there is a lambda that can capture a nested
8298 /// potential-capture, go ahead and do so.  Also, check to see if any
8299 /// variables are uncaptureable or do not involve an odr-use so do not
8300 /// need to be captured.
8301 
8302 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8303     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8304 
8305   assert(!S.isUnevaluatedContext());
8306   assert(S.CurContext->isDependentContext());
8307 #ifndef NDEBUG
8308   DeclContext *DC = S.CurContext;
8309   while (DC && isa<CapturedDecl>(DC))
8310     DC = DC->getParent();
8311   assert(
8312       CurrentLSI->CallOperator == DC &&
8313       "The current call operator must be synchronized with Sema's CurContext");
8314 #endif // NDEBUG
8315 
8316   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8317 
8318   // All the potentially captureable variables in the current nested
8319   // lambda (within a generic outer lambda), must be captured by an
8320   // outer lambda that is enclosed within a non-dependent context.
8321   CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8322     // If the variable is clearly identified as non-odr-used and the full
8323     // expression is not instantiation dependent, only then do we not
8324     // need to check enclosing lambda's for speculative captures.
8325     // For e.g.:
8326     // Even though 'x' is not odr-used, it should be captured.
8327     // int test() {
8328     //   const int x = 10;
8329     //   auto L = [=](auto a) {
8330     //     (void) +x + a;
8331     //   };
8332     // }
8333     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8334         !IsFullExprInstantiationDependent)
8335       return;
8336 
8337     VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8338     if (!UnderlyingVar)
8339       return;
8340 
8341     // If we have a capture-capable lambda for the variable, go ahead and
8342     // capture the variable in that lambda (and all its enclosing lambdas).
8343     if (const std::optional<unsigned> Index =
8344             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8345                 S.FunctionScopes, Var, S))
8346       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8347     const bool IsVarNeverAConstantExpression =
8348         VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8349     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8350       // This full expression is not instantiation dependent or the variable
8351       // can not be used in a constant expression - which means
8352       // this variable must be odr-used here, so diagnose a
8353       // capture violation early, if the variable is un-captureable.
8354       // This is purely for diagnosing errors early.  Otherwise, this
8355       // error would get diagnosed when the lambda becomes capture ready.
8356       QualType CaptureType, DeclRefType;
8357       SourceLocation ExprLoc = VarExpr->getExprLoc();
8358       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8359                           /*EllipsisLoc*/ SourceLocation(),
8360                           /*BuildAndDiagnose*/false, CaptureType,
8361                           DeclRefType, nullptr)) {
8362         // We will never be able to capture this variable, and we need
8363         // to be able to in any and all instantiations, so diagnose it.
8364         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8365                           /*EllipsisLoc*/ SourceLocation(),
8366                           /*BuildAndDiagnose*/true, CaptureType,
8367                           DeclRefType, nullptr);
8368       }
8369     }
8370   });
8371 
8372   // Check if 'this' needs to be captured.
8373   if (CurrentLSI->hasPotentialThisCapture()) {
8374     // If we have a capture-capable lambda for 'this', go ahead and capture
8375     // 'this' in that lambda (and all its enclosing lambdas).
8376     if (const std::optional<unsigned> Index =
8377             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8378                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8379       const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8380       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8381                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8382                             &FunctionScopeIndexOfCapturableLambda);
8383     }
8384   }
8385 
8386   // Reset all the potential captures at the end of each full-expression.
8387   CurrentLSI->clearPotentialCaptures();
8388 }
8389 
8390 static ExprResult attemptRecovery(Sema &SemaRef,
8391                                   const TypoCorrectionConsumer &Consumer,
8392                                   const TypoCorrection &TC) {
8393   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8394                  Consumer.getLookupResult().getLookupKind());
8395   const CXXScopeSpec *SS = Consumer.getSS();
8396   CXXScopeSpec NewSS;
8397 
8398   // Use an approprate CXXScopeSpec for building the expr.
