1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   // Ignore all inner captured regions.
70   unsigned CurScopeIndex = FunctionScopes.size() - 1;
71   while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72                                   FunctionScopes[CurScopeIndex]))
73     --CurScopeIndex;
74   assert(
75       isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76       "The function on the top of sema's function-info stack must be a lambda");
77 
78   // If VarToCapture is null, we are attempting to capture 'this'.
79   const bool IsCapturingThis = !VarToCapture;
80   const bool IsCapturingVariable = !IsCapturingThis;
81 
82   // Start with the current lambda at the top of the stack (highest index).
83   DeclContext *EnclosingDC =
84       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86   do {
87     const clang::sema::LambdaScopeInfo *LSI =
88         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89     // IF we have climbed down to an intervening enclosing lambda that contains
90     // the variable declaration - it obviously can/must not capture the
91     // variable.
92     // Since its enclosing DC is dependent, all the lambdas between it and the
93     // innermost nested lambda are dependent (otherwise we wouldn't have
94     // arrived here) - so we don't yet have a lambda that can capture the
95     // variable.
96     if (IsCapturingVariable &&
97         VarToCapture->getDeclContext()->Equals(EnclosingDC))
98       return NoLambdaIsCaptureReady;
99 
100     // For an enclosing lambda to be capture ready for an entity, all
101     // intervening lambda's have to be able to capture that entity. If even
102     // one of the intervening lambda's is not capable of capturing the entity
103     // then no enclosing lambda can ever capture that entity.
104     // For e.g.
105     // const int x = 10;
106     // [=](auto a) {    #1
107     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
108     //    [=](auto c) { #3
109     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
110     //    }; }; };
111     // If they do not have a default implicit capture, check to see
112     // if the entity has already been explicitly captured.
113     // If even a single dependent enclosing lambda lacks the capability
114     // to ever capture this variable, there is no further enclosing
115     // non-dependent lambda that can capture this variable.
116     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118         return NoLambdaIsCaptureReady;
119       if (IsCapturingThis && !LSI->isCXXThisCaptured())
120         return NoLambdaIsCaptureReady;
121     }
122     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124     assert(CurScopeIndex);
125     --CurScopeIndex;
126   } while (!EnclosingDC->isTranslationUnit() &&
127            EnclosingDC->isDependentContext() &&
128            isLambdaCallOperator(EnclosingDC));
129 
130   assert(CurScopeIndex < (FunctionScopes.size() - 1));
131   // If the enclosingDC is not dependent, then the immediately nested lambda
132   // (one index above) is capture-ready.
133   if (!EnclosingDC->isDependentContext())
134     return CurScopeIndex + 1;
135   return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 ///     - climb down the stack (i.e. starting from the innermost and examining
150 ///       each outer lambda step by step) checking if each enclosing
151 ///       lambda can either implicitly or explicitly capture the variable.
152 ///       Record the first such lambda that is enclosed in a non-dependent
153 ///       context. If no such lambda currently exists return failure.
154 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 ///  capture the variable by checking all its enclosing lambdas:
156 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
157 ///       identified above in 'a' can also capture the variable (this is done
158 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
159 ///       'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable.  If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175     VarDecl *VarToCapture, Sema &S) {
176 
177   const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179   const Optional<unsigned> OptionalStackIndex =
180       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181                                                         VarToCapture);
182   if (!OptionalStackIndex)
183     return NoLambdaIsCaptureCapable;
184 
185   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187           S.getCurGenericLambda()) &&
188          "The capture ready lambda for a potential capture can only be the "
189          "current lambda if it is a generic lambda");
190 
191   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194   // If VarToCapture is null, we are attempting to capture 'this'
195   const bool IsCapturingThis = !VarToCapture;
196   const bool IsCapturingVariable = !IsCapturingThis;
197 
198   if (IsCapturingVariable) {
199     // Check if the capture-ready lambda can truly capture the variable, by
200     // checking whether all enclosing lambdas of the capture-ready lambda allow
201     // the capture - i.e. make sure it is capture-capable.
202     QualType CaptureType, DeclRefType;
203     const bool CanCaptureVariable =
204         !S.tryCaptureVariable(VarToCapture,
205                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
206                               clang::Sema::TryCapture_Implicit,
207                               /*EllipsisLoc*/ SourceLocation(),
208                               /*BuildAndDiagnose*/ false, CaptureType,
209                               DeclRefType, &IndexOfCaptureReadyLambda);
210     if (!CanCaptureVariable)
211       return NoLambdaIsCaptureCapable;
212   } else {
213     // Check if the capture-ready lambda can truly capture 'this' by checking
214     // whether all enclosing lambdas of the capture-ready lambda can capture
215     // 'this'.
216     const bool CanCaptureThis =
217         !S.CheckCXXThisCapture(
218              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220              &IndexOfCaptureReadyLambda);
221     if (!CanCaptureThis)
222       return NoLambdaIsCaptureCapable;
223   }
224   return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229   if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230     LSI->GLTemplateParameterList = TemplateParameterList::Create(
231         SemaRef.Context,
232         /*Template kw loc*/ SourceLocation(),
233         /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234         LSI->TemplateParams,
235         /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236         nullptr);
237   }
238   return LSI->GLTemplateParameterList;
239 }
240 
241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
242                                              TypeSourceInfo *Info,
243                                              bool KnownDependent,
244                                              LambdaCaptureDefault CaptureDefault) {
245   DeclContext *DC = CurContext;
246   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247     DC = DC->getParent();
248   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249                                                                *this);
250   // Start constructing the lambda class.
251   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252                                                      IntroducerRange.getBegin(),
253                                                      KnownDependent,
254                                                      IsGenericLambda,
255                                                      CaptureDefault);
256   DC->addDecl(Class);
257 
258   return Class;
259 }
260 
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
263 static bool isInInlineFunction(const DeclContext *DC) {
264   while (!DC->isFileContext()) {
265     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266       if (FD->isInlined())
267         return true;
268 
269     DC = DC->getLexicalParent();
270   }
271 
272   return false;
273 }
274 
275 std::tuple<MangleNumberingContext *, Decl *>
276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277   // Compute the context for allocating mangling numbers in the current
278   // expression, if the ABI requires them.
279   Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280 
281   enum ContextKind {
282     Normal,
283     DefaultArgument,
284     DataMember,
285     StaticDataMember,
286     InlineVariable,
287     VariableTemplate
288   } Kind = Normal;
289 
290   // Default arguments of member function parameters that appear in a class
291   // definition, as well as the initializers of data members, receive special
292   // treatment. Identify them.
293   if (ManglingContextDecl) {
294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295       if (const DeclContext *LexicalDC
296           = Param->getDeclContext()->getLexicalParent())
297         if (LexicalDC->isRecord())
298           Kind = DefaultArgument;
299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300       if (Var->getDeclContext()->isRecord())
301         Kind = StaticDataMember;
302       else if (Var->getMostRecentDecl()->isInline())
303         Kind = InlineVariable;
304       else if (Var->getDescribedVarTemplate())
305         Kind = VariableTemplate;
306       else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307         if (!VTS->isExplicitSpecialization())
308           Kind = VariableTemplate;
309       }
310     } else if (isa<FieldDecl>(ManglingContextDecl)) {
311       Kind = DataMember;
312     }
313   }
314 
315   // Itanium ABI [5.1.7]:
316   //   In the following contexts [...] the one-definition rule requires closure
317   //   types in different translation units to "correspond":
318   bool IsInNonspecializedTemplate =
319       inTemplateInstantiation() || CurContext->isDependentContext();
320   switch (Kind) {
321   case Normal: {
322     //  -- the bodies of non-exported nonspecialized template functions
323     //  -- the bodies of inline functions
324     if ((IsInNonspecializedTemplate &&
325          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326         isInInlineFunction(CurContext)) {
327       while (auto *CD = dyn_cast<CapturedDecl>(DC))
328         DC = CD->getParent();
329       return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330     }
331 
332     return std::make_tuple(nullptr, nullptr);
333   }
334 
335   case StaticDataMember:
336     //  -- the initializers of nonspecialized static members of template classes
337     if (!IsInNonspecializedTemplate)
338       return std::make_tuple(nullptr, ManglingContextDecl);
339     // Fall through to get the current context.
