1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 //  This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10 
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TemplateName.h"
21 #include "clang/AST/TypeVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/Stack.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/ParsedTemplate.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/SemaInternal.h"
35 #include "clang/Sema/Template.h"
36 #include "clang/Sema/TemplateDeduction.h"
37 #include "llvm/ADT/SmallBitVector.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/ADT/StringExtras.h"
40 
41 #include <iterator>
42 using namespace clang;
43 using namespace sema;
44 
45 // Exported for use by Parser.
46 SourceRange
47 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
48                               unsigned N) {
49   if (!N) return SourceRange();
50   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
51 }
52 
53 unsigned Sema::getTemplateDepth(Scope *S) const {
54   unsigned Depth = 0;
55 
56   // Each template parameter scope represents one level of template parameter
57   // depth.
58   for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
59        TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
60     ++Depth;
61   }
62 
63   // Note that there are template parameters with the given depth.
64   auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
65 
66   // Look for parameters of an enclosing generic lambda. We don't create a
67   // template parameter scope for these.
68   for (FunctionScopeInfo *FSI : getFunctionScopes()) {
69     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
70       if (!LSI->TemplateParams.empty()) {
71         ParamsAtDepth(LSI->AutoTemplateParameterDepth);
72         break;
73       }
74       if (LSI->GLTemplateParameterList) {
75         ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
76         break;
77       }
78     }
79   }
80 
81   // Look for parameters of an enclosing terse function template. We don't
82   // create a template parameter scope for these either.
83   for (const InventedTemplateParameterInfo &Info :
84        getInventedParameterInfos()) {
85     if (!Info.TemplateParams.empty()) {
86       ParamsAtDepth(Info.AutoTemplateParameterDepth);
87       break;
88     }
89   }
90 
91   return Depth;
92 }
93 
94 /// \brief Determine whether the declaration found is acceptable as the name
95 /// of a template and, if so, return that template declaration. Otherwise,
96 /// returns null.
97 ///
98 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
99 /// is true. In all other cases it will return a TemplateDecl (or null).
100 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
101                                        bool AllowFunctionTemplates,
102                                        bool AllowDependent) {
103   D = D->getUnderlyingDecl();
104 
105   if (isa<TemplateDecl>(D)) {
106     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
107       return nullptr;
108 
109     return D;
110   }
111 
112   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
113     // C++ [temp.local]p1:
114     //   Like normal (non-template) classes, class templates have an
115     //   injected-class-name (Clause 9). The injected-class-name
116     //   can be used with or without a template-argument-list. When
117     //   it is used without a template-argument-list, it is
118     //   equivalent to the injected-class-name followed by the
119     //   template-parameters of the class template enclosed in
120     //   <>. When it is used with a template-argument-list, it
121     //   refers to the specified class template specialization,
122     //   which could be the current specialization or another
123     //   specialization.
124     if (Record->isInjectedClassName()) {
125       Record = cast<CXXRecordDecl>(Record->getDeclContext());
126       if (Record->getDescribedClassTemplate())
127         return Record->getDescribedClassTemplate();
128 
129       if (ClassTemplateSpecializationDecl *Spec
130             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
131         return Spec->getSpecializedTemplate();
132     }
133 
134     return nullptr;
135   }
136 
137   // 'using Dependent::foo;' can resolve to a template name.
138   // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
139   // injected-class-name).
140   if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
141     return D;
142 
143   return nullptr;
144 }
145 
146 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
147                                          bool AllowFunctionTemplates,
148                                          bool AllowDependent) {
149   LookupResult::Filter filter = R.makeFilter();
150   while (filter.hasNext()) {
151     NamedDecl *Orig = filter.next();
152     if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
153       filter.erase();
154   }
155   filter.done();
156 }
157 
158 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
159                                          bool AllowFunctionTemplates,
160                                          bool AllowDependent,
161                                          bool AllowNonTemplateFunctions) {
162   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
163     if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
164       return true;
165     if (AllowNonTemplateFunctions &&
166         isa<FunctionDecl>((*I)->getUnderlyingDecl()))
167       return true;
168   }
169 
170   return false;
171 }
172 
173 TemplateNameKind Sema::isTemplateName(Scope *S,
174                                       CXXScopeSpec &SS,
175                                       bool hasTemplateKeyword,
176                                       const UnqualifiedId &Name,
177                                       ParsedType ObjectTypePtr,
178                                       bool EnteringContext,
179                                       TemplateTy &TemplateResult,
180                                       bool &MemberOfUnknownSpecialization,
181                                       bool Disambiguation) {
182   assert(getLangOpts().CPlusPlus && "No template names in C!");
183 
184   DeclarationName TName;
185   MemberOfUnknownSpecialization = false;
186 
187   switch (Name.getKind()) {
188   case UnqualifiedIdKind::IK_Identifier:
189     TName = DeclarationName(Name.Identifier);
190     break;
191 
192   case UnqualifiedIdKind::IK_OperatorFunctionId:
193     TName = Context.DeclarationNames.getCXXOperatorName(
194                                               Name.OperatorFunctionId.Operator);
195     break;
196 
197   case UnqualifiedIdKind::IK_LiteralOperatorId:
198     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
199     break;
200 
201   default:
202     return TNK_Non_template;
203   }
204 
205   QualType ObjectType = ObjectTypePtr.get();
206 
207   AssumedTemplateKind AssumedTemplate;
208   LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
209   if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
210                          MemberOfUnknownSpecialization, SourceLocation(),
211                          &AssumedTemplate,
212                          /*AllowTypoCorrection=*/!Disambiguation))
213     return TNK_Non_template;
214 
215   if (AssumedTemplate != AssumedTemplateKind::None) {
216     TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
217     // Let the parser know whether we found nothing or found functions; if we
218     // found nothing, we want to more carefully check whether this is actually
219     // a function template name versus some other kind of undeclared identifier.
220     return AssumedTemplate == AssumedTemplateKind::FoundNothing
221                ? TNK_Undeclared_template
222                : TNK_Function_template;
223   }
224 
225   if (R.empty())
226     return TNK_Non_template;
227 
228   NamedDecl *D = nullptr;
229   UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
230   if (R.isAmbiguous()) {
231     // If we got an ambiguity involving a non-function template, treat this
232     // as a template name, and pick an arbitrary template for error recovery.
233     bool AnyFunctionTemplates = false;
234     for (NamedDecl *FoundD : R) {
235       if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
236         if (isa<FunctionTemplateDecl>(FoundTemplate))
237           AnyFunctionTemplates = true;
238         else {
239           D = FoundTemplate;
240           FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
241           break;
242         }
243       }
244     }
245 
246     // If we didn't find any templates at all, this isn't a template name.
247     // Leave the ambiguity for a later lookup to diagnose.
248     if (!D && !AnyFunctionTemplates) {
249       R.suppressDiagnostics();
250       return TNK_Non_template;
251     }
252 
253     // If the only templates were function templates, filter out the rest.
254     // We'll diagnose the ambiguity later.
255     if (!D)
256       FilterAcceptableTemplateNames(R);
257   }
258 
259   // At this point, we have either picked a single template name declaration D
260   // or we have a non-empty set of results R containing either one template name
261   // declaration or a set of function templates.
262 
263   TemplateName Template;
264   TemplateNameKind TemplateKind;
265 
266   unsigned ResultCount = R.end() - R.begin();
267   if (!D && ResultCount > 1) {
268     // We assume that we'll preserve the qualifier from a function
269     // template name in other ways.
270     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
271     TemplateKind = TNK_Function_template;
272 
273     // We'll do this lookup again later.
274     R.suppressDiagnostics();
275   } else {
276     if (!D) {
277       D = getAsTemplateNameDecl(*R.begin());
278       assert(D && "unambiguous result is not a template name");
279     }
280 
281     if (isa<UnresolvedUsingValueDecl>(D)) {
282       // We don't yet know whether this is a template-name or not.
283       MemberOfUnknownSpecialization = true;
284       return TNK_Non_template;
285     }
286 
287     TemplateDecl *TD = cast<TemplateDecl>(D);
288     Template =
289         FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
290     assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
291     if (SS.isSet() && !SS.isInvalid()) {
292       NestedNameSpecifier *Qualifier = SS.getScopeRep();
293       Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
294                                                   Template);
295     }
296 
297     if (isa<FunctionTemplateDecl>(TD)) {
298       TemplateKind = TNK_Function_template;
299 
300       // We'll do this lookup again later.
301       R.suppressDiagnostics();
302     } else {
303       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
304              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
305              isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
306       TemplateKind =
307           isa<VarTemplateDecl>(TD) ? TNK_Var_template :
308           isa<ConceptDecl>(TD) ? TNK_Concept_template :
309           TNK_Type_template;
310     }
311   }
312 
313   TemplateResult = TemplateTy::make(Template);
314   return TemplateKind;
315 }
316 
317 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
318                                 SourceLocation NameLoc,
319                                 ParsedTemplateTy *Template) {
320   CXXScopeSpec SS;
321   bool MemberOfUnknownSpecialization = false;
322 
323   // We could use redeclaration lookup here, but we don't need to: the
324   // syntactic form of a deduction guide is enough to identify it even
325   // if we can't look up the template name at all.
326   LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
327   if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
328                          /*EnteringContext*/ false,
329                          MemberOfUnknownSpecialization))
330     return false;
331 
332   if (R.empty()) return false;
333   if (R.isAmbiguous()) {
334     // FIXME: Diagnose an ambiguity if we find at least one template.
335     R.suppressDiagnostics();
336     return false;
337   }
338 
339   // We only treat template-names that name type templates as valid deduction
340   // guide names.
341   TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
342   if (!TD || !getAsTypeTemplateDecl(TD))
343     return false;
344 
345   if (Template)
346     *Template = TemplateTy::make(TemplateName(TD));
347   return true;
348 }
349 
350 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
351                                        SourceLocation IILoc,
352                                        Scope *S,
353                                        const CXXScopeSpec *SS,
354                                        TemplateTy &SuggestedTemplate,
355                                        TemplateNameKind &SuggestedKind) {
356   // We can't recover unless there's a dependent scope specifier preceding the
357   // template name.
358   // FIXME: Typo correction?
359   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
360       computeDeclContext(*SS))
361     return false;
362 
363   // The code is missing a 'template' keyword prior to the dependent template
364   // name.
365   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
366   Diag(IILoc, diag::err_template_kw_missing)
367     << Qualifier << II.getName()
368     << FixItHint::CreateInsertion(IILoc, "template ");
369   SuggestedTemplate
370     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
371   SuggestedKind = TNK_Dependent_template_name;
372   return true;
373 }
374 
375 bool Sema::LookupTemplateName(LookupResult &Found,
376                               Scope *S, CXXScopeSpec &SS,
377                               QualType ObjectType,
378                               bool EnteringContext,
379                               bool &MemberOfUnknownSpecialization,
380                               RequiredTemplateKind RequiredTemplate,
381                               AssumedTemplateKind *ATK,
382                               bool AllowTypoCorrection) {
383   if (ATK)
384     *ATK = AssumedTemplateKind::None;
385 
386   if (SS.isInvalid())
387     return true;
388 
389   Found.setTemplateNameLookup(true);
390 
391   // Determine where to perform name lookup
392   MemberOfUnknownSpecialization = false;
393   DeclContext *LookupCtx = nullptr;
394   bool IsDependent = false;
395   if (!ObjectType.isNull()) {
396     // This nested-name-specifier occurs in a member access expression, e.g.,
397     // x->B::f, and we are looking into the type of the object.