8399   if (auto *NNS = TC.getCorrectionSpecifier())
8400     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8401   else if (SS && !TC.WillReplaceSpecifier())
8402     NewSS = *SS;
8403 
8404   if (auto *ND = TC.getFoundDecl()) {
8405     R.setLookupName(ND->getDeclName());
8406     R.addDecl(ND);
8407     if (ND->isCXXClassMember()) {
8408       // Figure out the correct naming class to add to the LookupResult.
8409       CXXRecordDecl *Record = nullptr;
8410       if (auto *NNS = TC.getCorrectionSpecifier())
8411         Record = NNS->getAsType()->getAsCXXRecordDecl();
8412       if (!Record)
8413         Record =
8414             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8415       if (Record)
8416         R.setNamingClass(Record);
8417 
8418       // Detect and handle the case where the decl might be an implicit
8419       // member.
8420       bool MightBeImplicitMember;
8421       if (!Consumer.isAddressOfOperand())
8422         MightBeImplicitMember = true;
8423       else if (!NewSS.isEmpty())
8424         MightBeImplicitMember = false;
8425       else if (R.isOverloadedResult())
8426         MightBeImplicitMember = false;
8427       else if (R.isUnresolvableResult())
8428         MightBeImplicitMember = true;
8429       else
8430         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8431                                 isa<IndirectFieldDecl>(ND) ||
8432                                 isa<MSPropertyDecl>(ND);
8433 
8434       if (MightBeImplicitMember)
8435         return SemaRef.BuildPossibleImplicitMemberExpr(
8436             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8437             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8438     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8439       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8440                                         Ivar->getIdentifier());
8441     }
8442   }
8443 
8444   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8445                                           /*AcceptInvalidDecl*/ true);
8446 }
8447 
8448 namespace {
8449 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8450   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8451 
8452 public:
8453   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8454       : TypoExprs(TypoExprs) {}
8455   bool VisitTypoExpr(TypoExpr *TE) {
8456     TypoExprs.insert(TE);
8457     return true;
8458   }
8459 };
8460 
8461 class TransformTypos : public TreeTransform<TransformTypos> {
8462   typedef TreeTransform<TransformTypos> BaseTransform;
8463 
8464   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8465                      // process of being initialized.
8466   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8467   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8468   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8469   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8470 
8471   /// Emit diagnostics for all of the TypoExprs encountered.
8472   ///
8473   /// If the TypoExprs were successfully corrected, then the diagnostics should
8474   /// suggest the corrections. Otherwise the diagnostics will not suggest
8475   /// anything (having been passed an empty TypoCorrection).
8476   ///
8477   /// If we've failed to correct due to ambiguous corrections, we need to
8478   /// be sure to pass empty corrections and replacements. Otherwise it's
8479   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8480   /// and we don't want to report those diagnostics.
8481   void EmitAllDiagnostics(bool IsAmbiguous) {
8482     for (TypoExpr *TE : TypoExprs) {
8483       auto &State = SemaRef.getTypoExprState(TE);
8484       if (State.DiagHandler) {
8485         TypoCorrection TC = IsAmbiguous
8486             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8487         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8488 
8489         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8490         // TypoCorrection, replacing the existing decls. This ensures the right
8491         // NamedDecl is used in diagnostics e.g. in the case where overload
8492         // resolution was used to select one from several possible decls that
8493         // had been stored in the TypoCorrection.
8494         if (auto *ND = getDeclFromExpr(
8495                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8496           TC.setCorrectionDecl(ND);
8497 
8498         State.DiagHandler(TC);
8499       }
8500       SemaRef.clearDelayedTypo(TE);
8501     }
8502   }
8503 
8504   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8505   /// We allow advancement of the correction stream by removing it from the
8506   /// TransformCache which allows `TransformTypoExpr` to advance during the
8507   /// next transformation attempt.