340     LLVM_FALLTHROUGH;
341 
342   case DataMember:
343     //  -- the in-class initializers of class members
344   case DefaultArgument:
345     //  -- default arguments appearing in class definitions
346   case InlineVariable:
347     //  -- the initializers of inline variables
348   case VariableTemplate:
349     //  -- the initializers of templated variables
350     return std::make_tuple(
351         &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352                                           ManglingContextDecl),
353         ManglingContextDecl);
354   }
355 
356   llvm_unreachable("unexpected context");
357 }
358 
359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
360                                            SourceRange IntroducerRange,
361                                            TypeSourceInfo *MethodTypeInfo,
362                                            SourceLocation EndLoc,
363                                            ArrayRef<ParmVarDecl *> Params,
364                                            ConstexprSpecKind ConstexprKind,
365                                            Expr *TrailingRequiresClause) {
366   QualType MethodType = MethodTypeInfo->getType();
367   TemplateParameterList *TemplateParams =
368       getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369   // If a lambda appears in a dependent context or is a generic lambda (has
370   // template parameters) and has an 'auto' return type, deduce it to a
371   // dependent type.
372   if (Class->isDependentContext() || TemplateParams) {
373     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374     QualType Result = FPT->getReturnType();
375     if (Result->isUndeducedType()) {
376       Result = SubstAutoType(Result, Context.DependentTy);
377       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378                                            FPT->getExtProtoInfo());
379     }
380   }
381 
382   // C++11 [expr.prim.lambda]p5:
383   //   The closure type for a lambda-expression has a public inline function
384   //   call operator (13.5.4) whose parameters and return type are described by
385   //   the lambda-expression's parameter-declaration-clause and
386   //   trailing-return-type respectively.
387   DeclarationName MethodName
388     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389   DeclarationNameLoc MethodNameLoc;
390   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
391     = IntroducerRange.getBegin().getRawEncoding();
392   MethodNameLoc.CXXOperatorName.EndOpNameLoc
393     = IntroducerRange.getEnd().getRawEncoding();
394   CXXMethodDecl *Method = CXXMethodDecl::Create(
395       Context, Class, EndLoc,
396       DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
397                           MethodNameLoc),
398       MethodType, MethodTypeInfo, SC_None,
399       /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
400   Method->setAccess(AS_public);
401   if (!TemplateParams)
402     Class->addDecl(Method);
403 
404   // Temporarily set the lexical declaration context to the current
405   // context, so that the Scope stack matches the lexical nesting.
406   Method->setLexicalDeclContext(CurContext);
407   // Create a function template if we have a template parameter list
408   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
409             FunctionTemplateDecl::Create(Context, Class,
410                                          Method->getLocation(), MethodName,
411                                          TemplateParams,
412                                          Method) : nullptr;
413   if (TemplateMethod) {
414     TemplateMethod->setAccess(AS_public);
415     Method->setDescribedFunctionTemplate(TemplateMethod);
416     Class->addDecl(TemplateMethod);
417     TemplateMethod->setLexicalDeclContext(CurContext);
418   }
419 
420   // Add parameters.
421   if (!Params.empty()) {
422     Method->setParams(Params);
423     CheckParmsForFunctionDef(Params,
424                              /*CheckParameterNames=*/false);
425 
426     for (auto P : Method->parameters())
427       P->setOwningFunction(Method);
428   }
429 
430   return Method;
431 }
432 
433 void Sema::handleLambdaNumbering(
434     CXXRecordDecl *Class, CXXMethodDecl *Method,
435     Optional<std::tuple<unsigned, bool, Decl *>> Mangling) {
436   if (Mangling) {
437     unsigned ManglingNumber;
438     bool HasKnownInternalLinkage;
439     Decl *ManglingContextDecl;
440     std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) =
441         Mangling.getValue();
442     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
443                              HasKnownInternalLinkage);
444     return;
445   }
446 
447   auto getMangleNumberingContext =
448       [this](CXXRecordDecl *Class,
449              Decl *ManglingContextDecl) -> MangleNumberingContext * {
450     // Get mangle numbering context if there's any extra decl context.
451     if (ManglingContextDecl)
452       return &Context.getManglingNumberContext(
453           ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
454     // Otherwise, from that lambda's decl context.
455     auto DC = Class->getDeclContext();
456     while (auto *CD = dyn_cast<CapturedDecl>(DC))
457       DC = CD->getParent();
458     return &Context.getManglingNumberContext(DC);
459   };
460 
461   MangleNumberingContext *MCtx;
462   Decl *ManglingContextDecl;
463   std::tie(MCtx, ManglingContextDecl) =
464       getCurrentMangleNumberContext(Class->getDeclContext());
465   bool HasKnownInternalLinkage = false;
466   if (!MCtx && getLangOpts().CUDA) {
467     // Force lambda numbering in CUDA/HIP as we need to name lambdas following
468     // ODR. Both device- and host-compilation need to have a consistent naming
469     // on kernel functions. As lambdas are potential part of these `__global__`
470     // function names, they needs numbering following ODR.
471     MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
472     assert(MCtx && "Retrieving mangle numbering context failed!");
473     HasKnownInternalLinkage = true;
474   }
475   if (MCtx) {
476     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
477     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
478                              HasKnownInternalLinkage);
479   }
480 }
481 
482 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
483                                         CXXMethodDecl *CallOperator,
484                                         SourceRange IntroducerRange,
485                                         LambdaCaptureDefault CaptureDefault,
486                                         SourceLocation CaptureDefaultLoc,
487                                         bool ExplicitParams,
488                                         bool ExplicitResultType,
489                                         bool Mutable) {
490   LSI->CallOperator = CallOperator;
491   CXXRecordDecl *LambdaClass = CallOperator->getParent();
492   LSI->Lambda = LambdaClass;
493   if (CaptureDefault == LCD_ByCopy)
494     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
495   else if (CaptureDefault == LCD_ByRef)
496     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
497   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
498   LSI->IntroducerRange = IntroducerRange;
499   LSI->ExplicitParams = ExplicitParams;
500   LSI->Mutable = Mutable;
501 
502   if (ExplicitResultType) {
503     LSI->ReturnType = CallOperator->getReturnType();
504 
505     if (!LSI->ReturnType->isDependentType() &&
506         !LSI->ReturnType->isVoidType()) {
507       if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
508                               diag::err_lambda_incomplete_result)) {
509         // Do nothing.
510       }
511     }
512   } else {
513     LSI->HasImplicitReturnType = true;
514   }
515 }
516 
517 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
518   LSI->finishedExplicitCaptures();
519 }
520 
521 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
522                                                     ArrayRef<NamedDecl *> TParams,
523                                                     SourceLocation RAngleLoc) {
524   LambdaScopeInfo *LSI = getCurLambda();
525   assert(LSI && "Expected a lambda scope");
526   assert(LSI->NumExplicitTemplateParams == 0 &&
527          "Already acted on explicit template parameters");
528   assert(LSI->TemplateParams.empty() &&
529          "Explicit template parameters should come "
530          "before invented (auto) ones");
531   assert(!TParams.empty() &&
532          "No template parameters to act on");
533   LSI->TemplateParams.append(TParams.begin(), TParams.end());
534   LSI->NumExplicitTemplateParams = TParams.size();
535   LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
536 }
537 
538 void Sema::addLambdaParameters(
539     ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
540     CXXMethodDecl *CallOperator, Scope *CurScope) {
541   // Introduce our parameters into the function scope
542   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
543        p < NumParams; ++p) {
544     ParmVarDecl *Param = CallOperator->getParamDecl(p);
545 
546     // If this has an identifier, add it to the scope stack.
547     if (CurScope && Param->getIdentifier()) {
548       bool Error = false;
549       // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
550       // retroactively apply it.
551       for (const auto &Capture : Captures) {
552         if (Capture.Id == Param->getIdentifier()) {
553           Error = true;
554           Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
555           Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
556               << Capture.Id << true;
557         }
558       }
559       if (!Error)
560         CheckShadow(CurScope, Param);
561 
562       PushOnScopeChains(Param, CurScope);
563     }
564   }
565 }
566 
567 /// If this expression is an enumerator-like expression of some type
568 /// T, return the type T; otherwise, return null.
