1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis member access expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/Overload.h"
13 #include "clang/AST/ASTLambda.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
24 
25 using namespace clang;
26 using namespace sema;
27 
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29 
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33                                      const BaseSet &Bases) {
34   auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35     return !Bases.count(Base->getCanonicalDecl());
36   };
37   return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
38 }
39 
40 enum IMAKind {
41   /// The reference is definitely not an instance member access.
42   IMA_Static,
43 
44   /// The reference may be an implicit instance member access.
45   IMA_Mixed,
46 
47   /// The reference may be to an instance member, but it might be invalid if
48   /// so, because the context is not an instance method.
49   IMA_Mixed_StaticContext,
50 
51   /// The reference may be to an instance member, but it is invalid if
52   /// so, because the context is from an unrelated class.
53   IMA_Mixed_Unrelated,
54 
55   /// The reference is definitely an implicit instance member access.
56   IMA_Instance,
57 
58   /// The reference may be to an unresolved using declaration.
59   IMA_Unresolved,
60 
61   /// The reference is a contextually-permitted abstract member reference.
62   IMA_Abstract,
63 
64   /// The reference may be to an unresolved using declaration and the
65   /// context is not an instance method.
66   IMA_Unresolved_StaticContext,
67 
68   // The reference refers to a field which is not a member of the containing
69   // class, which is allowed because we're in C++11 mode and the context is
70   // unevaluated.
71   IMA_Field_Uneval_Context,
72 
73   /// All possible referrents are instance members and the current
74   /// context is not an instance method.
75   IMA_Error_StaticContext,
76 
77   /// All possible referrents are instance members of an unrelated
78   /// class.
79   IMA_Error_Unrelated
80 };
81 
82 /// The given lookup names class member(s) and is not being used for
83 /// an address-of-member expression.  Classify the type of access
84 /// according to whether it's possible that this reference names an
85 /// instance member.  This is best-effort in dependent contexts; it is okay to
86 /// conservatively answer "yes", in which case some errors will simply
87 /// not be caught until template-instantiation.
88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89                                             const LookupResult &R) {
90   assert(!R.empty() && (*R.begin())->isCXXClassMember());
91 
92   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93 
94   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
95     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
96 
97   if (R.isUnresolvableResult())
98     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
99 
100   // Collect all the declaring classes of instance members we find.
101   bool hasNonInstance = false;
102   bool isField = false;
103   BaseSet Classes;
104   for (NamedDecl *D : R) {
105     // Look through any using decls.
106     D = D->getUnderlyingDecl();
107 
108     if (D->isCXXInstanceMember()) {
109       isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
110                  isa<IndirectFieldDecl>(D);
111 
112       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
113       Classes.insert(R->getCanonicalDecl());
114     } else
115       hasNonInstance = true;
116   }
117 
118   // If we didn't find any instance members, it can't be an implicit
119   // member reference.
120   if (Classes.empty())
121     return IMA_Static;
122 
123   // C++11 [expr.prim.general]p12:
124   //   An id-expression that denotes a non-static data member or non-static
125   //   member function of a class can only be used:
126   //   (...)
127   //   - if that id-expression denotes a non-static data member and it
128   //     appears in an unevaluated operand.
129   //
130   // This rule is specific to C++11.  However, we also permit this form
131   // in unevaluated inline assembly operands, like the operand to a SIZE.
132   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
133   assert(!AbstractInstanceResult);
134   switch (SemaRef.ExprEvalContexts.back().Context) {
135   case Sema::ExpressionEvaluationContext::Unevaluated:
136   case Sema::ExpressionEvaluationContext::UnevaluatedList:
137     if (isField && SemaRef.getLangOpts().CPlusPlus11)
138       AbstractInstanceResult = IMA_Field_Uneval_Context;
139     break;
140 
141   case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
142     AbstractInstanceResult = IMA_Abstract;
143     break;
144 
145   case Sema::ExpressionEvaluationContext::DiscardedStatement:
146   case Sema::ExpressionEvaluationContext::ConstantEvaluated:
147   case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
148   case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
149   case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
150     break;
151   }
152 
153   // If the current context is not an instance method, it can't be
154   // an implicit member reference.
155   if (isStaticContext) {
156     if (hasNonInstance)
157       return IMA_Mixed_StaticContext;
158 
159     return AbstractInstanceResult ? AbstractInstanceResult
160                                   : IMA_Error_StaticContext;
161   }
162 
163   CXXRecordDecl *contextClass;
164   if (auto *MD = dyn_cast<CXXMethodDecl>(DC))
165     contextClass = MD->getParent()->getCanonicalDecl();
166   else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
167     contextClass = RD;
168   else
169     return AbstractInstanceResult ? AbstractInstanceResult
170                                   : IMA_Error_StaticContext;
171 
172   // [class.mfct.non-static]p3:
173   // ...is used in the body of a non-static member function of class X,
174   // if name lookup (3.4.1) resolves the name in the id-expression to a
175   // non-static non-type member of some class C [...]
176   // ...if C is not X or a base class of X, the class member access expression
177   // is ill-formed.
178   if (R.getNamingClass() &&
179       contextClass->getCanonicalDecl() !=
180         R.getNamingClass()->getCanonicalDecl()) {
181     // If the naming class is not the current context, this was a qualified
182     // member name lookup, and it's sufficient to check that we have the naming
183     // class as a base class.
184     Classes.clear();
185     Classes.insert(R.getNamingClass()->getCanonicalDecl());
186   }
187 
188   // If we can prove that the current context is unrelated to all the
189   // declaring classes, it can't be an implicit member reference (in
190   // which case it's an error if any of those members are selected).
191   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
192     return hasNonInstance ? IMA_Mixed_Unrelated :
193            AbstractInstanceResult ? AbstractInstanceResult :
194                                     IMA_Error_Unrelated;
195 
196   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
197 }
198 
199 /// Diagnose a reference to a field with no object available.
200 static void diagnoseInstanceReference(Sema &SemaRef,
201                                       const CXXScopeSpec &SS,
202                                       NamedDecl *Rep,
203                                       const DeclarationNameInfo &nameInfo) {
204   SourceLocation Loc = nameInfo.getLoc();
205   SourceRange Range(Loc);
206   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
207 
208   // Look through using shadow decls and aliases.
209   Rep = Rep->getUnderlyingDecl();
210 
211   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
212   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
213   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
214   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
215 
216   bool InStaticMethod = Method && Method->isStatic();
217   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
218 
219   if (IsField && InStaticMethod)
220     // "invalid use of member 'x' in static member function"
221     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
222         << Range << nameInfo.getName();
223   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
224            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
225     // Unqualified lookup in a non-static member function found a member of an
226     // enclosing class.
227     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
228       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
229   else if (IsField)
230     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
231       << nameInfo.getName() << Range;
232   else
233     SemaRef.Diag(Loc, diag::err_member_call_without_object)
234       << Range;
235 }
236 
237 /// Builds an expression which might be an implicit member expression.
238 ExprResult Sema::BuildPossibleImplicitMemberExpr(
239     const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
240     const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
241     UnresolvedLookupExpr *AsULE) {
242   switch (ClassifyImplicitMemberAccess(*this, R)) {
243   case IMA_Instance:
244     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
245 
246   case IMA_Mixed:
247   case IMA_Mixed_Unrelated:
248   case IMA_Unresolved:
249     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
250                                    S);
251 
252   case IMA_Field_Uneval_Context:
253     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
254       << R.getLookupNameInfo().getName();
255     [[fallthrough]];
256   case IMA_Static:
257   case IMA_Abstract:
258   case IMA_Mixed_StaticContext:
259   case IMA_Unresolved_StaticContext:
260     if (TemplateArgs || TemplateKWLoc.isValid())
261       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
262     return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false);
263 
264   case IMA_Error_StaticContext:
265   case IMA_Error_Unrelated:
266     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
267                               R.getLookupNameInfo());
268     return ExprError();
269   }
270 
271   llvm_unreachable("unexpected instance member access kind");
272 }
273 
274 /// Determine whether input char is from rgba component set.