398     assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
399     LookupCtx = computeDeclContext(ObjectType);
400     IsDependent = !LookupCtx && ObjectType->isDependentType();
401     assert((IsDependent || !ObjectType->isIncompleteType() ||
402             ObjectType->castAs<TagType>()->isBeingDefined()) &&
403            "Caller should have completed object type");
404 
405     // Template names cannot appear inside an Objective-C class or object type
406     // or a vector type.
407     //
408     // FIXME: This is wrong. For example:
409     //
410     //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
411     //   Vec<int> vi;
412     //   vi.Vec<int>::~Vec<int>();
413     //
414     // ... should be accepted but we will not treat 'Vec' as a template name
415     // here. The right thing to do would be to check if the name is a valid
416     // vector component name, and look up a template name if not. And similarly
417     // for lookups into Objective-C class and object types, where the same
418     // problem can arise.
419     if (ObjectType->isObjCObjectOrInterfaceType() ||
420         ObjectType->isVectorType()) {
421       Found.clear();
422       return false;
423     }
424   } else if (SS.isNotEmpty()) {
425     // This nested-name-specifier occurs after another nested-name-specifier,
426     // so long into the context associated with the prior nested-name-specifier.
427     LookupCtx = computeDeclContext(SS, EnteringContext);
428     IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
429 
430     // The declaration context must be complete.
431     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
432       return true;
433   }
434 
435   bool ObjectTypeSearchedInScope = false;
436   bool AllowFunctionTemplatesInLookup = true;
437   if (LookupCtx) {
438     // Perform "qualified" name lookup into the declaration context we
439     // computed, which is either the type of the base of a member access
440     // expression or the declaration context associated with a prior
441     // nested-name-specifier.
442     LookupQualifiedName(Found, LookupCtx);
443 
444     // FIXME: The C++ standard does not clearly specify what happens in the
445     // case where the object type is dependent, and implementations vary. In
446     // Clang, we treat a name after a . or -> as a template-name if lookup
447     // finds a non-dependent member or member of the current instantiation that
448     // is a type template, or finds no such members and lookup in the context
449     // of the postfix-expression finds a type template. In the latter case, the
450     // name is nonetheless dependent, and we may resolve it to a member of an
451     // unknown specialization when we come to instantiate the template.
452     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
453   }
454 
455   if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
456     // C++ [basic.lookup.classref]p1:
457     //   In a class member access expression (5.2.5), if the . or -> token is
458     //   immediately followed by an identifier followed by a <, the
459     //   identifier must be looked up to determine whether the < is the
460     //   beginning of a template argument list (14.2) or a less-than operator.
461     //   The identifier is first looked up in the class of the object
462     //   expression. If the identifier is not found, it is then looked up in
463     //   the context of the entire postfix-expression and shall name a class
464     //   template.
465     if (S)
466       LookupName(Found, S);
467 
468     if (!ObjectType.isNull()) {
469       //  FIXME: We should filter out all non-type templates here, particularly
470       //  variable templates and concepts. But the exclusion of alias templates
471       //  and template template parameters is a wording defect.
472       AllowFunctionTemplatesInLookup = false;
473       ObjectTypeSearchedInScope = true;
474     }
475 
476     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
477   }
478 
479   if (Found.isAmbiguous())
480     return false;
481 
482   if (ATK && SS.isEmpty() && ObjectType.isNull() &&
483       !RequiredTemplate.hasTemplateKeyword()) {
484     // C++2a [temp.names]p2:
485     //   A name is also considered to refer to a template if it is an
486     //   unqualified-id followed by a < and name lookup finds either one or more
487     //   functions or finds nothing.
488     //
489     // To keep our behavior consistent, we apply the "finds nothing" part in
490     // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
491     // successfully form a call to an undeclared template-id.
492     bool AllFunctions =
493         getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
494           return isa<FunctionDecl>(ND->getUnderlyingDecl());
495         });
496     if (AllFunctions || (Found.empty() && !IsDependent)) {
497       // If lookup found any functions, or if this is a name that can only be
498       // used for a function, then strongly assume this is a function
499       // template-id.
500       *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
501                  ? AssumedTemplateKind::FoundNothing
502                  : AssumedTemplateKind::FoundFunctions;
503       Found.clear();
504       return false;
505     }
506   }
507 
508   if (Found.empty() && !IsDependent && AllowTypoCorrection) {
509     // If we did not find any names, and this is not a disambiguation, attempt
510     // to correct any typos.
511     DeclarationName Name = Found.getLookupName();
512     Found.clear();
513     // Simple filter callback that, for keywords, only accepts the C++ *_cast
514     DefaultFilterCCC FilterCCC{};
515     FilterCCC.WantTypeSpecifiers = false;
516     FilterCCC.WantExpressionKeywords = false;
517     FilterCCC.WantRemainingKeywords = false;
518     FilterCCC.WantCXXNamedCasts = true;
519     if (TypoCorrection Corrected =
520             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
521                         &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
522       if (auto *ND = Corrected.getFoundDecl())
523         Found.addDecl(ND);
524       FilterAcceptableTemplateNames(Found);
525       if (Found.isAmbiguous()) {
526         Found.clear();
527       } else if (!Found.empty()) {
528         Found.setLookupName(Corrected.getCorrection());
529         if (LookupCtx) {
530           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
531           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
532                                   Name.getAsString() == CorrectedStr;
533           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
534                                     << Name << LookupCtx << DroppedSpecifier
535                                     << SS.getRange());
536         } else {
537           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
538         }
539       }
540     }
541   }
542 
543   NamedDecl *ExampleLookupResult =
544       Found.empty() ? nullptr : Found.getRepresentativeDecl();
545   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
546   if (Found.empty()) {
547     if (IsDependent) {
548       MemberOfUnknownSpecialization = true;
549       return false;
550     }
551 
552     // If a 'template' keyword was used, a lookup that finds only non-template
553     // names is an error.
554     if (ExampleLookupResult && RequiredTemplate) {
555       Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
556           << Found.getLookupName() << SS.getRange()
557           << RequiredTemplate.hasTemplateKeyword()
558           << RequiredTemplate.getTemplateKeywordLoc();
559       Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
560            diag::note_template_kw_refers_to_non_template)
561           << Found.getLookupName();
562       return true;
563     }
564 
565     return false;
566   }
567 
568   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
569       !getLangOpts().CPlusPlus11) {
570     // C++03 [basic.lookup.classref]p1:
571     //   [...] If the lookup in the class of the object expression finds a
572     //   template, the name is also looked up in the context of the entire
573     //   postfix-expression and [...]
574     //
575     // Note: C++11 does not perform this second lookup.
576     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
577                             LookupOrdinaryName);
578     FoundOuter.setTemplateNameLookup(true);
579     LookupName(FoundOuter, S);
580     // FIXME: We silently accept an ambiguous lookup here, in violation of
581     // [basic.lookup]/1.
582     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
583 
584     NamedDecl *OuterTemplate;
585     if (FoundOuter.empty()) {
586       //   - if the name is not found, the name found in the class of the
587       //     object expression is used, otherwise
588     } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
589                !(OuterTemplate =
590                      getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
591       //   - if the name is found in the context of the entire
592       //     postfix-expression and does not name a class template, the name
593       //     found in the class of the object expression is used, otherwise
594       FoundOuter.clear();
595     } else if (!Found.isSuppressingDiagnostics()) {
596       //   - if the name found is a class template, it must refer to the same
597       //     entity as the one found in the class of the object expression,
598       //     otherwise the program is ill-formed.
599       if (!Found.isSingleResult() ||
600           getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
601               OuterTemplate->getCanonicalDecl()) {
602         Diag(Found.getNameLoc(),
603              diag::ext_nested_name_member_ref_lookup_ambiguous)
604           << Found.getLookupName()
605           << ObjectType;
606         Diag(Found.getRepresentativeDecl()->getLocation(),
607              diag::note_ambig_member_ref_object_type)
608           << ObjectType;
609         Diag(FoundOuter.getFoundDecl()->getLocation(),
610              diag::note_ambig_member_ref_scope);
611 
612         // Recover by taking the template that we found in the object
613         // expression's type.
614       }
615     }
616   }
617 
618   return false;
619 }
620 
621 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
622                                               SourceLocation Less,
623                                               SourceLocation Greater) {
624   if (TemplateName.isInvalid())
625     return;
626 
627   DeclarationNameInfo NameInfo;
628   CXXScopeSpec SS;
629   LookupNameKind LookupKind;
630 
631   DeclContext *LookupCtx = nullptr;
632   NamedDecl *Found = nullptr;
633   bool MissingTemplateKeyword = false;
634 
635   // Figure out what name we looked up.
636   if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
637     NameInfo = DRE->getNameInfo();
638     SS.Adopt(DRE->getQualifierLoc());
639     LookupKind = LookupOrdinaryName;
640     Found = DRE->getFoundDecl();
641   } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
642     NameInfo = ME->getMemberNameInfo();
643     SS.Adopt(ME->getQualifierLoc());
644     LookupKind = LookupMemberName;
645     LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
646     Found = ME->getMemberDecl();
647   } else if (auto *DSDRE =
648                  dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
649     NameInfo = DSDRE->getNameInfo();
650     SS.Adopt(DSDRE->getQualifierLoc());
651     MissingTemplateKeyword = true;
652   } else if (auto *DSME =
653                  dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
654     NameInfo = DSME->getMemberNameInfo();
655     SS.Adopt(DSME->getQualifierLoc());
656     MissingTemplateKeyword = true;
657   } else {
658     llvm_unreachable("unexpected kind of potential template name");
659   }
660 
661   // If this is a dependent-scope lookup, diagnose that the 'template' keyword
662   // was missing.
663   if (MissingTemplateKeyword) {
664     Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
665         << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
666     return;
667   }
668 
669   // Try to correct the name by looking for templates and C++ named casts.