569 ///
570 /// Pointer comparisons on the result here should always work because
571 /// it's derived from either the parent of an EnumConstantDecl
572 /// (i.e. the definition) or the declaration returned by
573 /// EnumType::getDecl() (i.e. the definition).
574 static EnumDecl *findEnumForBlockReturn(Expr *E) {
575   // An expression is an enumerator-like expression of type T if,
576   // ignoring parens and parens-like expressions:
577   E = E->IgnoreParens();
578 
579   //  - it is an enumerator whose enum type is T or
580   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
581     if (EnumConstantDecl *D
582           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
583       return cast<EnumDecl>(D->getDeclContext());
584     }
585     return nullptr;
586   }
587 
588   //  - it is a comma expression whose RHS is an enumerator-like
589   //    expression of type T or
590   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
591     if (BO->getOpcode() == BO_Comma)
592       return findEnumForBlockReturn(BO->getRHS());
593     return nullptr;
594   }
595 
596   //  - it is a statement-expression whose value expression is an
597   //    enumerator-like expression of type T or
598   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
599     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
600       return findEnumForBlockReturn(last);
601     return nullptr;
602   }
603 
604   //   - it is a ternary conditional operator (not the GNU ?:
605   //     extension) whose second and third operands are
606   //     enumerator-like expressions of type T or
607   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
608     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
609       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
610         return ED;
611     return nullptr;
612   }
613 
614   // (implicitly:)
615   //   - it is an implicit integral conversion applied to an
616   //     enumerator-like expression of type T or
617   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
618     // We can sometimes see integral conversions in valid
619     // enumerator-like expressions.
620     if (ICE->getCastKind() == CK_IntegralCast)
621       return findEnumForBlockReturn(ICE->getSubExpr());
622 
623     // Otherwise, just rely on the type.
624   }
625 
626   //   - it is an expression of that formal enum type.
627   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
628     return ET->getDecl();
629   }
630 
631   // Otherwise, nope.
632   return nullptr;
633 }
634 
635 /// Attempt to find a type T for which the returned expression of the
636 /// given statement is an enumerator-like expression of that type.
637 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
638   if (Expr *retValue = ret->getRetValue())
639     return findEnumForBlockReturn(retValue);
640   return nullptr;
641 }
642 
643 /// Attempt to find a common type T for which all of the returned
644 /// expressions in a block are enumerator-like expressions of that
645 /// type.
646 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
647   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
648 
649   // Try to find one for the first return.
650   EnumDecl *ED = findEnumForBlockReturn(*i);
651   if (!ED) return nullptr;
652 
653   // Check that the rest of the returns have the same enum.
654   for (++i; i != e; ++i) {
655     if (findEnumForBlockReturn(*i) != ED)
656       return nullptr;
657   }
658 
659   // Never infer an anonymous enum type.
660   if (!ED->hasNameForLinkage()) return nullptr;
661 
662   return ED;
663 }
664 
665 /// Adjust the given return statements so that they formally return
666 /// the given type.  It should require, at most, an IntegralCast.
667 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
668                                      QualType returnType) {
669   for (ArrayRef<ReturnStmt*>::iterator
670          i = returns.begin(), e = returns.end(); i != e; ++i) {
671     ReturnStmt *ret = *i;
672     Expr *retValue = ret->getRetValue();
673     if (S.Context.hasSameType(retValue->getType(), returnType))
674       continue;
675 
676     // Right now we only support integral fixup casts.
677     assert(returnType->isIntegralOrUnscopedEnumerationType());
678     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
679 
680     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
681 
682     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
683     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
684                                  E, /*base path*/ nullptr, VK_RValue);
685     if (cleanups) {
686       cleanups->setSubExpr(E);
687     } else {
688       ret->setRetValue(E);
689     }
690   }
691 }
692 
693 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
694   assert(CSI.HasImplicitReturnType);
695   // If it was ever a placeholder, it had to been deduced to DependentTy.
696   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
697   assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
698          "lambda expressions use auto deduction in C++14 onwards");
699 
700   // C++ core issue 975:
701   //   If a lambda-expression does not include a trailing-return-type,
702   //   it is as if the trailing-return-type denotes the following type:
703   //     - if there are no return statements in the compound-statement,
704   //       or all return statements return either an expression of type
705   //       void or no expression or braced-init-list, the type void;
706   //     - otherwise, if all return statements return an expression
707   //       and the types of the returned expressions after
708   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
709   //       array-to-pointer conversion (4.2 [conv.array]), and
710   //       function-to-pointer conversion (4.3 [conv.func]) are the
711   //       same, that common type;
712   //     - otherwise, the program is ill-formed.
713   //
714   // C++ core issue 1048 additionally removes top-level cv-qualifiers
715   // from the types of returned expressions to match the C++14 auto
716   // deduction rules.
717   //
718   // In addition, in blocks in non-C++ modes, if all of the return
719   // statements are enumerator-like expressions of some type T, where
720   // T has a name for linkage, then we infer the return type of the
721   // block to be that type.
722 
723   // First case: no return statements, implicit void return type.
724   ASTContext &Ctx = getASTContext();
725   if (CSI.Returns.empty()) {
726     // It's possible there were simply no /valid/ return statements.
727     // In this case, the first one we found may have at least given us a type.
728     if (CSI.ReturnType.isNull())
729       CSI.ReturnType = Ctx.VoidTy;
730     return;
731   }
732 
733   // Second case: at least one return statement has dependent type.
734   // Delay type checking until instantiation.
735   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
736   if (CSI.ReturnType->isDependentType())
737     return;
738 
739   // Try to apply the enum-fuzz rule.
740   if (!getLangOpts().CPlusPlus) {
741     assert(isa<BlockScopeInfo>(CSI));
742     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
743     if (ED) {
744       CSI.ReturnType = Context.getTypeDeclType(ED);
745       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
746       return;
747     }
748   }
749 
750   // Third case: only one return statement. Don't bother doing extra work!
751   if (CSI.Returns.size() == 1)
752     return;
753 
754   // General case: many return statements.
755   // Check that they all have compatible return types.
756 
757   // We require the return types to strictly match here.
758   // Note that we've already done the required promotions as part of
759   // processing the return statement.
760   for (const ReturnStmt *RS : CSI.Returns) {
761     const Expr *RetE = RS->getRetValue();
762 
763     QualType ReturnType =
764         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
765     if (Context.getCanonicalFunctionResultType(ReturnType) ==
766           Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
767       // Use the return type with the strictest possible nullability annotation.
768       auto RetTyNullability = ReturnType->getNullability(Ctx);
769       auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
770       if (BlockNullability &&
771           (!RetTyNullability ||
772            hasWeakerNullability(*RetTyNullability, *BlockNullability)))
773         CSI.ReturnType = ReturnType;
774       continue;
775     }
776 
777     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
778     // TODO: It's possible that the *first* return is the divergent one.
779     Diag(RS->getBeginLoc(),
780          diag::err_typecheck_missing_return_type_incompatible)
781         << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
782     // Continue iterating so that we keep emitting diagnostics.
783   }
784 }
785 
786 QualType Sema::buildLambdaInitCaptureInitialization(
787     SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
788     Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
789     Expr *&Init) {
790   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
791   // deduce against.
792   QualType DeductType = Context.getAutoDeductType();
793   TypeLocBuilder TLB;
794   AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
795   TL.setNameLoc(Loc);
796   if (ByRef) {
797     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
798     assert(!DeductType.isNull() && "can't build reference to auto");
799     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
800   }
801   if (EllipsisLoc.isValid()) {
802     if (Init->containsUnexpandedParameterPack()) {
803       Diag(EllipsisLoc, getLangOpts().CPlusPlus2a
804                             ? diag::warn_cxx17_compat_init_capture_pack
805                             : diag::ext_init_capture_pack);
806       DeductType = Context.getPackExpansionType(DeductType, NumExpansions);
807       TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
808     } else {
809       // Just ignore the ellipsis for now and form a non-pack variable. We'll
810       // diagnose this later when we try to capture it.
811     }
812   }
813   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
814 
815   // Deduce the type of the init capture.
816   QualType DeducedType = deduceVarTypeFromInitializer(
817       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
818       SourceRange(Loc, Loc), IsDirectInit, Init);
819   if (DeducedType.isNull())
820     return QualType();
821 
822   // Are we a non-list direct initialization?
