1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis member access expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/Overload.h"
13 #include "clang/AST/ASTLambda.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
24 
25 using namespace clang;
26 using namespace sema;
27 
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29 
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33                                      const BaseSet &Bases) {
34   auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35     return !Bases.count(Base->getCanonicalDecl());
36   };
37   return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
38 }
39 
40 enum IMAKind {
41   /// The reference is definitely not an instance member access.
42   IMA_Static,
43 
44   /// The reference may be an implicit instance member access.
45   IMA_Mixed,
46 
47   /// The reference may be to an instance member, but it might be invalid if
48   /// so, because the context is not an instance method.
49   IMA_Mixed_StaticContext,
50 
51   /// The reference may be to an instance member, but it is invalid if
52   /// so, because the context is from an unrelated class.
53   IMA_Mixed_Unrelated,
54 
55   /// The reference is definitely an implicit instance member access.
56   IMA_Instance,
57 
58   /// The reference may be to an unresolved using declaration.
59   IMA_Unresolved,
60 
61   /// The reference is a contextually-permitted abstract member reference.
62   IMA_Abstract,
63 
64   /// The reference may be to an unresolved using declaration and the
65   /// context is not an instance method.
66   IMA_Unresolved_StaticContext,
67 
68   // The reference refers to a field which is not a member of the containing
69   // class, which is allowed because we're in C++11 mode and the context is
70   // unevaluated.
71   IMA_Field_Uneval_Context,
72 
73   /// All possible referrents are instance members and the current
74   /// context is not an instance method.
75   IMA_Error_StaticContext,
76 
77   /// All possible referrents are instance members of an unrelated
78   /// class.
79   IMA_Error_Unrelated
80 };
81 
82 /// The given lookup names class member(s) and is not being used for
83 /// an address-of-member expression.  Classify the type of access
84 /// according to whether it's possible that this reference names an
85 /// instance member.  This is best-effort in dependent contexts; it is okay to
86 /// conservatively answer "yes", in which case some errors will simply
87 /// not be caught until template-instantiation.
88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89                                             const LookupResult &R) {
90   assert(!R.empty() && (*R.begin())->isCXXClassMember());
91 
92   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93 
94   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
95     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
96 
97   if (R.isUnresolvableResult())
98     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
99 
100   // Collect all the declaring classes of instance members we find.
101   bool hasNonInstance = false;
102   bool isField = false;
103   BaseSet Classes;
104   for (NamedDecl *D : R) {
105     // Look through any using decls.
106     D = D->getUnderlyingDecl();
107 
108     if (D->isCXXInstanceMember()) {
109       isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
110                  isa<IndirectFieldDecl>(D);
111 
112       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
113       Classes.insert(R->getCanonicalDecl());
114     } else
115       hasNonInstance = true;
116   }
117 
118   // If we didn't find any instance members, it can't be an implicit
119   // member reference.
120   if (Classes.empty())
121     return IMA_Static;
122 
123   // C++11 [expr.prim.general]p12:
124   //   An id-expression that denotes a non-static data member or non-static
125   //   member function of a class can only be used:
126   //   (...)
127   //   - if that id-expression denotes a non-static data member and it
128   //     appears in an unevaluated operand.
129   //
130   // This rule is specific to C++11.  However, we also permit this form
131   // in unevaluated inline assembly operands, like the operand to a SIZE.
132   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
133   assert(!AbstractInstanceResult);
134   switch (SemaRef.ExprEvalContexts.back().Context) {
135   case Sema::ExpressionEvaluationContext::Unevaluated:
136   case Sema::ExpressionEvaluationContext::UnevaluatedList:
137     if (isField && SemaRef.getLangOpts().CPlusPlus11)
138       AbstractInstanceResult = IMA_Field_Uneval_Context;
139     break;
140 
141   case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
142     AbstractInstanceResult = IMA_Abstract;
143     break;
144 
145   case Sema::ExpressionEvaluationContext::DiscardedStatement:
146   case Sema::ExpressionEvaluationContext::ConstantEvaluated:
147   case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
148   case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
149   case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
150     break;
151   }
152 
153   // If the current context is not an instance method, it can't be
154   // an implicit member reference.
155   if (isStaticContext) {
156     if (hasNonInstance)
157       return IMA_Mixed_StaticContext;
158 
159     return AbstractInstanceResult ? AbstractInstanceResult
160                                   : IMA_Error_StaticContext;
161   }
162 
163   CXXRecordDecl *contextClass;
164   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
165     contextClass = MD->getParent()->getCanonicalDecl();
166   else
167     contextClass = cast<CXXRecordDecl>(DC);
168 
169   // [class.mfct.non-static]p3:
170   // ...is used in the body of a non-static member function of class X,
171   // if name lookup (3.4.1) resolves the name in the id-expression to a
172   // non-static non-type member of some class C [...]
173   // ...if C is not X or a base class of X, the class member access expression
174   // is ill-formed.
175   if (R.getNamingClass() &&
176       contextClass->getCanonicalDecl() !=
177         R.getNamingClass()->getCanonicalDecl()) {
178     // If the naming class is not the current context, this was a qualified
179     // member name lookup, and it's sufficient to check that we have the naming
180     // class as a base class.
181     Classes.clear();
182     Classes.insert(R.getNamingClass()->getCanonicalDecl());
183   }
184 
185   // If we can prove that the current context is unrelated to all the
186   // declaring classes, it can't be an implicit member reference (in
187   // which case it's an error if any of those members are selected).
188   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
189     return hasNonInstance ? IMA_Mixed_Unrelated :
190            AbstractInstanceResult ? AbstractInstanceResult :
191                                     IMA_Error_Unrelated;
192 
193   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
194 }
195 
196 /// Diagnose a reference to a field with no object available.
197 static void diagnoseInstanceReference(Sema &SemaRef,
198                                       const CXXScopeSpec &SS,
199                                       NamedDecl *Rep,
200                                       const DeclarationNameInfo &nameInfo) {
201   SourceLocation Loc = nameInfo.getLoc();
202   SourceRange Range(Loc);
203   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
204 
205   // Look through using shadow decls and aliases.
206   Rep = Rep->getUnderlyingDecl();
207 
208   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
209   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
210   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
211   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
212 
213   bool InStaticMethod = Method && Method->isStatic();
214   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
215 
216   if (IsField && InStaticMethod)
217     // "invalid use of member 'x' in static member function"
218     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
219         << Range << nameInfo.getName();
220   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
221            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
222     // Unqualified lookup in a non-static member function found a member of an
223     // enclosing class.
224     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
225       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
226   else if (IsField)
227     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
228       << nameInfo.getName() << Range;
229   else
230     SemaRef.Diag(Loc, diag::err_member_call_without_object)
231       << Range;
232 }
233 
234 /// Builds an expression which might be an implicit member expression.
235 ExprResult Sema::BuildPossibleImplicitMemberExpr(
236     const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
237     const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
238     UnresolvedLookupExpr *AsULE) {
239   switch (ClassifyImplicitMemberAccess(*this, R)) {
240   case IMA_Instance:
241     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
242 
243   case IMA_Mixed:
244   case IMA_Mixed_Unrelated:
245   case IMA_Unresolved:
246     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
247                                    S);
248 
249   case IMA_Field_Uneval_Context:
250     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
251       << R.getLookupNameInfo().getName();
252     LLVM_FALLTHROUGH;
253   case IMA_Static:
254   case IMA_Abstract:
255   case IMA_Mixed_StaticContext:
256   case IMA_Unresolved_StaticContext:
257     if (TemplateArgs || TemplateKWLoc.isValid())
258       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
259     return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false);
260 
261   case IMA_Error_StaticContext:
262   case IMA_Error_Unrelated:
263     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
264                               R.getLookupNameInfo());
265     return ExprError();
266   }
267 
268   llvm_unreachable("unexpected instance member access kind");
269 }
270 
271 /// Determine whether input char is from rgba component set.
