1 //===--- SemaOpenMP.cpp - Semantic Analysis for OpenMP constructs ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for OpenMP directives and
10 /// clauses.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/OpenMPClause.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtOpenMP.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/AST/TypeOrdering.h"
26 #include "clang/Basic/DiagnosticSema.h"
27 #include "clang/Basic/OpenMPKinds.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Sema/Initialization.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/SemaInternal.h"
35 #include "llvm/ADT/IndexedMap.h"
36 #include "llvm/ADT/PointerEmbeddedInt.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/Frontend/OpenMP/OMPAssume.h"
41 #include "llvm/Frontend/OpenMP/OMPConstants.h"
42 #include <optional>
43 #include <set>
44 
45 using namespace clang;
46 using namespace llvm::omp;
47 
48 //===----------------------------------------------------------------------===//
49 // Stack of data-sharing attributes for variables
50 //===----------------------------------------------------------------------===//
51 
52 static const Expr *checkMapClauseExpressionBase(
53     Sema &SemaRef, Expr *E,
54     OMPClauseMappableExprCommon::MappableExprComponentList &CurComponents,
55     OpenMPClauseKind CKind, OpenMPDirectiveKind DKind, bool NoDiagnose);
56 
57 namespace {
58 /// Default data sharing attributes, which can be applied to directive.
59 enum DefaultDataSharingAttributes {
60   DSA_unspecified = 0,       /// Data sharing attribute not specified.
61   DSA_none = 1 << 0,         /// Default data sharing attribute 'none'.
62   DSA_shared = 1 << 1,       /// Default data sharing attribute 'shared'.
63   DSA_private = 1 << 2,      /// Default data sharing attribute 'private'.
64   DSA_firstprivate = 1 << 3, /// Default data sharing attribute 'firstprivate'.
65 };
66 
67 /// Stack for tracking declarations used in OpenMP directives and
68 /// clauses and their data-sharing attributes.
69 class DSAStackTy {
70 public:
71   struct DSAVarData {
72     OpenMPDirectiveKind DKind = OMPD_unknown;
73     OpenMPClauseKind CKind = OMPC_unknown;
74     unsigned Modifier = 0;
75     const Expr *RefExpr = nullptr;
76     DeclRefExpr *PrivateCopy = nullptr;
77     SourceLocation ImplicitDSALoc;
78     bool AppliedToPointee = false;
79     DSAVarData() = default;
80     DSAVarData(OpenMPDirectiveKind DKind, OpenMPClauseKind CKind,
81                const Expr *RefExpr, DeclRefExpr *PrivateCopy,
82                SourceLocation ImplicitDSALoc, unsigned Modifier,
83                bool AppliedToPointee)
84         : DKind(DKind), CKind(CKind), Modifier(Modifier), RefExpr(RefExpr),
85           PrivateCopy(PrivateCopy), ImplicitDSALoc(ImplicitDSALoc),
86           AppliedToPointee(AppliedToPointee) {}
87   };
88   using OperatorOffsetTy =
89       llvm::SmallVector<std::pair<Expr *, OverloadedOperatorKind>, 4>;
90   using DoacrossDependMapTy =
91       llvm::DenseMap<OMPDependClause *, OperatorOffsetTy>;
92   /// Kind of the declaration used in the uses_allocators clauses.
93   enum class UsesAllocatorsDeclKind {
94     /// Predefined allocator
95     PredefinedAllocator,
96     /// User-defined allocator
97     UserDefinedAllocator,
98     /// The declaration that represent allocator trait
99     AllocatorTrait,
100   };
101 
102 private:
103   struct DSAInfo {
104     OpenMPClauseKind Attributes = OMPC_unknown;
105     unsigned Modifier = 0;
106     /// Pointer to a reference expression and a flag which shows that the
107     /// variable is marked as lastprivate(true) or not (false).
108     llvm::PointerIntPair<const Expr *, 1, bool> RefExpr;
109     DeclRefExpr *PrivateCopy = nullptr;
110     /// true if the attribute is applied to the pointee, not the variable
111     /// itself.
112     bool AppliedToPointee = false;
113   };
114   using DeclSAMapTy = llvm::SmallDenseMap<const ValueDecl *, DSAInfo, 8>;
115   using UsedRefMapTy = llvm::SmallDenseMap<const ValueDecl *, const Expr *, 8>;
116   using LCDeclInfo = std::pair<unsigned, VarDecl *>;
117   using LoopControlVariablesMapTy =
118       llvm::SmallDenseMap<const ValueDecl *, LCDeclInfo, 8>;
119   /// Struct that associates a component with the clause kind where they are
120   /// found.
121   struct MappedExprComponentTy {
122     OMPClauseMappableExprCommon::MappableExprComponentLists Components;
123     OpenMPClauseKind Kind = OMPC_unknown;
124   };
125   using MappedExprComponentsTy =
126       llvm::DenseMap<const ValueDecl *, MappedExprComponentTy>;
127   using CriticalsWithHintsTy =
128       llvm::StringMap<std::pair<const OMPCriticalDirective *, llvm::APSInt>>;
129   struct ReductionData {
130     using BOKPtrType = llvm::PointerEmbeddedInt<BinaryOperatorKind, 16>;
131     SourceRange ReductionRange;
132     llvm::PointerUnion<const Expr *, BOKPtrType> ReductionOp;
133     ReductionData() = default;
134     void set(BinaryOperatorKind BO, SourceRange RR) {
135       ReductionRange = RR;
136       ReductionOp = BO;
137     }
138     void set(const Expr *RefExpr, SourceRange RR) {
139       ReductionRange = RR;
140       ReductionOp = RefExpr;
141     }
142   };
143   using DeclReductionMapTy =
144       llvm::SmallDenseMap<const ValueDecl *, ReductionData, 4>;
145   struct DefaultmapInfo {
146     OpenMPDefaultmapClauseModifier ImplicitBehavior =
147         OMPC_DEFAULTMAP_MODIFIER_unknown;
148     SourceLocation SLoc;
149     DefaultmapInfo() = default;
150     DefaultmapInfo(OpenMPDefaultmapClauseModifier M, SourceLocation Loc)
151         : ImplicitBehavior(M), SLoc(Loc) {}
152   };
153 
154   struct SharingMapTy {
155     DeclSAMapTy SharingMap;
156     DeclReductionMapTy ReductionMap;
157     UsedRefMapTy AlignedMap;
158     UsedRefMapTy NontemporalMap;
159     MappedExprComponentsTy MappedExprComponents;
160     LoopControlVariablesMapTy LCVMap;
161     DefaultDataSharingAttributes DefaultAttr = DSA_unspecified;
162     SourceLocation DefaultAttrLoc;
163     DefaultmapInfo DefaultmapMap[OMPC_DEFAULTMAP_unknown];
164     OpenMPDirectiveKind Directive = OMPD_unknown;
165     DeclarationNameInfo DirectiveName;
166     Scope *CurScope = nullptr;
167     DeclContext *Context = nullptr;
168     SourceLocation ConstructLoc;
169     /// Set of 'depend' clauses with 'sink|source' dependence kind. Required to
170     /// get the data (loop counters etc.) about enclosing loop-based construct.
171     /// This data is required during codegen.
172     DoacrossDependMapTy DoacrossDepends;
173     /// First argument (Expr *) contains optional argument of the
174     /// 'ordered' clause, the second one is true if the regions has 'ordered'
175     /// clause, false otherwise.
176     std::optional<std::pair<const Expr *, OMPOrderedClause *>> OrderedRegion;
177     bool RegionHasOrderConcurrent = false;
178     unsigned AssociatedLoops = 1;
179     bool HasMutipleLoops = false;
180     const Decl *PossiblyLoopCounter = nullptr;
181     bool NowaitRegion = false;
182     bool UntiedRegion = false;
183     bool CancelRegion = false;
184     bool LoopStart = false;
185     bool BodyComplete = false;
186     SourceLocation PrevScanLocation;
187     SourceLocation PrevOrderedLocation;
188     SourceLocation InnerTeamsRegionLoc;
189     /// Reference to the taskgroup task_reduction reference expression.
190     Expr *TaskgroupReductionRef = nullptr;
191     llvm::DenseSet<QualType> MappedClassesQualTypes;
192     SmallVector<Expr *, 4> InnerUsedAllocators;
193     llvm::DenseSet<CanonicalDeclPtr<Decl>> ImplicitTaskFirstprivates;
194     /// List of globals marked as declare target link in this target region
195     /// (isOpenMPTargetExecutionDirective(Directive) == true).
196     llvm::SmallVector<DeclRefExpr *, 4> DeclareTargetLinkVarDecls;
197     /// List of decls used in inclusive/exclusive clauses of the scan directive.
198     llvm::DenseSet<CanonicalDeclPtr<Decl>> UsedInScanDirective;
199     llvm::DenseMap<CanonicalDeclPtr<const Decl>, UsesAllocatorsDeclKind>
200         UsesAllocatorsDecls;
201     /// Data is required on creating capture fields for implicit
202     /// default first|private clause.
203     struct ImplicitDefaultFDInfoTy {
204       /// Field decl.
205       const FieldDecl *FD = nullptr;
206       /// Nesting stack level
207       size_t StackLevel = 0;
208       /// Capture variable decl.
209       VarDecl *VD = nullptr;
210       ImplicitDefaultFDInfoTy(const FieldDecl *FD, size_t StackLevel,
211                               VarDecl *VD)
212           : FD(FD), StackLevel(StackLevel), VD(VD) {}
213     };
214     /// List of captured fields
215     llvm::SmallVector<ImplicitDefaultFDInfoTy, 8>
216         ImplicitDefaultFirstprivateFDs;
217     Expr *DeclareMapperVar = nullptr;
218     SmallVector<VarDecl *, 16> IteratorVarDecls;
219     SharingMapTy(OpenMPDirectiveKind DKind, DeclarationNameInfo Name,
220                  Scope *CurScope, SourceLocation Loc)
221         : Directive(DKind), DirectiveName(Name), CurScope(CurScope),
222           ConstructLoc(Loc) {}
223     SharingMapTy() = default;
224   };
225 
226   using StackTy = SmallVector<SharingMapTy, 4>;
227 
228   /// Stack of used declaration and their data-sharing attributes.
229   DeclSAMapTy Threadprivates;
230   const FunctionScopeInfo *CurrentNonCapturingFunctionScope = nullptr;
231   SmallVector<std::pair<StackTy, const FunctionScopeInfo *>, 4> Stack;
232   /// true, if check for DSA must be from parent directive, false, if
233   /// from current directive.
234   OpenMPClauseKind ClauseKindMode = OMPC_unknown;
235   Sema &SemaRef;
236   bool ForceCapturing = false;
237   /// true if all the variables in the target executable directives must be
238   /// captured by reference.
239   bool ForceCaptureByReferenceInTargetExecutable = false;
240   CriticalsWithHintsTy Criticals;
241   unsigned IgnoredStackElements = 0;
242 
243   /// Iterators over the stack iterate in order from innermost to outermost
244   /// directive.
245   using const_iterator = StackTy::const_reverse_iterator;
246   const_iterator begin() const {
247     return Stack.empty() ? const_iterator()
248                          : Stack.back().first.rbegin() + IgnoredStackElements;
249   }
250   const_iterator end() const {
251     return Stack.empty() ? const_iterator() : Stack.back().first.rend();
252   }
253   using iterator = StackTy::reverse_iterator;
254   iterator begin() {
255     return Stack.empty() ? iterator()
256                          : Stack.back().first.rbegin() + IgnoredStackElements;
257   }
258   iterator end() {
259     return Stack.empty() ? iterator() : Stack.back().first.rend();
260   }
261 
262   // Convenience operations to get at the elements of the stack.
263 
264   bool isStackEmpty() const {
265     return Stack.empty() ||
266            Stack.back().second != CurrentNonCapturingFunctionScope ||
267            Stack.back().first.size() <= IgnoredStackElements;
268   }
269   size_t getStackSize() const {
270     return isStackEmpty() ? 0
271                           : Stack.back().first.size() - IgnoredStackElements;
272   }
273 
274   SharingMapTy *getTopOfStackOrNull() {
275     size_t Size = getStackSize();
276     if (Size == 0)
277       return nullptr;
278     return &Stack.back().first[Size - 1];
279   }
280   const SharingMapTy *getTopOfStackOrNull() const {
281     return const_cast<DSAStackTy &>(*this).getTopOfStackOrNull();
282   }
283   SharingMapTy &getTopOfStack() {
284     assert(!isStackEmpty() && "no current directive");
285     return *getTopOfStackOrNull();
286   }
287   const SharingMapTy &getTopOfStack() const {
288     return const_cast<DSAStackTy &>(*this).getTopOfStack();
289   }
290 
291   SharingMapTy *getSecondOnStackOrNull() {
292     size_t Size = getStackSize();
293     if (Size <= 1)
294       return nullptr;
295     return &Stack.back().first[Size - 2];
296   }
297   const SharingMapTy *getSecondOnStackOrNull() const {
298     return const_cast<DSAStackTy &>(*this).getSecondOnStackOrNull();
299   }
300 
301   /// Get the stack element at a certain level (previously returned by
302   /// \c getNestingLevel).
303   ///
304   /// Note that nesting levels count from outermost to innermost, and this is
305   /// the reverse of our iteration order where new inner levels are pushed at
306   /// the front of the stack.
307   SharingMapTy &getStackElemAtLevel(unsigned Level) {
308     assert(Level < getStackSize() && "no such stack element");
309     return Stack.back().first[Level];
310   }
311   const SharingMapTy &getStackElemAtLevel(unsigned Level) const {
312     return const_cast<DSAStackTy &>(*this).getStackElemAtLevel(Level);
313   }
314 
315   DSAVarData getDSA(const_iterator &Iter, ValueDecl *D) const;
316 
317   /// Checks if the variable is a local for OpenMP region.
318   bool isOpenMPLocal(VarDecl *D, const_iterator Iter) const;
319 
320   /// Vector of previously declared requires directives
321   SmallVector<const OMPRequiresDecl *, 2> RequiresDecls;
322   /// omp_allocator_handle_t type.
323   QualType OMPAllocatorHandleT;
324   /// omp_depend_t type.
325   QualType OMPDependT;
326   /// omp_event_handle_t type.
327   QualType OMPEventHandleT;
328   /// omp_alloctrait_t type.
329   QualType OMPAlloctraitT;
330   /// Expression for the predefined allocators.
331   Expr *OMPPredefinedAllocators[OMPAllocateDeclAttr::OMPUserDefinedMemAlloc] = {
332       nullptr};
333   /// Vector of previously encountered target directives
334   SmallVector<SourceLocation, 2> TargetLocations;
335   SourceLocation AtomicLocation;
336   /// Vector of declare variant construct traits.
337   SmallVector<llvm::omp::TraitProperty, 8> ConstructTraits;
338 
339 public:
340   explicit DSAStackTy(Sema &S) : SemaRef(S) {}
341 
342   /// Sets omp_allocator_handle_t type.
343   void setOMPAllocatorHandleT(QualType Ty) { OMPAllocatorHandleT = Ty; }
344   /// Gets omp_allocator_handle_t type.
345   QualType getOMPAllocatorHandleT() const { return OMPAllocatorHandleT; }
346   /// Sets omp_alloctrait_t type.
347   void setOMPAlloctraitT(QualType Ty) { OMPAlloctraitT = Ty; }
348   /// Gets omp_alloctrait_t type.
349   QualType getOMPAlloctraitT() const { return OMPAlloctraitT; }
350   /// Sets the given default allocator.
351   void setAllocator(OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind,
352                     Expr *Allocator) {
353     OMPPredefinedAllocators[AllocatorKind] = Allocator;
354   }
355   /// Returns the specified default allocator.
356   Expr *getAllocator(OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind) const {
357     return OMPPredefinedAllocators[AllocatorKind];
358   }
359   /// Sets omp_depend_t type.
360   void setOMPDependT(QualType Ty) { OMPDependT = Ty; }
361   /// Gets omp_depend_t type.
362   QualType getOMPDependT() const { return OMPDependT; }
363 
364   /// Sets omp_event_handle_t type.
365   void setOMPEventHandleT(QualType Ty) { OMPEventHandleT = Ty; }
366   /// Gets omp_event_handle_t type.
367   QualType getOMPEventHandleT() const { return OMPEventHandleT; }
368 
369   bool isClauseParsingMode() const { return ClauseKindMode != OMPC_unknown; }
370   OpenMPClauseKind getClauseParsingMode() const {
371     assert(isClauseParsingMode() && "Must be in clause parsing mode.");
372     return ClauseKindMode;
373   }
374   void setClauseParsingMode(OpenMPClauseKind K) { ClauseKindMode = K; }
375 
376   bool isBodyComplete() const {
377     const SharingMapTy *Top = getTopOfStackOrNull();
378     return Top && Top->BodyComplete;
379   }
380   void setBodyComplete() { getTopOfStack().BodyComplete = true; }
381 
382   bool isForceVarCapturing() const { return ForceCapturing; }
383   void setForceVarCapturing(bool V) { ForceCapturing = V; }
384 
385   void setForceCaptureByReferenceInTargetExecutable(bool V) {
386     ForceCaptureByReferenceInTargetExecutable = V;
387   }
388   bool isForceCaptureByReferenceInTargetExecutable() const {
389     return ForceCaptureByReferenceInTargetExecutable;
390   }
391 
392   void push(OpenMPDirectiveKind DKind, const DeclarationNameInfo &DirName,
393             Scope *CurScope, SourceLocation Loc) {
394     assert(!IgnoredStackElements &&
395            "cannot change stack while ignoring elements");
396     if (Stack.empty() ||
397         Stack.back().second != CurrentNonCapturingFunctionScope)
398       Stack.emplace_back(StackTy(), CurrentNonCapturingFunctionScope);
399     Stack.back().first.emplace_back(DKind, DirName, CurScope, Loc);
400     Stack.back().first.back().DefaultAttrLoc = Loc;
401   }
402 
403   void pop() {
404     assert(!IgnoredStackElements &&
405            "cannot change stack while ignoring elements");
406     assert(!Stack.back().first.empty() &&
407            "Data-sharing attributes stack is empty!");
408     Stack.back().first.pop_back();
409   }
410 
411   /// RAII object to temporarily leave the scope of a directive when we want to
412   /// logically operate in its parent.
413   class ParentDirectiveScope {
414     DSAStackTy &Self;
415     bool Active;
416 
417   public:
418     ParentDirectiveScope(DSAStackTy &Self, bool Activate)
419         : Self(Self), Active(false) {
420       if (Activate)
421         enable();
422     }
423     ~ParentDirectiveScope() { disable(); }
424     void disable() {
425       if (Active) {
426         --Self.IgnoredStackElements;
427         Active = false;
428       }
429     }
430     void enable() {
431       if (!Active) {
432         ++Self.IgnoredStackElements;
433         Active = true;
434       }
435     }
436   };
437 
438   /// Marks that we're started loop parsing.
439   void loopInit() {
440     assert(isOpenMPLoopDirective(getCurrentDirective()) &&
441            "Expected loop-based directive.");
442     getTopOfStack().LoopStart = true;
443   }
444   /// Start capturing of the variables in the loop context.
445   void loopStart() {
446     assert(isOpenMPLoopDirective(getCurrentDirective()) &&
447            "Expected loop-based directive.");
448     getTopOfStack().LoopStart = false;
449   }
450   /// true, if variables are captured, false otherwise.
451   bool isLoopStarted() const {
452     assert(isOpenMPLoopDirective(getCurrentDirective()) &&
453            "Expected loop-based directive.");
454     return !getTopOfStack().LoopStart;
455   }
456   /// Marks (or clears) declaration as possibly loop counter.
457   void resetPossibleLoopCounter(const Decl *D = nullptr) {
458     getTopOfStack().PossiblyLoopCounter = D ? D->getCanonicalDecl() : D;
459   }
460   /// Gets the possible loop counter decl.
461   const Decl *getPossiblyLoopCunter() const {
462     return getTopOfStack().PossiblyLoopCounter;
463   }
464   /// Start new OpenMP region stack in new non-capturing function.
465   void pushFunction() {
466     assert(!IgnoredStackElements &&
467            "cannot change stack while ignoring elements");
468     const FunctionScopeInfo *CurFnScope = SemaRef.getCurFunction();
469     assert(!isa<CapturingScopeInfo>(CurFnScope));
470     CurrentNonCapturingFunctionScope = CurFnScope;
471   }
472   /// Pop region stack for non-capturing function.
473   void popFunction(const FunctionScopeInfo *OldFSI) {
474     assert(!IgnoredStackElements &&
475            "cannot change stack while ignoring elements");
476     if (!Stack.empty() && Stack.back().second == OldFSI) {
477       assert(Stack.back().first.empty());
478       Stack.pop_back();
479     }
480     CurrentNonCapturingFunctionScope = nullptr;
481     for (const FunctionScopeInfo *FSI : llvm::reverse(SemaRef.FunctionScopes)) {
482       if (!isa<CapturingScopeInfo>(FSI)) {
483         CurrentNonCapturingFunctionScope = FSI;
484         break;
485       }
486     }
487   }
488 
489   void addCriticalWithHint(const OMPCriticalDirective *D, llvm::APSInt Hint) {
490     Criticals.try_emplace(D->getDirectiveName().getAsString(), D, Hint);
491   }
492   const std::pair<const OMPCriticalDirective *, llvm::APSInt>
493   getCriticalWithHint(const DeclarationNameInfo &Name) const {
494     auto I = Criticals.find(Name.getAsString());
495     if (I != Criticals.end())
496       return I->second;
497     return std::make_pair(nullptr, llvm::APSInt());
498   }
499   /// If 'aligned' declaration for given variable \a D was not seen yet,
500   /// add it and return NULL; otherwise return previous occurrence's expression
501   /// for diagnostics.
502   const Expr *addUniqueAligned(const ValueDecl *D, const Expr *NewDE);
503   /// If 'nontemporal' declaration for given variable \a D was not seen yet,
504   /// add it and return NULL; otherwise return previous occurrence's expression
505   /// for diagnostics.
506   const Expr *addUniqueNontemporal(const ValueDecl *D, const Expr *NewDE);
507 
508   /// Register specified variable as loop control variable.
509   void addLoopControlVariable(const ValueDecl *D, VarDecl *Capture);
510   /// Check if the specified variable is a loop control variable for
511   /// current region.
512   /// \return The index of the loop control variable in the list of associated
513   /// for-loops (from outer to inner).
514   const LCDeclInfo isLoopControlVariable(const ValueDecl *D) const;
515   /// Check if the specified variable is a loop control variable for
516   /// parent region.
517   /// \return The index of the loop control variable in the list of associated
518   /// for-loops (from outer to inner).
519   const LCDeclInfo isParentLoopControlVariable(const ValueDecl *D) const;
520   /// Check if the specified variable is a loop control variable for
521   /// current region.
522   /// \return The index of the loop control variable in the list of associated
523   /// for-loops (from outer to inner).
524   const LCDeclInfo isLoopControlVariable(const ValueDecl *D,
525                                          unsigned Level) const;
526   /// Get the loop control variable for the I-th loop (or nullptr) in
527   /// parent directive.
528   const ValueDecl *getParentLoopControlVariable(unsigned I) const;
529 
530   /// Marks the specified decl \p D as used in scan directive.
531   void markDeclAsUsedInScanDirective(ValueDecl *D) {
532     if (SharingMapTy *Stack = getSecondOnStackOrNull())
533       Stack->UsedInScanDirective.insert(D);
534   }
535 
536   /// Checks if the specified declaration was used in the inner scan directive.
537   bool isUsedInScanDirective(ValueDecl *D) const {
538     if (const SharingMapTy *Stack = getTopOfStackOrNull())
539       return Stack->UsedInScanDirective.contains(D);
540     return false;
541   }
542 
543   /// Adds explicit data sharing attribute to the specified declaration.
544   void addDSA(const ValueDecl *D, const Expr *E, OpenMPClauseKind A,
545               DeclRefExpr *PrivateCopy = nullptr, unsigned Modifier = 0,
546               bool AppliedToPointee = false);
547 
548   /// Adds additional information for the reduction items with the reduction id
549   /// represented as an operator.
550   void addTaskgroupReductionData(const ValueDecl *D, SourceRange SR,
551                                  BinaryOperatorKind BOK);
552   /// Adds additional information for the reduction items with the reduction id
553   /// represented as reduction identifier.
554   void addTaskgroupReductionData(const ValueDecl *D, SourceRange SR,
555                                  const Expr *ReductionRef);
556   /// Returns the location and reduction operation from the innermost parent
557   /// region for the given \p D.
558   const DSAVarData
559   getTopMostTaskgroupReductionData(const ValueDecl *D, SourceRange &SR,
560                                    BinaryOperatorKind &BOK,
561                                    Expr *&TaskgroupDescriptor) const;
562   /// Returns the location and reduction operation from the innermost parent
563   /// region for the given \p D.
564   const DSAVarData
565   getTopMostTaskgroupReductionData(const ValueDecl *D, SourceRange &SR,
566                                    const Expr *&ReductionRef,
567                                    Expr *&TaskgroupDescriptor) const;
568   /// Return reduction reference expression for the current taskgroup or
569   /// parallel/worksharing directives with task reductions.
570   Expr *getTaskgroupReductionRef() const {
571     assert((getTopOfStack().Directive == OMPD_taskgroup ||
572             ((isOpenMPParallelDirective(getTopOfStack().Directive) ||
573               isOpenMPWorksharingDirective(getTopOfStack().Directive)) &&
574              !isOpenMPSimdDirective(getTopOfStack().Directive))) &&
575            "taskgroup reference expression requested for non taskgroup or "
576            "parallel/worksharing directive.");
577     return getTopOfStack().TaskgroupReductionRef;
578   }
579   /// Checks if the given \p VD declaration is actually a taskgroup reduction
580   /// descriptor variable at the \p Level of OpenMP regions.
581   bool isTaskgroupReductionRef(const ValueDecl *VD, unsigned Level) const {
582     return getStackElemAtLevel(Level).TaskgroupReductionRef &&
583            cast<DeclRefExpr>(getStackElemAtLevel(Level).TaskgroupReductionRef)
584                    ->getDecl() == VD;
585   }
586 
587   /// Returns data sharing attributes from top of the stack for the
588   /// specified declaration.
589   const DSAVarData getTopDSA(ValueDecl *D, bool FromParent);
590   /// Returns data-sharing attributes for the specified declaration.
591   const DSAVarData getImplicitDSA(ValueDecl *D, bool FromParent) const;
592   /// Returns data-sharing attributes for the specified declaration.
593   const DSAVarData getImplicitDSA(ValueDecl *D, unsigned Level) const;
594   /// Checks if the specified variables has data-sharing attributes which
595   /// match specified \a CPred predicate in any directive which matches \a DPred
596   /// predicate.
597   const DSAVarData
598   hasDSA(ValueDecl *D,
599          const llvm::function_ref<bool(OpenMPClauseKind, bool,
600                                        DefaultDataSharingAttributes)>
601              CPred,
602          const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
603          bool FromParent) const;
604   /// Checks if the specified variables has data-sharing attributes which
605   /// match specified \a CPred predicate in any innermost directive which
606   /// matches \a DPred predicate.
607   const DSAVarData
608   hasInnermostDSA(ValueDecl *D,
609                   const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
610                   const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
611                   bool FromParent) const;
612   /// Checks if the specified variables has explicit data-sharing
613   /// attributes which match specified \a CPred predicate at the specified
614   /// OpenMP region.
615   bool
616   hasExplicitDSA(const ValueDecl *D,
617                  const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
618                  unsigned Level, bool NotLastprivate = false) const;
619 
620   /// Returns true if the directive at level \Level matches in the
621   /// specified \a DPred predicate.
622   bool hasExplicitDirective(
623       const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
624       unsigned Level) const;
625 
626   /// Finds a directive which matches specified \a DPred predicate.
627   bool hasDirective(
628       const llvm::function_ref<bool(
629           OpenMPDirectiveKind, const DeclarationNameInfo &, SourceLocation)>
630           DPred,
631       bool FromParent) const;
632 
633   /// Returns currently analyzed directive.
634   OpenMPDirectiveKind getCurrentDirective() const {
635     const SharingMapTy *Top = getTopOfStackOrNull();
636     return Top ? Top->Directive : OMPD_unknown;
637   }
638   /// Returns directive kind at specified level.
639   OpenMPDirectiveKind getDirective(unsigned Level) const {
640     assert(!isStackEmpty() && "No directive at specified level.");
641     return getStackElemAtLevel(Level).Directive;
642   }
643   /// Returns the capture region at the specified level.
644   OpenMPDirectiveKind getCaptureRegion(unsigned Level,
645                                        unsigned OpenMPCaptureLevel) const {
646     SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
647     getOpenMPCaptureRegions(CaptureRegions, getDirective(Level));
648     return CaptureRegions[OpenMPCaptureLevel];
649   }
650   /// Returns parent directive.
651   OpenMPDirectiveKind getParentDirective() const {
652     const SharingMapTy *Parent = getSecondOnStackOrNull();
653     return Parent ? Parent->Directive : OMPD_unknown;
654   }
655 
656   /// Add requires decl to internal vector
657   void addRequiresDecl(OMPRequiresDecl *RD) { RequiresDecls.push_back(RD); }
658 
659   /// Checks if the defined 'requires' directive has specified type of clause.
660   template <typename ClauseType> bool hasRequiresDeclWithClause() const {
661     return llvm::any_of(RequiresDecls, [](const OMPRequiresDecl *D) {
662       return llvm::any_of(D->clauselists(), [](const OMPClause *C) {
663         return isa<ClauseType>(C);
664       });
665     });
666   }
667 
668   /// Checks for a duplicate clause amongst previously declared requires
669   /// directives
670   bool hasDuplicateRequiresClause(ArrayRef<OMPClause *> ClauseList) const {
671     bool IsDuplicate = false;
672     for (OMPClause *CNew : ClauseList) {
673       for (const OMPRequiresDecl *D : RequiresDecls) {
674         for (const OMPClause *CPrev : D->clauselists()) {
675           if (CNew->getClauseKind() == CPrev->getClauseKind()) {
676             SemaRef.Diag(CNew->getBeginLoc(),
677                          diag::err_omp_requires_clause_redeclaration)
678                 << getOpenMPClauseName(CNew->getClauseKind());
679             SemaRef.Diag(CPrev->getBeginLoc(),
680                          diag::note_omp_requires_previous_clause)
681                 << getOpenMPClauseName(CPrev->getClauseKind());
682             IsDuplicate = true;
683           }
684         }
685       }
686     }
687     return IsDuplicate;
688   }
689 
690   /// Add location of previously encountered target to internal vector
691   void addTargetDirLocation(SourceLocation LocStart) {
692     TargetLocations.push_back(LocStart);
693   }
694 
695   /// Add location for the first encountered atomicc directive.
696   void addAtomicDirectiveLoc(SourceLocation Loc) {
697     if (AtomicLocation.isInvalid())
698       AtomicLocation = Loc;
699   }
700 
701   /// Returns the location of the first encountered atomic directive in the
702   /// module.
703   SourceLocation getAtomicDirectiveLoc() const { return AtomicLocation; }
704 
705   // Return previously encountered target region locations.
706   ArrayRef<SourceLocation> getEncounteredTargetLocs() const {
707     return TargetLocations;
708   }
709 
710   /// Set default data sharing attribute to none.
711   void setDefaultDSANone(SourceLocation Loc) {
712     getTopOfStack().DefaultAttr = DSA_none;
713     getTopOfStack().DefaultAttrLoc = Loc;
714   }
715   /// Set default data sharing attribute to shared.
716   void setDefaultDSAShared(SourceLocation Loc) {
717     getTopOfStack().DefaultAttr = DSA_shared;
718     getTopOfStack().DefaultAttrLoc = Loc;
719   }
720   /// Set default data sharing attribute to private.
721   void setDefaultDSAPrivate(SourceLocation Loc) {
722     getTopOfStack().DefaultAttr = DSA_private;
723     getTopOfStack().DefaultAttrLoc = Loc;
724   }
725   /// Set default data sharing attribute to firstprivate.
726   void setDefaultDSAFirstPrivate(SourceLocation Loc) {
727     getTopOfStack().DefaultAttr = DSA_firstprivate;
728     getTopOfStack().DefaultAttrLoc = Loc;
729   }
730   /// Set default data mapping attribute to Modifier:Kind
731   void setDefaultDMAAttr(OpenMPDefaultmapClauseModifier M,
732                          OpenMPDefaultmapClauseKind Kind, SourceLocation Loc) {
733     DefaultmapInfo &DMI = getTopOfStack().DefaultmapMap[Kind];
734     DMI.ImplicitBehavior = M;
735     DMI.SLoc = Loc;
736   }
737   /// Check whether the implicit-behavior has been set in defaultmap
738   bool checkDefaultmapCategory(OpenMPDefaultmapClauseKind VariableCategory) {
739     if (VariableCategory == OMPC_DEFAULTMAP_unknown)
740       return getTopOfStack()
741                      .DefaultmapMap[OMPC_DEFAULTMAP_aggregate]
742                      .ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown ||
743              getTopOfStack()
744                      .DefaultmapMap[OMPC_DEFAULTMAP_scalar]
745                      .ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown ||
746              getTopOfStack()
747                      .DefaultmapMap[OMPC_DEFAULTMAP_pointer]
748                      .ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown;
749     return getTopOfStack().DefaultmapMap[VariableCategory].ImplicitBehavior !=
750            OMPC_DEFAULTMAP_MODIFIER_unknown;
751   }
752 
753   ArrayRef<llvm::omp::TraitProperty> getConstructTraits() {
754     return ConstructTraits;
755   }
756   void handleConstructTrait(ArrayRef<llvm::omp::TraitProperty> Traits,
757                             bool ScopeEntry) {
758     if (ScopeEntry)
759       ConstructTraits.append(Traits.begin(), Traits.end());
760     else
761       for (llvm::omp::TraitProperty Trait : llvm::reverse(Traits)) {
762         llvm::omp::TraitProperty Top = ConstructTraits.pop_back_val();
763         assert(Top == Trait && "Something left a trait on the stack!");
764         (void)Trait;
765         (void)Top;
766       }
767   }
768 
769   DefaultDataSharingAttributes getDefaultDSA(unsigned Level) const {
770     return getStackSize() <= Level ? DSA_unspecified
771                                    : getStackElemAtLevel(Level).DefaultAttr;
772   }
773   DefaultDataSharingAttributes getDefaultDSA() const {
774     return isStackEmpty() ? DSA_unspecified : getTopOfStack().DefaultAttr;
775   }
776   SourceLocation getDefaultDSALocation() const {
777     return isStackEmpty() ? SourceLocation() : getTopOfStack().DefaultAttrLoc;
778   }
779   OpenMPDefaultmapClauseModifier
780   getDefaultmapModifier(OpenMPDefaultmapClauseKind Kind) const {
781     return isStackEmpty()
782                ? OMPC_DEFAULTMAP_MODIFIER_unknown
783                : getTopOfStack().DefaultmapMap[Kind].ImplicitBehavior;
784   }
785   OpenMPDefaultmapClauseModifier
786   getDefaultmapModifierAtLevel(unsigned Level,
787                                OpenMPDefaultmapClauseKind Kind) const {
788     return getStackElemAtLevel(Level).DefaultmapMap[Kind].ImplicitBehavior;
789   }
790   bool isDefaultmapCapturedByRef(unsigned Level,
791                                  OpenMPDefaultmapClauseKind Kind) const {
792     OpenMPDefaultmapClauseModifier M =
793         getDefaultmapModifierAtLevel(Level, Kind);
794     if (Kind == OMPC_DEFAULTMAP_scalar || Kind == OMPC_DEFAULTMAP_pointer) {
795       return (M == OMPC_DEFAULTMAP_MODIFIER_alloc) ||
796              (M == OMPC_DEFAULTMAP_MODIFIER_to) ||
797              (M == OMPC_DEFAULTMAP_MODIFIER_from) ||
798              (M == OMPC_DEFAULTMAP_MODIFIER_tofrom);
799     }
800     return true;
801   }
802   static bool mustBeFirstprivateBase(OpenMPDefaultmapClauseModifier M,
803                                      OpenMPDefaultmapClauseKind Kind) {
804     switch (Kind) {
805     case OMPC_DEFAULTMAP_scalar:
806     case OMPC_DEFAULTMAP_pointer:
807       return (M == OMPC_DEFAULTMAP_MODIFIER_unknown) ||
808              (M == OMPC_DEFAULTMAP_MODIFIER_firstprivate) ||
809              (M == OMPC_DEFAULTMAP_MODIFIER_default);
810     case OMPC_DEFAULTMAP_aggregate:
811       return M == OMPC_DEFAULTMAP_MODIFIER_firstprivate;
812     default:
813       break;
814     }
815     llvm_unreachable("Unexpected OpenMPDefaultmapClauseKind enum");
816   }
817   bool mustBeFirstprivateAtLevel(unsigned Level,
818                                  OpenMPDefaultmapClauseKind Kind) const {
819     OpenMPDefaultmapClauseModifier M =
820         getDefaultmapModifierAtLevel(Level, Kind);
821     return mustBeFirstprivateBase(M, Kind);
822   }
823   bool mustBeFirstprivate(OpenMPDefaultmapClauseKind Kind) const {
824     OpenMPDefaultmapClauseModifier M = getDefaultmapModifier(Kind);
825     return mustBeFirstprivateBase(M, Kind);
826   }
827 
828   /// Checks if the specified variable is a threadprivate.
829   bool isThreadPrivate(VarDecl *D) {
830     const DSAVarData DVar = getTopDSA(D, false);
831     return isOpenMPThreadPrivate(DVar.CKind);
832   }
833 
834   /// Marks current region as ordered (it has an 'ordered' clause).
835   void setOrderedRegion(bool IsOrdered, const Expr *Param,
836                         OMPOrderedClause *Clause) {
837     if (IsOrdered)
838       getTopOfStack().OrderedRegion.emplace(Param, Clause);
839     else
840       getTopOfStack().OrderedRegion.reset();
841   }
842   /// Returns true, if region is ordered (has associated 'ordered' clause),
843   /// false - otherwise.
844   bool isOrderedRegion() const {
845     if (const SharingMapTy *Top = getTopOfStackOrNull())
846       return Top->OrderedRegion.has_value();
847     return false;
848   }
849   /// Returns optional parameter for the ordered region.
850   std::pair<const Expr *, OMPOrderedClause *> getOrderedRegionParam() const {
851     if (const SharingMapTy *Top = getTopOfStackOrNull())
852       if (Top->OrderedRegion)
853         return *Top->OrderedRegion;
854     return std::make_pair(nullptr, nullptr);
855   }
856   /// Returns true, if parent region is ordered (has associated
857   /// 'ordered' clause), false - otherwise.
858   bool isParentOrderedRegion() const {
859     if (const SharingMapTy *Parent = getSecondOnStackOrNull())
860       return Parent->OrderedRegion.has_value();
861     return false;
862   }
863   /// Returns optional parameter for the ordered region.
864   std::pair<const Expr *, OMPOrderedClause *>
865   getParentOrderedRegionParam() const {
866     if (const SharingMapTy *Parent = getSecondOnStackOrNull())
867       if (Parent->OrderedRegion)
868         return *Parent->OrderedRegion;
869     return std::make_pair(nullptr, nullptr);
870   }
871   /// Marks current region as having an 'order' clause.
872   void setRegionHasOrderConcurrent(bool HasOrderConcurrent) {
873     getTopOfStack().RegionHasOrderConcurrent = HasOrderConcurrent;
874   }
875   /// Returns true, if parent region is order (has associated
876   /// 'order' clause), false - otherwise.
877   bool isParentOrderConcurrent() const {
878     if (const SharingMapTy *Parent = getSecondOnStackOrNull())
879       return Parent->RegionHasOrderConcurrent;
880     return false;
881   }
882   /// Marks current region as nowait (it has a 'nowait' clause).
883   void setNowaitRegion(bool IsNowait = true) {
884     getTopOfStack().NowaitRegion = IsNowait;
885   }
886   /// Returns true, if parent region is nowait (has associated
887   /// 'nowait' clause), false - otherwise.
888   bool isParentNowaitRegion() const {
889     if (const SharingMapTy *Parent = getSecondOnStackOrNull())
890       return Parent->NowaitRegion;
891     return false;
892   }
893   /// Marks current region as untied (it has a 'untied' clause).
894   void setUntiedRegion(bool IsUntied = true) {
895     getTopOfStack().UntiedRegion = IsUntied;
896   }
897   /// Return true if current region is untied.
898   bool isUntiedRegion() const {
899     const SharingMapTy *Top = getTopOfStackOrNull();
900     return Top ? Top->UntiedRegion : false;
901   }
902   /// Marks parent region as cancel region.
903   void setParentCancelRegion(bool Cancel = true) {
904     if (SharingMapTy *Parent = getSecondOnStackOrNull())
905       Parent->CancelRegion |= Cancel;
906   }
907   /// Return true if current region has inner cancel construct.
908   bool isCancelRegion() const {
909     const SharingMapTy *Top = getTopOfStackOrNull();
910     return Top ? Top->CancelRegion : false;
911   }
912 
913   /// Mark that parent region already has scan directive.
914   void setParentHasScanDirective(SourceLocation Loc) {
915     if (SharingMapTy *Parent = getSecondOnStackOrNull())
916       Parent->PrevScanLocation = Loc;
917   }
918   /// Return true if current region has inner cancel construct.
919   bool doesParentHasScanDirective() const {
920     const SharingMapTy *Top = getSecondOnStackOrNull();
921     return Top ? Top->PrevScanLocation.isValid() : false;
922   }
923   /// Return true if current region has inner cancel construct.
924   SourceLocation getParentScanDirectiveLoc() const {
925     const SharingMapTy *Top = getSecondOnStackOrNull();
926     return Top ? Top->PrevScanLocation : SourceLocation();
927   }
928   /// Mark that parent region already has ordered directive.
929   void setParentHasOrderedDirective(SourceLocation Loc) {
930     if (SharingMapTy *Parent = getSecondOnStackOrNull())
931       Parent->PrevOrderedLocation = Loc;
932   }
933   /// Return true if current region has inner ordered construct.
934   bool doesParentHasOrderedDirective() const {
935     const SharingMapTy *Top = getSecondOnStackOrNull();
936     return Top ? Top->PrevOrderedLocation.isValid() : false;
937   }
938   /// Returns the location of the previously specified ordered directive.
939   SourceLocation getParentOrderedDirectiveLoc() const {
940     const SharingMapTy *Top = getSecondOnStackOrNull();
941     return Top ? Top->PrevOrderedLocation : SourceLocation();
942   }
943 
944   /// Set collapse value for the region.
945   void setAssociatedLoops(unsigned Val) {
946     getTopOfStack().AssociatedLoops = Val;
947     if (Val > 1)
948       getTopOfStack().HasMutipleLoops = true;
949   }
950   /// Return collapse value for region.
951   unsigned getAssociatedLoops() const {
952     const SharingMapTy *Top = getTopOfStackOrNull();
953     return Top ? Top->AssociatedLoops : 0;
954   }
955   /// Returns true if the construct is associated with multiple loops.
956   bool hasMutipleLoops() const {
957     const SharingMapTy *Top = getTopOfStackOrNull();
958     return Top ? Top->HasMutipleLoops : false;
959   }
960 
961   /// Marks current target region as one with closely nested teams
962   /// region.
963   void setParentTeamsRegionLoc(SourceLocation TeamsRegionLoc) {
964     if (SharingMapTy *Parent = getSecondOnStackOrNull())
965       Parent->InnerTeamsRegionLoc = TeamsRegionLoc;
966   }
967   /// Returns true, if current region has closely nested teams region.
968   bool hasInnerTeamsRegion() const {
969     return getInnerTeamsRegionLoc().isValid();
970   }
971   /// Returns location of the nested teams region (if any).
972   SourceLocation getInnerTeamsRegionLoc() const {
973     const SharingMapTy *Top = getTopOfStackOrNull();
974     return Top ? Top->InnerTeamsRegionLoc : SourceLocation();
975   }
976 
977   Scope *getCurScope() const {
978     const SharingMapTy *Top = getTopOfStackOrNull();
979     return Top ? Top->CurScope : nullptr;
980   }
981   void setContext(DeclContext *DC) { getTopOfStack().Context = DC; }
982   SourceLocation getConstructLoc() const {
983     const SharingMapTy *Top = getTopOfStackOrNull();
984     return Top ? Top->ConstructLoc : SourceLocation();
985   }
986 
987   /// Do the check specified in \a Check to all component lists and return true
988   /// if any issue is found.
989   bool checkMappableExprComponentListsForDecl(
990       const ValueDecl *VD, bool CurrentRegionOnly,
991       const llvm::function_ref<
992           bool(OMPClauseMappableExprCommon::MappableExprComponentListRef,
993                OpenMPClauseKind)>
994           Check) const {
995     if (isStackEmpty())
996       return false;
997     auto SI = begin();
998     auto SE = end();
999 
1000     if (SI == SE)
1001       return false;
1002 
1003     if (CurrentRegionOnly)
1004       SE = std::next(SI);
1005     else
1006       std::advance(SI, 1);
1007 
1008     for (; SI != SE; ++SI) {
1009       auto MI = SI->MappedExprComponents.find(VD);
1010       if (MI != SI->MappedExprComponents.end())
1011         for (OMPClauseMappableExprCommon::MappableExprComponentListRef L :
1012              MI->second.Components)
1013           if (Check(L, MI->second.Kind))
1014             return true;
1015     }
1016     return false;
1017   }
1018 
1019   /// Do the check specified in \a Check to all component lists at a given level
1020   /// and return true if any issue is found.
1021   bool checkMappableExprComponentListsForDeclAtLevel(
1022       const ValueDecl *VD, unsigned Level,
1023       const llvm::function_ref<
1024           bool(OMPClauseMappableExprCommon::MappableExprComponentListRef,
1025                OpenMPClauseKind)>
1026           Check) const {
1027     if (getStackSize() <= Level)
1028       return false;
1029 
1030     const SharingMapTy &StackElem = getStackElemAtLevel(Level);
1031     auto MI = StackElem.MappedExprComponents.find(VD);
1032     if (MI != StackElem.MappedExprComponents.end())
1033       for (OMPClauseMappableExprCommon::MappableExprComponentListRef L :
1034            MI->second.Components)
1035         if (Check(L, MI->second.Kind))
1036           return true;
1037     return false;
1038   }
1039 
1040   /// Create a new mappable expression component list associated with a given
1041   /// declaration and initialize it with the provided list of components.
1042   void addMappableExpressionComponents(
1043       const ValueDecl *VD,
1044       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
1045       OpenMPClauseKind WhereFoundClauseKind) {
1046     MappedExprComponentTy &MEC = getTopOfStack().MappedExprComponents[VD];
1047     // Create new entry and append the new components there.
1048     MEC.Components.resize(MEC.Components.size() + 1);
1049     MEC.Components.back().append(Components.begin(), Components.end());
1050     MEC.Kind = WhereFoundClauseKind;
1051   }
1052 
1053   unsigned getNestingLevel() const {
1054     assert(!isStackEmpty());
1055     return getStackSize() - 1;
1056   }
1057   void addDoacrossDependClause(OMPDependClause *C,
1058                                const OperatorOffsetTy &OpsOffs) {
1059     SharingMapTy *Parent = getSecondOnStackOrNull();
1060     assert(Parent && isOpenMPWorksharingDirective(Parent->Directive));
1061     Parent->DoacrossDepends.try_emplace(C, OpsOffs);
1062   }
1063   llvm::iterator_range<DoacrossDependMapTy::const_iterator>
1064   getDoacrossDependClauses() const {
1065     const SharingMapTy &StackElem = getTopOfStack();
1066     if (isOpenMPWorksharingDirective(StackElem.Directive)) {
1067       const DoacrossDependMapTy &Ref = StackElem.DoacrossDepends;
1068       return llvm::make_range(Ref.begin(), Ref.end());
1069     }
1070     return llvm::make_range(StackElem.DoacrossDepends.end(),
1071                             StackElem.DoacrossDepends.end());
1072   }
1073 
1074   // Store types of classes which have been explicitly mapped
1075   void addMappedClassesQualTypes(QualType QT) {
1076     SharingMapTy &StackElem = getTopOfStack();
1077     StackElem.MappedClassesQualTypes.insert(QT);
1078   }
1079 
1080   // Return set of mapped classes types
1081   bool isClassPreviouslyMapped(QualType QT) const {
1082     const SharingMapTy &StackElem = getTopOfStack();
1083     return StackElem.MappedClassesQualTypes.contains(QT);
1084   }
1085 
1086   /// Adds global declare target to the parent target region.
1087   void addToParentTargetRegionLinkGlobals(DeclRefExpr *E) {
1088     assert(*OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
1089                E->getDecl()) == OMPDeclareTargetDeclAttr::MT_Link &&
1090            "Expected declare target link global.");
1091     for (auto &Elem : *this) {
1092       if (isOpenMPTargetExecutionDirective(Elem.Directive)) {
1093         Elem.DeclareTargetLinkVarDecls.push_back(E);
1094         return;
1095       }
1096     }
1097   }
1098 
1099   /// Returns the list of globals with declare target link if current directive
1100   /// is target.
1101   ArrayRef<DeclRefExpr *> getLinkGlobals() const {
1102     assert(isOpenMPTargetExecutionDirective(getCurrentDirective()) &&
1103            "Expected target executable directive.");
1104     return getTopOfStack().DeclareTargetLinkVarDecls;
1105   }
1106 
1107   /// Adds list of allocators expressions.
1108   void addInnerAllocatorExpr(Expr *E) {
1109     getTopOfStack().InnerUsedAllocators.push_back(E);
1110   }
1111   /// Return list of used allocators.
1112   ArrayRef<Expr *> getInnerAllocators() const {
1113     return getTopOfStack().InnerUsedAllocators;
1114   }
1115   /// Marks the declaration as implicitly firstprivate nin the task-based
1116   /// regions.
1117   void addImplicitTaskFirstprivate(unsigned Level, Decl *D) {
1118     getStackElemAtLevel(Level).ImplicitTaskFirstprivates.insert(D);
1119   }
1120   /// Checks if the decl is implicitly firstprivate in the task-based region.
1121   bool isImplicitTaskFirstprivate(Decl *D) const {
1122     return getTopOfStack().ImplicitTaskFirstprivates.contains(D);
1123   }
1124 
1125   /// Marks decl as used in uses_allocators clause as the allocator.
1126   void addUsesAllocatorsDecl(const Decl *D, UsesAllocatorsDeclKind Kind) {
1127     getTopOfStack().UsesAllocatorsDecls.try_emplace(D, Kind);
1128   }
1129   /// Checks if specified decl is used in uses allocator clause as the
1130   /// allocator.
1131   std::optional<UsesAllocatorsDeclKind>
1132   isUsesAllocatorsDecl(unsigned Level, const Decl *D) const {
1133     const SharingMapTy &StackElem = getTopOfStack();
1134     auto I = StackElem.UsesAllocatorsDecls.find(D);
1135     if (I == StackElem.UsesAllocatorsDecls.end())
1136       return std::nullopt;
1137     return I->getSecond();
1138   }
1139   std::optional<UsesAllocatorsDeclKind>
1140   isUsesAllocatorsDecl(const Decl *D) const {
1141     const SharingMapTy &StackElem = getTopOfStack();
1142     auto I = StackElem.UsesAllocatorsDecls.find(D);
1143     if (I == StackElem.UsesAllocatorsDecls.end())
1144       return std::nullopt;
1145     return I->getSecond();
1146   }
1147 
1148   void addDeclareMapperVarRef(Expr *Ref) {
1149     SharingMapTy &StackElem = getTopOfStack();
1150     StackElem.DeclareMapperVar = Ref;
1151   }
1152   const Expr *getDeclareMapperVarRef() const {
1153     const SharingMapTy *Top = getTopOfStackOrNull();
1154     return Top ? Top->DeclareMapperVar : nullptr;
1155   }
1156 
1157   /// Add a new iterator variable.
1158   void addIteratorVarDecl(VarDecl *VD) {
1159     SharingMapTy &StackElem = getTopOfStack();
1160     StackElem.IteratorVarDecls.push_back(VD->getCanonicalDecl());
1161   }
1162   /// Check if variable declaration is an iterator VarDecl.
1163   bool isIteratorVarDecl(const VarDecl *VD) const {
1164     const SharingMapTy *Top = getTopOfStackOrNull();
1165     if (!Top)
1166       return false;
1167 
1168     return llvm::any_of(Top->IteratorVarDecls, [VD](const VarDecl *IteratorVD) {
1169       return IteratorVD == VD->getCanonicalDecl();
1170     });
1171   }
1172   /// get captured field from ImplicitDefaultFirstprivateFDs
1173   VarDecl *getImplicitFDCapExprDecl(const FieldDecl *FD) const {
1174     const_iterator I = begin();
1175     const_iterator EndI = end();
1176     size_t StackLevel = getStackSize();
1177     for (; I != EndI; ++I) {
1178       if (I->DefaultAttr == DSA_firstprivate || I->DefaultAttr == DSA_private)
1179         break;
1180       StackLevel--;
1181     }
1182     assert((StackLevel > 0 && I != EndI) || (StackLevel == 0 && I == EndI));
1183     if (I == EndI)
1184       return nullptr;
1185     for (const auto &IFD : I->ImplicitDefaultFirstprivateFDs)
1186       if (IFD.FD == FD && IFD.StackLevel == StackLevel)
1187         return IFD.VD;
1188     return nullptr;
1189   }
1190   /// Check if capture decl is field captured in ImplicitDefaultFirstprivateFDs
1191   bool isImplicitDefaultFirstprivateFD(VarDecl *VD) const {
1192     const_iterator I = begin();
1193     const_iterator EndI = end();
1194     for (; I != EndI; ++I)
1195       if (I->DefaultAttr == DSA_firstprivate || I->DefaultAttr == DSA_private)
1196         break;
1197     if (I == EndI)
1198       return false;
1199     for (const auto &IFD : I->ImplicitDefaultFirstprivateFDs)
1200       if (IFD.VD == VD)
1201         return true;
1202     return false;
1203   }
1204   /// Store capture FD info in ImplicitDefaultFirstprivateFDs
1205   void addImplicitDefaultFirstprivateFD(const FieldDecl *FD, VarDecl *VD) {
1206     iterator I = begin();
1207     const_iterator EndI = end();
1208     size_t StackLevel = getStackSize();
1209     for (; I != EndI; ++I) {
1210       if (I->DefaultAttr == DSA_private || I->DefaultAttr == DSA_firstprivate) {
1211         I->ImplicitDefaultFirstprivateFDs.emplace_back(FD, StackLevel, VD);
1212         break;
1213       }
1214       StackLevel--;
1215     }
1216     assert((StackLevel > 0 && I != EndI) || (StackLevel == 0 && I == EndI));
1217   }
1218 };
1219 
1220 bool isImplicitTaskingRegion(OpenMPDirectiveKind DKind) {
1221   return isOpenMPParallelDirective(DKind) || isOpenMPTeamsDirective(DKind);
1222 }
1223 
1224 bool isImplicitOrExplicitTaskingRegion(OpenMPDirectiveKind DKind) {
1225   return isImplicitTaskingRegion(DKind) || isOpenMPTaskingDirective(DKind) ||
1226          DKind == OMPD_unknown;
1227 }
1228 
1229 } // namespace
1230 
1231 static const Expr *getExprAsWritten(const Expr *E) {
1232   if (const auto *FE = dyn_cast<FullExpr>(E))
1233     E = FE->getSubExpr();
1234 
1235   if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1236     E = MTE->getSubExpr();
1237 
1238   while (const auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1239     E = Binder->getSubExpr();
1240 
1241   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
1242     E = ICE->getSubExprAsWritten();
1243   return E->IgnoreParens();
1244 }
1245 
1246 static Expr *getExprAsWritten(Expr *E) {
1247   return const_cast<Expr *>(getExprAsWritten(const_cast<const Expr *>(E)));
1248 }
1249 
1250 static const ValueDecl *getCanonicalDecl(const ValueDecl *D) {
1251   if (const auto *CED = dyn_cast<OMPCapturedExprDecl>(D))
1252     if (const auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit())))
1253       D = ME->getMemberDecl();
1254   const auto *VD = dyn_cast<VarDecl>(D);
1255   const auto *FD = dyn_cast<FieldDecl>(D);
1256   if (VD != nullptr) {
1257     VD = VD->getCanonicalDecl();
1258     D = VD;
1259   } else {
1260     assert(FD);
1261     FD = FD->getCanonicalDecl();
1262     D = FD;
1263   }
1264   return D;
1265 }
1266 
1267 static ValueDecl *getCanonicalDecl(ValueDecl *D) {
1268   return const_cast<ValueDecl *>(
1269       getCanonicalDecl(const_cast<const ValueDecl *>(D)));
1270 }
1271 
1272 DSAStackTy::DSAVarData DSAStackTy::getDSA(const_iterator &Iter,
1273                                           ValueDecl *D) const {
1274   D = getCanonicalDecl(D);
1275   auto *VD = dyn_cast<VarDecl>(D);
1276   const auto *FD = dyn_cast<FieldDecl>(D);
1277   DSAVarData DVar;
1278   if (Iter == end()) {
1279     // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1280     // in a region but not in construct]
1281     //  File-scope or namespace-scope variables referenced in called routines
1282     //  in the region are shared unless they appear in a threadprivate
1283     //  directive.
1284     if (VD && !VD->isFunctionOrMethodVarDecl() && !isa<ParmVarDecl>(VD))
1285       DVar.CKind = OMPC_shared;
1286 
1287     // OpenMP [2.9.1.2, Data-sharing Attribute Rules for Variables Referenced
1288     // in a region but not in construct]
1289     //  Variables with static storage duration that are declared in called
1290     //  routines in the region are shared.
1291     if (VD && VD->hasGlobalStorage())
1292       DVar.CKind = OMPC_shared;
1293 
1294     // Non-static data members are shared by default.
1295     if (FD)
1296       DVar.CKind = OMPC_shared;
1297 
1298     return DVar;
1299   }
1300 
1301   // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1302   // in a Construct, C/C++, predetermined, p.1]
1303   // Variables with automatic storage duration that are declared in a scope
1304   // inside the construct are private.
1305   if (VD && isOpenMPLocal(VD, Iter) && VD->isLocalVarDecl() &&
1306       (VD->getStorageClass() == SC_Auto || VD->getStorageClass() == SC_None)) {
1307     DVar.CKind = OMPC_private;
1308     return DVar;
1309   }
1310 
1311   DVar.DKind = Iter->Directive;
1312   // Explicitly specified attributes and local variables with predetermined
1313   // attributes.
1314   if (Iter->SharingMap.count(D)) {
1315     const DSAInfo &Data = Iter->SharingMap.lookup(D);
1316     DVar.RefExpr = Data.RefExpr.getPointer();
1317     DVar.PrivateCopy = Data.PrivateCopy;
1318     DVar.CKind = Data.Attributes;
1319     DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
1320     DVar.Modifier = Data.Modifier;
1321     DVar.AppliedToPointee = Data.AppliedToPointee;
1322     return DVar;
1323   }
1324 
1325   // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1326   // in a Construct, C/C++, implicitly determined, p.1]
1327   //  In a parallel or task construct, the data-sharing attributes of these
1328   //  variables are determined by the default clause, if present.
1329   switch (Iter->DefaultAttr) {
1330   case DSA_shared:
1331     DVar.CKind = OMPC_shared;
1332     DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
1333     return DVar;
1334   case DSA_none:
1335     return DVar;
1336   case DSA_firstprivate:
1337     if (VD && VD->getStorageDuration() == SD_Static &&
1338         VD->getDeclContext()->isFileContext()) {
1339       DVar.CKind = OMPC_unknown;
1340     } else {
1341       DVar.CKind = OMPC_firstprivate;
1342     }
1343     DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
1344     return DVar;
1345   case DSA_private:
1346     // each variable with static storage duration that is declared
1347     // in a namespace or global scope and referenced in the construct,
1348     // and that does not have a predetermined data-sharing attribute
1349     if (VD && VD->getStorageDuration() == SD_Static &&
1350         VD->getDeclContext()->isFileContext()) {
1351       DVar.CKind = OMPC_unknown;
1352     } else {
1353       DVar.CKind = OMPC_private;
1354     }
1355     DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
1356     return DVar;
1357   case DSA_unspecified:
1358     // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1359     // in a Construct, implicitly determined, p.2]
1360     //  In a parallel construct, if no default clause is present, these
1361     //  variables are shared.
1362     DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
1363     if ((isOpenMPParallelDirective(DVar.DKind) &&
1364          !isOpenMPTaskLoopDirective(DVar.DKind)) ||
1365         isOpenMPTeamsDirective(DVar.DKind)) {
1366       DVar.CKind = OMPC_shared;
1367       return DVar;
1368     }
1369 
1370     // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1371     // in a Construct, implicitly determined, p.4]
1372     //  In a task construct, if no default clause is present, a variable that in
1373     //  the enclosing context is determined to be shared by all implicit tasks
1374     //  bound to the current team is shared.
1375     if (isOpenMPTaskingDirective(DVar.DKind)) {
1376       DSAVarData DVarTemp;
1377       const_iterator I = Iter, E = end();
1378       do {
1379         ++I;
1380         // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables
1381         // Referenced in a Construct, implicitly determined, p.6]
1382         //  In a task construct, if no default clause is present, a variable
1383         //  whose data-sharing attribute is not determined by the rules above is
1384         //  firstprivate.
1385         DVarTemp = getDSA(I, D);
1386         if (DVarTemp.CKind != OMPC_shared) {
1387           DVar.RefExpr = nullptr;
1388           DVar.CKind = OMPC_firstprivate;
1389           return DVar;
1390         }
1391       } while (I != E && !isImplicitTaskingRegion(I->Directive));
1392       DVar.CKind =
1393           (DVarTemp.CKind == OMPC_unknown) ? OMPC_firstprivate : OMPC_shared;
1394       return DVar;
1395     }
1396   }
1397   // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1398   // in a Construct, implicitly determined, p.3]
1399   //  For constructs other than task, if no default clause is present, these
1400   //  variables inherit their data-sharing attributes from the enclosing
1401   //  context.
1402   return getDSA(++Iter, D);
1403 }
1404 
1405 const Expr *DSAStackTy::addUniqueAligned(const ValueDecl *D,
1406                                          const Expr *NewDE) {
1407   assert(!isStackEmpty() && "Data sharing attributes stack is empty");
1408   D = getCanonicalDecl(D);
1409   SharingMapTy &StackElem = getTopOfStack();
1410   auto It = StackElem.AlignedMap.find(D);
1411   if (It == StackElem.AlignedMap.end()) {
1412     assert(NewDE && "Unexpected nullptr expr to be added into aligned map");
1413     StackElem.AlignedMap[D] = NewDE;
1414     return nullptr;
1415   }
1416   assert(It->second && "Unexpected nullptr expr in the aligned map");
1417   return It->second;
1418 }
1419 
1420 const Expr *DSAStackTy::addUniqueNontemporal(const ValueDecl *D,
1421                                              const Expr *NewDE) {
1422   assert(!isStackEmpty() && "Data sharing attributes stack is empty");
1423   D = getCanonicalDecl(D);
1424   SharingMapTy &StackElem = getTopOfStack();
1425   auto It = StackElem.NontemporalMap.find(D);
1426   if (It == StackElem.NontemporalMap.end()) {
1427     assert(NewDE && "Unexpected nullptr expr to be added into aligned map");
1428     StackElem.NontemporalMap[D] = NewDE;
1429     return nullptr;
1430   }
1431   assert(It->second && "Unexpected nullptr expr in the aligned map");
1432   return It->second;
1433 }
1434 
1435 void DSAStackTy::addLoopControlVariable(const ValueDecl *D, VarDecl *Capture) {
1436   assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1437   D = getCanonicalDecl(D);
1438   SharingMapTy &StackElem = getTopOfStack();
1439   StackElem.LCVMap.try_emplace(
1440       D, LCDeclInfo(StackElem.LCVMap.size() + 1, Capture));
1441 }
1442 
1443 const DSAStackTy::LCDeclInfo
1444 DSAStackTy::isLoopControlVariable(const ValueDecl *D) const {
1445   assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1446   D = getCanonicalDecl(D);
1447   const SharingMapTy &StackElem = getTopOfStack();
1448   auto It = StackElem.LCVMap.find(D);
1449   if (It != StackElem.LCVMap.end())
1450     return It->second;
1451   return {0, nullptr};
1452 }
1453 
1454 const DSAStackTy::LCDeclInfo
1455 DSAStackTy::isLoopControlVariable(const ValueDecl *D, unsigned Level) const {
1456   assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1457   D = getCanonicalDecl(D);
1458   for (unsigned I = Level + 1; I > 0; --I) {
1459     const SharingMapTy &StackElem = getStackElemAtLevel(I - 1);
1460     auto It = StackElem.LCVMap.find(D);
1461     if (It != StackElem.LCVMap.end())
1462       return It->second;
1463   }
1464   return {0, nullptr};
1465 }
1466 
1467 const DSAStackTy::LCDeclInfo
1468 DSAStackTy::isParentLoopControlVariable(const ValueDecl *D) const {
1469   const SharingMapTy *Parent = getSecondOnStackOrNull();
1470   assert(Parent && "Data-sharing attributes stack is empty");
1471   D = getCanonicalDecl(D);
1472   auto It = Parent->LCVMap.find(D);
1473   if (It != Parent->LCVMap.end())
1474     return It->second;
1475   return {0, nullptr};
1476 }
1477 
1478 const ValueDecl *DSAStackTy::getParentLoopControlVariable(unsigned I) const {
1479   const SharingMapTy *Parent = getSecondOnStackOrNull();
1480   assert(Parent && "Data-sharing attributes stack is empty");
1481   if (Parent->LCVMap.size() < I)
1482     return nullptr;
1483   for (const auto &Pair : Parent->LCVMap)
1484     if (Pair.second.first == I)
1485       return Pair.first;
1486   return nullptr;
1487 }
1488 
1489 void DSAStackTy::addDSA(const ValueDecl *D, const Expr *E, OpenMPClauseKind A,
1490                         DeclRefExpr *PrivateCopy, unsigned Modifier,
1491                         bool AppliedToPointee) {
1492   D = getCanonicalDecl(D);
1493   if (A == OMPC_threadprivate) {
1494     DSAInfo &Data = Threadprivates[D];
1495     Data.Attributes = A;
1496     Data.RefExpr.setPointer(E);
1497     Data.PrivateCopy = nullptr;
1498     Data.Modifier = Modifier;
1499   } else {
1500     DSAInfo &Data = getTopOfStack().SharingMap[D];
1501     assert(Data.Attributes == OMPC_unknown || (A == Data.Attributes) ||
1502            (A == OMPC_firstprivate && Data.Attributes == OMPC_lastprivate) ||
1503            (A == OMPC_lastprivate && Data.Attributes == OMPC_firstprivate) ||
1504            (isLoopControlVariable(D).first && A == OMPC_private));
1505     Data.Modifier = Modifier;
1506     if (A == OMPC_lastprivate && Data.Attributes == OMPC_firstprivate) {
1507       Data.RefExpr.setInt(/*IntVal=*/true);
1508       return;
1509     }
1510     const bool IsLastprivate =
1511         A == OMPC_lastprivate || Data.Attributes == OMPC_lastprivate;
1512     Data.Attributes = A;
1513     Data.RefExpr.setPointerAndInt(E, IsLastprivate);
1514     Data.PrivateCopy = PrivateCopy;
1515     Data.AppliedToPointee = AppliedToPointee;
1516     if (PrivateCopy) {
1517       DSAInfo &Data = getTopOfStack().SharingMap[PrivateCopy->getDecl()];
1518       Data.Modifier = Modifier;
1519       Data.Attributes = A;
1520       Data.RefExpr.setPointerAndInt(PrivateCopy, IsLastprivate);
1521       Data.PrivateCopy = nullptr;
1522       Data.AppliedToPointee = AppliedToPointee;
1523     }
1524   }
1525 }
1526 
1527 /// Build a variable declaration for OpenMP loop iteration variable.
1528 static VarDecl *buildVarDecl(Sema &SemaRef, SourceLocation Loc, QualType Type,
1529                              StringRef Name, const AttrVec *Attrs = nullptr,
1530                              DeclRefExpr *OrigRef = nullptr) {
1531   DeclContext *DC = SemaRef.CurContext;
1532   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1533   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1534   auto *Decl =
1535       VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, TInfo, SC_None);
1536   if (Attrs) {
1537     for (specific_attr_iterator<AlignedAttr> I(Attrs->begin()), E(Attrs->end());
1538          I != E; ++I)
1539       Decl->addAttr(*I);
1540   }
1541   Decl->setImplicit();
1542   if (OrigRef) {
1543     Decl->addAttr(
1544         OMPReferencedVarAttr::CreateImplicit(SemaRef.Context, OrigRef));
1545   }
1546   return Decl;
1547 }
1548 
1549 static DeclRefExpr *buildDeclRefExpr(Sema &S, VarDecl *D, QualType Ty,
1550                                      SourceLocation Loc,
1551                                      bool RefersToCapture = false) {
1552   D->setReferenced();
1553   D->markUsed(S.Context);
1554   return DeclRefExpr::Create(S.getASTContext(), NestedNameSpecifierLoc(),
1555                              SourceLocation(), D, RefersToCapture, Loc, Ty,
1556                              VK_LValue);
1557 }
1558 
1559 void DSAStackTy::addTaskgroupReductionData(const ValueDecl *D, SourceRange SR,
1560                                            BinaryOperatorKind BOK) {
1561   D = getCanonicalDecl(D);
1562   assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1563   assert(
1564       getTopOfStack().SharingMap[D].Attributes == OMPC_reduction &&
1565       "Additional reduction info may be specified only for reduction items.");
1566   ReductionData &ReductionData = getTopOfStack().ReductionMap[D];
1567   assert(ReductionData.ReductionRange.isInvalid() &&
1568          (getTopOfStack().Directive == OMPD_taskgroup ||
1569           ((isOpenMPParallelDirective(getTopOfStack().Directive) ||
1570             isOpenMPWorksharingDirective(getTopOfStack().Directive)) &&
1571            !isOpenMPSimdDirective(getTopOfStack().Directive))) &&
1572          "Additional reduction info may be specified only once for reduction "
1573          "items.");
1574   ReductionData.set(BOK, SR);
1575   Expr *&TaskgroupReductionRef = getTopOfStack().TaskgroupReductionRef;
1576   if (!TaskgroupReductionRef) {
1577     VarDecl *VD = buildVarDecl(SemaRef, SR.getBegin(),
1578                                SemaRef.Context.VoidPtrTy, ".task_red.");
1579     TaskgroupReductionRef =
1580         buildDeclRefExpr(SemaRef, VD, SemaRef.Context.VoidPtrTy, SR.getBegin());
1581   }
1582 }
1583 
1584 void DSAStackTy::addTaskgroupReductionData(const ValueDecl *D, SourceRange SR,
1585                                            const Expr *ReductionRef) {
1586   D = getCanonicalDecl(D);
1587   assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1588   assert(
1589       getTopOfStack().SharingMap[D].Attributes == OMPC_reduction &&
1590       "Additional reduction info may be specified only for reduction items.");
1591   ReductionData &ReductionData = getTopOfStack().ReductionMap[D];
1592   assert(ReductionData.ReductionRange.isInvalid() &&
1593          (getTopOfStack().Directive == OMPD_taskgroup ||
1594           ((isOpenMPParallelDirective(getTopOfStack().Directive) ||
1595             isOpenMPWorksharingDirective(getTopOfStack().Directive)) &&
1596            !isOpenMPSimdDirective(getTopOfStack().Directive))) &&
1597          "Additional reduction info may be specified only once for reduction "
1598          "items.");
1599   ReductionData.set(ReductionRef, SR);
1600   Expr *&TaskgroupReductionRef = getTopOfStack().TaskgroupReductionRef;
1601   if (!TaskgroupReductionRef) {
1602     VarDecl *VD = buildVarDecl(SemaRef, SR.getBegin(),
1603                                SemaRef.Context.VoidPtrTy, ".task_red.");
1604     TaskgroupReductionRef =
1605         buildDeclRefExpr(SemaRef, VD, SemaRef.Context.VoidPtrTy, SR.getBegin());
1606   }
1607 }
1608 
1609 const DSAStackTy::DSAVarData DSAStackTy::getTopMostTaskgroupReductionData(
1610     const ValueDecl *D, SourceRange &SR, BinaryOperatorKind &BOK,
1611     Expr *&TaskgroupDescriptor) const {
1612   D = getCanonicalDecl(D);
1613   assert(!isStackEmpty() && "Data-sharing attributes stack is empty.");
1614   for (const_iterator I = begin() + 1, E = end(); I != E; ++I) {
1615     const DSAInfo &Data = I->SharingMap.lookup(D);
1616     if (Data.Attributes != OMPC_reduction ||
1617         Data.Modifier != OMPC_REDUCTION_task)
1618       continue;
1619     const ReductionData &ReductionData = I->ReductionMap.lookup(D);
1620     if (!ReductionData.ReductionOp ||
1621         ReductionData.ReductionOp.is<const Expr *>())
1622       return DSAVarData();
1623     SR = ReductionData.ReductionRange;
1624     BOK = ReductionData.ReductionOp.get<ReductionData::BOKPtrType>();
1625     assert(I->TaskgroupReductionRef && "taskgroup reduction reference "
1626                                        "expression for the descriptor is not "
1627                                        "set.");
1628     TaskgroupDescriptor = I->TaskgroupReductionRef;
1629     return DSAVarData(I->Directive, OMPC_reduction, Data.RefExpr.getPointer(),
1630                       Data.PrivateCopy, I->DefaultAttrLoc, OMPC_REDUCTION_task,
1631                       /*AppliedToPointee=*/false);
1632   }
1633   return DSAVarData();
1634 }
1635 
1636 const DSAStackTy::DSAVarData DSAStackTy::getTopMostTaskgroupReductionData(
1637     const ValueDecl *D, SourceRange &SR, const Expr *&ReductionRef,
1638     Expr *&TaskgroupDescriptor) const {
1639   D = getCanonicalDecl(D);
1640   assert(!isStackEmpty() && "Data-sharing attributes stack is empty.");
1641   for (const_iterator I = begin() + 1, E = end(); I != E; ++I) {
1642     const DSAInfo &Data = I->SharingMap.lookup(D);
1643     if (Data.Attributes != OMPC_reduction ||
1644         Data.Modifier != OMPC_REDUCTION_task)
1645       continue;
1646     const ReductionData &ReductionData = I->ReductionMap.lookup(D);
1647     if (!ReductionData.ReductionOp ||
1648         !ReductionData.ReductionOp.is<const Expr *>())
1649       return DSAVarData();
1650     SR = ReductionData.ReductionRange;
1651     ReductionRef = ReductionData.ReductionOp.get<const Expr *>();
1652     assert(I->TaskgroupReductionRef && "taskgroup reduction reference "
1653                                        "expression for the descriptor is not "
1654                                        "set.");
1655     TaskgroupDescriptor = I->TaskgroupReductionRef;
1656     return DSAVarData(I->Directive, OMPC_reduction, Data.RefExpr.getPointer(),
1657                       Data.PrivateCopy, I->DefaultAttrLoc, OMPC_REDUCTION_task,
1658                       /*AppliedToPointee=*/false);
1659   }
1660   return DSAVarData();
1661 }
1662 
1663 bool DSAStackTy::isOpenMPLocal(VarDecl *D, const_iterator I) const {
1664   D = D->getCanonicalDecl();
1665   for (const_iterator E = end(); I != E; ++I) {
1666     if (isImplicitOrExplicitTaskingRegion(I->Directive) ||
1667         isOpenMPTargetExecutionDirective(I->Directive)) {
1668       if (I->CurScope) {
1669         Scope *TopScope = I->CurScope->getParent();
1670         Scope *CurScope = getCurScope();
1671         while (CurScope && CurScope != TopScope && !CurScope->isDeclScope(D))
1672           CurScope = CurScope->getParent();
1673         return CurScope != TopScope;
1674       }
1675       for (DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent())
1676         if (I->Context == DC)
1677           return true;
1678       return false;
1679     }
1680   }
1681   return false;
1682 }
1683 
1684 static bool isConstNotMutableType(Sema &SemaRef, QualType Type,
1685                                   bool AcceptIfMutable = true,
1686                                   bool *IsClassType = nullptr) {
1687   ASTContext &Context = SemaRef.getASTContext();
1688   Type = Type.getNonReferenceType().getCanonicalType();
1689   bool IsConstant = Type.isConstant(Context);
1690   Type = Context.getBaseElementType(Type);
1691   const CXXRecordDecl *RD = AcceptIfMutable && SemaRef.getLangOpts().CPlusPlus
1692                                 ? Type->getAsCXXRecordDecl()
1693                                 : nullptr;
1694   if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(RD))
1695     if (const ClassTemplateDecl *CTD = CTSD->getSpecializedTemplate())
1696       RD = CTD->getTemplatedDecl();
1697   if (IsClassType)
1698     *IsClassType = RD;
1699   return IsConstant && !(SemaRef.getLangOpts().CPlusPlus && RD &&
1700                          RD->hasDefinition() && RD->hasMutableFields());
1701 }
1702 
1703 static bool rejectConstNotMutableType(Sema &SemaRef, const ValueDecl *D,
1704                                       QualType Type, OpenMPClauseKind CKind,
1705                                       SourceLocation ELoc,
1706                                       bool AcceptIfMutable = true,
1707                                       bool ListItemNotVar = false) {
1708   ASTContext &Context = SemaRef.getASTContext();
1709   bool IsClassType;
1710   if (isConstNotMutableType(SemaRef, Type, AcceptIfMutable, &IsClassType)) {
1711     unsigned Diag = ListItemNotVar ? diag::err_omp_const_list_item
1712                     : IsClassType  ? diag::err_omp_const_not_mutable_variable
1713                                    : diag::err_omp_const_variable;
1714     SemaRef.Diag(ELoc, Diag) << getOpenMPClauseName(CKind);
1715     if (!ListItemNotVar && D) {
1716       const VarDecl *VD = dyn_cast<VarDecl>(D);
1717       bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
1718                                VarDecl::DeclarationOnly;
1719       SemaRef.Diag(D->getLocation(),
1720                    IsDecl ? diag::note_previous_decl : diag::note_defined_here)
1721           << D;
1722     }
1723     return true;
1724   }
1725   return false;
1726 }
1727 
1728 const DSAStackTy::DSAVarData DSAStackTy::getTopDSA(ValueDecl *D,
1729                                                    bool FromParent) {
1730   D = getCanonicalDecl(D);
1731   DSAVarData DVar;
1732 
1733   auto *VD = dyn_cast<VarDecl>(D);
1734   auto TI = Threadprivates.find(D);
1735   if (TI != Threadprivates.end()) {
1736     DVar.RefExpr = TI->getSecond().RefExpr.getPointer();
1737     DVar.CKind = OMPC_threadprivate;
1738     DVar.Modifier = TI->getSecond().Modifier;
1739     return DVar;
1740   }
1741   if (VD && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
1742     DVar.RefExpr = buildDeclRefExpr(
1743         SemaRef, VD, D->getType().getNonReferenceType(),
1744         VD->getAttr<OMPThreadPrivateDeclAttr>()->getLocation());
1745     DVar.CKind = OMPC_threadprivate;
1746     addDSA(D, DVar.RefExpr, OMPC_threadprivate);
1747     return DVar;
1748   }
1749   // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1750   // in a Construct, C/C++, predetermined, p.1]
1751   //  Variables appearing in threadprivate directives are threadprivate.
1752   if ((VD && VD->getTLSKind() != VarDecl::TLS_None &&
1753        !(VD->hasAttr<OMPThreadPrivateDeclAttr>() &&
1754          SemaRef.getLangOpts().OpenMPUseTLS &&
1755          SemaRef.getASTContext().getTargetInfo().isTLSSupported())) ||
1756       (VD && VD->getStorageClass() == SC_Register &&
1757        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())) {
1758     DVar.RefExpr = buildDeclRefExpr(
1759         SemaRef, VD, D->getType().getNonReferenceType(), D->getLocation());
1760     DVar.CKind = OMPC_threadprivate;
1761     addDSA(D, DVar.RefExpr, OMPC_threadprivate);
1762     return DVar;
1763   }
1764   if (SemaRef.getLangOpts().OpenMPCUDAMode && VD &&
1765       VD->isLocalVarDeclOrParm() && !isStackEmpty() &&
1766       !isLoopControlVariable(D).first) {
1767     const_iterator IterTarget =
1768         std::find_if(begin(), end(), [](const SharingMapTy &Data) {
1769           return isOpenMPTargetExecutionDirective(Data.Directive);
1770         });
1771     if (IterTarget != end()) {
1772       const_iterator ParentIterTarget = IterTarget + 1;
1773       for (const_iterator Iter = begin(); Iter != ParentIterTarget; ++Iter) {
1774         if (isOpenMPLocal(VD, Iter)) {
1775           DVar.RefExpr =
1776               buildDeclRefExpr(SemaRef, VD, D->getType().getNonReferenceType(),
1777                                D->getLocation());
1778           DVar.CKind = OMPC_threadprivate;
1779           return DVar;
1780         }
1781       }
1782       if (!isClauseParsingMode() || IterTarget != begin()) {
1783         auto DSAIter = IterTarget->SharingMap.find(D);
1784         if (DSAIter != IterTarget->SharingMap.end() &&
1785             isOpenMPPrivate(DSAIter->getSecond().Attributes)) {
1786           DVar.RefExpr = DSAIter->getSecond().RefExpr.getPointer();
1787           DVar.CKind = OMPC_threadprivate;
1788           return DVar;
1789         }
1790         const_iterator End = end();
1791         if (!SemaRef.isOpenMPCapturedByRef(D,
1792                                            std::distance(ParentIterTarget, End),
1793                                            /*OpenMPCaptureLevel=*/0)) {
1794           DVar.RefExpr =
1795               buildDeclRefExpr(SemaRef, VD, D->getType().getNonReferenceType(),
1796                                IterTarget->ConstructLoc);
1797           DVar.CKind = OMPC_threadprivate;
1798           return DVar;
1799         }
1800       }
1801     }
1802   }
1803 
1804   if (isStackEmpty())
1805     // Not in OpenMP execution region and top scope was already checked.
1806     return DVar;
1807 
1808   // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1809   // in a Construct, C/C++, predetermined, p.4]
1810   //  Static data members are shared.
1811   // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1812   // in a Construct, C/C++, predetermined, p.7]
1813   //  Variables with static storage duration that are declared in a scope
1814   //  inside the construct are shared.
1815   if (VD && VD->isStaticDataMember()) {
1816     // Check for explicitly specified attributes.
1817     const_iterator I = begin();
1818     const_iterator EndI = end();
1819     if (FromParent && I != EndI)
1820       ++I;
1821     if (I != EndI) {
1822       auto It = I->SharingMap.find(D);
1823       if (It != I->SharingMap.end()) {
1824         const DSAInfo &Data = It->getSecond();
1825         DVar.RefExpr = Data.RefExpr.getPointer();
1826         DVar.PrivateCopy = Data.PrivateCopy;
1827         DVar.CKind = Data.Attributes;
1828         DVar.ImplicitDSALoc = I->DefaultAttrLoc;
1829         DVar.DKind = I->Directive;
1830         DVar.Modifier = Data.Modifier;
1831         DVar.AppliedToPointee = Data.AppliedToPointee;
1832         return DVar;
1833       }
1834     }
1835 
1836     DVar.CKind = OMPC_shared;
1837     return DVar;
1838   }
1839 
1840   auto &&MatchesAlways = [](OpenMPDirectiveKind) { return true; };
1841   // The predetermined shared attribute for const-qualified types having no
1842   // mutable members was removed after OpenMP 3.1.
1843   if (SemaRef.LangOpts.OpenMP <= 31) {
1844     // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1845     // in a Construct, C/C++, predetermined, p.6]
1846     //  Variables with const qualified type having no mutable member are
1847     //  shared.
1848     if (isConstNotMutableType(SemaRef, D->getType())) {
1849       // Variables with const-qualified type having no mutable member may be
1850       // listed in a firstprivate clause, even if they are static data members.
1851       DSAVarData DVarTemp = hasInnermostDSA(
1852           D,
1853           [](OpenMPClauseKind C, bool) {
1854             return C == OMPC_firstprivate || C == OMPC_shared;
1855           },
1856           MatchesAlways, FromParent);
1857       if (DVarTemp.CKind != OMPC_unknown && DVarTemp.RefExpr)
1858         return DVarTemp;
1859 
1860       DVar.CKind = OMPC_shared;
1861       return DVar;
1862     }
1863   }
1864 
1865   // Explicitly specified attributes and local variables with predetermined
1866   // attributes.
1867   const_iterator I = begin();
1868   const_iterator EndI = end();
1869   if (FromParent && I != EndI)
1870     ++I;
1871   if (I == EndI)
1872     return DVar;
1873   auto It = I->SharingMap.find(D);
1874   if (It != I->SharingMap.end()) {
1875     const DSAInfo &Data = It->getSecond();
1876     DVar.RefExpr = Data.RefExpr.getPointer();
1877     DVar.PrivateCopy = Data.PrivateCopy;
1878     DVar.CKind = Data.Attributes;
1879     DVar.ImplicitDSALoc = I->DefaultAttrLoc;
1880     DVar.DKind = I->Directive;
1881     DVar.Modifier = Data.Modifier;
1882     DVar.AppliedToPointee = Data.AppliedToPointee;
1883   }
1884 
1885   return DVar;
1886 }
1887 
1888 const DSAStackTy::DSAVarData DSAStackTy::getImplicitDSA(ValueDecl *D,
1889                                                         bool FromParent) const {
1890   if (isStackEmpty()) {
1891     const_iterator I;
1892     return getDSA(I, D);
1893   }
1894   D = getCanonicalDecl(D);
1895   const_iterator StartI = begin();
1896   const_iterator EndI = end();
1897   if (FromParent && StartI != EndI)
1898     ++StartI;
1899   return getDSA(StartI, D);
1900 }
1901 
1902 const DSAStackTy::DSAVarData DSAStackTy::getImplicitDSA(ValueDecl *D,
1903                                                         unsigned Level) const {
1904   if (getStackSize() <= Level)
1905     return DSAVarData();
1906   D = getCanonicalDecl(D);
1907   const_iterator StartI = std::next(begin(), getStackSize() - 1 - Level);
1908   return getDSA(StartI, D);
1909 }
1910 
1911 const DSAStackTy::DSAVarData
1912 DSAStackTy::hasDSA(ValueDecl *D,
1913                    const llvm::function_ref<bool(OpenMPClauseKind, bool,
1914                                                  DefaultDataSharingAttributes)>
1915                        CPred,
1916                    const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
1917                    bool FromParent) const {
1918   if (isStackEmpty())
1919     return {};
1920   D = getCanonicalDecl(D);
1921   const_iterator I = begin();
1922   const_iterator EndI = end();
1923   if (FromParent && I != EndI)
1924     ++I;
1925   for (; I != EndI; ++I) {
1926     if (!DPred(I->Directive) &&
1927         !isImplicitOrExplicitTaskingRegion(I->Directive))
1928       continue;
1929     const_iterator NewI = I;
1930     DSAVarData DVar = getDSA(NewI, D);
1931     if (I == NewI && CPred(DVar.CKind, DVar.AppliedToPointee, I->DefaultAttr))
1932       return DVar;
1933   }
1934   return {};
1935 }
1936 
1937 const DSAStackTy::DSAVarData DSAStackTy::hasInnermostDSA(
1938     ValueDecl *D, const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
1939     const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
1940     bool FromParent) const {
1941   if (isStackEmpty())
1942     return {};
1943   D = getCanonicalDecl(D);
1944   const_iterator StartI = begin();
1945   const_iterator EndI = end();
1946   if (FromParent && StartI != EndI)
1947     ++StartI;
1948   if (StartI == EndI || !DPred(StartI->Directive))
1949     return {};
1950   const_iterator NewI = StartI;
1951   DSAVarData DVar = getDSA(NewI, D);
1952   return (NewI == StartI && CPred(DVar.CKind, DVar.AppliedToPointee))
1953              ? DVar
1954              : DSAVarData();
1955 }
1956 
1957 bool DSAStackTy::hasExplicitDSA(
1958     const ValueDecl *D,
1959     const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
1960     unsigned Level, bool NotLastprivate) const {
1961   if (getStackSize() <= Level)
1962     return false;
1963   D = getCanonicalDecl(D);
1964   const SharingMapTy &StackElem = getStackElemAtLevel(Level);
1965   auto I = StackElem.SharingMap.find(D);
1966   if (I != StackElem.SharingMap.end() && I->getSecond().RefExpr.getPointer() &&
1967       CPred(I->getSecond().Attributes, I->getSecond().AppliedToPointee) &&
1968       (!NotLastprivate || !I->getSecond().RefExpr.getInt()))
1969     return true;
1970   // Check predetermined rules for the loop control variables.
1971   auto LI = StackElem.LCVMap.find(D);
1972   if (LI != StackElem.LCVMap.end())
1973     return CPred(OMPC_private, /*AppliedToPointee=*/false);
1974   return false;
1975 }
1976 
1977 bool DSAStackTy::hasExplicitDirective(
1978     const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
1979     unsigned Level) const {
1980   if (getStackSize() <= Level)
1981     return false;
1982   const SharingMapTy &StackElem = getStackElemAtLevel(Level);
1983   return DPred(StackElem.Directive);
1984 }
1985 
1986 bool DSAStackTy::hasDirective(
1987     const llvm::function_ref<bool(OpenMPDirectiveKind,
1988                                   const DeclarationNameInfo &, SourceLocation)>
1989         DPred,
1990     bool FromParent) const {
1991   // We look only in the enclosing region.
1992   size_t Skip = FromParent ? 2 : 1;
1993   for (const_iterator I = begin() + std::min(Skip, getStackSize()), E = end();
1994        I != E; ++I) {
1995     if (DPred(I->Directive, I->DirectiveName, I->ConstructLoc))
1996       return true;
1997   }
1998   return false;
1999 }
2000 
2001 void Sema::InitDataSharingAttributesStack() {
2002   VarDataSharingAttributesStack = new DSAStackTy(*this);
2003 }
2004 
2005 #define DSAStack static_cast<DSAStackTy *>(VarDataSharingAttributesStack)
2006 
2007 void Sema::pushOpenMPFunctionRegion() { DSAStack->pushFunction(); }
2008 
2009 void Sema::popOpenMPFunctionRegion(const FunctionScopeInfo *OldFSI) {
2010   DSAStack->popFunction(OldFSI);
2011 }
2012 
2013 static bool isOpenMPDeviceDelayedContext(Sema &S) {
2014   assert(S.LangOpts.OpenMP && S.LangOpts.OpenMPIsDevice &&
2015          "Expected OpenMP device compilation.");
2016   return !S.isInOpenMPTargetExecutionDirective();
2017 }
2018 
2019 namespace {
2020 /// Status of the function emission on the host/device.
2021 enum class FunctionEmissionStatus {
2022   Emitted,
2023   Discarded,
2024   Unknown,
2025 };
2026 } // anonymous namespace
2027 
2028 Sema::SemaDiagnosticBuilder Sema::diagIfOpenMPDeviceCode(SourceLocation Loc,
2029                                                          unsigned DiagID,
2030                                                          FunctionDecl *FD) {
2031   assert(LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
2032          "Expected OpenMP device compilation.");
2033 
2034   SemaDiagnosticBuilder::Kind Kind = SemaDiagnosticBuilder::K_Nop;
2035   if (FD) {
2036     FunctionEmissionStatus FES = getEmissionStatus(FD);
2037     switch (FES) {
2038     case FunctionEmissionStatus::Emitted:
2039       Kind = SemaDiagnosticBuilder::K_Immediate;
2040       break;
2041     case FunctionEmissionStatus::Unknown:
2042       // TODO: We should always delay diagnostics here in case a target
2043       //       region is in a function we do not emit. However, as the
2044       //       current diagnostics are associated with the function containing
2045       //       the target region and we do not emit that one, we would miss out
2046       //       on diagnostics for the target region itself. We need to anchor
2047       //       the diagnostics with the new generated function *or* ensure we
2048       //       emit diagnostics associated with the surrounding function.
2049       Kind = isOpenMPDeviceDelayedContext(*this)
2050                  ? SemaDiagnosticBuilder::K_Deferred
2051                  : SemaDiagnosticBuilder::K_Immediate;
2052       break;
2053     case FunctionEmissionStatus::TemplateDiscarded:
2054     case FunctionEmissionStatus::OMPDiscarded:
2055       Kind = SemaDiagnosticBuilder::K_Nop;
2056       break;
2057     case FunctionEmissionStatus::CUDADiscarded:
2058       llvm_unreachable("CUDADiscarded unexpected in OpenMP device compilation");
2059       break;
2060     }
2061   }
2062 
2063   return SemaDiagnosticBuilder(Kind, Loc, DiagID, FD, *this);
2064 }
2065 
2066 Sema::SemaDiagnosticBuilder Sema::diagIfOpenMPHostCode(SourceLocation Loc,
2067                                                        unsigned DiagID,
2068                                                        FunctionDecl *FD) {
2069   assert(LangOpts.OpenMP && !LangOpts.OpenMPIsDevice &&
2070          "Expected OpenMP host compilation.");
2071 
2072   SemaDiagnosticBuilder::Kind Kind = SemaDiagnosticBuilder::K_Nop;
2073   if (FD) {
2074     FunctionEmissionStatus FES = getEmissionStatus(FD);
2075     switch (FES) {
2076     case FunctionEmissionStatus::Emitted:
2077       Kind = SemaDiagnosticBuilder::K_Immediate;
2078       break;
2079     case FunctionEmissionStatus::Unknown:
2080       Kind = SemaDiagnosticBuilder::K_Deferred;
2081       break;
2082     case FunctionEmissionStatus::TemplateDiscarded:
2083     case FunctionEmissionStatus::OMPDiscarded:
2084     case FunctionEmissionStatus::CUDADiscarded:
2085       Kind = SemaDiagnosticBuilder::K_Nop;
2086       break;
2087     }
2088   }
2089 
2090   return SemaDiagnosticBuilder(Kind, Loc, DiagID, FD, *this);
2091 }
2092 
2093 static OpenMPDefaultmapClauseKind
2094 getVariableCategoryFromDecl(const LangOptions &LO, const ValueDecl *VD) {
2095   if (LO.OpenMP <= 45) {
2096     if (VD->getType().getNonReferenceType()->isScalarType())
2097       return OMPC_DEFAULTMAP_scalar;
2098     return OMPC_DEFAULTMAP_aggregate;
2099   }
2100   if (VD->getType().getNonReferenceType()->isAnyPointerType())
2101     return OMPC_DEFAULTMAP_pointer;
2102   if (VD->getType().getNonReferenceType()->isScalarType())
2103     return OMPC_DEFAULTMAP_scalar;
2104   return OMPC_DEFAULTMAP_aggregate;
2105 }
2106 
2107 bool Sema::isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
2108                                  unsigned OpenMPCaptureLevel) const {
2109   assert(LangOpts.OpenMP && "OpenMP is not allowed");
2110 
2111   ASTContext &Ctx = getASTContext();
2112   bool IsByRef = true;
2113 
2114   // Find the directive that is associated with the provided scope.
2115   D = cast<ValueDecl>(D->getCanonicalDecl());
2116   QualType Ty = D->getType();
2117 
2118   bool IsVariableUsedInMapClause = false;
2119   if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective, Level)) {
2120     // This table summarizes how a given variable should be passed to the device
2121     // given its type and the clauses where it appears. This table is based on
2122     // the description in OpenMP 4.5 [2.10.4, target Construct] and
2123     // OpenMP 4.5 [2.15.5, Data-mapping Attribute Rules and Clauses].
2124     //
2125     // =========================================================================
2126     // | type |  defaultmap   | pvt | first | is_device_ptr |    map   | res.  |
2127     // |      |(tofrom:scalar)|     |  pvt  |               |has_dv_adr|       |
2128     // =========================================================================
2129     // | scl  |               |     |       |       -       |          | bycopy|
2130     // | scl  |               |  -  |   x   |       -       |     -    | bycopy|
2131     // | scl  |               |  x  |   -   |       -       |     -    | null  |
2132     // | scl  |       x       |     |       |       -       |          | byref |
2133     // | scl  |       x       |  -  |   x   |       -       |     -    | bycopy|
2134     // | scl  |       x       |  x  |   -   |       -       |     -    | null  |
2135     // | scl  |               |  -  |   -   |       -       |     x    | byref |
2136     // | scl  |       x       |  -  |   -   |       -       |     x    | byref |
2137     //
2138     // | agg  |      n.a.     |     |       |       -       |          | byref |
2139     // | agg  |      n.a.     |  -  |   x   |       -       |     -    | byref |
2140     // | agg  |      n.a.     |  x  |   -   |       -       |     -    | null  |
2141     // | agg  |      n.a.     |  -  |   -   |       -       |     x    | byref |
2142     // | agg  |      n.a.     |  -  |   -   |       -       |    x[]   | byref |
2143     //
2144     // | ptr  |      n.a.     |     |       |       -       |          | bycopy|
2145     // | ptr  |      n.a.     |  -  |   x   |       -       |     -    | bycopy|
2146     // | ptr  |      n.a.     |  x  |   -   |       -       |     -    | null  |
2147     // | ptr  |      n.a.     |  -  |   -   |       -       |     x    | byref |
2148     // | ptr  |      n.a.     |  -  |   -   |       -       |    x[]   | bycopy|
2149     // | ptr  |      n.a.     |  -  |   -   |       x       |          | bycopy|
2150     // | ptr  |      n.a.     |  -  |   -   |       x       |     x    | bycopy|
2151     // | ptr  |      n.a.     |  -  |   -   |       x       |    x[]   | bycopy|
2152     // =========================================================================
2153     // Legend:
2154     //  scl - scalar
2155     //  ptr - pointer
2156     //  agg - aggregate
2157     //  x - applies
2158     //  - - invalid in this combination
2159     //  [] - mapped with an array section
2160     //  byref - should be mapped by reference
2161     //  byval - should be mapped by value
2162     //  null - initialize a local variable to null on the device
2163     //
2164     // Observations:
2165     //  - All scalar declarations that show up in a map clause have to be passed
2166     //    by reference, because they may have been mapped in the enclosing data
2167     //    environment.
2168     //  - If the scalar value does not fit the size of uintptr, it has to be
2169     //    passed by reference, regardless the result in the table above.
2170     //  - For pointers mapped by value that have either an implicit map or an
2171     //    array section, the runtime library may pass the NULL value to the
2172     //    device instead of the value passed to it by the compiler.
2173 
2174     if (Ty->isReferenceType())
2175       Ty = Ty->castAs<ReferenceType>()->getPointeeType();
2176 
2177     // Locate map clauses and see if the variable being captured is referred to
2178     // in any of those clauses. Here we only care about variables, not fields,
2179     // because fields are part of aggregates.
2180     bool IsVariableAssociatedWithSection = false;
2181 
2182     DSAStack->checkMappableExprComponentListsForDeclAtLevel(
2183         D, Level,
2184         [&IsVariableUsedInMapClause, &IsVariableAssociatedWithSection,
2185          D](OMPClauseMappableExprCommon::MappableExprComponentListRef
2186                 MapExprComponents,
2187             OpenMPClauseKind WhereFoundClauseKind) {
2188           // Both map and has_device_addr clauses information influences how a
2189           // variable is captured. E.g. is_device_ptr does not require changing
2190           // the default behavior.
2191           if (WhereFoundClauseKind != OMPC_map &&
2192               WhereFoundClauseKind != OMPC_has_device_addr)
2193             return false;
2194 
2195           auto EI = MapExprComponents.rbegin();
2196           auto EE = MapExprComponents.rend();
2197 
2198           assert(EI != EE && "Invalid map expression!");
2199 
2200           if (isa<DeclRefExpr>(EI->getAssociatedExpression()))
2201             IsVariableUsedInMapClause |= EI->getAssociatedDeclaration() == D;
2202 
2203           ++EI;
2204           if (EI == EE)
2205             return false;
2206 
2207           if (isa<ArraySubscriptExpr>(EI->getAssociatedExpression()) ||
2208               isa<OMPArraySectionExpr>(EI->getAssociatedExpression()) ||
2209               isa<MemberExpr>(EI->getAssociatedExpression()) ||
2210               isa<OMPArrayShapingExpr>(EI->getAssociatedExpression())) {
2211             IsVariableAssociatedWithSection = true;
2212             // There is nothing more we need to know about this variable.
2213             return true;
2214           }
2215 
2216           // Keep looking for more map info.
2217           return false;
2218         });
2219 
2220     if (IsVariableUsedInMapClause) {
2221       // If variable is identified in a map clause it is always captured by
2222       // reference except if it is a pointer that is dereferenced somehow.
2223       IsByRef = !(Ty->isPointerType() && IsVariableAssociatedWithSection);
2224     } else {
2225       // By default, all the data that has a scalar type is mapped by copy
2226       // (except for reduction variables).
2227       // Defaultmap scalar is mutual exclusive to defaultmap pointer
2228       IsByRef = (DSAStack->isForceCaptureByReferenceInTargetExecutable() &&
2229                  !Ty->isAnyPointerType()) ||
2230                 !Ty->isScalarType() ||
2231                 DSAStack->isDefaultmapCapturedByRef(
2232                     Level, getVariableCategoryFromDecl(LangOpts, D)) ||
2233                 DSAStack->hasExplicitDSA(
2234                     D,
2235                     [](OpenMPClauseKind K, bool AppliedToPointee) {
2236                       return K == OMPC_reduction && !AppliedToPointee;
2237                     },
2238                     Level);
2239     }
2240   }
2241 
2242   if (IsByRef && Ty.getNonReferenceType()->isScalarType()) {
2243     IsByRef =
2244         ((IsVariableUsedInMapClause &&
2245           DSAStack->getCaptureRegion(Level, OpenMPCaptureLevel) ==
2246               OMPD_target) ||
2247          !(DSAStack->hasExplicitDSA(
2248                D,
2249                [](OpenMPClauseKind K, bool AppliedToPointee) -> bool {
2250                  return K == OMPC_firstprivate ||
2251                         (K == OMPC_reduction && AppliedToPointee);
2252                },
2253                Level, /*NotLastprivate=*/true) ||
2254            DSAStack->isUsesAllocatorsDecl(Level, D))) &&
2255         // If the variable is artificial and must be captured by value - try to
2256         // capture by value.
2257         !(isa<OMPCapturedExprDecl>(D) && !D->hasAttr<OMPCaptureNoInitAttr>() &&
2258           !cast<OMPCapturedExprDecl>(D)->getInit()->isGLValue()) &&
2259         // If the variable is implicitly firstprivate and scalar - capture by
2260         // copy
2261         !((DSAStack->getDefaultDSA() == DSA_firstprivate ||
2262            DSAStack->getDefaultDSA() == DSA_private) &&
2263           !DSAStack->hasExplicitDSA(
2264               D, [](OpenMPClauseKind K, bool) { return K != OMPC_unknown; },
2265               Level) &&
2266           !DSAStack->isLoopControlVariable(D, Level).first);
2267   }
2268 
2269   // When passing data by copy, we need to make sure it fits the uintptr size
2270   // and alignment, because the runtime library only deals with uintptr types.
2271   // If it does not fit the uintptr size, we need to pass the data by reference
2272   // instead.
2273   if (!IsByRef &&
2274       (Ctx.getTypeSizeInChars(Ty) >
2275            Ctx.getTypeSizeInChars(Ctx.getUIntPtrType()) ||
2276        Ctx.getDeclAlign(D) > Ctx.getTypeAlignInChars(Ctx.getUIntPtrType()))) {
2277     IsByRef = true;
2278   }
2279 
2280   return IsByRef;
2281 }
2282 
2283 unsigned Sema::getOpenMPNestingLevel() const {
2284   assert(getLangOpts().OpenMP);
2285   return DSAStack->getNestingLevel();
2286 }
2287 
2288 bool Sema::isInOpenMPTaskUntiedContext() const {
2289   return isOpenMPTaskingDirective(DSAStack->getCurrentDirective()) &&
2290          DSAStack->isUntiedRegion();
2291 }
2292 
2293 bool Sema::isInOpenMPTargetExecutionDirective() const {
2294   return (isOpenMPTargetExecutionDirective(DSAStack->getCurrentDirective()) &&
2295           !DSAStack->isClauseParsingMode()) ||
2296          DSAStack->hasDirective(
2297              [](OpenMPDirectiveKind K, const DeclarationNameInfo &,
2298                 SourceLocation) -> bool {
2299                return isOpenMPTargetExecutionDirective(K);
2300              },
2301              false);
2302 }
2303 
2304 bool Sema::isOpenMPRebuildMemberExpr(ValueDecl *D) {
2305   // Only rebuild for Field.
2306   if (!dyn_cast<FieldDecl>(D))
2307     return false;
2308   DSAStackTy::DSAVarData DVarPrivate = DSAStack->hasDSA(
2309       D,
2310       [](OpenMPClauseKind C, bool AppliedToPointee,
2311          DefaultDataSharingAttributes DefaultAttr) {
2312         return isOpenMPPrivate(C) && !AppliedToPointee &&
2313                (DefaultAttr == DSA_firstprivate || DefaultAttr == DSA_private);
2314       },
2315       [](OpenMPDirectiveKind) { return true; },
2316       DSAStack->isClauseParsingMode());
2317   if (DVarPrivate.CKind != OMPC_unknown)
2318     return true;
2319   return false;
2320 }
2321 
2322 static OMPCapturedExprDecl *buildCaptureDecl(Sema &S, IdentifierInfo *Id,
2323                                              Expr *CaptureExpr, bool WithInit,
2324                                              DeclContext *CurContext,
2325                                              bool AsExpression);
2326 
2327 VarDecl *Sema::isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo,
2328                                     unsigned StopAt) {
2329   assert(LangOpts.OpenMP && "OpenMP is not allowed");
2330   D = getCanonicalDecl(D);
2331 
2332   auto *VD = dyn_cast<VarDecl>(D);
2333   // Do not capture constexpr variables.
2334   if (VD && VD->isConstexpr())
2335     return nullptr;
2336 
2337   // If we want to determine whether the variable should be captured from the
2338   // perspective of the current capturing scope, and we've already left all the
2339   // capturing scopes of the top directive on the stack, check from the
2340   // perspective of its parent directive (if any) instead.
2341   DSAStackTy::ParentDirectiveScope InParentDirectiveRAII(
2342       *DSAStack, CheckScopeInfo && DSAStack->isBodyComplete());
2343 
2344   // If we are attempting to capture a global variable in a directive with
2345   // 'target' we return true so that this global is also mapped to the device.
2346   //
2347   if (VD && !VD->hasLocalStorage() &&
2348       (getCurCapturedRegion() || getCurBlock() || getCurLambda())) {
2349     if (isInOpenMPTargetExecutionDirective()) {
2350       DSAStackTy::DSAVarData DVarTop =
2351           DSAStack->getTopDSA(D, DSAStack->isClauseParsingMode());
2352       if (DVarTop.CKind != OMPC_unknown && DVarTop.RefExpr)
2353         return VD;
2354       // If the declaration is enclosed in a 'declare target' directive,
2355       // then it should not be captured.
2356       //
2357       if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
2358         return nullptr;
2359       CapturedRegionScopeInfo *CSI = nullptr;
2360       for (FunctionScopeInfo *FSI : llvm::drop_begin(
2361                llvm::reverse(FunctionScopes),
2362                CheckScopeInfo ? (FunctionScopes.size() - (StopAt + 1)) : 0)) {
2363         if (!isa<CapturingScopeInfo>(FSI))
2364           return nullptr;
2365         if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(FSI))
2366           if (RSI->CapRegionKind == CR_OpenMP) {
2367             CSI = RSI;
2368             break;
2369           }
2370       }
2371       assert(CSI && "Failed to find CapturedRegionScopeInfo");
2372       SmallVector<OpenMPDirectiveKind, 4> Regions;
2373       getOpenMPCaptureRegions(Regions,
2374                               DSAStack->getDirective(CSI->OpenMPLevel));
2375       if (Regions[CSI->OpenMPCaptureLevel] != OMPD_task)
2376         return VD;
2377     }
2378     if (isInOpenMPDeclareTargetContext()) {
2379       // Try to mark variable as declare target if it is used in capturing
2380       // regions.
2381       if (LangOpts.OpenMP <= 45 &&
2382           !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
2383         checkDeclIsAllowedInOpenMPTarget(nullptr, VD);
2384       return nullptr;
2385     }
2386   }
2387 
2388   if (CheckScopeInfo) {
2389     bool OpenMPFound = false;
2390     for (unsigned I = StopAt + 1; I > 0; --I) {
2391       FunctionScopeInfo *FSI = FunctionScopes[I - 1];
2392       if (!isa<CapturingScopeInfo>(FSI))
2393         return nullptr;
2394       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(FSI))
2395         if (RSI->CapRegionKind == CR_OpenMP) {
2396           OpenMPFound = true;
2397           break;
2398         }
2399     }
2400     if (!OpenMPFound)
2401       return nullptr;
2402   }
2403 
2404   if (DSAStack->getCurrentDirective() != OMPD_unknown &&
2405       (!DSAStack->isClauseParsingMode() ||
2406        DSAStack->getParentDirective() != OMPD_unknown)) {
2407     auto &&Info = DSAStack->isLoopControlVariable(D);
2408     if (Info.first ||
2409         (VD && VD->hasLocalStorage() &&
2410          isImplicitOrExplicitTaskingRegion(DSAStack->getCurrentDirective())) ||
2411         (VD && DSAStack->isForceVarCapturing()))
2412       return VD ? VD : Info.second;
2413     DSAStackTy::DSAVarData DVarTop =
2414         DSAStack->getTopDSA(D, DSAStack->isClauseParsingMode());
2415     if (DVarTop.CKind != OMPC_unknown && isOpenMPPrivate(DVarTop.CKind) &&
2416         (!VD || VD->hasLocalStorage() || !DVarTop.AppliedToPointee))
2417       return VD ? VD : cast<VarDecl>(DVarTop.PrivateCopy->getDecl());
2418     // Threadprivate variables must not be captured.
2419     if (isOpenMPThreadPrivate(DVarTop.CKind))
2420       return nullptr;
2421     // The variable is not private or it is the variable in the directive with
2422     // default(none) clause and not used in any clause.
2423     DSAStackTy::DSAVarData DVarPrivate = DSAStack->hasDSA(
2424         D,
2425         [](OpenMPClauseKind C, bool AppliedToPointee, bool) {
2426           return isOpenMPPrivate(C) && !AppliedToPointee;
2427         },
2428         [](OpenMPDirectiveKind) { return true; },
2429         DSAStack->isClauseParsingMode());
2430     // Global shared must not be captured.
2431     if (VD && !VD->hasLocalStorage() && DVarPrivate.CKind == OMPC_unknown &&
2432         ((DSAStack->getDefaultDSA() != DSA_none &&
2433           DSAStack->getDefaultDSA() != DSA_private &&
2434           DSAStack->getDefaultDSA() != DSA_firstprivate) ||
2435          DVarTop.CKind == OMPC_shared))
2436       return nullptr;
2437     auto *FD = dyn_cast<FieldDecl>(D);
2438     if (DVarPrivate.CKind != OMPC_unknown && !VD && FD &&
2439         !DVarPrivate.PrivateCopy) {
2440       DSAStackTy::DSAVarData DVarPrivate = DSAStack->hasDSA(
2441           D,
2442           [](OpenMPClauseKind C, bool AppliedToPointee,
2443              DefaultDataSharingAttributes DefaultAttr) {
2444             return isOpenMPPrivate(C) && !AppliedToPointee &&
2445                    (DefaultAttr == DSA_firstprivate ||
2446                     DefaultAttr == DSA_private);
2447           },
2448           [](OpenMPDirectiveKind) { return true; },
2449           DSAStack->isClauseParsingMode());
2450       if (DVarPrivate.CKind == OMPC_unknown)
2451         return nullptr;
2452 
2453       VarDecl *VD = DSAStack->getImplicitFDCapExprDecl(FD);
2454       if (VD)
2455         return VD;
2456       if (getCurrentThisType().isNull())
2457         return nullptr;
2458       Expr *ThisExpr = BuildCXXThisExpr(SourceLocation(), getCurrentThisType(),
2459                                         /*IsImplicit=*/true);
2460       const CXXScopeSpec CS = CXXScopeSpec();
2461       Expr *ME = BuildMemberExpr(ThisExpr, /*IsArrow=*/true, SourceLocation(),
2462                                  NestedNameSpecifierLoc(), SourceLocation(), FD,
2463                                  DeclAccessPair::make(FD, FD->getAccess()),
2464                                  /*HadMultipleCandidates=*/false,
2465                                  DeclarationNameInfo(), FD->getType(),
2466                                  VK_LValue, OK_Ordinary);
2467       OMPCapturedExprDecl *CD = buildCaptureDecl(
2468           *this, FD->getIdentifier(), ME, DVarPrivate.CKind != OMPC_private,
2469           CurContext->getParent(), /*AsExpression=*/false);
2470       DeclRefExpr *VDPrivateRefExpr = buildDeclRefExpr(
2471           *this, CD, CD->getType().getNonReferenceType(), SourceLocation());
2472       VD = cast<VarDecl>(VDPrivateRefExpr->getDecl());
2473       DSAStack->addImplicitDefaultFirstprivateFD(FD, VD);
2474       return VD;
2475     }
2476     if (DVarPrivate.CKind != OMPC_unknown ||
2477         (VD && (DSAStack->getDefaultDSA() == DSA_none ||
2478                 DSAStack->getDefaultDSA() == DSA_private ||
2479                 DSAStack->getDefaultDSA() == DSA_firstprivate)))
2480       return VD ? VD : cast<VarDecl>(DVarPrivate.PrivateCopy->getDecl());
2481   }
2482   return nullptr;
2483 }
2484 
2485 void Sema::adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
2486                                         unsigned Level) const {
2487   FunctionScopesIndex -= getOpenMPCaptureLevels(DSAStack->getDirective(Level));
2488 }
2489 
2490 void Sema::startOpenMPLoop() {
2491   assert(LangOpts.OpenMP && "OpenMP must be enabled.");
2492   if (isOpenMPLoopDirective(DSAStack->getCurrentDirective()))
2493     DSAStack->loopInit();
2494 }
2495 
2496 void Sema::startOpenMPCXXRangeFor() {
2497   assert(LangOpts.OpenMP && "OpenMP must be enabled.");
2498   if (isOpenMPLoopDirective(DSAStack->getCurrentDirective())) {
2499     DSAStack->resetPossibleLoopCounter();
2500     DSAStack->loopStart();
2501   }
2502 }
2503 
2504 OpenMPClauseKind Sema::isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
2505                                            unsigned CapLevel) const {
2506   assert(LangOpts.OpenMP && "OpenMP is not allowed");
2507   if (DSAStack->getCurrentDirective() != OMPD_unknown &&
2508       (!DSAStack->isClauseParsingMode() ||
2509        DSAStack->getParentDirective() != OMPD_unknown)) {
2510     DSAStackTy::DSAVarData DVarPrivate = DSAStack->hasDSA(
2511         D,
2512         [](OpenMPClauseKind C, bool AppliedToPointee,
2513            DefaultDataSharingAttributes DefaultAttr) {
2514           return isOpenMPPrivate(C) && !AppliedToPointee &&
2515                  DefaultAttr == DSA_private;
2516         },
2517         [](OpenMPDirectiveKind) { return true; },
2518         DSAStack->isClauseParsingMode());
2519     if (DVarPrivate.CKind == OMPC_private && isa<OMPCapturedExprDecl>(D) &&
2520         DSAStack->isImplicitDefaultFirstprivateFD(cast<VarDecl>(D)) &&
2521         !DSAStack->isLoopControlVariable(D).first)
2522       return OMPC_private;
2523   }
2524   if (DSAStack->hasExplicitDirective(isOpenMPTaskingDirective, Level)) {
2525     bool IsTriviallyCopyable =
2526         D->getType().getNonReferenceType().isTriviallyCopyableType(Context) &&
2527         !D->getType()
2528              .getNonReferenceType()
2529              .getCanonicalType()
2530              ->getAsCXXRecordDecl();
2531     OpenMPDirectiveKind DKind = DSAStack->getDirective(Level);
2532     SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
2533     getOpenMPCaptureRegions(CaptureRegions, DKind);
2534     if (isOpenMPTaskingDirective(CaptureRegions[CapLevel]) &&
2535         (IsTriviallyCopyable ||
2536          !isOpenMPTaskLoopDirective(CaptureRegions[CapLevel]))) {
2537       if (DSAStack->hasExplicitDSA(
2538               D,
2539               [](OpenMPClauseKind K, bool) { return K == OMPC_firstprivate; },
2540               Level, /*NotLastprivate=*/true))
2541         return OMPC_firstprivate;
2542       DSAStackTy::DSAVarData DVar = DSAStack->getImplicitDSA(D, Level);
2543       if (DVar.CKind != OMPC_shared &&
2544           !DSAStack->isLoopControlVariable(D, Level).first && !DVar.RefExpr) {
2545         DSAStack->addImplicitTaskFirstprivate(Level, D);
2546         return OMPC_firstprivate;
2547       }
2548     }
2549   }
2550   if (isOpenMPLoopDirective(DSAStack->getCurrentDirective())) {
2551     if (DSAStack->getAssociatedLoops() > 0 && !DSAStack->isLoopStarted()) {
2552       DSAStack->resetPossibleLoopCounter(D);
2553       DSAStack->loopStart();
2554       return OMPC_private;
2555     }
2556     if ((DSAStack->getPossiblyLoopCunter() == D->getCanonicalDecl() ||
2557          DSAStack->isLoopControlVariable(D).first) &&
2558         !DSAStack->hasExplicitDSA(
2559             D, [](OpenMPClauseKind K, bool) { return K != OMPC_private; },
2560             Level) &&
2561         !isOpenMPSimdDirective(DSAStack->getCurrentDirective()))
2562       return OMPC_private;
2563   }
2564   if (const auto *VD = dyn_cast<VarDecl>(D)) {
2565     if (DSAStack->isThreadPrivate(const_cast<VarDecl *>(VD)) &&
2566         DSAStack->isForceVarCapturing() &&
2567         !DSAStack->hasExplicitDSA(
2568             D, [](OpenMPClauseKind K, bool) { return K == OMPC_copyin; },
2569             Level))
2570       return OMPC_private;
2571   }
2572   // User-defined allocators are private since they must be defined in the
2573   // context of target region.
2574   if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective, Level) &&
2575       DSAStack->isUsesAllocatorsDecl(Level, D).value_or(
2576           DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait) ==
2577           DSAStackTy::UsesAllocatorsDeclKind::UserDefinedAllocator)
2578     return OMPC_private;
2579   return (DSAStack->hasExplicitDSA(
2580               D, [](OpenMPClauseKind K, bool) { return K == OMPC_private; },
2581               Level) ||
2582           (DSAStack->isClauseParsingMode() &&
2583            DSAStack->getClauseParsingMode() == OMPC_private) ||
2584           // Consider taskgroup reduction descriptor variable a private
2585           // to avoid possible capture in the region.
2586           (DSAStack->hasExplicitDirective(
2587                [](OpenMPDirectiveKind K) {
2588                  return K == OMPD_taskgroup ||
2589                         ((isOpenMPParallelDirective(K) ||
2590                           isOpenMPWorksharingDirective(K)) &&
2591                          !isOpenMPSimdDirective(K));
2592                },
2593                Level) &&
2594            DSAStack->isTaskgroupReductionRef(D, Level)))
2595              ? OMPC_private
2596              : OMPC_unknown;
2597 }
2598 
2599 void Sema::setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D,
2600                                 unsigned Level) {
2601   assert(LangOpts.OpenMP && "OpenMP is not allowed");
2602   D = getCanonicalDecl(D);
2603   OpenMPClauseKind OMPC = OMPC_unknown;
2604   for (unsigned I = DSAStack->getNestingLevel() + 1; I > Level; --I) {
2605     const unsigned NewLevel = I - 1;
2606     if (DSAStack->hasExplicitDSA(
2607             D,
2608             [&OMPC](const OpenMPClauseKind K, bool AppliedToPointee) {
2609               if (isOpenMPPrivate(K) && !AppliedToPointee) {
2610                 OMPC = K;
2611                 return true;
2612               }
2613               return false;
2614             },
2615             NewLevel))
2616       break;
2617     if (DSAStack->checkMappableExprComponentListsForDeclAtLevel(
2618             D, NewLevel,
2619             [](OMPClauseMappableExprCommon::MappableExprComponentListRef,
2620                OpenMPClauseKind) { return true; })) {
2621       OMPC = OMPC_map;
2622       break;
2623     }
2624     if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective,
2625                                        NewLevel)) {
2626       OMPC = OMPC_map;
2627       if (DSAStack->mustBeFirstprivateAtLevel(
2628               NewLevel, getVariableCategoryFromDecl(LangOpts, D)))
2629         OMPC = OMPC_firstprivate;
2630       break;
2631     }
2632   }
2633   if (OMPC != OMPC_unknown)
2634     FD->addAttr(OMPCaptureKindAttr::CreateImplicit(Context, unsigned(OMPC)));
2635 }
2636 
2637 bool Sema::isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
2638                                       unsigned CaptureLevel) const {
2639   assert(LangOpts.OpenMP && "OpenMP is not allowed");
2640   // Return true if the current level is no longer enclosed in a target region.
2641 
2642   SmallVector<OpenMPDirectiveKind, 4> Regions;
2643   getOpenMPCaptureRegions(Regions, DSAStack->getDirective(Level));
2644   const auto *VD = dyn_cast<VarDecl>(D);
2645   return VD && !VD->hasLocalStorage() &&
2646          DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective,
2647                                         Level) &&
2648          Regions[CaptureLevel] != OMPD_task;
2649 }
2650 
2651 bool Sema::isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
2652                                       unsigned CaptureLevel) const {
2653   assert(LangOpts.OpenMP && "OpenMP is not allowed");
2654   // Return true if the current level is no longer enclosed in a target region.
2655 
2656   if (const auto *VD = dyn_cast<VarDecl>(D)) {
2657     if (!VD->hasLocalStorage()) {
2658       if (isInOpenMPTargetExecutionDirective())
2659         return true;
2660       DSAStackTy::DSAVarData TopDVar =
2661           DSAStack->getTopDSA(D, /*FromParent=*/false);
2662       unsigned NumLevels =
2663           getOpenMPCaptureLevels(DSAStack->getDirective(Level));
2664       if (Level == 0)
2665         // non-file scope static variale with default(firstprivate)
2666         // should be gloabal captured.
2667         return (NumLevels == CaptureLevel + 1 &&
2668                 (TopDVar.CKind != OMPC_shared ||
2669                  DSAStack->getDefaultDSA() == DSA_firstprivate));
2670       do {
2671         --Level;
2672         DSAStackTy::DSAVarData DVar = DSAStack->getImplicitDSA(D, Level);
2673         if (DVar.CKind != OMPC_shared)
2674           return true;
2675       } while (Level > 0);
2676     }
2677   }
2678   return true;
2679 }
2680 
2681 void Sema::DestroyDataSharingAttributesStack() { delete DSAStack; }
2682 
2683 void Sema::ActOnOpenMPBeginDeclareVariant(SourceLocation Loc,
2684                                           OMPTraitInfo &TI) {
2685   OMPDeclareVariantScopes.push_back(OMPDeclareVariantScope(TI));
2686 }
2687 
2688 void Sema::ActOnOpenMPEndDeclareVariant() {
2689   assert(isInOpenMPDeclareVariantScope() &&
2690          "Not in OpenMP declare variant scope!");
2691 
2692   OMPDeclareVariantScopes.pop_back();
2693 }
2694 
2695 void Sema::finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
2696                                          const FunctionDecl *Callee,
2697                                          SourceLocation Loc) {
2698   assert(LangOpts.OpenMP && "Expected OpenMP compilation mode.");
2699   std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
2700       OMPDeclareTargetDeclAttr::getDeviceType(Caller->getMostRecentDecl());
2701   // Ignore host functions during device analyzis.
2702   if (LangOpts.OpenMPIsDevice &&
2703       (!DevTy || *DevTy == OMPDeclareTargetDeclAttr::DT_Host))
2704     return;
2705   // Ignore nohost functions during host analyzis.
2706   if (!LangOpts.OpenMPIsDevice && DevTy &&
2707       *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
2708     return;
2709   const FunctionDecl *FD = Callee->getMostRecentDecl();
2710   DevTy = OMPDeclareTargetDeclAttr::getDeviceType(FD);
2711   if (LangOpts.OpenMPIsDevice && DevTy &&
2712       *DevTy == OMPDeclareTargetDeclAttr::DT_Host) {
2713     // Diagnose host function called during device codegen.
2714     StringRef HostDevTy =
2715         getOpenMPSimpleClauseTypeName(OMPC_device_type, OMPC_DEVICE_TYPE_host);
2716     Diag(Loc, diag::err_omp_wrong_device_function_call) << HostDevTy << 0;
2717     Diag(*OMPDeclareTargetDeclAttr::getLocation(FD),
2718          diag::note_omp_marked_device_type_here)
2719         << HostDevTy;
2720     return;
2721   }
2722   if (!LangOpts.OpenMPIsDevice && !LangOpts.OpenMPOffloadMandatory && DevTy &&
2723       *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) {
2724     // In OpenMP 5.2 or later, if the function has a host variant then allow
2725     // that to be called instead
2726     auto &&HasHostAttr = [](const FunctionDecl *Callee) {
2727       for (OMPDeclareVariantAttr *A :
2728            Callee->specific_attrs<OMPDeclareVariantAttr>()) {
2729         auto *DeclRefVariant = cast<DeclRefExpr>(A->getVariantFuncRef());
2730         auto *VariantFD = cast<FunctionDecl>(DeclRefVariant->getDecl());
2731         std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
2732             OMPDeclareTargetDeclAttr::getDeviceType(
2733                 VariantFD->getMostRecentDecl());
2734         if (!DevTy || *DevTy == OMPDeclareTargetDeclAttr::DT_Host)
2735           return true;
2736       }
2737       return false;
2738     };
2739     if (getLangOpts().OpenMP >= 52 &&
2740         Callee->hasAttr<OMPDeclareVariantAttr>() && HasHostAttr(Callee))
2741       return;
2742     // Diagnose nohost function called during host codegen.
2743     StringRef NoHostDevTy = getOpenMPSimpleClauseTypeName(
2744         OMPC_device_type, OMPC_DEVICE_TYPE_nohost);
2745     Diag(Loc, diag::err_omp_wrong_device_function_call) << NoHostDevTy << 1;
2746     Diag(*OMPDeclareTargetDeclAttr::getLocation(FD),
2747          diag::note_omp_marked_device_type_here)
2748         << NoHostDevTy;
2749   }
2750 }
2751 
2752 void Sema::StartOpenMPDSABlock(OpenMPDirectiveKind DKind,
2753                                const DeclarationNameInfo &DirName,
2754                                Scope *CurScope, SourceLocation Loc) {
2755   DSAStack->push(DKind, DirName, CurScope, Loc);
2756   PushExpressionEvaluationContext(
2757       ExpressionEvaluationContext::PotentiallyEvaluated);
2758 }
2759 
2760 void Sema::StartOpenMPClause(OpenMPClauseKind K) {
2761   DSAStack->setClauseParsingMode(K);
2762 }
2763 
2764 void Sema::EndOpenMPClause() {
2765   DSAStack->setClauseParsingMode(/*K=*/OMPC_unknown);
2766   CleanupVarDeclMarking();
2767 }
2768 
2769 static std::pair<ValueDecl *, bool>
2770 getPrivateItem(Sema &S, Expr *&RefExpr, SourceLocation &ELoc,
2771                SourceRange &ERange, bool AllowArraySection = false,
2772                StringRef DiagType = "");
2773 
2774 /// Check consistency of the reduction clauses.
2775 static void checkReductionClauses(Sema &S, DSAStackTy *Stack,
2776                                   ArrayRef<OMPClause *> Clauses) {
2777   bool InscanFound = false;
2778   SourceLocation InscanLoc;
2779   // OpenMP 5.0, 2.19.5.4 reduction Clause, Restrictions.
2780   // A reduction clause without the inscan reduction-modifier may not appear on
2781   // a construct on which a reduction clause with the inscan reduction-modifier
2782   // appears.
2783   for (OMPClause *C : Clauses) {
2784     if (C->getClauseKind() != OMPC_reduction)
2785       continue;
2786     auto *RC = cast<OMPReductionClause>(C);
2787     if (RC->getModifier() == OMPC_REDUCTION_inscan) {
2788       InscanFound = true;
2789       InscanLoc = RC->getModifierLoc();
2790       continue;
2791     }
2792     if (RC->getModifier() == OMPC_REDUCTION_task) {
2793       // OpenMP 5.0, 2.19.5.4 reduction Clause.
2794       // A reduction clause with the task reduction-modifier may only appear on
2795       // a parallel construct, a worksharing construct or a combined or
2796       // composite construct for which any of the aforementioned constructs is a
2797       // constituent construct and simd or loop are not constituent constructs.
2798       OpenMPDirectiveKind CurDir = Stack->getCurrentDirective();
2799       if (!(isOpenMPParallelDirective(CurDir) ||
2800             isOpenMPWorksharingDirective(CurDir)) ||
2801           isOpenMPSimdDirective(CurDir))
2802         S.Diag(RC->getModifierLoc(),
2803                diag::err_omp_reduction_task_not_parallel_or_worksharing);
2804       continue;
2805     }
2806   }
2807   if (InscanFound) {
2808     for (OMPClause *C : Clauses) {
2809       if (C->getClauseKind() != OMPC_reduction)
2810         continue;
2811       auto *RC = cast<OMPReductionClause>(C);
2812       if (RC->getModifier() != OMPC_REDUCTION_inscan) {
2813         S.Diag(RC->getModifier() == OMPC_REDUCTION_unknown
2814                    ? RC->getBeginLoc()
2815                    : RC->getModifierLoc(),
2816                diag::err_omp_inscan_reduction_expected);
2817         S.Diag(InscanLoc, diag::note_omp_previous_inscan_reduction);
2818         continue;
2819       }
2820       for (Expr *Ref : RC->varlists()) {
2821         assert(Ref && "NULL expr in OpenMP nontemporal clause.");
2822         SourceLocation ELoc;
2823         SourceRange ERange;
2824         Expr *SimpleRefExpr = Ref;
2825         auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange,
2826                                   /*AllowArraySection=*/true);
2827         ValueDecl *D = Res.first;
2828         if (!D)
2829           continue;
2830         if (!Stack->isUsedInScanDirective(getCanonicalDecl(D))) {
2831           S.Diag(Ref->getExprLoc(),
2832                  diag::err_omp_reduction_not_inclusive_exclusive)
2833               << Ref->getSourceRange();
2834         }
2835       }
2836     }
2837   }
2838 }
2839 
2840 static void checkAllocateClauses(Sema &S, DSAStackTy *Stack,
2841                                  ArrayRef<OMPClause *> Clauses);
2842 static DeclRefExpr *buildCapture(Sema &S, ValueDecl *D, Expr *CaptureExpr,
2843                                  bool WithInit);
2844 
2845 static void reportOriginalDsa(Sema &SemaRef, const DSAStackTy *Stack,
2846                               const ValueDecl *D,
2847                               const DSAStackTy::DSAVarData &DVar,
2848                               bool IsLoopIterVar = false);
2849 
2850 void Sema::EndOpenMPDSABlock(Stmt *CurDirective) {
2851   // OpenMP [2.14.3.5, Restrictions, C/C++, p.1]
2852   //  A variable of class type (or array thereof) that appears in a lastprivate
2853   //  clause requires an accessible, unambiguous default constructor for the
2854   //  class type, unless the list item is also specified in a firstprivate
2855   //  clause.
2856   if (const auto *D = dyn_cast_or_null<OMPExecutableDirective>(CurDirective)) {
2857     for (OMPClause *C : D->clauses()) {
2858       if (auto *Clause = dyn_cast<OMPLastprivateClause>(C)) {
2859         SmallVector<Expr *, 8> PrivateCopies;
2860         for (Expr *DE : Clause->varlists()) {
2861           if (DE->isValueDependent() || DE->isTypeDependent()) {
2862             PrivateCopies.push_back(nullptr);
2863             continue;
2864           }
2865           auto *DRE = cast<DeclRefExpr>(DE->IgnoreParens());
2866           auto *VD = cast<VarDecl>(DRE->getDecl());
2867           QualType Type = VD->getType().getNonReferenceType();
2868           const DSAStackTy::DSAVarData DVar =
2869               DSAStack->getTopDSA(VD, /*FromParent=*/false);
2870           if (DVar.CKind == OMPC_lastprivate) {
2871             // Generate helper private variable and initialize it with the
2872             // default value. The address of the original variable is replaced
2873             // by the address of the new private variable in CodeGen. This new
2874             // variable is not added to IdResolver, so the code in the OpenMP
2875             // region uses original variable for proper diagnostics.
2876             VarDecl *VDPrivate = buildVarDecl(
2877                 *this, DE->getExprLoc(), Type.getUnqualifiedType(),
2878                 VD->getName(), VD->hasAttrs() ? &VD->getAttrs() : nullptr, DRE);
2879             ActOnUninitializedDecl(VDPrivate);
2880             if (VDPrivate->isInvalidDecl()) {
2881               PrivateCopies.push_back(nullptr);
2882               continue;
2883             }
2884             PrivateCopies.push_back(buildDeclRefExpr(
2885                 *this, VDPrivate, DE->getType(), DE->getExprLoc()));
2886           } else {
2887             // The variable is also a firstprivate, so initialization sequence
2888             // for private copy is generated already.
2889             PrivateCopies.push_back(nullptr);
2890           }
2891         }
2892         Clause->setPrivateCopies(PrivateCopies);
2893         continue;
2894       }
2895       // Finalize nontemporal clause by handling private copies, if any.
2896       if (auto *Clause = dyn_cast<OMPNontemporalClause>(C)) {
2897         SmallVector<Expr *, 8> PrivateRefs;
2898         for (Expr *RefExpr : Clause->varlists()) {
2899           assert(RefExpr && "NULL expr in OpenMP nontemporal clause.");
2900           SourceLocation ELoc;
2901           SourceRange ERange;
2902           Expr *SimpleRefExpr = RefExpr;
2903           auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
2904           if (Res.second)
2905             // It will be analyzed later.
2906             PrivateRefs.push_back(RefExpr);
2907           ValueDecl *D = Res.first;
2908           if (!D)
2909             continue;
2910 
2911           const DSAStackTy::DSAVarData DVar =
2912               DSAStack->getTopDSA(D, /*FromParent=*/false);
2913           PrivateRefs.push_back(DVar.PrivateCopy ? DVar.PrivateCopy
2914                                                  : SimpleRefExpr);
2915         }
2916         Clause->setPrivateRefs(PrivateRefs);
2917         continue;
2918       }
2919       if (auto *Clause = dyn_cast<OMPUsesAllocatorsClause>(C)) {
2920         for (unsigned I = 0, E = Clause->getNumberOfAllocators(); I < E; ++I) {
2921           OMPUsesAllocatorsClause::Data D = Clause->getAllocatorData(I);
2922           auto *DRE = dyn_cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts());
2923           if (!DRE)
2924             continue;
2925           ValueDecl *VD = DRE->getDecl();
2926           if (!VD || !isa<VarDecl>(VD))
2927             continue;
2928           DSAStackTy::DSAVarData DVar =
2929               DSAStack->getTopDSA(VD, /*FromParent=*/false);
2930           // OpenMP [2.12.5, target Construct]
2931           // Memory allocators that appear in a uses_allocators clause cannot
2932           // appear in other data-sharing attribute clauses or data-mapping
2933           // attribute clauses in the same construct.
2934           Expr *MapExpr = nullptr;
2935           if (DVar.RefExpr ||
2936               DSAStack->checkMappableExprComponentListsForDecl(
2937                   VD, /*CurrentRegionOnly=*/true,
2938                   [VD, &MapExpr](
2939                       OMPClauseMappableExprCommon::MappableExprComponentListRef
2940                           MapExprComponents,
2941                       OpenMPClauseKind C) {
2942                     auto MI = MapExprComponents.rbegin();
2943                     auto ME = MapExprComponents.rend();
2944                     if (MI != ME &&
2945                         MI->getAssociatedDeclaration()->getCanonicalDecl() ==
2946                             VD->getCanonicalDecl()) {
2947                       MapExpr = MI->getAssociatedExpression();
2948                       return true;
2949                     }
2950                     return false;
2951                   })) {
2952             Diag(D.Allocator->getExprLoc(),
2953                  diag::err_omp_allocator_used_in_clauses)
2954                 << D.Allocator->getSourceRange();
2955             if (DVar.RefExpr)
2956               reportOriginalDsa(*this, DSAStack, VD, DVar);
2957             else
2958               Diag(MapExpr->getExprLoc(), diag::note_used_here)
2959                   << MapExpr->getSourceRange();
2960           }
2961         }
2962         continue;
2963       }
2964     }
2965     // Check allocate clauses.