823   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
824 
825   // Perform initialization analysis and ensure any implicit conversions
826   // (such as lvalue-to-rvalue) are enforced.
827   InitializedEntity Entity =
828       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
829   InitializationKind Kind =
830       IsDirectInit
831           ? (CXXDirectInit ? InitializationKind::CreateDirect(
832                                  Loc, Init->getBeginLoc(), Init->getEndLoc())
833                            : InitializationKind::CreateDirectList(Loc))
834           : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
835 
836   MultiExprArg Args = Init;
837   if (CXXDirectInit)
838     Args =
839         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
840   QualType DclT;
841   InitializationSequence InitSeq(*this, Entity, Kind, Args);
842   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
843 
844   if (Result.isInvalid())
845     return QualType();
846 
847   Init = Result.getAs<Expr>();
848   return DeducedType;
849 }
850 
851 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
852                                               QualType InitCaptureType,
853                                               SourceLocation EllipsisLoc,
854                                               IdentifierInfo *Id,
855                                               unsigned InitStyle, Expr *Init) {
856   // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
857   // rather than reconstructing it here.
858   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
859   if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
860     PETL.setEllipsisLoc(EllipsisLoc);
861 
862   // Create a dummy variable representing the init-capture. This is not actually
863   // used as a variable, and only exists as a way to name and refer to the
864   // init-capture.
865   // FIXME: Pass in separate source locations for '&' and identifier.
866   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
867                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
868   NewVD->setInitCapture(true);
869   NewVD->setReferenced(true);
870   // FIXME: Pass in a VarDecl::InitializationStyle.
871   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
872   NewVD->markUsed(Context);
873   NewVD->setInit(Init);
874   if (NewVD->isParameterPack())
875     getCurLambda()->LocalPacks.push_back(NewVD);
876   return NewVD;
877 }
878 
879 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
880   assert(Var->isInitCapture() && "init capture flag should be set");
881   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
882                   /*isNested*/false, Var->getLocation(), SourceLocation(),
883                   Var->getType(), /*Invalid*/false);
884 }
885 
886 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
887                                         Declarator &ParamInfo,
888                                         Scope *CurScope) {
889   LambdaScopeInfo *const LSI = getCurLambda();
890   assert(LSI && "LambdaScopeInfo should be on stack!");
891 
892   // Determine if we're within a context where we know that the lambda will
893   // be dependent, because there are template parameters in scope.
894   bool KnownDependent;
895   if (LSI->NumExplicitTemplateParams > 0) {
896     auto *TemplateParamScope = CurScope->getTemplateParamParent();
897     assert(TemplateParamScope &&
898            "Lambda with explicit template param list should establish a "
899            "template param scope");
900     assert(TemplateParamScope->getParent());
901     KnownDependent = TemplateParamScope->getParent()
902                                        ->getTemplateParamParent() != nullptr;
903   } else {
904     KnownDependent = CurScope->getTemplateParamParent() != nullptr;
905   }
906 
907   // Determine the signature of the call operator.
908   TypeSourceInfo *MethodTyInfo;
909   bool ExplicitParams = true;
910   bool ExplicitResultType = true;
911   bool ContainsUnexpandedParameterPack = false;
912   SourceLocation EndLoc;
913   SmallVector<ParmVarDecl *, 8> Params;
914   if (ParamInfo.getNumTypeObjects() == 0) {
915     // C++11 [expr.prim.lambda]p4:
916     //   If a lambda-expression does not include a lambda-declarator, it is as
917     //   if the lambda-declarator were ().
918     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
919         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
920     EPI.HasTrailingReturn = true;
921     EPI.TypeQuals.addConst();
922     LangAS AS = getDefaultCXXMethodAddrSpace();
923     if (AS != LangAS::Default)
924       EPI.TypeQuals.addAddressSpace(AS);
925 
926     // C++1y [expr.prim.lambda]:
927     //   The lambda return type is 'auto', which is replaced by the
928     //   trailing-return type if provided and/or deduced from 'return'
929     //   statements
930     // We don't do this before C++1y, because we don't support deduced return
931     // types there.
932     QualType DefaultTypeForNoTrailingReturn =
933         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
934                                   : Context.DependentTy;
935     QualType MethodTy =
936         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
937     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
938     ExplicitParams = false;
939     ExplicitResultType = false;
940     EndLoc = Intro.Range.getEnd();
941   } else {
942     assert(ParamInfo.isFunctionDeclarator() &&
943            "lambda-declarator is a function");
944     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
945 
946     // C++11 [expr.prim.lambda]p5:
947     //   This function call operator is declared const (9.3.1) if and only if
948     //   the lambda-expression's parameter-declaration-clause is not followed
949     //   by mutable. It is neither virtual nor declared volatile. [...]
950     if (!FTI.hasMutableQualifier()) {
951       FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
952                                                     SourceLocation());
953     }
954 
955     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
956     assert(MethodTyInfo && "no type from lambda-declarator");
957     EndLoc = ParamInfo.getSourceRange().getEnd();
958 
959     ExplicitResultType = FTI.hasTrailingReturnType();
960 
961     if (FTIHasNonVoidParameters(FTI)) {
962       Params.reserve(FTI.NumParams);
963       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
964         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
965     }
966 
967     // Check for unexpanded parameter packs in the method type.
968     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
969       DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
970                                       UPPC_DeclarationType);
971   }
972 
973   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
974                                                  KnownDependent, Intro.Default);
975   CXXMethodDecl *Method =
976       startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
977                             ParamInfo.getDeclSpec().getConstexprSpecifier(),
978                             ParamInfo.getTrailingRequiresClause());
979   if (ExplicitParams)
980     CheckCXXDefaultArguments(Method);
981 
982   // This represents the function body for the lambda function, check if we
983   // have to apply optnone due to a pragma.
984   AddRangeBasedOptnone(Method);
985 
986   // code_seg attribute on lambda apply to the method.
987   if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
988     Method->addAttr(A);
989 
990   // Attributes on the lambda apply to the method.
991   ProcessDeclAttributes(CurScope, Method, ParamInfo);
992 
993   // CUDA lambdas get implicit attributes based on the scope in which they're
994   // declared.
995   if (getLangOpts().CUDA)
996     CUDASetLambdaAttrs(Method);
997 
998   // Number the lambda for linkage purposes if necessary.
999   handleLambdaNumbering(Class, Method);
1000 
1001   // Introduce the function call operator as the current declaration context.
1002   PushDeclContext(CurScope, Method);
1003 
1004   // Build the lambda scope.
1005   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1006                    ExplicitParams, ExplicitResultType, !Method->isConst());
1007 
1008   // C++11 [expr.prim.lambda]p9:
1009   //   A lambda-expression whose smallest enclosing scope is a block scope is a
1010   //   local lambda expression; any other lambda expression shall not have a
1011   //   capture-default or simple-capture in its lambda-introducer.
1012   //
1013   // For simple-captures, this is covered by the check below that any named
1014   // entity is a variable that can be captured.
1015   //
1016   // For DR1632, we also allow a capture-default in any context where we can
1017   // odr-use 'this' (in particular, in a default initializer for a non-static
1018   // data member).
1019   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1020       (getCurrentThisType().isNull() ||
1021        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1022                            /*BuildAndDiagnose*/false)))
1023     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1024 
1025   // Distinct capture names, for diagnostics.
1026   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1027 
1028   // Handle explicit captures.
1029   SourceLocation PrevCaptureLoc
1030     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1031   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1032        PrevCaptureLoc = C->Loc, ++C) {
1033     if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1034       if (C->Kind == LCK_StarThis)
1035         Diag(C->Loc, !getLangOpts().CPlusPlus17
1036                              ? diag::ext_star_this_lambda_capture_cxx17
1037                              : diag::warn_cxx14_compat_star_this_lambda_capture);
1038 
1039       // C++11 [expr.prim.lambda]p8:
1040       //   An identifier or this shall not appear more than once in a
1041       //   lambda-capture.