275 static bool
276 IsRGBA(char c) {
277   switch (c) {
278   case 'r':
279   case 'g':
280   case 'b':
281   case 'a':
282     return true;
283   default:
284     return false;
285   }
286 }
287 
288 // OpenCL v1.1, s6.1.7
289 // The component swizzle length must be in accordance with the acceptable
290 // vector sizes.
291 static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
292 {
293   return (len >= 1 && len <= 4) || len == 8 || len == 16;
294 }
295 
296 /// Check an ext-vector component access expression.
297 ///
298 /// VK should be set in advance to the value kind of the base
299 /// expression.
300 static QualType
301 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
302                         SourceLocation OpLoc, const IdentifierInfo *CompName,
303                         SourceLocation CompLoc) {
304   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
305   // see FIXME there.
306   //
307   // FIXME: This logic can be greatly simplified by splitting it along
308   // halving/not halving and reworking the component checking.
309   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
310 
311   // The vector accessor can't exceed the number of elements.
312   const char *compStr = CompName->getNameStart();
313 
314   // This flag determines whether or not the component is one of the four
315   // special names that indicate a subset of exactly half the elements are
316   // to be selected.
317   bool HalvingSwizzle = false;
318 
319   // This flag determines whether or not CompName has an 's' char prefix,
320   // indicating that it is a string of hex values to be used as vector indices.
321   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
322 
323   bool HasRepeated = false;
324   bool HasIndex[16] = {};
325 
326   int Idx;
327 
328   // Check that we've found one of the special components, or that the component
329   // names must come from the same set.
330   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
331       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
332     HalvingSwizzle = true;
333   } else if (!HexSwizzle &&
334              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
335     bool HasRGBA = IsRGBA(*compStr);
336     do {
337       // Ensure that xyzw and rgba components don't intermingle.
338       if (HasRGBA != IsRGBA(*compStr))
339         break;
340       if (HasIndex[Idx]) HasRepeated = true;
341       HasIndex[Idx] = true;
342       compStr++;
343     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
344 
345     // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
346     if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
347       if (S.getLangOpts().OpenCL &&
348           S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
349         const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
350         S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
351             << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
352       }
353     }
354   } else {
355     if (HexSwizzle) compStr++;
356     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
357       if (HasIndex[Idx]) HasRepeated = true;
358       HasIndex[Idx] = true;
359       compStr++;
360     }
361   }
362 
363   if (!HalvingSwizzle && *compStr) {
364     // We didn't get to the end of the string. This means the component names
365     // didn't come from the same set *or* we encountered an illegal name.
366     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
367       << StringRef(compStr, 1) << SourceRange(CompLoc);
368     return QualType();
369   }
370 
371   // Ensure no component accessor exceeds the width of the vector type it
372   // operates on.
373   if (!HalvingSwizzle) {
374     compStr = CompName->getNameStart();
375 
376     if (HexSwizzle)
377       compStr++;
378 
379     while (*compStr) {
380       if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
381         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
382           << baseType << SourceRange(CompLoc);
383         return QualType();
384       }
385     }
386   }
387 
388   // OpenCL mode requires swizzle length to be in accordance with accepted
389   // sizes. Clang however supports arbitrary lengths for other languages.
390   if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
391     unsigned SwizzleLength = CompName->getLength();
392 
393     if (HexSwizzle)
394       SwizzleLength--;
395 
396     if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
397       S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
398         << SwizzleLength << SourceRange(CompLoc);
399       return QualType();
400     }
401   }
402 
403   // The component accessor looks fine - now we need to compute the actual type.
404   // The vector type is implied by the component accessor. For example,
405   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
406   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
407   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
408   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
409                                      : CompName->getLength();
410   if (HexSwizzle)
411     CompSize--;
412 
413   if (CompSize == 1)
414     return vecType->getElementType();
415 
416   if (HasRepeated)
417     VK = VK_PRValue;
418 
419   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
420   // Now look up the TypeDefDecl from the vector type. Without this,
421   // diagostics look bad. We want extended vector types to appear built-in.
422   for (Sema::ExtVectorDeclsType::iterator
423          I = S.ExtVectorDecls.begin(S.getExternalSource()),
424          E = S.ExtVectorDecls.end();
425        I != E; ++I) {
426     if ((*I)->getUnderlyingType() == VT)
427       return S.Context.getTypedefType(*I);
428   }
429 
430   return VT; // should never get here (a typedef type should always be found).
431 }
432 
433 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
434                                                 IdentifierInfo *Member,
435                                                 const Selector &Sel,
436                                                 ASTContext &Context) {
437   if (Member)
438     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
439             Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
440       return PD;
441   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
442     return OMD;
443 
444   for (const auto *I : PDecl->protocols()) {
445     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
446                                                            Context))
447       return D;
448   }
449   return nullptr;
450 }
451 
452 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
453                                       IdentifierInfo *Member,
454                                       const Selector &Sel,
455                                       ASTContext &Context) {
456   // Check protocols on qualified interfaces.
457   Decl *GDecl = nullptr;
458   for (const auto *I : QIdTy->quals()) {
459     if (Member)
460       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
461               Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
462         GDecl = PD;
463         break;
464       }
465     // Also must look for a getter or setter name which uses property syntax.
466     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
467       GDecl = OMD;
468       break;
469     }
470   }
471   if (!GDecl) {
472     for (const auto *I : QIdTy->quals()) {
473       // Search in the protocol-qualifier list of current protocol.
474       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
475       if (GDecl)
476         return GDecl;
477     }
478   }
479   return GDecl;
480 }
481 
482 ExprResult
483 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
484                                bool IsArrow, SourceLocation OpLoc,
485                                const CXXScopeSpec &SS,
486                                SourceLocation TemplateKWLoc,
487                                NamedDecl *FirstQualifierInScope,
488                                const DeclarationNameInfo &NameInfo,
489                                const TemplateArgumentListInfo *TemplateArgs) {
490   // Even in dependent contexts, try to diagnose base expressions with
491   // obviously wrong types, e.g.:
492   //
493   // T* t;
494   // t.f;
495   //
496   // In Obj-C++, however, the above expression is valid, since it could be
497   // accessing the 'f' property if T is an Obj-C interface. The extra check
498   // allows this, while still reporting an error if T is a struct pointer.
499   if (!IsArrow) {
500     const PointerType *PT = BaseType->getAs<PointerType>();
501     if (PT && (!getLangOpts().ObjC ||
502                PT->getPointeeType()->isRecordType())) {
503       assert(BaseExpr && "cannot happen with implicit member accesses");
504       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
505         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
506       return ExprError();
507     }
508   }
509 
510   assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() ||
511          isDependentScopeSpecifier(SS) ||
512          (TemplateArgs && llvm::any_of(TemplateArgs->arguments(),
513                                        [](const TemplateArgumentLoc &Arg) {
514                                          return Arg.getArgument().isDependent();
515                                        })));
516 
517   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
518   // must have pointer type, and the accessed type is the pointee.
519   return CXXDependentScopeMemberExpr::Create(
520       Context, BaseExpr, BaseType, IsArrow, OpLoc,
521       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
522       NameInfo, TemplateArgs);
523 }
524 
525 /// We know that the given qualified member reference points only to
526 /// declarations which do not belong to the static type of the base
527 /// expression.  Diagnose the problem.