2966     if (!CurContext->isDependentContext())
2967       checkAllocateClauses(*this, DSAStack, D->clauses());
2968     checkReductionClauses(*this, DSAStack, D->clauses());
2969   }
2970 
2971   DSAStack->pop();
2972   DiscardCleanupsInEvaluationContext();
2973   PopExpressionEvaluationContext();
2974 }
2975 
2976 static bool FinishOpenMPLinearClause(OMPLinearClause &Clause, DeclRefExpr *IV,
2977                                      Expr *NumIterations, Sema &SemaRef,
2978                                      Scope *S, DSAStackTy *Stack);
2979 
2980 namespace {
2981 
2982 class VarDeclFilterCCC final : public CorrectionCandidateCallback {
2983 private:
2984   Sema &SemaRef;
2985 
2986 public:
2987   explicit VarDeclFilterCCC(Sema &S) : SemaRef(S) {}
2988   bool ValidateCandidate(const TypoCorrection &Candidate) override {
2989     NamedDecl *ND = Candidate.getCorrectionDecl();
2990     if (const auto *VD = dyn_cast_or_null<VarDecl>(ND)) {
2991       return VD->hasGlobalStorage() &&
2992              SemaRef.isDeclInScope(ND, SemaRef.getCurLexicalContext(),
2993                                    SemaRef.getCurScope());
2994     }
2995     return false;
2996   }
2997 
2998   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2999     return std::make_unique<VarDeclFilterCCC>(*this);
3000   }
3001 };
3002 
3003 class VarOrFuncDeclFilterCCC final : public CorrectionCandidateCallback {
3004 private:
3005   Sema &SemaRef;
3006 
3007 public:
3008   explicit VarOrFuncDeclFilterCCC(Sema &S) : SemaRef(S) {}
3009   bool ValidateCandidate(const TypoCorrection &Candidate) override {
3010     NamedDecl *ND = Candidate.getCorrectionDecl();
3011     if (ND && ((isa<VarDecl>(ND) && ND->getKind() == Decl::Var) ||
3012                isa<FunctionDecl>(ND))) {
3013       return SemaRef.isDeclInScope(ND, SemaRef.getCurLexicalContext(),
3014                                    SemaRef.getCurScope());
3015     }
3016     return false;
3017   }
3018 
3019   std::unique_ptr<CorrectionCandidateCallback> clone() override {
3020     return std::make_unique<VarOrFuncDeclFilterCCC>(*this);
3021   }
3022 };
3023 
3024 } // namespace
3025 
3026 ExprResult Sema::ActOnOpenMPIdExpression(Scope *CurScope,
3027                                          CXXScopeSpec &ScopeSpec,
3028                                          const DeclarationNameInfo &Id,
3029                                          OpenMPDirectiveKind Kind) {
3030   LookupResult Lookup(*this, Id, LookupOrdinaryName);
3031   LookupParsedName(Lookup, CurScope, &ScopeSpec, true);
3032 
3033   if (Lookup.isAmbiguous())
3034     return ExprError();
3035 
3036   VarDecl *VD;
3037   if (!Lookup.isSingleResult()) {
3038     VarDeclFilterCCC CCC(*this);
3039     if (TypoCorrection Corrected =
3040             CorrectTypo(Id, LookupOrdinaryName, CurScope, nullptr, CCC,
3041                         CTK_ErrorRecovery)) {
3042       diagnoseTypo(Corrected,
3043                    PDiag(Lookup.empty()
3044                              ? diag::err_undeclared_var_use_suggest
3045                              : diag::err_omp_expected_var_arg_suggest)
3046                        << Id.getName());
3047       VD = Corrected.getCorrectionDeclAs<VarDecl>();
3048     } else {
3049       Diag(Id.getLoc(), Lookup.empty() ? diag::err_undeclared_var_use
3050                                        : diag::err_omp_expected_var_arg)
3051           << Id.getName();
3052       return ExprError();
3053     }
3054   } else if (!(VD = Lookup.getAsSingle<VarDecl>())) {
3055     Diag(Id.getLoc(), diag::err_omp_expected_var_arg) << Id.getName();
3056     Diag(Lookup.getFoundDecl()->getLocation(), diag::note_declared_at);
3057     return ExprError();
3058   }
3059   Lookup.suppressDiagnostics();
3060 
3061   // OpenMP [2.9.2, Syntax, C/C++]
3062   //   Variables must be file-scope, namespace-scope, or static block-scope.
3063   if (Kind == OMPD_threadprivate && !VD->hasGlobalStorage()) {
3064     Diag(Id.getLoc(), diag::err_omp_global_var_arg)
3065         << getOpenMPDirectiveName(Kind) << !VD->isStaticLocal();
3066     bool IsDecl =
3067         VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
3068     Diag(VD->getLocation(),
3069          IsDecl ? diag::note_previous_decl : diag::note_defined_here)
3070         << VD;
3071     return ExprError();
3072   }
3073 
3074   VarDecl *CanonicalVD = VD->getCanonicalDecl();
3075   NamedDecl *ND = CanonicalVD;
3076   // OpenMP [2.9.2, Restrictions, C/C++, p.2]
3077   //   A threadprivate directive for file-scope variables must appear outside
3078   //   any definition or declaration.
3079   if (CanonicalVD->getDeclContext()->isTranslationUnit() &&
3080       !getCurLexicalContext()->isTranslationUnit()) {
3081     Diag(Id.getLoc(), diag::err_omp_var_scope)
3082         << getOpenMPDirectiveName(Kind) << VD;
3083     bool IsDecl =
3084         VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
3085     Diag(VD->getLocation(),
3086          IsDecl ? diag::note_previous_decl : diag::note_defined_here)
3087         << VD;
3088     return ExprError();
3089   }
3090   // OpenMP [2.9.2, Restrictions, C/C++, p.3]
3091   //   A threadprivate directive for static class member variables must appear
3092   //   in the class definition, in the same scope in which the member
3093   //   variables are declared.
3094   if (CanonicalVD->isStaticDataMember() &&
3095       !CanonicalVD->getDeclContext()->Equals(getCurLexicalContext())) {
3096     Diag(Id.getLoc(), diag::err_omp_var_scope)
3097         << getOpenMPDirectiveName(Kind) << VD;
3098     bool IsDecl =
3099         VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
3100     Diag(VD->getLocation(),
3101          IsDecl ? diag::note_previous_decl : diag::note_defined_here)
3102         << VD;
3103     return ExprError();
3104   }
3105   // OpenMP [2.9.2, Restrictions, C/C++, p.4]
3106   //   A threadprivate directive for namespace-scope variables must appear
3107   //   outside any definition or declaration other than the namespace
3108   //   definition itself.
3109   if (CanonicalVD->getDeclContext()->isNamespace() &&
3110       (!getCurLexicalContext()->isFileContext() ||
3111        !getCurLexicalContext()->Encloses(CanonicalVD->getDeclContext()))) {
3112     Diag(Id.getLoc(), diag::err_omp_var_scope)
3113         << getOpenMPDirectiveName(Kind) << VD;
3114     bool IsDecl =
3115         VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
3116     Diag(VD->getLocation(),
3117          IsDecl ? diag::note_previous_decl : diag::note_defined_here)
3118         << VD;
3119     return ExprError();
3120   }
3121   // OpenMP [2.9.2, Restrictions, C/C++, p.6]
3122   //   A threadprivate directive for static block-scope variables must appear
3123   //   in the scope of the variable and not in a nested scope.
3124   if (CanonicalVD->isLocalVarDecl() && CurScope &&
3125       !isDeclInScope(ND, getCurLexicalContext(), CurScope)) {
3126     Diag(Id.getLoc(), diag::err_omp_var_scope)
3127         << getOpenMPDirectiveName(Kind) << VD;
3128     bool IsDecl =
3129         VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
3130     Diag(VD->getLocation(),
3131          IsDecl ? diag::note_previous_decl : diag::note_defined_here)
3132         << VD;
3133     return ExprError();
3134   }
3135 
3136   // OpenMP [2.9.2, Restrictions, C/C++, p.2-6]
3137   //   A threadprivate directive must lexically precede all references to any
3138   //   of the variables in its list.
3139   if (Kind == OMPD_threadprivate && VD->isUsed() &&
3140       !DSAStack->isThreadPrivate(VD)) {
3141     Diag(Id.getLoc(), diag::err_omp_var_used)
3142         << getOpenMPDirectiveName(Kind) << VD;
3143     return ExprError();
3144   }
3145 
3146   QualType ExprType = VD->getType().getNonReferenceType();
3147   return DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
3148                              SourceLocation(), VD,
3149                              /*RefersToEnclosingVariableOrCapture=*/false,
3150                              Id.getLoc(), ExprType, VK_LValue);
3151 }
3152 
3153 Sema::DeclGroupPtrTy
3154 Sema::ActOnOpenMPThreadprivateDirective(SourceLocation Loc,
3155                                         ArrayRef<Expr *> VarList) {
3156   if (OMPThreadPrivateDecl *D = CheckOMPThreadPrivateDecl(Loc, VarList)) {
3157     CurContext->addDecl(D);
3158     return DeclGroupPtrTy::make(DeclGroupRef(D));
3159   }
3160   return nullptr;
3161 }
3162 
3163 namespace {
3164 class LocalVarRefChecker final
3165     : public ConstStmtVisitor<LocalVarRefChecker, bool> {
3166   Sema &SemaRef;
3167 
3168 public:
3169   bool VisitDeclRefExpr(const DeclRefExpr *E) {
3170     if (const auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
3171       if (VD->hasLocalStorage()) {
3172         SemaRef.Diag(E->getBeginLoc(),
3173                      diag::err_omp_local_var_in_threadprivate_init)
3174             << E->getSourceRange();
3175         SemaRef.Diag(VD->getLocation(), diag::note_defined_here)
3176             << VD << VD->getSourceRange();
3177         return true;
3178       }
3179     }
3180     return false;
3181   }
3182   bool VisitStmt(const Stmt *S) {
3183     for (const Stmt *Child : S->children()) {
3184       if (Child && Visit(Child))
3185         return true;
3186     }
3187     return false;
3188   }
3189   explicit LocalVarRefChecker(Sema &SemaRef) : SemaRef(SemaRef) {}
3190 };
3191 } // namespace
3192 
3193 OMPThreadPrivateDecl *
3194 Sema::CheckOMPThreadPrivateDecl(SourceLocation Loc, ArrayRef<Expr *> VarList) {
3195   SmallVector<Expr *, 8> Vars;
3196   for (Expr *RefExpr : VarList) {
3197     auto *DE = cast<DeclRefExpr>(RefExpr);
3198     auto *VD = cast<VarDecl>(DE->getDecl());
3199     SourceLocation ILoc = DE->getExprLoc();
3200 
3201     // Mark variable as used.
3202     VD->setReferenced();
3203     VD->markUsed(Context);
3204 
3205     QualType QType = VD->getType();
3206     if (QType->isDependentType() || QType->isInstantiationDependentType()) {
3207       // It will be analyzed later.
3208       Vars.push_back(DE);
3209       continue;
3210     }
3211 
3212     // OpenMP [2.9.2, Restrictions, C/C++, p.10]
3213     //   A threadprivate variable must not have an incomplete type.
3214     if (RequireCompleteType(ILoc, VD->getType(),
3215                             diag::err_omp_threadprivate_incomplete_type)) {
3216       continue;
3217     }
3218 
3219     // OpenMP [2.9.2, Restrictions, C/C++, p.10]
3220     //   A threadprivate variable must not have a reference type.
3221     if (VD->getType()->isReferenceType()) {
3222       Diag(ILoc, diag::err_omp_ref_type_arg)
3223           << getOpenMPDirectiveName(OMPD_threadprivate) << VD->getType();
3224       bool IsDecl =
3225           VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
3226       Diag(VD->getLocation(),
3227            IsDecl ? diag::note_previous_decl : diag::note_defined_here)
3228           << VD;
3229       continue;
3230     }
3231 
3232     // Check if this is a TLS variable. If TLS is not being supported, produce
3233     // the corresponding diagnostic.
3234     if ((VD->getTLSKind() != VarDecl::TLS_None &&
3235          !(VD->hasAttr<OMPThreadPrivateDeclAttr>() &&
3236            getLangOpts().OpenMPUseTLS &&
3237            getASTContext().getTargetInfo().isTLSSupported())) ||
3238         (VD->getStorageClass() == SC_Register && VD->hasAttr<AsmLabelAttr>() &&
3239          !VD->isLocalVarDecl())) {
3240       Diag(ILoc, diag::err_omp_var_thread_local)
3241           << VD << ((VD->getTLSKind() != VarDecl::TLS_None) ? 0 : 1);
3242       bool IsDecl =
3243           VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
3244       Diag(VD->getLocation(),
3245            IsDecl ? diag::note_previous_decl : diag::note_defined_here)
3246           << VD;
3247       continue;
3248     }
3249 
3250     // Check if initial value of threadprivate variable reference variable with
3251     // local storage (it is not supported by runtime).
3252     if (const Expr *Init = VD->getAnyInitializer()) {
3253       LocalVarRefChecker Checker(*this);
3254       if (Checker.Visit(Init))
3255         continue;
3256     }
3257 
3258     Vars.push_back(RefExpr);
3259     DSAStack->addDSA(VD, DE, OMPC_threadprivate);
3260     VD->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit(
3261         Context, SourceRange(Loc, Loc)));
3262     if (ASTMutationListener *ML = Context.getASTMutationListener())
3263       ML->DeclarationMarkedOpenMPThreadPrivate(VD);
3264   }
3265   OMPThreadPrivateDecl *D = nullptr;
3266   if (!Vars.empty()) {
3267     D = OMPThreadPrivateDecl::Create(Context, getCurLexicalContext(), Loc,
3268                                      Vars);
3269     D->setAccess(AS_public);
3270   }
3271   return D;
3272 }
3273 
3274 static OMPAllocateDeclAttr::AllocatorTypeTy
3275 getAllocatorKind(Sema &S, DSAStackTy *Stack, Expr *Allocator) {
3276   if (!Allocator)
3277     return OMPAllocateDeclAttr::OMPNullMemAlloc;
3278   if (Allocator->isTypeDependent() || Allocator->isValueDependent() ||
3279       Allocator->isInstantiationDependent() ||
3280       Allocator->containsUnexpandedParameterPack())
3281     return OMPAllocateDeclAttr::OMPUserDefinedMemAlloc;
3282   auto AllocatorKindRes = OMPAllocateDeclAttr::OMPUserDefinedMemAlloc;
3283   llvm::FoldingSetNodeID AEId;
3284   const Expr *AE = Allocator->IgnoreParenImpCasts();
3285   AE->IgnoreImpCasts()->Profile(AEId, S.getASTContext(), /*Canonical=*/true);
3286   for (int I = 0; I < OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; ++I) {
3287     auto AllocatorKind = static_cast<OMPAllocateDeclAttr::AllocatorTypeTy>(I);
3288     const Expr *DefAllocator = Stack->getAllocator(AllocatorKind);
3289     llvm::FoldingSetNodeID DAEId;
3290     DefAllocator->IgnoreImpCasts()->Profile(DAEId, S.getASTContext(),
3291                                             /*Canonical=*/true);
3292     if (AEId == DAEId) {
3293       AllocatorKindRes = AllocatorKind;
3294       break;
3295     }
3296   }
3297   return AllocatorKindRes;
3298 }
3299 
3300 static bool checkPreviousOMPAllocateAttribute(
3301     Sema &S, DSAStackTy *Stack, Expr *RefExpr, VarDecl *VD,
3302     OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind, Expr *Allocator) {
3303   if (!VD->hasAttr<OMPAllocateDeclAttr>())
3304     return false;
3305   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3306   Expr *PrevAllocator = A->getAllocator();
3307   OMPAllocateDeclAttr::AllocatorTypeTy PrevAllocatorKind =
3308       getAllocatorKind(S, Stack, PrevAllocator);
3309   bool AllocatorsMatch = AllocatorKind == PrevAllocatorKind;
3310   if (AllocatorsMatch &&
3311       AllocatorKind == OMPAllocateDeclAttr::OMPUserDefinedMemAlloc &&
3312       Allocator && PrevAllocator) {
3313     const Expr *AE = Allocator->IgnoreParenImpCasts();
3314     const Expr *PAE = PrevAllocator->IgnoreParenImpCasts();
3315     llvm::FoldingSetNodeID AEId, PAEId;
3316     AE->Profile(AEId, S.Context, /*Canonical=*/true);
3317     PAE->Profile(PAEId, S.Context, /*Canonical=*/true);
3318     AllocatorsMatch = AEId == PAEId;
3319   }
3320   if (!AllocatorsMatch) {
3321     SmallString<256> AllocatorBuffer;
3322     llvm::raw_svector_ostream AllocatorStream(AllocatorBuffer);
3323     if (Allocator)
3324       Allocator->printPretty(AllocatorStream, nullptr, S.getPrintingPolicy());
3325     SmallString<256> PrevAllocatorBuffer;
3326     llvm::raw_svector_ostream PrevAllocatorStream(PrevAllocatorBuffer);
3327     if (PrevAllocator)
3328       PrevAllocator->printPretty(PrevAllocatorStream, nullptr,
3329                                  S.getPrintingPolicy());
3330 
3331     SourceLocation AllocatorLoc =
3332         Allocator ? Allocator->getExprLoc() : RefExpr->getExprLoc();
3333     SourceRange AllocatorRange =
3334         Allocator ? Allocator->getSourceRange() : RefExpr->getSourceRange();
3335     SourceLocation PrevAllocatorLoc =
3336         PrevAllocator ? PrevAllocator->getExprLoc() : A->getLocation();
3337     SourceRange PrevAllocatorRange =
3338         PrevAllocator ? PrevAllocator->getSourceRange() : A->getRange();
3339     S.Diag(AllocatorLoc, diag::warn_omp_used_different_allocator)
3340         << (Allocator ? 1 : 0) << AllocatorStream.str()
3341         << (PrevAllocator ? 1 : 0) << PrevAllocatorStream.str()
3342         << AllocatorRange;
3343     S.Diag(PrevAllocatorLoc, diag::note_omp_previous_allocator)
3344         << PrevAllocatorRange;
3345     return true;
3346   }
3347   return false;
3348 }
3349 
3350 static void
3351 applyOMPAllocateAttribute(Sema &S, VarDecl *VD,
3352                           OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind,
3353                           Expr *Allocator, Expr *Alignment, SourceRange SR) {
3354   if (VD->hasAttr<OMPAllocateDeclAttr>())
3355     return;
3356   if (Alignment &&
3357       (Alignment->isTypeDependent() || Alignment->isValueDependent() ||
3358        Alignment->isInstantiationDependent() ||
3359        Alignment->containsUnexpandedParameterPack()))
3360     // Apply later when we have a usable value.
3361     return;
3362   if (Allocator &&
3363       (Allocator->isTypeDependent() || Allocator->isValueDependent() ||
3364        Allocator->isInstantiationDependent() ||
3365        Allocator->containsUnexpandedParameterPack()))
3366     return;
3367   auto *A = OMPAllocateDeclAttr::CreateImplicit(S.Context, AllocatorKind,
3368                                                 Allocator, Alignment, SR);
3369   VD->addAttr(A);
3370   if (ASTMutationListener *ML = S.Context.getASTMutationListener())
3371     ML->DeclarationMarkedOpenMPAllocate(VD, A);
3372 }
3373 
3374 Sema::DeclGroupPtrTy
3375 Sema::ActOnOpenMPAllocateDirective(SourceLocation Loc, ArrayRef<Expr *> VarList,
3376                                    ArrayRef<OMPClause *> Clauses,
3377                                    DeclContext *Owner) {
3378   assert(Clauses.size() <= 2 && "Expected at most two clauses.");
3379   Expr *Alignment = nullptr;
3380   Expr *Allocator = nullptr;
3381   if (Clauses.empty()) {
3382     // OpenMP 5.0, 2.11.3 allocate Directive, Restrictions.
3383     // allocate directives that appear in a target region must specify an
3384     // allocator clause unless a requires directive with the dynamic_allocators
3385     // clause is present in the same compilation unit.
3386     if (LangOpts.OpenMPIsDevice &&
3387         !DSAStack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>())
3388       targetDiag(Loc, diag::err_expected_allocator_clause);
3389   } else {
3390     for (const OMPClause *C : Clauses)
3391       if (const auto *AC = dyn_cast<OMPAllocatorClause>(C))
3392         Allocator = AC->getAllocator();
3393       else if (const auto *AC = dyn_cast<OMPAlignClause>(C))
3394         Alignment = AC->getAlignment();
3395       else
3396         llvm_unreachable("Unexpected clause on allocate directive");
3397   }
3398   OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind =
3399       getAllocatorKind(*this, DSAStack, Allocator);
3400   SmallVector<Expr *, 8> Vars;
3401   for (Expr *RefExpr : VarList) {
3402     auto *DE = cast<DeclRefExpr>(RefExpr);
3403     auto *VD = cast<VarDecl>(DE->getDecl());
3404 
3405     // Check if this is a TLS variable or global register.
3406     if (VD->getTLSKind() != VarDecl::TLS_None ||
3407         VD->hasAttr<OMPThreadPrivateDeclAttr>() ||
3408         (VD->getStorageClass() == SC_Register && VD->hasAttr<AsmLabelAttr>() &&
3409          !VD->isLocalVarDecl()))
3410       continue;
3411 
3412     // If the used several times in the allocate directive, the same allocator
3413     // must be used.
3414     if (checkPreviousOMPAllocateAttribute(*this, DSAStack, RefExpr, VD,
3415                                           AllocatorKind, Allocator))
3416       continue;
3417 
3418     // OpenMP, 2.11.3 allocate Directive, Restrictions, C / C++
3419     // If a list item has a static storage type, the allocator expression in the
3420     // allocator clause must be a constant expression that evaluates to one of
3421     // the predefined memory allocator values.
3422     if (Allocator && VD->hasGlobalStorage()) {
3423       if (AllocatorKind == OMPAllocateDeclAttr::OMPUserDefinedMemAlloc) {
3424         Diag(Allocator->getExprLoc(),
3425              diag::err_omp_expected_predefined_allocator)
3426             << Allocator->getSourceRange();
3427         bool IsDecl = VD->isThisDeclarationADefinition(Context) ==
3428                       VarDecl::DeclarationOnly;
3429         Diag(VD->getLocation(),
3430              IsDecl ? diag::note_previous_decl : diag::note_defined_here)
3431             << VD;
3432         continue;
3433       }
3434     }
3435 
3436     Vars.push_back(RefExpr);
3437     applyOMPAllocateAttribute(*this, VD, AllocatorKind, Allocator, Alignment,
3438                               DE->getSourceRange());
3439   }
3440   if (Vars.empty())
3441     return nullptr;
3442   if (!Owner)
3443     Owner = getCurLexicalContext();
3444   auto *D = OMPAllocateDecl::Create(Context, Owner, Loc, Vars, Clauses);
3445   D->setAccess(AS_public);
3446   Owner->addDecl(D);
3447   return DeclGroupPtrTy::make(DeclGroupRef(D));
3448 }
3449 
3450 Sema::DeclGroupPtrTy
3451 Sema::ActOnOpenMPRequiresDirective(SourceLocation Loc,
3452                                    ArrayRef<OMPClause *> ClauseList) {
3453   OMPRequiresDecl *D = nullptr;
3454   if (!CurContext->isFileContext()) {
3455     Diag(Loc, diag::err_omp_invalid_scope) << "requires";
3456   } else {
3457     D = CheckOMPRequiresDecl(Loc, ClauseList);
3458     if (D) {
3459       CurContext->addDecl(D);
3460       DSAStack->addRequiresDecl(D);
3461     }
3462   }
3463   return DeclGroupPtrTy::make(DeclGroupRef(D));
3464 }
3465 
3466 void Sema::ActOnOpenMPAssumesDirective(SourceLocation Loc,
3467                                        OpenMPDirectiveKind DKind,
3468                                        ArrayRef<std::string> Assumptions,
3469                                        bool SkippedClauses) {
3470   if (!SkippedClauses && Assumptions.empty())
3471     Diag(Loc, diag::err_omp_no_clause_for_directive)
3472         << llvm::omp::getAllAssumeClauseOptions()
3473         << llvm::omp::getOpenMPDirectiveName(DKind);
3474 
3475   auto *AA = AssumptionAttr::Create(Context, llvm::join(Assumptions, ","), Loc);
3476   if (DKind == llvm::omp::Directive::OMPD_begin_assumes) {
3477     OMPAssumeScoped.push_back(AA);
3478     return;
3479   }
3480 
3481   // Global assumes without assumption clauses are ignored.
3482   if (Assumptions.empty())
3483     return;
3484 
3485   assert(DKind == llvm::omp::Directive::OMPD_assumes &&
3486          "Unexpected omp assumption directive!");
3487   OMPAssumeGlobal.push_back(AA);
3488 
3489   // The OMPAssumeGlobal scope above will take care of new declarations but
3490   // we also want to apply the assumption to existing ones, e.g., to
3491   // declarations in included headers. To this end, we traverse all existing
3492   // declaration contexts and annotate function declarations here.
3493   SmallVector<DeclContext *, 8> DeclContexts;
3494   auto *Ctx = CurContext;
3495   while (Ctx->getLexicalParent())
3496     Ctx = Ctx->getLexicalParent();
3497   DeclContexts.push_back(Ctx);
3498   while (!DeclContexts.empty()) {
3499     DeclContext *DC = DeclContexts.pop_back_val();
3500     for (auto *SubDC : DC->decls()) {
3501       if (SubDC->isInvalidDecl())
3502         continue;
3503       if (auto *CTD = dyn_cast<ClassTemplateDecl>(SubDC)) {
3504         DeclContexts.push_back(CTD->getTemplatedDecl());
3505         llvm::append_range(DeclContexts, CTD->specializations());
3506         continue;
3507       }
3508       if (auto *DC = dyn_cast<DeclContext>(SubDC))
3509         DeclContexts.push_back(DC);
3510       if (auto *F = dyn_cast<FunctionDecl>(SubDC)) {
3511         F->addAttr(AA);
3512         continue;
3513       }
3514     }
3515   }
3516 }
3517 
3518 void Sema::ActOnOpenMPEndAssumesDirective() {
3519   assert(isInOpenMPAssumeScope() && "Not in OpenMP assumes scope!");
3520   OMPAssumeScoped.pop_back();
3521 }
3522 
3523 OMPRequiresDecl *Sema::CheckOMPRequiresDecl(SourceLocation Loc,
3524                                             ArrayRef<OMPClause *> ClauseList) {
3525   /// For target specific clauses, the requires directive cannot be
3526   /// specified after the handling of any of the target regions in the
3527   /// current compilation unit.
3528   ArrayRef<SourceLocation> TargetLocations =
3529       DSAStack->getEncounteredTargetLocs();
3530   SourceLocation AtomicLoc = DSAStack->getAtomicDirectiveLoc();
3531   if (!TargetLocations.empty() || !AtomicLoc.isInvalid()) {
3532     for (const OMPClause *CNew : ClauseList) {
3533       // Check if any of the requires clauses affect target regions.
3534       if (isa<OMPUnifiedSharedMemoryClause>(CNew) ||
3535           isa<OMPUnifiedAddressClause>(CNew) ||
3536           isa<OMPReverseOffloadClause>(CNew) ||
3537           isa<OMPDynamicAllocatorsClause>(CNew)) {
3538         Diag(Loc, diag::err_omp_directive_before_requires)
3539             << "target" << getOpenMPClauseName(CNew->getClauseKind());
3540         for (SourceLocation TargetLoc : TargetLocations) {
3541           Diag(TargetLoc, diag::note_omp_requires_encountered_directive)
3542               << "target";
3543         }
3544       } else if (!AtomicLoc.isInvalid() &&
3545                  isa<OMPAtomicDefaultMemOrderClause>(CNew)) {
3546         Diag(Loc, diag::err_omp_directive_before_requires)
3547             << "atomic" << getOpenMPClauseName(CNew->getClauseKind());
3548         Diag(AtomicLoc, diag::note_omp_requires_encountered_directive)
3549             << "atomic";
3550       }
3551     }
3552   }
3553 
3554   if (!DSAStack->hasDuplicateRequiresClause(ClauseList))
3555     return OMPRequiresDecl::Create(Context, getCurLexicalContext(), Loc,
3556                                    ClauseList);
3557   return nullptr;
3558 }
3559 
3560 static void reportOriginalDsa(Sema &SemaRef, const DSAStackTy *Stack,
3561                               const ValueDecl *D,
3562                               const DSAStackTy::DSAVarData &DVar,
3563                               bool IsLoopIterVar) {
3564   if (DVar.RefExpr) {
3565     SemaRef.Diag(DVar.RefExpr->getExprLoc(), diag::note_omp_explicit_dsa)
3566         << getOpenMPClauseName(DVar.CKind);
3567     return;
3568   }
3569   enum {
3570     PDSA_StaticMemberShared,
3571     PDSA_StaticLocalVarShared,
3572     PDSA_LoopIterVarPrivate,
3573     PDSA_LoopIterVarLinear,
3574     PDSA_LoopIterVarLastprivate,
3575     PDSA_ConstVarShared,
3576     PDSA_GlobalVarShared,
3577     PDSA_TaskVarFirstprivate,
3578     PDSA_LocalVarPrivate,
3579     PDSA_Implicit
3580   } Reason = PDSA_Implicit;
3581   bool ReportHint = false;
3582   auto ReportLoc = D->getLocation();
3583   auto *VD = dyn_cast<VarDecl>(D);
3584   if (IsLoopIterVar) {
3585     if (DVar.CKind == OMPC_private)
3586       Reason = PDSA_LoopIterVarPrivate;
3587     else if (DVar.CKind == OMPC_lastprivate)
3588       Reason = PDSA_LoopIterVarLastprivate;
3589     else
3590       Reason = PDSA_LoopIterVarLinear;
3591   } else if (isOpenMPTaskingDirective(DVar.DKind) &&
3592              DVar.CKind == OMPC_firstprivate) {
3593     Reason = PDSA_TaskVarFirstprivate;
3594     ReportLoc = DVar.ImplicitDSALoc;
3595   } else if (VD && VD->isStaticLocal())
3596     Reason = PDSA_StaticLocalVarShared;
3597   else if (VD && VD->isStaticDataMember())
3598     Reason = PDSA_StaticMemberShared;
3599   else if (VD && VD->isFileVarDecl())
3600     Reason = PDSA_GlobalVarShared;
3601   else if (D->getType().isConstant(SemaRef.getASTContext()))
3602     Reason = PDSA_ConstVarShared;
3603   else if (VD && VD->isLocalVarDecl() && DVar.CKind == OMPC_private) {
3604     ReportHint = true;
3605     Reason = PDSA_LocalVarPrivate;
3606   }
3607   if (Reason != PDSA_Implicit) {
3608     SemaRef.Diag(ReportLoc, diag::note_omp_predetermined_dsa)
3609         << Reason << ReportHint
3610         << getOpenMPDirectiveName(Stack->getCurrentDirective());
3611   } else if (DVar.ImplicitDSALoc.isValid()) {
3612     SemaRef.Diag(DVar.ImplicitDSALoc, diag::note_omp_implicit_dsa)
3613         << getOpenMPClauseName(DVar.CKind);
3614   }
3615 }
3616 
3617 static OpenMPMapClauseKind
3618 getMapClauseKindFromModifier(OpenMPDefaultmapClauseModifier M,
3619                              bool IsAggregateOrDeclareTarget) {
3620   OpenMPMapClauseKind Kind = OMPC_MAP_unknown;
3621   switch (M) {
3622   case OMPC_DEFAULTMAP_MODIFIER_alloc:
3623     Kind = OMPC_MAP_alloc;
3624     break;
3625   case OMPC_DEFAULTMAP_MODIFIER_to:
3626     Kind = OMPC_MAP_to;
3627     break;
3628   case OMPC_DEFAULTMAP_MODIFIER_from:
3629     Kind = OMPC_MAP_from;
3630     break;
3631   case OMPC_DEFAULTMAP_MODIFIER_tofrom:
3632     Kind = OMPC_MAP_tofrom;
3633     break;
3634   case OMPC_DEFAULTMAP_MODIFIER_present:
3635     // OpenMP 5.1 [2.21.7.3] defaultmap clause, Description]
3636     // If implicit-behavior is present, each variable referenced in the
3637     // construct in the category specified by variable-category is treated as if
3638     // it had been listed in a map clause with the map-type of alloc and
3639     // map-type-modifier of present.
3640     Kind = OMPC_MAP_alloc;
3641     break;
3642   case OMPC_DEFAULTMAP_MODIFIER_firstprivate:
3643   case OMPC_DEFAULTMAP_MODIFIER_last:
3644     llvm_unreachable("Unexpected defaultmap implicit behavior");
3645   case OMPC_DEFAULTMAP_MODIFIER_none:
3646   case OMPC_DEFAULTMAP_MODIFIER_default:
3647   case OMPC_DEFAULTMAP_MODIFIER_unknown:
3648     // IsAggregateOrDeclareTarget could be true if:
3649     // 1. the implicit behavior for aggregate is tofrom
3650     // 2. it's a declare target link
3651     if (IsAggregateOrDeclareTarget) {
3652       Kind = OMPC_MAP_tofrom;
3653       break;
3654     }
3655     llvm_unreachable("Unexpected defaultmap implicit behavior");
3656   }
3657   assert(Kind != OMPC_MAP_unknown && "Expect map kind to be known");
3658   return Kind;
3659 }
3660 
3661 namespace {
3662 class DSAAttrChecker final : public StmtVisitor<DSAAttrChecker, void> {
3663   DSAStackTy *Stack;
3664   Sema &SemaRef;
3665   bool ErrorFound = false;
3666   bool TryCaptureCXXThisMembers = false;
3667   CapturedStmt *CS = nullptr;
3668   const static unsigned DefaultmapKindNum = OMPC_DEFAULTMAP_pointer + 1;
3669   llvm::SmallVector<Expr *, 4> ImplicitFirstprivate;
3670   llvm::SmallVector<Expr *, 4> ImplicitPrivate;
3671   llvm::SmallVector<Expr *, 4> ImplicitMap[DefaultmapKindNum][OMPC_MAP_delete];
3672   llvm::SmallVector<OpenMPMapModifierKind, NumberOfOMPMapClauseModifiers>
3673       ImplicitMapModifier[DefaultmapKindNum];
3674   Sema::VarsWithInheritedDSAType VarsWithInheritedDSA;
3675   llvm::SmallDenseSet<const ValueDecl *, 4> ImplicitDeclarations;
3676 
3677   void VisitSubCaptures(OMPExecutableDirective *S) {
3678     // Check implicitly captured variables.
3679     if (!S->hasAssociatedStmt() || !S->getAssociatedStmt())
3680       return;
3681     if (S->getDirectiveKind() == OMPD_atomic ||
3682         S->getDirectiveKind() == OMPD_critical ||
3683         S->getDirectiveKind() == OMPD_section ||
3684         S->getDirectiveKind() == OMPD_master ||
3685         S->getDirectiveKind() == OMPD_masked ||
3686         isOpenMPLoopTransformationDirective(S->getDirectiveKind())) {
3687       Visit(S->getAssociatedStmt());
3688       return;
3689     }
3690     visitSubCaptures(S->getInnermostCapturedStmt());
3691     // Try to capture inner this->member references to generate correct mappings
3692     // and diagnostics.
3693     if (TryCaptureCXXThisMembers ||
3694         (isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) &&
3695          llvm::any_of(S->getInnermostCapturedStmt()->captures(),
3696                       [](const CapturedStmt::Capture &C) {
3697                         return C.capturesThis();
3698                       }))) {
3699       bool SavedTryCaptureCXXThisMembers = TryCaptureCXXThisMembers;
3700       TryCaptureCXXThisMembers = true;
3701       Visit(S->getInnermostCapturedStmt()->getCapturedStmt());
3702       TryCaptureCXXThisMembers = SavedTryCaptureCXXThisMembers;
3703     }
3704     // In tasks firstprivates are not captured anymore, need to analyze them
3705     // explicitly.
3706     if (isOpenMPTaskingDirective(S->getDirectiveKind()) &&
3707         !isOpenMPTaskLoopDirective(S->getDirectiveKind())) {
3708       for (OMPClause *C : S->clauses())
3709         if (auto *FC = dyn_cast<OMPFirstprivateClause>(C)) {
3710           for (Expr *Ref : FC->varlists())
3711             Visit(Ref);
3712         }
3713     }
3714   }
3715 
3716 public:
3717   void VisitDeclRefExpr(DeclRefExpr *E) {
3718     if (TryCaptureCXXThisMembers || E->isTypeDependent() ||
3719         E->isValueDependent() || E->containsUnexpandedParameterPack() ||
3720         E->isInstantiationDependent())
3721       return;
3722     if (auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
3723       // Check the datasharing rules for the expressions in the clauses.
3724       if (!CS || (isa<OMPCapturedExprDecl>(VD) && !CS->capturesVariable(VD) &&
3725                   !Stack->getTopDSA(VD, /*FromParent=*/false).RefExpr &&
3726                   !Stack->isImplicitDefaultFirstprivateFD(VD))) {
3727         if (auto *CED = dyn_cast<OMPCapturedExprDecl>(VD))
3728           if (!CED->hasAttr<OMPCaptureNoInitAttr>()) {
3729             Visit(CED->getInit());
3730             return;
3731           }
3732       } else if (VD->isImplicit() || isa<OMPCapturedExprDecl>(VD))
3733         // Do not analyze internal variables and do not enclose them into
3734         // implicit clauses.
3735         if (!Stack->isImplicitDefaultFirstprivateFD(VD))
3736           return;
3737       VD = VD->getCanonicalDecl();
3738       // Skip internally declared variables.
3739       if (VD->hasLocalStorage() && CS && !CS->capturesVariable(VD) &&
3740           !Stack->isImplicitDefaultFirstprivateFD(VD) &&
3741           !Stack->isImplicitTaskFirstprivate(VD))
3742         return;
3743       // Skip allocators in uses_allocators clauses.
3744       if (Stack->isUsesAllocatorsDecl(VD))
3745         return;
3746 
3747       DSAStackTy::DSAVarData DVar = Stack->getTopDSA(VD, /*FromParent=*/false);
3748       // Check if the variable has explicit DSA set and stop analysis if it so.
3749       if (DVar.RefExpr || !ImplicitDeclarations.insert(VD).second)
3750         return;
3751 
3752       // Skip internally declared static variables.
3753       std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3754           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
3755       if (VD->hasGlobalStorage() && CS && !CS->capturesVariable(VD) &&
3756           (Stack->hasRequiresDeclWithClause<OMPUnifiedSharedMemoryClause>() ||
3757            !Res || *Res != OMPDeclareTargetDeclAttr::MT_Link) &&
3758           !Stack->isImplicitDefaultFirstprivateFD(VD) &&
3759           !Stack->isImplicitTaskFirstprivate(VD))
3760         return;
3761 
3762       SourceLocation ELoc = E->getExprLoc();
3763       OpenMPDirectiveKind DKind = Stack->getCurrentDirective();
3764       // The default(none) clause requires that each variable that is referenced
3765       // in the construct, and does not have a predetermined data-sharing
3766       // attribute, must have its data-sharing attribute explicitly determined
3767       // by being listed in a data-sharing attribute clause.
3768       if (DVar.CKind == OMPC_unknown &&
3769           (Stack->getDefaultDSA() == DSA_none ||
3770            Stack->getDefaultDSA() == DSA_private ||
3771            Stack->getDefaultDSA() == DSA_firstprivate) &&
3772           isImplicitOrExplicitTaskingRegion(DKind) &&
3773           VarsWithInheritedDSA.count(VD) == 0) {
3774         bool InheritedDSA = Stack->getDefaultDSA() == DSA_none;
3775         if (!InheritedDSA && (Stack->getDefaultDSA() == DSA_firstprivate ||
3776                               Stack->getDefaultDSA() == DSA_private)) {
3777           DSAStackTy::DSAVarData DVar =
3778               Stack->getImplicitDSA(VD, /*FromParent=*/false);
3779           InheritedDSA = DVar.CKind == OMPC_unknown;
3780         }
3781         if (InheritedDSA)
3782           VarsWithInheritedDSA[VD] = E;
3783         if (Stack->getDefaultDSA() == DSA_none)
3784           return;
3785       }
3786 
3787       // OpenMP 5.0 [2.19.7.2, defaultmap clause, Description]
3788       // If implicit-behavior is none, each variable referenced in the
3789       // construct that does not have a predetermined data-sharing attribute
3790       // and does not appear in a to or link clause on a declare target
3791       // directive must be listed in a data-mapping attribute clause, a
3792       // data-sharing attribute clause (including a data-sharing attribute
3793       // clause on a combined construct where target. is one of the
3794       // constituent constructs), or an is_device_ptr clause.
3795       OpenMPDefaultmapClauseKind ClauseKind =
3796           getVariableCategoryFromDecl(SemaRef.getLangOpts(), VD);
3797       if (SemaRef.getLangOpts().OpenMP >= 50) {
3798         bool IsModifierNone = Stack->getDefaultmapModifier(ClauseKind) ==
3799                               OMPC_DEFAULTMAP_MODIFIER_none;
3800         if (DVar.CKind == OMPC_unknown && IsModifierNone &&
3801             VarsWithInheritedDSA.count(VD) == 0 && !Res) {
3802           // Only check for data-mapping attribute and is_device_ptr here
3803           // since we have already make sure that the declaration does not
3804           // have a data-sharing attribute above
3805           if (!Stack->checkMappableExprComponentListsForDecl(
3806                   VD, /*CurrentRegionOnly=*/true,
3807                   [VD](OMPClauseMappableExprCommon::MappableExprComponentListRef
3808                            MapExprComponents,
3809                        OpenMPClauseKind) {
3810                     auto MI = MapExprComponents.rbegin();
3811                     auto ME = MapExprComponents.rend();
3812                     return MI != ME && MI->getAssociatedDeclaration() == VD;
3813                   })) {
3814             VarsWithInheritedDSA[VD] = E;
3815             return;
3816           }
3817         }
3818       }
3819       if (SemaRef.getLangOpts().OpenMP > 50) {
3820         bool IsModifierPresent = Stack->getDefaultmapModifier(ClauseKind) ==
3821                                  OMPC_DEFAULTMAP_MODIFIER_present;
3822         if (IsModifierPresent) {
3823           if (!llvm::is_contained(ImplicitMapModifier[ClauseKind],
3824                                   OMPC_MAP_MODIFIER_present)) {
3825             ImplicitMapModifier[ClauseKind].push_back(
3826                 OMPC_MAP_MODIFIER_present);
3827           }
3828         }
3829       }
3830 
3831       if (isOpenMPTargetExecutionDirective(DKind) &&
3832           !Stack->isLoopControlVariable(VD).first) {
3833         if (!Stack->checkMappableExprComponentListsForDecl(
3834                 VD, /*CurrentRegionOnly=*/true,
3835                 [this](OMPClauseMappableExprCommon::MappableExprComponentListRef
3836                            StackComponents,
3837                        OpenMPClauseKind) {
3838                   if (SemaRef.LangOpts.OpenMP >= 50)
3839                     return !StackComponents.empty();
3840                   // Variable is used if it has been marked as an array, array
3841                   // section, array shaping or the variable iself.
3842                   return StackComponents.size() == 1 ||
3843                          llvm::all_of(
3844                              llvm::drop_begin(llvm::reverse(StackComponents)),
3845                              [](const OMPClauseMappableExprCommon::
3846                                     MappableComponent &MC) {
3847                                return MC.getAssociatedDeclaration() ==
3848                                           nullptr &&
3849                                       (isa<OMPArraySectionExpr>(
3850                                            MC.getAssociatedExpression()) ||
3851                                        isa<OMPArrayShapingExpr>(
3852                                            MC.getAssociatedExpression()) ||
3853                                        isa<ArraySubscriptExpr>(
3854                                            MC.getAssociatedExpression()));
3855                              });
3856                 })) {
3857           bool IsFirstprivate = false;
3858           // By default lambdas are captured as firstprivates.
3859           if (const auto *RD =
3860                   VD->getType().getNonReferenceType()->getAsCXXRecordDecl())
3861             IsFirstprivate = RD->isLambda();
3862           IsFirstprivate =
3863               IsFirstprivate || (Stack->mustBeFirstprivate(ClauseKind) && !Res);
3864           if (IsFirstprivate) {
3865             ImplicitFirstprivate.emplace_back(E);
3866           } else {
3867             OpenMPDefaultmapClauseModifier M =
3868                 Stack->getDefaultmapModifier(ClauseKind);
3869             OpenMPMapClauseKind Kind = getMapClauseKindFromModifier(
3870                 M, ClauseKind == OMPC_DEFAULTMAP_aggregate || Res);
3871             ImplicitMap[ClauseKind][Kind].emplace_back(E);
3872           }
3873           return;
3874         }
3875       }
3876 
3877       // OpenMP [2.9.3.6, Restrictions, p.2]
3878       //  A list item that appears in a reduction clause of the innermost
3879       //  enclosing worksharing or parallel construct may not be accessed in an
3880       //  explicit task.
3881       DVar = Stack->hasInnermostDSA(
3882           VD,
3883           [](OpenMPClauseKind C, bool AppliedToPointee) {
3884             return C == OMPC_reduction && !AppliedToPointee;
3885           },
3886           [](OpenMPDirectiveKind K) {
3887             return isOpenMPParallelDirective(K) ||
3888                    isOpenMPWorksharingDirective(K) || isOpenMPTeamsDirective(K);
3889           },
3890           /*FromParent=*/true);
3891       if (isOpenMPTaskingDirective(DKind) && DVar.CKind == OMPC_reduction) {
3892         ErrorFound = true;
3893         SemaRef.Diag(ELoc, diag::err_omp_reduction_in_task);
3894         reportOriginalDsa(SemaRef, Stack, VD, DVar);
3895         return;
3896       }
3897 
3898       // Define implicit data-sharing attributes for task.
3899       DVar = Stack->getImplicitDSA(VD, /*FromParent=*/false);
3900       if (((isOpenMPTaskingDirective(DKind) && DVar.CKind != OMPC_shared) ||
3901            (((Stack->getDefaultDSA() == DSA_firstprivate &&
3902               DVar.CKind == OMPC_firstprivate) ||
3903              (Stack->getDefaultDSA() == DSA_private &&
3904               DVar.CKind == OMPC_private)) &&
3905             !DVar.RefExpr)) &&
3906           !Stack->isLoopControlVariable(VD).first) {
3907         if (Stack->getDefaultDSA() == DSA_private)
3908           ImplicitPrivate.push_back(E);
3909         else
3910           ImplicitFirstprivate.push_back(E);
3911         return;
3912       }
3913 
3914       // Store implicitly used globals with declare target link for parent
3915       // target.
3916       if (!isOpenMPTargetExecutionDirective(DKind) && Res &&
3917           *Res == OMPDeclareTargetDeclAttr::MT_Link) {
3918         Stack->addToParentTargetRegionLinkGlobals(E);
3919         return;
3920       }
3921     }
3922   }
3923   void VisitMemberExpr(MemberExpr *E) {
3924     if (E->isTypeDependent() || E->isValueDependent() ||
3925         E->containsUnexpandedParameterPack() || E->isInstantiationDependent())
3926       return;
3927     auto *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
3928     OpenMPDirectiveKind DKind = Stack->getCurrentDirective();
3929     if (auto *TE = dyn_cast<CXXThisExpr>(E->getBase()->IgnoreParenCasts())) {
3930       if (!FD)
3931         return;
3932       DSAStackTy::DSAVarData DVar = Stack->getTopDSA(FD, /*FromParent=*/false);
3933       // Check if the variable has explicit DSA set and stop analysis if it
3934       // so.
3935       if (DVar.RefExpr || !ImplicitDeclarations.insert(FD).second)
3936         return;
3937 
3938       if (isOpenMPTargetExecutionDirective(DKind) &&
3939           !Stack->isLoopControlVariable(FD).first &&
3940           !Stack->checkMappableExprComponentListsForDecl(
3941               FD, /*CurrentRegionOnly=*/true,
3942               [](OMPClauseMappableExprCommon::MappableExprComponentListRef
3943                      StackComponents,
3944                  OpenMPClauseKind) {
3945                 return isa<CXXThisExpr>(
3946                     cast<MemberExpr>(
3947                         StackComponents.back().getAssociatedExpression())
3948                         ->getBase()
3949                         ->IgnoreParens());
3950               })) {
3951         // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.3]
3952         //  A bit-field cannot appear in a map clause.
3953         //
3954         if (FD->isBitField())
3955           return;
3956 
3957         // Check to see if the member expression is referencing a class that
3958         // has already been explicitly mapped
3959         if (Stack->isClassPreviouslyMapped(TE->getType()))
3960           return;
3961 
3962         OpenMPDefaultmapClauseModifier Modifier =
3963             Stack->getDefaultmapModifier(OMPC_DEFAULTMAP_aggregate);
3964         OpenMPDefaultmapClauseKind ClauseKind =
3965             getVariableCategoryFromDecl(SemaRef.getLangOpts(), FD);
3966         OpenMPMapClauseKind Kind = getMapClauseKindFromModifier(
3967             Modifier, /*IsAggregateOrDeclareTarget*/ true);
3968         ImplicitMap[ClauseKind][Kind].emplace_back(E);
3969         return;
3970       }
3971 
3972       SourceLocation ELoc = E->getExprLoc();
3973       // OpenMP [2.9.3.6, Restrictions, p.2]
3974       //  A list item that appears in a reduction clause of the innermost
3975       //  enclosing worksharing or parallel construct may not be accessed in
3976       //  an  explicit task.
3977       DVar = Stack->hasInnermostDSA(
3978           FD,
3979           [](OpenMPClauseKind C, bool AppliedToPointee) {
3980             return C == OMPC_reduction && !AppliedToPointee;
3981           },
3982           [](OpenMPDirectiveKind K) {
3983             return isOpenMPParallelDirective(K) ||
3984                    isOpenMPWorksharingDirective(K) || isOpenMPTeamsDirective(K);
3985           },
3986           /*FromParent=*/true);
3987       if (isOpenMPTaskingDirective(DKind) && DVar.CKind == OMPC_reduction) {
3988         ErrorFound = true;
3989         SemaRef.Diag(ELoc, diag::err_omp_reduction_in_task);
3990         reportOriginalDsa(SemaRef, Stack, FD, DVar);
3991         return;
3992       }
3993 
3994       // Define implicit data-sharing attributes for task.
3995       DVar = Stack->getImplicitDSA(FD, /*FromParent=*/false);
3996       if (isOpenMPTaskingDirective(DKind) && DVar.CKind != OMPC_shared &&
3997           !Stack->isLoopControlVariable(FD).first) {
3998         // Check if there is a captured expression for the current field in the
3999         // region. Do not mark it as firstprivate unless there is no captured
4000         // expression.
4001         // TODO: try to make it firstprivate.
4002         if (DVar.CKind != OMPC_unknown)
4003           ImplicitFirstprivate.push_back(E);
4004       }
4005       return;
4006     }
4007     if (isOpenMPTargetExecutionDirective(DKind)) {
4008       OMPClauseMappableExprCommon::MappableExprComponentList CurComponents;
4009       if (!checkMapClauseExpressionBase(SemaRef, E, CurComponents, OMPC_map,
4010                                         Stack->getCurrentDirective(),
4011                                         /*NoDiagnose=*/true))
4012         return;
4013       const auto *VD = cast<ValueDecl>(
4014           CurComponents.back().getAssociatedDeclaration()->getCanonicalDecl());
4015       if (!Stack->checkMappableExprComponentListsForDecl(
4016               VD, /*CurrentRegionOnly=*/true,
4017               [&CurComponents](
4018                   OMPClauseMappableExprCommon::MappableExprComponentListRef
4019                       StackComponents,
4020                   OpenMPClauseKind) {
4021                 auto CCI = CurComponents.rbegin();
4022                 auto CCE = CurComponents.rend();
4023                 for (const auto &SC : llvm::reverse(StackComponents)) {
4024                   // Do both expressions have the same kind?
4025                   if (CCI->getAssociatedExpression()->getStmtClass() !=
4026                       SC.getAssociatedExpression()->getStmtClass())
4027                     if (!((isa<OMPArraySectionExpr>(
4028                                SC.getAssociatedExpression()) ||
4029                            isa<OMPArrayShapingExpr>(
4030                                SC.getAssociatedExpression())) &&
4031                           isa<ArraySubscriptExpr>(
4032                               CCI->getAssociatedExpression())))
4033                       return false;
4034 
4035                   const Decl *CCD = CCI->getAssociatedDeclaration();
4036                   const Decl *SCD = SC.getAssociatedDeclaration();
4037                   CCD = CCD ? CCD->getCanonicalDecl() : nullptr;
4038                   SCD = SCD ? SCD->getCanonicalDecl() : nullptr;
4039                   if (SCD != CCD)
4040                     return false;
4041                   std::advance(CCI, 1);
4042                   if (CCI == CCE)
4043                     break;
4044                 }
4045                 return true;
4046               })) {
4047         Visit(E->getBase());
4048       }
4049     } else if (!TryCaptureCXXThisMembers) {
4050       Visit(E->getBase());
4051     }
4052   }
4053   void VisitOMPExecutableDirective(OMPExecutableDirective *S) {
4054     for (OMPClause *C : S->clauses()) {
4055       // Skip analysis of arguments of private clauses for task|target
4056       // directives.
4057       if (isa_and_nonnull<OMPPrivateClause>(C))
4058         continue;
4059       // Skip analysis of arguments of implicitly defined firstprivate clause
4060       // for task|target directives.
4061       // Skip analysis of arguments of implicitly defined map clause for target
4062       // directives.
4063       if (C && !((isa<OMPFirstprivateClause>(C) || isa<OMPMapClause>(C)) &&
4064                  C->isImplicit() &&
4065                  !isOpenMPTaskingDirective(Stack->getCurrentDirective()))) {
4066         for (Stmt *CC : C->children()) {
4067           if (CC)
4068             Visit(CC);
4069         }
4070       }
4071     }
4072     // Check implicitly captured variables.
4073     VisitSubCaptures(S);
4074   }
4075 
4076   void VisitOMPLoopTransformationDirective(OMPLoopTransformationDirective *S) {
4077     // Loop transformation directives do not introduce data sharing
4078     VisitStmt(S);
4079   }
4080 
4081   void VisitCallExpr(CallExpr *S) {
4082     for (Stmt *C : S->arguments()) {
4083       if (C) {
4084         // Check implicitly captured variables in the task-based directives to
4085         // check if they must be firstprivatized.
4086         Visit(C);
4087       }
4088     }
4089     if (Expr *Callee = S->getCallee()) {
4090       auto *CI = Callee->IgnoreParenImpCasts();
4091       if (auto *CE = dyn_cast<MemberExpr>(CI))
4092         Visit(CE->getBase());
4093       else if (auto *CE = dyn_cast<DeclRefExpr>(CI))
4094         Visit(CE);
4095     }
4096   }
4097   void VisitStmt(Stmt *S) {
4098     for (Stmt *C : S->children()) {
4099       if (C) {
4100         // Check implicitly captured variables in the task-based directives to
4101         // check if they must be firstprivatized.
4102         Visit(C);
4103       }
4104     }
4105   }
4106 
4107   void visitSubCaptures(CapturedStmt *S) {
4108     for (const CapturedStmt::Capture &Cap : S->captures()) {
4109       if (!Cap.capturesVariable() && !Cap.capturesVariableByCopy())
4110         continue;
4111       VarDecl *VD = Cap.getCapturedVar();
4112       // Do not try to map the variable if it or its sub-component was mapped
4113       // already.
4114       if (isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) &&
4115           Stack->checkMappableExprComponentListsForDecl(
4116               VD, /*CurrentRegionOnly=*/true,
4117               [](OMPClauseMappableExprCommon::MappableExprComponentListRef,
4118                  OpenMPClauseKind) { return true; }))
4119         continue;
4120       DeclRefExpr *DRE = buildDeclRefExpr(
4121           SemaRef, VD, VD->getType().getNonLValueExprType(SemaRef.Context),
4122           Cap.getLocation(), /*RefersToCapture=*/true);
4123       Visit(DRE);
4124     }
4125   }
4126   bool isErrorFound() const { return ErrorFound; }
4127   ArrayRef<Expr *> getImplicitFirstprivate() const {
4128     return ImplicitFirstprivate;
4129   }
4130   ArrayRef<Expr *> getImplicitPrivate() const { return ImplicitPrivate; }
4131   ArrayRef<Expr *> getImplicitMap(OpenMPDefaultmapClauseKind DK,
4132                                   OpenMPMapClauseKind MK) const {
4133     return ImplicitMap[DK][MK];
4134   }
4135   ArrayRef<OpenMPMapModifierKind>
4136   getImplicitMapModifier(OpenMPDefaultmapClauseKind Kind) const {
4137     return ImplicitMapModifier[Kind];
4138   }
4139   const Sema::VarsWithInheritedDSAType &getVarsWithInheritedDSA() const {
4140     return VarsWithInheritedDSA;
4141   }
4142 
4143   DSAAttrChecker(DSAStackTy *S, Sema &SemaRef, CapturedStmt *CS)
4144       : Stack(S), SemaRef(SemaRef), ErrorFound(false), CS(CS) {
4145     // Process declare target link variables for the target directives.
4146     if (isOpenMPTargetExecutionDirective(S->getCurrentDirective())) {
4147       for (DeclRefExpr *E : Stack->getLinkGlobals())
4148         Visit(E);
4149     }
4150   }
4151 };
4152 } // namespace
4153 
4154 static void handleDeclareVariantConstructTrait(DSAStackTy *Stack,
4155                                                OpenMPDirectiveKind DKind,
4156                                                bool ScopeEntry) {
4157   SmallVector<llvm::omp::TraitProperty, 8> Traits;
4158   if (isOpenMPTargetExecutionDirective(DKind))
4159     Traits.emplace_back(llvm::omp::TraitProperty::construct_target_target);
4160   if (isOpenMPTeamsDirective(DKind))
4161     Traits.emplace_back(llvm::omp::TraitProperty::construct_teams_teams);
4162   if (isOpenMPParallelDirective(DKind))
4163     Traits.emplace_back(llvm::omp::TraitProperty::construct_parallel_parallel);
4164   if (isOpenMPWorksharingDirective(DKind))
4165     Traits.emplace_back(llvm::omp::TraitProperty::construct_for_for);
4166   if (isOpenMPSimdDirective(DKind))
4167     Traits.emplace_back(llvm::omp::TraitProperty::construct_simd_simd);
4168   Stack->handleConstructTrait(Traits, ScopeEntry);
4169 }
4170 
4171 void Sema::ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope) {
4172   switch (DKind) {
4173   case OMPD_parallel:
4174   case OMPD_parallel_for:
4175   case OMPD_parallel_for_simd:
4176   case OMPD_parallel_sections:
4177   case OMPD_parallel_master:
4178   case OMPD_parallel_masked:
4179   case OMPD_parallel_loop:
4180   case OMPD_teams:
4181   case OMPD_teams_distribute:
4182   case OMPD_teams_distribute_simd: {
4183     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4184     QualType KmpInt32PtrTy =
4185         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4186     Sema::CapturedParamNameType Params[] = {
4187         std::make_pair(".global_tid.", KmpInt32PtrTy),
4188         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4189         std::make_pair(StringRef(), QualType()) // __context with shared vars
4190     };
4191     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4192                              Params);
4193     break;
4194   }
4195   case OMPD_target_teams:
4196   case OMPD_target_parallel:
4197   case OMPD_target_parallel_for:
4198   case OMPD_target_parallel_for_simd:
4199   case OMPD_target_teams_loop:
4200   case OMPD_target_parallel_loop:
4201   case OMPD_target_teams_distribute:
4202   case OMPD_target_teams_distribute_simd: {
4203     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4204     QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
4205     QualType KmpInt32PtrTy =
4206         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4207     QualType Args[] = {VoidPtrTy};
4208     FunctionProtoType::ExtProtoInfo EPI;
4209     EPI.Variadic = true;
4210     QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
4211     Sema::CapturedParamNameType Params[] = {
4212         std::make_pair(".global_tid.", KmpInt32Ty),
4213         std::make_pair(".part_id.", KmpInt32PtrTy),
4214         std::make_pair(".privates.", VoidPtrTy),
4215         std::make_pair(
4216             ".copy_fn.",
4217             Context.getPointerType(CopyFnType).withConst().withRestrict()),
4218         std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
4219         std::make_pair(StringRef(), QualType()) // __context with shared vars
4220     };
4221     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4222                              Params, /*OpenMPCaptureLevel=*/0);
4223     // Mark this captured region as inlined, because we don't use outlined
4224     // function directly.
4225     getCurCapturedRegion()->TheCapturedDecl->addAttr(
4226         AlwaysInlineAttr::CreateImplicit(
4227             Context, {}, AttributeCommonInfo::AS_Keyword,
4228             AlwaysInlineAttr::Keyword_forceinline));
4229     Sema::CapturedParamNameType ParamsTarget[] = {
4230         std::make_pair(StringRef(), QualType()) // __context with shared vars
4231     };
4232     // Start a captured region for 'target' with no implicit parameters.
4233     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4234                              ParamsTarget, /*OpenMPCaptureLevel=*/1);
4235     Sema::CapturedParamNameType ParamsTeamsOrParallel[] = {
4236         std::make_pair(".global_tid.", KmpInt32PtrTy),
4237         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4238         std::make_pair(StringRef(), QualType()) // __context with shared vars
4239     };
4240     // Start a captured region for 'teams' or 'parallel'.  Both regions have
4241     // the same implicit parameters.
4242     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4243                              ParamsTeamsOrParallel, /*OpenMPCaptureLevel=*/2);
4244     break;
4245   }
4246   case OMPD_target:
4247   case OMPD_target_simd: {
4248     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4249     QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
4250     QualType KmpInt32PtrTy =
4251         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4252     QualType Args[] = {VoidPtrTy};
4253     FunctionProtoType::ExtProtoInfo EPI;
4254     EPI.Variadic = true;
4255     QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
4256     Sema::CapturedParamNameType Params[] = {
4257         std::make_pair(".global_tid.", KmpInt32Ty),
4258         std::make_pair(".part_id.", KmpInt32PtrTy),
4259         std::make_pair(".privates.", VoidPtrTy),
4260         std::make_pair(
4261             ".copy_fn.",
4262             Context.getPointerType(CopyFnType).withConst().withRestrict()),
4263         std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
4264         std::make_pair(StringRef(), QualType()) // __context with shared vars
4265     };
4266     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4267                              Params, /*OpenMPCaptureLevel=*/0);
4268     // Mark this captured region as inlined, because we don't use outlined
4269     // function directly.
4270     getCurCapturedRegion()->TheCapturedDecl->addAttr(
4271         AlwaysInlineAttr::CreateImplicit(
4272             Context, {}, AttributeCommonInfo::AS_Keyword,
4273             AlwaysInlineAttr::Keyword_forceinline));
4274     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4275                              std::make_pair(StringRef(), QualType()),
4276                              /*OpenMPCaptureLevel=*/1);
4277     break;
4278   }
4279   case OMPD_atomic:
4280   case OMPD_critical:
4281   case OMPD_section:
4282   case OMPD_master:
4283   case OMPD_masked:
4284   case OMPD_tile:
4285   case OMPD_unroll:
4286     break;
4287   case OMPD_loop:
4288     // TODO: 'loop' may require additional parameters depending on the binding.
4289     // Treat similar to OMPD_simd/OMPD_for for now.
4290   case OMPD_simd:
4291   case OMPD_for:
4292   case OMPD_for_simd:
4293   case OMPD_sections:
4294   case OMPD_single:
4295   case OMPD_taskgroup:
4296   case OMPD_distribute:
4297   case OMPD_distribute_simd:
4298   case OMPD_ordered:
4299   case OMPD_target_data:
4300   case OMPD_dispatch: {
4301     Sema::CapturedParamNameType Params[] = {
4302         std::make_pair(StringRef(), QualType()) // __context with shared vars
4303     };
4304     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4305                              Params);
4306     break;
4307   }
4308   case OMPD_task: {
4309     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4310     QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
4311     QualType KmpInt32PtrTy =
4312         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4313     QualType Args[] = {VoidPtrTy};
4314     FunctionProtoType::ExtProtoInfo EPI;
4315     EPI.Variadic = true;
4316     QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
4317     Sema::CapturedParamNameType Params[] = {
4318         std::make_pair(".global_tid.", KmpInt32Ty),
4319         std::make_pair(".part_id.", KmpInt32PtrTy),
4320         std::make_pair(".privates.", VoidPtrTy),
4321         std::make_pair(
4322             ".copy_fn.",
4323             Context.getPointerType(CopyFnType).withConst().withRestrict()),
4324         std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
4325         std::make_pair(StringRef(), QualType()) // __context with shared vars
4326     };
4327     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4328                              Params);
4329     // Mark this captured region as inlined, because we don't use outlined
4330     // function directly.
4331     getCurCapturedRegion()->TheCapturedDecl->addAttr(
4332         AlwaysInlineAttr::CreateImplicit(
4333             Context, {}, AttributeCommonInfo::AS_Keyword,
4334             AlwaysInlineAttr::Keyword_forceinline));
4335     break;
4336   }
4337   case OMPD_taskloop:
4338   case OMPD_taskloop_simd:
4339   case OMPD_master_taskloop:
4340   case OMPD_masked_taskloop:
4341   case OMPD_masked_taskloop_simd:
4342   case OMPD_master_taskloop_simd: {
4343     QualType KmpInt32Ty =
4344         Context.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1)
4345             .withConst();
4346     QualType KmpUInt64Ty =
4347         Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0)
4348             .withConst();
4349     QualType KmpInt64Ty =
4350         Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1)
4351             .withConst();
4352     QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
4353     QualType KmpInt32PtrTy =
4354         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4355     QualType Args[] = {VoidPtrTy};
4356     FunctionProtoType::ExtProtoInfo EPI;
4357     EPI.Variadic = true;
4358     QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
4359     Sema::CapturedParamNameType Params[] = {
4360         std::make_pair(".global_tid.", KmpInt32Ty),
4361         std::make_pair(".part_id.", KmpInt32PtrTy),
4362         std::make_pair(".privates.", VoidPtrTy),
4363         std::make_pair(
4364             ".copy_fn.",
4365             Context.getPointerType(CopyFnType).withConst().withRestrict()),
4366         std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
4367         std::make_pair(".lb.", KmpUInt64Ty),
4368         std::make_pair(".ub.", KmpUInt64Ty),
4369         std::make_pair(".st.", KmpInt64Ty),
4370         std::make_pair(".liter.", KmpInt32Ty),
4371         std::make_pair(".reductions.", VoidPtrTy),
4372         std::make_pair(StringRef(), QualType()) // __context with shared vars
4373     };
4374     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4375                              Params);
4376     // Mark this captured region as inlined, because we don't use outlined
4377     // function directly.
4378     getCurCapturedRegion()->TheCapturedDecl->addAttr(
4379         AlwaysInlineAttr::CreateImplicit(
4380             Context, {}, AttributeCommonInfo::AS_Keyword,
4381             AlwaysInlineAttr::Keyword_forceinline));
4382     break;
4383   }
4384   case OMPD_parallel_masked_taskloop:
4385   case OMPD_parallel_masked_taskloop_simd:
4386   case OMPD_parallel_master_taskloop:
4387   case OMPD_parallel_master_taskloop_simd: {
4388     QualType KmpInt32Ty =
4389         Context.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1)
4390             .withConst();
4391     QualType KmpUInt64Ty =
4392         Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0)
4393             .withConst();
4394     QualType KmpInt64Ty =
4395         Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1)
4396             .withConst();
4397     QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
4398     QualType KmpInt32PtrTy =
4399         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4400     Sema::CapturedParamNameType ParamsParallel[] = {
4401         std::make_pair(".global_tid.", KmpInt32PtrTy),
4402         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4403         std::make_pair(StringRef(), QualType()) // __context with shared vars
4404     };
4405     // Start a captured region for 'parallel'.
4406     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4407                              ParamsParallel, /*OpenMPCaptureLevel=*/0);
4408     QualType Args[] = {VoidPtrTy};
4409     FunctionProtoType::ExtProtoInfo EPI;
4410     EPI.Variadic = true;
4411     QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
4412     Sema::CapturedParamNameType Params[] = {
4413         std::make_pair(".global_tid.", KmpInt32Ty),
4414         std::make_pair(".part_id.", KmpInt32PtrTy),
4415         std::make_pair(".privates.", VoidPtrTy),
4416         std::make_pair(
4417             ".copy_fn.",
4418             Context.getPointerType(CopyFnType).withConst().withRestrict()),
4419         std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
4420         std::make_pair(".lb.", KmpUInt64Ty),
4421         std::make_pair(".ub.", KmpUInt64Ty),
4422         std::make_pair(".st.", KmpInt64Ty),
4423         std::make_pair(".liter.", KmpInt32Ty),
4424         std::make_pair(".reductions.", VoidPtrTy),
4425         std::make_pair(StringRef(), QualType()) // __context with shared vars
4426     };
4427     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4428                              Params, /*OpenMPCaptureLevel=*/1);
4429     // Mark this captured region as inlined, because we don't use outlined
4430     // function directly.
4431     getCurCapturedRegion()->TheCapturedDecl->addAttr(
4432         AlwaysInlineAttr::CreateImplicit(
4433             Context, {}, AttributeCommonInfo::AS_Keyword,
4434             AlwaysInlineAttr::Keyword_forceinline));
4435     break;
4436   }
4437   case OMPD_distribute_parallel_for_simd:
4438   case OMPD_distribute_parallel_for: {
4439     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4440     QualType KmpInt32PtrTy =
4441         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4442     Sema::CapturedParamNameType Params[] = {
4443         std::make_pair(".global_tid.", KmpInt32PtrTy),
4444         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4445         std::make_pair(".previous.lb.", Context.getSizeType().withConst()),
4446         std::make_pair(".previous.ub.", Context.getSizeType().withConst()),
4447         std::make_pair(StringRef(), QualType()) // __context with shared vars
4448     };
4449     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4450                              Params);
4451     break;
4452   }
4453   case OMPD_target_teams_distribute_parallel_for:
4454   case OMPD_target_teams_distribute_parallel_for_simd: {
4455     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4456     QualType KmpInt32PtrTy =
4457         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4458     QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
4459 
4460     QualType Args[] = {VoidPtrTy};
4461     FunctionProtoType::ExtProtoInfo EPI;
4462     EPI.Variadic = true;
4463     QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
4464     Sema::CapturedParamNameType Params[] = {
4465         std::make_pair(".global_tid.", KmpInt32Ty),
4466         std::make_pair(".part_id.", KmpInt32PtrTy),
4467         std::make_pair(".privates.", VoidPtrTy),
4468         std::make_pair(
4469             ".copy_fn.",
4470             Context.getPointerType(CopyFnType).withConst().withRestrict()),
4471         std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
4472         std::make_pair(StringRef(), QualType()) // __context with shared vars
4473     };
4474     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4475                              Params, /*OpenMPCaptureLevel=*/0);
4476     // Mark this captured region as inlined, because we don't use outlined
4477     // function directly.
4478     getCurCapturedRegion()->TheCapturedDecl->addAttr(
4479         AlwaysInlineAttr::CreateImplicit(
4480             Context, {}, AttributeCommonInfo::AS_Keyword,
4481             AlwaysInlineAttr::Keyword_forceinline));
4482     Sema::CapturedParamNameType ParamsTarget[] = {
4483         std::make_pair(StringRef(), QualType()) // __context with shared vars
4484     };
4485     // Start a captured region for 'target' with no implicit parameters.
4486     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4487                              ParamsTarget, /*OpenMPCaptureLevel=*/1);
4488 
4489     Sema::CapturedParamNameType ParamsTeams[] = {
4490         std::make_pair(".global_tid.", KmpInt32PtrTy),
4491         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4492         std::make_pair(StringRef(), QualType()) // __context with shared vars
4493     };
4494     // Start a captured region for 'target' with no implicit parameters.
4495     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4496                              ParamsTeams, /*OpenMPCaptureLevel=*/2);
4497 
4498     Sema::CapturedParamNameType ParamsParallel[] = {
4499         std::make_pair(".global_tid.", KmpInt32PtrTy),
4500         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4501         std::make_pair(".previous.lb.", Context.getSizeType().withConst()),
4502         std::make_pair(".previous.ub.", Context.getSizeType().withConst()),
4503         std::make_pair(StringRef(), QualType()) // __context with shared vars
4504     };
4505     // Start a captured region for 'teams' or 'parallel'.  Both regions have
4506     // the same implicit parameters.
4507     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4508                              ParamsParallel, /*OpenMPCaptureLevel=*/3);
4509     break;
4510   }
4511 
4512   case OMPD_teams_loop: {
4513     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4514     QualType KmpInt32PtrTy =
4515         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4516 
4517     Sema::CapturedParamNameType ParamsTeams[] = {
4518         std::make_pair(".global_tid.", KmpInt32PtrTy),
4519         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4520         std::make_pair(StringRef(), QualType()) // __context with shared vars
4521     };
4522     // Start a captured region for 'teams'.
4523     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4524                              ParamsTeams, /*OpenMPCaptureLevel=*/0);
4525     break;
4526   }
4527 
4528   case OMPD_teams_distribute_parallel_for:
4529   case OMPD_teams_distribute_parallel_for_simd: {
4530     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4531     QualType KmpInt32PtrTy =
4532         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4533 
4534     Sema::CapturedParamNameType ParamsTeams[] = {
4535         std::make_pair(".global_tid.", KmpInt32PtrTy),
4536         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4537         std::make_pair(StringRef(), QualType()) // __context with shared vars
4538     };
4539     // Start a captured region for 'target' with no implicit parameters.
4540     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4541                              ParamsTeams, /*OpenMPCaptureLevel=*/0);
4542 
4543     Sema::CapturedParamNameType ParamsParallel[] = {
4544         std::make_pair(".global_tid.", KmpInt32PtrTy),
4545         std::make_pair(".bound_tid.", KmpInt32PtrTy),
4546         std::make_pair(".previous.lb.", Context.getSizeType().withConst()),
4547         std::make_pair(".previous.ub.", Context.getSizeType().withConst()),
4548         std::make_pair(StringRef(), QualType()) // __context with shared vars
4549     };
4550     // Start a captured region for 'teams' or 'parallel'.  Both regions have
4551     // the same implicit parameters.
4552     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4553                              ParamsParallel, /*OpenMPCaptureLevel=*/1);
4554     break;
4555   }
4556   case OMPD_target_update:
4557   case OMPD_target_enter_data:
4558   case OMPD_target_exit_data: {
4559     QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
4560     QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
4561     QualType KmpInt32PtrTy =
4562         Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
4563     QualType Args[] = {VoidPtrTy};
4564     FunctionProtoType::ExtProtoInfo EPI;
4565     EPI.Variadic = true;
4566     QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
4567     Sema::CapturedParamNameType Params[] = {
4568         std::make_pair(".global_tid.", KmpInt32Ty),
4569         std::make_pair(".part_id.", KmpInt32PtrTy),
4570         std::make_pair(".privates.", VoidPtrTy),
4571         std::make_pair(
4572             ".copy_fn.",
4573             Context.getPointerType(CopyFnType).withConst().withRestrict()),
4574         std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
4575         std::make_pair(StringRef(), QualType()) // __context with shared vars
4576     };
4577     ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
4578                              Params);
4579     // Mark this captured region as inlined, because we don't use outlined
4580     // function directly.
4581     getCurCapturedRegion()->TheCapturedDecl->addAttr(
4582         AlwaysInlineAttr::CreateImplicit(
4583             Context, {}, AttributeCommonInfo::AS_Keyword,
4584             AlwaysInlineAttr::Keyword_forceinline));
4585     break;
4586   }
4587   case OMPD_threadprivate:
4588   case OMPD_allocate:
4589   case OMPD_taskyield:
4590   case OMPD_error:
4591   case OMPD_barrier:
4592   case OMPD_taskwait:
4593   case OMPD_cancellation_point:
4594   case OMPD_cancel:
4595   case OMPD_flush:
4596   case OMPD_depobj:
4597   case OMPD_scan:
4598   case OMPD_declare_reduction:
4599   case OMPD_declare_mapper:
4600   case OMPD_declare_simd:
4601   case OMPD_declare_target:
4602   case OMPD_end_declare_target:
4603   case OMPD_requires:
4604   case OMPD_declare_variant:
4605   case OMPD_begin_declare_variant:
4606   case OMPD_end_declare_variant:
4607   case OMPD_metadirective:
4608     llvm_unreachable("OpenMP Directive is not allowed");
4609   case OMPD_unknown:
4610   default:
4611     llvm_unreachable("Unknown OpenMP directive");
4612   }
4613   DSAStack->setContext(CurContext);
4614   handleDeclareVariantConstructTrait(DSAStack, DKind, /* ScopeEntry */ true);
4615 }
4616 
4617 int Sema::getNumberOfConstructScopes(unsigned Level) const {
4618   return getOpenMPCaptureLevels(DSAStack->getDirective(Level));
4619 }
4620 
4621 int Sema::getOpenMPCaptureLevels(OpenMPDirectiveKind DKind) {
4622   SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
4623   getOpenMPCaptureRegions(CaptureRegions, DKind);
4624   return CaptureRegions.size();
4625 }
4626 
4627 static OMPCapturedExprDecl *buildCaptureDecl(Sema &S, IdentifierInfo *Id,
4628                                              Expr *CaptureExpr, bool WithInit,
4629                                              DeclContext *CurContext,
4630                                              bool AsExpression) {
4631   assert(CaptureExpr);
4632   ASTContext &C = S.getASTContext();
4633   Expr *Init = AsExpression ? CaptureExpr : CaptureExpr->IgnoreImpCasts();
4634   QualType Ty = Init->getType();
4635   if (CaptureExpr->getObjectKind() == OK_Ordinary && CaptureExpr->isGLValue()) {
4636     if (S.getLangOpts().CPlusPlus) {
4637       Ty = C.getLValueReferenceType(Ty);
4638     } else {
4639       Ty = C.getPointerType(Ty);
4640       ExprResult Res =
4641           S.CreateBuiltinUnaryOp(CaptureExpr->getExprLoc(), UO_AddrOf, Init);
4642       if (!Res.isUsable())
4643         return nullptr;
4644       Init = Res.get();
4645     }
4646     WithInit = true;
4647   }
4648   auto *CED = OMPCapturedExprDecl::Create(C, CurContext, Id, Ty,
4649                                           CaptureExpr->getBeginLoc());
4650   if (!WithInit)
4651     CED->addAttr(OMPCaptureNoInitAttr::CreateImplicit(C));
4652   CurContext->addHiddenDecl(CED);
4653   Sema::TentativeAnalysisScope Trap(S);
4654   S.AddInitializerToDecl(CED, Init, /*DirectInit=*/false);
4655   return CED;
4656 }
4657 
4658 static DeclRefExpr *buildCapture(Sema &S, ValueDecl *D, Expr *CaptureExpr,
4659                                  bool WithInit) {
4660   OMPCapturedExprDecl *CD;
4661   if (VarDecl *VD = S.isOpenMPCapturedDecl(D))
4662     CD = cast<OMPCapturedExprDecl>(VD);
4663   else
4664     CD = buildCaptureDecl(S, D->getIdentifier(), CaptureExpr, WithInit,
4665                           S.CurContext,
4666                           /*AsExpression=*/false);
4667   return buildDeclRefExpr(S, CD, CD->getType().getNonReferenceType(),
4668                           CaptureExpr->getExprLoc());
4669 }
4670 
4671 static ExprResult buildCapture(Sema &S, Expr *CaptureExpr, DeclRefExpr *&Ref) {
4672   CaptureExpr = S.DefaultLvalueConversion(CaptureExpr).get();
4673   if (!Ref) {
4674     OMPCapturedExprDecl *CD = buildCaptureDecl(
4675         S, &S.getASTContext().Idents.get(".capture_expr."), CaptureExpr,
4676         /*WithInit=*/true, S.CurContext, /*AsExpression=*/true);
4677     Ref = buildDeclRefExpr(S, CD, CD->getType().getNonReferenceType(),
4678                            CaptureExpr->getExprLoc());
4679   }
4680   ExprResult Res = Ref;
4681   if (!S.getLangOpts().CPlusPlus &&
4682       CaptureExpr->getObjectKind() == OK_Ordinary && CaptureExpr->isGLValue() &&
4683       Ref->getType()->isPointerType()) {
4684     Res = S.CreateBuiltinUnaryOp(CaptureExpr->getExprLoc(), UO_Deref, Ref);
4685     if (!Res.isUsable())
4686       return ExprError();
4687   }
4688   return S.DefaultLvalueConversion(Res.get());
4689 }
4690 
4691 namespace {
4692 // OpenMP directives parsed in this section are represented as a
4693 // CapturedStatement with an associated statement.  If a syntax error
4694 // is detected during the parsing of the associated statement, the
4695 // compiler must abort processing and close the CapturedStatement.
4696 //
4697 // Combined directives such as 'target parallel' have more than one
4698 // nested CapturedStatements.  This RAII ensures that we unwind out
4699 // of all the nested CapturedStatements when an error is found.
4700 class CaptureRegionUnwinderRAII {
4701 private:
4702   Sema &S;
4703   bool &ErrorFound;
4704   OpenMPDirectiveKind DKind = OMPD_unknown;
4705 
4706 public:
4707   CaptureRegionUnwinderRAII(Sema &S, bool &ErrorFound,
4708                             OpenMPDirectiveKind DKind)
4709       : S(S), ErrorFound(ErrorFound), DKind(DKind) {}
4710   ~CaptureRegionUnwinderRAII() {
4711     if (ErrorFound) {
4712       int ThisCaptureLevel = S.getOpenMPCaptureLevels(DKind);
4713       while (--ThisCaptureLevel >= 0)
4714         S.ActOnCapturedRegionError();
4715     }
4716   }
4717 };
4718 } // namespace
4719 
4720 void Sema::tryCaptureOpenMPLambdas(ValueDecl *V) {
4721   // Capture variables captured by reference in lambdas for target-based
4722   // directives.
4723   if (!CurContext->isDependentContext() &&
4724       (isOpenMPTargetExecutionDirective(DSAStack->getCurrentDirective()) ||
4725        isOpenMPTargetDataManagementDirective(
4726            DSAStack->getCurrentDirective()))) {
4727     QualType Type = V->getType();
4728     if (const auto *RD = Type.getCanonicalType()
4729                              .getNonReferenceType()
4730                              ->getAsCXXRecordDecl()) {
4731       bool SavedForceCaptureByReferenceInTargetExecutable =
4732           DSAStack->isForceCaptureByReferenceInTargetExecutable();
4733       DSAStack->setForceCaptureByReferenceInTargetExecutable(
4734           /*V=*/true);
4735       if (RD->isLambda()) {
4736         llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures;
4737         FieldDecl *ThisCapture;
4738         RD->getCaptureFields(Captures, ThisCapture);
4739         for (const LambdaCapture &LC : RD->captures()) {
4740           if (LC.getCaptureKind() == LCK_ByRef) {
4741             VarDecl *VD = cast<VarDecl>(LC.getCapturedVar());
4742             DeclContext *VDC = VD->getDeclContext();
4743             if (!VDC->Encloses(CurContext))
4744               continue;
4745             MarkVariableReferenced(LC.getLocation(), VD);
4746           } else if (LC.getCaptureKind() == LCK_This) {
4747             QualType ThisTy = getCurrentThisType();
4748             if (!ThisTy.isNull() &&
4749                 Context.typesAreCompatible(ThisTy, ThisCapture->getType()))
4750               CheckCXXThisCapture(LC.getLocation());
4751           }
4752         }
4753       }
4754       DSAStack->setForceCaptureByReferenceInTargetExecutable(
4755           SavedForceCaptureByReferenceInTargetExecutable);
4756     }
4757   }
4758 }
4759 
4760 static bool checkOrderedOrderSpecified(Sema &S,
4761                                        const ArrayRef<OMPClause *> Clauses) {
4762   const OMPOrderedClause *Ordered = nullptr;
4763   const OMPOrderClause *Order = nullptr;
4764 
4765   for (const OMPClause *Clause : Clauses) {
4766     if (Clause->getClauseKind() == OMPC_ordered)
4767       Ordered = cast<OMPOrderedClause>(Clause);
4768     else if (Clause->getClauseKind() == OMPC_order) {
4769       Order = cast<OMPOrderClause>(Clause);
4770       if (Order->getKind() != OMPC_ORDER_concurrent)
4771         Order = nullptr;
4772     }
4773     if (Ordered && Order)
4774       break;
4775   }
4776 
4777   if (Ordered && Order) {
4778     S.Diag(Order->getKindKwLoc(),
4779            diag::err_omp_simple_clause_incompatible_with_ordered)
4780         << getOpenMPClauseName(OMPC_order)
4781         << getOpenMPSimpleClauseTypeName(OMPC_order, OMPC_ORDER_concurrent)
4782         << SourceRange(Order->getBeginLoc(), Order->getEndLoc());
4783     S.Diag(Ordered->getBeginLoc(), diag::note_omp_ordered_param)
4784         << 0 << SourceRange(Ordered->getBeginLoc(), Ordered->getEndLoc());
4785     return true;
4786   }
4787   return false;
4788 }
4789 
4790 StmtResult Sema::ActOnOpenMPRegionEnd(StmtResult S,
4791                                       ArrayRef<OMPClause *> Clauses) {
4792   handleDeclareVariantConstructTrait(DSAStack, DSAStack->getCurrentDirective(),
4793                                      /* ScopeEntry */ false);
4794   if (DSAStack->getCurrentDirective() == OMPD_atomic ||
4795       DSAStack->getCurrentDirective() == OMPD_critical ||
4796       DSAStack->getCurrentDirective() == OMPD_section ||
4797       DSAStack->getCurrentDirective() == OMPD_master ||
4798       DSAStack->getCurrentDirective() == OMPD_masked)
4799     return S;
4800 
4801   bool ErrorFound = false;
4802   CaptureRegionUnwinderRAII CaptureRegionUnwinder(
4803       *this, ErrorFound, DSAStack->getCurrentDirective());
4804   if (!S.isUsable()) {
4805     ErrorFound = true;
4806     return StmtError();
4807   }
4808 
4809   SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
4810   getOpenMPCaptureRegions(CaptureRegions, DSAStack->getCurrentDirective());
4811   OMPOrderedClause *OC = nullptr;
4812   OMPScheduleClause *SC = nullptr;
4813   SmallVector<const OMPLinearClause *, 4> LCs;
4814   SmallVector<const OMPClauseWithPreInit *, 4> PICs;
4815   // This is required for proper codegen.
4816   for (OMPClause *Clause : Clauses) {
4817     if (!LangOpts.OpenMPSimd &&
4818         (isOpenMPTaskingDirective(DSAStack->getCurrentDirective()) ||
4819          DSAStack->getCurrentDirective() == OMPD_target) &&
4820         Clause->getClauseKind() == OMPC_in_reduction) {
4821       // Capture taskgroup task_reduction descriptors inside the tasking regions
4822       // with the corresponding in_reduction items.
4823       auto *IRC = cast<OMPInReductionClause>(Clause);
4824       for (Expr *E : IRC->taskgroup_descriptors())
4825         if (E)
4826           MarkDeclarationsReferencedInExpr(E);
4827     }
4828     if (isOpenMPPrivate(Clause->getClauseKind()) ||
4829         Clause->getClauseKind() == OMPC_copyprivate ||
4830         (getLangOpts().OpenMPUseTLS &&
4831          getASTContext().getTargetInfo().isTLSSupported() &&
4832          Clause->getClauseKind() == OMPC_copyin)) {
4833       DSAStack->setForceVarCapturing(Clause->getClauseKind() == OMPC_copyin);
4834       // Mark all variables in private list clauses as used in inner region.
4835       for (Stmt *VarRef : Clause->children()) {
4836         if (auto *E = cast_or_null<Expr>(VarRef)) {
4837           MarkDeclarationsReferencedInExpr(E);
4838         }
4839       }
4840       DSAStack->setForceVarCapturing(/*V=*/false);
4841     } else if (isOpenMPLoopTransformationDirective(
4842                    DSAStack->getCurrentDirective())) {
4843       assert(CaptureRegions.empty() &&
4844              "No captured regions in loop transformation directives.");
4845     } else if (CaptureRegions.size() > 1 ||
4846                CaptureRegions.back() != OMPD_unknown) {
4847       if (auto *C = OMPClauseWithPreInit::get(Clause))
4848         PICs.push_back(C);
4849       if (auto *C = OMPClauseWithPostUpdate::get(Clause)) {
4850         if (Expr *E = C->getPostUpdateExpr())
4851           MarkDeclarationsReferencedInExpr(E);
4852       }
4853     }
4854     if (Clause->getClauseKind() == OMPC_schedule)
4855       SC = cast<OMPScheduleClause>(Clause);
4856     else if (Clause->getClauseKind() == OMPC_ordered)
4857       OC = cast<OMPOrderedClause>(Clause);
4858     else if (Clause->getClauseKind() == OMPC_linear)
4859       LCs.push_back(cast<OMPLinearClause>(Clause));
4860   }
4861   // Capture allocator expressions if used.
4862   for (Expr *E : DSAStack->getInnerAllocators())
4863     MarkDeclarationsReferencedInExpr(E);
4864   // OpenMP, 2.7.1 Loop Construct, Restrictions
4865   // The nonmonotonic modifier cannot be specified if an ordered clause is
4866   // specified.
4867   if (SC &&
4868       (SC->getFirstScheduleModifier() == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
4869        SC->getSecondScheduleModifier() ==
4870            OMPC_SCHEDULE_MODIFIER_nonmonotonic) &&
4871       OC) {
4872     Diag(SC->getFirstScheduleModifier() == OMPC_SCHEDULE_MODIFIER_nonmonotonic
4873              ? SC->getFirstScheduleModifierLoc()
4874              : SC->getSecondScheduleModifierLoc(),
4875          diag::err_omp_simple_clause_incompatible_with_ordered)
4876         << getOpenMPClauseName(OMPC_schedule)
4877         << getOpenMPSimpleClauseTypeName(OMPC_schedule,
4878                                          OMPC_SCHEDULE_MODIFIER_nonmonotonic)
4879         << SourceRange(OC->getBeginLoc(), OC->getEndLoc());
4880     ErrorFound = true;
4881   }
4882   // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Restrictions.
4883   // If an order(concurrent) clause is present, an ordered clause may not appear
4884   // on the same directive.
4885   if (checkOrderedOrderSpecified(*this, Clauses))
4886     ErrorFound = true;
4887   if (!LCs.empty() && OC && OC->getNumForLoops()) {
4888     for (const OMPLinearClause *C : LCs) {
4889       Diag(C->getBeginLoc(), diag::err_omp_linear_ordered)
4890           << SourceRange(OC->getBeginLoc(), OC->getEndLoc());
4891     }
4892     ErrorFound = true;
4893   }
4894   if (isOpenMPWorksharingDirective(DSAStack->getCurrentDirective()) &&
4895       isOpenMPSimdDirective(DSAStack->getCurrentDirective()) && OC &&
4896       OC->getNumForLoops()) {
4897     Diag(OC->getBeginLoc(), diag::err_omp_ordered_simd)
4898         << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
4899     ErrorFound = true;
4900   }
4901   if (ErrorFound) {
4902     return StmtError();
4903   }
4904   StmtResult SR = S;
4905   unsigned CompletedRegions = 0;
4906   for (OpenMPDirectiveKind ThisCaptureRegion : llvm::reverse(CaptureRegions)) {
4907     // Mark all variables in private list clauses as used in inner region.
4908     // Required for proper codegen of combined directives.
4909     // TODO: add processing for other clauses.
4910     if (ThisCaptureRegion != OMPD_unknown) {
4911       for (const clang::OMPClauseWithPreInit *C : PICs) {
4912         OpenMPDirectiveKind CaptureRegion = C->getCaptureRegion();
4913         // Find the particular capture region for the clause if the
4914         // directive is a combined one with multiple capture regions.
4915         // If the directive is not a combined one, the capture region
4916         // associated with the clause is OMPD_unknown and is generated
4917         // only once.
4918         if (CaptureRegion == ThisCaptureRegion ||
4919             CaptureRegion == OMPD_unknown) {
4920           if (auto *DS = cast_or_null<DeclStmt>(C->getPreInitStmt())) {
4921             for (Decl *D : DS->decls())
4922               MarkVariableReferenced(D->getLocation(), cast<VarDecl>(D));
4923           }
4924         }
4925       }
4926     }
4927     if (ThisCaptureRegion == OMPD_target) {
4928       // Capture allocator traits in the target region. They are used implicitly
4929       // and, thus, are not captured by default.
4930       for (OMPClause *C : Clauses) {
4931         if (const auto *UAC = dyn_cast<OMPUsesAllocatorsClause>(C)) {
4932           for (unsigned I = 0, End = UAC->getNumberOfAllocators(); I < End;
4933                ++I) {
4934             OMPUsesAllocatorsClause::Data D = UAC->getAllocatorData(I);
4935             if (Expr *E = D.AllocatorTraits)
4936               MarkDeclarationsReferencedInExpr(E);
4937           }
4938           continue;
4939         }
4940       }
4941     }
4942     if (ThisCaptureRegion == OMPD_parallel) {
4943       // Capture temp arrays for inscan reductions and locals in aligned
4944       // clauses.
4945       for (OMPClause *C : Clauses) {
4946         if (auto *RC = dyn_cast<OMPReductionClause>(C)) {
4947           if (RC->getModifier() != OMPC_REDUCTION_inscan)
4948             continue;
4949           for (Expr *E : RC->copy_array_temps())
4950             MarkDeclarationsReferencedInExpr(E);
4951         }
4952         if (auto *AC = dyn_cast<OMPAlignedClause>(C)) {
4953           for (Expr *E : AC->varlists())
4954             MarkDeclarationsReferencedInExpr(E);
4955         }
4956       }
4957     }
4958     if (++CompletedRegions == CaptureRegions.size())
4959       DSAStack->setBodyComplete();
4960     SR = ActOnCapturedRegionEnd(SR.get());
4961   }
4962   return SR;
4963 }
4964 
4965 static bool checkCancelRegion(Sema &SemaRef, OpenMPDirectiveKind CurrentRegion,
4966                               OpenMPDirectiveKind CancelRegion,
4967                               SourceLocation StartLoc) {
4968   // CancelRegion is only needed for cancel and cancellation_point.
4969   if (CurrentRegion != OMPD_cancel && CurrentRegion != OMPD_cancellation_point)
4970     return false;
4971 
4972   if (CancelRegion == OMPD_parallel || CancelRegion == OMPD_for ||
4973       CancelRegion == OMPD_sections || CancelRegion == OMPD_taskgroup)
4974     return false;
4975 
4976   SemaRef.Diag(StartLoc, diag::err_omp_wrong_cancel_region)
4977       << getOpenMPDirectiveName(CancelRegion);
4978   return true;
4979 }
4980 
4981 static bool checkNestingOfRegions(Sema &SemaRef, const DSAStackTy *Stack,
4982                                   OpenMPDirectiveKind CurrentRegion,
4983                                   const DeclarationNameInfo &CurrentName,
4984                                   OpenMPDirectiveKind CancelRegion,
4985                                   OpenMPBindClauseKind BindKind,
4986                                   SourceLocation StartLoc) {
4987   if (Stack->getCurScope()) {
4988     OpenMPDirectiveKind ParentRegion = Stack->getParentDirective();
4989     OpenMPDirectiveKind OffendingRegion = ParentRegion;
4990     bool NestingProhibited = false;
4991     bool CloseNesting = true;
4992     bool OrphanSeen = false;
4993     enum {
4994       NoRecommend,
4995       ShouldBeInParallelRegion,
4996       ShouldBeInOrderedRegion,
4997       ShouldBeInTargetRegion,
4998       ShouldBeInTeamsRegion,
4999       ShouldBeInLoopSimdRegion,
5000     } Recommend = NoRecommend;
5001     if (SemaRef.LangOpts.OpenMP >= 51 && Stack->isParentOrderConcurrent() &&
5002         CurrentRegion != OMPD_simd && CurrentRegion != OMPD_loop &&
5003         CurrentRegion != OMPD_parallel &&
5004         !isOpenMPCombinedParallelADirective(CurrentRegion)) {
5005       SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region_order)
5006           << getOpenMPDirectiveName(CurrentRegion);
5007       return true;
5008     }
5009     if (isOpenMPSimdDirective(ParentRegion) &&
5010         ((SemaRef.LangOpts.OpenMP <= 45 && CurrentRegion != OMPD_ordered) ||
5011          (SemaRef.LangOpts.OpenMP >= 50 && CurrentRegion != OMPD_ordered &&
5012           CurrentRegion != OMPD_simd && CurrentRegion != OMPD_atomic &&
5013           CurrentRegion != OMPD_scan))) {
5014       // OpenMP [2.16, Nesting of Regions]
5015       // OpenMP constructs may not be nested inside a simd region.
5016       // OpenMP [2.8.1,simd Construct, Restrictions]
5017       // An ordered construct with the simd clause is the only OpenMP
5018       // construct that can appear in the simd region.
5019       // Allowing a SIMD construct nested in another SIMD construct is an
5020       // extension. The OpenMP 4.5 spec does not allow it. Issue a warning
5021       // message.
5022       // OpenMP 5.0 [2.9.3.1, simd Construct, Restrictions]
5023       // The only OpenMP constructs that can be encountered during execution of
5024       // a simd region are the atomic construct, the loop construct, the simd
5025       // construct and the ordered construct with the simd clause.
5026       SemaRef.Diag(StartLoc, (CurrentRegion != OMPD_simd)
5027                                  ? diag::err_omp_prohibited_region_simd
5028                                  : diag::warn_omp_nesting_simd)
5029           << (SemaRef.LangOpts.OpenMP >= 50 ? 1 : 0);
5030       return CurrentRegion != OMPD_simd;
5031     }
5032     if (ParentRegion == OMPD_atomic) {
5033       // OpenMP [2.16, Nesting of Regions]
5034       // OpenMP constructs may not be nested inside an atomic region.
5035       SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region_atomic);
5036       return true;
5037     }
5038     if (CurrentRegion == OMPD_section) {
5039       // OpenMP [2.7.2, sections Construct, Restrictions]
5040       // Orphaned section directives are prohibited. That is, the section
5041       // directives must appear within the sections construct and must not be
5042       // encountered elsewhere in the sections region.
5043       if (ParentRegion != OMPD_sections &&
5044           ParentRegion != OMPD_parallel_sections) {
5045         SemaRef.Diag(StartLoc, diag::err_omp_orphaned_section_directive)
5046             << (ParentRegion != OMPD_unknown)
5047             << getOpenMPDirectiveName(ParentRegion);
5048         return true;
5049       }
5050       return false;
5051     }
5052     // Allow some constructs (except teams and cancellation constructs) to be
5053     // orphaned (they could be used in functions, called from OpenMP regions
5054     // with the required preconditions).
5055     if (ParentRegion == OMPD_unknown &&
5056         !isOpenMPNestingTeamsDirective(CurrentRegion) &&
5057         CurrentRegion != OMPD_cancellation_point &&
5058         CurrentRegion != OMPD_cancel && CurrentRegion != OMPD_scan)
5059       return false;
5060     if (CurrentRegion == OMPD_cancellation_point ||
5061         CurrentRegion == OMPD_cancel) {
5062       // OpenMP [2.16, Nesting of Regions]
5063       // A cancellation point construct for which construct-type-clause is
5064       // taskgroup must be nested inside a task construct. A cancellation
5065       // point construct for which construct-type-clause is not taskgroup must
5066       // be closely nested inside an OpenMP construct that matches the type
5067       // specified in construct-type-clause.
5068       // A cancel construct for which construct-type-clause is taskgroup must be
5069       // nested inside a task construct. A cancel construct for which
5070       // construct-type-clause is not taskgroup must be closely nested inside an
5071       // OpenMP construct that matches the type specified in
5072       // construct-type-clause.
5073       NestingProhibited =
5074           !((CancelRegion == OMPD_parallel &&
5075              (ParentRegion == OMPD_parallel ||
5076               ParentRegion == OMPD_target_parallel)) ||
5077             (CancelRegion == OMPD_for &&
5078              (ParentRegion == OMPD_for || ParentRegion == OMPD_parallel_for ||
5079               ParentRegion == OMPD_target_parallel_for ||
5080               ParentRegion == OMPD_distribute_parallel_for ||
5081               ParentRegion == OMPD_teams_distribute_parallel_for ||
5082               ParentRegion == OMPD_target_teams_distribute_parallel_for)) ||
5083             (CancelRegion == OMPD_taskgroup &&
5084              (ParentRegion == OMPD_task ||
5085               (SemaRef.getLangOpts().OpenMP >= 50 &&
5086                (ParentRegion == OMPD_taskloop ||
5087                 ParentRegion == OMPD_master_taskloop ||
5088                 ParentRegion == OMPD_masked_taskloop ||
5089                 ParentRegion == OMPD_parallel_masked_taskloop ||
5090                 ParentRegion == OMPD_parallel_master_taskloop)))) ||
5091             (CancelRegion == OMPD_sections &&
5092              (ParentRegion == OMPD_section || ParentRegion == OMPD_sections ||
5093               ParentRegion == OMPD_parallel_sections)));
5094       OrphanSeen = ParentRegion == OMPD_unknown;
5095     } else if (CurrentRegion == OMPD_master || CurrentRegion == OMPD_masked) {
5096       // OpenMP 5.1 [2.22, Nesting of Regions]
5097       // A masked region may not be closely nested inside a worksharing, loop,
5098       // atomic, task, or taskloop region.
5099       NestingProhibited = isOpenMPWorksharingDirective(ParentRegion) ||
5100                           isOpenMPGenericLoopDirective(ParentRegion) ||
5101                           isOpenMPTaskingDirective(ParentRegion);
5102     } else if (CurrentRegion == OMPD_critical && CurrentName.getName()) {
5103       // OpenMP [2.16, Nesting of Regions]
5104       // A critical region may not be nested (closely or otherwise) inside a
5105       // critical region with the same name. Note that this restriction is not
5106       // sufficient to prevent deadlock.
5107       SourceLocation PreviousCriticalLoc;
5108       bool DeadLock = Stack->hasDirective(
5109           [CurrentName, &PreviousCriticalLoc](OpenMPDirectiveKind K,
5110                                               const DeclarationNameInfo &DNI,
5111                                               SourceLocation Loc) {
5112             if (K == OMPD_critical && DNI.getName() == CurrentName.getName()) {
5113               PreviousCriticalLoc = Loc;
5114               return true;
5115             }
5116             return false;
5117           },
5118           false /* skip top directive */);
5119       if (DeadLock) {
5120         SemaRef.Diag(StartLoc,
5121                      diag::err_omp_prohibited_region_critical_same_name)
5122             << CurrentName.getName();
5123         if (PreviousCriticalLoc.isValid())
5124           SemaRef.Diag(PreviousCriticalLoc,
5125                        diag::note_omp_previous_critical_region);
5126         return true;
5127       }
5128     } else if (CurrentRegion == OMPD_barrier) {
5129       // OpenMP 5.1 [2.22, Nesting of Regions]
5130       // A barrier region may not be closely nested inside a worksharing, loop,
5131       // task, taskloop, critical, ordered, atomic, or masked region.
5132       NestingProhibited =
5133           isOpenMPWorksharingDirective(ParentRegion) ||
5134           isOpenMPGenericLoopDirective(ParentRegion) ||
5135           isOpenMPTaskingDirective(ParentRegion) ||
5136           ParentRegion == OMPD_master || ParentRegion == OMPD_masked ||
5137           ParentRegion == OMPD_parallel_master ||
5138           ParentRegion == OMPD_parallel_masked ||
5139           ParentRegion == OMPD_critical || ParentRegion == OMPD_ordered;
5140     } else if (isOpenMPWorksharingDirective(CurrentRegion) &&
5141                !isOpenMPParallelDirective(CurrentRegion) &&
5142                !isOpenMPTeamsDirective(CurrentRegion)) {
5143       // OpenMP 5.1 [2.22, Nesting of Regions]
5144       // A loop region that binds to a parallel region or a worksharing region
5145       // may not be closely nested inside a worksharing, loop, task, taskloop,
5146       // critical, ordered, atomic, or masked region.
5147       NestingProhibited =
5148           isOpenMPWorksharingDirective(ParentRegion) ||
5149           isOpenMPGenericLoopDirective(ParentRegion) ||
5150           isOpenMPTaskingDirective(ParentRegion) ||
5151           ParentRegion == OMPD_master || ParentRegion == OMPD_masked ||
5152           ParentRegion == OMPD_parallel_master ||
5153           ParentRegion == OMPD_parallel_masked ||
5154           ParentRegion == OMPD_critical || ParentRegion == OMPD_ordered;
5155       Recommend = ShouldBeInParallelRegion;
5156     } else if (CurrentRegion == OMPD_ordered) {
5157       // OpenMP [2.16, Nesting of Regions]
5158       // An ordered region may not be closely nested inside a critical,
5159       // atomic, or explicit task region.
5160       // An ordered region must be closely nested inside a loop region (or
5161       // parallel loop region) with an ordered clause.
5162       // OpenMP [2.8.1,simd Construct, Restrictions]
5163       // An ordered construct with the simd clause is the only OpenMP construct
5164       // that can appear in the simd region.
5165       NestingProhibited = ParentRegion == OMPD_critical ||
5166                           isOpenMPTaskingDirective(ParentRegion) ||
5167                           !(isOpenMPSimdDirective(ParentRegion) ||
5168                             Stack->isParentOrderedRegion());
5169       Recommend = ShouldBeInOrderedRegion;
5170     } else if (isOpenMPNestingTeamsDirective(CurrentRegion)) {
5171       // OpenMP [2.16, Nesting of Regions]
5172       // If specified, a teams construct must be contained within a target
5173       // construct.
5174       NestingProhibited =
5175           (SemaRef.LangOpts.OpenMP <= 45 && ParentRegion != OMPD_target) ||
5176           (SemaRef.LangOpts.OpenMP >= 50 && ParentRegion != OMPD_unknown &&
5177            ParentRegion != OMPD_target);
5178       OrphanSeen = ParentRegion == OMPD_unknown;
5179       Recommend = ShouldBeInTargetRegion;
5180     } else if (CurrentRegion == OMPD_scan) {
5181       // OpenMP [2.16, Nesting of Regions]
5182       // If specified, a teams construct must be contained within a target
5183       // construct.
5184       NestingProhibited =
5185           SemaRef.LangOpts.OpenMP < 50 ||
5186           (ParentRegion != OMPD_simd && ParentRegion != OMPD_for &&
5187            ParentRegion != OMPD_for_simd && ParentRegion != OMPD_parallel_for &&
5188            ParentRegion != OMPD_parallel_for_simd);
5189       OrphanSeen = ParentRegion == OMPD_unknown;
5190       Recommend = ShouldBeInLoopSimdRegion;
5191     }
5192     if (!NestingProhibited &&
5193         !isOpenMPTargetExecutionDirective(CurrentRegion) &&
5194         !isOpenMPTargetDataManagementDirective(CurrentRegion) &&
5195         (ParentRegion == OMPD_teams || ParentRegion == OMPD_target_teams)) {
5196       // OpenMP [5.1, 2.22, Nesting of Regions]
5197       // distribute, distribute simd, distribute parallel worksharing-loop,
5198       // distribute parallel worksharing-loop SIMD, loop, parallel regions,
5199       // including any parallel regions arising from combined constructs,
5200       // omp_get_num_teams() regions, and omp_get_team_num() regions are the
5201       // only OpenMP regions that may be strictly nested inside the teams
5202       // region.
5203       //
5204       // As an extension, we permit atomic within teams as well.
5205       NestingProhibited = !isOpenMPParallelDirective(CurrentRegion) &&
5206                           !isOpenMPDistributeDirective(CurrentRegion) &&
5207                           CurrentRegion != OMPD_loop &&
5208                           !(SemaRef.getLangOpts().OpenMPExtensions &&
5209                             CurrentRegion == OMPD_atomic);
5210       Recommend = ShouldBeInParallelRegion;
5211     }
5212     if (!NestingProhibited && CurrentRegion == OMPD_loop) {
5213       // OpenMP [5.1, 2.11.7, loop Construct, Restrictions]
5214       // If the bind clause is present on the loop construct and binding is
5215       // teams then the corresponding loop region must be strictly nested inside
5216       // a teams region.
5217       NestingProhibited = BindKind == OMPC_BIND_teams &&
5218                           ParentRegion != OMPD_teams &&
5219                           ParentRegion != OMPD_target_teams;
5220       Recommend = ShouldBeInTeamsRegion;
5221     }
5222     if (!NestingProhibited &&
5223         isOpenMPNestingDistributeDirective(CurrentRegion)) {
5224       // OpenMP 4.5 [2.17 Nesting of Regions]
5225       // The region associated with the distribute construct must be strictly
5226       // nested inside a teams region
5227       NestingProhibited =
5228           (ParentRegion != OMPD_teams && ParentRegion != OMPD_target_teams);
5229       Recommend = ShouldBeInTeamsRegion;
5230     }
5231     if (!NestingProhibited &&
5232         (isOpenMPTargetExecutionDirective(CurrentRegion) ||
5233          isOpenMPTargetDataManagementDirective(CurrentRegion))) {
5234       // OpenMP 4.5 [2.17 Nesting of Regions]
5235       // If a target, target update, target data, target enter data, or
5236       // target exit data construct is encountered during execution of a
5237       // target region, the behavior is unspecified.
5238       NestingProhibited = Stack->hasDirective(
5239           [&OffendingRegion](OpenMPDirectiveKind K, const DeclarationNameInfo &,
5240                              SourceLocation) {
5241             if (isOpenMPTargetExecutionDirective(K)) {
5242               OffendingRegion = K;
5243               return true;
5244             }
5245             return false;
5246           },
5247           false /* don't skip top directive */);
5248       CloseNesting = false;
5249     }
5250     if (NestingProhibited) {
5251       if (OrphanSeen) {
5252         SemaRef.Diag(StartLoc, diag::err_omp_orphaned_device_directive)
5253             << getOpenMPDirectiveName(CurrentRegion) << Recommend;
5254       } else {
5255         SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region)
5256             << CloseNesting << getOpenMPDirectiveName(OffendingRegion)
5257             << Recommend << getOpenMPDirectiveName(CurrentRegion);
5258       }
5259       return true;
5260     }
5261   }
5262   return false;
5263 }
5264 
5265 struct Kind2Unsigned {
5266   using argument_type = OpenMPDirectiveKind;
5267   unsigned operator()(argument_type DK) { return unsigned(DK); }
5268 };
5269 static bool checkIfClauses(Sema &S, OpenMPDirectiveKind Kind,
5270                            ArrayRef<OMPClause *> Clauses,
5271                            ArrayRef<OpenMPDirectiveKind> AllowedNameModifiers) {
5272   bool ErrorFound = false;
5273   unsigned NamedModifiersNumber = 0;
5274   llvm::IndexedMap<const OMPIfClause *, Kind2Unsigned> FoundNameModifiers;
5275   FoundNameModifiers.resize(llvm::omp::Directive_enumSize + 1);
5276   SmallVector<SourceLocation, 4> NameModifierLoc;
5277   for (const OMPClause *C : Clauses) {
5278     if (const auto *IC = dyn_cast_or_null<OMPIfClause>(C)) {
5279       // At most one if clause without a directive-name-modifier can appear on
5280       // the directive.
5281       OpenMPDirectiveKind CurNM = IC->getNameModifier();
5282       if (FoundNameModifiers[CurNM]) {
5283         S.Diag(C->getBeginLoc(), diag::err_omp_more_one_clause)
5284             << getOpenMPDirectiveName(Kind) << getOpenMPClauseName(OMPC_if)
5285             << (CurNM != OMPD_unknown) << getOpenMPDirectiveName(CurNM);
5286         ErrorFound = true;
5287       } else if (CurNM != OMPD_unknown) {
5288         NameModifierLoc.push_back(IC->getNameModifierLoc());
5289         ++NamedModifiersNumber;
5290       }
5291       FoundNameModifiers[CurNM] = IC;
5292       if (CurNM == OMPD_unknown)
5293         continue;
5294       // Check if the specified name modifier is allowed for the current
5295       // directive.
5296       // At most one if clause with the particular directive-name-modifier can
5297       // appear on the directive.
5298       if (!llvm::is_contained(AllowedNameModifiers, CurNM)) {
5299         S.Diag(IC->getNameModifierLoc(),
5300                diag::err_omp_wrong_if_directive_name_modifier)
5301             << getOpenMPDirectiveName(CurNM) << getOpenMPDirectiveName(Kind);
5302         ErrorFound = true;
5303       }
5304     }
5305   }
5306   // If any if clause on the directive includes a directive-name-modifier then
5307   // all if clauses on the directive must include a directive-name-modifier.
5308   if (FoundNameModifiers[OMPD_unknown] && NamedModifiersNumber > 0) {
5309     if (NamedModifiersNumber == AllowedNameModifiers.size()) {
5310       S.Diag(FoundNameModifiers[OMPD_unknown]->getBeginLoc(),
5311              diag::err_omp_no_more_if_clause);
5312     } else {
5313       std::string Values;
5314       std::string Sep(", ");
5315       unsigned AllowedCnt = 0;
5316       unsigned TotalAllowedNum =
5317           AllowedNameModifiers.size() - NamedModifiersNumber;
5318       for (unsigned Cnt = 0, End = AllowedNameModifiers.size(); Cnt < End;
5319            ++Cnt) {
5320         OpenMPDirectiveKind NM = AllowedNameModifiers[Cnt];
5321         if (!FoundNameModifiers[NM]) {
5322           Values += "'";
5323           Values += getOpenMPDirectiveName(NM);
5324           Values += "'";
5325           if (AllowedCnt + 2 == TotalAllowedNum)
5326             Values += " or ";
5327           else if (AllowedCnt + 1 != TotalAllowedNum)
5328             Values += Sep;
5329           ++AllowedCnt;
5330         }
5331       }
5332       S.Diag(FoundNameModifiers[OMPD_unknown]->getCondition()->getBeginLoc(),
5333              diag::err_omp_unnamed_if_clause)
5334           << (TotalAllowedNum > 1) << Values;
5335     }
5336     for (SourceLocation Loc : NameModifierLoc) {
5337       S.Diag(Loc, diag::note_omp_previous_named_if_clause);
5338     }
5339     ErrorFound = true;
5340   }
5341   return ErrorFound;
5342 }
5343 
5344 static std::pair<ValueDecl *, bool> getPrivateItem(Sema &S, Expr *&RefExpr,
5345                                                    SourceLocation &ELoc,
5346                                                    SourceRange &ERange,
5347                                                    bool AllowArraySection,
5348                                                    StringRef DiagType) {
5349   if (RefExpr->isTypeDependent() || RefExpr->isValueDependent() ||
5350       RefExpr->containsUnexpandedParameterPack())
5351     return std::make_pair(nullptr, true);
5352 
5353   // OpenMP [3.1, C/C++]
5354   //  A list item is a variable name.
5355   // OpenMP  [2.9.3.3, Restrictions, p.1]
5356   //  A variable that is part of another variable (as an array or
5357   //  structure element) cannot appear in a private clause.
5358   RefExpr = RefExpr->IgnoreParens();
5359   enum {
5360     NoArrayExpr = -1,
5361     ArraySubscript = 0,
5362     OMPArraySection = 1
5363   } IsArrayExpr = NoArrayExpr;
5364   if (AllowArraySection) {
5365     if (auto *ASE = dyn_cast_or_null<ArraySubscriptExpr>(RefExpr)) {
5366       Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
5367       while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
5368         Base = TempASE->getBase()->IgnoreParenImpCasts();
5369       RefExpr = Base;
5370       IsArrayExpr = ArraySubscript;
5371     } else if (auto *OASE = dyn_cast_or_null<OMPArraySectionExpr>(RefExpr)) {
5372       Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
5373       while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
5374         Base = TempOASE->getBase()->IgnoreParenImpCasts();
5375       while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
5376         Base = TempASE->getBase()->IgnoreParenImpCasts();
5377       RefExpr = Base;
5378       IsArrayExpr = OMPArraySection;
5379     }
5380   }
5381   ELoc = RefExpr->getExprLoc();
5382   ERange = RefExpr->getSourceRange();
5383   RefExpr = RefExpr->IgnoreParenImpCasts();
5384   auto *DE = dyn_cast_or_null<DeclRefExpr>(RefExpr);
5385   auto *ME = dyn_cast_or_null<MemberExpr>(RefExpr);
5386   if ((!DE || !isa<VarDecl>(DE->getDecl())) &&
5387       (S.getCurrentThisType().isNull() || !ME ||
5388        !isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()) ||
5389        !isa<FieldDecl>(ME->getMemberDecl()))) {
5390     if (IsArrayExpr != NoArrayExpr) {
5391       S.Diag(ELoc, diag::err_omp_expected_base_var_name)
5392           << IsArrayExpr << ERange;
5393     } else if (!DiagType.empty()) {
5394       unsigned DiagSelect = S.getLangOpts().CPlusPlus
5395                                 ? (S.getCurrentThisType().isNull() ? 1 : 2)
5396                                 : 0;
5397       S.Diag(ELoc, diag::err_omp_expected_var_name_member_expr_with_type)
5398           << DiagSelect << DiagType << ERange;
5399     } else {
5400       S.Diag(ELoc,
5401              AllowArraySection
5402                  ? diag::err_omp_expected_var_name_member_expr_or_array_item
5403                  : diag::err_omp_expected_var_name_member_expr)
5404           << (S.getCurrentThisType().isNull() ? 0 : 1) << ERange;
5405     }
5406     return std::make_pair(nullptr, false);
5407   }
5408   return std::make_pair(
5409       getCanonicalDecl(DE ? DE->getDecl() : ME->getMemberDecl()), false);
5410 }
5411 
5412 namespace {
5413 /// Checks if the allocator is used in uses_allocators clause to be allowed in
5414 /// target regions.
5415 class AllocatorChecker final : public ConstStmtVisitor<AllocatorChecker, bool> {
5416   DSAStackTy *S = nullptr;
5417 
5418 public:
5419   bool VisitDeclRefExpr(const DeclRefExpr *E) {
5420     return S->isUsesAllocatorsDecl(E->getDecl())
5421                .value_or(DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait) ==
5422            DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait;
5423   }
5424   bool VisitStmt(const Stmt *S) {
5425     for (const Stmt *Child : S->children()) {
5426       if (Child && Visit(Child))
5427         return true;
5428     }
5429     return false;
5430   }
5431   explicit AllocatorChecker(DSAStackTy *S) : S(S) {}
5432 };
5433 } // namespace
5434 
5435 static void checkAllocateClauses(Sema &S, DSAStackTy *Stack,
5436                                  ArrayRef<OMPClause *> Clauses) {
5437   assert(!S.CurContext->isDependentContext() &&
5438          "Expected non-dependent context.");
5439   auto AllocateRange =
5440       llvm::make_filter_range(Clauses, OMPAllocateClause::classof);
5441   llvm::DenseMap<CanonicalDeclPtr<Decl>, CanonicalDeclPtr<VarDecl>> DeclToCopy;
5442   auto PrivateRange = llvm::make_filter_range(Clauses, [](const OMPClause *C) {
5443     return isOpenMPPrivate(C->getClauseKind());
5444   });
5445   for (OMPClause *Cl : PrivateRange) {
5446     MutableArrayRef<Expr *>::iterator I, It, Et;
5447     if (Cl->getClauseKind() == OMPC_private) {
5448       auto *PC = cast<OMPPrivateClause>(Cl);
5449       I = PC->private_copies().begin();
5450       It = PC->varlist_begin();
5451       Et = PC->varlist_end();
5452     } else if (Cl->getClauseKind() == OMPC_firstprivate) {
5453       auto *PC = cast<OMPFirstprivateClause>(Cl);
5454       I = PC->private_copies().begin();
5455       It = PC->varlist_begin();
5456       Et = PC->varlist_end();
5457     } else if (Cl->getClauseKind() == OMPC_lastprivate) {
5458       auto *PC = cast<OMPLastprivateClause>(Cl);
5459       I = PC->private_copies().begin();
5460       It = PC->varlist_begin();
5461       Et = PC->varlist_end();
5462     } else if (Cl->getClauseKind() == OMPC_linear) {
5463       auto *PC = cast<OMPLinearClause>(Cl);
5464       I = PC->privates().begin();
5465       It = PC->varlist_begin();
5466       Et = PC->varlist_end();
5467     } else if (Cl->getClauseKind() == OMPC_reduction) {
5468       auto *PC = cast<OMPReductionClause>(Cl);
5469       I = PC->privates().begin();
5470       It = PC->varlist_begin();
5471       Et = PC->varlist_end();
5472     } else if (Cl->getClauseKind() == OMPC_task_reduction) {
5473       auto *PC = cast<OMPTaskReductionClause>(Cl);
5474       I = PC->privates().begin();
5475       It = PC->varlist_begin();
5476       Et = PC->varlist_end();
5477     } else if (Cl->getClauseKind() == OMPC_in_reduction) {
5478       auto *PC = cast<OMPInReductionClause>(Cl);
5479       I = PC->privates().begin();
5480       It = PC->varlist_begin();
5481       Et = PC->varlist_end();
5482     } else {
5483       llvm_unreachable("Expected private clause.");
5484     }
5485     for (Expr *E : llvm::make_range(It, Et)) {
5486       if (!*I) {
5487         ++I;
5488         continue;
5489       }
5490       SourceLocation ELoc;
5491       SourceRange ERange;
5492       Expr *SimpleRefExpr = E;
5493       auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange,
5494                                 /*AllowArraySection=*/true);
5495       DeclToCopy.try_emplace(Res.first,
5496                              cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()));
5497       ++I;
5498     }
5499   }
5500   for (OMPClause *C : AllocateRange) {
5501     auto *AC = cast<OMPAllocateClause>(C);
5502     if (S.getLangOpts().OpenMP >= 50 &&
5503         !Stack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>() &&
5504         isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) &&
5505         AC->getAllocator()) {
5506       Expr *Allocator = AC->getAllocator();
5507       // OpenMP, 2.12.5 target Construct
5508       // Memory allocators that do not appear in a uses_allocators clause cannot
5509       // appear as an allocator in an allocate clause or be used in the target
5510       // region unless a requires directive with the dynamic_allocators clause
5511       // is present in the same compilation unit.
5512       AllocatorChecker Checker(Stack);
5513       if (Checker.Visit(Allocator))
5514         S.Diag(Allocator->getExprLoc(),
5515                diag::err_omp_allocator_not_in_uses_allocators)
5516             << Allocator->getSourceRange();
5517     }
5518     OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind =
5519         getAllocatorKind(S, Stack, AC->getAllocator());
5520     // OpenMP, 2.11.4 allocate Clause, Restrictions.
5521     // For task, taskloop or target directives, allocation requests to memory
5522     // allocators with the trait access set to thread result in unspecified
5523     // behavior.
5524     if (AllocatorKind == OMPAllocateDeclAttr::OMPThreadMemAlloc &&
5525         (isOpenMPTaskingDirective(Stack->getCurrentDirective()) ||
5526          isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()))) {
5527       S.Diag(AC->getAllocator()->getExprLoc(),
5528              diag::warn_omp_allocate_thread_on_task_target_directive)
5529           << getOpenMPDirectiveName(Stack->getCurrentDirective());
5530     }
5531     for (Expr *E : AC->varlists()) {
5532       SourceLocation ELoc;
5533       SourceRange ERange;
5534       Expr *SimpleRefExpr = E;
5535       auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange);
5536       ValueDecl *VD = Res.first;
5537       DSAStackTy::DSAVarData Data = Stack->getTopDSA(VD, /*FromParent=*/false);
5538       if (!isOpenMPPrivate(Data.CKind)) {
5539         S.Diag(E->getExprLoc(),
5540                diag::err_omp_expected_private_copy_for_allocate);
5541         continue;
5542       }
5543       VarDecl *PrivateVD = DeclToCopy[VD];
5544       if (checkPreviousOMPAllocateAttribute(S, Stack, E, PrivateVD,
5545                                             AllocatorKind, AC->getAllocator()))
5546         continue;
5547       // Placeholder until allocate clause supports align modifier.
5548       Expr *Alignment = nullptr;
5549       applyOMPAllocateAttribute(S, PrivateVD, AllocatorKind, AC->getAllocator(),
5550                                 Alignment, E->getSourceRange());
5551     }
5552   }
5553 }
5554 
5555 namespace {
5556 /// Rewrite statements and expressions for Sema \p Actions CurContext.
5557 ///
5558 /// Used to wrap already parsed statements/expressions into a new CapturedStmt
5559 /// context. DeclRefExpr used inside the new context are changed to refer to the
5560 /// captured variable instead.
5561 class CaptureVars : public TreeTransform<CaptureVars> {
5562   using BaseTransform = TreeTransform<CaptureVars>;
5563 
5564 public:
5565   CaptureVars(Sema &Actions) : BaseTransform(Actions) {}
5566 
5567   bool AlwaysRebuild() { return true; }
5568 };
5569 } // namespace
5570 
5571 static VarDecl *precomputeExpr(Sema &Actions,
5572                                SmallVectorImpl<Stmt *> &BodyStmts, Expr *E,
5573                                StringRef Name) {
5574   Expr *NewE = AssertSuccess(CaptureVars(Actions).TransformExpr(E));
5575   VarDecl *NewVar = buildVarDecl(Actions, {}, NewE->getType(), Name, nullptr,
5576                                  dyn_cast<DeclRefExpr>(E->IgnoreImplicit()));
5577   auto *NewDeclStmt = cast<DeclStmt>(AssertSuccess(
5578       Actions.ActOnDeclStmt(Actions.ConvertDeclToDeclGroup(NewVar), {}, {})));
5579   Actions.AddInitializerToDecl(NewDeclStmt->getSingleDecl(), NewE, false);
5580   BodyStmts.push_back(NewDeclStmt);
5581   return NewVar;
5582 }
5583 
5584 /// Create a closure that computes the number of iterations of a loop.
5585 ///
5586 /// \param Actions   The Sema object.
5587 /// \param LogicalTy Type for the logical iteration number.
5588 /// \param Rel       Comparison operator of the loop condition.
5589 /// \param StartExpr Value of the loop counter at the first iteration.
5590 /// \param StopExpr  Expression the loop counter is compared against in the loop
5591 /// condition. \param StepExpr      Amount of increment after each iteration.
5592 ///
5593 /// \return Closure (CapturedStmt) of the distance calculation.
5594 static CapturedStmt *buildDistanceFunc(Sema &Actions, QualType LogicalTy,
5595                                        BinaryOperator::Opcode Rel,
5596                                        Expr *StartExpr, Expr *StopExpr,
5597                                        Expr *StepExpr) {
5598   ASTContext &Ctx = Actions.getASTContext();
5599   TypeSourceInfo *LogicalTSI = Ctx.getTrivialTypeSourceInfo(LogicalTy);
5600 
5601   // Captured regions currently don't support return values, we use an
5602   // out-parameter instead. All inputs are implicit captures.
5603   // TODO: Instead of capturing each DeclRefExpr occurring in
5604   // StartExpr/StopExpr/Step, these could also be passed as a value capture.
5605   QualType ResultTy = Ctx.getLValueReferenceType(LogicalTy);
5606   Sema::CapturedParamNameType Params[] = {{"Distance", ResultTy},
5607                                           {StringRef(), QualType()}};
5608   Actions.ActOnCapturedRegionStart({}, nullptr, CR_Default, Params);
5609 
5610   Stmt *Body;
5611   {
5612     Sema::CompoundScopeRAII CompoundScope(Actions);
5613     CapturedDecl *CS = cast<CapturedDecl>(Actions.CurContext);
5614 
5615     // Get the LValue expression for the result.
5616     ImplicitParamDecl *DistParam = CS->getParam(0);
5617     DeclRefExpr *DistRef = Actions.BuildDeclRefExpr(
5618         DistParam, LogicalTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr);
5619 
5620     SmallVector<Stmt *, 4> BodyStmts;
5621 
5622     // Capture all referenced variable references.
5623     // TODO: Instead of computing NewStart/NewStop/NewStep inside the
5624     // CapturedStmt, we could compute them before and capture the result, to be
5625     // used jointly with the LoopVar function.
5626     VarDecl *NewStart = precomputeExpr(Actions, BodyStmts, StartExpr, ".start");
5627     VarDecl *NewStop = precomputeExpr(Actions, BodyStmts, StopExpr, ".stop");
5628     VarDecl *NewStep = precomputeExpr(Actions, BodyStmts, StepExpr, ".step");
5629     auto BuildVarRef = [&](VarDecl *VD) {
5630       return buildDeclRefExpr(Actions, VD, VD->getType(), {});
5631     };
5632 
5633     IntegerLiteral *Zero = IntegerLiteral::Create(
5634         Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), 0), LogicalTy, {});
5635     IntegerLiteral *One = IntegerLiteral::Create(
5636         Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), 1), LogicalTy, {});
5637     Expr *Dist;
5638     if (Rel == BO_NE) {
5639       // When using a != comparison, the increment can be +1 or -1. This can be
5640       // dynamic at runtime, so we need to check for the direction.
5641       Expr *IsNegStep = AssertSuccess(
5642           Actions.BuildBinOp(nullptr, {}, BO_LT, BuildVarRef(NewStep), Zero));
5643 
5644       // Positive increment.
5645       Expr *ForwardRange = AssertSuccess(Actions.BuildBinOp(
5646           nullptr, {}, BO_Sub, BuildVarRef(NewStop), BuildVarRef(NewStart)));
5647       ForwardRange = AssertSuccess(
5648           Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, ForwardRange));
5649       Expr *ForwardDist = AssertSuccess(Actions.BuildBinOp(
5650           nullptr, {}, BO_Div, ForwardRange, BuildVarRef(NewStep)));
5651 
5652       // Negative increment.
5653       Expr *BackwardRange = AssertSuccess(Actions.BuildBinOp(
5654           nullptr, {}, BO_Sub, BuildVarRef(NewStart), BuildVarRef(NewStop)));
5655       BackwardRange = AssertSuccess(
5656           Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, BackwardRange));
5657       Expr *NegIncAmount = AssertSuccess(
5658           Actions.BuildUnaryOp(nullptr, {}, UO_Minus, BuildVarRef(NewStep)));
5659       Expr *BackwardDist = AssertSuccess(
5660           Actions.BuildBinOp(nullptr, {}, BO_Div, BackwardRange, NegIncAmount));
5661 
5662       // Use the appropriate case.
5663       Dist = AssertSuccess(Actions.ActOnConditionalOp(
5664           {}, {}, IsNegStep, BackwardDist, ForwardDist));
5665     } else {
5666       assert((Rel == BO_LT || Rel == BO_LE || Rel == BO_GE || Rel == BO_GT) &&
5667              "Expected one of these relational operators");
5668 
5669       // We can derive the direction from any other comparison operator. It is
5670       // non well-formed OpenMP if Step increments/decrements in the other
5671       // directions. Whether at least the first iteration passes the loop
5672       // condition.
5673       Expr *HasAnyIteration = AssertSuccess(Actions.BuildBinOp(
5674           nullptr, {}, Rel, BuildVarRef(NewStart), BuildVarRef(NewStop)));
5675 
5676       // Compute the range between first and last counter value.
5677       Expr *Range;
5678       if (Rel == BO_GE || Rel == BO_GT)
5679         Range = AssertSuccess(Actions.BuildBinOp(
5680             nullptr, {}, BO_Sub, BuildVarRef(NewStart), BuildVarRef(NewStop)));
5681       else
5682         Range = AssertSuccess(Actions.BuildBinOp(
5683             nullptr, {}, BO_Sub, BuildVarRef(NewStop), BuildVarRef(NewStart)));
5684 
5685       // Ensure unsigned range space.
5686       Range =
5687           AssertSuccess(Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, Range));
5688 
5689       if (Rel == BO_LE || Rel == BO_GE) {
5690         // Add one to the range if the relational operator is inclusive.
5691         Range =
5692             AssertSuccess(Actions.BuildBinOp(nullptr, {}, BO_Add, Range, One));
5693       }
5694 
5695       // Divide by the absolute step amount. If the range is not a multiple of
5696       // the step size, rounding-up the effective upper bound ensures that the
5697       // last iteration is included.
5698       // Note that the rounding-up may cause an overflow in a temporry that
5699       // could be avoided, but would have occurred in a C-style for-loop as well.
5700       Expr *Divisor = BuildVarRef(NewStep);
5701       if (Rel == BO_GE || Rel == BO_GT)
5702         Divisor =
5703             AssertSuccess(Actions.BuildUnaryOp(nullptr, {}, UO_Minus, Divisor));
5704       Expr *DivisorMinusOne =
5705           AssertSuccess(Actions.BuildBinOp(nullptr, {}, BO_Sub, Divisor, One));
5706       Expr *RangeRoundUp = AssertSuccess(
5707           Actions.BuildBinOp(nullptr, {}, BO_Add, Range, DivisorMinusOne));
5708       Dist = AssertSuccess(
5709           Actions.BuildBinOp(nullptr, {}, BO_Div, RangeRoundUp, Divisor));
5710 
5711       // If there is not at least one iteration, the range contains garbage. Fix
5712       // to zero in this case.
5713       Dist = AssertSuccess(
5714           Actions.ActOnConditionalOp({}, {}, HasAnyIteration, Dist, Zero));
5715     }
5716 
5717     // Assign the result to the out-parameter.
5718     Stmt *ResultAssign = AssertSuccess(Actions.BuildBinOp(
5719         Actions.getCurScope(), {}, BO_Assign, DistRef, Dist));
5720     BodyStmts.push_back(ResultAssign);
5721 
5722     Body = AssertSuccess(Actions.ActOnCompoundStmt({}, {}, BodyStmts, false));
5723   }
5724 
5725   return cast<CapturedStmt>(
5726       AssertSuccess(Actions.ActOnCapturedRegionEnd(Body)));
5727 }
5728 
5729 /// Create a closure that computes the loop variable from the logical iteration
5730 /// number.
5731 ///
5732 /// \param Actions   The Sema object.
5733 /// \param LoopVarTy Type for the loop variable used for result value.
5734 /// \param LogicalTy Type for the logical iteration number.
5735 /// \param StartExpr Value of the loop counter at the first iteration.
5736 /// \param Step      Amount of increment after each iteration.
5737 /// \param Deref     Whether the loop variable is a dereference of the loop
5738 /// counter variable.
5739 ///
5740 /// \return Closure (CapturedStmt) of the loop value calculation.
5741 static CapturedStmt *buildLoopVarFunc(Sema &Actions, QualType LoopVarTy,
5742                                       QualType LogicalTy,
5743                                       DeclRefExpr *StartExpr, Expr *Step,
5744                                       bool Deref) {
5745   ASTContext &Ctx = Actions.getASTContext();
5746 
5747   // Pass the result as an out-parameter. Passing as return value would require
5748   // the OpenMPIRBuilder to know additional C/C++ semantics, such as how to
5749   // invoke a copy constructor.
5750   QualType TargetParamTy = Ctx.getLValueReferenceType(LoopVarTy);
5751   Sema::CapturedParamNameType Params[] = {{"LoopVar", TargetParamTy},
5752                                           {"Logical", LogicalTy},
5753                                           {StringRef(), QualType()}};
5754   Actions.ActOnCapturedRegionStart({}, nullptr, CR_Default, Params);
5755 
5756   // Capture the initial iterator which represents the LoopVar value at the
5757   // zero's logical iteration. Since the original ForStmt/CXXForRangeStmt update
5758   // it in every iteration, capture it by value before it is modified.
5759   VarDecl *StartVar = cast<VarDecl>(StartExpr->getDecl());
5760   bool Invalid = Actions.tryCaptureVariable(StartVar, {},
5761                                             Sema::TryCapture_ExplicitByVal, {});
5762   (void)Invalid;
5763   assert(!Invalid && "Expecting capture-by-value to work.");
5764 
5765   Expr *Body;
5766   {
5767     Sema::CompoundScopeRAII CompoundScope(Actions);
5768     auto *CS = cast<CapturedDecl>(Actions.CurContext);
5769 
5770     ImplicitParamDecl *TargetParam = CS->getParam(0);
5771     DeclRefExpr *TargetRef = Actions.BuildDeclRefExpr(
5772         TargetParam, LoopVarTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr);
5773     ImplicitParamDecl *IndvarParam = CS->getParam(1);
5774     DeclRefExpr *LogicalRef = Actions.BuildDeclRefExpr(
5775         IndvarParam, LogicalTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr);
5776 
5777     // Capture the Start expression.
5778     CaptureVars Recap(Actions);
5779     Expr *NewStart = AssertSuccess(Recap.TransformExpr(StartExpr));
5780     Expr *NewStep = AssertSuccess(Recap.TransformExpr(Step));
5781 
5782     Expr *Skip = AssertSuccess(
5783         Actions.BuildBinOp(nullptr, {}, BO_Mul, NewStep, LogicalRef));
5784     // TODO: Explicitly cast to the iterator's difference_type instead of
5785     // relying on implicit conversion.
5786     Expr *Advanced =
5787         AssertSuccess(Actions.BuildBinOp(nullptr, {}, BO_Add, NewStart, Skip));
5788 
5789     if (Deref) {
5790       // For range-based for-loops convert the loop counter value to a concrete
5791       // loop variable value by dereferencing the iterator.
5792       Advanced =
5793           AssertSuccess(Actions.BuildUnaryOp(nullptr, {}, UO_Deref, Advanced));
5794     }
5795 
5796     // Assign the result to the output parameter.