272 static bool
273 IsRGBA(char c) {
274   switch (c) {
275   case 'r':
276   case 'g':
277   case 'b':
278   case 'a':
279     return true;
280   default:
281     return false;
282   }
283 }
284 
285 // OpenCL v1.1, s6.1.7
286 // The component swizzle length must be in accordance with the acceptable
287 // vector sizes.
288 static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
289 {
290   return (len >= 1 && len <= 4) || len == 8 || len == 16;
291 }
292 
293 /// Check an ext-vector component access expression.
294 ///
295 /// VK should be set in advance to the value kind of the base
296 /// expression.
297 static QualType
298 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
299                         SourceLocation OpLoc, const IdentifierInfo *CompName,
300                         SourceLocation CompLoc) {
301   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
302   // see FIXME there.
303   //
304   // FIXME: This logic can be greatly simplified by splitting it along
305   // halving/not halving and reworking the component checking.
306   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
307 
308   // The vector accessor can't exceed the number of elements.
309   const char *compStr = CompName->getNameStart();
310 
311   // This flag determines whether or not the component is one of the four
312   // special names that indicate a subset of exactly half the elements are
313   // to be selected.
314   bool HalvingSwizzle = false;
315 
316   // This flag determines whether or not CompName has an 's' char prefix,
317   // indicating that it is a string of hex values to be used as vector indices.
318   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
319 
320   bool HasRepeated = false;
321   bool HasIndex[16] = {};
322 
323   int Idx;
324 
325   // Check that we've found one of the special components, or that the component
326   // names must come from the same set.
327   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
328       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
329     HalvingSwizzle = true;
330   } else if (!HexSwizzle &&
331              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
332     bool HasRGBA = IsRGBA(*compStr);
333     do {
334       // Ensure that xyzw and rgba components don't intermingle.
335       if (HasRGBA != IsRGBA(*compStr))
336         break;
337       if (HasIndex[Idx]) HasRepeated = true;
338       HasIndex[Idx] = true;
339       compStr++;
340     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
341 
342     // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
343     if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
344       if (S.getLangOpts().OpenCL &&
345           S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
346         const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
347         S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
348             << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
349       }
350     }
351   } else {
352     if (HexSwizzle) compStr++;
353     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
354       if (HasIndex[Idx]) HasRepeated = true;
355       HasIndex[Idx] = true;
356       compStr++;
357     }
358   }
359 
360   if (!HalvingSwizzle && *compStr) {
361     // We didn't get to the end of the string. This means the component names
362     // didn't come from the same set *or* we encountered an illegal name.
363     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
364       << StringRef(compStr, 1) << SourceRange(CompLoc);
365     return QualType();
366   }
367 
368   // Ensure no component accessor exceeds the width of the vector type it
369   // operates on.
370   if (!HalvingSwizzle) {
371     compStr = CompName->getNameStart();
372 
373     if (HexSwizzle)
374       compStr++;
375 
376     while (*compStr) {
377       if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
378         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
379           << baseType << SourceRange(CompLoc);
380         return QualType();
381       }
382     }
383   }
384 
385   // OpenCL mode requires swizzle length to be in accordance with accepted
386   // sizes. Clang however supports arbitrary lengths for other languages.
387   if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
388     unsigned SwizzleLength = CompName->getLength();
389 
390     if (HexSwizzle)
391       SwizzleLength--;
392 
393     if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
394       S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
395         << SwizzleLength << SourceRange(CompLoc);
396       return QualType();
397     }
398   }
399 
400   // The component accessor looks fine - now we need to compute the actual type.
401   // The vector type is implied by the component accessor. For example,
402   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
403   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
404   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
405   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
406                                      : CompName->getLength();
407   if (HexSwizzle)
408     CompSize--;
409 
410   if (CompSize == 1)
411     return vecType->getElementType();
412 
413   if (HasRepeated)
414     VK = VK_PRValue;
415 
416   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
417   // Now look up the TypeDefDecl from the vector type. Without this,
418   // diagostics look bad. We want extended vector types to appear built-in.
419   for (Sema::ExtVectorDeclsType::iterator
420          I = S.ExtVectorDecls.begin(S.getExternalSource()),
421          E = S.ExtVectorDecls.end();
422        I != E; ++I) {
423     if ((*I)->getUnderlyingType() == VT)
424       return S.Context.getTypedefType(*I);
425   }
426 
427   return VT; // should never get here (a typedef type should always be found).
428 }
429 
430 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
431                                                 IdentifierInfo *Member,
432                                                 const Selector &Sel,
433                                                 ASTContext &Context) {
434   if (Member)
435     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
436             Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
437       return PD;
438   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
439     return OMD;
440 
441   for (const auto *I : PDecl->protocols()) {
442     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
443                                                            Context))
444       return D;
445   }
446   return nullptr;
447 }
448 
449 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
450                                       IdentifierInfo *Member,
451                                       const Selector &Sel,
452                                       ASTContext &Context) {
453   // Check protocols on qualified interfaces.
454   Decl *GDecl = nullptr;
455   for (const auto *I : QIdTy->quals()) {
456     if (Member)
457       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
458               Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
459         GDecl = PD;
460         break;
461       }
462     // Also must look for a getter or setter name which uses property syntax.
463     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
464       GDecl = OMD;
465       break;
466     }
467   }
468   if (!GDecl) {
469     for (const auto *I : QIdTy->quals()) {
470       // Search in the protocol-qualifier list of current protocol.
471       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
472       if (GDecl)
473         return GDecl;
474     }
475   }
476   return GDecl;
477 }
478 
479 ExprResult
480 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
481                                bool IsArrow, SourceLocation OpLoc,
482                                const CXXScopeSpec &SS,
483                                SourceLocation TemplateKWLoc,
484                                NamedDecl *FirstQualifierInScope,
485                                const DeclarationNameInfo &NameInfo,
486                                const TemplateArgumentListInfo *TemplateArgs) {
487   // Even in dependent contexts, try to diagnose base expressions with
488   // obviously wrong types, e.g.:
489   //
490   // T* t;
491   // t.f;
492   //
493   // In Obj-C++, however, the above expression is valid, since it could be
494   // accessing the 'f' property if T is an Obj-C interface. The extra check
495   // allows this, while still reporting an error if T is a struct pointer.
496   if (!IsArrow) {
497     const PointerType *PT = BaseType->getAs<PointerType>();
498     if (PT && (!getLangOpts().ObjC ||
499                PT->getPointeeType()->isRecordType())) {
500       assert(BaseExpr && "cannot happen with implicit member accesses");
501       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
502         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
503       return ExprError();
504     }
505   }
506 
507   assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() ||
508          isDependentScopeSpecifier(SS) ||
509          (TemplateArgs && llvm::any_of(TemplateArgs->arguments(),
510                                        [](const TemplateArgumentLoc &Arg) {
511                                          return Arg.getArgument().isDependent();
512                                        })));
513 
514   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
515   // must have pointer type, and the accessed type is the pointee.
