1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for inline asm statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/GlobalDecl.h"
15 #include "clang/AST/RecordLayout.h"
16 #include "clang/AST/TypeLoc.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Initialization.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/MC/MCParser/MCAsmParser.h"
27 using namespace clang;
28 using namespace sema;
29 
30 /// Remove the upper-level LValueToRValue cast from an expression.
31 static void removeLValueToRValueCast(Expr *E) {
32   Expr *Parent = E;
33   Expr *ExprUnderCast = nullptr;
34   SmallVector<Expr *, 8> ParentsToUpdate;
35 
36   while (true) {
37     ParentsToUpdate.push_back(Parent);
38     if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
39       Parent = ParenE->getSubExpr();
40       continue;
41     }
42 
43     Expr *Child = nullptr;
44     CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
45     if (ParentCast)
46       Child = ParentCast->getSubExpr();
47     else
48       return;
49 
50     if (auto *CastE = dyn_cast<CastExpr>(Child))
51       if (CastE->getCastKind() == CK_LValueToRValue) {
52         ExprUnderCast = CastE->getSubExpr();
53         // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
54         ParentCast->setSubExpr(ExprUnderCast);
55         break;
56       }
57     Parent = Child;
58   }
59 
60   // Update parent expressions to have same ValueType as the underlying.
61   assert(ExprUnderCast &&
62          "Should be reachable only if LValueToRValue cast was found!");
63   auto ValueKind = ExprUnderCast->getValueKind();
64   for (Expr *E : ParentsToUpdate)
65     E->setValueKind(ValueKind);
66 }
67 
68 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
69 /// and fix the argument with removing LValueToRValue cast from the expression.
70 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
71                                            Sema &S) {
72   if (!S.getLangOpts().HeinousExtensions) {
73     S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue)
74         << BadArgument->getSourceRange();
75   } else {
76     S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
77         << BadArgument->getSourceRange();
78   }
79   removeLValueToRValueCast(BadArgument);
80 }
81 
82 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
83 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
84 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
85 /// provide a strong guidance to not use it.
86 ///
87 /// This method checks to see if the argument is an acceptable l-value and
88 /// returns false if it is a case we can handle.
89 static bool CheckAsmLValue(Expr *E, Sema &S) {
90   // Type dependent expressions will be checked during instantiation.
91   if (E->isTypeDependent())
92     return false;
93 
94   if (E->isLValue())
95     return false;  // Cool, this is an lvalue.
96 
97   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
98   // are supposed to allow.
99   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
100   if (E != E2 && E2->isLValue()) {
101     emitAndFixInvalidAsmCastLValue(E2, E, S);
102     // Accept, even if we emitted an error diagnostic.
103     return false;
104   }
105 
106   // None of the above, just randomly invalid non-lvalue.
107   return true;
108 }
109 
110 /// isOperandMentioned - Return true if the specified operand # is mentioned
111 /// anywhere in the decomposed asm string.
112 static bool
113 isOperandMentioned(unsigned OpNo,
114                    ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
115   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
116     const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
117     if (!Piece.isOperand())
118       continue;
119 
120     // If this is a reference to the input and if the input was the smaller
121     // one, then we have to reject this asm.
122     if (Piece.getOperandNo() == OpNo)
123       return true;
124   }
125   return false;
126 }
127 
128 static bool CheckNakedParmReference(Expr *E, Sema &S) {
129   FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
130   if (!Func)
131     return false;
132   if (!Func->hasAttr<NakedAttr>())
133     return false;
134 
135   SmallVector<Expr*, 4> WorkList;
136   WorkList.push_back(E);
137   while (WorkList.size()) {
138     Expr *E = WorkList.pop_back_val();
139     if (isa<CXXThisExpr>(E)) {
140       S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
141       S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
142       return true;
143     }
144     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
145       if (isa<ParmVarDecl>(DRE->getDecl())) {
146         S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
147         S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
148         return true;
149       }
150     }
151     for (Stmt *Child : E->children()) {
152       if (Expr *E = dyn_cast_or_null<Expr>(Child))
153         WorkList.push_back(E);
154     }
155   }
156   return false;
157 }
158 
159 /// Returns true if given expression is not compatible with inline
160 /// assembly's memory constraint; false otherwise.