5797     Body = AssertSuccess(Actions.BuildBinOp(Actions.getCurScope(), {},
5798                                             BO_Assign, TargetRef, Advanced));
5799   }
5800   return cast<CapturedStmt>(
5801       AssertSuccess(Actions.ActOnCapturedRegionEnd(Body)));
5802 }
5803 
5804 StmtResult Sema::ActOnOpenMPCanonicalLoop(Stmt *AStmt) {
5805   ASTContext &Ctx = getASTContext();
5806 
5807   // Extract the common elements of ForStmt and CXXForRangeStmt:
5808   // Loop variable, repeat condition, increment
5809   Expr *Cond, *Inc;
5810   VarDecl *LIVDecl, *LUVDecl;
5811   if (auto *For = dyn_cast<ForStmt>(AStmt)) {
5812     Stmt *Init = For->getInit();
5813     if (auto *LCVarDeclStmt = dyn_cast<DeclStmt>(Init)) {
5814       // For statement declares loop variable.
5815       LIVDecl = cast<VarDecl>(LCVarDeclStmt->getSingleDecl());
5816     } else if (auto *LCAssign = dyn_cast<BinaryOperator>(Init)) {
5817       // For statement reuses variable.
5818       assert(LCAssign->getOpcode() == BO_Assign &&
5819              "init part must be a loop variable assignment");
5820       auto *CounterRef = cast<DeclRefExpr>(LCAssign->getLHS());
5821       LIVDecl = cast<VarDecl>(CounterRef->getDecl());
5822     } else
5823       llvm_unreachable("Cannot determine loop variable");
5824     LUVDecl = LIVDecl;
5825 
5826     Cond = For->getCond();
5827     Inc = For->getInc();
5828   } else if (auto *RangeFor = dyn_cast<CXXForRangeStmt>(AStmt)) {
5829     DeclStmt *BeginStmt = RangeFor->getBeginStmt();
5830     LIVDecl = cast<VarDecl>(BeginStmt->getSingleDecl());
5831     LUVDecl = RangeFor->getLoopVariable();
5832 
5833     Cond = RangeFor->getCond();
5834     Inc = RangeFor->getInc();
5835   } else
5836     llvm_unreachable("unhandled kind of loop");
5837 
5838   QualType CounterTy = LIVDecl->getType();
5839   QualType LVTy = LUVDecl->getType();
5840 
5841   // Analyze the loop condition.
5842   Expr *LHS, *RHS;
5843   BinaryOperator::Opcode CondRel;
5844   Cond = Cond->IgnoreImplicit();
5845   if (auto *CondBinExpr = dyn_cast<BinaryOperator>(Cond)) {
5846     LHS = CondBinExpr->getLHS();
5847     RHS = CondBinExpr->getRHS();
5848     CondRel = CondBinExpr->getOpcode();
5849   } else if (auto *CondCXXOp = dyn_cast<CXXOperatorCallExpr>(Cond)) {
5850     assert(CondCXXOp->getNumArgs() == 2 && "Comparison should have 2 operands");
5851     LHS = CondCXXOp->getArg(0);
5852     RHS = CondCXXOp->getArg(1);
5853     switch (CondCXXOp->getOperator()) {
5854     case OO_ExclaimEqual:
5855       CondRel = BO_NE;
5856       break;
5857     case OO_Less:
5858       CondRel = BO_LT;
5859       break;
5860     case OO_LessEqual:
5861       CondRel = BO_LE;
5862       break;
5863     case OO_Greater:
5864       CondRel = BO_GT;
5865       break;
5866     case OO_GreaterEqual:
5867       CondRel = BO_GE;
5868       break;
5869     default:
5870       llvm_unreachable("unexpected iterator operator");
5871     }
5872   } else
5873     llvm_unreachable("unexpected loop condition");
5874 
5875   // Normalize such that the loop counter is on the LHS.
5876   if (!isa<DeclRefExpr>(LHS->IgnoreImplicit()) ||
5877       cast<DeclRefExpr>(LHS->IgnoreImplicit())->getDecl() != LIVDecl) {
5878     std::swap(LHS, RHS);
5879     CondRel = BinaryOperator::reverseComparisonOp(CondRel);
5880   }
5881   auto *CounterRef = cast<DeclRefExpr>(LHS->IgnoreImplicit());
5882 
5883   // Decide the bit width for the logical iteration counter. By default use the
5884   // unsigned ptrdiff_t integer size (for iterators and pointers).
5885   // TODO: For iterators, use iterator::difference_type,
5886   // std::iterator_traits<>::difference_type or decltype(it - end).
5887   QualType LogicalTy = Ctx.getUnsignedPointerDiffType();
5888   if (CounterTy->isIntegerType()) {
5889     unsigned BitWidth = Ctx.getIntWidth(CounterTy);
5890     LogicalTy = Ctx.getIntTypeForBitwidth(BitWidth, false);
5891   }
5892 
5893   // Analyze the loop increment.
5894   Expr *Step;
5895   if (auto *IncUn = dyn_cast<UnaryOperator>(Inc)) {
5896     int Direction;
5897     switch (IncUn->getOpcode()) {
5898     case UO_PreInc:
5899     case UO_PostInc:
5900       Direction = 1;
5901       break;
5902     case UO_PreDec:
5903     case UO_PostDec:
5904       Direction = -1;
5905       break;
5906     default:
5907       llvm_unreachable("unhandled unary increment operator");
5908     }
5909     Step = IntegerLiteral::Create(
5910         Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), Direction), LogicalTy, {});
5911   } else if (auto *IncBin = dyn_cast<BinaryOperator>(Inc)) {
5912     if (IncBin->getOpcode() == BO_AddAssign) {
5913       Step = IncBin->getRHS();
5914     } else if (IncBin->getOpcode() == BO_SubAssign) {
5915       Step =
5916           AssertSuccess(BuildUnaryOp(nullptr, {}, UO_Minus, IncBin->getRHS()));
5917     } else
5918       llvm_unreachable("unhandled binary increment operator");
5919   } else if (auto *CondCXXOp = dyn_cast<CXXOperatorCallExpr>(Inc)) {
5920     switch (CondCXXOp->getOperator()) {
5921     case OO_PlusPlus:
5922       Step = IntegerLiteral::Create(
5923           Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), 1), LogicalTy, {});
5924       break;
5925     case OO_MinusMinus:
5926       Step = IntegerLiteral::Create(
5927           Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), -1), LogicalTy, {});
5928       break;
5929     case OO_PlusEqual:
5930       Step = CondCXXOp->getArg(1);
5931       break;
5932     case OO_MinusEqual:
5933       Step = AssertSuccess(
5934           BuildUnaryOp(nullptr, {}, UO_Minus, CondCXXOp->getArg(1)));
5935       break;
5936     default:
5937       llvm_unreachable("unhandled overloaded increment operator");
5938     }
5939   } else
5940     llvm_unreachable("unknown increment expression");
5941 
5942   CapturedStmt *DistanceFunc =
5943       buildDistanceFunc(*this, LogicalTy, CondRel, LHS, RHS, Step);
5944   CapturedStmt *LoopVarFunc = buildLoopVarFunc(
5945       *this, LVTy, LogicalTy, CounterRef, Step, isa<CXXForRangeStmt>(AStmt));
5946   DeclRefExpr *LVRef = BuildDeclRefExpr(LUVDecl, LUVDecl->getType(), VK_LValue,
5947                                         {}, nullptr, nullptr, {}, nullptr);
5948   return OMPCanonicalLoop::create(getASTContext(), AStmt, DistanceFunc,
5949                                   LoopVarFunc, LVRef);
5950 }
5951 
5952 StmtResult Sema::ActOnOpenMPLoopnest(Stmt *AStmt) {
5953   // Handle a literal loop.
5954   if (isa<ForStmt>(AStmt) || isa<CXXForRangeStmt>(AStmt))
5955     return ActOnOpenMPCanonicalLoop(AStmt);
5956 
5957   // If not a literal loop, it must be the result of a loop transformation.
5958   OMPExecutableDirective *LoopTransform = cast<OMPExecutableDirective>(AStmt);
5959   assert(
5960       isOpenMPLoopTransformationDirective(LoopTransform->getDirectiveKind()) &&
5961       "Loop transformation directive expected");
5962   return LoopTransform;
5963 }
5964 
5965 static ExprResult buildUserDefinedMapperRef(Sema &SemaRef, Scope *S,
5966                                             CXXScopeSpec &MapperIdScopeSpec,
5967                                             const DeclarationNameInfo &MapperId,
5968                                             QualType Type,
5969                                             Expr *UnresolvedMapper);
5970 
5971 /// Perform DFS through the structure/class data members trying to find
5972 /// member(s) with user-defined 'default' mapper and generate implicit map
5973 /// clauses for such members with the found 'default' mapper.
5974 static void
5975 processImplicitMapsWithDefaultMappers(Sema &S, DSAStackTy *Stack,
5976                                       SmallVectorImpl<OMPClause *> &Clauses) {
5977   // Check for the deault mapper for data members.
5978   if (S.getLangOpts().OpenMP < 50)
5979     return;
5980   SmallVector<OMPClause *, 4> ImplicitMaps;
5981   for (int Cnt = 0, EndCnt = Clauses.size(); Cnt < EndCnt; ++Cnt) {
5982     auto *C = dyn_cast<OMPMapClause>(Clauses[Cnt]);
5983     if (!C)
5984       continue;
5985     SmallVector<Expr *, 4> SubExprs;
5986     auto *MI = C->mapperlist_begin();
5987     for (auto I = C->varlist_begin(), End = C->varlist_end(); I != End;
5988          ++I, ++MI) {
5989       // Expression is mapped using mapper - skip it.
5990       if (*MI)
5991         continue;
5992       Expr *E = *I;
5993       // Expression is dependent - skip it, build the mapper when it gets
5994       // instantiated.
5995       if (E->isTypeDependent() || E->isValueDependent() ||
5996           E->containsUnexpandedParameterPack())
5997         continue;
5998       // Array section - need to check for the mapping of the array section
5999       // element.
6000       QualType CanonType = E->getType().getCanonicalType();
6001       if (CanonType->isSpecificBuiltinType(BuiltinType::OMPArraySection)) {
6002         const auto *OASE = cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts());
6003         QualType BaseType =
6004             OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
6005         QualType ElemType;
6006         if (const auto *ATy = BaseType->getAsArrayTypeUnsafe())
6007           ElemType = ATy->getElementType();
6008         else
6009           ElemType = BaseType->getPointeeType();
6010         CanonType = ElemType;
6011       }
6012 
6013       // DFS over data members in structures/classes.
6014       SmallVector<std::pair<QualType, FieldDecl *>, 4> Types(
6015           1, {CanonType, nullptr});
6016       llvm::DenseMap<const Type *, Expr *> Visited;
6017       SmallVector<std::pair<FieldDecl *, unsigned>, 4> ParentChain(
6018           1, {nullptr, 1});
6019       while (!Types.empty()) {
6020         QualType BaseType;
6021         FieldDecl *CurFD;
6022         std::tie(BaseType, CurFD) = Types.pop_back_val();
6023         while (ParentChain.back().second == 0)
6024           ParentChain.pop_back();
6025         --ParentChain.back().second;
6026         if (BaseType.isNull())
6027           continue;
6028         // Only structs/classes are allowed to have mappers.
6029         const RecordDecl *RD = BaseType.getCanonicalType()->getAsRecordDecl();
6030         if (!RD)
6031           continue;
6032         auto It = Visited.find(BaseType.getTypePtr());
6033         if (It == Visited.end()) {
6034           // Try to find the associated user-defined mapper.
6035           CXXScopeSpec MapperIdScopeSpec;
6036           DeclarationNameInfo DefaultMapperId;
6037           DefaultMapperId.setName(S.Context.DeclarationNames.getIdentifier(
6038               &S.Context.Idents.get("default")));
6039           DefaultMapperId.setLoc(E->getExprLoc());
6040           ExprResult ER = buildUserDefinedMapperRef(
6041               S, Stack->getCurScope(), MapperIdScopeSpec, DefaultMapperId,
6042               BaseType, /*UnresolvedMapper=*/nullptr);
6043           if (ER.isInvalid())
6044             continue;
6045           It = Visited.try_emplace(BaseType.getTypePtr(), ER.get()).first;
6046         }
6047         // Found default mapper.
6048         if (It->second) {
6049           auto *OE = new (S.Context) OpaqueValueExpr(E->getExprLoc(), CanonType,
6050                                                      VK_LValue, OK_Ordinary, E);
6051           OE->setIsUnique(/*V=*/true);
6052           Expr *BaseExpr = OE;
6053           for (const auto &P : ParentChain) {
6054             if (P.first) {
6055               BaseExpr = S.BuildMemberExpr(
6056                   BaseExpr, /*IsArrow=*/false, E->getExprLoc(),
6057                   NestedNameSpecifierLoc(), SourceLocation(), P.first,
6058                   DeclAccessPair::make(P.first, P.first->getAccess()),
6059                   /*HadMultipleCandidates=*/false, DeclarationNameInfo(),
6060                   P.first->getType(), VK_LValue, OK_Ordinary);
6061               BaseExpr = S.DefaultLvalueConversion(BaseExpr).get();
6062             }
6063           }
6064           if (CurFD)
6065             BaseExpr = S.BuildMemberExpr(
6066                 BaseExpr, /*IsArrow=*/false, E->getExprLoc(),
6067                 NestedNameSpecifierLoc(), SourceLocation(), CurFD,
6068                 DeclAccessPair::make(CurFD, CurFD->getAccess()),
6069                 /*HadMultipleCandidates=*/false, DeclarationNameInfo(),
6070                 CurFD->getType(), VK_LValue, OK_Ordinary);
6071           SubExprs.push_back(BaseExpr);
6072           continue;
6073         }
6074         // Check for the "default" mapper for data members.
6075         bool FirstIter = true;
6076         for (FieldDecl *FD : RD->fields()) {
6077           if (!FD)
6078             continue;
6079           QualType FieldTy = FD->getType();
6080           if (FieldTy.isNull() ||
6081               !(FieldTy->isStructureOrClassType() || FieldTy->isUnionType()))
6082             continue;
6083           if (FirstIter) {
6084             FirstIter = false;
6085             ParentChain.emplace_back(CurFD, 1);
6086           } else {
6087             ++ParentChain.back().second;
6088           }
6089           Types.emplace_back(FieldTy, FD);
6090         }
6091       }
6092     }
6093     if (SubExprs.empty())
6094       continue;
6095     CXXScopeSpec MapperIdScopeSpec;
6096     DeclarationNameInfo MapperId;
6097     if (OMPClause *NewClause = S.ActOnOpenMPMapClause(
6098             nullptr, C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(),
6099             MapperIdScopeSpec, MapperId, C->getMapType(),
6100             /*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(),
6101             SubExprs, OMPVarListLocTy()))
6102       Clauses.push_back(NewClause);
6103   }
6104 }
6105 
6106 StmtResult Sema::ActOnOpenMPExecutableDirective(
6107     OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
6108     OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
6109     Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc) {
6110   StmtResult Res = StmtError();
6111   OpenMPBindClauseKind BindKind = OMPC_BIND_unknown;
6112   if (const OMPBindClause *BC =
6113           OMPExecutableDirective::getSingleClause<OMPBindClause>(Clauses))
6114     BindKind = BC->getBindKind();
6115   // First check CancelRegion which is then used in checkNestingOfRegions.
6116   if (checkCancelRegion(*this, Kind, CancelRegion, StartLoc) ||
6117       checkNestingOfRegions(*this, DSAStack, Kind, DirName, CancelRegion,
6118                             BindKind, StartLoc))
6119     return StmtError();
6120 
6121   llvm::SmallVector<OMPClause *, 8> ClausesWithImplicit;
6122   VarsWithInheritedDSAType VarsWithInheritedDSA;
6123   bool ErrorFound = false;
6124   ClausesWithImplicit.append(Clauses.begin(), Clauses.end());
6125   if (AStmt && !CurContext->isDependentContext() && Kind != OMPD_atomic &&
6126       Kind != OMPD_critical && Kind != OMPD_section && Kind != OMPD_master &&
6127       Kind != OMPD_masked && !isOpenMPLoopTransformationDirective(Kind)) {
6128     assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
6129 
6130     // Check default data sharing attributes for referenced variables.
6131     DSAAttrChecker DSAChecker(DSAStack, *this, cast<CapturedStmt>(AStmt));
6132     int ThisCaptureLevel = getOpenMPCaptureLevels(Kind);
6133     Stmt *S = AStmt;
6134     while (--ThisCaptureLevel >= 0)
6135       S = cast<CapturedStmt>(S)->getCapturedStmt();
6136     DSAChecker.Visit(S);
6137     if (!isOpenMPTargetDataManagementDirective(Kind) &&
6138         !isOpenMPTaskingDirective(Kind)) {
6139       // Visit subcaptures to generate implicit clauses for captured vars.
6140       auto *CS = cast<CapturedStmt>(AStmt);
6141       SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
6142       getOpenMPCaptureRegions(CaptureRegions, Kind);
6143       // Ignore outer tasking regions for target directives.
6144       if (CaptureRegions.size() > 1 && CaptureRegions.front() == OMPD_task)
6145         CS = cast<CapturedStmt>(CS->getCapturedStmt());
6146       DSAChecker.visitSubCaptures(CS);
6147     }
6148     if (DSAChecker.isErrorFound())
6149       return StmtError();
6150     // Generate list of implicitly defined firstprivate variables.
6151     VarsWithInheritedDSA = DSAChecker.getVarsWithInheritedDSA();
6152 
6153     SmallVector<Expr *, 4> ImplicitFirstprivates(
6154         DSAChecker.getImplicitFirstprivate().begin(),
6155         DSAChecker.getImplicitFirstprivate().end());
6156     SmallVector<Expr *, 4> ImplicitPrivates(
6157         DSAChecker.getImplicitPrivate().begin(),
6158         DSAChecker.getImplicitPrivate().end());
6159     const unsigned DefaultmapKindNum = OMPC_DEFAULTMAP_pointer + 1;
6160     SmallVector<Expr *, 4> ImplicitMaps[DefaultmapKindNum][OMPC_MAP_delete];
6161     SmallVector<OpenMPMapModifierKind, NumberOfOMPMapClauseModifiers>
6162         ImplicitMapModifiers[DefaultmapKindNum];
6163     SmallVector<SourceLocation, NumberOfOMPMapClauseModifiers>
6164         ImplicitMapModifiersLoc[DefaultmapKindNum];
6165     // Get the original location of present modifier from Defaultmap clause.
6166     SourceLocation PresentModifierLocs[DefaultmapKindNum];
6167     for (OMPClause *C : Clauses) {
6168       if (auto *DMC = dyn_cast<OMPDefaultmapClause>(C))
6169         if (DMC->getDefaultmapModifier() == OMPC_DEFAULTMAP_MODIFIER_present)
6170           PresentModifierLocs[DMC->getDefaultmapKind()] =
6171               DMC->getDefaultmapModifierLoc();
6172     }
6173     for (unsigned VC = 0; VC < DefaultmapKindNum; ++VC) {
6174       auto Kind = static_cast<OpenMPDefaultmapClauseKind>(VC);
6175       for (unsigned I = 0; I < OMPC_MAP_delete; ++I) {
6176         ArrayRef<Expr *> ImplicitMap = DSAChecker.getImplicitMap(
6177             Kind, static_cast<OpenMPMapClauseKind>(I));
6178         ImplicitMaps[VC][I].append(ImplicitMap.begin(), ImplicitMap.end());
6179       }
6180       ArrayRef<OpenMPMapModifierKind> ImplicitModifier =
6181           DSAChecker.getImplicitMapModifier(Kind);
6182       ImplicitMapModifiers[VC].append(ImplicitModifier.begin(),
6183                                       ImplicitModifier.end());
6184       std::fill_n(std::back_inserter(ImplicitMapModifiersLoc[VC]),
6185                   ImplicitModifier.size(), PresentModifierLocs[VC]);
6186     }
6187     // Mark taskgroup task_reduction descriptors as implicitly firstprivate.
6188     for (OMPClause *C : Clauses) {
6189       if (auto *IRC = dyn_cast<OMPInReductionClause>(C)) {
6190         for (Expr *E : IRC->taskgroup_descriptors())
6191           if (E)
6192             ImplicitFirstprivates.emplace_back(E);
6193       }
6194       // OpenMP 5.0, 2.10.1 task Construct
6195       // [detach clause]... The event-handle will be considered as if it was
6196       // specified on a firstprivate clause.
6197       if (auto *DC = dyn_cast<OMPDetachClause>(C))
6198         ImplicitFirstprivates.push_back(DC->getEventHandler());
6199     }
6200     if (!ImplicitFirstprivates.empty()) {
6201       if (OMPClause *Implicit = ActOnOpenMPFirstprivateClause(
6202               ImplicitFirstprivates, SourceLocation(), SourceLocation(),
6203               SourceLocation())) {
6204         ClausesWithImplicit.push_back(Implicit);
6205         ErrorFound = cast<OMPFirstprivateClause>(Implicit)->varlist_size() !=
6206                      ImplicitFirstprivates.size();
6207       } else {
6208         ErrorFound = true;
6209       }
6210     }
6211     if (!ImplicitPrivates.empty()) {
6212       if (OMPClause *Implicit =
6213               ActOnOpenMPPrivateClause(ImplicitPrivates, SourceLocation(),
6214                                        SourceLocation(), SourceLocation())) {
6215         ClausesWithImplicit.push_back(Implicit);
6216         ErrorFound = cast<OMPPrivateClause>(Implicit)->varlist_size() !=
6217                      ImplicitPrivates.size();
6218       } else {
6219         ErrorFound = true;
6220       }
6221     }
6222     // OpenMP 5.0 [2.19.7]
6223     // If a list item appears in a reduction, lastprivate or linear
6224     // clause on a combined target construct then it is treated as
6225     // if it also appears in a map clause with a map-type of tofrom
6226     if (getLangOpts().OpenMP >= 50 && Kind != OMPD_target &&
6227         isOpenMPTargetExecutionDirective(Kind)) {
6228       SmallVector<Expr *, 4> ImplicitExprs;
6229       for (OMPClause *C : Clauses) {
6230         if (auto *RC = dyn_cast<OMPReductionClause>(C))
6231           for (Expr *E : RC->varlists())
6232             if (!isa<DeclRefExpr>(E->IgnoreParenImpCasts()))
6233               ImplicitExprs.emplace_back(E);
6234       }
6235       if (!ImplicitExprs.empty()) {
6236         ArrayRef<Expr *> Exprs = ImplicitExprs;
6237         CXXScopeSpec MapperIdScopeSpec;
6238         DeclarationNameInfo MapperId;
6239         if (OMPClause *Implicit = ActOnOpenMPMapClause(
6240                 nullptr, OMPC_MAP_MODIFIER_unknown, SourceLocation(),
6241                 MapperIdScopeSpec, MapperId, OMPC_MAP_tofrom,
6242                 /*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(),
6243                 Exprs, OMPVarListLocTy(), /*NoDiagnose=*/true))
6244           ClausesWithImplicit.emplace_back(Implicit);
6245       }
6246     }
6247     for (unsigned I = 0, E = DefaultmapKindNum; I < E; ++I) {
6248       int ClauseKindCnt = -1;
6249       for (ArrayRef<Expr *> ImplicitMap : ImplicitMaps[I]) {
6250         ++ClauseKindCnt;
6251         if (ImplicitMap.empty())
6252           continue;
6253         CXXScopeSpec MapperIdScopeSpec;
6254         DeclarationNameInfo MapperId;
6255         auto Kind = static_cast<OpenMPMapClauseKind>(ClauseKindCnt);
6256         if (OMPClause *Implicit = ActOnOpenMPMapClause(
6257                 nullptr, ImplicitMapModifiers[I], ImplicitMapModifiersLoc[I],
6258                 MapperIdScopeSpec, MapperId, Kind, /*IsMapTypeImplicit=*/true,
6259                 SourceLocation(), SourceLocation(), ImplicitMap,
6260                 OMPVarListLocTy())) {
6261           ClausesWithImplicit.emplace_back(Implicit);
6262           ErrorFound |= cast<OMPMapClause>(Implicit)->varlist_size() !=
6263                         ImplicitMap.size();
6264         } else {
6265           ErrorFound = true;
6266         }
6267       }
6268     }
6269     // Build expressions for implicit maps of data members with 'default'
6270     // mappers.
6271     if (LangOpts.OpenMP >= 50)
6272       processImplicitMapsWithDefaultMappers(*this, DSAStack,
6273                                             ClausesWithImplicit);
6274   }
6275 
6276   llvm::SmallVector<OpenMPDirectiveKind, 4> AllowedNameModifiers;
6277   switch (Kind) {
6278   case OMPD_parallel:
6279     Res = ActOnOpenMPParallelDirective(ClausesWithImplicit, AStmt, StartLoc,
6280                                        EndLoc);
6281     AllowedNameModifiers.push_back(OMPD_parallel);
6282     break;
6283   case OMPD_simd:
6284     Res = ActOnOpenMPSimdDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc,
6285                                    VarsWithInheritedDSA);
6286     if (LangOpts.OpenMP >= 50)
6287       AllowedNameModifiers.push_back(OMPD_simd);
6288     break;
6289   case OMPD_tile:
6290     Res =
6291         ActOnOpenMPTileDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc);
6292     break;
6293   case OMPD_unroll:
6294     Res = ActOnOpenMPUnrollDirective(ClausesWithImplicit, AStmt, StartLoc,
6295                                      EndLoc);
6296     break;
6297   case OMPD_for:
6298     Res = ActOnOpenMPForDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc,
6299                                   VarsWithInheritedDSA);
6300     break;
6301   case OMPD_for_simd:
6302     Res = ActOnOpenMPForSimdDirective(ClausesWithImplicit, AStmt, StartLoc,
6303                                       EndLoc, VarsWithInheritedDSA);
6304     if (LangOpts.OpenMP >= 50)
6305       AllowedNameModifiers.push_back(OMPD_simd);
6306     break;
6307   case OMPD_sections:
6308     Res = ActOnOpenMPSectionsDirective(ClausesWithImplicit, AStmt, StartLoc,
6309                                        EndLoc);
6310     break;
6311   case OMPD_section:
6312     assert(ClausesWithImplicit.empty() &&
6313            "No clauses are allowed for 'omp section' directive");
6314     Res = ActOnOpenMPSectionDirective(AStmt, StartLoc, EndLoc);
6315     break;
6316   case OMPD_single:
6317     Res = ActOnOpenMPSingleDirective(ClausesWithImplicit, AStmt, StartLoc,
6318                                      EndLoc);
6319     break;
6320   case OMPD_master:
6321     assert(ClausesWithImplicit.empty() &&
6322            "No clauses are allowed for 'omp master' directive");
6323     Res = ActOnOpenMPMasterDirective(AStmt, StartLoc, EndLoc);
6324     break;
6325   case OMPD_masked:
6326     Res = ActOnOpenMPMaskedDirective(ClausesWithImplicit, AStmt, StartLoc,
6327                                      EndLoc);
6328     break;
6329   case OMPD_critical:
6330     Res = ActOnOpenMPCriticalDirective(DirName, ClausesWithImplicit, AStmt,
6331                                        StartLoc, EndLoc);
6332     break;
6333   case OMPD_parallel_for:
6334     Res = ActOnOpenMPParallelForDirective(ClausesWithImplicit, AStmt, StartLoc,
6335                                           EndLoc, VarsWithInheritedDSA);
6336     AllowedNameModifiers.push_back(OMPD_parallel);
6337     break;
6338   case OMPD_parallel_for_simd:
6339     Res = ActOnOpenMPParallelForSimdDirective(
6340         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6341     AllowedNameModifiers.push_back(OMPD_parallel);
6342     if (LangOpts.OpenMP >= 50)
6343       AllowedNameModifiers.push_back(OMPD_simd);
6344     break;
6345   case OMPD_parallel_master:
6346     Res = ActOnOpenMPParallelMasterDirective(ClausesWithImplicit, AStmt,
6347                                              StartLoc, EndLoc);
6348     AllowedNameModifiers.push_back(OMPD_parallel);
6349     break;
6350   case OMPD_parallel_masked:
6351     Res = ActOnOpenMPParallelMaskedDirective(ClausesWithImplicit, AStmt,
6352                                              StartLoc, EndLoc);
6353     AllowedNameModifiers.push_back(OMPD_parallel);
6354     break;
6355   case OMPD_parallel_sections:
6356     Res = ActOnOpenMPParallelSectionsDirective(ClausesWithImplicit, AStmt,
6357                                                StartLoc, EndLoc);
6358     AllowedNameModifiers.push_back(OMPD_parallel);
6359     break;
6360   case OMPD_task:
6361     Res =
6362         ActOnOpenMPTaskDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc);
6363     AllowedNameModifiers.push_back(OMPD_task);
6364     break;
6365   case OMPD_taskyield:
6366     assert(ClausesWithImplicit.empty() &&
6367            "No clauses are allowed for 'omp taskyield' directive");
6368     assert(AStmt == nullptr &&
6369            "No associated statement allowed for 'omp taskyield' directive");
6370     Res = ActOnOpenMPTaskyieldDirective(StartLoc, EndLoc);
6371     break;
6372   case OMPD_error:
6373     assert(AStmt == nullptr &&
6374            "No associated statement allowed for 'omp error' directive");
6375     Res = ActOnOpenMPErrorDirective(ClausesWithImplicit, StartLoc, EndLoc);
6376     break;
6377   case OMPD_barrier:
6378     assert(ClausesWithImplicit.empty() &&
6379            "No clauses are allowed for 'omp barrier' directive");
6380     assert(AStmt == nullptr &&
6381            "No associated statement allowed for 'omp barrier' directive");
6382     Res = ActOnOpenMPBarrierDirective(StartLoc, EndLoc);
6383     break;
6384   case OMPD_taskwait:
6385     assert(AStmt == nullptr &&
6386            "No associated statement allowed for 'omp taskwait' directive");
6387     Res = ActOnOpenMPTaskwaitDirective(ClausesWithImplicit, StartLoc, EndLoc);
6388     break;
6389   case OMPD_taskgroup:
6390     Res = ActOnOpenMPTaskgroupDirective(ClausesWithImplicit, AStmt, StartLoc,
6391                                         EndLoc);
6392     break;
6393   case OMPD_flush:
6394     assert(AStmt == nullptr &&
6395            "No associated statement allowed for 'omp flush' directive");
6396     Res = ActOnOpenMPFlushDirective(ClausesWithImplicit, StartLoc, EndLoc);
6397     break;
6398   case OMPD_depobj:
6399     assert(AStmt == nullptr &&
6400            "No associated statement allowed for 'omp depobj' directive");
6401     Res = ActOnOpenMPDepobjDirective(ClausesWithImplicit, StartLoc, EndLoc);
6402     break;
6403   case OMPD_scan:
6404     assert(AStmt == nullptr &&
6405            "No associated statement allowed for 'omp scan' directive");
6406     Res = ActOnOpenMPScanDirective(ClausesWithImplicit, StartLoc, EndLoc);
6407     break;
6408   case OMPD_ordered:
6409     Res = ActOnOpenMPOrderedDirective(ClausesWithImplicit, AStmt, StartLoc,
6410                                       EndLoc);
6411     break;
6412   case OMPD_atomic:
6413     Res = ActOnOpenMPAtomicDirective(ClausesWithImplicit, AStmt, StartLoc,
6414                                      EndLoc);
6415     break;
6416   case OMPD_teams:
6417     Res =
6418         ActOnOpenMPTeamsDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc);
6419     break;
6420   case OMPD_target:
6421     Res = ActOnOpenMPTargetDirective(ClausesWithImplicit, AStmt, StartLoc,
6422                                      EndLoc);
6423     AllowedNameModifiers.push_back(OMPD_target);
6424     break;
6425   case OMPD_target_parallel:
6426     Res = ActOnOpenMPTargetParallelDirective(ClausesWithImplicit, AStmt,
6427                                              StartLoc, EndLoc);
6428     AllowedNameModifiers.push_back(OMPD_target);
6429     AllowedNameModifiers.push_back(OMPD_parallel);
6430     break;
6431   case OMPD_target_parallel_for:
6432     Res = ActOnOpenMPTargetParallelForDirective(
6433         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6434     AllowedNameModifiers.push_back(OMPD_target);
6435     AllowedNameModifiers.push_back(OMPD_parallel);
6436     break;
6437   case OMPD_cancellation_point:
6438     assert(ClausesWithImplicit.empty() &&
6439            "No clauses are allowed for 'omp cancellation point' directive");
6440     assert(AStmt == nullptr && "No associated statement allowed for 'omp "
6441                                "cancellation point' directive");
6442     Res = ActOnOpenMPCancellationPointDirective(StartLoc, EndLoc, CancelRegion);
6443     break;
6444   case OMPD_cancel:
6445     assert(AStmt == nullptr &&
6446            "No associated statement allowed for 'omp cancel' directive");
6447     Res = ActOnOpenMPCancelDirective(ClausesWithImplicit, StartLoc, EndLoc,
6448                                      CancelRegion);
6449     AllowedNameModifiers.push_back(OMPD_cancel);
6450     break;
6451   case OMPD_target_data:
6452     Res = ActOnOpenMPTargetDataDirective(ClausesWithImplicit, AStmt, StartLoc,
6453                                          EndLoc);
6454     AllowedNameModifiers.push_back(OMPD_target_data);
6455     break;
6456   case OMPD_target_enter_data:
6457     Res = ActOnOpenMPTargetEnterDataDirective(ClausesWithImplicit, StartLoc,
6458                                               EndLoc, AStmt);
6459     AllowedNameModifiers.push_back(OMPD_target_enter_data);
6460     break;
6461   case OMPD_target_exit_data:
6462     Res = ActOnOpenMPTargetExitDataDirective(ClausesWithImplicit, StartLoc,
6463                                              EndLoc, AStmt);
6464     AllowedNameModifiers.push_back(OMPD_target_exit_data);
6465     break;
6466   case OMPD_taskloop:
6467     Res = ActOnOpenMPTaskLoopDirective(ClausesWithImplicit, AStmt, StartLoc,
6468                                        EndLoc, VarsWithInheritedDSA);
6469     AllowedNameModifiers.push_back(OMPD_taskloop);
6470     break;
6471   case OMPD_taskloop_simd:
6472     Res = ActOnOpenMPTaskLoopSimdDirective(ClausesWithImplicit, AStmt, StartLoc,
6473                                            EndLoc, VarsWithInheritedDSA);
6474     AllowedNameModifiers.push_back(OMPD_taskloop);
6475     if (LangOpts.OpenMP >= 50)
6476       AllowedNameModifiers.push_back(OMPD_simd);
6477     break;
6478   case OMPD_master_taskloop:
6479     Res = ActOnOpenMPMasterTaskLoopDirective(
6480         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6481     AllowedNameModifiers.push_back(OMPD_taskloop);
6482     break;
6483   case OMPD_masked_taskloop:
6484     Res = ActOnOpenMPMaskedTaskLoopDirective(
6485         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6486     AllowedNameModifiers.push_back(OMPD_taskloop);
6487     break;
6488   case OMPD_master_taskloop_simd:
6489     Res = ActOnOpenMPMasterTaskLoopSimdDirective(
6490         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6491     AllowedNameModifiers.push_back(OMPD_taskloop);
6492     if (LangOpts.OpenMP >= 50)
6493       AllowedNameModifiers.push_back(OMPD_simd);
6494     break;
6495   case OMPD_masked_taskloop_simd:
6496     Res = ActOnOpenMPMaskedTaskLoopSimdDirective(
6497         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6498     if (LangOpts.OpenMP >= 51) {
6499       AllowedNameModifiers.push_back(OMPD_taskloop);
6500       AllowedNameModifiers.push_back(OMPD_simd);
6501     }
6502     break;
6503   case OMPD_parallel_master_taskloop:
6504     Res = ActOnOpenMPParallelMasterTaskLoopDirective(
6505         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6506     AllowedNameModifiers.push_back(OMPD_taskloop);
6507     AllowedNameModifiers.push_back(OMPD_parallel);
6508     break;
6509   case OMPD_parallel_masked_taskloop:
6510     Res = ActOnOpenMPParallelMaskedTaskLoopDirective(
6511         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6512     if (LangOpts.OpenMP >= 51) {
6513       AllowedNameModifiers.push_back(OMPD_taskloop);
6514       AllowedNameModifiers.push_back(OMPD_parallel);
6515     }
6516     break;
6517   case OMPD_parallel_master_taskloop_simd:
6518     Res = ActOnOpenMPParallelMasterTaskLoopSimdDirective(
6519         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6520     AllowedNameModifiers.push_back(OMPD_taskloop);
6521     AllowedNameModifiers.push_back(OMPD_parallel);
6522     if (LangOpts.OpenMP >= 50)
6523       AllowedNameModifiers.push_back(OMPD_simd);
6524     break;
6525   case OMPD_parallel_masked_taskloop_simd:
6526     Res = ActOnOpenMPParallelMaskedTaskLoopSimdDirective(
6527         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6528     if (LangOpts.OpenMP >= 51) {
6529       AllowedNameModifiers.push_back(OMPD_taskloop);
6530       AllowedNameModifiers.push_back(OMPD_parallel);
6531       AllowedNameModifiers.push_back(OMPD_simd);
6532     }
6533     break;
6534   case OMPD_distribute:
6535     Res = ActOnOpenMPDistributeDirective(ClausesWithImplicit, AStmt, StartLoc,
6536                                          EndLoc, VarsWithInheritedDSA);
6537     break;
6538   case OMPD_target_update:
6539     Res = ActOnOpenMPTargetUpdateDirective(ClausesWithImplicit, StartLoc,
6540                                            EndLoc, AStmt);
6541     AllowedNameModifiers.push_back(OMPD_target_update);
6542     break;
6543   case OMPD_distribute_parallel_for:
6544     Res = ActOnOpenMPDistributeParallelForDirective(
6545         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6546     AllowedNameModifiers.push_back(OMPD_parallel);
6547     break;
6548   case OMPD_distribute_parallel_for_simd:
6549     Res = ActOnOpenMPDistributeParallelForSimdDirective(
6550         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6551     AllowedNameModifiers.push_back(OMPD_parallel);
6552     if (LangOpts.OpenMP >= 50)
6553       AllowedNameModifiers.push_back(OMPD_simd);
6554     break;
6555   case OMPD_distribute_simd:
6556     Res = ActOnOpenMPDistributeSimdDirective(
6557         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6558     if (LangOpts.OpenMP >= 50)
6559       AllowedNameModifiers.push_back(OMPD_simd);
6560     break;
6561   case OMPD_target_parallel_for_simd:
6562     Res = ActOnOpenMPTargetParallelForSimdDirective(
6563         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6564     AllowedNameModifiers.push_back(OMPD_target);
6565     AllowedNameModifiers.push_back(OMPD_parallel);
6566     if (LangOpts.OpenMP >= 50)
6567       AllowedNameModifiers.push_back(OMPD_simd);
6568     break;
6569   case OMPD_target_simd:
6570     Res = ActOnOpenMPTargetSimdDirective(ClausesWithImplicit, AStmt, StartLoc,
6571                                          EndLoc, VarsWithInheritedDSA);
6572     AllowedNameModifiers.push_back(OMPD_target);
6573     if (LangOpts.OpenMP >= 50)
6574       AllowedNameModifiers.push_back(OMPD_simd);
6575     break;
6576   case OMPD_teams_distribute:
6577     Res = ActOnOpenMPTeamsDistributeDirective(
6578         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6579     break;
6580   case OMPD_teams_distribute_simd:
6581     Res = ActOnOpenMPTeamsDistributeSimdDirective(
6582         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6583     if (LangOpts.OpenMP >= 50)
6584       AllowedNameModifiers.push_back(OMPD_simd);
6585     break;
6586   case OMPD_teams_distribute_parallel_for_simd:
6587     Res = ActOnOpenMPTeamsDistributeParallelForSimdDirective(
6588         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6589     AllowedNameModifiers.push_back(OMPD_parallel);
6590     if (LangOpts.OpenMP >= 50)
6591       AllowedNameModifiers.push_back(OMPD_simd);
6592     break;
6593   case OMPD_teams_distribute_parallel_for:
6594     Res = ActOnOpenMPTeamsDistributeParallelForDirective(
6595         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6596     AllowedNameModifiers.push_back(OMPD_parallel);
6597     break;
6598   case OMPD_target_teams:
6599     Res = ActOnOpenMPTargetTeamsDirective(ClausesWithImplicit, AStmt, StartLoc,
6600                                           EndLoc);
6601     AllowedNameModifiers.push_back(OMPD_target);
6602     break;
6603   case OMPD_target_teams_distribute:
6604     Res = ActOnOpenMPTargetTeamsDistributeDirective(
6605         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6606     AllowedNameModifiers.push_back(OMPD_target);
6607     break;
6608   case OMPD_target_teams_distribute_parallel_for:
6609     Res = ActOnOpenMPTargetTeamsDistributeParallelForDirective(
6610         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6611     AllowedNameModifiers.push_back(OMPD_target);
6612     AllowedNameModifiers.push_back(OMPD_parallel);
6613     break;
6614   case OMPD_target_teams_distribute_parallel_for_simd:
6615     Res = ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
6616         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6617     AllowedNameModifiers.push_back(OMPD_target);
6618     AllowedNameModifiers.push_back(OMPD_parallel);
6619     if (LangOpts.OpenMP >= 50)
6620       AllowedNameModifiers.push_back(OMPD_simd);
6621     break;
6622   case OMPD_target_teams_distribute_simd:
6623     Res = ActOnOpenMPTargetTeamsDistributeSimdDirective(
6624         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6625     AllowedNameModifiers.push_back(OMPD_target);
6626     if (LangOpts.OpenMP >= 50)
6627       AllowedNameModifiers.push_back(OMPD_simd);
6628     break;
6629   case OMPD_interop:
6630     assert(AStmt == nullptr &&
6631            "No associated statement allowed for 'omp interop' directive");
6632     Res = ActOnOpenMPInteropDirective(ClausesWithImplicit, StartLoc, EndLoc);
6633     break;
6634   case OMPD_dispatch:
6635     Res = ActOnOpenMPDispatchDirective(ClausesWithImplicit, AStmt, StartLoc,
6636                                        EndLoc);
6637     break;
6638   case OMPD_loop:
6639     Res = ActOnOpenMPGenericLoopDirective(ClausesWithImplicit, AStmt, StartLoc,
6640                                           EndLoc, VarsWithInheritedDSA);
6641     break;
6642   case OMPD_teams_loop:
6643     Res = ActOnOpenMPTeamsGenericLoopDirective(
6644         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6645     break;
6646   case OMPD_target_teams_loop:
6647     Res = ActOnOpenMPTargetTeamsGenericLoopDirective(
6648         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6649     break;
6650   case OMPD_parallel_loop:
6651     Res = ActOnOpenMPParallelGenericLoopDirective(
6652         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6653     break;
6654   case OMPD_target_parallel_loop:
6655     Res = ActOnOpenMPTargetParallelGenericLoopDirective(
6656         ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
6657     break;
6658   case OMPD_declare_target:
6659   case OMPD_end_declare_target:
6660   case OMPD_threadprivate:
6661   case OMPD_allocate:
6662   case OMPD_declare_reduction:
6663   case OMPD_declare_mapper:
6664   case OMPD_declare_simd:
6665   case OMPD_requires:
6666   case OMPD_declare_variant:
6667   case OMPD_begin_declare_variant:
6668   case OMPD_end_declare_variant:
6669     llvm_unreachable("OpenMP Directive is not allowed");
6670   case OMPD_unknown:
6671   default:
6672     llvm_unreachable("Unknown OpenMP directive");
6673   }
6674 
6675   ErrorFound = Res.isInvalid() || ErrorFound;
6676 
6677   // Check variables in the clauses if default(none) or
6678   // default(firstprivate) was specified.
6679   if (DSAStack->getDefaultDSA() == DSA_none ||
6680       DSAStack->getDefaultDSA() == DSA_private ||
6681       DSAStack->getDefaultDSA() == DSA_firstprivate) {
6682     DSAAttrChecker DSAChecker(DSAStack, *this, nullptr);
6683     for (OMPClause *C : Clauses) {
6684       switch (C->getClauseKind()) {
6685       case OMPC_num_threads:
6686       case OMPC_dist_schedule:
6687         // Do not analyse if no parent teams directive.
6688         if (isOpenMPTeamsDirective(Kind))
6689           break;
6690         continue;
6691       case OMPC_if:
6692         if (isOpenMPTeamsDirective(Kind) &&
6693             cast<OMPIfClause>(C)->getNameModifier() != OMPD_target)
6694           break;
6695         if (isOpenMPParallelDirective(Kind) &&
6696             isOpenMPTaskLoopDirective(Kind) &&
6697             cast<OMPIfClause>(C)->getNameModifier() != OMPD_parallel)
6698           break;
6699         continue;
6700       case OMPC_schedule:
6701       case OMPC_detach:
6702         break;
6703       case OMPC_grainsize:
6704       case OMPC_num_tasks:
6705       case OMPC_final:
6706       case OMPC_priority:
6707       case OMPC_novariants:
6708       case OMPC_nocontext:
6709         // Do not analyze if no parent parallel directive.
6710         if (isOpenMPParallelDirective(Kind))
6711           break;
6712         continue;
6713       case OMPC_ordered:
6714       case OMPC_device:
6715       case OMPC_num_teams:
6716       case OMPC_thread_limit:
6717       case OMPC_hint:
6718       case OMPC_collapse:
6719       case OMPC_safelen:
6720       case OMPC_simdlen:
6721       case OMPC_sizes:
6722       case OMPC_default:
6723       case OMPC_proc_bind:
6724       case OMPC_private:
6725       case OMPC_firstprivate:
6726       case OMPC_lastprivate:
6727       case OMPC_shared:
6728       case OMPC_reduction:
6729       case OMPC_task_reduction:
6730       case OMPC_in_reduction:
6731       case OMPC_linear:
6732       case OMPC_aligned:
6733       case OMPC_copyin:
6734       case OMPC_copyprivate:
6735       case OMPC_nowait:
6736       case OMPC_untied:
6737       case OMPC_mergeable:
6738       case OMPC_allocate:
6739       case OMPC_read:
6740       case OMPC_write:
6741       case OMPC_update:
6742       case OMPC_capture:
6743       case OMPC_compare:
6744       case OMPC_seq_cst:
6745       case OMPC_acq_rel:
6746       case OMPC_acquire:
6747       case OMPC_release:
6748       case OMPC_relaxed:
6749       case OMPC_depend:
6750       case OMPC_threads:
6751       case OMPC_simd:
6752       case OMPC_map:
6753       case OMPC_nogroup:
6754       case OMPC_defaultmap:
6755       case OMPC_to:
6756       case OMPC_from:
6757       case OMPC_use_device_ptr:
6758       case OMPC_use_device_addr:
6759       case OMPC_is_device_ptr:
6760       case OMPC_has_device_addr:
6761       case OMPC_nontemporal:
6762       case OMPC_order:
6763       case OMPC_destroy:
6764       case OMPC_inclusive:
6765       case OMPC_exclusive:
6766       case OMPC_uses_allocators:
6767       case OMPC_affinity:
6768       case OMPC_bind:
6769       case OMPC_filter:
6770         continue;
6771       case OMPC_allocator:
6772       case OMPC_flush:
6773       case OMPC_depobj:
6774       case OMPC_threadprivate:
6775       case OMPC_uniform:
6776       case OMPC_unknown:
6777       case OMPC_unified_address:
6778       case OMPC_unified_shared_memory:
6779       case OMPC_reverse_offload:
6780       case OMPC_dynamic_allocators:
6781       case OMPC_atomic_default_mem_order:
6782       case OMPC_device_type:
6783       case OMPC_match:
6784       case OMPC_when:
6785       case OMPC_at:
6786       case OMPC_severity:
6787       case OMPC_message:
6788       default:
6789         llvm_unreachable("Unexpected clause");
6790       }
6791       for (Stmt *CC : C->children()) {
6792         if (CC)
6793           DSAChecker.Visit(CC);
6794       }
6795     }
6796     for (const auto &P : DSAChecker.getVarsWithInheritedDSA())
6797       VarsWithInheritedDSA[P.getFirst()] = P.getSecond();
6798   }
6799   for (const auto &P : VarsWithInheritedDSA) {
6800     if (P.getFirst()->isImplicit() || isa<OMPCapturedExprDecl>(P.getFirst()))
6801       continue;
6802     ErrorFound = true;
6803     if (DSAStack->getDefaultDSA() == DSA_none ||
6804         DSAStack->getDefaultDSA() == DSA_private ||
6805         DSAStack->getDefaultDSA() == DSA_firstprivate) {
6806       Diag(P.second->getExprLoc(), diag::err_omp_no_dsa_for_variable)
6807           << P.first << P.second->getSourceRange();
6808       Diag(DSAStack->getDefaultDSALocation(), diag::note_omp_default_dsa_none);
6809     } else if (getLangOpts().OpenMP >= 50) {
6810       Diag(P.second->getExprLoc(),
6811            diag::err_omp_defaultmap_no_attr_for_variable)
6812           << P.first << P.second->getSourceRange();
6813       Diag(DSAStack->getDefaultDSALocation(),
6814            diag::note_omp_defaultmap_attr_none);
6815     }
6816   }
6817 
6818   if (!AllowedNameModifiers.empty())
6819     ErrorFound = checkIfClauses(*this, Kind, Clauses, AllowedNameModifiers) ||
6820                  ErrorFound;
6821 
6822   if (ErrorFound)
6823     return StmtError();
6824 
6825   if (!CurContext->isDependentContext() &&
6826       isOpenMPTargetExecutionDirective(Kind) &&
6827       !(DSAStack->hasRequiresDeclWithClause<OMPUnifiedSharedMemoryClause>() ||
6828         DSAStack->hasRequiresDeclWithClause<OMPUnifiedAddressClause>() ||
6829         DSAStack->hasRequiresDeclWithClause<OMPReverseOffloadClause>() ||
6830         DSAStack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>())) {
6831     // Register target to DSA Stack.
6832     DSAStack->addTargetDirLocation(StartLoc);
6833   }
6834 
6835   return Res;
6836 }
6837 
6838 Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareSimdDirective(
6839     DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS, Expr *Simdlen,
6840     ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
6841     ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
6842     ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR) {
6843   assert(Aligneds.size() == Alignments.size());
6844   assert(Linears.size() == LinModifiers.size());
6845   assert(Linears.size() == Steps.size());
6846   if (!DG || DG.get().isNull())
6847     return DeclGroupPtrTy();
6848 
6849   const int SimdId = 0;
6850   if (!DG.get().isSingleDecl()) {
6851     Diag(SR.getBegin(), diag::err_omp_single_decl_in_declare_simd_variant)
6852         << SimdId;
6853     return DG;
6854   }
6855   Decl *ADecl = DG.get().getSingleDecl();
6856   if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ADecl))
6857     ADecl = FTD->getTemplatedDecl();
6858 
6859   auto *FD = dyn_cast<FunctionDecl>(ADecl);
6860   if (!FD) {
6861     Diag(ADecl->getLocation(), diag::err_omp_function_expected) << SimdId;
6862     return DeclGroupPtrTy();
6863   }
6864 
6865   // OpenMP [2.8.2, declare simd construct, Description]
6866   // The parameter of the simdlen clause must be a constant positive integer
6867   // expression.
6868   ExprResult SL;
6869   if (Simdlen)
6870     SL = VerifyPositiveIntegerConstantInClause(Simdlen, OMPC_simdlen);
6871   // OpenMP [2.8.2, declare simd construct, Description]
6872   // The special this pointer can be used as if was one of the arguments to the
6873   // function in any of the linear, aligned, or uniform clauses.
6874   // The uniform clause declares one or more arguments to have an invariant
6875   // value for all concurrent invocations of the function in the execution of a
6876   // single SIMD loop.
6877   llvm::DenseMap<const Decl *, const Expr *> UniformedArgs;
6878   const Expr *UniformedLinearThis = nullptr;
6879   for (const Expr *E : Uniforms) {
6880     E = E->IgnoreParenImpCasts();
6881     if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
6882       if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
6883         if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
6884             FD->getParamDecl(PVD->getFunctionScopeIndex())
6885                     ->getCanonicalDecl() == PVD->getCanonicalDecl()) {
6886           UniformedArgs.try_emplace(PVD->getCanonicalDecl(), E);
6887           continue;
6888         }
6889     if (isa<CXXThisExpr>(E)) {
6890       UniformedLinearThis = E;
6891       continue;
6892     }
6893     Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause)
6894         << FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0);
6895   }
6896   // OpenMP [2.8.2, declare simd construct, Description]
6897   // The aligned clause declares that the object to which each list item points
6898   // is aligned to the number of bytes expressed in the optional parameter of
6899   // the aligned clause.
6900   // The special this pointer can be used as if was one of the arguments to the
6901   // function in any of the linear, aligned, or uniform clauses.
6902   // The type of list items appearing in the aligned clause must be array,
6903   // pointer, reference to array, or reference to pointer.
6904   llvm::DenseMap<const Decl *, const Expr *> AlignedArgs;
6905   const Expr *AlignedThis = nullptr;
6906   for (const Expr *E : Aligneds) {
6907     E = E->IgnoreParenImpCasts();
6908     if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
6909       if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
6910         const VarDecl *CanonPVD = PVD->getCanonicalDecl();
6911         if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
6912             FD->getParamDecl(PVD->getFunctionScopeIndex())
6913                     ->getCanonicalDecl() == CanonPVD) {
6914           // OpenMP  [2.8.1, simd construct, Restrictions]
6915           // A list-item cannot appear in more than one aligned clause.
6916           if (AlignedArgs.count(CanonPVD) > 0) {
6917             Diag(E->getExprLoc(), diag::err_omp_used_in_clause_twice)
6918                 << 1 << getOpenMPClauseName(OMPC_aligned)
6919                 << E->getSourceRange();
6920             Diag(AlignedArgs[CanonPVD]->getExprLoc(),
6921                  diag::note_omp_explicit_dsa)
6922                 << getOpenMPClauseName(OMPC_aligned);
6923             continue;
6924           }
6925           AlignedArgs[CanonPVD] = E;
6926           QualType QTy = PVD->getType()
6927                              .getNonReferenceType()
6928                              .getUnqualifiedType()
6929                              .getCanonicalType();
6930           const Type *Ty = QTy.getTypePtrOrNull();
6931           if (!Ty || (!Ty->isArrayType() && !Ty->isPointerType())) {
6932             Diag(E->getExprLoc(), diag::err_omp_aligned_expected_array_or_ptr)
6933                 << QTy << getLangOpts().CPlusPlus << E->getSourceRange();
6934             Diag(PVD->getLocation(), diag::note_previous_decl) << PVD;
6935           }
6936           continue;
6937         }
6938       }
6939     if (isa<CXXThisExpr>(E)) {
6940       if (AlignedThis) {
6941         Diag(E->getExprLoc(), diag::err_omp_used_in_clause_twice)
6942             << 2 << getOpenMPClauseName(OMPC_aligned) << E->getSourceRange();
6943         Diag(AlignedThis->getExprLoc(), diag::note_omp_explicit_dsa)
6944             << getOpenMPClauseName(OMPC_aligned);
6945       }
6946       AlignedThis = E;
6947       continue;
6948     }
6949     Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause)
6950         << FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0);
6951   }
6952   // The optional parameter of the aligned clause, alignment, must be a constant
6953   // positive integer expression. If no optional parameter is specified,
6954   // implementation-defined default alignments for SIMD instructions on the
6955   // target platforms are assumed.
6956   SmallVector<const Expr *, 4> NewAligns;
6957   for (Expr *E : Alignments) {
6958     ExprResult Align;
6959     if (E)
6960       Align = VerifyPositiveIntegerConstantInClause(E, OMPC_aligned);
6961     NewAligns.push_back(Align.get());
6962   }
6963   // OpenMP [2.8.2, declare simd construct, Description]
6964   // The linear clause declares one or more list items to be private to a SIMD
6965   // lane and to have a linear relationship with respect to the iteration space
6966   // of a loop.
6967   // The special this pointer can be used as if was one of the arguments to the
6968   // function in any of the linear, aligned, or uniform clauses.
6969   // When a linear-step expression is specified in a linear clause it must be
6970   // either a constant integer expression or an integer-typed parameter that is
6971   // specified in a uniform clause on the directive.
6972   llvm::DenseMap<const Decl *, const Expr *> LinearArgs;
6973   const bool IsUniformedThis = UniformedLinearThis != nullptr;
6974   auto MI = LinModifiers.begin();
6975   for (const Expr *E : Linears) {
6976     auto LinKind = static_cast<OpenMPLinearClauseKind>(*MI);
6977     ++MI;
6978     E = E->IgnoreParenImpCasts();
6979     if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
6980       if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
6981         const VarDecl *CanonPVD = PVD->getCanonicalDecl();
6982         if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
6983             FD->getParamDecl(PVD->getFunctionScopeIndex())
6984                     ->getCanonicalDecl() == CanonPVD) {
6985           // OpenMP  [2.15.3.7, linear Clause, Restrictions]
6986           // A list-item cannot appear in more than one linear clause.
6987           if (LinearArgs.count(CanonPVD) > 0) {
6988             Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
6989                 << getOpenMPClauseName(OMPC_linear)
6990                 << getOpenMPClauseName(OMPC_linear) << E->getSourceRange();
6991             Diag(LinearArgs[CanonPVD]->getExprLoc(),
6992                  diag::note_omp_explicit_dsa)
6993                 << getOpenMPClauseName(OMPC_linear);
6994             continue;
6995           }
6996           // Each argument can appear in at most one uniform or linear clause.
6997           if (UniformedArgs.count(CanonPVD) > 0) {
6998             Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
6999                 << getOpenMPClauseName(OMPC_linear)
7000                 << getOpenMPClauseName(OMPC_uniform) << E->getSourceRange();
7001             Diag(UniformedArgs[CanonPVD]->getExprLoc(),
7002                  diag::note_omp_explicit_dsa)
7003                 << getOpenMPClauseName(OMPC_uniform);
7004             continue;
7005           }
7006           LinearArgs[CanonPVD] = E;
7007           if (E->isValueDependent() || E->isTypeDependent() ||
7008               E->isInstantiationDependent() ||
7009               E->containsUnexpandedParameterPack())
7010             continue;
7011           (void)CheckOpenMPLinearDecl(CanonPVD, E->getExprLoc(), LinKind,
7012                                       PVD->getOriginalType(),
7013                                       /*IsDeclareSimd=*/true);
7014           continue;
7015         }
7016       }
7017     if (isa<CXXThisExpr>(E)) {
7018       if (UniformedLinearThis) {
7019         Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
7020             << getOpenMPClauseName(OMPC_linear)
7021             << getOpenMPClauseName(IsUniformedThis ? OMPC_uniform : OMPC_linear)
7022             << E->getSourceRange();
7023         Diag(UniformedLinearThis->getExprLoc(), diag::note_omp_explicit_dsa)
7024             << getOpenMPClauseName(IsUniformedThis ? OMPC_uniform
7025                                                    : OMPC_linear);
7026         continue;
7027       }
7028       UniformedLinearThis = E;
7029       if (E->isValueDependent() || E->isTypeDependent() ||
7030           E->isInstantiationDependent() || E->containsUnexpandedParameterPack())
7031         continue;
7032       (void)CheckOpenMPLinearDecl(/*D=*/nullptr, E->getExprLoc(), LinKind,
7033                                   E->getType(), /*IsDeclareSimd=*/true);
7034       continue;
7035     }
7036     Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause)
7037         << FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0);
7038   }
7039   Expr *Step = nullptr;
7040   Expr *NewStep = nullptr;
7041   SmallVector<Expr *, 4> NewSteps;
7042   for (Expr *E : Steps) {
7043     // Skip the same step expression, it was checked already.
7044     if (Step == E || !E) {
7045       NewSteps.push_back(E ? NewStep : nullptr);
7046       continue;
7047     }
7048     Step = E;
7049     if (const auto *DRE = dyn_cast<DeclRefExpr>(Step))
7050       if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
7051         const VarDecl *CanonPVD = PVD->getCanonicalDecl();
7052         if (UniformedArgs.count(CanonPVD) == 0) {
7053           Diag(Step->getExprLoc(), diag::err_omp_expected_uniform_param)
7054               << Step->getSourceRange();
7055         } else if (E->isValueDependent() || E->isTypeDependent() ||
7056                    E->isInstantiationDependent() ||
7057                    E->containsUnexpandedParameterPack() ||
7058                    CanonPVD->getType()->hasIntegerRepresentation()) {
7059           NewSteps.push_back(Step);
7060         } else {
7061           Diag(Step->getExprLoc(), diag::err_omp_expected_int_param)
7062               << Step->getSourceRange();
7063         }
7064         continue;
7065       }
7066     NewStep = Step;
7067     if (Step && !Step->isValueDependent() && !Step->isTypeDependent() &&
7068         !Step->isInstantiationDependent() &&
7069         !Step->containsUnexpandedParameterPack()) {
7070       NewStep = PerformOpenMPImplicitIntegerConversion(Step->getExprLoc(), Step)
7071                     .get();
7072       if (NewStep)
7073         NewStep =
7074             VerifyIntegerConstantExpression(NewStep, /*FIXME*/ AllowFold).get();
7075     }
7076     NewSteps.push_back(NewStep);
7077   }
7078   auto *NewAttr = OMPDeclareSimdDeclAttr::CreateImplicit(
7079       Context, BS, SL.get(), const_cast<Expr **>(Uniforms.data()),
7080       Uniforms.size(), const_cast<Expr **>(Aligneds.data()), Aligneds.size(),
7081       const_cast<Expr **>(NewAligns.data()), NewAligns.size(),
7082       const_cast<Expr **>(Linears.data()), Linears.size(),
7083       const_cast<unsigned *>(LinModifiers.data()), LinModifiers.size(),
7084       NewSteps.data(), NewSteps.size(), SR);
7085   ADecl->addAttr(NewAttr);
7086   return DG;
7087 }
7088 
7089 static void setPrototype(Sema &S, FunctionDecl *FD, FunctionDecl *FDWithProto,
7090                          QualType NewType) {
7091   assert(NewType->isFunctionProtoType() &&
7092          "Expected function type with prototype.");
7093   assert(FD->getType()->isFunctionNoProtoType() &&
7094          "Expected function with type with no prototype.");
7095   assert(FDWithProto->getType()->isFunctionProtoType() &&
7096          "Expected function with prototype.");
7097   // Synthesize parameters with the same types.
7098   FD->setType(NewType);
7099   SmallVector<ParmVarDecl *, 16> Params;
7100   for (const ParmVarDecl *P : FDWithProto->parameters()) {
7101     auto *Param = ParmVarDecl::Create(S.getASTContext(), FD, SourceLocation(),
7102                                       SourceLocation(), nullptr, P->getType(),
7103                                       /*TInfo=*/nullptr, SC_None, nullptr);
7104     Param->setScopeInfo(0, Params.size());
7105     Param->setImplicit();
7106     Params.push_back(Param);
7107   }
7108 
7109   FD->setParams(Params);
7110 }
7111 
7112 void Sema::ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D) {
7113   if (D->isInvalidDecl())
7114     return;
7115   FunctionDecl *FD = nullptr;
7116   if (auto *UTemplDecl = dyn_cast<FunctionTemplateDecl>(D))
7117     FD = UTemplDecl->getTemplatedDecl();
7118   else
7119     FD = cast<FunctionDecl>(D);
7120   assert(FD && "Expected a function declaration!");
7121 
7122   // If we are instantiating templates we do *not* apply scoped assumptions but
7123   // only global ones. We apply scoped assumption to the template definition
7124   // though.
7125   if (!inTemplateInstantiation()) {
7126     for (AssumptionAttr *AA : OMPAssumeScoped)
7127       FD->addAttr(AA);
7128   }
7129   for (AssumptionAttr *AA : OMPAssumeGlobal)
7130     FD->addAttr(AA);
7131 }
7132 
7133 Sema::OMPDeclareVariantScope::OMPDeclareVariantScope(OMPTraitInfo &TI)
7134     : TI(&TI), NameSuffix(TI.getMangledName()) {}
7135 
7136 void Sema::ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
7137     Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists,
7138     SmallVectorImpl<FunctionDecl *> &Bases) {
7139   if (!D.getIdentifier())
7140     return;
7141 
7142   OMPDeclareVariantScope &DVScope = OMPDeclareVariantScopes.back();
7143 
7144   // Template specialization is an extension, check if we do it.
7145   bool IsTemplated = !TemplateParamLists.empty();
7146   if (IsTemplated &
7147       !DVScope.TI->isExtensionActive(
7148           llvm::omp::TraitProperty::implementation_extension_allow_templates))
7149     return;
7150 
7151   IdentifierInfo *BaseII = D.getIdentifier();
7152   LookupResult Lookup(*this, DeclarationName(BaseII), D.getIdentifierLoc(),
7153                       LookupOrdinaryName);
7154   LookupParsedName(Lookup, S, &D.getCXXScopeSpec());
7155 
7156   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7157   QualType FType = TInfo->getType();
7158 
7159   bool IsConstexpr =
7160       D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr;
7161   bool IsConsteval =
7162       D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Consteval;
7163 
7164   for (auto *Candidate : Lookup) {
7165     auto *CandidateDecl = Candidate->getUnderlyingDecl();
7166     FunctionDecl *UDecl = nullptr;
7167     if (IsTemplated && isa<FunctionTemplateDecl>(CandidateDecl)) {
7168       auto *FTD = cast<FunctionTemplateDecl>(CandidateDecl);
7169       if (FTD->getTemplateParameters()->size() == TemplateParamLists.size())
7170         UDecl = FTD->getTemplatedDecl();
7171     } else if (!IsTemplated)
7172       UDecl = dyn_cast<FunctionDecl>(CandidateDecl);
7173     if (!UDecl)
7174       continue;
7175 
7176     // Don't specialize constexpr/consteval functions with
7177     // non-constexpr/consteval functions.
7178     if (UDecl->isConstexpr() && !IsConstexpr)
7179       continue;
7180     if (UDecl->isConsteval() && !IsConsteval)
7181       continue;
7182 
7183     QualType UDeclTy = UDecl->getType();
7184     if (!UDeclTy->isDependentType()) {
7185       QualType NewType = Context.mergeFunctionTypes(
7186           FType, UDeclTy, /* OfBlockPointer */ false,
7187           /* Unqualified */ false, /* AllowCXX */ true);
7188       if (NewType.isNull())
7189         continue;
7190     }
7191 
7192     // Found a base!
7193     Bases.push_back(UDecl);
7194   }
7195 
7196   bool UseImplicitBase = !DVScope.TI->isExtensionActive(
7197       llvm::omp::TraitProperty::implementation_extension_disable_implicit_base);
7198   // If no base was found we create a declaration that we use as base.
7199   if (Bases.empty() && UseImplicitBase) {
7200     D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
7201     Decl *BaseD = HandleDeclarator(S, D, TemplateParamLists);
7202     BaseD->setImplicit(true);
7203     if (auto *BaseTemplD = dyn_cast<FunctionTemplateDecl>(BaseD))
7204       Bases.push_back(BaseTemplD->getTemplatedDecl());
7205     else
7206       Bases.push_back(cast<FunctionDecl>(BaseD));
7207   }
7208 
7209   std::string MangledName;
7210   MangledName += D.getIdentifier()->getName();
7211   MangledName += getOpenMPVariantManglingSeparatorStr();
7212   MangledName += DVScope.NameSuffix;
7213   IdentifierInfo &VariantII = Context.Idents.get(MangledName);
7214 
7215   VariantII.setMangledOpenMPVariantName(true);
7216   D.SetIdentifier(&VariantII, D.getBeginLoc());
7217 }
7218 
7219 void Sema::ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
7220     Decl *D, SmallVectorImpl<FunctionDecl *> &Bases) {
7221   // Do not mark function as is used to prevent its emission if this is the
7222   // only place where it is used.
7223   EnterExpressionEvaluationContext Unevaluated(
7224       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7225 
7226   FunctionDecl *FD = nullptr;
7227   if (auto *UTemplDecl = dyn_cast<FunctionTemplateDecl>(D))
7228     FD = UTemplDecl->getTemplatedDecl();
7229   else
7230     FD = cast<FunctionDecl>(D);
7231   auto *VariantFuncRef = DeclRefExpr::Create(
7232       Context, NestedNameSpecifierLoc(), SourceLocation(), FD,
7233       /* RefersToEnclosingVariableOrCapture */ false,
7234       /* NameLoc */ FD->getLocation(), FD->getType(),
7235       ExprValueKind::VK_PRValue);
7236 
7237   OMPDeclareVariantScope &DVScope = OMPDeclareVariantScopes.back();
7238   auto *OMPDeclareVariantA = OMPDeclareVariantAttr::CreateImplicit(
7239       Context, VariantFuncRef, DVScope.TI,
7240       /*NothingArgs=*/nullptr, /*NothingArgsSize=*/0,
7241       /*NeedDevicePtrArgs=*/nullptr, /*NeedDevicePtrArgsSize=*/0,
7242       /*AppendArgs=*/nullptr, /*AppendArgsSize=*/0);
7243   for (FunctionDecl *BaseFD : Bases)
7244     BaseFD->addAttr(OMPDeclareVariantA);
7245 }
7246 
7247 ExprResult Sema::ActOnOpenMPCall(ExprResult Call, Scope *Scope,
7248                                  SourceLocation LParenLoc,
7249                                  MultiExprArg ArgExprs,
7250                                  SourceLocation RParenLoc, Expr *ExecConfig) {
7251   // The common case is a regular call we do not want to specialize at all. Try
7252   // to make that case fast by bailing early.
7253   CallExpr *CE = dyn_cast<CallExpr>(Call.get());
7254   if (!CE)
7255     return Call;
7256 
7257   FunctionDecl *CalleeFnDecl = CE->getDirectCallee();
7258   if (!CalleeFnDecl)
7259     return Call;
7260 
7261   if (LangOpts.OpenMP >= 51 && CalleeFnDecl->getIdentifier() &&
7262       CalleeFnDecl->getName().startswith_insensitive("omp_")) {
7263     // checking for any calls inside an Order region
7264     if (Scope && Scope->isOpenMPOrderClauseScope())
7265       Diag(LParenLoc, diag::err_omp_unexpected_call_to_omp_runtime_api);
7266   }
7267 
7268   if (!CalleeFnDecl->hasAttr<OMPDeclareVariantAttr>())
7269     return Call;
7270 
7271   ASTContext &Context = getASTContext();
7272   std::function<void(StringRef)> DiagUnknownTrait = [this,
7273                                                      CE](StringRef ISATrait) {
7274     // TODO Track the selector locations in a way that is accessible here to
7275     // improve the diagnostic location.
7276     Diag(CE->getBeginLoc(), diag::warn_unknown_declare_variant_isa_trait)
7277         << ISATrait;
7278   };
7279   TargetOMPContext OMPCtx(Context, std::move(DiagUnknownTrait),
7280                           getCurFunctionDecl(), DSAStack->getConstructTraits());
7281 
7282   QualType CalleeFnType = CalleeFnDecl->getType();
7283 
7284   SmallVector<Expr *, 4> Exprs;
7285   SmallVector<VariantMatchInfo, 4> VMIs;
7286   while (CalleeFnDecl) {
7287     for (OMPDeclareVariantAttr *A :
7288          CalleeFnDecl->specific_attrs<OMPDeclareVariantAttr>()) {
7289       Expr *VariantRef = A->getVariantFuncRef();
7290 
7291       VariantMatchInfo VMI;
7292       OMPTraitInfo &TI = A->getTraitInfo();
7293       TI.getAsVariantMatchInfo(Context, VMI);
7294       if (!isVariantApplicableInContext(VMI, OMPCtx,
7295                                         /* DeviceSetOnly */ false))
7296         continue;
7297 
7298       VMIs.push_back(VMI);
7299       Exprs.push_back(VariantRef);
7300     }
7301 
7302     CalleeFnDecl = CalleeFnDecl->getPreviousDecl();
7303   }
7304 
7305   ExprResult NewCall;
7306   do {
7307     int BestIdx = getBestVariantMatchForContext(VMIs, OMPCtx);
7308     if (BestIdx < 0)
7309       return Call;
7310     Expr *BestExpr = cast<DeclRefExpr>(Exprs[BestIdx]);
7311     Decl *BestDecl = cast<DeclRefExpr>(BestExpr)->getDecl();
7312 
7313     {
7314       // Try to build a (member) call expression for the current best applicable
7315       // variant expression. We allow this to fail in which case we continue
7316       // with the next best variant expression. The fail case is part of the
7317       // implementation defined behavior in the OpenMP standard when it talks
7318       // about what differences in the function prototypes: "Any differences
7319       // that the specific OpenMP context requires in the prototype of the
7320       // variant from the base function prototype are implementation defined."
7321       // This wording is there to allow the specialized variant to have a
7322       // different type than the base function. This is intended and OK but if
7323       // we cannot create a call the difference is not in the "implementation
7324       // defined range" we allow.
7325       Sema::TentativeAnalysisScope Trap(*this);
7326 
7327       if (auto *SpecializedMethod = dyn_cast<CXXMethodDecl>(BestDecl)) {
7328         auto *MemberCall = dyn_cast<CXXMemberCallExpr>(CE);
7329         BestExpr = MemberExpr::CreateImplicit(
7330             Context, MemberCall->getImplicitObjectArgument(),
7331             /* IsArrow */ false, SpecializedMethod, Context.BoundMemberTy,
7332             MemberCall->getValueKind(), MemberCall->getObjectKind());
7333       }
7334       NewCall = BuildCallExpr(Scope, BestExpr, LParenLoc, ArgExprs, RParenLoc,
7335                               ExecConfig);
7336       if (NewCall.isUsable()) {
7337         if (CallExpr *NCE = dyn_cast<CallExpr>(NewCall.get())) {
7338           FunctionDecl *NewCalleeFnDecl = NCE->getDirectCallee();
7339           QualType NewType = Context.mergeFunctionTypes(
7340               CalleeFnType, NewCalleeFnDecl->getType(),
7341               /* OfBlockPointer */ false,
7342               /* Unqualified */ false, /* AllowCXX */ true);
7343           if (!NewType.isNull())
7344             break;
7345           // Don't use the call if the function type was not compatible.
7346           NewCall = nullptr;
7347         }
7348       }
7349     }
7350 
7351     VMIs.erase(VMIs.begin() + BestIdx);
7352     Exprs.erase(Exprs.begin() + BestIdx);
7353   } while (!VMIs.empty());
7354 
7355   if (!NewCall.isUsable())
7356     return Call;
7357   return PseudoObjectExpr::Create(Context, CE, {NewCall.get()}, 0);
7358 }
7359 
7360 std::optional<std::pair<FunctionDecl *, Expr *>>
7361 Sema::checkOpenMPDeclareVariantFunction(Sema::DeclGroupPtrTy DG,
7362                                         Expr *VariantRef, OMPTraitInfo &TI,
7363                                         unsigned NumAppendArgs,
7364                                         SourceRange SR) {
7365   if (!DG || DG.get().isNull())
7366     return std::nullopt;
7367 
7368   const int VariantId = 1;
7369   // Must be applied only to single decl.
7370   if (!DG.get().isSingleDecl()) {
7371     Diag(SR.getBegin(), diag::err_omp_single_decl_in_declare_simd_variant)
7372         << VariantId << SR;
7373     return std::nullopt;
7374   }
7375   Decl *ADecl = DG.get().getSingleDecl();
7376   if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ADecl))
7377     ADecl = FTD->getTemplatedDecl();
7378 
7379   // Decl must be a function.
7380   auto *FD = dyn_cast<FunctionDecl>(ADecl);
7381   if (!FD) {
7382     Diag(ADecl->getLocation(), diag::err_omp_function_expected)
7383         << VariantId << SR;
7384     return std::nullopt;
7385   }
7386 
7387   auto &&HasMultiVersionAttributes = [](const FunctionDecl *FD) {
7388     // The 'target' attribute needs to be separately checked because it does
7389     // not always signify a multiversion function declaration.
7390     return FD->isMultiVersion() || FD->hasAttr<TargetAttr>();
7391   };
7392   // OpenMP is not compatible with multiversion function attributes.
7393   if (HasMultiVersionAttributes(FD)) {
7394     Diag(FD->getLocation(), diag::err_omp_declare_variant_incompat_attributes)
7395         << SR;
7396     return std::nullopt;
7397   }
7398 
7399   // Allow #pragma omp declare variant only if the function is not used.
7400   if (FD->isUsed(false))
7401     Diag(SR.getBegin(), diag::warn_omp_declare_variant_after_used)
7402         << FD->getLocation();
7403 
7404   // Check if the function was emitted already.
7405   const FunctionDecl *Definition;
7406   if (!FD->isThisDeclarationADefinition() && FD->isDefined(Definition) &&
7407       (LangOpts.EmitAllDecls || Context.DeclMustBeEmitted(Definition)))
7408     Diag(SR.getBegin(), diag::warn_omp_declare_variant_after_emitted)
7409         << FD->getLocation();
7410 
7411   // The VariantRef must point to function.
7412   if (!VariantRef) {
7413     Diag(SR.getBegin(), diag::err_omp_function_expected) << VariantId;
7414     return std::nullopt;
7415   }
7416 
7417   auto ShouldDelayChecks = [](Expr *&E, bool) {
7418     return E && (E->isTypeDependent() || E->isValueDependent() ||
7419                  E->containsUnexpandedParameterPack() ||
7420                  E->isInstantiationDependent());
7421   };
7422   // Do not check templates, wait until instantiation.
7423   if (FD->isDependentContext() || ShouldDelayChecks(VariantRef, false) ||
7424       TI.anyScoreOrCondition(ShouldDelayChecks))
7425     return std::make_pair(FD, VariantRef);
7426 
7427   // Deal with non-constant score and user condition expressions.
7428   auto HandleNonConstantScoresAndConditions = [this](Expr *&E,
7429                                                      bool IsScore) -> bool {
7430     if (!E || E->isIntegerConstantExpr(Context))
7431       return false;
7432 
7433     if (IsScore) {
7434       // We warn on non-constant scores and pretend they were not present.
7435       Diag(E->getExprLoc(), diag::warn_omp_declare_variant_score_not_constant)
7436           << E;
7437       E = nullptr;
7438     } else {
7439       // We could replace a non-constant user condition with "false" but we
7440       // will soon need to handle these anyway for the dynamic version of
7441       // OpenMP context selectors.
7442       Diag(E->getExprLoc(),
7443            diag::err_omp_declare_variant_user_condition_not_constant)
7444           << E;
7445     }
7446     return true;
7447   };
7448   if (TI.anyScoreOrCondition(HandleNonConstantScoresAndConditions))
7449     return std::nullopt;
7450 
7451   QualType AdjustedFnType = FD->getType();
7452   if (NumAppendArgs) {
7453     const auto *PTy = AdjustedFnType->getAsAdjusted<FunctionProtoType>();
7454     if (!PTy) {
7455       Diag(FD->getLocation(), diag::err_omp_declare_variant_prototype_required)
7456           << SR;
7457       return std::nullopt;
7458     }
7459     // Adjust the function type to account for an extra omp_interop_t for each
7460     // specified in the append_args clause.
7461     const TypeDecl *TD = nullptr;
7462     LookupResult Result(*this, &Context.Idents.get("omp_interop_t"),
7463                         SR.getBegin(), Sema::LookupOrdinaryName);
7464     if (LookupName(Result, getCurScope())) {
7465       NamedDecl *ND = Result.getFoundDecl();
7466       TD = dyn_cast_or_null<TypeDecl>(ND);
7467     }
7468     if (!TD) {
7469       Diag(SR.getBegin(), diag::err_omp_interop_type_not_found) << SR;
7470       return std::nullopt;
7471     }
7472     QualType InteropType = Context.getTypeDeclType(TD);
7473     if (PTy->isVariadic()) {
7474       Diag(FD->getLocation(), diag::err_omp_append_args_with_varargs) << SR;
7475       return std::nullopt;
7476     }
7477     llvm::SmallVector<QualType, 8> Params;
7478     Params.append(PTy->param_type_begin(), PTy->param_type_end());
7479     Params.insert(Params.end(), NumAppendArgs, InteropType);
7480     AdjustedFnType = Context.getFunctionType(PTy->getReturnType(), Params,
7481                                              PTy->getExtProtoInfo());
7482   }
7483 
7484   // Convert VariantRef expression to the type of the original function to
7485   // resolve possible conflicts.
7486   ExprResult VariantRefCast = VariantRef;
7487   if (LangOpts.CPlusPlus) {
7488     QualType FnPtrType;
7489     auto *Method = dyn_cast<CXXMethodDecl>(FD);
7490     if (Method && !Method->isStatic()) {
7491       const Type *ClassType =
7492           Context.getTypeDeclType(Method->getParent()).getTypePtr();
7493       FnPtrType = Context.getMemberPointerType(AdjustedFnType, ClassType);
7494       ExprResult ER;
7495       {
7496         // Build adrr_of unary op to correctly handle type checks for member
7497         // functions.
7498         Sema::TentativeAnalysisScope Trap(*this);
7499         ER = CreateBuiltinUnaryOp(VariantRef->getBeginLoc(), UO_AddrOf,
7500                                   VariantRef);
7501       }
7502       if (!ER.isUsable()) {
7503         Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected)
7504             << VariantId << VariantRef->getSourceRange();
7505         return std::nullopt;
7506       }
7507       VariantRef = ER.get();
7508     } else {
7509       FnPtrType = Context.getPointerType(AdjustedFnType);
7510     }
7511     QualType VarianPtrType = Context.getPointerType(VariantRef->getType());
7512     if (VarianPtrType.getUnqualifiedType() != FnPtrType.getUnqualifiedType()) {
7513       ImplicitConversionSequence ICS = TryImplicitConversion(
7514           VariantRef, FnPtrType.getUnqualifiedType(),
7515           /*SuppressUserConversions=*/false, AllowedExplicit::None,
7516           /*InOverloadResolution=*/false,
7517           /*CStyle=*/false,
7518           /*AllowObjCWritebackConversion=*/false);
7519       if (ICS.isFailure()) {
7520         Diag(VariantRef->getExprLoc(),
7521              diag::err_omp_declare_variant_incompat_types)
7522             << VariantRef->getType()
7523             << ((Method && !Method->isStatic()) ? FnPtrType : FD->getType())
7524             << (NumAppendArgs ? 1 : 0) << VariantRef->getSourceRange();
7525         return std::nullopt;
7526       }
7527       VariantRefCast = PerformImplicitConversion(
7528           VariantRef, FnPtrType.getUnqualifiedType(), AA_Converting);
7529       if (!VariantRefCast.isUsable())
7530         return std::nullopt;
7531     }
7532     // Drop previously built artificial addr_of unary op for member functions.
7533     if (Method && !Method->isStatic()) {
7534       Expr *PossibleAddrOfVariantRef = VariantRefCast.get();
7535       if (auto *UO = dyn_cast<UnaryOperator>(
7536               PossibleAddrOfVariantRef->IgnoreImplicit()))
7537         VariantRefCast = UO->getSubExpr();
7538     }
7539   }
7540 
7541   ExprResult ER = CheckPlaceholderExpr(VariantRefCast.get());
7542   if (!ER.isUsable() ||
7543       !ER.get()->IgnoreParenImpCasts()->getType()->isFunctionType()) {
7544     Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected)
7545         << VariantId << VariantRef->getSourceRange();
7546     return std::nullopt;
7547   }
7548 
7549   // The VariantRef must point to function.
7550   auto *DRE = dyn_cast<DeclRefExpr>(ER.get()->IgnoreParenImpCasts());
7551   if (!DRE) {
7552     Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected)
7553         << VariantId << VariantRef->getSourceRange();
7554     return std::nullopt;
7555   }
7556   auto *NewFD = dyn_cast_or_null<FunctionDecl>(DRE->getDecl());
7557   if (!NewFD) {
7558     Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected)
7559         << VariantId << VariantRef->getSourceRange();
7560     return std::nullopt;
7561   }
7562 
7563   if (FD->getCanonicalDecl() == NewFD->getCanonicalDecl()) {
7564     Diag(VariantRef->getExprLoc(),
7565          diag::err_omp_declare_variant_same_base_function)
7566         << VariantRef->getSourceRange();
7567     return std::nullopt;
7568   }
7569 
7570   // Check if function types are compatible in C.
7571   if (!LangOpts.CPlusPlus) {
7572     QualType NewType =
7573         Context.mergeFunctionTypes(AdjustedFnType, NewFD->getType());
7574     if (NewType.isNull()) {
7575       Diag(VariantRef->getExprLoc(),
7576            diag::err_omp_declare_variant_incompat_types)
7577           << NewFD->getType() << FD->getType() << (NumAppendArgs ? 1 : 0)
7578           << VariantRef->getSourceRange();
7579       return std::nullopt;
7580     }
7581     if (NewType->isFunctionProtoType()) {
7582       if (FD->getType()->isFunctionNoProtoType())
7583         setPrototype(*this, FD, NewFD, NewType);
7584       else if (NewFD->getType()->isFunctionNoProtoType())
7585         setPrototype(*this, NewFD, FD, NewType);
7586     }
7587   }
7588 
7589   // Check if variant function is not marked with declare variant directive.
7590   if (NewFD->hasAttrs() && NewFD->hasAttr<OMPDeclareVariantAttr>()) {
7591     Diag(VariantRef->getExprLoc(),
7592          diag::warn_omp_declare_variant_marked_as_declare_variant)
7593         << VariantRef->getSourceRange();
7594     SourceRange SR =
7595         NewFD->specific_attr_begin<OMPDeclareVariantAttr>()->getRange();
7596     Diag(SR.getBegin(), diag::note_omp_marked_declare_variant_here) << SR;
7597     return std::nullopt;
7598   }
7599 
7600   enum DoesntSupport {
7601     VirtFuncs = 1,
7602     Constructors = 3,
7603     Destructors = 4,
7604     DeletedFuncs = 5,
7605     DefaultedFuncs = 6,
7606     ConstexprFuncs = 7,
7607     ConstevalFuncs = 8,
7608   };
7609   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
7610     if (CXXFD->isVirtual()) {
7611       Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
7612           << VirtFuncs;
7613       return std::nullopt;
7614     }
7615 
7616     if (isa<CXXConstructorDecl>(FD)) {
7617       Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
7618           << Constructors;
7619       return std::nullopt;
7620     }
7621 
7622     if (isa<CXXDestructorDecl>(FD)) {
7623       Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
7624           << Destructors;
7625       return std::nullopt;
7626     }
7627   }
7628 
7629   if (FD->isDeleted()) {
7630     Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
7631         << DeletedFuncs;
7632     return std::nullopt;
7633   }
7634 
7635   if (FD->isDefaulted()) {
7636     Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
7637         << DefaultedFuncs;
7638     return std::nullopt;
7639   }
7640 
7641   if (FD->isConstexpr()) {
7642     Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
7643         << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
7644     return std::nullopt;
7645   }
7646 
7647   // Check general compatibility.
7648   if (areMultiversionVariantFunctionsCompatible(
7649           FD, NewFD, PartialDiagnostic::NullDiagnostic(),
7650           PartialDiagnosticAt(SourceLocation(),
7651                               PartialDiagnostic::NullDiagnostic()),
7652           PartialDiagnosticAt(
7653               VariantRef->getExprLoc(),
7654               PDiag(diag::err_omp_declare_variant_doesnt_support)),
7655           PartialDiagnosticAt(VariantRef->getExprLoc(),
7656                               PDiag(diag::err_omp_declare_variant_diff)
7657                                   << FD->getLocation()),
7658           /*TemplatesSupported=*/true, /*ConstexprSupported=*/false,
7659           /*CLinkageMayDiffer=*/true))
7660     return std::nullopt;
7661   return std::make_pair(FD, cast<Expr>(DRE));
7662 }
7663 
7664 void Sema::ActOnOpenMPDeclareVariantDirective(
7665     FunctionDecl *FD, Expr *VariantRef, OMPTraitInfo &TI,
7666     ArrayRef<Expr *> AdjustArgsNothing,
7667     ArrayRef<Expr *> AdjustArgsNeedDevicePtr,
7668     ArrayRef<OMPInteropInfo> AppendArgs, SourceLocation AdjustArgsLoc,
7669     SourceLocation AppendArgsLoc, SourceRange SR) {
7670 
7671   // OpenMP 5.1 [2.3.5, declare variant directive, Restrictions]
7672   // An adjust_args clause or append_args clause can only be specified if the
7673   // dispatch selector of the construct selector set appears in the match
7674   // clause.
7675 
7676   SmallVector<Expr *, 8> AllAdjustArgs;
7677   llvm::append_range(AllAdjustArgs, AdjustArgsNothing);
7678   llvm::append_range(AllAdjustArgs, AdjustArgsNeedDevicePtr);
7679 
7680   if (!AllAdjustArgs.empty() || !AppendArgs.empty()) {
7681     VariantMatchInfo VMI;
7682     TI.getAsVariantMatchInfo(Context, VMI);
7683     if (!llvm::is_contained(
7684             VMI.ConstructTraits,
7685             llvm::omp::TraitProperty::construct_dispatch_dispatch)) {
7686       if (!AllAdjustArgs.empty())
7687         Diag(AdjustArgsLoc, diag::err_omp_clause_requires_dispatch_construct)
7688             << getOpenMPClauseName(OMPC_adjust_args);
7689       if (!AppendArgs.empty())
7690         Diag(AppendArgsLoc, diag::err_omp_clause_requires_dispatch_construct)
7691             << getOpenMPClauseName(OMPC_append_args);
7692       return;
7693     }
7694   }
7695 
7696   // OpenMP 5.1 [2.3.5, declare variant directive, Restrictions]
7697   // Each argument can only appear in a single adjust_args clause for each
7698   // declare variant directive.
7699   llvm::SmallPtrSet<const VarDecl *, 4> AdjustVars;
7700 
7701   for (Expr *E : AllAdjustArgs) {
7702     E = E->IgnoreParenImpCasts();
7703     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
7704       if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
7705         const VarDecl *CanonPVD = PVD->getCanonicalDecl();
7706         if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
7707             FD->getParamDecl(PVD->getFunctionScopeIndex())
7708                     ->getCanonicalDecl() == CanonPVD) {
7709           // It's a parameter of the function, check duplicates.
7710           if (!AdjustVars.insert(CanonPVD).second) {
7711             Diag(DRE->getLocation(), diag::err_omp_adjust_arg_multiple_clauses)
7712                 << PVD;
7713             return;
7714           }
7715           continue;
7716         }
7717       }
7718     }
7719     // Anything that is not a function parameter is an error.
7720     Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause) << FD << 0;
7721     return;
7722   }
7723 
7724   auto *NewAttr = OMPDeclareVariantAttr::CreateImplicit(
7725       Context, VariantRef, &TI, const_cast<Expr **>(AdjustArgsNothing.data()),
7726       AdjustArgsNothing.size(),
7727       const_cast<Expr **>(AdjustArgsNeedDevicePtr.data()),
7728       AdjustArgsNeedDevicePtr.size(),
7729       const_cast<OMPInteropInfo *>(AppendArgs.data()), AppendArgs.size(), SR);
7730   FD->addAttr(NewAttr);
7731 }
7732 
7733 StmtResult Sema::ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
7734                                               Stmt *AStmt,
7735                                               SourceLocation StartLoc,
7736                                               SourceLocation EndLoc) {
7737   if (!AStmt)
7738     return StmtError();
7739 
7740   auto *CS = cast<CapturedStmt>(AStmt);
7741   // 1.2.2 OpenMP Language Terminology
7742   // Structured block - An executable statement with a single entry at the
7743   // top and a single exit at the bottom.
7744   // The point of exit cannot be a branch out of the structured block.
7745   // longjmp() and throw() must not violate the entry/exit criteria.
7746   CS->getCapturedDecl()->setNothrow();
7747 
7748   setFunctionHasBranchProtectedScope();
7749 
7750   return OMPParallelDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
7751                                       DSAStack->getTaskgroupReductionRef(),
7752                                       DSAStack->isCancelRegion());
7753 }
7754 
7755 namespace {
7756 /// Iteration space of a single for loop.
7757 struct LoopIterationSpace final {
7758   /// True if the condition operator is the strict compare operator (<, > or
7759   /// !=).
7760   bool IsStrictCompare = false;
7761   /// Condition of the loop.
7762   Expr *PreCond = nullptr;
7763   /// This expression calculates the number of iterations in the loop.
7764   /// It is always possible to calculate it before starting the loop.
7765   Expr *NumIterations = nullptr;
7766   /// The loop counter variable.
7767   Expr *CounterVar = nullptr;
7768   /// Private loop counter variable.
7769   Expr *PrivateCounterVar = nullptr;
7770   /// This is initializer for the initial value of #CounterVar.
7771   Expr *CounterInit = nullptr;
7772   /// This is step for the #CounterVar used to generate its update:
7773   /// #CounterVar = #CounterInit + #CounterStep * CurrentIteration.
7774   Expr *CounterStep = nullptr;
7775   /// Should step be subtracted?
7776   bool Subtract = false;
7777   /// Source range of the loop init.
7778   SourceRange InitSrcRange;
7779   /// Source range of the loop condition.
7780   SourceRange CondSrcRange;
7781   /// Source range of the loop increment.
7782   SourceRange IncSrcRange;
7783   /// Minimum value that can have the loop control variable. Used to support
7784   /// non-rectangular loops. Applied only for LCV with the non-iterator types,
7785   /// since only such variables can be used in non-loop invariant expressions.
7786   Expr *MinValue = nullptr;
7787   /// Maximum value that can have the loop control variable. Used to support
7788   /// non-rectangular loops. Applied only for LCV with the non-iterator type,
7789   /// since only such variables can be used in non-loop invariant expressions.
7790   Expr *MaxValue = nullptr;
7791   /// true, if the lower bound depends on the outer loop control var.
7792   bool IsNonRectangularLB = false;
7793   /// true, if the upper bound depends on the outer loop control var.
7794   bool IsNonRectangularUB = false;
7795   /// Index of the loop this loop depends on and forms non-rectangular loop
7796   /// nest.
7797   unsigned LoopDependentIdx = 0;
7798   /// Final condition for the non-rectangular loop nest support. It is used to
7799   /// check that the number of iterations for this particular counter must be
7800   /// finished.
7801   Expr *FinalCondition = nullptr;
7802 };
7803 
7804 /// Helper class for checking canonical form of the OpenMP loops and
7805 /// extracting iteration space of each loop in the loop nest, that will be used
7806 /// for IR generation.
7807 class OpenMPIterationSpaceChecker {
7808   /// Reference to Sema.
7809   Sema &SemaRef;
7810   /// Does the loop associated directive support non-rectangular loops?
7811   bool SupportsNonRectangular;
7812   /// Data-sharing stack.
7813   DSAStackTy &Stack;
7814   /// A location for diagnostics (when there is no some better location).
7815   SourceLocation DefaultLoc;
7816   /// A location for diagnostics (when increment is not compatible).
7817   SourceLocation ConditionLoc;
7818   /// A source location for referring to loop init later.
7819   SourceRange InitSrcRange;
7820   /// A source location for referring to condition later.
7821   SourceRange ConditionSrcRange;
7822   /// A source location for referring to increment later.
7823   SourceRange IncrementSrcRange;
7824   /// Loop variable.
7825   ValueDecl *LCDecl = nullptr;
7826   /// Reference to loop variable.
7827   Expr *LCRef = nullptr;
7828   /// Lower bound (initializer for the var).
7829   Expr *LB = nullptr;
7830   /// Upper bound.
7831   Expr *UB = nullptr;
7832   /// Loop step (increment).
7833   Expr *Step = nullptr;
7834   /// This flag is true when condition is one of:
7835   ///   Var <  UB
7836   ///   Var <= UB
7837   ///   UB  >  Var
7838   ///   UB  >= Var
7839   /// This will have no value when the condition is !=
7840   std::optional<bool> TestIsLessOp;
7841   /// This flag is true when condition is strict ( < or > ).
7842   bool TestIsStrictOp = false;
7843   /// This flag is true when step is subtracted on each iteration.
7844   bool SubtractStep = false;
7845   /// The outer loop counter this loop depends on (if any).
7846   const ValueDecl *DepDecl = nullptr;
7847   /// Contains number of loop (starts from 1) on which loop counter init
7848   /// expression of this loop depends on.
7849   std::optional<unsigned> InitDependOnLC;
7850   /// Contains number of loop (starts from 1) on which loop counter condition
7851   /// expression of this loop depends on.
7852   std::optional<unsigned> CondDependOnLC;
7853   /// Checks if the provide statement depends on the loop counter.
7854   std::optional<unsigned> doesDependOnLoopCounter(const Stmt *S,
7855                                                   bool IsInitializer);
7856   /// Original condition required for checking of the exit condition for
7857   /// non-rectangular loop.
7858   Expr *Condition = nullptr;
7859 
7860 public:
7861   OpenMPIterationSpaceChecker(Sema &SemaRef, bool SupportsNonRectangular,
7862                               DSAStackTy &Stack, SourceLocation DefaultLoc)
7863       : SemaRef(SemaRef), SupportsNonRectangular(SupportsNonRectangular),
7864         Stack(Stack), DefaultLoc(DefaultLoc), ConditionLoc(DefaultLoc) {}
7865   /// Check init-expr for canonical loop form and save loop counter
7866   /// variable - #Var and its initialization value - #LB.
7867   bool checkAndSetInit(Stmt *S, bool EmitDiags = true);
7868   /// Check test-expr for canonical form, save upper-bound (#UB), flags
7869   /// for less/greater and for strict/non-strict comparison.
7870   bool checkAndSetCond(Expr *S);
7871   /// Check incr-expr for canonical loop form and return true if it
7872   /// does not conform, otherwise save loop step (#Step).
7873   bool checkAndSetInc(Expr *S);
7874   /// Return the loop counter variable.
7875   ValueDecl *getLoopDecl() const { return LCDecl; }
7876   /// Return the reference expression to loop counter variable.
7877   Expr *getLoopDeclRefExpr() const { return LCRef; }
7878   /// Source range of the loop init.
7879   SourceRange getInitSrcRange() const { return InitSrcRange; }
7880   /// Source range of the loop condition.
7881   SourceRange getConditionSrcRange() const { return ConditionSrcRange; }
7882   /// Source range of the loop increment.
7883   SourceRange getIncrementSrcRange() const { return IncrementSrcRange; }
7884   /// True if the step should be subtracted.
7885   bool shouldSubtractStep() const { return SubtractStep; }
7886   /// True, if the compare operator is strict (<, > or !=).
7887   bool isStrictTestOp() const { return TestIsStrictOp; }
7888   /// Build the expression to calculate the number of iterations.
7889   Expr *buildNumIterations(
7890       Scope *S, ArrayRef<LoopIterationSpace> ResultIterSpaces, bool LimitedType,
7891       llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const;
7892   /// Build the precondition expression for the loops.
7893   Expr *
7894   buildPreCond(Scope *S, Expr *Cond,
7895                llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const;
7896   /// Build reference expression to the counter be used for codegen.
7897   DeclRefExpr *
7898   buildCounterVar(llvm::MapVector<const Expr *, DeclRefExpr *> &Captures,
7899                   DSAStackTy &DSA) const;
7900   /// Build reference expression to the private counter be used for
7901   /// codegen.
7902   Expr *buildPrivateCounterVar() const;
7903   /// Build initialization of the counter be used for codegen.
7904   Expr *buildCounterInit() const;
7905   /// Build step of the counter be used for codegen.
7906   Expr *buildCounterStep() const;
7907   /// Build loop data with counter value for depend clauses in ordered
7908   /// directives.
7909   Expr *
7910   buildOrderedLoopData(Scope *S, Expr *Counter,
7911                        llvm::MapVector<const Expr *, DeclRefExpr *> &Captures,
7912                        SourceLocation Loc, Expr *Inc = nullptr,
7913                        OverloadedOperatorKind OOK = OO_Amp);
7914   /// Builds the minimum value for the loop counter.
7915   std::pair<Expr *, Expr *> buildMinMaxValues(
7916       Scope *S, llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const;
7917   /// Builds final condition for the non-rectangular loops.
7918   Expr *buildFinalCondition(Scope *S) const;
7919   /// Return true if any expression is dependent.
7920   bool dependent() const;
7921   /// Returns true if the initializer forms non-rectangular loop.
7922   bool doesInitDependOnLC() const { return InitDependOnLC.has_value(); }
7923   /// Returns true if the condition forms non-rectangular loop.
7924   bool doesCondDependOnLC() const { return CondDependOnLC.has_value(); }
7925   /// Returns index of the loop we depend on (starting from 1), or 0 otherwise.
7926   unsigned getLoopDependentIdx() const {
7927     return InitDependOnLC.value_or(CondDependOnLC.value_or(0));
7928   }
7929 
7930 private:
7931   /// Check the right-hand side of an assignment in the increment
7932   /// expression.
7933   bool checkAndSetIncRHS(Expr *RHS);
7934   /// Helper to set loop counter variable and its initializer.
7935   bool setLCDeclAndLB(ValueDecl *NewLCDecl, Expr *NewDeclRefExpr, Expr *NewLB,
7936                       bool EmitDiags);
7937   /// Helper to set upper bound.
7938   bool setUB(Expr *NewUB, std::optional<bool> LessOp, bool StrictOp,
7939              SourceRange SR, SourceLocation SL);
7940   /// Helper to set loop increment.
7941   bool setStep(Expr *NewStep, bool Subtract);
7942 };
7943 
7944 bool OpenMPIterationSpaceChecker::dependent() const {
7945   if (!LCDecl) {
7946     assert(!LB && !UB && !Step);
7947     return false;
7948   }
7949   return LCDecl->getType()->isDependentType() ||
7950          (LB && LB->isValueDependent()) || (UB && UB->isValueDependent()) ||
7951          (Step && Step->isValueDependent());
7952 }
7953 
7954 bool OpenMPIterationSpaceChecker::setLCDeclAndLB(ValueDecl *NewLCDecl,
7955                                                  Expr *NewLCRefExpr,
7956                                                  Expr *NewLB, bool EmitDiags) {
7957   // State consistency checking to ensure correct usage.
7958   assert(LCDecl == nullptr && LB == nullptr && LCRef == nullptr &&
7959          UB == nullptr && Step == nullptr && !TestIsLessOp && !TestIsStrictOp);
7960   if (!NewLCDecl || !NewLB || NewLB->containsErrors())
7961     return true;
7962   LCDecl = getCanonicalDecl(NewLCDecl);
7963   LCRef = NewLCRefExpr;
7964   if (auto *CE = dyn_cast_or_null<CXXConstructExpr>(NewLB))
7965     if (const CXXConstructorDecl *Ctor = CE->getConstructor())
7966       if ((Ctor->isCopyOrMoveConstructor() ||
7967            Ctor->isConvertingConstructor(/*AllowExplicit=*/false)) &&
7968           CE->getNumArgs() > 0 && CE->getArg(0) != nullptr)
7969         NewLB = CE->getArg(0)->IgnoreParenImpCasts();
7970   LB = NewLB;
7971   if (EmitDiags)
7972     InitDependOnLC = doesDependOnLoopCounter(LB, /*IsInitializer=*/true);
7973   return false;
7974 }
7975 
7976 bool OpenMPIterationSpaceChecker::setUB(Expr *NewUB, std::optional<bool> LessOp,
7977                                         bool StrictOp, SourceRange SR,
7978                                         SourceLocation SL) {
7979   // State consistency checking to ensure correct usage.
7980   assert(LCDecl != nullptr && LB != nullptr && UB == nullptr &&
7981          Step == nullptr && !TestIsLessOp && !TestIsStrictOp);
7982   if (!NewUB || NewUB->containsErrors())
7983     return true;
7984   UB = NewUB;
7985   if (LessOp)
7986     TestIsLessOp = LessOp;
7987   TestIsStrictOp = StrictOp;
7988   ConditionSrcRange = SR;
7989   ConditionLoc = SL;
7990   CondDependOnLC = doesDependOnLoopCounter(UB, /*IsInitializer=*/false);
7991   return false;
7992 }
7993 
7994 bool OpenMPIterationSpaceChecker::setStep(Expr *NewStep, bool Subtract) {
7995   // State consistency checking to ensure correct usage.
7996   assert(LCDecl != nullptr && LB != nullptr && Step == nullptr);
7997   if (!NewStep || NewStep->containsErrors())
7998     return true;
7999   if (!NewStep->isValueDependent()) {
8000     // Check that the step is integer expression.
8001     SourceLocation StepLoc = NewStep->getBeginLoc();
8002     ExprResult Val = SemaRef.PerformOpenMPImplicitIntegerConversion(
8003         StepLoc, getExprAsWritten(NewStep));
8004     if (Val.isInvalid())
8005       return true;
8006     NewStep = Val.get();
8007 
8008     // OpenMP [2.6, Canonical Loop Form, Restrictions]
8009     //  If test-expr is of form var relational-op b and relational-op is < or
8010     //  <= then incr-expr must cause var to increase on each iteration of the
8011     //  loop. If test-expr is of form var relational-op b and relational-op is
8012     //  > or >= then incr-expr must cause var to decrease on each iteration of
8013     //  the loop.
8014     //  If test-expr is of form b relational-op var and relational-op is < or
8015     //  <= then incr-expr must cause var to decrease on each iteration of the
8016     //  loop. If test-expr is of form b relational-op var and relational-op is
8017     //  > or >= then incr-expr must cause var to increase on each iteration of
8018     //  the loop.
8019     std::optional<llvm::APSInt> Result =
8020         NewStep->getIntegerConstantExpr(SemaRef.Context);
8021     bool IsUnsigned = !NewStep->getType()->hasSignedIntegerRepresentation();
8022     bool IsConstNeg =
8023         Result && Result->isSigned() && (Subtract != Result->isNegative());
8024     bool IsConstPos =
8025         Result && Result->isSigned() && (Subtract == Result->isNegative());
8026     bool IsConstZero = Result && !Result->getBoolValue();
8027 
8028     // != with increment is treated as <; != with decrement is treated as >
8029     if (!TestIsLessOp)
8030       TestIsLessOp = IsConstPos || (IsUnsigned && !Subtract);
8031     if (UB && (IsConstZero ||
8032                (*TestIsLessOp ? (IsConstNeg || (IsUnsigned && Subtract))
8033                               : (IsConstPos || (IsUnsigned && !Subtract))))) {
8034       SemaRef.Diag(NewStep->getExprLoc(),
8035                    diag::err_omp_loop_incr_not_compatible)
8036           << LCDecl << *TestIsLessOp << NewStep->getSourceRange();
8037       SemaRef.Diag(ConditionLoc,
8038                    diag::note_omp_loop_cond_requres_compatible_incr)
8039           << *TestIsLessOp << ConditionSrcRange;
8040       return true;
8041     }
8042     if (*TestIsLessOp == Subtract) {
8043       NewStep =
8044           SemaRef.CreateBuiltinUnaryOp(NewStep->getExprLoc(), UO_Minus, NewStep)
8045               .get();
8046       Subtract = !Subtract;
8047     }
8048   }
8049 
8050   Step = NewStep;
8051   SubtractStep = Subtract;
8052   return false;
8053 }
8054 
8055 namespace {
8056 /// Checker for the non-rectangular loops. Checks if the initializer or
8057 /// condition expression references loop counter variable.
8058 class LoopCounterRefChecker final
8059     : public ConstStmtVisitor<LoopCounterRefChecker, bool> {
8060   Sema &SemaRef;
8061   DSAStackTy &Stack;
8062   const ValueDecl *CurLCDecl = nullptr;
8063   const ValueDecl *DepDecl = nullptr;
8064   const ValueDecl *PrevDepDecl = nullptr;
8065   bool IsInitializer = true;
8066   bool SupportsNonRectangular;
8067   unsigned BaseLoopId = 0;
8068   bool checkDecl(const Expr *E, const ValueDecl *VD) {
8069     if (getCanonicalDecl(VD) == getCanonicalDecl(CurLCDecl)) {
8070       SemaRef.Diag(E->getExprLoc(), diag::err_omp_stmt_depends_on_loop_counter)
8071           << (IsInitializer ? 0 : 1);
8072       return false;
8073     }
8074     const auto &&Data = Stack.isLoopControlVariable(VD);
8075     // OpenMP, 2.9.1 Canonical Loop Form, Restrictions.
8076     // The type of the loop iterator on which we depend may not have a random
8077     // access iterator type.
8078     if (Data.first && VD->getType()->isRecordType()) {
8079       SmallString<128> Name;
8080       llvm::raw_svector_ostream OS(Name);
8081       VD->getNameForDiagnostic(OS, SemaRef.getPrintingPolicy(),
8082                                /*Qualified=*/true);
8083       SemaRef.Diag(E->getExprLoc(),
8084                    diag::err_omp_wrong_dependency_iterator_type)
8085           << OS.str();
8086       SemaRef.Diag(VD->getLocation(), diag::note_previous_decl) << VD;
8087       return false;
8088     }
8089     if (Data.first && !SupportsNonRectangular) {
8090       SemaRef.Diag(E->getExprLoc(), diag::err_omp_invariant_dependency);
8091       return false;
8092     }
8093     if (Data.first &&
8094         (DepDecl || (PrevDepDecl &&
8095                      getCanonicalDecl(VD) != getCanonicalDecl(PrevDepDecl)))) {
8096       if (!DepDecl && PrevDepDecl)
8097         DepDecl = PrevDepDecl;
8098       SmallString<128> Name;
8099       llvm::raw_svector_ostream OS(Name);
8100       DepDecl->getNameForDiagnostic(OS, SemaRef.getPrintingPolicy(),
8101                                     /*Qualified=*/true);
8102       SemaRef.Diag(E->getExprLoc(),
8103                    diag::err_omp_invariant_or_linear_dependency)
8104           << OS.str();
8105       return false;
8106     }
8107     if (Data.first) {
8108       DepDecl = VD;
8109       BaseLoopId = Data.first;
8110     }
8111     return Data.first;
8112   }
8113 
8114 public:
8115   bool VisitDeclRefExpr(const DeclRefExpr *E) {
8116     const ValueDecl *VD = E->getDecl();
8117     if (isa<VarDecl>(VD))
8118       return checkDecl(E, VD);
8119     return false;
8120   }
8121   bool VisitMemberExpr(const MemberExpr *E) {
8122     if (isa<CXXThisExpr>(E->getBase()->IgnoreParens())) {
8123       const ValueDecl *VD = E->getMemberDecl();
8124       if (isa<VarDecl>(VD) || isa<FieldDecl>(VD))
8125         return checkDecl(E, VD);
8126     }
8127     return false;
8128   }
8129   bool VisitStmt(const Stmt *S) {
8130     bool Res = false;
8131     for (const Stmt *Child : S->children())
8132       Res = (Child && Visit(Child)) || Res;
8133     return Res;
8134   }
8135   explicit LoopCounterRefChecker(Sema &SemaRef, DSAStackTy &Stack,
8136                                  const ValueDecl *CurLCDecl, bool IsInitializer,
8137                                  const ValueDecl *PrevDepDecl = nullptr,
8138                                  bool SupportsNonRectangular = true)
8139       : SemaRef(SemaRef), Stack(Stack), CurLCDecl(CurLCDecl),
8140         PrevDepDecl(PrevDepDecl), IsInitializer(IsInitializer),
8141         SupportsNonRectangular(SupportsNonRectangular) {}
8142   unsigned getBaseLoopId() const {
8143     assert(CurLCDecl && "Expected loop dependency.");
8144     return BaseLoopId;
8145   }
8146   const ValueDecl *getDepDecl() const {
8147     assert(CurLCDecl && "Expected loop dependency.");
8148     return DepDecl;
8149   }
8150 };
8151 } // namespace
8152 
8153 std::optional<unsigned>
8154 OpenMPIterationSpaceChecker::doesDependOnLoopCounter(const Stmt *S,
8155                                                      bool IsInitializer) {
8156   // Check for the non-rectangular loops.
8157   LoopCounterRefChecker LoopStmtChecker(SemaRef, Stack, LCDecl, IsInitializer,
8158                                         DepDecl, SupportsNonRectangular);
8159   if (LoopStmtChecker.Visit(S)) {
8160     DepDecl = LoopStmtChecker.getDepDecl();
8161     return LoopStmtChecker.getBaseLoopId();
8162   }
8163   return std::nullopt;
8164 }
8165 
8166 bool OpenMPIterationSpaceChecker::checkAndSetInit(Stmt *S, bool EmitDiags) {
8167   // Check init-expr for canonical loop form and save loop counter
8168   // variable - #Var and its initialization value - #LB.
8169   // OpenMP [2.6] Canonical loop form. init-expr may be one of the following:
8170   //   var = lb
8171   //   integer-type var = lb
8172   //   random-access-iterator-type var = lb
8173   //   pointer-type var = lb
8174   //
8175   if (!S) {
8176     if (EmitDiags) {
8177       SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_init);
8178     }
8179     return true;
8180   }
8181   if (auto *ExprTemp = dyn_cast<ExprWithCleanups>(S))
8182     if (!ExprTemp->cleanupsHaveSideEffects())
8183       S = ExprTemp->getSubExpr();
8184 
8185   InitSrcRange = S->getSourceRange();
8186   if (Expr *E = dyn_cast<Expr>(S))
8187     S = E->IgnoreParens();
8188   if (auto *BO = dyn_cast<BinaryOperator>(S)) {
8189     if (BO->getOpcode() == BO_Assign) {
8190       Expr *LHS = BO->getLHS()->IgnoreParens();
8191       if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
8192         if (auto *CED = dyn_cast<OMPCapturedExprDecl>(DRE->getDecl()))
8193           if (auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit())))
8194             return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(),
8195                                   EmitDiags);
8196         return setLCDeclAndLB(DRE->getDecl(), DRE, BO->getRHS(), EmitDiags);
8197       }
8198       if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
8199         if (ME->isArrow() &&
8200             isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
8201           return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(),
8202                                 EmitDiags);
8203       }
8204     }
8205   } else if (auto *DS = dyn_cast<DeclStmt>(S)) {
8206     if (DS->isSingleDecl()) {
8207       if (auto *Var = dyn_cast_or_null<VarDecl>(DS->getSingleDecl())) {
8208         if (Var->hasInit() && !Var->getType()->isReferenceType()) {
8209           // Accept non-canonical init form here but emit ext. warning.
8210           if (Var->getInitStyle() != VarDecl::CInit && EmitDiags)
8211             SemaRef.Diag(S->getBeginLoc(),
8212                          diag::ext_omp_loop_not_canonical_init)
8213                 << S->getSourceRange();
8214           return setLCDeclAndLB(
8215               Var,
8216               buildDeclRefExpr(SemaRef, Var,
8217                                Var->getType().getNonReferenceType(),
8218                                DS->getBeginLoc()),
8219               Var->getInit(), EmitDiags);
8220         }
8221       }
8222     }
8223   } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) {
8224     if (CE->getOperator() == OO_Equal) {
8225       Expr *LHS = CE->getArg(0);
8226       if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
8227         if (auto *CED = dyn_cast<OMPCapturedExprDecl>(DRE->getDecl()))
8228           if (auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit())))
8229             return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(),
8230                                   EmitDiags);
8231         return setLCDeclAndLB(DRE->getDecl(), DRE, CE->getArg(1), EmitDiags);
8232       }
8233       if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
8234         if (ME->isArrow() &&
8235             isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
8236           return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(),
8237                                 EmitDiags);
8238       }
8239     }
8240   }
8241 
8242   if (dependent() || SemaRef.CurContext->isDependentContext())
8243     return false;
8244   if (EmitDiags) {
8245     SemaRef.Diag(S->getBeginLoc(), diag::err_omp_loop_not_canonical_init)
8246         << S->getSourceRange();
8247   }
8248   return true;
8249 }
8250 
8251 /// Ignore parenthesizes, implicit casts, copy constructor and return the
8252 /// variable (which may be the loop variable) if possible.
8253 static const ValueDecl *getInitLCDecl(const Expr *E) {
8254   if (!E)
8255     return nullptr;
8256   E = getExprAsWritten(E);
8257   if (const auto *CE = dyn_cast_or_null<CXXConstructExpr>(E))
8258     if (const CXXConstructorDecl *Ctor = CE->getConstructor())
8259       if ((Ctor->isCopyOrMoveConstructor() ||
8260            Ctor->isConvertingConstructor(/*AllowExplicit=*/false)) &&
8261           CE->getNumArgs() > 0 && CE->getArg(0) != nullptr)
8262         E = CE->getArg(0)->IgnoreParenImpCasts();
8263   if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(E)) {
8264     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
8265       return getCanonicalDecl(VD);
8266   }
8267   if (const auto *ME = dyn_cast_or_null<MemberExpr>(E))
8268     if (ME->isArrow() && isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
8269       return getCanonicalDecl(ME->getMemberDecl());
8270   return nullptr;
8271 }
8272 
8273 bool OpenMPIterationSpaceChecker::checkAndSetCond(Expr *S) {
8274   // Check test-expr for canonical form, save upper-bound UB, flags for
8275   // less/greater and for strict/non-strict comparison.
8276   // OpenMP [2.9] Canonical loop form. Test-expr may be one of the following:
8277   //   var relational-op b
8278   //   b relational-op var
8279   //
8280   bool IneqCondIsCanonical = SemaRef.getLangOpts().OpenMP >= 50;
8281   if (!S) {
8282     SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_cond)
8283         << (IneqCondIsCanonical ? 1 : 0) << LCDecl;
8284     return true;
8285   }
8286   Condition = S;
8287   S = getExprAsWritten(S);
8288   SourceLocation CondLoc = S->getBeginLoc();
8289   auto &&CheckAndSetCond =
8290       [this, IneqCondIsCanonical](BinaryOperatorKind Opcode, const Expr *LHS,
8291                                   const Expr *RHS, SourceRange SR,
8292                                   SourceLocation OpLoc) -> std::optional<bool> {
8293     if (BinaryOperator::isRelationalOp(Opcode)) {
8294       if (getInitLCDecl(LHS) == LCDecl)
8295         return setUB(const_cast<Expr *>(RHS),
8296                      (Opcode == BO_LT || Opcode == BO_LE),
8297                      (Opcode == BO_LT || Opcode == BO_GT), SR, OpLoc);
8298       if (getInitLCDecl(RHS) == LCDecl)
8299         return setUB(const_cast<Expr *>(LHS),
8300                      (Opcode == BO_GT || Opcode == BO_GE),
8301                      (Opcode == BO_LT || Opcode == BO_GT), SR, OpLoc);
8302     } else if (IneqCondIsCanonical && Opcode == BO_NE) {
8303       return setUB(const_cast<Expr *>(getInitLCDecl(LHS) == LCDecl ? RHS : LHS),
8304                    /*LessOp=*/std::nullopt,
8305                    /*StrictOp=*/true, SR, OpLoc);
8306     }
8307     return std::nullopt;
8308   };
8309   std::optional<bool> Res;
8310   if (auto *RBO = dyn_cast<CXXRewrittenBinaryOperator>(S)) {
8311     CXXRewrittenBinaryOperator::DecomposedForm DF = RBO->getDecomposedForm();
8312     Res = CheckAndSetCond(DF.Opcode, DF.LHS, DF.RHS, RBO->getSourceRange(),
8313                           RBO->getOperatorLoc());
8314   } else if (auto *BO = dyn_cast<BinaryOperator>(S)) {
8315     Res = CheckAndSetCond(BO->getOpcode(), BO->getLHS(), BO->getRHS(),
8316                           BO->getSourceRange(), BO->getOperatorLoc());
8317   } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) {
8318     if (CE->getNumArgs() == 2) {
8319       Res = CheckAndSetCond(
8320           BinaryOperator::getOverloadedOpcode(CE->getOperator()), CE->getArg(0),
8321           CE->getArg(1), CE->getSourceRange(), CE->getOperatorLoc());
8322     }
8323   }
8324   if (Res)
8325     return *Res;
8326   if (dependent() || SemaRef.CurContext->isDependentContext())
8327     return false;
8328   SemaRef.Diag(CondLoc, diag::err_omp_loop_not_canonical_cond)
8329       << (IneqCondIsCanonical ? 1 : 0) << S->getSourceRange() << LCDecl;
8330   return true;
8331 }
8332 
8333 bool OpenMPIterationSpaceChecker::checkAndSetIncRHS(Expr *RHS) {
8334   // RHS of canonical loop form increment can be:
8335   //   var + incr
8336   //   incr + var
8337   //   var - incr
8338   //
8339   RHS = RHS->IgnoreParenImpCasts();
8340   if (auto *BO = dyn_cast<BinaryOperator>(RHS)) {
8341     if (BO->isAdditiveOp()) {
8342       bool IsAdd = BO->getOpcode() == BO_Add;
8343       if (getInitLCDecl(BO->getLHS()) == LCDecl)
8344         return setStep(BO->getRHS(), !IsAdd);
8345       if (IsAdd && getInitLCDecl(BO->getRHS()) == LCDecl)
8346         return setStep(BO->getLHS(), /*Subtract=*/false);
8347     }
8348   } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(RHS)) {
8349     bool IsAdd = CE->getOperator() == OO_Plus;
8350     if ((IsAdd || CE->getOperator() == OO_Minus) && CE->getNumArgs() == 2) {
8351       if (getInitLCDecl(CE->getArg(0)) == LCDecl)
8352         return setStep(CE->getArg(1), !IsAdd);
8353       if (IsAdd && getInitLCDecl(CE->getArg(1)) == LCDecl)
8354         return setStep(CE->getArg(0), /*Subtract=*/false);
8355     }
8356   }
8357   if (dependent() || SemaRef.CurContext->isDependentContext())
8358     return false;
8359   SemaRef.Diag(RHS->getBeginLoc(), diag::err_omp_loop_not_canonical_incr)
8360       << RHS->getSourceRange() << LCDecl;
8361   return true;
8362 }
8363 
8364 bool OpenMPIterationSpaceChecker::checkAndSetInc(Expr *S) {
8365   // Check incr-expr for canonical loop form and return true if it
8366   // does not conform.
8367   // OpenMP [2.6] Canonical loop form. Test-expr may be one of the following:
8368   //   ++var
8369   //   var++
8370   //   --var
8371   //   var--
8372   //   var += incr
8373   //   var -= incr
8374   //   var = var + incr
8375   //   var = incr + var
8376   //   var = var - incr
8377   //
8378   if (!S) {
8379     SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_incr) << LCDecl;
8380     return true;
8381   }
8382   if (auto *ExprTemp = dyn_cast<ExprWithCleanups>(S))
8383     if (!ExprTemp->cleanupsHaveSideEffects())
8384       S = ExprTemp->getSubExpr();
8385 
8386   IncrementSrcRange = S->getSourceRange();
8387   S = S->IgnoreParens();
8388   if (auto *UO = dyn_cast<UnaryOperator>(S)) {
8389     if (UO->isIncrementDecrementOp() &&
8390         getInitLCDecl(UO->getSubExpr()) == LCDecl)
8391       return setStep(SemaRef
8392                          .ActOnIntegerConstant(UO->getBeginLoc(),
8393                                                (UO->isDecrementOp() ? -1 : 1))
8394                          .get(),
8395                      /*Subtract=*/false);
8396   } else if (auto *BO = dyn_cast<BinaryOperator>(S)) {
8397     switch (BO->getOpcode()) {
8398     case BO_AddAssign:
8399     case BO_SubAssign:
8400       if (getInitLCDecl(BO->getLHS()) == LCDecl)
8401         return setStep(BO->getRHS(), BO->getOpcode() == BO_SubAssign);
8402       break;
8403     case BO_Assign:
8404       if (getInitLCDecl(BO->getLHS()) == LCDecl)
8405         return checkAndSetIncRHS(BO->getRHS());
8406       break;
8407     default:
8408       break;
8409     }
8410   } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) {
8411     switch (CE->getOperator()) {
8412     case OO_PlusPlus:
8413     case OO_MinusMinus:
8414       if (getInitLCDecl(CE->getArg(0)) == LCDecl)
8415         return setStep(SemaRef
8416                            .ActOnIntegerConstant(
8417                                CE->getBeginLoc(),
8418                                ((CE->getOperator() == OO_MinusMinus) ? -1 : 1))
8419                            .get(),
8420                        /*Subtract=*/false);
8421       break;
8422     case OO_PlusEqual:
8423     case OO_MinusEqual:
8424       if (getInitLCDecl(CE->getArg(0)) == LCDecl)
8425         return setStep(CE->getArg(1), CE->getOperator() == OO_MinusEqual);
8426       break;
8427     case OO_Equal:
8428       if (getInitLCDecl(CE->getArg(0)) == LCDecl)
8429         return checkAndSetIncRHS(CE->getArg(1));
8430       break;
8431     default:
8432       break;
8433     }
8434   }
8435   if (dependent() || SemaRef.CurContext->isDependentContext())
8436     return false;
8437   SemaRef.Diag(S->getBeginLoc(), diag::err_omp_loop_not_canonical_incr)
8438       << S->getSourceRange() << LCDecl;
8439   return true;
8440 }
8441 
8442 static ExprResult
8443 tryBuildCapture(Sema &SemaRef, Expr *Capture,
8444                 llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
8445   if (SemaRef.CurContext->isDependentContext() || Capture->containsErrors())
8446     return Capture;
8447   if (Capture->isEvaluatable(SemaRef.Context, Expr::SE_AllowSideEffects))
8448     return SemaRef.PerformImplicitConversion(
8449         Capture->IgnoreImpCasts(), Capture->getType(), Sema::AA_Converting,
8450         /*AllowExplicit=*/true);
8451   auto I = Captures.find(Capture);
8452   if (I != Captures.end())
8453     return buildCapture(SemaRef, Capture, I->second);
8454   DeclRefExpr *Ref = nullptr;
8455   ExprResult Res = buildCapture(SemaRef, Capture, Ref);
8456   Captures[Capture] = Ref;
8457   return Res;
8458 }
8459 
8460 /// Calculate number of iterations, transforming to unsigned, if number of
8461 /// iterations may be larger than the original type.
8462 static Expr *
8463 calculateNumIters(Sema &SemaRef, Scope *S, SourceLocation DefaultLoc,
8464                   Expr *Lower, Expr *Upper, Expr *Step, QualType LCTy,
8465                   bool TestIsStrictOp, bool RoundToStep,
8466                   llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
8467   ExprResult NewStep = tryBuildCapture(SemaRef, Step, Captures);
8468   if (!NewStep.isUsable())
8469     return nullptr;
8470   llvm::APSInt LRes, SRes;
8471   bool IsLowerConst = false, IsStepConst = false;
8472   if (std::optional<llvm::APSInt> Res =
8473           Lower->getIntegerConstantExpr(SemaRef.Context)) {
8474     LRes = *Res;
8475     IsLowerConst = true;
8476   }
8477   if (std::optional<llvm::APSInt> Res =
8478           Step->getIntegerConstantExpr(SemaRef.Context)) {
8479     SRes = *Res;
8480     IsStepConst = true;
8481   }
8482   bool NoNeedToConvert = IsLowerConst && !RoundToStep &&
8483                          ((!TestIsStrictOp && LRes.isNonNegative()) ||
8484                           (TestIsStrictOp && LRes.isStrictlyPositive()));
8485   bool NeedToReorganize = false;
8486   // Check if any subexpressions in Lower -Step [+ 1] lead to overflow.
8487   if (!NoNeedToConvert && IsLowerConst &&
8488       (TestIsStrictOp || (RoundToStep && IsStepConst))) {
8489     NoNeedToConvert = true;
8490     if (RoundToStep) {
8491       unsigned BW = LRes.getBitWidth() > SRes.getBitWidth()
8492                         ? LRes.getBitWidth()
8493                         : SRes.getBitWidth();
8494       LRes = LRes.extend(BW + 1);
8495       LRes.setIsSigned(true);
8496       SRes = SRes.extend(BW + 1);
8497       SRes.setIsSigned(true);
8498       LRes -= SRes;
8499       NoNeedToConvert = LRes.trunc(BW).extend(BW + 1) == LRes;
8500       LRes = LRes.trunc(BW);
8501     }
8502     if (TestIsStrictOp) {
8503       unsigned BW = LRes.getBitWidth();
8504       LRes = LRes.extend(BW + 1);
8505       LRes.setIsSigned(true);
8506       ++LRes;
8507       NoNeedToConvert =
8508           NoNeedToConvert && LRes.trunc(BW).extend(BW + 1) == LRes;
8509       // truncate to the original bitwidth.
8510       LRes = LRes.trunc(BW);
8511     }
8512     NeedToReorganize = NoNeedToConvert;
8513   }
8514   llvm::APSInt URes;
8515   bool IsUpperConst = false;
8516   if (std::optional<llvm::APSInt> Res =
8517           Upper->getIntegerConstantExpr(SemaRef.Context)) {
8518     URes = *Res;
8519     IsUpperConst = true;
8520   }
8521   if (NoNeedToConvert && IsLowerConst && IsUpperConst &&
8522       (!RoundToStep || IsStepConst)) {
8523     unsigned BW = LRes.getBitWidth() > URes.getBitWidth() ? LRes.getBitWidth()
8524                                                           : URes.getBitWidth();
8525     LRes = LRes.extend(BW + 1);
8526     LRes.setIsSigned(true);
8527     URes = URes.extend(BW + 1);
8528     URes.setIsSigned(true);
8529     URes -= LRes;
8530     NoNeedToConvert = URes.trunc(BW).extend(BW + 1) == URes;
8531     NeedToReorganize = NoNeedToConvert;
8532   }
8533   // If the boundaries are not constant or (Lower - Step [+ 1]) is not constant
8534   // or less than zero (Upper - (Lower - Step [+ 1]) may overflow) - promote to
8535   // unsigned.
8536   if ((!NoNeedToConvert || (LRes.isNegative() && !IsUpperConst)) &&
8537       !LCTy->isDependentType() && LCTy->isIntegerType()) {
8538     QualType LowerTy = Lower->getType();
8539     QualType UpperTy = Upper->getType();
8540     uint64_t LowerSize = SemaRef.Context.getTypeSize(LowerTy);
8541     uint64_t UpperSize = SemaRef.Context.getTypeSize(UpperTy);
8542     if ((LowerSize <= UpperSize && UpperTy->hasSignedIntegerRepresentation()) ||
8543         (LowerSize > UpperSize && LowerTy->hasSignedIntegerRepresentation())) {
8544       QualType CastType = SemaRef.Context.getIntTypeForBitwidth(
8545           LowerSize > UpperSize ? LowerSize : UpperSize, /*Signed=*/0);
8546       Upper =
8547           SemaRef
8548               .PerformImplicitConversion(
8549                   SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Upper).get(),
8550                   CastType, Sema::AA_Converting)
8551               .get();
8552       Lower = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Lower).get();
8553       NewStep = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, NewStep.get());
8554     }
8555   }
8556   if (!Lower || !Upper || NewStep.isInvalid())
8557     return nullptr;
8558 
8559   ExprResult Diff;
8560   // If need to reorganize, then calculate the form as Upper - (Lower - Step [+
8561   // 1]).
8562   if (NeedToReorganize) {
8563     Diff = Lower;
8564 
8565     if (RoundToStep) {
8566       // Lower - Step
8567       Diff =
8568           SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Diff.get(), NewStep.get());
8569       if (!Diff.isUsable())
8570         return nullptr;
8571     }
8572 
8573     // Lower - Step [+ 1]
8574     if (TestIsStrictOp)
8575       Diff = SemaRef.BuildBinOp(
8576           S, DefaultLoc, BO_Add, Diff.get(),
8577           SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
8578     if (!Diff.isUsable())
8579       return nullptr;
8580 
8581     Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
8582     if (!Diff.isUsable())
8583       return nullptr;
8584 
8585     // Upper - (Lower - Step [+ 1]).
8586     Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Upper, Diff.get());
8587     if (!Diff.isUsable())
8588       return nullptr;
8589   } else {
8590     Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Upper, Lower);
8591 
8592     if (!Diff.isUsable() && LCTy->getAsCXXRecordDecl()) {
8593       // BuildBinOp already emitted error, this one is to point user to upper
8594       // and lower bound, and to tell what is passed to 'operator-'.
8595       SemaRef.Diag(Upper->getBeginLoc(), diag::err_omp_loop_diff_cxx)
8596           << Upper->getSourceRange() << Lower->getSourceRange();
8597       return nullptr;
8598     }
8599 
8600     if (!Diff.isUsable())
8601       return nullptr;
8602 
8603     // Upper - Lower [- 1]
8604     if (TestIsStrictOp)
8605       Diff = SemaRef.BuildBinOp(
8606           S, DefaultLoc, BO_Sub, Diff.get(),
8607           SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
8608     if (!Diff.isUsable())
8609       return nullptr;
8610 
8611     if (RoundToStep) {
8612       // Upper - Lower [- 1] + Step
8613       Diff =
8614           SemaRef.BuildBinOp(S, DefaultLoc, BO_Add, Diff.get(), NewStep.get());
8615       if (!Diff.isUsable())
8616         return nullptr;
8617     }
8618   }
8619 
8620   // Parentheses (for dumping/debugging purposes only).
8621   Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
8622   if (!Diff.isUsable())
8623     return nullptr;
8624 
8625   // (Upper - Lower [- 1] + Step) / Step or (Upper - Lower) / Step
8626   Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Div, Diff.get(), NewStep.get());
8627   if (!Diff.isUsable())
8628     return nullptr;
8629 
8630   return Diff.get();
8631 }
8632 
8633 /// Build the expression to calculate the number of iterations.