528 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
529                                              Expr *BaseExpr,
530                                              QualType BaseType,
531                                              const CXXScopeSpec &SS,
532                                              NamedDecl *rep,
533                                        const DeclarationNameInfo &nameInfo) {
534   // If this is an implicit member access, use a different set of
535   // diagnostics.
536   if (!BaseExpr)
537     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
538 
539   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
540     << SS.getRange() << rep << BaseType;
541 }
542 
543 // Check whether the declarations we found through a nested-name
544 // specifier in a member expression are actually members of the base
545 // type.  The restriction here is:
546 //
547 //   C++ [expr.ref]p2:
548 //     ... In these cases, the id-expression shall name a
549 //     member of the class or of one of its base classes.
550 //
551 // So it's perfectly legitimate for the nested-name specifier to name
552 // an unrelated class, and for us to find an overload set including
553 // decls from classes which are not superclasses, as long as the decl
554 // we actually pick through overload resolution is from a superclass.
555 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
556                                          QualType BaseType,
557                                          const CXXScopeSpec &SS,
558                                          const LookupResult &R) {
559   CXXRecordDecl *BaseRecord =
560     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
561   if (!BaseRecord) {
562     // We can't check this yet because the base type is still
563     // dependent.
564     assert(BaseType->isDependentType());
565     return false;
566   }
567 
568   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
569     // If this is an implicit member reference and we find a
570     // non-instance member, it's not an error.
571     if (!BaseExpr && !(*I)->isCXXInstanceMember())
572       return false;
573 
574     // Note that we use the DC of the decl, not the underlying decl.
575     DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
576     if (!DC->isRecord())
577       continue;
578 
579     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
580     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
581         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
582       return false;
583   }
584 
585   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
586                                    R.getRepresentativeDecl(),
587                                    R.getLookupNameInfo());
588   return true;
589 }
590 
591 namespace {
592 
593 // Callback to only accept typo corrections that are either a ValueDecl or a
594 // FunctionTemplateDecl and are declared in the current record or, for a C++
595 // classes, one of its base classes.
596 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
597 public:
598   explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
599       : Record(RTy->getDecl()) {
600     // Don't add bare keywords to the consumer since they will always fail
601     // validation by virtue of not being associated with any decls.
602     WantTypeSpecifiers = false;
603     WantExpressionKeywords = false;
604     WantCXXNamedCasts = false;
605     WantFunctionLikeCasts = false;
606     WantRemainingKeywords = false;
607   }
608 
609   bool ValidateCandidate(const TypoCorrection &candidate) override {
610     NamedDecl *ND = candidate.getCorrectionDecl();
611     // Don't accept candidates that cannot be member functions, constants,
612     // variables, or templates.
613     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
614       return false;
615 
616     // Accept candidates that occur in the current record.
617     if (Record->containsDecl(ND))
618       return true;
619 
620     if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) {
621       // Accept candidates that occur in any of the current class' base classes.
622       for (const auto &BS : RD->bases()) {
623         if (const auto *BSTy = BS.getType()->getAs<RecordType>()) {
624           if (BSTy->getDecl()->containsDecl(ND))
625             return true;
626         }
627       }
628     }
629 
630     return false;
631   }
632 
633   std::unique_ptr<CorrectionCandidateCallback> clone() override {
634     return std::make_unique<RecordMemberExprValidatorCCC>(*this);
635   }
636 
637 private:
638   const RecordDecl *const Record;
639 };
640 
641 }
642 
643 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
644                                      Expr *BaseExpr,
645                                      const RecordType *RTy,
646                                      SourceLocation OpLoc, bool IsArrow,
647                                      CXXScopeSpec &SS, bool HasTemplateArgs,
648                                      SourceLocation TemplateKWLoc,
649                                      TypoExpr *&TE) {
650   SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
651   RecordDecl *RDecl = RTy->getDecl();
652   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
653       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
654                                   diag::err_typecheck_incomplete_tag,
655                                   BaseRange))
656     return true;
657 
658   if (HasTemplateArgs || TemplateKWLoc.isValid()) {
659     // LookupTemplateName doesn't expect these both to exist simultaneously.
660     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
661 
662     bool MOUS;
663     return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
664                                       TemplateKWLoc);
665   }
666 
667   DeclContext *DC = RDecl;
668   if (SS.isSet()) {
669     // If the member name was a qualified-id, look into the
670     // nested-name-specifier.
671     DC = SemaRef.computeDeclContext(SS, false);
672 
673     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
674       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
675           << SS.getRange() << DC;
676       return true;
677     }
678 
679     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
680 
681     if (!isa<TypeDecl>(DC)) {
682       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
683           << DC << SS.getRange();
684       return true;
685     }
686   }
687 
688   // The record definition is complete, now look up the member.
689   SemaRef.LookupQualifiedName(R, DC, SS);
690 
691   if (!R.empty())
692     return false;
693 
694   DeclarationName Typo = R.getLookupName();
695   SourceLocation TypoLoc = R.getNameLoc();
696 
697   struct QueryState {
698     Sema &SemaRef;
699     DeclarationNameInfo NameInfo;
700     Sema::LookupNameKind LookupKind;
701     Sema::RedeclarationKind Redecl;
702   };
703   QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
704                   R.redeclarationKind()};
705   RecordMemberExprValidatorCCC CCC(RTy);
706   TE = SemaRef.CorrectTypoDelayed(
707       R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
708       [=, &SemaRef](const TypoCorrection &TC) {
709         if (TC) {
710           assert(!TC.isKeyword() &&
711                  "Got a keyword as a correction for a member!");
712           bool DroppedSpecifier =
713               TC.WillReplaceSpecifier() &&
714               Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
715           SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
716                                        << Typo << DC << DroppedSpecifier
717                                        << SS.getRange());
718         } else {
719           SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
720         }
721       },
722       [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
723         LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
724         R.clear(); // Ensure there's no decls lingering in the shared state.
725         R.suppressDiagnostics();
726         R.setLookupName(TC.getCorrection());
727         for (NamedDecl *ND : TC)
728           R.addDecl(ND);
729         R.resolveKind();
730         return SemaRef.BuildMemberReferenceExpr(
731             BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
732             nullptr, R, nullptr, nullptr);
733       },
734       Sema::CTK_ErrorRecovery, DC);
735 
736   return false;
737 }
738 
739 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
740                                    ExprResult &BaseExpr, bool &IsArrow,
741                                    SourceLocation OpLoc, CXXScopeSpec &SS,
742                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
743                                    SourceLocation TemplateKWLoc);
744 
745 ExprResult
746 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
747                                SourceLocation OpLoc, bool IsArrow,
748                                CXXScopeSpec &SS,
749                                SourceLocation TemplateKWLoc,
750                                NamedDecl *FirstQualifierInScope,
751                                const DeclarationNameInfo &NameInfo,
752                                const TemplateArgumentListInfo *TemplateArgs,
753                                const Scope *S,
754                                ActOnMemberAccessExtraArgs *ExtraArgs) {
755   if (BaseType->isDependentType() ||
756       (SS.isSet() && isDependentScopeSpecifier(SS)))
757     return ActOnDependentMemberExpr(Base, BaseType,
758                                     IsArrow, OpLoc,
759                                     SS, TemplateKWLoc, FirstQualifierInScope,
760                                     NameInfo, TemplateArgs);
761 
762   LookupResult R(*this, NameInfo, LookupMemberName);
763 
764   // Implicit member accesses.
765   if (!Base) {
766     TypoExpr *TE = nullptr;
767     QualType RecordTy = BaseType;
768     if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
769     if (LookupMemberExprInRecord(
770             *this, R, nullptr, RecordTy->castAs<RecordType>(), OpLoc, IsArrow,
771             SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
772       return ExprError();
773     if (TE)
774       return TE;
775 
776   // Explicit member accesses.