1042       if (LSI->isCXXThisCaptured()) {
1043         Diag(C->Loc, diag::err_capture_more_than_once)
1044             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1045             << FixItHint::CreateRemoval(
1046                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1047         continue;
1048       }
1049 
1050       // C++2a [expr.prim.lambda]p8:
1051       //  If a lambda-capture includes a capture-default that is =,
1052       //  each simple-capture of that lambda-capture shall be of the form
1053       //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
1054       //  redundant but accepted for compatibility with ISO C++14. --end note ]
1055       if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1056         Diag(C->Loc, !getLangOpts().CPlusPlus2a
1057                          ? diag::ext_equals_this_lambda_capture_cxx2a
1058                          : diag::warn_cxx17_compat_equals_this_lambda_capture);
1059 
1060       // C++11 [expr.prim.lambda]p12:
1061       //   If this is captured by a local lambda expression, its nearest
1062       //   enclosing function shall be a non-static member function.
1063       QualType ThisCaptureType = getCurrentThisType();
1064       if (ThisCaptureType.isNull()) {
1065         Diag(C->Loc, diag::err_this_capture) << true;
1066         continue;
1067       }
1068 
1069       CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1070                           /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1071                           C->Kind == LCK_StarThis);
1072       if (!LSI->Captures.empty())
1073         LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1074       continue;
1075     }
1076 
1077     assert(C->Id && "missing identifier for capture");
1078 
1079     if (C->Init.isInvalid())
1080       continue;
1081 
1082     VarDecl *Var = nullptr;
1083     if (C->Init.isUsable()) {
1084       Diag(C->Loc, getLangOpts().CPlusPlus14
1085                        ? diag::warn_cxx11_compat_init_capture
1086                        : diag::ext_init_capture);
1087 
1088       // If the initializer expression is usable, but the InitCaptureType
1089       // is not, then an error has occurred - so ignore the capture for now.
1090       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1091       // FIXME: we should create the init capture variable and mark it invalid
1092       // in this case.
1093       if (C->InitCaptureType.get().isNull())
1094         continue;
1095 
1096       if (C->Init.get()->containsUnexpandedParameterPack() &&
1097           !C->InitCaptureType.get()->getAs<PackExpansionType>())
1098         DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1099 
1100       unsigned InitStyle;
1101       switch (C->InitKind) {
1102       case LambdaCaptureInitKind::NoInit:
1103         llvm_unreachable("not an init-capture?");
1104       case LambdaCaptureInitKind::CopyInit:
1105         InitStyle = VarDecl::CInit;
1106         break;
1107       case LambdaCaptureInitKind::DirectInit:
1108         InitStyle = VarDecl::CallInit;
1109         break;
1110       case LambdaCaptureInitKind::ListInit:
1111         InitStyle = VarDecl::ListInit;
1112         break;
1113       }
1114       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1115                                            C->EllipsisLoc, C->Id, InitStyle,
1116                                            C->Init.get());
1117       // C++1y [expr.prim.lambda]p11:
1118       //   An init-capture behaves as if it declares and explicitly
1119       //   captures a variable [...] whose declarative region is the
1120       //   lambda-expression's compound-statement
1121       if (Var)
1122         PushOnScopeChains(Var, CurScope, false);
1123     } else {
1124       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1125              "init capture has valid but null init?");
1126 
1127       // C++11 [expr.prim.lambda]p8:
1128       //   If a lambda-capture includes a capture-default that is &, the
1129       //   identifiers in the lambda-capture shall not be preceded by &.
1130       //   If a lambda-capture includes a capture-default that is =, [...]
1131       //   each identifier it contains shall be preceded by &.
1132       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1133         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1134             << FixItHint::CreateRemoval(
1135                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1136         continue;
1137       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1138         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1139             << FixItHint::CreateRemoval(
1140                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1141         continue;
1142       }
1143 
1144       // C++11 [expr.prim.lambda]p10:
1145       //   The identifiers in a capture-list are looked up using the usual
1146       //   rules for unqualified name lookup (3.4.1)
1147       DeclarationNameInfo Name(C->Id, C->Loc);
1148       LookupResult R(*this, Name, LookupOrdinaryName);
1149       LookupName(R, CurScope);
1150       if (R.isAmbiguous())
1151         continue;
1152       if (R.empty()) {
1153         // FIXME: Disable corrections that would add qualification?
1154         CXXScopeSpec ScopeSpec;
1155         DeclFilterCCC<VarDecl> Validator{};
1156         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1157           continue;
1158       }
1159 
1160       Var = R.getAsSingle<VarDecl>();
1161       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1162         continue;
1163     }
1164 
1165     // C++11 [expr.prim.lambda]p8:
1166     //   An identifier or this shall not appear more than once in a
1167     //   lambda-capture.
1168     if (!CaptureNames.insert(C->Id).second) {
1169       if (Var && LSI->isCaptured(Var)) {
1170         Diag(C->Loc, diag::err_capture_more_than_once)
1171             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1172             << FixItHint::CreateRemoval(
1173                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1174       } else
1175         // Previous capture captured something different (one or both was
1176         // an init-cpature): no fixit.
1177         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1178       continue;
1179     }
1180 
1181     // C++11 [expr.prim.lambda]p10:
1182     //   [...] each such lookup shall find a variable with automatic storage
1183     //   duration declared in the reaching scope of the local lambda expression.
1184     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1185     if (!Var) {
1186       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1187       continue;
1188     }
1189 
1190     // Ignore invalid decls; they'll just confuse the code later.
1191     if (Var->isInvalidDecl())
1192       continue;
1193 
1194     if (!Var->hasLocalStorage()) {
1195       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1196       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1197       continue;
1198     }
1199 
1200     // C++11 [expr.prim.lambda]p23:
1201     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1202     SourceLocation EllipsisLoc;
1203     if (C->EllipsisLoc.isValid()) {
1204       if (Var->isParameterPack()) {
1205         EllipsisLoc = C->EllipsisLoc;
1206       } else {
1207         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1208             << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1209                                    : SourceRange(C->Loc));
1210 
1211         // Just ignore the ellipsis.
1212       }
1213     } else if (Var->isParameterPack()) {
1214       ContainsUnexpandedParameterPack = true;
1215     }
1216 
1217     if (C->Init.isUsable()) {
1218       addInitCapture(LSI, Var);
1219     } else {
1220       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1221                                                    TryCapture_ExplicitByVal;
1222       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1223     }
1224     if (!LSI->Captures.empty())
1225       LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1226   }
1227   finishLambdaExplicitCaptures(LSI);
1228 
1229   LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1230 
1231   // Add lambda parameters into scope.
1232   addLambdaParameters(Intro.Captures, Method, CurScope);
1233 
1234   // Enter a new evaluation context to insulate the lambda from any
1235   // cleanups from the enclosing full-expression.
1236   PushExpressionEvaluationContext(
1237       ExpressionEvaluationContext::PotentiallyEvaluated);
1238 }
1239 
1240 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1241                             bool IsInstantiation) {
1242   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1243 
1244   // Leave the expression-evaluation context.
1245   DiscardCleanupsInEvaluationContext();
1246   PopExpressionEvaluationContext();
1247 
1248   // Leave the context of the lambda.
1249   if (!IsInstantiation)
1250     PopDeclContext();
1251 
1252   // Finalize the lambda.
1253   CXXRecordDecl *Class = LSI->Lambda;
1254   Class->setInvalidDecl();
1255   SmallVector<Decl*, 4> Fields(Class->fields());
1256   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1257               SourceLocation(), ParsedAttributesView());
1258   CheckCompletedCXXClass(nullptr, Class);
1259 
1260   PopFunctionScopeInfo();
1261 }
1262 
1263 QualType Sema::getLambdaConversionFunctionResultType(
1264     const FunctionProtoType *CallOpProto) {
1265   // The function type inside the pointer type is the same as the call
1266   // operator with some tweaks. The calling convention is the default free
1267   // function convention, and the type qualifications are lost.
1268   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1269       CallOpProto->getExtProtoInfo();
1270   FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1271   CallingConv CC = Context.getDefaultCallingConvention(
1272       CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1273   InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1274   InvokerExtInfo.TypeQuals = Qualifiers();
1275   assert(InvokerExtInfo.RefQualifier == RQ_None &&
1276       "Lambda's call operator should not have a reference qualifier");
1277   return Context.getFunctionType(CallOpProto->getReturnType(),
1278                                  CallOpProto->getParamTypes(), InvokerExtInfo);
1279 }
1280 
1281 /// Add a lambda's conversion to function pointer, as described in
1282 /// C++11 [expr.prim.lambda]p6.