8634 Expr *OpenMPIterationSpaceChecker::buildNumIterations(
8635     Scope *S, ArrayRef<LoopIterationSpace> ResultIterSpaces, bool LimitedType,
8636     llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const {
8637   QualType VarType = LCDecl->getType().getNonReferenceType();
8638   if (!VarType->isIntegerType() && !VarType->isPointerType() &&
8639       !SemaRef.getLangOpts().CPlusPlus)
8640     return nullptr;
8641   Expr *LBVal = LB;
8642   Expr *UBVal = UB;
8643   // LB = TestIsLessOp.getValue() ? min(LB(MinVal), LB(MaxVal)) :
8644   // max(LB(MinVal), LB(MaxVal))
8645   if (InitDependOnLC) {
8646     const LoopIterationSpace &IS = ResultIterSpaces[*InitDependOnLC - 1];
8647     if (!IS.MinValue || !IS.MaxValue)
8648       return nullptr;
8649     // OuterVar = Min
8650     ExprResult MinValue =
8651         SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MinValue);
8652     if (!MinValue.isUsable())
8653       return nullptr;
8654 
8655     ExprResult LBMinVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign,
8656                                              IS.CounterVar, MinValue.get());
8657     if (!LBMinVal.isUsable())
8658       return nullptr;
8659     // OuterVar = Min, LBVal
8660     LBMinVal =
8661         SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, LBMinVal.get(), LBVal);
8662     if (!LBMinVal.isUsable())
8663       return nullptr;
8664     // (OuterVar = Min, LBVal)
8665     LBMinVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, LBMinVal.get());
8666     if (!LBMinVal.isUsable())
8667       return nullptr;
8668 
8669     // OuterVar = Max
8670     ExprResult MaxValue =
8671         SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MaxValue);
8672     if (!MaxValue.isUsable())
8673       return nullptr;
8674 
8675     ExprResult LBMaxVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign,
8676                                              IS.CounterVar, MaxValue.get());
8677     if (!LBMaxVal.isUsable())
8678       return nullptr;
8679     // OuterVar = Max, LBVal
8680     LBMaxVal =
8681         SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, LBMaxVal.get(), LBVal);
8682     if (!LBMaxVal.isUsable())
8683       return nullptr;
8684     // (OuterVar = Max, LBVal)
8685     LBMaxVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, LBMaxVal.get());
8686     if (!LBMaxVal.isUsable())
8687       return nullptr;
8688 
8689     Expr *LBMin = tryBuildCapture(SemaRef, LBMinVal.get(), Captures).get();
8690     Expr *LBMax = tryBuildCapture(SemaRef, LBMaxVal.get(), Captures).get();
8691     if (!LBMin || !LBMax)
8692       return nullptr;
8693     // LB(MinVal) < LB(MaxVal)
8694     ExprResult MinLessMaxRes =
8695         SemaRef.BuildBinOp(S, DefaultLoc, BO_LT, LBMin, LBMax);
8696     if (!MinLessMaxRes.isUsable())
8697       return nullptr;
8698     Expr *MinLessMax =
8699         tryBuildCapture(SemaRef, MinLessMaxRes.get(), Captures).get();
8700     if (!MinLessMax)
8701       return nullptr;
8702     if (*TestIsLessOp) {
8703       // LB(MinVal) < LB(MaxVal) ? LB(MinVal) : LB(MaxVal) - min(LB(MinVal),
8704       // LB(MaxVal))
8705       ExprResult MinLB = SemaRef.ActOnConditionalOp(DefaultLoc, DefaultLoc,
8706                                                     MinLessMax, LBMin, LBMax);
8707       if (!MinLB.isUsable())
8708         return nullptr;
8709       LBVal = MinLB.get();
8710     } else {
8711       // LB(MinVal) < LB(MaxVal) ? LB(MaxVal) : LB(MinVal) - max(LB(MinVal),
8712       // LB(MaxVal))
8713       ExprResult MaxLB = SemaRef.ActOnConditionalOp(DefaultLoc, DefaultLoc,
8714                                                     MinLessMax, LBMax, LBMin);
8715       if (!MaxLB.isUsable())
8716         return nullptr;
8717       LBVal = MaxLB.get();
8718     }
8719   }
8720   // UB = TestIsLessOp.getValue() ? max(UB(MinVal), UB(MaxVal)) :
8721   // min(UB(MinVal), UB(MaxVal))
8722   if (CondDependOnLC) {
8723     const LoopIterationSpace &IS = ResultIterSpaces[*CondDependOnLC - 1];
8724     if (!IS.MinValue || !IS.MaxValue)
8725       return nullptr;
8726     // OuterVar = Min
8727     ExprResult MinValue =
8728         SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MinValue);
8729     if (!MinValue.isUsable())
8730       return nullptr;
8731 
8732     ExprResult UBMinVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign,
8733                                              IS.CounterVar, MinValue.get());
8734     if (!UBMinVal.isUsable())
8735       return nullptr;
8736     // OuterVar = Min, UBVal
8737     UBMinVal =
8738         SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, UBMinVal.get(), UBVal);
8739     if (!UBMinVal.isUsable())
8740       return nullptr;
8741     // (OuterVar = Min, UBVal)
8742     UBMinVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, UBMinVal.get());
8743     if (!UBMinVal.isUsable())
8744       return nullptr;
8745 
8746     // OuterVar = Max
8747     ExprResult MaxValue =
8748         SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MaxValue);
8749     if (!MaxValue.isUsable())
8750       return nullptr;
8751 
8752     ExprResult UBMaxVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign,
8753                                              IS.CounterVar, MaxValue.get());
8754     if (!UBMaxVal.isUsable())
8755       return nullptr;
8756     // OuterVar = Max, UBVal
8757     UBMaxVal =
8758         SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, UBMaxVal.get(), UBVal);
8759     if (!UBMaxVal.isUsable())
8760       return nullptr;
8761     // (OuterVar = Max, UBVal)
8762     UBMaxVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, UBMaxVal.get());
8763     if (!UBMaxVal.isUsable())
8764       return nullptr;
8765 
8766     Expr *UBMin = tryBuildCapture(SemaRef, UBMinVal.get(), Captures).get();
8767     Expr *UBMax = tryBuildCapture(SemaRef, UBMaxVal.get(), Captures).get();
8768     if (!UBMin || !UBMax)
8769       return nullptr;
8770     // UB(MinVal) > UB(MaxVal)
8771     ExprResult MinGreaterMaxRes =
8772         SemaRef.BuildBinOp(S, DefaultLoc, BO_GT, UBMin, UBMax);
8773     if (!MinGreaterMaxRes.isUsable())
8774       return nullptr;
8775     Expr *MinGreaterMax =
8776         tryBuildCapture(SemaRef, MinGreaterMaxRes.get(), Captures).get();
8777     if (!MinGreaterMax)
8778       return nullptr;
8779     if (*TestIsLessOp) {
8780       // UB(MinVal) > UB(MaxVal) ? UB(MinVal) : UB(MaxVal) - max(UB(MinVal),
8781       // UB(MaxVal))
8782       ExprResult MaxUB = SemaRef.ActOnConditionalOp(
8783           DefaultLoc, DefaultLoc, MinGreaterMax, UBMin, UBMax);
8784       if (!MaxUB.isUsable())
8785         return nullptr;
8786       UBVal = MaxUB.get();
8787     } else {
8788       // UB(MinVal) > UB(MaxVal) ? UB(MaxVal) : UB(MinVal) - min(UB(MinVal),
8789       // UB(MaxVal))
8790       ExprResult MinUB = SemaRef.ActOnConditionalOp(
8791           DefaultLoc, DefaultLoc, MinGreaterMax, UBMax, UBMin);
8792       if (!MinUB.isUsable())
8793         return nullptr;
8794       UBVal = MinUB.get();
8795     }
8796   }
8797   Expr *UBExpr = *TestIsLessOp ? UBVal : LBVal;
8798   Expr *LBExpr = *TestIsLessOp ? LBVal : UBVal;
8799   Expr *Upper = tryBuildCapture(SemaRef, UBExpr, Captures).get();
8800   Expr *Lower = tryBuildCapture(SemaRef, LBExpr, Captures).get();
8801   if (!Upper || !Lower)
8802     return nullptr;
8803 
8804   ExprResult Diff = calculateNumIters(SemaRef, S, DefaultLoc, Lower, Upper,
8805                                       Step, VarType, TestIsStrictOp,
8806                                       /*RoundToStep=*/true, Captures);
8807   if (!Diff.isUsable())
8808     return nullptr;
8809 
8810   // OpenMP runtime requires 32-bit or 64-bit loop variables.
8811   QualType Type = Diff.get()->getType();
8812   ASTContext &C = SemaRef.Context;
8813   bool UseVarType = VarType->hasIntegerRepresentation() &&
8814                     C.getTypeSize(Type) > C.getTypeSize(VarType);
8815   if (!Type->isIntegerType() || UseVarType) {
8816     unsigned NewSize =
8817         UseVarType ? C.getTypeSize(VarType) : C.getTypeSize(Type);
8818     bool IsSigned = UseVarType ? VarType->hasSignedIntegerRepresentation()
8819                                : Type->hasSignedIntegerRepresentation();
8820     Type = C.getIntTypeForBitwidth(NewSize, IsSigned);
8821     if (!SemaRef.Context.hasSameType(Diff.get()->getType(), Type)) {
8822       Diff = SemaRef.PerformImplicitConversion(
8823           Diff.get(), Type, Sema::AA_Converting, /*AllowExplicit=*/true);
8824       if (!Diff.isUsable())
8825         return nullptr;
8826     }
8827   }
8828   if (LimitedType) {
8829     unsigned NewSize = (C.getTypeSize(Type) > 32) ? 64 : 32;
8830     if (NewSize != C.getTypeSize(Type)) {
8831       if (NewSize < C.getTypeSize(Type)) {
8832         assert(NewSize == 64 && "incorrect loop var size");
8833         SemaRef.Diag(DefaultLoc, diag::warn_omp_loop_64_bit_var)
8834             << InitSrcRange << ConditionSrcRange;
8835       }
8836       QualType NewType = C.getIntTypeForBitwidth(
8837           NewSize, Type->hasSignedIntegerRepresentation() ||
8838                        C.getTypeSize(Type) < NewSize);
8839       if (!SemaRef.Context.hasSameType(Diff.get()->getType(), NewType)) {
8840         Diff = SemaRef.PerformImplicitConversion(Diff.get(), NewType,
8841                                                  Sema::AA_Converting, true);
8842         if (!Diff.isUsable())
8843           return nullptr;
8844       }
8845     }
8846   }
8847 
8848   return Diff.get();
8849 }
8850 
8851 std::pair<Expr *, Expr *> OpenMPIterationSpaceChecker::buildMinMaxValues(
8852     Scope *S, llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const {
8853   // Do not build for iterators, they cannot be used in non-rectangular loop
8854   // nests.
8855   if (LCDecl->getType()->isRecordType())
8856     return std::make_pair(nullptr, nullptr);
8857   // If we subtract, the min is in the condition, otherwise the min is in the
8858   // init value.
8859   Expr *MinExpr = nullptr;
8860   Expr *MaxExpr = nullptr;
8861   Expr *LBExpr = *TestIsLessOp ? LB : UB;
8862   Expr *UBExpr = *TestIsLessOp ? UB : LB;
8863   bool LBNonRect =
8864       *TestIsLessOp ? InitDependOnLC.has_value() : CondDependOnLC.has_value();
8865   bool UBNonRect =
8866       *TestIsLessOp ? CondDependOnLC.has_value() : InitDependOnLC.has_value();
8867   Expr *Lower =
8868       LBNonRect ? LBExpr : tryBuildCapture(SemaRef, LBExpr, Captures).get();
8869   Expr *Upper =
8870       UBNonRect ? UBExpr : tryBuildCapture(SemaRef, UBExpr, Captures).get();
8871   if (!Upper || !Lower)
8872     return std::make_pair(nullptr, nullptr);
8873 
8874   if (*TestIsLessOp)
8875     MinExpr = Lower;
8876   else
8877     MaxExpr = Upper;
8878 
8879   // Build minimum/maximum value based on number of iterations.
8880   QualType VarType = LCDecl->getType().getNonReferenceType();
8881 
8882   ExprResult Diff = calculateNumIters(SemaRef, S, DefaultLoc, Lower, Upper,
8883                                       Step, VarType, TestIsStrictOp,
8884                                       /*RoundToStep=*/false, Captures);
8885   if (!Diff.isUsable())
8886     return std::make_pair(nullptr, nullptr);
8887 
8888   // ((Upper - Lower [- 1]) / Step) * Step
8889   // Parentheses (for dumping/debugging purposes only).
8890   Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
8891   if (!Diff.isUsable())
8892     return std::make_pair(nullptr, nullptr);
8893 
8894   ExprResult NewStep = tryBuildCapture(SemaRef, Step, Captures);
8895   if (!NewStep.isUsable())
8896     return std::make_pair(nullptr, nullptr);
8897   Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Mul, Diff.get(), NewStep.get());
8898   if (!Diff.isUsable())
8899     return std::make_pair(nullptr, nullptr);
8900 
8901   // Parentheses (for dumping/debugging purposes only).
8902   Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
8903   if (!Diff.isUsable())
8904     return std::make_pair(nullptr, nullptr);
8905 
8906   // Convert to the ptrdiff_t, if original type is pointer.
8907   if (VarType->isAnyPointerType() &&
8908       !SemaRef.Context.hasSameType(
8909           Diff.get()->getType(),
8910           SemaRef.Context.getUnsignedPointerDiffType())) {
8911     Diff = SemaRef.PerformImplicitConversion(
8912         Diff.get(), SemaRef.Context.getUnsignedPointerDiffType(),
8913         Sema::AA_Converting, /*AllowExplicit=*/true);
8914   }
8915   if (!Diff.isUsable())
8916     return std::make_pair(nullptr, nullptr);
8917 
8918   if (*TestIsLessOp) {
8919     // MinExpr = Lower;
8920     // MaxExpr = Lower + (((Upper - Lower [- 1]) / Step) * Step)
8921     Diff = SemaRef.BuildBinOp(
8922         S, DefaultLoc, BO_Add,
8923         SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Lower).get(),
8924         Diff.get());
8925     if (!Diff.isUsable())
8926       return std::make_pair(nullptr, nullptr);
8927   } else {
8928     // MaxExpr = Upper;
8929     // MinExpr = Upper - (((Upper - Lower [- 1]) / Step) * Step)
8930     Diff = SemaRef.BuildBinOp(
8931         S, DefaultLoc, BO_Sub,
8932         SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Upper).get(),
8933         Diff.get());
8934     if (!Diff.isUsable())
8935       return std::make_pair(nullptr, nullptr);
8936   }
8937 
8938   // Convert to the original type.
8939   if (SemaRef.Context.hasSameType(Diff.get()->getType(), VarType))
8940     Diff = SemaRef.PerformImplicitConversion(Diff.get(), VarType,
8941                                              Sema::AA_Converting,
8942                                              /*AllowExplicit=*/true);
8943   if (!Diff.isUsable())
8944     return std::make_pair(nullptr, nullptr);
8945 
8946   Sema::TentativeAnalysisScope Trap(SemaRef);
8947   Diff = SemaRef.ActOnFinishFullExpr(Diff.get(), /*DiscardedValue=*/false);
8948   if (!Diff.isUsable())
8949     return std::make_pair(nullptr, nullptr);
8950 
8951   if (*TestIsLessOp)
8952     MaxExpr = Diff.get();
8953   else
8954     MinExpr = Diff.get();
8955 
8956   return std::make_pair(MinExpr, MaxExpr);
8957 }
8958 
8959 Expr *OpenMPIterationSpaceChecker::buildFinalCondition(Scope *S) const {
8960   if (InitDependOnLC || CondDependOnLC)
8961     return Condition;
8962   return nullptr;
8963 }
8964 
8965 Expr *OpenMPIterationSpaceChecker::buildPreCond(
8966     Scope *S, Expr *Cond,
8967     llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const {
8968   // Do not build a precondition when the condition/initialization is dependent
8969   // to prevent pessimistic early loop exit.
8970   // TODO: this can be improved by calculating min/max values but not sure that
8971   // it will be very effective.
8972   if (CondDependOnLC || InitDependOnLC)
8973     return SemaRef
8974         .PerformImplicitConversion(
8975             SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get(),
8976             SemaRef.Context.BoolTy, /*Action=*/Sema::AA_Casting,
8977             /*AllowExplicit=*/true)
8978         .get();
8979 
8980   // Try to build LB <op> UB, where <op> is <, >, <=, or >=.
8981   Sema::TentativeAnalysisScope Trap(SemaRef);
8982 
8983   ExprResult NewLB = tryBuildCapture(SemaRef, LB, Captures);
8984   ExprResult NewUB = tryBuildCapture(SemaRef, UB, Captures);
8985   if (!NewLB.isUsable() || !NewUB.isUsable())
8986     return nullptr;
8987 
8988   ExprResult CondExpr =
8989       SemaRef.BuildBinOp(S, DefaultLoc,
8990                          *TestIsLessOp ? (TestIsStrictOp ? BO_LT : BO_LE)
8991                                        : (TestIsStrictOp ? BO_GT : BO_GE),
8992                          NewLB.get(), NewUB.get());
8993   if (CondExpr.isUsable()) {
8994     if (!SemaRef.Context.hasSameUnqualifiedType(CondExpr.get()->getType(),
8995                                                 SemaRef.Context.BoolTy))
8996       CondExpr = SemaRef.PerformImplicitConversion(
8997           CondExpr.get(), SemaRef.Context.BoolTy, /*Action=*/Sema::AA_Casting,
8998           /*AllowExplicit=*/true);
8999   }
9000 
9001   // Otherwise use original loop condition and evaluate it in runtime.
9002   return CondExpr.isUsable() ? CondExpr.get() : Cond;
9003 }
9004 
9005 /// Build reference expression to the counter be used for codegen.
9006 DeclRefExpr *OpenMPIterationSpaceChecker::buildCounterVar(
9007     llvm::MapVector<const Expr *, DeclRefExpr *> &Captures,
9008     DSAStackTy &DSA) const {
9009   auto *VD = dyn_cast<VarDecl>(LCDecl);
9010   if (!VD) {
9011     VD = SemaRef.isOpenMPCapturedDecl(LCDecl);
9012     DeclRefExpr *Ref = buildDeclRefExpr(
9013         SemaRef, VD, VD->getType().getNonReferenceType(), DefaultLoc);
9014     const DSAStackTy::DSAVarData Data =
9015         DSA.getTopDSA(LCDecl, /*FromParent=*/false);
9016     // If the loop control decl is explicitly marked as private, do not mark it
9017     // as captured again.
9018     if (!isOpenMPPrivate(Data.CKind) || !Data.RefExpr)
9019       Captures.insert(std::make_pair(LCRef, Ref));
9020     return Ref;
9021   }
9022   return cast<DeclRefExpr>(LCRef);
9023 }
9024 
9025 Expr *OpenMPIterationSpaceChecker::buildPrivateCounterVar() const {
9026   if (LCDecl && !LCDecl->isInvalidDecl()) {
9027     QualType Type = LCDecl->getType().getNonReferenceType();
9028     VarDecl *PrivateVar = buildVarDecl(
9029         SemaRef, DefaultLoc, Type, LCDecl->getName(),
9030         LCDecl->hasAttrs() ? &LCDecl->getAttrs() : nullptr,
9031         isa<VarDecl>(LCDecl)
9032             ? buildDeclRefExpr(SemaRef, cast<VarDecl>(LCDecl), Type, DefaultLoc)
9033             : nullptr);
9034     if (PrivateVar->isInvalidDecl())
9035       return nullptr;
9036     return buildDeclRefExpr(SemaRef, PrivateVar, Type, DefaultLoc);
9037   }
9038   return nullptr;
9039 }
9040 
9041 /// Build initialization of the counter to be used for codegen.
9042 Expr *OpenMPIterationSpaceChecker::buildCounterInit() const { return LB; }
9043 
9044 /// Build step of the counter be used for codegen.
9045 Expr *OpenMPIterationSpaceChecker::buildCounterStep() const { return Step; }
9046 
9047 Expr *OpenMPIterationSpaceChecker::buildOrderedLoopData(
9048     Scope *S, Expr *Counter,
9049     llvm::MapVector<const Expr *, DeclRefExpr *> &Captures, SourceLocation Loc,
9050     Expr *Inc, OverloadedOperatorKind OOK) {
9051   Expr *Cnt = SemaRef.DefaultLvalueConversion(Counter).get();
9052   if (!Cnt)
9053     return nullptr;
9054   if (Inc) {
9055     assert((OOK == OO_Plus || OOK == OO_Minus) &&
9056            "Expected only + or - operations for depend clauses.");
9057     BinaryOperatorKind BOK = (OOK == OO_Plus) ? BO_Add : BO_Sub;
9058     Cnt = SemaRef.BuildBinOp(S, Loc, BOK, Cnt, Inc).get();
9059     if (!Cnt)
9060       return nullptr;
9061   }
9062   QualType VarType = LCDecl->getType().getNonReferenceType();
9063   if (!VarType->isIntegerType() && !VarType->isPointerType() &&
9064       !SemaRef.getLangOpts().CPlusPlus)
9065     return nullptr;
9066   // Upper - Lower
9067   Expr *Upper =
9068       *TestIsLessOp ? Cnt : tryBuildCapture(SemaRef, LB, Captures).get();
9069   Expr *Lower =
9070       *TestIsLessOp ? tryBuildCapture(SemaRef, LB, Captures).get() : Cnt;
9071   if (!Upper || !Lower)
9072     return nullptr;
9073 
9074   ExprResult Diff = calculateNumIters(
9075       SemaRef, S, DefaultLoc, Lower, Upper, Step, VarType,
9076       /*TestIsStrictOp=*/false, /*RoundToStep=*/false, Captures);
9077   if (!Diff.isUsable())
9078     return nullptr;
9079 
9080   return Diff.get();
9081 }
9082 } // namespace
9083 
9084 void Sema::ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init) {
9085   assert(getLangOpts().OpenMP && "OpenMP is not active.");
9086   assert(Init && "Expected loop in canonical form.");
9087   unsigned AssociatedLoops = DSAStack->getAssociatedLoops();
9088   if (AssociatedLoops > 0 &&
9089       isOpenMPLoopDirective(DSAStack->getCurrentDirective())) {
9090     DSAStack->loopStart();
9091     OpenMPIterationSpaceChecker ISC(*this, /*SupportsNonRectangular=*/true,
9092                                     *DSAStack, ForLoc);
9093     if (!ISC.checkAndSetInit(Init, /*EmitDiags=*/false)) {
9094       if (ValueDecl *D = ISC.getLoopDecl()) {
9095         auto *VD = dyn_cast<VarDecl>(D);
9096         DeclRefExpr *PrivateRef = nullptr;
9097         if (!VD) {
9098           if (VarDecl *Private = isOpenMPCapturedDecl(D)) {
9099             VD = Private;
9100           } else {
9101             PrivateRef = buildCapture(*this, D, ISC.getLoopDeclRefExpr(),
9102                                       /*WithInit=*/false);
9103             VD = cast<VarDecl>(PrivateRef->getDecl());
9104           }
9105         }
9106         DSAStack->addLoopControlVariable(D, VD);
9107         const Decl *LD = DSAStack->getPossiblyLoopCunter();
9108         if (LD != D->getCanonicalDecl()) {
9109           DSAStack->resetPossibleLoopCounter();
9110           if (auto *Var = dyn_cast_or_null<VarDecl>(LD))
9111             MarkDeclarationsReferencedInExpr(
9112                 buildDeclRefExpr(*this, const_cast<VarDecl *>(Var),
9113                                  Var->getType().getNonLValueExprType(Context),
9114                                  ForLoc, /*RefersToCapture=*/true));
9115         }
9116         OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
9117         // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables
9118         // Referenced in a Construct, C/C++]. The loop iteration variable in the
9119         // associated for-loop of a simd construct with just one associated
9120         // for-loop may be listed in a linear clause with a constant-linear-step
9121         // that is the increment of the associated for-loop. The loop iteration
9122         // variable(s) in the associated for-loop(s) of a for or parallel for
9123         // construct may be listed in a private or lastprivate clause.
9124         DSAStackTy::DSAVarData DVar =
9125             DSAStack->getTopDSA(D, /*FromParent=*/false);
9126         // If LoopVarRefExpr is nullptr it means the corresponding loop variable
9127         // is declared in the loop and it is predetermined as a private.
9128         Expr *LoopDeclRefExpr = ISC.getLoopDeclRefExpr();
9129         OpenMPClauseKind PredeterminedCKind =
9130             isOpenMPSimdDirective(DKind)
9131                 ? (DSAStack->hasMutipleLoops() ? OMPC_lastprivate : OMPC_linear)
9132                 : OMPC_private;
9133         if (((isOpenMPSimdDirective(DKind) && DVar.CKind != OMPC_unknown &&
9134               DVar.CKind != PredeterminedCKind && DVar.RefExpr &&
9135               (LangOpts.OpenMP <= 45 || (DVar.CKind != OMPC_lastprivate &&
9136                                          DVar.CKind != OMPC_private))) ||
9137              ((isOpenMPWorksharingDirective(DKind) || DKind == OMPD_taskloop ||
9138                DKind == OMPD_master_taskloop || DKind == OMPD_masked_taskloop ||
9139                DKind == OMPD_parallel_master_taskloop ||
9140                DKind == OMPD_parallel_masked_taskloop ||
9141                isOpenMPDistributeDirective(DKind)) &&
9142               !isOpenMPSimdDirective(DKind) && DVar.CKind != OMPC_unknown &&
9143               DVar.CKind != OMPC_private && DVar.CKind != OMPC_lastprivate)) &&
9144             (DVar.CKind != OMPC_private || DVar.RefExpr)) {
9145           Diag(Init->getBeginLoc(), diag::err_omp_loop_var_dsa)
9146               << getOpenMPClauseName(DVar.CKind)
9147               << getOpenMPDirectiveName(DKind)
9148               << getOpenMPClauseName(PredeterminedCKind);
9149           if (DVar.RefExpr == nullptr)
9150             DVar.CKind = PredeterminedCKind;
9151           reportOriginalDsa(*this, DSAStack, D, DVar,
9152                             /*IsLoopIterVar=*/true);
9153         } else if (LoopDeclRefExpr) {
9154           // Make the loop iteration variable private (for worksharing
9155           // constructs), linear (for simd directives with the only one
9156           // associated loop) or lastprivate (for simd directives with several
9157           // collapsed or ordered loops).
9158           if (DVar.CKind == OMPC_unknown)
9159             DSAStack->addDSA(D, LoopDeclRefExpr, PredeterminedCKind,
9160                              PrivateRef);
9161         }
9162       }
9163     }
9164     DSAStack->setAssociatedLoops(AssociatedLoops - 1);
9165   }
9166 }
9167 
9168 /// Called on a for stmt to check and extract its iteration space
9169 /// for further processing (such as collapsing).
9170 static bool checkOpenMPIterationSpace(
9171     OpenMPDirectiveKind DKind, Stmt *S, Sema &SemaRef, DSAStackTy &DSA,
9172     unsigned CurrentNestedLoopCount, unsigned NestedLoopCount,
9173     unsigned TotalNestedLoopCount, Expr *CollapseLoopCountExpr,
9174     Expr *OrderedLoopCountExpr,
9175     Sema::VarsWithInheritedDSAType &VarsWithImplicitDSA,
9176     llvm::MutableArrayRef<LoopIterationSpace> ResultIterSpaces,
9177     llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
9178   bool SupportsNonRectangular = !isOpenMPLoopTransformationDirective(DKind);
9179   // OpenMP [2.9.1, Canonical Loop Form]
9180   //   for (init-expr; test-expr; incr-expr) structured-block
9181   //   for (range-decl: range-expr) structured-block
9182   if (auto *CanonLoop = dyn_cast_or_null<OMPCanonicalLoop>(S))
9183     S = CanonLoop->getLoopStmt();
9184   auto *For = dyn_cast_or_null<ForStmt>(S);
9185   auto *CXXFor = dyn_cast_or_null<CXXForRangeStmt>(S);
9186   // Ranged for is supported only in OpenMP 5.0.
9187   if (!For && (SemaRef.LangOpts.OpenMP <= 45 || !CXXFor)) {
9188     SemaRef.Diag(S->getBeginLoc(), diag::err_omp_not_for)
9189         << (CollapseLoopCountExpr != nullptr || OrderedLoopCountExpr != nullptr)
9190         << getOpenMPDirectiveName(DKind) << TotalNestedLoopCount
9191         << (CurrentNestedLoopCount > 0) << CurrentNestedLoopCount;
9192     if (TotalNestedLoopCount > 1) {
9193       if (CollapseLoopCountExpr && OrderedLoopCountExpr)
9194         SemaRef.Diag(DSA.getConstructLoc(),
9195                      diag::note_omp_collapse_ordered_expr)
9196             << 2 << CollapseLoopCountExpr->getSourceRange()
9197             << OrderedLoopCountExpr->getSourceRange();
9198       else if (CollapseLoopCountExpr)
9199         SemaRef.Diag(CollapseLoopCountExpr->getExprLoc(),
9200                      diag::note_omp_collapse_ordered_expr)
9201             << 0 << CollapseLoopCountExpr->getSourceRange();
9202       else
9203         SemaRef.Diag(OrderedLoopCountExpr->getExprLoc(),
9204                      diag::note_omp_collapse_ordered_expr)
9205             << 1 << OrderedLoopCountExpr->getSourceRange();
9206     }
9207     return true;
9208   }
9209   assert(((For && For->getBody()) || (CXXFor && CXXFor->getBody())) &&
9210          "No loop body.");
9211   // Postpone analysis in dependent contexts for ranged for loops.
9212   if (CXXFor && SemaRef.CurContext->isDependentContext())
9213     return false;
9214 
9215   OpenMPIterationSpaceChecker ISC(SemaRef, SupportsNonRectangular, DSA,
9216                                   For ? For->getForLoc() : CXXFor->getForLoc());
9217 
9218   // Check init.
9219   Stmt *Init = For ? For->getInit() : CXXFor->getBeginStmt();
9220   if (ISC.checkAndSetInit(Init))
9221     return true;
9222 
9223   bool HasErrors = false;
9224 
9225   // Check loop variable's type.
9226   if (ValueDecl *LCDecl = ISC.getLoopDecl()) {
9227     // OpenMP [2.6, Canonical Loop Form]
9228     // Var is one of the following:
9229     //   A variable of signed or unsigned integer type.
9230     //   For C++, a variable of a random access iterator type.
9231     //   For C, a variable of a pointer type.
9232     QualType VarType = LCDecl->getType().getNonReferenceType();
9233     if (!VarType->isDependentType() && !VarType->isIntegerType() &&
9234         !VarType->isPointerType() &&
9235         !(SemaRef.getLangOpts().CPlusPlus && VarType->isOverloadableType())) {
9236       SemaRef.Diag(Init->getBeginLoc(), diag::err_omp_loop_variable_type)
9237           << SemaRef.getLangOpts().CPlusPlus;
9238       HasErrors = true;
9239     }
9240 
9241     // OpenMP, 2.14.1.1 Data-sharing Attribute Rules for Variables Referenced in
9242     // a Construct
9243     // The loop iteration variable(s) in the associated for-loop(s) of a for or
9244     // parallel for construct is (are) private.
9245     // The loop iteration variable in the associated for-loop of a simd
9246     // construct with just one associated for-loop is linear with a
9247     // constant-linear-step that is the increment of the associated for-loop.
9248     // Exclude loop var from the list of variables with implicitly defined data
9249     // sharing attributes.
9250     VarsWithImplicitDSA.erase(LCDecl);
9251 
9252     assert(isOpenMPLoopDirective(DKind) && "DSA for non-loop vars");
9253 
9254     // Check test-expr.
9255     HasErrors |= ISC.checkAndSetCond(For ? For->getCond() : CXXFor->getCond());
9256 
9257     // Check incr-expr.
9258     HasErrors |= ISC.checkAndSetInc(For ? For->getInc() : CXXFor->getInc());
9259   }
9260 
9261   if (ISC.dependent() || SemaRef.CurContext->isDependentContext() || HasErrors)
9262     return HasErrors;
9263 
9264   // Build the loop's iteration space representation.
9265   ResultIterSpaces[CurrentNestedLoopCount].PreCond = ISC.buildPreCond(
9266       DSA.getCurScope(), For ? For->getCond() : CXXFor->getCond(), Captures);
9267   ResultIterSpaces[CurrentNestedLoopCount].NumIterations =
9268       ISC.buildNumIterations(DSA.getCurScope(), ResultIterSpaces,
9269                              (isOpenMPWorksharingDirective(DKind) ||
9270                               isOpenMPGenericLoopDirective(DKind) ||
9271                               isOpenMPTaskLoopDirective(DKind) ||
9272                               isOpenMPDistributeDirective(DKind) ||
9273                               isOpenMPLoopTransformationDirective(DKind)),
9274                              Captures);
9275   ResultIterSpaces[CurrentNestedLoopCount].CounterVar =
9276       ISC.buildCounterVar(Captures, DSA);
9277   ResultIterSpaces[CurrentNestedLoopCount].PrivateCounterVar =
9278       ISC.buildPrivateCounterVar();
9279   ResultIterSpaces[CurrentNestedLoopCount].CounterInit = ISC.buildCounterInit();
9280   ResultIterSpaces[CurrentNestedLoopCount].CounterStep = ISC.buildCounterStep();
9281   ResultIterSpaces[CurrentNestedLoopCount].InitSrcRange = ISC.getInitSrcRange();
9282   ResultIterSpaces[CurrentNestedLoopCount].CondSrcRange =
9283       ISC.getConditionSrcRange();
9284   ResultIterSpaces[CurrentNestedLoopCount].IncSrcRange =
9285       ISC.getIncrementSrcRange();
9286   ResultIterSpaces[CurrentNestedLoopCount].Subtract = ISC.shouldSubtractStep();
9287   ResultIterSpaces[CurrentNestedLoopCount].IsStrictCompare =
9288       ISC.isStrictTestOp();
9289   std::tie(ResultIterSpaces[CurrentNestedLoopCount].MinValue,
9290            ResultIterSpaces[CurrentNestedLoopCount].MaxValue) =
9291       ISC.buildMinMaxValues(DSA.getCurScope(), Captures);
9292   ResultIterSpaces[CurrentNestedLoopCount].FinalCondition =
9293       ISC.buildFinalCondition(DSA.getCurScope());
9294   ResultIterSpaces[CurrentNestedLoopCount].IsNonRectangularLB =
9295       ISC.doesInitDependOnLC();
9296   ResultIterSpaces[CurrentNestedLoopCount].IsNonRectangularUB =
9297       ISC.doesCondDependOnLC();
9298   ResultIterSpaces[CurrentNestedLoopCount].LoopDependentIdx =
9299       ISC.getLoopDependentIdx();
9300 
9301   HasErrors |=
9302       (ResultIterSpaces[CurrentNestedLoopCount].PreCond == nullptr ||
9303        ResultIterSpaces[CurrentNestedLoopCount].NumIterations == nullptr ||
9304        ResultIterSpaces[CurrentNestedLoopCount].CounterVar == nullptr ||
9305        ResultIterSpaces[CurrentNestedLoopCount].PrivateCounterVar == nullptr ||
9306        ResultIterSpaces[CurrentNestedLoopCount].CounterInit == nullptr ||
9307        ResultIterSpaces[CurrentNestedLoopCount].CounterStep == nullptr);
9308   if (!HasErrors && DSA.isOrderedRegion()) {
9309     if (DSA.getOrderedRegionParam().second->getNumForLoops()) {
9310       if (CurrentNestedLoopCount <
9311           DSA.getOrderedRegionParam().second->getLoopNumIterations().size()) {
9312         DSA.getOrderedRegionParam().second->setLoopNumIterations(
9313             CurrentNestedLoopCount,
9314             ResultIterSpaces[CurrentNestedLoopCount].NumIterations);
9315         DSA.getOrderedRegionParam().second->setLoopCounter(
9316             CurrentNestedLoopCount,
9317             ResultIterSpaces[CurrentNestedLoopCount].CounterVar);
9318       }
9319     }
9320     for (auto &Pair : DSA.getDoacrossDependClauses()) {
9321       if (CurrentNestedLoopCount >= Pair.first->getNumLoops()) {
9322         // Erroneous case - clause has some problems.
9323         continue;
9324       }
9325       if (Pair.first->getDependencyKind() == OMPC_DEPEND_sink &&
9326           Pair.second.size() <= CurrentNestedLoopCount) {
9327         // Erroneous case - clause has some problems.
9328         Pair.first->setLoopData(CurrentNestedLoopCount, nullptr);
9329         continue;
9330       }
9331       Expr *CntValue;
9332       if (Pair.first->getDependencyKind() == OMPC_DEPEND_source)
9333         CntValue = ISC.buildOrderedLoopData(
9334             DSA.getCurScope(),
9335             ResultIterSpaces[CurrentNestedLoopCount].CounterVar, Captures,
9336             Pair.first->getDependencyLoc());
9337       else
9338         CntValue = ISC.buildOrderedLoopData(
9339             DSA.getCurScope(),
9340             ResultIterSpaces[CurrentNestedLoopCount].CounterVar, Captures,
9341             Pair.first->getDependencyLoc(),
9342             Pair.second[CurrentNestedLoopCount].first,
9343             Pair.second[CurrentNestedLoopCount].second);
9344       Pair.first->setLoopData(CurrentNestedLoopCount, CntValue);
9345     }
9346   }
9347 
9348   return HasErrors;
9349 }
9350 
9351 /// Build 'VarRef = Start.
9352 static ExprResult
9353 buildCounterInit(Sema &SemaRef, Scope *S, SourceLocation Loc, ExprResult VarRef,
9354                  ExprResult Start, bool IsNonRectangularLB,
9355                  llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
9356   // Build 'VarRef = Start.
9357   ExprResult NewStart = IsNonRectangularLB
9358                             ? Start.get()
9359                             : tryBuildCapture(SemaRef, Start.get(), Captures);
9360   if (!NewStart.isUsable())
9361     return ExprError();
9362   if (!SemaRef.Context.hasSameType(NewStart.get()->getType(),
9363                                    VarRef.get()->getType())) {
9364     NewStart = SemaRef.PerformImplicitConversion(
9365         NewStart.get(), VarRef.get()->getType(), Sema::AA_Converting,
9366         /*AllowExplicit=*/true);
9367     if (!NewStart.isUsable())
9368       return ExprError();
9369   }
9370 
9371   ExprResult Init =
9372       SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), NewStart.get());
9373   return Init;
9374 }
9375 
9376 /// Build 'VarRef = Start + Iter * Step'.
9377 static ExprResult buildCounterUpdate(
9378     Sema &SemaRef, Scope *S, SourceLocation Loc, ExprResult VarRef,
9379     ExprResult Start, ExprResult Iter, ExprResult Step, bool Subtract,
9380     bool IsNonRectangularLB,
9381     llvm::MapVector<const Expr *, DeclRefExpr *> *Captures = nullptr) {
9382   // Add parentheses (for debugging purposes only).
9383   Iter = SemaRef.ActOnParenExpr(Loc, Loc, Iter.get());
9384   if (!VarRef.isUsable() || !Start.isUsable() || !Iter.isUsable() ||
9385       !Step.isUsable())
9386     return ExprError();
9387 
9388   ExprResult NewStep = Step;
9389   if (Captures)
9390     NewStep = tryBuildCapture(SemaRef, Step.get(), *Captures);
9391   if (NewStep.isInvalid())
9392     return ExprError();
9393   ExprResult Update =
9394       SemaRef.BuildBinOp(S, Loc, BO_Mul, Iter.get(), NewStep.get());
9395   if (!Update.isUsable())
9396     return ExprError();
9397 
9398   // Try to build 'VarRef = Start, VarRef (+|-)= Iter * Step' or
9399   // 'VarRef = Start (+|-) Iter * Step'.
9400   if (!Start.isUsable())
9401     return ExprError();
9402   ExprResult NewStart = SemaRef.ActOnParenExpr(Loc, Loc, Start.get());
9403   if (!NewStart.isUsable())
9404     return ExprError();
9405   if (Captures && !IsNonRectangularLB)
9406     NewStart = tryBuildCapture(SemaRef, Start.get(), *Captures);
9407   if (NewStart.isInvalid())
9408     return ExprError();
9409 
9410   // First attempt: try to build 'VarRef = Start, VarRef += Iter * Step'.
9411   ExprResult SavedUpdate = Update;
9412   ExprResult UpdateVal;
9413   if (VarRef.get()->getType()->isOverloadableType() ||
9414       NewStart.get()->getType()->isOverloadableType() ||
9415       Update.get()->getType()->isOverloadableType()) {
9416     Sema::TentativeAnalysisScope Trap(SemaRef);
9417 
9418     Update =
9419         SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), NewStart.get());
9420     if (Update.isUsable()) {
9421       UpdateVal =
9422           SemaRef.BuildBinOp(S, Loc, Subtract ? BO_SubAssign : BO_AddAssign,
9423                              VarRef.get(), SavedUpdate.get());
9424       if (UpdateVal.isUsable()) {
9425         Update = SemaRef.CreateBuiltinBinOp(Loc, BO_Comma, Update.get(),
9426                                             UpdateVal.get());
9427       }
9428     }
9429   }
9430 
9431   // Second attempt: try to build 'VarRef = Start (+|-) Iter * Step'.
9432   if (!Update.isUsable() || !UpdateVal.isUsable()) {
9433     Update = SemaRef.BuildBinOp(S, Loc, Subtract ? BO_Sub : BO_Add,
9434                                 NewStart.get(), SavedUpdate.get());
9435     if (!Update.isUsable())
9436       return ExprError();
9437 
9438     if (!SemaRef.Context.hasSameType(Update.get()->getType(),
9439                                      VarRef.get()->getType())) {
9440       Update = SemaRef.PerformImplicitConversion(
9441           Update.get(), VarRef.get()->getType(), Sema::AA_Converting, true);
9442       if (!Update.isUsable())
9443         return ExprError();
9444     }
9445 
9446     Update = SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), Update.get());
9447   }
9448   return Update;
9449 }
9450 
9451 /// Convert integer expression \a E to make it have at least \a Bits
9452 /// bits.
9453 static ExprResult widenIterationCount(unsigned Bits, Expr *E, Sema &SemaRef) {
9454   if (E == nullptr)
9455     return ExprError();
9456   ASTContext &C = SemaRef.Context;
9457   QualType OldType = E->getType();
9458   unsigned HasBits = C.getTypeSize(OldType);
9459   if (HasBits >= Bits)
9460     return ExprResult(E);
9461   // OK to convert to signed, because new type has more bits than old.
9462   QualType NewType = C.getIntTypeForBitwidth(Bits, /* Signed */ true);
9463   return SemaRef.PerformImplicitConversion(E, NewType, Sema::AA_Converting,
9464                                            true);
9465 }
9466 
9467 /// Check if the given expression \a E is a constant integer that fits
9468 /// into \a Bits bits.
9469 static bool fitsInto(unsigned Bits, bool Signed, const Expr *E, Sema &SemaRef) {
9470   if (E == nullptr)
9471     return false;
9472   if (std::optional<llvm::APSInt> Result =
9473           E->getIntegerConstantExpr(SemaRef.Context))
9474     return Signed ? Result->isSignedIntN(Bits) : Result->isIntN(Bits);
9475   return false;
9476 }
9477 
9478 /// Build preinits statement for the given declarations.
9479 static Stmt *buildPreInits(ASTContext &Context,
9480                            MutableArrayRef<Decl *> PreInits) {
9481   if (!PreInits.empty()) {
9482     return new (Context) DeclStmt(
9483         DeclGroupRef::Create(Context, PreInits.begin(), PreInits.size()),
9484         SourceLocation(), SourceLocation());
9485   }
9486   return nullptr;
9487 }
9488 
9489 /// Build preinits statement for the given declarations.
9490 static Stmt *
9491 buildPreInits(ASTContext &Context,
9492               const llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
9493   if (!Captures.empty()) {
9494     SmallVector<Decl *, 16> PreInits;
9495     for (const auto &Pair : Captures)
9496       PreInits.push_back(Pair.second->getDecl());
9497     return buildPreInits(Context, PreInits);
9498   }
9499   return nullptr;
9500 }
9501 
9502 /// Build postupdate expression for the given list of postupdates expressions.
9503 static Expr *buildPostUpdate(Sema &S, ArrayRef<Expr *> PostUpdates) {
9504   Expr *PostUpdate = nullptr;
9505   if (!PostUpdates.empty()) {
9506     for (Expr *E : PostUpdates) {
9507       Expr *ConvE = S.BuildCStyleCastExpr(
9508                          E->getExprLoc(),
9509                          S.Context.getTrivialTypeSourceInfo(S.Context.VoidTy),
9510                          E->getExprLoc(), E)
9511                         .get();
9512       PostUpdate = PostUpdate
9513                        ? S.CreateBuiltinBinOp(ConvE->getExprLoc(), BO_Comma,
9514                                               PostUpdate, ConvE)
9515                              .get()
9516                        : ConvE;
9517     }
9518   }
9519   return PostUpdate;
9520 }
9521 
9522 /// Called on a for stmt to check itself and nested loops (if any).
9523 /// \return Returns 0 if one of the collapsed stmts is not canonical for loop,
9524 /// number of collapsed loops otherwise.
9525 static unsigned
9526 checkOpenMPLoop(OpenMPDirectiveKind DKind, Expr *CollapseLoopCountExpr,
9527                 Expr *OrderedLoopCountExpr, Stmt *AStmt, Sema &SemaRef,
9528                 DSAStackTy &DSA,
9529                 Sema::VarsWithInheritedDSAType &VarsWithImplicitDSA,
9530                 OMPLoopBasedDirective::HelperExprs &Built) {
9531   unsigned NestedLoopCount = 1;
9532   bool SupportsNonPerfectlyNested = (SemaRef.LangOpts.OpenMP >= 50) &&
9533                                     !isOpenMPLoopTransformationDirective(DKind);
9534 
9535   if (CollapseLoopCountExpr) {
9536     // Found 'collapse' clause - calculate collapse number.
9537     Expr::EvalResult Result;
9538     if (!CollapseLoopCountExpr->isValueDependent() &&
9539         CollapseLoopCountExpr->EvaluateAsInt(Result, SemaRef.getASTContext())) {
9540       NestedLoopCount = Result.Val.getInt().getLimitedValue();
9541     } else {
9542       Built.clear(/*Size=*/1);
9543       return 1;
9544     }
9545   }
9546   unsigned OrderedLoopCount = 1;
9547   if (OrderedLoopCountExpr) {
9548     // Found 'ordered' clause - calculate collapse number.
9549     Expr::EvalResult EVResult;
9550     if (!OrderedLoopCountExpr->isValueDependent() &&
9551         OrderedLoopCountExpr->EvaluateAsInt(EVResult,
9552                                             SemaRef.getASTContext())) {
9553       llvm::APSInt Result = EVResult.Val.getInt();
9554       if (Result.getLimitedValue() < NestedLoopCount) {
9555         SemaRef.Diag(OrderedLoopCountExpr->getExprLoc(),
9556                      diag::err_omp_wrong_ordered_loop_count)
9557             << OrderedLoopCountExpr->getSourceRange();
9558         SemaRef.Diag(CollapseLoopCountExpr->getExprLoc(),
9559                      diag::note_collapse_loop_count)
9560             << CollapseLoopCountExpr->getSourceRange();
9561       }
9562       OrderedLoopCount = Result.getLimitedValue();
9563     } else {
9564       Built.clear(/*Size=*/1);
9565       return 1;
9566     }
9567   }
9568   // This is helper routine for loop directives (e.g., 'for', 'simd',
9569   // 'for simd', etc.).
9570   llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
9571   unsigned NumLoops = std::max(OrderedLoopCount, NestedLoopCount);
9572   SmallVector<LoopIterationSpace, 4> IterSpaces(NumLoops);
9573   if (!OMPLoopBasedDirective::doForAllLoops(
9574           AStmt->IgnoreContainers(!isOpenMPLoopTransformationDirective(DKind)),
9575           SupportsNonPerfectlyNested, NumLoops,
9576           [DKind, &SemaRef, &DSA, NumLoops, NestedLoopCount,
9577            CollapseLoopCountExpr, OrderedLoopCountExpr, &VarsWithImplicitDSA,
9578            &IterSpaces, &Captures](unsigned Cnt, Stmt *CurStmt) {
9579             if (checkOpenMPIterationSpace(
9580                     DKind, CurStmt, SemaRef, DSA, Cnt, NestedLoopCount,
9581                     NumLoops, CollapseLoopCountExpr, OrderedLoopCountExpr,
9582                     VarsWithImplicitDSA, IterSpaces, Captures))
9583               return true;
9584             if (Cnt > 0 && Cnt >= NestedLoopCount &&
9585                 IterSpaces[Cnt].CounterVar) {
9586               // Handle initialization of captured loop iterator variables.
9587               auto *DRE = cast<DeclRefExpr>(IterSpaces[Cnt].CounterVar);
9588               if (isa<OMPCapturedExprDecl>(DRE->getDecl())) {
9589                 Captures[DRE] = DRE;
9590               }
9591             }
9592             return false;
9593           },
9594           [&SemaRef, &Captures](OMPLoopTransformationDirective *Transform) {
9595             Stmt *DependentPreInits = Transform->getPreInits();
9596             if (!DependentPreInits)
9597               return;
9598             for (Decl *C : cast<DeclStmt>(DependentPreInits)->getDeclGroup()) {
9599               auto *D = cast<VarDecl>(C);
9600               DeclRefExpr *Ref = buildDeclRefExpr(SemaRef, D, D->getType(),
9601                                                   Transform->getBeginLoc());
9602               Captures[Ref] = Ref;
9603             }
9604           }))
9605     return 0;
9606 
9607   Built.clear(/* size */ NestedLoopCount);
9608 
9609   if (SemaRef.CurContext->isDependentContext())
9610     return NestedLoopCount;
9611 
9612   // An example of what is generated for the following code:
9613   //
9614   //   #pragma omp simd collapse(2) ordered(2)
9615   //   for (i = 0; i < NI; ++i)
9616   //     for (k = 0; k < NK; ++k)
9617   //       for (j = J0; j < NJ; j+=2) {
9618   //         <loop body>
9619   //       }
9620   //
9621   // We generate the code below.
9622   // Note: the loop body may be outlined in CodeGen.
9623   // Note: some counters may be C++ classes, operator- is used to find number of
9624   // iterations and operator+= to calculate counter value.
9625   // Note: decltype(NumIterations) must be integer type (in 'omp for', only i32
9626   // or i64 is currently supported).
9627   //
9628   //   #define NumIterations (NI * ((NJ - J0 - 1 + 2) / 2))
9629   //   for (int[32|64]_t IV = 0; IV < NumIterations; ++IV ) {
9630   //     .local.i = IV / ((NJ - J0 - 1 + 2) / 2);
9631   //     .local.j = J0 + (IV % ((NJ - J0 - 1 + 2) / 2)) * 2;
9632   //     // similar updates for vars in clauses (e.g. 'linear')
9633   //     <loop body (using local i and j)>
9634   //   }
9635   //   i = NI; // assign final values of counters
9636   //   j = NJ;
9637   //
9638 
9639   // Last iteration number is (I1 * I2 * ... In) - 1, where I1, I2 ... In are
9640   // the iteration counts of the collapsed for loops.
9641   // Precondition tests if there is at least one iteration (all conditions are
9642   // true).
9643   auto PreCond = ExprResult(IterSpaces[0].PreCond);
9644   Expr *N0 = IterSpaces[0].NumIterations;
9645   ExprResult LastIteration32 =
9646       widenIterationCount(/*Bits=*/32,
9647                           SemaRef
9648                               .PerformImplicitConversion(
9649                                   N0->IgnoreImpCasts(), N0->getType(),
9650                                   Sema::AA_Converting, /*AllowExplicit=*/true)
9651                               .get(),
9652                           SemaRef);
9653   ExprResult LastIteration64 = widenIterationCount(
9654       /*Bits=*/64,
9655       SemaRef
9656           .PerformImplicitConversion(N0->IgnoreImpCasts(), N0->getType(),
9657                                      Sema::AA_Converting,
9658                                      /*AllowExplicit=*/true)
9659           .get(),
9660       SemaRef);
9661 
9662   if (!LastIteration32.isUsable() || !LastIteration64.isUsable())
9663     return NestedLoopCount;
9664 
9665   ASTContext &C = SemaRef.Context;
9666   bool AllCountsNeedLessThan32Bits = C.getTypeSize(N0->getType()) < 32;
9667 
9668   Scope *CurScope = DSA.getCurScope();
9669   for (unsigned Cnt = 1; Cnt < NestedLoopCount; ++Cnt) {
9670     if (PreCond.isUsable()) {
9671       PreCond =
9672           SemaRef.BuildBinOp(CurScope, PreCond.get()->getExprLoc(), BO_LAnd,
9673                              PreCond.get(), IterSpaces[Cnt].PreCond);
9674     }
9675     Expr *N = IterSpaces[Cnt].NumIterations;
9676     SourceLocation Loc = N->getExprLoc();
9677     AllCountsNeedLessThan32Bits &= C.getTypeSize(N->getType()) < 32;
9678     if (LastIteration32.isUsable())
9679       LastIteration32 = SemaRef.BuildBinOp(
9680           CurScope, Loc, BO_Mul, LastIteration32.get(),
9681           SemaRef
9682               .PerformImplicitConversion(N->IgnoreImpCasts(), N->getType(),
9683                                          Sema::AA_Converting,
9684                                          /*AllowExplicit=*/true)
9685               .get());
9686     if (LastIteration64.isUsable())
9687       LastIteration64 = SemaRef.BuildBinOp(
9688           CurScope, Loc, BO_Mul, LastIteration64.get(),
9689           SemaRef
9690               .PerformImplicitConversion(N->IgnoreImpCasts(), N->getType(),
9691                                          Sema::AA_Converting,
9692                                          /*AllowExplicit=*/true)
9693               .get());
9694   }
9695 
9696   // Choose either the 32-bit or 64-bit version.
9697   ExprResult LastIteration = LastIteration64;
9698   if (SemaRef.getLangOpts().OpenMPOptimisticCollapse ||
9699       (LastIteration32.isUsable() &&
9700        C.getTypeSize(LastIteration32.get()->getType()) == 32 &&
9701        (AllCountsNeedLessThan32Bits || NestedLoopCount == 1 ||
9702         fitsInto(
9703             /*Bits=*/32,
9704             LastIteration32.get()->getType()->hasSignedIntegerRepresentation(),
9705             LastIteration64.get(), SemaRef))))
9706     LastIteration = LastIteration32;
9707   QualType VType = LastIteration.get()->getType();
9708   QualType RealVType = VType;
9709   QualType StrideVType = VType;
9710   if (isOpenMPTaskLoopDirective(DKind)) {
9711     VType =
9712         SemaRef.Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
9713     StrideVType =
9714         SemaRef.Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
9715   }
9716 
9717   if (!LastIteration.isUsable())
9718     return 0;
9719 
9720   // Save the number of iterations.
9721   ExprResult NumIterations = LastIteration;
9722   {
9723     LastIteration = SemaRef.BuildBinOp(
9724         CurScope, LastIteration.get()->getExprLoc(), BO_Sub,
9725         LastIteration.get(),
9726         SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
9727     if (!LastIteration.isUsable())
9728       return 0;
9729   }
9730 
9731   // Calculate the last iteration number beforehand instead of doing this on
9732   // each iteration. Do not do this if the number of iterations may be kfold-ed.
9733   bool IsConstant = LastIteration.get()->isIntegerConstantExpr(SemaRef.Context);
9734   ExprResult CalcLastIteration;
9735   if (!IsConstant) {
9736     ExprResult SaveRef =
9737         tryBuildCapture(SemaRef, LastIteration.get(), Captures);
9738     LastIteration = SaveRef;
9739 
9740     // Prepare SaveRef + 1.
9741     NumIterations = SemaRef.BuildBinOp(
9742         CurScope, SaveRef.get()->getExprLoc(), BO_Add, SaveRef.get(),
9743         SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
9744     if (!NumIterations.isUsable())
9745       return 0;
9746   }
9747 
9748   SourceLocation InitLoc = IterSpaces[0].InitSrcRange.getBegin();
9749 
9750   // Build variables passed into runtime, necessary for worksharing directives.
9751   ExprResult LB, UB, IL, ST, EUB, CombLB, CombUB, PrevLB, PrevUB, CombEUB;
9752   if (isOpenMPWorksharingDirective(DKind) || isOpenMPTaskLoopDirective(DKind) ||
9753       isOpenMPDistributeDirective(DKind) ||
9754       isOpenMPGenericLoopDirective(DKind) ||
9755       isOpenMPLoopTransformationDirective(DKind)) {
9756     // Lower bound variable, initialized with zero.
9757     VarDecl *LBDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.lb");
9758     LB = buildDeclRefExpr(SemaRef, LBDecl, VType, InitLoc);
9759     SemaRef.AddInitializerToDecl(LBDecl,
9760                                  SemaRef.ActOnIntegerConstant(InitLoc, 0).get(),
9761                                  /*DirectInit*/ false);
9762 
9763     // Upper bound variable, initialized with last iteration number.
9764     VarDecl *UBDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.ub");
9765     UB = buildDeclRefExpr(SemaRef, UBDecl, VType, InitLoc);
9766     SemaRef.AddInitializerToDecl(UBDecl, LastIteration.get(),
9767                                  /*DirectInit*/ false);
9768 
9769     // A 32-bit variable-flag where runtime returns 1 for the last iteration.
9770     // This will be used to implement clause 'lastprivate'.
9771     QualType Int32Ty = SemaRef.Context.getIntTypeForBitwidth(32, true);
9772     VarDecl *ILDecl = buildVarDecl(SemaRef, InitLoc, Int32Ty, ".omp.is_last");
9773     IL = buildDeclRefExpr(SemaRef, ILDecl, Int32Ty, InitLoc);
9774     SemaRef.AddInitializerToDecl(ILDecl,
9775                                  SemaRef.ActOnIntegerConstant(InitLoc, 0).get(),
9776                                  /*DirectInit*/ false);
9777 
9778     // Stride variable returned by runtime (we initialize it to 1 by default).
9779     VarDecl *STDecl =
9780         buildVarDecl(SemaRef, InitLoc, StrideVType, ".omp.stride");
9781     ST = buildDeclRefExpr(SemaRef, STDecl, StrideVType, InitLoc);
9782     SemaRef.AddInitializerToDecl(STDecl,
9783                                  SemaRef.ActOnIntegerConstant(InitLoc, 1).get(),
9784                                  /*DirectInit*/ false);
9785 
9786     // Build expression: UB = min(UB, LastIteration)
9787     // It is necessary for CodeGen of directives with static scheduling.
9788     ExprResult IsUBGreater = SemaRef.BuildBinOp(CurScope, InitLoc, BO_GT,
9789                                                 UB.get(), LastIteration.get());
9790     ExprResult CondOp = SemaRef.ActOnConditionalOp(
9791         LastIteration.get()->getExprLoc(), InitLoc, IsUBGreater.get(),
9792         LastIteration.get(), UB.get());
9793     EUB = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, UB.get(),
9794                              CondOp.get());
9795     EUB = SemaRef.ActOnFinishFullExpr(EUB.get(), /*DiscardedValue*/ false);
9796 
9797     // If we have a combined directive that combines 'distribute', 'for' or
9798     // 'simd' we need to be able to access the bounds of the schedule of the
9799     // enclosing region. E.g. in 'distribute parallel for' the bounds obtained
9800     // by scheduling 'distribute' have to be passed to the schedule of 'for'.
9801     if (isOpenMPLoopBoundSharingDirective(DKind)) {
9802       // Lower bound variable, initialized with zero.
9803       VarDecl *CombLBDecl =
9804           buildVarDecl(SemaRef, InitLoc, VType, ".omp.comb.lb");
9805       CombLB = buildDeclRefExpr(SemaRef, CombLBDecl, VType, InitLoc);
9806       SemaRef.AddInitializerToDecl(
9807           CombLBDecl, SemaRef.ActOnIntegerConstant(InitLoc, 0).get(),
9808           /*DirectInit*/ false);
9809 
9810       // Upper bound variable, initialized with last iteration number.
9811       VarDecl *CombUBDecl =
9812           buildVarDecl(SemaRef, InitLoc, VType, ".omp.comb.ub");
9813       CombUB = buildDeclRefExpr(SemaRef, CombUBDecl, VType, InitLoc);
9814       SemaRef.AddInitializerToDecl(CombUBDecl, LastIteration.get(),
9815                                    /*DirectInit*/ false);
9816 
9817       ExprResult CombIsUBGreater = SemaRef.BuildBinOp(
9818           CurScope, InitLoc, BO_GT, CombUB.get(), LastIteration.get());
9819       ExprResult CombCondOp =
9820           SemaRef.ActOnConditionalOp(InitLoc, InitLoc, CombIsUBGreater.get(),
9821                                      LastIteration.get(), CombUB.get());
9822       CombEUB = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, CombUB.get(),
9823                                    CombCondOp.get());
9824       CombEUB =
9825           SemaRef.ActOnFinishFullExpr(CombEUB.get(), /*DiscardedValue*/ false);
9826 
9827       const CapturedDecl *CD = cast<CapturedStmt>(AStmt)->getCapturedDecl();
9828       // We expect to have at least 2 more parameters than the 'parallel'
9829       // directive does - the lower and upper bounds of the previous schedule.
9830       assert(CD->getNumParams() >= 4 &&
9831              "Unexpected number of parameters in loop combined directive");
9832 
9833       // Set the proper type for the bounds given what we learned from the
9834       // enclosed loops.
9835       ImplicitParamDecl *PrevLBDecl = CD->getParam(/*PrevLB=*/2);
9836       ImplicitParamDecl *PrevUBDecl = CD->getParam(/*PrevUB=*/3);
9837 
9838       // Previous lower and upper bounds are obtained from the region
9839       // parameters.
9840       PrevLB =
9841           buildDeclRefExpr(SemaRef, PrevLBDecl, PrevLBDecl->getType(), InitLoc);
9842       PrevUB =
9843           buildDeclRefExpr(SemaRef, PrevUBDecl, PrevUBDecl->getType(), InitLoc);
9844     }
9845   }
9846 
9847   // Build the iteration variable and its initialization before loop.
9848   ExprResult IV;
9849   ExprResult Init, CombInit;
9850   {
9851     VarDecl *IVDecl = buildVarDecl(SemaRef, InitLoc, RealVType, ".omp.iv");
9852     IV = buildDeclRefExpr(SemaRef, IVDecl, RealVType, InitLoc);
9853     Expr *RHS = (isOpenMPWorksharingDirective(DKind) ||
9854                  isOpenMPGenericLoopDirective(DKind) ||
9855                  isOpenMPTaskLoopDirective(DKind) ||
9856                  isOpenMPDistributeDirective(DKind) ||
9857                  isOpenMPLoopTransformationDirective(DKind))
9858                     ? LB.get()
9859                     : SemaRef.ActOnIntegerConstant(SourceLocation(), 0).get();
9860     Init = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, IV.get(), RHS);
9861     Init = SemaRef.ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
9862 
9863     if (isOpenMPLoopBoundSharingDirective(DKind)) {
9864       Expr *CombRHS =
9865           (isOpenMPWorksharingDirective(DKind) ||
9866            isOpenMPGenericLoopDirective(DKind) ||
9867            isOpenMPTaskLoopDirective(DKind) ||
9868            isOpenMPDistributeDirective(DKind))
9869               ? CombLB.get()
9870               : SemaRef.ActOnIntegerConstant(SourceLocation(), 0).get();
9871       CombInit =
9872           SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, IV.get(), CombRHS);
9873       CombInit =
9874           SemaRef.ActOnFinishFullExpr(CombInit.get(), /*DiscardedValue*/ false);
9875     }
9876   }
9877 
9878   bool UseStrictCompare =
9879       RealVType->hasUnsignedIntegerRepresentation() &&
9880       llvm::all_of(IterSpaces, [](const LoopIterationSpace &LIS) {
9881         return LIS.IsStrictCompare;
9882       });
9883   // Loop condition (IV < NumIterations) or (IV <= UB or IV < UB + 1 (for
9884   // unsigned IV)) for worksharing loops.
9885   SourceLocation CondLoc = AStmt->getBeginLoc();
9886   Expr *BoundUB = UB.get();
9887   if (UseStrictCompare) {
9888     BoundUB =
9889         SemaRef
9890             .BuildBinOp(CurScope, CondLoc, BO_Add, BoundUB,
9891                         SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get())
9892             .get();
9893     BoundUB =
9894         SemaRef.ActOnFinishFullExpr(BoundUB, /*DiscardedValue*/ false).get();
9895   }
9896   ExprResult Cond =
9897       (isOpenMPWorksharingDirective(DKind) ||
9898        isOpenMPGenericLoopDirective(DKind) ||
9899        isOpenMPTaskLoopDirective(DKind) || isOpenMPDistributeDirective(DKind) ||
9900        isOpenMPLoopTransformationDirective(DKind))
9901           ? SemaRef.BuildBinOp(CurScope, CondLoc,
9902                                UseStrictCompare ? BO_LT : BO_LE, IV.get(),
9903                                BoundUB)
9904           : SemaRef.BuildBinOp(CurScope, CondLoc, BO_LT, IV.get(),
9905                                NumIterations.get());
9906   ExprResult CombDistCond;
9907   if (isOpenMPLoopBoundSharingDirective(DKind)) {
9908     CombDistCond = SemaRef.BuildBinOp(CurScope, CondLoc, BO_LT, IV.get(),
9909                                       NumIterations.get());
9910   }
9911 
9912   ExprResult CombCond;
9913   if (isOpenMPLoopBoundSharingDirective(DKind)) {
9914     Expr *BoundCombUB = CombUB.get();
9915     if (UseStrictCompare) {
9916       BoundCombUB =
9917           SemaRef
9918               .BuildBinOp(
9919                   CurScope, CondLoc, BO_Add, BoundCombUB,
9920                   SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get())
9921               .get();
9922       BoundCombUB =
9923           SemaRef.ActOnFinishFullExpr(BoundCombUB, /*DiscardedValue*/ false)
9924               .get();
9925     }
9926     CombCond =
9927         SemaRef.BuildBinOp(CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE,
9928                            IV.get(), BoundCombUB);
9929   }
9930   // Loop increment (IV = IV + 1)
9931   SourceLocation IncLoc = AStmt->getBeginLoc();
9932   ExprResult Inc =
9933       SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, IV.get(),
9934                          SemaRef.ActOnIntegerConstant(IncLoc, 1).get());
9935   if (!Inc.isUsable())
9936     return 0;
9937   Inc = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, IV.get(), Inc.get());
9938   Inc = SemaRef.ActOnFinishFullExpr(Inc.get(), /*DiscardedValue*/ false);
9939   if (!Inc.isUsable())
9940     return 0;
9941 
9942   // Increments for worksharing loops (LB = LB + ST; UB = UB + ST).
9943   // Used for directives with static scheduling.
9944   // In combined construct, add combined version that use CombLB and CombUB
9945   // base variables for the update
9946   ExprResult NextLB, NextUB, CombNextLB, CombNextUB;
9947   if (isOpenMPWorksharingDirective(DKind) || isOpenMPTaskLoopDirective(DKind) ||
9948       isOpenMPGenericLoopDirective(DKind) ||
9949       isOpenMPDistributeDirective(DKind) ||
9950       isOpenMPLoopTransformationDirective(DKind)) {
9951     // LB + ST
9952     NextLB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, LB.get(), ST.get());
9953     if (!NextLB.isUsable())
9954       return 0;
9955     // LB = LB + ST
9956     NextLB =
9957         SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, LB.get(), NextLB.get());
9958     NextLB =
9959         SemaRef.ActOnFinishFullExpr(NextLB.get(), /*DiscardedValue*/ false);
9960     if (!NextLB.isUsable())
9961       return 0;
9962     // UB + ST
9963     NextUB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, UB.get(), ST.get());
9964     if (!NextUB.isUsable())
9965       return 0;
9966     // UB = UB + ST
9967     NextUB =
9968         SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, UB.get(), NextUB.get());
9969     NextUB =
9970         SemaRef.ActOnFinishFullExpr(NextUB.get(), /*DiscardedValue*/ false);
9971     if (!NextUB.isUsable())
9972       return 0;
9973     if (isOpenMPLoopBoundSharingDirective(DKind)) {
9974       CombNextLB =
9975           SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, CombLB.get(), ST.get());
9976       if (!NextLB.isUsable())
9977         return 0;
9978       // LB = LB + ST
9979       CombNextLB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, CombLB.get(),
9980                                       CombNextLB.get());
9981       CombNextLB = SemaRef.ActOnFinishFullExpr(CombNextLB.get(),
9982                                                /*DiscardedValue*/ false);
9983       if (!CombNextLB.isUsable())
9984         return 0;
9985       // UB + ST
9986       CombNextUB =
9987           SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, CombUB.get(), ST.get());
9988       if (!CombNextUB.isUsable())
9989         return 0;
9990       // UB = UB + ST
9991       CombNextUB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, CombUB.get(),
9992                                       CombNextUB.get());
9993       CombNextUB = SemaRef.ActOnFinishFullExpr(CombNextUB.get(),
9994                                                /*DiscardedValue*/ false);
9995       if (!CombNextUB.isUsable())
9996         return 0;
9997     }
9998   }
9999 
10000   // Create increment expression for distribute loop when combined in a same
10001   // directive with for as IV = IV + ST; ensure upper bound expression based
10002   // on PrevUB instead of NumIterations - used to implement 'for' when found
10003   // in combination with 'distribute', like in 'distribute parallel for'
10004   SourceLocation DistIncLoc = AStmt->getBeginLoc();
10005   ExprResult DistCond, DistInc, PrevEUB, ParForInDistCond;
10006   if (isOpenMPLoopBoundSharingDirective(DKind)) {
10007     DistCond = SemaRef.BuildBinOp(
10008         CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE, IV.get(), BoundUB);
10009     assert(DistCond.isUsable() && "distribute cond expr was not built");
10010 
10011     DistInc =
10012         SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Add, IV.get(), ST.get());
10013     assert(DistInc.isUsable() && "distribute inc expr was not built");
10014     DistInc = SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Assign, IV.get(),
10015                                  DistInc.get());
10016     DistInc =
10017         SemaRef.ActOnFinishFullExpr(DistInc.get(), /*DiscardedValue*/ false);
10018     assert(DistInc.isUsable() && "distribute inc expr was not built");
10019 
10020     // Build expression: UB = min(UB, prevUB) for #for in composite or combined
10021     // construct
10022     ExprResult NewPrevUB = PrevUB;
10023     SourceLocation DistEUBLoc = AStmt->getBeginLoc();
10024     if (!SemaRef.Context.hasSameType(UB.get()->getType(),
10025                                      PrevUB.get()->getType())) {
10026       NewPrevUB = SemaRef.BuildCStyleCastExpr(
10027           DistEUBLoc,
10028           SemaRef.Context.getTrivialTypeSourceInfo(UB.get()->getType()),
10029           DistEUBLoc, NewPrevUB.get());
10030       if (!NewPrevUB.isUsable())
10031         return 0;
10032     }
10033     ExprResult IsUBGreater = SemaRef.BuildBinOp(CurScope, DistEUBLoc, BO_GT,
10034                                                 UB.get(), NewPrevUB.get());
10035     ExprResult CondOp = SemaRef.ActOnConditionalOp(
10036         DistEUBLoc, DistEUBLoc, IsUBGreater.get(), NewPrevUB.get(), UB.get());
10037     PrevEUB = SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Assign, UB.get(),
10038                                  CondOp.get());
10039     PrevEUB =
10040         SemaRef.ActOnFinishFullExpr(PrevEUB.get(), /*DiscardedValue*/ false);
10041 
10042     // Build IV <= PrevUB or IV < PrevUB + 1 for unsigned IV to be used in
10043     // parallel for is in combination with a distribute directive with
10044     // schedule(static, 1)
10045     Expr *BoundPrevUB = PrevUB.get();
10046     if (UseStrictCompare) {
10047       BoundPrevUB =
10048           SemaRef
10049               .BuildBinOp(
10050                   CurScope, CondLoc, BO_Add, BoundPrevUB,
10051                   SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get())
10052               .get();
10053       BoundPrevUB =
10054           SemaRef.ActOnFinishFullExpr(BoundPrevUB, /*DiscardedValue*/ false)
10055               .get();
10056     }
10057     ParForInDistCond =
10058         SemaRef.BuildBinOp(CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE,
10059                            IV.get(), BoundPrevUB);
10060   }
10061 
10062   // Build updates and final values of the loop counters.
10063   bool HasErrors = false;
10064   Built.Counters.resize(NestedLoopCount);
10065   Built.Inits.resize(NestedLoopCount);
10066   Built.Updates.resize(NestedLoopCount);
10067   Built.Finals.resize(NestedLoopCount);
10068   Built.DependentCounters.resize(NestedLoopCount);
10069   Built.DependentInits.resize(NestedLoopCount);
10070   Built.FinalsConditions.resize(NestedLoopCount);
10071   {
10072     // We implement the following algorithm for obtaining the
10073     // original loop iteration variable values based on the
10074     // value of the collapsed loop iteration variable IV.
10075     //
10076     // Let n+1 be the number of collapsed loops in the nest.
10077     // Iteration variables (I0, I1, .... In)
10078     // Iteration counts (N0, N1, ... Nn)
10079     //
10080     // Acc = IV;
10081     //
10082     // To compute Ik for loop k, 0 <= k <= n, generate:
10083     //    Prod = N(k+1) * N(k+2) * ... * Nn;
10084     //    Ik = Acc / Prod;
10085     //    Acc -= Ik * Prod;
10086     //
10087     ExprResult Acc = IV;
10088     for (unsigned int Cnt = 0; Cnt < NestedLoopCount; ++Cnt) {
10089       LoopIterationSpace &IS = IterSpaces[Cnt];
10090       SourceLocation UpdLoc = IS.IncSrcRange.getBegin();
10091       ExprResult Iter;
10092 
10093       // Compute prod
10094       ExprResult Prod = SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get();
10095       for (unsigned int K = Cnt + 1; K < NestedLoopCount; ++K)
10096         Prod = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Mul, Prod.get(),
10097                                   IterSpaces[K].NumIterations);
10098 
10099       // Iter = Acc / Prod
10100       // If there is at least one more inner loop to avoid
10101       // multiplication by 1.
10102       if (Cnt + 1 < NestedLoopCount)
10103         Iter =
10104             SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Div, Acc.get(), Prod.get());
10105       else
10106         Iter = Acc;
10107       if (!Iter.isUsable()) {
10108         HasErrors = true;
10109         break;
10110       }
10111 
10112       // Update Acc:
10113       // Acc -= Iter * Prod
10114       // Check if there is at least one more inner loop to avoid
10115       // multiplication by 1.
10116       if (Cnt + 1 < NestedLoopCount)
10117         Prod = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Mul, Iter.get(),
10118                                   Prod.get());
10119       else
10120         Prod = Iter;
10121       Acc = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Sub, Acc.get(), Prod.get());
10122 
10123       // Build update: IS.CounterVar(Private) = IS.Start + Iter * IS.Step
10124       auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IS.CounterVar)->getDecl());
10125       DeclRefExpr *CounterVar = buildDeclRefExpr(
10126           SemaRef, VD, IS.CounterVar->getType(), IS.CounterVar->getExprLoc(),
10127           /*RefersToCapture=*/true);
10128       ExprResult Init =
10129           buildCounterInit(SemaRef, CurScope, UpdLoc, CounterVar,
10130                            IS.CounterInit, IS.IsNonRectangularLB, Captures);
10131       if (!Init.isUsable()) {
10132         HasErrors = true;
10133         break;
10134       }
10135       ExprResult Update = buildCounterUpdate(
10136           SemaRef, CurScope, UpdLoc, CounterVar, IS.CounterInit, Iter,
10137           IS.CounterStep, IS.Subtract, IS.IsNonRectangularLB, &Captures);
10138       if (!Update.isUsable()) {
10139         HasErrors = true;
10140         break;
10141       }
10142 
10143       // Build final: IS.CounterVar = IS.Start + IS.NumIters * IS.Step
10144       ExprResult Final =
10145           buildCounterUpdate(SemaRef, CurScope, UpdLoc, CounterVar,
10146                              IS.CounterInit, IS.NumIterations, IS.CounterStep,
10147                              IS.Subtract, IS.IsNonRectangularLB, &Captures);
10148       if (!Final.isUsable()) {
10149         HasErrors = true;
10150         break;
10151       }
10152 
10153       if (!Update.isUsable() || !Final.isUsable()) {
10154         HasErrors = true;
10155         break;
10156       }
10157       // Save results
10158       Built.Counters[Cnt] = IS.CounterVar;
10159       Built.PrivateCounters[Cnt] = IS.PrivateCounterVar;
10160       Built.Inits[Cnt] = Init.get();
10161       Built.Updates[Cnt] = Update.get();
10162       Built.Finals[Cnt] = Final.get();
10163       Built.DependentCounters[Cnt] = nullptr;
10164       Built.DependentInits[Cnt] = nullptr;
10165       Built.FinalsConditions[Cnt] = nullptr;
10166       if (IS.IsNonRectangularLB || IS.IsNonRectangularUB) {
10167         Built.DependentCounters[Cnt] =
10168             Built.Counters[NestedLoopCount - 1 - IS.LoopDependentIdx];
10169         Built.DependentInits[Cnt] =
10170             Built.Inits[NestedLoopCount - 1 - IS.LoopDependentIdx];
10171         Built.FinalsConditions[Cnt] = IS.FinalCondition;
10172       }
10173     }
10174   }
10175 
10176   if (HasErrors)
10177     return 0;
10178 
10179   // Save results
10180   Built.IterationVarRef = IV.get();
10181   Built.LastIteration = LastIteration.get();
10182   Built.NumIterations = NumIterations.get();
10183   Built.CalcLastIteration = SemaRef
10184                                 .ActOnFinishFullExpr(CalcLastIteration.get(),
10185                                                      /*DiscardedValue=*/false)
10186                                 .get();
10187   Built.PreCond = PreCond.get();
10188   Built.PreInits = buildPreInits(C, Captures);
10189   Built.Cond = Cond.get();
10190   Built.Init = Init.get();
10191   Built.Inc = Inc.get();
10192   Built.LB = LB.get();
10193   Built.UB = UB.get();
10194   Built.IL = IL.get();
10195   Built.ST = ST.get();
10196   Built.EUB = EUB.get();
10197   Built.NLB = NextLB.get();
10198   Built.NUB = NextUB.get();
10199   Built.PrevLB = PrevLB.get();
10200   Built.PrevUB = PrevUB.get();
10201   Built.DistInc = DistInc.get();
10202   Built.PrevEUB = PrevEUB.get();
10203   Built.DistCombinedFields.LB = CombLB.get();
10204   Built.DistCombinedFields.UB = CombUB.get();
10205   Built.DistCombinedFields.EUB = CombEUB.get();
10206   Built.DistCombinedFields.Init = CombInit.get();
10207   Built.DistCombinedFields.Cond = CombCond.get();
10208   Built.DistCombinedFields.NLB = CombNextLB.get();
10209   Built.DistCombinedFields.NUB = CombNextUB.get();
10210   Built.DistCombinedFields.DistCond = CombDistCond.get();
10211   Built.DistCombinedFields.ParForInDistCond = ParForInDistCond.get();
10212 
10213   return NestedLoopCount;
10214 }
10215 
10216 static Expr *getCollapseNumberExpr(ArrayRef<OMPClause *> Clauses) {
10217   auto CollapseClauses =
10218       OMPExecutableDirective::getClausesOfKind<OMPCollapseClause>(Clauses);
10219   if (CollapseClauses.begin() != CollapseClauses.end())
10220     return (*CollapseClauses.begin())->getNumForLoops();
10221   return nullptr;
10222 }
10223 
10224 static Expr *getOrderedNumberExpr(ArrayRef<OMPClause *> Clauses) {
10225   auto OrderedClauses =
10226       OMPExecutableDirective::getClausesOfKind<OMPOrderedClause>(Clauses);
10227   if (OrderedClauses.begin() != OrderedClauses.end())
10228     return (*OrderedClauses.begin())->getNumForLoops();
10229   return nullptr;
10230 }
10231 
10232 static bool checkSimdlenSafelenSpecified(Sema &S,
10233                                          const ArrayRef<OMPClause *> Clauses) {
10234   const OMPSafelenClause *Safelen = nullptr;
10235   const OMPSimdlenClause *Simdlen = nullptr;
10236 
10237   for (const OMPClause *Clause : Clauses) {
10238     if (Clause->getClauseKind() == OMPC_safelen)
10239       Safelen = cast<OMPSafelenClause>(Clause);
10240     else if (Clause->getClauseKind() == OMPC_simdlen)
10241       Simdlen = cast<OMPSimdlenClause>(Clause);
10242     if (Safelen && Simdlen)
10243       break;
10244   }
10245 
10246   if (Simdlen && Safelen) {
10247     const Expr *SimdlenLength = Simdlen->getSimdlen();
10248     const Expr *SafelenLength = Safelen->getSafelen();
10249     if (SimdlenLength->isValueDependent() || SimdlenLength->isTypeDependent() ||
10250         SimdlenLength->isInstantiationDependent() ||
10251         SimdlenLength->containsUnexpandedParameterPack())
10252       return false;
10253     if (SafelenLength->isValueDependent() || SafelenLength->isTypeDependent() ||
10254         SafelenLength->isInstantiationDependent() ||
10255         SafelenLength->containsUnexpandedParameterPack())
10256       return false;
10257     Expr::EvalResult SimdlenResult, SafelenResult;
10258     SimdlenLength->EvaluateAsInt(SimdlenResult, S.Context);
10259     SafelenLength->EvaluateAsInt(SafelenResult, S.Context);
10260     llvm::APSInt SimdlenRes = SimdlenResult.Val.getInt();
10261     llvm::APSInt SafelenRes = SafelenResult.Val.getInt();
10262     // OpenMP 4.5 [2.8.1, simd Construct, Restrictions]
10263     // If both simdlen and safelen clauses are specified, the value of the
10264     // simdlen parameter must be less than or equal to the value of the safelen
10265     // parameter.
10266     if (SimdlenRes > SafelenRes) {
10267       S.Diag(SimdlenLength->getExprLoc(),
10268              diag::err_omp_wrong_simdlen_safelen_values)
10269           << SimdlenLength->getSourceRange() << SafelenLength->getSourceRange();
10270       return true;
10271     }
10272   }
10273   return false;
10274 }
10275 
10276 StmtResult
10277 Sema::ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10278                                SourceLocation StartLoc, SourceLocation EndLoc,
10279                                VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10280   if (!AStmt)
10281     return StmtError();
10282 
10283   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
10284   OMPLoopBasedDirective::HelperExprs B;
10285   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10286   // define the nested loops number.
10287   unsigned NestedLoopCount = checkOpenMPLoop(
10288       OMPD_simd, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses),
10289       AStmt, *this, *DSAStack, VarsWithImplicitDSA, B);
10290   if (NestedLoopCount == 0)
10291     return StmtError();
10292 
10293   assert((CurContext->isDependentContext() || B.builtAll()) &&
10294          "omp simd loop exprs were not built");
10295 
10296   if (!CurContext->isDependentContext()) {
10297     // Finalize the clauses that need pre-built expressions for CodeGen.
10298     for (OMPClause *C : Clauses) {
10299       if (auto *LC = dyn_cast<OMPLinearClause>(C))
10300         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
10301                                      B.NumIterations, *this, CurScope,
10302                                      DSAStack))
10303           return StmtError();
10304     }
10305   }
10306 
10307   if (checkSimdlenSafelenSpecified(*this, Clauses))
10308     return StmtError();
10309 
10310   setFunctionHasBranchProtectedScope();
10311   return OMPSimdDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount,
10312                                   Clauses, AStmt, B);
10313 }
10314 
10315 StmtResult
10316 Sema::ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10317                               SourceLocation StartLoc, SourceLocation EndLoc,
10318                               VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10319   if (!AStmt)
10320     return StmtError();
10321 
10322   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
10323   OMPLoopBasedDirective::HelperExprs B;
10324   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10325   // define the nested loops number.
10326   unsigned NestedLoopCount = checkOpenMPLoop(
10327       OMPD_for, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses),
10328       AStmt, *this, *DSAStack, VarsWithImplicitDSA, B);
10329   if (NestedLoopCount == 0)
10330     return StmtError();
10331 
10332   assert((CurContext->isDependentContext() || B.builtAll()) &&
10333          "omp for loop exprs were not built");
10334 
10335   if (!CurContext->isDependentContext()) {
10336     // Finalize the clauses that need pre-built expressions for CodeGen.
10337     for (OMPClause *C : Clauses) {
10338       if (auto *LC = dyn_cast<OMPLinearClause>(C))
10339         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
10340                                      B.NumIterations, *this, CurScope,
10341                                      DSAStack))
10342           return StmtError();
10343     }
10344   }
10345 
10346   setFunctionHasBranchProtectedScope();
10347   return OMPForDirective::Create(
10348       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
10349       DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
10350 }
10351 
10352 StmtResult Sema::ActOnOpenMPForSimdDirective(
10353     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10354     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10355   if (!AStmt)
10356     return StmtError();
10357 
10358   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
10359   OMPLoopBasedDirective::HelperExprs B;
10360   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10361   // define the nested loops number.
10362   unsigned NestedLoopCount =
10363       checkOpenMPLoop(OMPD_for_simd, getCollapseNumberExpr(Clauses),
10364                       getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack,
10365                       VarsWithImplicitDSA, B);
10366   if (NestedLoopCount == 0)
10367     return StmtError();
10368 
10369   assert((CurContext->isDependentContext() || B.builtAll()) &&
10370          "omp for simd loop exprs were not built");
10371 
10372   if (!CurContext->isDependentContext()) {
10373     // Finalize the clauses that need pre-built expressions for CodeGen.
10374     for (OMPClause *C : Clauses) {
10375       if (auto *LC = dyn_cast<OMPLinearClause>(C))
10376         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
10377                                      B.NumIterations, *this, CurScope,
10378                                      DSAStack))
10379           return StmtError();
10380     }
10381   }
10382 
10383   if (checkSimdlenSafelenSpecified(*this, Clauses))
10384     return StmtError();
10385 
10386   setFunctionHasBranchProtectedScope();
10387   return OMPForSimdDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount,
10388                                      Clauses, AStmt, B);
10389 }
10390 
10391 StmtResult Sema::ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
10392                                               Stmt *AStmt,
10393                                               SourceLocation StartLoc,
10394                                               SourceLocation EndLoc) {
10395   if (!AStmt)
10396     return StmtError();
10397 
10398   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
10399   auto BaseStmt = AStmt;
10400   while (auto *CS = dyn_cast_or_null<CapturedStmt>(BaseStmt))
10401     BaseStmt = CS->getCapturedStmt();
10402   if (auto *C = dyn_cast_or_null<CompoundStmt>(BaseStmt)) {
10403     auto S = C->children();
10404     if (S.begin() == S.end())
10405       return StmtError();
10406     // All associated statements must be '#pragma omp section' except for
10407     // the first one.
10408     for (Stmt *SectionStmt : llvm::drop_begin(S)) {
10409       if (!SectionStmt || !isa<OMPSectionDirective>(SectionStmt)) {
10410         if (SectionStmt)
10411           Diag(SectionStmt->getBeginLoc(),
10412                diag::err_omp_sections_substmt_not_section);
10413         return StmtError();
10414       }
10415       cast<OMPSectionDirective>(SectionStmt)
10416           ->setHasCancel(DSAStack->isCancelRegion());
10417     }
10418   } else {
10419     Diag(AStmt->getBeginLoc(), diag::err_omp_sections_not_compound_stmt);
10420     return StmtError();
10421   }
10422 
10423   setFunctionHasBranchProtectedScope();
10424 
10425   return OMPSectionsDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
10426                                       DSAStack->getTaskgroupReductionRef(),
10427                                       DSAStack->isCancelRegion());
10428 }
10429 
10430 StmtResult Sema::ActOnOpenMPSectionDirective(Stmt *AStmt,
10431                                              SourceLocation StartLoc,
10432                                              SourceLocation EndLoc) {
10433   if (!AStmt)
10434     return StmtError();
10435 
10436   setFunctionHasBranchProtectedScope();
10437   DSAStack->setParentCancelRegion(DSAStack->isCancelRegion());
10438 
10439   return OMPSectionDirective::Create(Context, StartLoc, EndLoc, AStmt,
10440                                      DSAStack->isCancelRegion());
10441 }
10442 
10443 static Expr *getDirectCallExpr(Expr *E) {
10444   E = E->IgnoreParenCasts()->IgnoreImplicit();
10445   if (auto *CE = dyn_cast<CallExpr>(E))
10446     if (CE->getDirectCallee())
10447       return E;
10448   return nullptr;
10449 }
10450 
10451 StmtResult Sema::ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
10452                                               Stmt *AStmt,
10453                                               SourceLocation StartLoc,
10454                                               SourceLocation EndLoc) {
10455   if (!AStmt)
10456     return StmtError();
10457 
10458   Stmt *S = cast<CapturedStmt>(AStmt)->getCapturedStmt();
10459 
10460   // 5.1 OpenMP
10461   // expression-stmt : an expression statement with one of the following forms:
10462   //   expression = target-call ( [expression-list] );
10463   //   target-call ( [expression-list] );
10464 
10465   SourceLocation TargetCallLoc;
10466 
10467   if (!CurContext->isDependentContext()) {
10468     Expr *TargetCall = nullptr;
10469 
10470     auto *E = dyn_cast<Expr>(S);
10471     if (!E) {
10472       Diag(S->getBeginLoc(), diag::err_omp_dispatch_statement_call);
10473       return StmtError();
10474     }
10475 
10476     E = E->IgnoreParenCasts()->IgnoreImplicit();
10477 
10478     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
10479       if (BO->getOpcode() == BO_Assign)
10480         TargetCall = getDirectCallExpr(BO->getRHS());
10481     } else {
10482       if (auto *COCE = dyn_cast<CXXOperatorCallExpr>(E))
10483         if (COCE->getOperator() == OO_Equal)
10484           TargetCall = getDirectCallExpr(COCE->getArg(1));
10485       if (!TargetCall)
10486         TargetCall = getDirectCallExpr(E);
10487     }
10488     if (!TargetCall) {
10489       Diag(E->getBeginLoc(), diag::err_omp_dispatch_statement_call);
10490       return StmtError();
10491     }
10492     TargetCallLoc = TargetCall->getExprLoc();
10493   }
10494 
10495   setFunctionHasBranchProtectedScope();
10496 
10497   return OMPDispatchDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
10498                                       TargetCallLoc);
10499 }
10500 
10501 static bool checkGenericLoopLastprivate(Sema &S, ArrayRef<OMPClause *> Clauses,
10502                                         OpenMPDirectiveKind K,
10503                                         DSAStackTy *Stack) {
10504   bool ErrorFound = false;
10505   for (OMPClause *C : Clauses) {
10506     if (auto *LPC = dyn_cast<OMPLastprivateClause>(C)) {
10507       for (Expr *RefExpr : LPC->varlists()) {
10508         SourceLocation ELoc;
10509         SourceRange ERange;
10510         Expr *SimpleRefExpr = RefExpr;
10511         auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange);
10512         if (ValueDecl *D = Res.first) {
10513           auto &&Info = Stack->isLoopControlVariable(D);
10514           if (!Info.first) {
10515             S.Diag(ELoc, diag::err_omp_lastprivate_loop_var_non_loop_iteration)
10516                 << getOpenMPDirectiveName(K);
10517             ErrorFound = true;
10518           }
10519         }
10520       }
10521     }
10522   }
10523   return ErrorFound;
10524 }
10525 
10526 StmtResult Sema::ActOnOpenMPGenericLoopDirective(
10527     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10528     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10529   if (!AStmt)
10530     return StmtError();
10531 
10532   // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10533   // A list item may not appear in a lastprivate clause unless it is the
10534   // loop iteration variable of a loop that is associated with the construct.
10535   if (checkGenericLoopLastprivate(*this, Clauses, OMPD_loop, DSAStack))
10536     return StmtError();
10537 
10538   auto *CS = cast<CapturedStmt>(AStmt);
10539   // 1.2.2 OpenMP Language Terminology
10540   // Structured block - An executable statement with a single entry at the
10541   // top and a single exit at the bottom.
10542   // The point of exit cannot be a branch out of the structured block.
10543   // longjmp() and throw() must not violate the entry/exit criteria.
10544   CS->getCapturedDecl()->setNothrow();
10545 
10546   OMPLoopDirective::HelperExprs B;
10547   // In presence of clause 'collapse', it will define the nested loops number.
10548   unsigned NestedLoopCount = checkOpenMPLoop(
10549       OMPD_loop, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses),
10550       AStmt, *this, *DSAStack, VarsWithImplicitDSA, B);
10551   if (NestedLoopCount == 0)
10552     return StmtError();
10553 
10554   assert((CurContext->isDependentContext() || B.builtAll()) &&
10555          "omp loop exprs were not built");
10556 
10557   setFunctionHasBranchProtectedScope();
10558   return OMPGenericLoopDirective::Create(Context, StartLoc, EndLoc,
10559                                          NestedLoopCount, Clauses, AStmt, B);
10560 }
10561 
10562 StmtResult Sema::ActOnOpenMPTeamsGenericLoopDirective(
10563     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10564     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10565   if (!AStmt)
10566     return StmtError();
10567 
10568   // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10569   // A list item may not appear in a lastprivate clause unless it is the
10570   // loop iteration variable of a loop that is associated with the construct.
10571   if (checkGenericLoopLastprivate(*this, Clauses, OMPD_teams_loop, DSAStack))
10572     return StmtError();
10573 
10574   auto *CS = cast<CapturedStmt>(AStmt);
10575   // 1.2.2 OpenMP Language Terminology
10576   // Structured block - An executable statement with a single entry at the
10577   // top and a single exit at the bottom.
10578   // The point of exit cannot be a branch out of the structured block.
10579   // longjmp() and throw() must not violate the entry/exit criteria.
10580   CS->getCapturedDecl()->setNothrow();
10581   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_teams_loop);
10582        ThisCaptureLevel > 1; --ThisCaptureLevel) {
10583     CS = cast<CapturedStmt>(CS->getCapturedStmt());
10584     // 1.2.2 OpenMP Language Terminology
10585     // Structured block - An executable statement with a single entry at the
10586     // top and a single exit at the bottom.
10587     // The point of exit cannot be a branch out of the structured block.
10588     // longjmp() and throw() must not violate the entry/exit criteria.
10589     CS->getCapturedDecl()->setNothrow();
10590   }
10591 
10592   OMPLoopDirective::HelperExprs B;
10593   // In presence of clause 'collapse', it will define the nested loops number.
10594   unsigned NestedLoopCount =
10595       checkOpenMPLoop(OMPD_teams_loop, getCollapseNumberExpr(Clauses),
10596                       /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
10597                       VarsWithImplicitDSA, B);
10598   if (NestedLoopCount == 0)
10599     return StmtError();
10600 
10601   assert((CurContext->isDependentContext() || B.builtAll()) &&
10602          "omp loop exprs were not built");
10603 
10604   setFunctionHasBranchProtectedScope();
10605   DSAStack->setParentTeamsRegionLoc(StartLoc);
10606 
10607   return OMPTeamsGenericLoopDirective::Create(
10608       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
10609 }
10610 
10611 StmtResult Sema::ActOnOpenMPTargetTeamsGenericLoopDirective(
10612     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10613     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10614   if (!AStmt)
10615     return StmtError();
10616 
10617   // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10618   // A list item may not appear in a lastprivate clause unless it is the
10619   // loop iteration variable of a loop that is associated with the construct.
10620   if (checkGenericLoopLastprivate(*this, Clauses, OMPD_target_teams_loop,
10621                                   DSAStack))
10622     return StmtError();
10623 
10624   auto *CS = cast<CapturedStmt>(AStmt);
10625   // 1.2.2 OpenMP Language Terminology
10626   // Structured block - An executable statement with a single entry at the
10627   // top and a single exit at the bottom.
10628   // The point of exit cannot be a branch out of the structured block.
10629   // longjmp() and throw() must not violate the entry/exit criteria.
10630   CS->getCapturedDecl()->setNothrow();
10631   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_teams_loop);
10632        ThisCaptureLevel > 1; --ThisCaptureLevel) {
10633     CS = cast<CapturedStmt>(CS->getCapturedStmt());
10634     // 1.2.2 OpenMP Language Terminology
10635     // Structured block - An executable statement with a single entry at the
10636     // top and a single exit at the bottom.
10637     // The point of exit cannot be a branch out of the structured block.
10638     // longjmp() and throw() must not violate the entry/exit criteria.
10639     CS->getCapturedDecl()->setNothrow();
10640   }
10641 
10642   OMPLoopDirective::HelperExprs B;
10643   // In presence of clause 'collapse', it will define the nested loops number.
10644   unsigned NestedLoopCount =
10645       checkOpenMPLoop(OMPD_target_teams_loop, getCollapseNumberExpr(Clauses),
10646                       /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
10647                       VarsWithImplicitDSA, B);
10648   if (NestedLoopCount == 0)
10649     return StmtError();
10650 
10651   assert((CurContext->isDependentContext() || B.builtAll()) &&
10652          "omp loop exprs were not built");
10653 
10654   setFunctionHasBranchProtectedScope();
10655 
10656   return OMPTargetTeamsGenericLoopDirective::Create(
10657       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
10658 }
10659 
10660 StmtResult Sema::ActOnOpenMPParallelGenericLoopDirective(
10661     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10662     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10663   if (!AStmt)
10664     return StmtError();
10665 
10666   // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10667   // A list item may not appear in a lastprivate clause unless it is the
10668   // loop iteration variable of a loop that is associated with the construct.
10669   if (checkGenericLoopLastprivate(*this, Clauses, OMPD_parallel_loop, DSAStack))
10670     return StmtError();
10671 
10672   auto *CS = cast<CapturedStmt>(AStmt);
10673   // 1.2.2 OpenMP Language Terminology
10674   // Structured block - An executable statement with a single entry at the
10675   // top and a single exit at the bottom.
10676   // The point of exit cannot be a branch out of the structured block.
10677   // longjmp() and throw() must not violate the entry/exit criteria.
10678   CS->getCapturedDecl()->setNothrow();
10679   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_parallel_loop);
10680        ThisCaptureLevel > 1; --ThisCaptureLevel) {
10681     CS = cast<CapturedStmt>(CS->getCapturedStmt());
10682     // 1.2.2 OpenMP Language Terminology
10683     // Structured block - An executable statement with a single entry at the
10684     // top and a single exit at the bottom.
10685     // The point of exit cannot be a branch out of the structured block.
10686     // longjmp() and throw() must not violate the entry/exit criteria.
10687     CS->getCapturedDecl()->setNothrow();
10688   }
10689 
10690   OMPLoopDirective::HelperExprs B;
10691   // In presence of clause 'collapse', it will define the nested loops number.
10692   unsigned NestedLoopCount =
10693       checkOpenMPLoop(OMPD_parallel_loop, getCollapseNumberExpr(Clauses),
10694                       /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
10695                       VarsWithImplicitDSA, B);
10696   if (NestedLoopCount == 0)
10697     return StmtError();
10698 
10699   assert((CurContext->isDependentContext() || B.builtAll()) &&
10700          "omp loop exprs were not built");
10701 
10702   setFunctionHasBranchProtectedScope();
10703 
10704   return OMPParallelGenericLoopDirective::Create(
10705       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
10706 }
10707 
10708 StmtResult Sema::ActOnOpenMPTargetParallelGenericLoopDirective(
10709     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10710     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10711   if (!AStmt)
10712     return StmtError();
10713 
10714   // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10715   // A list item may not appear in a lastprivate clause unless it is the
10716   // loop iteration variable of a loop that is associated with the construct.
10717   if (checkGenericLoopLastprivate(*this, Clauses, OMPD_target_parallel_loop,
10718                                   DSAStack))
10719     return StmtError();
10720 
10721   auto *CS = cast<CapturedStmt>(AStmt);
10722   // 1.2.2 OpenMP Language Terminology
10723   // Structured block - An executable statement with a single entry at the
10724   // top and a single exit at the bottom.
10725   // The point of exit cannot be a branch out of the structured block.
10726   // longjmp() and throw() must not violate the entry/exit criteria.
10727   CS->getCapturedDecl()->setNothrow();
10728   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel_loop);
10729        ThisCaptureLevel > 1; --ThisCaptureLevel) {
10730     CS = cast<CapturedStmt>(CS->getCapturedStmt());
10731     // 1.2.2 OpenMP Language Terminology
10732     // Structured block - An executable statement with a single entry at the
10733     // top and a single exit at the bottom.
10734     // The point of exit cannot be a branch out of the structured block.
10735     // longjmp() and throw() must not violate the entry/exit criteria.
10736     CS->getCapturedDecl()->setNothrow();
10737   }
10738 
10739   OMPLoopDirective::HelperExprs B;
10740   // In presence of clause 'collapse', it will define the nested loops number.
10741   unsigned NestedLoopCount =
10742       checkOpenMPLoop(OMPD_target_parallel_loop, getCollapseNumberExpr(Clauses),
10743                       /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
10744                       VarsWithImplicitDSA, B);
10745   if (NestedLoopCount == 0)
10746     return StmtError();
10747 
10748   assert((CurContext->isDependentContext() || B.builtAll()) &&
10749          "omp loop exprs were not built");
10750 
10751   setFunctionHasBranchProtectedScope();
10752 
10753   return OMPTargetParallelGenericLoopDirective::Create(
10754       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
10755 }
10756 
10757 StmtResult Sema::ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
10758                                             Stmt *AStmt,
10759                                             SourceLocation StartLoc,
10760                                             SourceLocation EndLoc) {
10761   if (!AStmt)
10762     return StmtError();
10763 
10764   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
10765 
10766   setFunctionHasBranchProtectedScope();
10767 
10768   // OpenMP [2.7.3, single Construct, Restrictions]
10769   // The copyprivate clause must not be used with the nowait clause.
10770   const OMPClause *Nowait = nullptr;
10771   const OMPClause *Copyprivate = nullptr;
10772   for (const OMPClause *Clause : Clauses) {
10773     if (Clause->getClauseKind() == OMPC_nowait)
10774       Nowait = Clause;
10775     else if (Clause->getClauseKind() == OMPC_copyprivate)
10776       Copyprivate = Clause;
10777     if (Copyprivate && Nowait) {
10778       Diag(Copyprivate->getBeginLoc(),
10779            diag::err_omp_single_copyprivate_with_nowait);
10780       Diag(Nowait->getBeginLoc(), diag::note_omp_nowait_clause_here);
10781       return StmtError();
10782     }
10783   }
10784 
10785   return OMPSingleDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
10786 }
10787 
10788 StmtResult Sema::ActOnOpenMPMasterDirective(Stmt *AStmt,
10789                                             SourceLocation StartLoc,
10790                                             SourceLocation EndLoc) {
10791   if (!AStmt)
10792     return StmtError();
10793 
10794   setFunctionHasBranchProtectedScope();
10795 
10796   return OMPMasterDirective::Create(Context, StartLoc, EndLoc, AStmt);
10797 }
10798 
10799 StmtResult Sema::ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
10800                                             Stmt *AStmt,
10801                                             SourceLocation StartLoc,
10802                                             SourceLocation EndLoc) {
10803   if (!AStmt)
10804     return StmtError();
10805 
10806   setFunctionHasBranchProtectedScope();
10807 
10808   return OMPMaskedDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
10809 }
10810 
10811 StmtResult Sema::ActOnOpenMPCriticalDirective(
10812     const DeclarationNameInfo &DirName, ArrayRef<OMPClause *> Clauses,
10813     Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc) {
10814   if (!AStmt)
10815     return StmtError();
10816 
10817   bool ErrorFound = false;
10818   llvm::APSInt Hint;
10819   SourceLocation HintLoc;
10820   bool DependentHint = false;
10821   for (const OMPClause *C : Clauses) {
10822     if (C->getClauseKind() == OMPC_hint) {
10823       if (!DirName.getName()) {
10824         Diag(C->getBeginLoc(), diag::err_omp_hint_clause_no_name);
10825         ErrorFound = true;
10826       }
10827       Expr *E = cast<OMPHintClause>(C)->getHint();
10828       if (E->isTypeDependent() || E->isValueDependent() ||
10829           E->isInstantiationDependent()) {
10830         DependentHint = true;
10831       } else {
10832         Hint = E->EvaluateKnownConstInt(Context);
10833         HintLoc = C->getBeginLoc();
10834       }
10835     }
10836   }
10837   if (ErrorFound)
10838     return StmtError();
10839   const auto Pair = DSAStack->getCriticalWithHint(DirName);
10840   if (Pair.first && DirName.getName() && !DependentHint) {
10841     if (llvm::APSInt::compareValues(Hint, Pair.second) != 0) {
10842       Diag(StartLoc, diag::err_omp_critical_with_hint);
10843       if (HintLoc.isValid())
10844         Diag(HintLoc, diag::note_omp_critical_hint_here)
10845             << 0 << toString(Hint, /*Radix=*/10, /*Signed=*/false);
10846       else
10847         Diag(StartLoc, diag::note_omp_critical_no_hint) << 0;
10848       if (const auto *C = Pair.first->getSingleClause<OMPHintClause>()) {
10849         Diag(C->getBeginLoc(), diag::note_omp_critical_hint_here)
10850             << 1
10851             << toString(C->getHint()->EvaluateKnownConstInt(Context),
10852                         /*Radix=*/10, /*Signed=*/false);
10853       } else {
10854         Diag(Pair.first->getBeginLoc(), diag::note_omp_critical_no_hint) << 1;
10855       }
10856     }
10857   }
10858 
10859   setFunctionHasBranchProtectedScope();
10860 
10861   auto *Dir = OMPCriticalDirective::Create(Context, DirName, StartLoc, EndLoc,
10862                                            Clauses, AStmt);
10863   if (!Pair.first && DirName.getName() && !DependentHint)
10864     DSAStack->addCriticalWithHint(Dir, Hint);
10865   return Dir;
10866 }
10867 
10868 StmtResult Sema::ActOnOpenMPParallelForDirective(
10869     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10870     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10871   if (!AStmt)
10872     return StmtError();
10873 
10874   auto *CS = cast<CapturedStmt>(AStmt);
10875   // 1.2.2 OpenMP Language Terminology
10876   // Structured block - An executable statement with a single entry at the
10877   // top and a single exit at the bottom.
10878   // The point of exit cannot be a branch out of the structured block.
10879   // longjmp() and throw() must not violate the entry/exit criteria.
10880   CS->getCapturedDecl()->setNothrow();
10881 
10882   OMPLoopBasedDirective::HelperExprs B;
10883   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10884   // define the nested loops number.
10885   unsigned NestedLoopCount =
10886       checkOpenMPLoop(OMPD_parallel_for, getCollapseNumberExpr(Clauses),
10887                       getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack,
10888                       VarsWithImplicitDSA, B);
10889   if (NestedLoopCount == 0)
10890     return StmtError();
10891 
10892   assert((CurContext->isDependentContext() || B.builtAll()) &&
10893          "omp parallel for loop exprs were not built");
10894 
10895   if (!CurContext->isDependentContext()) {
10896     // Finalize the clauses that need pre-built expressions for CodeGen.
10897     for (OMPClause *C : Clauses) {
10898       if (auto *LC = dyn_cast<OMPLinearClause>(C))
10899         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
10900                                      B.NumIterations, *this, CurScope,
10901                                      DSAStack))
10902           return StmtError();
10903     }
10904   }
10905 
10906   setFunctionHasBranchProtectedScope();
10907   return OMPParallelForDirective::Create(
10908       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
10909       DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
10910 }
10911 
10912 StmtResult Sema::ActOnOpenMPParallelForSimdDirective(
10913     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10914     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
10915   if (!AStmt)
10916     return StmtError();
10917 
10918   auto *CS = cast<CapturedStmt>(AStmt);
10919   // 1.2.2 OpenMP Language Terminology
10920   // Structured block - An executable statement with a single entry at the
10921   // top and a single exit at the bottom.
10922   // The point of exit cannot be a branch out of the structured block.
10923   // longjmp() and throw() must not violate the entry/exit criteria.
10924   CS->getCapturedDecl()->setNothrow();
10925 
10926   OMPLoopBasedDirective::HelperExprs B;
10927   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10928   // define the nested loops number.
10929   unsigned NestedLoopCount =
10930       checkOpenMPLoop(OMPD_parallel_for_simd, getCollapseNumberExpr(Clauses),
10931                       getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack,
10932                       VarsWithImplicitDSA, B);
10933   if (NestedLoopCount == 0)
10934     return StmtError();
10935 
10936   if (!CurContext->isDependentContext()) {
10937     // Finalize the clauses that need pre-built expressions for CodeGen.
10938     for (OMPClause *C : Clauses) {
10939       if (auto *LC = dyn_cast<OMPLinearClause>(C))
10940         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
10941                                      B.NumIterations, *this, CurScope,
10942                                      DSAStack))
10943           return StmtError();
10944     }
10945   }
10946 
10947   if (checkSimdlenSafelenSpecified(*this, Clauses))
10948     return StmtError();
10949 
10950   setFunctionHasBranchProtectedScope();
10951   return OMPParallelForSimdDirective::Create(
10952       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
10953 }
10954 
10955 StmtResult
10956 Sema::ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
10957                                          Stmt *AStmt, SourceLocation StartLoc,
10958                                          SourceLocation EndLoc) {
10959   if (!AStmt)
10960     return StmtError();
10961 
10962   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
10963   auto *CS = cast<CapturedStmt>(AStmt);
10964   // 1.2.2 OpenMP Language Terminology
10965   // Structured block - An executable statement with a single entry at the
10966   // top and a single exit at the bottom.
10967   // The point of exit cannot be a branch out of the structured block.
10968   // longjmp() and throw() must not violate the entry/exit criteria.
10969   CS->getCapturedDecl()->setNothrow();
10970 
10971   setFunctionHasBranchProtectedScope();
10972 
10973   return OMPParallelMasterDirective::Create(
10974       Context, StartLoc, EndLoc, Clauses, AStmt,
10975       DSAStack->getTaskgroupReductionRef());
10976 }
10977 
10978 StmtResult
10979 Sema::ActOnOpenMPParallelMaskedDirective(ArrayRef<OMPClause *> Clauses,
10980                                          Stmt *AStmt, SourceLocation StartLoc,
10981                                          SourceLocation EndLoc) {
10982   if (!AStmt)
10983     return StmtError();
10984 
10985   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
10986   auto *CS = cast<CapturedStmt>(AStmt);
10987   // 1.2.2 OpenMP Language Terminology
10988   // Structured block - An executable statement with a single entry at the
10989   // top and a single exit at the bottom.
10990   // The point of exit cannot be a branch out of the structured block.
10991   // longjmp() and throw() must not violate the entry/exit criteria.
10992   CS->getCapturedDecl()->setNothrow();
10993 
10994   setFunctionHasBranchProtectedScope();
10995 
10996   return OMPParallelMaskedDirective::Create(
10997       Context, StartLoc, EndLoc, Clauses, AStmt,
10998       DSAStack->getTaskgroupReductionRef());
10999 }
11000 
11001 StmtResult
11002 Sema::ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
11003                                            Stmt *AStmt, SourceLocation StartLoc,
11004                                            SourceLocation EndLoc) {
11005   if (!AStmt)
11006     return StmtError();
11007 
11008   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
11009   auto BaseStmt = AStmt;
11010   while (auto *CS = dyn_cast_or_null<CapturedStmt>(BaseStmt))
11011     BaseStmt = CS->getCapturedStmt();
11012   if (auto *C = dyn_cast_or_null<CompoundStmt>(BaseStmt)) {
11013     auto S = C->children();
11014     if (S.begin() == S.end())
11015       return StmtError();
11016     // All associated statements must be '#pragma omp section' except for
11017     // the first one.
11018     for (Stmt *SectionStmt : llvm::drop_begin(S)) {
11019       if (!SectionStmt || !isa<OMPSectionDirective>(SectionStmt)) {
11020         if (SectionStmt)
11021           Diag(SectionStmt->getBeginLoc(),
11022                diag::err_omp_parallel_sections_substmt_not_section);
11023         return StmtError();
11024       }
11025       cast<OMPSectionDirective>(SectionStmt)
11026           ->setHasCancel(DSAStack->isCancelRegion());
11027     }
11028   } else {
11029     Diag(AStmt->getBeginLoc(),
11030          diag::err_omp_parallel_sections_not_compound_stmt);
11031     return StmtError();
11032   }
11033 
11034   setFunctionHasBranchProtectedScope();
11035 
11036   return OMPParallelSectionsDirective::Create(
11037       Context, StartLoc, EndLoc, Clauses, AStmt,
11038       DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
11039 }
11040 
11041 /// Find and diagnose mutually exclusive clause kinds.
11042 static bool checkMutuallyExclusiveClauses(
11043     Sema &S, ArrayRef<OMPClause *> Clauses,
11044     ArrayRef<OpenMPClauseKind> MutuallyExclusiveClauses) {
11045   const OMPClause *PrevClause = nullptr;
11046   bool ErrorFound = false;
11047   for (const OMPClause *C : Clauses) {
11048     if (llvm::is_contained(MutuallyExclusiveClauses, C->getClauseKind())) {
11049       if (!PrevClause) {
11050         PrevClause = C;
11051       } else if (PrevClause->getClauseKind() != C->getClauseKind()) {
11052         S.Diag(C->getBeginLoc(), diag::err_omp_clauses_mutually_exclusive)
11053             << getOpenMPClauseName(C->getClauseKind())
11054             << getOpenMPClauseName(PrevClause->getClauseKind());
11055         S.Diag(PrevClause->getBeginLoc(), diag::note_omp_previous_clause)
11056             << getOpenMPClauseName(PrevClause->getClauseKind());
11057         ErrorFound = true;
11058       }
11059     }
11060   }
11061   return ErrorFound;
11062 }
11063 
11064 StmtResult Sema::ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
11065                                           Stmt *AStmt, SourceLocation StartLoc,
11066                                           SourceLocation EndLoc) {
11067   if (!AStmt)
11068     return StmtError();
11069 
11070   // OpenMP 5.0, 2.10.1 task Construct
11071   // If a detach clause appears on the directive, then a mergeable clause cannot
11072   // appear on the same directive.
11073   if (checkMutuallyExclusiveClauses(*this, Clauses,
11074                                     {OMPC_detach, OMPC_mergeable}))
11075     return StmtError();
11076 
11077   auto *CS = cast<CapturedStmt>(AStmt);
11078   // 1.2.2 OpenMP Language Terminology
11079   // Structured block - An executable statement with a single entry at the
11080   // top and a single exit at the bottom.
11081   // The point of exit cannot be a branch out of the structured block.
11082   // longjmp() and throw() must not violate the entry/exit criteria.
11083   CS->getCapturedDecl()->setNothrow();
11084 
11085   setFunctionHasBranchProtectedScope();
11086 
11087   return OMPTaskDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
11088                                   DSAStack->isCancelRegion());
11089 }
11090 
11091 StmtResult Sema::ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
11092                                                SourceLocation EndLoc) {
11093   return OMPTaskyieldDirective::Create(Context, StartLoc, EndLoc);
11094 }
11095 
11096 StmtResult Sema::ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
11097                                              SourceLocation EndLoc) {
11098   return OMPBarrierDirective::Create(Context, StartLoc, EndLoc);
11099 }
11100 
11101 StmtResult Sema::ActOnOpenMPErrorDirective(ArrayRef<OMPClause *> Clauses,
11102                                            SourceLocation StartLoc,
11103                                            SourceLocation EndLoc,
11104                                            bool InExContext) {
11105   const OMPAtClause *AtC =
11106       OMPExecutableDirective::getSingleClause<OMPAtClause>(Clauses);
11107 
11108   if (AtC && !InExContext && AtC->getAtKind() == OMPC_AT_execution) {
11109     Diag(AtC->getAtKindKwLoc(), diag::err_omp_unexpected_execution_modifier);
11110     return StmtError();
11111   }
11112 
11113   const OMPSeverityClause *SeverityC =
11114       OMPExecutableDirective::getSingleClause<OMPSeverityClause>(Clauses);
11115   const OMPMessageClause *MessageC =
11116       OMPExecutableDirective::getSingleClause<OMPMessageClause>(Clauses);
11117   Expr *ME = MessageC ? MessageC->getMessageString() : nullptr;
11118 
11119   if (!AtC || AtC->getAtKind() == OMPC_AT_compilation) {
11120     if (SeverityC && SeverityC->getSeverityKind() == OMPC_SEVERITY_warning)
11121       Diag(SeverityC->getSeverityKindKwLoc(), diag::warn_diagnose_if_succeeded)
11122           << (ME ? cast<StringLiteral>(ME)->getString() : "WARNING");
11123     else
11124       Diag(StartLoc, diag::err_diagnose_if_succeeded)
11125           << (ME ? cast<StringLiteral>(ME)->getString() : "ERROR");
11126     if (!SeverityC || SeverityC->getSeverityKind() != OMPC_SEVERITY_warning)
11127       return StmtError();
11128   }
11129   return OMPErrorDirective::Create(Context, StartLoc, EndLoc, Clauses);
11130 }
11131 
11132 StmtResult Sema::ActOnOpenMPTaskwaitDirective(ArrayRef<OMPClause *> Clauses,
11133                                               SourceLocation StartLoc,
11134                                               SourceLocation EndLoc) {
11135   const OMPNowaitClause *NowaitC =
11136       OMPExecutableDirective::getSingleClause<OMPNowaitClause>(Clauses);
11137   bool HasDependC =
11138       !OMPExecutableDirective::getClausesOfKind<OMPDependClause>(Clauses)
11139            .empty();
11140   if (NowaitC && !HasDependC) {
11141     Diag(StartLoc, diag::err_omp_nowait_clause_without_depend);
11142     return StmtError();
11143   }
11144 
11145   return OMPTaskwaitDirective::Create(Context, StartLoc, EndLoc, Clauses);
11146 }
11147 
11148 StmtResult Sema::ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
11149                                                Stmt *AStmt,
11150                                                SourceLocation StartLoc,
11151                                                SourceLocation EndLoc) {
11152   if (!AStmt)
11153     return StmtError();
11154 
11155   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
11156 
11157   setFunctionHasBranchProtectedScope();
11158 
11159   return OMPTaskgroupDirective::Create(Context, StartLoc, EndLoc, Clauses,
11160                                        AStmt,
11161                                        DSAStack->getTaskgroupReductionRef());
11162 }
11163 
11164 StmtResult Sema::ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
11165                                            SourceLocation StartLoc,
11166                                            SourceLocation EndLoc) {
11167   OMPFlushClause *FC = nullptr;
11168   OMPClause *OrderClause = nullptr;
11169   for (OMPClause *C : Clauses) {
11170     if (C->getClauseKind() == OMPC_flush)
11171       FC = cast<OMPFlushClause>(C);
11172     else
11173       OrderClause = C;
11174   }
11175   OpenMPClauseKind MemOrderKind = OMPC_unknown;
11176   SourceLocation MemOrderLoc;
11177   for (const OMPClause *C : Clauses) {
11178     if (C->getClauseKind() == OMPC_acq_rel ||
11179         C->getClauseKind() == OMPC_acquire ||
11180         C->getClauseKind() == OMPC_release) {
11181       if (MemOrderKind != OMPC_unknown) {
11182         Diag(C->getBeginLoc(), diag::err_omp_several_mem_order_clauses)
11183             << getOpenMPDirectiveName(OMPD_flush) << 1
11184             << SourceRange(C->getBeginLoc(), C->getEndLoc());
11185         Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause)
11186             << getOpenMPClauseName(MemOrderKind);
11187       } else {
11188         MemOrderKind = C->getClauseKind();
11189         MemOrderLoc = C->getBeginLoc();
11190       }
11191     }
11192   }
11193   if (FC && OrderClause) {
11194     Diag(FC->getLParenLoc(), diag::err_omp_flush_order_clause_and_list)
11195         << getOpenMPClauseName(OrderClause->getClauseKind());
11196     Diag(OrderClause->getBeginLoc(), diag::note_omp_flush_order_clause_here)
11197         << getOpenMPClauseName(OrderClause->getClauseKind());
11198     return StmtError();
11199   }
11200   return OMPFlushDirective::Create(Context, StartLoc, EndLoc, Clauses);
11201 }
11202 
11203 StmtResult Sema::ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
11204                                             SourceLocation StartLoc,
11205                                             SourceLocation EndLoc) {
11206   if (Clauses.empty()) {
11207     Diag(StartLoc, diag::err_omp_depobj_expected);
11208     return StmtError();
11209   } else if (Clauses[0]->getClauseKind() != OMPC_depobj) {
11210     Diag(Clauses[0]->getBeginLoc(), diag::err_omp_depobj_expected);
11211     return StmtError();
11212   }
11213   // Only depobj expression and another single clause is allowed.
11214   if (Clauses.size() > 2) {
11215     Diag(Clauses[2]->getBeginLoc(),
11216          diag::err_omp_depobj_single_clause_expected);
11217     return StmtError();
11218   } else if (Clauses.size() < 1) {
11219     Diag(Clauses[0]->getEndLoc(), diag::err_omp_depobj_single_clause_expected);
11220     return StmtError();
11221   }
11222   return OMPDepobjDirective::Create(Context, StartLoc, EndLoc, Clauses);
11223 }
11224 
11225 StmtResult Sema::ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
11226                                           SourceLocation StartLoc,
11227                                           SourceLocation EndLoc) {
11228   // Check that exactly one clause is specified.
11229   if (Clauses.size() != 1) {
11230     Diag(Clauses.empty() ? EndLoc : Clauses[1]->getBeginLoc(),
11231          diag::err_omp_scan_single_clause_expected);
11232     return StmtError();
11233   }
11234   // Check that scan directive is used in the scopeof the OpenMP loop body.
11235   if (Scope *S = DSAStack->getCurScope()) {
11236     Scope *ParentS = S->getParent();
11237     if (!ParentS || ParentS->getParent() != ParentS->getBreakParent() ||
11238         !ParentS->getBreakParent()->isOpenMPLoopScope())
11239       return StmtError(Diag(StartLoc, diag::err_omp_orphaned_device_directive)
11240                        << getOpenMPDirectiveName(OMPD_scan) << 5);
11241   }
11242   // Check that only one instance of scan directives is used in the same outer
11243   // region.
11244   if (DSAStack->doesParentHasScanDirective()) {
11245     Diag(StartLoc, diag::err_omp_several_directives_in_region) << "scan";
11246     Diag(DSAStack->getParentScanDirectiveLoc(),
11247          diag::note_omp_previous_directive)
11248         << "scan";
11249     return StmtError();
11250   }
11251   DSAStack->setParentHasScanDirective(StartLoc);
11252   return OMPScanDirective::Create(Context, StartLoc, EndLoc, Clauses);
11253 }
11254 
11255 StmtResult Sema::ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
11256                                              Stmt *AStmt,
11257                                              SourceLocation StartLoc,
11258                                              SourceLocation EndLoc) {
11259   const OMPClause *DependFound = nullptr;
11260   const OMPClause *DependSourceClause = nullptr;
11261   const OMPClause *DependSinkClause = nullptr;
11262   bool ErrorFound = false;
11263   const OMPThreadsClause *TC = nullptr;
11264   const OMPSIMDClause *SC = nullptr;
11265   for (const OMPClause *C : Clauses) {
11266     if (auto *DC = dyn_cast<OMPDependClause>(C)) {
11267       DependFound = C;
11268       if (DC->getDependencyKind() == OMPC_DEPEND_source) {
11269         if (DependSourceClause) {
11270           Diag(C->getBeginLoc(), diag::err_omp_more_one_clause)
11271               << getOpenMPDirectiveName(OMPD_ordered)
11272               << getOpenMPClauseName(OMPC_depend) << 2;
11273           ErrorFound = true;
11274         } else {
11275           DependSourceClause = C;
11276         }
11277         if (DependSinkClause) {
11278           Diag(C->getBeginLoc(), diag::err_omp_depend_sink_source_not_allowed)
11279               << 0;
11280           ErrorFound = true;
11281         }
11282       } else if (DC->getDependencyKind() == OMPC_DEPEND_sink) {
11283         if (DependSourceClause) {
11284           Diag(C->getBeginLoc(), diag::err_omp_depend_sink_source_not_allowed)
11285               << 1;
11286           ErrorFound = true;
11287         }
11288         DependSinkClause = C;
11289       }
11290     } else if (C->getClauseKind() == OMPC_threads) {
11291       TC = cast<OMPThreadsClause>(C);
11292     } else if (C->getClauseKind() == OMPC_simd) {
11293       SC = cast<OMPSIMDClause>(C);
11294     }
11295   }
11296   if (!ErrorFound && !SC &&
11297       isOpenMPSimdDirective(DSAStack->getParentDirective())) {
11298     // OpenMP [2.8.1,simd Construct, Restrictions]
11299     // An ordered construct with the simd clause is the only OpenMP construct
11300     // that can appear in the simd region.
11301     Diag(StartLoc, diag::err_omp_prohibited_region_simd)
11302         << (LangOpts.OpenMP >= 50 ? 1 : 0);
11303     ErrorFound = true;
11304   } else if (DependFound && (TC || SC)) {
11305     Diag(DependFound->getBeginLoc(), diag::err_omp_depend_clause_thread_simd)
11306         << getOpenMPClauseName(TC ? TC->getClauseKind() : SC->getClauseKind());
11307     ErrorFound = true;
11308   } else if (DependFound && !DSAStack->getParentOrderedRegionParam().first) {
11309     Diag(DependFound->getBeginLoc(),
11310          diag::err_omp_ordered_directive_without_param);
11311     ErrorFound = true;
11312   } else if (TC || Clauses.empty()) {
11313     if (const Expr *Param = DSAStack->getParentOrderedRegionParam().first) {
11314       SourceLocation ErrLoc = TC ? TC->getBeginLoc() : StartLoc;
11315       Diag(ErrLoc, diag::err_omp_ordered_directive_with_param)
11316           << (TC != nullptr);
11317       Diag(Param->getBeginLoc(), diag::note_omp_ordered_param) << 1;
11318       ErrorFound = true;
11319     }
11320   }
11321   if ((!AStmt && !DependFound) || ErrorFound)
11322     return StmtError();
11323 
11324   // OpenMP 5.0, 2.17.9, ordered Construct, Restrictions.
11325   // During execution of an iteration of a worksharing-loop or a loop nest
11326   // within a worksharing-loop, simd, or worksharing-loop SIMD region, a thread
11327   // must not execute more than one ordered region corresponding to an ordered
11328   // construct without a depend clause.
11329   if (!DependFound) {
11330     if (DSAStack->doesParentHasOrderedDirective()) {
11331       Diag(StartLoc, diag::err_omp_several_directives_in_region) << "ordered";
11332       Diag(DSAStack->getParentOrderedDirectiveLoc(),
11333            diag::note_omp_previous_directive)
11334           << "ordered";
11335       return StmtError();
11336     }
11337     DSAStack->setParentHasOrderedDirective(StartLoc);
11338   }
11339 
11340   if (AStmt) {
11341     assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
11342 
11343     setFunctionHasBranchProtectedScope();
11344   }
11345 
11346   return OMPOrderedDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
11347 }
11348 
11349 namespace {
11350 /// Helper class for checking expression in 'omp atomic [update]'
11351 /// construct.
11352 class OpenMPAtomicUpdateChecker {
11353   /// Error results for atomic update expressions.
11354   enum ExprAnalysisErrorCode {
11355     /// A statement is not an expression statement.
11356     NotAnExpression,
11357     /// Expression is not builtin binary or unary operation.
11358     NotABinaryOrUnaryExpression,
11359     /// Unary operation is not post-/pre- increment/decrement operation.
11360     NotAnUnaryIncDecExpression,
11361     /// An expression is not of scalar type.
11362     NotAScalarType,
11363     /// A binary operation is not an assignment operation.
11364     NotAnAssignmentOp,
11365     /// RHS part of the binary operation is not a binary expression.
11366     NotABinaryExpression,
11367     /// RHS part is not additive/multiplicative/shift/biwise binary
11368     /// expression.
11369     NotABinaryOperator,
11370     /// RHS binary operation does not have reference to the updated LHS
11371     /// part.
11372     NotAnUpdateExpression,
11373     /// No errors is found.
11374     NoError
11375   };
11376   /// Reference to Sema.
11377   Sema &SemaRef;
11378   /// A location for note diagnostics (when error is found).
11379   SourceLocation NoteLoc;
11380   /// 'x' lvalue part of the source atomic expression.
11381   Expr *X;
11382   /// 'expr' rvalue part of the source atomic expression.
11383   Expr *E;
11384   /// Helper expression of the form
11385   /// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
11386   /// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
11387   Expr *UpdateExpr;
11388   /// Is 'x' a LHS in a RHS part of full update expression. It is
11389   /// important for non-associative operations.
11390   bool IsXLHSInRHSPart;
11391   BinaryOperatorKind Op;
11392   SourceLocation OpLoc;
11393   /// true if the source expression is a postfix unary operation, false
11394   /// if it is a prefix unary operation.
11395   bool IsPostfixUpdate;
11396 
11397 public:
11398   OpenMPAtomicUpdateChecker(Sema &SemaRef)
11399       : SemaRef(SemaRef), X(nullptr), E(nullptr), UpdateExpr(nullptr),
11400         IsXLHSInRHSPart(false), Op(BO_PtrMemD), IsPostfixUpdate(false) {}
11401   /// Check specified statement that it is suitable for 'atomic update'
11402   /// constructs and extract 'x', 'expr' and Operation from the original
11403   /// expression. If DiagId and NoteId == 0, then only check is performed
11404   /// without error notification.
11405   /// \param DiagId Diagnostic which should be emitted if error is found.
11406   /// \param NoteId Diagnostic note for the main error message.
11407   /// \return true if statement is not an update expression, false otherwise.
11408   bool checkStatement(Stmt *S, unsigned DiagId = 0, unsigned NoteId = 0);
11409   /// Return the 'x' lvalue part of the source atomic expression.
11410   Expr *getX() const { return X; }
11411   /// Return the 'expr' rvalue part of the source atomic expression.
11412   Expr *getExpr() const { return E; }
11413   /// Return the update expression used in calculation of the updated
11414   /// value. Always has form 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
11415   /// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
11416   Expr *getUpdateExpr() const { return UpdateExpr; }
11417   /// Return true if 'x' is LHS in RHS part of full update expression,
11418   /// false otherwise.
11419   bool isXLHSInRHSPart() const { return IsXLHSInRHSPart; }
11420 
11421   /// true if the source expression is a postfix unary operation, false
11422   /// if it is a prefix unary operation.
11423   bool isPostfixUpdate() const { return IsPostfixUpdate; }
11424 
11425 private:
11426   bool checkBinaryOperation(BinaryOperator *AtomicBinOp, unsigned DiagId = 0,
11427                             unsigned NoteId = 0);
11428 };
11429 
11430 bool OpenMPAtomicUpdateChecker::checkBinaryOperation(
11431     BinaryOperator *AtomicBinOp, unsigned DiagId, unsigned NoteId) {
11432   ExprAnalysisErrorCode ErrorFound = NoError;
11433   SourceLocation ErrorLoc, NoteLoc;
11434   SourceRange ErrorRange, NoteRange;
11435   // Allowed constructs are:
11436   //  x = x binop expr;
11437   //  x = expr binop x;
11438   if (AtomicBinOp->getOpcode() == BO_Assign) {
11439     X = AtomicBinOp->getLHS();
11440     if (const auto *AtomicInnerBinOp = dyn_cast<BinaryOperator>(
11441             AtomicBinOp->getRHS()->IgnoreParenImpCasts())) {
11442       if (AtomicInnerBinOp->isMultiplicativeOp() ||
11443           AtomicInnerBinOp->isAdditiveOp() || AtomicInnerBinOp->isShiftOp() ||
11444           AtomicInnerBinOp->isBitwiseOp()) {
11445         Op = AtomicInnerBinOp->getOpcode();
11446         OpLoc = AtomicInnerBinOp->getOperatorLoc();
11447         Expr *LHS = AtomicInnerBinOp->getLHS();
11448         Expr *RHS = AtomicInnerBinOp->getRHS();
11449         llvm::FoldingSetNodeID XId, LHSId, RHSId;
11450         X->IgnoreParenImpCasts()->Profile(XId, SemaRef.getASTContext(),
11451                                           /*Canonical=*/true);
11452         LHS->IgnoreParenImpCasts()->Profile(LHSId, SemaRef.getASTContext(),
11453                                             /*Canonical=*/true);
11454         RHS->IgnoreParenImpCasts()->Profile(RHSId, SemaRef.getASTContext(),
11455                                             /*Canonical=*/true);
11456         if (XId == LHSId) {
11457           E = RHS;
11458           IsXLHSInRHSPart = true;
11459         } else if (XId == RHSId) {
11460           E = LHS;
11461           IsXLHSInRHSPart = false;
11462         } else {
11463           ErrorLoc = AtomicInnerBinOp->getExprLoc();
11464           ErrorRange = AtomicInnerBinOp->getSourceRange();
11465           NoteLoc = X->getExprLoc();
11466           NoteRange = X->getSourceRange();
11467           ErrorFound = NotAnUpdateExpression;
11468         }
11469       } else {
11470         ErrorLoc = AtomicInnerBinOp->getExprLoc();
11471         ErrorRange = AtomicInnerBinOp->getSourceRange();
11472         NoteLoc = AtomicInnerBinOp->getOperatorLoc();
11473         NoteRange = SourceRange(NoteLoc, NoteLoc);
11474         ErrorFound = NotABinaryOperator;
11475       }
11476     } else {
11477       NoteLoc = ErrorLoc = AtomicBinOp->getRHS()->getExprLoc();
11478       NoteRange = ErrorRange = AtomicBinOp->getRHS()->getSourceRange();
11479       ErrorFound = NotABinaryExpression;
11480     }
11481   } else {
11482     ErrorLoc = AtomicBinOp->getExprLoc();
11483     ErrorRange = AtomicBinOp->getSourceRange();
11484     NoteLoc = AtomicBinOp->getOperatorLoc();
11485     NoteRange = SourceRange(NoteLoc, NoteLoc);
11486     ErrorFound = NotAnAssignmentOp;
11487   }
11488   if (ErrorFound != NoError && DiagId != 0 && NoteId != 0) {
11489     SemaRef.Diag(ErrorLoc, DiagId) << ErrorRange;
11490     SemaRef.Diag(NoteLoc, NoteId) << ErrorFound << NoteRange;
11491     return true;
11492   }
11493   if (SemaRef.CurContext->isDependentContext())
11494     E = X = UpdateExpr = nullptr;
11495   return ErrorFound != NoError;
11496 }
11497 
11498 bool OpenMPAtomicUpdateChecker::checkStatement(Stmt *S, unsigned DiagId,
11499                                                unsigned NoteId) {
11500   ExprAnalysisErrorCode ErrorFound = NoError;
11501   SourceLocation ErrorLoc, NoteLoc;
11502   SourceRange ErrorRange, NoteRange;
11503   // Allowed constructs are:
11504   //  x++;
11505   //  x--;
11506   //  ++x;
11507   //  --x;
11508   //  x binop= expr;
11509   //  x = x binop expr;
11510   //  x = expr binop x;
11511   if (auto *AtomicBody = dyn_cast<Expr>(S)) {
11512     AtomicBody = AtomicBody->IgnoreParenImpCasts();
11513     if (AtomicBody->getType()->isScalarType() ||
11514         AtomicBody->isInstantiationDependent()) {
11515       if (const auto *AtomicCompAssignOp = dyn_cast<CompoundAssignOperator>(
11516               AtomicBody->IgnoreParenImpCasts())) {
11517         // Check for Compound Assignment Operation
11518         Op = BinaryOperator::getOpForCompoundAssignment(
11519             AtomicCompAssignOp->getOpcode());
11520         OpLoc = AtomicCompAssignOp->getOperatorLoc();
11521         E = AtomicCompAssignOp->getRHS();
11522         X = AtomicCompAssignOp->getLHS()->IgnoreParens();
11523         IsXLHSInRHSPart = true;
11524       } else if (auto *AtomicBinOp = dyn_cast<BinaryOperator>(
11525                      AtomicBody->IgnoreParenImpCasts())) {
11526         // Check for Binary Operation
11527         if (checkBinaryOperation(AtomicBinOp, DiagId, NoteId))
11528           return true;
11529       } else if (const auto *AtomicUnaryOp = dyn_cast<UnaryOperator>(
11530                      AtomicBody->IgnoreParenImpCasts())) {
11531         // Check for Unary Operation
11532         if (AtomicUnaryOp->isIncrementDecrementOp()) {
11533           IsPostfixUpdate = AtomicUnaryOp->isPostfix();
11534           Op = AtomicUnaryOp->isIncrementOp() ? BO_Add : BO_Sub;
11535           OpLoc = AtomicUnaryOp->getOperatorLoc();
11536           X = AtomicUnaryOp->getSubExpr()->IgnoreParens();
11537           E = SemaRef.ActOnIntegerConstant(OpLoc, /*uint64_t Val=*/1).get();
11538           IsXLHSInRHSPart = true;
11539         } else {
11540           ErrorFound = NotAnUnaryIncDecExpression;
11541           ErrorLoc = AtomicUnaryOp->getExprLoc();
11542           ErrorRange = AtomicUnaryOp->getSourceRange();
11543           NoteLoc = AtomicUnaryOp->getOperatorLoc();
11544           NoteRange = SourceRange(NoteLoc, NoteLoc);
11545         }
11546       } else if (!AtomicBody->isInstantiationDependent()) {
11547         ErrorFound = NotABinaryOrUnaryExpression;
11548         NoteLoc = ErrorLoc = AtomicBody->getExprLoc();
11549         NoteRange = ErrorRange = AtomicBody->getSourceRange();
11550       }
11551     } else {
11552       ErrorFound = NotAScalarType;
11553       NoteLoc = ErrorLoc = AtomicBody->getBeginLoc();
11554       NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
11555     }
11556   } else {
11557     ErrorFound = NotAnExpression;
11558     NoteLoc = ErrorLoc = S->getBeginLoc();
11559     NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
11560   }
11561   if (ErrorFound != NoError && DiagId != 0 && NoteId != 0) {
11562     SemaRef.Diag(ErrorLoc, DiagId) << ErrorRange;
11563     SemaRef.Diag(NoteLoc, NoteId) << ErrorFound << NoteRange;
11564     return true;
11565   }
11566   if (SemaRef.CurContext->isDependentContext())
11567     E = X = UpdateExpr = nullptr;
11568   if (ErrorFound == NoError && E && X) {
11569     // Build an update expression of form 'OpaqueValueExpr(x) binop
11570     // OpaqueValueExpr(expr)' or 'OpaqueValueExpr(expr) binop
11571     // OpaqueValueExpr(x)' and then cast it to the type of the 'x' expression.
11572     auto *OVEX = new (SemaRef.getASTContext())
11573         OpaqueValueExpr(X->getExprLoc(), X->getType(), VK_PRValue);
11574     auto *OVEExpr = new (SemaRef.getASTContext())
11575         OpaqueValueExpr(E->getExprLoc(), E->getType(), VK_PRValue);
11576     ExprResult Update =
11577         SemaRef.CreateBuiltinBinOp(OpLoc, Op, IsXLHSInRHSPart ? OVEX : OVEExpr,
11578                                    IsXLHSInRHSPart ? OVEExpr : OVEX);
11579     if (Update.isInvalid())
11580       return true;
11581     Update = SemaRef.PerformImplicitConversion(Update.get(), X->getType(),
11582                                                Sema::AA_Casting);
11583     if (Update.isInvalid())
11584       return true;
11585     UpdateExpr = Update.get();
11586   }
11587   return ErrorFound != NoError;
11588 }
11589 
11590 /// Get the node id of the fixed point of an expression \a S.
11591 llvm::FoldingSetNodeID getNodeId(ASTContext &Context, const Expr *S) {
11592   llvm::FoldingSetNodeID Id;
11593   S->IgnoreParenImpCasts()->Profile(Id, Context, true);
11594   return Id;
11595 }
11596 
11597 /// Check if two expressions are same.
11598 bool checkIfTwoExprsAreSame(ASTContext &Context, const Expr *LHS,
11599                             const Expr *RHS) {
11600   return getNodeId(Context, LHS) == getNodeId(Context, RHS);
11601 }
11602 
11603 class OpenMPAtomicCompareChecker {
11604 public:
11605   /// All kinds of errors that can occur in `atomic compare`
11606   enum ErrorTy {
11607     /// Empty compound statement.
11608     NoStmt = 0,
11609     /// More than one statement in a compound statement.
11610     MoreThanOneStmt,
11611     /// Not an assignment binary operator.
11612     NotAnAssignment,
11613     /// Not a conditional operator.
11614     NotCondOp,
11615     /// Wrong false expr. According to the spec, 'x' should be at the false
11616     /// expression of a conditional expression.
11617     WrongFalseExpr,
11618     /// The condition of a conditional expression is not a binary operator.
11619     NotABinaryOp,
11620     /// Invalid binary operator (not <, >, or ==).