516   return CXXDependentScopeMemberExpr::Create(
517       Context, BaseExpr, BaseType, IsArrow, OpLoc,
518       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
519       NameInfo, TemplateArgs);
520 }
521 
522 /// We know that the given qualified member reference points only to
523 /// declarations which do not belong to the static type of the base
524 /// expression.  Diagnose the problem.
525 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
526                                              Expr *BaseExpr,
527                                              QualType BaseType,
528                                              const CXXScopeSpec &SS,
529                                              NamedDecl *rep,
530                                        const DeclarationNameInfo &nameInfo) {
531   // If this is an implicit member access, use a different set of
532   // diagnostics.
533   if (!BaseExpr)
534     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
535 
536   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
537     << SS.getRange() << rep << BaseType;
538 }
539 
540 // Check whether the declarations we found through a nested-name
541 // specifier in a member expression are actually members of the base
542 // type.  The restriction here is:
543 //
544 //   C++ [expr.ref]p2:
545 //     ... In these cases, the id-expression shall name a
546 //     member of the class or of one of its base classes.
547 //
548 // So it's perfectly legitimate for the nested-name specifier to name
549 // an unrelated class, and for us to find an overload set including
550 // decls from classes which are not superclasses, as long as the decl
551 // we actually pick through overload resolution is from a superclass.
552 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
553                                          QualType BaseType,
554                                          const CXXScopeSpec &SS,
555                                          const LookupResult &R) {
556   CXXRecordDecl *BaseRecord =
557     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
558   if (!BaseRecord) {
559     // We can't check this yet because the base type is still
560     // dependent.
561     assert(BaseType->isDependentType());
562     return false;
563   }
564 
565   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
566     // If this is an implicit member reference and we find a
567     // non-instance member, it's not an error.
568     if (!BaseExpr && !(*I)->isCXXInstanceMember())
569       return false;
570 
571     // Note that we use the DC of the decl, not the underlying decl.
572     DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
573     if (!DC->isRecord())
574       continue;
575 
576     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
577     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
578         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
579       return false;
580   }
581 
582   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
583                                    R.getRepresentativeDecl(),
584                                    R.getLookupNameInfo());
585   return true;
586 }
587 
588 namespace {
589 
590 // Callback to only accept typo corrections that are either a ValueDecl or a
591 // FunctionTemplateDecl and are declared in the current record or, for a C++
592 // classes, one of its base classes.
593 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
594 public:
595   explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
596       : Record(RTy->getDecl()) {
597     // Don't add bare keywords to the consumer since they will always fail
598     // validation by virtue of not being associated with any decls.
599     WantTypeSpecifiers = false;
600     WantExpressionKeywords = false;
601     WantCXXNamedCasts = false;
602     WantFunctionLikeCasts = false;
603     WantRemainingKeywords = false;
604   }
605 
606   bool ValidateCandidate(const TypoCorrection &candidate) override {
607     NamedDecl *ND = candidate.getCorrectionDecl();
608     // Don't accept candidates that cannot be member functions, constants,
609     // variables, or templates.
610     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
611       return false;
612 
613     // Accept candidates that occur in the current record.
614     if (Record->containsDecl(ND))
615       return true;
616 
617     if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) {
618       // Accept candidates that occur in any of the current class' base classes.
619       for (const auto &BS : RD->bases()) {
620         if (const auto *BSTy = BS.getType()->getAs<RecordType>()) {
621           if (BSTy->getDecl()->containsDecl(ND))
622             return true;
623         }
624       }
625     }
626 
627     return false;
628   }
629 
630   std::unique_ptr<CorrectionCandidateCallback> clone() override {
631     return std::make_unique<RecordMemberExprValidatorCCC>(*this);
632   }
633 
634 private:
635   const RecordDecl *const Record;
636 };
637 
638 }
639 
640 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
641                                      Expr *BaseExpr,
642                                      const RecordType *RTy,
643                                      SourceLocation OpLoc, bool IsArrow,
644                                      CXXScopeSpec &SS, bool HasTemplateArgs,
645                                      SourceLocation TemplateKWLoc,
646                                      TypoExpr *&TE) {
647   SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
648   RecordDecl *RDecl = RTy->getDecl();
649   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
650       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
651                                   diag::err_typecheck_incomplete_tag,
652                                   BaseRange))
653     return true;
654 
655   if (HasTemplateArgs || TemplateKWLoc.isValid()) {
656     // LookupTemplateName doesn't expect these both to exist simultaneously.
657     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
658 
659     bool MOUS;
660     return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
661                                       TemplateKWLoc);
662   }
663 
664   DeclContext *DC = RDecl;
665   if (SS.isSet()) {
666     // If the member name was a qualified-id, look into the
667     // nested-name-specifier.
668     DC = SemaRef.computeDeclContext(SS, false);
669 
670     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
671       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
672           << SS.getRange() << DC;
673       return true;
674     }
675 
676     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
677 
678     if (!isa<TypeDecl>(DC)) {
679       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
680           << DC << SS.getRange();
681       return true;
682     }
683   }
684 
685   // The record definition is complete, now look up the member.
686   SemaRef.LookupQualifiedName(R, DC, SS);
687 
688   if (!R.empty())
689     return false;
690 
691   DeclarationName Typo = R.getLookupName();
692   SourceLocation TypoLoc = R.getNameLoc();
693 
694   struct QueryState {
695     Sema &SemaRef;
696     DeclarationNameInfo NameInfo;
697     Sema::LookupNameKind LookupKind;
698     Sema::RedeclarationKind Redecl;
699   };
700   QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
701                   R.redeclarationKind()};
702   RecordMemberExprValidatorCCC CCC(RTy);
703   TE = SemaRef.CorrectTypoDelayed(
704       R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
705       [=, &SemaRef](const TypoCorrection &TC) {
706         if (TC) {
707           assert(!TC.isKeyword() &&
708                  "Got a keyword as a correction for a member!");
709           bool DroppedSpecifier =
710               TC.WillReplaceSpecifier() &&
711               Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
712           SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
713                                        << Typo << DC << DroppedSpecifier
714                                        << SS.getRange());
715         } else {
716           SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
717         }
718       },
719       [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
720         LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
721         R.clear(); // Ensure there's no decls lingering in the shared state.
722         R.suppressDiagnostics();
723         R.setLookupName(TC.getCorrection());
724         for (NamedDecl *ND : TC)
725           R.addDecl(ND);
726         R.resolveKind();
727         return SemaRef.BuildMemberReferenceExpr(
728             BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
729             nullptr, R, nullptr, nullptr);
730       },
731       Sema::CTK_ErrorRecovery, DC);
732 
733   return false;
734 }
735 
736 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
737                                    ExprResult &BaseExpr, bool &IsArrow,
738                                    SourceLocation OpLoc, CXXScopeSpec &SS,
739                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
740                                    SourceLocation TemplateKWLoc);
741 
742 ExprResult
743 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
744                                SourceLocation OpLoc, bool IsArrow,
745                                CXXScopeSpec &SS,
746                                SourceLocation TemplateKWLoc,
747                                NamedDecl *FirstQualifierInScope,
748                                const DeclarationNameInfo &NameInfo,
749                                const TemplateArgumentListInfo *TemplateArgs,
750                                const Scope *S,
751                                ActOnMemberAccessExtraArgs *ExtraArgs) {
752   if (BaseType->isDependentType() ||
753       (SS.isSet() && isDependentScopeSpecifier(SS)))
754     return ActOnDependentMemberExpr(Base, BaseType,
755                                     IsArrow, OpLoc,
756                                     SS, TemplateKWLoc, FirstQualifierInScope,
757                                     NameInfo, TemplateArgs);
758 
759   LookupResult R(*this, NameInfo, LookupMemberName);
760 
761   // Implicit member accesses.