161 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
162                                             TargetInfo::ConstraintInfo &Info,
163                                             bool is_input_expr) {
164   enum {
165     ExprBitfield = 0,
166     ExprVectorElt,
167     ExprGlobalRegVar,
168     ExprSafeType
169   } EType = ExprSafeType;
170 
171   // Bitfields, vector elements and global register variables are not
172   // compatible.
173   if (E->refersToBitField())
174     EType = ExprBitfield;
175   else if (E->refersToVectorElement())
176     EType = ExprVectorElt;
177   else if (E->refersToGlobalRegisterVar())
178     EType = ExprGlobalRegVar;
179 
180   if (EType != ExprSafeType) {
181     S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
182         << EType << is_input_expr << Info.getConstraintStr()
183         << E->getSourceRange();
184     return true;
185   }
186 
187   return false;
188 }
189 
190 // Extracting the register name from the Expression value,
191 // if there is no register name to extract, returns ""
192 static StringRef extractRegisterName(const Expr *Expression,
193                                      const TargetInfo &Target) {
194   Expression = Expression->IgnoreImpCasts();
195   if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
196     // Handle cases where the expression is a variable
197     const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
198     if (Variable && Variable->getStorageClass() == SC_Register) {
199       if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
200         if (Target.isValidGCCRegisterName(Attr->getLabel()))
201           return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
202     }
203   }
204   return "";
205 }
206 
207 // Checks if there is a conflict between the input and output lists with the
208 // clobbers list. If there's a conflict, returns the location of the
209 // conflicted clobber, else returns nullptr
210 static SourceLocation
211 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
212                            StringLiteral **Clobbers, int NumClobbers,
213                            unsigned NumLabels,
214                            const TargetInfo &Target, ASTContext &Cont) {
215   llvm::StringSet<> InOutVars;
216   // Collect all the input and output registers from the extended asm
217   // statement in order to check for conflicts with the clobber list
218   for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
219     StringRef Constraint = Constraints[i]->getString();
220     StringRef InOutReg = Target.getConstraintRegister(
221         Constraint, extractRegisterName(Exprs[i], Target));
222     if (InOutReg != "")
223       InOutVars.insert(InOutReg);
224   }
225   // Check for each item in the clobber list if it conflicts with the input
226   // or output
227   for (int i = 0; i < NumClobbers; ++i) {
228     StringRef Clobber = Clobbers[i]->getString();
229     // We only check registers, therefore we don't check cc and memory
230     // clobbers
231     if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind")
232       continue;
233     Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
234     // Go over the output's registers we collected
235     if (InOutVars.count(Clobber))
236       return Clobbers[i]->getBeginLoc();
237   }
238   return SourceLocation();
239 }
240 
241 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
242                                  bool IsVolatile, unsigned NumOutputs,
243                                  unsigned NumInputs, IdentifierInfo **Names,
244                                  MultiExprArg constraints, MultiExprArg Exprs,
245                                  Expr *asmString, MultiExprArg clobbers,
246                                  unsigned NumLabels,
247                                  SourceLocation RParenLoc) {
248   unsigned NumClobbers = clobbers.size();
249   StringLiteral **Constraints =
250     reinterpret_cast<StringLiteral**>(constraints.data());
251   StringLiteral *AsmString = cast<StringLiteral>(asmString);
252   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
253 
254   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
255 
256   // The parser verifies that there is a string literal here.