777   } else {
778     ExprResult BaseResult = Base;
779     ExprResult Result =
780         LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
781                          ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
782                          TemplateArgs != nullptr, TemplateKWLoc);
783 
784     if (BaseResult.isInvalid())
785       return ExprError();
786     Base = BaseResult.get();
787 
788     if (Result.isInvalid())
789       return ExprError();
790 
791     if (Result.get())
792       return Result;
793 
794     // LookupMemberExpr can modify Base, and thus change BaseType
795     BaseType = Base->getType();
796   }
797 
798   return BuildMemberReferenceExpr(Base, BaseType,
799                                   OpLoc, IsArrow, SS, TemplateKWLoc,
800                                   FirstQualifierInScope, R, TemplateArgs, S,
801                                   false, ExtraArgs);
802 }
803 
804 ExprResult
805 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
806                                                SourceLocation loc,
807                                                IndirectFieldDecl *indirectField,
808                                                DeclAccessPair foundDecl,
809                                                Expr *baseObjectExpr,
810                                                SourceLocation opLoc) {
811   // First, build the expression that refers to the base object.
812 
813   // Case 1:  the base of the indirect field is not a field.
814   VarDecl *baseVariable = indirectField->getVarDecl();
815   CXXScopeSpec EmptySS;
816   if (baseVariable) {
817     assert(baseVariable->getType()->isRecordType());
818 
819     // In principle we could have a member access expression that
820     // accesses an anonymous struct/union that's a static member of
821     // the base object's class.  However, under the current standard,
822     // static data members cannot be anonymous structs or unions.
823     // Supporting this is as easy as building a MemberExpr here.
824     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
825 
826     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
827 
828     ExprResult result
829       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
830     if (result.isInvalid()) return ExprError();
831 
832     baseObjectExpr = result.get();
833   }
834 
835   assert((baseVariable || baseObjectExpr) &&
836          "referencing anonymous struct/union without a base variable or "
837          "expression");
838 
839   // Build the implicit member references to the field of the
840   // anonymous struct/union.
841   Expr *result = baseObjectExpr;
842   IndirectFieldDecl::chain_iterator
843   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
844 
845   // Case 2: the base of the indirect field is a field and the user
846   // wrote a member expression.
847   if (!baseVariable) {
848     FieldDecl *field = cast<FieldDecl>(*FI);
849 
850     bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
851 
852     // Make a nameInfo that properly uses the anonymous name.
853     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
854 
855     // Build the first member access in the chain with full information.
856     result =
857         BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
858                                 SS, field, foundDecl, memberNameInfo)
859             .get();
860     if (!result)
861       return ExprError();
862   }
863 
864   // In all cases, we should now skip the first declaration in the chain.
865   ++FI;
866 
867   while (FI != FEnd) {
868     FieldDecl *field = cast<FieldDecl>(*FI++);
869 
870     // FIXME: these are somewhat meaningless
871     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
872     DeclAccessPair fakeFoundDecl =
873         DeclAccessPair::make(field, field->getAccess());
874 
875     result =
876         BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
877                                 (FI == FEnd ? SS : EmptySS), field,
878                                 fakeFoundDecl, memberNameInfo)
879             .get();
880   }
881 
882   return result;
883 }
884 
885 static ExprResult
886 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
887                        const CXXScopeSpec &SS,
888                        MSPropertyDecl *PD,
889                        const DeclarationNameInfo &NameInfo) {
890   // Property names are always simple identifiers and therefore never
891   // require any interesting additional storage.
892   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
893                                            S.Context.PseudoObjectTy, VK_LValue,
894                                            SS.getWithLocInContext(S.Context),
895                                            NameInfo.getLoc());
896 }
897 
898 MemberExpr *Sema::BuildMemberExpr(
899     Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
900     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
901     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
902     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
903     const TemplateArgumentListInfo *TemplateArgs) {
904   NestedNameSpecifierLoc NNS =
905       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
906   return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
907                          FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
908                          VK, OK, TemplateArgs);
909 }
910 
911 MemberExpr *Sema::BuildMemberExpr(
912     Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
913     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
914     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
915     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
916     const TemplateArgumentListInfo *TemplateArgs) {
917   assert((!IsArrow || Base->isPRValue()) &&
918          "-> base must be a pointer prvalue");
919   MemberExpr *E =
920       MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
921                          Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
922                          VK, OK, getNonOdrUseReasonInCurrentContext(Member));
923   E->setHadMultipleCandidates(HadMultipleCandidates);
924   MarkMemberReferenced(E);
925 
926   // C++ [except.spec]p17:
927   //   An exception-specification is considered to be needed when:
928   //   - in an expression the function is the unique lookup result or the
929   //     selected member of a set of overloaded functions
930   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
931     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
932       if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
933         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
934     }
935   }
936 
937   return E;
938 }
939 
940 /// Determine if the given scope is within a function-try-block handler.
941 static bool IsInFnTryBlockHandler(const Scope *S) {
942   // Walk the scope stack until finding a FnTryCatchScope, or leave the
943   // function scope. If a FnTryCatchScope is found, check whether the TryScope
944   // flag is set. If it is not, it's a function-try-block handler.
945   for (; S != S->getFnParent(); S = S->getParent()) {
946     if (S->isFnTryCatchScope())
947       return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
948   }
949   return false;
950 }
951 
952 ExprResult
953 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
954                                SourceLocation OpLoc, bool IsArrow,
955                                const CXXScopeSpec &SS,
956                                SourceLocation TemplateKWLoc,
957                                NamedDecl *FirstQualifierInScope,
958                                LookupResult &R,
959                                const TemplateArgumentListInfo *TemplateArgs,
960                                const Scope *S,
961                                bool SuppressQualifierCheck,
962                                ActOnMemberAccessExtraArgs *ExtraArgs) {
963   QualType BaseType = BaseExprType;
964   if (IsArrow) {
965     assert(BaseType->isPointerType());
966     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
967   }
968   R.setBaseObjectType(BaseType);
969 
970   // C++1z [expr.ref]p2:
971   //   For the first option (dot) the first expression shall be a glvalue [...]
972   if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) {
973     ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
974     if (Converted.isInvalid())
975       return ExprError();
976     BaseExpr = Converted.get();
977   }
978 
979   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
980   DeclarationName MemberName = MemberNameInfo.getName();
981   SourceLocation MemberLoc = MemberNameInfo.getLoc();
982 
983   if (R.isAmbiguous())
984     return ExprError();
985 
986   // [except.handle]p10: Referring to any non-static member or base class of an
987   // object in the handler for a function-try-block of a constructor or
988   // destructor for that object results in undefined behavior.
989   const auto *FD = getCurFunctionDecl();
990   if (S && BaseExpr && FD &&
991       (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
992       isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
993       IsInFnTryBlockHandler(S))
994     Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
995         << isa<CXXDestructorDecl>(FD);
996 
997   if (R.empty()) {
998     // Rederive where we looked up.