670   struct TemplateCandidateFilter : CorrectionCandidateCallback {
671     Sema &S;
672     TemplateCandidateFilter(Sema &S) : S(S) {
673       WantTypeSpecifiers = false;
674       WantExpressionKeywords = false;
675       WantRemainingKeywords = false;
676       WantCXXNamedCasts = true;
677     };
678     bool ValidateCandidate(const TypoCorrection &Candidate) override {
679       if (auto *ND = Candidate.getCorrectionDecl())
680         return S.getAsTemplateNameDecl(ND);
681       return Candidate.isKeyword();
682     }
683 
684     std::unique_ptr<CorrectionCandidateCallback> clone() override {
685       return std::make_unique<TemplateCandidateFilter>(*this);
686     }
687   };
688 
689   DeclarationName Name = NameInfo.getName();
690   TemplateCandidateFilter CCC(*this);
691   if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
692                                              CTK_ErrorRecovery, LookupCtx)) {
693     auto *ND = Corrected.getFoundDecl();
694     if (ND)
695       ND = getAsTemplateNameDecl(ND);
696     if (ND || Corrected.isKeyword()) {
697       if (LookupCtx) {
698         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
699         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
700                                 Name.getAsString() == CorrectedStr;
701         diagnoseTypo(Corrected,
702                      PDiag(diag::err_non_template_in_member_template_id_suggest)
703                          << Name << LookupCtx << DroppedSpecifier
704                          << SS.getRange(), false);
705       } else {
706         diagnoseTypo(Corrected,
707                      PDiag(diag::err_non_template_in_template_id_suggest)
708                          << Name, false);
709       }
710       if (Found)
711         Diag(Found->getLocation(),
712              diag::note_non_template_in_template_id_found);
713       return;
714     }
715   }
716 
717   Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
718     << Name << SourceRange(Less, Greater);
719   if (Found)
720     Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
721 }
722 
723 /// ActOnDependentIdExpression - Handle a dependent id-expression that
724 /// was just parsed.  This is only possible with an explicit scope
725 /// specifier naming a dependent type.
726 ExprResult
727 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
728                                  SourceLocation TemplateKWLoc,
729                                  const DeclarationNameInfo &NameInfo,
730                                  bool isAddressOfOperand,
731                            const TemplateArgumentListInfo *TemplateArgs) {
732   DeclContext *DC = getFunctionLevelDeclContext();
733 
734   // C++11 [expr.prim.general]p12:
735   //   An id-expression that denotes a non-static data member or non-static
736   //   member function of a class can only be used:
737   //   (...)
738   //   - if that id-expression denotes a non-static data member and it
739   //     appears in an unevaluated operand.
740   //
741   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
742   // CXXDependentScopeMemberExpr. The former can instantiate to either
743   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
744   // always a MemberExpr.
745   bool MightBeCxx11UnevalField =
746       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
747 
748   // Check if the nested name specifier is an enum type.
749   bool IsEnum = false;
750   if (NestedNameSpecifier *NNS = SS.getScopeRep())
751     IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
752 
753   if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
754       isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
755     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
756 
757     // Since the 'this' expression is synthesized, we don't need to
758     // perform the double-lookup check.
759     NamedDecl *FirstQualifierInScope = nullptr;
760 
761     return CXXDependentScopeMemberExpr::Create(
762         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
763         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
764         FirstQualifierInScope, NameInfo, TemplateArgs);
765   }
766 
767   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
768 }
769 
770 ExprResult
771 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
772                                 SourceLocation TemplateKWLoc,
773                                 const DeclarationNameInfo &NameInfo,
774                                 const TemplateArgumentListInfo *TemplateArgs) {
775   // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
776   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
777   if (!QualifierLoc)
778     return ExprError();
779 
780   return DependentScopeDeclRefExpr::Create(
781       Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
782 }
783 
784 
785 /// Determine whether we would be unable to instantiate this template (because
786 /// it either has no definition, or is in the process of being instantiated).
787 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
788                                           NamedDecl *Instantiation,
789                                           bool InstantiatedFromMember,
790                                           const NamedDecl *Pattern,
791                                           const NamedDecl *PatternDef,
792                                           TemplateSpecializationKind TSK,
793                                           bool Complain /*= true*/) {
794   assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
795          isa<VarDecl>(Instantiation));
796 
797   bool IsEntityBeingDefined = false;
798   if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
799     IsEntityBeingDefined = TD->isBeingDefined();
800 
801   if (PatternDef && !IsEntityBeingDefined) {
802     NamedDecl *SuggestedDef = nullptr;
803     if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
804                                 &SuggestedDef,
805                                 /*OnlyNeedComplete*/ false)) {
806       // If we're allowed to diagnose this and recover, do so.
807       bool Recover = Complain && !isSFINAEContext();
808       if (Complain)
809         diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
810                               Sema::MissingImportKind::Definition, Recover);
811       return !Recover;
812     }
813     return false;
814   }
815 
816   if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
817     return true;
818 
819   llvm::Optional<unsigned> Note;
820   QualType InstantiationTy;
821   if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
822     InstantiationTy = Context.getTypeDeclType(TD);
823   if (PatternDef) {
824     Diag(PointOfInstantiation,
825          diag::err_template_instantiate_within_definition)
826       << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
827       << InstantiationTy;
828     // Not much point in noting the template declaration here, since
829     // we're lexically inside it.
830     Instantiation->setInvalidDecl();
831   } else if (InstantiatedFromMember) {
832     if (isa<FunctionDecl>(Instantiation)) {
833       Diag(PointOfInstantiation,
834            diag::err_explicit_instantiation_undefined_member)
835         << /*member function*/ 1 << Instantiation->getDeclName()
836         << Instantiation->getDeclContext();
837       Note = diag::note_explicit_instantiation_here;
838     } else {
839       assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
840       Diag(PointOfInstantiation,
841            diag::err_implicit_instantiate_member_undefined)
842         << InstantiationTy;
843       Note = diag::note_member_declared_at;
844     }
845   } else {
846     if (isa<FunctionDecl>(Instantiation)) {
847       Diag(PointOfInstantiation,
848            diag::err_explicit_instantiation_undefined_func_template)
849         << Pattern;
850       Note = diag::note_explicit_instantiation_here;
851     } else if (isa<TagDecl>(Instantiation)) {
852       Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
853         << (TSK != TSK_ImplicitInstantiation)
854         << InstantiationTy;
855       Note = diag::note_template_decl_here;
856     } else {
857       assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
858       if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
859         Diag(PointOfInstantiation,
860              diag::err_explicit_instantiation_undefined_var_template)
861           << Instantiation;
862         Instantiation->setInvalidDecl();
863       } else
864         Diag(PointOfInstantiation,
865              diag::err_explicit_instantiation_undefined_member)
866           << /*static data member*/ 2 << Instantiation->getDeclName()
867           << Instantiation->getDeclContext();
868       Note = diag::note_explicit_instantiation_here;
869     }
870   }
871   if (Note) // Diagnostics were emitted.
872     Diag(Pattern->getLocation(), *Note);
873 
874   // In general, Instantiation isn't marked invalid to get more than one
875   // error for multiple undefined instantiations. But the code that does
876   // explicit declaration -> explicit definition conversion can't handle
877   // invalid declarations, so mark as invalid in that case.
878   if (TSK == TSK_ExplicitInstantiationDeclaration)
879     Instantiation->setInvalidDecl();
880   return true;
881 }
882 
883 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
884 /// that the template parameter 'PrevDecl' is being shadowed by a new
885 /// declaration at location Loc. Returns true to indicate that this is
886 /// an error, and false otherwise.
887 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
888   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
889 
890   // C++ [temp.local]p4:
891   //   A template-parameter shall not be redeclared within its
892   //   scope (including nested scopes).
893   //
894   // Make this a warning when MSVC compatibility is requested.
895   unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
896                                              : diag::err_template_param_shadow;
897   Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
898   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
899 }
900 
901 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
902 /// the parameter D to reference the templated declaration and return a pointer
903 /// to the template declaration. Otherwise, do nothing to D and return null.
904 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
905   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
906     D = Temp->getTemplatedDecl();
907     return Temp;
908   }
909   return nullptr;
910 }
911 
912 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
913                                              SourceLocation EllipsisLoc) const {
914   assert(Kind == Template &&
915          "Only template template arguments can be pack expansions here");
916   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
917          "Template template argument pack expansion without packs");
918   ParsedTemplateArgument Result(*this);
919   Result.EllipsisLoc = EllipsisLoc;
920   return Result;
921 }
922 
923 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
924                                             const ParsedTemplateArgument &Arg) {
925 
926   switch (Arg.getKind()) {
927   case ParsedTemplateArgument::Type: {
928     TypeSourceInfo *DI;
929     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
930     if (!DI)
931       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
932     return TemplateArgumentLoc(TemplateArgument(T), DI);
933   }
934 
935   case ParsedTemplateArgument::NonType: {
936     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
937     return TemplateArgumentLoc(TemplateArgument(E), E);
938   }
939 
940   case ParsedTemplateArgument::Template: {
941     TemplateName Template = Arg.getAsTemplate().get();
942     TemplateArgument TArg;
943     if (Arg.getEllipsisLoc().isValid())
944       TArg = TemplateArgument(Template, Optional<unsigned int>());
945     else
946       TArg = Template;
947     return TemplateArgumentLoc(
948         SemaRef.Context, TArg,
949         Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
950         Arg.getLocation(), Arg.getEllipsisLoc());
951   }
952   }
953 
954   llvm_unreachable("Unhandled parsed template argument");
955 }
956 
957 /// Translates template arguments as provided by the parser
958 /// into template arguments used by semantic analysis.
959 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
960                                       TemplateArgumentListInfo &TemplateArgs) {
961  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
962    TemplateArgs.addArgument(translateTemplateArgument(*this,
963                                                       TemplateArgsIn[I]));
964 }
965 
966 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
967                                                  SourceLocation Loc,
968                                                  IdentifierInfo *Name) {
969   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
970       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
971   if (PrevDecl && PrevDecl->isTemplateParameter())
972     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
973 }
974 
975 /// Convert a parsed type into a parsed template argument. This is mostly
976 /// trivial, except that we may have parsed a C++17 deduced class template
977 /// specialization type, in which case we should form a template template
978 /// argument instead of a type template argument.
979 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
980   TypeSourceInfo *TInfo;
981   QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
982   if (T.isNull())
983     return ParsedTemplateArgument();
984   assert(TInfo && "template argument with no location");
985 
986   // If we might have formed a deduced template specialization type, convert
987   // it to a template template argument.
988   if (getLangOpts().CPlusPlus17) {
989     TypeLoc TL = TInfo->getTypeLoc();
990     SourceLocation EllipsisLoc;
991     if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
992       EllipsisLoc = PET.getEllipsisLoc();
993       TL = PET.getPatternLoc();
994     }
995 
996     CXXScopeSpec SS;
997     if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
998       SS.Adopt(ET.getQualifierLoc());
999       TL = ET.getNamedTypeLoc();
1000     }
1001 
1002     if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1003       TemplateName Name = DTST.getTypePtr()->getTemplateName();
1004       if (SS.isSet())
1005         Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1006                                                 /*HasTemplateKeyword=*/false,
1007                                                 Name);
1008       ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1009                                     DTST.getTemplateNameLoc());
1010       if (EllipsisLoc.isValid())
1011         Result = Result.getTemplatePackExpansion(EllipsisLoc);
1012       return Result;
1013     }
1014   }
1015 
1016   // This is a normal type template argument. Note, if the type template
1017   // argument is an injected-class-name for a template, it has a dual nature
1018   // and can be used as either a type or a template. We handle that in
1019   // convertTypeTemplateArgumentToTemplate.
1020   return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1021                                 ParsedType.get().getAsOpaquePtr(),
1022                                 TInfo->getTypeLoc().getBeginLoc());
1023 }
1024 
1025 /// ActOnTypeParameter - Called when a C++ template type parameter
1026 /// (e.g., "typename T") has been parsed. Typename specifies whether
1027 /// the keyword "typename" was used to declare the type parameter
1028 /// (otherwise, "class" was used), and KeyLoc is the location of the
1029 /// "class" or "typename" keyword. ParamName is the name of the
1030 /// parameter (NULL indicates an unnamed template parameter) and
1031 /// ParamNameLoc is the location of the parameter name (if any).