257   assert(AsmString->isAscii());
258 
259   FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext());
260   llvm::StringMap<bool> FeatureMap;
261   Context.getFunctionFeatureMap(FeatureMap, FD);
262 
263   for (unsigned i = 0; i != NumOutputs; i++) {
264     StringLiteral *Literal = Constraints[i];
265     assert(Literal->isAscii());
266 
267     StringRef OutputName;
268     if (Names[i])
269       OutputName = Names[i]->getName();
270 
271     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
272     if (!Context.getTargetInfo().validateOutputConstraint(Info)) {
273       targetDiag(Literal->getBeginLoc(),
274                  diag::err_asm_invalid_output_constraint)
275           << Info.getConstraintStr();
276       return new (Context)
277           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
278                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
279                      NumClobbers, Clobbers, NumLabels, RParenLoc);
280     }
281 
282     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
283     if (ER.isInvalid())
284       return StmtError();
285     Exprs[i] = ER.get();
286 
287     // Check that the output exprs are valid lvalues.
288     Expr *OutputExpr = Exprs[i];
289 
290     // Referring to parameters is not allowed in naked functions.
291     if (CheckNakedParmReference(OutputExpr, *this))
292       return StmtError();
293 
294     // Check that the output expression is compatible with memory constraint.
295     if (Info.allowsMemory() &&
296         checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
297       return StmtError();
298 
299     // Disallow _ExtInt, since the backends tend to have difficulties with
300     // non-normal sizes.
301     if (OutputExpr->getType()->isExtIntType())
302       return StmtError(
303           Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type)
304           << OutputExpr->getType() << 0 /*Input*/
305           << OutputExpr->getSourceRange());
306 
307     OutputConstraintInfos.push_back(Info);
308 
309     // If this is dependent, just continue.
310     if (OutputExpr->isTypeDependent())
311       continue;
312 
313     Expr::isModifiableLvalueResult IsLV =
314         OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
315     switch (IsLV) {
316     case Expr::MLV_Valid:
317       // Cool, this is an lvalue.
318       break;
319     case Expr::MLV_ArrayType:
320       // This is OK too.
321       break;
322     case Expr::MLV_LValueCast: {
323       const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
324       emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
325       // Accept, even if we emitted an error diagnostic.
326       break;
327     }
328     case Expr::MLV_IncompleteType:
329     case Expr::MLV_IncompleteVoidType:
330       if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
331                               diag::err_dereference_incomplete_type))
332         return StmtError();
333       LLVM_FALLTHROUGH;
334     default:
335       return StmtError(Diag(OutputExpr->getBeginLoc(),
336                             diag::err_asm_invalid_lvalue_in_output)
337                        << OutputExpr->getSourceRange());
338     }
339 
340     unsigned Size = Context.getTypeSize(OutputExpr->getType());
341     if (!Context.getTargetInfo().validateOutputSize(
342             FeatureMap, Literal->getString(), Size)) {
343       targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
344           << Info.getConstraintStr();
345       return new (Context)
346           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
347                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
348                      NumClobbers, Clobbers, NumLabels, RParenLoc);
349     }
350   }
351 
352   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
353 
354   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
355     StringLiteral *Literal = Constraints[i];
356     assert(Literal->isAscii());
357 
358     StringRef InputName;
359     if (Names[i])
360       InputName = Names[i]->getName();
361 
362     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
363     if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
364                                                          Info)) {
365       targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
366           << Info.getConstraintStr();
367       return new (Context)
368           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
369                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
370                      NumClobbers, Clobbers, NumLabels, RParenLoc);
371     }
372 
373     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
374     if (ER.isInvalid())
375       return StmtError();
376     Exprs[i] = ER.get();
377 
378     Expr *InputExpr = Exprs[i];
379 
380     // Referring to parameters is not allowed in naked functions.
381     if (CheckNakedParmReference(InputExpr, *this))
382       return StmtError();
383 
384     // Check that the input expression is compatible with memory constraint.
385     if (Info.allowsMemory() &&
386         checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
387       return StmtError();
388 
389     // Only allow void types for memory constraints.
390     if (Info.allowsMemory() && !Info.allowsRegister()) {
391       if (CheckAsmLValue(InputExpr, *this))
392         return StmtError(Diag(InputExpr->getBeginLoc(),
393                               diag::err_asm_invalid_lvalue_in_input)
394                          << Info.getConstraintStr()
395                          << InputExpr->getSourceRange());
396     } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
397       if (!InputExpr->isValueDependent()) {
398         Expr::EvalResult EVResult;
399         if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) {
400           // For compatibility with GCC, we also allow pointers that would be
401           // integral constant expressions if they were cast to int.