8508   ///
8509   /// Any substitution attempts for the previous TypoExprs (which must have been
8510   /// finished) will need to be retried since it's possible that they will now
8511   /// be invalid given the latest advancement.
8512   ///
8513   /// We need to be sure that we're making progress - it's possible that the
8514   /// tree is so malformed that the transform never makes it to the
8515   /// `TransformTypoExpr`.
8516   ///
8517   /// Returns true if there are any untried correction combinations.
8518   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8519     for (auto *TE : TypoExprs) {
8520       auto &State = SemaRef.getTypoExprState(TE);
8521       TransformCache.erase(TE);
8522       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8523         return false;
8524       if (!State.Consumer->finished())
8525         return true;
8526       State.Consumer->resetCorrectionStream();
8527     }
8528     return false;
8529   }
8530 
8531   NamedDecl *getDeclFromExpr(Expr *E) {
8532     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8533       E = OverloadResolution[OE];
8534 
8535     if (!E)
8536       return nullptr;
8537     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8538       return DRE->getFoundDecl();
8539     if (auto *ME = dyn_cast<MemberExpr>(E))
8540       return ME->getFoundDecl();
8541     // FIXME: Add any other expr types that could be seen by the delayed typo
8542     // correction TreeTransform for which the corresponding TypoCorrection could
8543     // contain multiple decls.
8544     return nullptr;
8545   }
8546 
8547   ExprResult TryTransform(Expr *E) {
8548     Sema::SFINAETrap Trap(SemaRef);
8549     ExprResult Res = TransformExpr(E);
8550     if (Trap.hasErrorOccurred() || Res.isInvalid())
8551       return ExprError();
8552 
8553     return ExprFilter(Res.get());
8554   }
8555 
8556   // Since correcting typos may intoduce new TypoExprs, this function
8557   // checks for new TypoExprs and recurses if it finds any. Note that it will
8558   // only succeed if it is able to correct all typos in the given expression.
8559   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8560     if (Res.isInvalid()) {
8561       return Res;
8562     }
8563     // Check to see if any new TypoExprs were created. If so, we need to recurse
8564     // to check their validity.
8565     Expr *FixedExpr = Res.get();
8566 
8567     auto SavedTypoExprs = std::move(TypoExprs);
8568     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8569     TypoExprs.clear();
8570     AmbiguousTypoExprs.clear();
8571 
8572     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8573     if (!TypoExprs.empty()) {
8574       // Recurse to handle newly created TypoExprs. If we're not able to
8575       // handle them, discard these TypoExprs.
8576       ExprResult RecurResult =
8577           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8578       if (RecurResult.isInvalid()) {
8579         Res = ExprError();
8580         // Recursive corrections didn't work, wipe them away and don't add
8581         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8582         // since we don't want to clear them twice. Note: it's possible the
8583         // TypoExprs were created recursively and thus won't be in our
8584         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8585         auto &SemaTypoExprs = SemaRef.TypoExprs;
8586         for (auto *TE : TypoExprs) {
8587           TransformCache.erase(TE);
8588           SemaRef.clearDelayedTypo(TE);
8589 
8590           auto SI = find(SemaTypoExprs, TE);
8591           if (SI != SemaTypoExprs.end()) {
8592             SemaTypoExprs.erase(SI);
8593           }
8594         }
8595       } else {
8596         // TypoExpr is valid: add newly created TypoExprs since we were
8597         // able to correct them.
8598         Res = RecurResult;
8599         SavedTypoExprs.set_union(TypoExprs);
8600       }
8601     }
8602 
8603     TypoExprs = std::move(SavedTypoExprs);
8604     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8605 
8606     return Res;
8607   }
8608 
8609   // Try to transform the given expression, looping through the correction
8610   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8611   //
8612   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8613   // true and this method immediately will return an `ExprError`.
8614   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8615     ExprResult Res;
8616     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8617     SemaRef.TypoExprs.clear();
8618 
8619     while (true) {
8620       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8621 
8622       // Recursion encountered an ambiguous correction. This means that our
8623       // correction itself is ambiguous, so stop now.