1032 /// If the type parameter has a default argument, it will be added
1033 /// later via ActOnTypeParameterDefault.
1034 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1035                                     SourceLocation EllipsisLoc,
1036                                     SourceLocation KeyLoc,
1037                                     IdentifierInfo *ParamName,
1038                                     SourceLocation ParamNameLoc,
1039                                     unsigned Depth, unsigned Position,
1040                                     SourceLocation EqualLoc,
1041                                     ParsedType DefaultArg,
1042                                     bool HasTypeConstraint) {
1043   assert(S->isTemplateParamScope() &&
1044          "Template type parameter not in template parameter scope!");
1045 
1046   bool IsParameterPack = EllipsisLoc.isValid();
1047   TemplateTypeParmDecl *Param
1048     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1049                                    KeyLoc, ParamNameLoc, Depth, Position,
1050                                    ParamName, Typename, IsParameterPack,
1051                                    HasTypeConstraint);
1052   Param->setAccess(AS_public);
1053 
1054   if (Param->isParameterPack())
1055     if (auto *LSI = getEnclosingLambda())
1056       LSI->LocalPacks.push_back(Param);
1057 
1058   if (ParamName) {
1059     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1060 
1061     // Add the template parameter into the current scope.
1062     S->AddDecl(Param);
1063     IdResolver.AddDecl(Param);
1064   }
1065 
1066   // C++0x [temp.param]p9:
1067   //   A default template-argument may be specified for any kind of
1068   //   template-parameter that is not a template parameter pack.
1069   if (DefaultArg && IsParameterPack) {
1070     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1071     DefaultArg = nullptr;
1072   }
1073 
1074   // Handle the default argument, if provided.
1075   if (DefaultArg) {
1076     TypeSourceInfo *DefaultTInfo;
1077     GetTypeFromParser(DefaultArg, &DefaultTInfo);
1078 
1079     assert(DefaultTInfo && "expected source information for type");
1080 
1081     // Check for unexpanded parameter packs.
1082     if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1083                                         UPPC_DefaultArgument))
1084       return Param;
1085 
1086     // Check the template argument itself.
1087     if (CheckTemplateArgument(DefaultTInfo)) {
1088       Param->setInvalidDecl();
1089       return Param;
1090     }
1091 
1092     Param->setDefaultArgument(DefaultTInfo);
1093   }
1094 
1095   return Param;
1096 }
1097 
1098 /// Convert the parser's template argument list representation into our form.
1099 static TemplateArgumentListInfo
1100 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1101   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1102                                         TemplateId.RAngleLoc);
1103   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1104                                      TemplateId.NumArgs);
1105   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1106   return TemplateArgs;
1107 }
1108 
1109 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1110                                TemplateIdAnnotation *TypeConstr,
1111                                TemplateTypeParmDecl *ConstrainedParameter,
1112                                SourceLocation EllipsisLoc) {
1113   return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1114                              false);
1115 }
1116 
1117 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1118                                TemplateIdAnnotation *TypeConstr,
1119                                TemplateTypeParmDecl *ConstrainedParameter,
1120                                SourceLocation EllipsisLoc,
1121                                bool AllowUnexpandedPack) {
1122   TemplateName TN = TypeConstr->Template.get();
1123   ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1124 
1125   // C++2a [temp.param]p4:
1126   //     [...] The concept designated by a type-constraint shall be a type
1127   //     concept ([temp.concept]).
1128   if (!CD->isTypeConcept()) {
1129     Diag(TypeConstr->TemplateNameLoc,
1130          diag::err_type_constraint_non_type_concept);
1131     return true;
1132   }
1133 
1134   bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1135 
1136   if (!WereArgsSpecified &&
1137       CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1138     Diag(TypeConstr->TemplateNameLoc,
1139          diag::err_type_constraint_missing_arguments) << CD;
1140     return true;
1141   }
1142 
1143   DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1144                                   TypeConstr->TemplateNameLoc);
1145 
1146   TemplateArgumentListInfo TemplateArgs;
1147   if (TypeConstr->LAngleLoc.isValid()) {
1148     TemplateArgs =
1149         makeTemplateArgumentListInfo(*this, *TypeConstr);
1150 
1151     if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1152       for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1153         if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1154           return true;
1155       }
1156     }
1157   }
1158   return AttachTypeConstraint(
1159       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1160       ConceptName, CD,
1161       TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1162       ConstrainedParameter, EllipsisLoc);
1163 }
1164 
1165 template<typename ArgumentLocAppender>
1166 static ExprResult formImmediatelyDeclaredConstraint(
1167     Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1168     ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1169     SourceLocation RAngleLoc, QualType ConstrainedType,
1170     SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1171     SourceLocation EllipsisLoc) {
1172 
1173   TemplateArgumentListInfo ConstraintArgs;
1174   ConstraintArgs.addArgument(
1175     S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1176                                     /*NTTPType=*/QualType(), ParamNameLoc));
1177 
1178   ConstraintArgs.setRAngleLoc(RAngleLoc);
1179   ConstraintArgs.setLAngleLoc(LAngleLoc);
1180   Appender(ConstraintArgs);
1181 
1182   // C++2a [temp.param]p4:
1183   //     [...] This constraint-expression E is called the immediately-declared
1184   //     constraint of T. [...]
1185   CXXScopeSpec SS;
1186   SS.Adopt(NS);
1187   ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1188       SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1189       /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1190   if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1191     return ImmediatelyDeclaredConstraint;
1192 
1193   // C++2a [temp.param]p4:
1194   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1195   //
1196   // We have the following case:
1197   //
1198   // template<typename T> concept C1 = true;
1199   // template<C1... T> struct s1;
1200   //
1201   // The constraint: (C1<T> && ...)
1202   //
1203   // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1204   // any unqualified lookups for 'operator&&' here.
1205   return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1206                             /*LParenLoc=*/SourceLocation(),
1207                             ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1208                             EllipsisLoc, /*RHS=*/nullptr,
1209                             /*RParenLoc=*/SourceLocation(),
1210                             /*NumExpansions=*/None);
1211 }
1212 
1213 /// Attach a type-constraint to a template parameter.
1214 /// \returns true if an error occurred. This can happen if the
1215 /// immediately-declared constraint could not be formed (e.g. incorrect number
1216 /// of arguments for the named concept).
1217 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1218                                 DeclarationNameInfo NameInfo,
1219                                 ConceptDecl *NamedConcept,
1220                                 const TemplateArgumentListInfo *TemplateArgs,
1221                                 TemplateTypeParmDecl *ConstrainedParameter,
1222                                 SourceLocation EllipsisLoc) {
1223   // C++2a [temp.param]p4:
1224   //     [...] If Q is of the form C<A1, ..., An>, then let E' be
1225   //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1226   const ASTTemplateArgumentListInfo *ArgsAsWritten =
1227     TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1228                                                        *TemplateArgs) : nullptr;
1229 
1230   QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1231 
1232   ExprResult ImmediatelyDeclaredConstraint =
1233       formImmediatelyDeclaredConstraint(
1234           *this, NS, NameInfo, NamedConcept,
1235           TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1236           TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1237           ParamAsArgument, ConstrainedParameter->getLocation(),
1238           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1239             if (TemplateArgs)
1240               for (const auto &ArgLoc : TemplateArgs->arguments())
1241                 ConstraintArgs.addArgument(ArgLoc);
1242           }, EllipsisLoc);
1243   if (ImmediatelyDeclaredConstraint.isInvalid())
1244     return true;
1245 
1246   ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1247                                           /*FoundDecl=*/NamedConcept,
1248                                           NamedConcept, ArgsAsWritten,
1249                                           ImmediatelyDeclaredConstraint.get());
1250   return false;
1251 }
1252 
1253 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
1254                                 SourceLocation EllipsisLoc) {
1255   if (NTTP->getType() != TL.getType() ||
1256       TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1257     Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1258          diag::err_unsupported_placeholder_constraint)
1259        << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
1260     return true;
1261   }
1262   // FIXME: Concepts: This should be the type of the placeholder, but this is
1263   // unclear in the wording right now.
1264   DeclRefExpr *Ref =
1265       BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation());
1266   if (!Ref)
1267     return true;
1268   ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1269       *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1270       TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1271       BuildDecltypeType(Ref), NTTP->getLocation(),
1272       [&](TemplateArgumentListInfo &ConstraintArgs) {
1273         for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1274           ConstraintArgs.addArgument(TL.getArgLoc(I));
1275       },
1276       EllipsisLoc);
1277   if (ImmediatelyDeclaredConstraint.isInvalid() ||
1278      !ImmediatelyDeclaredConstraint.isUsable())
1279     return true;
1280 
1281   NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
1282   return false;
1283 }
1284 
1285 /// Check that the type of a non-type template parameter is
1286 /// well-formed.
1287 ///
1288 /// \returns the (possibly-promoted) parameter type if valid;
1289 /// otherwise, produces a diagnostic and returns a NULL type.
1290 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1291                                                  SourceLocation Loc) {
1292   if (TSI->getType()->isUndeducedType()) {
1293     // C++17 [temp.dep.expr]p3:
1294     //   An id-expression is type-dependent if it contains
1295     //    - an identifier associated by name lookup with a non-type
1296     //      template-parameter declared with a type that contains a
1297     //      placeholder type (7.1.7.4),
1298     TSI = SubstAutoTypeSourceInfoDependent(TSI);
1299   }
1300 
1301   return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1302 }
1303 
1304 /// Require the given type to be a structural type, and diagnose if it is not.
1305 ///
1306 /// \return \c true if an error was produced.
1307 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1308   if (T->isDependentType())
1309     return false;
1310 
1311   if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1312     return true;
1313 
1314   if (T->isStructuralType())
1315     return false;
1316 
1317   // Structural types are required to be object types or lvalue references.
1318   if (T->isRValueReferenceType()) {
1319     Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1320     return true;
1321   }
1322 
1323   // Don't mention structural types in our diagnostic prior to C++20. Also,
1324   // there's not much more we can say about non-scalar non-class types --
1325   // because we can't see functions or arrays here, those can only be language
1326   // extensions.
1327   if (!getLangOpts().CPlusPlus20 ||
1328       (!T->isScalarType() && !T->isRecordType())) {
1329     Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1330     return true;
1331   }
1332 
1333   // Structural types are required to be literal types.
1334   if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1335     return true;
1336 
1337   Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1338 
1339   // Drill down into the reason why the class is non-structural.
1340   while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1341     // All members are required to be public and non-mutable, and can't be of
1342     // rvalue reference type. Check these conditions first to prefer a "local"
1343     // reason over a more distant one.
1344     for (const FieldDecl *FD : RD->fields()) {
1345       if (FD->getAccess() != AS_public) {
1346         Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1347         return true;
1348       }
1349       if (FD->isMutable()) {
1350         Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1351         return true;
1352       }
1353       if (FD->getType()->isRValueReferenceType()) {
1354         Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1355             << T;
1356         return true;
1357       }
1358     }
1359 
1360     // All bases are required to be public.