999     DeclContext *DC = (SS.isSet()
1000                        ? computeDeclContext(SS, false)
1001                        : BaseType->castAs<RecordType>()->getDecl());
1002 
1003     if (ExtraArgs) {
1004       ExprResult RetryExpr;
1005       if (!IsArrow && BaseExpr) {
1006         SFINAETrap Trap(*this, true);
1007         ParsedType ObjectType;
1008         bool MayBePseudoDestructor = false;
1009         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1010                                                  OpLoc, tok::arrow, ObjectType,
1011                                                  MayBePseudoDestructor);
1012         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1013           CXXScopeSpec TempSS(SS);
1014           RetryExpr = ActOnMemberAccessExpr(
1015               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1016               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1017         }
1018         if (Trap.hasErrorOccurred())
1019           RetryExpr = ExprError();
1020       }
1021       if (RetryExpr.isUsable()) {
1022         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1023           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1024         return RetryExpr;
1025       }
1026     }
1027 
1028     Diag(R.getNameLoc(), diag::err_no_member)
1029       << MemberName << DC
1030       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1031     return ExprError();
1032   }
1033 
1034   // Diagnose lookups that find only declarations from a non-base
1035   // type.  This is possible for either qualified lookups (which may
1036   // have been qualified with an unrelated type) or implicit member
1037   // expressions (which were found with unqualified lookup and thus
1038   // may have come from an enclosing scope).  Note that it's okay for
1039   // lookup to find declarations from a non-base type as long as those
1040   // aren't the ones picked by overload resolution.
1041   if ((SS.isSet() || !BaseExpr ||
1042        (isa<CXXThisExpr>(BaseExpr) &&
1043         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1044       !SuppressQualifierCheck &&
1045       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1046     return ExprError();
1047 
1048   // Construct an unresolved result if we in fact got an unresolved
1049   // result.
1050   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1051     // Suppress any lookup-related diagnostics; we'll do these when we
1052     // pick a member.
1053     R.suppressDiagnostics();
1054 
1055     UnresolvedMemberExpr *MemExpr
1056       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1057                                      BaseExpr, BaseExprType,
1058                                      IsArrow, OpLoc,
1059                                      SS.getWithLocInContext(Context),
1060                                      TemplateKWLoc, MemberNameInfo,
1061                                      TemplateArgs, R.begin(), R.end());
1062 
1063     return MemExpr;
1064   }
1065 
1066   assert(R.isSingleResult());
1067   DeclAccessPair FoundDecl = R.begin().getPair();
1068   NamedDecl *MemberDecl = R.getFoundDecl();
1069 
1070   // FIXME: diagnose the presence of template arguments now.
1071 
1072   // If the decl being referenced had an error, return an error for this
1073   // sub-expr without emitting another error, in order to avoid cascading
1074   // error cases.
1075   if (MemberDecl->isInvalidDecl())
1076     return ExprError();
1077 
1078   // Handle the implicit-member-access case.
1079   if (!BaseExpr) {
1080     // If this is not an instance member, convert to a non-member access.
1081     if (!MemberDecl->isCXXInstanceMember()) {
1082       // We might have a variable template specialization (or maybe one day a
1083       // member concept-id).
1084       if (TemplateArgs || TemplateKWLoc.isValid())
1085         return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs);
1086 
1087       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1088                                       FoundDecl, TemplateArgs);
1089     }
1090     SourceLocation Loc = R.getNameLoc();
1091     if (SS.getRange().isValid())
1092       Loc = SS.getRange().getBegin();
1093     BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1094   }
1095 
1096   // Check the use of this member.
1097   if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1098     return ExprError();
1099 
1100   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1101     return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1102                                    MemberNameInfo);
1103 
1104   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1105     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1106                                   MemberNameInfo);
1107 
1108   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1109     // We may have found a field within an anonymous union or struct
1110     // (C++ [class.union]).
1111     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1112                                                     FoundDecl, BaseExpr,
1113                                                     OpLoc);
1114 
1115   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1116     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1117                            FoundDecl, /*HadMultipleCandidates=*/false,
1118                            MemberNameInfo, Var->getType().getNonReferenceType(),
1119                            VK_LValue, OK_Ordinary);
1120   }
1121 
1122   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1123     ExprValueKind valueKind;
1124     QualType type;
1125     if (MemberFn->isInstance()) {
1126       valueKind = VK_PRValue;
1127       type = Context.BoundMemberTy;
1128     } else {
1129       valueKind = VK_LValue;
1130       type = MemberFn->getType();
1131     }
1132 
1133     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1134                            MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1135                            MemberNameInfo, type, valueKind, OK_Ordinary);
1136   }
1137   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1138 
1139   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1140     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1141                            FoundDecl, /*HadMultipleCandidates=*/false,
1142                            MemberNameInfo, Enum->getType(), VK_PRValue,
1143                            OK_Ordinary);
1144   }
1145 
1146   if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1147     if (!TemplateArgs) {
1148       diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc);
1149       return ExprError();
1150     }
1151 
1152     DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
1153                                           MemberNameInfo.getLoc(), *TemplateArgs);
1154     if (VDecl.isInvalid())
1155       return ExprError();
1156 
1157     // Non-dependent member, but dependent template arguments.
1158     if (!VDecl.get())
1159       return ActOnDependentMemberExpr(
1160           BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1161           FirstQualifierInScope, MemberNameInfo, TemplateArgs);
1162 
1163     VarDecl *Var = cast<VarDecl>(VDecl.get());
1164     if (!Var->getTemplateSpecializationKind())
1165       Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc);
1166 
1167     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1168                            FoundDecl, /*HadMultipleCandidates=*/false,
1169                            MemberNameInfo, Var->getType().getNonReferenceType(),
1170                            VK_LValue, OK_Ordinary, TemplateArgs);
1171   }
1172 
1173   // We found something that we didn't expect. Complain.
1174   if (isa<TypeDecl>(MemberDecl))
1175     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1176       << MemberName << BaseType << int(IsArrow);
1177   else
1178     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1179       << MemberName << BaseType << int(IsArrow);
1180 
1181   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1182     << MemberName;
1183   R.suppressDiagnostics();
1184   return ExprError();
1185 }
1186 
1187 /// Given that normal member access failed on the given expression,
1188 /// and given that the expression's type involves builtin-id or
1189 /// builtin-Class, decide whether substituting in the redefinition
1190 /// types would be profitable.  The redefinition type is whatever
1191 /// this translation unit tried to typedef to id/Class;  we store
1192 /// it to the side and then re-use it in places like this.
1193 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1194   const ObjCObjectPointerType *opty
1195     = base.get()->getType()->getAs<ObjCObjectPointerType>();
1196   if (!opty) return false;
1197 
1198   const ObjCObjectType *ty = opty->getObjectType();
1199 
1200   QualType redef;
1201   if (ty->isObjCId()) {
1202     redef = S.Context.getObjCIdRedefinitionType();
1203   } else if (ty->isObjCClass()) {
1204     redef = S.Context.getObjCClassRedefinitionType();
1205   } else {
1206     return false;
1207   }
1208 
1209   // Do the substitution as long as the redefinition type isn't just a
1210   // possibly-qualified pointer to builtin-id or builtin-Class again.
1211   opty = redef->getAs<ObjCObjectPointerType>();
1212   if (opty && !opty->getObjectType()->getInterface())
1213     return false;
1214 
1215   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1216   return true;
1217 }
1218 
1219 static bool isRecordType(QualType T) {
1220   return T->isRecordType();
1221 }
1222 static bool isPointerToRecordType(QualType T) {
1223   if (const PointerType *PT = T->getAs<PointerType>())
1224     return PT->getPointeeType()->isRecordType();
1225   return false;
1226 }
1227 
1228 /// Perform conversions on the LHS of a member access expression.
1229 ExprResult
1230 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1231   if (IsArrow && !Base->getType()->isFunctionType())
1232     return DefaultFunctionArrayLvalueConversion(Base);
1233 
1234   return CheckPlaceholderExpr(Base);
1235 }
1236 
1237 /// Look up the given member of the given non-type-dependent
1238 /// expression.  This can return in one of two ways:
1239 ///  * If it returns a sentinel null-but-valid result, the caller will
1240 ///    assume that lookup was performed and the results written into
1241 ///    the provided structure.  It will take over from there.