8624       if (IsAmbiguous)
8625         break;
8626 
8627       // If the transform is still valid after checking for any new typos,
8628       // it's good to go.
8629       if (!Res.isInvalid())
8630         break;
8631 
8632       // The transform was invalid, see if we have any TypoExprs with untried
8633       // correction candidates.
8634       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8635         break;
8636     }
8637 
8638     // If we found a valid result, double check to make sure it's not ambiguous.
8639     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8640       auto SavedTransformCache =
8641           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8642 
8643       // Ensure none of the TypoExprs have multiple typo correction candidates
8644       // with the same edit length that pass all the checks and filters.
8645       while (!AmbiguousTypoExprs.empty()) {
8646         auto TE  = AmbiguousTypoExprs.back();
8647 
8648         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8649         // and invalidating our TypoExprState, so always fetch it instead of storing.
8650         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8651 
8652         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8653         TypoCorrection Next;
8654         do {
8655           // Fetch the next correction by erasing the typo from the cache and calling
8656           // `TryTransform` which will iterate through corrections in
8657           // `TransformTypoExpr`.
8658           TransformCache.erase(TE);
8659           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8660 
8661           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8662             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8663             SavedTransformCache.erase(TE);
8664             Res = ExprError();
8665             IsAmbiguous = true;
8666             break;
8667           }
8668         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8669                  Next.getEditDistance(false) == TC.getEditDistance(false));
8670 
8671         if (IsAmbiguous)
8672           break;
8673 
8674         AmbiguousTypoExprs.remove(TE);
8675         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8676         TransformCache[TE] = SavedTransformCache[TE];
8677       }
8678       TransformCache = std::move(SavedTransformCache);
8679     }
8680 
8681     // Wipe away any newly created TypoExprs that we don't know about. Since we
8682     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8683     // possible if a `TypoExpr` is created during a transformation but then
8684     // fails before we can discover it.
8685     auto &SemaTypoExprs = SemaRef.TypoExprs;
8686     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8687       auto TE = *Iterator;
8688       auto FI = find(TypoExprs, TE);
8689       if (FI != TypoExprs.end()) {
8690         Iterator++;
8691         continue;
8692       }
8693       SemaRef.clearDelayedTypo(TE);
8694       Iterator = SemaTypoExprs.erase(Iterator);
8695     }
8696     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8697 
8698     return Res;
8699   }
8700 
8701 public:
8702   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8703       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8704 
8705   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8706                                    MultiExprArg Args,
8707                                    SourceLocation RParenLoc,
8708                                    Expr *ExecConfig = nullptr) {
8709     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8710                                                  RParenLoc, ExecConfig);
8711     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8712       if (Result.isUsable()) {
8713         Expr *ResultCall = Result.get();
8714         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8715           ResultCall = BE->getSubExpr();
8716         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8717           OverloadResolution[OE] = CE->getCallee();
8718       }
8719     }
8720     return Result;
8721   }
8722 
8723   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8724 
8725   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8726 
8727   ExprResult Transform(Expr *E) {
8728     bool IsAmbiguous = false;
8729     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8730 
8731     if (!Res.isUsable())
8732       FindTypoExprs(TypoExprs).TraverseStmt(E);
8733 
8734     EmitAllDiagnostics(IsAmbiguous);
8735 
8736     return Res;
8737   }
8738 
8739   ExprResult TransformTypoExpr(TypoExpr *E) {
8740     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8741     // cached transformation result if there is one and the TypoExpr isn't the
8742     // first one that was encountered.
8743     auto &CacheEntry = TransformCache[E];
8744     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8745       return CacheEntry;
8746     }
8747 
8748     auto &State = SemaRef.getTypoExprState(E);
8749     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8750 
8751     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8752     // typo correction and return it.