1361     for (const auto &BaseSpec : RD->bases()) {
1362       if (BaseSpec.getAccessSpecifier() != AS_public) {
1363         Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1364             << T << 1;
1365         return true;
1366       }
1367     }
1368 
1369     // All subobjects are required to be of structural types.
1370     SourceLocation SubLoc;
1371     QualType SubType;
1372     int Kind = -1;
1373 
1374     for (const FieldDecl *FD : RD->fields()) {
1375       QualType T = Context.getBaseElementType(FD->getType());
1376       if (!T->isStructuralType()) {
1377         SubLoc = FD->getLocation();
1378         SubType = T;
1379         Kind = 0;
1380         break;
1381       }
1382     }
1383 
1384     if (Kind == -1) {
1385       for (const auto &BaseSpec : RD->bases()) {
1386         QualType T = BaseSpec.getType();
1387         if (!T->isStructuralType()) {
1388           SubLoc = BaseSpec.getBaseTypeLoc();
1389           SubType = T;
1390           Kind = 1;
1391           break;
1392         }
1393       }
1394     }
1395 
1396     assert(Kind != -1 && "couldn't find reason why type is not structural");
1397     Diag(SubLoc, diag::note_not_structural_subobject)
1398         << T << Kind << SubType;
1399     T = SubType;
1400     RD = T->getAsCXXRecordDecl();
1401   }
1402 
1403   return true;
1404 }
1405 
1406 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1407                                                  SourceLocation Loc) {
1408   // We don't allow variably-modified types as the type of non-type template
1409   // parameters.
1410   if (T->isVariablyModifiedType()) {
1411     Diag(Loc, diag::err_variably_modified_nontype_template_param)
1412       << T;
1413     return QualType();
1414   }
1415 
1416   // C++ [temp.param]p4:
1417   //
1418   // A non-type template-parameter shall have one of the following
1419   // (optionally cv-qualified) types:
1420   //
1421   //       -- integral or enumeration type,
1422   if (T->isIntegralOrEnumerationType() ||
1423       //   -- pointer to object or pointer to function,
1424       T->isPointerType() ||
1425       //   -- lvalue reference to object or lvalue reference to function,
1426       T->isLValueReferenceType() ||
1427       //   -- pointer to member,
1428       T->isMemberPointerType() ||
1429       //   -- std::nullptr_t, or
1430       T->isNullPtrType() ||
1431       //   -- a type that contains a placeholder type.
1432       T->isUndeducedType()) {
1433     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1434     // are ignored when determining its type.
1435     return T.getUnqualifiedType();
1436   }
1437 
1438   // C++ [temp.param]p8:
1439   //
1440   //   A non-type template-parameter of type "array of T" or
1441   //   "function returning T" is adjusted to be of type "pointer to
1442   //   T" or "pointer to function returning T", respectively.
1443   if (T->isArrayType() || T->isFunctionType())
1444     return Context.getDecayedType(T);
1445 
1446   // If T is a dependent type, we can't do the check now, so we
1447   // assume that it is well-formed. Note that stripping off the
1448   // qualifiers here is not really correct if T turns out to be
1449   // an array type, but we'll recompute the type everywhere it's
1450   // used during instantiation, so that should be OK. (Using the
1451   // qualified type is equally wrong.)
1452   if (T->isDependentType())
1453     return T.getUnqualifiedType();
1454 
1455   // C++20 [temp.param]p6:
1456   //   -- a structural type
1457   if (RequireStructuralType(T, Loc))
1458     return QualType();
1459 
1460   if (!getLangOpts().CPlusPlus20) {
1461     // FIXME: Consider allowing structural types as an extension in C++17. (In
1462     // earlier language modes, the template argument evaluation rules are too
1463     // inflexible.)
1464     Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1465     return QualType();
1466   }
1467 
1468   Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1469   return T.getUnqualifiedType();
1470 }
1471 
1472 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1473                                           unsigned Depth,
1474                                           unsigned Position,
1475                                           SourceLocation EqualLoc,
1476                                           Expr *Default) {
1477   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1478 
1479   // Check that we have valid decl-specifiers specified.
1480   auto CheckValidDeclSpecifiers = [this, &D] {
1481     // C++ [temp.param]
1482     // p1
1483     //   template-parameter:
1484     //     ...
1485     //     parameter-declaration
1486     // p2
1487     //   ... A storage class shall not be specified in a template-parameter
1488     //   declaration.
1489     // [dcl.typedef]p1:
1490     //   The typedef specifier [...] shall not be used in the decl-specifier-seq
1491     //   of a parameter-declaration
1492     const DeclSpec &DS = D.getDeclSpec();
1493     auto EmitDiag = [this](SourceLocation Loc) {
1494       Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1495           << FixItHint::CreateRemoval(Loc);
1496     };
1497     if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1498       EmitDiag(DS.getStorageClassSpecLoc());
1499 
1500     if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1501       EmitDiag(DS.getThreadStorageClassSpecLoc());
1502 
1503     // [dcl.inline]p1:
1504     //   The inline specifier can be applied only to the declaration or
1505     //   definition of a variable or function.
1506 
1507     if (DS.isInlineSpecified())
1508       EmitDiag(DS.getInlineSpecLoc());
1509 
1510     // [dcl.constexpr]p1:
1511     //   The constexpr specifier shall be applied only to the definition of a
1512     //   variable or variable template or the declaration of a function or
1513     //   function template.
1514 
1515     if (DS.hasConstexprSpecifier())
1516       EmitDiag(DS.getConstexprSpecLoc());
1517 
1518     // [dcl.fct.spec]p1:
1519     //   Function-specifiers can be used only in function declarations.
1520 
1521     if (DS.isVirtualSpecified())
1522       EmitDiag(DS.getVirtualSpecLoc());
1523 
1524     if (DS.hasExplicitSpecifier())
1525       EmitDiag(DS.getExplicitSpecLoc());
1526 
1527     if (DS.isNoreturnSpecified())
1528       EmitDiag(DS.getNoreturnSpecLoc());
1529   };
1530 
1531   CheckValidDeclSpecifiers();
1532 
1533   if (TInfo->getType()->isUndeducedType()) {
1534     Diag(D.getIdentifierLoc(),
1535          diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1536       << QualType(TInfo->getType()->getContainedAutoType(), 0);
1537   }
1538 
1539   assert(S->isTemplateParamScope() &&
1540          "Non-type template parameter not in template parameter scope!");
1541   bool Invalid = false;
1542 
1543   QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1544   if (T.isNull()) {
1545     T = Context.IntTy; // Recover with an 'int' type.
1546     Invalid = true;
1547   }
1548 
1549   CheckFunctionOrTemplateParamDeclarator(S, D);
1550 
1551   IdentifierInfo *ParamName = D.getIdentifier();
1552   bool IsParameterPack = D.hasEllipsis();
1553   NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1554       Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1555       D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1556       TInfo);
1557   Param->setAccess(AS_public);
1558 
1559   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1560     if (TL.isConstrained())
1561       if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
1562         Invalid = true;
1563 
1564   if (Invalid)
1565     Param->setInvalidDecl();
1566 
1567   if (Param->isParameterPack())
1568     if (auto *LSI = getEnclosingLambda())
1569       LSI->LocalPacks.push_back(Param);
1570 
1571   if (ParamName) {
1572     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1573                                          ParamName);
1574 
1575     // Add the template parameter into the current scope.
1576     S->AddDecl(Param);
1577     IdResolver.AddDecl(Param);
1578   }
1579 
1580   // C++0x [temp.param]p9:
1581   //   A default template-argument may be specified for any kind of
1582   //   template-parameter that is not a template parameter pack.
1583   if (Default && IsParameterPack) {
1584     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1585     Default = nullptr;
1586   }
1587 
1588   // Check the well-formedness of the default template argument, if provided.
1589   if (Default) {
1590     // Check for unexpanded parameter packs.
1591     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1592       return Param;
1593 
1594     TemplateArgument Converted;
1595     ExprResult DefaultRes =
1596         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1597     if (DefaultRes.isInvalid()) {
1598       Param->setInvalidDecl();
1599       return Param;
1600     }
1601     Default = DefaultRes.get();
1602 
1603     Param->setDefaultArgument(Default);
1604   }
1605 
1606   return Param;
1607 }
1608 
1609 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1610 /// parameter (e.g. T in template <template \<typename> class T> class array)
1611 /// has been parsed. S is the current scope.
1612 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1613                                            SourceLocation TmpLoc,
1614                                            TemplateParameterList *Params,
1615                                            SourceLocation EllipsisLoc,
1616                                            IdentifierInfo *Name,
1617                                            SourceLocation NameLoc,
1618                                            unsigned Depth,
1619                                            unsigned Position,
1620                                            SourceLocation EqualLoc,
1621                                            ParsedTemplateArgument Default) {
1622   assert(S->isTemplateParamScope() &&
1623          "Template template parameter not in template parameter scope!");
1624 
1625   // Construct the parameter object.
1626   bool IsParameterPack = EllipsisLoc.isValid();
1627   TemplateTemplateParmDecl *Param =
1628     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1629                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
1630                                      Depth, Position, IsParameterPack,
1631                                      Name, Params);
1632   Param->setAccess(AS_public);
1633 
1634   if (Param->isParameterPack())
1635     if (auto *LSI = getEnclosingLambda())
1636       LSI->LocalPacks.push_back(Param);
1637 
1638   // If the template template parameter has a name, then link the identifier
1639   // into the scope and lookup mechanisms.
1640   if (Name) {
1641     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1642 
1643     S->AddDecl(Param);
1644     IdResolver.AddDecl(Param);
1645   }
1646 
1647   if (Params->size() == 0) {
1648     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1649     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1650     Param->setInvalidDecl();
1651   }
1652 
1653   // C++0x [temp.param]p9:
1654   //   A default template-argument may be specified for any kind of
1655   //   template-parameter that is not a template parameter pack.
1656   if (IsParameterPack && !Default.isInvalid()) {
1657     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1658     Default = ParsedTemplateArgument();
1659   }
1660 
1661   if (!Default.isInvalid()) {
1662     // Check only that we have a template template argument. We don't want to
1663     // try to check well-formedness now, because our template template parameter
1664     // might have dependent types in its template parameters, which we wouldn't
1665     // be able to match now.
1666     //
1667     // If none of the template template parameter's template arguments mention
1668     // other template parameters, we could actually perform more checking here.
1669     // However, it isn't worth doing.
1670     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1671     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1672       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1673         << DefaultArg.getSourceRange();
1674       return Param;
1675     }
1676 
1677     // Check for unexpanded parameter packs.
1678     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1679                                         DefaultArg.getArgument().getAsTemplate(),
1680                                         UPPC_DefaultArgument))
1681       return Param;
1682 
1683     Param->setDefaultArgument(Context, DefaultArg);
1684   }
1685 
1686   return Param;
1687 }
1688 
1689 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1690 /// constrained by RequiresClause, that contains the template parameters in
1691 /// Params.