402           llvm::APSInt IntResult;
403           if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
404                                                Context))
405             if (!Info.isValidAsmImmediate(IntResult))
406               return StmtError(Diag(InputExpr->getBeginLoc(),
407                                     diag::err_invalid_asm_value_for_constraint)
408                                << toString(IntResult, 10)
409                                << Info.getConstraintStr()
410                                << InputExpr->getSourceRange());
411         }
412       }
413 
414     } else {
415       ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
416       if (Result.isInvalid())
417         return StmtError();
418 
419       Exprs[i] = Result.get();
420     }
421 
422     if (Info.allowsRegister()) {
423       if (InputExpr->getType()->isVoidType()) {
424         return StmtError(
425             Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
426             << InputExpr->getType() << Info.getConstraintStr()
427             << InputExpr->getSourceRange());
428       }
429     }
430 
431     if (InputExpr->getType()->isExtIntType())
432       return StmtError(
433           Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type)
434           << InputExpr->getType() << 1 /*Output*/
435           << InputExpr->getSourceRange());
436 
437     InputConstraintInfos.push_back(Info);
438 
439     const Type *Ty = Exprs[i]->getType().getTypePtr();
440     if (Ty->isDependentType())
441       continue;
442 
443     if (!Ty->isVoidType() || !Info.allowsMemory())
444       if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
445                               diag::err_dereference_incomplete_type))
446         return StmtError();
447 
448     unsigned Size = Context.getTypeSize(Ty);
449     if (!Context.getTargetInfo().validateInputSize(FeatureMap,
450                                                    Literal->getString(), Size))
451       return targetDiag(InputExpr->getBeginLoc(),
452                         diag::err_asm_invalid_input_size)
453              << Info.getConstraintStr();
454   }
455 
456   Optional<SourceLocation> UnwindClobberLoc;
457 
458   // Check that the clobbers are valid.
459   for (unsigned i = 0; i != NumClobbers; i++) {
460     StringLiteral *Literal = Clobbers[i];
461     assert(Literal->isAscii());
462 
463     StringRef Clobber = Literal->getString();
464 
465     if (!Context.getTargetInfo().isValidClobber(Clobber)) {
466       targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
467           << Clobber;
468       return new (Context)
469           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
470                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
471                      NumClobbers, Clobbers, NumLabels, RParenLoc);
472     }
473 
474     if (Clobber == "unwind") {
475       UnwindClobberLoc = Literal->getBeginLoc();
476     }
477   }
478 
479   // Using unwind clobber and asm-goto together is not supported right now.
480   if (UnwindClobberLoc && NumLabels > 0) {
481     targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto);
482     return new (Context)
483         GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
484                    Names, Constraints, Exprs.data(), AsmString, NumClobbers,
485                    Clobbers, NumLabels, RParenLoc);
486   }
487 
488   GCCAsmStmt *NS =
489     new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
490                              NumInputs, Names, Constraints, Exprs.data(),
491                              AsmString, NumClobbers, Clobbers, NumLabels,
492                              RParenLoc);
493   // Validate the asm string, ensuring it makes sense given the operands we
494   // have.
495   SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
496   unsigned DiagOffs;
497   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
498     targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
499         << AsmString->getSourceRange();
500     return NS;
501   }
502 
503   // Validate constraints and modifiers.
504   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
505     GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
506     if (!Piece.isOperand()) continue;
507 
508     // Look for the correct constraint index.
509     unsigned ConstraintIdx = Piece.getOperandNo();
510     unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
511     // Labels are the last in the Exprs list.
512     if (NS->isAsmGoto() && ConstraintIdx >= NumOperands)
513       continue;
514     // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
515     // modifier '+'.