8753     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8754       if (InitDecl && TC.getFoundDecl() == InitDecl)
8755         continue;
8756       // FIXME: If we would typo-correct to an invalid declaration, it's
8757       // probably best to just suppress all errors from this typo correction.
8758       ExprResult NE = State.RecoveryHandler ?
8759           State.RecoveryHandler(SemaRef, E, TC) :
8760           attemptRecovery(SemaRef, *State.Consumer, TC);
8761       if (!NE.isInvalid()) {
8762         // Check whether there may be a second viable correction with the same
8763         // edit distance; if so, remember this TypoExpr may have an ambiguous
8764         // correction so it can be more thoroughly vetted later.
8765         TypoCorrection Next;
8766         if ((Next = State.Consumer->peekNextCorrection()) &&
8767             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8768           AmbiguousTypoExprs.insert(E);
8769         } else {
8770           AmbiguousTypoExprs.remove(E);
8771         }
8772         assert(!NE.isUnset() &&
8773                "Typo was transformed into a valid-but-null ExprResult");
8774         return CacheEntry = NE;
8775       }
8776     }
8777     return CacheEntry = ExprError();
8778   }
8779 };
8780 }
8781 
8782 ExprResult
8783 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8784                                 bool RecoverUncorrectedTypos,
8785                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8786   // If the current evaluation context indicates there are uncorrected typos
8787   // and the current expression isn't guaranteed to not have typos, try to
8788   // resolve any TypoExpr nodes that might be in the expression.
8789   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8790       (E->isTypeDependent() || E->isValueDependent() ||
8791        E->isInstantiationDependent())) {
8792     auto TyposResolved = DelayedTypos.size();
8793     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8794     TyposResolved -= DelayedTypos.size();
8795     if (Result.isInvalid() || Result.get() != E) {
8796       ExprEvalContexts.back().NumTypos -= TyposResolved;
8797       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8798         struct TyposReplace : TreeTransform<TyposReplace> {
8799           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8800           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8801             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8802                                                     E->getEndLoc(), {});
8803           }
8804         } TT(*this);
8805         return TT.TransformExpr(E);
8806       }
8807       return Result;
8808     }
8809     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8810   }
8811   return E;
8812 }
8813 
8814 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8815                                      bool DiscardedValue, bool IsConstexpr,
8816                                      bool IsTemplateArgument) {
8817   ExprResult FullExpr = FE;
8818 
8819   if (!FullExpr.get())
8820     return ExprError();
8821 
8822   if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
8823     return ExprError();
8824 
8825   if (DiscardedValue) {
8826     // Top-level expressions default to 'id' when we're in a debugger.
8827     if (getLangOpts().DebuggerCastResultToId &&
8828         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8829       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8830       if (FullExpr.isInvalid())
8831         return ExprError();
8832     }
8833 
8834     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8835     if (FullExpr.isInvalid())
8836       return ExprError();
8837 
8838     FullExpr = IgnoredValueConversions(FullExpr.get());
8839     if (FullExpr.isInvalid())
8840       return ExprError();
8841 
8842     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8843   }
8844 
8845   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8846                                        /*RecoverUncorrectedTypos=*/true);
8847   if (FullExpr.isInvalid())
8848     return ExprError();
8849 
8850   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8851 
8852   // At the end of this full expression (which could be a deeply nested
8853   // lambda), if there is a potential capture within the nested lambda,
8854   // have the outer capture-able lambda try and capture it.
8855   // Consider the following code:
8856   // void f(int, int);
8857   // void f(const int&, double);
8858   // void foo() {
8859   //  const int x = 10, y = 20;
8860   //  auto L = [=](auto a) {
8861   //      auto M = [=](auto b) {
8862   //         f(x, b); <-- requires x to be captured by L and M
8863   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8864   //      };
8865   //   };
8866   // }
8867 
8868   // FIXME: Also consider what happens for something like this that involves
8869   // the gnu-extension statement-expressions or even lambda-init-captures:
8870   //   void f() {
8871   //     const int n = 0;
8872   //     auto L =  [&](auto a) {
8873   //       +n + ({ 0; a; });
8874   //     };
8875   //   }
8876   //
8877   // Here, we see +n, and then the full-expression 0; ends, so we don't
8878   // capture n (and instead remove it from our list of potential captures),
8879   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8880   // for us to see that we need to capture n after all.