1692 TemplateParameterList *
1693 Sema::ActOnTemplateParameterList(unsigned Depth,
1694                                  SourceLocation ExportLoc,
1695                                  SourceLocation TemplateLoc,
1696                                  SourceLocation LAngleLoc,
1697                                  ArrayRef<NamedDecl *> Params,
1698                                  SourceLocation RAngleLoc,
1699                                  Expr *RequiresClause) {
1700   if (ExportLoc.isValid())
1701     Diag(ExportLoc, diag::warn_template_export_unsupported);
1702 
1703   for (NamedDecl *P : Params)
1704     warnOnReservedIdentifier(P);
1705 
1706   return TemplateParameterList::Create(
1707       Context, TemplateLoc, LAngleLoc,
1708       llvm::makeArrayRef(Params.data(), Params.size()),
1709       RAngleLoc, RequiresClause);
1710 }
1711 
1712 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1713                                    const CXXScopeSpec &SS) {
1714   if (SS.isSet())
1715     T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1716 }
1717 
1718 DeclResult Sema::CheckClassTemplate(
1719     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1720     CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1721     const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1722     AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1723     SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1724     TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1725   assert(TemplateParams && TemplateParams->size() > 0 &&
1726          "No template parameters");
1727   assert(TUK != TUK_Reference && "Can only declare or define class templates");
1728   bool Invalid = false;
1729 
1730   // Check that we can declare a template here.
1731   if (CheckTemplateDeclScope(S, TemplateParams))
1732     return true;
1733 
1734   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1735   assert(Kind != TTK_Enum && "can't build template of enumerated type");
1736 
1737   // There is no such thing as an unnamed class template.
1738   if (!Name) {
1739     Diag(KWLoc, diag::err_template_unnamed_class);
1740     return true;
1741   }
1742 
1743   // Find any previous declaration with this name. For a friend with no
1744   // scope explicitly specified, we only look for tag declarations (per
1745   // C++11 [basic.lookup.elab]p2).
1746   DeclContext *SemanticContext;
1747   LookupResult Previous(*this, Name, NameLoc,
1748                         (SS.isEmpty() && TUK == TUK_Friend)
1749                           ? LookupTagName : LookupOrdinaryName,
1750                         forRedeclarationInCurContext());
1751   if (SS.isNotEmpty() && !SS.isInvalid()) {
1752     SemanticContext = computeDeclContext(SS, true);
1753     if (!SemanticContext) {
1754       // FIXME: Horrible, horrible hack! We can't currently represent this
1755       // in the AST, and historically we have just ignored such friend
1756       // class templates, so don't complain here.
1757       Diag(NameLoc, TUK == TUK_Friend
1758                         ? diag::warn_template_qualified_friend_ignored
1759                         : diag::err_template_qualified_declarator_no_match)
1760           << SS.getScopeRep() << SS.getRange();
1761       return TUK != TUK_Friend;
1762     }
1763 
1764     if (RequireCompleteDeclContext(SS, SemanticContext))
1765       return true;
1766 
1767     // If we're adding a template to a dependent context, we may need to
1768     // rebuilding some of the types used within the template parameter list,
1769     // now that we know what the current instantiation is.
1770     if (SemanticContext->isDependentContext()) {
1771       ContextRAII SavedContext(*this, SemanticContext);
1772       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1773         Invalid = true;
1774     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1775       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1776 
1777     LookupQualifiedName(Previous, SemanticContext);
1778   } else {
1779     SemanticContext = CurContext;
1780 
1781     // C++14 [class.mem]p14:
1782     //   If T is the name of a class, then each of the following shall have a
1783     //   name different from T:
1784     //    -- every member template of class T
1785     if (TUK != TUK_Friend &&
1786         DiagnoseClassNameShadow(SemanticContext,
1787                                 DeclarationNameInfo(Name, NameLoc)))
1788       return true;
1789 
1790     LookupName(Previous, S);
1791   }
1792 
1793   if (Previous.isAmbiguous())
1794     return true;
1795 
1796   NamedDecl *PrevDecl = nullptr;
1797   if (Previous.begin() != Previous.end())
1798     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1799 
1800   if (PrevDecl && PrevDecl->isTemplateParameter()) {
1801     // Maybe we will complain about the shadowed template parameter.
1802     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1803     // Just pretend that we didn't see the previous declaration.
1804     PrevDecl = nullptr;
1805   }
1806 
1807   // If there is a previous declaration with the same name, check
1808   // whether this is a valid redeclaration.
1809   ClassTemplateDecl *PrevClassTemplate =
1810       dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1811 
1812   // We may have found the injected-class-name of a class template,
1813   // class template partial specialization, or class template specialization.
1814   // In these cases, grab the template that is being defined or specialized.
1815   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1816       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1817     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1818     PrevClassTemplate
1819       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1820     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1821       PrevClassTemplate
1822         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1823             ->getSpecializedTemplate();
1824     }
1825   }
1826 
1827   if (TUK == TUK_Friend) {
1828     // C++ [namespace.memdef]p3:
1829     //   [...] When looking for a prior declaration of a class or a function
1830     //   declared as a friend, and when the name of the friend class or
1831     //   function is neither a qualified name nor a template-id, scopes outside
1832     //   the innermost enclosing namespace scope are not considered.
1833     if (!SS.isSet()) {
1834       DeclContext *OutermostContext = CurContext;
1835       while (!OutermostContext->isFileContext())
1836         OutermostContext = OutermostContext->getLookupParent();
1837 
1838       if (PrevDecl &&
1839           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1840            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1841         SemanticContext = PrevDecl->getDeclContext();
1842       } else {
1843         // Declarations in outer scopes don't matter. However, the outermost
1844         // context we computed is the semantic context for our new
1845         // declaration.
1846         PrevDecl = PrevClassTemplate = nullptr;
1847         SemanticContext = OutermostContext;
1848 
1849         // Check that the chosen semantic context doesn't already contain a
1850         // declaration of this name as a non-tag type.
1851         Previous.clear(LookupOrdinaryName);
1852         DeclContext *LookupContext = SemanticContext;
1853         while (LookupContext->isTransparentContext())
1854           LookupContext = LookupContext->getLookupParent();
1855         LookupQualifiedName(Previous, LookupContext);
1856 
1857         if (Previous.isAmbiguous())
1858           return true;
1859 
1860         if (Previous.begin() != Previous.end())
1861           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1862       }
1863     }
1864   } else if (PrevDecl &&
1865              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1866                             S, SS.isValid()))
1867     PrevDecl = PrevClassTemplate = nullptr;
1868 
1869   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1870           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1871     if (SS.isEmpty() &&
1872         !(PrevClassTemplate &&
1873           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1874               SemanticContext->getRedeclContext()))) {
1875       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1876       Diag(Shadow->getTargetDecl()->getLocation(),
1877            diag::note_using_decl_target);
1878       Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1879       // Recover by ignoring the old declaration.
1880       PrevDecl = PrevClassTemplate = nullptr;
1881     }
1882   }
1883 
1884   if (PrevClassTemplate) {
1885     // Ensure that the template parameter lists are compatible. Skip this check
1886     // for a friend in a dependent context: the template parameter list itself
1887     // could be dependent.
1888     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1889         !TemplateParameterListsAreEqual(TemplateParams,
1890                                    PrevClassTemplate->getTemplateParameters(),
1891                                         /*Complain=*/true,
1892                                         TPL_TemplateMatch))
1893       return true;
1894 
1895     // C++ [temp.class]p4:
1896     //   In a redeclaration, partial specialization, explicit
1897     //   specialization or explicit instantiation of a class template,
1898     //   the class-key shall agree in kind with the original class
1899     //   template declaration (7.1.5.3).
1900     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1901     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1902                                       TUK == TUK_Definition,  KWLoc, Name)) {
1903       Diag(KWLoc, diag::err_use_with_wrong_tag)
1904         << Name
1905         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1906       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1907       Kind = PrevRecordDecl->getTagKind();
1908     }
1909 
1910     // Check for redefinition of this class template.
1911     if (TUK == TUK_Definition) {
1912       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1913         // If we have a prior definition that is not visible, treat this as
1914         // simply making that previous definition visible.
1915         NamedDecl *Hidden = nullptr;
1916         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1917           SkipBody->ShouldSkip = true;
1918           SkipBody->Previous = Def;
1919           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1920           assert(Tmpl && "original definition of a class template is not a "
1921                          "class template?");
1922           makeMergedDefinitionVisible(Hidden);
1923           makeMergedDefinitionVisible(Tmpl);
1924         } else {
1925           Diag(NameLoc, diag::err_redefinition) << Name;
1926           Diag(Def->getLocation(), diag::note_previous_definition);
1927           // FIXME: Would it make sense to try to "forget" the previous
1928           // definition, as part of error recovery?
1929           return true;
1930         }
1931       }
1932     }
1933   } else if (PrevDecl) {
1934     // C++ [temp]p5:
1935     //   A class template shall not have the same name as any other
1936     //   template, class, function, object, enumeration, enumerator,
1937     //   namespace, or type in the same scope (3.3), except as specified
1938     //   in (14.5.4).
1939     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1940     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1941     return true;
1942   }
1943 
1944   // Check the template parameter list of this declaration, possibly
1945   // merging in the template parameter list from the previous class
1946   // template declaration. Skip this check for a friend in a dependent
1947   // context, because the template parameter list might be dependent.
1948   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1949       CheckTemplateParameterList(
1950           TemplateParams,
1951           PrevClassTemplate
1952               ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1953               : nullptr,
1954           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1955            SemanticContext->isDependentContext())
1956               ? TPC_ClassTemplateMember
1957               : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1958           SkipBody))
1959     Invalid = true;
1960 
1961   if (SS.isSet()) {
1962     // If the name of the template was qualified, we must be defining the
1963     // template out-of-line.
1964     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1965       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1966                                       : diag::err_member_decl_does_not_match)
1967         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1968       Invalid = true;
1969     }
1970   }
1971 
1972   // If this is a templated friend in a dependent context we should not put it
1973   // on the redecl chain. In some cases, the templated friend can be the most
1974   // recent declaration tricking the template instantiator to make substitutions
1975   // there.
1976   // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1977   bool ShouldAddRedecl
1978     = !(TUK == TUK_Friend && CurContext->isDependentContext());
1979 
1980   CXXRecordDecl *NewClass =
1981     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1982                           PrevClassTemplate && ShouldAddRedecl ?
1983                             PrevClassTemplate->getTemplatedDecl() : nullptr,
1984                           /*DelayTypeCreation=*/true);
1985   SetNestedNameSpecifier(*this, NewClass, SS);
1986   if (NumOuterTemplateParamLists > 0)
1987     NewClass->setTemplateParameterListsInfo(
1988         Context, llvm::makeArrayRef(OuterTemplateParamLists,
1989                                     NumOuterTemplateParamLists));
1990 
1991   // Add alignment attributes if necessary; these attributes are checked when
1992   // the ASTContext lays out the structure.
1993   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1994     AddAlignmentAttributesForRecord(NewClass);
1995     AddMsStructLayoutForRecord(NewClass);
1996   }
1997 
1998   ClassTemplateDecl *NewTemplate
1999     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2000                                 DeclarationName(Name), TemplateParams,
2001                                 NewClass);
2002 
2003   if (ShouldAddRedecl)
2004     NewTemplate->setPreviousDecl(PrevClassTemplate);
2005 
2006   NewClass->setDescribedClassTemplate(NewTemplate);
2007 
2008   if (ModulePrivateLoc.isValid())
2009     NewTemplate->setModulePrivate();
2010 
2011   // Build the type for the class template declaration now.