1242 ///  * Otherwise, the returned expression will be produced in place of
1243 ///    an ordinary member expression.
1244 ///
1245 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1246 /// fixed for ObjC++.
1247 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1248                                    ExprResult &BaseExpr, bool &IsArrow,
1249                                    SourceLocation OpLoc, CXXScopeSpec &SS,
1250                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
1251                                    SourceLocation TemplateKWLoc) {
1252   assert(BaseExpr.get() && "no base expression");
1253 
1254   // Perform default conversions.
1255   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1256   if (BaseExpr.isInvalid())
1257     return ExprError();
1258 
1259   QualType BaseType = BaseExpr.get()->getType();
1260   assert(!BaseType->isDependentType());
1261 
1262   DeclarationName MemberName = R.getLookupName();
1263   SourceLocation MemberLoc = R.getNameLoc();
1264 
1265   // For later type-checking purposes, turn arrow accesses into dot
1266   // accesses.  The only access type we support that doesn't follow
1267   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1268   // and those never use arrows, so this is unaffected.
1269   if (IsArrow) {
1270     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1271       BaseType = Ptr->getPointeeType();
1272     else if (const ObjCObjectPointerType *Ptr
1273                = BaseType->getAs<ObjCObjectPointerType>())
1274       BaseType = Ptr->getPointeeType();
1275     else if (BaseType->isRecordType()) {
1276       // Recover from arrow accesses to records, e.g.:
1277       //   struct MyRecord foo;
1278       //   foo->bar
1279       // This is actually well-formed in C++ if MyRecord has an
1280       // overloaded operator->, but that should have been dealt with
1281       // by now--or a diagnostic message already issued if a problem
1282       // was encountered while looking for the overloaded operator->.
1283       if (!S.getLangOpts().CPlusPlus) {
1284         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1285           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1286           << FixItHint::CreateReplacement(OpLoc, ".");
1287       }
1288       IsArrow = false;
1289     } else if (BaseType->isFunctionType()) {
1290       goto fail;
1291     } else {
1292       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1293         << BaseType << BaseExpr.get()->getSourceRange();
1294       return ExprError();
1295     }
1296   }
1297 
1298   // If the base type is an atomic type, this access is undefined behavior per
1299   // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1300   // about the UB and recover by converting the atomic lvalue into a non-atomic
1301   // lvalue. Because this is inherently unsafe as an atomic operation, the
1302   // warning defaults to an error.
1303   if (const auto *ATy = BaseType->getAs<AtomicType>()) {
1304     S.DiagRuntimeBehavior(OpLoc, nullptr,
1305                           S.PDiag(diag::warn_atomic_member_access));
1306     BaseType = ATy->getValueType().getUnqualifiedType();
1307     BaseExpr = ImplicitCastExpr::Create(
1308         S.Context, IsArrow ? S.Context.getPointerType(BaseType) : BaseType,
1309         CK_AtomicToNonAtomic, BaseExpr.get(), nullptr,
1310         BaseExpr.get()->getValueKind(), FPOptionsOverride());
1311   }
1312 
1313   // Handle field access to simple records.
1314   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1315     TypoExpr *TE = nullptr;
1316     if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1317                                  HasTemplateArgs, TemplateKWLoc, TE))
1318       return ExprError();
1319 
1320     // Returning valid-but-null is how we indicate to the caller that
1321     // the lookup result was filled in. If typo correction was attempted and
1322     // failed, the lookup result will have been cleared--that combined with the
1323     // valid-but-null ExprResult will trigger the appropriate diagnostics.
1324     return ExprResult(TE);
1325   }
1326 
1327   // Handle ivar access to Objective-C objects.
1328   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1329     if (!SS.isEmpty() && !SS.isInvalid()) {
1330       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1331         << 1 << SS.getScopeRep()
1332         << FixItHint::CreateRemoval(SS.getRange());
1333       SS.clear();
1334     }
1335 
1336     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1337 
1338     // There are three cases for the base type:
1339     //   - builtin id (qualified or unqualified)
1340     //   - builtin Class (qualified or unqualified)
1341     //   - an interface
1342     ObjCInterfaceDecl *IDecl = OTy->getInterface();
1343     if (!IDecl) {
1344       if (S.getLangOpts().ObjCAutoRefCount &&
1345           (OTy->isObjCId() || OTy->isObjCClass()))
1346         goto fail;
1347       // There's an implicit 'isa' ivar on all objects.
1348       // But we only actually find it this way on objects of type 'id',
1349       // apparently.
1350       if (OTy->isObjCId() && Member->isStr("isa"))
1351         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1352                                            OpLoc, S.Context.getObjCClassType());
1353       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1354         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1355                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1356       goto fail;
1357     }
1358 
1359     if (S.RequireCompleteType(OpLoc, BaseType,
1360                               diag::err_typecheck_incomplete_tag,
1361                               BaseExpr.get()))
1362       return ExprError();
1363 
1364     ObjCInterfaceDecl *ClassDeclared = nullptr;
1365     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1366 
1367     if (!IV) {
1368       // Attempt to correct for typos in ivar names.
1369       DeclFilterCCC<ObjCIvarDecl> Validator{};
1370       Validator.IsObjCIvarLookup = IsArrow;
1371       if (TypoCorrection Corrected = S.CorrectTypo(
1372               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1373               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1374         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1375         S.diagnoseTypo(
1376             Corrected,
1377             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1378                 << IDecl->getDeclName() << MemberName);
1379 
1380         // Figure out the class that declares the ivar.
1381         assert(!ClassDeclared);
1382 
1383         Decl *D = cast<Decl>(IV->getDeclContext());
1384         if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1385           D = Category->getClassInterface();
1386 
1387         if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1388           ClassDeclared = Implementation->getClassInterface();
1389         else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1390           ClassDeclared = Interface;
1391 
1392         assert(ClassDeclared && "cannot query interface");
1393       } else {
1394         if (IsArrow &&
1395             IDecl->FindPropertyDeclaration(
1396                 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1397           S.Diag(MemberLoc, diag::err_property_found_suggest)
1398               << Member << BaseExpr.get()->getType()
1399               << FixItHint::CreateReplacement(OpLoc, ".");
1400           return ExprError();
1401         }
1402 
1403         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1404             << IDecl->getDeclName() << MemberName
1405             << BaseExpr.get()->getSourceRange();
1406         return ExprError();
1407       }
1408     }
1409 
1410     assert(ClassDeclared);
1411 
1412     // If the decl being referenced had an error, return an error for this
1413     // sub-expr without emitting another error, in order to avoid cascading
1414     // error cases.
1415     if (IV->isInvalidDecl())
1416       return ExprError();
1417 
1418     // Check whether we can reference this field.
1419     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1420       return ExprError();
1421     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1422         IV->getAccessControl() != ObjCIvarDecl::Package) {
1423       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1424       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1425         ClassOfMethodDecl =  MD->getClassInterface();
1426       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1427         // Case of a c-function declared inside an objc implementation.
1428         // FIXME: For a c-style function nested inside an objc implementation
1429         // class, there is no implementation context available, so we pass
1430         // down the context as argument to this routine. Ideally, this context
1431         // need be passed down in the AST node and somehow calculated from the
1432         // AST for a function decl.