8881 
8882   LambdaScopeInfo *const CurrentLSI =
8883       getCurLambda(/*IgnoreCapturedRegions=*/true);
8884   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8885   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8886   // for an example of the code that might cause this asynchrony.
8887   // By ensuring we are in the context of a lambda's call operator
8888   // we can fix the bug (we only need to check whether we need to capture
8889   // if we are within a lambda's body); but per the comments in that
8890   // PR, a proper fix would entail :
8891   //   "Alternative suggestion:
8892   //   - Add to Sema an integer holding the smallest (outermost) scope
8893   //     index that we are *lexically* within, and save/restore/set to
8894   //     FunctionScopes.size() in InstantiatingTemplate's
8895   //     constructor/destructor.
8896   //  - Teach the handful of places that iterate over FunctionScopes to
8897   //    stop at the outermost enclosing lexical scope."
8898   DeclContext *DC = CurContext;
8899   while (DC && isa<CapturedDecl>(DC))
8900     DC = DC->getParent();
8901   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8902   if (IsInLambdaDeclContext && CurrentLSI &&
8903       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8904     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8905                                                               *this);
8906   return MaybeCreateExprWithCleanups(FullExpr);
8907 }
8908 
8909 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8910   if (!FullStmt) return StmtError();
8911 
8912   return MaybeCreateStmtWithCleanups(FullStmt);
8913 }
8914 
8915 Sema::IfExistsResult
8916 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8917                                    CXXScopeSpec &SS,
8918                                    const DeclarationNameInfo &TargetNameInfo) {
8919   DeclarationName TargetName = TargetNameInfo.getName();
8920   if (!TargetName)
8921     return IER_DoesNotExist;
8922 
8923   // If the name itself is dependent, then the result is dependent.
8924   if (TargetName.isDependentName())
8925     return IER_Dependent;
8926 
8927   // Do the redeclaration lookup in the current scope.
8928   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8929                  Sema::NotForRedeclaration);
8930   LookupParsedName(R, S, &SS);
8931   R.suppressDiagnostics();
8932 
8933   switch (R.getResultKind()) {
8934   case LookupResult::Found:
8935   case LookupResult::FoundOverloaded:
8936   case LookupResult::FoundUnresolvedValue:
8937   case LookupResult::Ambiguous:
8938     return IER_Exists;
8939 
8940   case LookupResult::NotFound:
8941     return IER_DoesNotExist;
8942 
8943   case LookupResult::NotFoundInCurrentInstantiation:
8944     return IER_Dependent;
8945   }
8946 
8947   llvm_unreachable("Invalid LookupResult Kind!");
8948 }
8949 
8950 Sema::IfExistsResult
8951 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8952                                    bool IsIfExists, CXXScopeSpec &SS,
8953                                    UnqualifiedId &Name) {
8954   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8955 
8956   // Check for an unexpanded parameter pack.