2012   QualType T = NewTemplate->getInjectedClassNameSpecialization();
2013   T = Context.getInjectedClassNameType(NewClass, T);
2014   assert(T->isDependentType() && "Class template type is not dependent?");
2015   (void)T;
2016 
2017   // If we are providing an explicit specialization of a member that is a
2018   // class template, make a note of that.
2019   if (PrevClassTemplate &&
2020       PrevClassTemplate->getInstantiatedFromMemberTemplate())
2021     PrevClassTemplate->setMemberSpecialization();
2022 
2023   // Set the access specifier.
2024   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2025     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2026 
2027   // Set the lexical context of these templates
2028   NewClass->setLexicalDeclContext(CurContext);
2029   NewTemplate->setLexicalDeclContext(CurContext);
2030 
2031   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2032     NewClass->startDefinition();
2033 
2034   ProcessDeclAttributeList(S, NewClass, Attr);
2035 
2036   if (PrevClassTemplate)
2037     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2038 
2039   AddPushedVisibilityAttribute(NewClass);
2040   inferGslOwnerPointerAttribute(NewClass);
2041 
2042   if (TUK != TUK_Friend) {
2043     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2044     Scope *Outer = S;
2045     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2046       Outer = Outer->getParent();
2047     PushOnScopeChains(NewTemplate, Outer);
2048   } else {
2049     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2050       NewTemplate->setAccess(PrevClassTemplate->getAccess());
2051       NewClass->setAccess(PrevClassTemplate->getAccess());
2052     }
2053 
2054     NewTemplate->setObjectOfFriendDecl();
2055 
2056     // Friend templates are visible in fairly strange ways.
2057     if (!CurContext->isDependentContext()) {
2058       DeclContext *DC = SemanticContext->getRedeclContext();
2059       DC->makeDeclVisibleInContext(NewTemplate);
2060       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2061         PushOnScopeChains(NewTemplate, EnclosingScope,
2062                           /* AddToContext = */ false);
2063     }
2064 
2065     FriendDecl *Friend = FriendDecl::Create(
2066         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2067     Friend->setAccess(AS_public);
2068     CurContext->addDecl(Friend);
2069   }
2070 
2071   if (PrevClassTemplate)
2072     CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2073 
2074   if (Invalid) {
2075     NewTemplate->setInvalidDecl();
2076     NewClass->setInvalidDecl();
2077   }
2078 
2079   ActOnDocumentableDecl(NewTemplate);
2080 
2081   if (SkipBody && SkipBody->ShouldSkip)
2082     return SkipBody->Previous;
2083 
2084   return NewTemplate;
2085 }
2086 
2087 namespace {
2088 /// Tree transform to "extract" a transformed type from a class template's
2089 /// constructor to a deduction guide.
2090 class ExtractTypeForDeductionGuide
2091   : public TreeTransform<ExtractTypeForDeductionGuide> {
2092   llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2093 
2094 public:
2095   typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2096   ExtractTypeForDeductionGuide(
2097       Sema &SemaRef,
2098       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2099       : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2100 
2101   TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2102 
2103   QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2104     ASTContext &Context = SemaRef.getASTContext();
2105     TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2106     TypedefNameDecl *Decl = OrigDecl;
2107     // Transform the underlying type of the typedef and clone the Decl only if
2108     // the typedef has a dependent context.
2109     if (OrigDecl->getDeclContext()->isDependentContext()) {
2110       TypeLocBuilder InnerTLB;
2111       QualType Transformed =
2112           TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2113       TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2114       if (isa<TypeAliasDecl>(OrigDecl))
2115         Decl = TypeAliasDecl::Create(
2116             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2117             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2118       else {
2119         assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2120         Decl = TypedefDecl::Create(
2121             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2122             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2123       }
2124       MaterializedTypedefs.push_back(Decl);
2125     }
2126 
2127     QualType TDTy = Context.getTypedefType(Decl);
2128     TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2129     TypedefTL.setNameLoc(TL.getNameLoc());
2130 
2131     return TDTy;
2132   }
2133 };
2134 
2135 /// Transform to convert portions of a constructor declaration into the
2136 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2137 struct ConvertConstructorToDeductionGuideTransform {
2138   ConvertConstructorToDeductionGuideTransform(Sema &S,
2139                                               ClassTemplateDecl *Template)
2140       : SemaRef(S), Template(Template) {}
2141 
2142   Sema &SemaRef;
2143   ClassTemplateDecl *Template;
2144 
2145   DeclContext *DC = Template->getDeclContext();
2146   CXXRecordDecl *Primary = Template->getTemplatedDecl();
2147   DeclarationName DeductionGuideName =
2148       SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2149 
2150   QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2151 
2152   // Index adjustment to apply to convert depth-1 template parameters into
2153   // depth-0 template parameters.
2154   unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2155 
2156   /// Transform a constructor declaration into a deduction guide.
2157   NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2158                                   CXXConstructorDecl *CD) {
2159     SmallVector<TemplateArgument, 16> SubstArgs;
2160 
2161     LocalInstantiationScope Scope(SemaRef);
2162 
2163     // C++ [over.match.class.deduct]p1:
2164     // -- For each constructor of the class template designated by the
2165     //    template-name, a function template with the following properties:
2166 
2167     //    -- The template parameters are the template parameters of the class
2168     //       template followed by the template parameters (including default
2169     //       template arguments) of the constructor, if any.
2170     TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2171     if (FTD) {
2172       TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2173       SmallVector<NamedDecl *, 16> AllParams;
2174       AllParams.reserve(TemplateParams->size() + InnerParams->size());
2175       AllParams.insert(AllParams.begin(),
2176                        TemplateParams->begin(), TemplateParams->end());
2177       SubstArgs.reserve(InnerParams->size());
2178 
2179       // Later template parameters could refer to earlier ones, so build up
2180       // a list of substituted template arguments as we go.
2181       for (NamedDecl *Param : *InnerParams) {
2182         MultiLevelTemplateArgumentList Args;
2183         Args.setKind(TemplateSubstitutionKind::Rewrite);
2184         Args.addOuterTemplateArguments(SubstArgs);
2185         Args.addOuterRetainedLevel();
2186         NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2187         if (!NewParam)
2188           return nullptr;
2189         AllParams.push_back(NewParam);
2190         SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2191             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2192       }
2193 
2194       // Substitute new template parameters into requires-clause if present.
2195       Expr *RequiresClause = nullptr;
2196       if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2197         MultiLevelTemplateArgumentList Args;
2198         Args.setKind(TemplateSubstitutionKind::Rewrite);
2199         Args.addOuterTemplateArguments(SubstArgs);
2200         Args.addOuterRetainedLevel();
2201         ExprResult E = SemaRef.SubstExpr(InnerRC, Args);
2202         if (E.isInvalid())
2203           return nullptr;
2204         RequiresClause = E.getAs<Expr>();
2205       }
2206 
2207       TemplateParams = TemplateParameterList::Create(
2208           SemaRef.Context, InnerParams->getTemplateLoc(),
2209           InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2210           RequiresClause);
2211     }
2212 
2213     // If we built a new template-parameter-list, track that we need to
2214     // substitute references to the old parameters into references to the
2215     // new ones.
2216     MultiLevelTemplateArgumentList Args;
2217     Args.setKind(TemplateSubstitutionKind::Rewrite);
2218     if (FTD) {
2219       Args.addOuterTemplateArguments(SubstArgs);
2220       Args.addOuterRetainedLevel();
2221     }
2222 
2223     FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2224                                    .getAsAdjusted<FunctionProtoTypeLoc>();
2225     assert(FPTL && "no prototype for constructor declaration");
2226 
2227     // Transform the type of the function, adjusting the return type and
2228     // replacing references to the old parameters with references to the
2229     // new ones.
2230     TypeLocBuilder TLB;
2231     SmallVector<ParmVarDecl*, 8> Params;
2232     SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2233     QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2234                                                   MaterializedTypedefs);
2235     if (NewType.isNull())
2236       return nullptr;
2237     TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2238 
2239     return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2240                                NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2241                                CD->getEndLoc(), MaterializedTypedefs);
2242   }
2243 
2244   /// Build a deduction guide with the specified parameter types.
2245   NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2246     SourceLocation Loc = Template->getLocation();
2247 
2248     // Build the requested type.
2249     FunctionProtoType::ExtProtoInfo EPI;
2250     EPI.HasTrailingReturn = true;
2251     QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2252                                                 DeductionGuideName, EPI);
2253     TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2254 
2255     FunctionProtoTypeLoc FPTL =
2256         TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2257 
2258     // Build the parameters, needed during deduction / substitution.
2259     SmallVector<ParmVarDecl*, 4> Params;
2260     for (auto T : ParamTypes) {
2261       ParmVarDecl *NewParam = ParmVarDecl::Create(
2262           SemaRef.Context, DC, Loc, Loc, nullptr, T,
2263           SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2264       NewParam->setScopeInfo(0, Params.size());
2265       FPTL.setParam(Params.size(), NewParam);
2266       Params.push_back(NewParam);
2267     }
2268 
2269     return buildDeductionGuide(Template->getTemplateParameters(), nullptr,
2270                                ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2271   }
2272 
2273 private:
2274   /// Transform a constructor template parameter into a deduction guide template
2275   /// parameter, rebuilding any internal references to earlier parameters and
2276   /// renumbering as we go.
2277   NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2278                                         MultiLevelTemplateArgumentList &Args) {
2279     if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2280       // TemplateTypeParmDecl's index cannot be changed after creation, so
2281       // substitute it directly.
2282       auto *NewTTP = TemplateTypeParmDecl::Create(
2283           SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2284           /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2285           TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2286           TTP->isParameterPack(), TTP->hasTypeConstraint(),
2287           TTP->isExpandedParameterPack() ?
2288           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
2289       if (const auto *TC = TTP->getTypeConstraint())
2290         SemaRef.SubstTypeConstraint(NewTTP, TC, Args);
2291       if (TTP->hasDefaultArgument()) {
2292         TypeSourceInfo *InstantiatedDefaultArg =
2293             SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2294                               TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2295         if (InstantiatedDefaultArg)
2296           NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2297       }
2298       SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2299                                                            NewTTP);
2300       return NewTTP;
2301     }
2302 
2303     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2304       return transformTemplateParameterImpl(TTP, Args);
2305 
2306     return transformTemplateParameterImpl(
2307         cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2308   }
2309   template<typename TemplateParmDecl>
2310   TemplateParmDecl *
2311   transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2312                                  MultiLevelTemplateArgumentList &Args) {
2313     // Ask the template instantiator to do the heavy lifting for us, then adjust
2314     // the index of the parameter once it's done.