762   if (!Base) {
763     TypoExpr *TE = nullptr;
764     QualType RecordTy = BaseType;
765     if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
766     if (LookupMemberExprInRecord(
767             *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
768             SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
769       return ExprError();
770     if (TE)
771       return TE;
772 
773   // Explicit member accesses.
774   } else {
775     ExprResult BaseResult = Base;
776     ExprResult Result =
777         LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
778                          ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
779                          TemplateArgs != nullptr, TemplateKWLoc);
780 
781     if (BaseResult.isInvalid())
782       return ExprError();
783     Base = BaseResult.get();
784 
785     if (Result.isInvalid())
786       return ExprError();
787 
788     if (Result.get())
789       return Result;
790 
791     // LookupMemberExpr can modify Base, and thus change BaseType
792     BaseType = Base->getType();
793   }
794 
795   return BuildMemberReferenceExpr(Base, BaseType,
796                                   OpLoc, IsArrow, SS, TemplateKWLoc,
797                                   FirstQualifierInScope, R, TemplateArgs, S,
798                                   false, ExtraArgs);
799 }
800 
801 ExprResult
802 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
803                                                SourceLocation loc,
804                                                IndirectFieldDecl *indirectField,
805                                                DeclAccessPair foundDecl,
806                                                Expr *baseObjectExpr,
807                                                SourceLocation opLoc) {
808   // First, build the expression that refers to the base object.
809 
810   // Case 1:  the base of the indirect field is not a field.
811   VarDecl *baseVariable = indirectField->getVarDecl();
812   CXXScopeSpec EmptySS;
813   if (baseVariable) {
814     assert(baseVariable->getType()->isRecordType());
815 
816     // In principle we could have a member access expression that
817     // accesses an anonymous struct/union that's a static member of
818     // the base object's class.  However, under the current standard,
819     // static data members cannot be anonymous structs or unions.
820     // Supporting this is as easy as building a MemberExpr here.
821     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
822 
823     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
824 
825     ExprResult result
826       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
827     if (result.isInvalid()) return ExprError();
828 
829     baseObjectExpr = result.get();
830   }
831 
832   assert((baseVariable || baseObjectExpr) &&
833          "referencing anonymous struct/union without a base variable or "
834          "expression");
835 
836   // Build the implicit member references to the field of the
837   // anonymous struct/union.
838   Expr *result = baseObjectExpr;
839   IndirectFieldDecl::chain_iterator
840   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
841 
842   // Case 2: the base of the indirect field is a field and the user
843   // wrote a member expression.
844   if (!baseVariable) {
845     FieldDecl *field = cast<FieldDecl>(*FI);
846 
847     bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
848 
849     // Make a nameInfo that properly uses the anonymous name.
850     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
851 
852     // Build the first member access in the chain with full information.
853     result =
854         BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
855                                 SS, field, foundDecl, memberNameInfo)
856             .get();
857     if (!result)
858       return ExprError();
859   }
860 
861   // In all cases, we should now skip the first declaration in the chain.
862   ++FI;
863 
864   while (FI != FEnd) {
865     FieldDecl *field = cast<FieldDecl>(*FI++);
866 
867     // FIXME: these are somewhat meaningless
868     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
869     DeclAccessPair fakeFoundDecl =
870         DeclAccessPair::make(field, field->getAccess());
871 
872     result =
873         BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
874                                 (FI == FEnd ? SS : EmptySS), field,
875                                 fakeFoundDecl, memberNameInfo)
876             .get();
877   }
878 
879   return result;
880 }
881 
882 static ExprResult
883 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
884                        const CXXScopeSpec &SS,
885                        MSPropertyDecl *PD,
886                        const DeclarationNameInfo &NameInfo) {
887   // Property names are always simple identifiers and therefore never
888   // require any interesting additional storage.
889   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
890                                            S.Context.PseudoObjectTy, VK_LValue,
891                                            SS.getWithLocInContext(S.Context),
892                                            NameInfo.getLoc());
893 }
894 
895 MemberExpr *Sema::BuildMemberExpr(
896     Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
897     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
898     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
899     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
900     const TemplateArgumentListInfo *TemplateArgs) {
901   NestedNameSpecifierLoc NNS =
902       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
903   return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
904                          FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
905                          VK, OK, TemplateArgs);
906 }
907 
908 MemberExpr *Sema::BuildMemberExpr(
909     Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
910     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
911     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
912     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
913     const TemplateArgumentListInfo *TemplateArgs) {
914   assert((!IsArrow || Base->isPRValue()) &&
915          "-> base must be a pointer prvalue");
916   MemberExpr *E =
917       MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
918                          Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
919                          VK, OK, getNonOdrUseReasonInCurrentContext(Member));
920   E->setHadMultipleCandidates(HadMultipleCandidates);
921   MarkMemberReferenced(E);
922 
923   // C++ [except.spec]p17:
924   //   An exception-specification is considered to be needed when:
925   //   - in an expression the function is the unique lookup result or the
926   //     selected member of a set of overloaded functions
927   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
928     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
929       if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
930         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
931     }
932   }
933 
934   return E;
935 }
936 
937 /// Determine if the given scope is within a function-try-block handler.
938 static bool IsInFnTryBlockHandler(const Scope *S) {
939   // Walk the scope stack until finding a FnTryCatchScope, or leave the
940   // function scope. If a FnTryCatchScope is found, check whether the TryScope
941   // flag is set. If it is not, it's a function-try-block handler.
942   for (; S != S->getFnParent(); S = S->getParent()) {
943     if (S->getFlags() & Scope::FnTryCatchScope)
944       return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
945   }
946   return false;
947 }
948 
949 ExprResult
950 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
951                                SourceLocation OpLoc, bool IsArrow,
952                                const CXXScopeSpec &SS,
953                                SourceLocation TemplateKWLoc,
954                                NamedDecl *FirstQualifierInScope,
955                                LookupResult &R,
956                                const TemplateArgumentListInfo *TemplateArgs,
957                                const Scope *S,
958                                bool SuppressQualifierCheck,
959                                ActOnMemberAccessExtraArgs *ExtraArgs) {
960   QualType BaseType = BaseExprType;
961   if (IsArrow) {
962     assert(BaseType->isPointerType());
963     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
964   }
965   R.setBaseObjectType(BaseType);
966 
967   // C++1z [expr.ref]p2:
968   //   For the first option (dot) the first expression shall be a glvalue [...]
969   if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) {
970     ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
971     if (Converted.isInvalid())
972       return ExprError();
973     BaseExpr = Converted.get();
974   }
975 
976   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
977   DeclarationName MemberName = MemberNameInfo.getName();
978   SourceLocation MemberLoc = MemberNameInfo.getLoc();
979 
980   if (R.isAmbiguous())
981     return ExprError();
982 
983   // [except.handle]p10: Referring to any non-static member or base class of an
984   // object in the handler for a function-try-block of a constructor or
985   // destructor for that object results in undefined behavior.
986   const auto *FD = getCurFunctionDecl();
987   if (S && BaseExpr && FD &&
988       (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
989       isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
990       IsInFnTryBlockHandler(S))
991     Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
992         << isa<CXXDestructorDecl>(FD);
993 
994   if (R.empty()) {
995     // Rederive where we looked up.