516     if (ConstraintIdx >= NumOperands) {
517       unsigned I = 0, E = NS->getNumOutputs();
518 
519       for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
520         if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
521           ConstraintIdx = I;
522           break;
523         }
524 
525       assert(I != E && "Invalid operand number should have been caught in "
526                        " AnalyzeAsmString");
527     }
528 
529     // Now that we have the right indexes go ahead and check.
530     StringLiteral *Literal = Constraints[ConstraintIdx];
531     const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
532     if (Ty->isDependentType() || Ty->isIncompleteType())
533       continue;
534 
535     unsigned Size = Context.getTypeSize(Ty);
536     std::string SuggestedModifier;
537     if (!Context.getTargetInfo().validateConstraintModifier(
538             Literal->getString(), Piece.getModifier(), Size,
539             SuggestedModifier)) {
540       targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
541                  diag::warn_asm_mismatched_size_modifier);
542 
543       if (!SuggestedModifier.empty()) {
544         auto B = targetDiag(Piece.getRange().getBegin(),
545                             diag::note_asm_missing_constraint_modifier)
546                  << SuggestedModifier;
547         SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
548         B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier);
549       }
550     }
551   }
552 
553   // Validate tied input operands for type mismatches.
554   unsigned NumAlternatives = ~0U;
555   for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
556     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
557     StringRef ConstraintStr = Info.getConstraintStr();
558     unsigned AltCount = ConstraintStr.count(',') + 1;
559     if (NumAlternatives == ~0U) {
560       NumAlternatives = AltCount;
561     } else if (NumAlternatives != AltCount) {
562       targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
563                  diag::err_asm_unexpected_constraint_alternatives)
564           << NumAlternatives << AltCount;
565       return NS;
566     }
567   }
568   SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
569                                               ~0U);
570   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
571     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
572     StringRef ConstraintStr = Info.getConstraintStr();
573     unsigned AltCount = ConstraintStr.count(',') + 1;
574     if (NumAlternatives == ~0U) {
575       NumAlternatives = AltCount;
576     } else if (NumAlternatives != AltCount) {
577       targetDiag(NS->getInputExpr(i)->getBeginLoc(),
578                  diag::err_asm_unexpected_constraint_alternatives)
579           << NumAlternatives << AltCount;
580       return NS;
581     }
582 
583     // If this is a tied constraint, verify that the output and input have
584     // either exactly the same type, or that they are int/ptr operands with the
585     // same size (int/long, int*/long, are ok etc).
586     if (!Info.hasTiedOperand()) continue;
587 
588     unsigned TiedTo = Info.getTiedOperand();
589     unsigned InputOpNo = i+NumOutputs;
590     Expr *OutputExpr = Exprs[TiedTo];
591     Expr *InputExpr = Exprs[InputOpNo];
592 
593     // Make sure no more than one input constraint matches each output.
594     assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
595     if (InputMatchedToOutput[TiedTo] != ~0U) {
596       targetDiag(NS->getInputExpr(i)->getBeginLoc(),
597                  diag::err_asm_input_duplicate_match)
598           << TiedTo;
599       targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
600                  diag::note_asm_input_duplicate_first)
601           << TiedTo;
602       return NS;
603     }
604     InputMatchedToOutput[TiedTo] = i;
605 
606     if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
607       continue;
608 
609     QualType InTy = InputExpr->getType();
610     QualType OutTy = OutputExpr->getType();
611     if (Context.hasSameType(InTy, OutTy))
612       continue;  // All types can be tied to themselves.
613 
614     // Decide if the input and output are in the same domain (integer/ptr or
615     // floating point.
616     enum AsmDomain {
617       AD_Int, AD_FP, AD_Other
618     } InputDomain, OutputDomain;
619 
620     if (InTy->isIntegerType() || InTy->isPointerType())
621       InputDomain = AD_Int;
622     else if (InTy->isRealFloatingType())
623       InputDomain = AD_FP;
624     else
625       InputDomain = AD_Other;
626 
627     if (OutTy->isIntegerType() || OutTy->isPointerType())
628       OutputDomain = AD_Int;
629     else if (OutTy->isRealFloatingType())
630       OutputDomain = AD_FP;
631     else
632       OutputDomain = AD_Other;
633 
634     // They are ok if they are the same size and in the same domain.  This
635     // allows tying things like:
636     //   void* to int*
637     //   void* to int            if they are the same size.