8957   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8958   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8959       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8960     return IER_Error;
8961 
8962   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8963 }
8964 
8965 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8966   return BuildExprRequirement(E, /*IsSimple=*/true,
8967                               /*NoexceptLoc=*/SourceLocation(),
8968                               /*ReturnTypeRequirement=*/{});
8969 }
8970 
8971 concepts::Requirement *
8972 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8973                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8974                            TemplateIdAnnotation *TemplateId) {
8975   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8976          "Exactly one of TypeName and TemplateId must be specified.");
8977   TypeSourceInfo *TSI = nullptr;
8978   if (TypeName) {
8979     QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8980                                    SS.getWithLocInContext(Context), *TypeName,
8981                                    NameLoc, &TSI, /*DeducedTSTContext=*/false);
8982     if (T.isNull())
8983       return nullptr;
8984   } else {
8985     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8986                                TemplateId->NumArgs);
8987     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8988                                      TemplateId->TemplateKWLoc,
8989                                      TemplateId->Template, TemplateId->Name,
8990                                      TemplateId->TemplateNameLoc,
8991                                      TemplateId->LAngleLoc, ArgsPtr,
8992                                      TemplateId->RAngleLoc);
8993     if (T.isInvalid())
8994       return nullptr;
8995     if (GetTypeFromParser(T.get(), &TSI).isNull())
8996       return nullptr;
8997   }
8998   return BuildTypeRequirement(TSI);
8999 }
9000 
9001 concepts::Requirement *
9002 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
9003   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
9004                               /*ReturnTypeRequirement=*/{});
9005 }
9006 
9007 concepts::Requirement *
9008 Sema::ActOnCompoundRequirement(
9009     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
9010     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
9011   // C++2a [expr.prim.req.compound] p1.3.3
9012   //   [..] the expression is deduced against an invented function template
9013   //   F [...] F is a void function template with a single type template
9014   //   parameter T declared with the constrained-parameter. Form a new
9015   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
9016   //   around the constrained-parameter. F has a single parameter whose
9017   //   type-specifier is cv T followed by the abstract-declarator. [...]
9018   //
9019   // The cv part is done in the calling function - we get the concept with
9020   // arguments and the abstract declarator with the correct CV qualification and
9021   // have to synthesize T and the single parameter of F.
9022   auto &II = Context.Idents.get("expr-type");
9023   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
9024                                               SourceLocation(),
9025                                               SourceLocation(), Depth,
9026                                               /*Index=*/0, &II,
9027                                               /*Typename=*/true,
9028                                               /*ParameterPack=*/false,
9029                                               /*HasTypeConstraint=*/true);
9030 
9031   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
9032                           /*EllipsisLoc=*/SourceLocation(),
9033                           /*AllowUnexpandedPack=*/true))
9034     // Just produce a requirement with no type requirements.
9035     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9036 
9037   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9038                                             SourceLocation(),
9039                                             ArrayRef<NamedDecl *>(TParam),
9040                                             SourceLocation(),
9041                                             /*RequiresClause=*/nullptr);
9042   return BuildExprRequirement(
9043       E, /*IsSimple=*/false, NoexceptLoc,
9044       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9045 }
9046 
9047 concepts::ExprRequirement *
9048 Sema::BuildExprRequirement(
9049     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9050     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9051   auto Status = concepts::ExprRequirement::SS_Satisfied;
9052   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9053   if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
9054     Status = concepts::ExprRequirement::SS_Dependent;
9055   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9056     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9057   else if (ReturnTypeRequirement.isSubstitutionFailure())
9058     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9059   else if (ReturnTypeRequirement.isTypeConstraint()) {
9060     // C++2a [expr.prim.req]p1.3.3
9061     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
9062     //     be satisfied.