996     DeclContext *DC = (SS.isSet()
997                        ? computeDeclContext(SS, false)
998                        : BaseType->castAs<RecordType>()->getDecl());
999 
1000     if (ExtraArgs) {
1001       ExprResult RetryExpr;
1002       if (!IsArrow && BaseExpr) {
1003         SFINAETrap Trap(*this, true);
1004         ParsedType ObjectType;
1005         bool MayBePseudoDestructor = false;
1006         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1007                                                  OpLoc, tok::arrow, ObjectType,
1008                                                  MayBePseudoDestructor);
1009         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1010           CXXScopeSpec TempSS(SS);
1011           RetryExpr = ActOnMemberAccessExpr(
1012               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1013               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1014         }
1015         if (Trap.hasErrorOccurred())
1016           RetryExpr = ExprError();
1017       }
1018       if (RetryExpr.isUsable()) {
1019         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1020           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1021         return RetryExpr;
1022       }
1023     }
1024 
1025     Diag(R.getNameLoc(), diag::err_no_member)
1026       << MemberName << DC
1027       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1028     return ExprError();
1029   }
1030 
1031   // Diagnose lookups that find only declarations from a non-base
1032   // type.  This is possible for either qualified lookups (which may
1033   // have been qualified with an unrelated type) or implicit member
1034   // expressions (which were found with unqualified lookup and thus
1035   // may have come from an enclosing scope).  Note that it's okay for
1036   // lookup to find declarations from a non-base type as long as those
1037   // aren't the ones picked by overload resolution.
1038   if ((SS.isSet() || !BaseExpr ||
1039        (isa<CXXThisExpr>(BaseExpr) &&
1040         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1041       !SuppressQualifierCheck &&
1042       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1043     return ExprError();
1044 
1045   // Construct an unresolved result if we in fact got an unresolved
1046   // result.
1047   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1048     // Suppress any lookup-related diagnostics; we'll do these when we
1049     // pick a member.
1050     R.suppressDiagnostics();
1051 
1052     UnresolvedMemberExpr *MemExpr
1053       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1054                                      BaseExpr, BaseExprType,
1055                                      IsArrow, OpLoc,
1056                                      SS.getWithLocInContext(Context),
1057                                      TemplateKWLoc, MemberNameInfo,
1058                                      TemplateArgs, R.begin(), R.end());
1059 
1060     return MemExpr;
1061   }
1062 
1063   assert(R.isSingleResult());
1064   DeclAccessPair FoundDecl = R.begin().getPair();
1065   NamedDecl *MemberDecl = R.getFoundDecl();
1066 
1067   // FIXME: diagnose the presence of template arguments now.
1068 
1069   // If the decl being referenced had an error, return an error for this
1070   // sub-expr without emitting another error, in order to avoid cascading
1071   // error cases.
1072   if (MemberDecl->isInvalidDecl())
1073     return ExprError();
1074 
1075   // Handle the implicit-member-access case.
1076   if (!BaseExpr) {
1077     // If this is not an instance member, convert to a non-member access.
1078     if (!MemberDecl->isCXXInstanceMember()) {
1079       // We might have a variable template specialization (or maybe one day a
1080       // member concept-id).
1081       if (TemplateArgs || TemplateKWLoc.isValid())
1082         return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs);
1083 
1084       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1085                                       FoundDecl, TemplateArgs);
1086     }
1087     SourceLocation Loc = R.getNameLoc();
1088     if (SS.getRange().isValid())
1089       Loc = SS.getRange().getBegin();
1090     BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1091   }
1092 
1093   // Check the use of this member.
1094   if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1095     return ExprError();
1096 
1097   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1098     return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1099                                    MemberNameInfo);
1100 
1101   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1102     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1103                                   MemberNameInfo);
1104 
1105   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1106     // We may have found a field within an anonymous union or struct
1107     // (C++ [class.union]).
1108     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1109                                                     FoundDecl, BaseExpr,
1110                                                     OpLoc);
1111 
1112   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1113     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1114                            FoundDecl, /*HadMultipleCandidates=*/false,
1115                            MemberNameInfo, Var->getType().getNonReferenceType(),
1116                            VK_LValue, OK_Ordinary);
1117   }
1118 
1119   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1120     ExprValueKind valueKind;
1121     QualType type;
1122     if (MemberFn->isInstance()) {
1123       valueKind = VK_PRValue;
1124       type = Context.BoundMemberTy;
1125     } else {
1126       valueKind = VK_LValue;
1127       type = MemberFn->getType();
1128     }
1129 
1130     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1131                            MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1132                            MemberNameInfo, type, valueKind, OK_Ordinary);
1133   }
1134   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1135 
1136   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1137     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1138                            FoundDecl, /*HadMultipleCandidates=*/false,
1139                            MemberNameInfo, Enum->getType(), VK_PRValue,
1140                            OK_Ordinary);
1141   }
1142 
1143   if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1144     if (!TemplateArgs) {
1145       diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc);
1146       return ExprError();
1147     }
1148 
1149     DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
1150                                           MemberNameInfo.getLoc(), *TemplateArgs);
1151     if (VDecl.isInvalid())
1152       return ExprError();
1153 
1154     // Non-dependent member, but dependent template arguments.
1155     if (!VDecl.get())
1156       return ActOnDependentMemberExpr(
1157           BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1158           FirstQualifierInScope, MemberNameInfo, TemplateArgs);
1159 
1160     VarDecl *Var = cast<VarDecl>(VDecl.get());
1161     if (!Var->getTemplateSpecializationKind())
1162       Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc);
1163 
1164     return BuildMemberExpr(
1165         BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, FoundDecl,
1166         /*HadMultipleCandidates=*/false, MemberNameInfo,
1167         Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary);
1168   }
1169 
1170   // We found something that we didn't expect. Complain.
1171   if (isa<TypeDecl>(MemberDecl))
1172     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1173       << MemberName << BaseType << int(IsArrow);
1174   else
1175     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1176       << MemberName << BaseType << int(IsArrow);
1177 
1178   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1179     << MemberName;
1180   R.suppressDiagnostics();
1181   return ExprError();
1182 }
1183 
1184 /// Given that normal member access failed on the given expression,
1185 /// and given that the expression's type involves builtin-id or
1186 /// builtin-Class, decide whether substituting in the redefinition
1187 /// types would be profitable.  The redefinition type is whatever
1188 /// this translation unit tried to typedef to id/Class;  we store
1189 /// it to the side and then re-use it in places like this.
1190 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1191   const ObjCObjectPointerType *opty
1192     = base.get()->getType()->getAs<ObjCObjectPointerType>();
1193   if (!opty) return false;
1194 
1195   const ObjCObjectType *ty = opty->getObjectType();
1196 
1197   QualType redef;
1198   if (ty->isObjCId()) {
1199     redef = S.Context.getObjCIdRedefinitionType();
1200   } else if (ty->isObjCClass()) {
1201     redef = S.Context.getObjCClassRedefinitionType();
1202   } else {
1203     return false;
1204   }
1205 
1206   // Do the substitution as long as the redefinition type isn't just a
1207   // possibly-qualified pointer to builtin-id or builtin-Class again.