1433         if (ObjCImplementationDecl *IMPD =
1434               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1435           ClassOfMethodDecl = IMPD->getClassInterface();
1436         else if (ObjCCategoryImplDecl* CatImplClass =
1437                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1438           ClassOfMethodDecl = CatImplClass->getClassInterface();
1439       }
1440       if (!S.getLangOpts().DebuggerSupport) {
1441         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1442           if (!declaresSameEntity(ClassDeclared, IDecl) ||
1443               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1444             S.Diag(MemberLoc, diag::err_private_ivar_access)
1445               << IV->getDeclName();
1446         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1447           // @protected
1448           S.Diag(MemberLoc, diag::err_protected_ivar_access)
1449               << IV->getDeclName();
1450       }
1451     }
1452     bool warn = true;
1453     if (S.getLangOpts().ObjCWeak) {
1454       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1455       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1456         if (UO->getOpcode() == UO_Deref)
1457           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1458 
1459       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1460         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1461           S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1462           warn = false;
1463         }
1464     }
1465     if (warn) {
1466       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1467         ObjCMethodFamily MF = MD->getMethodFamily();
1468         warn = (MF != OMF_init && MF != OMF_dealloc &&
1469                 MF != OMF_finalize &&
1470                 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1471       }
1472       if (warn)
1473         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1474     }
1475 
1476     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1477         IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1478         IsArrow);
1479 
1480     if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1481       if (!S.isUnevaluatedContext() &&
1482           !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1483         S.getCurFunction()->recordUseOfWeak(Result);
1484     }
1485 
1486     return Result;
1487   }
1488 
1489   // Objective-C property access.
1490   const ObjCObjectPointerType *OPT;
1491   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1492     if (!SS.isEmpty() && !SS.isInvalid()) {
1493       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1494           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1495       SS.clear();
1496     }
1497 
1498     // This actually uses the base as an r-value.
1499     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1500     if (BaseExpr.isInvalid())
1501       return ExprError();
1502 
1503     assert(S.Context.hasSameUnqualifiedType(BaseType,
1504                                             BaseExpr.get()->getType()));
1505 
1506     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1507 
1508     const ObjCObjectType *OT = OPT->getObjectType();
1509 
1510     // id, with and without qualifiers.
1511     if (OT->isObjCId()) {
1512       // Check protocols on qualified interfaces.
1513       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1514       if (Decl *PMDecl =
1515               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1516         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1517           // Check the use of this declaration
1518           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1519             return ExprError();
1520 
1521           return new (S.Context)
1522               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1523                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1524         }
1525 
1526         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1527           Selector SetterSel =
1528             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1529                                                    S.PP.getSelectorTable(),
1530                                                    Member);
1531           ObjCMethodDecl *SMD = nullptr;
1532           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1533                                                      /*Property id*/ nullptr,
1534                                                      SetterSel, S.Context))
1535             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1536 
1537           return new (S.Context)
1538               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1539                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1540         }
1541       }
1542       // Use of id.member can only be for a property reference. Do not
1543       // use the 'id' redefinition in this case.
1544       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1545         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1546                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1547 
1548       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1549                          << MemberName << BaseType);
1550     }
1551 
1552     // 'Class', unqualified only.
1553     if (OT->isObjCClass()) {
1554       // Only works in a method declaration (??!).
1555       ObjCMethodDecl *MD = S.getCurMethodDecl();
1556       if (!MD) {
1557         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1558           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1559                                   ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1560 
1561         goto fail;
1562       }
1563 
1564       // Also must look for a getter name which uses property syntax.
1565       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1566       ObjCInterfaceDecl *IFace = MD->getClassInterface();
1567       if (!IFace)
1568         goto fail;
1569 
1570       ObjCMethodDecl *Getter;
1571       if ((Getter = IFace->lookupClassMethod(Sel))) {
1572         // Check the use of this method.
1573         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1574           return ExprError();
1575       } else
1576         Getter = IFace->lookupPrivateMethod(Sel, false);
1577       // If we found a getter then this may be a valid dot-reference, we
1578       // will look for the matching setter, in case it is needed.
1579       Selector SetterSel =
1580         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1581                                                S.PP.getSelectorTable(),
1582                                                Member);
1583       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1584       if (!Setter) {
1585         // If this reference is in an @implementation, also check for 'private'
1586         // methods.
1587         Setter = IFace->lookupPrivateMethod(SetterSel, false);
1588       }
1589 
1590       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1591         return ExprError();
1592 
1593       if (Getter || Setter) {
1594         return new (S.Context) ObjCPropertyRefExpr(
1595             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1596             OK_ObjCProperty, MemberLoc, BaseExpr.get());
1597       }
1598 
1599       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1600         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1601                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1602 
1603       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1604                          << MemberName << BaseType);
1605     }
1606 
1607     // Normal property access.
1608     return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1609                                        MemberLoc, SourceLocation(), QualType(),
1610                                        false);
1611   }
1612 
1613   if (BaseType->isExtVectorBoolType()) {
1614     // We disallow element access for ext_vector_type bool.  There is no way to
1615     // materialize a reference to a vector element as a pointer (each element is
1616     // one bit in the vector).
1617     S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal)
1618         << MemberName
1619         << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange());
1620     return ExprError();
1621   }
1622 
1623   // Handle 'field access' to vectors, such as 'V.xx'.
1624   if (BaseType->isExtVectorType()) {
1625     // FIXME: this expr should store IsArrow.
1626     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1627     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1628     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1629                                            Member, MemberLoc);
1630     if (ret.isNull())
1631       return ExprError();
1632     Qualifiers BaseQ =
1633         S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1634     ret = S.Context.getQualifiedType(ret, BaseQ);
1635 
1636     return new (S.Context)
1637         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1638   }
1639 
1640   // Adjust builtin-sel to the appropriate redefinition type if that's
1641   // not just a pointer to builtin-sel again.
1642   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1643       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1644     BaseExpr = S.ImpCastExprToType(
1645         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1646     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1647                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1648   }
1649 
1650   // Failure cases.
1651  fail:
1652 
1653   // Recover from dot accesses to pointers, e.g.:
1654   //   type *foo;
1655   //   foo.bar
1656   // This is actually well-formed in two cases:
1657   //   - 'type' is an Objective C type
1658   //   - 'bar' is a pseudo-destructor name which happens to refer to
1659   //     the appropriate pointer type
1660   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1661     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1662         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1663       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1664           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1665           << FixItHint::CreateReplacement(OpLoc, "->");
1666 
1667       if (S.isSFINAEContext())
1668         return ExprError();
1669 
1670       // Recurse as an -> access.
1671       IsArrow = true;
1672       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1673                               ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1674     }
1675   }
1676 
1677   // If the user is trying to apply -> or . to a function name, it's probably
1678   // because they forgot parentheses to call that function.
1679   if (S.tryToRecoverWithCall(
1680           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1681           /*complain*/ false,
1682           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1683     if (BaseExpr.isInvalid())
1684       return ExprError();
1685     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1686     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1687                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1688   }
1689 
1690   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1691     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1692 
1693   return ExprError();
1694 }
1695 
1696 /// The main callback when the parser finds something like
1697 ///   expression . [nested-name-specifier] identifier
1698 ///   expression -> [nested-name-specifier] identifier
1699 /// where 'identifier' encompasses a fairly broad spectrum of
1700 /// possibilities, including destructor and operator references.
1701 ///
1702 /// \param OpKind either tok::arrow or tok::period
1703 /// \param ObjCImpDecl the current Objective-C \@implementation
1704 ///   decl; this is an ugly hack around the fact that Objective-C
1705 ///   \@implementations aren't properly put in the context chain
1706 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1707                                        SourceLocation OpLoc,
1708                                        tok::TokenKind OpKind,
1709                                        CXXScopeSpec &SS,
1710                                        SourceLocation TemplateKWLoc,
1711                                        UnqualifiedId &Id,
1712                                        Decl *ObjCImpDecl) {
1713   if (SS.isSet() && SS.isInvalid())
1714     return ExprError();
1715 
1716   // Warn about the explicit constructor calls Microsoft extension.