1283 static void addFunctionPointerConversion(Sema &S,
1284                                          SourceRange IntroducerRange,
1285                                          CXXRecordDecl *Class,
1286                                          CXXMethodDecl *CallOperator) {
1287   // This conversion is explicitly disabled if the lambda's function has
1288   // pass_object_size attributes on any of its parameters.
1289   auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1290     return P->hasAttr<PassObjectSizeAttr>();
1291   };
1292   if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1293     return;
1294 
1295   // Add the conversion to function pointer.
1296   QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType(
1297       CallOperator->getType()->castAs<FunctionProtoType>());
1298   QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1299 
1300   // Create the type of the conversion function.
1301   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1302       S.Context.getDefaultCallingConvention(
1303       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1304   // The conversion function is always const and noexcept.
1305   ConvExtInfo.TypeQuals = Qualifiers();
1306   ConvExtInfo.TypeQuals.addConst();
1307   ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1308   QualType ConvTy =
1309       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1310 
1311   SourceLocation Loc = IntroducerRange.getBegin();
1312   DeclarationName ConversionName
1313     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1314         S.Context.getCanonicalType(PtrToFunctionTy));
1315   DeclarationNameLoc ConvNameLoc;
1316   // Construct a TypeSourceInfo for the conversion function, and wire
1317   // all the parameters appropriately for the FunctionProtoTypeLoc
1318   // so that everything works during transformation/instantiation of
1319   // generic lambdas.
1320   // The main reason for wiring up the parameters of the conversion
1321   // function with that of the call operator is so that constructs
1322   // like the following work:
1323   // auto L = [](auto b) {                <-- 1
1324   //   return [](auto a) -> decltype(a) { <-- 2
1325   //      return a;
1326   //   };
1327   // };
1328   // int (*fp)(int) = L(5);
1329   // Because the trailing return type can contain DeclRefExprs that refer
1330   // to the original call operator's variables, we hijack the call
1331   // operators ParmVarDecls below.
1332   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1333       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1334   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1335 
1336   // The conversion function is a conversion to a pointer-to-function.
1337   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1338   FunctionProtoTypeLoc ConvTL =
1339       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1340   // Get the result of the conversion function which is a pointer-to-function.
1341   PointerTypeLoc PtrToFunctionTL =
1342       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1343   // Do the same for the TypeSourceInfo that is used to name the conversion
1344   // operator.
1345   PointerTypeLoc ConvNamePtrToFunctionTL =
1346       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1347 
1348   // Get the underlying function types that the conversion function will
1349   // be converting to (should match the type of the call operator).
1350   FunctionProtoTypeLoc CallOpConvTL =
1351       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1352   FunctionProtoTypeLoc CallOpConvNameTL =
1353     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1354 
1355   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1356   // These parameter's are essentially used to transform the name and
1357   // the type of the conversion operator.  By using the same parameters
1358   // as the call operator's we don't have to fix any back references that
1359   // the trailing return type of the call operator's uses (such as
1360   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1361   // - we can simply use the return type of the call operator, and
1362   // everything should work.
1363   SmallVector<ParmVarDecl *, 4> InvokerParams;
1364   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1365     ParmVarDecl *From = CallOperator->getParamDecl(I);
1366 
1367     InvokerParams.push_back(ParmVarDecl::Create(
1368         S.Context,
1369         // Temporarily add to the TU. This is set to the invoker below.
1370         S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1371         From->getLocation(), From->getIdentifier(), From->getType(),
1372         From->getTypeSourceInfo(), From->getStorageClass(),
1373         /*DefArg=*/nullptr));
1374     CallOpConvTL.setParam(I, From);
1375     CallOpConvNameTL.setParam(I, From);
1376   }
1377 
1378   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1379       S.Context, Class, Loc,
1380       DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1381       /*isInline=*/true, ExplicitSpecifier(),
1382       S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified,
1383       CallOperator->getBody()->getEndLoc());
1384   Conversion->setAccess(AS_public);
1385   Conversion->setImplicit(true);
1386 
1387   if (Class->isGenericLambda()) {
1388     // Create a template version of the conversion operator, using the template
1389     // parameter list of the function call operator.
1390     FunctionTemplateDecl *TemplateCallOperator =
1391             CallOperator->getDescribedFunctionTemplate();
1392     FunctionTemplateDecl *ConversionTemplate =
1393                   FunctionTemplateDecl::Create(S.Context, Class,
1394                                       Loc, ConversionName,
1395                                       TemplateCallOperator->getTemplateParameters(),
1396                                       Conversion);
1397     ConversionTemplate->setAccess(AS_public);
1398     ConversionTemplate->setImplicit(true);
1399     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1400     Class->addDecl(ConversionTemplate);
1401   } else
1402     Class->addDecl(Conversion);
1403   // Add a non-static member function that will be the result of
1404   // the conversion with a certain unique ID.
1405   DeclarationName InvokerName = &S.Context.Idents.get(
1406                                                  getLambdaStaticInvokerName());
1407   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1408   // we should get a prebuilt TrivialTypeSourceInfo from Context
1409   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1410   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1411   // loop below and then use its Params to set Invoke->setParams(...) below.
1412   // This would avoid the 'const' qualifier of the calloperator from
1413   // contaminating the type of the invoker, which is currently adjusted
1414   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1415   // trailing return type of the invoker would require a visitor to rebuild
1416   // the trailing return type and adjusting all back DeclRefExpr's to refer
1417   // to the new static invoker parameters - not the call operator's.
1418   CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1419       S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1420       InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1421       /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc());
1422   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1423     InvokerParams[I]->setOwningFunction(Invoke);
1424   Invoke->setParams(InvokerParams);
1425   Invoke->setAccess(AS_private);
1426   Invoke->setImplicit(true);
1427   if (Class->isGenericLambda()) {
1428     FunctionTemplateDecl *TemplateCallOperator =
1429             CallOperator->getDescribedFunctionTemplate();
1430     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1431                           S.Context, Class, Loc, InvokerName,
1432                           TemplateCallOperator->getTemplateParameters(),
1433                           Invoke);
1434     StaticInvokerTemplate->setAccess(AS_private);
1435     StaticInvokerTemplate->setImplicit(true);
1436     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1437     Class->addDecl(StaticInvokerTemplate);
1438   } else
1439     Class->addDecl(Invoke);
1440 }
1441 
1442 /// Add a lambda's conversion to block pointer.
1443 static void addBlockPointerConversion(Sema &S,
1444                                       SourceRange IntroducerRange,
1445                                       CXXRecordDecl *Class,
1446                                       CXXMethodDecl *CallOperator) {
1447   QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1448       CallOperator->getType()->castAs<FunctionProtoType>());
1449   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1450 
1451   FunctionProtoType::ExtProtoInfo ConversionEPI(
1452       S.Context.getDefaultCallingConvention(
1453           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1454   ConversionEPI.TypeQuals = Qualifiers();
1455   ConversionEPI.TypeQuals.addConst();
1456   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1457 
1458   SourceLocation Loc = IntroducerRange.getBegin();
1459   DeclarationName Name
1460     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1461         S.Context.getCanonicalType(BlockPtrTy));
1462   DeclarationNameLoc NameLoc;
1463   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1464   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1465       S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1466       S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1467       /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified,
1468       CallOperator->getBody()->getEndLoc());
1469   Conversion->setAccess(AS_public);
1470   Conversion->setImplicit(true);
1471   Class->addDecl(Conversion);
1472 }
1473 
1474 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1475                                   SourceLocation ImplicitCaptureLoc,
1476                                   bool IsOpenMPMapping) {
1477   // VLA captures don't have a stored initialization expression.
1478   if (Cap.isVLATypeCapture())
1479     return ExprResult();
1480 
1481   // An init-capture is initialized directly from its stored initializer.
1482   if (Cap.isInitCapture())
1483     return Cap.getVariable()->getInit();
1484 
1485   // For anything else, build an initialization expression. For an implicit
1486   // capture, the capture notionally happens at the capture-default, so use
1487   // that location here.