1208   opty = redef->getAs<ObjCObjectPointerType>();
1209   if (opty && !opty->getObjectType()->getInterface())
1210     return false;
1211 
1212   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1213   return true;
1214 }
1215 
1216 static bool isRecordType(QualType T) {
1217   return T->isRecordType();
1218 }
1219 static bool isPointerToRecordType(QualType T) {
1220   if (const PointerType *PT = T->getAs<PointerType>())
1221     return PT->getPointeeType()->isRecordType();
1222   return false;
1223 }
1224 
1225 /// Perform conversions on the LHS of a member access expression.
1226 ExprResult
1227 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1228   if (IsArrow && !Base->getType()->isFunctionType())
1229     return DefaultFunctionArrayLvalueConversion(Base);
1230 
1231   return CheckPlaceholderExpr(Base);
1232 }
1233 
1234 /// Look up the given member of the given non-type-dependent
1235 /// expression.  This can return in one of two ways:
1236 ///  * If it returns a sentinel null-but-valid result, the caller will
1237 ///    assume that lookup was performed and the results written into
1238 ///    the provided structure.  It will take over from there.
1239 ///  * Otherwise, the returned expression will be produced in place of
1240 ///    an ordinary member expression.
1241 ///
1242 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1243 /// fixed for ObjC++.
1244 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1245                                    ExprResult &BaseExpr, bool &IsArrow,
1246                                    SourceLocation OpLoc, CXXScopeSpec &SS,
1247                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
1248                                    SourceLocation TemplateKWLoc) {
1249   assert(BaseExpr.get() && "no base expression");
1250 
1251   // Perform default conversions.
1252   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1253   if (BaseExpr.isInvalid())
1254     return ExprError();
1255 
1256   QualType BaseType = BaseExpr.get()->getType();
1257   assert(!BaseType->isDependentType());
1258 
1259   DeclarationName MemberName = R.getLookupName();
1260   SourceLocation MemberLoc = R.getNameLoc();
1261 
1262   // For later type-checking purposes, turn arrow accesses into dot
1263   // accesses.  The only access type we support that doesn't follow
1264   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1265   // and those never use arrows, so this is unaffected.
1266   if (IsArrow) {
1267     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1268       BaseType = Ptr->getPointeeType();
1269     else if (const ObjCObjectPointerType *Ptr
1270                = BaseType->getAs<ObjCObjectPointerType>())
1271       BaseType = Ptr->getPointeeType();
1272     else if (BaseType->isRecordType()) {
1273       // Recover from arrow accesses to records, e.g.:
1274       //   struct MyRecord foo;
1275       //   foo->bar
1276       // This is actually well-formed in C++ if MyRecord has an
1277       // overloaded operator->, but that should have been dealt with
1278       // by now--or a diagnostic message already issued if a problem
1279       // was encountered while looking for the overloaded operator->.
1280       if (!S.getLangOpts().CPlusPlus) {
1281         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1282           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1283           << FixItHint::CreateReplacement(OpLoc, ".");
1284       }
1285       IsArrow = false;
1286     } else if (BaseType->isFunctionType()) {
1287       goto fail;
1288     } else {
1289       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1290         << BaseType << BaseExpr.get()->getSourceRange();
1291       return ExprError();
1292     }
1293   }
1294 
1295   // Handle field access to simple records.
1296   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1297     TypoExpr *TE = nullptr;
1298     if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1299                                  HasTemplateArgs, TemplateKWLoc, TE))
1300       return ExprError();
1301 
1302     // Returning valid-but-null is how we indicate to the caller that
1303     // the lookup result was filled in. If typo correction was attempted and
1304     // failed, the lookup result will have been cleared--that combined with the
1305     // valid-but-null ExprResult will trigger the appropriate diagnostics.
1306     return ExprResult(TE);
1307   }
1308 
1309   // Handle ivar access to Objective-C objects.
1310   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1311     if (!SS.isEmpty() && !SS.isInvalid()) {
1312       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1313         << 1 << SS.getScopeRep()
1314         << FixItHint::CreateRemoval(SS.getRange());
1315       SS.clear();
1316     }
1317 
1318     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1319 
1320     // There are three cases for the base type:
1321     //   - builtin id (qualified or unqualified)
1322     //   - builtin Class (qualified or unqualified)
1323     //   - an interface
1324     ObjCInterfaceDecl *IDecl = OTy->getInterface();
1325     if (!IDecl) {
1326       if (S.getLangOpts().ObjCAutoRefCount &&
1327           (OTy->isObjCId() || OTy->isObjCClass()))
1328         goto fail;
1329       // There's an implicit 'isa' ivar on all objects.
1330       // But we only actually find it this way on objects of type 'id',
1331       // apparently.
1332       if (OTy->isObjCId() && Member->isStr("isa"))
1333         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1334                                            OpLoc, S.Context.getObjCClassType());
1335       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1336         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1337                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1338       goto fail;
1339     }
1340 
1341     if (S.RequireCompleteType(OpLoc, BaseType,
1342                               diag::err_typecheck_incomplete_tag,
1343                               BaseExpr.get()))
1344       return ExprError();
1345 
1346     ObjCInterfaceDecl *ClassDeclared = nullptr;
1347     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1348 
1349     if (!IV) {
1350       // Attempt to correct for typos in ivar names.
1351       DeclFilterCCC<ObjCIvarDecl> Validator{};
1352       Validator.IsObjCIvarLookup = IsArrow;
1353       if (TypoCorrection Corrected = S.CorrectTypo(
1354               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1355               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1356         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1357         S.diagnoseTypo(
1358             Corrected,
1359             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1360                 << IDecl->getDeclName() << MemberName);
1361 
1362         // Figure out the class that declares the ivar.
1363         assert(!ClassDeclared);
1364 
1365         Decl *D = cast<Decl>(IV->getDeclContext());
1366         if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1367           D = Category->getClassInterface();
1368 
1369         if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1370           ClassDeclared = Implementation->getClassInterface();
1371         else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1372           ClassDeclared = Interface;
1373 
1374         assert(ClassDeclared && "cannot query interface");
1375       } else {
1376         if (IsArrow &&
1377             IDecl->FindPropertyDeclaration(
1378                 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1379           S.Diag(MemberLoc, diag::err_property_found_suggest)
1380               << Member << BaseExpr.get()->getType()
1381               << FixItHint::CreateReplacement(OpLoc, ".");
1382           return ExprError();
1383         }
1384 
1385         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1386             << IDecl->getDeclName() << MemberName
1387             << BaseExpr.get()->getSourceRange();
1388         return ExprError();
1389       }
1390     }
1391 
1392     assert(ClassDeclared);
1393 
1394     // If the decl being referenced had an error, return an error for this
1395     // sub-expr without emitting another error, in order to avoid cascading
1396     // error cases.
1397     if (IV->isInvalidDecl())
1398       return ExprError();
1399 
1400     // Check whether we can reference this field.
1401     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1402       return ExprError();
1403     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1404         IV->getAccessControl() != ObjCIvarDecl::Package) {
1405       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1406       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1407         ClassOfMethodDecl =  MD->getClassInterface();
1408       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1409         // Case of a c-function declared inside an objc implementation.
1410         // FIXME: For a c-style function nested inside an objc implementation
1411         // class, there is no implementation context available, so we pass
1412         // down the context as argument to this routine. Ideally, this context
1413         // need be passed down in the AST node and somehow calculated from the
1414         // AST for a function decl.