638     //   double to long double   if they are the same size.
639     //
640     uint64_t OutSize = Context.getTypeSize(OutTy);
641     uint64_t InSize = Context.getTypeSize(InTy);
642     if (OutSize == InSize && InputDomain == OutputDomain &&
643         InputDomain != AD_Other)
644       continue;
645 
646     // If the smaller input/output operand is not mentioned in the asm string,
647     // then we can promote the smaller one to a larger input and the asm string
648     // won't notice.
649     bool SmallerValueMentioned = false;
650 
651     // If this is a reference to the input and if the input was the smaller
652     // one, then we have to reject this asm.
653     if (isOperandMentioned(InputOpNo, Pieces)) {
654       // This is a use in the asm string of the smaller operand.  Since we
655       // codegen this by promoting to a wider value, the asm will get printed
656       // "wrong".
657       SmallerValueMentioned |= InSize < OutSize;
658     }
659     if (isOperandMentioned(TiedTo, Pieces)) {
660       // If this is a reference to the output, and if the output is the larger
661       // value, then it's ok because we'll promote the input to the larger type.
662       SmallerValueMentioned |= OutSize < InSize;
663     }
664 
665     // If the smaller value wasn't mentioned in the asm string, and if the
666     // output was a register, just extend the shorter one to the size of the
667     // larger one.
668     if (!SmallerValueMentioned && InputDomain != AD_Other &&
669         OutputConstraintInfos[TiedTo].allowsRegister())
670       continue;
671 
672     // Either both of the operands were mentioned or the smaller one was
673     // mentioned.  One more special case that we'll allow: if the tied input is
674     // integer, unmentioned, and is a constant, then we'll allow truncating it
675     // down to the size of the destination.
676     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
677         !isOperandMentioned(InputOpNo, Pieces) &&
678         InputExpr->isEvaluatable(Context)) {
679       CastKind castKind =
680         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
681       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
682       Exprs[InputOpNo] = InputExpr;
683       NS->setInputExpr(i, InputExpr);
684       continue;
685     }
686 
687     targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
688         << InTy << OutTy << OutputExpr->getSourceRange()
689         << InputExpr->getSourceRange();
690     return NS;
691   }
692 
693   // Check for conflicts between clobber list and input or output lists
694   SourceLocation ConstraintLoc =
695       getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
696                                  NumLabels,
697                                  Context.getTargetInfo(), Context);
698   if (ConstraintLoc.isValid())
699     targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
700 
701   // Check for duplicate asm operand name between input, output and label lists.
702   typedef std::pair<StringRef , Expr *> NamedOperand;
703   SmallVector<NamedOperand, 4> NamedOperandList;
704   for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
705     if (Names[i])
706       NamedOperandList.emplace_back(
707           std::make_pair(Names[i]->getName(), Exprs[i]));
708   // Sort NamedOperandList.
709   std::stable_sort(NamedOperandList.begin(), NamedOperandList.end(),
710               [](const NamedOperand &LHS, const NamedOperand &RHS) {
711                 return LHS.first < RHS.first;
712               });
713   // Find adjacent duplicate operand.