1488   SourceLocation Loc =
1489       ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1490 
1491   // C++11 [expr.prim.lambda]p21:
1492   //   When the lambda-expression is evaluated, the entities that
1493   //   are captured by copy are used to direct-initialize each
1494   //   corresponding non-static data member of the resulting closure
1495   //   object. (For array members, the array elements are
1496   //   direct-initialized in increasing subscript order.) These
1497   //   initializations are performed in the (unspecified) order in
1498   //   which the non-static data members are declared.
1499 
1500   // C++ [expr.prim.lambda]p12:
1501   //   An entity captured by a lambda-expression is odr-used (3.2) in
1502   //   the scope containing the lambda-expression.
1503   ExprResult Init;
1504   IdentifierInfo *Name = nullptr;
1505   if (Cap.isThisCapture()) {
1506     QualType ThisTy = getCurrentThisType();
1507     Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1508     if (Cap.isCopyCapture())
1509       Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1510     else
1511       Init = This;
1512   } else {
1513     assert(Cap.isVariableCapture() && "unknown kind of capture");
1514     VarDecl *Var = Cap.getVariable();
1515     Name = Var->getIdentifier();
1516     Init = BuildDeclarationNameExpr(
1517       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1518   }
1519 
1520   // In OpenMP, the capture kind doesn't actually describe how to capture:
1521   // variables are "mapped" onto the device in a process that does not formally
1522   // make a copy, even for a "copy capture".
1523   if (IsOpenMPMapping)
1524     return Init;
1525 
1526   if (Init.isInvalid())
1527     return ExprError();
1528 
1529   Expr *InitExpr = Init.get();
1530   InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1531       Name, Cap.getCaptureType(), Loc);
1532   InitializationKind InitKind =
1533       InitializationKind::CreateDirect(Loc, Loc, Loc);
1534   InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1535   return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1536 }
1537 
1538 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1539                                  Scope *CurScope) {
1540   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1541   ActOnFinishFunctionBody(LSI.CallOperator, Body);
1542   return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1543 }
1544 
1545 static LambdaCaptureDefault
1546 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1547   switch (ICS) {
1548   case CapturingScopeInfo::ImpCap_None:
1549     return LCD_None;
1550   case CapturingScopeInfo::ImpCap_LambdaByval:
1551     return LCD_ByCopy;
1552   case CapturingScopeInfo::ImpCap_CapturedRegion:
1553   case CapturingScopeInfo::ImpCap_LambdaByref:
1554     return LCD_ByRef;
1555   case CapturingScopeInfo::ImpCap_Block:
1556     llvm_unreachable("block capture in lambda");
1557   }
1558   llvm_unreachable("Unknown implicit capture style");
1559 }
1560 
1561 bool Sema::CaptureHasSideEffects(const Capture &From) {
1562   if (From.isInitCapture()) {
1563     Expr *Init = From.getVariable()->getInit();
1564     if (Init && Init->HasSideEffects(Context))
1565       return true;
1566   }
1567 
1568   if (!From.isCopyCapture())
1569     return false;
1570 
1571   const QualType T = From.isThisCapture()
1572                          ? getCurrentThisType()->getPointeeType()
1573                          : From.getCaptureType();
1574 
1575   if (T.isVolatileQualified())
1576     return true;
1577 
1578   const Type *BaseT = T->getBaseElementTypeUnsafe();
1579   if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1580     return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1581            !RD->hasTrivialDestructor();
1582 
1583   return false;
1584 }
1585 
1586 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1587                                        const Capture &From) {
1588   if (CaptureHasSideEffects(From))
1589     return false;
1590 
1591   if (From.isVLATypeCapture())
1592     return false;
1593 
1594   auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1595   if (From.isThisCapture())
1596     diag << "'this'";
1597   else
1598     diag << From.getVariable();
1599   diag << From.isNonODRUsed();
1600   diag << FixItHint::CreateRemoval(CaptureRange);
1601   return true;
1602 }
1603 
1604 /// Create a field within the lambda class or captured statement record for the
1605 /// given capture.
1606 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1607                                    const sema::Capture &Capture) {
1608   SourceLocation Loc = Capture.getLocation();
1609   QualType FieldType = Capture.getCaptureType();
1610 
1611   TypeSourceInfo *TSI = nullptr;
1612   if (Capture.isVariableCapture()) {
1613     auto *Var = Capture.getVariable();
1614     if (Var->isInitCapture())
1615       TSI = Capture.getVariable()->getTypeSourceInfo();
1616   }
1617 
1618   // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1619   // appropriate, at least for an implicit capture.
1620   if (!TSI)
1621     TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1622 
1623   // Build the non-static data member.
1624   FieldDecl *Field =
1625       FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr,
1626                         false, ICIS_NoInit);
1627   // If the variable being captured has an invalid type, mark the class as
1628   // invalid as well.
1629   if (!FieldType->isDependentType()) {
1630     if (RequireCompleteType(Loc, FieldType, diag::err_field_incomplete)) {
1631       RD->setInvalidDecl();
1632       Field->setInvalidDecl();
1633     } else {
1634       NamedDecl *Def;
1635       FieldType->isIncompleteType(&Def);
1636       if (Def && Def->isInvalidDecl()) {
1637         RD->setInvalidDecl();
1638         Field->setInvalidDecl();
1639       }
1640     }
1641   }
1642   Field->setImplicit(true);
1643   Field->setAccess(AS_private);
1644   RD->addDecl(Field);
1645 
1646   if (Capture.isVLATypeCapture())
1647     Field->setCapturedVLAType(Capture.getCapturedVLAType());
1648 
1649   return Field;
1650 }
1651 
1652 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1653                                  LambdaScopeInfo *LSI) {
1654   // Collect information from the lambda scope.
1655   SmallVector<LambdaCapture, 4> Captures;
1656   SmallVector<Expr *, 4> CaptureInits;
1657   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1658   LambdaCaptureDefault CaptureDefault =
1659       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1660   CXXRecordDecl *Class;
1661   CXXMethodDecl *CallOperator;
1662   SourceRange IntroducerRange;
1663   bool ExplicitParams;
1664   bool ExplicitResultType;
1665   CleanupInfo LambdaCleanup;
1666   bool ContainsUnexpandedParameterPack;
1667   bool IsGenericLambda;
1668   {
1669     CallOperator = LSI->CallOperator;
1670     Class = LSI->Lambda;
1671     IntroducerRange = LSI->IntroducerRange;
1672     ExplicitParams = LSI->ExplicitParams;
1673     ExplicitResultType = !LSI->HasImplicitReturnType;
1674     LambdaCleanup = LSI->Cleanup;
1675     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1676     IsGenericLambda = Class->isGenericLambda();
1677 
1678     CallOperator->setLexicalDeclContext(Class);
1679     Decl *TemplateOrNonTemplateCallOperatorDecl =
1680         CallOperator->getDescribedFunctionTemplate()
1681         ? CallOperator->getDescribedFunctionTemplate()
1682         : cast<Decl>(CallOperator);
1683 
1684     // FIXME: Is this really the best choice? Keeping the lexical decl context
1685     // set as CurContext seems more faithful to the source.
1686     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1687 
1688     PopExpressionEvaluationContext();
1689 
1690     // True if the current capture has a used capture or default before it.
1691     bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1692     SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1693         CaptureDefaultLoc : IntroducerRange.getBegin();
1694 
1695     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1696       const Capture &From = LSI->Captures[I];
1697 
1698       if (From.isInvalid())
1699         return ExprError();
1700 
1701       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1702       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1703       SourceLocation ImplicitCaptureLoc =
1704           IsImplicit ? CaptureDefaultLoc : SourceLocation();
1705 
1706       // Use source ranges of explicit captures for fixits where available.
1707       SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1708 
1709       // Warn about unused explicit captures.
1710       bool IsCaptureUsed = true;
1711       if (!CurContext->isDependentContext() && !IsImplicit &&
1712           !From.isODRUsed()) {
1713         // Initialized captures that are non-ODR used may not be eliminated.
1714         // FIXME: Where did the IsGenericLambda here come from?
1715         bool NonODRUsedInitCapture =
1716             IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1717         if (!NonODRUsedInitCapture) {
1718           bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1719           SourceRange FixItRange;
1720           if (CaptureRange.isValid()) {
1721             if (!CurHasPreviousCapture && !IsLast) {
1722               // If there are no captures preceding this capture, remove the
1723               // following comma.