1415         if (ObjCImplementationDecl *IMPD =
1416               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1417           ClassOfMethodDecl = IMPD->getClassInterface();
1418         else if (ObjCCategoryImplDecl* CatImplClass =
1419                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1420           ClassOfMethodDecl = CatImplClass->getClassInterface();
1421       }
1422       if (!S.getLangOpts().DebuggerSupport) {
1423         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1424           if (!declaresSameEntity(ClassDeclared, IDecl) ||
1425               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1426             S.Diag(MemberLoc, diag::err_private_ivar_access)
1427               << IV->getDeclName();
1428         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1429           // @protected
1430           S.Diag(MemberLoc, diag::err_protected_ivar_access)
1431               << IV->getDeclName();
1432       }
1433     }
1434     bool warn = true;
1435     if (S.getLangOpts().ObjCWeak) {
1436       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1437       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1438         if (UO->getOpcode() == UO_Deref)
1439           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1440 
1441       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1442         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1443           S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1444           warn = false;
1445         }
1446     }
1447     if (warn) {
1448       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1449         ObjCMethodFamily MF = MD->getMethodFamily();
1450         warn = (MF != OMF_init && MF != OMF_dealloc &&
1451                 MF != OMF_finalize &&
1452                 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1453       }
1454       if (warn)
1455         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1456     }
1457 
1458     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1459         IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1460         IsArrow);
1461 
1462     if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1463       if (!S.isUnevaluatedContext() &&
1464           !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1465         S.getCurFunction()->recordUseOfWeak(Result);
1466     }
1467 
1468     return Result;
1469   }
1470 
1471   // Objective-C property access.
1472   const ObjCObjectPointerType *OPT;
1473   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1474     if (!SS.isEmpty() && !SS.isInvalid()) {
1475       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1476           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1477       SS.clear();
1478     }
1479 
1480     // This actually uses the base as an r-value.
1481     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1482     if (BaseExpr.isInvalid())
1483       return ExprError();
1484 
1485     assert(S.Context.hasSameUnqualifiedType(BaseType,
1486                                             BaseExpr.get()->getType()));
1487 
1488     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1489 
1490     const ObjCObjectType *OT = OPT->getObjectType();
1491 
1492     // id, with and without qualifiers.
1493     if (OT->isObjCId()) {
1494       // Check protocols on qualified interfaces.
1495       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1496       if (Decl *PMDecl =
1497               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1498         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1499           // Check the use of this declaration
1500           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1501             return ExprError();
1502 
1503           return new (S.Context)
1504               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1505                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1506         }
1507 
1508         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1509           Selector SetterSel =
1510             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1511                                                    S.PP.getSelectorTable(),
1512                                                    Member);
1513           ObjCMethodDecl *SMD = nullptr;
1514           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1515                                                      /*Property id*/ nullptr,
1516                                                      SetterSel, S.Context))
1517             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1518 
1519           return new (S.Context)
1520               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1521                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1522         }
1523       }
1524       // Use of id.member can only be for a property reference. Do not
1525       // use the 'id' redefinition in this case.
1526       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1527         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1528                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1529 
1530       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1531                          << MemberName << BaseType);
1532     }
1533 
1534     // 'Class', unqualified only.
1535     if (OT->isObjCClass()) {
1536       // Only works in a method declaration (??!).
1537       ObjCMethodDecl *MD = S.getCurMethodDecl();
1538       if (!MD) {
1539         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1540           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1541                                   ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1542 
1543         goto fail;
1544       }
1545 
1546       // Also must look for a getter name which uses property syntax.
1547       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1548       ObjCInterfaceDecl *IFace = MD->getClassInterface();
1549       if (!IFace)
1550         goto fail;
1551 
1552       ObjCMethodDecl *Getter;
1553       if ((Getter = IFace->lookupClassMethod(Sel))) {
1554         // Check the use of this method.
1555         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1556           return ExprError();
1557       } else
1558         Getter = IFace->lookupPrivateMethod(Sel, false);
1559       // If we found a getter then this may be a valid dot-reference, we
1560       // will look for the matching setter, in case it is needed.
1561       Selector SetterSel =
1562         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1563                                                S.PP.getSelectorTable(),
1564                                                Member);
1565       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1566       if (!Setter) {
1567         // If this reference is in an @implementation, also check for 'private'
1568         // methods.
1569         Setter = IFace->lookupPrivateMethod(SetterSel, false);
1570       }
1571 
1572       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1573         return ExprError();
1574 
1575       if (Getter || Setter) {
1576         return new (S.Context) ObjCPropertyRefExpr(
1577             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1578             OK_ObjCProperty, MemberLoc, BaseExpr.get());
1579       }
1580 
1581       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1582         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1583                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1584 
1585       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1586                          << MemberName << BaseType);
1587     }
1588 
1589     // Normal property access.
1590     return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1591                                        MemberLoc, SourceLocation(), QualType(),
1592                                        false);
1593   }
1594 
1595   // Handle 'field access' to vectors, such as 'V.xx'.
1596   if (BaseType->isExtVectorType()) {
1597     // FIXME: this expr should store IsArrow.
1598     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1599     ExprValueKind VK;
1600     if (IsArrow)
1601       VK = VK_LValue;
1602     else {
1603       if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
1604         VK = POE->getSyntacticForm()->getValueKind();
1605       else
1606         VK = BaseExpr.get()->getValueKind();
1607     }
1608 
1609     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1610                                            Member, MemberLoc);
1611     if (ret.isNull())
1612       return ExprError();
1613     Qualifiers BaseQ =
1614         S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1615     ret = S.Context.getQualifiedType(ret, BaseQ);
1616 
1617     return new (S.Context)
1618         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1619   }
1620 
1621   // Adjust builtin-sel to the appropriate redefinition type if that's
1622   // not just a pointer to builtin-sel again.
1623   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1624       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1625     BaseExpr = S.ImpCastExprToType(
1626         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1627     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1628                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1629   }
1630 
1631   // Failure cases.
1632  fail:
1633 
1634   // Recover from dot accesses to pointers, e.g.:
1635   //   type *foo;
1636   //   foo.bar
1637   // This is actually well-formed in two cases:
1638   //   - 'type' is an Objective C type
1639   //   - 'bar' is a pseudo-destructor name which happens to refer to
1640   //     the appropriate pointer type
1641   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1642     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1643         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1644       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1645           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1646           << FixItHint::CreateReplacement(OpLoc, "->");
1647 
1648       if (S.isSFINAEContext())
1649         return ExprError();
1650 
1651       // Recurse as an -> access.
1652       IsArrow = true;
1653       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1654                               ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1655     }
1656   }
1657 
1658   // If the user is trying to apply -> or . to a function name, it's probably
1659   // because they forgot parentheses to call that function.
1660   if (S.tryToRecoverWithCall(
1661           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1662           /*complain*/ false,
1663           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1664     if (BaseExpr.isInvalid())
1665       return ExprError();
1666     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1667     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1668                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1669   }
1670 
1671   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1672     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1673 
1674   return ExprError();
1675 }
1676 
1677 /// The main callback when the parser finds something like
1678 ///   expression . [nested-name-specifier] identifier
1679 ///   expression -> [nested-name-specifier] identifier
1680 /// where 'identifier' encompasses a fairly broad spectrum of
1681 /// possibilities, including destructor and operator references.