11621     InvalidBinaryOp,
11622     /// Invalid comparison (not x == e, e == x, x ordop expr, or expr ordop x).
11623     InvalidComparison,
11624     /// X is not a lvalue.
11625     XNotLValue,
11626     /// Not a scalar.
11627     NotScalar,
11628     /// Not an integer.
11629     NotInteger,
11630     /// 'else' statement is not expected.
11631     UnexpectedElse,
11632     /// Not an equality operator.
11633     NotEQ,
11634     /// Invalid assignment (not v == x).
11635     InvalidAssignment,
11636     /// Not if statement
11637     NotIfStmt,
11638     /// More than two statements in a compund statement.
11639     MoreThanTwoStmts,
11640     /// Not a compound statement.
11641     NotCompoundStmt,
11642     /// No else statement.
11643     NoElse,
11644     /// Not 'if (r)'.
11645     InvalidCondition,
11646     /// No error.
11647     NoError,
11648   };
11649 
11650   struct ErrorInfoTy {
11651     ErrorTy Error;
11652     SourceLocation ErrorLoc;
11653     SourceRange ErrorRange;
11654     SourceLocation NoteLoc;
11655     SourceRange NoteRange;
11656   };
11657 
11658   OpenMPAtomicCompareChecker(Sema &S) : ContextRef(S.getASTContext()) {}
11659 
11660   /// Check if statement \a S is valid for <tt>atomic compare</tt>.
11661   bool checkStmt(Stmt *S, ErrorInfoTy &ErrorInfo);
11662 
11663   Expr *getX() const { return X; }
11664   Expr *getE() const { return E; }
11665   Expr *getD() const { return D; }
11666   Expr *getCond() const { return C; }
11667   bool isXBinopExpr() const { return IsXBinopExpr; }
11668 
11669 protected:
11670   /// Reference to ASTContext
11671   ASTContext &ContextRef;
11672   /// 'x' lvalue part of the source atomic expression.
11673   Expr *X = nullptr;
11674   /// 'expr' or 'e' rvalue part of the source atomic expression.
11675   Expr *E = nullptr;
11676   /// 'd' rvalue part of the source atomic expression.
11677   Expr *D = nullptr;
11678   /// 'cond' part of the source atomic expression. It is in one of the following
11679   /// forms:
11680   /// expr ordop x
11681   /// x ordop expr
11682   /// x == e
11683   /// e == x
11684   Expr *C = nullptr;
11685   /// True if the cond expr is in the form of 'x ordop expr'.
11686   bool IsXBinopExpr = true;
11687 
11688   /// Check if it is a valid conditional update statement (cond-update-stmt).
11689   bool checkCondUpdateStmt(IfStmt *S, ErrorInfoTy &ErrorInfo);
11690 
11691   /// Check if it is a valid conditional expression statement (cond-expr-stmt).
11692   bool checkCondExprStmt(Stmt *S, ErrorInfoTy &ErrorInfo);
11693 
11694   /// Check if all captured values have right type.
11695   bool checkType(ErrorInfoTy &ErrorInfo) const;
11696 
11697   static bool CheckValue(const Expr *E, ErrorInfoTy &ErrorInfo,
11698                          bool ShouldBeLValue, bool ShouldBeInteger = false) {
11699     if (E->isInstantiationDependent())
11700       return true;
11701 
11702     if (ShouldBeLValue && !E->isLValue()) {
11703       ErrorInfo.Error = ErrorTy::XNotLValue;
11704       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = E->getExprLoc();
11705       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = E->getSourceRange();
11706       return false;
11707     }
11708 
11709     QualType QTy = E->getType();
11710     if (!QTy->isScalarType()) {
11711       ErrorInfo.Error = ErrorTy::NotScalar;
11712       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = E->getExprLoc();
11713       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = E->getSourceRange();
11714       return false;
11715     }
11716     if (ShouldBeInteger && !QTy->isIntegerType()) {
11717       ErrorInfo.Error = ErrorTy::NotInteger;
11718       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = E->getExprLoc();
11719       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = E->getSourceRange();
11720       return false;
11721     }
11722 
11723     return true;
11724   }
11725   };
11726 
11727 bool OpenMPAtomicCompareChecker::checkCondUpdateStmt(IfStmt *S,
11728                                                      ErrorInfoTy &ErrorInfo) {
11729   auto *Then = S->getThen();
11730   if (auto *CS = dyn_cast<CompoundStmt>(Then)) {
11731     if (CS->body_empty()) {
11732       ErrorInfo.Error = ErrorTy::NoStmt;
11733       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
11734       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
11735       return false;
11736     }
11737     if (CS->size() > 1) {
11738       ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
11739       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
11740       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
11741       return false;
11742     }
11743     Then = CS->body_front();
11744   }
11745 
11746   auto *BO = dyn_cast<BinaryOperator>(Then);
11747   if (!BO) {
11748     ErrorInfo.Error = ErrorTy::NotAnAssignment;
11749     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Then->getBeginLoc();
11750     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Then->getSourceRange();
11751     return false;
11752   }
11753   if (BO->getOpcode() != BO_Assign) {
11754     ErrorInfo.Error = ErrorTy::NotAnAssignment;
11755     ErrorInfo.ErrorLoc = BO->getExprLoc();
11756     ErrorInfo.NoteLoc = BO->getOperatorLoc();
11757     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
11758     return false;
11759   }
11760 
11761   X = BO->getLHS();
11762 
11763   auto *Cond = dyn_cast<BinaryOperator>(S->getCond());
11764   if (!Cond) {
11765     ErrorInfo.Error = ErrorTy::NotABinaryOp;
11766     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getCond()->getExprLoc();
11767     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getCond()->getSourceRange();
11768     return false;
11769   }
11770 
11771   switch (Cond->getOpcode()) {
11772   case BO_EQ: {
11773     C = Cond;
11774     D = BO->getRHS();
11775     if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS())) {
11776       E = Cond->getRHS();
11777     } else if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
11778       E = Cond->getLHS();
11779     } else {
11780       ErrorInfo.Error = ErrorTy::InvalidComparison;
11781       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
11782       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
11783       return false;
11784     }
11785     break;
11786   }
11787   case BO_LT:
11788   case BO_GT: {
11789     E = BO->getRHS();
11790     if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS()) &&
11791         checkIfTwoExprsAreSame(ContextRef, E, Cond->getRHS())) {
11792       C = Cond;
11793     } else if (checkIfTwoExprsAreSame(ContextRef, E, Cond->getLHS()) &&
11794                checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
11795       C = Cond;
11796       IsXBinopExpr = false;
11797     } else {
11798       ErrorInfo.Error = ErrorTy::InvalidComparison;
11799       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
11800       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
11801       return false;
11802     }
11803     break;
11804   }
11805   default:
11806     ErrorInfo.Error = ErrorTy::InvalidBinaryOp;
11807     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
11808     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
11809     return false;
11810   }
11811 
11812   if (S->getElse()) {
11813     ErrorInfo.Error = ErrorTy::UnexpectedElse;
11814     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getElse()->getBeginLoc();
11815     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getElse()->getSourceRange();
11816     return false;
11817   }
11818 
11819   return true;
11820 }
11821 
11822 bool OpenMPAtomicCompareChecker::checkCondExprStmt(Stmt *S,
11823                                                    ErrorInfoTy &ErrorInfo) {
11824   auto *BO = dyn_cast<BinaryOperator>(S);
11825   if (!BO) {
11826     ErrorInfo.Error = ErrorTy::NotAnAssignment;
11827     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getBeginLoc();
11828     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
11829     return false;
11830   }
11831   if (BO->getOpcode() != BO_Assign) {
11832     ErrorInfo.Error = ErrorTy::NotAnAssignment;
11833     ErrorInfo.ErrorLoc = BO->getExprLoc();
11834     ErrorInfo.NoteLoc = BO->getOperatorLoc();
11835     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
11836     return false;
11837   }
11838 
11839   X = BO->getLHS();
11840 
11841   auto *CO = dyn_cast<ConditionalOperator>(BO->getRHS()->IgnoreParenImpCasts());
11842   if (!CO) {
11843     ErrorInfo.Error = ErrorTy::NotCondOp;
11844     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = BO->getRHS()->getExprLoc();
11845     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getRHS()->getSourceRange();
11846     return false;
11847   }
11848 
11849   if (!checkIfTwoExprsAreSame(ContextRef, X, CO->getFalseExpr())) {
11850     ErrorInfo.Error = ErrorTy::WrongFalseExpr;
11851     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CO->getFalseExpr()->getExprLoc();
11852     ErrorInfo.ErrorRange = ErrorInfo.NoteRange =
11853         CO->getFalseExpr()->getSourceRange();
11854     return false;
11855   }
11856 
11857   auto *Cond = dyn_cast<BinaryOperator>(CO->getCond());
11858   if (!Cond) {
11859     ErrorInfo.Error = ErrorTy::NotABinaryOp;
11860     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CO->getCond()->getExprLoc();
11861     ErrorInfo.ErrorRange = ErrorInfo.NoteRange =
11862         CO->getCond()->getSourceRange();
11863     return false;
11864   }
11865 
11866   switch (Cond->getOpcode()) {
11867   case BO_EQ: {
11868     C = Cond;
11869     D = CO->getTrueExpr();
11870     if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS())) {
11871       E = Cond->getRHS();
11872     } else if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
11873       E = Cond->getLHS();
11874     } else {
11875       ErrorInfo.Error = ErrorTy::InvalidComparison;
11876       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
11877       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
11878       return false;
11879     }
11880     break;
11881   }
11882   case BO_LT:
11883   case BO_GT: {
11884     E = CO->getTrueExpr();
11885     if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS()) &&
11886         checkIfTwoExprsAreSame(ContextRef, E, Cond->getRHS())) {
11887       C = Cond;
11888     } else if (checkIfTwoExprsAreSame(ContextRef, E, Cond->getLHS()) &&
11889                checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
11890       C = Cond;
11891       IsXBinopExpr = false;
11892     } else {
11893       ErrorInfo.Error = ErrorTy::InvalidComparison;
11894       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
11895       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
11896       return false;
11897     }
11898     break;
11899   }
11900   default:
11901     ErrorInfo.Error = ErrorTy::InvalidBinaryOp;
11902     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
11903     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
11904     return false;
11905   }
11906 
11907   return true;
11908 }
11909 
11910 bool OpenMPAtomicCompareChecker::checkType(ErrorInfoTy &ErrorInfo) const {
11911   // 'x' and 'e' cannot be nullptr
11912   assert(X && E && "X and E cannot be nullptr");
11913 
11914   if (!CheckValue(X, ErrorInfo, true))
11915     return false;
11916 
11917   if (!CheckValue(E, ErrorInfo, false))
11918     return false;
11919 
11920   if (D && !CheckValue(D, ErrorInfo, false))
11921     return false;
11922 
11923   return true;
11924 }
11925 
11926 bool OpenMPAtomicCompareChecker::checkStmt(
11927     Stmt *S, OpenMPAtomicCompareChecker::ErrorInfoTy &ErrorInfo) {
11928   auto *CS = dyn_cast<CompoundStmt>(S);
11929   if (CS) {
11930     if (CS->body_empty()) {
11931       ErrorInfo.Error = ErrorTy::NoStmt;
11932       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
11933       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
11934       return false;
11935     }
11936 
11937     if (CS->size() != 1) {
11938       ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
11939       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
11940       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
11941       return false;
11942     }
11943     S = CS->body_front();
11944   }
11945 
11946   auto Res = false;
11947 
11948   if (auto *IS = dyn_cast<IfStmt>(S)) {
11949     // Check if the statement is in one of the following forms
11950     // (cond-update-stmt):
11951     // if (expr ordop x) { x = expr; }
11952     // if (x ordop expr) { x = expr; }
11953     // if (x == e) { x = d; }
11954     Res = checkCondUpdateStmt(IS, ErrorInfo);
11955   } else {
11956     // Check if the statement is in one of the following forms (cond-expr-stmt):
11957     // x = expr ordop x ? expr : x;
11958     // x = x ordop expr ? expr : x;
11959     // x = x == e ? d : x;
11960     Res = checkCondExprStmt(S, ErrorInfo);
11961   }
11962 
11963   if (!Res)
11964     return false;
11965 
11966   return checkType(ErrorInfo);
11967 }
11968 
11969 class OpenMPAtomicCompareCaptureChecker final
11970     : public OpenMPAtomicCompareChecker {
11971 public:
11972   OpenMPAtomicCompareCaptureChecker(Sema &S) : OpenMPAtomicCompareChecker(S) {}
11973 
11974   Expr *getV() const { return V; }
11975   Expr *getR() const { return R; }
11976   bool isFailOnly() const { return IsFailOnly; }
11977   bool isPostfixUpdate() const { return IsPostfixUpdate; }
11978 
11979   /// Check if statement \a S is valid for <tt>atomic compare capture</tt>.
11980   bool checkStmt(Stmt *S, ErrorInfoTy &ErrorInfo);
11981 
11982 private:
11983   bool checkType(ErrorInfoTy &ErrorInfo);
11984 
11985   // NOTE: Form 3, 4, 5 in the following comments mean the 3rd, 4th, and 5th
11986   // form of 'conditional-update-capture-atomic' structured block on the v5.2
11987   // spec p.p. 82:
11988   // (1) { v = x; cond-update-stmt }
11989   // (2) { cond-update-stmt v = x; }
11990   // (3) if(x == e) { x = d; } else { v = x; }
11991   // (4) { r = x == e; if(r) { x = d; } }
11992   // (5) { r = x == e; if(r) { x = d; } else { v = x; } }
11993 
11994   /// Check if it is valid 'if(x == e) { x = d; } else { v = x; }' (form 3)
11995   bool checkForm3(IfStmt *S, ErrorInfoTy &ErrorInfo);
11996 
11997   /// Check if it is valid '{ r = x == e; if(r) { x = d; } }',
11998   /// or '{ r = x == e; if(r) { x = d; } else { v = x; } }' (form 4 and 5)
11999   bool checkForm45(Stmt *S, ErrorInfoTy &ErrorInfo);
12000 
12001   /// 'v' lvalue part of the source atomic expression.
12002   Expr *V = nullptr;
12003   /// 'r' lvalue part of the source atomic expression.
12004   Expr *R = nullptr;
12005   /// If 'v' is only updated when the comparison fails.
12006   bool IsFailOnly = false;
12007   /// If original value of 'x' must be stored in 'v', not an updated one.
12008   bool IsPostfixUpdate = false;
12009 };
12010 
12011 bool OpenMPAtomicCompareCaptureChecker::checkType(ErrorInfoTy &ErrorInfo) {
12012   if (!OpenMPAtomicCompareChecker::checkType(ErrorInfo))
12013     return false;
12014 
12015   if (V && !CheckValue(V, ErrorInfo, true))
12016     return false;
12017 
12018   if (R && !CheckValue(R, ErrorInfo, true, true))
12019     return false;
12020 
12021   return true;
12022 }
12023 
12024 bool OpenMPAtomicCompareCaptureChecker::checkForm3(IfStmt *S,
12025                                                    ErrorInfoTy &ErrorInfo) {
12026   IsFailOnly = true;
12027 
12028   auto *Then = S->getThen();
12029   if (auto *CS = dyn_cast<CompoundStmt>(Then)) {
12030     if (CS->body_empty()) {
12031       ErrorInfo.Error = ErrorTy::NoStmt;
12032       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
12033       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
12034       return false;
12035     }
12036     if (CS->size() > 1) {
12037       ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
12038       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
12039       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
12040       return false;
12041     }
12042     Then = CS->body_front();
12043   }
12044 
12045   auto *BO = dyn_cast<BinaryOperator>(Then);
12046   if (!BO) {
12047     ErrorInfo.Error = ErrorTy::NotAnAssignment;
12048     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Then->getBeginLoc();
12049     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Then->getSourceRange();
12050     return false;
12051   }
12052   if (BO->getOpcode() != BO_Assign) {
12053     ErrorInfo.Error = ErrorTy::NotAnAssignment;
12054     ErrorInfo.ErrorLoc = BO->getExprLoc();
12055     ErrorInfo.NoteLoc = BO->getOperatorLoc();
12056     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
12057     return false;
12058   }
12059 
12060   X = BO->getLHS();
12061   D = BO->getRHS();
12062 
12063   auto *Cond = dyn_cast<BinaryOperator>(S->getCond());
12064   if (!Cond) {
12065     ErrorInfo.Error = ErrorTy::NotABinaryOp;
12066     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getCond()->getExprLoc();
12067     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getCond()->getSourceRange();
12068     return false;
12069   }
12070   if (Cond->getOpcode() != BO_EQ) {
12071     ErrorInfo.Error = ErrorTy::NotEQ;
12072     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
12073     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
12074     return false;
12075   }
12076 
12077   if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS())) {
12078     E = Cond->getRHS();
12079   } else if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
12080     E = Cond->getLHS();
12081   } else {
12082     ErrorInfo.Error = ErrorTy::InvalidComparison;
12083     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
12084     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
12085     return false;
12086   }
12087 
12088   C = Cond;
12089 
12090   if (!S->getElse()) {
12091     ErrorInfo.Error = ErrorTy::NoElse;
12092     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getBeginLoc();
12093     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
12094     return false;
12095   }
12096 
12097   auto *Else = S->getElse();
12098   if (auto *CS = dyn_cast<CompoundStmt>(Else)) {
12099     if (CS->body_empty()) {
12100       ErrorInfo.Error = ErrorTy::NoStmt;
12101       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
12102       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
12103       return false;
12104     }
12105     if (CS->size() > 1) {
12106       ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
12107       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
12108       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
12109       return false;
12110     }
12111     Else = CS->body_front();
12112   }
12113 
12114   auto *ElseBO = dyn_cast<BinaryOperator>(Else);
12115   if (!ElseBO) {
12116     ErrorInfo.Error = ErrorTy::NotAnAssignment;
12117     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Else->getBeginLoc();
12118     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Else->getSourceRange();
12119     return false;
12120   }
12121   if (ElseBO->getOpcode() != BO_Assign) {
12122     ErrorInfo.Error = ErrorTy::NotAnAssignment;
12123     ErrorInfo.ErrorLoc = ElseBO->getExprLoc();
12124     ErrorInfo.NoteLoc = ElseBO->getOperatorLoc();
12125     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ElseBO->getSourceRange();
12126     return false;
12127   }
12128 
12129   if (!checkIfTwoExprsAreSame(ContextRef, X, ElseBO->getRHS())) {
12130     ErrorInfo.Error = ErrorTy::InvalidAssignment;
12131     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ElseBO->getRHS()->getExprLoc();
12132     ErrorInfo.ErrorRange = ErrorInfo.NoteRange =
12133         ElseBO->getRHS()->getSourceRange();
12134     return false;
12135   }
12136 
12137   V = ElseBO->getLHS();
12138 
12139   return checkType(ErrorInfo);
12140 }
12141 
12142 bool OpenMPAtomicCompareCaptureChecker::checkForm45(Stmt *S,
12143                                                     ErrorInfoTy &ErrorInfo) {
12144   // We don't check here as they should be already done before call this
12145   // function.
12146   auto *CS = cast<CompoundStmt>(S);
12147   assert(CS->size() == 2 && "CompoundStmt size is not expected");
12148   auto *S1 = cast<BinaryOperator>(CS->body_front());
12149   auto *S2 = cast<IfStmt>(CS->body_back());
12150   assert(S1->getOpcode() == BO_Assign && "unexpected binary operator");
12151 
12152   if (!checkIfTwoExprsAreSame(ContextRef, S1->getLHS(), S2->getCond())) {
12153     ErrorInfo.Error = ErrorTy::InvalidCondition;
12154     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S2->getCond()->getExprLoc();
12155     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S1->getLHS()->getSourceRange();
12156     return false;
12157   }
12158 
12159   R = S1->getLHS();
12160 
12161   auto *Then = S2->getThen();
12162   if (auto *ThenCS = dyn_cast<CompoundStmt>(Then)) {
12163     if (ThenCS->body_empty()) {
12164       ErrorInfo.Error = ErrorTy::NoStmt;
12165       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ThenCS->getBeginLoc();
12166       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ThenCS->getSourceRange();
12167       return false;
12168     }
12169     if (ThenCS->size() > 1) {
12170       ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
12171       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ThenCS->getBeginLoc();
12172       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ThenCS->getSourceRange();
12173       return false;
12174     }
12175     Then = ThenCS->body_front();
12176   }
12177 
12178   auto *ThenBO = dyn_cast<BinaryOperator>(Then);
12179   if (!ThenBO) {
12180     ErrorInfo.Error = ErrorTy::NotAnAssignment;
12181     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S2->getBeginLoc();
12182     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S2->getSourceRange();
12183     return false;
12184   }
12185   if (ThenBO->getOpcode() != BO_Assign) {
12186     ErrorInfo.Error = ErrorTy::NotAnAssignment;
12187     ErrorInfo.ErrorLoc = ThenBO->getExprLoc();
12188     ErrorInfo.NoteLoc = ThenBO->getOperatorLoc();
12189     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ThenBO->getSourceRange();
12190     return false;
12191   }
12192 
12193   X = ThenBO->getLHS();
12194   D = ThenBO->getRHS();
12195 
12196   auto *BO = cast<BinaryOperator>(S1->getRHS()->IgnoreImpCasts());
12197   if (BO->getOpcode() != BO_EQ) {
12198     ErrorInfo.Error = ErrorTy::NotEQ;
12199     ErrorInfo.ErrorLoc = BO->getExprLoc();
12200     ErrorInfo.NoteLoc = BO->getOperatorLoc();
12201     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
12202     return false;
12203   }
12204 
12205   C = BO;
12206 
12207   if (checkIfTwoExprsAreSame(ContextRef, X, BO->getLHS())) {
12208     E = BO->getRHS();
12209   } else if (checkIfTwoExprsAreSame(ContextRef, X, BO->getRHS())) {
12210     E = BO->getLHS();
12211   } else {
12212     ErrorInfo.Error = ErrorTy::InvalidComparison;
12213     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = BO->getExprLoc();
12214     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
12215     return false;
12216   }
12217 
12218   if (S2->getElse()) {
12219     IsFailOnly = true;
12220 
12221     auto *Else = S2->getElse();
12222     if (auto *ElseCS = dyn_cast<CompoundStmt>(Else)) {
12223       if (ElseCS->body_empty()) {
12224         ErrorInfo.Error = ErrorTy::NoStmt;
12225         ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ElseCS->getBeginLoc();
12226         ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ElseCS->getSourceRange();
12227         return false;
12228       }
12229       if (ElseCS->size() > 1) {
12230         ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
12231         ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ElseCS->getBeginLoc();
12232         ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ElseCS->getSourceRange();
12233         return false;
12234       }
12235       Else = ElseCS->body_front();
12236     }
12237 
12238     auto *ElseBO = dyn_cast<BinaryOperator>(Else);
12239     if (!ElseBO) {
12240       ErrorInfo.Error = ErrorTy::NotAnAssignment;
12241       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Else->getBeginLoc();
12242       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Else->getSourceRange();
12243       return false;
12244     }
12245     if (ElseBO->getOpcode() != BO_Assign) {
12246       ErrorInfo.Error = ErrorTy::NotAnAssignment;
12247       ErrorInfo.ErrorLoc = ElseBO->getExprLoc();
12248       ErrorInfo.NoteLoc = ElseBO->getOperatorLoc();
12249       ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ElseBO->getSourceRange();
12250       return false;
12251     }
12252     if (!checkIfTwoExprsAreSame(ContextRef, X, ElseBO->getRHS())) {
12253       ErrorInfo.Error = ErrorTy::InvalidAssignment;
12254       ErrorInfo.ErrorLoc = ElseBO->getRHS()->getExprLoc();
12255       ErrorInfo.NoteLoc = X->getExprLoc();
12256       ErrorInfo.ErrorRange = ElseBO->getRHS()->getSourceRange();
12257       ErrorInfo.NoteRange = X->getSourceRange();
12258       return false;
12259     }
12260 
12261     V = ElseBO->getLHS();
12262   }
12263 
12264   return checkType(ErrorInfo);
12265 }
12266 
12267 bool OpenMPAtomicCompareCaptureChecker::checkStmt(Stmt *S,
12268                                                   ErrorInfoTy &ErrorInfo) {
12269   // if(x == e) { x = d; } else { v = x; }
12270   if (auto *IS = dyn_cast<IfStmt>(S))
12271     return checkForm3(IS, ErrorInfo);
12272 
12273   auto *CS = dyn_cast<CompoundStmt>(S);
12274   if (!CS) {
12275     ErrorInfo.Error = ErrorTy::NotCompoundStmt;
12276     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getBeginLoc();
12277     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
12278     return false;
12279   }
12280   if (CS->body_empty()) {
12281     ErrorInfo.Error = ErrorTy::NoStmt;
12282     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
12283     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
12284     return false;
12285   }
12286 
12287   // { if(x == e) { x = d; } else { v = x; } }
12288   if (CS->size() == 1) {
12289     auto *IS = dyn_cast<IfStmt>(CS->body_front());
12290     if (!IS) {
12291       ErrorInfo.Error = ErrorTy::NotIfStmt;
12292       ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->body_front()->getBeginLoc();
12293       ErrorInfo.ErrorRange = ErrorInfo.NoteRange =
12294           CS->body_front()->getSourceRange();
12295       return false;
12296     }
12297 
12298     return checkForm3(IS, ErrorInfo);
12299   } else if (CS->size() == 2) {
12300     auto *S1 = CS->body_front();
12301     auto *S2 = CS->body_back();
12302 
12303     Stmt *UpdateStmt = nullptr;
12304     Stmt *CondUpdateStmt = nullptr;
12305     Stmt *CondExprStmt = nullptr;
12306 
12307     if (auto *BO = dyn_cast<BinaryOperator>(S1)) {
12308       // It could be one of the following cases:
12309       // { v = x; cond-update-stmt }
12310       // { v = x; cond-expr-stmt }
12311       // { cond-expr-stmt; v = x; }
12312       // form 45
12313       if (isa<BinaryOperator>(BO->getRHS()->IgnoreImpCasts()) ||
12314           isa<ConditionalOperator>(BO->getRHS()->IgnoreImpCasts())) {
12315         // check if form 45
12316         if (isa<IfStmt>(S2))
12317           return checkForm45(CS, ErrorInfo);
12318         // { cond-expr-stmt; v = x; }
12319         CondExprStmt = S1;
12320         UpdateStmt = S2;
12321       } else {
12322         IsPostfixUpdate = true;
12323         UpdateStmt = S1;
12324         if (isa<IfStmt>(S2)) {
12325           // { v = x; cond-update-stmt }
12326           CondUpdateStmt = S2;
12327         } else {
12328           // { v = x; cond-expr-stmt }
12329           CondExprStmt = S2;
12330         }
12331       }
12332     } else {
12333       // { cond-update-stmt v = x; }
12334       UpdateStmt = S2;
12335       CondUpdateStmt = S1;
12336     }
12337 
12338     auto CheckCondUpdateStmt = [this, &ErrorInfo](Stmt *CUS) {
12339       auto *IS = dyn_cast<IfStmt>(CUS);
12340       if (!IS) {
12341         ErrorInfo.Error = ErrorTy::NotIfStmt;
12342         ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CUS->getBeginLoc();
12343         ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CUS->getSourceRange();
12344         return false;
12345       }
12346 
12347       return checkCondUpdateStmt(IS, ErrorInfo);
12348     };
12349 
12350     // CheckUpdateStmt has to be called *after* CheckCondUpdateStmt.
12351     auto CheckUpdateStmt = [this, &ErrorInfo](Stmt *US) {
12352       auto *BO = dyn_cast<BinaryOperator>(US);
12353       if (!BO) {
12354         ErrorInfo.Error = ErrorTy::NotAnAssignment;
12355         ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = US->getBeginLoc();
12356         ErrorInfo.ErrorRange = ErrorInfo.NoteRange = US->getSourceRange();
12357         return false;
12358       }
12359       if (BO->getOpcode() != BO_Assign) {
12360         ErrorInfo.Error = ErrorTy::NotAnAssignment;
12361         ErrorInfo.ErrorLoc = BO->getExprLoc();
12362         ErrorInfo.NoteLoc = BO->getOperatorLoc();
12363         ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
12364         return false;
12365       }
12366       if (!checkIfTwoExprsAreSame(ContextRef, this->X, BO->getRHS())) {
12367         ErrorInfo.Error = ErrorTy::InvalidAssignment;
12368         ErrorInfo.ErrorLoc = BO->getRHS()->getExprLoc();
12369         ErrorInfo.NoteLoc = this->X->getExprLoc();
12370         ErrorInfo.ErrorRange = BO->getRHS()->getSourceRange();
12371         ErrorInfo.NoteRange = this->X->getSourceRange();
12372         return false;
12373       }
12374 
12375       this->V = BO->getLHS();
12376 
12377       return true;
12378     };
12379 
12380     if (CondUpdateStmt && !CheckCondUpdateStmt(CondUpdateStmt))
12381       return false;
12382     if (CondExprStmt && !checkCondExprStmt(CondExprStmt, ErrorInfo))
12383       return false;
12384     if (!CheckUpdateStmt(UpdateStmt))
12385       return false;
12386   } else {
12387     ErrorInfo.Error = ErrorTy::MoreThanTwoStmts;
12388     ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
12389     ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
12390     return false;
12391   }
12392 
12393   return checkType(ErrorInfo);
12394 }
12395 } // namespace
12396 
12397 StmtResult Sema::ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
12398                                             Stmt *AStmt,
12399                                             SourceLocation StartLoc,
12400                                             SourceLocation EndLoc) {
12401   // Register location of the first atomic directive.
12402   DSAStack->addAtomicDirectiveLoc(StartLoc);
12403   if (!AStmt)
12404     return StmtError();
12405 
12406   // 1.2.2 OpenMP Language Terminology
12407   // Structured block - An executable statement with a single entry at the
12408   // top and a single exit at the bottom.
12409   // The point of exit cannot be a branch out of the structured block.
12410   // longjmp() and throw() must not violate the entry/exit criteria.
12411   OpenMPClauseKind AtomicKind = OMPC_unknown;
12412   SourceLocation AtomicKindLoc;
12413   OpenMPClauseKind MemOrderKind = OMPC_unknown;
12414   SourceLocation MemOrderLoc;
12415   bool MutexClauseEncountered = false;
12416   llvm::SmallSet<OpenMPClauseKind, 2> EncounteredAtomicKinds;
12417   for (const OMPClause *C : Clauses) {
12418     switch (C->getClauseKind()) {
12419     case OMPC_read:
12420     case OMPC_write:
12421     case OMPC_update:
12422       MutexClauseEncountered = true;
12423       [[fallthrough]];
12424     case OMPC_capture:
12425     case OMPC_compare: {
12426       if (AtomicKind != OMPC_unknown && MutexClauseEncountered) {
12427         Diag(C->getBeginLoc(), diag::err_omp_atomic_several_clauses)
12428             << SourceRange(C->getBeginLoc(), C->getEndLoc());
12429         Diag(AtomicKindLoc, diag::note_omp_previous_mem_order_clause)
12430             << getOpenMPClauseName(AtomicKind);
12431       } else {
12432         AtomicKind = C->getClauseKind();
12433         AtomicKindLoc = C->getBeginLoc();
12434         if (!EncounteredAtomicKinds.insert(C->getClauseKind()).second) {
12435           Diag(C->getBeginLoc(), diag::err_omp_atomic_several_clauses)
12436               << SourceRange(C->getBeginLoc(), C->getEndLoc());
12437           Diag(AtomicKindLoc, diag::note_omp_previous_mem_order_clause)
12438               << getOpenMPClauseName(AtomicKind);
12439         }
12440       }
12441       break;
12442     }
12443     case OMPC_seq_cst:
12444     case OMPC_acq_rel:
12445     case OMPC_acquire:
12446     case OMPC_release:
12447     case OMPC_relaxed: {
12448       if (MemOrderKind != OMPC_unknown) {
12449         Diag(C->getBeginLoc(), diag::err_omp_several_mem_order_clauses)
12450             << getOpenMPDirectiveName(OMPD_atomic) << 0
12451             << SourceRange(C->getBeginLoc(), C->getEndLoc());
12452         Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause)
12453             << getOpenMPClauseName(MemOrderKind);
12454       } else {
12455         MemOrderKind = C->getClauseKind();
12456         MemOrderLoc = C->getBeginLoc();
12457       }
12458       break;
12459     }
12460     // The following clauses are allowed, but we don't need to do anything here.
12461     case OMPC_hint:
12462       break;
12463     default:
12464       llvm_unreachable("unknown clause is encountered");
12465     }
12466   }
12467   bool IsCompareCapture = false;
12468   if (EncounteredAtomicKinds.contains(OMPC_compare) &&
12469       EncounteredAtomicKinds.contains(OMPC_capture)) {
12470     IsCompareCapture = true;
12471     AtomicKind = OMPC_compare;
12472   }
12473   // OpenMP 5.0, 2.17.7 atomic Construct, Restrictions
12474   // If atomic-clause is read then memory-order-clause must not be acq_rel or
12475   // release.
12476   // If atomic-clause is write then memory-order-clause must not be acq_rel or
12477   // acquire.
12478   // If atomic-clause is update or not present then memory-order-clause must not
12479   // be acq_rel or acquire.
12480   if ((AtomicKind == OMPC_read &&
12481        (MemOrderKind == OMPC_acq_rel || MemOrderKind == OMPC_release)) ||
12482       ((AtomicKind == OMPC_write || AtomicKind == OMPC_update ||
12483         AtomicKind == OMPC_unknown) &&
12484        (MemOrderKind == OMPC_acq_rel || MemOrderKind == OMPC_acquire))) {
12485     SourceLocation Loc = AtomicKindLoc;
12486     if (AtomicKind == OMPC_unknown)
12487       Loc = StartLoc;
12488     Diag(Loc, diag::err_omp_atomic_incompatible_mem_order_clause)
12489         << getOpenMPClauseName(AtomicKind)
12490         << (AtomicKind == OMPC_unknown ? 1 : 0)
12491         << getOpenMPClauseName(MemOrderKind);
12492     Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause)
12493         << getOpenMPClauseName(MemOrderKind);
12494   }
12495 
12496   Stmt *Body = AStmt;
12497   if (auto *EWC = dyn_cast<ExprWithCleanups>(Body))
12498     Body = EWC->getSubExpr();
12499 
12500   Expr *X = nullptr;
12501   Expr *V = nullptr;
12502   Expr *E = nullptr;
12503   Expr *UE = nullptr;
12504   Expr *D = nullptr;
12505   Expr *CE = nullptr;
12506   Expr *R = nullptr;
12507   bool IsXLHSInRHSPart = false;
12508   bool IsPostfixUpdate = false;
12509   bool IsFailOnly = false;
12510   // OpenMP [2.12.6, atomic Construct]
12511   // In the next expressions:
12512   // * x and v (as applicable) are both l-value expressions with scalar type.
12513   // * During the execution of an atomic region, multiple syntactic
12514   // occurrences of x must designate the same storage location.
12515   // * Neither of v and expr (as applicable) may access the storage location
12516   // designated by x.
12517   // * Neither of x and expr (as applicable) may access the storage location
12518   // designated by v.
12519   // * expr is an expression with scalar type.
12520   // * binop is one of +, *, -, /, &, ^, |, <<, or >>.
12521   // * binop, binop=, ++, and -- are not overloaded operators.
12522   // * The expression x binop expr must be numerically equivalent to x binop
12523   // (expr). This requirement is satisfied if the operators in expr have
12524   // precedence greater than binop, or by using parentheses around expr or
12525   // subexpressions of expr.
12526   // * The expression expr binop x must be numerically equivalent to (expr)
12527   // binop x. This requirement is satisfied if the operators in expr have
12528   // precedence equal to or greater than binop, or by using parentheses around
12529   // expr or subexpressions of expr.
12530   // * For forms that allow multiple occurrences of x, the number of times
12531   // that x is evaluated is unspecified.
12532   if (AtomicKind == OMPC_read) {
12533     enum {
12534       NotAnExpression,
12535       NotAnAssignmentOp,
12536       NotAScalarType,
12537       NotAnLValue,
12538       NoError
12539     } ErrorFound = NoError;
12540     SourceLocation ErrorLoc, NoteLoc;
12541     SourceRange ErrorRange, NoteRange;
12542     // If clause is read:
12543     //  v = x;
12544     if (const auto *AtomicBody = dyn_cast<Expr>(Body)) {
12545       const auto *AtomicBinOp =
12546           dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
12547       if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
12548         X = AtomicBinOp->getRHS()->IgnoreParenImpCasts();
12549         V = AtomicBinOp->getLHS()->IgnoreParenImpCasts();
12550         if ((X->isInstantiationDependent() || X->getType()->isScalarType()) &&
12551             (V->isInstantiationDependent() || V->getType()->isScalarType())) {
12552           if (!X->isLValue() || !V->isLValue()) {
12553             const Expr *NotLValueExpr = X->isLValue() ? V : X;
12554             ErrorFound = NotAnLValue;
12555             ErrorLoc = AtomicBinOp->getExprLoc();
12556             ErrorRange = AtomicBinOp->getSourceRange();
12557             NoteLoc = NotLValueExpr->getExprLoc();
12558             NoteRange = NotLValueExpr->getSourceRange();
12559           }
12560         } else if (!X->isInstantiationDependent() ||
12561                    !V->isInstantiationDependent()) {
12562           const Expr *NotScalarExpr =
12563               (X->isInstantiationDependent() || X->getType()->isScalarType())
12564                   ? V
12565                   : X;
12566           ErrorFound = NotAScalarType;
12567           ErrorLoc = AtomicBinOp->getExprLoc();
12568           ErrorRange = AtomicBinOp->getSourceRange();
12569           NoteLoc = NotScalarExpr->getExprLoc();
12570           NoteRange = NotScalarExpr->getSourceRange();
12571         }
12572       } else if (!AtomicBody->isInstantiationDependent()) {
12573         ErrorFound = NotAnAssignmentOp;
12574         ErrorLoc = AtomicBody->getExprLoc();
12575         ErrorRange = AtomicBody->getSourceRange();
12576         NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
12577                               : AtomicBody->getExprLoc();
12578         NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
12579                                 : AtomicBody->getSourceRange();
12580       }
12581     } else {
12582       ErrorFound = NotAnExpression;
12583       NoteLoc = ErrorLoc = Body->getBeginLoc();
12584       NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
12585     }
12586     if (ErrorFound != NoError) {
12587       Diag(ErrorLoc, diag::err_omp_atomic_read_not_expression_statement)
12588           << ErrorRange;
12589       Diag(NoteLoc, diag::note_omp_atomic_read_write)
12590           << ErrorFound << NoteRange;
12591       return StmtError();
12592     }
12593     if (CurContext->isDependentContext())
12594       V = X = nullptr;
12595   } else if (AtomicKind == OMPC_write) {
12596     enum {
12597       NotAnExpression,
12598       NotAnAssignmentOp,
12599       NotAScalarType,
12600       NotAnLValue,
12601       NoError
12602     } ErrorFound = NoError;
12603     SourceLocation ErrorLoc, NoteLoc;
12604     SourceRange ErrorRange, NoteRange;
12605     // If clause is write:
12606     //  x = expr;
12607     if (const auto *AtomicBody = dyn_cast<Expr>(Body)) {
12608       const auto *AtomicBinOp =
12609           dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
12610       if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
12611         X = AtomicBinOp->getLHS();
12612         E = AtomicBinOp->getRHS();
12613         if ((X->isInstantiationDependent() || X->getType()->isScalarType()) &&
12614             (E->isInstantiationDependent() || E->getType()->isScalarType())) {
12615           if (!X->isLValue()) {
12616             ErrorFound = NotAnLValue;
12617             ErrorLoc = AtomicBinOp->getExprLoc();
12618             ErrorRange = AtomicBinOp->getSourceRange();
12619             NoteLoc = X->getExprLoc();
12620             NoteRange = X->getSourceRange();
12621           }
12622         } else if (!X->isInstantiationDependent() ||
12623                    !E->isInstantiationDependent()) {
12624           const Expr *NotScalarExpr =
12625               (X->isInstantiationDependent() || X->getType()->isScalarType())
12626                   ? E
12627                   : X;
12628           ErrorFound = NotAScalarType;
12629           ErrorLoc = AtomicBinOp->getExprLoc();
12630           ErrorRange = AtomicBinOp->getSourceRange();
12631           NoteLoc = NotScalarExpr->getExprLoc();
12632           NoteRange = NotScalarExpr->getSourceRange();
12633         }
12634       } else if (!AtomicBody->isInstantiationDependent()) {
12635         ErrorFound = NotAnAssignmentOp;
12636         ErrorLoc = AtomicBody->getExprLoc();
12637         ErrorRange = AtomicBody->getSourceRange();
12638         NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
12639                               : AtomicBody->getExprLoc();
12640         NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
12641                                 : AtomicBody->getSourceRange();
12642       }
12643     } else {
12644       ErrorFound = NotAnExpression;
12645       NoteLoc = ErrorLoc = Body->getBeginLoc();
12646       NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
12647     }
12648     if (ErrorFound != NoError) {
12649       Diag(ErrorLoc, diag::err_omp_atomic_write_not_expression_statement)
12650           << ErrorRange;
12651       Diag(NoteLoc, diag::note_omp_atomic_read_write)
12652           << ErrorFound << NoteRange;
12653       return StmtError();
12654     }
12655     if (CurContext->isDependentContext())
12656       E = X = nullptr;
12657   } else if (AtomicKind == OMPC_update || AtomicKind == OMPC_unknown) {
12658     // If clause is update:
12659     //  x++;
12660     //  x--;
12661     //  ++x;
12662     //  --x;
12663     //  x binop= expr;
12664     //  x = x binop expr;
12665     //  x = expr binop x;
12666     OpenMPAtomicUpdateChecker Checker(*this);
12667     if (Checker.checkStatement(
12668             Body,
12669             (AtomicKind == OMPC_update)
12670                 ? diag::err_omp_atomic_update_not_expression_statement
12671                 : diag::err_omp_atomic_not_expression_statement,
12672             diag::note_omp_atomic_update))
12673       return StmtError();
12674     if (!CurContext->isDependentContext()) {
12675       E = Checker.getExpr();
12676       X = Checker.getX();
12677       UE = Checker.getUpdateExpr();
12678       IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
12679     }
12680   } else if (AtomicKind == OMPC_capture) {
12681     enum {
12682       NotAnAssignmentOp,
12683       NotACompoundStatement,
12684       NotTwoSubstatements,
12685       NotASpecificExpression,
12686       NoError
12687     } ErrorFound = NoError;
12688     SourceLocation ErrorLoc, NoteLoc;
12689     SourceRange ErrorRange, NoteRange;
12690     if (const auto *AtomicBody = dyn_cast<Expr>(Body)) {
12691       // If clause is a capture:
12692       //  v = x++;
12693       //  v = x--;
12694       //  v = ++x;
12695       //  v = --x;
12696       //  v = x binop= expr;
12697       //  v = x = x binop expr;
12698       //  v = x = expr binop x;
12699       const auto *AtomicBinOp =
12700           dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
12701       if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
12702         V = AtomicBinOp->getLHS();
12703         Body = AtomicBinOp->getRHS()->IgnoreParenImpCasts();
12704         OpenMPAtomicUpdateChecker Checker(*this);
12705         if (Checker.checkStatement(
12706                 Body, diag::err_omp_atomic_capture_not_expression_statement,
12707                 diag::note_omp_atomic_update))
12708           return StmtError();
12709         E = Checker.getExpr();
12710         X = Checker.getX();
12711         UE = Checker.getUpdateExpr();
12712         IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
12713         IsPostfixUpdate = Checker.isPostfixUpdate();
12714       } else if (!AtomicBody->isInstantiationDependent()) {
12715         ErrorLoc = AtomicBody->getExprLoc();
12716         ErrorRange = AtomicBody->getSourceRange();
12717         NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
12718                               : AtomicBody->getExprLoc();
12719         NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
12720                                 : AtomicBody->getSourceRange();
12721         ErrorFound = NotAnAssignmentOp;
12722       }
12723       if (ErrorFound != NoError) {
12724         Diag(ErrorLoc, diag::err_omp_atomic_capture_not_expression_statement)
12725             << ErrorRange;
12726         Diag(NoteLoc, diag::note_omp_atomic_capture) << ErrorFound << NoteRange;
12727         return StmtError();
12728       }
12729       if (CurContext->isDependentContext())
12730         UE = V = E = X = nullptr;
12731     } else {
12732       // If clause is a capture:
12733       //  { v = x; x = expr; }
12734       //  { v = x; x++; }
12735       //  { v = x; x--; }
12736       //  { v = x; ++x; }
12737       //  { v = x; --x; }
12738       //  { v = x; x binop= expr; }
12739       //  { v = x; x = x binop expr; }
12740       //  { v = x; x = expr binop x; }
12741       //  { x++; v = x; }
12742       //  { x--; v = x; }
12743       //  { ++x; v = x; }
12744       //  { --x; v = x; }
12745       //  { x binop= expr; v = x; }
12746       //  { x = x binop expr; v = x; }
12747       //  { x = expr binop x; v = x; }
12748       if (auto *CS = dyn_cast<CompoundStmt>(Body)) {
12749         // Check that this is { expr1; expr2; }
12750         if (CS->size() == 2) {
12751           Stmt *First = CS->body_front();
12752           Stmt *Second = CS->body_back();
12753           if (auto *EWC = dyn_cast<ExprWithCleanups>(First))
12754             First = EWC->getSubExpr()->IgnoreParenImpCasts();
12755           if (auto *EWC = dyn_cast<ExprWithCleanups>(Second))
12756             Second = EWC->getSubExpr()->IgnoreParenImpCasts();
12757           // Need to find what subexpression is 'v' and what is 'x'.
12758           OpenMPAtomicUpdateChecker Checker(*this);
12759           bool IsUpdateExprFound = !Checker.checkStatement(Second);
12760           BinaryOperator *BinOp = nullptr;
12761           if (IsUpdateExprFound) {
12762             BinOp = dyn_cast<BinaryOperator>(First);
12763             IsUpdateExprFound = BinOp && BinOp->getOpcode() == BO_Assign;
12764           }
12765           if (IsUpdateExprFound && !CurContext->isDependentContext()) {
12766             //  { v = x; x++; }
12767             //  { v = x; x--; }
12768             //  { v = x; ++x; }
12769             //  { v = x; --x; }
12770             //  { v = x; x binop= expr; }
12771             //  { v = x; x = x binop expr; }
12772             //  { v = x; x = expr binop x; }
12773             // Check that the first expression has form v = x.
12774             Expr *PossibleX = BinOp->getRHS()->IgnoreParenImpCasts();
12775             llvm::FoldingSetNodeID XId, PossibleXId;
12776             Checker.getX()->Profile(XId, Context, /*Canonical=*/true);
12777             PossibleX->Profile(PossibleXId, Context, /*Canonical=*/true);
12778             IsUpdateExprFound = XId == PossibleXId;
12779             if (IsUpdateExprFound) {
12780               V = BinOp->getLHS();
12781               X = Checker.getX();
12782               E = Checker.getExpr();
12783               UE = Checker.getUpdateExpr();
12784               IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
12785               IsPostfixUpdate = true;
12786             }
12787           }
12788           if (!IsUpdateExprFound) {
12789             IsUpdateExprFound = !Checker.checkStatement(First);
12790             BinOp = nullptr;
12791             if (IsUpdateExprFound) {
12792               BinOp = dyn_cast<BinaryOperator>(Second);
12793               IsUpdateExprFound = BinOp && BinOp->getOpcode() == BO_Assign;
12794             }
12795             if (IsUpdateExprFound && !CurContext->isDependentContext()) {
12796               //  { x++; v = x; }
12797               //  { x--; v = x; }
12798               //  { ++x; v = x; }
12799               //  { --x; v = x; }
12800               //  { x binop= expr; v = x; }
12801               //  { x = x binop expr; v = x; }
12802               //  { x = expr binop x; v = x; }
12803               // Check that the second expression has form v = x.
12804               Expr *PossibleX = BinOp->getRHS()->IgnoreParenImpCasts();
12805               llvm::FoldingSetNodeID XId, PossibleXId;
12806               Checker.getX()->Profile(XId, Context, /*Canonical=*/true);
12807               PossibleX->Profile(PossibleXId, Context, /*Canonical=*/true);
12808               IsUpdateExprFound = XId == PossibleXId;
12809               if (IsUpdateExprFound) {
12810                 V = BinOp->getLHS();
12811                 X = Checker.getX();
12812                 E = Checker.getExpr();
12813                 UE = Checker.getUpdateExpr();
12814                 IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
12815                 IsPostfixUpdate = false;
12816               }
12817             }
12818           }
12819           if (!IsUpdateExprFound) {
12820             //  { v = x; x = expr; }
12821             auto *FirstExpr = dyn_cast<Expr>(First);
12822             auto *SecondExpr = dyn_cast<Expr>(Second);
12823             if (!FirstExpr || !SecondExpr ||
12824                 !(FirstExpr->isInstantiationDependent() ||
12825                   SecondExpr->isInstantiationDependent())) {
12826               auto *FirstBinOp = dyn_cast<BinaryOperator>(First);
12827               if (!FirstBinOp || FirstBinOp->getOpcode() != BO_Assign) {
12828                 ErrorFound = NotAnAssignmentOp;
12829                 NoteLoc = ErrorLoc = FirstBinOp ? FirstBinOp->getOperatorLoc()
12830                                                 : First->getBeginLoc();
12831                 NoteRange = ErrorRange = FirstBinOp
12832                                              ? FirstBinOp->getSourceRange()
12833                                              : SourceRange(ErrorLoc, ErrorLoc);
12834               } else {
12835                 auto *SecondBinOp = dyn_cast<BinaryOperator>(Second);
12836                 if (!SecondBinOp || SecondBinOp->getOpcode() != BO_Assign) {
12837                   ErrorFound = NotAnAssignmentOp;
12838                   NoteLoc = ErrorLoc = SecondBinOp
12839                                            ? SecondBinOp->getOperatorLoc()
12840                                            : Second->getBeginLoc();
12841                   NoteRange = ErrorRange =
12842                       SecondBinOp ? SecondBinOp->getSourceRange()
12843                                   : SourceRange(ErrorLoc, ErrorLoc);
12844                 } else {
12845                   Expr *PossibleXRHSInFirst =
12846                       FirstBinOp->getRHS()->IgnoreParenImpCasts();
12847                   Expr *PossibleXLHSInSecond =
12848                       SecondBinOp->getLHS()->IgnoreParenImpCasts();
12849                   llvm::FoldingSetNodeID X1Id, X2Id;
12850                   PossibleXRHSInFirst->Profile(X1Id, Context,
12851                                                /*Canonical=*/true);
12852                   PossibleXLHSInSecond->Profile(X2Id, Context,
12853                                                 /*Canonical=*/true);
12854                   IsUpdateExprFound = X1Id == X2Id;
12855                   if (IsUpdateExprFound) {
12856                     V = FirstBinOp->getLHS();
12857                     X = SecondBinOp->getLHS();
12858                     E = SecondBinOp->getRHS();
12859                     UE = nullptr;
12860                     IsXLHSInRHSPart = false;
12861                     IsPostfixUpdate = true;
12862                   } else {
12863                     ErrorFound = NotASpecificExpression;
12864                     ErrorLoc = FirstBinOp->getExprLoc();
12865                     ErrorRange = FirstBinOp->getSourceRange();
12866                     NoteLoc = SecondBinOp->getLHS()->getExprLoc();
12867                     NoteRange = SecondBinOp->getRHS()->getSourceRange();
12868                   }
12869                 }
12870               }
12871             }
12872           }
12873         } else {
12874           NoteLoc = ErrorLoc = Body->getBeginLoc();
12875           NoteRange = ErrorRange =
12876               SourceRange(Body->getBeginLoc(), Body->getBeginLoc());
12877           ErrorFound = NotTwoSubstatements;
12878         }
12879       } else {
12880         NoteLoc = ErrorLoc = Body->getBeginLoc();
12881         NoteRange = ErrorRange =
12882             SourceRange(Body->getBeginLoc(), Body->getBeginLoc());
12883         ErrorFound = NotACompoundStatement;
12884       }
12885     }
12886     if (ErrorFound != NoError) {
12887       Diag(ErrorLoc, diag::err_omp_atomic_capture_not_compound_statement)
12888           << ErrorRange;
12889       Diag(NoteLoc, diag::note_omp_atomic_capture) << ErrorFound << NoteRange;
12890       return StmtError();
12891     }
12892     if (CurContext->isDependentContext())
12893       UE = V = E = X = nullptr;
12894   } else if (AtomicKind == OMPC_compare) {
12895     if (IsCompareCapture) {
12896       OpenMPAtomicCompareCaptureChecker::ErrorInfoTy ErrorInfo;
12897       OpenMPAtomicCompareCaptureChecker Checker(*this);
12898       if (!Checker.checkStmt(Body, ErrorInfo)) {
12899         Diag(ErrorInfo.ErrorLoc, diag::err_omp_atomic_compare_capture)
12900             << ErrorInfo.ErrorRange;
12901         Diag(ErrorInfo.NoteLoc, diag::note_omp_atomic_compare)
12902             << ErrorInfo.Error << ErrorInfo.NoteRange;
12903         return StmtError();
12904       }
12905       X = Checker.getX();
12906       E = Checker.getE();
12907       D = Checker.getD();
12908       CE = Checker.getCond();
12909       V = Checker.getV();
12910       R = Checker.getR();
12911       // We reuse IsXLHSInRHSPart to tell if it is in the form 'x ordop expr'.
12912       IsXLHSInRHSPart = Checker.isXBinopExpr();
12913       IsFailOnly = Checker.isFailOnly();
12914       IsPostfixUpdate = Checker.isPostfixUpdate();
12915     } else {
12916       OpenMPAtomicCompareChecker::ErrorInfoTy ErrorInfo;
12917       OpenMPAtomicCompareChecker Checker(*this);
12918       if (!Checker.checkStmt(Body, ErrorInfo)) {
12919         Diag(ErrorInfo.ErrorLoc, diag::err_omp_atomic_compare)
12920             << ErrorInfo.ErrorRange;
12921         Diag(ErrorInfo.NoteLoc, diag::note_omp_atomic_compare)
12922           << ErrorInfo.Error << ErrorInfo.NoteRange;
12923         return StmtError();
12924       }
12925       X = Checker.getX();
12926       E = Checker.getE();
12927       D = Checker.getD();
12928       CE = Checker.getCond();
12929       // We reuse IsXLHSInRHSPart to tell if it is in the form 'x ordop expr'.
12930       IsXLHSInRHSPart = Checker.isXBinopExpr();
12931     }
12932   }
12933 
12934   setFunctionHasBranchProtectedScope();
12935 
12936   return OMPAtomicDirective::Create(
12937       Context, StartLoc, EndLoc, Clauses, AStmt,
12938       {X, V, R, E, UE, D, CE, IsXLHSInRHSPart, IsPostfixUpdate, IsFailOnly});
12939 }
12940 
12941 StmtResult Sema::ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
12942                                             Stmt *AStmt,
12943                                             SourceLocation StartLoc,
12944                                             SourceLocation EndLoc) {
12945   if (!AStmt)
12946     return StmtError();
12947 
12948   auto *CS = cast<CapturedStmt>(AStmt);
12949   // 1.2.2 OpenMP Language Terminology
12950   // Structured block - An executable statement with a single entry at the
12951   // top and a single exit at the bottom.
12952   // The point of exit cannot be a branch out of the structured block.
12953   // longjmp() and throw() must not violate the entry/exit criteria.
12954   CS->getCapturedDecl()->setNothrow();
12955   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target);
12956        ThisCaptureLevel > 1; --ThisCaptureLevel) {
12957     CS = cast<CapturedStmt>(CS->getCapturedStmt());
12958     // 1.2.2 OpenMP Language Terminology
12959     // Structured block - An executable statement with a single entry at the
12960     // top and a single exit at the bottom.
12961     // The point of exit cannot be a branch out of the structured block.
12962     // longjmp() and throw() must not violate the entry/exit criteria.
12963     CS->getCapturedDecl()->setNothrow();
12964   }
12965 
12966   // OpenMP [2.16, Nesting of Regions]
12967   // If specified, a teams construct must be contained within a target
12968   // construct. That target construct must contain no statements or directives
12969   // outside of the teams construct.
12970   if (DSAStack->hasInnerTeamsRegion()) {
12971     const Stmt *S = CS->IgnoreContainers(/*IgnoreCaptured=*/true);
12972     bool OMPTeamsFound = true;
12973     if (const auto *CS = dyn_cast<CompoundStmt>(S)) {
12974       auto I = CS->body_begin();
12975       while (I != CS->body_end()) {
12976         const auto *OED = dyn_cast<OMPExecutableDirective>(*I);
12977         if (!OED || !isOpenMPTeamsDirective(OED->getDirectiveKind()) ||
12978             OMPTeamsFound) {
12979 
12980           OMPTeamsFound = false;
12981           break;
12982         }
12983         ++I;
12984       }
12985       assert(I != CS->body_end() && "Not found statement");
12986       S = *I;
12987     } else {
12988       const auto *OED = dyn_cast<OMPExecutableDirective>(S);
12989       OMPTeamsFound = OED && isOpenMPTeamsDirective(OED->getDirectiveKind());
12990     }
12991     if (!OMPTeamsFound) {
12992       Diag(StartLoc, diag::err_omp_target_contains_not_only_teams);
12993       Diag(DSAStack->getInnerTeamsRegionLoc(),
12994            diag::note_omp_nested_teams_construct_here);
12995       Diag(S->getBeginLoc(), diag::note_omp_nested_statement_here)
12996           << isa<OMPExecutableDirective>(S);
12997       return StmtError();
12998     }
12999   }
13000 
13001   setFunctionHasBranchProtectedScope();
13002 
13003   return OMPTargetDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
13004 }
13005 
13006 StmtResult
13007 Sema::ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
13008                                          Stmt *AStmt, SourceLocation StartLoc,
13009                                          SourceLocation EndLoc) {
13010   if (!AStmt)
13011     return StmtError();
13012 
13013   auto *CS = cast<CapturedStmt>(AStmt);
13014   // 1.2.2 OpenMP Language Terminology
13015   // Structured block - An executable statement with a single entry at the
13016   // top and a single exit at the bottom.
13017   // The point of exit cannot be a branch out of the structured block.
13018   // longjmp() and throw() must not violate the entry/exit criteria.
13019   CS->getCapturedDecl()->setNothrow();
13020   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel);
13021        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13022     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13023     // 1.2.2 OpenMP Language Terminology
13024     // Structured block - An executable statement with a single entry at the
13025     // top and a single exit at the bottom.
13026     // The point of exit cannot be a branch out of the structured block.
13027     // longjmp() and throw() must not violate the entry/exit criteria.
13028     CS->getCapturedDecl()->setNothrow();
13029   }
13030 
13031   setFunctionHasBranchProtectedScope();
13032 
13033   return OMPTargetParallelDirective::Create(
13034       Context, StartLoc, EndLoc, Clauses, AStmt,
13035       DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
13036 }
13037 
13038 StmtResult Sema::ActOnOpenMPTargetParallelForDirective(
13039     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13040     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13041   if (!AStmt)
13042     return StmtError();
13043 
13044   auto *CS = cast<CapturedStmt>(AStmt);
13045   // 1.2.2 OpenMP Language Terminology
13046   // Structured block - An executable statement with a single entry at the
13047   // top and a single exit at the bottom.
13048   // The point of exit cannot be a branch out of the structured block.
13049   // longjmp() and throw() must not violate the entry/exit criteria.
13050   CS->getCapturedDecl()->setNothrow();
13051   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel_for);
13052        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13053     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13054     // 1.2.2 OpenMP Language Terminology
13055     // Structured block - An executable statement with a single entry at the
13056     // top and a single exit at the bottom.
13057     // The point of exit cannot be a branch out of the structured block.
13058     // longjmp() and throw() must not violate the entry/exit criteria.
13059     CS->getCapturedDecl()->setNothrow();
13060   }
13061 
13062   OMPLoopBasedDirective::HelperExprs B;
13063   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13064   // define the nested loops number.
13065   unsigned NestedLoopCount =
13066       checkOpenMPLoop(OMPD_target_parallel_for, getCollapseNumberExpr(Clauses),
13067                       getOrderedNumberExpr(Clauses), CS, *this, *DSAStack,
13068                       VarsWithImplicitDSA, B);
13069   if (NestedLoopCount == 0)
13070     return StmtError();
13071 
13072   assert((CurContext->isDependentContext() || B.builtAll()) &&
13073          "omp target parallel for loop exprs were not built");
13074 
13075   if (!CurContext->isDependentContext()) {
13076     // Finalize the clauses that need pre-built expressions for CodeGen.
13077     for (OMPClause *C : Clauses) {
13078       if (auto *LC = dyn_cast<OMPLinearClause>(C))
13079         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
13080                                      B.NumIterations, *this, CurScope,
13081                                      DSAStack))
13082           return StmtError();
13083     }
13084   }
13085 
13086   setFunctionHasBranchProtectedScope();
13087   return OMPTargetParallelForDirective::Create(
13088       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
13089       DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
13090 }
13091 
13092 /// Check for existence of a map clause in the list of clauses.
13093 static bool hasClauses(ArrayRef<OMPClause *> Clauses,
13094                        const OpenMPClauseKind K) {
13095   return llvm::any_of(
13096       Clauses, [K](const OMPClause *C) { return C->getClauseKind() == K; });
13097 }
13098 
13099 template <typename... Params>
13100 static bool hasClauses(ArrayRef<OMPClause *> Clauses, const OpenMPClauseKind K,
13101                        const Params... ClauseTypes) {
13102   return hasClauses(Clauses, K) || hasClauses(Clauses, ClauseTypes...);
13103 }
13104 
13105 /// Check if the variables in the mapping clause are externally visible.
13106 static bool isClauseMappable(ArrayRef<OMPClause *> Clauses) {
13107   for (const OMPClause *C : Clauses) {
13108     if (auto *TC = dyn_cast<OMPToClause>(C))
13109       return llvm::all_of(TC->all_decls(), [](ValueDecl *VD) {
13110         return !VD || !VD->hasAttr<OMPDeclareTargetDeclAttr>() ||
13111                (VD->isExternallyVisible() &&
13112                 VD->getVisibility() != HiddenVisibility);
13113       });
13114     else if (auto *FC = dyn_cast<OMPFromClause>(C))
13115       return llvm::all_of(FC->all_decls(), [](ValueDecl *VD) {
13116         return !VD || !VD->hasAttr<OMPDeclareTargetDeclAttr>() ||
13117                (VD->isExternallyVisible() &&
13118                 VD->getVisibility() != HiddenVisibility);
13119       });
13120   }
13121 
13122   return true;
13123 }
13124 
13125 StmtResult Sema::ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
13126                                                 Stmt *AStmt,
13127                                                 SourceLocation StartLoc,
13128                                                 SourceLocation EndLoc) {
13129   if (!AStmt)
13130     return StmtError();
13131 
13132   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13133 
13134   // OpenMP [2.12.2, target data Construct, Restrictions]
13135   // At least one map, use_device_addr or use_device_ptr clause must appear on
13136   // the directive.
13137   if (!hasClauses(Clauses, OMPC_map, OMPC_use_device_ptr) &&
13138       (LangOpts.OpenMP < 50 || !hasClauses(Clauses, OMPC_use_device_addr))) {
13139     StringRef Expected;
13140     if (LangOpts.OpenMP < 50)
13141       Expected = "'map' or 'use_device_ptr'";
13142     else
13143       Expected = "'map', 'use_device_ptr', or 'use_device_addr'";
13144     Diag(StartLoc, diag::err_omp_no_clause_for_directive)
13145         << Expected << getOpenMPDirectiveName(OMPD_target_data);
13146     return StmtError();
13147   }
13148 
13149   setFunctionHasBranchProtectedScope();
13150 
13151   return OMPTargetDataDirective::Create(Context, StartLoc, EndLoc, Clauses,
13152                                         AStmt);
13153 }
13154 
13155 StmtResult
13156 Sema::ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
13157                                           SourceLocation StartLoc,
13158                                           SourceLocation EndLoc, Stmt *AStmt) {
13159   if (!AStmt)
13160     return StmtError();
13161 
13162   auto *CS = cast<CapturedStmt>(AStmt);
13163   // 1.2.2 OpenMP Language Terminology
13164   // Structured block - An executable statement with a single entry at the
13165   // top and a single exit at the bottom.
13166   // The point of exit cannot be a branch out of the structured block.
13167   // longjmp() and throw() must not violate the entry/exit criteria.
13168   CS->getCapturedDecl()->setNothrow();
13169   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_enter_data);
13170        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13171     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13172     // 1.2.2 OpenMP Language Terminology
13173     // Structured block - An executable statement with a single entry at the
13174     // top and a single exit at the bottom.
13175     // The point of exit cannot be a branch out of the structured block.
13176     // longjmp() and throw() must not violate the entry/exit criteria.
13177     CS->getCapturedDecl()->setNothrow();
13178   }
13179 
13180   // OpenMP [2.10.2, Restrictions, p. 99]
13181   // At least one map clause must appear on the directive.
13182   if (!hasClauses(Clauses, OMPC_map)) {
13183     Diag(StartLoc, diag::err_omp_no_clause_for_directive)
13184         << "'map'" << getOpenMPDirectiveName(OMPD_target_enter_data);
13185     return StmtError();
13186   }
13187 
13188   return OMPTargetEnterDataDirective::Create(Context, StartLoc, EndLoc, Clauses,
13189                                              AStmt);
13190 }
13191 
13192 StmtResult
13193 Sema::ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
13194                                          SourceLocation StartLoc,
13195                                          SourceLocation EndLoc, Stmt *AStmt) {
13196   if (!AStmt)
13197     return StmtError();
13198 
13199   auto *CS = cast<CapturedStmt>(AStmt);
13200   // 1.2.2 OpenMP Language Terminology
13201   // Structured block - An executable statement with a single entry at the
13202   // top and a single exit at the bottom.
13203   // The point of exit cannot be a branch out of the structured block.
13204   // longjmp() and throw() must not violate the entry/exit criteria.
13205   CS->getCapturedDecl()->setNothrow();
13206   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_exit_data);
13207        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13208     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13209     // 1.2.2 OpenMP Language Terminology
13210     // Structured block - An executable statement with a single entry at the
13211     // top and a single exit at the bottom.
13212     // The point of exit cannot be a branch out of the structured block.
13213     // longjmp() and throw() must not violate the entry/exit criteria.
13214     CS->getCapturedDecl()->setNothrow();
13215   }
13216 
13217   // OpenMP [2.10.3, Restrictions, p. 102]
13218   // At least one map clause must appear on the directive.
13219   if (!hasClauses(Clauses, OMPC_map)) {
13220     Diag(StartLoc, diag::err_omp_no_clause_for_directive)
13221         << "'map'" << getOpenMPDirectiveName(OMPD_target_exit_data);
13222     return StmtError();
13223   }
13224 
13225   return OMPTargetExitDataDirective::Create(Context, StartLoc, EndLoc, Clauses,
13226                                             AStmt);
13227 }
13228 
13229 StmtResult Sema::ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
13230                                                   SourceLocation StartLoc,
13231                                                   SourceLocation EndLoc,
13232                                                   Stmt *AStmt) {
13233   if (!AStmt)
13234     return StmtError();
13235 
13236   auto *CS = cast<CapturedStmt>(AStmt);
13237   // 1.2.2 OpenMP Language Terminology
13238   // Structured block - An executable statement with a single entry at the
13239   // top and a single exit at the bottom.
13240   // The point of exit cannot be a branch out of the structured block.
13241   // longjmp() and throw() must not violate the entry/exit criteria.
13242   CS->getCapturedDecl()->setNothrow();
13243   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_update);
13244        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13245     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13246     // 1.2.2 OpenMP Language Terminology
13247     // Structured block - An executable statement with a single entry at the
13248     // top and a single exit at the bottom.
13249     // The point of exit cannot be a branch out of the structured block.
13250     // longjmp() and throw() must not violate the entry/exit criteria.
13251     CS->getCapturedDecl()->setNothrow();
13252   }
13253 
13254   if (!hasClauses(Clauses, OMPC_to, OMPC_from)) {
13255     Diag(StartLoc, diag::err_omp_at_least_one_motion_clause_required);
13256     return StmtError();
13257   }
13258 
13259   if (!isClauseMappable(Clauses)) {
13260     Diag(StartLoc, diag::err_omp_cannot_update_with_internal_linkage);
13261     return StmtError();
13262   }
13263 
13264   return OMPTargetUpdateDirective::Create(Context, StartLoc, EndLoc, Clauses,
13265                                           AStmt);
13266 }
13267 
13268 StmtResult Sema::ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
13269                                            Stmt *AStmt, SourceLocation StartLoc,
13270                                            SourceLocation EndLoc) {
13271   if (!AStmt)
13272     return StmtError();
13273 
13274   auto *CS = cast<CapturedStmt>(AStmt);
13275   // 1.2.2 OpenMP Language Terminology
13276   // Structured block - An executable statement with a single entry at the
13277   // top and a single exit at the bottom.
13278   // The point of exit cannot be a branch out of the structured block.
13279   // longjmp() and throw() must not violate the entry/exit criteria.
13280   CS->getCapturedDecl()->setNothrow();
13281 
13282   setFunctionHasBranchProtectedScope();
13283 
13284   DSAStack->setParentTeamsRegionLoc(StartLoc);
13285 
13286   return OMPTeamsDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
13287 }
13288 
13289 StmtResult
13290 Sema::ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
13291                                             SourceLocation EndLoc,
13292                                             OpenMPDirectiveKind CancelRegion) {
13293   if (DSAStack->isParentNowaitRegion()) {
13294     Diag(StartLoc, diag::err_omp_parent_cancel_region_nowait) << 0;
13295     return StmtError();
13296   }
13297   if (DSAStack->isParentOrderedRegion()) {
13298     Diag(StartLoc, diag::err_omp_parent_cancel_region_ordered) << 0;
13299     return StmtError();
13300   }
13301   return OMPCancellationPointDirective::Create(Context, StartLoc, EndLoc,
13302                                                CancelRegion);
13303 }
13304 
13305 StmtResult Sema::ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
13306                                             SourceLocation StartLoc,
13307                                             SourceLocation EndLoc,
13308                                             OpenMPDirectiveKind CancelRegion) {
13309   if (DSAStack->isParentNowaitRegion()) {
13310     Diag(StartLoc, diag::err_omp_parent_cancel_region_nowait) << 1;
13311     return StmtError();
13312   }
13313   if (DSAStack->isParentOrderedRegion()) {
13314     Diag(StartLoc, diag::err_omp_parent_cancel_region_ordered) << 1;
13315     return StmtError();
13316   }
13317   DSAStack->setParentCancelRegion(/*Cancel=*/true);
13318   return OMPCancelDirective::Create(Context, StartLoc, EndLoc, Clauses,
13319                                     CancelRegion);
13320 }
13321 
13322 static bool checkReductionClauseWithNogroup(Sema &S,
13323                                             ArrayRef<OMPClause *> Clauses) {
13324   const OMPClause *ReductionClause = nullptr;
13325   const OMPClause *NogroupClause = nullptr;
13326   for (const OMPClause *C : Clauses) {
13327     if (C->getClauseKind() == OMPC_reduction) {
13328       ReductionClause = C;
13329       if (NogroupClause)
13330         break;
13331       continue;
13332     }
13333     if (C->getClauseKind() == OMPC_nogroup) {
13334       NogroupClause = C;
13335       if (ReductionClause)
13336         break;
13337       continue;
13338     }
13339   }
13340   if (ReductionClause && NogroupClause) {
13341     S.Diag(ReductionClause->getBeginLoc(), diag::err_omp_reduction_with_nogroup)
13342         << SourceRange(NogroupClause->getBeginLoc(),
13343                        NogroupClause->getEndLoc());
13344     return true;
13345   }
13346   return false;
13347 }
13348 
13349 StmtResult Sema::ActOnOpenMPTaskLoopDirective(
13350     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13351     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13352   if (!AStmt)
13353     return StmtError();
13354 
13355   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13356   OMPLoopBasedDirective::HelperExprs B;
13357   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13358   // define the nested loops number.
13359   unsigned NestedLoopCount =
13360       checkOpenMPLoop(OMPD_taskloop, getCollapseNumberExpr(Clauses),
13361                       /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
13362                       VarsWithImplicitDSA, B);
13363   if (NestedLoopCount == 0)
13364     return StmtError();
13365 
13366   assert((CurContext->isDependentContext() || B.builtAll()) &&
13367          "omp for loop exprs were not built");
13368 
13369   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13370   // The grainsize clause and num_tasks clause are mutually exclusive and may
13371   // not appear on the same taskloop directive.
13372   if (checkMutuallyExclusiveClauses(*this, Clauses,
13373                                     {OMPC_grainsize, OMPC_num_tasks}))
13374     return StmtError();
13375   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13376   // If a reduction clause is present on the taskloop directive, the nogroup
13377   // clause must not be specified.
13378   if (checkReductionClauseWithNogroup(*this, Clauses))
13379     return StmtError();
13380 
13381   setFunctionHasBranchProtectedScope();
13382   return OMPTaskLoopDirective::Create(Context, StartLoc, EndLoc,
13383                                       NestedLoopCount, Clauses, AStmt, B,
13384                                       DSAStack->isCancelRegion());
13385 }
13386 
13387 StmtResult Sema::ActOnOpenMPTaskLoopSimdDirective(
13388     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13389     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13390   if (!AStmt)
13391     return StmtError();
13392 
13393   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13394   OMPLoopBasedDirective::HelperExprs B;
13395   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13396   // define the nested loops number.
13397   unsigned NestedLoopCount =
13398       checkOpenMPLoop(OMPD_taskloop_simd, getCollapseNumberExpr(Clauses),
13399                       /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
13400                       VarsWithImplicitDSA, B);
13401   if (NestedLoopCount == 0)
13402     return StmtError();
13403 
13404   assert((CurContext->isDependentContext() || B.builtAll()) &&
13405          "omp for loop exprs were not built");
13406 
13407   if (!CurContext->isDependentContext()) {
13408     // Finalize the clauses that need pre-built expressions for CodeGen.
13409     for (OMPClause *C : Clauses) {
13410       if (auto *LC = dyn_cast<OMPLinearClause>(C))
13411         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
13412                                      B.NumIterations, *this, CurScope,
13413                                      DSAStack))
13414           return StmtError();
13415     }
13416   }
13417 
13418   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13419   // The grainsize clause and num_tasks clause are mutually exclusive and may
13420   // not appear on the same taskloop directive.
13421   if (checkMutuallyExclusiveClauses(*this, Clauses,
13422                                     {OMPC_grainsize, OMPC_num_tasks}))
13423     return StmtError();
13424   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13425   // If a reduction clause is present on the taskloop directive, the nogroup
13426   // clause must not be specified.
13427   if (checkReductionClauseWithNogroup(*this, Clauses))
13428     return StmtError();
13429   if (checkSimdlenSafelenSpecified(*this, Clauses))
13430     return StmtError();
13431 
13432   setFunctionHasBranchProtectedScope();
13433   return OMPTaskLoopSimdDirective::Create(Context, StartLoc, EndLoc,
13434                                           NestedLoopCount, Clauses, AStmt, B);
13435 }
13436 
13437 StmtResult Sema::ActOnOpenMPMasterTaskLoopDirective(
13438     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13439     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13440   if (!AStmt)
13441     return StmtError();
13442 
13443   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13444   OMPLoopBasedDirective::HelperExprs B;
13445   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13446   // define the nested loops number.
13447   unsigned NestedLoopCount =
13448       checkOpenMPLoop(OMPD_master_taskloop, getCollapseNumberExpr(Clauses),
13449                       /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
13450                       VarsWithImplicitDSA, B);
13451   if (NestedLoopCount == 0)
13452     return StmtError();
13453 
13454   assert((CurContext->isDependentContext() || B.builtAll()) &&
13455          "omp for loop exprs were not built");
13456 
13457   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13458   // The grainsize clause and num_tasks clause are mutually exclusive and may
13459   // not appear on the same taskloop directive.
13460   if (checkMutuallyExclusiveClauses(*this, Clauses,
13461                                     {OMPC_grainsize, OMPC_num_tasks}))
13462     return StmtError();
13463   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13464   // If a reduction clause is present on the taskloop directive, the nogroup
13465   // clause must not be specified.
13466   if (checkReductionClauseWithNogroup(*this, Clauses))
13467     return StmtError();
13468 
13469   setFunctionHasBranchProtectedScope();
13470   return OMPMasterTaskLoopDirective::Create(Context, StartLoc, EndLoc,
13471                                             NestedLoopCount, Clauses, AStmt, B,
13472                                             DSAStack->isCancelRegion());
13473 }
13474 
13475 StmtResult Sema::ActOnOpenMPMaskedTaskLoopDirective(
13476     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13477     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13478   if (!AStmt)
13479     return StmtError();
13480 
13481   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13482   OMPLoopBasedDirective::HelperExprs B;
13483   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13484   // define the nested loops number.
13485   unsigned NestedLoopCount =
13486       checkOpenMPLoop(OMPD_masked_taskloop, getCollapseNumberExpr(Clauses),
13487                       /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
13488                       VarsWithImplicitDSA, B);
13489   if (NestedLoopCount == 0)
13490     return StmtError();
13491 
13492   assert((CurContext->isDependentContext() || B.builtAll()) &&
13493          "omp for loop exprs were not built");
13494 
13495   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13496   // The grainsize clause and num_tasks clause are mutually exclusive and may
13497   // not appear on the same taskloop directive.
13498   if (checkMutuallyExclusiveClauses(*this, Clauses,
13499                                     {OMPC_grainsize, OMPC_num_tasks}))
13500     return StmtError();
13501   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13502   // If a reduction clause is present on the taskloop directive, the nogroup
13503   // clause must not be specified.
13504   if (checkReductionClauseWithNogroup(*this, Clauses))
13505     return StmtError();
13506 
13507   setFunctionHasBranchProtectedScope();
13508   return OMPMaskedTaskLoopDirective::Create(Context, StartLoc, EndLoc,
13509                                             NestedLoopCount, Clauses, AStmt, B,
13510                                             DSAStack->isCancelRegion());
13511 }
13512 
13513 StmtResult Sema::ActOnOpenMPMasterTaskLoopSimdDirective(
13514     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13515     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13516   if (!AStmt)
13517     return StmtError();
13518 
13519   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13520   OMPLoopBasedDirective::HelperExprs B;
13521   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13522   // define the nested loops number.
13523   unsigned NestedLoopCount =
13524       checkOpenMPLoop(OMPD_master_taskloop_simd, getCollapseNumberExpr(Clauses),
13525                       /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
13526                       VarsWithImplicitDSA, B);
13527   if (NestedLoopCount == 0)
13528     return StmtError();
13529 
13530   assert((CurContext->isDependentContext() || B.builtAll()) &&
13531          "omp for loop exprs were not built");
13532 
13533   if (!CurContext->isDependentContext()) {
13534     // Finalize the clauses that need pre-built expressions for CodeGen.
13535     for (OMPClause *C : Clauses) {
13536       if (auto *LC = dyn_cast<OMPLinearClause>(C))
13537         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
13538                                      B.NumIterations, *this, CurScope,
13539                                      DSAStack))
13540           return StmtError();
13541     }
13542   }
13543 
13544   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13545   // The grainsize clause and num_tasks clause are mutually exclusive and may
13546   // not appear on the same taskloop directive.
13547   if (checkMutuallyExclusiveClauses(*this, Clauses,
13548                                     {OMPC_grainsize, OMPC_num_tasks}))
13549     return StmtError();
13550   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13551   // If a reduction clause is present on the taskloop directive, the nogroup
13552   // clause must not be specified.
13553   if (checkReductionClauseWithNogroup(*this, Clauses))
13554     return StmtError();
13555   if (checkSimdlenSafelenSpecified(*this, Clauses))
13556     return StmtError();
13557 
13558   setFunctionHasBranchProtectedScope();
13559   return OMPMasterTaskLoopSimdDirective::Create(
13560       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
13561 }
13562 
13563 StmtResult Sema::ActOnOpenMPMaskedTaskLoopSimdDirective(
13564     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13565     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13566   if (!AStmt)
13567     return StmtError();
13568 
13569   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13570   OMPLoopBasedDirective::HelperExprs B;
13571   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13572   // define the nested loops number.
13573   unsigned NestedLoopCount =
13574       checkOpenMPLoop(OMPD_masked_taskloop_simd, getCollapseNumberExpr(Clauses),
13575                       /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
13576                       VarsWithImplicitDSA, B);
13577   if (NestedLoopCount == 0)
13578     return StmtError();
13579 
13580   assert((CurContext->isDependentContext() || B.builtAll()) &&
13581          "omp for loop exprs were not built");
13582 
13583   if (!CurContext->isDependentContext()) {
13584     // Finalize the clauses that need pre-built expressions for CodeGen.
13585     for (OMPClause *C : Clauses) {
13586       if (auto *LC = dyn_cast<OMPLinearClause>(C))
13587         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
13588                                      B.NumIterations, *this, CurScope,
13589                                      DSAStack))
13590           return StmtError();
13591     }
13592   }
13593 
13594   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13595   // The grainsize clause and num_tasks clause are mutually exclusive and may
13596   // not appear on the same taskloop directive.
13597   if (checkMutuallyExclusiveClauses(*this, Clauses,
13598                                     {OMPC_grainsize, OMPC_num_tasks}))
13599     return StmtError();
13600   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13601   // If a reduction clause is present on the taskloop directive, the nogroup
13602   // clause must not be specified.
13603   if (checkReductionClauseWithNogroup(*this, Clauses))
13604     return StmtError();
13605   if (checkSimdlenSafelenSpecified(*this, Clauses))
13606     return StmtError();
13607 
13608   setFunctionHasBranchProtectedScope();
13609   return OMPMaskedTaskLoopSimdDirective::Create(
13610       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
13611 }
13612 
13613 StmtResult Sema::ActOnOpenMPParallelMasterTaskLoopDirective(
13614     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13615     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13616   if (!AStmt)
13617     return StmtError();
13618 
13619   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13620   auto *CS = cast<CapturedStmt>(AStmt);
13621   // 1.2.2 OpenMP Language Terminology
13622   // Structured block - An executable statement with a single entry at the
13623   // top and a single exit at the bottom.
13624   // The point of exit cannot be a branch out of the structured block.
13625   // longjmp() and throw() must not violate the entry/exit criteria.
13626   CS->getCapturedDecl()->setNothrow();
13627   for (int ThisCaptureLevel =
13628            getOpenMPCaptureLevels(OMPD_parallel_master_taskloop);
13629        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13630     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13631     // 1.2.2 OpenMP Language Terminology
13632     // Structured block - An executable statement with a single entry at the
13633     // top and a single exit at the bottom.
13634     // The point of exit cannot be a branch out of the structured block.
13635     // longjmp() and throw() must not violate the entry/exit criteria.
13636     CS->getCapturedDecl()->setNothrow();
13637   }
13638 
13639   OMPLoopBasedDirective::HelperExprs B;
13640   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13641   // define the nested loops number.
13642   unsigned NestedLoopCount = checkOpenMPLoop(
13643       OMPD_parallel_master_taskloop, getCollapseNumberExpr(Clauses),
13644       /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
13645       VarsWithImplicitDSA, B);
13646   if (NestedLoopCount == 0)
13647     return StmtError();
13648 
13649   assert((CurContext->isDependentContext() || B.builtAll()) &&
13650          "omp for loop exprs were not built");
13651 
13652   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13653   // The grainsize clause and num_tasks clause are mutually exclusive and may
13654   // not appear on the same taskloop directive.
13655   if (checkMutuallyExclusiveClauses(*this, Clauses,
13656                                     {OMPC_grainsize, OMPC_num_tasks}))
13657     return StmtError();
13658   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13659   // If a reduction clause is present on the taskloop directive, the nogroup
13660   // clause must not be specified.
13661   if (checkReductionClauseWithNogroup(*this, Clauses))
13662     return StmtError();
13663 
13664   setFunctionHasBranchProtectedScope();
13665   return OMPParallelMasterTaskLoopDirective::Create(
13666       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
13667       DSAStack->isCancelRegion());
13668 }
13669 
13670 StmtResult Sema::ActOnOpenMPParallelMaskedTaskLoopDirective(
13671     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13672     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13673   if (!AStmt)
13674     return StmtError();
13675 
13676   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13677   auto *CS = cast<CapturedStmt>(AStmt);
13678   // 1.2.2 OpenMP Language Terminology
13679   // Structured block - An executable statement with a single entry at the
13680   // top and a single exit at the bottom.
13681   // The point of exit cannot be a branch out of the structured block.
13682   // longjmp() and throw() must not violate the entry/exit criteria.
13683   CS->getCapturedDecl()->setNothrow();
13684   for (int ThisCaptureLevel =
13685            getOpenMPCaptureLevels(OMPD_parallel_masked_taskloop);
13686        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13687     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13688     // 1.2.2 OpenMP Language Terminology
13689     // Structured block - An executable statement with a single entry at the
13690     // top and a single exit at the bottom.
13691     // The point of exit cannot be a branch out of the structured block.
13692     // longjmp() and throw() must not violate the entry/exit criteria.
13693     CS->getCapturedDecl()->setNothrow();
13694   }
13695 
13696   OMPLoopBasedDirective::HelperExprs B;
13697   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13698   // define the nested loops number.
13699   unsigned NestedLoopCount = checkOpenMPLoop(
13700       OMPD_parallel_masked_taskloop, getCollapseNumberExpr(Clauses),
13701       /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
13702       VarsWithImplicitDSA, B);
13703   if (NestedLoopCount == 0)
13704     return StmtError();
13705 
13706   assert((CurContext->isDependentContext() || B.builtAll()) &&
13707          "omp for loop exprs were not built");
13708 
13709   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13710   // The grainsize clause and num_tasks clause are mutually exclusive and may
13711   // not appear on the same taskloop directive.
13712   if (checkMutuallyExclusiveClauses(*this, Clauses,
13713                                     {OMPC_grainsize, OMPC_num_tasks}))
13714     return StmtError();
13715   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13716   // If a reduction clause is present on the taskloop directive, the nogroup
13717   // clause must not be specified.
13718   if (checkReductionClauseWithNogroup(*this, Clauses))
13719     return StmtError();
13720 
13721   setFunctionHasBranchProtectedScope();
13722   return OMPParallelMaskedTaskLoopDirective::Create(
13723       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
13724       DSAStack->isCancelRegion());
13725 }
13726 
13727 StmtResult Sema::ActOnOpenMPParallelMasterTaskLoopSimdDirective(
13728     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13729     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13730   if (!AStmt)
13731     return StmtError();
13732 
13733   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13734   auto *CS = cast<CapturedStmt>(AStmt);
13735   // 1.2.2 OpenMP Language Terminology
13736   // Structured block - An executable statement with a single entry at the
13737   // top and a single exit at the bottom.
13738   // The point of exit cannot be a branch out of the structured block.
13739   // longjmp() and throw() must not violate the entry/exit criteria.
13740   CS->getCapturedDecl()->setNothrow();
13741   for (int ThisCaptureLevel =
13742            getOpenMPCaptureLevels(OMPD_parallel_master_taskloop_simd);
13743        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13744     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13745     // 1.2.2 OpenMP Language Terminology
13746     // Structured block - An executable statement with a single entry at the
13747     // top and a single exit at the bottom.
13748     // The point of exit cannot be a branch out of the structured block.
13749     // longjmp() and throw() must not violate the entry/exit criteria.
13750     CS->getCapturedDecl()->setNothrow();
13751   }
13752 
13753   OMPLoopBasedDirective::HelperExprs B;
13754   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13755   // define the nested loops number.
13756   unsigned NestedLoopCount = checkOpenMPLoop(
13757       OMPD_parallel_master_taskloop_simd, getCollapseNumberExpr(Clauses),
13758       /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
13759       VarsWithImplicitDSA, B);
13760   if (NestedLoopCount == 0)
13761     return StmtError();
13762 
13763   assert((CurContext->isDependentContext() || B.builtAll()) &&
13764          "omp for loop exprs were not built");
13765 
13766   if (!CurContext->isDependentContext()) {
13767     // Finalize the clauses that need pre-built expressions for CodeGen.
13768     for (OMPClause *C : Clauses) {
13769       if (auto *LC = dyn_cast<OMPLinearClause>(C))
13770         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
13771                                      B.NumIterations, *this, CurScope,
13772                                      DSAStack))
13773           return StmtError();
13774     }
13775   }
13776 
13777   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13778   // The grainsize clause and num_tasks clause are mutually exclusive and may
13779   // not appear on the same taskloop directive.
13780   if (checkMutuallyExclusiveClauses(*this, Clauses,
13781                                     {OMPC_grainsize, OMPC_num_tasks}))
13782     return StmtError();
13783   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13784   // If a reduction clause is present on the taskloop directive, the nogroup
13785   // clause must not be specified.
13786   if (checkReductionClauseWithNogroup(*this, Clauses))
13787     return StmtError();
13788   if (checkSimdlenSafelenSpecified(*this, Clauses))
13789     return StmtError();
13790 
13791   setFunctionHasBranchProtectedScope();
13792   return OMPParallelMasterTaskLoopSimdDirective::Create(
13793       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
13794 }
13795 
13796 StmtResult Sema::ActOnOpenMPParallelMaskedTaskLoopSimdDirective(
13797     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13798     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13799   if (!AStmt)
13800     return StmtError();
13801 
13802   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13803   auto *CS = cast<CapturedStmt>(AStmt);
13804   // 1.2.2 OpenMP Language Terminology
13805   // Structured block - An executable statement with a single entry at the
13806   // top and a single exit at the bottom.
13807   // The point of exit cannot be a branch out of the structured block.
13808   // longjmp() and throw() must not violate the entry/exit criteria.
13809   CS->getCapturedDecl()->setNothrow();
13810   for (int ThisCaptureLevel =
13811            getOpenMPCaptureLevels(OMPD_parallel_masked_taskloop_simd);
13812        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13813     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13814     // 1.2.2 OpenMP Language Terminology
13815     // Structured block - An executable statement with a single entry at the
13816     // top and a single exit at the bottom.
13817     // The point of exit cannot be a branch out of the structured block.
13818     // longjmp() and throw() must not violate the entry/exit criteria.
13819     CS->getCapturedDecl()->setNothrow();
13820   }
13821 
13822   OMPLoopBasedDirective::HelperExprs B;
13823   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13824   // define the nested loops number.
13825   unsigned NestedLoopCount = checkOpenMPLoop(
13826       OMPD_parallel_masked_taskloop_simd, getCollapseNumberExpr(Clauses),
13827       /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
13828       VarsWithImplicitDSA, B);
13829   if (NestedLoopCount == 0)
13830     return StmtError();
13831 
13832   assert((CurContext->isDependentContext() || B.builtAll()) &&
13833          "omp for loop exprs were not built");
13834 
13835   if (!CurContext->isDependentContext()) {
13836     // Finalize the clauses that need pre-built expressions for CodeGen.
13837     for (OMPClause *C : Clauses) {
13838       if (auto *LC = dyn_cast<OMPLinearClause>(C))
13839         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
13840                                      B.NumIterations, *this, CurScope,
13841                                      DSAStack))
13842           return StmtError();
13843     }
13844   }
13845 
13846   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13847   // The grainsize clause and num_tasks clause are mutually exclusive and may
13848   // not appear on the same taskloop directive.
13849   if (checkMutuallyExclusiveClauses(*this, Clauses,
13850                                     {OMPC_grainsize, OMPC_num_tasks}))
13851     return StmtError();
13852   // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13853   // If a reduction clause is present on the taskloop directive, the nogroup
13854   // clause must not be specified.
13855   if (checkReductionClauseWithNogroup(*this, Clauses))
13856     return StmtError();
13857   if (checkSimdlenSafelenSpecified(*this, Clauses))
13858     return StmtError();
13859 
13860   setFunctionHasBranchProtectedScope();
13861   return OMPParallelMaskedTaskLoopSimdDirective::Create(
13862       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
13863 }
13864 
13865 StmtResult Sema::ActOnOpenMPDistributeDirective(
13866     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13867     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13868   if (!AStmt)
13869     return StmtError();
13870 
13871   assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
13872   OMPLoopBasedDirective::HelperExprs B;
13873   // In presence of clause 'collapse' with number of loops, it will
13874   // define the nested loops number.
13875   unsigned NestedLoopCount =
13876       checkOpenMPLoop(OMPD_distribute, getCollapseNumberExpr(Clauses),
13877                       nullptr /*ordered not a clause on distribute*/, AStmt,
13878                       *this, *DSAStack, VarsWithImplicitDSA, B);
13879   if (NestedLoopCount == 0)
13880     return StmtError();
13881 
13882   assert((CurContext->isDependentContext() || B.builtAll()) &&
13883          "omp for loop exprs were not built");
13884 
13885   setFunctionHasBranchProtectedScope();
13886   return OMPDistributeDirective::Create(Context, StartLoc, EndLoc,
13887                                         NestedLoopCount, Clauses, AStmt, B);
13888 }
13889 
13890 StmtResult Sema::ActOnOpenMPDistributeParallelForDirective(
13891     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13892     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13893   if (!AStmt)
13894     return StmtError();
13895 
13896   auto *CS = cast<CapturedStmt>(AStmt);
13897   // 1.2.2 OpenMP Language Terminology
13898   // Structured block - An executable statement with a single entry at the
13899   // top and a single exit at the bottom.
13900   // The point of exit cannot be a branch out of the structured block.
13901   // longjmp() and throw() must not violate the entry/exit criteria.
13902   CS->getCapturedDecl()->setNothrow();
13903   for (int ThisCaptureLevel =
13904            getOpenMPCaptureLevels(OMPD_distribute_parallel_for);
13905        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13906     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13907     // 1.2.2 OpenMP Language Terminology
13908     // Structured block - An executable statement with a single entry at the
13909     // top and a single exit at the bottom.
13910     // The point of exit cannot be a branch out of the structured block.
13911     // longjmp() and throw() must not violate the entry/exit criteria.
13912     CS->getCapturedDecl()->setNothrow();
13913   }
13914 
13915   OMPLoopBasedDirective::HelperExprs B;
13916   // In presence of clause 'collapse' with number of loops, it will
13917   // define the nested loops number.
13918   unsigned NestedLoopCount = checkOpenMPLoop(
13919       OMPD_distribute_parallel_for, getCollapseNumberExpr(Clauses),
13920       nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
13921       VarsWithImplicitDSA, B);
13922   if (NestedLoopCount == 0)
13923     return StmtError();
13924 
13925   assert((CurContext->isDependentContext() || B.builtAll()) &&
13926          "omp for loop exprs were not built");
13927 
13928   setFunctionHasBranchProtectedScope();
13929   return OMPDistributeParallelForDirective::Create(
13930       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
13931       DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
13932 }
13933 
13934 StmtResult Sema::ActOnOpenMPDistributeParallelForSimdDirective(
13935     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13936     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13937   if (!AStmt)
13938     return StmtError();
13939 
13940   auto *CS = cast<CapturedStmt>(AStmt);
13941   // 1.2.2 OpenMP Language Terminology
13942   // Structured block - An executable statement with a single entry at the
13943   // top and a single exit at the bottom.
13944   // The point of exit cannot be a branch out of the structured block.
13945   // longjmp() and throw() must not violate the entry/exit criteria.
13946   CS->getCapturedDecl()->setNothrow();
13947   for (int ThisCaptureLevel =
13948            getOpenMPCaptureLevels(OMPD_distribute_parallel_for_simd);
13949        ThisCaptureLevel > 1; --ThisCaptureLevel) {
13950     CS = cast<CapturedStmt>(CS->getCapturedStmt());
13951     // 1.2.2 OpenMP Language Terminology
13952     // Structured block - An executable statement with a single entry at the
13953     // top and a single exit at the bottom.
13954     // The point of exit cannot be a branch out of the structured block.
13955     // longjmp() and throw() must not violate the entry/exit criteria.
13956     CS->getCapturedDecl()->setNothrow();
13957   }
13958 
13959   OMPLoopBasedDirective::HelperExprs B;
13960   // In presence of clause 'collapse' with number of loops, it will
13961   // define the nested loops number.
13962   unsigned NestedLoopCount = checkOpenMPLoop(
13963       OMPD_distribute_parallel_for_simd, getCollapseNumberExpr(Clauses),
13964       nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
13965       VarsWithImplicitDSA, B);
13966   if (NestedLoopCount == 0)
13967     return StmtError();
13968 
13969   assert((CurContext->isDependentContext() || B.builtAll()) &&
13970          "omp for loop exprs were not built");
13971 
13972   if (!CurContext->isDependentContext()) {
13973     // Finalize the clauses that need pre-built expressions for CodeGen.
13974     for (OMPClause *C : Clauses) {
13975       if (auto *LC = dyn_cast<OMPLinearClause>(C))
13976         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
13977                                      B.NumIterations, *this, CurScope,
13978                                      DSAStack))
13979           return StmtError();
13980     }
13981   }
13982 
13983   if (checkSimdlenSafelenSpecified(*this, Clauses))
13984     return StmtError();
13985 
13986   setFunctionHasBranchProtectedScope();
13987   return OMPDistributeParallelForSimdDirective::Create(
13988       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
13989 }
13990 
13991 StmtResult Sema::ActOnOpenMPDistributeSimdDirective(
13992     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
13993     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
13994   if (!AStmt)
13995     return StmtError();
13996 
13997   auto *CS = cast<CapturedStmt>(AStmt);
13998   // 1.2.2 OpenMP Language Terminology
13999   // Structured block - An executable statement with a single entry at the
14000   // top and a single exit at the bottom.
14001   // The point of exit cannot be a branch out of the structured block.
14002   // longjmp() and throw() must not violate the entry/exit criteria.
14003   CS->getCapturedDecl()->setNothrow();
14004   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_distribute_simd);
14005        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14006     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14007     // 1.2.2 OpenMP Language Terminology
14008     // Structured block - An executable statement with a single entry at the
14009     // top and a single exit at the bottom.
14010     // The point of exit cannot be a branch out of the structured block.
14011     // longjmp() and throw() must not violate the entry/exit criteria.
14012     CS->getCapturedDecl()->setNothrow();
14013   }
14014 
14015   OMPLoopBasedDirective::HelperExprs B;
14016   // In presence of clause 'collapse' with number of loops, it will
14017   // define the nested loops number.
14018   unsigned NestedLoopCount =
14019       checkOpenMPLoop(OMPD_distribute_simd, getCollapseNumberExpr(Clauses),
14020                       nullptr /*ordered not a clause on distribute*/, CS, *this,
14021                       *DSAStack, VarsWithImplicitDSA, B);
14022   if (NestedLoopCount == 0)
14023     return StmtError();
14024 
14025   assert((CurContext->isDependentContext() || B.builtAll()) &&
14026          "omp for loop exprs were not built");
14027 
14028   if (!CurContext->isDependentContext()) {
14029     // Finalize the clauses that need pre-built expressions for CodeGen.
14030     for (OMPClause *C : Clauses) {
14031       if (auto *LC = dyn_cast<OMPLinearClause>(C))
14032         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
14033                                      B.NumIterations, *this, CurScope,
14034                                      DSAStack))
14035           return StmtError();
14036     }
14037   }
14038 
14039   if (checkSimdlenSafelenSpecified(*this, Clauses))
14040     return StmtError();
14041 
14042   setFunctionHasBranchProtectedScope();
14043   return OMPDistributeSimdDirective::Create(Context, StartLoc, EndLoc,
14044                                             NestedLoopCount, Clauses, AStmt, B);
14045 }
14046 
14047 StmtResult Sema::ActOnOpenMPTargetParallelForSimdDirective(
14048     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14049     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14050   if (!AStmt)
14051     return StmtError();
14052 
14053   auto *CS = cast<CapturedStmt>(AStmt);
14054   // 1.2.2 OpenMP Language Terminology
14055   // Structured block - An executable statement with a single entry at the
14056   // top and a single exit at the bottom.
14057   // The point of exit cannot be a branch out of the structured block.
14058   // longjmp() and throw() must not violate the entry/exit criteria.
14059   CS->getCapturedDecl()->setNothrow();
14060   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel_for);
14061        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14062     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14063     // 1.2.2 OpenMP Language Terminology
14064     // Structured block - An executable statement with a single entry at the
14065     // top and a single exit at the bottom.
14066     // The point of exit cannot be a branch out of the structured block.
14067     // longjmp() and throw() must not violate the entry/exit criteria.
14068     CS->getCapturedDecl()->setNothrow();
14069   }
14070 
14071   OMPLoopBasedDirective::HelperExprs B;
14072   // In presence of clause 'collapse' or 'ordered' with number of loops, it will
14073   // define the nested loops number.
14074   unsigned NestedLoopCount = checkOpenMPLoop(
14075       OMPD_target_parallel_for_simd, getCollapseNumberExpr(Clauses),
14076       getOrderedNumberExpr(Clauses), CS, *this, *DSAStack, VarsWithImplicitDSA,
14077       B);
14078   if (NestedLoopCount == 0)
14079     return StmtError();
14080 
14081   assert((CurContext->isDependentContext() || B.builtAll()) &&
14082          "omp target parallel for simd loop exprs were not built");
14083 
14084   if (!CurContext->isDependentContext()) {
14085     // Finalize the clauses that need pre-built expressions for CodeGen.
14086     for (OMPClause *C : Clauses) {
14087       if (auto *LC = dyn_cast<OMPLinearClause>(C))
14088         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
14089                                      B.NumIterations, *this, CurScope,
14090                                      DSAStack))
14091           return StmtError();
14092     }
14093   }
14094   if (checkSimdlenSafelenSpecified(*this, Clauses))
14095     return StmtError();
14096 
14097   setFunctionHasBranchProtectedScope();
14098   return OMPTargetParallelForSimdDirective::Create(
14099       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
14100 }
14101 
14102 StmtResult Sema::ActOnOpenMPTargetSimdDirective(
14103     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14104     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14105   if (!AStmt)
14106     return StmtError();
14107 
14108   auto *CS = cast<CapturedStmt>(AStmt);
14109   // 1.2.2 OpenMP Language Terminology
14110   // Structured block - An executable statement with a single entry at the
14111   // top and a single exit at the bottom.
14112   // The point of exit cannot be a branch out of the structured block.
14113   // longjmp() and throw() must not violate the entry/exit criteria.
14114   CS->getCapturedDecl()->setNothrow();
14115   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_simd);
14116        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14117     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14118     // 1.2.2 OpenMP Language Terminology
14119     // Structured block - An executable statement with a single entry at the
14120     // top and a single exit at the bottom.
14121     // The point of exit cannot be a branch out of the structured block.
14122     // longjmp() and throw() must not violate the entry/exit criteria.
14123     CS->getCapturedDecl()->setNothrow();
14124   }
14125 
14126   OMPLoopBasedDirective::HelperExprs B;
14127   // In presence of clause 'collapse' with number of loops, it will define the
14128   // nested loops number.
14129   unsigned NestedLoopCount =
14130       checkOpenMPLoop(OMPD_target_simd, getCollapseNumberExpr(Clauses),
14131                       getOrderedNumberExpr(Clauses), CS, *this, *DSAStack,
14132                       VarsWithImplicitDSA, B);
14133   if (NestedLoopCount == 0)
14134     return StmtError();
14135 
14136   assert((CurContext->isDependentContext() || B.builtAll()) &&
14137          "omp target simd loop exprs were not built");
14138 
14139   if (!CurContext->isDependentContext()) {
14140     // Finalize the clauses that need pre-built expressions for CodeGen.
14141     for (OMPClause *C : Clauses) {
14142       if (auto *LC = dyn_cast<OMPLinearClause>(C))
14143         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
14144                                      B.NumIterations, *this, CurScope,
14145                                      DSAStack))
14146           return StmtError();
14147     }
14148   }
14149 
14150   if (checkSimdlenSafelenSpecified(*this, Clauses))
14151     return StmtError();
14152 
14153   setFunctionHasBranchProtectedScope();
14154   return OMPTargetSimdDirective::Create(Context, StartLoc, EndLoc,
14155                                         NestedLoopCount, Clauses, AStmt, B);
14156 }
14157 
14158 StmtResult Sema::ActOnOpenMPTeamsDistributeDirective(
14159     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14160     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14161   if (!AStmt)
14162     return StmtError();
14163 
14164   auto *CS = cast<CapturedStmt>(AStmt);
14165   // 1.2.2 OpenMP Language Terminology
14166   // Structured block - An executable statement with a single entry at the
14167   // top and a single exit at the bottom.
14168   // The point of exit cannot be a branch out of the structured block.
14169   // longjmp() and throw() must not violate the entry/exit criteria.
14170   CS->getCapturedDecl()->setNothrow();
14171   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_teams_distribute);
14172        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14173     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14174     // 1.2.2 OpenMP Language Terminology
14175     // Structured block - An executable statement with a single entry at the
14176     // top and a single exit at the bottom.
14177     // The point of exit cannot be a branch out of the structured block.
14178     // longjmp() and throw() must not violate the entry/exit criteria.
14179     CS->getCapturedDecl()->setNothrow();
14180   }
14181 
14182   OMPLoopBasedDirective::HelperExprs B;
14183   // In presence of clause 'collapse' with number of loops, it will
14184   // define the nested loops number.
14185   unsigned NestedLoopCount =
14186       checkOpenMPLoop(OMPD_teams_distribute, getCollapseNumberExpr(Clauses),
14187                       nullptr /*ordered not a clause on distribute*/, CS, *this,
14188                       *DSAStack, VarsWithImplicitDSA, B);
14189   if (NestedLoopCount == 0)
14190     return StmtError();
14191 
14192   assert((CurContext->isDependentContext() || B.builtAll()) &&
14193          "omp teams distribute loop exprs were not built");
14194 
14195   setFunctionHasBranchProtectedScope();
14196 
14197   DSAStack->setParentTeamsRegionLoc(StartLoc);
14198 
14199   return OMPTeamsDistributeDirective::Create(
14200       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
14201 }
14202 
14203 StmtResult Sema::ActOnOpenMPTeamsDistributeSimdDirective(
14204     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14205     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14206   if (!AStmt)
14207     return StmtError();
14208 
14209   auto *CS = cast<CapturedStmt>(AStmt);
14210   // 1.2.2 OpenMP Language Terminology
14211   // Structured block - An executable statement with a single entry at the
14212   // top and a single exit at the bottom.
14213   // The point of exit cannot be a branch out of the structured block.
14214   // longjmp() and throw() must not violate the entry/exit criteria.
14215   CS->getCapturedDecl()->setNothrow();
14216   for (int ThisCaptureLevel =
14217            getOpenMPCaptureLevels(OMPD_teams_distribute_simd);
14218        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14219     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14220     // 1.2.2 OpenMP Language Terminology
14221     // Structured block - An executable statement with a single entry at the
14222     // top and a single exit at the bottom.
14223     // The point of exit cannot be a branch out of the structured block.
14224     // longjmp() and throw() must not violate the entry/exit criteria.
14225     CS->getCapturedDecl()->setNothrow();
14226   }
14227 
14228   OMPLoopBasedDirective::HelperExprs B;
14229   // In presence of clause 'collapse' with number of loops, it will
14230   // define the nested loops number.
14231   unsigned NestedLoopCount = checkOpenMPLoop(
14232       OMPD_teams_distribute_simd, getCollapseNumberExpr(Clauses),
14233       nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
14234       VarsWithImplicitDSA, B);
14235 
14236   if (NestedLoopCount == 0)
14237     return StmtError();
14238 
14239   assert((CurContext->isDependentContext() || B.builtAll()) &&
14240          "omp teams distribute simd loop exprs were not built");
14241 
14242   if (!CurContext->isDependentContext()) {
14243     // Finalize the clauses that need pre-built expressions for CodeGen.
14244     for (OMPClause *C : Clauses) {
14245       if (auto *LC = dyn_cast<OMPLinearClause>(C))
14246         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
14247                                      B.NumIterations, *this, CurScope,
14248                                      DSAStack))
14249           return StmtError();
14250     }
14251   }
14252 
14253   if (checkSimdlenSafelenSpecified(*this, Clauses))
14254     return StmtError();
14255 
14256   setFunctionHasBranchProtectedScope();
14257 
14258   DSAStack->setParentTeamsRegionLoc(StartLoc);
14259 
14260   return OMPTeamsDistributeSimdDirective::Create(
14261       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
14262 }
14263 
14264 StmtResult Sema::ActOnOpenMPTeamsDistributeParallelForSimdDirective(
14265     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14266     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14267   if (!AStmt)
14268     return StmtError();
14269 
14270   auto *CS = cast<CapturedStmt>(AStmt);
14271   // 1.2.2 OpenMP Language Terminology
14272   // Structured block - An executable statement with a single entry at the
14273   // top and a single exit at the bottom.
14274   // The point of exit cannot be a branch out of the structured block.
14275   // longjmp() and throw() must not violate the entry/exit criteria.
14276   CS->getCapturedDecl()->setNothrow();
14277 
14278   for (int ThisCaptureLevel =
14279            getOpenMPCaptureLevels(OMPD_teams_distribute_parallel_for_simd);
14280        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14281     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14282     // 1.2.2 OpenMP Language Terminology
14283     // Structured block - An executable statement with a single entry at the
14284     // top and a single exit at the bottom.
14285     // The point of exit cannot be a branch out of the structured block.
14286     // longjmp() and throw() must not violate the entry/exit criteria.
14287     CS->getCapturedDecl()->setNothrow();
14288   }
14289 
14290   OMPLoopBasedDirective::HelperExprs B;
14291   // In presence of clause 'collapse' with number of loops, it will
14292   // define the nested loops number.
14293   unsigned NestedLoopCount = checkOpenMPLoop(
14294       OMPD_teams_distribute_parallel_for_simd, getCollapseNumberExpr(Clauses),
14295       nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
14296       VarsWithImplicitDSA, B);
14297 
14298   if (NestedLoopCount == 0)
14299     return StmtError();
14300 
14301   assert((CurContext->isDependentContext() || B.builtAll()) &&
14302          "omp for loop exprs were not built");
14303 
14304   if (!CurContext->isDependentContext()) {
14305     // Finalize the clauses that need pre-built expressions for CodeGen.
14306     for (OMPClause *C : Clauses) {
14307       if (auto *LC = dyn_cast<OMPLinearClause>(C))
14308         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
14309                                      B.NumIterations, *this, CurScope,
14310                                      DSAStack))
14311           return StmtError();
14312     }
14313   }
14314 
14315   if (checkSimdlenSafelenSpecified(*this, Clauses))
14316     return StmtError();
14317 
14318   setFunctionHasBranchProtectedScope();
14319 
14320   DSAStack->setParentTeamsRegionLoc(StartLoc);
14321 
14322   return OMPTeamsDistributeParallelForSimdDirective::Create(
14323       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
14324 }
14325 
14326 StmtResult Sema::ActOnOpenMPTeamsDistributeParallelForDirective(
14327     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14328     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14329   if (!AStmt)
14330     return StmtError();
14331 
14332   auto *CS = cast<CapturedStmt>(AStmt);
14333   // 1.2.2 OpenMP Language Terminology
14334   // Structured block - An executable statement with a single entry at the
14335   // top and a single exit at the bottom.
14336   // The point of exit cannot be a branch out of the structured block.
14337   // longjmp() and throw() must not violate the entry/exit criteria.
14338   CS->getCapturedDecl()->setNothrow();
14339 
14340   for (int ThisCaptureLevel =
14341            getOpenMPCaptureLevels(OMPD_teams_distribute_parallel_for);
14342        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14343     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14344     // 1.2.2 OpenMP Language Terminology
14345     // Structured block - An executable statement with a single entry at the
14346     // top and a single exit at the bottom.
14347     // The point of exit cannot be a branch out of the structured block.
14348     // longjmp() and throw() must not violate the entry/exit criteria.
14349     CS->getCapturedDecl()->setNothrow();
14350   }
14351 
14352   OMPLoopBasedDirective::HelperExprs B;
14353   // In presence of clause 'collapse' with number of loops, it will
14354   // define the nested loops number.
14355   unsigned NestedLoopCount = checkOpenMPLoop(
14356       OMPD_teams_distribute_parallel_for, getCollapseNumberExpr(Clauses),
14357       nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
14358       VarsWithImplicitDSA, B);
14359 
14360   if (NestedLoopCount == 0)
14361     return StmtError();
14362 
14363   assert((CurContext->isDependentContext() || B.builtAll()) &&
14364          "omp for loop exprs were not built");
14365 
14366   setFunctionHasBranchProtectedScope();
14367 
14368   DSAStack->setParentTeamsRegionLoc(StartLoc);
14369 
14370   return OMPTeamsDistributeParallelForDirective::Create(
14371       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
14372       DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
14373 }
14374 
14375 StmtResult Sema::ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
14376                                                  Stmt *AStmt,
14377                                                  SourceLocation StartLoc,
14378                                                  SourceLocation EndLoc) {
14379   if (!AStmt)
14380     return StmtError();
14381 
14382   auto *CS = cast<CapturedStmt>(AStmt);
14383   // 1.2.2 OpenMP Language Terminology
14384   // Structured block - An executable statement with a single entry at the
14385   // top and a single exit at the bottom.
14386   // The point of exit cannot be a branch out of the structured block.
14387   // longjmp() and throw() must not violate the entry/exit criteria.
14388   CS->getCapturedDecl()->setNothrow();
14389 
14390   for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_teams);
14391        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14392     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14393     // 1.2.2 OpenMP Language Terminology
14394     // Structured block - An executable statement with a single entry at the
14395     // top and a single exit at the bottom.
14396     // The point of exit cannot be a branch out of the structured block.
14397     // longjmp() and throw() must not violate the entry/exit criteria.
14398     CS->getCapturedDecl()->setNothrow();
14399   }
14400   setFunctionHasBranchProtectedScope();
14401 
14402   return OMPTargetTeamsDirective::Create(Context, StartLoc, EndLoc, Clauses,
14403                                          AStmt);
14404 }
14405 
14406 StmtResult Sema::ActOnOpenMPTargetTeamsDistributeDirective(
14407     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14408     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14409   if (!AStmt)
14410     return StmtError();
14411 
14412   auto *CS = cast<CapturedStmt>(AStmt);
14413   // 1.2.2 OpenMP Language Terminology
14414   // Structured block - An executable statement with a single entry at the
14415   // top and a single exit at the bottom.
14416   // The point of exit cannot be a branch out of the structured block.
14417   // longjmp() and throw() must not violate the entry/exit criteria.
14418   CS->getCapturedDecl()->setNothrow();
14419   for (int ThisCaptureLevel =
14420            getOpenMPCaptureLevels(OMPD_target_teams_distribute);
14421        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14422     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14423     // 1.2.2 OpenMP Language Terminology
14424     // Structured block - An executable statement with a single entry at the
14425     // top and a single exit at the bottom.
14426     // The point of exit cannot be a branch out of the structured block.
14427     // longjmp() and throw() must not violate the entry/exit criteria.
14428     CS->getCapturedDecl()->setNothrow();
14429   }
14430 
14431   OMPLoopBasedDirective::HelperExprs B;
14432   // In presence of clause 'collapse' with number of loops, it will
14433   // define the nested loops number.
14434   unsigned NestedLoopCount = checkOpenMPLoop(
14435       OMPD_target_teams_distribute, getCollapseNumberExpr(Clauses),
14436       nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
14437       VarsWithImplicitDSA, B);
14438   if (NestedLoopCount == 0)
14439     return StmtError();
14440 
14441   assert((CurContext->isDependentContext() || B.builtAll()) &&
14442          "omp target teams distribute loop exprs were not built");
14443 
14444   setFunctionHasBranchProtectedScope();
14445   return OMPTargetTeamsDistributeDirective::Create(
14446       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
14447 }
14448 
14449 StmtResult Sema::ActOnOpenMPTargetTeamsDistributeParallelForDirective(
14450     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14451     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14452   if (!AStmt)
14453     return StmtError();
14454 
14455   auto *CS = cast<CapturedStmt>(AStmt);
14456   // 1.2.2 OpenMP Language Terminology
14457   // Structured block - An executable statement with a single entry at the
14458   // top and a single exit at the bottom.
14459   // The point of exit cannot be a branch out of the structured block.
14460   // longjmp() and throw() must not violate the entry/exit criteria.
14461   CS->getCapturedDecl()->setNothrow();
14462   for (int ThisCaptureLevel =
14463            getOpenMPCaptureLevels(OMPD_target_teams_distribute_parallel_for);
14464        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14465     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14466     // 1.2.2 OpenMP Language Terminology
14467     // Structured block - An executable statement with a single entry at the
14468     // top and a single exit at the bottom.
14469     // The point of exit cannot be a branch out of the structured block.
14470     // longjmp() and throw() must not violate the entry/exit criteria.
14471     CS->getCapturedDecl()->setNothrow();
14472   }
14473 
14474   OMPLoopBasedDirective::HelperExprs B;
14475   // In presence of clause 'collapse' with number of loops, it will
14476   // define the nested loops number.
14477   unsigned NestedLoopCount = checkOpenMPLoop(
14478       OMPD_target_teams_distribute_parallel_for, getCollapseNumberExpr(Clauses),
14479       nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
14480       VarsWithImplicitDSA, B);
14481   if (NestedLoopCount == 0)
14482     return StmtError();
14483 
14484   assert((CurContext->isDependentContext() || B.builtAll()) &&
14485          "omp target teams distribute parallel for loop exprs were not built");
14486 
14487   if (!CurContext->isDependentContext()) {
14488     // Finalize the clauses that need pre-built expressions for CodeGen.
14489     for (OMPClause *C : Clauses) {
14490       if (auto *LC = dyn_cast<OMPLinearClause>(C))
14491         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
14492                                      B.NumIterations, *this, CurScope,
14493                                      DSAStack))
14494           return StmtError();
14495     }
14496   }
14497 
14498   setFunctionHasBranchProtectedScope();
14499   return OMPTargetTeamsDistributeParallelForDirective::Create(
14500       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
14501       DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
14502 }
14503 
14504 StmtResult Sema::ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
14505     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14506     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14507   if (!AStmt)
14508     return StmtError();
14509 
14510   auto *CS = cast<CapturedStmt>(AStmt);
14511   // 1.2.2 OpenMP Language Terminology
14512   // Structured block - An executable statement with a single entry at the
14513   // top and a single exit at the bottom.
14514   // The point of exit cannot be a branch out of the structured block.
14515   // longjmp() and throw() must not violate the entry/exit criteria.
14516   CS->getCapturedDecl()->setNothrow();
14517   for (int ThisCaptureLevel = getOpenMPCaptureLevels(
14518            OMPD_target_teams_distribute_parallel_for_simd);
14519        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14520     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14521     // 1.2.2 OpenMP Language Terminology
14522     // Structured block - An executable statement with a single entry at the
14523     // top and a single exit at the bottom.
14524     // The point of exit cannot be a branch out of the structured block.
14525     // longjmp() and throw() must not violate the entry/exit criteria.
14526     CS->getCapturedDecl()->setNothrow();
14527   }
14528 
14529   OMPLoopBasedDirective::HelperExprs B;
14530   // In presence of clause 'collapse' with number of loops, it will
14531   // define the nested loops number.
14532   unsigned NestedLoopCount =
14533       checkOpenMPLoop(OMPD_target_teams_distribute_parallel_for_simd,
14534                       getCollapseNumberExpr(Clauses),
14535                       nullptr /*ordered not a clause on distribute*/, CS, *this,
14536                       *DSAStack, VarsWithImplicitDSA, B);
14537   if (NestedLoopCount == 0)
14538     return StmtError();
14539 
14540   assert((CurContext->isDependentContext() || B.builtAll()) &&
14541          "omp target teams distribute parallel for simd loop exprs were not "
14542          "built");
14543 
14544   if (!CurContext->isDependentContext()) {
14545     // Finalize the clauses that need pre-built expressions for CodeGen.
14546     for (OMPClause *C : Clauses) {
14547       if (auto *LC = dyn_cast<OMPLinearClause>(C))
14548         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
14549                                      B.NumIterations, *this, CurScope,
14550                                      DSAStack))
14551           return StmtError();
14552     }
14553   }
14554 
14555   if (checkSimdlenSafelenSpecified(*this, Clauses))
14556     return StmtError();
14557 
14558   setFunctionHasBranchProtectedScope();
14559   return OMPTargetTeamsDistributeParallelForSimdDirective::Create(
14560       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
14561 }
14562 
14563 StmtResult Sema::ActOnOpenMPTargetTeamsDistributeSimdDirective(
14564     ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
14565     SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
14566   if (!AStmt)
14567     return StmtError();
14568 
14569   auto *CS = cast<CapturedStmt>(AStmt);
14570   // 1.2.2 OpenMP Language Terminology
14571   // Structured block - An executable statement with a single entry at the
14572   // top and a single exit at the bottom.
14573   // The point of exit cannot be a branch out of the structured block.
14574   // longjmp() and throw() must not violate the entry/exit criteria.
14575   CS->getCapturedDecl()->setNothrow();
14576   for (int ThisCaptureLevel =
14577            getOpenMPCaptureLevels(OMPD_target_teams_distribute_simd);
14578        ThisCaptureLevel > 1; --ThisCaptureLevel) {
14579     CS = cast<CapturedStmt>(CS->getCapturedStmt());
14580     // 1.2.2 OpenMP Language Terminology
14581     // Structured block - An executable statement with a single entry at the
14582     // top and a single exit at the bottom.
14583     // The point of exit cannot be a branch out of the structured block.
14584     // longjmp() and throw() must not violate the entry/exit criteria.
14585     CS->getCapturedDecl()->setNothrow();
14586   }
14587 
14588   OMPLoopBasedDirective::HelperExprs B;
14589   // In presence of clause 'collapse' with number of loops, it will
14590   // define the nested loops number.
14591   unsigned NestedLoopCount = checkOpenMPLoop(
14592       OMPD_target_teams_distribute_simd, getCollapseNumberExpr(Clauses),
14593       nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
14594       VarsWithImplicitDSA, B);
14595   if (NestedLoopCount == 0)
14596     return StmtError();
14597 
14598   assert((CurContext->isDependentContext() || B.builtAll()) &&
14599          "omp target teams distribute simd loop exprs were not built");
14600 
14601   if (!CurContext->isDependentContext()) {
14602     // Finalize the clauses that need pre-built expressions for CodeGen.
14603     for (OMPClause *C : Clauses) {
14604       if (auto *LC = dyn_cast<OMPLinearClause>(C))
14605         if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
14606                                      B.NumIterations, *this, CurScope,
14607                                      DSAStack))
14608           return StmtError();
14609     }
14610   }
14611 
14612   if (checkSimdlenSafelenSpecified(*this, Clauses))
14613     return StmtError();
14614 
14615   setFunctionHasBranchProtectedScope();
14616   return OMPTargetTeamsDistributeSimdDirective::Create(
14617       Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
14618 }
14619 
14620 bool Sema::checkTransformableLoopNest(
14621     OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
14622     SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
14623     Stmt *&Body,
14624     SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
14625         &OriginalInits) {
14626   OriginalInits.emplace_back();
14627   bool Result = OMPLoopBasedDirective::doForAllLoops(
14628       AStmt->IgnoreContainers(), /*TryImperfectlyNestedLoops=*/false, NumLoops,
14629       [this, &LoopHelpers, &Body, &OriginalInits, Kind](unsigned Cnt,
14630                                                         Stmt *CurStmt) {
14631         VarsWithInheritedDSAType TmpDSA;
14632         unsigned SingleNumLoops =
14633             checkOpenMPLoop(Kind, nullptr, nullptr, CurStmt, *this, *DSAStack,
14634                             TmpDSA, LoopHelpers[Cnt]);
14635         if (SingleNumLoops == 0)
14636           return true;
14637         assert(SingleNumLoops == 1 && "Expect single loop iteration space");
14638         if (auto *For = dyn_cast<ForStmt>(CurStmt)) {
14639           OriginalInits.back().push_back(For->getInit());
14640           Body = For->getBody();
14641         } else {
14642           assert(isa<CXXForRangeStmt>(CurStmt) &&
14643                  "Expected canonical for or range-based for loops.");
14644           auto *CXXFor = cast<CXXForRangeStmt>(CurStmt);
14645           OriginalInits.back().push_back(CXXFor->getBeginStmt());
14646           Body = CXXFor->getBody();
14647         }
14648         OriginalInits.emplace_back();
14649         return false;
14650       },
14651       [&OriginalInits](OMPLoopBasedDirective *Transform) {
14652         Stmt *DependentPreInits;
14653         if (auto *Dir = dyn_cast<OMPTileDirective>(Transform))
14654           DependentPreInits = Dir->getPreInits();
14655         else if (auto *Dir = dyn_cast<OMPUnrollDirective>(Transform))
14656           DependentPreInits = Dir->getPreInits();
14657         else
14658           llvm_unreachable("Unhandled loop transformation");
14659         if (!DependentPreInits)
14660           return;
14661         llvm::append_range(OriginalInits.back(),
14662                            cast<DeclStmt>(DependentPreInits)->getDeclGroup());
14663       });
14664   assert(OriginalInits.back().empty() && "No preinit after innermost loop");
14665   OriginalInits.pop_back();
14666   return Result;
14667 }
14668 
14669 StmtResult Sema::ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
14670                                           Stmt *AStmt, SourceLocation StartLoc,
14671                                           SourceLocation EndLoc) {
14672   auto SizesClauses =
14673       OMPExecutableDirective::getClausesOfKind<OMPSizesClause>(Clauses);
14674   if (SizesClauses.empty()) {
14675     // A missing 'sizes' clause is already reported by the parser.
14676     return StmtError();
14677   }
14678   const OMPSizesClause *SizesClause = *SizesClauses.begin();
14679   unsigned NumLoops = SizesClause->getNumSizes();
14680 
14681   // Empty statement should only be possible if there already was an error.
14682   if (!AStmt)
14683     return StmtError();
14684 
14685   // Verify and diagnose loop nest.
14686   SmallVector<OMPLoopBasedDirective::HelperExprs, 4> LoopHelpers(NumLoops);
14687   Stmt *Body = nullptr;
14688   SmallVector<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>, 4>
14689       OriginalInits;
14690   if (!checkTransformableLoopNest(OMPD_tile, AStmt, NumLoops, LoopHelpers, Body,
14691                                   OriginalInits))
14692     return StmtError();
14693 
14694   // Delay tiling to when template is completely instantiated.
14695   if (CurContext->isDependentContext())
14696     return OMPTileDirective::Create(Context, StartLoc, EndLoc, Clauses,
14697                                     NumLoops, AStmt, nullptr, nullptr);
14698 
14699   SmallVector<Decl *, 4> PreInits;
14700 
14701   // Create iteration variables for the generated loops.
14702   SmallVector<VarDecl *, 4> FloorIndVars;
14703   SmallVector<VarDecl *, 4> TileIndVars;
14704   FloorIndVars.resize(NumLoops);
14705   TileIndVars.resize(NumLoops);
14706   for (unsigned I = 0; I < NumLoops; ++I) {
14707     OMPLoopBasedDirective::HelperExprs &LoopHelper = LoopHelpers[I];
14708 
14709     assert(LoopHelper.Counters.size() == 1 &&
14710            "Expect single-dimensional loop iteration space");
14711     auto *OrigCntVar = cast<DeclRefExpr>(LoopHelper.Counters.front());
14712     std::string OrigVarName = OrigCntVar->getNameInfo().getAsString();
14713     DeclRefExpr *IterVarRef = cast<DeclRefExpr>(LoopHelper.IterationVarRef);
14714     QualType CntTy = IterVarRef->getType();
14715 
14716     // Iteration variable for the floor (i.e. outer) loop.
14717     {
14718       std::string FloorCntName =
14719           (Twine(".floor_") + llvm::utostr(I) + ".iv." + OrigVarName).str();
14720       VarDecl *FloorCntDecl =
14721           buildVarDecl(*this, {}, CntTy, FloorCntName, nullptr, OrigCntVar);
14722       FloorIndVars[I] = FloorCntDecl;
14723     }
14724 
14725     // Iteration variable for the tile (i.e. inner) loop.
14726     {
14727       std::string TileCntName =
14728           (Twine(".tile_") + llvm::utostr(I) + ".iv." + OrigVarName).str();
14729 
14730       // Reuse the iteration variable created by checkOpenMPLoop. It is also
14731       // used by the expressions to derive the original iteration variable's
14732       // value from the logical iteration number.
14733       auto *TileCntDecl = cast<VarDecl>(IterVarRef->getDecl());
14734       TileCntDecl->setDeclName(&PP.getIdentifierTable().get(TileCntName));
14735       TileIndVars[I] = TileCntDecl;
14736     }
14737     for (auto &P : OriginalInits[I]) {
14738       if (auto *D = P.dyn_cast<Decl *>())
14739         PreInits.push_back(D);
14740       else if (auto *PI = dyn_cast_or_null<DeclStmt>(P.dyn_cast<Stmt *>()))
14741         PreInits.append(PI->decl_begin(), PI->decl_end());
14742     }
14743     if (auto *PI = cast_or_null<DeclStmt>(LoopHelper.PreInits))
14744       PreInits.append(PI->decl_begin(), PI->decl_end());
14745     // Gather declarations for the data members used as counters.
14746     for (Expr *CounterRef : LoopHelper.Counters) {
14747       auto *CounterDecl = cast<DeclRefExpr>(CounterRef)->getDecl();
14748       if (isa<OMPCapturedExprDecl>(CounterDecl))
14749         PreInits.push_back(CounterDecl);
14750     }
14751   }
14752 
14753   // Once the original iteration values are set, append the innermost body.
14754   Stmt *Inner = Body;
14755 
14756   // Create tile loops from the inside to the outside.
14757   for (int I = NumLoops - 1; I >= 0; --I) {
14758     OMPLoopBasedDirective::HelperExprs &LoopHelper = LoopHelpers[I];
14759     Expr *NumIterations = LoopHelper.NumIterations;
14760     auto *OrigCntVar = cast<DeclRefExpr>(LoopHelper.Counters[0]);
14761     QualType CntTy = OrigCntVar->getType();
14762     Expr *DimTileSize = SizesClause->getSizesRefs()[I];
14763     Scope *CurScope = getCurScope();
14764 
14765     // Commonly used variables.
14766     DeclRefExpr *TileIV = buildDeclRefExpr(*this, TileIndVars[I], CntTy,
14767                                            OrigCntVar->getExprLoc());
14768     DeclRefExpr *FloorIV = buildDeclRefExpr(*this, FloorIndVars[I], CntTy,
14769                                             OrigCntVar->getExprLoc());
14770 
14771     // For init-statement: auto .tile.iv = .floor.iv
14772     AddInitializerToDecl(TileIndVars[I], DefaultLvalueConversion(FloorIV).get(),
14773                          /*DirectInit=*/false);
14774     Decl *CounterDecl = TileIndVars[I];
14775     StmtResult InitStmt = new (Context)
14776         DeclStmt(DeclGroupRef::Create(Context, &CounterDecl, 1),
14777                  OrigCntVar->getBeginLoc(), OrigCntVar->getEndLoc());
14778     if (!InitStmt.isUsable())
14779       return StmtError();
14780 
14781     // For cond-expression: .tile.iv < min(.floor.iv + DimTileSize,
14782     // NumIterations)
14783     ExprResult EndOfTile = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
14784                                       BO_Add, FloorIV, DimTileSize);
14785     if (!EndOfTile.isUsable())
14786       return StmtError();
14787     ExprResult IsPartialTile =
14788         BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(), BO_LT,
14789                    NumIterations, EndOfTile.get());
14790     if (!IsPartialTile.isUsable())
14791       return StmtError();
14792     ExprResult MinTileAndIterSpace = ActOnConditionalOp(
14793         LoopHelper.Cond->getBeginLoc(), LoopHelper.Cond->getEndLoc(),
14794         IsPartialTile.get(), NumIterations, EndOfTile.get());
14795     if (!MinTileAndIterSpace.isUsable())
14796       return StmtError();
14797     ExprResult CondExpr = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
14798                                      BO_LT, TileIV, MinTileAndIterSpace.get());
14799     if (!CondExpr.isUsable())
14800       return StmtError();
14801 
14802     // For incr-statement: ++.tile.iv
14803     ExprResult IncrStmt =
14804         BuildUnaryOp(CurScope, LoopHelper.Inc->getExprLoc(), UO_PreInc, TileIV);
14805     if (!IncrStmt.isUsable())
14806       return StmtError();
14807 
14808     // Statements to set the original iteration variable's value from the
14809     // logical iteration number.
14810     // Generated for loop is:
14811     // Original_for_init;
14812     // for (auto .tile.iv = .floor.iv; .tile.iv < min(.floor.iv + DimTileSize,
14813     // NumIterations); ++.tile.iv) {
14814     //   Original_Body;
14815     //   Original_counter_update;
14816     // }
14817     // FIXME: If the innermost body is an loop itself, inserting these
14818     // statements stops it being recognized  as a perfectly nested loop (e.g.
14819     // for applying tiling again). If this is the case, sink the expressions
14820     // further into the inner loop.
14821     SmallVector<Stmt *, 4> BodyParts;
14822     BodyParts.append(LoopHelper.Updates.begin(), LoopHelper.Updates.end());
14823     BodyParts.push_back(Inner);
14824     Inner = CompoundStmt::Create(Context, BodyParts, FPOptionsOverride(),
14825                                  Inner->getBeginLoc(), Inner->getEndLoc());
14826     Inner = new (Context)
14827         ForStmt(Context, InitStmt.get(), CondExpr.get(), nullptr,
14828                 IncrStmt.get(), Inner, LoopHelper.Init->getBeginLoc(),
14829                 LoopHelper.Init->getBeginLoc(), LoopHelper.Inc->getEndLoc());
14830   }
14831 
14832   // Create floor loops from the inside to the outside.
14833   for (int I = NumLoops - 1; I >= 0; --I) {
14834     auto &LoopHelper = LoopHelpers[I];
14835     Expr *NumIterations = LoopHelper.NumIterations;
14836     DeclRefExpr *OrigCntVar = cast<DeclRefExpr>(LoopHelper.Counters[0]);
14837     QualType CntTy = OrigCntVar->getType();
14838     Expr *DimTileSize = SizesClause->getSizesRefs()[I];
14839     Scope *CurScope = getCurScope();
14840 
14841     // Commonly used variables.
14842     DeclRefExpr *FloorIV = buildDeclRefExpr(*this, FloorIndVars[I], CntTy,
14843                                             OrigCntVar->getExprLoc());
14844 
14845     // For init-statement: auto .floor.iv = 0
14846     AddInitializerToDecl(
14847         FloorIndVars[I],
14848         ActOnIntegerConstant(LoopHelper.Init->getExprLoc(), 0).get(),
14849         /*DirectInit=*/false);
14850     Decl *CounterDecl = FloorIndVars[I];
14851     StmtResult InitStmt = new (Context)
14852         DeclStmt(DeclGroupRef::Create(Context, &CounterDecl, 1),
14853                  OrigCntVar->getBeginLoc(), OrigCntVar->getEndLoc());
14854     if (!InitStmt.isUsable())
14855       return StmtError();
14856 
14857     // For cond-expression: .floor.iv < NumIterations
14858     ExprResult CondExpr = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
14859                                      BO_LT, FloorIV, NumIterations);
14860     if (!CondExpr.isUsable())
14861       return StmtError();
14862 
14863     // For incr-statement: .floor.iv += DimTileSize
14864     ExprResult IncrStmt = BuildBinOp(CurScope, LoopHelper.Inc->getExprLoc(),
14865                                      BO_AddAssign, FloorIV, DimTileSize);
14866     if (!IncrStmt.isUsable())
14867       return StmtError();
14868 
14869     Inner = new (Context)
14870         ForStmt(Context, InitStmt.get(), CondExpr.get(), nullptr,
14871                 IncrStmt.get(), Inner, LoopHelper.Init->getBeginLoc(),
14872                 LoopHelper.Init->getBeginLoc(), LoopHelper.Inc->getEndLoc());
14873   }
14874 
14875   return OMPTileDirective::Create(Context, StartLoc, EndLoc, Clauses, NumLoops,
14876                                   AStmt, Inner,
14877                                   buildPreInits(Context, PreInits));
14878 }
14879 
14880 StmtResult Sema::ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
14881                                             Stmt *AStmt,
14882                                             SourceLocation StartLoc,
14883                                             SourceLocation EndLoc) {
14884   // Empty statement should only be possible if there already was an error.
14885   if (!AStmt)
14886     return StmtError();
14887 
14888   if (checkMutuallyExclusiveClauses(*this, Clauses, {OMPC_partial, OMPC_full}))
14889     return StmtError();
14890 
14891   const OMPFullClause *FullClause =
14892       OMPExecutableDirective::getSingleClause<OMPFullClause>(Clauses);
14893   const OMPPartialClause *PartialClause =
14894       OMPExecutableDirective::getSingleClause<OMPPartialClause>(Clauses);
14895   assert(!(FullClause && PartialClause) &&
14896          "mutual exclusivity must have been checked before");
14897 
14898   constexpr unsigned NumLoops = 1;
14899   Stmt *Body = nullptr;
14900   SmallVector<OMPLoopBasedDirective::HelperExprs, NumLoops> LoopHelpers(
14901       NumLoops);
14902   SmallVector<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>, NumLoops + 1>
14903       OriginalInits;
14904   if (!checkTransformableLoopNest(OMPD_unroll, AStmt, NumLoops, LoopHelpers,
14905                                   Body, OriginalInits))
14906     return StmtError();
14907 
14908   unsigned NumGeneratedLoops = PartialClause ? 1 : 0;
14909 
14910   // Delay unrolling to when template is completely instantiated.