1717   if (getLangOpts().MicrosoftExt &&
1718       Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1719     Diag(Id.getSourceRange().getBegin(),
1720          diag::ext_ms_explicit_constructor_call);
1721 
1722   TemplateArgumentListInfo TemplateArgsBuffer;
1723 
1724   // Decompose the name into its component parts.
1725   DeclarationNameInfo NameInfo;
1726   const TemplateArgumentListInfo *TemplateArgs;
1727   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1728                          NameInfo, TemplateArgs);
1729 
1730   DeclarationName Name = NameInfo.getName();
1731   bool IsArrow = (OpKind == tok::arrow);
1732 
1733   if (getLangOpts().HLSL && IsArrow)
1734     return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2);
1735 
1736   NamedDecl *FirstQualifierInScope
1737     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1738 
1739   // This is a postfix expression, so get rid of ParenListExprs.
1740   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1741   if (Result.isInvalid()) return ExprError();
1742   Base = Result.get();
1743 
1744   if (Base->getType()->isDependentType() || Name.isDependentName() ||
1745       isDependentScopeSpecifier(SS)) {
1746     return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1747                                     TemplateKWLoc, FirstQualifierInScope,
1748                                     NameInfo, TemplateArgs);
1749   }
1750 
1751   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1752   ExprResult Res = BuildMemberReferenceExpr(
1753       Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1754       FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1755 
1756   if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1757     CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1758 
1759   return Res;
1760 }
1761 
1762 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1763   if (isUnevaluatedContext())
1764     return;
1765 
1766   QualType ResultTy = E->getType();
1767 
1768   // Member accesses have four cases:
1769   // 1: non-array member via "->": dereferences
1770   // 2: non-array member via ".": nothing interesting happens
1771   // 3: array member access via "->": nothing interesting happens
1772   //    (this returns an array lvalue and does not actually dereference memory)
1773   // 4: array member access via ".": *adds* a layer of indirection
1774   if (ResultTy->isArrayType()) {
1775     if (!E->isArrow()) {
1776       // This might be something like:
1777       //     (*structPtr).arrayMember
1778       // which behaves roughly like:
1779       //     &(*structPtr).pointerMember
1780       // in that the apparent dereference in the base expression does not
1781       // actually happen.
1782       CheckAddressOfNoDeref(E->getBase());
1783     }
1784   } else if (E->isArrow()) {
1785     if (const auto *Ptr = dyn_cast<PointerType>(
1786             E->getBase()->getType().getDesugaredType(Context))) {
1787       if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1788         ExprEvalContexts.back().PossibleDerefs.insert(E);
1789     }
1790   }
1791 }
1792 
1793 ExprResult
1794 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1795                               SourceLocation OpLoc, const CXXScopeSpec &SS,
1796                               FieldDecl *Field, DeclAccessPair FoundDecl,
1797                               const DeclarationNameInfo &MemberNameInfo) {
1798   // x.a is an l-value if 'a' has a reference type. Otherwise:
1799   // x.a is an l-value/x-value/pr-value if the base is (and note
1800   //   that *x is always an l-value), except that if the base isn't
1801   //   an ordinary object then we must have an rvalue.
1802   ExprValueKind VK = VK_LValue;
1803   ExprObjectKind OK = OK_Ordinary;
1804   if (!IsArrow) {
1805     if (BaseExpr->getObjectKind() == OK_Ordinary)
1806       VK = BaseExpr->getValueKind();
1807     else
1808       VK = VK_PRValue;
1809   }
1810   if (VK != VK_PRValue && Field->isBitField())
1811     OK = OK_BitField;
1812 
1813   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1814   QualType MemberType = Field->getType();
1815   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1816     MemberType = Ref->getPointeeType();
1817     VK = VK_LValue;
1818   } else {
1819     QualType BaseType = BaseExpr->getType();
1820     if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1821 
1822     Qualifiers BaseQuals = BaseType.getQualifiers();
1823 
1824     // GC attributes are never picked up by members.
1825     BaseQuals.removeObjCGCAttr();
1826 
1827     // CVR attributes from the base are picked up by members,
1828     // except that 'mutable' members don't pick up 'const'.
1829     if (Field->isMutable()) BaseQuals.removeConst();
1830 
1831     Qualifiers MemberQuals =
1832         Context.getCanonicalType(MemberType).getQualifiers();
1833 
1834     assert(!MemberQuals.hasAddressSpace());
1835 
1836     Qualifiers Combined = BaseQuals + MemberQuals;
1837     if (Combined != MemberQuals)
1838       MemberType = Context.getQualifiedType(MemberType, Combined);
1839 
1840     // Pick up NoDeref from the base in case we end up using AddrOf on the
1841     // result. E.g. the expression
1842     //     &someNoDerefPtr->pointerMember
1843     // should be a noderef pointer again.
1844     if (BaseType->hasAttr(attr::NoDeref))
1845       MemberType =
1846           Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1847   }
1848 
1849   auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1850   if (!(CurMethod && CurMethod->isDefaulted()))
1851     UnusedPrivateFields.remove(Field);
1852 
1853   ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1854                                                   FoundDecl, Field);
1855   if (Base.isInvalid())
1856     return ExprError();
1857 
1858   // Build a reference to a private copy for non-static data members in
1859   // non-static member functions, privatized by OpenMP constructs.
1860   if (getLangOpts().OpenMP && IsArrow &&
1861       !CurContext->isDependentContext() &&
1862       isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1863     if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1864       return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1865                                    MemberNameInfo.getLoc());
1866     }
1867   }
1868 
1869   return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1870                          /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1871                          /*HadMultipleCandidates=*/false, MemberNameInfo,
1872                          MemberType, VK, OK);
1873 }
1874 
1875 /// Builds an implicit member access expression.  The current context
1876 /// is known to be an instance method, and the given unqualified lookup
1877 /// set is known to contain only instance members, at least one of which
1878 /// is from an appropriate type.
1879 ExprResult
1880 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1881                               SourceLocation TemplateKWLoc,
1882                               LookupResult &R,
1883                               const TemplateArgumentListInfo *TemplateArgs,
1884                               bool IsKnownInstance, const Scope *S) {
1885   assert(!R.empty() && !R.isAmbiguous());
1886 
1887   SourceLocation loc = R.getNameLoc();
1888 
1889   // If this is known to be an instance access, go ahead and build an
1890   // implicit 'this' expression now.
1891   QualType ThisTy = getCurrentThisType();
1892   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1893 
1894   Expr *baseExpr = nullptr; // null signifies implicit access
1895   if (IsKnownInstance) {
1896     SourceLocation Loc = R.getNameLoc();
1897     if (SS.getRange().isValid())
1898       Loc = SS.getRange().getBegin();
1899     baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1900     if (getLangOpts().HLSL && ThisTy.getTypePtr()->isPointerType()) {
1901       ThisTy = ThisTy.getTypePtr()->getPointeeType();
1902       return BuildMemberReferenceExpr(baseExpr, ThisTy,
1903                                       /*OpLoc*/ SourceLocation(),
1904                                       /*IsArrow*/ false, SS, TemplateKWLoc,
1905                                       /*FirstQualifierInScope*/ nullptr, R,
1906                                       TemplateArgs, S);
1907     }
1908   }
1909 
1910   return BuildMemberReferenceExpr(baseExpr, ThisTy,
1911                                   /*OpLoc*/ SourceLocation(),
1912                                   /*IsArrow*/ true,
1913                                   SS, TemplateKWLoc,
1914                                   /*FirstQualifierInScope*/ nullptr,
1915                                   R, TemplateArgs, S);
1916 }
1917