1724               FixItRange = SourceRange(CaptureRange.getBegin(),
1725                                        getLocForEndOfToken(CaptureRange.getEnd()));
1726             } else {
1727               // Otherwise, remove the comma since the last used capture.
1728               FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1729                                        CaptureRange.getEnd());
1730             }
1731           }
1732 
1733           IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1734         }
1735       }
1736 
1737       if (CaptureRange.isValid()) {
1738         CurHasPreviousCapture |= IsCaptureUsed;
1739         PrevCaptureLoc = CaptureRange.getEnd();
1740       }
1741 
1742       // Map the capture to our AST representation.
1743       LambdaCapture Capture = [&] {
1744         if (From.isThisCapture()) {
1745           // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1746           // because it results in a reference capture. Don't warn prior to
1747           // C++2a; there's nothing that can be done about it before then.
1748           if (getLangOpts().CPlusPlus2a && IsImplicit &&
1749               CaptureDefault == LCD_ByCopy) {
1750             Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1751             Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1752                 << FixItHint::CreateInsertion(
1753                        getLocForEndOfToken(CaptureDefaultLoc), ", this");
1754           }
1755           return LambdaCapture(From.getLocation(), IsImplicit,
1756                                From.isCopyCapture() ? LCK_StarThis : LCK_This);
1757         } else if (From.isVLATypeCapture()) {
1758           return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1759         } else {
1760           assert(From.isVariableCapture() && "unknown kind of capture");
1761           VarDecl *Var = From.getVariable();
1762           LambdaCaptureKind Kind =
1763               From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1764           return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1765                                From.getEllipsisLoc());
1766         }
1767       }();
1768 
1769       // Form the initializer for the capture field.
1770       ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1771 
1772       // FIXME: Skip this capture if the capture is not used, the initializer
1773       // has no side-effects, the type of the capture is trivial, and the
1774       // lambda is not externally visible.
1775 
1776       // Add a FieldDecl for the capture and form its initializer.
1777       BuildCaptureField(Class, From);
1778       Captures.push_back(Capture);
1779       CaptureInits.push_back(Init.get());
1780     }
1781 
1782     // C++11 [expr.prim.lambda]p6:
1783     //   The closure type for a lambda-expression with no lambda-capture
1784     //   has a public non-virtual non-explicit const conversion function
1785     //   to pointer to function having the same parameter and return
1786     //   types as the closure type's function call operator.
1787     if (Captures.empty() && CaptureDefault == LCD_None)
1788       addFunctionPointerConversion(*this, IntroducerRange, Class,
1789                                    CallOperator);
1790 
1791     // Objective-C++:
1792     //   The closure type for a lambda-expression has a public non-virtual
1793     //   non-explicit const conversion function to a block pointer having the
1794     //   same parameter and return types as the closure type's function call
1795     //   operator.
1796     // FIXME: Fix generic lambda to block conversions.
1797     if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1798       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1799 
1800     // Finalize the lambda class.
1801     SmallVector<Decl*, 4> Fields(Class->fields());
1802     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1803                 SourceLocation(), ParsedAttributesView());
1804     CheckCompletedCXXClass(nullptr, Class);
1805   }
1806 
1807   Cleanup.mergeFrom(LambdaCleanup);
1808 
1809   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1810                                           CaptureDefault, CaptureDefaultLoc,
1811                                           Captures,
1812                                           ExplicitParams, ExplicitResultType,
1813                                           CaptureInits, EndLoc,
1814                                           ContainsUnexpandedParameterPack);
1815   // If the lambda expression's call operator is not explicitly marked constexpr
1816   // and we are not in a dependent context, analyze the call operator to infer
1817   // its constexpr-ness, suppressing diagnostics while doing so.
1818   if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1819       !CallOperator->isConstexpr() &&
1820       !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1821       !Class->getDeclContext()->isDependentContext()) {
1822     CallOperator->setConstexprKind(
1823         CheckConstexprFunctionDefinition(CallOperator,
1824                                          CheckConstexprKind::CheckValid)
1825             ? CSK_constexpr
1826             : CSK_unspecified);
1827   }
1828 
1829   // Emit delayed shadowing warnings now that the full capture list is known.
1830   DiagnoseShadowingLambdaDecls(LSI);
1831 
1832   if (!CurContext->isDependentContext()) {
1833     switch (ExprEvalContexts.back().Context) {
1834     // C++11 [expr.prim.lambda]p2:
1835     //   A lambda-expression shall not appear in an unevaluated operand
1836     //   (Clause 5).
1837     case ExpressionEvaluationContext::Unevaluated:
1838     case ExpressionEvaluationContext::UnevaluatedList:
1839     case ExpressionEvaluationContext::UnevaluatedAbstract:
1840     // C++1y [expr.const]p2:
1841     //   A conditional-expression e is a core constant expression unless the
1842     //   evaluation of e, following the rules of the abstract machine, would
1843     //   evaluate [...] a lambda-expression.
1844     //
1845     // This is technically incorrect, there are some constant evaluated contexts
1846     // where this should be allowed.  We should probably fix this when DR1607 is
1847     // ratified, it lays out the exact set of conditions where we shouldn't
1848     // allow a lambda-expression.
1849     case ExpressionEvaluationContext::ConstantEvaluated:
1850       // We don't actually diagnose this case immediately, because we
1851       // could be within a context where we might find out later that
1852       // the expression is potentially evaluated (e.g., for typeid).
1853       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1854       break;
1855 
1856     case ExpressionEvaluationContext::DiscardedStatement:
1857     case ExpressionEvaluationContext::PotentiallyEvaluated:
1858     case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1859       break;
1860     }
1861   }
1862 
1863   return MaybeBindToTemporary(Lambda);
1864 }
1865 
1866 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1867                                                SourceLocation ConvLocation,
1868                                                CXXConversionDecl *Conv,
1869                                                Expr *Src) {
1870   // Make sure that the lambda call operator is marked used.
1871   CXXRecordDecl *Lambda = Conv->getParent();
1872   CXXMethodDecl *CallOperator
1873     = cast<CXXMethodDecl>(
1874         Lambda->lookup(
1875           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1876   CallOperator->setReferenced();
1877   CallOperator->markUsed(Context);
1878 
1879   ExprResult Init = PerformCopyInitialization(
1880       InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
1881                                                  /*NRVO=*/false),
1882       CurrentLocation, Src);
1883   if (!Init.isInvalid())
1884     Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1885 
1886   if (Init.isInvalid())
1887     return ExprError();
1888 
1889   // Create the new block to be returned.
1890   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1891 
1892   // Set the type information.
1893   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1894   Block->setIsVariadic(CallOperator->isVariadic());
1895   Block->setBlockMissingReturnType(false);
1896 
1897   // Add parameters.
1898   SmallVector<ParmVarDecl *, 4> BlockParams;
1899   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1900     ParmVarDecl *From = CallOperator->getParamDecl(I);
1901     BlockParams.push_back(ParmVarDecl::Create(
1902         Context, Block, From->getBeginLoc(), From->getLocation(),
1903         From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
1904         From->getStorageClass(),
1905         /*DefArg=*/nullptr));
1906   }
1907   Block->setParams(BlockParams);
1908 
1909   Block->setIsConversionFromLambda(true);
1910 
1911   // Add capture. The capture uses a fake variable, which doesn't correspond
1912   // to any actual memory location. However, the initializer copy-initializes
1913   // the lambda object.
1914   TypeSourceInfo *CapVarTSI =
1915       Context.getTrivialTypeSourceInfo(Src->getType());
1916   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1917                                     ConvLocation, nullptr,
1918                                     Src->getType(), CapVarTSI,
1919                                     SC_None);
1920   BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
1921                              /*nested=*/false, /*copy=*/Init.get());
1922   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1923 
1924   // Add a fake function body to the block. IR generation is responsible
1925   // for filling in the actual body, which cannot be expressed as an AST.
1926   Block->setBody(new (Context) CompoundStmt(ConvLocation));
1927 
1928   // Create the block literal expression.
1929   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1930   ExprCleanupObjects.push_back(Block);
1931   Cleanup.setExprNeedsCleanups(true);
1932 
1933   return BuildBlock;
1934 }
1935