14911   if (CurContext->isDependentContext())
14912     return OMPUnrollDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
14913                                       NumGeneratedLoops, nullptr, nullptr);
14914 
14915   OMPLoopBasedDirective::HelperExprs &LoopHelper = LoopHelpers.front();
14916 
14917   if (FullClause) {
14918     if (!VerifyPositiveIntegerConstantInClause(
14919              LoopHelper.NumIterations, OMPC_full, /*StrictlyPositive=*/false,
14920              /*SuppressExprDiags=*/true)
14921              .isUsable()) {
14922       Diag(AStmt->getBeginLoc(), diag::err_omp_unroll_full_variable_trip_count);
14923       Diag(FullClause->getBeginLoc(), diag::note_omp_directive_here)
14924           << "#pragma omp unroll full";
14925       return StmtError();
14926     }
14927   }
14928 
14929   // The generated loop may only be passed to other loop-associated directive
14930   // when a partial clause is specified. Without the requirement it is
14931   // sufficient to generate loop unroll metadata at code-generation.
14932   if (NumGeneratedLoops == 0)
14933     return OMPUnrollDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
14934                                       NumGeneratedLoops, nullptr, nullptr);
14935 
14936   // Otherwise, we need to provide a de-sugared/transformed AST that can be
14937   // associated with another loop directive.
14938   //
14939   // The canonical loop analysis return by checkTransformableLoopNest assumes
14940   // the following structure to be the same loop without transformations or
14941   // directives applied: \code OriginalInits; LoopHelper.PreInits;
14942   // LoopHelper.Counters;
14943   // for (; IV < LoopHelper.NumIterations; ++IV) {
14944   //   LoopHelper.Updates;
14945   //   Body;
14946   // }
14947   // \endcode
14948   // where IV is a variable declared and initialized to 0 in LoopHelper.PreInits
14949   // and referenced by LoopHelper.IterationVarRef.
14950   //
14951   // The unrolling directive transforms this into the following loop:
14952   // \code
14953   // OriginalInits;         \
14954   // LoopHelper.PreInits;    > NewPreInits
14955   // LoopHelper.Counters;   /
14956   // for (auto UIV = 0; UIV < LoopHelper.NumIterations; UIV+=Factor) {
14957   //   #pragma clang loop unroll_count(Factor)
14958   //   for (IV = UIV; IV < UIV + Factor && UIV < LoopHelper.NumIterations; ++IV)
14959   //   {
14960   //     LoopHelper.Updates;
14961   //     Body;
14962   //   }
14963   // }
14964   // \endcode
14965   // where UIV is a new logical iteration counter. IV must be the same VarDecl
14966   // as the original LoopHelper.IterationVarRef because LoopHelper.Updates
14967   // references it. If the partially unrolled loop is associated with another
14968   // loop directive (like an OMPForDirective), it will use checkOpenMPLoop to
14969   // analyze this loop, i.e. the outer loop must fulfill the constraints of an
14970   // OpenMP canonical loop. The inner loop is not an associable canonical loop
14971   // and only exists to defer its unrolling to LLVM's LoopUnroll instead of
14972   // doing it in the frontend (by adding loop metadata). NewPreInits becomes a
14973   // property of the OMPLoopBasedDirective instead of statements in
14974   // CompoundStatement. This is to allow the loop to become a non-outermost loop
14975   // of a canonical loop nest where these PreInits are emitted before the
14976   // outermost directive.
14977 
14978   // Determine the PreInit declarations.
14979   SmallVector<Decl *, 4> PreInits;
14980   assert(OriginalInits.size() == 1 &&
14981          "Expecting a single-dimensional loop iteration space");
14982   for (auto &P : OriginalInits[0]) {
14983     if (auto *D = P.dyn_cast<Decl *>())
14984       PreInits.push_back(D);
14985     else if (auto *PI = dyn_cast_or_null<DeclStmt>(P.dyn_cast<Stmt *>()))
14986       PreInits.append(PI->decl_begin(), PI->decl_end());
14987   }
14988   if (auto *PI = cast_or_null<DeclStmt>(LoopHelper.PreInits))
14989     PreInits.append(PI->decl_begin(), PI->decl_end());
14990   // Gather declarations for the data members used as counters.
14991   for (Expr *CounterRef : LoopHelper.Counters) {
14992     auto *CounterDecl = cast<DeclRefExpr>(CounterRef)->getDecl();
14993     if (isa<OMPCapturedExprDecl>(CounterDecl))
14994       PreInits.push_back(CounterDecl);
14995   }
14996 
14997   auto *IterationVarRef = cast<DeclRefExpr>(LoopHelper.IterationVarRef);
14998   QualType IVTy = IterationVarRef->getType();
14999   assert(LoopHelper.Counters.size() == 1 &&
15000          "Expecting a single-dimensional loop iteration space");
15001   auto *OrigVar = cast<DeclRefExpr>(LoopHelper.Counters.front());
15002 
15003   // Determine the unroll factor.
15004   uint64_t Factor;
15005   SourceLocation FactorLoc;
15006   if (Expr *FactorVal = PartialClause->getFactor()) {
15007     Factor = FactorVal->getIntegerConstantExpr(Context)->getZExtValue();
15008     FactorLoc = FactorVal->getExprLoc();
15009   } else {
15010     // TODO: Use a better profitability model.
15011     Factor = 2;
15012   }
15013   assert(Factor > 0 && "Expected positive unroll factor");
15014   auto MakeFactorExpr = [this, Factor, IVTy, FactorLoc]() {
15015     return IntegerLiteral::Create(
15016         Context, llvm::APInt(Context.getIntWidth(IVTy), Factor), IVTy,
15017         FactorLoc);
15018   };
15019 
15020   // Iteration variable SourceLocations.
15021   SourceLocation OrigVarLoc = OrigVar->getExprLoc();
15022   SourceLocation OrigVarLocBegin = OrigVar->getBeginLoc();
15023   SourceLocation OrigVarLocEnd = OrigVar->getEndLoc();
15024 
15025   // Internal variable names.
15026   std::string OrigVarName = OrigVar->getNameInfo().getAsString();
15027   std::string OuterIVName = (Twine(".unrolled.iv.") + OrigVarName).str();
15028   std::string InnerIVName = (Twine(".unroll_inner.iv.") + OrigVarName).str();
15029   std::string InnerTripCountName =
15030       (Twine(".unroll_inner.tripcount.") + OrigVarName).str();
15031 
15032   // Create the iteration variable for the unrolled loop.
15033   VarDecl *OuterIVDecl =
15034       buildVarDecl(*this, {}, IVTy, OuterIVName, nullptr, OrigVar);
15035   auto MakeOuterRef = [this, OuterIVDecl, IVTy, OrigVarLoc]() {
15036     return buildDeclRefExpr(*this, OuterIVDecl, IVTy, OrigVarLoc);
15037   };
15038 
15039   // Iteration variable for the inner loop: Reuse the iteration variable created
15040   // by checkOpenMPLoop.
15041   auto *InnerIVDecl = cast<VarDecl>(IterationVarRef->getDecl());
15042   InnerIVDecl->setDeclName(&PP.getIdentifierTable().get(InnerIVName));
15043   auto MakeInnerRef = [this, InnerIVDecl, IVTy, OrigVarLoc]() {
15044     return buildDeclRefExpr(*this, InnerIVDecl, IVTy, OrigVarLoc);
15045   };
15046 
15047   // Make a copy of the NumIterations expression for each use: By the AST
15048   // constraints, every expression object in a DeclContext must be unique.
15049   CaptureVars CopyTransformer(*this);
15050   auto MakeNumIterations = [&CopyTransformer, &LoopHelper]() -> Expr * {
15051     return AssertSuccess(
15052         CopyTransformer.TransformExpr(LoopHelper.NumIterations));
15053   };
15054 
15055   // Inner For init-statement: auto .unroll_inner.iv = .unrolled.iv
15056   ExprResult LValueConv = DefaultLvalueConversion(MakeOuterRef());
15057   AddInitializerToDecl(InnerIVDecl, LValueConv.get(), /*DirectInit=*/false);
15058   StmtResult InnerInit = new (Context)
15059       DeclStmt(DeclGroupRef(InnerIVDecl), OrigVarLocBegin, OrigVarLocEnd);
15060   if (!InnerInit.isUsable())
15061     return StmtError();
15062 
15063   // Inner For cond-expression:
15064   // \code
15065   //   .unroll_inner.iv < .unrolled.iv + Factor &&
15066   //   .unroll_inner.iv < NumIterations
15067   // \endcode
15068   // This conjunction of two conditions allows ScalarEvolution to derive the
15069   // maximum trip count of the inner loop.
15070   ExprResult EndOfTile = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
15071                                     BO_Add, MakeOuterRef(), MakeFactorExpr());
15072   if (!EndOfTile.isUsable())
15073     return StmtError();
15074   ExprResult InnerCond1 = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
15075                                      BO_LT, MakeInnerRef(), EndOfTile.get());
15076   if (!InnerCond1.isUsable())
15077     return StmtError();
15078   ExprResult InnerCond2 =
15079       BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(), BO_LT, MakeInnerRef(),
15080                  MakeNumIterations());
15081   if (!InnerCond2.isUsable())
15082     return StmtError();
15083   ExprResult InnerCond =
15084       BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(), BO_LAnd,
15085                  InnerCond1.get(), InnerCond2.get());
15086   if (!InnerCond.isUsable())
15087     return StmtError();
15088 
15089   // Inner For incr-statement: ++.unroll_inner.iv
15090   ExprResult InnerIncr = BuildUnaryOp(CurScope, LoopHelper.Inc->getExprLoc(),
15091                                       UO_PreInc, MakeInnerRef());
15092   if (!InnerIncr.isUsable())
15093     return StmtError();
15094 
15095   // Inner For statement.
15096   SmallVector<Stmt *> InnerBodyStmts;
15097   InnerBodyStmts.append(LoopHelper.Updates.begin(), LoopHelper.Updates.end());
15098   InnerBodyStmts.push_back(Body);
15099   CompoundStmt *InnerBody =
15100       CompoundStmt::Create(Context, InnerBodyStmts, FPOptionsOverride(),
15101                            Body->getBeginLoc(), Body->getEndLoc());
15102   ForStmt *InnerFor = new (Context)
15103       ForStmt(Context, InnerInit.get(), InnerCond.get(), nullptr,
15104               InnerIncr.get(), InnerBody, LoopHelper.Init->getBeginLoc(),
15105               LoopHelper.Init->getBeginLoc(), LoopHelper.Inc->getEndLoc());
15106 
15107   // Unroll metadata for the inner loop.
15108   // This needs to take into account the remainder portion of the unrolled loop,
15109   // hence `unroll(full)` does not apply here, even though the LoopUnroll pass
15110   // supports multiple loop exits. Instead, unroll using a factor equivalent to
15111   // the maximum trip count, which will also generate a remainder loop. Just
15112   // `unroll(enable)` (which could have been useful if the user has not
15113   // specified a concrete factor; even though the outer loop cannot be
15114   // influenced anymore, would avoid more code bloat than necessary) will refuse
15115   // the loop because "Won't unroll; remainder loop could not be generated when
15116   // assuming runtime trip count". Even if it did work, it must not choose a
15117   // larger unroll factor than the maximum loop length, or it would always just
15118   // execute the remainder loop.
15119   LoopHintAttr *UnrollHintAttr =
15120       LoopHintAttr::CreateImplicit(Context, LoopHintAttr::UnrollCount,
15121                                    LoopHintAttr::Numeric, MakeFactorExpr());
15122   AttributedStmt *InnerUnrolled =
15123       AttributedStmt::Create(Context, StartLoc, {UnrollHintAttr}, InnerFor);
15124 
15125   // Outer For init-statement: auto .unrolled.iv = 0
15126   AddInitializerToDecl(
15127       OuterIVDecl, ActOnIntegerConstant(LoopHelper.Init->getExprLoc(), 0).get(),
15128       /*DirectInit=*/false);
15129   StmtResult OuterInit = new (Context)
15130       DeclStmt(DeclGroupRef(OuterIVDecl), OrigVarLocBegin, OrigVarLocEnd);
15131   if (!OuterInit.isUsable())
15132     return StmtError();
15133 
15134   // Outer For cond-expression: .unrolled.iv < NumIterations
15135   ExprResult OuterConde =
15136       BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(), BO_LT, MakeOuterRef(),
15137                  MakeNumIterations());
15138   if (!OuterConde.isUsable())
15139     return StmtError();
15140 
15141   // Outer For incr-statement: .unrolled.iv += Factor
15142   ExprResult OuterIncr =
15143       BuildBinOp(CurScope, LoopHelper.Inc->getExprLoc(), BO_AddAssign,
15144                  MakeOuterRef(), MakeFactorExpr());
15145   if (!OuterIncr.isUsable())
15146     return StmtError();
15147 
15148   // Outer For statement.
15149   ForStmt *OuterFor = new (Context)
15150       ForStmt(Context, OuterInit.get(), OuterConde.get(), nullptr,
15151               OuterIncr.get(), InnerUnrolled, LoopHelper.Init->getBeginLoc(),
15152               LoopHelper.Init->getBeginLoc(), LoopHelper.Inc->getEndLoc());
15153 
15154   return OMPUnrollDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
15155                                     NumGeneratedLoops, OuterFor,
15156                                     buildPreInits(Context, PreInits));
15157 }
15158 
15159 OMPClause *Sema::ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind, Expr *Expr,
15160                                              SourceLocation StartLoc,
15161                                              SourceLocation LParenLoc,
15162                                              SourceLocation EndLoc) {
15163   OMPClause *Res = nullptr;
15164   switch (Kind) {
15165   case OMPC_final:
15166     Res = ActOnOpenMPFinalClause(Expr, StartLoc, LParenLoc, EndLoc);
15167     break;
15168   case OMPC_num_threads:
15169     Res = ActOnOpenMPNumThreadsClause(Expr, StartLoc, LParenLoc, EndLoc);
15170     break;
15171   case OMPC_safelen:
15172     Res = ActOnOpenMPSafelenClause(Expr, StartLoc, LParenLoc, EndLoc);
15173     break;
15174   case OMPC_simdlen:
15175     Res = ActOnOpenMPSimdlenClause(Expr, StartLoc, LParenLoc, EndLoc);
15176     break;
15177   case OMPC_allocator:
15178     Res = ActOnOpenMPAllocatorClause(Expr, StartLoc, LParenLoc, EndLoc);
15179     break;
15180   case OMPC_collapse:
15181     Res = ActOnOpenMPCollapseClause(Expr, StartLoc, LParenLoc, EndLoc);
15182     break;
15183   case OMPC_ordered:
15184     Res = ActOnOpenMPOrderedClause(StartLoc, EndLoc, LParenLoc, Expr);
15185     break;
15186   case OMPC_num_teams:
15187     Res = ActOnOpenMPNumTeamsClause(Expr, StartLoc, LParenLoc, EndLoc);
15188     break;
15189   case OMPC_thread_limit:
15190     Res = ActOnOpenMPThreadLimitClause(Expr, StartLoc, LParenLoc, EndLoc);
15191     break;
15192   case OMPC_priority:
15193     Res = ActOnOpenMPPriorityClause(Expr, StartLoc, LParenLoc, EndLoc);
15194     break;
15195   case OMPC_hint:
15196     Res = ActOnOpenMPHintClause(Expr, StartLoc, LParenLoc, EndLoc);
15197     break;
15198   case OMPC_depobj:
15199     Res = ActOnOpenMPDepobjClause(Expr, StartLoc, LParenLoc, EndLoc);
15200     break;
15201   case OMPC_detach:
15202     Res = ActOnOpenMPDetachClause(Expr, StartLoc, LParenLoc, EndLoc);
15203     break;
15204   case OMPC_novariants:
15205     Res = ActOnOpenMPNovariantsClause(Expr, StartLoc, LParenLoc, EndLoc);
15206     break;
15207   case OMPC_nocontext:
15208     Res = ActOnOpenMPNocontextClause(Expr, StartLoc, LParenLoc, EndLoc);
15209     break;
15210   case OMPC_filter:
15211     Res = ActOnOpenMPFilterClause(Expr, StartLoc, LParenLoc, EndLoc);
15212     break;
15213   case OMPC_partial:
15214     Res = ActOnOpenMPPartialClause(Expr, StartLoc, LParenLoc, EndLoc);
15215     break;
15216   case OMPC_message:
15217     Res = ActOnOpenMPMessageClause(Expr, StartLoc, LParenLoc, EndLoc);
15218     break;
15219   case OMPC_align:
15220     Res = ActOnOpenMPAlignClause(Expr, StartLoc, LParenLoc, EndLoc);
15221     break;
15222   case OMPC_ompx_dyn_cgroup_mem:
15223     Res = ActOnOpenMPXDynCGroupMemClause(Expr, StartLoc, LParenLoc, EndLoc);
15224     break;
15225   case OMPC_grainsize:
15226   case OMPC_num_tasks:
15227   case OMPC_device:
15228   case OMPC_if:
15229   case OMPC_default:
15230   case OMPC_proc_bind:
15231   case OMPC_schedule:
15232   case OMPC_private:
15233   case OMPC_firstprivate:
15234   case OMPC_lastprivate:
15235   case OMPC_shared:
15236   case OMPC_reduction:
15237   case OMPC_task_reduction:
15238   case OMPC_in_reduction:
15239   case OMPC_linear:
15240   case OMPC_aligned:
15241   case OMPC_copyin:
15242   case OMPC_copyprivate:
15243   case OMPC_nowait:
15244   case OMPC_untied:
15245   case OMPC_mergeable:
15246   case OMPC_threadprivate:
15247   case OMPC_sizes:
15248   case OMPC_allocate:
15249   case OMPC_flush:
15250   case OMPC_read:
15251   case OMPC_write:
15252   case OMPC_update:
15253   case OMPC_capture:
15254   case OMPC_compare:
15255   case OMPC_seq_cst:
15256   case OMPC_acq_rel:
15257   case OMPC_acquire:
15258   case OMPC_release:
15259   case OMPC_relaxed:
15260   case OMPC_depend:
15261   case OMPC_threads:
15262   case OMPC_simd:
15263   case OMPC_map:
15264   case OMPC_nogroup:
15265   case OMPC_dist_schedule:
15266   case OMPC_defaultmap:
15267   case OMPC_unknown:
15268   case OMPC_uniform:
15269   case OMPC_to:
15270   case OMPC_from:
15271   case OMPC_use_device_ptr:
15272   case OMPC_use_device_addr:
15273   case OMPC_is_device_ptr:
15274   case OMPC_unified_address:
15275   case OMPC_unified_shared_memory:
15276   case OMPC_reverse_offload:
15277   case OMPC_dynamic_allocators:
15278   case OMPC_atomic_default_mem_order:
15279   case OMPC_device_type:
15280   case OMPC_match:
15281   case OMPC_nontemporal:
15282   case OMPC_order:
15283   case OMPC_at:
15284   case OMPC_severity:
15285   case OMPC_destroy:
15286   case OMPC_inclusive:
15287   case OMPC_exclusive:
15288   case OMPC_uses_allocators:
15289   case OMPC_affinity:
15290   case OMPC_when:
15291   case OMPC_bind:
15292   default:
15293     llvm_unreachable("Clause is not allowed.");
15294   }
15295   return Res;
15296 }
15297 
15298 // An OpenMP directive such as 'target parallel' has two captured regions:
15299 // for the 'target' and 'parallel' respectively.  This function returns
15300 // the region in which to capture expressions associated with a clause.
15301 // A return value of OMPD_unknown signifies that the expression should not
15302 // be captured.
15303 static OpenMPDirectiveKind getOpenMPCaptureRegionForClause(
15304     OpenMPDirectiveKind DKind, OpenMPClauseKind CKind, unsigned OpenMPVersion,
15305     OpenMPDirectiveKind NameModifier = OMPD_unknown) {
15306   OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
15307   switch (CKind) {
15308   case OMPC_if:
15309     switch (DKind) {
15310     case OMPD_target_parallel_for_simd:
15311       if (OpenMPVersion >= 50 &&
15312           (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)) {
15313         CaptureRegion = OMPD_parallel;
15314         break;
15315       }
15316       [[fallthrough]];
15317     case OMPD_target_parallel:
15318     case OMPD_target_parallel_for:
15319     case OMPD_target_parallel_loop:
15320       // If this clause applies to the nested 'parallel' region, capture within
15321       // the 'target' region, otherwise do not capture.
15322       if (NameModifier == OMPD_unknown || NameModifier == OMPD_parallel)
15323         CaptureRegion = OMPD_target;
15324       break;
15325     case OMPD_target_teams_distribute_parallel_for_simd:
15326       if (OpenMPVersion >= 50 &&
15327           (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)) {
15328         CaptureRegion = OMPD_parallel;
15329         break;
15330       }
15331       [[fallthrough]];
15332     case OMPD_target_teams_distribute_parallel_for:
15333       // If this clause applies to the nested 'parallel' region, capture within
15334       // the 'teams' region, otherwise do not capture.
15335       if (NameModifier == OMPD_unknown || NameModifier == OMPD_parallel)
15336         CaptureRegion = OMPD_teams;
15337       break;
15338     case OMPD_teams_distribute_parallel_for_simd:
15339       if (OpenMPVersion >= 50 &&
15340           (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)) {
15341         CaptureRegion = OMPD_parallel;
15342         break;
15343       }
15344       [[fallthrough]];
15345     case OMPD_teams_distribute_parallel_for:
15346       CaptureRegion = OMPD_teams;
15347       break;
15348     case OMPD_target_update:
15349     case OMPD_target_enter_data:
15350     case OMPD_target_exit_data:
15351       CaptureRegion = OMPD_task;
15352       break;
15353     case OMPD_parallel_masked_taskloop:
15354       if (NameModifier == OMPD_unknown || NameModifier == OMPD_taskloop)
15355         CaptureRegion = OMPD_parallel;
15356       break;
15357     case OMPD_parallel_master_taskloop:
15358       if (NameModifier == OMPD_unknown || NameModifier == OMPD_taskloop)
15359         CaptureRegion = OMPD_parallel;
15360       break;
15361     case OMPD_parallel_masked_taskloop_simd:
15362       if ((OpenMPVersion <= 45 && NameModifier == OMPD_unknown) ||
15363           NameModifier == OMPD_taskloop) {
15364         CaptureRegion = OMPD_parallel;
15365         break;
15366       }
15367       if (OpenMPVersion <= 45)
15368         break;
15369       if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
15370         CaptureRegion = OMPD_taskloop;
15371       break;
15372     case OMPD_parallel_master_taskloop_simd:
15373       if ((OpenMPVersion <= 45 && NameModifier == OMPD_unknown) ||
15374           NameModifier == OMPD_taskloop) {
15375         CaptureRegion = OMPD_parallel;
15376         break;
15377       }
15378       if (OpenMPVersion <= 45)
15379         break;
15380       if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
15381         CaptureRegion = OMPD_taskloop;
15382       break;
15383     case OMPD_parallel_for_simd:
15384       if (OpenMPVersion <= 45)
15385         break;
15386       if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
15387         CaptureRegion = OMPD_parallel;
15388       break;
15389     case OMPD_taskloop_simd:
15390     case OMPD_master_taskloop_simd:
15391     case OMPD_masked_taskloop_simd:
15392       if (OpenMPVersion <= 45)
15393         break;
15394       if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
15395         CaptureRegion = OMPD_taskloop;
15396       break;
15397     case OMPD_distribute_parallel_for_simd:
15398       if (OpenMPVersion <= 45)
15399         break;
15400       if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
15401         CaptureRegion = OMPD_parallel;
15402       break;
15403     case OMPD_target_simd:
15404       if (OpenMPVersion >= 50 &&
15405           (NameModifier == OMPD_unknown || NameModifier == OMPD_simd))
15406         CaptureRegion = OMPD_target;
15407       break;
15408     case OMPD_teams_distribute_simd:
15409     case OMPD_target_teams_distribute_simd:
15410       if (OpenMPVersion >= 50 &&
15411           (NameModifier == OMPD_unknown || NameModifier == OMPD_simd))
15412         CaptureRegion = OMPD_teams;
15413       break;
15414     case OMPD_cancel:
15415     case OMPD_parallel:
15416     case OMPD_parallel_master:
15417     case OMPD_parallel_masked:
15418     case OMPD_parallel_sections:
15419     case OMPD_parallel_for:
15420     case OMPD_parallel_loop:
15421     case OMPD_target:
15422     case OMPD_target_teams:
15423     case OMPD_target_teams_distribute:
15424     case OMPD_target_teams_loop:
15425     case OMPD_distribute_parallel_for:
15426     case OMPD_task:
15427     case OMPD_taskloop:
15428     case OMPD_master_taskloop:
15429     case OMPD_masked_taskloop:
15430     case OMPD_target_data:
15431     case OMPD_simd:
15432     case OMPD_for_simd:
15433     case OMPD_distribute_simd:
15434       // Do not capture if-clause expressions.
15435       break;
15436     case OMPD_threadprivate:
15437     case OMPD_allocate:
15438     case OMPD_taskyield:
15439     case OMPD_error:
15440     case OMPD_barrier:
15441     case OMPD_taskwait:
15442     case OMPD_cancellation_point:
15443     case OMPD_flush:
15444     case OMPD_depobj:
15445     case OMPD_scan:
15446     case OMPD_declare_reduction:
15447     case OMPD_declare_mapper:
15448     case OMPD_declare_simd:
15449     case OMPD_declare_variant:
15450     case OMPD_begin_declare_variant:
15451     case OMPD_end_declare_variant:
15452     case OMPD_declare_target:
15453     case OMPD_end_declare_target:
15454     case OMPD_loop:
15455     case OMPD_teams_loop:
15456     case OMPD_teams:
15457     case OMPD_tile:
15458     case OMPD_unroll:
15459     case OMPD_for:
15460     case OMPD_sections:
15461     case OMPD_section:
15462     case OMPD_single:
15463     case OMPD_master:
15464     case OMPD_masked:
15465     case OMPD_critical:
15466     case OMPD_taskgroup:
15467     case OMPD_distribute:
15468     case OMPD_ordered:
15469     case OMPD_atomic:
15470     case OMPD_teams_distribute:
15471     case OMPD_requires:
15472     case OMPD_metadirective:
15473       llvm_unreachable("Unexpected OpenMP directive with if-clause");
15474     case OMPD_unknown:
15475     default:
15476       llvm_unreachable("Unknown OpenMP directive");
15477     }
15478     break;
15479   case OMPC_num_threads:
15480     switch (DKind) {
15481     case OMPD_target_parallel:
15482     case OMPD_target_parallel_for:
15483     case OMPD_target_parallel_for_simd:
15484     case OMPD_target_parallel_loop:
15485       CaptureRegion = OMPD_target;
15486       break;
15487     case OMPD_teams_distribute_parallel_for:
15488     case OMPD_teams_distribute_parallel_for_simd:
15489     case OMPD_target_teams_distribute_parallel_for:
15490     case OMPD_target_teams_distribute_parallel_for_simd:
15491       CaptureRegion = OMPD_teams;
15492       break;
15493     case OMPD_parallel:
15494     case OMPD_parallel_master:
15495     case OMPD_parallel_masked:
15496     case OMPD_parallel_sections:
15497     case OMPD_parallel_for:
15498     case OMPD_parallel_for_simd:
15499     case OMPD_parallel_loop:
15500     case OMPD_distribute_parallel_for:
15501     case OMPD_distribute_parallel_for_simd:
15502     case OMPD_parallel_master_taskloop:
15503     case OMPD_parallel_masked_taskloop:
15504     case OMPD_parallel_master_taskloop_simd:
15505     case OMPD_parallel_masked_taskloop_simd:
15506       // Do not capture num_threads-clause expressions.
15507       break;
15508     case OMPD_target_data:
15509     case OMPD_target_enter_data:
15510     case OMPD_target_exit_data:
15511     case OMPD_target_update:
15512     case OMPD_target:
15513     case OMPD_target_simd:
15514     case OMPD_target_teams:
15515     case OMPD_target_teams_distribute:
15516     case OMPD_target_teams_distribute_simd:
15517     case OMPD_cancel:
15518     case OMPD_task:
15519     case OMPD_taskloop:
15520     case OMPD_taskloop_simd:
15521     case OMPD_master_taskloop:
15522     case OMPD_masked_taskloop:
15523     case OMPD_master_taskloop_simd:
15524     case OMPD_masked_taskloop_simd:
15525     case OMPD_threadprivate:
15526     case OMPD_allocate:
15527     case OMPD_taskyield:
15528     case OMPD_error:
15529     case OMPD_barrier:
15530     case OMPD_taskwait:
15531     case OMPD_cancellation_point:
15532     case OMPD_flush:
15533     case OMPD_depobj:
15534     case OMPD_scan:
15535     case OMPD_declare_reduction:
15536     case OMPD_declare_mapper:
15537     case OMPD_declare_simd:
15538     case OMPD_declare_variant:
15539     case OMPD_begin_declare_variant:
15540     case OMPD_end_declare_variant:
15541     case OMPD_declare_target:
15542     case OMPD_end_declare_target:
15543     case OMPD_loop:
15544     case OMPD_teams_loop:
15545     case OMPD_target_teams_loop:
15546     case OMPD_teams:
15547     case OMPD_simd:
15548     case OMPD_tile:
15549     case OMPD_unroll:
15550     case OMPD_for:
15551     case OMPD_for_simd:
15552     case OMPD_sections:
15553     case OMPD_section:
15554     case OMPD_single:
15555     case OMPD_master:
15556     case OMPD_masked:
15557     case OMPD_critical:
15558     case OMPD_taskgroup:
15559     case OMPD_distribute:
15560     case OMPD_ordered:
15561     case OMPD_atomic:
15562     case OMPD_distribute_simd:
15563     case OMPD_teams_distribute:
15564     case OMPD_teams_distribute_simd:
15565     case OMPD_requires:
15566     case OMPD_metadirective:
15567       llvm_unreachable("Unexpected OpenMP directive with num_threads-clause");
15568     case OMPD_unknown:
15569     default:
15570       llvm_unreachable("Unknown OpenMP directive");
15571     }
15572     break;
15573   case OMPC_num_teams:
15574     switch (DKind) {
15575     case OMPD_target_teams:
15576     case OMPD_target_teams_distribute:
15577     case OMPD_target_teams_distribute_simd:
15578     case OMPD_target_teams_distribute_parallel_for:
15579     case OMPD_target_teams_distribute_parallel_for_simd:
15580     case OMPD_target_teams_loop:
15581       CaptureRegion = OMPD_target;
15582       break;
15583     case OMPD_teams_distribute_parallel_for:
15584     case OMPD_teams_distribute_parallel_for_simd:
15585     case OMPD_teams:
15586     case OMPD_teams_distribute:
15587     case OMPD_teams_distribute_simd:
15588     case OMPD_teams_loop:
15589       // Do not capture num_teams-clause expressions.
15590       break;
15591     case OMPD_distribute_parallel_for:
15592     case OMPD_distribute_parallel_for_simd:
15593     case OMPD_task:
15594     case OMPD_taskloop:
15595     case OMPD_taskloop_simd:
15596     case OMPD_master_taskloop:
15597     case OMPD_masked_taskloop:
15598     case OMPD_master_taskloop_simd:
15599     case OMPD_masked_taskloop_simd:
15600     case OMPD_parallel_master_taskloop:
15601     case OMPD_parallel_masked_taskloop:
15602     case OMPD_parallel_master_taskloop_simd:
15603     case OMPD_parallel_masked_taskloop_simd:
15604     case OMPD_target_data:
15605     case OMPD_target_enter_data:
15606     case OMPD_target_exit_data:
15607     case OMPD_target_update:
15608     case OMPD_cancel:
15609     case OMPD_parallel:
15610     case OMPD_parallel_master:
15611     case OMPD_parallel_masked:
15612     case OMPD_parallel_sections:
15613     case OMPD_parallel_for:
15614     case OMPD_parallel_for_simd:
15615     case OMPD_parallel_loop:
15616     case OMPD_target:
15617     case OMPD_target_simd:
15618     case OMPD_target_parallel:
15619     case OMPD_target_parallel_for:
15620     case OMPD_target_parallel_for_simd:
15621     case OMPD_target_parallel_loop:
15622     case OMPD_threadprivate:
15623     case OMPD_allocate:
15624     case OMPD_taskyield:
15625     case OMPD_error:
15626     case OMPD_barrier:
15627     case OMPD_taskwait:
15628     case OMPD_cancellation_point:
15629     case OMPD_flush:
15630     case OMPD_depobj:
15631     case OMPD_scan:
15632     case OMPD_declare_reduction:
15633     case OMPD_declare_mapper:
15634     case OMPD_declare_simd:
15635     case OMPD_declare_variant:
15636     case OMPD_begin_declare_variant:
15637     case OMPD_end_declare_variant:
15638     case OMPD_declare_target:
15639     case OMPD_end_declare_target:
15640     case OMPD_loop:
15641     case OMPD_simd:
15642     case OMPD_tile:
15643     case OMPD_unroll:
15644     case OMPD_for:
15645     case OMPD_for_simd:
15646     case OMPD_sections:
15647     case OMPD_section:
15648     case OMPD_single:
15649     case OMPD_master:
15650     case OMPD_masked:
15651     case OMPD_critical:
15652     case OMPD_taskgroup:
15653     case OMPD_distribute:
15654     case OMPD_ordered:
15655     case OMPD_atomic:
15656     case OMPD_distribute_simd:
15657     case OMPD_requires:
15658     case OMPD_metadirective:
15659       llvm_unreachable("Unexpected OpenMP directive with num_teams-clause");
15660     case OMPD_unknown:
15661     default:
15662       llvm_unreachable("Unknown OpenMP directive");
15663     }
15664     break;
15665   case OMPC_thread_limit:
15666     switch (DKind) {
15667     case OMPD_target:
15668     case OMPD_target_teams:
15669     case OMPD_target_teams_distribute:
15670     case OMPD_target_teams_distribute_simd:
15671     case OMPD_target_teams_distribute_parallel_for:
15672     case OMPD_target_teams_distribute_parallel_for_simd:
15673     case OMPD_target_teams_loop:
15674       CaptureRegion = OMPD_target;
15675       break;
15676     case OMPD_teams_distribute_parallel_for:
15677     case OMPD_teams_distribute_parallel_for_simd:
15678     case OMPD_teams:
15679     case OMPD_teams_distribute:
15680     case OMPD_teams_distribute_simd:
15681     case OMPD_teams_loop:
15682       // Do not capture thread_limit-clause expressions.
15683       break;
15684     case OMPD_distribute_parallel_for:
15685     case OMPD_distribute_parallel_for_simd:
15686     case OMPD_task:
15687     case OMPD_taskloop:
15688     case OMPD_taskloop_simd:
15689     case OMPD_master_taskloop:
15690     case OMPD_masked_taskloop:
15691     case OMPD_master_taskloop_simd:
15692     case OMPD_masked_taskloop_simd:
15693     case OMPD_parallel_master_taskloop:
15694     case OMPD_parallel_masked_taskloop:
15695     case OMPD_parallel_master_taskloop_simd:
15696     case OMPD_parallel_masked_taskloop_simd:
15697     case OMPD_target_data:
15698     case OMPD_target_enter_data:
15699     case OMPD_target_exit_data:
15700     case OMPD_target_update:
15701     case OMPD_cancel:
15702     case OMPD_parallel:
15703     case OMPD_parallel_master:
15704     case OMPD_parallel_masked:
15705     case OMPD_parallel_sections:
15706     case OMPD_parallel_for:
15707     case OMPD_parallel_for_simd:
15708     case OMPD_parallel_loop:
15709     case OMPD_target_simd:
15710     case OMPD_target_parallel:
15711     case OMPD_target_parallel_for:
15712     case OMPD_target_parallel_for_simd:
15713     case OMPD_target_parallel_loop:
15714     case OMPD_threadprivate:
15715     case OMPD_allocate:
15716     case OMPD_taskyield:
15717     case OMPD_error:
15718     case OMPD_barrier:
15719     case OMPD_taskwait:
15720     case OMPD_cancellation_point:
15721     case OMPD_flush:
15722     case OMPD_depobj:
15723     case OMPD_scan:
15724     case OMPD_declare_reduction:
15725     case OMPD_declare_mapper:
15726     case OMPD_declare_simd:
15727     case OMPD_declare_variant:
15728     case OMPD_begin_declare_variant:
15729     case OMPD_end_declare_variant:
15730     case OMPD_declare_target:
15731     case OMPD_end_declare_target:
15732     case OMPD_loop:
15733     case OMPD_simd:
15734     case OMPD_tile:
15735     case OMPD_unroll:
15736     case OMPD_for:
15737     case OMPD_for_simd:
15738     case OMPD_sections:
15739     case OMPD_section:
15740     case OMPD_single:
15741     case OMPD_master:
15742     case OMPD_masked:
15743     case OMPD_critical:
15744     case OMPD_taskgroup:
15745     case OMPD_distribute:
15746     case OMPD_ordered:
15747     case OMPD_atomic:
15748     case OMPD_distribute_simd:
15749     case OMPD_requires:
15750     case OMPD_metadirective:
15751       llvm_unreachable("Unexpected OpenMP directive with thread_limit-clause");
15752     case OMPD_unknown:
15753     default:
15754       llvm_unreachable("Unknown OpenMP directive");
15755     }
15756     break;
15757   case OMPC_schedule:
15758     switch (DKind) {
15759     case OMPD_parallel_for:
15760     case OMPD_parallel_for_simd:
15761     case OMPD_distribute_parallel_for:
15762     case OMPD_distribute_parallel_for_simd:
15763     case OMPD_teams_distribute_parallel_for:
15764     case OMPD_teams_distribute_parallel_for_simd:
15765     case OMPD_target_parallel_for:
15766     case OMPD_target_parallel_for_simd:
15767     case OMPD_target_teams_distribute_parallel_for:
15768     case OMPD_target_teams_distribute_parallel_for_simd:
15769       CaptureRegion = OMPD_parallel;
15770       break;
15771     case OMPD_for:
15772     case OMPD_for_simd:
15773       // Do not capture schedule-clause expressions.
15774       break;
15775     case OMPD_task:
15776     case OMPD_taskloop:
15777     case OMPD_taskloop_simd:
15778     case OMPD_master_taskloop:
15779     case OMPD_masked_taskloop:
15780     case OMPD_master_taskloop_simd:
15781     case OMPD_masked_taskloop_simd:
15782     case OMPD_parallel_master_taskloop:
15783     case OMPD_parallel_masked_taskloop:
15784     case OMPD_parallel_master_taskloop_simd:
15785     case OMPD_parallel_masked_taskloop_simd:
15786     case OMPD_target_data:
15787     case OMPD_target_enter_data:
15788     case OMPD_target_exit_data:
15789     case OMPD_target_update:
15790     case OMPD_teams:
15791     case OMPD_teams_distribute:
15792     case OMPD_teams_distribute_simd:
15793     case OMPD_target_teams_distribute:
15794     case OMPD_target_teams_distribute_simd:
15795     case OMPD_target:
15796     case OMPD_target_simd:
15797     case OMPD_target_parallel:
15798     case OMPD_cancel:
15799     case OMPD_parallel:
15800     case OMPD_parallel_master:
15801     case OMPD_parallel_masked:
15802     case OMPD_parallel_sections:
15803     case OMPD_threadprivate:
15804     case OMPD_allocate:
15805     case OMPD_taskyield:
15806     case OMPD_error:
15807     case OMPD_barrier:
15808     case OMPD_taskwait:
15809     case OMPD_cancellation_point:
15810     case OMPD_flush:
15811     case OMPD_depobj:
15812     case OMPD_scan:
15813     case OMPD_declare_reduction:
15814     case OMPD_declare_mapper:
15815     case OMPD_declare_simd:
15816     case OMPD_declare_variant:
15817     case OMPD_begin_declare_variant:
15818     case OMPD_end_declare_variant:
15819     case OMPD_declare_target:
15820     case OMPD_end_declare_target:
15821     case OMPD_loop:
15822     case OMPD_teams_loop:
15823     case OMPD_target_teams_loop:
15824     case OMPD_parallel_loop:
15825     case OMPD_target_parallel_loop:
15826     case OMPD_simd:
15827     case OMPD_tile:
15828     case OMPD_unroll:
15829     case OMPD_sections:
15830     case OMPD_section:
15831     case OMPD_single:
15832     case OMPD_master:
15833     case OMPD_masked:
15834     case OMPD_critical:
15835     case OMPD_taskgroup:
15836     case OMPD_distribute:
15837     case OMPD_ordered:
15838     case OMPD_atomic:
15839     case OMPD_distribute_simd:
15840     case OMPD_target_teams:
15841     case OMPD_requires:
15842     case OMPD_metadirective:
15843       llvm_unreachable("Unexpected OpenMP directive with schedule clause");
15844     case OMPD_unknown:
15845     default:
15846       llvm_unreachable("Unknown OpenMP directive");
15847     }
15848     break;
15849   case OMPC_dist_schedule:
15850     switch (DKind) {
15851     case OMPD_teams_distribute_parallel_for:
15852     case OMPD_teams_distribute_parallel_for_simd:
15853     case OMPD_teams_distribute:
15854     case OMPD_teams_distribute_simd:
15855     case OMPD_target_teams_distribute_parallel_for:
15856     case OMPD_target_teams_distribute_parallel_for_simd:
15857     case OMPD_target_teams_distribute:
15858     case OMPD_target_teams_distribute_simd:
15859       CaptureRegion = OMPD_teams;
15860       break;
15861     case OMPD_distribute_parallel_for:
15862     case OMPD_distribute_parallel_for_simd:
15863     case OMPD_distribute:
15864     case OMPD_distribute_simd:
15865       // Do not capture dist_schedule-clause expressions.
15866       break;
15867     case OMPD_parallel_for:
15868     case OMPD_parallel_for_simd:
15869     case OMPD_target_parallel_for_simd:
15870     case OMPD_target_parallel_for:
15871     case OMPD_task:
15872     case OMPD_taskloop:
15873     case OMPD_taskloop_simd:
15874     case OMPD_master_taskloop:
15875     case OMPD_masked_taskloop:
15876     case OMPD_master_taskloop_simd:
15877     case OMPD_masked_taskloop_simd:
15878     case OMPD_parallel_master_taskloop:
15879     case OMPD_parallel_masked_taskloop:
15880     case OMPD_parallel_master_taskloop_simd:
15881     case OMPD_parallel_masked_taskloop_simd:
15882     case OMPD_target_data:
15883     case OMPD_target_enter_data:
15884     case OMPD_target_exit_data:
15885     case OMPD_target_update:
15886     case OMPD_teams:
15887     case OMPD_target:
15888     case OMPD_target_simd:
15889     case OMPD_target_parallel:
15890     case OMPD_cancel:
15891     case OMPD_parallel:
15892     case OMPD_parallel_master:
15893     case OMPD_parallel_masked:
15894     case OMPD_parallel_sections:
15895     case OMPD_threadprivate:
15896     case OMPD_allocate:
15897     case OMPD_taskyield:
15898     case OMPD_error:
15899     case OMPD_barrier:
15900     case OMPD_taskwait:
15901     case OMPD_cancellation_point:
15902     case OMPD_flush:
15903     case OMPD_depobj:
15904     case OMPD_scan:
15905     case OMPD_declare_reduction:
15906     case OMPD_declare_mapper:
15907     case OMPD_declare_simd:
15908     case OMPD_declare_variant:
15909     case OMPD_begin_declare_variant:
15910     case OMPD_end_declare_variant:
15911     case OMPD_declare_target:
15912     case OMPD_end_declare_target:
15913     case OMPD_loop:
15914     case OMPD_teams_loop:
15915     case OMPD_target_teams_loop:
15916     case OMPD_parallel_loop:
15917     case OMPD_target_parallel_loop:
15918     case OMPD_simd:
15919     case OMPD_tile:
15920     case OMPD_unroll:
15921     case OMPD_for:
15922     case OMPD_for_simd:
15923     case OMPD_sections:
15924     case OMPD_section:
15925     case OMPD_single:
15926     case OMPD_master:
15927     case OMPD_masked:
15928     case OMPD_critical:
15929     case OMPD_taskgroup:
15930     case OMPD_ordered:
15931     case OMPD_atomic:
15932     case OMPD_target_teams:
15933     case OMPD_requires:
15934     case OMPD_metadirective:
15935       llvm_unreachable("Unexpected OpenMP directive with dist_schedule clause");
15936     case OMPD_unknown:
15937     default:
15938       llvm_unreachable("Unknown OpenMP directive");
15939     }
15940     break;
15941   case OMPC_ompx_dyn_cgroup_mem:
15942     switch (DKind) {
15943     case OMPD_target:
15944     case OMPD_target_simd:
15945     case OMPD_target_teams:
15946     case OMPD_target_parallel:
15947     case OMPD_target_teams_distribute:
15948     case OMPD_target_teams_distribute_simd:
15949     case OMPD_target_parallel_for:
15950     case OMPD_target_parallel_for_simd:
15951     case OMPD_target_parallel_loop:
15952     case OMPD_target_teams_distribute_parallel_for:
15953     case OMPD_target_teams_distribute_parallel_for_simd:
15954     case OMPD_target_teams_loop:
15955       CaptureRegion = OMPD_target;
15956       break;
15957     default:
15958       llvm_unreachable("Unknown OpenMP directive");
15959     }
15960     break;
15961   case OMPC_device:
15962     switch (DKind) {
15963     case OMPD_target_update:
15964     case OMPD_target_enter_data:
15965     case OMPD_target_exit_data:
15966     case OMPD_target:
15967     case OMPD_target_simd:
15968     case OMPD_target_teams:
15969     case OMPD_target_parallel:
15970     case OMPD_target_teams_distribute:
15971     case OMPD_target_teams_distribute_simd:
15972     case OMPD_target_parallel_for:
15973     case OMPD_target_parallel_for_simd:
15974     case OMPD_target_parallel_loop:
15975     case OMPD_target_teams_distribute_parallel_for:
15976     case OMPD_target_teams_distribute_parallel_for_simd:
15977     case OMPD_target_teams_loop:
15978     case OMPD_dispatch:
15979       CaptureRegion = OMPD_task;
15980       break;
15981     case OMPD_target_data:
15982     case OMPD_interop:
15983       // Do not capture device-clause expressions.
15984       break;
15985     case OMPD_teams_distribute_parallel_for:
15986     case OMPD_teams_distribute_parallel_for_simd:
15987     case OMPD_teams:
15988     case OMPD_teams_distribute:
15989     case OMPD_teams_distribute_simd:
15990     case OMPD_distribute_parallel_for:
15991     case OMPD_distribute_parallel_for_simd:
15992     case OMPD_task:
15993     case OMPD_taskloop:
15994     case OMPD_taskloop_simd:
15995     case OMPD_master_taskloop:
15996     case OMPD_masked_taskloop:
15997     case OMPD_master_taskloop_simd:
15998     case OMPD_masked_taskloop_simd:
15999     case OMPD_parallel_master_taskloop:
16000     case OMPD_parallel_masked_taskloop:
16001     case OMPD_parallel_master_taskloop_simd:
16002     case OMPD_parallel_masked_taskloop_simd:
16003     case OMPD_cancel:
16004     case OMPD_parallel:
16005     case OMPD_parallel_master:
16006     case OMPD_parallel_masked:
16007     case OMPD_parallel_sections:
16008     case OMPD_parallel_for:
16009     case OMPD_parallel_for_simd:
16010     case OMPD_threadprivate:
16011     case OMPD_allocate:
16012     case OMPD_taskyield:
16013     case OMPD_error:
16014     case OMPD_barrier:
16015     case OMPD_taskwait:
16016     case OMPD_cancellation_point:
16017     case OMPD_flush:
16018     case OMPD_depobj:
16019     case OMPD_scan:
16020     case OMPD_declare_reduction:
16021     case OMPD_declare_mapper:
16022     case OMPD_declare_simd:
16023     case OMPD_declare_variant:
16024     case OMPD_begin_declare_variant:
16025     case OMPD_end_declare_variant:
16026     case OMPD_declare_target:
16027     case OMPD_end_declare_target:
16028     case OMPD_loop:
16029     case OMPD_teams_loop:
16030     case OMPD_parallel_loop:
16031     case OMPD_simd:
16032     case OMPD_tile:
16033     case OMPD_unroll:
16034     case OMPD_for:
16035     case OMPD_for_simd:
16036     case OMPD_sections:
16037     case OMPD_section:
16038     case OMPD_single:
16039     case OMPD_master:
16040     case OMPD_masked:
16041     case OMPD_critical:
16042     case OMPD_taskgroup:
16043     case OMPD_distribute:
16044     case OMPD_ordered:
16045     case OMPD_atomic:
16046     case OMPD_distribute_simd:
16047     case OMPD_requires:
16048     case OMPD_metadirective:
16049       llvm_unreachable("Unexpected OpenMP directive with device-clause");
16050     case OMPD_unknown:
16051     default:
16052       llvm_unreachable("Unknown OpenMP directive");
16053     }
16054     break;
16055   case OMPC_grainsize:
16056   case OMPC_num_tasks:
16057   case OMPC_final:
16058   case OMPC_priority:
16059     switch (DKind) {
16060     case OMPD_task:
16061     case OMPD_taskloop:
16062     case OMPD_taskloop_simd:
16063     case OMPD_master_taskloop:
16064     case OMPD_masked_taskloop:
16065     case OMPD_master_taskloop_simd:
16066     case OMPD_masked_taskloop_simd:
16067       break;
16068     case OMPD_parallel_masked_taskloop:
16069     case OMPD_parallel_masked_taskloop_simd:
16070     case OMPD_parallel_master_taskloop:
16071     case OMPD_parallel_master_taskloop_simd:
16072       CaptureRegion = OMPD_parallel;
16073       break;
16074     case OMPD_target_update:
16075     case OMPD_target_enter_data:
16076     case OMPD_target_exit_data:
16077     case OMPD_target:
16078     case OMPD_target_simd:
16079     case OMPD_target_teams:
16080     case OMPD_target_parallel:
16081     case OMPD_target_teams_distribute:
16082     case OMPD_target_teams_distribute_simd:
16083     case OMPD_target_parallel_for:
16084     case OMPD_target_parallel_for_simd:
16085     case OMPD_target_teams_distribute_parallel_for:
16086     case OMPD_target_teams_distribute_parallel_for_simd:
16087     case OMPD_target_data:
16088     case OMPD_teams_distribute_parallel_for:
16089     case OMPD_teams_distribute_parallel_for_simd:
16090     case OMPD_teams:
16091     case OMPD_teams_distribute:
16092     case OMPD_teams_distribute_simd:
16093     case OMPD_distribute_parallel_for:
16094     case OMPD_distribute_parallel_for_simd:
16095     case OMPD_cancel:
16096     case OMPD_parallel:
16097     case OMPD_parallel_master:
16098     case OMPD_parallel_masked:
16099     case OMPD_parallel_sections:
16100     case OMPD_parallel_for:
16101     case OMPD_parallel_for_simd:
16102     case OMPD_threadprivate:
16103     case OMPD_allocate:
16104     case OMPD_taskyield:
16105     case OMPD_error:
16106     case OMPD_barrier:
16107     case OMPD_taskwait:
16108     case OMPD_cancellation_point:
16109     case OMPD_flush:
16110     case OMPD_depobj:
16111     case OMPD_scan:
16112     case OMPD_declare_reduction:
16113     case OMPD_declare_mapper:
16114     case OMPD_declare_simd:
16115     case OMPD_declare_variant:
16116     case OMPD_begin_declare_variant:
16117     case OMPD_end_declare_variant:
16118     case OMPD_declare_target:
16119     case OMPD_end_declare_target:
16120     case OMPD_loop:
16121     case OMPD_teams_loop:
16122     case OMPD_target_teams_loop:
16123     case OMPD_parallel_loop:
16124     case OMPD_target_parallel_loop:
16125     case OMPD_simd:
16126     case OMPD_tile:
16127     case OMPD_unroll:
16128     case OMPD_for:
16129     case OMPD_for_simd:
16130     case OMPD_sections:
16131     case OMPD_section:
16132     case OMPD_single:
16133     case OMPD_master:
16134     case OMPD_masked:
16135     case OMPD_critical:
16136     case OMPD_taskgroup:
16137     case OMPD_distribute:
16138     case OMPD_ordered:
16139     case OMPD_atomic:
16140     case OMPD_distribute_simd:
16141     case OMPD_requires:
16142     case OMPD_metadirective:
16143       llvm_unreachable("Unexpected OpenMP directive with grainsize-clause");
16144     case OMPD_unknown:
16145     default:
16146       llvm_unreachable("Unknown OpenMP directive");
16147     }
16148     break;
16149   case OMPC_novariants:
16150   case OMPC_nocontext:
16151     switch (DKind) {
16152     case OMPD_dispatch:
16153       CaptureRegion = OMPD_task;
16154       break;
16155     default:
16156       llvm_unreachable("Unexpected OpenMP directive");
16157     }
16158     break;
16159   case OMPC_filter:
16160     // Do not capture filter-clause expressions.
16161     break;
16162   case OMPC_when:
16163     if (DKind == OMPD_metadirective) {
16164       CaptureRegion = OMPD_metadirective;
16165     } else if (DKind == OMPD_unknown) {
16166       llvm_unreachable("Unknown OpenMP directive");
16167     } else {
16168       llvm_unreachable("Unexpected OpenMP directive with when clause");
16169     }
16170     break;
16171   case OMPC_firstprivate:
16172   case OMPC_lastprivate:
16173   case OMPC_reduction:
16174   case OMPC_task_reduction:
16175   case OMPC_in_reduction:
16176   case OMPC_linear:
16177   case OMPC_default:
16178   case OMPC_proc_bind:
16179   case OMPC_safelen:
16180   case OMPC_simdlen:
16181   case OMPC_sizes:
16182   case OMPC_allocator:
16183   case OMPC_collapse:
16184   case OMPC_private:
16185   case OMPC_shared:
16186   case OMPC_aligned:
16187   case OMPC_copyin:
16188   case OMPC_copyprivate:
16189   case OMPC_ordered:
16190   case OMPC_nowait:
16191   case OMPC_untied:
16192   case OMPC_mergeable:
16193   case OMPC_threadprivate:
16194   case OMPC_allocate:
16195   case OMPC_flush:
16196   case OMPC_depobj:
16197   case OMPC_read:
16198   case OMPC_write:
16199   case OMPC_update:
16200   case OMPC_capture:
16201   case OMPC_compare:
16202   case OMPC_seq_cst:
16203   case OMPC_acq_rel:
16204   case OMPC_acquire:
16205   case OMPC_release:
16206   case OMPC_relaxed:
16207   case OMPC_depend:
16208   case OMPC_threads:
16209   case OMPC_simd:
16210   case OMPC_map:
16211   case OMPC_nogroup:
16212   case OMPC_hint:
16213   case OMPC_defaultmap:
16214   case OMPC_unknown:
16215   case OMPC_uniform:
16216   case OMPC_to:
16217   case OMPC_from:
16218   case OMPC_use_device_ptr:
16219   case OMPC_use_device_addr:
16220   case OMPC_is_device_ptr:
16221   case OMPC_unified_address:
16222   case OMPC_unified_shared_memory:
16223   case OMPC_reverse_offload:
16224   case OMPC_dynamic_allocators:
16225   case OMPC_atomic_default_mem_order:
16226   case OMPC_device_type:
16227   case OMPC_match:
16228   case OMPC_nontemporal:
16229   case OMPC_order:
16230   case OMPC_at:
16231   case OMPC_severity:
16232   case OMPC_message:
16233   case OMPC_destroy:
16234   case OMPC_detach:
16235   case OMPC_inclusive:
16236   case OMPC_exclusive:
16237   case OMPC_uses_allocators:
16238   case OMPC_affinity:
16239   case OMPC_bind:
16240   default:
16241     llvm_unreachable("Unexpected OpenMP clause.");
16242   }
16243   return CaptureRegion;
16244 }
16245 
16246 OMPClause *Sema::ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
16247                                      Expr *Condition, SourceLocation StartLoc,
16248                                      SourceLocation LParenLoc,
16249                                      SourceLocation NameModifierLoc,
16250                                      SourceLocation ColonLoc,
16251                                      SourceLocation EndLoc) {
16252   Expr *ValExpr = Condition;
16253   Stmt *HelperValStmt = nullptr;
16254   OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
16255   if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
16256       !Condition->isInstantiationDependent() &&
16257       !Condition->containsUnexpandedParameterPack()) {
16258     ExprResult Val = CheckBooleanCondition(StartLoc, Condition);
16259     if (Val.isInvalid())
16260       return nullptr;
16261 
16262     ValExpr = Val.get();
16263 
16264     OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
16265     CaptureRegion = getOpenMPCaptureRegionForClause(
16266         DKind, OMPC_if, LangOpts.OpenMP, NameModifier);
16267     if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
16268       ValExpr = MakeFullExpr(ValExpr).get();
16269       llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
16270       ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
16271       HelperValStmt = buildPreInits(Context, Captures);
16272     }
16273   }
16274 
16275   return new (Context)
16276       OMPIfClause(NameModifier, ValExpr, HelperValStmt, CaptureRegion, StartLoc,
16277                   LParenLoc, NameModifierLoc, ColonLoc, EndLoc);
16278 }
16279 
16280 OMPClause *Sema::ActOnOpenMPFinalClause(Expr *Condition,
16281                                         SourceLocation StartLoc,
16282                                         SourceLocation LParenLoc,
16283                                         SourceLocation EndLoc) {
16284   Expr *ValExpr = Condition;
16285   Stmt *HelperValStmt = nullptr;
16286   OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
16287   if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
16288       !Condition->isInstantiationDependent() &&
16289       !Condition->containsUnexpandedParameterPack()) {
16290     ExprResult Val = CheckBooleanCondition(StartLoc, Condition);
16291     if (Val.isInvalid())
16292       return nullptr;
16293 
16294     ValExpr = MakeFullExpr(Val.get()).get();
16295 
16296     OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
16297     CaptureRegion =
16298         getOpenMPCaptureRegionForClause(DKind, OMPC_final, LangOpts.OpenMP);
16299     if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
16300       ValExpr = MakeFullExpr(ValExpr).get();
16301       llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
16302       ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
16303       HelperValStmt = buildPreInits(Context, Captures);
16304     }
16305   }
16306 
16307   return new (Context) OMPFinalClause(ValExpr, HelperValStmt, CaptureRegion,
16308                                       StartLoc, LParenLoc, EndLoc);
16309 }
16310 
16311 ExprResult Sema::PerformOpenMPImplicitIntegerConversion(SourceLocation Loc,
16312                                                         Expr *Op) {
16313   if (!Op)
16314     return ExprError();
16315 
16316   class IntConvertDiagnoser : public ICEConvertDiagnoser {
16317   public:
16318     IntConvertDiagnoser()
16319         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false, false, true) {}
16320     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16321                                          QualType T) override {
16322       return S.Diag(Loc, diag::err_omp_not_integral) << T;
16323     }
16324     SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
16325                                              QualType T) override {
16326       return S.Diag(Loc, diag::err_omp_incomplete_type) << T;
16327     }
16328     SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
16329                                                QualType T,
16330                                                QualType ConvTy) override {
16331       return S.Diag(Loc, diag::err_omp_explicit_conversion) << T << ConvTy;
16332     }
16333     SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
16334                                            QualType ConvTy) override {
16335       return S.Diag(Conv->getLocation(), diag::note_omp_conversion_here)
16336              << ConvTy->isEnumeralType() << ConvTy;
16337     }
16338     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
16339                                             QualType T) override {
16340       return S.Diag(Loc, diag::err_omp_ambiguous_conversion) << T;
16341     }
16342     SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
16343                                         QualType ConvTy) override {
16344       return S.Diag(Conv->getLocation(), diag::note_omp_conversion_here)
16345              << ConvTy->isEnumeralType() << ConvTy;
16346     }
16347     SemaDiagnosticBuilder diagnoseConversion(Sema &, SourceLocation, QualType,
16348                                              QualType) override {
16349       llvm_unreachable("conversion functions are permitted");
16350     }
16351   } ConvertDiagnoser;
16352   return PerformContextualImplicitConversion(Loc, Op, ConvertDiagnoser);
16353 }
16354 
16355 static bool
16356 isNonNegativeIntegerValue(Expr *&ValExpr, Sema &SemaRef, OpenMPClauseKind CKind,
16357                           bool StrictlyPositive, bool BuildCapture = false,
16358                           OpenMPDirectiveKind DKind = OMPD_unknown,
16359                           OpenMPDirectiveKind *CaptureRegion = nullptr,
16360                           Stmt **HelperValStmt = nullptr) {
16361   if (!ValExpr->isTypeDependent() && !ValExpr->isValueDependent() &&
16362       !ValExpr->isInstantiationDependent()) {
16363     SourceLocation Loc = ValExpr->getExprLoc();
16364     ExprResult Value =
16365         SemaRef.PerformOpenMPImplicitIntegerConversion(Loc, ValExpr);
16366     if (Value.isInvalid())
16367       return false;
16368 
16369     ValExpr = Value.get();
16370     // The expression must evaluate to a non-negative integer value.
16371     if (std::optional<llvm::APSInt> Result =
16372             ValExpr->getIntegerConstantExpr(SemaRef.Context)) {
16373       if (Result->isSigned() &&
16374           !((!StrictlyPositive && Result->isNonNegative()) ||
16375             (StrictlyPositive && Result->isStrictlyPositive()))) {
16376         SemaRef.Diag(Loc, diag::err_omp_negative_expression_in_clause)
16377             << getOpenMPClauseName(CKind) << (StrictlyPositive ? 1 : 0)
16378             << ValExpr->getSourceRange();
16379         return false;
16380       }
16381     }
16382     if (!BuildCapture)
16383       return true;
16384     *CaptureRegion =
16385         getOpenMPCaptureRegionForClause(DKind, CKind, SemaRef.LangOpts.OpenMP);
16386     if (*CaptureRegion != OMPD_unknown &&
16387         !SemaRef.CurContext->isDependentContext()) {
16388       ValExpr = SemaRef.MakeFullExpr(ValExpr).get();
16389       llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
16390       ValExpr = tryBuildCapture(SemaRef, ValExpr, Captures).get();
16391       *HelperValStmt = buildPreInits(SemaRef.Context, Captures);
16392     }
16393   }
16394   return true;
16395 }
16396 
16397 OMPClause *Sema::ActOnOpenMPNumThreadsClause(Expr *NumThreads,
16398                                              SourceLocation StartLoc,
16399                                              SourceLocation LParenLoc,
16400                                              SourceLocation EndLoc) {
16401   Expr *ValExpr = NumThreads;
16402   Stmt *HelperValStmt = nullptr;
16403 
16404   // OpenMP [2.5, Restrictions]
16405   //  The num_threads expression must evaluate to a positive integer value.
16406   if (!isNonNegativeIntegerValue(ValExpr, *this, OMPC_num_threads,
16407                                  /*StrictlyPositive=*/true))
16408     return nullptr;
16409 
16410   OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
16411   OpenMPDirectiveKind CaptureRegion =
16412       getOpenMPCaptureRegionForClause(DKind, OMPC_num_threads, LangOpts.OpenMP);
16413   if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
16414     ValExpr = MakeFullExpr(ValExpr).get();
16415     llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
16416     ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
16417     HelperValStmt = buildPreInits(Context, Captures);
16418   }
16419 
16420   return new (Context) OMPNumThreadsClause(
16421       ValExpr, HelperValStmt, CaptureRegion, StartLoc, LParenLoc, EndLoc);
16422 }
16423 
16424 ExprResult Sema::VerifyPositiveIntegerConstantInClause(Expr *E,
16425                                                        OpenMPClauseKind CKind,
16426                                                        bool StrictlyPositive,
16427                                                        bool SuppressExprDiags) {
16428   if (!E)
16429     return ExprError();
16430   if (E->isValueDependent() || E->isTypeDependent() ||
16431       E->isInstantiationDependent() || E->containsUnexpandedParameterPack())
16432     return E;
16433 
16434   llvm::APSInt Result;
16435   ExprResult ICE;
16436   if (SuppressExprDiags) {
16437     // Use a custom diagnoser that suppresses 'note' diagnostics about the
16438     // expression.
16439     struct SuppressedDiagnoser : public Sema::VerifyICEDiagnoser {
16440       SuppressedDiagnoser() : VerifyICEDiagnoser(/*Suppress=*/true) {}
16441       Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
16442                                                  SourceLocation Loc) override {
16443         llvm_unreachable("Diagnostic suppressed");
16444       }
16445     } Diagnoser;
16446     ICE = VerifyIntegerConstantExpression(E, &Result, Diagnoser, AllowFold);
16447   } else {
16448     ICE = VerifyIntegerConstantExpression(E, &Result, /*FIXME*/ AllowFold);
16449   }
16450   if (ICE.isInvalid())
16451     return ExprError();
16452 
16453   if ((StrictlyPositive && !Result.isStrictlyPositive()) ||
16454       (!StrictlyPositive && !Result.isNonNegative())) {
16455     Diag(E->getExprLoc(), diag::err_omp_negative_expression_in_clause)
16456         << getOpenMPClauseName(CKind) << (StrictlyPositive ? 1 : 0)
16457         << E->getSourceRange();
16458     return ExprError();
16459   }
16460   if ((CKind == OMPC_aligned || CKind == OMPC_align) && !Result.isPowerOf2()) {
16461     Diag(E->getExprLoc(), diag::warn_omp_alignment_not_power_of_two)
16462         << E->getSourceRange();
16463     return ExprError();
16464   }
16465   if (CKind == OMPC_collapse && DSAStack->getAssociatedLoops() == 1)
16466     DSAStack->setAssociatedLoops(Result.getExtValue());
16467   else if (CKind == OMPC_ordered)
16468     DSAStack->setAssociatedLoops(Result.getExtValue());
16469   return ICE;
16470 }
16471 
16472 OMPClause *Sema::ActOnOpenMPSafelenClause(Expr *Len, SourceLocation StartLoc,
16473                                           SourceLocation LParenLoc,
16474                                           SourceLocation EndLoc) {
16475   // OpenMP [2.8.1, simd construct, Description]
16476   // The parameter of the safelen clause must be a constant
16477   // positive integer expression.
16478   ExprResult Safelen = VerifyPositiveIntegerConstantInClause(Len, OMPC_safelen);
16479   if (Safelen.isInvalid())
16480     return nullptr;
16481   return new (Context)
16482       OMPSafelenClause(Safelen.get(), StartLoc, LParenLoc, EndLoc);
16483 }
16484 
16485 OMPClause *Sema::ActOnOpenMPSimdlenClause(Expr *Len, SourceLocation StartLoc,
16486                                           SourceLocation LParenLoc,
16487                                           SourceLocation EndLoc) {
16488   // OpenMP [2.8.1, simd construct, Description]
16489   // The parameter of the simdlen clause must be a constant
16490   // positive integer expression.
16491   ExprResult Simdlen = VerifyPositiveIntegerConstantInClause(Len, OMPC_simdlen);
16492   if (Simdlen.isInvalid())
16493     return nullptr;
16494   return new (Context)
16495       OMPSimdlenClause(Simdlen.get(), StartLoc, LParenLoc, EndLoc);
16496 }
16497 
16498 /// Tries to find omp_allocator_handle_t type.
16499 static bool findOMPAllocatorHandleT(Sema &S, SourceLocation Loc,
16500                                     DSAStackTy *Stack) {
16501   if (!Stack->getOMPAllocatorHandleT().isNull())
16502     return true;
16503 
16504   // Set the allocator handle type.
16505   IdentifierInfo *II = &S.PP.getIdentifierTable().get("omp_allocator_handle_t");
16506   ParsedType PT = S.getTypeName(*II, Loc, S.getCurScope());
16507   if (!PT.getAsOpaquePtr() || PT.get().isNull()) {
16508     S.Diag(Loc, diag::err_omp_implied_type_not_found)
16509         << "omp_allocator_handle_t";
16510     return false;
16511   }
16512   QualType AllocatorHandleEnumTy = PT.get();
16513   AllocatorHandleEnumTy.addConst();
16514   Stack->setOMPAllocatorHandleT(AllocatorHandleEnumTy);
16515 
16516   // Fill the predefined allocator map.
16517   bool ErrorFound = false;
16518   for (int I = 0; I < OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; ++I) {
16519     auto AllocatorKind = static_cast<OMPAllocateDeclAttr::AllocatorTypeTy>(I);
16520     StringRef Allocator =
16521         OMPAllocateDeclAttr::ConvertAllocatorTypeTyToStr(AllocatorKind);
16522     DeclarationName AllocatorName = &S.getASTContext().Idents.get(Allocator);
16523     auto *VD = dyn_cast_or_null<ValueDecl>(
16524         S.LookupSingleName(S.TUScope, AllocatorName, Loc, Sema::LookupAnyName));
16525     if (!VD) {
16526       ErrorFound = true;
16527       break;
16528     }
16529     QualType AllocatorType =
16530         VD->getType().getNonLValueExprType(S.getASTContext());
16531     ExprResult Res = S.BuildDeclRefExpr(VD, AllocatorType, VK_LValue, Loc);
16532     if (!Res.isUsable()) {
16533       ErrorFound = true;
16534       break;
16535     }
16536     Res = S.PerformImplicitConversion(Res.get(), AllocatorHandleEnumTy,
16537                                       Sema::AA_Initializing,
16538                                       /* AllowExplicit */ true);
16539     if (!Res.isUsable()) {
16540       ErrorFound = true;
16541       break;
16542     }
16543     Stack->setAllocator(AllocatorKind, Res.get());
16544   }
16545   if (ErrorFound) {
16546     S.Diag(Loc, diag::err_omp_implied_type_not_found)
16547         << "omp_allocator_handle_t";
16548     return false;
16549   }
16550 
16551   return true;
16552 }
16553 
16554 OMPClause *Sema::ActOnOpenMPAllocatorClause(Expr *A, SourceLocation StartLoc,
16555                                             SourceLocation LParenLoc,
16556                                             SourceLocation EndLoc) {
16557   // OpenMP [2.11.3, allocate Directive, Description]
16558   // allocator is an expression of omp_allocator_handle_t type.
16559   if (!findOMPAllocatorHandleT(*this, A->getExprLoc(), DSAStack))
16560     return nullptr;
16561 
16562   ExprResult Allocator = DefaultLvalueConversion(A);
16563   if (Allocator.isInvalid())
16564     return nullptr;
16565   Allocator = PerformImplicitConversion(Allocator.get(),
16566                                         DSAStack->getOMPAllocatorHandleT(),
16567                                         Sema::AA_Initializing,
16568                                         /*AllowExplicit=*/true);
16569   if (Allocator.isInvalid())
16570     return nullptr;
16571   return new (Context)
16572       OMPAllocatorClause(Allocator.get(), StartLoc, LParenLoc, EndLoc);
16573 }
16574 
16575 OMPClause *Sema::ActOnOpenMPCollapseClause(Expr *NumForLoops,
16576                                            SourceLocation StartLoc,
16577                                            SourceLocation LParenLoc,
16578                                            SourceLocation EndLoc) {
16579   // OpenMP [2.7.1, loop construct, Description]
16580   // OpenMP [2.8.1, simd construct, Description]
16581   // OpenMP [2.9.6, distribute construct, Description]
16582   // The parameter of the collapse clause must be a constant
16583   // positive integer expression.
16584   ExprResult NumForLoopsResult =
16585       VerifyPositiveIntegerConstantInClause(NumForLoops, OMPC_collapse);
16586   if (NumForLoopsResult.isInvalid())
16587     return nullptr;
16588   return new (Context)
16589       OMPCollapseClause(NumForLoopsResult.get(), StartLoc, LParenLoc, EndLoc);
16590 }
16591 
16592 OMPClause *Sema::ActOnOpenMPOrderedClause(SourceLocation StartLoc,
16593                                           SourceLocation EndLoc,
16594                                           SourceLocation LParenLoc,
16595                                           Expr *NumForLoops) {
16596   // OpenMP [2.7.1, loop construct, Description]
16597   // OpenMP [2.8.1, simd construct, Description]
16598   // OpenMP [2.9.6, distribute construct, Description]
16599   // The parameter of the ordered clause must be a constant
16600   // positive integer expression if any.
16601   if (NumForLoops && LParenLoc.isValid()) {
16602     ExprResult NumForLoopsResult =
16603         VerifyPositiveIntegerConstantInClause(NumForLoops, OMPC_ordered);
16604     if (NumForLoopsResult.isInvalid())
16605       return nullptr;
16606     NumForLoops = NumForLoopsResult.get();
16607   } else {
16608     NumForLoops = nullptr;
16609   }
16610   auto *Clause = OMPOrderedClause::Create(
16611       Context, NumForLoops, NumForLoops ? DSAStack->getAssociatedLoops() : 0,
16612       StartLoc, LParenLoc, EndLoc);
16613   DSAStack->setOrderedRegion(/*IsOrdered=*/true, NumForLoops, Clause);
16614   return Clause;
16615 }
16616 
16617 OMPClause *Sema::ActOnOpenMPSimpleClause(
16618     OpenMPClauseKind Kind, unsigned Argument, SourceLocation ArgumentLoc,
16619     SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) {
16620   OMPClause *Res = nullptr;
16621   switch (Kind) {
16622   case OMPC_default:
16623     Res = ActOnOpenMPDefaultClause(static_cast<DefaultKind>(Argument),
16624                                    ArgumentLoc, StartLoc, LParenLoc, EndLoc);
16625     break;
16626   case OMPC_proc_bind:
16627     Res = ActOnOpenMPProcBindClause(static_cast<ProcBindKind>(Argument),
16628                                     ArgumentLoc, StartLoc, LParenLoc, EndLoc);
16629     break;
16630   case OMPC_atomic_default_mem_order:
16631     Res = ActOnOpenMPAtomicDefaultMemOrderClause(
16632         static_cast<OpenMPAtomicDefaultMemOrderClauseKind>(Argument),
16633         ArgumentLoc, StartLoc, LParenLoc, EndLoc);
16634     break;
16635   case OMPC_update:
16636     Res = ActOnOpenMPUpdateClause(static_cast<OpenMPDependClauseKind>(Argument),
16637                                   ArgumentLoc, StartLoc, LParenLoc, EndLoc);
16638     break;
16639   case OMPC_bind:
16640     Res = ActOnOpenMPBindClause(static_cast<OpenMPBindClauseKind>(Argument),
16641                                 ArgumentLoc, StartLoc, LParenLoc, EndLoc);
16642     break;
16643   case OMPC_at:
16644     Res = ActOnOpenMPAtClause(static_cast<OpenMPAtClauseKind>(Argument),
16645                               ArgumentLoc, StartLoc, LParenLoc, EndLoc);
16646     break;
16647   case OMPC_severity:
16648     Res = ActOnOpenMPSeverityClause(
16649         static_cast<OpenMPSeverityClauseKind>(Argument), ArgumentLoc, StartLoc,
16650         LParenLoc, EndLoc);
16651     break;
16652   case OMPC_if:
16653   case OMPC_final:
16654   case OMPC_num_threads:
16655   case OMPC_safelen:
16656   case OMPC_simdlen:
16657   case OMPC_sizes:
16658   case OMPC_allocator:
16659   case OMPC_collapse:
16660   case OMPC_schedule:
16661   case OMPC_private:
16662   case OMPC_firstprivate:
16663   case OMPC_lastprivate:
16664   case OMPC_shared:
16665   case OMPC_reduction:
16666   case OMPC_task_reduction:
16667   case OMPC_in_reduction:
16668   case OMPC_linear:
16669   case OMPC_aligned:
16670   case OMPC_copyin:
16671   case OMPC_copyprivate:
16672   case OMPC_ordered:
16673   case OMPC_nowait:
16674   case OMPC_untied:
16675   case OMPC_mergeable:
16676   case OMPC_threadprivate:
16677   case OMPC_allocate:
16678   case OMPC_flush:
16679   case OMPC_depobj:
16680   case OMPC_read:
16681   case OMPC_write:
16682   case OMPC_capture:
16683   case OMPC_compare:
16684   case OMPC_seq_cst:
16685   case OMPC_acq_rel:
16686   case OMPC_acquire:
16687   case OMPC_release:
16688   case OMPC_relaxed:
16689   case OMPC_depend:
16690   case OMPC_device:
16691   case OMPC_threads:
16692   case OMPC_simd:
16693   case OMPC_map:
16694   case OMPC_num_teams:
16695   case OMPC_thread_limit:
16696   case OMPC_priority:
16697   case OMPC_grainsize:
16698   case OMPC_nogroup:
16699   case OMPC_num_tasks:
16700   case OMPC_hint:
16701   case OMPC_dist_schedule:
16702   case OMPC_defaultmap:
16703   case OMPC_unknown:
16704   case OMPC_uniform:
16705   case OMPC_to:
16706   case OMPC_from:
16707   case OMPC_use_device_ptr:
16708   case OMPC_use_device_addr:
16709   case OMPC_is_device_ptr:
16710   case OMPC_has_device_addr:
16711   case OMPC_unified_address:
16712   case OMPC_unified_shared_memory:
16713   case OMPC_reverse_offload:
16714   case OMPC_dynamic_allocators:
16715   case OMPC_device_type:
16716   case OMPC_match:
16717   case OMPC_nontemporal:
16718   case OMPC_destroy:
16719   case OMPC_novariants:
16720   case OMPC_nocontext:
16721   case OMPC_detach:
16722   case OMPC_inclusive:
16723   case OMPC_exclusive:
16724   case OMPC_uses_allocators:
16725   case OMPC_affinity:
16726   case OMPC_when:
16727   case OMPC_message:
16728   default:
16729     llvm_unreachable("Clause is not allowed.");
16730   }
16731   return Res;
16732 }
16733 
16734 static std::string
16735 getListOfPossibleValues(OpenMPClauseKind K, unsigned First, unsigned Last,
16736                         ArrayRef<unsigned> Exclude = std::nullopt) {
16737   SmallString<256> Buffer;
16738   llvm::raw_svector_ostream Out(Buffer);
16739   unsigned Skipped = Exclude.size();
16740   for (unsigned I = First; I < Last; ++I) {
16741     if (llvm::is_contained(Exclude, I)) {
16742       --Skipped;
16743       continue;
16744     }
16745     Out << "'" << getOpenMPSimpleClauseTypeName(K, I) << "'";
16746     if (I + Skipped + 2 == Last)
16747       Out << " or ";
16748     else if (I + Skipped + 1 != Last)
16749       Out << ", ";
16750   }
16751   return std::string(Out.str());
16752 }
16753 
16754 OMPClause *Sema::ActOnOpenMPDefaultClause(DefaultKind Kind,
16755                                           SourceLocation KindKwLoc,
16756                                           SourceLocation StartLoc,
16757                                           SourceLocation LParenLoc,
16758                                           SourceLocation EndLoc) {
16759   if (Kind == OMP_DEFAULT_unknown) {
16760     Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
16761         << getListOfPossibleValues(OMPC_default, /*First=*/0,
16762                                    /*Last=*/unsigned(OMP_DEFAULT_unknown))
16763         << getOpenMPClauseName(OMPC_default);
16764     return nullptr;
16765   }
16766 
16767   switch (Kind) {
16768   case OMP_DEFAULT_none:
16769     DSAStack->setDefaultDSANone(KindKwLoc);
16770     break;
16771   case OMP_DEFAULT_shared:
16772     DSAStack->setDefaultDSAShared(KindKwLoc);
16773     break;
16774   case OMP_DEFAULT_firstprivate:
16775     DSAStack->setDefaultDSAFirstPrivate(KindKwLoc);
16776     break;
16777   case OMP_DEFAULT_private:
16778     DSAStack->setDefaultDSAPrivate(KindKwLoc);
16779     break;
16780   default:
16781     llvm_unreachable("DSA unexpected in OpenMP default clause");
16782   }
16783 
16784   return new (Context)
16785       OMPDefaultClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
16786 }
16787 
16788 OMPClause *Sema::ActOnOpenMPProcBindClause(ProcBindKind Kind,
16789                                            SourceLocation KindKwLoc,
16790                                            SourceLocation StartLoc,
16791                                            SourceLocation LParenLoc,
16792                                            SourceLocation EndLoc) {
16793   if (Kind == OMP_PROC_BIND_unknown) {
16794     Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
16795         << getListOfPossibleValues(OMPC_proc_bind,
16796                                    /*First=*/unsigned(OMP_PROC_BIND_master),
16797                                    /*Last=*/
16798                                    unsigned(LangOpts.OpenMP > 50
16799                                                 ? OMP_PROC_BIND_primary
16800                                                 : OMP_PROC_BIND_spread) +
16801                                        1)
16802         << getOpenMPClauseName(OMPC_proc_bind);
16803     return nullptr;
16804   }
16805   if (Kind == OMP_PROC_BIND_primary && LangOpts.OpenMP < 51)
16806     Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
16807         << getListOfPossibleValues(OMPC_proc_bind,
16808                                    /*First=*/unsigned(OMP_PROC_BIND_master),
16809                                    /*Last=*/
16810                                    unsigned(OMP_PROC_BIND_spread) + 1)
16811         << getOpenMPClauseName(OMPC_proc_bind);
16812   return new (Context)
16813       OMPProcBindClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
16814 }
16815 
16816 OMPClause *Sema::ActOnOpenMPAtomicDefaultMemOrderClause(
16817     OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindKwLoc,
16818     SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) {
16819   if (Kind == OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown) {
16820     Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
16821         << getListOfPossibleValues(
16822                OMPC_atomic_default_mem_order, /*First=*/0,
16823                /*Last=*/OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown)
16824         << getOpenMPClauseName(OMPC_atomic_default_mem_order);
16825     return nullptr;
16826   }
16827   return new (Context) OMPAtomicDefaultMemOrderClause(Kind, KindKwLoc, StartLoc,
16828                                                       LParenLoc, EndLoc);
16829 }
16830 
16831 OMPClause *Sema::ActOnOpenMPAtClause(OpenMPAtClauseKind Kind,
16832                                      SourceLocation KindKwLoc,
16833                                      SourceLocation StartLoc,
16834                                      SourceLocation LParenLoc,
16835                                      SourceLocation EndLoc) {
16836   if (Kind == OMPC_AT_unknown) {
16837     Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
16838         << getListOfPossibleValues(OMPC_at, /*First=*/0,
16839                                    /*Last=*/OMPC_AT_unknown)
16840         << getOpenMPClauseName(OMPC_at);
16841     return nullptr;
16842   }
16843   return new (Context)
16844       OMPAtClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
16845 }
16846 
16847 OMPClause *Sema::ActOnOpenMPSeverityClause(OpenMPSeverityClauseKind Kind,
16848                                            SourceLocation KindKwLoc,
16849                                            SourceLocation StartLoc,
16850                                            SourceLocation LParenLoc,
16851                                            SourceLocation EndLoc) {
16852   if (Kind == OMPC_SEVERITY_unknown) {
16853     Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
16854         << getListOfPossibleValues(OMPC_severity, /*First=*/0,
16855                                    /*Last=*/OMPC_SEVERITY_unknown)
16856         << getOpenMPClauseName(OMPC_severity);
16857     return nullptr;
16858   }
16859   return new (Context)
16860       OMPSeverityClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
16861 }
16862 
16863 OMPClause *Sema::ActOnOpenMPMessageClause(Expr *ME, SourceLocation StartLoc,
16864                                           SourceLocation LParenLoc,
16865                                           SourceLocation EndLoc) {
16866   assert(ME && "NULL expr in Message clause");
16867   if (!isa<StringLiteral>(ME)) {
16868     Diag(ME->getBeginLoc(), diag::warn_clause_expected_string)
16869         << getOpenMPClauseName(OMPC_message);
16870     return nullptr;
16871   }
16872   return new (Context) OMPMessageClause(ME, StartLoc, LParenLoc, EndLoc);
16873 }
16874 
16875 OMPClause *Sema::ActOnOpenMPOrderClause(
16876     OpenMPOrderClauseModifier Modifier, OpenMPOrderClauseKind Kind,
16877     SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
16878     SourceLocation KindLoc, SourceLocation EndLoc) {
16879   if (Kind != OMPC_ORDER_concurrent ||
16880       (LangOpts.OpenMP < 51 && MLoc.isValid())) {
16881     // Kind should be concurrent,
16882     // Modifiers introduced in OpenMP 5.1
16883     static_assert(OMPC_ORDER_unknown > 0,
16884                   "OMPC_ORDER_unknown not greater than 0");
16885 
16886     Diag(KindLoc, diag::err_omp_unexpected_clause_value)
16887         << getListOfPossibleValues(OMPC_order,
16888                                    /*First=*/0,
16889                                    /*Last=*/OMPC_ORDER_unknown)
16890         << getOpenMPClauseName(OMPC_order);
16891     return nullptr;
16892   }
16893   if (LangOpts.OpenMP >= 51) {
16894     if (Modifier == OMPC_ORDER_MODIFIER_unknown && MLoc.isValid()) {
16895       Diag(MLoc, diag::err_omp_unexpected_clause_value)
16896           << getListOfPossibleValues(OMPC_order,
16897                                      /*First=*/OMPC_ORDER_MODIFIER_unknown + 1,
16898                                      /*Last=*/OMPC_ORDER_MODIFIER_last)
16899           << getOpenMPClauseName(OMPC_order);
16900     } else {
16901       DSAStack->setRegionHasOrderConcurrent(/*HasOrderConcurrent=*/true);
16902       if (DSAStack->getCurScope()) {
16903         // mark the current scope with 'order' flag
16904         unsigned existingFlags = DSAStack->getCurScope()->getFlags();
16905         DSAStack->getCurScope()->setFlags(existingFlags |
16906                                           Scope::OpenMPOrderClauseScope);
16907       }
16908     }
16909   }
16910   return new (Context) OMPOrderClause(Kind, KindLoc, StartLoc, LParenLoc,
16911                                       EndLoc, Modifier, MLoc);
16912 }
16913 
16914 OMPClause *Sema::ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
16915                                          SourceLocation KindKwLoc,
16916                                          SourceLocation StartLoc,
16917                                          SourceLocation LParenLoc,
16918                                          SourceLocation EndLoc) {
16919   if (Kind == OMPC_DEPEND_unknown || Kind == OMPC_DEPEND_source ||
16920       Kind == OMPC_DEPEND_sink || Kind == OMPC_DEPEND_depobj) {
16921     SmallVector<unsigned> Except = {
16922         OMPC_DEPEND_source, OMPC_DEPEND_sink, OMPC_DEPEND_depobj,
16923         OMPC_DEPEND_outallmemory, OMPC_DEPEND_inoutallmemory};
16924     if (LangOpts.OpenMP < 51)
16925       Except.push_back(OMPC_DEPEND_inoutset);
16926     Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
16927         << getListOfPossibleValues(OMPC_depend, /*First=*/0,
16928                                    /*Last=*/OMPC_DEPEND_unknown, Except)
16929         << getOpenMPClauseName(OMPC_update);
16930     return nullptr;
16931   }
16932   return OMPUpdateClause::Create(Context, StartLoc, LParenLoc, KindKwLoc, Kind,
16933                                  EndLoc);
16934 }
16935 
16936 OMPClause *Sema::ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
16937                                         SourceLocation StartLoc,
16938                                         SourceLocation LParenLoc,
16939                                         SourceLocation EndLoc) {
16940   for (Expr *SizeExpr : SizeExprs) {
16941     ExprResult NumForLoopsResult = VerifyPositiveIntegerConstantInClause(
16942         SizeExpr, OMPC_sizes, /*StrictlyPositive=*/true);
16943     if (!NumForLoopsResult.isUsable())
16944       return nullptr;
16945   }
16946 
16947   DSAStack->setAssociatedLoops(SizeExprs.size());
16948   return OMPSizesClause::Create(Context, StartLoc, LParenLoc, EndLoc,
16949                                 SizeExprs);
16950 }
16951 
16952 OMPClause *Sema::ActOnOpenMPFullClause(SourceLocation StartLoc,
16953                                        SourceLocation EndLoc) {
16954   return OMPFullClause::Create(Context, StartLoc, EndLoc);
16955 }
16956 
16957 OMPClause *Sema::ActOnOpenMPPartialClause(Expr *FactorExpr,
16958                                           SourceLocation StartLoc,
16959                                           SourceLocation LParenLoc,
16960                                           SourceLocation EndLoc) {
16961   if (FactorExpr) {
16962     // If an argument is specified, it must be a constant (or an unevaluated
16963     // template expression).
16964     ExprResult FactorResult = VerifyPositiveIntegerConstantInClause(
16965         FactorExpr, OMPC_partial, /*StrictlyPositive=*/true);
16966     if (FactorResult.isInvalid())
16967       return nullptr;
16968     FactorExpr = FactorResult.get();
16969   }
16970 
16971   return OMPPartialClause::Create(Context, StartLoc, LParenLoc, EndLoc,
16972                                   FactorExpr);
16973 }
16974 
16975 OMPClause *Sema::ActOnOpenMPAlignClause(Expr *A, SourceLocation StartLoc,
16976                                         SourceLocation LParenLoc,
16977                                         SourceLocation EndLoc) {
16978   ExprResult AlignVal;
16979   AlignVal = VerifyPositiveIntegerConstantInClause(A, OMPC_align);
16980   if (AlignVal.isInvalid())
16981     return nullptr;
16982   return OMPAlignClause::Create(Context, AlignVal.get(), StartLoc, LParenLoc,
16983                                 EndLoc);
16984 }
16985 
16986 OMPClause *Sema::ActOnOpenMPSingleExprWithArgClause(
16987     OpenMPClauseKind Kind, ArrayRef<unsigned> Argument, Expr *Expr,
16988     SourceLocation StartLoc, SourceLocation LParenLoc,
16989     ArrayRef<SourceLocation> ArgumentLoc, SourceLocation DelimLoc,
16990     SourceLocation EndLoc) {
16991   OMPClause *Res = nullptr;
16992   switch (Kind) {
16993   case OMPC_schedule:
16994     enum { Modifier1, Modifier2, ScheduleKind, NumberOfElements };
16995     assert(Argument.size() == NumberOfElements &&
16996            ArgumentLoc.size() == NumberOfElements);
16997     Res = ActOnOpenMPScheduleClause(
16998         static_cast<OpenMPScheduleClauseModifier>(Argument[Modifier1]),
16999         static_cast<OpenMPScheduleClauseModifier>(Argument[Modifier2]),
17000         static_cast<OpenMPScheduleClauseKind>(Argument[ScheduleKind]), Expr,
17001         StartLoc, LParenLoc, ArgumentLoc[Modifier1], ArgumentLoc[Modifier2],
17002         ArgumentLoc[ScheduleKind], DelimLoc, EndLoc);
17003     break;
17004   case OMPC_if:
17005     assert(Argument.size() == 1 && ArgumentLoc.size() == 1);
17006     Res = ActOnOpenMPIfClause(static_cast<OpenMPDirectiveKind>(Argument.back()),
17007                               Expr, StartLoc, LParenLoc, ArgumentLoc.back(),
17008                               DelimLoc, EndLoc);
17009     break;
17010   case OMPC_dist_schedule:
17011     Res = ActOnOpenMPDistScheduleClause(
17012         static_cast<OpenMPDistScheduleClauseKind>(Argument.back()), Expr,
17013         StartLoc, LParenLoc, ArgumentLoc.back(), DelimLoc, EndLoc);
17014     break;
17015   case OMPC_defaultmap:
17016     enum { Modifier, DefaultmapKind };
17017     Res = ActOnOpenMPDefaultmapClause(
17018         static_cast<OpenMPDefaultmapClauseModifier>(Argument[Modifier]),
17019         static_cast<OpenMPDefaultmapClauseKind>(Argument[DefaultmapKind]),
17020         StartLoc, LParenLoc, ArgumentLoc[Modifier], ArgumentLoc[DefaultmapKind],
17021         EndLoc);
17022     break;
17023   case OMPC_order:
17024     enum { OrderModifier, OrderKind };
17025     Res = ActOnOpenMPOrderClause(
17026         static_cast<OpenMPOrderClauseModifier>(Argument[OrderModifier]),
17027         static_cast<OpenMPOrderClauseKind>(Argument[OrderKind]), StartLoc,
17028         LParenLoc, ArgumentLoc[OrderModifier], ArgumentLoc[OrderKind], EndLoc);
17029     break;
17030   case OMPC_device:
17031     assert(Argument.size() == 1 && ArgumentLoc.size() == 1);
17032     Res = ActOnOpenMPDeviceClause(
17033         static_cast<OpenMPDeviceClauseModifier>(Argument.back()), Expr,
17034         StartLoc, LParenLoc, ArgumentLoc.back(), EndLoc);
17035     break;
17036   case OMPC_grainsize:
17037     assert(Argument.size() == 1 && ArgumentLoc.size() == 1 &&
17038            "Modifier for grainsize clause and its location are expected.");
17039     Res = ActOnOpenMPGrainsizeClause(
17040         static_cast<OpenMPGrainsizeClauseModifier>(Argument.back()), Expr,
17041         StartLoc, LParenLoc, ArgumentLoc.back(), EndLoc);
17042     break;
17043   case OMPC_num_tasks:
17044     assert(Argument.size() == 1 && ArgumentLoc.size() == 1 &&
17045            "Modifier for num_tasks clause and its location are expected.");
17046     Res = ActOnOpenMPNumTasksClause(
17047         static_cast<OpenMPNumTasksClauseModifier>(Argument.back()), Expr,
17048         StartLoc, LParenLoc, ArgumentLoc.back(), EndLoc);
17049     break;
17050   case OMPC_final:
17051   case OMPC_num_threads:
17052   case OMPC_safelen:
17053   case OMPC_simdlen:
17054   case OMPC_sizes:
17055   case OMPC_allocator:
17056   case OMPC_collapse:
17057   case OMPC_default:
17058   case OMPC_proc_bind:
17059   case OMPC_private:
17060   case OMPC_firstprivate:
17061   case OMPC_lastprivate:
17062   case OMPC_shared:
17063   case OMPC_reduction:
17064   case OMPC_task_reduction:
17065   case OMPC_in_reduction:
17066   case OMPC_linear:
17067   case OMPC_aligned:
17068   case OMPC_copyin:
17069   case OMPC_copyprivate:
17070   case OMPC_ordered:
17071   case OMPC_nowait:
17072   case OMPC_untied:
17073   case OMPC_mergeable:
17074   case OMPC_threadprivate:
17075   case OMPC_allocate:
17076   case OMPC_flush:
17077   case OMPC_depobj:
17078   case OMPC_read:
17079   case OMPC_write:
17080   case OMPC_update:
17081   case OMPC_capture:
17082   case OMPC_compare:
17083   case OMPC_seq_cst:
17084   case OMPC_acq_rel:
17085   case OMPC_acquire:
17086   case OMPC_release:
17087   case OMPC_relaxed:
17088   case OMPC_depend:
17089   case OMPC_threads:
17090   case OMPC_simd:
17091   case OMPC_map:
17092   case OMPC_num_teams:
17093   case OMPC_thread_limit:
17094   case OMPC_priority:
17095   case OMPC_nogroup:
17096   case OMPC_hint:
17097   case OMPC_unknown:
17098   case OMPC_uniform:
17099   case OMPC_to:
17100   case OMPC_from:
17101   case OMPC_use_device_ptr:
17102   case OMPC_use_device_addr:
17103   case OMPC_is_device_ptr:
17104   case OMPC_has_device_addr:
17105   case OMPC_unified_address:
17106   case OMPC_unified_shared_memory:
17107   case OMPC_reverse_offload:
17108   case OMPC_dynamic_allocators:
17109   case OMPC_atomic_default_mem_order:
17110   case OMPC_device_type:
17111   case OMPC_match:
17112   case OMPC_nontemporal:
17113   case OMPC_at:
17114   case OMPC_severity:
17115   case OMPC_message:
17116   case OMPC_destroy:
17117   case OMPC_novariants:
17118   case OMPC_nocontext:
17119   case OMPC_detach:
17120   case OMPC_inclusive:
17121   case OMPC_exclusive:
17122   case OMPC_uses_allocators:
17123   case OMPC_affinity:
17124   case OMPC_when:
17125   case OMPC_bind:
17126   default:
17127     llvm_unreachable("Clause is not allowed.");
17128   }
17129   return Res;
17130 }
17131 
17132 static bool checkScheduleModifiers(Sema &S, OpenMPScheduleClauseModifier M1,
17133                                    OpenMPScheduleClauseModifier M2,
17134                                    SourceLocation M1Loc, SourceLocation M2Loc) {
17135   if (M1 == OMPC_SCHEDULE_MODIFIER_unknown && M1Loc.isValid()) {
17136     SmallVector<unsigned, 2> Excluded;
17137     if (M2 != OMPC_SCHEDULE_MODIFIER_unknown)
17138       Excluded.push_back(M2);
17139     if (M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)
17140       Excluded.push_back(OMPC_SCHEDULE_MODIFIER_monotonic);
17141     if (M2 == OMPC_SCHEDULE_MODIFIER_monotonic)
17142       Excluded.push_back(OMPC_SCHEDULE_MODIFIER_nonmonotonic);
17143     S.Diag(M1Loc, diag::err_omp_unexpected_clause_value)
17144         << getListOfPossibleValues(OMPC_schedule,
17145                                    /*First=*/OMPC_SCHEDULE_MODIFIER_unknown + 1,
17146                                    /*Last=*/OMPC_SCHEDULE_MODIFIER_last,
17147                                    Excluded)
17148         << getOpenMPClauseName(OMPC_schedule);
17149     return true;
17150   }
17151   return false;
17152 }
17153 
17154 OMPClause *Sema::ActOnOpenMPScheduleClause(
17155     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
17156     OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
17157     SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
17158     SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) {
17159   if (checkScheduleModifiers(*this, M1, M2, M1Loc, M2Loc) ||
17160       checkScheduleModifiers(*this, M2, M1, M2Loc, M1Loc))
17161     return nullptr;
17162   // OpenMP, 2.7.1, Loop Construct, Restrictions
17163   // Either the monotonic modifier or the nonmonotonic modifier can be specified
17164   // but not both.
17165   if ((M1 == M2 && M1 != OMPC_SCHEDULE_MODIFIER_unknown) ||
17166       (M1 == OMPC_SCHEDULE_MODIFIER_monotonic &&
17167        M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic) ||
17168       (M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic &&
17169        M2 == OMPC_SCHEDULE_MODIFIER_monotonic)) {
17170     Diag(M2Loc, diag::err_omp_unexpected_schedule_modifier)
17171         << getOpenMPSimpleClauseTypeName(OMPC_schedule, M2)
17172         << getOpenMPSimpleClauseTypeName(OMPC_schedule, M1);
17173     return nullptr;
17174   }
17175   if (Kind == OMPC_SCHEDULE_unknown) {
17176     std::string Values;
17177     if (M1Loc.isInvalid() && M2Loc.isInvalid()) {
17178       unsigned Exclude[] = {OMPC_SCHEDULE_unknown};
17179       Values = getListOfPossibleValues(OMPC_schedule, /*First=*/0,
17180                                        /*Last=*/OMPC_SCHEDULE_MODIFIER_last,
17181                                        Exclude);
17182     } else {
17183       Values = getListOfPossibleValues(OMPC_schedule, /*First=*/0,
17184                                        /*Last=*/OMPC_SCHEDULE_unknown);
17185     }
17186     Diag(KindLoc, diag::err_omp_unexpected_clause_value)
17187         << Values << getOpenMPClauseName(OMPC_schedule);
17188     return nullptr;
17189   }
17190   // OpenMP, 2.7.1, Loop Construct, Restrictions
17191   // The nonmonotonic modifier can only be specified with schedule(dynamic) or
17192   // schedule(guided).
17193   // OpenMP 5.0 does not have this restriction.
17194   if (LangOpts.OpenMP < 50 &&
17195       (M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
17196        M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic) &&
17197       Kind != OMPC_SCHEDULE_dynamic && Kind != OMPC_SCHEDULE_guided) {
17198     Diag(M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ? M1Loc : M2Loc,
17199          diag::err_omp_schedule_nonmonotonic_static);
17200     return nullptr;
17201   }
17202   Expr *ValExpr = ChunkSize;
17203   Stmt *HelperValStmt = nullptr;
17204   if (ChunkSize) {
17205     if (!ChunkSize->isValueDependent() && !ChunkSize->isTypeDependent() &&
17206         !ChunkSize->isInstantiationDependent() &&
17207         !ChunkSize->containsUnexpandedParameterPack()) {
17208       SourceLocation ChunkSizeLoc = ChunkSize->getBeginLoc();
17209       ExprResult Val =
17210           PerformOpenMPImplicitIntegerConversion(ChunkSizeLoc, ChunkSize);
17211       if (Val.isInvalid())
17212         return nullptr;
17213 
17214       ValExpr = Val.get();
17215 
17216       // OpenMP [2.7.1, Restrictions]
17217       //  chunk_size must be a loop invariant integer expression with a positive
17218       //  value.
17219       if (std::optional<llvm::APSInt> Result =
17220               ValExpr->getIntegerConstantExpr(Context)) {
17221         if (Result->isSigned() && !Result->isStrictlyPositive()) {
17222           Diag(ChunkSizeLoc, diag::err_omp_negative_expression_in_clause)
17223               << "schedule" << 1 << ChunkSize->getSourceRange();
17224           return nullptr;
17225         }
17226       } else if (getOpenMPCaptureRegionForClause(
17227                      DSAStack->getCurrentDirective(), OMPC_schedule,
17228                      LangOpts.OpenMP) != OMPD_unknown &&
17229                  !CurContext->isDependentContext()) {
17230         ValExpr = MakeFullExpr(ValExpr).get();
17231         llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
17232         ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
17233         HelperValStmt = buildPreInits(Context, Captures);
17234       }
17235     }
17236   }
17237 
17238   return new (Context)
17239       OMPScheduleClause(StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc, Kind,
17240                         ValExpr, HelperValStmt, M1, M1Loc, M2, M2Loc);
17241 }
17242 
17243 OMPClause *Sema::ActOnOpenMPClause(OpenMPClauseKind Kind,
17244                                    SourceLocation StartLoc,
17245                                    SourceLocation EndLoc) {
17246   OMPClause *Res = nullptr;
17247   switch (Kind) {
17248   case OMPC_ordered:
17249     Res = ActOnOpenMPOrderedClause(StartLoc, EndLoc);
17250     break;
17251   case OMPC_nowait:
17252     Res = ActOnOpenMPNowaitClause(StartLoc, EndLoc);
17253     break;
17254   case OMPC_untied:
17255     Res = ActOnOpenMPUntiedClause(StartLoc, EndLoc);
17256     break;
17257   case OMPC_mergeable:
17258     Res = ActOnOpenMPMergeableClause(StartLoc, EndLoc);
17259     break;
17260   case OMPC_read:
17261     Res = ActOnOpenMPReadClause(StartLoc, EndLoc);
17262     break;
17263   case OMPC_write:
17264     Res = ActOnOpenMPWriteClause(StartLoc, EndLoc);
17265     break;
17266   case OMPC_update:
17267     Res = ActOnOpenMPUpdateClause(StartLoc, EndLoc);
17268     break;
17269   case OMPC_capture:
17270     Res = ActOnOpenMPCaptureClause(StartLoc, EndLoc);
17271     break;
17272   case OMPC_compare:
17273     Res = ActOnOpenMPCompareClause(StartLoc, EndLoc);
17274     break;
17275   case OMPC_seq_cst:
17276     Res = ActOnOpenMPSeqCstClause(StartLoc, EndLoc);
17277     break;
17278   case OMPC_acq_rel:
17279     Res = ActOnOpenMPAcqRelClause(StartLoc, EndLoc);
17280     break;
17281   case OMPC_acquire:
17282     Res = ActOnOpenMPAcquireClause(StartLoc, EndLoc);
17283     break;
17284   case OMPC_release:
17285     Res = ActOnOpenMPReleaseClause(StartLoc, EndLoc);
17286     break;
17287   case OMPC_relaxed:
17288     Res = ActOnOpenMPRelaxedClause(StartLoc, EndLoc);
17289     break;
17290   case OMPC_threads:
17291     Res = ActOnOpenMPThreadsClause(StartLoc, EndLoc);
17292     break;
17293   case OMPC_simd:
17294     Res = ActOnOpenMPSIMDClause(StartLoc, EndLoc);
17295     break;
17296   case OMPC_nogroup:
17297     Res = ActOnOpenMPNogroupClause(StartLoc, EndLoc);
17298     break;
17299   case OMPC_unified_address:
17300     Res = ActOnOpenMPUnifiedAddressClause(StartLoc, EndLoc);
17301     break;
17302   case OMPC_unified_shared_memory:
17303     Res = ActOnOpenMPUnifiedSharedMemoryClause(StartLoc, EndLoc);
17304     break;
17305   case OMPC_reverse_offload:
17306     Res = ActOnOpenMPReverseOffloadClause(StartLoc, EndLoc);
17307     break;
17308   case OMPC_dynamic_allocators:
17309     Res = ActOnOpenMPDynamicAllocatorsClause(StartLoc, EndLoc);
17310     break;
17311   case OMPC_destroy:
17312     Res = ActOnOpenMPDestroyClause(/*InteropVar=*/nullptr, StartLoc,
17313                                    /*LParenLoc=*/SourceLocation(),
17314                                    /*VarLoc=*/SourceLocation(), EndLoc);
17315     break;
17316   case OMPC_full:
17317     Res = ActOnOpenMPFullClause(StartLoc, EndLoc);
17318     break;
17319   case OMPC_partial:
17320     Res = ActOnOpenMPPartialClause(nullptr, StartLoc, /*LParenLoc=*/{}, EndLoc);
17321     break;
17322   case OMPC_if:
17323   case OMPC_final:
17324   case OMPC_num_threads:
17325   case OMPC_safelen:
17326   case OMPC_simdlen:
17327   case OMPC_sizes:
17328   case OMPC_allocator:
17329   case OMPC_collapse:
17330   case OMPC_schedule:
17331   case OMPC_private:
17332   case OMPC_firstprivate:
17333   case OMPC_lastprivate:
17334   case OMPC_shared:
17335   case OMPC_reduction:
17336   case OMPC_task_reduction:
17337   case OMPC_in_reduction:
17338   case OMPC_linear:
17339   case OMPC_aligned:
17340   case OMPC_copyin:
17341   case OMPC_copyprivate:
17342   case OMPC_default:
17343   case OMPC_proc_bind:
17344   case OMPC_threadprivate:
17345   case OMPC_allocate:
17346   case OMPC_flush:
17347   case OMPC_depobj:
17348   case OMPC_depend:
17349   case OMPC_device:
17350   case OMPC_map:
17351   case OMPC_num_teams:
17352   case OMPC_thread_limit:
17353   case OMPC_priority:
17354   case OMPC_grainsize:
17355   case OMPC_num_tasks:
17356   case OMPC_hint:
17357   case OMPC_dist_schedule:
17358   case OMPC_defaultmap:
17359   case OMPC_unknown:
17360   case OMPC_uniform:
17361   case OMPC_to:
17362   case OMPC_from:
17363   case OMPC_use_device_ptr:
17364   case OMPC_use_device_addr:
17365   case OMPC_is_device_ptr:
17366   case OMPC_has_device_addr:
17367   case OMPC_atomic_default_mem_order:
17368   case OMPC_device_type:
17369   case OMPC_match:
17370   case OMPC_nontemporal:
17371   case OMPC_order:
17372   case OMPC_at:
17373   case OMPC_severity:
17374   case OMPC_message:
17375   case OMPC_novariants:
17376   case OMPC_nocontext:
17377   case OMPC_detach:
17378   case OMPC_inclusive:
17379   case OMPC_exclusive:
17380   case OMPC_uses_allocators:
17381   case OMPC_affinity:
17382   case OMPC_when:
17383   case OMPC_ompx_dyn_cgroup_mem:
17384   default:
17385     llvm_unreachable("Clause is not allowed.");
17386   }
17387   return Res;
17388 }
17389 
17390 OMPClause *Sema::ActOnOpenMPNowaitClause(SourceLocation StartLoc,
17391                                          SourceLocation EndLoc) {
17392   DSAStack->setNowaitRegion();
17393   return new (Context) OMPNowaitClause(StartLoc, EndLoc);
17394 }
17395 
17396 OMPClause *Sema::ActOnOpenMPUntiedClause(SourceLocation StartLoc,
17397                                          SourceLocation EndLoc) {
17398   DSAStack->setUntiedRegion();
17399   return new (Context) OMPUntiedClause(StartLoc, EndLoc);
17400 }
17401 
17402 OMPClause *Sema::ActOnOpenMPMergeableClause(SourceLocation StartLoc,
17403                                             SourceLocation EndLoc) {
17404   return new (Context) OMPMergeableClause(StartLoc, EndLoc);
17405 }
17406 
17407 OMPClause *Sema::ActOnOpenMPReadClause(SourceLocation StartLoc,
17408                                        SourceLocation EndLoc) {
17409   return new (Context) OMPReadClause(StartLoc, EndLoc);
17410 }
17411 
17412 OMPClause *Sema::ActOnOpenMPWriteClause(SourceLocation StartLoc,
17413                                         SourceLocation EndLoc) {
17414   return new (Context) OMPWriteClause(StartLoc, EndLoc);
17415 }
17416 
17417 OMPClause *Sema::ActOnOpenMPUpdateClause(SourceLocation StartLoc,
17418                                          SourceLocation EndLoc) {
17419   return OMPUpdateClause::Create(Context, StartLoc, EndLoc);
17420 }
17421 
17422 OMPClause *Sema::ActOnOpenMPCaptureClause(SourceLocation StartLoc,
17423                                           SourceLocation EndLoc) {
17424   return new (Context) OMPCaptureClause(StartLoc, EndLoc);
17425 }
17426 
17427 OMPClause *Sema::ActOnOpenMPCompareClause(SourceLocation StartLoc,
17428                                           SourceLocation EndLoc) {
17429   return new (Context) OMPCompareClause(StartLoc, EndLoc);
17430 }
17431 
17432 OMPClause *Sema::ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
17433                                          SourceLocation EndLoc) {
17434   return new (Context) OMPSeqCstClause(StartLoc, EndLoc);
17435 }
17436 
17437 OMPClause *Sema::ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
17438                                          SourceLocation EndLoc) {
17439   return new (Context) OMPAcqRelClause(StartLoc, EndLoc);
17440 }
17441 
17442 OMPClause *Sema::ActOnOpenMPAcquireClause(SourceLocation StartLoc,
17443                                           SourceLocation EndLoc) {
17444   return new (Context) OMPAcquireClause(StartLoc, EndLoc);
17445 }
17446 
17447 OMPClause *Sema::ActOnOpenMPReleaseClause(SourceLocation StartLoc,
17448                                           SourceLocation EndLoc) {
17449   return new (Context) OMPReleaseClause(StartLoc, EndLoc);
17450 }
17451 
17452 OMPClause *Sema::ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
17453                                           SourceLocation EndLoc) {
17454   return new (Context) OMPRelaxedClause(StartLoc, EndLoc);
17455 }
17456 
17457 OMPClause *Sema::ActOnOpenMPThreadsClause(SourceLocation StartLoc,
17458                                           SourceLocation EndLoc) {
17459   return new (Context) OMPThreadsClause(StartLoc, EndLoc);
17460 }
17461 
17462 OMPClause *Sema::ActOnOpenMPSIMDClause(SourceLocation StartLoc,
17463                                        SourceLocation EndLoc) {
17464   return new (Context) OMPSIMDClause(StartLoc, EndLoc);
17465 }
17466 
17467 OMPClause *Sema::ActOnOpenMPNogroupClause(SourceLocation StartLoc,
17468                                           SourceLocation EndLoc) {
17469   return new (Context) OMPNogroupClause(StartLoc, EndLoc);
17470 }
17471 
17472 OMPClause *Sema::ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
17473                                                  SourceLocation EndLoc) {
17474   return new (Context) OMPUnifiedAddressClause(StartLoc, EndLoc);
17475 }
17476 
17477 OMPClause *Sema::ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
17478                                                       SourceLocation EndLoc) {
17479   return new (Context) OMPUnifiedSharedMemoryClause(StartLoc, EndLoc);
17480 }
17481 
17482 OMPClause *Sema::ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
17483                                                  SourceLocation EndLoc) {
17484   return new (Context) OMPReverseOffloadClause(StartLoc, EndLoc);
17485 }
17486 
17487 OMPClause *Sema::ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
17488                                                     SourceLocation EndLoc) {
17489   return new (Context) OMPDynamicAllocatorsClause(StartLoc, EndLoc);
17490 }
17491 
17492 StmtResult Sema::ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
17493                                              SourceLocation StartLoc,
17494                                              SourceLocation EndLoc) {
17495 
17496   // OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
17497   // At least one action-clause must appear on a directive.
17498   if (!hasClauses(Clauses, OMPC_init, OMPC_use, OMPC_destroy, OMPC_nowait)) {
17499     StringRef Expected = "'init', 'use', 'destroy', or 'nowait'";
17500     Diag(StartLoc, diag::err_omp_no_clause_for_directive)
17501         << Expected << getOpenMPDirectiveName(OMPD_interop);
17502     return StmtError();
17503   }
17504 
17505   // OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
17506   // A depend clause can only appear on the directive if a targetsync
17507   // interop-type is present or the interop-var was initialized with
17508   // the targetsync interop-type.
17509 
17510   // If there is any 'init' clause diagnose if there is no 'init' clause with
17511   // interop-type of 'targetsync'. Cases involving other directives cannot be
17512   // diagnosed.
17513   const OMPDependClause *DependClause = nullptr;
17514   bool HasInitClause = false;
17515   bool IsTargetSync = false;
17516   for (const OMPClause *C : Clauses) {
17517     if (IsTargetSync)
17518       break;
17519     if (const auto *InitClause = dyn_cast<OMPInitClause>(C)) {
17520       HasInitClause = true;
17521       if (InitClause->getIsTargetSync())
17522         IsTargetSync = true;
17523     } else if (const auto *DC = dyn_cast<OMPDependClause>(C)) {
17524       DependClause = DC;
17525     }
17526   }
17527   if (DependClause && HasInitClause && !IsTargetSync) {
17528     Diag(DependClause->getBeginLoc(), diag::err_omp_interop_bad_depend_clause);
17529     return StmtError();
17530   }
17531 
17532   // OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
17533   // Each interop-var may be specified for at most one action-clause of each
17534   // interop construct.
17535   llvm::SmallPtrSet<const ValueDecl *, 4> InteropVars;
17536   for (OMPClause *C : Clauses) {
17537     OpenMPClauseKind ClauseKind = C->getClauseKind();
17538     std::pair<ValueDecl *, bool> DeclResult;
17539     SourceLocation ELoc;
17540     SourceRange ERange;
17541 
17542     if (ClauseKind == OMPC_init) {
17543       auto *E = cast<OMPInitClause>(C)->getInteropVar();
17544       DeclResult = getPrivateItem(*this, E, ELoc, ERange);
17545     } else if (ClauseKind == OMPC_use) {
17546       auto *E = cast<OMPUseClause>(C)->getInteropVar();
17547       DeclResult = getPrivateItem(*this, E, ELoc, ERange);
17548     } else if (ClauseKind == OMPC_destroy) {
17549       auto *E = cast<OMPDestroyClause>(C)->getInteropVar();
17550       DeclResult = getPrivateItem(*this, E, ELoc, ERange);
17551     }
17552 
17553     if (DeclResult.first) {
17554       if (!InteropVars.insert(DeclResult.first).second) {
17555         Diag(ELoc, diag::err_omp_interop_var_multiple_actions)
17556             << DeclResult.first;
17557         return StmtError();
17558       }
17559     }
17560   }
17561 
17562   return OMPInteropDirective::Create(Context, StartLoc, EndLoc, Clauses);
17563 }
17564 
17565 static bool isValidInteropVariable(Sema &SemaRef, Expr *InteropVarExpr,
17566                                    SourceLocation VarLoc,
17567                                    OpenMPClauseKind Kind) {
17568   SourceLocation ELoc;
17569   SourceRange ERange;
17570   Expr *RefExpr = InteropVarExpr;
17571   auto Res =
17572       getPrivateItem(SemaRef, RefExpr, ELoc, ERange,
17573                      /*AllowArraySection=*/false, /*DiagType=*/"omp_interop_t");
17574 
17575   if (Res.second) {
17576     // It will be analyzed later.
17577     return true;
17578   }
17579 
17580   if (!Res.first)
17581     return false;
17582 
17583   // Interop variable should be of type omp_interop_t.
17584   bool HasError = false;
17585   QualType InteropType;
17586   LookupResult Result(SemaRef, &SemaRef.Context.Idents.get("omp_interop_t"),
17587                       VarLoc, Sema::LookupOrdinaryName);
17588   if (SemaRef.LookupName(Result, SemaRef.getCurScope())) {
17589     NamedDecl *ND = Result.getFoundDecl();
17590     if (const auto *TD = dyn_cast<TypeDecl>(ND)) {
17591       InteropType = QualType(TD->getTypeForDecl(), 0);
17592     } else {
17593       HasError = true;
17594     }
17595   } else {
17596     HasError = true;
17597   }
17598 
17599   if (HasError) {
17600     SemaRef.Diag(VarLoc, diag::err_omp_implied_type_not_found)
17601         << "omp_interop_t";
17602     return false;
17603   }
17604 
17605   QualType VarType = InteropVarExpr->getType().getUnqualifiedType();
17606   if (!SemaRef.Context.hasSameType(InteropType, VarType)) {
17607     SemaRef.Diag(VarLoc, diag::err_omp_interop_variable_wrong_type);
17608     return false;
17609   }
17610 
17611   // OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
17612   // The interop-var passed to init or destroy must be non-const.
17613   if ((Kind == OMPC_init || Kind == OMPC_destroy) &&
17614       isConstNotMutableType(SemaRef, InteropVarExpr->getType())) {
17615     SemaRef.Diag(VarLoc, diag::err_omp_interop_variable_expected)
17616         << /*non-const*/ 1;
17617     return false;
17618   }
17619   return true;
17620 }
17621 
17622 OMPClause *
17623 Sema::ActOnOpenMPInitClause(Expr *InteropVar, OMPInteropInfo &InteropInfo,
17624                             SourceLocation StartLoc, SourceLocation LParenLoc,
17625                             SourceLocation VarLoc, SourceLocation EndLoc) {
17626 
17627   if (!isValidInteropVariable(*this, InteropVar, VarLoc, OMPC_init))
17628     return nullptr;
17629 
17630   // Check prefer_type values.  These foreign-runtime-id values are either
17631   // string literals or constant integral expressions.
17632   for (const Expr *E : InteropInfo.PreferTypes) {
17633     if (E->isValueDependent() || E->isTypeDependent() ||
17634         E->isInstantiationDependent() || E->containsUnexpandedParameterPack())
17635       continue;
17636     if (E->isIntegerConstantExpr(Context))
17637       continue;
17638     if (isa<StringLiteral>(E))
17639       continue;
17640     Diag(E->getExprLoc(), diag::err_omp_interop_prefer_type);
17641     return nullptr;
17642   }
17643 
17644   return OMPInitClause::Create(Context, InteropVar, InteropInfo, StartLoc,
17645                                LParenLoc, VarLoc, EndLoc);
17646 }
17647 
17648 OMPClause *Sema::ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
17649                                       SourceLocation LParenLoc,
17650                                       SourceLocation VarLoc,
17651                                       SourceLocation EndLoc) {
17652 
17653   if (!isValidInteropVariable(*this, InteropVar, VarLoc, OMPC_use))
17654     return nullptr;
17655 
17656   return new (Context)
17657       OMPUseClause(InteropVar, StartLoc, LParenLoc, VarLoc, EndLoc);
17658 }
17659 
17660 OMPClause *Sema::ActOnOpenMPDestroyClause(Expr *InteropVar,
17661                                           SourceLocation StartLoc,
17662                                           SourceLocation LParenLoc,
17663                                           SourceLocation VarLoc,
17664                                           SourceLocation EndLoc) {
17665   if (InteropVar &&
17666       !isValidInteropVariable(*this, InteropVar, VarLoc, OMPC_destroy))
17667     return nullptr;
17668 
17669   return new (Context)
17670       OMPDestroyClause(InteropVar, StartLoc, LParenLoc, VarLoc, EndLoc);
17671 }
17672 
17673 OMPClause *Sema::ActOnOpenMPNovariantsClause(Expr *Condition,
17674                                              SourceLocation StartLoc,
17675                                              SourceLocation LParenLoc,
17676                                              SourceLocation EndLoc) {
17677   Expr *ValExpr = Condition;
17678   Stmt *HelperValStmt = nullptr;
17679   OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
17680   if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
17681       !Condition->isInstantiationDependent() &&
17682       !Condition->containsUnexpandedParameterPack()) {
17683     ExprResult Val = CheckBooleanCondition(StartLoc, Condition);
17684     if (Val.isInvalid())
17685       return nullptr;
17686 
17687     ValExpr = MakeFullExpr(Val.get()).get();
17688 
17689     OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
17690     CaptureRegion = getOpenMPCaptureRegionForClause(DKind, OMPC_novariants,
17691                                                     LangOpts.OpenMP);
17692     if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
17693       ValExpr = MakeFullExpr(ValExpr).get();
17694       llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
17695       ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
17696       HelperValStmt = buildPreInits(Context, Captures);
17697     }
17698   }
17699 
17700   return new (Context) OMPNovariantsClause(
17701       ValExpr, HelperValStmt, CaptureRegion, StartLoc, LParenLoc, EndLoc);
17702 }
17703 
17704 OMPClause *Sema::ActOnOpenMPNocontextClause(Expr *Condition,
17705                                             SourceLocation StartLoc,
17706                                             SourceLocation LParenLoc,
17707                                             SourceLocation EndLoc) {
17708   Expr *ValExpr = Condition;
17709   Stmt *HelperValStmt = nullptr;
17710   OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
17711   if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
17712       !Condition->isInstantiationDependent() &&
17713       !Condition->containsUnexpandedParameterPack()) {
17714     ExprResult Val = CheckBooleanCondition(StartLoc, Condition);
17715     if (Val.isInvalid())
17716       return nullptr;
17717 
17718     ValExpr = MakeFullExpr(Val.get()).get();
17719 
17720     OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
17721     CaptureRegion =
17722         getOpenMPCaptureRegionForClause(DKind, OMPC_nocontext, LangOpts.OpenMP);
17723     if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
17724       ValExpr = MakeFullExpr(ValExpr).get();
17725       llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
17726       ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
17727       HelperValStmt = buildPreInits(Context, Captures);
17728     }
17729   }
17730 
17731   return new (Context) OMPNocontextClause(ValExpr, HelperValStmt, CaptureRegion,
17732                                           StartLoc, LParenLoc, EndLoc);
17733 }
17734 
17735 OMPClause *Sema::ActOnOpenMPFilterClause(Expr *ThreadID,
17736                                          SourceLocation StartLoc,
17737                                          SourceLocation LParenLoc,
17738                                          SourceLocation EndLoc) {
17739   Expr *ValExpr = ThreadID;
17740   Stmt *HelperValStmt = nullptr;
17741 
17742   OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
17743   OpenMPDirectiveKind CaptureRegion =
17744       getOpenMPCaptureRegionForClause(DKind, OMPC_filter, LangOpts.OpenMP);
17745   if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
17746     ValExpr = MakeFullExpr(ValExpr).get();
17747     llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
17748     ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
17749     HelperValStmt = buildPreInits(Context, Captures);
17750   }
17751 
17752   return new (Context) OMPFilterClause(ValExpr, HelperValStmt, CaptureRegion,
17753                                        StartLoc, LParenLoc, EndLoc);
17754 }
17755 
17756 OMPClause *Sema::ActOnOpenMPVarListClause(OpenMPClauseKind Kind,
17757                                           ArrayRef<Expr *> VarList,
17758                                           const OMPVarListLocTy &Locs,
17759                                           OpenMPVarListDataTy &Data) {
17760   SourceLocation StartLoc = Locs.StartLoc;
17761   SourceLocation LParenLoc = Locs.LParenLoc;
17762   SourceLocation EndLoc = Locs.EndLoc;
17763   OMPClause *Res = nullptr;
17764   int ExtraModifier = Data.ExtraModifier;
17765   SourceLocation ExtraModifierLoc = Data.ExtraModifierLoc;
17766   SourceLocation ColonLoc = Data.ColonLoc;
17767   switch (Kind) {
17768   case OMPC_private:
17769     Res = ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc, EndLoc);
17770     break;
17771   case OMPC_firstprivate:
17772     Res = ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc, EndLoc);
17773     break;
17774   case OMPC_lastprivate:
17775     assert(0 <= ExtraModifier && ExtraModifier <= OMPC_LASTPRIVATE_unknown &&
17776            "Unexpected lastprivate modifier.");
17777     Res = ActOnOpenMPLastprivateClause(
17778         VarList, static_cast<OpenMPLastprivateModifier>(ExtraModifier),
17779         ExtraModifierLoc, ColonLoc, StartLoc, LParenLoc, EndLoc);
17780     break;
17781   case OMPC_shared:
17782     Res = ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc, EndLoc);
17783     break;
17784   case OMPC_reduction:
17785     assert(0 <= ExtraModifier && ExtraModifier <= OMPC_REDUCTION_unknown &&
17786            "Unexpected lastprivate modifier.");
17787     Res = ActOnOpenMPReductionClause(
17788         VarList, static_cast<OpenMPReductionClauseModifier>(ExtraModifier),
17789         StartLoc, LParenLoc, ExtraModifierLoc, ColonLoc, EndLoc,
17790         Data.ReductionOrMapperIdScopeSpec, Data.ReductionOrMapperId);
17791     break;
17792   case OMPC_task_reduction:
17793     Res = ActOnOpenMPTaskReductionClause(
17794         VarList, StartLoc, LParenLoc, ColonLoc, EndLoc,
17795         Data.ReductionOrMapperIdScopeSpec, Data.ReductionOrMapperId);
17796     break;
17797   case OMPC_in_reduction:
17798     Res = ActOnOpenMPInReductionClause(
17799         VarList, StartLoc, LParenLoc, ColonLoc, EndLoc,
17800         Data.ReductionOrMapperIdScopeSpec, Data.ReductionOrMapperId);
17801     break;
17802   case OMPC_linear:
17803     assert(0 <= ExtraModifier && ExtraModifier <= OMPC_LINEAR_unknown &&
17804            "Unexpected linear modifier.");
17805     Res = ActOnOpenMPLinearClause(
17806         VarList, Data.DepModOrTailExpr, StartLoc, LParenLoc,
17807         static_cast<OpenMPLinearClauseKind>(ExtraModifier), ExtraModifierLoc,
17808         ColonLoc, EndLoc);
17809     break;
17810   case OMPC_aligned:
17811     Res = ActOnOpenMPAlignedClause(VarList, Data.DepModOrTailExpr, StartLoc,
17812                                    LParenLoc, ColonLoc, EndLoc);
17813     break;
17814   case OMPC_copyin:
17815     Res = ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc, EndLoc);
17816     break;
17817   case OMPC_copyprivate:
17818     Res = ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc, EndLoc);
17819     break;
17820   case OMPC_flush:
17821     Res = ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc, EndLoc);
17822     break;
17823   case OMPC_depend:
17824     assert(0 <= ExtraModifier && ExtraModifier <= OMPC_DEPEND_unknown &&
17825            "Unexpected depend modifier.");
17826     Res = ActOnOpenMPDependClause(
17827         {static_cast<OpenMPDependClauseKind>(ExtraModifier), ExtraModifierLoc,
17828          ColonLoc, Data.OmpAllMemoryLoc},
17829         Data.DepModOrTailExpr, VarList, StartLoc, LParenLoc, EndLoc);
17830     break;
17831   case OMPC_map:
17832     assert(0 <= ExtraModifier && ExtraModifier <= OMPC_MAP_unknown &&
17833            "Unexpected map modifier.");
17834     Res = ActOnOpenMPMapClause(
17835         Data.IteratorExpr, Data.MapTypeModifiers, Data.MapTypeModifiersLoc,
17836         Data.ReductionOrMapperIdScopeSpec, Data.ReductionOrMapperId,
17837         static_cast<OpenMPMapClauseKind>(ExtraModifier), Data.IsMapTypeImplicit,
17838         ExtraModifierLoc, ColonLoc, VarList, Locs);
17839     break;
17840   case OMPC_to:
17841     Res =
17842         ActOnOpenMPToClause(Data.MotionModifiers, Data.MotionModifiersLoc,
17843                             Data.ReductionOrMapperIdScopeSpec,
17844                             Data.ReductionOrMapperId, ColonLoc, VarList, Locs);
17845     break;
17846   case OMPC_from:
17847     Res = ActOnOpenMPFromClause(Data.MotionModifiers, Data.MotionModifiersLoc,
17848                                 Data.ReductionOrMapperIdScopeSpec,
17849                                 Data.ReductionOrMapperId, ColonLoc, VarList,
17850                                 Locs);
17851     break;
17852   case OMPC_use_device_ptr:
17853     Res = ActOnOpenMPUseDevicePtrClause(VarList, Locs);
17854     break;
17855   case OMPC_use_device_addr:
17856     Res = ActOnOpenMPUseDeviceAddrClause(VarList, Locs);
17857     break;
17858   case OMPC_is_device_ptr:
17859     Res = ActOnOpenMPIsDevicePtrClause(VarList, Locs);
17860     break;
17861   case OMPC_has_device_addr:
17862     Res = ActOnOpenMPHasDeviceAddrClause(VarList, Locs);
17863     break;
17864   case OMPC_allocate:
17865     Res = ActOnOpenMPAllocateClause(Data.DepModOrTailExpr, VarList, StartLoc,
17866                                     LParenLoc, ColonLoc, EndLoc);
17867     break;
17868   case OMPC_nontemporal:
17869     Res = ActOnOpenMPNontemporalClause(VarList, StartLoc, LParenLoc, EndLoc);
17870     break;
17871   case OMPC_inclusive:
17872     Res = ActOnOpenMPInclusiveClause(VarList, StartLoc, LParenLoc, EndLoc);
17873     break;
17874   case OMPC_exclusive:
17875     Res = ActOnOpenMPExclusiveClause(VarList, StartLoc, LParenLoc, EndLoc);
17876     break;
17877   case OMPC_affinity:
17878     Res = ActOnOpenMPAffinityClause(StartLoc, LParenLoc, ColonLoc, EndLoc,
17879                                     Data.DepModOrTailExpr, VarList);
17880     break;
17881   case OMPC_if:
17882   case OMPC_depobj:
17883   case OMPC_final:
17884   case OMPC_num_threads:
17885   case OMPC_safelen:
17886   case OMPC_simdlen:
17887   case OMPC_sizes:
17888   case OMPC_allocator:
17889   case OMPC_collapse:
17890   case OMPC_default:
17891   case OMPC_proc_bind:
17892   case OMPC_schedule:
17893   case OMPC_ordered:
17894   case OMPC_nowait:
17895   case OMPC_untied:
17896   case OMPC_mergeable:
17897   case OMPC_threadprivate:
17898   case OMPC_read:
17899   case OMPC_write:
17900   case OMPC_update:
17901   case OMPC_capture:
17902   case OMPC_compare:
17903   case OMPC_seq_cst:
17904   case OMPC_acq_rel:
17905   case OMPC_acquire:
17906   case OMPC_release:
17907   case OMPC_relaxed:
17908   case OMPC_device:
17909   case OMPC_threads:
17910   case OMPC_simd:
17911   case OMPC_num_teams:
17912   case OMPC_thread_limit:
17913   case OMPC_priority:
17914   case OMPC_grainsize:
17915   case OMPC_nogroup:
17916   case OMPC_num_tasks:
17917   case OMPC_hint:
17918   case OMPC_dist_schedule:
17919   case OMPC_defaultmap:
17920   case OMPC_unknown:
17921   case OMPC_uniform:
17922   case OMPC_unified_address:
17923   case OMPC_unified_shared_memory:
17924   case OMPC_reverse_offload:
17925   case OMPC_dynamic_allocators:
17926   case OMPC_atomic_default_mem_order:
17927   case OMPC_device_type:
17928   case OMPC_match:
17929   case OMPC_order:
17930   case OMPC_at:
17931   case OMPC_severity:
17932   case OMPC_message:
17933   case OMPC_destroy:
17934   case OMPC_novariants:
17935   case OMPC_nocontext:
17936   case OMPC_detach:
17937   case OMPC_uses_allocators:
17938   case OMPC_when:
17939   case OMPC_bind:
17940   default:
17941     llvm_unreachable("Clause is not allowed.");
17942   }
17943   return Res;
17944 }
17945 
17946 ExprResult Sema::getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
17947                                        ExprObjectKind OK, SourceLocation Loc) {
17948   ExprResult Res = BuildDeclRefExpr(
17949       Capture, Capture->getType().getNonReferenceType(), VK_LValue, Loc);
17950   if (!Res.isUsable())
17951     return ExprError();
17952   if (OK == OK_Ordinary && !getLangOpts().CPlusPlus) {
17953     Res = CreateBuiltinUnaryOp(Loc, UO_Deref, Res.get());
17954     if (!Res.isUsable())
17955       return ExprError();
17956   }
17957   if (VK != VK_LValue && Res.get()->isGLValue()) {
17958     Res = DefaultLvalueConversion(Res.get());
17959     if (!Res.isUsable())
17960       return ExprError();
17961   }
17962   return Res;
17963 }
17964 
17965 OMPClause *Sema::ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
17966                                           SourceLocation StartLoc,
17967                                           SourceLocation LParenLoc,
17968                                           SourceLocation EndLoc) {
17969   SmallVector<Expr *, 8> Vars;
17970   SmallVector<Expr *, 8> PrivateCopies;
17971   bool IsImplicitClause =
17972       StartLoc.isInvalid() && LParenLoc.isInvalid() && EndLoc.isInvalid();
17973   for (Expr *RefExpr : VarList) {
17974     assert(RefExpr && "NULL expr in OpenMP private clause.");
17975     SourceLocation ELoc;
17976     SourceRange ERange;
17977     Expr *SimpleRefExpr = RefExpr;
17978     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
17979     if (Res.second) {
17980       // It will be analyzed later.
17981       Vars.push_back(RefExpr);
17982       PrivateCopies.push_back(nullptr);
17983     }
17984     ValueDecl *D = Res.first;
17985     if (!D)
17986       continue;
17987 
17988     QualType Type = D->getType();
17989     auto *VD = dyn_cast<VarDecl>(D);
17990 
17991     // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
17992     //  A variable that appears in a private clause must not have an incomplete
17993     //  type or a reference type.
17994     if (RequireCompleteType(ELoc, Type, diag::err_omp_private_incomplete_type))
17995       continue;
17996     Type = Type.getNonReferenceType();
17997 
17998     // OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
17999     // A variable that is privatized must not have a const-qualified type
18000     // unless it is of class type with a mutable member. This restriction does
18001     // not apply to the firstprivate clause.
18002     //
18003     // OpenMP 3.1 [2.9.3.3, private clause, Restrictions]
18004     // A variable that appears in a private clause must not have a
18005     // const-qualified type unless it is of class type with a mutable member.
18006     if (rejectConstNotMutableType(*this, D, Type, OMPC_private, ELoc))
18007       continue;
18008 
18009     // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
18010     // in a Construct]
18011     //  Variables with the predetermined data-sharing attributes may not be
18012     //  listed in data-sharing attributes clauses, except for the cases
18013     //  listed below. For these exceptions only, listing a predetermined
18014     //  variable in a data-sharing attribute clause is allowed and overrides
18015     //  the variable's predetermined data-sharing attributes.
18016     DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
18017     if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_private) {
18018       Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
18019                                           << getOpenMPClauseName(OMPC_private);
18020       reportOriginalDsa(*this, DSAStack, D, DVar);
18021       continue;
18022     }
18023 
18024     OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
18025     // Variably modified types are not supported for tasks.
18026     if (!Type->isAnyPointerType() && Type->isVariablyModifiedType() &&
18027         isOpenMPTaskingDirective(CurrDir)) {
18028       Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
18029           << getOpenMPClauseName(OMPC_private) << Type
18030           << getOpenMPDirectiveName(CurrDir);
18031       bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
18032                                VarDecl::DeclarationOnly;
18033       Diag(D->getLocation(),
18034            IsDecl ? diag::note_previous_decl : diag::note_defined_here)
18035           << D;
18036       continue;
18037     }
18038 
18039     // OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
18040     // A list item cannot appear in both a map clause and a data-sharing
18041     // attribute clause on the same construct
18042     //
18043     // OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
18044     // A list item cannot appear in both a map clause and a data-sharing
18045     // attribute clause on the same construct unless the construct is a
18046     // combined construct.
18047     if ((LangOpts.OpenMP <= 45 && isOpenMPTargetExecutionDirective(CurrDir)) ||
18048         CurrDir == OMPD_target) {
18049       OpenMPClauseKind ConflictKind;
18050       if (DSAStack->checkMappableExprComponentListsForDecl(
18051               VD, /*CurrentRegionOnly=*/true,
18052               [&](OMPClauseMappableExprCommon::MappableExprComponentListRef,
18053                   OpenMPClauseKind WhereFoundClauseKind) -> bool {
18054                 ConflictKind = WhereFoundClauseKind;
18055                 return true;
18056               })) {
18057         Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
18058             << getOpenMPClauseName(OMPC_private)
18059             << getOpenMPClauseName(ConflictKind)
18060             << getOpenMPDirectiveName(CurrDir);
18061         reportOriginalDsa(*this, DSAStack, D, DVar);
18062         continue;
18063       }
18064     }
18065 
18066     // OpenMP [2.9.3.3, Restrictions, C/C++, p.1]
18067     //  A variable of class type (or array thereof) that appears in a private
18068     //  clause requires an accessible, unambiguous default constructor for the
18069     //  class type.