714   SmallVector<NamedOperand, 4>::iterator Found =
715       std::adjacent_find(begin(NamedOperandList), end(NamedOperandList),
716                          [](const NamedOperand &LHS, const NamedOperand &RHS) {
717                            return LHS.first == RHS.first;
718                          });
719   if (Found != NamedOperandList.end()) {
720     Diag((Found + 1)->second->getBeginLoc(),
721          diag::error_duplicate_asm_operand_name)
722         << (Found + 1)->first;
723     Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
724         << Found->first;
725     return StmtError();
726   }
727   if (NS->isAsmGoto())
728     setFunctionHasBranchIntoScope();
729   return NS;
730 }
731 
732 void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
733                                        llvm::InlineAsmIdentifierInfo &Info) {
734   QualType T = Res->getType();
735   Expr::EvalResult Eval;
736   if (T->isFunctionType() || T->isDependentType())
737     return Info.setLabel(Res);
738   if (Res->isPRValue()) {
739     bool IsEnum = isa<clang::EnumType>(T);
740     if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res))
741       if (DRE->getDecl()->getKind() == Decl::EnumConstant)
742         IsEnum = true;
743     if (IsEnum && Res->EvaluateAsRValue(Eval, Context))
744       return Info.setEnum(Eval.Val.getInt().getSExtValue());
745 
746     return Info.setLabel(Res);
747   }
748   unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
749   unsigned Type = Size;
750   if (const auto *ATy = Context.getAsArrayType(T))
751     Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
752   bool IsGlobalLV = false;
753   if (Res->EvaluateAsLValue(Eval, Context))
754     IsGlobalLV = Eval.isGlobalLValue();
755   Info.setVar(Res, IsGlobalLV, Size, Type);
756 }
757 
758 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
759                                            SourceLocation TemplateKWLoc,
760                                            UnqualifiedId &Id,
761                                            bool IsUnevaluatedContext) {
762 
763   if (IsUnevaluatedContext)
764     PushExpressionEvaluationContext(
765         ExpressionEvaluationContext::UnevaluatedAbstract,
766         ReuseLambdaContextDecl);
767 
768   ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
769                                         /*trailing lparen*/ false,
770                                         /*is & operand*/ false,
771                                         /*CorrectionCandidateCallback=*/nullptr,
772                                         /*IsInlineAsmIdentifier=*/ true);
773 
774   if (IsUnevaluatedContext)
775     PopExpressionEvaluationContext();
776 
777   if (!Result.isUsable()) return Result;
778 
779   Result = CheckPlaceholderExpr(Result.get());
780   if (!Result.isUsable()) return Result;
781 
782   // Referring to parameters is not allowed in naked functions.
783   if (CheckNakedParmReference(Result.get(), *this))
784     return ExprError();
785 
786   QualType T = Result.get()->getType();
787 
788   if (T->isDependentType()) {
789     return Result;
790   }
791 
792   // Any sort of function type is fine.
793   if (T->isFunctionType()) {
794     return Result;
795   }
796 
797   // Otherwise, it needs to be a complete type.
798   if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
799     return ExprError();
800   }
801 
802   return Result;
803 }
804 
805 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
806                                 unsigned &Offset, SourceLocation AsmLoc) {
807   Offset = 0;
808   SmallVector<StringRef, 2> Members;
809   Member.split(Members, ".");
810 
811   NamedDecl *FoundDecl = nullptr;
812 
813   // MS InlineAsm uses 'this' as a base
814   if (getLangOpts().CPlusPlus && Base.equals("this")) {
815     if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
816       FoundDecl = PT->getPointeeType()->getAsTagDecl();
817   } else {
818     LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
819                             LookupOrdinaryName);
820     if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
821       FoundDecl = BaseResult.getFoundDecl();
822   }
823 
824   if (!FoundDecl)
825     return true;
826 
827   for (StringRef NextMember : Members) {
828     const RecordType *RT = nullptr;
829     if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
830       RT = VD->getType()->getAs<RecordType>();
831     else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
832       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
833       // MS InlineAsm often uses struct pointer aliases as a base
834       QualType QT = TD->getUnderlyingType();
835       if (const auto *PT = QT->getAs<PointerType>())
836         QT = PT->getPointeeType();
837       RT = QT->getAs<RecordType>();
838     } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
839       RT = TD->getTypeForDecl()->getAs<RecordType>();
840     else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
841       RT = TD->getType()->getAs<RecordType>();
842     if (!RT)
843       return true;
844 
845     if (RequireCompleteType(AsmLoc, QualType(RT, 0),
846                             diag::err_asm_incomplete_type))
847       return true;
848 
849     LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
850                              SourceLocation(), LookupMemberName);
851 
852     if (!LookupQualifiedName(FieldResult, RT->getDecl()))
853       return true;
854 
855     if (!FieldResult.isSingleResult())
856       return true;
857     FoundDecl = FieldResult.getFoundDecl();
858 
859     // FIXME: Handle IndirectFieldDecl?