1682 ///
1683 /// \param OpKind either tok::arrow or tok::period
1684 /// \param ObjCImpDecl the current Objective-C \@implementation
1685 ///   decl; this is an ugly hack around the fact that Objective-C
1686 ///   \@implementations aren't properly put in the context chain
1687 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1688                                        SourceLocation OpLoc,
1689                                        tok::TokenKind OpKind,
1690                                        CXXScopeSpec &SS,
1691                                        SourceLocation TemplateKWLoc,
1692                                        UnqualifiedId &Id,
1693                                        Decl *ObjCImpDecl) {
1694   if (SS.isSet() && SS.isInvalid())
1695     return ExprError();
1696 
1697   // Warn about the explicit constructor calls Microsoft extension.
1698   if (getLangOpts().MicrosoftExt &&
1699       Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1700     Diag(Id.getSourceRange().getBegin(),
1701          diag::ext_ms_explicit_constructor_call);
1702 
1703   TemplateArgumentListInfo TemplateArgsBuffer;
1704 
1705   // Decompose the name into its component parts.
1706   DeclarationNameInfo NameInfo;
1707   const TemplateArgumentListInfo *TemplateArgs;
1708   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1709                          NameInfo, TemplateArgs);
1710 
1711   DeclarationName Name = NameInfo.getName();
1712   bool IsArrow = (OpKind == tok::arrow);
1713 
1714   NamedDecl *FirstQualifierInScope
1715     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1716 
1717   // This is a postfix expression, so get rid of ParenListExprs.
1718   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1719   if (Result.isInvalid()) return ExprError();
1720   Base = Result.get();
1721 
1722   if (Base->getType()->isDependentType() || Name.isDependentName() ||
1723       isDependentScopeSpecifier(SS)) {
1724     return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1725                                     TemplateKWLoc, FirstQualifierInScope,
1726                                     NameInfo, TemplateArgs);
1727   }
1728 
1729   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1730   ExprResult Res = BuildMemberReferenceExpr(
1731       Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1732       FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1733 
1734   if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1735     CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1736 
1737   return Res;
1738 }
1739 
1740 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1741   if (isUnevaluatedContext())
1742     return;
1743 
1744   QualType ResultTy = E->getType();
1745 
1746   // Member accesses have four cases:
1747   // 1: non-array member via "->": dereferences
1748   // 2: non-array member via ".": nothing interesting happens
1749   // 3: array member access via "->": nothing interesting happens
1750   //    (this returns an array lvalue and does not actually dereference memory)
1751   // 4: array member access via ".": *adds* a layer of indirection
1752   if (ResultTy->isArrayType()) {
1753     if (!E->isArrow()) {
1754       // This might be something like:
1755       //     (*structPtr).arrayMember
1756       // which behaves roughly like:
1757       //     &(*structPtr).pointerMember
1758       // in that the apparent dereference in the base expression does not
1759       // actually happen.
1760       CheckAddressOfNoDeref(E->getBase());
1761     }
1762   } else if (E->isArrow()) {
1763     if (const auto *Ptr = dyn_cast<PointerType>(
1764             E->getBase()->getType().getDesugaredType(Context))) {
1765       if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1766         ExprEvalContexts.back().PossibleDerefs.insert(E);
1767     }
1768   }
1769 }
1770 
1771 ExprResult
1772 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1773                               SourceLocation OpLoc, const CXXScopeSpec &SS,
1774                               FieldDecl *Field, DeclAccessPair FoundDecl,
1775                               const DeclarationNameInfo &MemberNameInfo) {
1776   // x.a is an l-value if 'a' has a reference type. Otherwise:
1777   // x.a is an l-value/x-value/pr-value if the base is (and note
1778   //   that *x is always an l-value), except that if the base isn't
1779   //   an ordinary object then we must have an rvalue.
1780   ExprValueKind VK = VK_LValue;
1781   ExprObjectKind OK = OK_Ordinary;
1782   if (!IsArrow) {
1783     if (BaseExpr->getObjectKind() == OK_Ordinary)
1784       VK = BaseExpr->getValueKind();
1785     else
1786       VK = VK_PRValue;
1787   }
1788   if (VK != VK_PRValue && Field->isBitField())
1789     OK = OK_BitField;
1790 
1791   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1792   QualType MemberType = Field->getType();
1793   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1794     MemberType = Ref->getPointeeType();
1795     VK = VK_LValue;
1796   } else {
1797     QualType BaseType = BaseExpr->getType();
1798     if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1799 
1800     Qualifiers BaseQuals = BaseType.getQualifiers();
1801 
1802     // GC attributes are never picked up by members.
1803     BaseQuals.removeObjCGCAttr();
1804 
1805     // CVR attributes from the base are picked up by members,
1806     // except that 'mutable' members don't pick up 'const'.
1807     if (Field->isMutable()) BaseQuals.removeConst();
1808 
1809     Qualifiers MemberQuals =
1810         Context.getCanonicalType(MemberType).getQualifiers();
1811 
1812     assert(!MemberQuals.hasAddressSpace());
1813 
1814     Qualifiers Combined = BaseQuals + MemberQuals;
1815     if (Combined != MemberQuals)
1816       MemberType = Context.getQualifiedType(MemberType, Combined);
1817 
1818     // Pick up NoDeref from the base in case we end up using AddrOf on the
1819     // result. E.g. the expression
1820     //     &someNoDerefPtr->pointerMember
1821     // should be a noderef pointer again.
1822     if (BaseType->hasAttr(attr::NoDeref))
1823       MemberType =
1824           Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1825   }
1826 
1827   auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1828   if (!(CurMethod && CurMethod->isDefaulted()))
1829     UnusedPrivateFields.remove(Field);
1830 
1831   ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1832                                                   FoundDecl, Field);
1833   if (Base.isInvalid())
1834     return ExprError();
1835 
1836   // Build a reference to a private copy for non-static data members in
1837   // non-static member functions, privatized by OpenMP constructs.
1838   if (getLangOpts().OpenMP && IsArrow &&
1839       !CurContext->isDependentContext() &&
1840       isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1841     if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1842       return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1843                                    MemberNameInfo.getLoc());
1844     }
1845   }
1846 
1847   return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1848                          /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1849                          /*HadMultipleCandidates=*/false, MemberNameInfo,
1850                          MemberType, VK, OK);
1851 }
1852 
1853 /// Builds an implicit member access expression.  The current context
1854 /// is known to be an instance method, and the given unqualified lookup
1855 /// set is known to contain only instance members, at least one of which
1856 /// is from an appropriate type.
1857 ExprResult
1858 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1859                               SourceLocation TemplateKWLoc,
1860                               LookupResult &R,
1861                               const TemplateArgumentListInfo *TemplateArgs,
1862                               bool IsKnownInstance, const Scope *S) {
1863   assert(!R.empty() && !R.isAmbiguous());
1864 
1865   SourceLocation loc = R.getNameLoc();
1866 
1867   // If this is known to be an instance access, go ahead and build an
1868   // implicit 'this' expression now.
1869   QualType ThisTy = getCurrentThisType();
1870   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1871 
1872   Expr *baseExpr = nullptr; // null signifies implicit access
1873   if (IsKnownInstance) {
1874     SourceLocation Loc = R.getNameLoc();
1875     if (SS.getRange().isValid())
1876       Loc = SS.getRange().getBegin();
1877     baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1878   }
1879 
1880   return BuildMemberReferenceExpr(baseExpr, ThisTy,
1881                                   /*OpLoc*/ SourceLocation(),
1882                                   /*IsArrow*/ true,
1883                                   SS, TemplateKWLoc,
1884                                   /*FirstQualifierInScope*/ nullptr,
1885                                   R, TemplateArgs, S);
1886 }
1887