18070     // Generate helper private variable and initialize it with the default
18071     // value. The address of the original variable is replaced by the address of
18072     // the new private variable in CodeGen. This new variable is not added to
18073     // IdResolver, so the code in the OpenMP region uses original variable for
18074     // proper diagnostics.
18075     Type = Type.getUnqualifiedType();
18076     VarDecl *VDPrivate =
18077         buildVarDecl(*this, ELoc, Type, D->getName(),
18078                      D->hasAttrs() ? &D->getAttrs() : nullptr,
18079                      VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
18080     ActOnUninitializedDecl(VDPrivate);
18081     if (VDPrivate->isInvalidDecl())
18082       continue;
18083     DeclRefExpr *VDPrivateRefExpr = buildDeclRefExpr(
18084         *this, VDPrivate, RefExpr->getType().getUnqualifiedType(), ELoc);
18085 
18086     DeclRefExpr *Ref = nullptr;
18087     if (!VD && !CurContext->isDependentContext()) {
18088       auto *FD = dyn_cast<FieldDecl>(D);
18089       VarDecl *VD = FD ? DSAStack->getImplicitFDCapExprDecl(FD) : nullptr;
18090       if (VD)
18091         Ref = buildDeclRefExpr(*this, VD, VD->getType().getNonReferenceType(),
18092                                RefExpr->getExprLoc());
18093       else
18094         Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false);
18095     }
18096     if (!IsImplicitClause)
18097       DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_private, Ref);
18098     Vars.push_back((VD || CurContext->isDependentContext())
18099                        ? RefExpr->IgnoreParens()
18100                        : Ref);
18101     PrivateCopies.push_back(VDPrivateRefExpr);
18102   }
18103 
18104   if (Vars.empty())
18105     return nullptr;
18106 
18107   return OMPPrivateClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars,
18108                                   PrivateCopies);
18109 }
18110 
18111 OMPClause *Sema::ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
18112                                                SourceLocation StartLoc,
18113                                                SourceLocation LParenLoc,
18114                                                SourceLocation EndLoc) {
18115   SmallVector<Expr *, 8> Vars;
18116   SmallVector<Expr *, 8> PrivateCopies;
18117   SmallVector<Expr *, 8> Inits;
18118   SmallVector<Decl *, 4> ExprCaptures;
18119   bool IsImplicitClause =
18120       StartLoc.isInvalid() && LParenLoc.isInvalid() && EndLoc.isInvalid();
18121   SourceLocation ImplicitClauseLoc = DSAStack->getConstructLoc();
18122 
18123   for (Expr *RefExpr : VarList) {
18124     assert(RefExpr && "NULL expr in OpenMP firstprivate clause.");
18125     SourceLocation ELoc;
18126     SourceRange ERange;
18127     Expr *SimpleRefExpr = RefExpr;
18128     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
18129     if (Res.second) {
18130       // It will be analyzed later.
18131       Vars.push_back(RefExpr);
18132       PrivateCopies.push_back(nullptr);
18133       Inits.push_back(nullptr);
18134     }
18135     ValueDecl *D = Res.first;
18136     if (!D)
18137       continue;
18138 
18139     ELoc = IsImplicitClause ? ImplicitClauseLoc : ELoc;
18140     QualType Type = D->getType();
18141     auto *VD = dyn_cast<VarDecl>(D);
18142 
18143     // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
18144     //  A variable that appears in a private clause must not have an incomplete
18145     //  type or a reference type.
18146     if (RequireCompleteType(ELoc, Type,
18147                             diag::err_omp_firstprivate_incomplete_type))
18148       continue;
18149     Type = Type.getNonReferenceType();
18150 
18151     // OpenMP [2.9.3.4, Restrictions, C/C++, p.1]
18152     //  A variable of class type (or array thereof) that appears in a private
18153     //  clause requires an accessible, unambiguous copy constructor for the
18154     //  class type.
18155     QualType ElemType = Context.getBaseElementType(Type).getNonReferenceType();
18156 
18157     // If an implicit firstprivate variable found it was checked already.
18158     DSAStackTy::DSAVarData TopDVar;
18159     if (!IsImplicitClause) {
18160       DSAStackTy::DSAVarData DVar =
18161           DSAStack->getTopDSA(D, /*FromParent=*/false);
18162       TopDVar = DVar;
18163       OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
18164       bool IsConstant = ElemType.isConstant(Context);
18165       // OpenMP [2.4.13, Data-sharing Attribute Clauses]
18166       //  A list item that specifies a given variable may not appear in more
18167       // than one clause on the same directive, except that a variable may be
18168       //  specified in both firstprivate and lastprivate clauses.
18169       // OpenMP 4.5 [2.10.8, Distribute Construct, p.3]
18170       // A list item may appear in a firstprivate or lastprivate clause but not
18171       // both.
18172       if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_firstprivate &&
18173           (isOpenMPDistributeDirective(CurrDir) ||
18174            DVar.CKind != OMPC_lastprivate) &&
18175           DVar.RefExpr) {
18176         Diag(ELoc, diag::err_omp_wrong_dsa)
18177             << getOpenMPClauseName(DVar.CKind)
18178             << getOpenMPClauseName(OMPC_firstprivate);
18179         reportOriginalDsa(*this, DSAStack, D, DVar);
18180         continue;
18181       }
18182 
18183       // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
18184       // in a Construct]
18185       //  Variables with the predetermined data-sharing attributes may not be
18186       //  listed in data-sharing attributes clauses, except for the cases
18187       //  listed below. For these exceptions only, listing a predetermined
18188       //  variable in a data-sharing attribute clause is allowed and overrides
18189       //  the variable's predetermined data-sharing attributes.
18190       // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
18191       // in a Construct, C/C++, p.2]
18192       //  Variables with const-qualified type having no mutable member may be
18193       //  listed in a firstprivate clause, even if they are static data members.
18194       if (!(IsConstant || (VD && VD->isStaticDataMember())) && !DVar.RefExpr &&
18195           DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_shared) {
18196         Diag(ELoc, diag::err_omp_wrong_dsa)
18197             << getOpenMPClauseName(DVar.CKind)
18198             << getOpenMPClauseName(OMPC_firstprivate);
18199         reportOriginalDsa(*this, DSAStack, D, DVar);
18200         continue;
18201       }
18202 
18203       // OpenMP [2.9.3.4, Restrictions, p.2]
18204       //  A list item that is private within a parallel region must not appear
18205       //  in a firstprivate clause on a worksharing construct if any of the
18206       //  worksharing regions arising from the worksharing construct ever bind
18207       //  to any of the parallel regions arising from the parallel construct.
18208       // OpenMP 4.5 [2.15.3.4, Restrictions, p.3]
18209       // A list item that is private within a teams region must not appear in a
18210       // firstprivate clause on a distribute construct if any of the distribute
18211       // regions arising from the distribute construct ever bind to any of the
18212       // teams regions arising from the teams construct.
18213       // OpenMP 4.5 [2.15.3.4, Restrictions, p.3]
18214       // A list item that appears in a reduction clause of a teams construct
18215       // must not appear in a firstprivate clause on a distribute construct if
18216       // any of the distribute regions arising from the distribute construct
18217       // ever bind to any of the teams regions arising from the teams construct.
18218       if ((isOpenMPWorksharingDirective(CurrDir) ||
18219            isOpenMPDistributeDirective(CurrDir)) &&
18220           !isOpenMPParallelDirective(CurrDir) &&
18221           !isOpenMPTeamsDirective(CurrDir)) {
18222         DVar = DSAStack->getImplicitDSA(D, true);
18223         if (DVar.CKind != OMPC_shared &&
18224             (isOpenMPParallelDirective(DVar.DKind) ||
18225              isOpenMPTeamsDirective(DVar.DKind) ||
18226              DVar.DKind == OMPD_unknown)) {
18227           Diag(ELoc, diag::err_omp_required_access)
18228               << getOpenMPClauseName(OMPC_firstprivate)
18229               << getOpenMPClauseName(OMPC_shared);
18230           reportOriginalDsa(*this, DSAStack, D, DVar);
18231           continue;
18232         }
18233       }
18234       // OpenMP [2.9.3.4, Restrictions, p.3]
18235       //  A list item that appears in a reduction clause of a parallel construct
18236       //  must not appear in a firstprivate clause on a worksharing or task
18237       //  construct if any of the worksharing or task regions arising from the
18238       //  worksharing or task construct ever bind to any of the parallel regions
18239       //  arising from the parallel construct.
18240       // OpenMP [2.9.3.4, Restrictions, p.4]
18241       //  A list item that appears in a reduction clause in worksharing
18242       //  construct must not appear in a firstprivate clause in a task construct
18243       //  encountered during execution of any of the worksharing regions arising
18244       //  from the worksharing construct.
18245       if (isOpenMPTaskingDirective(CurrDir)) {
18246         DVar = DSAStack->hasInnermostDSA(
18247             D,
18248             [](OpenMPClauseKind C, bool AppliedToPointee) {
18249               return C == OMPC_reduction && !AppliedToPointee;
18250             },
18251             [](OpenMPDirectiveKind K) {
18252               return isOpenMPParallelDirective(K) ||
18253                      isOpenMPWorksharingDirective(K) ||
18254                      isOpenMPTeamsDirective(K);
18255             },
18256             /*FromParent=*/true);
18257         if (DVar.CKind == OMPC_reduction &&
18258             (isOpenMPParallelDirective(DVar.DKind) ||
18259              isOpenMPWorksharingDirective(DVar.DKind) ||
18260              isOpenMPTeamsDirective(DVar.DKind))) {
18261           Diag(ELoc, diag::err_omp_parallel_reduction_in_task_firstprivate)
18262               << getOpenMPDirectiveName(DVar.DKind);
18263           reportOriginalDsa(*this, DSAStack, D, DVar);
18264           continue;
18265         }
18266       }
18267 
18268       // OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
18269       // A list item cannot appear in both a map clause and a data-sharing
18270       // attribute clause on the same construct
18271       //
18272       // OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
18273       // A list item cannot appear in both a map clause and a data-sharing
18274       // attribute clause on the same construct unless the construct is a
18275       // combined construct.
18276       if ((LangOpts.OpenMP <= 45 &&
18277            isOpenMPTargetExecutionDirective(CurrDir)) ||
18278           CurrDir == OMPD_target) {
18279         OpenMPClauseKind ConflictKind;
18280         if (DSAStack->checkMappableExprComponentListsForDecl(
18281                 VD, /*CurrentRegionOnly=*/true,
18282                 [&ConflictKind](
18283                     OMPClauseMappableExprCommon::MappableExprComponentListRef,
18284                     OpenMPClauseKind WhereFoundClauseKind) {
18285                   ConflictKind = WhereFoundClauseKind;
18286                   return true;
18287                 })) {
18288           Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
18289               << getOpenMPClauseName(OMPC_firstprivate)
18290               << getOpenMPClauseName(ConflictKind)
18291               << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
18292           reportOriginalDsa(*this, DSAStack, D, DVar);
18293           continue;
18294         }
18295       }
18296     }
18297 
18298     // Variably modified types are not supported for tasks.
18299     if (!Type->isAnyPointerType() && Type->isVariablyModifiedType() &&
18300         isOpenMPTaskingDirective(DSAStack->getCurrentDirective())) {
18301       Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
18302           << getOpenMPClauseName(OMPC_firstprivate) << Type
18303           << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
18304       bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
18305                                VarDecl::DeclarationOnly;
18306       Diag(D->getLocation(),
18307            IsDecl ? diag::note_previous_decl : diag::note_defined_here)
18308           << D;
18309       continue;
18310     }
18311 
18312     Type = Type.getUnqualifiedType();
18313     VarDecl *VDPrivate =
18314         buildVarDecl(*this, ELoc, Type, D->getName(),
18315                      D->hasAttrs() ? &D->getAttrs() : nullptr,
18316                      VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
18317     // Generate helper private variable and initialize it with the value of the
18318     // original variable. The address of the original variable is replaced by
18319     // the address of the new private variable in the CodeGen. This new variable
18320     // is not added to IdResolver, so the code in the OpenMP region uses
18321     // original variable for proper diagnostics and variable capturing.
18322     Expr *VDInitRefExpr = nullptr;
18323     // For arrays generate initializer for single element and replace it by the
18324     // original array element in CodeGen.
18325     if (Type->isArrayType()) {
18326       VarDecl *VDInit =
18327           buildVarDecl(*this, RefExpr->getExprLoc(), ElemType, D->getName());
18328       VDInitRefExpr = buildDeclRefExpr(*this, VDInit, ElemType, ELoc);
18329       Expr *Init = DefaultLvalueConversion(VDInitRefExpr).get();
18330       ElemType = ElemType.getUnqualifiedType();
18331       VarDecl *VDInitTemp = buildVarDecl(*this, RefExpr->getExprLoc(), ElemType,
18332                                          ".firstprivate.temp");
18333       InitializedEntity Entity =
18334           InitializedEntity::InitializeVariable(VDInitTemp);
18335       InitializationKind Kind = InitializationKind::CreateCopy(ELoc, ELoc);
18336 
18337       InitializationSequence InitSeq(*this, Entity, Kind, Init);
18338       ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Init);
18339       if (Result.isInvalid())
18340         VDPrivate->setInvalidDecl();
18341       else
18342         VDPrivate->setInit(Result.getAs<Expr>());
18343       // Remove temp variable declaration.
18344       Context.Deallocate(VDInitTemp);
18345     } else {
18346       VarDecl *VDInit = buildVarDecl(*this, RefExpr->getExprLoc(), Type,
18347                                      ".firstprivate.temp");
18348       VDInitRefExpr = buildDeclRefExpr(*this, VDInit, RefExpr->getType(),
18349                                        RefExpr->getExprLoc());
18350       AddInitializerToDecl(VDPrivate,
18351                            DefaultLvalueConversion(VDInitRefExpr).get(),
18352                            /*DirectInit=*/false);
18353     }
18354     if (VDPrivate->isInvalidDecl()) {
18355       if (IsImplicitClause) {
18356         Diag(RefExpr->getExprLoc(),
18357              diag::note_omp_task_predetermined_firstprivate_here);
18358       }
18359       continue;
18360     }
18361     CurContext->addDecl(VDPrivate);
18362     DeclRefExpr *VDPrivateRefExpr = buildDeclRefExpr(
18363         *this, VDPrivate, RefExpr->getType().getUnqualifiedType(),
18364         RefExpr->getExprLoc());
18365     DeclRefExpr *Ref = nullptr;
18366     if (!VD && !CurContext->isDependentContext()) {
18367       if (TopDVar.CKind == OMPC_lastprivate) {
18368         Ref = TopDVar.PrivateCopy;
18369       } else {
18370         auto *FD = dyn_cast<FieldDecl>(D);
18371         VarDecl *VD = FD ? DSAStack->getImplicitFDCapExprDecl(FD) : nullptr;
18372         if (VD)
18373           Ref = buildDeclRefExpr(*this, VD, VD->getType().getNonReferenceType(),
18374                                  RefExpr->getExprLoc());
18375         else
18376           Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
18377         if (VD || !isOpenMPCapturedDecl(D))
18378           ExprCaptures.push_back(Ref->getDecl());
18379       }
18380     }
18381     if (!IsImplicitClause)
18382       DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_firstprivate, Ref);
18383     Vars.push_back((VD || CurContext->isDependentContext())
18384                        ? RefExpr->IgnoreParens()
18385                        : Ref);
18386     PrivateCopies.push_back(VDPrivateRefExpr);
18387     Inits.push_back(VDInitRefExpr);
18388   }
18389 
18390   if (Vars.empty())
18391     return nullptr;
18392 
18393   return OMPFirstprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
18394                                        Vars, PrivateCopies, Inits,
18395                                        buildPreInits(Context, ExprCaptures));
18396 }
18397 
18398 OMPClause *Sema::ActOnOpenMPLastprivateClause(
18399     ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
18400     SourceLocation LPKindLoc, SourceLocation ColonLoc, SourceLocation StartLoc,
18401     SourceLocation LParenLoc, SourceLocation EndLoc) {
18402   if (LPKind == OMPC_LASTPRIVATE_unknown && LPKindLoc.isValid()) {
18403     assert(ColonLoc.isValid() && "Colon location must be valid.");
18404     Diag(LPKindLoc, diag::err_omp_unexpected_clause_value)
18405         << getListOfPossibleValues(OMPC_lastprivate, /*First=*/0,
18406                                    /*Last=*/OMPC_LASTPRIVATE_unknown)
18407         << getOpenMPClauseName(OMPC_lastprivate);
18408     return nullptr;
18409   }
18410 
18411   SmallVector<Expr *, 8> Vars;
18412   SmallVector<Expr *, 8> SrcExprs;
18413   SmallVector<Expr *, 8> DstExprs;
18414   SmallVector<Expr *, 8> AssignmentOps;
18415   SmallVector<Decl *, 4> ExprCaptures;
18416   SmallVector<Expr *, 4> ExprPostUpdates;
18417   for (Expr *RefExpr : VarList) {
18418     assert(RefExpr && "NULL expr in OpenMP lastprivate clause.");
18419     SourceLocation ELoc;
18420     SourceRange ERange;
18421     Expr *SimpleRefExpr = RefExpr;
18422     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
18423     if (Res.second) {
18424       // It will be analyzed later.
18425       Vars.push_back(RefExpr);
18426       SrcExprs.push_back(nullptr);
18427       DstExprs.push_back(nullptr);
18428       AssignmentOps.push_back(nullptr);
18429     }
18430     ValueDecl *D = Res.first;
18431     if (!D)
18432       continue;
18433 
18434     QualType Type = D->getType();
18435     auto *VD = dyn_cast<VarDecl>(D);
18436 
18437     // OpenMP [2.14.3.5, Restrictions, C/C++, p.2]
18438     //  A variable that appears in a lastprivate clause must not have an
18439     //  incomplete type or a reference type.
18440     if (RequireCompleteType(ELoc, Type,
18441                             diag::err_omp_lastprivate_incomplete_type))
18442       continue;
18443     Type = Type.getNonReferenceType();
18444 
18445     // OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
18446     // A variable that is privatized must not have a const-qualified type
18447     // unless it is of class type with a mutable member. This restriction does
18448     // not apply to the firstprivate clause.
18449     //
18450     // OpenMP 3.1 [2.9.3.5, lastprivate clause, Restrictions]
18451     // A variable that appears in a lastprivate clause must not have a
18452     // const-qualified type unless it is of class type with a mutable member.
18453     if (rejectConstNotMutableType(*this, D, Type, OMPC_lastprivate, ELoc))
18454       continue;
18455 
18456     // OpenMP 5.0 [2.19.4.5 lastprivate Clause, Restrictions]
18457     // A list item that appears in a lastprivate clause with the conditional
18458     // modifier must be a scalar variable.
18459     if (LPKind == OMPC_LASTPRIVATE_conditional && !Type->isScalarType()) {
18460       Diag(ELoc, diag::err_omp_lastprivate_conditional_non_scalar);
18461       bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
18462                                VarDecl::DeclarationOnly;
18463       Diag(D->getLocation(),
18464            IsDecl ? diag::note_previous_decl : diag::note_defined_here)
18465           << D;
18466       continue;
18467     }
18468 
18469     OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
18470     // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced
18471     // in a Construct]
18472     //  Variables with the predetermined data-sharing attributes may not be
18473     //  listed in data-sharing attributes clauses, except for the cases
18474     //  listed below.
18475     // OpenMP 4.5 [2.10.8, Distribute Construct, p.3]
18476     // A list item may appear in a firstprivate or lastprivate clause but not
18477     // both.
18478     DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
18479     if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_lastprivate &&
18480         (isOpenMPDistributeDirective(CurrDir) ||
18481          DVar.CKind != OMPC_firstprivate) &&
18482         (DVar.CKind != OMPC_private || DVar.RefExpr != nullptr)) {
18483       Diag(ELoc, diag::err_omp_wrong_dsa)
18484           << getOpenMPClauseName(DVar.CKind)
18485           << getOpenMPClauseName(OMPC_lastprivate);
18486       reportOriginalDsa(*this, DSAStack, D, DVar);
18487       continue;
18488     }
18489 
18490     // OpenMP [2.14.3.5, Restrictions, p.2]
18491     // A list item that is private within a parallel region, or that appears in
18492     // the reduction clause of a parallel construct, must not appear in a
18493     // lastprivate clause on a worksharing construct if any of the corresponding
18494     // worksharing regions ever binds to any of the corresponding parallel
18495     // regions.
18496     DSAStackTy::DSAVarData TopDVar = DVar;
18497     if (isOpenMPWorksharingDirective(CurrDir) &&
18498         !isOpenMPParallelDirective(CurrDir) &&
18499         !isOpenMPTeamsDirective(CurrDir)) {
18500       DVar = DSAStack->getImplicitDSA(D, true);
18501       if (DVar.CKind != OMPC_shared) {
18502         Diag(ELoc, diag::err_omp_required_access)
18503             << getOpenMPClauseName(OMPC_lastprivate)
18504             << getOpenMPClauseName(OMPC_shared);
18505         reportOriginalDsa(*this, DSAStack, D, DVar);
18506         continue;
18507       }
18508     }
18509 
18510     // OpenMP [2.14.3.5, Restrictions, C++, p.1,2]
18511     //  A variable of class type (or array thereof) that appears in a
18512     //  lastprivate clause requires an accessible, unambiguous default
18513     //  constructor for the class type, unless the list item is also specified
18514     //  in a firstprivate clause.
18515     //  A variable of class type (or array thereof) that appears in a
18516     //  lastprivate clause requires an accessible, unambiguous copy assignment
18517     //  operator for the class type.
18518     Type = Context.getBaseElementType(Type).getNonReferenceType();
18519     VarDecl *SrcVD = buildVarDecl(*this, ERange.getBegin(),
18520                                   Type.getUnqualifiedType(), ".lastprivate.src",
18521                                   D->hasAttrs() ? &D->getAttrs() : nullptr);
18522     DeclRefExpr *PseudoSrcExpr =
18523         buildDeclRefExpr(*this, SrcVD, Type.getUnqualifiedType(), ELoc);
18524     VarDecl *DstVD =
18525         buildVarDecl(*this, ERange.getBegin(), Type, ".lastprivate.dst",
18526                      D->hasAttrs() ? &D->getAttrs() : nullptr);
18527     DeclRefExpr *PseudoDstExpr = buildDeclRefExpr(*this, DstVD, Type, ELoc);
18528     // For arrays generate assignment operation for single element and replace
18529     // it by the original array element in CodeGen.
18530     ExprResult AssignmentOp = BuildBinOp(/*S=*/nullptr, ELoc, BO_Assign,
18531                                          PseudoDstExpr, PseudoSrcExpr);
18532     if (AssignmentOp.isInvalid())
18533       continue;
18534     AssignmentOp =
18535         ActOnFinishFullExpr(AssignmentOp.get(), ELoc, /*DiscardedValue*/ false);
18536     if (AssignmentOp.isInvalid())
18537       continue;
18538 
18539     DeclRefExpr *Ref = nullptr;
18540     if (!VD && !CurContext->isDependentContext()) {
18541       if (TopDVar.CKind == OMPC_firstprivate) {
18542         Ref = TopDVar.PrivateCopy;
18543       } else {
18544         Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false);
18545         if (!isOpenMPCapturedDecl(D))
18546           ExprCaptures.push_back(Ref->getDecl());
18547       }
18548       if ((TopDVar.CKind == OMPC_firstprivate && !TopDVar.PrivateCopy) ||
18549           (!isOpenMPCapturedDecl(D) &&
18550            Ref->getDecl()->hasAttr<OMPCaptureNoInitAttr>())) {
18551         ExprResult RefRes = DefaultLvalueConversion(Ref);
18552         if (!RefRes.isUsable())
18553           continue;
18554         ExprResult PostUpdateRes =
18555             BuildBinOp(DSAStack->getCurScope(), ELoc, BO_Assign, SimpleRefExpr,
18556                        RefRes.get());
18557         if (!PostUpdateRes.isUsable())
18558           continue;
18559         ExprPostUpdates.push_back(
18560             IgnoredValueConversions(PostUpdateRes.get()).get());
18561       }
18562     }
18563     DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_lastprivate, Ref);
18564     Vars.push_back((VD || CurContext->isDependentContext())
18565                        ? RefExpr->IgnoreParens()
18566                        : Ref);
18567     SrcExprs.push_back(PseudoSrcExpr);
18568     DstExprs.push_back(PseudoDstExpr);
18569     AssignmentOps.push_back(AssignmentOp.get());
18570   }
18571 
18572   if (Vars.empty())
18573     return nullptr;
18574 
18575   return OMPLastprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
18576                                       Vars, SrcExprs, DstExprs, AssignmentOps,
18577                                       LPKind, LPKindLoc, ColonLoc,
18578                                       buildPreInits(Context, ExprCaptures),
18579                                       buildPostUpdate(*this, ExprPostUpdates));
18580 }
18581 
18582 OMPClause *Sema::ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
18583                                          SourceLocation StartLoc,
18584                                          SourceLocation LParenLoc,
18585                                          SourceLocation EndLoc) {
18586   SmallVector<Expr *, 8> Vars;
18587   for (Expr *RefExpr : VarList) {
18588     assert(RefExpr && "NULL expr in OpenMP lastprivate clause.");
18589     SourceLocation ELoc;
18590     SourceRange ERange;
18591     Expr *SimpleRefExpr = RefExpr;
18592     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
18593     if (Res.second) {
18594       // It will be analyzed later.
18595       Vars.push_back(RefExpr);
18596     }
18597     ValueDecl *D = Res.first;
18598     if (!D)
18599       continue;
18600 
18601     auto *VD = dyn_cast<VarDecl>(D);
18602     // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
18603     // in a Construct]
18604     //  Variables with the predetermined data-sharing attributes may not be
18605     //  listed in data-sharing attributes clauses, except for the cases
18606     //  listed below. For these exceptions only, listing a predetermined
18607     //  variable in a data-sharing attribute clause is allowed and overrides
18608     //  the variable's predetermined data-sharing attributes.
18609     DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
18610     if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_shared &&
18611         DVar.RefExpr) {
18612       Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
18613                                           << getOpenMPClauseName(OMPC_shared);
18614       reportOriginalDsa(*this, DSAStack, D, DVar);
18615       continue;
18616     }
18617 
18618     DeclRefExpr *Ref = nullptr;
18619     if (!VD && isOpenMPCapturedDecl(D) && !CurContext->isDependentContext())
18620       Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
18621     DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_shared, Ref);
18622     Vars.push_back((VD || !Ref || CurContext->isDependentContext())
18623                        ? RefExpr->IgnoreParens()
18624                        : Ref);
18625   }
18626 
18627   if (Vars.empty())
18628     return nullptr;
18629 
18630   return OMPSharedClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars);
18631 }
18632 
18633 namespace {
18634 class DSARefChecker : public StmtVisitor<DSARefChecker, bool> {
18635   DSAStackTy *Stack;
18636 
18637 public:
18638   bool VisitDeclRefExpr(DeclRefExpr *E) {
18639     if (auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
18640       DSAStackTy::DSAVarData DVar = Stack->getTopDSA(VD, /*FromParent=*/false);
18641       if (DVar.CKind == OMPC_shared && !DVar.RefExpr)
18642         return false;
18643       if (DVar.CKind != OMPC_unknown)
18644         return true;
18645       DSAStackTy::DSAVarData DVarPrivate = Stack->hasDSA(
18646           VD,
18647           [](OpenMPClauseKind C, bool AppliedToPointee, bool) {
18648             return isOpenMPPrivate(C) && !AppliedToPointee;
18649           },
18650           [](OpenMPDirectiveKind) { return true; },
18651           /*FromParent=*/true);
18652       return DVarPrivate.CKind != OMPC_unknown;
18653     }
18654     return false;
18655   }
18656   bool VisitStmt(Stmt *S) {
18657     for (Stmt *Child : S->children()) {
18658       if (Child && Visit(Child))
18659         return true;
18660     }
18661     return false;
18662   }
18663   explicit DSARefChecker(DSAStackTy *S) : Stack(S) {}
18664 };
18665 } // namespace
18666 
18667 namespace {
18668 // Transform MemberExpression for specified FieldDecl of current class to
18669 // DeclRefExpr to specified OMPCapturedExprDecl.
18670 class TransformExprToCaptures : public TreeTransform<TransformExprToCaptures> {
18671   typedef TreeTransform<TransformExprToCaptures> BaseTransform;
18672   ValueDecl *Field = nullptr;
18673   DeclRefExpr *CapturedExpr = nullptr;
18674 
18675 public:
18676   TransformExprToCaptures(Sema &SemaRef, ValueDecl *FieldDecl)
18677       : BaseTransform(SemaRef), Field(FieldDecl), CapturedExpr(nullptr) {}
18678 
18679   ExprResult TransformMemberExpr(MemberExpr *E) {
18680     if (isa<CXXThisExpr>(E->getBase()->IgnoreParenImpCasts()) &&
18681         E->getMemberDecl() == Field) {
18682       CapturedExpr = buildCapture(SemaRef, Field, E, /*WithInit=*/false);
18683       return CapturedExpr;
18684     }
18685     return BaseTransform::TransformMemberExpr(E);
18686   }
18687   DeclRefExpr *getCapturedExpr() { return CapturedExpr; }
18688 };
18689 } // namespace
18690 
18691 template <typename T, typename U>
18692 static T filterLookupForUDReductionAndMapper(
18693     SmallVectorImpl<U> &Lookups, const llvm::function_ref<T(ValueDecl *)> Gen) {
18694   for (U &Set : Lookups) {
18695     for (auto *D : Set) {
18696       if (T Res = Gen(cast<ValueDecl>(D)))
18697         return Res;
18698     }
18699   }
18700   return T();
18701 }
18702 
18703 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
18704   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
18705 
18706   for (auto *RD : D->redecls()) {
18707     // Don't bother with extra checks if we already know this one isn't visible.
18708     if (RD == D)
18709       continue;
18710 
18711     auto ND = cast<NamedDecl>(RD);
18712     if (LookupResult::isVisible(SemaRef, ND))
18713       return ND;
18714   }
18715 
18716   return nullptr;
18717 }
18718 
18719 static void
18720 argumentDependentLookup(Sema &SemaRef, const DeclarationNameInfo &Id,
18721                         SourceLocation Loc, QualType Ty,
18722                         SmallVectorImpl<UnresolvedSet<8>> &Lookups) {
18723   // Find all of the associated namespaces and classes based on the
18724   // arguments we have.
18725   Sema::AssociatedNamespaceSet AssociatedNamespaces;
18726   Sema::AssociatedClassSet AssociatedClasses;
18727   OpaqueValueExpr OVE(Loc, Ty, VK_LValue);
18728   SemaRef.FindAssociatedClassesAndNamespaces(Loc, &OVE, AssociatedNamespaces,
18729                                              AssociatedClasses);
18730 
18731   // C++ [basic.lookup.argdep]p3:
18732   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
18733   //   and let Y be the lookup set produced by argument dependent
18734   //   lookup (defined as follows). If X contains [...] then Y is
18735   //   empty. Otherwise Y is the set of declarations found in the
18736   //   namespaces associated with the argument types as described
18737   //   below. The set of declarations found by the lookup of the name
18738   //   is the union of X and Y.
18739   //
18740   // Here, we compute Y and add its members to the overloaded
18741   // candidate set.
18742   for (auto *NS : AssociatedNamespaces) {
18743     //   When considering an associated namespace, the lookup is the
18744     //   same as the lookup performed when the associated namespace is
18745     //   used as a qualifier (3.4.3.2) except that:
18746     //
18747     //     -- Any using-directives in the associated namespace are
18748     //        ignored.
18749     //
18750     //     -- Any namespace-scope friend functions declared in
18751     //        associated classes are visible within their respective
18752     //        namespaces even if they are not visible during an ordinary
18753     //        lookup (11.4).
18754     DeclContext::lookup_result R = NS->lookup(Id.getName());
18755     for (auto *D : R) {
18756       auto *Underlying = D;
18757       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
18758         Underlying = USD->getTargetDecl();
18759 
18760       if (!isa<OMPDeclareReductionDecl>(Underlying) &&
18761           !isa<OMPDeclareMapperDecl>(Underlying))
18762         continue;
18763 
18764       if (!SemaRef.isVisible(D)) {
18765         D = findAcceptableDecl(SemaRef, D);
18766         if (!D)
18767           continue;
18768         if (auto *USD = dyn_cast<UsingShadowDecl>(D))
18769           Underlying = USD->getTargetDecl();
18770       }
18771       Lookups.emplace_back();
18772       Lookups.back().addDecl(Underlying);
18773     }
18774   }
18775 }
18776 
18777 static ExprResult
18778 buildDeclareReductionRef(Sema &SemaRef, SourceLocation Loc, SourceRange Range,
18779                          Scope *S, CXXScopeSpec &ReductionIdScopeSpec,
18780                          const DeclarationNameInfo &ReductionId, QualType Ty,
18781                          CXXCastPath &BasePath, Expr *UnresolvedReduction) {
18782   if (ReductionIdScopeSpec.isInvalid())
18783     return ExprError();
18784   SmallVector<UnresolvedSet<8>, 4> Lookups;
18785   if (S) {
18786     LookupResult Lookup(SemaRef, ReductionId, Sema::LookupOMPReductionName);
18787     Lookup.suppressDiagnostics();
18788     while (S && SemaRef.LookupParsedName(Lookup, S, &ReductionIdScopeSpec)) {
18789       NamedDecl *D = Lookup.getRepresentativeDecl();
18790       do {
18791         S = S->getParent();
18792       } while (S && !S->isDeclScope(D));
18793       if (S)
18794         S = S->getParent();
18795       Lookups.emplace_back();
18796       Lookups.back().append(Lookup.begin(), Lookup.end());
18797       Lookup.clear();
18798     }
18799   } else if (auto *ULE =
18800                  cast_or_null<UnresolvedLookupExpr>(UnresolvedReduction)) {
18801     Lookups.push_back(UnresolvedSet<8>());
18802     Decl *PrevD = nullptr;
18803     for (NamedDecl *D : ULE->decls()) {
18804       if (D == PrevD)
18805         Lookups.push_back(UnresolvedSet<8>());
18806       else if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(D))
18807         Lookups.back().addDecl(DRD);
18808       PrevD = D;
18809     }
18810   }
18811   if (SemaRef.CurContext->isDependentContext() || Ty->isDependentType() ||
18812       Ty->isInstantiationDependentType() ||
18813       Ty->containsUnexpandedParameterPack() ||
18814       filterLookupForUDReductionAndMapper<bool>(Lookups, [](ValueDecl *D) {
18815         return !D->isInvalidDecl() &&
18816                (D->getType()->isDependentType() ||
18817                 D->getType()->isInstantiationDependentType() ||
18818                 D->getType()->containsUnexpandedParameterPack());
18819       })) {
18820     UnresolvedSet<8> ResSet;
18821     for (const UnresolvedSet<8> &Set : Lookups) {
18822       if (Set.empty())
18823         continue;
18824       ResSet.append(Set.begin(), Set.end());
18825       // The last item marks the end of all declarations at the specified scope.
18826       ResSet.addDecl(Set[Set.size() - 1]);
18827     }
18828     return UnresolvedLookupExpr::Create(
18829         SemaRef.Context, /*NamingClass=*/nullptr,
18830         ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), ReductionId,
18831         /*ADL=*/true, /*Overloaded=*/true, ResSet.begin(), ResSet.end());
18832   }
18833   // Lookup inside the classes.
18834   // C++ [over.match.oper]p3:
18835   //   For a unary operator @ with an operand of a type whose
18836   //   cv-unqualified version is T1, and for a binary operator @ with
18837   //   a left operand of a type whose cv-unqualified version is T1 and
18838   //   a right operand of a type whose cv-unqualified version is T2,
18839   //   three sets of candidate functions, designated member
18840   //   candidates, non-member candidates and built-in candidates, are
18841   //   constructed as follows:
18842   //     -- If T1 is a complete class type or a class currently being
18843   //        defined, the set of member candidates is the result of the
18844   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
18845   //        the set of member candidates is empty.
18846   LookupResult Lookup(SemaRef, ReductionId, Sema::LookupOMPReductionName);
18847   Lookup.suppressDiagnostics();
18848   if (const auto *TyRec = Ty->getAs<RecordType>()) {
18849     // Complete the type if it can be completed.
18850     // If the type is neither complete nor being defined, bail out now.
18851     if (SemaRef.isCompleteType(Loc, Ty) || TyRec->isBeingDefined() ||
18852         TyRec->getDecl()->getDefinition()) {
18853       Lookup.clear();
18854       SemaRef.LookupQualifiedName(Lookup, TyRec->getDecl());
18855       if (Lookup.empty()) {
18856         Lookups.emplace_back();
18857         Lookups.back().append(Lookup.begin(), Lookup.end());
18858       }
18859     }
18860   }
18861   // Perform ADL.
18862   if (SemaRef.getLangOpts().CPlusPlus)
18863     argumentDependentLookup(SemaRef, ReductionId, Loc, Ty, Lookups);
18864   if (auto *VD = filterLookupForUDReductionAndMapper<ValueDecl *>(
18865           Lookups, [&SemaRef, Ty](ValueDecl *D) -> ValueDecl * {
18866             if (!D->isInvalidDecl() &&
18867                 SemaRef.Context.hasSameType(D->getType(), Ty))
18868               return D;
18869             return nullptr;
18870           }))
18871     return SemaRef.BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
18872                                     VK_LValue, Loc);
18873   if (SemaRef.getLangOpts().CPlusPlus) {
18874     if (auto *VD = filterLookupForUDReductionAndMapper<ValueDecl *>(
18875             Lookups, [&SemaRef, Ty, Loc](ValueDecl *D) -> ValueDecl * {
18876               if (!D->isInvalidDecl() &&
18877                   SemaRef.IsDerivedFrom(Loc, Ty, D->getType()) &&
18878                   !Ty.isMoreQualifiedThan(D->getType()))
18879                 return D;
18880               return nullptr;
18881             })) {
18882       CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
18883                          /*DetectVirtual=*/false);
18884       if (SemaRef.IsDerivedFrom(Loc, Ty, VD->getType(), Paths)) {
18885         if (!Paths.isAmbiguous(SemaRef.Context.getCanonicalType(
18886                 VD->getType().getUnqualifiedType()))) {
18887           if (SemaRef.CheckBaseClassAccess(
18888                   Loc, VD->getType(), Ty, Paths.front(),
18889                   /*DiagID=*/0) != Sema::AR_inaccessible) {
18890             SemaRef.BuildBasePathArray(Paths, BasePath);
18891             return SemaRef.BuildDeclRefExpr(
18892                 VD, VD->getType().getNonReferenceType(), VK_LValue, Loc);
18893           }
18894         }
18895       }
18896     }
18897   }
18898   if (ReductionIdScopeSpec.isSet()) {
18899     SemaRef.Diag(Loc, diag::err_omp_not_resolved_reduction_identifier)
18900         << Ty << Range;
18901     return ExprError();
18902   }
18903   return ExprEmpty();
18904 }
18905 
18906 namespace {
18907 /// Data for the reduction-based clauses.
18908 struct ReductionData {
18909   /// List of original reduction items.
18910   SmallVector<Expr *, 8> Vars;
18911   /// List of private copies of the reduction items.
18912   SmallVector<Expr *, 8> Privates;
18913   /// LHS expressions for the reduction_op expressions.
18914   SmallVector<Expr *, 8> LHSs;
18915   /// RHS expressions for the reduction_op expressions.
18916   SmallVector<Expr *, 8> RHSs;
18917   /// Reduction operation expression.
18918   SmallVector<Expr *, 8> ReductionOps;
18919   /// inscan copy operation expressions.
18920   SmallVector<Expr *, 8> InscanCopyOps;
18921   /// inscan copy temp array expressions for prefix sums.
18922   SmallVector<Expr *, 8> InscanCopyArrayTemps;
18923   /// inscan copy temp array element expressions for prefix sums.
18924   SmallVector<Expr *, 8> InscanCopyArrayElems;
18925   /// Taskgroup descriptors for the corresponding reduction items in
18926   /// in_reduction clauses.
18927   SmallVector<Expr *, 8> TaskgroupDescriptors;
18928   /// List of captures for clause.
18929   SmallVector<Decl *, 4> ExprCaptures;
18930   /// List of postupdate expressions.
18931   SmallVector<Expr *, 4> ExprPostUpdates;
18932   /// Reduction modifier.
18933   unsigned RedModifier = 0;
18934   ReductionData() = delete;
18935   /// Reserves required memory for the reduction data.
18936   ReductionData(unsigned Size, unsigned Modifier = 0) : RedModifier(Modifier) {
18937     Vars.reserve(Size);
18938     Privates.reserve(Size);
18939     LHSs.reserve(Size);
18940     RHSs.reserve(Size);
18941     ReductionOps.reserve(Size);
18942     if (RedModifier == OMPC_REDUCTION_inscan) {
18943       InscanCopyOps.reserve(Size);
18944       InscanCopyArrayTemps.reserve(Size);
18945       InscanCopyArrayElems.reserve(Size);
18946     }
18947     TaskgroupDescriptors.reserve(Size);
18948     ExprCaptures.reserve(Size);
18949     ExprPostUpdates.reserve(Size);
18950   }
18951   /// Stores reduction item and reduction operation only (required for dependent
18952   /// reduction item).
18953   void push(Expr *Item, Expr *ReductionOp) {
18954     Vars.emplace_back(Item);
18955     Privates.emplace_back(nullptr);
18956     LHSs.emplace_back(nullptr);
18957     RHSs.emplace_back(nullptr);
18958     ReductionOps.emplace_back(ReductionOp);
18959     TaskgroupDescriptors.emplace_back(nullptr);
18960     if (RedModifier == OMPC_REDUCTION_inscan) {
18961       InscanCopyOps.push_back(nullptr);
18962       InscanCopyArrayTemps.push_back(nullptr);
18963       InscanCopyArrayElems.push_back(nullptr);
18964     }
18965   }
18966   /// Stores reduction data.
18967   void push(Expr *Item, Expr *Private, Expr *LHS, Expr *RHS, Expr *ReductionOp,
18968             Expr *TaskgroupDescriptor, Expr *CopyOp, Expr *CopyArrayTemp,
18969             Expr *CopyArrayElem) {
18970     Vars.emplace_back(Item);
18971     Privates.emplace_back(Private);
18972     LHSs.emplace_back(LHS);
18973     RHSs.emplace_back(RHS);
18974     ReductionOps.emplace_back(ReductionOp);
18975     TaskgroupDescriptors.emplace_back(TaskgroupDescriptor);
18976     if (RedModifier == OMPC_REDUCTION_inscan) {
18977       InscanCopyOps.push_back(CopyOp);
18978       InscanCopyArrayTemps.push_back(CopyArrayTemp);
18979       InscanCopyArrayElems.push_back(CopyArrayElem);
18980     } else {
18981       assert(CopyOp == nullptr && CopyArrayTemp == nullptr &&
18982              CopyArrayElem == nullptr &&
18983              "Copy operation must be used for inscan reductions only.");
18984     }
18985   }
18986 };
18987 } // namespace
18988 
18989 static bool checkOMPArraySectionConstantForReduction(
18990     ASTContext &Context, const OMPArraySectionExpr *OASE, bool &SingleElement,
18991     SmallVectorImpl<llvm::APSInt> &ArraySizes) {
18992   const Expr *Length = OASE->getLength();
18993   if (Length == nullptr) {
18994     // For array sections of the form [1:] or [:], we would need to analyze
18995     // the lower bound...
18996     if (OASE->getColonLocFirst().isValid())
18997       return false;
18998 
18999     // This is an array subscript which has implicit length 1!
19000     SingleElement = true;
19001     ArraySizes.push_back(llvm::APSInt::get(1));
19002   } else {
19003     Expr::EvalResult Result;
19004     if (!Length->EvaluateAsInt(Result, Context))
19005       return false;
19006 
19007     llvm::APSInt ConstantLengthValue = Result.Val.getInt();
19008     SingleElement = (ConstantLengthValue.getSExtValue() == 1);
19009     ArraySizes.push_back(ConstantLengthValue);
19010   }
19011 
19012   // Get the base of this array section and walk up from there.
19013   const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
19014 
19015   // We require length = 1 for all array sections except the right-most to
19016   // guarantee that the memory region is contiguous and has no holes in it.
19017   while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) {
19018     Length = TempOASE->getLength();
19019     if (Length == nullptr) {
19020       // For array sections of the form [1:] or [:], we would need to analyze
19021       // the lower bound...
19022       if (OASE->getColonLocFirst().isValid())
19023         return false;
19024 
19025       // This is an array subscript which has implicit length 1!
19026       ArraySizes.push_back(llvm::APSInt::get(1));
19027     } else {
19028       Expr::EvalResult Result;
19029       if (!Length->EvaluateAsInt(Result, Context))
19030         return false;
19031 
19032       llvm::APSInt ConstantLengthValue = Result.Val.getInt();
19033       if (ConstantLengthValue.getSExtValue() != 1)
19034         return false;
19035 
19036       ArraySizes.push_back(ConstantLengthValue);
19037     }
19038     Base = TempOASE->getBase()->IgnoreParenImpCasts();
19039   }
19040 
19041   // If we have a single element, we don't need to add the implicit lengths.
19042   if (!SingleElement) {
19043     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) {
19044       // Has implicit length 1!
19045       ArraySizes.push_back(llvm::APSInt::get(1));
19046       Base = TempASE->getBase()->IgnoreParenImpCasts();
19047     }
19048   }
19049 
19050   // This array section can be privatized as a single value or as a constant
19051   // sized array.
19052   return true;
19053 }
19054 
19055 static BinaryOperatorKind
19056 getRelatedCompoundReductionOp(BinaryOperatorKind BOK) {
19057   if (BOK == BO_Add)
19058     return BO_AddAssign;
19059   if (BOK == BO_Mul)
19060     return BO_MulAssign;
19061   if (BOK == BO_And)
19062     return BO_AndAssign;
19063   if (BOK == BO_Or)
19064     return BO_OrAssign;
19065   if (BOK == BO_Xor)
19066     return BO_XorAssign;
19067   return BOK;
19068 }
19069 
19070 static bool actOnOMPReductionKindClause(
19071     Sema &S, DSAStackTy *Stack, OpenMPClauseKind ClauseKind,
19072     ArrayRef<Expr *> VarList, SourceLocation StartLoc, SourceLocation LParenLoc,
19073     SourceLocation ColonLoc, SourceLocation EndLoc,
19074     CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId,
19075     ArrayRef<Expr *> UnresolvedReductions, ReductionData &RD) {
19076   DeclarationName DN = ReductionId.getName();
19077   OverloadedOperatorKind OOK = DN.getCXXOverloadedOperator();
19078   BinaryOperatorKind BOK = BO_Comma;
19079 
19080   ASTContext &Context = S.Context;
19081   // OpenMP [2.14.3.6, reduction clause]
19082   // C
19083   // reduction-identifier is either an identifier or one of the following
19084   // operators: +, -, *,  &, |, ^, && and ||
19085   // C++
19086   // reduction-identifier is either an id-expression or one of the following
19087   // operators: +, -, *, &, |, ^, && and ||
19088   switch (OOK) {
19089   case OO_Plus:
19090   case OO_Minus:
19091     BOK = BO_Add;
19092     break;
19093   case OO_Star:
19094     BOK = BO_Mul;
19095     break;
19096   case OO_Amp:
19097     BOK = BO_And;
19098     break;
19099   case OO_Pipe:
19100     BOK = BO_Or;
19101     break;
19102   case OO_Caret:
19103     BOK = BO_Xor;
19104     break;
19105   case OO_AmpAmp:
19106     BOK = BO_LAnd;
19107     break;
19108   case OO_PipePipe:
19109     BOK = BO_LOr;
19110     break;
19111   case OO_New:
19112   case OO_Delete:
19113   case OO_Array_New:
19114   case OO_Array_Delete:
19115   case OO_Slash:
19116   case OO_Percent:
19117   case OO_Tilde:
19118   case OO_Exclaim:
19119   case OO_Equal:
19120   case OO_Less:
19121   case OO_Greater:
19122   case OO_LessEqual:
19123   case OO_GreaterEqual:
19124   case OO_PlusEqual:
19125   case OO_MinusEqual:
19126   case OO_StarEqual:
19127   case OO_SlashEqual:
19128   case OO_PercentEqual:
19129   case OO_CaretEqual:
19130   case OO_AmpEqual:
19131   case OO_PipeEqual:
19132   case OO_LessLess:
19133   case OO_GreaterGreater:
19134   case OO_LessLessEqual:
19135   case OO_GreaterGreaterEqual:
19136   case OO_EqualEqual:
19137   case OO_ExclaimEqual:
19138   case OO_Spaceship:
19139   case OO_PlusPlus:
19140   case OO_MinusMinus:
19141   case OO_Comma:
19142   case OO_ArrowStar:
19143   case OO_Arrow:
19144   case OO_Call:
19145   case OO_Subscript:
19146   case OO_Conditional:
19147   case OO_Coawait:
19148   case NUM_OVERLOADED_OPERATORS:
19149     llvm_unreachable("Unexpected reduction identifier");
19150   case OO_None:
19151     if (IdentifierInfo *II = DN.getAsIdentifierInfo()) {
19152       if (II->isStr("max"))
19153         BOK = BO_GT;
19154       else if (II->isStr("min"))
19155         BOK = BO_LT;
19156     }
19157     break;
19158   }
19159   SourceRange ReductionIdRange;
19160   if (ReductionIdScopeSpec.isValid())
19161     ReductionIdRange.setBegin(ReductionIdScopeSpec.getBeginLoc());
19162   else
19163     ReductionIdRange.setBegin(ReductionId.getBeginLoc());
19164   ReductionIdRange.setEnd(ReductionId.getEndLoc());
19165 
19166   auto IR = UnresolvedReductions.begin(), ER = UnresolvedReductions.end();
19167   bool FirstIter = true;
19168   for (Expr *RefExpr : VarList) {
19169     assert(RefExpr && "nullptr expr in OpenMP reduction clause.");
19170     // OpenMP [2.1, C/C++]
19171     //  A list item is a variable or array section, subject to the restrictions
19172     //  specified in Section 2.4 on page 42 and in each of the sections
19173     // describing clauses and directives for which a list appears.
19174     // OpenMP  [2.14.3.3, Restrictions, p.1]
19175     //  A variable that is part of another variable (as an array or
19176     //  structure element) cannot appear in a private clause.
19177     if (!FirstIter && IR != ER)
19178       ++IR;
19179     FirstIter = false;
19180     SourceLocation ELoc;
19181     SourceRange ERange;
19182     Expr *SimpleRefExpr = RefExpr;
19183     auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange,
19184                               /*AllowArraySection=*/true);
19185     if (Res.second) {
19186       // Try to find 'declare reduction' corresponding construct before using
19187       // builtin/overloaded operators.
19188       QualType Type = Context.DependentTy;
19189       CXXCastPath BasePath;
19190       ExprResult DeclareReductionRef = buildDeclareReductionRef(
19191           S, ELoc, ERange, Stack->getCurScope(), ReductionIdScopeSpec,
19192           ReductionId, Type, BasePath, IR == ER ? nullptr : *IR);
19193       Expr *ReductionOp = nullptr;
19194       if (S.CurContext->isDependentContext() &&
19195           (DeclareReductionRef.isUnset() ||
19196            isa<UnresolvedLookupExpr>(DeclareReductionRef.get())))
19197         ReductionOp = DeclareReductionRef.get();
19198       // It will be analyzed later.
19199       RD.push(RefExpr, ReductionOp);
19200     }
19201     ValueDecl *D = Res.first;
19202     if (!D)
19203       continue;
19204 
19205     Expr *TaskgroupDescriptor = nullptr;
19206     QualType Type;
19207     auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr->IgnoreParens());
19208     auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr->IgnoreParens());
19209     if (ASE) {
19210       Type = ASE->getType().getNonReferenceType();
19211     } else if (OASE) {
19212       QualType BaseType =
19213           OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
19214       if (const auto *ATy = BaseType->getAsArrayTypeUnsafe())
19215         Type = ATy->getElementType();
19216       else
19217         Type = BaseType->getPointeeType();
19218       Type = Type.getNonReferenceType();
19219     } else {
19220       Type = Context.getBaseElementType(D->getType().getNonReferenceType());
19221     }
19222     auto *VD = dyn_cast<VarDecl>(D);
19223 
19224     // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
19225     //  A variable that appears in a private clause must not have an incomplete
19226     //  type or a reference type.
19227     if (S.RequireCompleteType(ELoc, D->getType(),
19228                               diag::err_omp_reduction_incomplete_type))
19229       continue;
19230     // OpenMP [2.14.3.6, reduction clause, Restrictions]
19231     // A list item that appears in a reduction clause must not be
19232     // const-qualified.
19233     if (rejectConstNotMutableType(S, D, Type, ClauseKind, ELoc,
19234                                   /*AcceptIfMutable*/ false, ASE || OASE))
19235       continue;
19236 
19237     OpenMPDirectiveKind CurrDir = Stack->getCurrentDirective();
19238     // OpenMP [2.9.3.6, Restrictions, C/C++, p.4]
19239     //  If a list-item is a reference type then it must bind to the same object
19240     //  for all threads of the team.
19241     if (!ASE && !OASE) {
19242       if (VD) {
19243         VarDecl *VDDef = VD->getDefinition();
19244         if (VD->getType()->isReferenceType() && VDDef && VDDef->hasInit()) {
19245           DSARefChecker Check(Stack);
19246           if (Check.Visit(VDDef->getInit())) {
19247             S.Diag(ELoc, diag::err_omp_reduction_ref_type_arg)
19248                 << getOpenMPClauseName(ClauseKind) << ERange;
19249             S.Diag(VDDef->getLocation(), diag::note_defined_here) << VDDef;
19250             continue;
19251           }
19252         }
19253       }
19254 
19255       // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced
19256       // in a Construct]
19257       //  Variables with the predetermined data-sharing attributes may not be
19258       //  listed in data-sharing attributes clauses, except for the cases
19259       //  listed below. For these exceptions only, listing a predetermined
19260       //  variable in a data-sharing attribute clause is allowed and overrides
19261       //  the variable's predetermined data-sharing attributes.
19262       // OpenMP [2.14.3.6, Restrictions, p.3]
19263       //  Any number of reduction clauses can be specified on the directive,
19264       //  but a list item can appear only once in the reduction clauses for that
19265       //  directive.
19266       DSAStackTy::DSAVarData DVar = Stack->getTopDSA(D, /*FromParent=*/false);
19267       if (DVar.CKind == OMPC_reduction) {
19268         S.Diag(ELoc, diag::err_omp_once_referenced)
19269             << getOpenMPClauseName(ClauseKind);
19270         if (DVar.RefExpr)
19271           S.Diag(DVar.RefExpr->getExprLoc(), diag::note_omp_referenced);
19272         continue;
19273       }
19274       if (DVar.CKind != OMPC_unknown) {
19275         S.Diag(ELoc, diag::err_omp_wrong_dsa)
19276             << getOpenMPClauseName(DVar.CKind)
19277             << getOpenMPClauseName(OMPC_reduction);
19278         reportOriginalDsa(S, Stack, D, DVar);
19279         continue;
19280       }
19281 
19282       // OpenMP [2.14.3.6, Restrictions, p.1]
19283       //  A list item that appears in a reduction clause of a worksharing
19284       //  construct must be shared in the parallel regions to which any of the
19285       //  worksharing regions arising from the worksharing construct bind.
19286       if (isOpenMPWorksharingDirective(CurrDir) &&
19287           !isOpenMPParallelDirective(CurrDir) &&
19288           !isOpenMPTeamsDirective(CurrDir)) {
19289         DVar = Stack->getImplicitDSA(D, true);
19290         if (DVar.CKind != OMPC_shared) {
19291           S.Diag(ELoc, diag::err_omp_required_access)
19292               << getOpenMPClauseName(OMPC_reduction)
19293               << getOpenMPClauseName(OMPC_shared);
19294           reportOriginalDsa(S, Stack, D, DVar);
19295           continue;
19296         }
19297       }
19298     } else {
19299       // Threadprivates cannot be shared between threads, so dignose if the base
19300       // is a threadprivate variable.
19301       DSAStackTy::DSAVarData DVar = Stack->getTopDSA(D, /*FromParent=*/false);
19302       if (DVar.CKind == OMPC_threadprivate) {
19303         S.Diag(ELoc, diag::err_omp_wrong_dsa)
19304             << getOpenMPClauseName(DVar.CKind)
19305             << getOpenMPClauseName(OMPC_reduction);
19306         reportOriginalDsa(S, Stack, D, DVar);
19307         continue;
19308       }
19309     }
19310 
19311     // Try to find 'declare reduction' corresponding construct before using
19312     // builtin/overloaded operators.
19313     CXXCastPath BasePath;
19314     ExprResult DeclareReductionRef = buildDeclareReductionRef(
19315         S, ELoc, ERange, Stack->getCurScope(), ReductionIdScopeSpec,
19316         ReductionId, Type, BasePath, IR == ER ? nullptr : *IR);
19317     if (DeclareReductionRef.isInvalid())
19318       continue;
19319     if (S.CurContext->isDependentContext() &&
19320         (DeclareReductionRef.isUnset() ||
19321          isa<UnresolvedLookupExpr>(DeclareReductionRef.get()))) {
19322       RD.push(RefExpr, DeclareReductionRef.get());
19323       continue;
19324     }
19325     if (BOK == BO_Comma && DeclareReductionRef.isUnset()) {
19326       // Not allowed reduction identifier is found.
19327       S.Diag(ReductionId.getBeginLoc(),
19328              diag::err_omp_unknown_reduction_identifier)
19329           << Type << ReductionIdRange;
19330       continue;
19331     }
19332 
19333     // OpenMP [2.14.3.6, reduction clause, Restrictions]
19334     // The type of a list item that appears in a reduction clause must be valid
19335     // for the reduction-identifier. For a max or min reduction in C, the type
19336     // of the list item must be an allowed arithmetic data type: char, int,
19337     // float, double, or _Bool, possibly modified with long, short, signed, or
19338     // unsigned. For a max or min reduction in C++, the type of the list item
19339     // must be an allowed arithmetic data type: char, wchar_t, int, float,
19340     // double, or bool, possibly modified with long, short, signed, or unsigned.
19341     if (DeclareReductionRef.isUnset()) {
19342       if ((BOK == BO_GT || BOK == BO_LT) &&
19343           !(Type->isScalarType() ||
19344             (S.getLangOpts().CPlusPlus && Type->isArithmeticType()))) {
19345         S.Diag(ELoc, diag::err_omp_clause_not_arithmetic_type_arg)
19346             << getOpenMPClauseName(ClauseKind) << S.getLangOpts().CPlusPlus;
19347         if (!ASE && !OASE) {
19348           bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
19349                                    VarDecl::DeclarationOnly;
19350           S.Diag(D->getLocation(),
19351                  IsDecl ? diag::note_previous_decl : diag::note_defined_here)
19352               << D;
19353         }
19354         continue;
19355       }
19356       if ((BOK == BO_OrAssign || BOK == BO_AndAssign || BOK == BO_XorAssign) &&
19357           !S.getLangOpts().CPlusPlus && Type->isFloatingType()) {
19358         S.Diag(ELoc, diag::err_omp_clause_floating_type_arg)
19359             << getOpenMPClauseName(ClauseKind);
19360         if (!ASE && !OASE) {
19361           bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
19362                                    VarDecl::DeclarationOnly;
19363           S.Diag(D->getLocation(),
19364                  IsDecl ? diag::note_previous_decl : diag::note_defined_here)
19365               << D;
19366         }
19367         continue;
19368       }
19369     }
19370 
19371     Type = Type.getNonLValueExprType(Context).getUnqualifiedType();
19372     VarDecl *LHSVD = buildVarDecl(S, ELoc, Type, ".reduction.lhs",
19373                                   D->hasAttrs() ? &D->getAttrs() : nullptr);
19374     VarDecl *RHSVD = buildVarDecl(S, ELoc, Type, D->getName(),
19375                                   D->hasAttrs() ? &D->getAttrs() : nullptr);
19376     QualType PrivateTy = Type;
19377 
19378     // Try if we can determine constant lengths for all array sections and avoid
19379     // the VLA.
19380     bool ConstantLengthOASE = false;
19381     if (OASE) {
19382       bool SingleElement;
19383       llvm::SmallVector<llvm::APSInt, 4> ArraySizes;
19384       ConstantLengthOASE = checkOMPArraySectionConstantForReduction(
19385           Context, OASE, SingleElement, ArraySizes);
19386 
19387       // If we don't have a single element, we must emit a constant array type.
19388       if (ConstantLengthOASE && !SingleElement) {
19389         for (llvm::APSInt &Size : ArraySizes)
19390           PrivateTy = Context.getConstantArrayType(PrivateTy, Size, nullptr,
19391                                                    ArrayType::Normal,
19392                                                    /*IndexTypeQuals=*/0);
19393       }
19394     }
19395 
19396     if ((OASE && !ConstantLengthOASE) ||
19397         (!OASE && !ASE &&
19398          D->getType().getNonReferenceType()->isVariablyModifiedType())) {
19399       if (!Context.getTargetInfo().isVLASupported()) {
19400         if (isOpenMPTargetExecutionDirective(Stack->getCurrentDirective())) {
19401           S.Diag(ELoc, diag::err_omp_reduction_vla_unsupported) << !!OASE;
19402           S.Diag(ELoc, diag::note_vla_unsupported);
19403           continue;
19404         } else {
19405           S.targetDiag(ELoc, diag::err_omp_reduction_vla_unsupported) << !!OASE;
19406           S.targetDiag(ELoc, diag::note_vla_unsupported);
19407         }
19408       }
19409       // For arrays/array sections only:
19410       // Create pseudo array type for private copy. The size for this array will
19411       // be generated during codegen.
19412       // For array subscripts or single variables Private Ty is the same as Type
19413       // (type of the variable or single array element).
19414       PrivateTy = Context.getVariableArrayType(
19415           Type,
19416           new (Context)
19417               OpaqueValueExpr(ELoc, Context.getSizeType(), VK_PRValue),
19418           ArrayType::Normal, /*IndexTypeQuals=*/0, SourceRange());
19419     } else if (!ASE && !OASE &&
19420                Context.getAsArrayType(D->getType().getNonReferenceType())) {
19421       PrivateTy = D->getType().getNonReferenceType();
19422     }
19423     // Private copy.
19424     VarDecl *PrivateVD =
19425         buildVarDecl(S, ELoc, PrivateTy, D->getName(),
19426                      D->hasAttrs() ? &D->getAttrs() : nullptr,
19427                      VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
19428     // Add initializer for private variable.
19429     Expr *Init = nullptr;
19430     DeclRefExpr *LHSDRE = buildDeclRefExpr(S, LHSVD, Type, ELoc);
19431     DeclRefExpr *RHSDRE = buildDeclRefExpr(S, RHSVD, Type, ELoc);
19432     if (DeclareReductionRef.isUsable()) {
19433       auto *DRDRef = DeclareReductionRef.getAs<DeclRefExpr>();
19434       auto *DRD = cast<OMPDeclareReductionDecl>(DRDRef->getDecl());
19435       if (DRD->getInitializer()) {
19436         Init = DRDRef;
19437         RHSVD->setInit(DRDRef);
19438         RHSVD->setInitStyle(VarDecl::CallInit);
19439       }
19440     } else {
19441       switch (BOK) {
19442       case BO_Add:
19443       case BO_Xor:
19444       case BO_Or:
19445       case BO_LOr:
19446         // '+', '-', '^', '|', '||' reduction ops - initializer is '0'.
19447         if (Type->isScalarType() || Type->isAnyComplexType())
19448           Init = S.ActOnIntegerConstant(ELoc, /*Val=*/0).get();
19449         break;
19450       case BO_Mul:
19451       case BO_LAnd:
19452         if (Type->isScalarType() || Type->isAnyComplexType()) {
19453           // '*' and '&&' reduction ops - initializer is '1'.
19454           Init = S.ActOnIntegerConstant(ELoc, /*Val=*/1).get();
19455         }
19456         break;
19457       case BO_And: {
19458         // '&' reduction op - initializer is '~0'.
19459         QualType OrigType = Type;
19460         if (auto *ComplexTy = OrigType->getAs<ComplexType>())
19461           Type = ComplexTy->getElementType();
19462         if (Type->isRealFloatingType()) {
19463           llvm::APFloat InitValue = llvm::APFloat::getAllOnesValue(
19464               Context.getFloatTypeSemantics(Type));
19465           Init = FloatingLiteral::Create(Context, InitValue, /*isexact=*/true,
19466                                          Type, ELoc);
19467         } else if (Type->isScalarType()) {
19468           uint64_t Size = Context.getTypeSize(Type);
19469           QualType IntTy = Context.getIntTypeForBitwidth(Size, /*Signed=*/0);
19470           llvm::APInt InitValue = llvm::APInt::getAllOnes(Size);
19471           Init = IntegerLiteral::Create(Context, InitValue, IntTy, ELoc);
19472         }
19473         if (Init && OrigType->isAnyComplexType()) {
19474           // Init = 0xFFFF + 0xFFFFi;
19475           auto *Im = new (Context) ImaginaryLiteral(Init, OrigType);
19476           Init = S.CreateBuiltinBinOp(ELoc, BO_Add, Init, Im).get();
19477         }
19478         Type = OrigType;
19479         break;
19480       }
19481       case BO_LT:
19482       case BO_GT: {
19483         // 'min' reduction op - initializer is 'Largest representable number in
19484         // the reduction list item type'.
19485         // 'max' reduction op - initializer is 'Least representable number in
19486         // the reduction list item type'.
19487         if (Type->isIntegerType() || Type->isPointerType()) {
19488           bool IsSigned = Type->hasSignedIntegerRepresentation();
19489           uint64_t Size = Context.getTypeSize(Type);
19490           QualType IntTy =
19491               Context.getIntTypeForBitwidth(Size, /*Signed=*/IsSigned);
19492           llvm::APInt InitValue =
19493               (BOK != BO_LT) ? IsSigned ? llvm::APInt::getSignedMinValue(Size)
19494                                         : llvm::APInt::getMinValue(Size)
19495               : IsSigned ? llvm::APInt::getSignedMaxValue(Size)
19496                              : llvm::APInt::getMaxValue(Size);
19497           Init = IntegerLiteral::Create(Context, InitValue, IntTy, ELoc);
19498           if (Type->isPointerType()) {
19499             // Cast to pointer type.
19500             ExprResult CastExpr = S.BuildCStyleCastExpr(
19501                 ELoc, Context.getTrivialTypeSourceInfo(Type, ELoc), ELoc, Init);
19502             if (CastExpr.isInvalid())
19503               continue;
19504             Init = CastExpr.get();
19505           }
19506         } else if (Type->isRealFloatingType()) {
19507           llvm::APFloat InitValue = llvm::APFloat::getLargest(
19508               Context.getFloatTypeSemantics(Type), BOK != BO_LT);
19509           Init = FloatingLiteral::Create(Context, InitValue, /*isexact=*/true,
19510                                          Type, ELoc);
19511         }
19512         break;
19513       }
19514       case BO_PtrMemD:
19515       case BO_PtrMemI:
19516       case BO_MulAssign:
19517       case BO_Div:
19518       case BO_Rem:
19519       case BO_Sub:
19520       case BO_Shl:
19521       case BO_Shr:
19522       case BO_LE:
19523       case BO_GE:
19524       case BO_EQ:
19525       case BO_NE:
19526       case BO_Cmp:
19527       case BO_AndAssign:
19528       case BO_XorAssign:
19529       case BO_OrAssign:
19530       case BO_Assign:
19531       case BO_AddAssign:
19532       case BO_SubAssign:
19533       case BO_DivAssign:
19534       case BO_RemAssign:
19535       case BO_ShlAssign:
19536       case BO_ShrAssign:
19537       case BO_Comma:
19538         llvm_unreachable("Unexpected reduction operation");
19539       }
19540     }
19541     if (Init && DeclareReductionRef.isUnset()) {
19542       S.AddInitializerToDecl(RHSVD, Init, /*DirectInit=*/false);
19543       // Store initializer for single element in private copy. Will be used
19544       // during codegen.
19545       PrivateVD->setInit(RHSVD->getInit());
19546       PrivateVD->setInitStyle(RHSVD->getInitStyle());
19547     } else if (!Init) {
19548       S.ActOnUninitializedDecl(RHSVD);
19549       // Store initializer for single element in private copy. Will be used
19550       // during codegen.
19551       PrivateVD->setInit(RHSVD->getInit());
19552       PrivateVD->setInitStyle(RHSVD->getInitStyle());
19553     }
19554     if (RHSVD->isInvalidDecl())
19555       continue;
19556     if (!RHSVD->hasInit() && DeclareReductionRef.isUnset()) {
19557       S.Diag(ELoc, diag::err_omp_reduction_id_not_compatible)
19558           << Type << ReductionIdRange;
19559       bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
19560                                VarDecl::DeclarationOnly;
19561       S.Diag(D->getLocation(),
19562              IsDecl ? diag::note_previous_decl : diag::note_defined_here)
19563           << D;
19564       continue;
19565     }
19566     DeclRefExpr *PrivateDRE = buildDeclRefExpr(S, PrivateVD, PrivateTy, ELoc);
19567     ExprResult ReductionOp;
19568     if (DeclareReductionRef.isUsable()) {
19569       QualType RedTy = DeclareReductionRef.get()->getType();
19570       QualType PtrRedTy = Context.getPointerType(RedTy);
19571       ExprResult LHS = S.CreateBuiltinUnaryOp(ELoc, UO_AddrOf, LHSDRE);
19572       ExprResult RHS = S.CreateBuiltinUnaryOp(ELoc, UO_AddrOf, RHSDRE);
19573       if (!BasePath.empty()) {
19574         LHS = S.DefaultLvalueConversion(LHS.get());
19575         RHS = S.DefaultLvalueConversion(RHS.get());
19576         LHS = ImplicitCastExpr::Create(
19577             Context, PtrRedTy, CK_UncheckedDerivedToBase, LHS.get(), &BasePath,
19578             LHS.get()->getValueKind(), FPOptionsOverride());
19579         RHS = ImplicitCastExpr::Create(
19580             Context, PtrRedTy, CK_UncheckedDerivedToBase, RHS.get(), &BasePath,
19581             RHS.get()->getValueKind(), FPOptionsOverride());
19582       }
19583       FunctionProtoType::ExtProtoInfo EPI;
19584       QualType Params[] = {PtrRedTy, PtrRedTy};
19585       QualType FnTy = Context.getFunctionType(Context.VoidTy, Params, EPI);
19586       auto *OVE = new (Context) OpaqueValueExpr(
19587           ELoc, Context.getPointerType(FnTy), VK_PRValue, OK_Ordinary,
19588           S.DefaultLvalueConversion(DeclareReductionRef.get()).get());
19589       Expr *Args[] = {LHS.get(), RHS.get()};
19590       ReductionOp =
19591           CallExpr::Create(Context, OVE, Args, Context.VoidTy, VK_PRValue, ELoc,
19592                            S.CurFPFeatureOverrides());
19593     } else {
19594       BinaryOperatorKind CombBOK = getRelatedCompoundReductionOp(BOK);
19595       if (Type->isRecordType() && CombBOK != BOK) {
19596         Sema::TentativeAnalysisScope Trap(S);
19597         ReductionOp =
19598             S.BuildBinOp(Stack->getCurScope(), ReductionId.getBeginLoc(),
19599                          CombBOK, LHSDRE, RHSDRE);
19600       }
19601       if (!ReductionOp.isUsable()) {
19602         ReductionOp =
19603             S.BuildBinOp(Stack->getCurScope(), ReductionId.getBeginLoc(), BOK,
19604                          LHSDRE, RHSDRE);
19605         if (ReductionOp.isUsable()) {
19606           if (BOK != BO_LT && BOK != BO_GT) {
19607             ReductionOp =
19608                 S.BuildBinOp(Stack->getCurScope(), ReductionId.getBeginLoc(),
19609                              BO_Assign, LHSDRE, ReductionOp.get());
19610           } else {
19611             auto *ConditionalOp = new (Context)
19612                 ConditionalOperator(ReductionOp.get(), ELoc, LHSDRE, ELoc,
19613                                     RHSDRE, Type, VK_LValue, OK_Ordinary);
19614             ReductionOp =
19615                 S.BuildBinOp(Stack->getCurScope(), ReductionId.getBeginLoc(),
19616                              BO_Assign, LHSDRE, ConditionalOp);
19617           }
19618         }
19619       }
19620       if (ReductionOp.isUsable())
19621         ReductionOp = S.ActOnFinishFullExpr(ReductionOp.get(),
19622                                             /*DiscardedValue*/ false);
19623       if (!ReductionOp.isUsable())
19624         continue;
19625     }
19626 
19627     // Add copy operations for inscan reductions.
19628     // LHS = RHS;
19629     ExprResult CopyOpRes, TempArrayRes, TempArrayElem;
19630     if (ClauseKind == OMPC_reduction &&
19631         RD.RedModifier == OMPC_REDUCTION_inscan) {
19632       ExprResult RHS = S.DefaultLvalueConversion(RHSDRE);
19633       CopyOpRes = S.BuildBinOp(Stack->getCurScope(), ELoc, BO_Assign, LHSDRE,
19634                                RHS.get());
19635       if (!CopyOpRes.isUsable())
19636         continue;
19637       CopyOpRes =
19638           S.ActOnFinishFullExpr(CopyOpRes.get(), /*DiscardedValue=*/true);
19639       if (!CopyOpRes.isUsable())
19640         continue;
19641       // For simd directive and simd-based directives in simd mode no need to
19642       // construct temp array, need just a single temp element.
19643       if (Stack->getCurrentDirective() == OMPD_simd ||
19644           (S.getLangOpts().OpenMPSimd &&
19645            isOpenMPSimdDirective(Stack->getCurrentDirective()))) {
19646         VarDecl *TempArrayVD =
19647             buildVarDecl(S, ELoc, PrivateTy, D->getName(),
19648                          D->hasAttrs() ? &D->getAttrs() : nullptr);
19649         // Add a constructor to the temp decl.
19650         S.ActOnUninitializedDecl(TempArrayVD);
19651         TempArrayRes = buildDeclRefExpr(S, TempArrayVD, PrivateTy, ELoc);
19652       } else {
19653         // Build temp array for prefix sum.
19654         auto *Dim = new (S.Context)
19655             OpaqueValueExpr(ELoc, S.Context.getSizeType(), VK_PRValue);
19656         QualType ArrayTy =
19657             S.Context.getVariableArrayType(PrivateTy, Dim, ArrayType::Normal,
19658                                            /*IndexTypeQuals=*/0, {ELoc, ELoc});
19659         VarDecl *TempArrayVD =
19660             buildVarDecl(S, ELoc, ArrayTy, D->getName(),
19661                          D->hasAttrs() ? &D->getAttrs() : nullptr);
19662         // Add a constructor to the temp decl.
19663         S.ActOnUninitializedDecl(TempArrayVD);
19664         TempArrayRes = buildDeclRefExpr(S, TempArrayVD, ArrayTy, ELoc);
19665         TempArrayElem =
19666             S.DefaultFunctionArrayLvalueConversion(TempArrayRes.get());
19667         auto *Idx = new (S.Context)
19668             OpaqueValueExpr(ELoc, S.Context.getSizeType(), VK_PRValue);
19669         TempArrayElem = S.CreateBuiltinArraySubscriptExpr(TempArrayElem.get(),
19670                                                           ELoc, Idx, ELoc);
19671       }
19672     }
19673 
19674     // OpenMP [2.15.4.6, Restrictions, p.2]
19675     // A list item that appears in an in_reduction clause of a task construct
19676     // must appear in a task_reduction clause of a construct associated with a
19677     // taskgroup region that includes the participating task in its taskgroup
19678     // set. The construct associated with the innermost region that meets this
19679     // condition must specify the same reduction-identifier as the in_reduction
19680     // clause.
19681     if (ClauseKind == OMPC_in_reduction) {
19682       SourceRange ParentSR;
19683       BinaryOperatorKind ParentBOK;
19684       const Expr *ParentReductionOp = nullptr;
19685       Expr *ParentBOKTD = nullptr, *ParentReductionOpTD = nullptr;
19686       DSAStackTy::DSAVarData ParentBOKDSA =
19687           Stack->getTopMostTaskgroupReductionData(D, ParentSR, ParentBOK,
19688                                                   ParentBOKTD);
19689       DSAStackTy::DSAVarData ParentReductionOpDSA =
19690           Stack->getTopMostTaskgroupReductionData(
19691               D, ParentSR, ParentReductionOp, ParentReductionOpTD);
19692       bool IsParentBOK = ParentBOKDSA.DKind != OMPD_unknown;
19693       bool IsParentReductionOp = ParentReductionOpDSA.DKind != OMPD_unknown;
19694       if ((DeclareReductionRef.isUnset() && IsParentReductionOp) ||
19695           (DeclareReductionRef.isUsable() && IsParentBOK) ||
19696           (IsParentBOK && BOK != ParentBOK) || IsParentReductionOp) {
19697         bool EmitError = true;
19698         if (IsParentReductionOp && DeclareReductionRef.isUsable()) {
19699           llvm::FoldingSetNodeID RedId, ParentRedId;
19700           ParentReductionOp->Profile(ParentRedId, Context, /*Canonical=*/true);
19701           DeclareReductionRef.get()->Profile(RedId, Context,
19702                                              /*Canonical=*/true);
19703           EmitError = RedId != ParentRedId;
19704         }
19705         if (EmitError) {
19706           S.Diag(ReductionId.getBeginLoc(),
19707                  diag::err_omp_reduction_identifier_mismatch)
19708               << ReductionIdRange << RefExpr->getSourceRange();
19709           S.Diag(ParentSR.getBegin(),
19710                  diag::note_omp_previous_reduction_identifier)
19711               << ParentSR
19712               << (IsParentBOK ? ParentBOKDSA.RefExpr
19713                               : ParentReductionOpDSA.RefExpr)
19714                      ->getSourceRange();
19715           continue;
19716         }
19717       }
19718       TaskgroupDescriptor = IsParentBOK ? ParentBOKTD : ParentReductionOpTD;
19719     }
19720 
19721     DeclRefExpr *Ref = nullptr;
19722     Expr *VarsExpr = RefExpr->IgnoreParens();
19723     if (!VD && !S.CurContext->isDependentContext()) {
19724       if (ASE || OASE) {
19725         TransformExprToCaptures RebuildToCapture(S, D);
19726         VarsExpr =
19727             RebuildToCapture.TransformExpr(RefExpr->IgnoreParens()).get();
19728         Ref = RebuildToCapture.getCapturedExpr();
19729       } else {
19730         VarsExpr = Ref = buildCapture(S, D, SimpleRefExpr, /*WithInit=*/false);
19731       }
19732       if (!S.isOpenMPCapturedDecl(D)) {
19733         RD.ExprCaptures.emplace_back(Ref->getDecl());
19734         if (Ref->getDecl()->hasAttr<OMPCaptureNoInitAttr>()) {
19735           ExprResult RefRes = S.DefaultLvalueConversion(Ref);
19736           if (!RefRes.isUsable())
19737             continue;
19738           ExprResult PostUpdateRes =
19739               S.BuildBinOp(Stack->getCurScope(), ELoc, BO_Assign, SimpleRefExpr,
19740                            RefRes.get());
19741           if (!PostUpdateRes.isUsable())
19742             continue;
19743           if (isOpenMPTaskingDirective(Stack->getCurrentDirective()) ||
19744               Stack->getCurrentDirective() == OMPD_taskgroup) {
19745             S.Diag(RefExpr->getExprLoc(),
19746                    diag::err_omp_reduction_non_addressable_expression)
19747                 << RefExpr->getSourceRange();
19748             continue;
19749           }
19750           RD.ExprPostUpdates.emplace_back(
19751               S.IgnoredValueConversions(PostUpdateRes.get()).get());
19752         }
19753       }
19754     }
19755     // All reduction items are still marked as reduction (to do not increase
19756     // code base size).
19757     unsigned Modifier = RD.RedModifier;
19758     // Consider task_reductions as reductions with task modifier. Required for
19759     // correct analysis of in_reduction clauses.
19760     if (CurrDir == OMPD_taskgroup && ClauseKind == OMPC_task_reduction)
19761       Modifier = OMPC_REDUCTION_task;
19762     Stack->addDSA(D, RefExpr->IgnoreParens(), OMPC_reduction, Ref, Modifier,
19763                   ASE || OASE);
19764     if (Modifier == OMPC_REDUCTION_task &&
19765         (CurrDir == OMPD_taskgroup ||
19766          ((isOpenMPParallelDirective(CurrDir) ||
19767            isOpenMPWorksharingDirective(CurrDir)) &&
19768           !isOpenMPSimdDirective(CurrDir)))) {
19769       if (DeclareReductionRef.isUsable())
19770         Stack->addTaskgroupReductionData(D, ReductionIdRange,
19771                                          DeclareReductionRef.get());
19772       else
19773         Stack->addTaskgroupReductionData(D, ReductionIdRange, BOK);
19774     }
19775     RD.push(VarsExpr, PrivateDRE, LHSDRE, RHSDRE, ReductionOp.get(),
19776             TaskgroupDescriptor, CopyOpRes.get(), TempArrayRes.get(),
19777             TempArrayElem.get());
19778   }
19779   return RD.Vars.empty();
19780 }
19781 
19782 OMPClause *Sema::ActOnOpenMPReductionClause(
19783     ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
19784     SourceLocation StartLoc, SourceLocation LParenLoc,
19785     SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
19786     CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId,
19787     ArrayRef<Expr *> UnresolvedReductions) {
19788   if (ModifierLoc.isValid() && Modifier == OMPC_REDUCTION_unknown) {
19789     Diag(LParenLoc, diag::err_omp_unexpected_clause_value)
19790         << getListOfPossibleValues(OMPC_reduction, /*First=*/0,
19791                                    /*Last=*/OMPC_REDUCTION_unknown)
19792         << getOpenMPClauseName(OMPC_reduction);
19793     return nullptr;
19794   }
19795   // OpenMP 5.0, 2.19.5.4 reduction Clause, Restrictions
19796   // A reduction clause with the inscan reduction-modifier may only appear on a
19797   // worksharing-loop construct, a worksharing-loop SIMD construct, a simd
19798   // construct, a parallel worksharing-loop construct or a parallel
19799   // worksharing-loop SIMD construct.
19800   if (Modifier == OMPC_REDUCTION_inscan &&
19801       (DSAStack->getCurrentDirective() != OMPD_for &&
19802        DSAStack->getCurrentDirective() != OMPD_for_simd &&
19803        DSAStack->getCurrentDirective() != OMPD_simd &&
19804        DSAStack->getCurrentDirective() != OMPD_parallel_for &&
19805        DSAStack->getCurrentDirective() != OMPD_parallel_for_simd)) {
19806     Diag(ModifierLoc, diag::err_omp_wrong_inscan_reduction);
19807     return nullptr;
19808   }
19809 
19810   ReductionData RD(VarList.size(), Modifier);
19811   if (actOnOMPReductionKindClause(*this, DSAStack, OMPC_reduction, VarList,
19812                                   StartLoc, LParenLoc, ColonLoc, EndLoc,
19813                                   ReductionIdScopeSpec, ReductionId,
19814                                   UnresolvedReductions, RD))
19815     return nullptr;
19816 
19817   return OMPReductionClause::Create(
19818       Context, StartLoc, LParenLoc, ModifierLoc, ColonLoc, EndLoc, Modifier,
19819       RD.Vars, ReductionIdScopeSpec.getWithLocInContext(Context), ReductionId,
19820       RD.Privates, RD.LHSs, RD.RHSs, RD.ReductionOps, RD.InscanCopyOps,
19821       RD.InscanCopyArrayTemps, RD.InscanCopyArrayElems,
19822       buildPreInits(Context, RD.ExprCaptures),
19823       buildPostUpdate(*this, RD.ExprPostUpdates));
19824 }
19825 
19826 OMPClause *Sema::ActOnOpenMPTaskReductionClause(
19827     ArrayRef<Expr *> VarList, SourceLocation StartLoc, SourceLocation LParenLoc,
19828     SourceLocation ColonLoc, SourceLocation EndLoc,
19829     CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId,
19830     ArrayRef<Expr *> UnresolvedReductions) {
19831   ReductionData RD(VarList.size());
19832   if (actOnOMPReductionKindClause(*this, DSAStack, OMPC_task_reduction, VarList,
19833                                   StartLoc, LParenLoc, ColonLoc, EndLoc,
19834                                   ReductionIdScopeSpec, ReductionId,
19835                                   UnresolvedReductions, RD))
19836     return nullptr;
19837 
19838   return OMPTaskReductionClause::Create(
19839       Context, StartLoc, LParenLoc, ColonLoc, EndLoc, RD.Vars,
19840       ReductionIdScopeSpec.getWithLocInContext(Context), ReductionId,
19841       RD.Privates, RD.LHSs, RD.RHSs, RD.ReductionOps,
19842       buildPreInits(Context, RD.ExprCaptures),
19843       buildPostUpdate(*this, RD.ExprPostUpdates));
19844 }
19845 
19846 OMPClause *Sema::ActOnOpenMPInReductionClause(
19847     ArrayRef<Expr *> VarList, SourceLocation StartLoc, SourceLocation LParenLoc,
19848     SourceLocation ColonLoc, SourceLocation EndLoc,
19849     CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId,
19850     ArrayRef<Expr *> UnresolvedReductions) {
19851   ReductionData RD(VarList.size());
19852   if (actOnOMPReductionKindClause(*this, DSAStack, OMPC_in_reduction, VarList,
19853                                   StartLoc, LParenLoc, ColonLoc, EndLoc,
19854                                   ReductionIdScopeSpec, ReductionId,
19855                                   UnresolvedReductions, RD))
19856     return nullptr;
19857 
19858   return OMPInReductionClause::Create(
19859       Context, StartLoc, LParenLoc, ColonLoc, EndLoc, RD.Vars,
19860       ReductionIdScopeSpec.getWithLocInContext(Context), ReductionId,
19861       RD.Privates, RD.LHSs, RD.RHSs, RD.ReductionOps, RD.TaskgroupDescriptors,
19862       buildPreInits(Context, RD.ExprCaptures),
19863       buildPostUpdate(*this, RD.ExprPostUpdates));
19864 }
19865 
19866 bool Sema::CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
19867                                      SourceLocation LinLoc) {
19868   if ((!LangOpts.CPlusPlus && LinKind != OMPC_LINEAR_val) ||
19869       LinKind == OMPC_LINEAR_unknown) {
19870     Diag(LinLoc, diag::err_omp_wrong_linear_modifier) << LangOpts.CPlusPlus;
19871     return true;
19872   }
19873   return false;
19874 }
19875 
19876 bool Sema::CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
19877                                  OpenMPLinearClauseKind LinKind, QualType Type,
19878                                  bool IsDeclareSimd) {
19879   const auto *VD = dyn_cast_or_null<VarDecl>(D);
19880   // A variable must not have an incomplete type or a reference type.
19881   if (RequireCompleteType(ELoc, Type, diag::err_omp_linear_incomplete_type))
19882     return true;
19883   if ((LinKind == OMPC_LINEAR_uval || LinKind == OMPC_LINEAR_ref) &&
19884       !Type->isReferenceType()) {
19885     Diag(ELoc, diag::err_omp_wrong_linear_modifier_non_reference)
19886         << Type << getOpenMPSimpleClauseTypeName(OMPC_linear, LinKind);
19887     return true;
19888   }
19889   Type = Type.getNonReferenceType();
19890 
19891   // OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
19892   // A variable that is privatized must not have a const-qualified type
19893   // unless it is of class type with a mutable member. This restriction does
19894   // not apply to the firstprivate clause, nor to the linear clause on
19895   // declarative directives (like declare simd).
19896   if (!IsDeclareSimd &&
19897       rejectConstNotMutableType(*this, D, Type, OMPC_linear, ELoc))
19898     return true;
19899 
19900   // A list item must be of integral or pointer type.
19901   Type = Type.getUnqualifiedType().getCanonicalType();
19902   const auto *Ty = Type.getTypePtrOrNull();
19903   if (!Ty || (LinKind != OMPC_LINEAR_ref && !Ty->isDependentType() &&
19904               !Ty->isIntegralType(Context) && !Ty->isPointerType())) {
19905     Diag(ELoc, diag::err_omp_linear_expected_int_or_ptr) << Type;
19906     if (D) {
19907       bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
19908                                VarDecl::DeclarationOnly;
19909       Diag(D->getLocation(),
19910            IsDecl ? diag::note_previous_decl : diag::note_defined_here)
19911           << D;
19912     }
19913     return true;
19914   }
19915   return false;
19916 }
19917 
19918 OMPClause *Sema::ActOnOpenMPLinearClause(
19919     ArrayRef<Expr *> VarList, Expr *Step, SourceLocation StartLoc,
19920     SourceLocation LParenLoc, OpenMPLinearClauseKind LinKind,
19921     SourceLocation LinLoc, SourceLocation ColonLoc, SourceLocation EndLoc) {
19922   SmallVector<Expr *, 8> Vars;
19923   SmallVector<Expr *, 8> Privates;
19924   SmallVector<Expr *, 8> Inits;
19925   SmallVector<Decl *, 4> ExprCaptures;
19926   SmallVector<Expr *, 4> ExprPostUpdates;
19927   if (CheckOpenMPLinearModifier(LinKind, LinLoc))
19928     LinKind = OMPC_LINEAR_val;
19929   for (Expr *RefExpr : VarList) {
19930     assert(RefExpr && "NULL expr in OpenMP linear clause.");
19931     SourceLocation ELoc;
19932     SourceRange ERange;
19933     Expr *SimpleRefExpr = RefExpr;
19934     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
19935     if (Res.second) {
19936       // It will be analyzed later.
19937       Vars.push_back(RefExpr);
19938       Privates.push_back(nullptr);
19939       Inits.push_back(nullptr);
19940     }
19941     ValueDecl *D = Res.first;
19942     if (!D)
19943       continue;
19944 
19945     QualType Type = D->getType();
19946     auto *VD = dyn_cast<VarDecl>(D);
19947 
19948     // OpenMP [2.14.3.7, linear clause]
19949     //  A list-item cannot appear in more than one linear clause.
19950     //  A list-item that appears in a linear clause cannot appear in any
19951     //  other data-sharing attribute clause.
19952     DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
19953     if (DVar.RefExpr) {
19954       Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
19955                                           << getOpenMPClauseName(OMPC_linear);
19956       reportOriginalDsa(*this, DSAStack, D, DVar);
19957       continue;
19958     }
19959 
19960     if (CheckOpenMPLinearDecl(D, ELoc, LinKind, Type))
19961       continue;
19962     Type = Type.getNonReferenceType().getUnqualifiedType().getCanonicalType();
19963 
19964     // Build private copy of original var.
19965     VarDecl *Private =
19966         buildVarDecl(*this, ELoc, Type, D->getName(),
19967                      D->hasAttrs() ? &D->getAttrs() : nullptr,
19968                      VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
19969     DeclRefExpr *PrivateRef = buildDeclRefExpr(*this, Private, Type, ELoc);
19970     // Build var to save initial value.
19971     VarDecl *Init = buildVarDecl(*this, ELoc, Type, ".linear.start");
19972     Expr *InitExpr;
19973     DeclRefExpr *Ref = nullptr;
19974     if (!VD && !CurContext->isDependentContext()) {
19975       Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false);
19976       if (!isOpenMPCapturedDecl(D)) {
19977         ExprCaptures.push_back(Ref->getDecl());
19978         if (Ref->getDecl()->hasAttr<OMPCaptureNoInitAttr>()) {
19979           ExprResult RefRes = DefaultLvalueConversion(Ref);
19980           if (!RefRes.isUsable())
19981             continue;
19982           ExprResult PostUpdateRes =
19983               BuildBinOp(DSAStack->getCurScope(), ELoc, BO_Assign,
19984                          SimpleRefExpr, RefRes.get());
19985           if (!PostUpdateRes.isUsable())
19986             continue;
19987           ExprPostUpdates.push_back(
19988               IgnoredValueConversions(PostUpdateRes.get()).get());
19989         }
19990       }
19991     }
19992     if (LinKind == OMPC_LINEAR_uval)
19993       InitExpr = VD ? VD->getInit() : SimpleRefExpr;
19994     else
19995       InitExpr = VD ? SimpleRefExpr : Ref;
19996     AddInitializerToDecl(Init, DefaultLvalueConversion(InitExpr).get(),
19997                          /*DirectInit=*/false);
19998     DeclRefExpr *InitRef = buildDeclRefExpr(*this, Init, Type, ELoc);
19999 
20000     DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_linear, Ref);
20001     Vars.push_back((VD || CurContext->isDependentContext())
20002                        ? RefExpr->IgnoreParens()
20003                        : Ref);
20004     Privates.push_back(PrivateRef);
20005     Inits.push_back(InitRef);
20006   }
20007 
20008   if (Vars.empty())
20009     return nullptr;
20010 
20011   Expr *StepExpr = Step;
20012   Expr *CalcStepExpr = nullptr;
20013   if (Step && !Step->isValueDependent() && !Step->isTypeDependent() &&
20014       !Step->isInstantiationDependent() &&
20015       !Step->containsUnexpandedParameterPack()) {
20016     SourceLocation StepLoc = Step->getBeginLoc();
20017     ExprResult Val = PerformOpenMPImplicitIntegerConversion(StepLoc, Step);
20018     if (Val.isInvalid())
20019       return nullptr;
20020     StepExpr = Val.get();
20021 
20022     // Build var to save the step value.
20023     VarDecl *SaveVar =
20024         buildVarDecl(*this, StepLoc, StepExpr->getType(), ".linear.step");
20025     ExprResult SaveRef =
20026         buildDeclRefExpr(*this, SaveVar, StepExpr->getType(), StepLoc);
20027     ExprResult CalcStep =
20028         BuildBinOp(CurScope, StepLoc, BO_Assign, SaveRef.get(), StepExpr);
20029     CalcStep = ActOnFinishFullExpr(CalcStep.get(), /*DiscardedValue*/ false);
20030 
20031     // Warn about zero linear step (it would be probably better specified as
20032     // making corresponding variables 'const').
20033     if (std::optional<llvm::APSInt> Result =
20034             StepExpr->getIntegerConstantExpr(Context)) {
20035       if (!Result->isNegative() && !Result->isStrictlyPositive())
20036         Diag(StepLoc, diag::warn_omp_linear_step_zero)
20037             << Vars[0] << (Vars.size() > 1);
20038     } else if (CalcStep.isUsable()) {
20039       // Calculate the step beforehand instead of doing this on each iteration.
20040       // (This is not used if the number of iterations may be kfold-ed).
20041       CalcStepExpr = CalcStep.get();
20042     }
20043   }
20044 
20045   return OMPLinearClause::Create(Context, StartLoc, LParenLoc, LinKind, LinLoc,
20046                                  ColonLoc, EndLoc, Vars, Privates, Inits,
20047                                  StepExpr, CalcStepExpr,
20048                                  buildPreInits(Context, ExprCaptures),
20049                                  buildPostUpdate(*this, ExprPostUpdates));
20050 }
20051 
20052 static bool FinishOpenMPLinearClause(OMPLinearClause &Clause, DeclRefExpr *IV,
20053                                      Expr *NumIterations, Sema &SemaRef,
20054                                      Scope *S, DSAStackTy *Stack) {
20055   // Walk the vars and build update/final expressions for the CodeGen.
20056   SmallVector<Expr *, 8> Updates;
20057   SmallVector<Expr *, 8> Finals;
20058   SmallVector<Expr *, 8> UsedExprs;
20059   Expr *Step = Clause.getStep();
20060   Expr *CalcStep = Clause.getCalcStep();
20061   // OpenMP [2.14.3.7, linear clause]
20062   // If linear-step is not specified it is assumed to be 1.
20063   if (!Step)
20064     Step = SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get();
20065   else if (CalcStep)
20066     Step = cast<BinaryOperator>(CalcStep)->getLHS();
20067   bool HasErrors = false;
20068   auto CurInit = Clause.inits().begin();
20069   auto CurPrivate = Clause.privates().begin();
20070   OpenMPLinearClauseKind LinKind = Clause.getModifier();
20071   for (Expr *RefExpr : Clause.varlists()) {
20072     SourceLocation ELoc;
20073     SourceRange ERange;
20074     Expr *SimpleRefExpr = RefExpr;
20075     auto Res = getPrivateItem(SemaRef, SimpleRefExpr, ELoc, ERange);
20076     ValueDecl *D = Res.first;
20077     if (Res.second || !D) {
20078       Updates.push_back(nullptr);
20079       Finals.push_back(nullptr);
20080       HasErrors = true;
20081       continue;
20082     }
20083     auto &&Info = Stack->isLoopControlVariable(D);
20084     // OpenMP [2.15.11, distribute simd Construct]
20085     // A list item may not appear in a linear clause, unless it is the loop
20086     // iteration variable.
20087     if (isOpenMPDistributeDirective(Stack->getCurrentDirective()) &&
20088         isOpenMPSimdDirective(Stack->getCurrentDirective()) && !Info.first) {
20089       SemaRef.Diag(ELoc,
20090                    diag::err_omp_linear_distribute_var_non_loop_iteration);
20091       Updates.push_back(nullptr);
20092       Finals.push_back(nullptr);
20093       HasErrors = true;
20094       continue;
20095     }
20096     Expr *InitExpr = *CurInit;
20097 
20098     // Build privatized reference to the current linear var.
20099     auto *DE = cast<DeclRefExpr>(SimpleRefExpr);
20100     Expr *CapturedRef;
20101     if (LinKind == OMPC_LINEAR_uval)
20102       CapturedRef = cast<VarDecl>(DE->getDecl())->getInit();
20103     else
20104       CapturedRef =
20105           buildDeclRefExpr(SemaRef, cast<VarDecl>(DE->getDecl()),
20106                            DE->getType().getUnqualifiedType(), DE->getExprLoc(),
20107                            /*RefersToCapture=*/true);
20108 
20109     // Build update: Var = InitExpr + IV * Step
20110     ExprResult Update;
20111     if (!Info.first)
20112       Update = buildCounterUpdate(
20113           SemaRef, S, RefExpr->getExprLoc(), *CurPrivate, InitExpr, IV, Step,
20114           /*Subtract=*/false, /*IsNonRectangularLB=*/false);
20115     else
20116       Update = *CurPrivate;
20117     Update = SemaRef.ActOnFinishFullExpr(Update.get(), DE->getBeginLoc(),
20118                                          /*DiscardedValue*/ false);
20119 
20120     // Build final: Var = PrivCopy;
20121     ExprResult Final;
20122     if (!Info.first)
20123       Final = SemaRef.BuildBinOp(
20124           S, RefExpr->getExprLoc(), BO_Assign, CapturedRef,
20125           SemaRef.DefaultLvalueConversion(*CurPrivate).get());
20126     else
20127       Final = *CurPrivate;
20128     Final = SemaRef.ActOnFinishFullExpr(Final.get(), DE->getBeginLoc(),
20129                                         /*DiscardedValue*/ false);
20130 
20131     if (!Update.isUsable() || !Final.isUsable()) {
20132       Updates.push_back(nullptr);
20133       Finals.push_back(nullptr);
20134       UsedExprs.push_back(nullptr);
20135       HasErrors = true;
20136     } else {
20137       Updates.push_back(Update.get());
20138       Finals.push_back(Final.get());
20139       if (!Info.first)
20140         UsedExprs.push_back(SimpleRefExpr);
20141     }
20142     ++CurInit;
20143     ++CurPrivate;
20144   }
20145   if (Expr *S = Clause.getStep())
20146     UsedExprs.push_back(S);
20147   // Fill the remaining part with the nullptr.
20148   UsedExprs.append(Clause.varlist_size() + 1 - UsedExprs.size(), nullptr);
20149   Clause.setUpdates(Updates);
20150   Clause.setFinals(Finals);
20151   Clause.setUsedExprs(UsedExprs);
20152   return HasErrors;
20153 }
20154 
20155 OMPClause *Sema::ActOnOpenMPAlignedClause(
20156     ArrayRef<Expr *> VarList, Expr *Alignment, SourceLocation StartLoc,
20157     SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc) {
20158   SmallVector<Expr *, 8> Vars;
20159   for (Expr *RefExpr : VarList) {
20160     assert(RefExpr && "NULL expr in OpenMP linear clause.");
20161     SourceLocation ELoc;
20162     SourceRange ERange;
20163     Expr *SimpleRefExpr = RefExpr;
20164     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
20165     if (Res.second) {
20166       // It will be analyzed later.
20167       Vars.push_back(RefExpr);
20168     }
20169     ValueDecl *D = Res.first;
20170     if (!D)
20171       continue;
20172 
20173     QualType QType = D->getType();
20174     auto *VD = dyn_cast<VarDecl>(D);
20175 
20176     // OpenMP  [2.8.1, simd construct, Restrictions]
20177     // The type of list items appearing in the aligned clause must be
20178     // array, pointer, reference to array, or reference to pointer.
20179     QType = QType.getNonReferenceType().getUnqualifiedType().getCanonicalType();
20180     const Type *Ty = QType.getTypePtrOrNull();
20181     if (!Ty || (!Ty->isArrayType() && !Ty->isPointerType())) {
20182       Diag(ELoc, diag::err_omp_aligned_expected_array_or_ptr)
20183           << QType << getLangOpts().CPlusPlus << ERange;
20184       bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
20185                                VarDecl::DeclarationOnly;
20186       Diag(D->getLocation(),
20187            IsDecl ? diag::note_previous_decl : diag::note_defined_here)
20188           << D;
20189       continue;
20190     }
20191 
20192     // OpenMP  [2.8.1, simd construct, Restrictions]
20193     // A list-item cannot appear in more than one aligned clause.
20194     if (const Expr *PrevRef = DSAStack->addUniqueAligned(D, SimpleRefExpr)) {
20195       Diag(ELoc, diag::err_omp_used_in_clause_twice)
20196           << 0 << getOpenMPClauseName(OMPC_aligned) << ERange;
20197       Diag(PrevRef->getExprLoc(), diag::note_omp_explicit_dsa)
20198           << getOpenMPClauseName(OMPC_aligned);
20199       continue;
20200     }
20201 
20202     DeclRefExpr *Ref = nullptr;
20203     if (!VD && isOpenMPCapturedDecl(D))
20204       Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
20205     Vars.push_back(DefaultFunctionArrayConversion(
20206                        (VD || !Ref) ? RefExpr->IgnoreParens() : Ref)
20207                        .get());
20208   }
20209 
20210   // OpenMP [2.8.1, simd construct, Description]
20211   // The parameter of the aligned clause, alignment, must be a constant
20212   // positive integer expression.
20213   // If no optional parameter is specified, implementation-defined default
20214   // alignments for SIMD instructions on the target platforms are assumed.
20215   if (Alignment != nullptr) {
20216     ExprResult AlignResult =
20217         VerifyPositiveIntegerConstantInClause(Alignment, OMPC_aligned);
20218     if (AlignResult.isInvalid())
20219       return nullptr;
20220     Alignment = AlignResult.get();
20221   }
20222   if (Vars.empty())
20223     return nullptr;
20224 
20225   return OMPAlignedClause::Create(Context, StartLoc, LParenLoc, ColonLoc,
20226                                   EndLoc, Vars, Alignment);
20227 }
20228 
20229 OMPClause *Sema::ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
20230                                          SourceLocation StartLoc,
20231                                          SourceLocation LParenLoc,
20232                                          SourceLocation EndLoc) {
20233   SmallVector<Expr *, 8> Vars;
20234   SmallVector<Expr *, 8> SrcExprs;
20235   SmallVector<Expr *, 8> DstExprs;
20236   SmallVector<Expr *, 8> AssignmentOps;
20237   for (Expr *RefExpr : VarList) {
20238     assert(RefExpr && "NULL expr in OpenMP copyin clause.");
20239     if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
20240       // It will be analyzed later.
20241       Vars.push_back(RefExpr);
20242       SrcExprs.push_back(nullptr);
20243       DstExprs.push_back(nullptr);
20244       AssignmentOps.push_back(nullptr);
20245       continue;
20246     }
20247 
20248     SourceLocation ELoc = RefExpr->getExprLoc();
20249     // OpenMP [2.1, C/C++]
20250     //  A list item is a variable name.
20251     // OpenMP  [2.14.4.1, Restrictions, p.1]
20252     //  A list item that appears in a copyin clause must be threadprivate.
20253     auto *DE = dyn_cast<DeclRefExpr>(RefExpr);
20254     if (!DE || !isa<VarDecl>(DE->getDecl())) {
20255       Diag(ELoc, diag::err_omp_expected_var_name_member_expr)
20256           << 0 << RefExpr->getSourceRange();
20257       continue;
20258     }
20259 
20260     Decl *D = DE->getDecl();
20261     auto *VD = cast<VarDecl>(D);
20262 
20263     QualType Type = VD->getType();
20264     if (Type->isDependentType() || Type->isInstantiationDependentType()) {
20265       // It will be analyzed later.
20266       Vars.push_back(DE);
20267       SrcExprs.push_back(nullptr);
20268       DstExprs.push_back(nullptr);
20269       AssignmentOps.push_back(nullptr);
20270       continue;
20271     }
20272 
20273     // OpenMP [2.14.4.1, Restrictions, C/C++, p.1]
20274     //  A list item that appears in a copyin clause must be threadprivate.
20275     if (!DSAStack->isThreadPrivate(VD)) {
20276       Diag(ELoc, diag::err_omp_required_access)
20277           << getOpenMPClauseName(OMPC_copyin)
20278           << getOpenMPDirectiveName(OMPD_threadprivate);
20279       continue;
20280     }
20281 
20282     // OpenMP [2.14.4.1, Restrictions, C/C++, p.2]
20283     //  A variable of class type (or array thereof) that appears in a
20284     //  copyin clause requires an accessible, unambiguous copy assignment
20285     //  operator for the class type.
20286     QualType ElemType = Context.getBaseElementType(Type).getNonReferenceType();
20287     VarDecl *SrcVD =
20288         buildVarDecl(*this, DE->getBeginLoc(), ElemType.getUnqualifiedType(),
20289                      ".copyin.src", VD->hasAttrs() ? &VD->getAttrs() : nullptr);
20290     DeclRefExpr *PseudoSrcExpr = buildDeclRefExpr(
20291         *this, SrcVD, ElemType.getUnqualifiedType(), DE->getExprLoc());
20292     VarDecl *DstVD =
20293         buildVarDecl(*this, DE->getBeginLoc(), ElemType, ".copyin.dst",
20294                      VD->hasAttrs() ? &VD->getAttrs() : nullptr);
20295     DeclRefExpr *PseudoDstExpr =
20296         buildDeclRefExpr(*this, DstVD, ElemType, DE->getExprLoc());
20297     // For arrays generate assignment operation for single element and replace
20298     // it by the original array element in CodeGen.
20299     ExprResult AssignmentOp =
20300         BuildBinOp(/*S=*/nullptr, DE->getExprLoc(), BO_Assign, PseudoDstExpr,
20301                    PseudoSrcExpr);
20302     if (AssignmentOp.isInvalid())
20303       continue;
20304     AssignmentOp = ActOnFinishFullExpr(AssignmentOp.get(), DE->getExprLoc(),
20305                                        /*DiscardedValue*/ false);
20306     if (AssignmentOp.isInvalid())
20307       continue;
20308 
20309     DSAStack->addDSA(VD, DE, OMPC_copyin);
20310     Vars.push_back(DE);
20311     SrcExprs.push_back(PseudoSrcExpr);
20312     DstExprs.push_back(PseudoDstExpr);
20313     AssignmentOps.push_back(AssignmentOp.get());
20314   }
20315 
20316   if (Vars.empty())
20317     return nullptr;
20318 
20319   return OMPCopyinClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars,
20320                                  SrcExprs, DstExprs, AssignmentOps);
20321 }
20322 
20323 OMPClause *Sema::ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
20324                                               SourceLocation StartLoc,
20325                                               SourceLocation LParenLoc,
20326                                               SourceLocation EndLoc) {
20327   SmallVector<Expr *, 8> Vars;
20328   SmallVector<Expr *, 8> SrcExprs;
20329   SmallVector<Expr *, 8> DstExprs;
20330   SmallVector<Expr *, 8> AssignmentOps;
20331   for (Expr *RefExpr : VarList) {
20332     assert(RefExpr && "NULL expr in OpenMP linear clause.");
20333     SourceLocation ELoc;
20334     SourceRange ERange;
20335     Expr *SimpleRefExpr = RefExpr;
20336     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
20337     if (Res.second) {
20338       // It will be analyzed later.
20339       Vars.push_back(RefExpr);
20340       SrcExprs.push_back(nullptr);
20341       DstExprs.push_back(nullptr);
20342       AssignmentOps.push_back(nullptr);
20343     }
20344     ValueDecl *D = Res.first;
20345     if (!D)
20346       continue;
20347 
20348     QualType Type = D->getType();
20349     auto *VD = dyn_cast<VarDecl>(D);
20350 
20351     // OpenMP [2.14.4.2, Restrictions, p.2]
20352     //  A list item that appears in a copyprivate clause may not appear in a
20353     //  private or firstprivate clause on the single construct.
20354     if (!VD || !DSAStack->isThreadPrivate(VD)) {
20355       DSAStackTy::DSAVarData DVar =
20356           DSAStack->getTopDSA(D, /*FromParent=*/false);
20357       if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_copyprivate &&
20358           DVar.RefExpr) {
20359         Diag(ELoc, diag::err_omp_wrong_dsa)
20360             << getOpenMPClauseName(DVar.CKind)
20361             << getOpenMPClauseName(OMPC_copyprivate);
20362         reportOriginalDsa(*this, DSAStack, D, DVar);
20363         continue;
20364       }
20365 
20366       // OpenMP [2.11.4.2, Restrictions, p.1]
20367       //  All list items that appear in a copyprivate clause must be either
20368       //  threadprivate or private in the enclosing context.
20369       if (DVar.CKind == OMPC_unknown) {
20370         DVar = DSAStack->getImplicitDSA(D, false);
20371         if (DVar.CKind == OMPC_shared) {
20372           Diag(ELoc, diag::err_omp_required_access)
20373               << getOpenMPClauseName(OMPC_copyprivate)
20374               << "threadprivate or private in the enclosing context";
20375           reportOriginalDsa(*this, DSAStack, D, DVar);
20376           continue;
20377         }
20378       }
20379     }
20380 
20381     // Variably modified types are not supported.
20382     if (!Type->isAnyPointerType() && Type->isVariablyModifiedType()) {
20383       Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
20384           << getOpenMPClauseName(OMPC_copyprivate) << Type
20385           << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
20386       bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
20387                                VarDecl::DeclarationOnly;
20388       Diag(D->getLocation(),
20389            IsDecl ? diag::note_previous_decl : diag::note_defined_here)
20390           << D;
20391       continue;
20392     }
20393 
20394     // OpenMP [2.14.4.1, Restrictions, C/C++, p.2]
20395     //  A variable of class type (or array thereof) that appears in a
20396     //  copyin clause requires an accessible, unambiguous copy assignment
20397     //  operator for the class type.
20398     Type = Context.getBaseElementType(Type.getNonReferenceType())
20399                .getUnqualifiedType();
20400     VarDecl *SrcVD =
20401         buildVarDecl(*this, RefExpr->getBeginLoc(), Type, ".copyprivate.src",
20402                      D->hasAttrs() ? &D->getAttrs() : nullptr);
20403     DeclRefExpr *PseudoSrcExpr = buildDeclRefExpr(*this, SrcVD, Type, ELoc);
20404     VarDecl *DstVD =
20405         buildVarDecl(*this, RefExpr->getBeginLoc(), Type, ".copyprivate.dst",
20406                      D->hasAttrs() ? &D->getAttrs() : nullptr);
20407     DeclRefExpr *PseudoDstExpr = buildDeclRefExpr(*this, DstVD, Type, ELoc);
20408     ExprResult AssignmentOp = BuildBinOp(
20409         DSAStack->getCurScope(), ELoc, BO_Assign, PseudoDstExpr, PseudoSrcExpr);
20410     if (AssignmentOp.isInvalid())
20411       continue;
20412     AssignmentOp =
20413         ActOnFinishFullExpr(AssignmentOp.get(), ELoc, /*DiscardedValue*/ false);
20414     if (AssignmentOp.isInvalid())
20415       continue;
20416 
20417     // No need to mark vars as copyprivate, they are already threadprivate or
20418     // implicitly private.
20419     assert(VD || isOpenMPCapturedDecl(D));
20420     Vars.push_back(
20421         VD ? RefExpr->IgnoreParens()
20422            : buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false));
20423     SrcExprs.push_back(PseudoSrcExpr);
20424     DstExprs.push_back(PseudoDstExpr);
20425     AssignmentOps.push_back(AssignmentOp.get());
20426   }
20427 
20428   if (Vars.empty())
20429     return nullptr;
20430 
20431   return OMPCopyprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
20432                                       Vars, SrcExprs, DstExprs, AssignmentOps);
20433 }
20434 
20435 OMPClause *Sema::ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
20436                                         SourceLocation StartLoc,
20437                                         SourceLocation LParenLoc,
20438                                         SourceLocation EndLoc) {
20439   if (VarList.empty())
20440     return nullptr;
20441 
20442   return OMPFlushClause::Create(Context, StartLoc, LParenLoc, EndLoc, VarList);
20443 }
20444 
20445 /// Tries to find omp_depend_t. type.
20446 static bool findOMPDependT(Sema &S, SourceLocation Loc, DSAStackTy *Stack,
20447                            bool Diagnose = true) {
20448   QualType OMPDependT = Stack->getOMPDependT();
20449   if (!OMPDependT.isNull())
20450     return true;
20451   IdentifierInfo *II = &S.PP.getIdentifierTable().get("omp_depend_t");
20452   ParsedType PT = S.getTypeName(*II, Loc, S.getCurScope());
20453   if (!PT.getAsOpaquePtr() || PT.get().isNull()) {
20454     if (Diagnose)
20455       S.Diag(Loc, diag::err_omp_implied_type_not_found) << "omp_depend_t";
20456     return false;
20457   }
20458   Stack->setOMPDependT(PT.get());
20459   return true;
20460 }
20461 
20462 OMPClause *Sema::ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
20463                                          SourceLocation LParenLoc,
20464                                          SourceLocation EndLoc) {
20465   if (!Depobj)
20466     return nullptr;
20467 
20468   bool OMPDependTFound = findOMPDependT(*this, StartLoc, DSAStack);
20469 
20470   // OpenMP 5.0, 2.17.10.1 depobj Construct
20471   // depobj is an lvalue expression of type omp_depend_t.
20472   if (!Depobj->isTypeDependent() && !Depobj->isValueDependent() &&
20473       !Depobj->isInstantiationDependent() &&
20474       !Depobj->containsUnexpandedParameterPack() &&
20475       (OMPDependTFound &&
20476        !Context.typesAreCompatible(DSAStack->getOMPDependT(), Depobj->getType(),
20477                                    /*CompareUnqualified=*/true))) {
20478     Diag(Depobj->getExprLoc(), diag::err_omp_expected_omp_depend_t_lvalue)
20479         << 0 << Depobj->getType() << Depobj->getSourceRange();
20480   }
20481 
20482   if (!Depobj->isLValue()) {
20483     Diag(Depobj->getExprLoc(), diag::err_omp_expected_omp_depend_t_lvalue)
20484         << 1 << Depobj->getSourceRange();
20485   }
20486 
20487   return OMPDepobjClause::Create(Context, StartLoc, LParenLoc, EndLoc, Depobj);
20488 }
20489 
20490 OMPClause *
20491 Sema::ActOnOpenMPDependClause(const OMPDependClause::DependDataTy &Data,
20492                               Expr *DepModifier, ArrayRef<Expr *> VarList,
20493                               SourceLocation StartLoc, SourceLocation LParenLoc,
20494                               SourceLocation EndLoc) {
20495   OpenMPDependClauseKind DepKind = Data.DepKind;
20496   SourceLocation DepLoc = Data.DepLoc;
20497   if (DSAStack->getCurrentDirective() == OMPD_ordered &&
20498       DepKind != OMPC_DEPEND_source && DepKind != OMPC_DEPEND_sink) {
20499     Diag(DepLoc, diag::err_omp_unexpected_clause_value)
20500         << "'source' or 'sink'" << getOpenMPClauseName(OMPC_depend);
20501     return nullptr;
20502   }
20503   if (DSAStack->getCurrentDirective() == OMPD_taskwait &&
20504       DepKind == OMPC_DEPEND_mutexinoutset) {
20505     Diag(DepLoc, diag::err_omp_taskwait_depend_mutexinoutset_not_allowed);
20506     return nullptr;
20507   }
20508   if ((DSAStack->getCurrentDirective() != OMPD_ordered ||
20509        DSAStack->getCurrentDirective() == OMPD_depobj) &&
20510       (DepKind == OMPC_DEPEND_unknown || DepKind == OMPC_DEPEND_source ||
20511        DepKind == OMPC_DEPEND_sink ||
20512        ((LangOpts.OpenMP < 50 ||
20513          DSAStack->getCurrentDirective() == OMPD_depobj) &&
20514         DepKind == OMPC_DEPEND_depobj))) {
20515     SmallVector<unsigned, 6> Except = {OMPC_DEPEND_source, OMPC_DEPEND_sink,
20516                                        OMPC_DEPEND_outallmemory,
20517                                        OMPC_DEPEND_inoutallmemory};
20518     if (LangOpts.OpenMP < 50 || DSAStack->getCurrentDirective() == OMPD_depobj)
20519       Except.push_back(OMPC_DEPEND_depobj);
20520     if (LangOpts.OpenMP < 51)
20521       Except.push_back(OMPC_DEPEND_inoutset);
20522     std::string Expected = (LangOpts.OpenMP >= 50 && !DepModifier)
20523                                ? "depend modifier(iterator) or "
20524                                : "";
20525     Diag(DepLoc, diag::err_omp_unexpected_clause_value)
20526         << Expected + getListOfPossibleValues(OMPC_depend, /*First=*/0,
20527                                               /*Last=*/OMPC_DEPEND_unknown,
20528                                               Except)
20529         << getOpenMPClauseName(OMPC_depend);
20530     return nullptr;
20531   }
20532   if (DepModifier &&
20533       (DepKind == OMPC_DEPEND_source || DepKind == OMPC_DEPEND_sink)) {
20534     Diag(DepModifier->getExprLoc(),
20535          diag::err_omp_depend_sink_source_with_modifier);
20536     return nullptr;
20537   }
20538   if (DepModifier &&
20539       !DepModifier->getType()->isSpecificBuiltinType(BuiltinType::OMPIterator))
20540     Diag(DepModifier->getExprLoc(), diag::err_omp_depend_modifier_not_iterator);
20541 
20542   SmallVector<Expr *, 8> Vars;
20543   DSAStackTy::OperatorOffsetTy OpsOffs;
20544   llvm::APSInt DepCounter(/*BitWidth=*/32);
20545   llvm::APSInt TotalDepCount(/*BitWidth=*/32);
20546   if (DepKind == OMPC_DEPEND_sink || DepKind == OMPC_DEPEND_source) {
20547     if (const Expr *OrderedCountExpr =
20548             DSAStack->getParentOrderedRegionParam().first) {
20549       TotalDepCount = OrderedCountExpr->EvaluateKnownConstInt(Context);
20550       TotalDepCount.setIsUnsigned(/*Val=*/true);
20551     }
20552   }
20553   for (Expr *RefExpr : VarList) {
20554     assert(RefExpr && "NULL expr in OpenMP shared clause.");
20555     if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
20556       // It will be analyzed later.
20557       Vars.push_back(RefExpr);
20558       continue;
20559     }
20560 
20561     SourceLocation ELoc = RefExpr->getExprLoc();
20562     Expr *SimpleExpr = RefExpr->IgnoreParenCasts();
20563     if (DepKind == OMPC_DEPEND_sink) {
20564       if (DSAStack->getParentOrderedRegionParam().first &&
20565           DepCounter >= TotalDepCount) {
20566         Diag(ELoc, diag::err_omp_depend_sink_unexpected_expr);
20567         continue;
20568       }
20569       ++DepCounter;
20570       // OpenMP  [2.13.9, Summary]
20571       // depend(dependence-type : vec), where dependence-type is:
20572       // 'sink' and where vec is the iteration vector, which has the form:
20573       //  x1 [+- d1], x2 [+- d2 ], . . . , xn [+- dn]
20574       // where n is the value specified by the ordered clause in the loop
20575       // directive, xi denotes the loop iteration variable of the i-th nested
20576       // loop associated with the loop directive, and di is a constant
20577       // non-negative integer.
20578       if (CurContext->isDependentContext()) {
20579         // It will be analyzed later.
20580         Vars.push_back(RefExpr);
20581         continue;
20582       }
20583       SimpleExpr = SimpleExpr->IgnoreImplicit();
20584       OverloadedOperatorKind OOK = OO_None;
20585       SourceLocation OOLoc;
20586       Expr *LHS = SimpleExpr;
20587       Expr *RHS = nullptr;
20588       if (auto *BO = dyn_cast<BinaryOperator>(SimpleExpr)) {
20589         OOK = BinaryOperator::getOverloadedOperator(BO->getOpcode());
20590         OOLoc = BO->getOperatorLoc();
20591         LHS = BO->getLHS()->IgnoreParenImpCasts();
20592         RHS = BO->getRHS()->IgnoreParenImpCasts();
20593       } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(SimpleExpr)) {
20594         OOK = OCE->getOperator();
20595         OOLoc = OCE->getOperatorLoc();
20596         LHS = OCE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
20597         RHS = OCE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
20598       } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SimpleExpr)) {
20599         OOK = MCE->getMethodDecl()
20600                   ->getNameInfo()
20601                   .getName()
20602                   .getCXXOverloadedOperator();
20603         OOLoc = MCE->getCallee()->getExprLoc();
20604         LHS = MCE->getImplicitObjectArgument()->IgnoreParenImpCasts();
20605         RHS = MCE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
20606       }
20607       SourceLocation ELoc;
20608       SourceRange ERange;
20609       auto Res = getPrivateItem(*this, LHS, ELoc, ERange);
20610       if (Res.second) {
20611         // It will be analyzed later.
20612         Vars.push_back(RefExpr);
20613       }
20614       ValueDecl *D = Res.first;
20615       if (!D)
20616         continue;
20617 
20618       if (OOK != OO_Plus && OOK != OO_Minus && (RHS || OOK != OO_None)) {
20619         Diag(OOLoc, diag::err_omp_depend_sink_expected_plus_minus);
20620         continue;
20621       }
20622       if (RHS) {
20623         ExprResult RHSRes = VerifyPositiveIntegerConstantInClause(
20624             RHS, OMPC_depend, /*StrictlyPositive=*/false);
20625         if (RHSRes.isInvalid())
20626           continue;
20627       }
20628       if (!CurContext->isDependentContext() &&
20629           DSAStack->getParentOrderedRegionParam().first &&
20630           DepCounter != DSAStack->isParentLoopControlVariable(D).first) {
20631         const ValueDecl *VD =
20632             DSAStack->getParentLoopControlVariable(DepCounter.getZExtValue());
20633         if (VD)
20634           Diag(ELoc, diag::err_omp_depend_sink_expected_loop_iteration)
20635               << 1 << VD;
20636         else
20637           Diag(ELoc, diag::err_omp_depend_sink_expected_loop_iteration) << 0;
20638         continue;
20639       }
20640       OpsOffs.emplace_back(RHS, OOK);
20641     } else {
20642       bool OMPDependTFound = LangOpts.OpenMP >= 50;
20643       if (OMPDependTFound)
20644         OMPDependTFound = findOMPDependT(*this, StartLoc, DSAStack,
20645                                          DepKind == OMPC_DEPEND_depobj);
20646       if (DepKind == OMPC_DEPEND_depobj) {
20647         // OpenMP 5.0, 2.17.11 depend Clause, Restrictions, C/C++
20648         // List items used in depend clauses with the depobj dependence type
20649         // must be expressions of the omp_depend_t type.
20650         if (!RefExpr->isValueDependent() && !RefExpr->isTypeDependent() &&
20651             !RefExpr->isInstantiationDependent() &&
20652             !RefExpr->containsUnexpandedParameterPack() &&
20653             (OMPDependTFound &&
20654              !Context.hasSameUnqualifiedType(DSAStack->getOMPDependT(),
20655                                              RefExpr->getType()))) {
20656           Diag(ELoc, diag::err_omp_expected_omp_depend_t_lvalue)
20657               << 0 << RefExpr->getType() << RefExpr->getSourceRange();
20658           continue;
20659         }
20660         if (!RefExpr->isLValue()) {
20661           Diag(ELoc, diag::err_omp_expected_omp_depend_t_lvalue)
20662               << 1 << RefExpr->getType() << RefExpr->getSourceRange();
20663           continue;
20664         }
20665       } else {
20666         // OpenMP 5.0 [2.17.11, Restrictions]
20667         // List items used in depend clauses cannot be zero-length array
20668         // sections.
20669         QualType ExprTy = RefExpr->getType().getNonReferenceType();
20670         const auto *OASE = dyn_cast<OMPArraySectionExpr>(SimpleExpr);
20671         if (OASE) {
20672           QualType BaseType =
20673               OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
20674           if (const auto *ATy = BaseType->getAsArrayTypeUnsafe())
20675             ExprTy = ATy->getElementType();
20676           else
20677             ExprTy = BaseType->getPointeeType();
20678           ExprTy = ExprTy.getNonReferenceType();
20679           const Expr *Length = OASE->getLength();
20680           Expr::EvalResult Result;
20681           if (Length && !Length->isValueDependent() &&
20682               Length->EvaluateAsInt(Result, Context) &&
20683               Result.Val.getInt().isZero()) {
20684             Diag(ELoc,
20685                  diag::err_omp_depend_zero_length_array_section_not_allowed)
20686                 << SimpleExpr->getSourceRange();
20687             continue;
20688           }
20689         }
20690 
20691         // OpenMP 5.0, 2.17.11 depend Clause, Restrictions, C/C++
20692         // List items used in depend clauses with the in, out, inout,
20693         // inoutset, or mutexinoutset dependence types cannot be
20694         // expressions of the omp_depend_t type.
20695         if (!RefExpr->isValueDependent() && !RefExpr->isTypeDependent() &&
20696             !RefExpr->isInstantiationDependent() &&
20697             !RefExpr->containsUnexpandedParameterPack() &&
20698             (!RefExpr->IgnoreParenImpCasts()->isLValue() ||
20699              (OMPDependTFound &&
20700               DSAStack->getOMPDependT().getTypePtr() == ExprTy.getTypePtr()))) {
20701           Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
20702               << (LangOpts.OpenMP >= 50 ? 1 : 0)
20703               << (LangOpts.OpenMP >= 50 ? 1 : 0) << RefExpr->getSourceRange();
20704           continue;
20705         }
20706 
20707         auto *ASE = dyn_cast<ArraySubscriptExpr>(SimpleExpr);
20708         if (ASE && !ASE->getBase()->isTypeDependent() &&
20709             !ASE->getBase()->getType().getNonReferenceType()->isPointerType() &&
20710             !ASE->getBase()->getType().getNonReferenceType()->isArrayType()) {
20711           Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
20712               << (LangOpts.OpenMP >= 50 ? 1 : 0)
20713               << (LangOpts.OpenMP >= 50 ? 1 : 0) << RefExpr->getSourceRange();
20714           continue;
20715         }
20716 
20717         ExprResult Res;
20718         {
20719           Sema::TentativeAnalysisScope Trap(*this);
20720           Res = CreateBuiltinUnaryOp(ELoc, UO_AddrOf,
20721                                      RefExpr->IgnoreParenImpCasts());
20722         }
20723         if (!Res.isUsable() && !isa<OMPArraySectionExpr>(SimpleExpr) &&
20724             !isa<OMPArrayShapingExpr>(SimpleExpr)) {
20725           Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
20726               << (LangOpts.OpenMP >= 50 ? 1 : 0)
20727               << (LangOpts.OpenMP >= 50 ? 1 : 0) << RefExpr->getSourceRange();
20728           continue;
20729         }
20730       }
20731     }
20732     Vars.push_back(RefExpr->IgnoreParenImpCasts());
20733   }
20734 
20735   if (!CurContext->isDependentContext() && DepKind == OMPC_DEPEND_sink &&
20736       TotalDepCount > VarList.size() &&
20737       DSAStack->getParentOrderedRegionParam().first &&
20738       DSAStack->getParentLoopControlVariable(VarList.size() + 1)) {
20739     Diag(EndLoc, diag::err_omp_depend_sink_expected_loop_iteration)
20740         << 1 << DSAStack->getParentLoopControlVariable(VarList.size() + 1);
20741   }
20742   if (DepKind != OMPC_DEPEND_source && DepKind != OMPC_DEPEND_sink &&
20743       DepKind != OMPC_DEPEND_outallmemory &&
20744       DepKind != OMPC_DEPEND_inoutallmemory && Vars.empty())
20745     return nullptr;
20746 
20747   auto *C = OMPDependClause::Create(
20748       Context, StartLoc, LParenLoc, EndLoc,
20749       {DepKind, DepLoc, Data.ColonLoc, Data.OmpAllMemoryLoc}, DepModifier, Vars,
20750       TotalDepCount.getZExtValue());
20751   if ((DepKind == OMPC_DEPEND_sink || DepKind == OMPC_DEPEND_source) &&
20752       DSAStack->isParentOrderedRegion())
20753     DSAStack->addDoacrossDependClause(C, OpsOffs);
20754   return C;
20755 }
20756 
20757 OMPClause *Sema::ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
20758                                          Expr *Device, SourceLocation StartLoc,
20759                                          SourceLocation LParenLoc,
20760                                          SourceLocation ModifierLoc,
20761                                          SourceLocation EndLoc) {
20762   assert((ModifierLoc.isInvalid() || LangOpts.OpenMP >= 50) &&
20763          "Unexpected device modifier in OpenMP < 50.");
20764 
20765   bool ErrorFound = false;
20766   if (ModifierLoc.isValid() && Modifier == OMPC_DEVICE_unknown) {
20767     std::string Values =
20768         getListOfPossibleValues(OMPC_device, /*First=*/0, OMPC_DEVICE_unknown);
20769     Diag(ModifierLoc, diag::err_omp_unexpected_clause_value)
20770         << Values << getOpenMPClauseName(OMPC_device);
20771     ErrorFound = true;
20772   }
20773 
20774   Expr *ValExpr = Device;
20775   Stmt *HelperValStmt = nullptr;
20776 
20777   // OpenMP [2.9.1, Restrictions]
20778   // The device expression must evaluate to a non-negative integer value.
20779   ErrorFound = !isNonNegativeIntegerValue(ValExpr, *this, OMPC_device,
20780                                           /*StrictlyPositive=*/false) ||
20781                ErrorFound;
20782   if (ErrorFound)
20783     return nullptr;
20784 
20785   // OpenMP 5.0 [2.12.5, Restrictions]
20786   // In case of ancestor device-modifier, a requires directive with
20787   // the reverse_offload clause must be specified.
20788   if (Modifier == OMPC_DEVICE_ancestor) {
20789     if (!DSAStack->hasRequiresDeclWithClause<OMPReverseOffloadClause>()) {
20790       targetDiag(
20791           StartLoc,
20792           diag::err_omp_device_ancestor_without_requires_reverse_offload);
20793       ErrorFound = true;
20794     }
20795   }
20796 
20797   OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
20798   OpenMPDirectiveKind CaptureRegion =
20799       getOpenMPCaptureRegionForClause(DKind, OMPC_device, LangOpts.OpenMP);
20800   if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
20801     ValExpr = MakeFullExpr(ValExpr).get();
20802     llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
20803     ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
20804     HelperValStmt = buildPreInits(Context, Captures);
20805   }
20806 
20807   return new (Context)
20808       OMPDeviceClause(Modifier, ValExpr, HelperValStmt, CaptureRegion, StartLoc,
20809                       LParenLoc, ModifierLoc, EndLoc);
20810 }
20811 
20812 static bool checkTypeMappable(SourceLocation SL, SourceRange SR, Sema &SemaRef,
20813                               DSAStackTy *Stack, QualType QTy,
20814                               bool FullCheck = true) {
20815   if (SemaRef.RequireCompleteType(SL, QTy, diag::err_incomplete_type))
20816     return false;
20817   if (FullCheck && !SemaRef.CurContext->isDependentContext() &&
20818       !QTy.isTriviallyCopyableType(SemaRef.Context))
20819     SemaRef.Diag(SL, diag::warn_omp_non_trivial_type_mapped) << QTy << SR;
20820   return true;
20821 }
20822 
20823 /// Return true if it can be proven that the provided array expression
20824 /// (array section or array subscript) does NOT specify the whole size of the
20825 /// array whose base type is \a BaseQTy.
20826 static bool checkArrayExpressionDoesNotReferToWholeSize(Sema &SemaRef,
20827                                                         const Expr *E,
20828                                                         QualType BaseQTy) {
20829   const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
20830 
20831   // If this is an array subscript, it refers to the whole size if the size of
20832   // the dimension is constant and equals 1. Also, an array section assumes the
20833   // format of an array subscript if no colon is used.
20834   if (isa<ArraySubscriptExpr>(E) ||
20835       (OASE && OASE->getColonLocFirst().isInvalid())) {
20836     if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
20837       return ATy->getSize().getSExtValue() != 1;
20838     // Size can't be evaluated statically.
20839     return false;
20840   }
20841 
20842   assert(OASE && "Expecting array section if not an array subscript.");
20843   const Expr *LowerBound = OASE->getLowerBound();
20844   const Expr *Length = OASE->getLength();
20845 
20846   // If there is a lower bound that does not evaluates to zero, we are not
20847   // covering the whole dimension.
20848   if (LowerBound) {
20849     Expr::EvalResult Result;
20850     if (!LowerBound->EvaluateAsInt(Result, SemaRef.getASTContext()))
20851       return false; // Can't get the integer value as a constant.
20852 
20853     llvm::APSInt ConstLowerBound = Result.Val.getInt();
20854     if (ConstLowerBound.getSExtValue())
20855       return true;
20856   }
20857 
20858   // If we don't have a length we covering the whole dimension.
20859   if (!Length)
20860     return false;
20861 
20862   // If the base is a pointer, we don't have a way to get the size of the
20863   // pointee.
20864   if (BaseQTy->isPointerType())
20865     return false;
20866 
20867   // We can only check if the length is the same as the size of the dimension
20868   // if we have a constant array.
20869   const auto *CATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr());
20870   if (!CATy)
20871     return false;
20872 
20873   Expr::EvalResult Result;
20874   if (!Length->EvaluateAsInt(Result, SemaRef.getASTContext()))
20875     return false; // Can't get the integer value as a constant.
20876 
20877   llvm::APSInt ConstLength = Result.Val.getInt();
20878   return CATy->getSize().getSExtValue() != ConstLength.getSExtValue();
20879 }
20880 
20881 // Return true if it can be proven that the provided array expression (array
20882 // section or array subscript) does NOT specify a single element of the array
20883 // whose base type is \a BaseQTy.
20884 static bool checkArrayExpressionDoesNotReferToUnitySize(Sema &SemaRef,
20885                                                         const Expr *E,
20886                                                         QualType BaseQTy) {
20887   const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
20888 
20889   // An array subscript always refer to a single element. Also, an array section
20890   // assumes the format of an array subscript if no colon is used.
20891   if (isa<ArraySubscriptExpr>(E) ||
20892       (OASE && OASE->getColonLocFirst().isInvalid()))
20893     return false;
20894 
20895   assert(OASE && "Expecting array section if not an array subscript.");
20896   const Expr *Length = OASE->getLength();
20897 
20898   // If we don't have a length we have to check if the array has unitary size
20899   // for this dimension. Also, we should always expect a length if the base type
20900   // is pointer.
20901   if (!Length) {
20902     if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
20903       return ATy->getSize().getSExtValue() != 1;
20904     // We cannot assume anything.
20905     return false;
20906   }
20907 
20908   // Check if the length evaluates to 1.
20909   Expr::EvalResult Result;
20910   if (!Length->EvaluateAsInt(Result, SemaRef.getASTContext()))
20911     return false; // Can't get the integer value as a constant.
20912 
20913   llvm::APSInt ConstLength = Result.Val.getInt();
20914   return ConstLength.getSExtValue() != 1;
20915 }
20916 
20917 // The base of elements of list in a map clause have to be either:
20918 //  - a reference to variable or field.
20919 //  - a member expression.
20920 //  - an array expression.
20921 //
20922 // E.g. if we have the expression 'r.S.Arr[:12]', we want to retrieve the
20923 // reference to 'r'.
20924 //
20925 // If we have:
20926 //
20927 // struct SS {
20928 //   Bla S;
20929 //   foo() {
20930 //     #pragma omp target map (S.Arr[:12]);
20931 //   }
20932 // }
20933 //
20934 // We want to retrieve the member expression 'this->S';
20935 
20936 // OpenMP 5.0 [2.19.7.1, map Clause, Restrictions, p.2]
20937 //  If a list item is an array section, it must specify contiguous storage.