860     FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
861     if (!FD)
862       return true;
863 
864     const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
865     unsigned i = FD->getFieldIndex();
866     CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
867     Offset += (unsigned)Result.getQuantity();
868   }
869 
870   return false;
871 }
872 
873 ExprResult
874 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
875                                   SourceLocation AsmLoc) {
876 
877   QualType T = E->getType();
878   if (T->isDependentType()) {
879     DeclarationNameInfo NameInfo;
880     NameInfo.setLoc(AsmLoc);
881     NameInfo.setName(&Context.Idents.get(Member));
882     return CXXDependentScopeMemberExpr::Create(
883         Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
884         SourceLocation(),
885         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
886   }
887 
888   const RecordType *RT = T->getAs<RecordType>();
889   // FIXME: Diagnose this as field access into a scalar type.
890   if (!RT)
891     return ExprResult();
892 
893   LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
894                            LookupMemberName);
895 
896   if (!LookupQualifiedName(FieldResult, RT->getDecl()))
897     return ExprResult();
898 
899   // Only normal and indirect field results will work.
900   ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
901   if (!FD)
902     FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
903   if (!FD)
904     return ExprResult();
905 
906   // Make an Expr to thread through OpDecl.
907   ExprResult Result = BuildMemberReferenceExpr(
908       E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
909       SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
910 
911   return Result;
912 }
913 
914 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
915                                 ArrayRef<Token> AsmToks,
916                                 StringRef AsmString,
917                                 unsigned NumOutputs, unsigned NumInputs,
918                                 ArrayRef<StringRef> Constraints,
919                                 ArrayRef<StringRef> Clobbers,
920                                 ArrayRef<Expr*> Exprs,
921                                 SourceLocation EndLoc) {
922   bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
923   setFunctionHasBranchProtectedScope();
924 
925   for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) {
926     if (Exprs[I]->getType()->isExtIntType())
927       return StmtError(
928           Diag(Exprs[I]->getBeginLoc(), diag::err_asm_invalid_type)
929           << Exprs[I]->getType() << (I < NumOutputs)
930           << Exprs[I]->getSourceRange());
931   }
932 
933   MSAsmStmt *NS =
934     new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
935                             /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
936                             Constraints, Exprs, AsmString,
937                             Clobbers, EndLoc);
938   return NS;
939 }
940 
941 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
942                                        SourceLocation Location,
943                                        bool AlwaysCreate) {
944   LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
945                                          Location);
946 
947   if (Label->isMSAsmLabel()) {
948     // If we have previously created this label implicitly, mark it as used.
949     Label->markUsed(Context);
950   } else {
951     // Otherwise, insert it, but only resolve it if we have seen the label itself.
952     std::string InternalName;
953     llvm::raw_string_ostream OS(InternalName);
954     // Create an internal name for the label.  The name should not be a valid
955     // mangled name, and should be unique.  We use a dot to make the name an
956     // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
957     // unique label is generated each time this blob is emitted, even after
958     // inlining or LTO.
959     OS << "__MSASMLABEL_.${:uid}__";
960     for (char C : ExternalLabelName) {
961       OS << C;
962       // We escape '$' in asm strings by replacing it with "$$"
963       if (C == '$')
964         OS << '$';
965     }
966     Label->setMSAsmLabel(OS.str());
967   }
968   if (AlwaysCreate) {
969     // The label might have been created implicitly from a previously encountered
970     // goto statement.  So, for both newly created and looked up labels, we mark
971     // them as resolved.
972     Label->setMSAsmLabelResolved();
973   }
974   // Adjust their location for being able to generate accurate diagnostics.
975   Label->setLocation(Location);
976 
977   return Label;
978 }
979