9063     TemplateParameterList *TPL =
9064         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9065     QualType MatchedType =
9066         Context.getReferenceQualifiedType(E).getCanonicalType();
9067     llvm::SmallVector<TemplateArgument, 1> Args;
9068     Args.push_back(TemplateArgument(MatchedType));
9069 
9070     auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9071 
9072     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
9073     MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(),
9074                                          /*Final=*/false);
9075     MLTAL.addOuterRetainedLevels(TPL->getDepth());
9076     const TypeConstraint *TC = Param->getTypeConstraint();
9077     assert(TC && "Type Constraint cannot be null here");
9078     auto *IDC = TC->getImmediatelyDeclaredConstraint();
9079     assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9080     ExprResult Constraint = SubstExpr(IDC, MLTAL);
9081     if (Constraint.isInvalid()) {
9082       return new (Context) concepts::ExprRequirement(
9083           concepts::createSubstDiagAt(*this, IDC->getExprLoc(),
9084                                       [&](llvm::raw_ostream &OS) {
9085                                         IDC->printPretty(OS, /*Helper=*/nullptr,
9086                                                          getPrintingPolicy());
9087                                       }),
9088           IsSimple, NoexceptLoc, ReturnTypeRequirement);
9089     }
9090     SubstitutedConstraintExpr =
9091         cast<ConceptSpecializationExpr>(Constraint.get());
9092     if (!SubstitutedConstraintExpr->isSatisfied())
9093       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9094   }
9095   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9096                                                  ReturnTypeRequirement, Status,
9097                                                  SubstitutedConstraintExpr);
9098 }
9099 
9100 concepts::ExprRequirement *
9101 Sema::BuildExprRequirement(
9102     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9103     bool IsSimple, SourceLocation NoexceptLoc,
9104     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9105   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9106                                                  IsSimple, NoexceptLoc,
9107                                                  ReturnTypeRequirement);
9108 }
9109 
9110 concepts::TypeRequirement *
9111 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9112   return new (Context) concepts::TypeRequirement(Type);
9113 }
9114 
9115 concepts::TypeRequirement *
9116 Sema::BuildTypeRequirement(
9117     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9118   return new (Context) concepts::TypeRequirement(SubstDiag);
9119 }
9120 
9121 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9122   return BuildNestedRequirement(Constraint);
9123 }
9124 
9125 concepts::NestedRequirement *
9126 Sema::BuildNestedRequirement(Expr *Constraint) {
9127   ConstraintSatisfaction Satisfaction;
9128   if (!Constraint->isInstantiationDependent() &&
9129       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9130                                   Constraint->getSourceRange(), Satisfaction))
9131     return nullptr;
9132   return new (Context) concepts::NestedRequirement(Context, Constraint,
9133                                                    Satisfaction);
9134 }
9135 
9136 concepts::NestedRequirement *
9137 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9138                        const ASTConstraintSatisfaction &Satisfaction) {
9139   return new (Context) concepts::NestedRequirement(
9140       InvalidConstraintEntity,
9141       ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9142 }
9143 
9144 RequiresExprBodyDecl *
9145 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9146                              ArrayRef<ParmVarDecl *> LocalParameters,
9147                              Scope *BodyScope) {
9148   assert(BodyScope);
9149 
9150   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9151                                                             RequiresKWLoc);
9152 
9153   PushDeclContext(BodyScope, Body);
9154 
9155   for (ParmVarDecl *Param : LocalParameters) {
9156     if (Param->hasDefaultArg())
9157       // C++2a [expr.prim.req] p4
9158       //     [...] A local parameter of a requires-expression shall not have a
9159       //     default argument. [...]
9160       Diag(Param->getDefaultArgRange().getBegin(),
9161            diag::err_requires_expr_local_parameter_default_argument);
9162     // Ignore default argument and move on
9163 
9164     Param->setDeclContext(Body);
9165     // If this has an identifier, add it to the scope stack.
9166     if (Param->getIdentifier()) {
9167       CheckShadow(BodyScope, Param);
9168       PushOnScopeChains(Param, BodyScope);
9169     }
9170   }
9171   return Body;
9172 }
9173 
9174 void Sema::ActOnFinishRequiresExpr() {
9175   assert(CurContext && "DeclContext imbalance!");
9176   CurContext = CurContext->getLexicalParent();
9177   assert(CurContext && "Popped translation unit!");
9178 }
9179 
9180 ExprResult
9181 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
9182                         RequiresExprBodyDecl *Body,
9183                         ArrayRef<ParmVarDecl *> LocalParameters,
9184                         ArrayRef<concepts::Requirement *> Requirements,
9185                         SourceLocation ClosingBraceLoc) {
9186   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
9187                                   Requirements, ClosingBraceLoc);
9188   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9189     return ExprError();
9190   return RE;
9191 }
9192