20938 //
20939 // For this restriction it is sufficient that we make sure only references
20940 // to variables or fields and array expressions, and that no array sections
20941 // exist except in the rightmost expression (unless they cover the whole
20942 // dimension of the array). E.g. these would be invalid:
20943 //
20944 //   r.ArrS[3:5].Arr[6:7]
20945 //
20946 //   r.ArrS[3:5].x
20947 //
20948 // but these would be valid:
20949 //   r.ArrS[3].Arr[6:7]
20950 //
20951 //   r.ArrS[3].x
20952 namespace {
20953 class MapBaseChecker final : public StmtVisitor<MapBaseChecker, bool> {
20954   Sema &SemaRef;
20955   OpenMPClauseKind CKind = OMPC_unknown;
20956   OpenMPDirectiveKind DKind = OMPD_unknown;
20957   OMPClauseMappableExprCommon::MappableExprComponentList &Components;
20958   bool IsNonContiguous = false;
20959   bool NoDiagnose = false;
20960   const Expr *RelevantExpr = nullptr;
20961   bool AllowUnitySizeArraySection = true;
20962   bool AllowWholeSizeArraySection = true;
20963   bool AllowAnotherPtr = true;
20964   SourceLocation ELoc;
20965   SourceRange ERange;
20966 
20967   void emitErrorMsg() {
20968     // If nothing else worked, this is not a valid map clause expression.
20969     if (SemaRef.getLangOpts().OpenMP < 50) {
20970       SemaRef.Diag(ELoc,
20971                    diag::err_omp_expected_named_var_member_or_array_expression)
20972           << ERange;
20973     } else {
20974       SemaRef.Diag(ELoc, diag::err_omp_non_lvalue_in_map_or_motion_clauses)
20975           << getOpenMPClauseName(CKind) << ERange;
20976     }
20977   }
20978 
20979 public:
20980   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
20981     if (!isa<VarDecl>(DRE->getDecl())) {
20982       emitErrorMsg();
20983       return false;
20984     }
20985     assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
20986     RelevantExpr = DRE;
20987     // Record the component.
20988     Components.emplace_back(DRE, DRE->getDecl(), IsNonContiguous);
20989     return true;
20990   }
20991 
20992   bool VisitMemberExpr(MemberExpr *ME) {
20993     Expr *E = ME;
20994     Expr *BaseE = ME->getBase()->IgnoreParenCasts();
20995 
20996     if (isa<CXXThisExpr>(BaseE)) {
20997       assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
20998       // We found a base expression: this->Val.
20999       RelevantExpr = ME;
21000     } else {
21001       E = BaseE;
21002     }
21003 
21004     if (!isa<FieldDecl>(ME->getMemberDecl())) {
21005       if (!NoDiagnose) {
21006         SemaRef.Diag(ELoc, diag::err_omp_expected_access_to_data_field)
21007             << ME->getSourceRange();
21008         return false;
21009       }
21010       if (RelevantExpr)
21011         return false;
21012       return Visit(E);
21013     }
21014 
21015     auto *FD = cast<FieldDecl>(ME->getMemberDecl());
21016 
21017     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.3]
21018     //  A bit-field cannot appear in a map clause.
21019     //
21020     if (FD->isBitField()) {
21021       if (!NoDiagnose) {
21022         SemaRef.Diag(ELoc, diag::err_omp_bit_fields_forbidden_in_clause)
21023             << ME->getSourceRange() << getOpenMPClauseName(CKind);
21024         return false;
21025       }
21026       if (RelevantExpr)
21027         return false;
21028       return Visit(E);
21029     }
21030 
21031     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
21032     //  If the type of a list item is a reference to a type T then the type
21033     //  will be considered to be T for all purposes of this clause.
21034     QualType CurType = BaseE->getType().getNonReferenceType();
21035 
21036     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.2]
21037     //  A list item cannot be a variable that is a member of a structure with
21038     //  a union type.
21039     //
21040     if (CurType->isUnionType()) {
21041       if (!NoDiagnose) {
21042         SemaRef.Diag(ELoc, diag::err_omp_union_type_not_allowed)
21043             << ME->getSourceRange();
21044         return false;
21045       }
21046       return RelevantExpr || Visit(E);
21047     }
21048 
21049     // If we got a member expression, we should not expect any array section
21050     // before that:
21051     //
21052     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.7]
21053     //  If a list item is an element of a structure, only the rightmost symbol
21054     //  of the variable reference can be an array section.
21055     //
21056     AllowUnitySizeArraySection = false;
21057     AllowWholeSizeArraySection = false;
21058 
21059     // Record the component.
21060     Components.emplace_back(ME, FD, IsNonContiguous);
21061     return RelevantExpr || Visit(E);
21062   }
21063 
21064   bool VisitArraySubscriptExpr(ArraySubscriptExpr *AE) {
21065     Expr *E = AE->getBase()->IgnoreParenImpCasts();
21066 
21067     if (!E->getType()->isAnyPointerType() && !E->getType()->isArrayType()) {
21068       if (!NoDiagnose) {
21069         SemaRef.Diag(ELoc, diag::err_omp_expected_base_var_name)
21070             << 0 << AE->getSourceRange();
21071         return false;
21072       }
21073       return RelevantExpr || Visit(E);
21074     }
21075 
21076     // If we got an array subscript that express the whole dimension we
21077     // can have any array expressions before. If it only expressing part of
21078     // the dimension, we can only have unitary-size array expressions.
21079     if (checkArrayExpressionDoesNotReferToWholeSize(SemaRef, AE, E->getType()))
21080       AllowWholeSizeArraySection = false;
21081 
21082     if (const auto *TE = dyn_cast<CXXThisExpr>(E->IgnoreParenCasts())) {
21083       Expr::EvalResult Result;
21084       if (!AE->getIdx()->isValueDependent() &&
21085           AE->getIdx()->EvaluateAsInt(Result, SemaRef.getASTContext()) &&
21086           !Result.Val.getInt().isZero()) {
21087         SemaRef.Diag(AE->getIdx()->getExprLoc(),
21088                      diag::err_omp_invalid_map_this_expr);
21089         SemaRef.Diag(AE->getIdx()->getExprLoc(),
21090                      diag::note_omp_invalid_subscript_on_this_ptr_map);
21091       }
21092       assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
21093       RelevantExpr = TE;
21094     }
21095 
21096     // Record the component - we don't have any declaration associated.
21097     Components.emplace_back(AE, nullptr, IsNonContiguous);
21098 
21099     return RelevantExpr || Visit(E);
21100   }
21101 
21102   bool VisitOMPArraySectionExpr(OMPArraySectionExpr *OASE) {
21103     // After OMP 5.0  Array section in reduction clause will be implicitly
21104     // mapped
21105     assert(!(SemaRef.getLangOpts().OpenMP < 50 && NoDiagnose) &&
21106            "Array sections cannot be implicitly mapped.");
21107     Expr *E = OASE->getBase()->IgnoreParenImpCasts();
21108     QualType CurType =
21109         OMPArraySectionExpr::getBaseOriginalType(E).getCanonicalType();
21110 
21111     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
21112     //  If the type of a list item is a reference to a type T then the type
21113     //  will be considered to be T for all purposes of this clause.
21114     if (CurType->isReferenceType())
21115       CurType = CurType->getPointeeType();
21116 
21117     bool IsPointer = CurType->isAnyPointerType();
21118 
21119     if (!IsPointer && !CurType->isArrayType()) {
21120       SemaRef.Diag(ELoc, diag::err_omp_expected_base_var_name)
21121           << 0 << OASE->getSourceRange();
21122       return false;
21123     }
21124 
21125     bool NotWhole =
21126         checkArrayExpressionDoesNotReferToWholeSize(SemaRef, OASE, CurType);
21127     bool NotUnity =
21128         checkArrayExpressionDoesNotReferToUnitySize(SemaRef, OASE, CurType);
21129 
21130     if (AllowWholeSizeArraySection) {
21131       // Any array section is currently allowed. Allowing a whole size array
21132       // section implies allowing a unity array section as well.
21133       //
21134       // If this array section refers to the whole dimension we can still
21135       // accept other array sections before this one, except if the base is a
21136       // pointer. Otherwise, only unitary sections are accepted.
21137       if (NotWhole || IsPointer)
21138         AllowWholeSizeArraySection = false;
21139     } else if (DKind == OMPD_target_update &&
21140                SemaRef.getLangOpts().OpenMP >= 50) {
21141       if (IsPointer && !AllowAnotherPtr)
21142         SemaRef.Diag(ELoc, diag::err_omp_section_length_undefined)
21143             << /*array of unknown bound */ 1;
21144       else
21145         IsNonContiguous = true;
21146     } else if (AllowUnitySizeArraySection && NotUnity) {
21147       // A unity or whole array section is not allowed and that is not
21148       // compatible with the properties of the current array section.
21149       if (NoDiagnose)
21150         return false;
21151       SemaRef.Diag(ELoc,
21152                    diag::err_array_section_does_not_specify_contiguous_storage)
21153           << OASE->getSourceRange();
21154       return false;
21155     }
21156 
21157     if (IsPointer)
21158       AllowAnotherPtr = false;
21159 
21160     if (const auto *TE = dyn_cast<CXXThisExpr>(E)) {
21161       Expr::EvalResult ResultR;
21162       Expr::EvalResult ResultL;
21163       if (!OASE->getLength()->isValueDependent() &&
21164           OASE->getLength()->EvaluateAsInt(ResultR, SemaRef.getASTContext()) &&
21165           !ResultR.Val.getInt().isOne()) {
21166         SemaRef.Diag(OASE->getLength()->getExprLoc(),
21167                      diag::err_omp_invalid_map_this_expr);
21168         SemaRef.Diag(OASE->getLength()->getExprLoc(),
21169                      diag::note_omp_invalid_length_on_this_ptr_mapping);
21170       }
21171       if (OASE->getLowerBound() && !OASE->getLowerBound()->isValueDependent() &&
21172           OASE->getLowerBound()->EvaluateAsInt(ResultL,
21173                                                SemaRef.getASTContext()) &&
21174           !ResultL.Val.getInt().isZero()) {
21175         SemaRef.Diag(OASE->getLowerBound()->getExprLoc(),
21176                      diag::err_omp_invalid_map_this_expr);
21177         SemaRef.Diag(OASE->getLowerBound()->getExprLoc(),
21178                      diag::note_omp_invalid_lower_bound_on_this_ptr_mapping);
21179       }
21180       assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
21181       RelevantExpr = TE;
21182     }
21183 
21184     // Record the component - we don't have any declaration associated.
21185     Components.emplace_back(OASE, nullptr, /*IsNonContiguous=*/false);
21186     return RelevantExpr || Visit(E);
21187   }
21188   bool VisitOMPArrayShapingExpr(OMPArrayShapingExpr *E) {
21189     Expr *Base = E->getBase();
21190 
21191     // Record the component - we don't have any declaration associated.
21192     Components.emplace_back(E, nullptr, IsNonContiguous);
21193 
21194     return Visit(Base->IgnoreParenImpCasts());
21195   }
21196 
21197   bool VisitUnaryOperator(UnaryOperator *UO) {
21198     if (SemaRef.getLangOpts().OpenMP < 50 || !UO->isLValue() ||
21199         UO->getOpcode() != UO_Deref) {
21200       emitErrorMsg();
21201       return false;
21202     }
21203     if (!RelevantExpr) {
21204       // Record the component if haven't found base decl.
21205       Components.emplace_back(UO, nullptr, /*IsNonContiguous=*/false);
21206     }
21207     return RelevantExpr || Visit(UO->getSubExpr()->IgnoreParenImpCasts());
21208   }
21209   bool VisitBinaryOperator(BinaryOperator *BO) {
21210     if (SemaRef.getLangOpts().OpenMP < 50 || !BO->getType()->isPointerType()) {
21211       emitErrorMsg();
21212       return false;
21213     }
21214 
21215     // Pointer arithmetic is the only thing we expect to happen here so after we
21216     // make sure the binary operator is a pointer type, the only thing we need
21217     // to do is to visit the subtree that has the same type as root (so that we
21218     // know the other subtree is just an offset)
21219     Expr *LE = BO->getLHS()->IgnoreParenImpCasts();
21220     Expr *RE = BO->getRHS()->IgnoreParenImpCasts();
21221     Components.emplace_back(BO, nullptr, false);
21222     assert((LE->getType().getTypePtr() == BO->getType().getTypePtr() ||
21223             RE->getType().getTypePtr() == BO->getType().getTypePtr()) &&
21224            "Either LHS or RHS have base decl inside");
21225     if (BO->getType().getTypePtr() == LE->getType().getTypePtr())
21226       return RelevantExpr || Visit(LE);
21227     return RelevantExpr || Visit(RE);
21228   }
21229   bool VisitCXXThisExpr(CXXThisExpr *CTE) {
21230     assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
21231     RelevantExpr = CTE;
21232     Components.emplace_back(CTE, nullptr, IsNonContiguous);
21233     return true;
21234   }
21235   bool VisitCXXOperatorCallExpr(CXXOperatorCallExpr *COCE) {
21236     assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
21237     Components.emplace_back(COCE, nullptr, IsNonContiguous);
21238     return true;
21239   }
21240   bool VisitOpaqueValueExpr(OpaqueValueExpr *E) {
21241     Expr *Source = E->getSourceExpr();
21242     if (!Source) {
21243       emitErrorMsg();
21244       return false;
21245     }
21246     return Visit(Source);
21247   }
21248   bool VisitStmt(Stmt *) {
21249     emitErrorMsg();
21250     return false;
21251   }
21252   const Expr *getFoundBase() const { return RelevantExpr; }
21253   explicit MapBaseChecker(
21254       Sema &SemaRef, OpenMPClauseKind CKind, OpenMPDirectiveKind DKind,
21255       OMPClauseMappableExprCommon::MappableExprComponentList &Components,
21256       bool NoDiagnose, SourceLocation &ELoc, SourceRange &ERange)
21257       : SemaRef(SemaRef), CKind(CKind), DKind(DKind), Components(Components),
21258         NoDiagnose(NoDiagnose), ELoc(ELoc), ERange(ERange) {}
21259 };
21260 } // namespace
21261 
21262 /// Return the expression of the base of the mappable expression or null if it
21263 /// cannot be determined and do all the necessary checks to see if the
21264 /// expression is valid as a standalone mappable expression. In the process,
21265 /// record all the components of the expression.
21266 static const Expr *checkMapClauseExpressionBase(
21267     Sema &SemaRef, Expr *E,
21268     OMPClauseMappableExprCommon::MappableExprComponentList &CurComponents,
21269     OpenMPClauseKind CKind, OpenMPDirectiveKind DKind, bool NoDiagnose) {
21270   SourceLocation ELoc = E->getExprLoc();
21271   SourceRange ERange = E->getSourceRange();
21272   MapBaseChecker Checker(SemaRef, CKind, DKind, CurComponents, NoDiagnose, ELoc,
21273                          ERange);
21274   if (Checker.Visit(E->IgnoreParens())) {
21275     // Check if the highest dimension array section has length specified
21276     if (SemaRef.getLangOpts().OpenMP >= 50 && !CurComponents.empty() &&
21277         (CKind == OMPC_to || CKind == OMPC_from)) {
21278       auto CI = CurComponents.rbegin();
21279       auto CE = CurComponents.rend();
21280       for (; CI != CE; ++CI) {
21281         const auto *OASE =
21282             dyn_cast<OMPArraySectionExpr>(CI->getAssociatedExpression());
21283         if (!OASE)
21284           continue;
21285         if (OASE && OASE->getLength())
21286           break;
21287         SemaRef.Diag(ELoc, diag::err_array_section_does_not_specify_length)
21288             << ERange;
21289       }
21290     }
21291     return Checker.getFoundBase();
21292   }
21293   return nullptr;
21294 }
21295 
21296 // Return true if expression E associated with value VD has conflicts with other
21297 // map information.
21298 static bool checkMapConflicts(
21299     Sema &SemaRef, DSAStackTy *DSAS, const ValueDecl *VD, const Expr *E,
21300     bool CurrentRegionOnly,
21301     OMPClauseMappableExprCommon::MappableExprComponentListRef CurComponents,
21302     OpenMPClauseKind CKind) {
21303   assert(VD && E);
21304   SourceLocation ELoc = E->getExprLoc();
21305   SourceRange ERange = E->getSourceRange();
21306 
21307   // In order to easily check the conflicts we need to match each component of
21308   // the expression under test with the components of the expressions that are
21309   // already in the stack.
21310 
21311   assert(!CurComponents.empty() && "Map clause expression with no components!");
21312   assert(CurComponents.back().getAssociatedDeclaration() == VD &&
21313          "Map clause expression with unexpected base!");
21314 
21315   // Variables to help detecting enclosing problems in data environment nests.
21316   bool IsEnclosedByDataEnvironmentExpr = false;
21317   const Expr *EnclosingExpr = nullptr;
21318 
21319   bool FoundError = DSAS->checkMappableExprComponentListsForDecl(
21320       VD, CurrentRegionOnly,
21321       [&IsEnclosedByDataEnvironmentExpr, &SemaRef, VD, CurrentRegionOnly, ELoc,
21322        ERange, CKind, &EnclosingExpr,
21323        CurComponents](OMPClauseMappableExprCommon::MappableExprComponentListRef
21324                           StackComponents,
21325                       OpenMPClauseKind Kind) {
21326         if (CKind == Kind && SemaRef.LangOpts.OpenMP >= 50)
21327           return false;
21328         assert(!StackComponents.empty() &&
21329                "Map clause expression with no components!");
21330         assert(StackComponents.back().getAssociatedDeclaration() == VD &&
21331                "Map clause expression with unexpected base!");
21332         (void)VD;
21333 
21334         // The whole expression in the stack.
21335         const Expr *RE = StackComponents.front().getAssociatedExpression();
21336 
21337         // Expressions must start from the same base. Here we detect at which
21338         // point both expressions diverge from each other and see if we can
21339         // detect if the memory referred to both expressions is contiguous and
21340         // do not overlap.
21341         auto CI = CurComponents.rbegin();
21342         auto CE = CurComponents.rend();
21343         auto SI = StackComponents.rbegin();
21344         auto SE = StackComponents.rend();
21345         for (; CI != CE && SI != SE; ++CI, ++SI) {
21346 
21347           // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.3]
21348           //  At most one list item can be an array item derived from a given
21349           //  variable in map clauses of the same construct.
21350           if (CurrentRegionOnly &&
21351               (isa<ArraySubscriptExpr>(CI->getAssociatedExpression()) ||
21352                isa<OMPArraySectionExpr>(CI->getAssociatedExpression()) ||
21353                isa<OMPArrayShapingExpr>(CI->getAssociatedExpression())) &&
21354               (isa<ArraySubscriptExpr>(SI->getAssociatedExpression()) ||
21355                isa<OMPArraySectionExpr>(SI->getAssociatedExpression()) ||
21356                isa<OMPArrayShapingExpr>(SI->getAssociatedExpression()))) {
21357             SemaRef.Diag(CI->getAssociatedExpression()->getExprLoc(),
21358                          diag::err_omp_multiple_array_items_in_map_clause)
21359                 << CI->getAssociatedExpression()->getSourceRange();
21360             SemaRef.Diag(SI->getAssociatedExpression()->getExprLoc(),
21361                          diag::note_used_here)
21362                 << SI->getAssociatedExpression()->getSourceRange();
21363             return true;
21364           }
21365 
21366           // Do both expressions have the same kind?
21367           if (CI->getAssociatedExpression()->getStmtClass() !=
21368               SI->getAssociatedExpression()->getStmtClass())
21369             break;
21370 
21371           // Are we dealing with different variables/fields?
21372           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
21373             break;
21374         }
21375         // Check if the extra components of the expressions in the enclosing
21376         // data environment are redundant for the current base declaration.
21377         // If they are, the maps completely overlap, which is legal.
21378         for (; SI != SE; ++SI) {
21379           QualType Type;
21380           if (const auto *ASE =
21381                   dyn_cast<ArraySubscriptExpr>(SI->getAssociatedExpression())) {
21382             Type = ASE->getBase()->IgnoreParenImpCasts()->getType();
21383           } else if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(
21384                          SI->getAssociatedExpression())) {
21385             const Expr *E = OASE->getBase()->IgnoreParenImpCasts();
21386             Type =
21387                 OMPArraySectionExpr::getBaseOriginalType(E).getCanonicalType();
21388           } else if (const auto *OASE = dyn_cast<OMPArrayShapingExpr>(
21389                          SI->getAssociatedExpression())) {
21390             Type = OASE->getBase()->getType()->getPointeeType();
21391           }
21392           if (Type.isNull() || Type->isAnyPointerType() ||
21393               checkArrayExpressionDoesNotReferToWholeSize(
21394                   SemaRef, SI->getAssociatedExpression(), Type))
21395             break;
21396         }
21397 
21398         // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.4]
21399         //  List items of map clauses in the same construct must not share
21400         //  original storage.
21401         //
21402         // If the expressions are exactly the same or one is a subset of the
21403         // other, it means they are sharing storage.
21404         if (CI == CE && SI == SE) {
21405           if (CurrentRegionOnly) {
21406             if (CKind == OMPC_map) {
21407               SemaRef.Diag(ELoc, diag::err_omp_map_shared_storage) << ERange;
21408             } else {
21409               assert(CKind == OMPC_to || CKind == OMPC_from);
21410               SemaRef.Diag(ELoc, diag::err_omp_once_referenced_in_target_update)
21411                   << ERange;
21412             }
21413             SemaRef.Diag(RE->getExprLoc(), diag::note_used_here)
21414                 << RE->getSourceRange();
21415             return true;
21416           }
21417           // If we find the same expression in the enclosing data environment,
21418           // that is legal.
21419           IsEnclosedByDataEnvironmentExpr = true;
21420           return false;
21421         }
21422 
21423         QualType DerivedType =
21424             std::prev(CI)->getAssociatedDeclaration()->getType();
21425         SourceLocation DerivedLoc =
21426             std::prev(CI)->getAssociatedExpression()->getExprLoc();
21427 
21428         // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
21429         //  If the type of a list item is a reference to a type T then the type
21430         //  will be considered to be T for all purposes of this clause.
21431         DerivedType = DerivedType.getNonReferenceType();
21432 
21433         // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.1]
21434         //  A variable for which the type is pointer and an array section
21435         //  derived from that variable must not appear as list items of map
21436         //  clauses of the same construct.
21437         //
21438         // Also, cover one of the cases in:
21439         // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.5]
21440         //  If any part of the original storage of a list item has corresponding
21441         //  storage in the device data environment, all of the original storage
21442         //  must have corresponding storage in the device data environment.
21443         //
21444         if (DerivedType->isAnyPointerType()) {
21445           if (CI == CE || SI == SE) {
21446             SemaRef.Diag(
21447                 DerivedLoc,
21448                 diag::err_omp_pointer_mapped_along_with_derived_section)
21449                 << DerivedLoc;
21450             SemaRef.Diag(RE->getExprLoc(), diag::note_used_here)
21451                 << RE->getSourceRange();
21452             return true;
21453           }
21454           if (CI->getAssociatedExpression()->getStmtClass() !=
21455                   SI->getAssociatedExpression()->getStmtClass() ||
21456               CI->getAssociatedDeclaration()->getCanonicalDecl() ==
21457                   SI->getAssociatedDeclaration()->getCanonicalDecl()) {
21458             assert(CI != CE && SI != SE);
21459             SemaRef.Diag(DerivedLoc, diag::err_omp_same_pointer_dereferenced)
21460                 << DerivedLoc;
21461             SemaRef.Diag(RE->getExprLoc(), diag::note_used_here)
21462                 << RE->getSourceRange();
21463             return true;
21464           }
21465         }
21466 
21467         // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.4]
21468         //  List items of map clauses in the same construct must not share
21469         //  original storage.
21470         //
21471         // An expression is a subset of the other.
21472         if (CurrentRegionOnly && (CI == CE || SI == SE)) {
21473           if (CKind == OMPC_map) {
21474             if (CI != CE || SI != SE) {
21475               // Allow constructs like this: map(s, s.ptr[0:1]), where s.ptr is
21476               // a pointer.
21477               auto Begin =
21478                   CI != CE ? CurComponents.begin() : StackComponents.begin();
21479               auto End = CI != CE ? CurComponents.end() : StackComponents.end();
21480               auto It = Begin;
21481               while (It != End && !It->getAssociatedDeclaration())
21482                 std::advance(It, 1);
21483               assert(It != End &&
21484                      "Expected at least one component with the declaration.");
21485               if (It != Begin && It->getAssociatedDeclaration()
21486                                      ->getType()
21487                                      .getCanonicalType()
21488                                      ->isAnyPointerType()) {
21489                 IsEnclosedByDataEnvironmentExpr = false;
21490                 EnclosingExpr = nullptr;
21491                 return false;
21492               }
21493             }
21494             SemaRef.Diag(ELoc, diag::err_omp_map_shared_storage) << ERange;
21495           } else {
21496             assert(CKind == OMPC_to || CKind == OMPC_from);
21497             SemaRef.Diag(ELoc, diag::err_omp_once_referenced_in_target_update)
21498                 << ERange;
21499           }
21500           SemaRef.Diag(RE->getExprLoc(), diag::note_used_here)
21501               << RE->getSourceRange();
21502           return true;
21503         }
21504 
21505         // The current expression uses the same base as other expression in the
21506         // data environment but does not contain it completely.
21507         if (!CurrentRegionOnly && SI != SE)
21508           EnclosingExpr = RE;
21509 
21510         // The current expression is a subset of the expression in the data
21511         // environment.
21512         IsEnclosedByDataEnvironmentExpr |=
21513             (!CurrentRegionOnly && CI != CE && SI == SE);
21514 
21515         return false;
21516       });
21517 
21518   if (CurrentRegionOnly)
21519     return FoundError;
21520 
21521   // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.5]
21522   //  If any part of the original storage of a list item has corresponding
21523   //  storage in the device data environment, all of the original storage must
21524   //  have corresponding storage in the device data environment.
21525   // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.6]
21526   //  If a list item is an element of a structure, and a different element of
21527   //  the structure has a corresponding list item in the device data environment
21528   //  prior to a task encountering the construct associated with the map clause,
21529   //  then the list item must also have a corresponding list item in the device
21530   //  data environment prior to the task encountering the construct.
21531   //
21532   if (EnclosingExpr && !IsEnclosedByDataEnvironmentExpr) {
21533     SemaRef.Diag(ELoc,
21534                  diag::err_omp_original_storage_is_shared_and_does_not_contain)
21535         << ERange;
21536     SemaRef.Diag(EnclosingExpr->getExprLoc(), diag::note_used_here)
21537         << EnclosingExpr->getSourceRange();
21538     return true;
21539   }
21540 
21541   return FoundError;
21542 }
21543 
21544 // Look up the user-defined mapper given the mapper name and mapped type, and
21545 // build a reference to it.
21546 static ExprResult buildUserDefinedMapperRef(Sema &SemaRef, Scope *S,
21547                                             CXXScopeSpec &MapperIdScopeSpec,
21548                                             const DeclarationNameInfo &MapperId,
21549                                             QualType Type,
21550                                             Expr *UnresolvedMapper) {
21551   if (MapperIdScopeSpec.isInvalid())
21552     return ExprError();
21553   // Get the actual type for the array type.
21554   if (Type->isArrayType()) {
21555     assert(Type->getAsArrayTypeUnsafe() && "Expect to get a valid array type");
21556     Type = Type->getAsArrayTypeUnsafe()->getElementType().getCanonicalType();
21557   }
21558   // Find all user-defined mappers with the given MapperId.
21559   SmallVector<UnresolvedSet<8>, 4> Lookups;
21560   LookupResult Lookup(SemaRef, MapperId, Sema::LookupOMPMapperName);
21561   Lookup.suppressDiagnostics();
21562   if (S) {
21563     while (S && SemaRef.LookupParsedName(Lookup, S, &MapperIdScopeSpec)) {
21564       NamedDecl *D = Lookup.getRepresentativeDecl();
21565       while (S && !S->isDeclScope(D))
21566         S = S->getParent();
21567       if (S)
21568         S = S->getParent();
21569       Lookups.emplace_back();
21570       Lookups.back().append(Lookup.begin(), Lookup.end());
21571       Lookup.clear();
21572     }
21573   } else if (auto *ULE = cast_or_null<UnresolvedLookupExpr>(UnresolvedMapper)) {
21574     // Extract the user-defined mappers with the given MapperId.
21575     Lookups.push_back(UnresolvedSet<8>());
21576     for (NamedDecl *D : ULE->decls()) {
21577       auto *DMD = cast<OMPDeclareMapperDecl>(D);
21578       assert(DMD && "Expect valid OMPDeclareMapperDecl during instantiation.");
21579       Lookups.back().addDecl(DMD);
21580     }
21581   }
21582   // Defer the lookup for dependent types. The results will be passed through
21583   // UnresolvedMapper on instantiation.
21584   if (SemaRef.CurContext->isDependentContext() || Type->isDependentType() ||
21585       Type->isInstantiationDependentType() ||
21586       Type->containsUnexpandedParameterPack() ||
21587       filterLookupForUDReductionAndMapper<bool>(Lookups, [](ValueDecl *D) {
21588         return !D->isInvalidDecl() &&
21589                (D->getType()->isDependentType() ||
21590                 D->getType()->isInstantiationDependentType() ||
21591                 D->getType()->containsUnexpandedParameterPack());
21592       })) {
21593     UnresolvedSet<8> URS;
21594     for (const UnresolvedSet<8> &Set : Lookups) {
21595       if (Set.empty())
21596         continue;
21597       URS.append(Set.begin(), Set.end());
21598     }
21599     return UnresolvedLookupExpr::Create(
21600         SemaRef.Context, /*NamingClass=*/nullptr,
21601         MapperIdScopeSpec.getWithLocInContext(SemaRef.Context), MapperId,
21602         /*ADL=*/false, /*Overloaded=*/true, URS.begin(), URS.end());
21603   }
21604   SourceLocation Loc = MapperId.getLoc();
21605   // [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
21606   //  The type must be of struct, union or class type in C and C++
21607   if (!Type->isStructureOrClassType() && !Type->isUnionType() &&
21608       (MapperIdScopeSpec.isSet() || MapperId.getAsString() != "default")) {
21609     SemaRef.Diag(Loc, diag::err_omp_mapper_wrong_type);
21610     return ExprError();
21611   }
21612   // Perform argument dependent lookup.
21613   if (SemaRef.getLangOpts().CPlusPlus && !MapperIdScopeSpec.isSet())
21614     argumentDependentLookup(SemaRef, MapperId, Loc, Type, Lookups);
21615   // Return the first user-defined mapper with the desired type.
21616   if (auto *VD = filterLookupForUDReductionAndMapper<ValueDecl *>(
21617           Lookups, [&SemaRef, Type](ValueDecl *D) -> ValueDecl * {
21618             if (!D->isInvalidDecl() &&
21619                 SemaRef.Context.hasSameType(D->getType(), Type))
21620               return D;
21621             return nullptr;
21622           }))
21623     return SemaRef.BuildDeclRefExpr(VD, Type, VK_LValue, Loc);
21624   // Find the first user-defined mapper with a type derived from the desired
21625   // type.
21626   if (auto *VD = filterLookupForUDReductionAndMapper<ValueDecl *>(
21627           Lookups, [&SemaRef, Type, Loc](ValueDecl *D) -> ValueDecl * {
21628             if (!D->isInvalidDecl() &&
21629                 SemaRef.IsDerivedFrom(Loc, Type, D->getType()) &&
21630                 !Type.isMoreQualifiedThan(D->getType()))
21631               return D;
21632             return nullptr;
21633           })) {
21634     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
21635                        /*DetectVirtual=*/false);
21636     if (SemaRef.IsDerivedFrom(Loc, Type, VD->getType(), Paths)) {
21637       if (!Paths.isAmbiguous(SemaRef.Context.getCanonicalType(
21638               VD->getType().getUnqualifiedType()))) {
21639         if (SemaRef.CheckBaseClassAccess(
21640                 Loc, VD->getType(), Type, Paths.front(),
21641                 /*DiagID=*/0) != Sema::AR_inaccessible) {
21642           return SemaRef.BuildDeclRefExpr(VD, Type, VK_LValue, Loc);
21643         }
21644       }
21645     }
21646   }
21647   // Report error if a mapper is specified, but cannot be found.
21648   if (MapperIdScopeSpec.isSet() || MapperId.getAsString() != "default") {
21649     SemaRef.Diag(Loc, diag::err_omp_invalid_mapper)
21650         << Type << MapperId.getName();
21651     return ExprError();
21652   }
21653   return ExprEmpty();
21654 }
21655 
21656 namespace {
21657 // Utility struct that gathers all the related lists associated with a mappable
21658 // expression.
21659 struct MappableVarListInfo {
21660   // The list of expressions.
21661   ArrayRef<Expr *> VarList;
21662   // The list of processed expressions.
21663   SmallVector<Expr *, 16> ProcessedVarList;
21664   // The mappble components for each expression.
21665   OMPClauseMappableExprCommon::MappableExprComponentLists VarComponents;
21666   // The base declaration of the variable.
21667   SmallVector<ValueDecl *, 16> VarBaseDeclarations;
21668   // The reference to the user-defined mapper associated with every expression.
21669   SmallVector<Expr *, 16> UDMapperList;
21670 
21671   MappableVarListInfo(ArrayRef<Expr *> VarList) : VarList(VarList) {
21672     // We have a list of components and base declarations for each entry in the
21673     // variable list.
21674     VarComponents.reserve(VarList.size());
21675     VarBaseDeclarations.reserve(VarList.size());
21676   }
21677 };
21678 } // namespace
21679 
21680 // Check the validity of the provided variable list for the provided clause kind
21681 // \a CKind. In the check process the valid expressions, mappable expression
21682 // components, variables, and user-defined mappers are extracted and used to
21683 // fill \a ProcessedVarList, \a VarComponents, \a VarBaseDeclarations, and \a
21684 // UDMapperList in MVLI. \a MapType, \a IsMapTypeImplicit, \a MapperIdScopeSpec,
21685 // and \a MapperId are expected to be valid if the clause kind is 'map'.
21686 static void checkMappableExpressionList(
21687     Sema &SemaRef, DSAStackTy *DSAS, OpenMPClauseKind CKind,
21688     MappableVarListInfo &MVLI, SourceLocation StartLoc,
21689     CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo MapperId,
21690     ArrayRef<Expr *> UnresolvedMappers,
21691     OpenMPMapClauseKind MapType = OMPC_MAP_unknown,
21692     ArrayRef<OpenMPMapModifierKind> Modifiers = std::nullopt,
21693     bool IsMapTypeImplicit = false, bool NoDiagnose = false) {
21694   // We only expect mappable expressions in 'to', 'from', and 'map' clauses.
21695   assert((CKind == OMPC_map || CKind == OMPC_to || CKind == OMPC_from) &&
21696          "Unexpected clause kind with mappable expressions!");
21697 
21698   // If the identifier of user-defined mapper is not specified, it is "default".
21699   // We do not change the actual name in this clause to distinguish whether a
21700   // mapper is specified explicitly, i.e., it is not explicitly specified when
21701   // MapperId.getName() is empty.
21702   if (!MapperId.getName() || MapperId.getName().isEmpty()) {
21703     auto &DeclNames = SemaRef.getASTContext().DeclarationNames;
21704     MapperId.setName(DeclNames.getIdentifier(
21705         &SemaRef.getASTContext().Idents.get("default")));
21706     MapperId.setLoc(StartLoc);
21707   }
21708 
21709   // Iterators to find the current unresolved mapper expression.
21710   auto UMIt = UnresolvedMappers.begin(), UMEnd = UnresolvedMappers.end();
21711   bool UpdateUMIt = false;
21712   Expr *UnresolvedMapper = nullptr;
21713 
21714   bool HasHoldModifier =
21715       llvm::is_contained(Modifiers, OMPC_MAP_MODIFIER_ompx_hold);
21716 
21717   // Keep track of the mappable components and base declarations in this clause.
21718   // Each entry in the list is going to have a list of components associated. We
21719   // record each set of the components so that we can build the clause later on.
21720   // In the end we should have the same amount of declarations and component
21721   // lists.
21722 
21723   for (Expr *RE : MVLI.VarList) {
21724     assert(RE && "Null expr in omp to/from/map clause");
21725     SourceLocation ELoc = RE->getExprLoc();
21726 
21727     // Find the current unresolved mapper expression.
21728     if (UpdateUMIt && UMIt != UMEnd) {
21729       UMIt++;
21730       assert(
21731           UMIt != UMEnd &&
21732           "Expect the size of UnresolvedMappers to match with that of VarList");
21733     }
21734     UpdateUMIt = true;
21735     if (UMIt != UMEnd)
21736       UnresolvedMapper = *UMIt;
21737 
21738     const Expr *VE = RE->IgnoreParenLValueCasts();
21739 
21740     if (VE->isValueDependent() || VE->isTypeDependent() ||
21741         VE->isInstantiationDependent() ||
21742         VE->containsUnexpandedParameterPack()) {
21743       // Try to find the associated user-defined mapper.
21744       ExprResult ER = buildUserDefinedMapperRef(
21745           SemaRef, DSAS->getCurScope(), MapperIdScopeSpec, MapperId,
21746           VE->getType().getCanonicalType(), UnresolvedMapper);
21747       if (ER.isInvalid())
21748         continue;
21749       MVLI.UDMapperList.push_back(ER.get());
21750       // We can only analyze this information once the missing information is
21751       // resolved.
21752       MVLI.ProcessedVarList.push_back(RE);
21753       continue;
21754     }
21755 
21756     Expr *SimpleExpr = RE->IgnoreParenCasts();
21757 
21758     if (!RE->isLValue()) {
21759       if (SemaRef.getLangOpts().OpenMP < 50) {
21760         SemaRef.Diag(
21761             ELoc, diag::err_omp_expected_named_var_member_or_array_expression)
21762             << RE->getSourceRange();
21763       } else {
21764         SemaRef.Diag(ELoc, diag::err_omp_non_lvalue_in_map_or_motion_clauses)
21765             << getOpenMPClauseName(CKind) << RE->getSourceRange();
21766       }
21767       continue;
21768     }
21769 
21770     OMPClauseMappableExprCommon::MappableExprComponentList CurComponents;
21771     ValueDecl *CurDeclaration = nullptr;
21772 
21773     // Obtain the array or member expression bases if required. Also, fill the
21774     // components array with all the components identified in the process.
21775     const Expr *BE =
21776         checkMapClauseExpressionBase(SemaRef, SimpleExpr, CurComponents, CKind,
21777                                      DSAS->getCurrentDirective(), NoDiagnose);
21778     if (!BE)
21779       continue;
21780 
21781     assert(!CurComponents.empty() &&
21782            "Invalid mappable expression information.");
21783 
21784     if (const auto *TE = dyn_cast<CXXThisExpr>(BE)) {
21785       // Add store "this" pointer to class in DSAStackTy for future checking
21786       DSAS->addMappedClassesQualTypes(TE->getType());
21787       // Try to find the associated user-defined mapper.
21788       ExprResult ER = buildUserDefinedMapperRef(
21789           SemaRef, DSAS->getCurScope(), MapperIdScopeSpec, MapperId,
21790           VE->getType().getCanonicalType(), UnresolvedMapper);
21791       if (ER.isInvalid())
21792         continue;
21793       MVLI.UDMapperList.push_back(ER.get());
21794       // Skip restriction checking for variable or field declarations
21795       MVLI.ProcessedVarList.push_back(RE);
21796       MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
21797       MVLI.VarComponents.back().append(CurComponents.begin(),
21798                                        CurComponents.end());
21799       MVLI.VarBaseDeclarations.push_back(nullptr);
21800       continue;
21801     }
21802 
21803     // For the following checks, we rely on the base declaration which is
21804     // expected to be associated with the last component. The declaration is
21805     // expected to be a variable or a field (if 'this' is being mapped).
21806     CurDeclaration = CurComponents.back().getAssociatedDeclaration();
21807     assert(CurDeclaration && "Null decl on map clause.");
21808     assert(
21809         CurDeclaration->isCanonicalDecl() &&
21810         "Expecting components to have associated only canonical declarations.");
21811 
21812     auto *VD = dyn_cast<VarDecl>(CurDeclaration);
21813     const auto *FD = dyn_cast<FieldDecl>(CurDeclaration);
21814 
21815     assert((VD || FD) && "Only variables or fields are expected here!");
21816     (void)FD;
21817 
21818     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.10]
21819     // threadprivate variables cannot appear in a map clause.
21820     // OpenMP 4.5 [2.10.5, target update Construct]
21821     // threadprivate variables cannot appear in a from clause.
21822     if (VD && DSAS->isThreadPrivate(VD)) {
21823       if (NoDiagnose)
21824         continue;
21825       DSAStackTy::DSAVarData DVar = DSAS->getTopDSA(VD, /*FromParent=*/false);
21826       SemaRef.Diag(ELoc, diag::err_omp_threadprivate_in_clause)
21827           << getOpenMPClauseName(CKind);
21828       reportOriginalDsa(SemaRef, DSAS, VD, DVar);
21829       continue;
21830     }
21831 
21832     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.9]
21833     //  A list item cannot appear in both a map clause and a data-sharing
21834     //  attribute clause on the same construct.
21835 
21836     // Check conflicts with other map clause expressions. We check the conflicts
21837     // with the current construct separately from the enclosing data
21838     // environment, because the restrictions are different. We only have to
21839     // check conflicts across regions for the map clauses.
21840     if (checkMapConflicts(SemaRef, DSAS, CurDeclaration, SimpleExpr,
21841                           /*CurrentRegionOnly=*/true, CurComponents, CKind))
21842       break;
21843     if (CKind == OMPC_map &&
21844         (SemaRef.getLangOpts().OpenMP <= 45 || StartLoc.isValid()) &&
21845         checkMapConflicts(SemaRef, DSAS, CurDeclaration, SimpleExpr,
21846                           /*CurrentRegionOnly=*/false, CurComponents, CKind))
21847       break;
21848 
21849     // OpenMP 4.5 [2.10.5, target update Construct]
21850     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
21851     //  If the type of a list item is a reference to a type T then the type will
21852     //  be considered to be T for all purposes of this clause.
21853     auto I = llvm::find_if(
21854         CurComponents,
21855         [](const OMPClauseMappableExprCommon::MappableComponent &MC) {
21856           return MC.getAssociatedDeclaration();
21857         });
21858     assert(I != CurComponents.end() && "Null decl on map clause.");
21859     (void)I;
21860     QualType Type;
21861     auto *ASE = dyn_cast<ArraySubscriptExpr>(VE->IgnoreParens());
21862     auto *OASE = dyn_cast<OMPArraySectionExpr>(VE->IgnoreParens());
21863     auto *OAShE = dyn_cast<OMPArrayShapingExpr>(VE->IgnoreParens());
21864     if (ASE) {
21865       Type = ASE->getType().getNonReferenceType();
21866     } else if (OASE) {
21867       QualType BaseType =
21868           OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
21869       if (const auto *ATy = BaseType->getAsArrayTypeUnsafe())
21870         Type = ATy->getElementType();
21871       else
21872         Type = BaseType->getPointeeType();
21873       Type = Type.getNonReferenceType();
21874     } else if (OAShE) {
21875       Type = OAShE->getBase()->getType()->getPointeeType();
21876     } else {
21877       Type = VE->getType();
21878     }
21879 
21880     // OpenMP 4.5 [2.10.5, target update Construct, Restrictions, p.4]
21881     // A list item in a to or from clause must have a mappable type.
21882     // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.9]
21883     //  A list item must have a mappable type.
21884     if (!checkTypeMappable(VE->getExprLoc(), VE->getSourceRange(), SemaRef,
21885                            DSAS, Type, /*FullCheck=*/true))
21886       continue;
21887 
21888     if (CKind == OMPC_map) {
21889       // target enter data
21890       // OpenMP [2.10.2, Restrictions, p. 99]
21891       // A map-type must be specified in all map clauses and must be either
21892       // to or alloc. Starting with OpenMP 5.2 the default map type is `to` if
21893       // no map type is present.
21894       OpenMPDirectiveKind DKind = DSAS->getCurrentDirective();
21895       if (DKind == OMPD_target_enter_data &&
21896           !(MapType == OMPC_MAP_to || MapType == OMPC_MAP_alloc ||
21897             SemaRef.getLangOpts().OpenMP >= 52)) {
21898         SemaRef.Diag(StartLoc, diag::err_omp_invalid_map_type_for_directive)
21899             << (IsMapTypeImplicit ? 1 : 0)
21900             << getOpenMPSimpleClauseTypeName(OMPC_map, MapType)
21901             << getOpenMPDirectiveName(DKind);
21902         continue;
21903       }
21904 
21905       // target exit_data
21906       // OpenMP [2.10.3, Restrictions, p. 102]
21907       // A map-type must be specified in all map clauses and must be either
21908       // from, release, or delete. Starting with OpenMP 5.2 the default map
21909       // type is `from` if no map type is present.
21910       if (DKind == OMPD_target_exit_data &&
21911           !(MapType == OMPC_MAP_from || MapType == OMPC_MAP_release ||
21912             MapType == OMPC_MAP_delete || SemaRef.getLangOpts().OpenMP >= 52)) {
21913         SemaRef.Diag(StartLoc, diag::err_omp_invalid_map_type_for_directive)
21914             << (IsMapTypeImplicit ? 1 : 0)
21915             << getOpenMPSimpleClauseTypeName(OMPC_map, MapType)
21916             << getOpenMPDirectiveName(DKind);
21917         continue;
21918       }
21919 
21920       // The 'ompx_hold' modifier is specifically intended to be used on a
21921       // 'target' or 'target data' directive to prevent data from being unmapped
21922       // during the associated statement.  It is not permitted on a 'target
21923       // enter data' or 'target exit data' directive, which have no associated
21924       // statement.
21925       if ((DKind == OMPD_target_enter_data || DKind == OMPD_target_exit_data) &&
21926           HasHoldModifier) {
21927         SemaRef.Diag(StartLoc,
21928                      diag::err_omp_invalid_map_type_modifier_for_directive)
21929             << getOpenMPSimpleClauseTypeName(OMPC_map,
21930                                              OMPC_MAP_MODIFIER_ompx_hold)
21931             << getOpenMPDirectiveName(DKind);
21932         continue;
21933       }
21934 
21935       // target, target data
21936       // OpenMP 5.0 [2.12.2, Restrictions, p. 163]
21937       // OpenMP 5.0 [2.12.5, Restrictions, p. 174]
21938       // A map-type in a map clause must be to, from, tofrom or alloc
21939       if ((DKind == OMPD_target_data ||
21940            isOpenMPTargetExecutionDirective(DKind)) &&
21941           !(MapType == OMPC_MAP_to || MapType == OMPC_MAP_from ||
21942             MapType == OMPC_MAP_tofrom || MapType == OMPC_MAP_alloc)) {
21943         SemaRef.Diag(StartLoc, diag::err_omp_invalid_map_type_for_directive)
21944             << (IsMapTypeImplicit ? 1 : 0)
21945             << getOpenMPSimpleClauseTypeName(OMPC_map, MapType)
21946             << getOpenMPDirectiveName(DKind);
21947         continue;
21948       }
21949 
21950       // OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
21951       // A list item cannot appear in both a map clause and a data-sharing
21952       // attribute clause on the same construct
21953       //
21954       // OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
21955       // A list item cannot appear in both a map clause and a data-sharing
21956       // attribute clause on the same construct unless the construct is a
21957       // combined construct.
21958       if (VD && ((SemaRef.LangOpts.OpenMP <= 45 &&
21959                   isOpenMPTargetExecutionDirective(DKind)) ||
21960                  DKind == OMPD_target)) {
21961         DSAStackTy::DSAVarData DVar = DSAS->getTopDSA(VD, /*FromParent=*/false);
21962         if (isOpenMPPrivate(DVar.CKind)) {
21963           SemaRef.Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
21964               << getOpenMPClauseName(DVar.CKind)
21965               << getOpenMPClauseName(OMPC_map)
21966               << getOpenMPDirectiveName(DSAS->getCurrentDirective());
21967           reportOriginalDsa(SemaRef, DSAS, CurDeclaration, DVar);
21968           continue;
21969         }
21970       }
21971     }
21972 
21973     // Try to find the associated user-defined mapper.
21974     ExprResult ER = buildUserDefinedMapperRef(
21975         SemaRef, DSAS->getCurScope(), MapperIdScopeSpec, MapperId,
21976         Type.getCanonicalType(), UnresolvedMapper);
21977     if (ER.isInvalid())
21978       continue;
21979     MVLI.UDMapperList.push_back(ER.get());
21980 
21981     // Save the current expression.
21982     MVLI.ProcessedVarList.push_back(RE);
21983 
21984     // Store the components in the stack so that they can be used to check
21985     // against other clauses later on.
21986     DSAS->addMappableExpressionComponents(CurDeclaration, CurComponents,
21987                                           /*WhereFoundClauseKind=*/OMPC_map);
21988 
21989     // Save the components and declaration to create the clause. For purposes of
21990     // the clause creation, any component list that has base 'this' uses
21991     // null as base declaration.
21992     MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
21993     MVLI.VarComponents.back().append(CurComponents.begin(),
21994                                      CurComponents.end());
21995     MVLI.VarBaseDeclarations.push_back(isa<MemberExpr>(BE) ? nullptr
21996                                                            : CurDeclaration);
21997   }
21998 }
21999 
22000 OMPClause *Sema::ActOnOpenMPMapClause(
22001     Expr *IteratorModifier, ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
22002     ArrayRef<SourceLocation> MapTypeModifiersLoc,
22003     CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
22004     OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, SourceLocation MapLoc,
22005     SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
22006     const OMPVarListLocTy &Locs, bool NoDiagnose,
22007     ArrayRef<Expr *> UnresolvedMappers) {
22008   OpenMPMapModifierKind Modifiers[] = {
22009       OMPC_MAP_MODIFIER_unknown, OMPC_MAP_MODIFIER_unknown,
22010       OMPC_MAP_MODIFIER_unknown, OMPC_MAP_MODIFIER_unknown,
22011       OMPC_MAP_MODIFIER_unknown, OMPC_MAP_MODIFIER_unknown};
22012   SourceLocation ModifiersLoc[NumberOfOMPMapClauseModifiers];
22013 
22014   if (IteratorModifier && !IteratorModifier->getType()->isSpecificBuiltinType(
22015                               BuiltinType::OMPIterator))
22016     Diag(IteratorModifier->getExprLoc(),
22017          diag::err_omp_map_modifier_not_iterator);
22018 
22019   // Process map-type-modifiers, flag errors for duplicate modifiers.
22020   unsigned Count = 0;
22021   for (unsigned I = 0, E = MapTypeModifiers.size(); I < E; ++I) {
22022     if (MapTypeModifiers[I] != OMPC_MAP_MODIFIER_unknown &&
22023         llvm::is_contained(Modifiers, MapTypeModifiers[I])) {
22024       Diag(MapTypeModifiersLoc[I], diag::err_omp_duplicate_map_type_modifier);
22025       continue;
22026     }
22027     assert(Count < NumberOfOMPMapClauseModifiers &&
22028            "Modifiers exceed the allowed number of map type modifiers");
22029     Modifiers[Count] = MapTypeModifiers[I];
22030     ModifiersLoc[Count] = MapTypeModifiersLoc[I];
22031     ++Count;
22032   }
22033 
22034   MappableVarListInfo MVLI(VarList);
22035   checkMappableExpressionList(*this, DSAStack, OMPC_map, MVLI, Locs.StartLoc,
22036                               MapperIdScopeSpec, MapperId, UnresolvedMappers,
22037                               MapType, Modifiers, IsMapTypeImplicit,
22038                               NoDiagnose);
22039 
22040   // We need to produce a map clause even if we don't have variables so that
22041   // other diagnostics related with non-existing map clauses are accurate.
22042   return OMPMapClause::Create(
22043       Context, Locs, MVLI.ProcessedVarList, MVLI.VarBaseDeclarations,
22044       MVLI.VarComponents, MVLI.UDMapperList, IteratorModifier, Modifiers,
22045       ModifiersLoc, MapperIdScopeSpec.getWithLocInContext(Context), MapperId,
22046       MapType, IsMapTypeImplicit, MapLoc);
22047 }
22048 
22049 QualType Sema::ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
22050                                                TypeResult ParsedType) {
22051   assert(ParsedType.isUsable());
22052 
22053   QualType ReductionType = GetTypeFromParser(ParsedType.get());
22054   if (ReductionType.isNull())
22055     return QualType();
22056 
22057   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions, C\C++
22058   // A type name in a declare reduction directive cannot be a function type, an
22059   // array type, a reference type, or a type qualified with const, volatile or
22060   // restrict.
22061   if (ReductionType.hasQualifiers()) {
22062     Diag(TyLoc, diag::err_omp_reduction_wrong_type) << 0;
22063     return QualType();
22064   }
22065 
22066   if (ReductionType->isFunctionType()) {
22067     Diag(TyLoc, diag::err_omp_reduction_wrong_type) << 1;
22068     return QualType();
22069   }
22070   if (ReductionType->isReferenceType()) {
22071     Diag(TyLoc, diag::err_omp_reduction_wrong_type) << 2;
22072     return QualType();
22073   }
22074   if (ReductionType->isArrayType()) {
22075     Diag(TyLoc, diag::err_omp_reduction_wrong_type) << 3;
22076     return QualType();
22077   }
22078   return ReductionType;
22079 }
22080 
22081 Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareReductionDirectiveStart(
22082     Scope *S, DeclContext *DC, DeclarationName Name,
22083     ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
22084     AccessSpecifier AS, Decl *PrevDeclInScope) {
22085   SmallVector<Decl *, 8> Decls;
22086   Decls.reserve(ReductionTypes.size());
22087 
22088   LookupResult Lookup(*this, Name, SourceLocation(), LookupOMPReductionName,
22089                       forRedeclarationInCurContext());
22090   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
22091   // A reduction-identifier may not be re-declared in the current scope for the
22092   // same type or for a type that is compatible according to the base language
22093   // rules.
22094   llvm::DenseMap<QualType, SourceLocation> PreviousRedeclTypes;
22095   OMPDeclareReductionDecl *PrevDRD = nullptr;
22096   bool InCompoundScope = true;
22097   if (S != nullptr) {
22098     // Find previous declaration with the same name not referenced in other
22099     // declarations.
22100     FunctionScopeInfo *ParentFn = getEnclosingFunction();
22101     InCompoundScope =
22102         (ParentFn != nullptr) && !ParentFn->CompoundScopes.empty();
22103     LookupName(Lookup, S);
22104     FilterLookupForScope(Lookup, DC, S, /*ConsiderLinkage=*/false,
22105                          /*AllowInlineNamespace=*/false);
22106     llvm::DenseMap<OMPDeclareReductionDecl *, bool> UsedAsPrevious;
22107     LookupResult::Filter Filter = Lookup.makeFilter();
22108     while (Filter.hasNext()) {
22109       auto *PrevDecl = cast<OMPDeclareReductionDecl>(Filter.next());
22110       if (InCompoundScope) {
22111         auto I = UsedAsPrevious.find(PrevDecl);
22112         if (I == UsedAsPrevious.end())
22113           UsedAsPrevious[PrevDecl] = false;
22114         if (OMPDeclareReductionDecl *D = PrevDecl->getPrevDeclInScope())
22115           UsedAsPrevious[D] = true;
22116       }
22117       PreviousRedeclTypes[PrevDecl->getType().getCanonicalType()] =
22118           PrevDecl->getLocation();
22119     }
22120     Filter.done();
22121     if (InCompoundScope) {
22122       for (const auto &PrevData : UsedAsPrevious) {
22123         if (!PrevData.second) {
22124           PrevDRD = PrevData.first;
22125           break;
22126         }
22127       }
22128     }
22129   } else if (PrevDeclInScope != nullptr) {
22130     auto *PrevDRDInScope = PrevDRD =
22131         cast<OMPDeclareReductionDecl>(PrevDeclInScope);
22132     do {
22133       PreviousRedeclTypes[PrevDRDInScope->getType().getCanonicalType()] =
22134           PrevDRDInScope->getLocation();
22135       PrevDRDInScope = PrevDRDInScope->getPrevDeclInScope();
22136     } while (PrevDRDInScope != nullptr);
22137   }
22138   for (const auto &TyData : ReductionTypes) {
22139     const auto I = PreviousRedeclTypes.find(TyData.first.getCanonicalType());
22140     bool Invalid = false;
22141     if (I != PreviousRedeclTypes.end()) {
22142       Diag(TyData.second, diag::err_omp_declare_reduction_redefinition)
22143           << TyData.first;
22144       Diag(I->second, diag::note_previous_definition);
22145       Invalid = true;
22146     }
22147     PreviousRedeclTypes[TyData.first.getCanonicalType()] = TyData.second;
22148     auto *DRD = OMPDeclareReductionDecl::Create(Context, DC, TyData.second,
22149                                                 Name, TyData.first, PrevDRD);
22150     DC->addDecl(DRD);
22151     DRD->setAccess(AS);
22152     Decls.push_back(DRD);
22153     if (Invalid)
22154       DRD->setInvalidDecl();
22155     else
22156       PrevDRD = DRD;
22157   }
22158 
22159   return DeclGroupPtrTy::make(
22160       DeclGroupRef::Create(Context, Decls.begin(), Decls.size()));
22161 }
22162 
22163 void Sema::ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D) {
22164   auto *DRD = cast<OMPDeclareReductionDecl>(D);
22165 
22166   // Enter new function scope.
22167   PushFunctionScope();
22168   setFunctionHasBranchProtectedScope();
22169   getCurFunction()->setHasOMPDeclareReductionCombiner();
22170 
22171   if (S != nullptr)
22172     PushDeclContext(S, DRD);
22173   else
22174     CurContext = DRD;
22175 
22176   PushExpressionEvaluationContext(
22177       ExpressionEvaluationContext::PotentiallyEvaluated);
22178 
22179   QualType ReductionType = DRD->getType();
22180   // Create 'T* omp_parm;T omp_in;'. All references to 'omp_in' will
22181   // be replaced by '*omp_parm' during codegen. This required because 'omp_in'
22182   // uses semantics of argument handles by value, but it should be passed by
22183   // reference. C lang does not support references, so pass all parameters as
22184   // pointers.
22185   // Create 'T omp_in;' variable.
22186   VarDecl *OmpInParm =
22187       buildVarDecl(*this, D->getLocation(), ReductionType, "omp_in");
22188   // Create 'T* omp_parm;T omp_out;'. All references to 'omp_out' will
22189   // be replaced by '*omp_parm' during codegen. This required because 'omp_out'
22190   // uses semantics of argument handles by value, but it should be passed by
22191   // reference. C lang does not support references, so pass all parameters as
22192   // pointers.
22193   // Create 'T omp_out;' variable.
22194   VarDecl *OmpOutParm =
22195       buildVarDecl(*this, D->getLocation(), ReductionType, "omp_out");
22196   if (S != nullptr) {
22197     PushOnScopeChains(OmpInParm, S);
22198     PushOnScopeChains(OmpOutParm, S);
22199   } else {
22200     DRD->addDecl(OmpInParm);
22201     DRD->addDecl(OmpOutParm);
22202   }
22203   Expr *InE =
22204       ::buildDeclRefExpr(*this, OmpInParm, ReductionType, D->getLocation());
22205   Expr *OutE =
22206       ::buildDeclRefExpr(*this, OmpOutParm, ReductionType, D->getLocation());
22207   DRD->setCombinerData(InE, OutE);
22208 }
22209 
22210 void Sema::ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner) {
22211   auto *DRD = cast<OMPDeclareReductionDecl>(D);
22212   DiscardCleanupsInEvaluationContext();
22213   PopExpressionEvaluationContext();
22214 
22215   PopDeclContext();
22216   PopFunctionScopeInfo();
22217 
22218   if (Combiner != nullptr)
22219     DRD->setCombiner(Combiner);
22220   else
22221     DRD->setInvalidDecl();
22222 }
22223 
22224 VarDecl *Sema::ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D) {
22225   auto *DRD = cast<OMPDeclareReductionDecl>(D);
22226 
22227   // Enter new function scope.
22228   PushFunctionScope();
22229   setFunctionHasBranchProtectedScope();
22230 
22231   if (S != nullptr)
22232     PushDeclContext(S, DRD);
22233   else
22234     CurContext = DRD;
22235 
22236   PushExpressionEvaluationContext(
22237       ExpressionEvaluationContext::PotentiallyEvaluated);
22238 
22239   QualType ReductionType = DRD->getType();
22240   // Create 'T* omp_parm;T omp_priv;'. All references to 'omp_priv' will
22241   // be replaced by '*omp_parm' during codegen. This required because 'omp_priv'
22242   // uses semantics of argument handles by value, but it should be passed by
22243   // reference. C lang does not support references, so pass all parameters as
22244   // pointers.
22245   // Create 'T omp_priv;' variable.
22246   VarDecl *OmpPrivParm =
22247       buildVarDecl(*this, D->getLocation(), ReductionType, "omp_priv");
22248   // Create 'T* omp_parm;T omp_orig;'. All references to 'omp_orig' will
22249   // be replaced by '*omp_parm' during codegen. This required because 'omp_orig'
22250   // uses semantics of argument handles by value, but it should be passed by
22251   // reference. C lang does not support references, so pass all parameters as
22252   // pointers.
22253   // Create 'T omp_orig;' variable.
22254   VarDecl *OmpOrigParm =
22255       buildVarDecl(*this, D->getLocation(), ReductionType, "omp_orig");
22256   if (S != nullptr) {
22257     PushOnScopeChains(OmpPrivParm, S);
22258     PushOnScopeChains(OmpOrigParm, S);
22259   } else {
22260     DRD->addDecl(OmpPrivParm);
22261     DRD->addDecl(OmpOrigParm);
22262   }
22263   Expr *OrigE =
22264       ::buildDeclRefExpr(*this, OmpOrigParm, ReductionType, D->getLocation());
22265   Expr *PrivE =
22266       ::buildDeclRefExpr(*this, OmpPrivParm, ReductionType, D->getLocation());
22267   DRD->setInitializerData(OrigE, PrivE);
22268   return OmpPrivParm;
22269 }
22270 
22271 void Sema::ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
22272                                                      VarDecl *OmpPrivParm) {
22273   auto *DRD = cast<OMPDeclareReductionDecl>(D);
22274   DiscardCleanupsInEvaluationContext();
22275   PopExpressionEvaluationContext();
22276 
22277   PopDeclContext();
22278   PopFunctionScopeInfo();
22279 
22280   if (Initializer != nullptr) {
22281     DRD->setInitializer(Initializer, OMPDeclareReductionDecl::CallInit);
22282   } else if (OmpPrivParm->hasInit()) {
22283     DRD->setInitializer(OmpPrivParm->getInit(),
22284                         OmpPrivParm->isDirectInit()
22285                             ? OMPDeclareReductionDecl::DirectInit
22286                             : OMPDeclareReductionDecl::CopyInit);
22287   } else {
22288     DRD->setInvalidDecl();
22289   }
22290 }
22291 
22292 Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareReductionDirectiveEnd(
22293     Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid) {
22294   for (Decl *D : DeclReductions.get()) {
22295     if (IsValid) {
22296       if (S)
22297         PushOnScopeChains(cast<OMPDeclareReductionDecl>(D), S,
22298                           /*AddToContext=*/false);
22299     } else {
22300       D->setInvalidDecl();
22301     }
22302   }
22303   return DeclReductions;
22304 }
22305 
22306 TypeResult Sema::ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D) {
22307   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
22308   QualType T = TInfo->getType();
22309   if (D.isInvalidType())
22310     return true;
22311 
22312   if (getLangOpts().CPlusPlus) {
22313     // Check that there are no default arguments (C++ only).
22314     CheckExtraCXXDefaultArguments(D);
22315   }
22316 
22317   return CreateParsedType(T, TInfo);
22318 }
22319 
22320 QualType Sema::ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
22321                                             TypeResult ParsedType) {
22322   assert(ParsedType.isUsable() && "Expect usable parsed mapper type");
22323 
22324   QualType MapperType = GetTypeFromParser(ParsedType.get());
22325   assert(!MapperType.isNull() && "Expect valid mapper type");
22326 
22327   // [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
22328   //  The type must be of struct, union or class type in C and C++
22329   if (!MapperType->isStructureOrClassType() && !MapperType->isUnionType()) {
22330     Diag(TyLoc, diag::err_omp_mapper_wrong_type);
22331     return QualType();
22332   }
22333   return MapperType;
22334 }
22335 
22336 Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareMapperDirective(
22337     Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
22338     SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
22339     Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses, Decl *PrevDeclInScope) {
22340   LookupResult Lookup(*this, Name, SourceLocation(), LookupOMPMapperName,
22341                       forRedeclarationInCurContext());
22342   // [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
22343   //  A mapper-identifier may not be redeclared in the current scope for the
22344   //  same type or for a type that is compatible according to the base language
22345   //  rules.
22346   llvm::DenseMap<QualType, SourceLocation> PreviousRedeclTypes;
22347   OMPDeclareMapperDecl *PrevDMD = nullptr;
22348   bool InCompoundScope = true;
22349   if (S != nullptr) {
22350     // Find previous declaration with the same name not referenced in other
22351     // declarations.
22352     FunctionScopeInfo *ParentFn = getEnclosingFunction();
22353     InCompoundScope =
22354         (ParentFn != nullptr) && !ParentFn->CompoundScopes.empty();
22355     LookupName(Lookup, S);
22356     FilterLookupForScope(Lookup, DC, S, /*ConsiderLinkage=*/false,
22357                          /*AllowInlineNamespace=*/false);
22358     llvm::DenseMap<OMPDeclareMapperDecl *, bool> UsedAsPrevious;
22359     LookupResult::Filter Filter = Lookup.makeFilter();
22360     while (Filter.hasNext()) {
22361       auto *PrevDecl = cast<OMPDeclareMapperDecl>(Filter.next());
22362       if (InCompoundScope) {
22363         auto I = UsedAsPrevious.find(PrevDecl);
22364         if (I == UsedAsPrevious.end())
22365           UsedAsPrevious[PrevDecl] = false;
22366         if (OMPDeclareMapperDecl *D = PrevDecl->getPrevDeclInScope())
22367           UsedAsPrevious[D] = true;
22368       }
22369       PreviousRedeclTypes[PrevDecl->getType().getCanonicalType()] =
22370           PrevDecl->getLocation();
22371     }
22372     Filter.done();
22373     if (InCompoundScope) {
22374       for (const auto &PrevData : UsedAsPrevious) {
22375         if (!PrevData.second) {
22376           PrevDMD = PrevData.first;
22377           break;
22378         }
22379       }
22380     }
22381   } else if (PrevDeclInScope) {
22382     auto *PrevDMDInScope = PrevDMD =
22383         cast<OMPDeclareMapperDecl>(PrevDeclInScope);
22384     do {
22385       PreviousRedeclTypes[PrevDMDInScope->getType().getCanonicalType()] =
22386           PrevDMDInScope->getLocation();
22387       PrevDMDInScope = PrevDMDInScope->getPrevDeclInScope();
22388     } while (PrevDMDInScope != nullptr);
22389   }
22390   const auto I = PreviousRedeclTypes.find(MapperType.getCanonicalType());
22391   bool Invalid = false;
22392   if (I != PreviousRedeclTypes.end()) {
22393     Diag(StartLoc, diag::err_omp_declare_mapper_redefinition)
22394         << MapperType << Name;
22395     Diag(I->second, diag::note_previous_definition);
22396     Invalid = true;
22397   }
22398   // Build expressions for implicit maps of data members with 'default'
22399   // mappers.
22400   SmallVector<OMPClause *, 4> ClausesWithImplicit(Clauses.begin(),
22401                                                   Clauses.end());
22402   if (LangOpts.OpenMP >= 50)
22403     processImplicitMapsWithDefaultMappers(*this, DSAStack, ClausesWithImplicit);
22404   auto *DMD =
22405       OMPDeclareMapperDecl::Create(Context, DC, StartLoc, Name, MapperType, VN,
22406                                    ClausesWithImplicit, PrevDMD);
22407   if (S)
22408     PushOnScopeChains(DMD, S);
22409   else
22410     DC->addDecl(DMD);
22411   DMD->setAccess(AS);
22412   if (Invalid)
22413     DMD->setInvalidDecl();
22414 
22415   auto *VD = cast<DeclRefExpr>(MapperVarRef)->getDecl();
22416   VD->setDeclContext(DMD);
22417   VD->setLexicalDeclContext(DMD);
22418   DMD->addDecl(VD);
22419   DMD->setMapperVarRef(MapperVarRef);
22420 
22421   return DeclGroupPtrTy::make(DeclGroupRef(DMD));
22422 }
22423 
22424 ExprResult
22425 Sema::ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S, QualType MapperType,
22426                                                SourceLocation StartLoc,
22427                                                DeclarationName VN) {
22428   TypeSourceInfo *TInfo =
22429       Context.getTrivialTypeSourceInfo(MapperType, StartLoc);
22430   auto *VD = VarDecl::Create(Context, Context.getTranslationUnitDecl(),
22431                              StartLoc, StartLoc, VN.getAsIdentifierInfo(),
22432                              MapperType, TInfo, SC_None);
22433   if (S)
22434     PushOnScopeChains(VD, S, /*AddToContext=*/false);
22435   Expr *E = buildDeclRefExpr(*this, VD, MapperType, StartLoc);
22436   DSAStack->addDeclareMapperVarRef(E);
22437   return E;
22438 }
22439 
22440 void Sema::ActOnOpenMPIteratorVarDecl(VarDecl *VD) {
22441   if (DSAStack->getDeclareMapperVarRef())
22442     DSAStack->addIteratorVarDecl(VD);
22443 }
22444 
22445 bool Sema::isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const {
22446   assert(LangOpts.OpenMP && "Expected OpenMP mode.");
22447   const Expr *Ref = DSAStack->getDeclareMapperVarRef();
22448   if (const auto *DRE = cast_or_null<DeclRefExpr>(Ref)) {
22449     if (VD->getCanonicalDecl() == DRE->getDecl()->getCanonicalDecl())
22450       return true;
22451     if (VD->isUsableInConstantExpressions(Context))
22452       return true;
22453     if (LangOpts.OpenMP >= 52 && DSAStack->isIteratorVarDecl(VD))
22454       return true;
22455     return false;
22456   }
22457   return true;
22458 }
22459 
22460 const ValueDecl *Sema::getOpenMPDeclareMapperVarName() const {
22461   assert(LangOpts.OpenMP && "Expected OpenMP mode.");
22462   return cast<DeclRefExpr>(DSAStack->getDeclareMapperVarRef())->getDecl();
22463 }
22464 
22465 OMPClause *Sema::ActOnOpenMPNumTeamsClause(Expr *NumTeams,
22466                                            SourceLocation StartLoc,
22467                                            SourceLocation LParenLoc,
22468                                            SourceLocation EndLoc) {
22469   Expr *ValExpr = NumTeams;
22470   Stmt *HelperValStmt = nullptr;
22471 
22472   // OpenMP [teams Constrcut, Restrictions]
22473   // The num_teams expression must evaluate to a positive integer value.
22474   if (!isNonNegativeIntegerValue(ValExpr, *this, OMPC_num_teams,
22475                                  /*StrictlyPositive=*/true))
22476     return nullptr;
22477 
22478   OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
22479   OpenMPDirectiveKind CaptureRegion =
22480       getOpenMPCaptureRegionForClause(DKind, OMPC_num_teams, LangOpts.OpenMP);
22481   if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
22482     ValExpr = MakeFullExpr(ValExpr).get();
22483     llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
22484     ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
22485     HelperValStmt = buildPreInits(Context, Captures);
22486   }
22487 
22488   return new (Context) OMPNumTeamsClause(ValExpr, HelperValStmt, CaptureRegion,
22489                                          StartLoc, LParenLoc, EndLoc);
22490 }
22491 
22492 OMPClause *Sema::ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
22493                                               SourceLocation StartLoc,
22494                                               SourceLocation LParenLoc,
22495                                               SourceLocation EndLoc) {
22496   Expr *ValExpr = ThreadLimit;
22497   Stmt *HelperValStmt = nullptr;
22498 
22499   // OpenMP [teams Constrcut, Restrictions]
22500   // The thread_limit expression must evaluate to a positive integer value.
22501   if (!isNonNegativeIntegerValue(ValExpr, *this, OMPC_thread_limit,
22502                                  /*StrictlyPositive=*/true))
22503     return nullptr;
22504 
22505   OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
22506   OpenMPDirectiveKind CaptureRegion = getOpenMPCaptureRegionForClause(
22507       DKind, OMPC_thread_limit, LangOpts.OpenMP);
22508   if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
22509     ValExpr = MakeFullExpr(ValExpr).get();
22510     llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
22511     ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
22512     HelperValStmt = buildPreInits(Context, Captures);
22513   }
22514 
22515   return new (Context) OMPThreadLimitClause(
22516       ValExpr, HelperValStmt, CaptureRegion, StartLoc, LParenLoc, EndLoc);
22517 }
22518 
22519 OMPClause *Sema::ActOnOpenMPPriorityClause(Expr *Priority,
22520                                            SourceLocation StartLoc,
22521                                            SourceLocation LParenLoc,
22522                                            SourceLocation EndLoc) {
22523   Expr *ValExpr = Priority;
22524   Stmt *HelperValStmt = nullptr;
22525   OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
22526 
22527   // OpenMP [2.9.1, task Constrcut]
22528   // The priority-value is a non-negative numerical scalar expression.
22529   if (!isNonNegativeIntegerValue(
22530           ValExpr, *this, OMPC_priority,
22531           /*StrictlyPositive=*/false, /*BuildCapture=*/true,
22532           DSAStack->getCurrentDirective(), &CaptureRegion, &HelperValStmt))
22533     return nullptr;
22534 
22535   return new (Context) OMPPriorityClause(ValExpr, HelperValStmt, CaptureRegion,
22536                                          StartLoc, LParenLoc, EndLoc);
22537 }
22538 
22539 OMPClause *Sema::ActOnOpenMPGrainsizeClause(
22540     OpenMPGrainsizeClauseModifier Modifier, Expr *Grainsize,
22541     SourceLocation StartLoc, SourceLocation LParenLoc,
22542     SourceLocation ModifierLoc, SourceLocation EndLoc) {
22543   assert((ModifierLoc.isInvalid() || LangOpts.OpenMP >= 51) &&
22544          "Unexpected grainsize modifier in OpenMP < 51.");
22545 
22546   if (ModifierLoc.isValid() && Modifier == OMPC_GRAINSIZE_unknown) {
22547     std::string Values = getListOfPossibleValues(OMPC_grainsize, /*First=*/0,
22548                                                  OMPC_GRAINSIZE_unknown);
22549     Diag(ModifierLoc, diag::err_omp_unexpected_clause_value)
22550         << Values << getOpenMPClauseName(OMPC_grainsize);
22551     return nullptr;
22552   }
22553 
22554   Expr *ValExpr = Grainsize;
22555   Stmt *HelperValStmt = nullptr;
22556   OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
22557 
22558   // OpenMP [2.9.2, taskloop Constrcut]
22559   // The parameter of the grainsize clause must be a positive integer
22560   // expression.
22561   if (!isNonNegativeIntegerValue(ValExpr, *this, OMPC_grainsize,
22562                                  /*StrictlyPositive=*/true,
22563                                  /*BuildCapture=*/true,
22564                                  DSAStack->getCurrentDirective(),
22565                                  &CaptureRegion, &HelperValStmt))
22566     return nullptr;
22567 
22568   return new (Context)
22569       OMPGrainsizeClause(Modifier, ValExpr, HelperValStmt, CaptureRegion,
22570                          StartLoc, LParenLoc, ModifierLoc, EndLoc);
22571 }
22572 
22573 OMPClause *Sema::ActOnOpenMPNumTasksClause(
22574     OpenMPNumTasksClauseModifier Modifier, Expr *NumTasks,
22575     SourceLocation StartLoc, SourceLocation LParenLoc,
22576     SourceLocation ModifierLoc, SourceLocation EndLoc) {
22577   assert((ModifierLoc.isInvalid() || LangOpts.OpenMP >= 51) &&
22578          "Unexpected num_tasks modifier in OpenMP < 51.");
22579 
22580   if (ModifierLoc.isValid() && Modifier == OMPC_NUMTASKS_unknown) {
22581     std::string Values = getListOfPossibleValues(OMPC_num_tasks, /*First=*/0,
22582                                                  OMPC_NUMTASKS_unknown);
22583     Diag(ModifierLoc, diag::err_omp_unexpected_clause_value)
22584         << Values << getOpenMPClauseName(OMPC_num_tasks);
22585     return nullptr;
22586   }
22587 
22588   Expr *ValExpr = NumTasks;
22589   Stmt *HelperValStmt = nullptr;
22590   OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
22591 
22592   // OpenMP [2.9.2, taskloop Constrcut]
22593   // The parameter of the num_tasks clause must be a positive integer
22594   // expression.
22595   if (!isNonNegativeIntegerValue(
22596           ValExpr, *this, OMPC_num_tasks,
22597           /*StrictlyPositive=*/true, /*BuildCapture=*/true,
22598           DSAStack->getCurrentDirective(), &CaptureRegion, &HelperValStmt))
22599     return nullptr;
22600 
22601   return new (Context)
22602       OMPNumTasksClause(Modifier, ValExpr, HelperValStmt, CaptureRegion,
22603                         StartLoc, LParenLoc, ModifierLoc, EndLoc);
22604 }
22605 
22606 OMPClause *Sema::ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
22607                                        SourceLocation LParenLoc,
22608                                        SourceLocation EndLoc) {
22609   // OpenMP [2.13.2, critical construct, Description]
22610   // ... where hint-expression is an integer constant expression that evaluates
22611   // to a valid lock hint.
22612   ExprResult HintExpr =
22613       VerifyPositiveIntegerConstantInClause(Hint, OMPC_hint, false);
22614   if (HintExpr.isInvalid())
22615     return nullptr;
22616   return new (Context)
22617       OMPHintClause(HintExpr.get(), StartLoc, LParenLoc, EndLoc);
22618 }
22619 
22620 /// Tries to find omp_event_handle_t type.
22621 static bool findOMPEventHandleT(Sema &S, SourceLocation Loc,
22622                                 DSAStackTy *Stack) {
22623   QualType OMPEventHandleT = Stack->getOMPEventHandleT();
22624   if (!OMPEventHandleT.isNull())
22625     return true;
22626   IdentifierInfo *II = &S.PP.getIdentifierTable().get("omp_event_handle_t");
22627   ParsedType PT = S.getTypeName(*II, Loc, S.getCurScope());
22628   if (!PT.getAsOpaquePtr() || PT.get().isNull()) {
22629     S.Diag(Loc, diag::err_omp_implied_type_not_found) << "omp_event_handle_t";
22630     return false;
22631   }
22632   Stack->setOMPEventHandleT(PT.get());
22633   return true;
22634 }
22635 
22636 OMPClause *Sema::ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
22637                                          SourceLocation LParenLoc,
22638                                          SourceLocation EndLoc) {
22639   if (!Evt->isValueDependent() && !Evt->isTypeDependent() &&
22640       !Evt->isInstantiationDependent() &&
22641       !Evt->containsUnexpandedParameterPack()) {
22642     if (!findOMPEventHandleT(*this, Evt->getExprLoc(), DSAStack))
22643       return nullptr;
22644     // OpenMP 5.0, 2.10.1 task Construct.
22645     // event-handle is a variable of the omp_event_handle_t type.
22646     auto *Ref = dyn_cast<DeclRefExpr>(Evt->IgnoreParenImpCasts());
22647     if (!Ref) {
22648       Diag(Evt->getExprLoc(), diag::err_omp_var_expected)
22649           << "omp_event_handle_t" << 0 << Evt->getSourceRange();
22650       return nullptr;
22651     }
22652     auto *VD = dyn_cast_or_null<VarDecl>(Ref->getDecl());
22653     if (!VD) {
22654       Diag(Evt->getExprLoc(), diag::err_omp_var_expected)
22655           << "omp_event_handle_t" << 0 << Evt->getSourceRange();
22656       return nullptr;
22657     }
22658     if (!Context.hasSameUnqualifiedType(DSAStack->getOMPEventHandleT(),
22659                                         VD->getType()) ||
22660         VD->getType().isConstant(Context)) {
22661       Diag(Evt->getExprLoc(), diag::err_omp_var_expected)
22662           << "omp_event_handle_t" << 1 << VD->getType()
22663           << Evt->getSourceRange();
22664       return nullptr;
22665     }
22666     // OpenMP 5.0, 2.10.1 task Construct
22667     // [detach clause]... The event-handle will be considered as if it was
22668     // specified on a firstprivate clause.
22669     DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(VD, /*FromParent=*/false);
22670     if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_firstprivate &&
22671         DVar.RefExpr) {
22672       Diag(Evt->getExprLoc(), diag::err_omp_wrong_dsa)
22673           << getOpenMPClauseName(DVar.CKind)
22674           << getOpenMPClauseName(OMPC_firstprivate);
22675       reportOriginalDsa(*this, DSAStack, VD, DVar);
22676       return nullptr;
22677     }
22678   }
22679 
22680   return new (Context) OMPDetachClause(Evt, StartLoc, LParenLoc, EndLoc);
22681 }
22682 
22683 OMPClause *Sema::ActOnOpenMPDistScheduleClause(
22684     OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
22685     SourceLocation LParenLoc, SourceLocation KindLoc, SourceLocation CommaLoc,
22686     SourceLocation EndLoc) {
22687   if (Kind == OMPC_DIST_SCHEDULE_unknown) {
22688     std::string Values;
22689     Values += "'";
22690     Values += getOpenMPSimpleClauseTypeName(OMPC_dist_schedule, 0);
22691     Values += "'";
22692     Diag(KindLoc, diag::err_omp_unexpected_clause_value)
22693         << Values << getOpenMPClauseName(OMPC_dist_schedule);
22694     return nullptr;
22695   }
22696   Expr *ValExpr = ChunkSize;
22697   Stmt *HelperValStmt = nullptr;
22698   if (ChunkSize) {
22699     if (!ChunkSize->isValueDependent() && !ChunkSize->isTypeDependent() &&
22700         !ChunkSize->isInstantiationDependent() &&
22701         !ChunkSize->containsUnexpandedParameterPack()) {
22702       SourceLocation ChunkSizeLoc = ChunkSize->getBeginLoc();
22703       ExprResult Val =
22704           PerformOpenMPImplicitIntegerConversion(ChunkSizeLoc, ChunkSize);
22705       if (Val.isInvalid())
22706         return nullptr;
22707 
22708       ValExpr = Val.get();
22709 
22710       // OpenMP [2.7.1, Restrictions]
22711       //  chunk_size must be a loop invariant integer expression with a positive
22712       //  value.
22713       if (std::optional<llvm::APSInt> Result =
22714               ValExpr->getIntegerConstantExpr(Context)) {
22715         if (Result->isSigned() && !Result->isStrictlyPositive()) {
22716           Diag(ChunkSizeLoc, diag::err_omp_negative_expression_in_clause)
22717               << "dist_schedule" << ChunkSize->getSourceRange();
22718           return nullptr;
22719         }
22720       } else if (getOpenMPCaptureRegionForClause(
22721                      DSAStack->getCurrentDirective(), OMPC_dist_schedule,
22722                      LangOpts.OpenMP) != OMPD_unknown &&
22723                  !CurContext->isDependentContext()) {
22724         ValExpr = MakeFullExpr(ValExpr).get();
22725         llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
22726         ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
22727         HelperValStmt = buildPreInits(Context, Captures);
22728       }
22729     }
22730   }
22731 
22732   return new (Context)
22733       OMPDistScheduleClause(StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc,
22734                             Kind, ValExpr, HelperValStmt);
22735 }
22736 
22737 OMPClause *Sema::ActOnOpenMPDefaultmapClause(
22738     OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
22739     SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
22740     SourceLocation KindLoc, SourceLocation EndLoc) {
22741   if (getLangOpts().OpenMP < 50) {
22742     if (M != OMPC_DEFAULTMAP_MODIFIER_tofrom ||
22743         Kind != OMPC_DEFAULTMAP_scalar) {
22744       std::string Value;
22745       SourceLocation Loc;
22746       Value += "'";
22747       if (M != OMPC_DEFAULTMAP_MODIFIER_tofrom) {
22748         Value += getOpenMPSimpleClauseTypeName(OMPC_defaultmap,
22749                                                OMPC_DEFAULTMAP_MODIFIER_tofrom);
22750         Loc = MLoc;
22751       } else {
22752         Value += getOpenMPSimpleClauseTypeName(OMPC_defaultmap,
22753                                                OMPC_DEFAULTMAP_scalar);
22754         Loc = KindLoc;
22755       }
22756       Value += "'";
22757       Diag(Loc, diag::err_omp_unexpected_clause_value)
22758           << Value << getOpenMPClauseName(OMPC_defaultmap);
22759       return nullptr;
22760     }
22761   } else {
22762     bool isDefaultmapModifier = (M != OMPC_DEFAULTMAP_MODIFIER_unknown);
22763     bool isDefaultmapKind = (Kind != OMPC_DEFAULTMAP_unknown) ||
22764                             (LangOpts.OpenMP >= 50 && KindLoc.isInvalid());
22765     if (!isDefaultmapKind || !isDefaultmapModifier) {
22766       StringRef KindValue = "'scalar', 'aggregate', 'pointer'";
22767       if (LangOpts.OpenMP == 50) {
22768         StringRef ModifierValue = "'alloc', 'from', 'to', 'tofrom', "
22769                                   "'firstprivate', 'none', 'default'";
22770         if (!isDefaultmapKind && isDefaultmapModifier) {
22771           Diag(KindLoc, diag::err_omp_unexpected_clause_value)
22772               << KindValue << getOpenMPClauseName(OMPC_defaultmap);
22773         } else if (isDefaultmapKind && !isDefaultmapModifier) {
22774           Diag(MLoc, diag::err_omp_unexpected_clause_value)
22775               << ModifierValue << getOpenMPClauseName(OMPC_defaultmap);
22776         } else {
22777           Diag(MLoc, diag::err_omp_unexpected_clause_value)
22778               << ModifierValue << getOpenMPClauseName(OMPC_defaultmap);
22779           Diag(KindLoc, diag::err_omp_unexpected_clause_value)
22780               << KindValue << getOpenMPClauseName(OMPC_defaultmap);
22781         }
22782       } else {
22783         StringRef ModifierValue =
22784             "'alloc', 'from', 'to', 'tofrom', "
22785             "'firstprivate', 'none', 'default', 'present'";
22786         if (!isDefaultmapKind && isDefaultmapModifier) {
22787           Diag(KindLoc, diag::err_omp_unexpected_clause_value)
22788               << KindValue << getOpenMPClauseName(OMPC_defaultmap);
22789         } else if (isDefaultmapKind && !isDefaultmapModifier) {
22790           Diag(MLoc, diag::err_omp_unexpected_clause_value)
22791               << ModifierValue << getOpenMPClauseName(OMPC_defaultmap);
22792         } else {
22793           Diag(MLoc, diag::err_omp_unexpected_clause_value)
22794               << ModifierValue << getOpenMPClauseName(OMPC_defaultmap);
22795           Diag(KindLoc, diag::err_omp_unexpected_clause_value)
22796               << KindValue << getOpenMPClauseName(OMPC_defaultmap);
22797         }
22798       }
22799       return nullptr;
22800     }
22801 
22802     // OpenMP [5.0, 2.12.5, Restrictions, p. 174]
22803     //  At most one defaultmap clause for each category can appear on the
22804     //  directive.
22805     if (DSAStack->checkDefaultmapCategory(Kind)) {
22806       Diag(StartLoc, diag::err_omp_one_defaultmap_each_category);
22807       return nullptr;
22808     }
22809   }
22810   if (Kind == OMPC_DEFAULTMAP_unknown) {
22811     // Variable category is not specified - mark all categories.
22812     DSAStack->setDefaultDMAAttr(M, OMPC_DEFAULTMAP_aggregate, StartLoc);
22813     DSAStack->setDefaultDMAAttr(M, OMPC_DEFAULTMAP_scalar, StartLoc);
22814     DSAStack->setDefaultDMAAttr(M, OMPC_DEFAULTMAP_pointer, StartLoc);
22815   } else {
22816     DSAStack->setDefaultDMAAttr(M, Kind, StartLoc);
22817   }
22818 
22819   return new (Context)
22820       OMPDefaultmapClause(StartLoc, LParenLoc, MLoc, KindLoc, EndLoc, Kind, M);
22821 }
22822 
22823 bool Sema::ActOnStartOpenMPDeclareTargetContext(
22824     DeclareTargetContextInfo &DTCI) {
22825   DeclContext *CurLexicalContext = getCurLexicalContext();
22826   if (!CurLexicalContext->isFileContext() &&
22827       !CurLexicalContext->isExternCContext() &&
22828       !CurLexicalContext->isExternCXXContext() &&
22829       !isa<CXXRecordDecl>(CurLexicalContext) &&
22830       !isa<ClassTemplateDecl>(CurLexicalContext) &&
22831       !isa<ClassTemplatePartialSpecializationDecl>(CurLexicalContext) &&
22832       !isa<ClassTemplateSpecializationDecl>(CurLexicalContext)) {
22833     Diag(DTCI.Loc, diag::err_omp_region_not_file_context);
22834     return false;
22835   }
22836   DeclareTargetNesting.push_back(DTCI);
22837   return true;
22838 }
22839 
22840 const Sema::DeclareTargetContextInfo
22841 Sema::ActOnOpenMPEndDeclareTargetDirective() {
22842   assert(!DeclareTargetNesting.empty() &&
22843          "check isInOpenMPDeclareTargetContext() first!");
22844   return DeclareTargetNesting.pop_back_val();
22845 }
22846 
22847 void Sema::ActOnFinishedOpenMPDeclareTargetContext(
22848     DeclareTargetContextInfo &DTCI) {
22849   for (auto &It : DTCI.ExplicitlyMapped)
22850     ActOnOpenMPDeclareTargetName(It.first, It.second.Loc, It.second.MT, DTCI);
22851 }
22852 
22853 void Sema::DiagnoseUnterminatedOpenMPDeclareTarget() {
22854   if (DeclareTargetNesting.empty())
22855     return;
22856   DeclareTargetContextInfo &DTCI = DeclareTargetNesting.back();
22857   Diag(DTCI.Loc, diag::warn_omp_unterminated_declare_target)
22858       << getOpenMPDirectiveName(DTCI.Kind);
22859 }
22860 
22861 NamedDecl *Sema::lookupOpenMPDeclareTargetName(Scope *CurScope,
22862                                                CXXScopeSpec &ScopeSpec,
22863                                                const DeclarationNameInfo &Id) {
22864   LookupResult Lookup(*this, Id, LookupOrdinaryName);
22865   LookupParsedName(Lookup, CurScope, &ScopeSpec, true);
22866 
22867   if (Lookup.isAmbiguous())
22868     return nullptr;
22869   Lookup.suppressDiagnostics();
22870 
22871   if (!Lookup.isSingleResult()) {
22872     VarOrFuncDeclFilterCCC CCC(*this);
22873     if (TypoCorrection Corrected =
22874             CorrectTypo(Id, LookupOrdinaryName, CurScope, nullptr, CCC,
22875                         CTK_ErrorRecovery)) {
22876       diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
22877                                   << Id.getName());
22878       checkDeclIsAllowedInOpenMPTarget(nullptr, Corrected.getCorrectionDecl());
22879       return nullptr;
22880     }
22881 
22882     Diag(Id.getLoc(), diag::err_undeclared_var_use) << Id.getName();
22883     return nullptr;
22884   }
22885 
22886   NamedDecl *ND = Lookup.getAsSingle<NamedDecl>();
22887   if (!isa<VarDecl>(ND) && !isa<FunctionDecl>(ND) &&
22888       !isa<FunctionTemplateDecl>(ND)) {
22889     Diag(Id.getLoc(), diag::err_omp_invalid_target_decl) << Id.getName();
22890     return nullptr;
22891   }
22892   return ND;
22893 }
22894 
22895 void Sema::ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
22896                                         OMPDeclareTargetDeclAttr::MapTypeTy MT,
22897                                         DeclareTargetContextInfo &DTCI) {
22898   assert((isa<VarDecl>(ND) || isa<FunctionDecl>(ND) ||
22899           isa<FunctionTemplateDecl>(ND)) &&
22900          "Expected variable, function or function template.");
22901 
22902   // Diagnose marking after use as it may lead to incorrect diagnosis and
22903   // codegen.
22904   if (LangOpts.OpenMP >= 50 &&
22905       (ND->isUsed(/*CheckUsedAttr=*/false) || ND->isReferenced()))
22906     Diag(Loc, diag::warn_omp_declare_target_after_first_use);
22907 
22908   // Explicit declare target lists have precedence.
22909   const unsigned Level = -1;
22910 
22911   auto *VD = cast<ValueDecl>(ND);
22912   std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
22913       OMPDeclareTargetDeclAttr::getActiveAttr(VD);
22914   if (ActiveAttr && (*ActiveAttr)->getDevType() != DTCI.DT &&
22915       (*ActiveAttr)->getLevel() == Level) {
22916     Diag(Loc, diag::err_omp_device_type_mismatch)
22917         << OMPDeclareTargetDeclAttr::ConvertDevTypeTyToStr(DTCI.DT)
22918         << OMPDeclareTargetDeclAttr::ConvertDevTypeTyToStr(
22919                (*ActiveAttr)->getDevType());
22920     return;
22921   }
22922   if (ActiveAttr && (*ActiveAttr)->getMapType() != MT &&
22923       (*ActiveAttr)->getLevel() == Level) {
22924     Diag(Loc, diag::err_omp_declare_target_to_and_link) << ND;
22925     return;
22926   }
22927 
22928   if (ActiveAttr && (*ActiveAttr)->getLevel() == Level)
22929     return;
22930 
22931   Expr *IndirectE = nullptr;
22932   bool IsIndirect = false;
22933   if (DTCI.Indirect) {
22934     IndirectE = *DTCI.Indirect;
22935     if (!IndirectE)
22936       IsIndirect = true;
22937   }
22938   auto *A = OMPDeclareTargetDeclAttr::CreateImplicit(
22939       Context, MT, DTCI.DT, IndirectE, IsIndirect, Level,
22940       SourceRange(Loc, Loc));
22941   ND->addAttr(A);
22942   if (ASTMutationListener *ML = Context.getASTMutationListener())
22943     ML->DeclarationMarkedOpenMPDeclareTarget(ND, A);
22944   checkDeclIsAllowedInOpenMPTarget(nullptr, ND, Loc);
22945 }
22946 
22947 static void checkDeclInTargetContext(SourceLocation SL, SourceRange SR,
22948                                      Sema &SemaRef, Decl *D) {
22949   if (!D || !isa<VarDecl>(D))
22950     return;
22951   auto *VD = cast<VarDecl>(D);
22952   std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> MapTy =
22953       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
22954   if (SemaRef.LangOpts.OpenMP >= 50 &&
22955       (SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true) ||
22956        SemaRef.getCurBlock() || SemaRef.getCurCapturedRegion()) &&
22957       VD->hasGlobalStorage()) {
22958     if (!MapTy || (*MapTy != OMPDeclareTargetDeclAttr::MT_To &&
22959                    *MapTy != OMPDeclareTargetDeclAttr::MT_Enter)) {
22960       // OpenMP 5.0, 2.12.7 declare target Directive, Restrictions
22961       // If a lambda declaration and definition appears between a
22962       // declare target directive and the matching end declare target
22963       // directive, all variables that are captured by the lambda
22964       // expression must also appear in a to clause.
22965       SemaRef.Diag(VD->getLocation(),
22966                    diag::err_omp_lambda_capture_in_declare_target_not_to);
22967       SemaRef.Diag(SL, diag::note_var_explicitly_captured_here)
22968           << VD << 0 << SR;
22969       return;
22970     }
22971   }
22972   if (MapTy)
22973     return;
22974   SemaRef.Diag(VD->getLocation(), diag::warn_omp_not_in_target_context);
22975   SemaRef.Diag(SL, diag::note_used_here) << SR;
22976 }
22977 
22978 static bool checkValueDeclInTarget(SourceLocation SL, SourceRange SR,
22979                                    Sema &SemaRef, DSAStackTy *Stack,
22980                                    ValueDecl *VD) {
22981   return OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) ||
22982          checkTypeMappable(SL, SR, SemaRef, Stack, VD->getType(),
22983                            /*FullCheck=*/false);
22984 }
22985 
22986 void Sema::checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
22987                                             SourceLocation IdLoc) {
22988   if (!D || D->isInvalidDecl())
22989     return;
22990   SourceRange SR = E ? E->getSourceRange() : D->getSourceRange();
22991   SourceLocation SL = E ? E->getBeginLoc() : D->getLocation();
22992   if (auto *VD = dyn_cast<VarDecl>(D)) {
22993     // Only global variables can be marked as declare target.
22994     if (!VD->isFileVarDecl() && !VD->isStaticLocal() &&
22995         !VD->isStaticDataMember())
22996       return;
22997     // 2.10.6: threadprivate variable cannot appear in a declare target
22998     // directive.
22999     if (DSAStack->isThreadPrivate(VD)) {
23000       Diag(SL, diag::err_omp_threadprivate_in_target);
23001       reportOriginalDsa(*this, DSAStack, VD, DSAStack->getTopDSA(VD, false));
23002       return;
23003     }
23004   }
23005   if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(D))
23006     D = FTD->getTemplatedDecl();
23007   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
23008     std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
23009         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD);
23010     if (IdLoc.isValid() && Res && *Res == OMPDeclareTargetDeclAttr::MT_Link) {
23011       Diag(IdLoc, diag::err_omp_function_in_link_clause);
23012       Diag(FD->getLocation(), diag::note_defined_here) << FD;
23013       return;
23014     }
23015   }
23016   if (auto *VD = dyn_cast<ValueDecl>(D)) {
23017     // Problem if any with var declared with incomplete type will be reported
23018     // as normal, so no need to check it here.
23019     if ((E || !VD->getType()->isIncompleteType()) &&
23020         !checkValueDeclInTarget(SL, SR, *this, DSAStack, VD))
23021       return;
23022     if (!E && isInOpenMPDeclareTargetContext()) {
23023       // Checking declaration inside declare target region.
23024       if (isa<VarDecl>(D) || isa<FunctionDecl>(D) ||
23025           isa<FunctionTemplateDecl>(D)) {
23026         std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
23027             OMPDeclareTargetDeclAttr::getActiveAttr(VD);
23028         unsigned Level = DeclareTargetNesting.size();
23029         if (ActiveAttr && (*ActiveAttr)->getLevel() >= Level)
23030           return;
23031         DeclareTargetContextInfo &DTCI = DeclareTargetNesting.back();
23032         Expr *IndirectE = nullptr;
23033         bool IsIndirect = false;
23034         if (DTCI.Indirect) {
23035           IndirectE = *DTCI.Indirect;
23036           if (!IndirectE)
23037             IsIndirect = true;
23038         }
23039         auto *A = OMPDeclareTargetDeclAttr::CreateImplicit(
23040             Context,
23041             getLangOpts().OpenMP >= 52 ? OMPDeclareTargetDeclAttr::MT_Enter
23042                                        : OMPDeclareTargetDeclAttr::MT_To,
23043             DTCI.DT, IndirectE, IsIndirect, Level,
23044             SourceRange(DTCI.Loc, DTCI.Loc));
23045         D->addAttr(A);
23046         if (ASTMutationListener *ML = Context.getASTMutationListener())
23047           ML->DeclarationMarkedOpenMPDeclareTarget(D, A);
23048       }
23049       return;
23050     }
23051   }
23052   if (!E)
23053     return;
23054   checkDeclInTargetContext(E->getExprLoc(), E->getSourceRange(), *this, D);
23055 }
23056 
23057 OMPClause *Sema::ActOnOpenMPToClause(
23058     ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
23059     ArrayRef<SourceLocation> MotionModifiersLoc,
23060     CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
23061     SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
23062     const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) {
23063   OpenMPMotionModifierKind Modifiers[] = {OMPC_MOTION_MODIFIER_unknown,
23064                                           OMPC_MOTION_MODIFIER_unknown};
23065   SourceLocation ModifiersLoc[NumberOfOMPMotionModifiers];
23066 
23067   // Process motion-modifiers, flag errors for duplicate modifiers.
23068   unsigned Count = 0;
23069   for (unsigned I = 0, E = MotionModifiers.size(); I < E; ++I) {
23070     if (MotionModifiers[I] != OMPC_MOTION_MODIFIER_unknown &&
23071         llvm::is_contained(Modifiers, MotionModifiers[I])) {
23072       Diag(MotionModifiersLoc[I], diag::err_omp_duplicate_motion_modifier);
23073       continue;
23074     }
23075     assert(Count < NumberOfOMPMotionModifiers &&
23076            "Modifiers exceed the allowed number of motion modifiers");
23077     Modifiers[Count] = MotionModifiers[I];
23078     ModifiersLoc[Count] = MotionModifiersLoc[I];
23079     ++Count;
23080   }
23081 
23082   MappableVarListInfo MVLI(VarList);
23083   checkMappableExpressionList(*this, DSAStack, OMPC_to, MVLI, Locs.StartLoc,
23084                               MapperIdScopeSpec, MapperId, UnresolvedMappers);
23085   if (MVLI.ProcessedVarList.empty())
23086     return nullptr;
23087 
23088   return OMPToClause::Create(
23089       Context, Locs, MVLI.ProcessedVarList, MVLI.VarBaseDeclarations,
23090       MVLI.VarComponents, MVLI.UDMapperList, Modifiers, ModifiersLoc,
23091       MapperIdScopeSpec.getWithLocInContext(Context), MapperId);
23092 }
23093 
23094 OMPClause *Sema::ActOnOpenMPFromClause(
23095     ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
23096     ArrayRef<SourceLocation> MotionModifiersLoc,
23097     CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
23098     SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
23099     const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) {
23100   OpenMPMotionModifierKind Modifiers[] = {OMPC_MOTION_MODIFIER_unknown,
23101                                           OMPC_MOTION_MODIFIER_unknown};
23102   SourceLocation ModifiersLoc[NumberOfOMPMotionModifiers];
23103 
23104   // Process motion-modifiers, flag errors for duplicate modifiers.
23105   unsigned Count = 0;
23106   for (unsigned I = 0, E = MotionModifiers.size(); I < E; ++I) {
23107     if (MotionModifiers[I] != OMPC_MOTION_MODIFIER_unknown &&
23108         llvm::is_contained(Modifiers, MotionModifiers[I])) {
23109       Diag(MotionModifiersLoc[I], diag::err_omp_duplicate_motion_modifier);
23110       continue;
23111     }
23112     assert(Count < NumberOfOMPMotionModifiers &&
23113            "Modifiers exceed the allowed number of motion modifiers");
23114     Modifiers[Count] = MotionModifiers[I];
23115     ModifiersLoc[Count] = MotionModifiersLoc[I];
23116     ++Count;
23117   }
23118 
23119   MappableVarListInfo MVLI(VarList);
23120   checkMappableExpressionList(*this, DSAStack, OMPC_from, MVLI, Locs.StartLoc,
23121                               MapperIdScopeSpec, MapperId, UnresolvedMappers);
23122   if (MVLI.ProcessedVarList.empty())
23123     return nullptr;
23124 
23125   return OMPFromClause::Create(
23126       Context, Locs, MVLI.ProcessedVarList, MVLI.VarBaseDeclarations,
23127       MVLI.VarComponents, MVLI.UDMapperList, Modifiers, ModifiersLoc,
23128       MapperIdScopeSpec.getWithLocInContext(Context), MapperId);
23129 }
23130 
23131 OMPClause *Sema::ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
23132                                                const OMPVarListLocTy &Locs) {
23133   MappableVarListInfo MVLI(VarList);
23134   SmallVector<Expr *, 8> PrivateCopies;
23135   SmallVector<Expr *, 8> Inits;
23136 
23137   for (Expr *RefExpr : VarList) {
23138     assert(RefExpr && "NULL expr in OpenMP use_device_ptr clause.");
23139     SourceLocation ELoc;
23140     SourceRange ERange;
23141     Expr *SimpleRefExpr = RefExpr;
23142     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
23143     if (Res.second) {
23144       // It will be analyzed later.
23145       MVLI.ProcessedVarList.push_back(RefExpr);
23146       PrivateCopies.push_back(nullptr);
23147       Inits.push_back(nullptr);
23148     }
23149     ValueDecl *D = Res.first;
23150     if (!D)
23151       continue;
23152 
23153     QualType Type = D->getType();
23154     Type = Type.getNonReferenceType().getUnqualifiedType();
23155 
23156     auto *VD = dyn_cast<VarDecl>(D);
23157 
23158     // Item should be a pointer or reference to pointer.
23159     if (!Type->isPointerType()) {
23160       Diag(ELoc, diag::err_omp_usedeviceptr_not_a_pointer)
23161           << 0 << RefExpr->getSourceRange();
23162       continue;
23163     }
23164 
23165     // Build the private variable and the expression that refers to it.
23166     auto VDPrivate =
23167         buildVarDecl(*this, ELoc, Type, D->getName(),
23168                      D->hasAttrs() ? &D->getAttrs() : nullptr,
23169                      VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
23170     if (VDPrivate->isInvalidDecl())
23171       continue;
23172 
23173     CurContext->addDecl(VDPrivate);
23174     DeclRefExpr *VDPrivateRefExpr = buildDeclRefExpr(
23175         *this, VDPrivate, RefExpr->getType().getUnqualifiedType(), ELoc);
23176 
23177     // Add temporary variable to initialize the private copy of the pointer.
23178     VarDecl *VDInit =
23179         buildVarDecl(*this, RefExpr->getExprLoc(), Type, ".devptr.temp");
23180     DeclRefExpr *VDInitRefExpr = buildDeclRefExpr(
23181         *this, VDInit, RefExpr->getType(), RefExpr->getExprLoc());
23182     AddInitializerToDecl(VDPrivate,
23183                          DefaultLvalueConversion(VDInitRefExpr).get(),
23184                          /*DirectInit=*/false);
23185 
23186     // If required, build a capture to implement the privatization initialized
23187     // with the current list item value.
23188     DeclRefExpr *Ref = nullptr;
23189     if (!VD)
23190       Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
23191     MVLI.ProcessedVarList.push_back(VD ? RefExpr->IgnoreParens() : Ref);
23192     PrivateCopies.push_back(VDPrivateRefExpr);
23193     Inits.push_back(VDInitRefExpr);
23194 
23195     // We need to add a data sharing attribute for this variable to make sure it
23196     // is correctly captured. A variable that shows up in a use_device_ptr has
23197     // similar properties of a first private variable.
23198     DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_firstprivate, Ref);
23199 
23200     // Create a mappable component for the list item. List items in this clause
23201     // only need a component.
23202     MVLI.VarBaseDeclarations.push_back(D);
23203     MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
23204     MVLI.VarComponents.back().emplace_back(SimpleRefExpr, D,
23205                                            /*IsNonContiguous=*/false);
23206   }
23207 
23208   if (MVLI.ProcessedVarList.empty())
23209     return nullptr;
23210 
23211   return OMPUseDevicePtrClause::Create(
23212       Context, Locs, MVLI.ProcessedVarList, PrivateCopies, Inits,
23213       MVLI.VarBaseDeclarations, MVLI.VarComponents);
23214 }
23215 
23216 OMPClause *Sema::ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
23217                                                 const OMPVarListLocTy &Locs) {
23218   MappableVarListInfo MVLI(VarList);
23219 
23220   for (Expr *RefExpr : VarList) {
23221     assert(RefExpr && "NULL expr in OpenMP use_device_addr clause.");
23222     SourceLocation ELoc;
23223     SourceRange ERange;
23224     Expr *SimpleRefExpr = RefExpr;
23225     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange,
23226                               /*AllowArraySection=*/true);
23227     if (Res.second) {
23228       // It will be analyzed later.
23229       MVLI.ProcessedVarList.push_back(RefExpr);
23230     }
23231     ValueDecl *D = Res.first;
23232     if (!D)
23233       continue;
23234     auto *VD = dyn_cast<VarDecl>(D);
23235 
23236     // If required, build a capture to implement the privatization initialized
23237     // with the current list item value.
23238     DeclRefExpr *Ref = nullptr;
23239     if (!VD)
23240       Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
23241     MVLI.ProcessedVarList.push_back(VD ? RefExpr->IgnoreParens() : Ref);
23242 
23243     // We need to add a data sharing attribute for this variable to make sure it
23244     // is correctly captured. A variable that shows up in a use_device_addr has
23245     // similar properties of a first private variable.
23246     DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_firstprivate, Ref);
23247 
23248     // Create a mappable component for the list item. List items in this clause
23249     // only need a component.
23250     MVLI.VarBaseDeclarations.push_back(D);
23251     MVLI.VarComponents.emplace_back();
23252     Expr *Component = SimpleRefExpr;
23253     if (VD && (isa<OMPArraySectionExpr>(RefExpr->IgnoreParenImpCasts()) ||
23254                isa<ArraySubscriptExpr>(RefExpr->IgnoreParenImpCasts())))
23255       Component = DefaultFunctionArrayLvalueConversion(SimpleRefExpr).get();
23256     MVLI.VarComponents.back().emplace_back(Component, D,
23257                                            /*IsNonContiguous=*/false);
23258   }
23259 
23260   if (MVLI.ProcessedVarList.empty())
23261     return nullptr;
23262 
23263   return OMPUseDeviceAddrClause::Create(Context, Locs, MVLI.ProcessedVarList,
23264                                         MVLI.VarBaseDeclarations,
23265                                         MVLI.VarComponents);
23266 }
23267 
23268 OMPClause *Sema::ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
23269                                               const OMPVarListLocTy &Locs) {
23270   MappableVarListInfo MVLI(VarList);
23271   for (Expr *RefExpr : VarList) {
23272     assert(RefExpr && "NULL expr in OpenMP is_device_ptr clause.");
23273     SourceLocation ELoc;
23274     SourceRange ERange;
23275     Expr *SimpleRefExpr = RefExpr;
23276     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
23277     if (Res.second) {
23278       // It will be analyzed later.
23279       MVLI.ProcessedVarList.push_back(RefExpr);
23280     }
23281     ValueDecl *D = Res.first;
23282     if (!D)
23283       continue;
23284 
23285     QualType Type = D->getType();
23286     // item should be a pointer or array or reference to pointer or array
23287     if (!Type.getNonReferenceType()->isPointerType() &&
23288         !Type.getNonReferenceType()->isArrayType()) {
23289       Diag(ELoc, diag::err_omp_argument_type_isdeviceptr)
23290           << 0 << RefExpr->getSourceRange();
23291       continue;
23292     }
23293 
23294     // Check if the declaration in the clause does not show up in any data
23295     // sharing attribute.
23296     DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
23297     if (isOpenMPPrivate(DVar.CKind)) {
23298       Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
23299           << getOpenMPClauseName(DVar.CKind)
23300           << getOpenMPClauseName(OMPC_is_device_ptr)
23301           << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
23302       reportOriginalDsa(*this, DSAStack, D, DVar);
23303       continue;
23304     }
23305 
23306     const Expr *ConflictExpr;
23307     if (DSAStack->checkMappableExprComponentListsForDecl(
23308             D, /*CurrentRegionOnly=*/true,
23309             [&ConflictExpr](
23310                 OMPClauseMappableExprCommon::MappableExprComponentListRef R,
23311                 OpenMPClauseKind) -> bool {
23312               ConflictExpr = R.front().getAssociatedExpression();
23313               return true;
23314             })) {
23315       Diag(ELoc, diag::err_omp_map_shared_storage) << RefExpr->getSourceRange();
23316       Diag(ConflictExpr->getExprLoc(), diag::note_used_here)
23317           << ConflictExpr->getSourceRange();
23318       continue;
23319     }
23320 
23321     // Store the components in the stack so that they can be used to check
23322     // against other clauses later on.
23323     OMPClauseMappableExprCommon::MappableComponent MC(
23324         SimpleRefExpr, D, /*IsNonContiguous=*/false);
23325     DSAStack->addMappableExpressionComponents(
23326         D, MC, /*WhereFoundClauseKind=*/OMPC_is_device_ptr);
23327 
23328     // Record the expression we've just processed.
23329     MVLI.ProcessedVarList.push_back(SimpleRefExpr);
23330 
23331     // Create a mappable component for the list item. List items in this clause
23332     // only need a component. We use a null declaration to signal fields in
23333     // 'this'.
23334     assert((isa<DeclRefExpr>(SimpleRefExpr) ||
23335             isa<CXXThisExpr>(cast<MemberExpr>(SimpleRefExpr)->getBase())) &&
23336            "Unexpected device pointer expression!");
23337     MVLI.VarBaseDeclarations.push_back(
23338         isa<DeclRefExpr>(SimpleRefExpr) ? D : nullptr);
23339     MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
23340     MVLI.VarComponents.back().push_back(MC);
23341   }
23342 
23343   if (MVLI.ProcessedVarList.empty())
23344     return nullptr;
23345 
23346   return OMPIsDevicePtrClause::Create(Context, Locs, MVLI.ProcessedVarList,
23347                                       MVLI.VarBaseDeclarations,
23348                                       MVLI.VarComponents);
23349 }
23350 
23351 OMPClause *Sema::ActOnOpenMPHasDeviceAddrClause(ArrayRef<Expr *> VarList,
23352                                                 const OMPVarListLocTy &Locs) {
23353   MappableVarListInfo MVLI(VarList);
23354   for (Expr *RefExpr : VarList) {
23355     assert(RefExpr && "NULL expr in OpenMP has_device_addr clause.");
23356     SourceLocation ELoc;
23357     SourceRange ERange;
23358     Expr *SimpleRefExpr = RefExpr;
23359     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange,
23360                               /*AllowArraySection=*/true);
23361     if (Res.second) {
23362       // It will be analyzed later.
23363       MVLI.ProcessedVarList.push_back(RefExpr);
23364     }
23365     ValueDecl *D = Res.first;
23366     if (!D)
23367       continue;
23368 
23369     // Check if the declaration in the clause does not show up in any data
23370     // sharing attribute.
23371     DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
23372     if (isOpenMPPrivate(DVar.CKind)) {
23373       Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
23374           << getOpenMPClauseName(DVar.CKind)
23375           << getOpenMPClauseName(OMPC_has_device_addr)
23376           << getOpenMPDirectiveName(DSAStack->getCurrentDirective());
23377       reportOriginalDsa(*this, DSAStack, D, DVar);
23378       continue;
23379     }
23380 
23381     const Expr *ConflictExpr;
23382     if (DSAStack->checkMappableExprComponentListsForDecl(
23383             D, /*CurrentRegionOnly=*/true,
23384             [&ConflictExpr](
23385                 OMPClauseMappableExprCommon::MappableExprComponentListRef R,
23386                 OpenMPClauseKind) -> bool {
23387               ConflictExpr = R.front().getAssociatedExpression();
23388               return true;
23389             })) {
23390       Diag(ELoc, diag::err_omp_map_shared_storage) << RefExpr->getSourceRange();
23391       Diag(ConflictExpr->getExprLoc(), diag::note_used_here)
23392           << ConflictExpr->getSourceRange();
23393       continue;
23394     }
23395 
23396     // Store the components in the stack so that they can be used to check
23397     // against other clauses later on.
23398     Expr *Component = SimpleRefExpr;
23399     auto *VD = dyn_cast<VarDecl>(D);
23400     if (VD && (isa<OMPArraySectionExpr>(RefExpr->IgnoreParenImpCasts()) ||
23401                isa<ArraySubscriptExpr>(RefExpr->IgnoreParenImpCasts())))
23402       Component = DefaultFunctionArrayLvalueConversion(SimpleRefExpr).get();
23403     OMPClauseMappableExprCommon::MappableComponent MC(
23404         Component, D, /*IsNonContiguous=*/false);
23405     DSAStack->addMappableExpressionComponents(
23406         D, MC, /*WhereFoundClauseKind=*/OMPC_has_device_addr);
23407 
23408     // Record the expression we've just processed.
23409     if (!VD && !CurContext->isDependentContext()) {
23410       DeclRefExpr *Ref =
23411           buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
23412       assert(Ref && "has_device_addr capture failed");
23413       MVLI.ProcessedVarList.push_back(Ref);
23414     } else
23415       MVLI.ProcessedVarList.push_back(RefExpr->IgnoreParens());
23416 
23417     // Create a mappable component for the list item. List items in this clause
23418     // only need a component. We use a null declaration to signal fields in
23419     // 'this'.
23420     assert((isa<DeclRefExpr>(SimpleRefExpr) ||
23421             isa<CXXThisExpr>(cast<MemberExpr>(SimpleRefExpr)->getBase())) &&
23422            "Unexpected device pointer expression!");
23423     MVLI.VarBaseDeclarations.push_back(
23424         isa<DeclRefExpr>(SimpleRefExpr) ? D : nullptr);
23425     MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
23426     MVLI.VarComponents.back().push_back(MC);
23427   }
23428 
23429   if (MVLI.ProcessedVarList.empty())
23430     return nullptr;
23431 
23432   return OMPHasDeviceAddrClause::Create(Context, Locs, MVLI.ProcessedVarList,
23433                                         MVLI.VarBaseDeclarations,
23434                                         MVLI.VarComponents);
23435 }
23436 
23437 OMPClause *Sema::ActOnOpenMPAllocateClause(
23438     Expr *Allocator, ArrayRef<Expr *> VarList, SourceLocation StartLoc,
23439     SourceLocation ColonLoc, SourceLocation LParenLoc, SourceLocation EndLoc) {
23440   if (Allocator) {
23441     // OpenMP [2.11.4 allocate Clause, Description]
23442     // allocator is an expression of omp_allocator_handle_t type.
23443     if (!findOMPAllocatorHandleT(*this, Allocator->getExprLoc(), DSAStack))
23444       return nullptr;
23445 
23446     ExprResult AllocatorRes = DefaultLvalueConversion(Allocator);
23447     if (AllocatorRes.isInvalid())
23448       return nullptr;
23449     AllocatorRes = PerformImplicitConversion(AllocatorRes.get(),
23450                                              DSAStack->getOMPAllocatorHandleT(),
23451                                              Sema::AA_Initializing,
23452                                              /*AllowExplicit=*/true);
23453     if (AllocatorRes.isInvalid())
23454       return nullptr;
23455     Allocator = AllocatorRes.get();
23456   } else {
23457     // OpenMP 5.0, 2.11.4 allocate Clause, Restrictions.
23458     // allocate clauses that appear on a target construct or on constructs in a
23459     // target region must specify an allocator expression unless a requires
23460     // directive with the dynamic_allocators clause is present in the same
23461     // compilation unit.
23462     if (LangOpts.OpenMPIsDevice &&
23463         !DSAStack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>())
23464       targetDiag(StartLoc, diag::err_expected_allocator_expression);
23465   }
23466   // Analyze and build list of variables.
23467   SmallVector<Expr *, 8> Vars;
23468   for (Expr *RefExpr : VarList) {
23469     assert(RefExpr && "NULL expr in OpenMP private clause.");
23470     SourceLocation ELoc;
23471     SourceRange ERange;
23472     Expr *SimpleRefExpr = RefExpr;
23473     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
23474     if (Res.second) {
23475       // It will be analyzed later.
23476       Vars.push_back(RefExpr);
23477     }
23478     ValueDecl *D = Res.first;
23479     if (!D)
23480       continue;
23481 
23482     auto *VD = dyn_cast<VarDecl>(D);
23483     DeclRefExpr *Ref = nullptr;
23484     if (!VD && !CurContext->isDependentContext())
23485       Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false);
23486     Vars.push_back((VD || CurContext->isDependentContext())
23487                        ? RefExpr->IgnoreParens()
23488                        : Ref);
23489   }
23490 
23491   if (Vars.empty())
23492     return nullptr;
23493 
23494   if (Allocator)
23495     DSAStack->addInnerAllocatorExpr(Allocator);
23496   return OMPAllocateClause::Create(Context, StartLoc, LParenLoc, Allocator,
23497                                    ColonLoc, EndLoc, Vars);
23498 }
23499 
23500 OMPClause *Sema::ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
23501                                               SourceLocation StartLoc,
23502                                               SourceLocation LParenLoc,
23503                                               SourceLocation EndLoc) {
23504   SmallVector<Expr *, 8> Vars;
23505   for (Expr *RefExpr : VarList) {
23506     assert(RefExpr && "NULL expr in OpenMP nontemporal clause.");
23507     SourceLocation ELoc;
23508     SourceRange ERange;
23509     Expr *SimpleRefExpr = RefExpr;
23510     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
23511     if (Res.second)
23512       // It will be analyzed later.
23513       Vars.push_back(RefExpr);
23514     ValueDecl *D = Res.first;
23515     if (!D)
23516       continue;
23517 
23518     // OpenMP 5.0, 2.9.3.1 simd Construct, Restrictions.
23519     // A list-item cannot appear in more than one nontemporal clause.
23520     if (const Expr *PrevRef =
23521             DSAStack->addUniqueNontemporal(D, SimpleRefExpr)) {
23522       Diag(ELoc, diag::err_omp_used_in_clause_twice)
23523           << 0 << getOpenMPClauseName(OMPC_nontemporal) << ERange;
23524       Diag(PrevRef->getExprLoc(), diag::note_omp_explicit_dsa)
23525           << getOpenMPClauseName(OMPC_nontemporal);
23526       continue;
23527     }
23528 
23529     Vars.push_back(RefExpr);
23530   }
23531 
23532   if (Vars.empty())
23533     return nullptr;
23534 
23535   return OMPNontemporalClause::Create(Context, StartLoc, LParenLoc, EndLoc,
23536                                       Vars);
23537 }
23538 
23539 OMPClause *Sema::ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
23540                                             SourceLocation StartLoc,
23541                                             SourceLocation LParenLoc,
23542                                             SourceLocation EndLoc) {
23543   SmallVector<Expr *, 8> Vars;
23544   for (Expr *RefExpr : VarList) {
23545     assert(RefExpr && "NULL expr in OpenMP nontemporal clause.");
23546     SourceLocation ELoc;
23547     SourceRange ERange;
23548     Expr *SimpleRefExpr = RefExpr;
23549     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange,
23550                               /*AllowArraySection=*/true);
23551     if (Res.second)
23552       // It will be analyzed later.
23553       Vars.push_back(RefExpr);
23554     ValueDecl *D = Res.first;
23555     if (!D)
23556       continue;
23557 
23558     const DSAStackTy::DSAVarData DVar =
23559         DSAStack->getTopDSA(D, /*FromParent=*/true);
23560     // OpenMP 5.0, 2.9.6, scan Directive, Restrictions.
23561     // A list item that appears in the inclusive or exclusive clause must appear
23562     // in a reduction clause with the inscan modifier on the enclosing
23563     // worksharing-loop, worksharing-loop SIMD, or simd construct.
23564     if (DVar.CKind != OMPC_reduction || DVar.Modifier != OMPC_REDUCTION_inscan)
23565       Diag(ELoc, diag::err_omp_inclusive_exclusive_not_reduction)
23566           << RefExpr->getSourceRange();
23567 
23568     if (DSAStack->getParentDirective() != OMPD_unknown)
23569       DSAStack->markDeclAsUsedInScanDirective(D);
23570     Vars.push_back(RefExpr);
23571   }
23572 
23573   if (Vars.empty())
23574     return nullptr;
23575 
23576   return OMPInclusiveClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars);
23577 }
23578 
23579 OMPClause *Sema::ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
23580                                             SourceLocation StartLoc,
23581                                             SourceLocation LParenLoc,
23582                                             SourceLocation EndLoc) {
23583   SmallVector<Expr *, 8> Vars;
23584   for (Expr *RefExpr : VarList) {
23585     assert(RefExpr && "NULL expr in OpenMP nontemporal clause.");
23586     SourceLocation ELoc;
23587     SourceRange ERange;
23588     Expr *SimpleRefExpr = RefExpr;
23589     auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange,
23590                               /*AllowArraySection=*/true);
23591     if (Res.second)
23592       // It will be analyzed later.
23593       Vars.push_back(RefExpr);
23594     ValueDecl *D = Res.first;
23595     if (!D)
23596       continue;
23597 
23598     OpenMPDirectiveKind ParentDirective = DSAStack->getParentDirective();
23599     DSAStackTy::DSAVarData DVar;
23600     if (ParentDirective != OMPD_unknown)
23601       DVar = DSAStack->getTopDSA(D, /*FromParent=*/true);
23602     // OpenMP 5.0, 2.9.6, scan Directive, Restrictions.
23603     // A list item that appears in the inclusive or exclusive clause must appear
23604     // in a reduction clause with the inscan modifier on the enclosing
23605     // worksharing-loop, worksharing-loop SIMD, or simd construct.
23606     if (ParentDirective == OMPD_unknown || DVar.CKind != OMPC_reduction ||
23607         DVar.Modifier != OMPC_REDUCTION_inscan) {
23608       Diag(ELoc, diag::err_omp_inclusive_exclusive_not_reduction)
23609           << RefExpr->getSourceRange();
23610     } else {
23611       DSAStack->markDeclAsUsedInScanDirective(D);
23612     }
23613     Vars.push_back(RefExpr);
23614   }
23615 
23616   if (Vars.empty())
23617     return nullptr;
23618 
23619   return OMPExclusiveClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars);
23620 }
23621 
23622 /// Tries to find omp_alloctrait_t type.
23623 static bool findOMPAlloctraitT(Sema &S, SourceLocation Loc, DSAStackTy *Stack) {
23624   QualType OMPAlloctraitT = Stack->getOMPAlloctraitT();
23625   if (!OMPAlloctraitT.isNull())
23626     return true;
23627   IdentifierInfo &II = S.PP.getIdentifierTable().get("omp_alloctrait_t");
23628   ParsedType PT = S.getTypeName(II, Loc, S.getCurScope());
23629   if (!PT.getAsOpaquePtr() || PT.get().isNull()) {
23630     S.Diag(Loc, diag::err_omp_implied_type_not_found) << "omp_alloctrait_t";
23631     return false;
23632   }
23633   Stack->setOMPAlloctraitT(PT.get());
23634   return true;
23635 }
23636 
23637 OMPClause *Sema::ActOnOpenMPUsesAllocatorClause(
23638     SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc,
23639     ArrayRef<UsesAllocatorsData> Data) {
23640   // OpenMP [2.12.5, target Construct]
23641   // allocator is an identifier of omp_allocator_handle_t type.
23642   if (!findOMPAllocatorHandleT(*this, StartLoc, DSAStack))
23643     return nullptr;
23644   // OpenMP [2.12.5, target Construct]
23645   // allocator-traits-array is an identifier of const omp_alloctrait_t * type.
23646   if (llvm::any_of(
23647           Data,
23648           [](const UsesAllocatorsData &D) { return D.AllocatorTraits; }) &&
23649       !findOMPAlloctraitT(*this, StartLoc, DSAStack))
23650     return nullptr;
23651   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 4> PredefinedAllocators;
23652   for (int I = 0; I < OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; ++I) {
23653     auto AllocatorKind = static_cast<OMPAllocateDeclAttr::AllocatorTypeTy>(I);
23654     StringRef Allocator =
23655         OMPAllocateDeclAttr::ConvertAllocatorTypeTyToStr(AllocatorKind);
23656     DeclarationName AllocatorName = &Context.Idents.get(Allocator);
23657     PredefinedAllocators.insert(LookupSingleName(
23658         TUScope, AllocatorName, StartLoc, Sema::LookupAnyName));
23659   }
23660 
23661   SmallVector<OMPUsesAllocatorsClause::Data, 4> NewData;
23662   for (const UsesAllocatorsData &D : Data) {
23663     Expr *AllocatorExpr = nullptr;
23664     // Check allocator expression.
23665     if (D.Allocator->isTypeDependent()) {
23666       AllocatorExpr = D.Allocator;
23667     } else {
23668       // Traits were specified - need to assign new allocator to the specified
23669       // allocator, so it must be an lvalue.
23670       AllocatorExpr = D.Allocator->IgnoreParenImpCasts();
23671       auto *DRE = dyn_cast<DeclRefExpr>(AllocatorExpr);
23672       bool IsPredefinedAllocator = false;
23673       if (DRE) {
23674         OMPAllocateDeclAttr::AllocatorTypeTy AllocatorTy =
23675             getAllocatorKind(*this, DSAStack, AllocatorExpr);
23676         IsPredefinedAllocator =
23677             AllocatorTy !=
23678             OMPAllocateDeclAttr::AllocatorTypeTy::OMPUserDefinedMemAlloc;
23679       }
23680       QualType OMPAllocatorHandleT = DSAStack->getOMPAllocatorHandleT();
23681       QualType AllocatorExprType = AllocatorExpr->getType();
23682       bool IsTypeCompatible = IsPredefinedAllocator;
23683       IsTypeCompatible = IsTypeCompatible ||
23684                          Context.hasSameUnqualifiedType(AllocatorExprType,
23685                                                         OMPAllocatorHandleT);
23686       IsTypeCompatible =
23687           IsTypeCompatible ||
23688           Context.typesAreCompatible(AllocatorExprType, OMPAllocatorHandleT);
23689       bool IsNonConstantLValue =
23690           !AllocatorExprType.isConstant(Context) && AllocatorExpr->isLValue();
23691       if (!DRE || !IsTypeCompatible ||
23692           (!IsPredefinedAllocator && !IsNonConstantLValue)) {
23693         Diag(D.Allocator->getExprLoc(), diag::err_omp_var_expected)
23694             << "omp_allocator_handle_t" << (DRE ? 1 : 0)
23695             << AllocatorExpr->getType() << D.Allocator->getSourceRange();
23696         continue;
23697       }
23698       // OpenMP [2.12.5, target Construct]
23699       // Predefined allocators appearing in a uses_allocators clause cannot have
23700       // traits specified.
23701       if (IsPredefinedAllocator && D.AllocatorTraits) {
23702         Diag(D.AllocatorTraits->getExprLoc(),
23703              diag::err_omp_predefined_allocator_with_traits)
23704             << D.AllocatorTraits->getSourceRange();
23705         Diag(D.Allocator->getExprLoc(), diag::note_omp_predefined_allocator)
23706             << cast<NamedDecl>(DRE->getDecl())->getName()
23707             << D.Allocator->getSourceRange();
23708         continue;
23709       }
23710       // OpenMP [2.12.5, target Construct]
23711       // Non-predefined allocators appearing in a uses_allocators clause must
23712       // have traits specified.
23713       if (!IsPredefinedAllocator && !D.AllocatorTraits) {
23714         Diag(D.Allocator->getExprLoc(),
23715              diag::err_omp_nonpredefined_allocator_without_traits);
23716         continue;
23717       }
23718       // No allocator traits - just convert it to rvalue.
23719       if (!D.AllocatorTraits)
23720         AllocatorExpr = DefaultLvalueConversion(AllocatorExpr).get();
23721       DSAStack->addUsesAllocatorsDecl(
23722           DRE->getDecl(),
23723           IsPredefinedAllocator
23724               ? DSAStackTy::UsesAllocatorsDeclKind::PredefinedAllocator
23725               : DSAStackTy::UsesAllocatorsDeclKind::UserDefinedAllocator);
23726     }
23727     Expr *AllocatorTraitsExpr = nullptr;
23728     if (D.AllocatorTraits) {
23729       if (D.AllocatorTraits->isTypeDependent()) {
23730         AllocatorTraitsExpr = D.AllocatorTraits;
23731       } else {
23732         // OpenMP [2.12.5, target Construct]
23733         // Arrays that contain allocator traits that appear in a uses_allocators
23734         // clause must be constant arrays, have constant values and be defined
23735         // in the same scope as the construct in which the clause appears.
23736         AllocatorTraitsExpr = D.AllocatorTraits->IgnoreParenImpCasts();
23737         // Check that traits expr is a constant array.
23738         QualType TraitTy;
23739         if (const ArrayType *Ty =
23740                 AllocatorTraitsExpr->getType()->getAsArrayTypeUnsafe())
23741           if (const auto *ConstArrayTy = dyn_cast<ConstantArrayType>(Ty))
23742             TraitTy = ConstArrayTy->getElementType();
23743         if (TraitTy.isNull() ||
23744             !(Context.hasSameUnqualifiedType(TraitTy,
23745                                              DSAStack->getOMPAlloctraitT()) ||
23746               Context.typesAreCompatible(TraitTy, DSAStack->getOMPAlloctraitT(),
23747                                          /*CompareUnqualified=*/true))) {
23748           Diag(D.AllocatorTraits->getExprLoc(),
23749                diag::err_omp_expected_array_alloctraits)
23750               << AllocatorTraitsExpr->getType();
23751           continue;
23752         }
23753         // Do not map by default allocator traits if it is a standalone
23754         // variable.
23755         if (auto *DRE = dyn_cast<DeclRefExpr>(AllocatorTraitsExpr))
23756           DSAStack->addUsesAllocatorsDecl(
23757               DRE->getDecl(),
23758               DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait);
23759       }
23760     }
23761     OMPUsesAllocatorsClause::Data &NewD = NewData.emplace_back();
23762     NewD.Allocator = AllocatorExpr;
23763     NewD.AllocatorTraits = AllocatorTraitsExpr;
23764     NewD.LParenLoc = D.LParenLoc;
23765     NewD.RParenLoc = D.RParenLoc;
23766   }
23767   return OMPUsesAllocatorsClause::Create(Context, StartLoc, LParenLoc, EndLoc,
23768                                          NewData);
23769 }
23770 
23771 OMPClause *Sema::ActOnOpenMPAffinityClause(
23772     SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc,
23773     SourceLocation EndLoc, Expr *Modifier, ArrayRef<Expr *> Locators) {
23774   SmallVector<Expr *, 8> Vars;
23775   for (Expr *RefExpr : Locators) {
23776     assert(RefExpr && "NULL expr in OpenMP shared clause.");
23777     if (isa<DependentScopeDeclRefExpr>(RefExpr) || RefExpr->isTypeDependent()) {
23778       // It will be analyzed later.
23779       Vars.push_back(RefExpr);
23780       continue;
23781     }
23782 
23783     SourceLocation ELoc = RefExpr->getExprLoc();
23784     Expr *SimpleExpr = RefExpr->IgnoreParenImpCasts();
23785 
23786     if (!SimpleExpr->isLValue()) {
23787       Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
23788           << 1 << 0 << RefExpr->getSourceRange();
23789       continue;
23790     }
23791 
23792     ExprResult Res;
23793     {
23794       Sema::TentativeAnalysisScope Trap(*this);
23795       Res = CreateBuiltinUnaryOp(ELoc, UO_AddrOf, SimpleExpr);
23796     }
23797     if (!Res.isUsable() && !isa<OMPArraySectionExpr>(SimpleExpr) &&
23798         !isa<OMPArrayShapingExpr>(SimpleExpr)) {
23799       Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
23800           << 1 << 0 << RefExpr->getSourceRange();
23801       continue;
23802     }
23803     Vars.push_back(SimpleExpr);
23804   }
23805 
23806   return OMPAffinityClause::Create(Context, StartLoc, LParenLoc, ColonLoc,
23807                                    EndLoc, Modifier, Vars);
23808 }
23809 
23810 OMPClause *Sema::ActOnOpenMPBindClause(OpenMPBindClauseKind Kind,
23811                                        SourceLocation KindLoc,
23812                                        SourceLocation StartLoc,
23813                                        SourceLocation LParenLoc,
23814                                        SourceLocation EndLoc) {
23815   if (Kind == OMPC_BIND_unknown) {
23816     Diag(KindLoc, diag::err_omp_unexpected_clause_value)
23817         << getListOfPossibleValues(OMPC_bind, /*First=*/0,
23818                                    /*Last=*/unsigned(OMPC_BIND_unknown))
23819         << getOpenMPClauseName(OMPC_bind);
23820     return nullptr;
23821   }
23822 
23823   return OMPBindClause::Create(Context, Kind, KindLoc, StartLoc, LParenLoc,
23824                                EndLoc);
23825 }
23826 
23827 OMPClause *Sema::ActOnOpenMPXDynCGroupMemClause(Expr *Size,
23828                                                 SourceLocation StartLoc,
23829                                                 SourceLocation LParenLoc,
23830                                                 SourceLocation EndLoc) {
23831   Expr *ValExpr = Size;
23832   Stmt *HelperValStmt = nullptr;
23833 
23834   // OpenMP [2.5, Restrictions]
23835   //  The ompx_dyn_cgroup_mem expression must evaluate to a positive integer
23836   //  value.
23837   if (!isNonNegativeIntegerValue(ValExpr, *this, OMPC_ompx_dyn_cgroup_mem,
23838                                  /*StrictlyPositive=*/false))
23839     return nullptr;
23840 
23841   OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
23842   OpenMPDirectiveKind CaptureRegion = getOpenMPCaptureRegionForClause(
23843       DKind, OMPC_ompx_dyn_cgroup_mem, LangOpts.OpenMP);
23844   if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
23845     ValExpr = MakeFullExpr(ValExpr).get();
23846     llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
23847     ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
23848     HelperValStmt = buildPreInits(Context, Captures);
23849   }
23850 
23851   return new (Context) OMPXDynCGroupMemClause(
23852       ValExpr, HelperValStmt, CaptureRegion, StartLoc, LParenLoc, EndLoc);
23853 }
23854