2315     auto *NewParam =
2316         cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2317     assert(NewParam->getDepth() == 0 && "unexpected template param depth");
2318     NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2319     return NewParam;
2320   }
2321 
2322   QualType transformFunctionProtoType(
2323       TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2324       SmallVectorImpl<ParmVarDecl *> &Params,
2325       MultiLevelTemplateArgumentList &Args,
2326       SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2327     SmallVector<QualType, 4> ParamTypes;
2328     const FunctionProtoType *T = TL.getTypePtr();
2329 
2330     //    -- The types of the function parameters are those of the constructor.
2331     for (auto *OldParam : TL.getParams()) {
2332       ParmVarDecl *NewParam =
2333           transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2334       if (!NewParam)
2335         return QualType();
2336       ParamTypes.push_back(NewParam->getType());
2337       Params.push_back(NewParam);
2338     }
2339 
2340     //    -- The return type is the class template specialization designated by
2341     //       the template-name and template arguments corresponding to the
2342     //       template parameters obtained from the class template.
2343     //
2344     // We use the injected-class-name type of the primary template instead.
2345     // This has the convenient property that it is different from any type that
2346     // the user can write in a deduction-guide (because they cannot enter the
2347     // context of the template), so implicit deduction guides can never collide
2348     // with explicit ones.
2349     QualType ReturnType = DeducedType;
2350     TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2351 
2352     // Resolving a wording defect, we also inherit the variadicness of the
2353     // constructor.
2354     FunctionProtoType::ExtProtoInfo EPI;
2355     EPI.Variadic = T->isVariadic();
2356     EPI.HasTrailingReturn = true;
2357 
2358     QualType Result = SemaRef.BuildFunctionType(
2359         ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2360     if (Result.isNull())
2361       return QualType();
2362 
2363     FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2364     NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2365     NewTL.setLParenLoc(TL.getLParenLoc());
2366     NewTL.setRParenLoc(TL.getRParenLoc());
2367     NewTL.setExceptionSpecRange(SourceRange());
2368     NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2369     for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2370       NewTL.setParam(I, Params[I]);
2371 
2372     return Result;
2373   }
2374 
2375   ParmVarDecl *transformFunctionTypeParam(
2376       ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2377       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2378     TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2379     TypeSourceInfo *NewDI;
2380     if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2381       // Expand out the one and only element in each inner pack.
2382       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2383       NewDI =
2384           SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2385                             OldParam->getLocation(), OldParam->getDeclName());
2386       if (!NewDI) return nullptr;
2387       NewDI =
2388           SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2389                                      PackTL.getTypePtr()->getNumExpansions());
2390     } else
2391       NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2392                                 OldParam->getDeclName());
2393     if (!NewDI)
2394       return nullptr;
2395 
2396     // Extract the type. This (for instance) replaces references to typedef
2397     // members of the current instantiations with the definitions of those
2398     // typedefs, avoiding triggering instantiation of the deduced type during
2399     // deduction.
2400     NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2401                 .transform(NewDI);
2402 
2403     // Resolving a wording defect, we also inherit default arguments from the
2404     // constructor.
2405     ExprResult NewDefArg;
2406     if (OldParam->hasDefaultArg()) {
2407       // We don't care what the value is (we won't use it); just create a
2408       // placeholder to indicate there is a default argument.
2409       QualType ParamTy = NewDI->getType();
2410       NewDefArg = new (SemaRef.Context)
2411           OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2412                           ParamTy.getNonLValueExprType(SemaRef.Context),
2413                           ParamTy->isLValueReferenceType()   ? VK_LValue
2414                           : ParamTy->isRValueReferenceType() ? VK_XValue
2415                                                              : VK_PRValue);
2416     }
2417 
2418     ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2419                                                 OldParam->getInnerLocStart(),
2420                                                 OldParam->getLocation(),
2421                                                 OldParam->getIdentifier(),
2422                                                 NewDI->getType(),
2423                                                 NewDI,
2424                                                 OldParam->getStorageClass(),
2425                                                 NewDefArg.get());
2426     NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2427                            OldParam->getFunctionScopeIndex());
2428     SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2429     return NewParam;
2430   }
2431 
2432   FunctionTemplateDecl *buildDeductionGuide(
2433       TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2434       ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2435       SourceLocation Loc, SourceLocation LocEnd,
2436       llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2437     DeclarationNameInfo Name(DeductionGuideName, Loc);
2438     ArrayRef<ParmVarDecl *> Params =
2439         TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2440 
2441     // Build the implicit deduction guide template.
2442     auto *Guide =
2443         CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2444                                       TInfo->getType(), TInfo, LocEnd, Ctor);
2445     Guide->setImplicit();
2446     Guide->setParams(Params);
2447 
2448     for (auto *Param : Params)
2449       Param->setDeclContext(Guide);
2450     for (auto *TD : MaterializedTypedefs)
2451       TD->setDeclContext(Guide);
2452 
2453     auto *GuideTemplate = FunctionTemplateDecl::Create(
2454         SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2455     GuideTemplate->setImplicit();
2456     Guide->setDescribedFunctionTemplate(GuideTemplate);
2457 
2458     if (isa<CXXRecordDecl>(DC)) {
2459       Guide->setAccess(AS_public);
2460       GuideTemplate->setAccess(AS_public);
2461     }
2462 
2463     DC->addDecl(GuideTemplate);
2464     return GuideTemplate;
2465   }
2466 };
2467 }
2468 
2469 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2470                                           SourceLocation Loc) {
2471   if (CXXRecordDecl *DefRecord =
2472           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2473     TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2474     Template = DescribedTemplate ? DescribedTemplate : Template;
2475   }
2476 
2477   DeclContext *DC = Template->getDeclContext();
2478   if (DC->isDependentContext())
2479     return;
2480 
2481   ConvertConstructorToDeductionGuideTransform Transform(
2482       *this, cast<ClassTemplateDecl>(Template));
2483   if (!isCompleteType(Loc, Transform.DeducedType))
2484     return;
2485 
2486   // Check whether we've already declared deduction guides for this template.
2487   // FIXME: Consider storing a flag on the template to indicate this.
2488   auto Existing = DC->lookup(Transform.DeductionGuideName);
2489   for (auto *D : Existing)
2490     if (D->isImplicit())
2491       return;
2492 
2493   // In case we were expanding a pack when we attempted to declare deduction
2494   // guides, turn off pack expansion for everything we're about to do.
2495   ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2496   // Create a template instantiation record to track the "instantiation" of
2497   // constructors into deduction guides.
2498   // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2499   // this substitution process actually fail?
2500   InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2501   if (BuildingDeductionGuides.isInvalid())
2502     return;
2503 
2504   // Convert declared constructors into deduction guide templates.
2505   // FIXME: Skip constructors for which deduction must necessarily fail (those
2506   // for which some class template parameter without a default argument never
2507   // appears in a deduced context).
2508   bool AddedAny = false;
2509   for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2510     D = D->getUnderlyingDecl();
2511     if (D->isInvalidDecl() || D->isImplicit())
2512       continue;
2513     D = cast<NamedDecl>(D->getCanonicalDecl());
2514 
2515     auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2516     auto *CD =
2517         dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2518     // Class-scope explicit specializations (MS extension) do not result in
2519     // deduction guides.
2520     if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2521       continue;
2522 
2523     // Cannot make a deduction guide when unparsed arguments are present.
2524     if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2525           return !P || P->hasUnparsedDefaultArg();
2526         }))
2527       continue;
2528 
2529     Transform.transformConstructor(FTD, CD);
2530     AddedAny = true;
2531   }
2532 
2533   // C++17 [over.match.class.deduct]
2534   //    --  If C is not defined or does not declare any constructors, an
2535   //    additional function template derived as above from a hypothetical
2536   //    constructor C().
2537   if (!AddedAny)
2538     Transform.buildSimpleDeductionGuide(None);
2539 
2540   //    -- An additional function template derived as above from a hypothetical
2541   //    constructor C(C), called the copy deduction candidate.
2542   cast<CXXDeductionGuideDecl>(
2543       cast<FunctionTemplateDecl>(
2544           Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2545           ->getTemplatedDecl())
2546       ->setIsCopyDeductionCandidate();
2547 }
2548 
2549 /// Diagnose the presence of a default template argument on a
2550 /// template parameter, which is ill-formed in certain contexts.
2551 ///
2552 /// \returns true if the default template argument should be dropped.
2553 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2554                                             Sema::TemplateParamListContext TPC,
2555                                             SourceLocation ParamLoc,
2556                                             SourceRange DefArgRange) {
2557   switch (TPC) {
2558   case Sema::TPC_ClassTemplate:
2559   case Sema::TPC_VarTemplate:
2560   case Sema::TPC_TypeAliasTemplate:
2561     return false;
2562 
2563   case Sema::TPC_FunctionTemplate:
2564   case Sema::TPC_FriendFunctionTemplateDefinition:
2565     // C++ [temp.param]p9:
2566     //   A default template-argument shall not be specified in a
2567     //   function template declaration or a function template
2568     //   definition [...]
2569     //   If a friend function template declaration specifies a default
2570     //   template-argument, that declaration shall be a definition and shall be
2571     //   the only declaration of the function template in the translation unit.
2572     // (C++98/03 doesn't have this wording; see DR226).
2573     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2574          diag::warn_cxx98_compat_template_parameter_default_in_function_template
2575            : diag::ext_template_parameter_default_in_function_template)
2576       << DefArgRange;
2577     return false;
2578 
2579   case Sema::TPC_ClassTemplateMember:
2580     // C++0x [temp.param]p9:
2581     //   A default template-argument shall not be specified in the
2582     //   template-parameter-lists of the definition of a member of a
2583     //   class template that appears outside of the member's class.
2584     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2585       << DefArgRange;
2586     return true;
2587 
2588   case Sema::TPC_FriendClassTemplate:
2589   case Sema::TPC_FriendFunctionTemplate:
2590     // C++ [temp.param]p9:
2591     //   A default template-argument shall not be specified in a
2592     //   friend template declaration.
2593     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2594       << DefArgRange;
2595     return true;
2596 
2597     // FIXME: C++0x [temp.param]p9 allows default template-arguments
2598     // for friend function templates if there is only a single
2599     // declaration (and it is a definition). Strange!
2600   }
2601 
2602   llvm_unreachable("Invalid TemplateParamListContext!");
2603 }
2604 
2605 /// Check for unexpanded parameter packs within the template parameters
2606 /// of a template template parameter, recursively.
2607 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2608                                              TemplateTemplateParmDecl *TTP) {
2609   // A template template parameter which is a parameter pack is also a pack
2610   // expansion.
2611   if (TTP->isParameterPack())
2612     return false;
2613 
2614   TemplateParameterList *Params = TTP->getTemplateParameters();
2615   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2616     NamedDecl *P = Params->getParam(I);
2617     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2618       if (!TTP->isParameterPack())
2619         if (const TypeConstraint *TC = TTP->getTypeConstraint())
2620           if (TC->hasExplicitTemplateArgs())
2621             for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2622               if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2623                                                     Sema::UPPC_TypeConstraint))
2624                 return true;
2625       continue;
2626     }
2627 
2628     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2629       if (!NTTP->isParameterPack() &&
2630           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2631                                             NTTP->getTypeSourceInfo(),
2632                                       Sema::UPPC_NonTypeTemplateParameterType))
2633         return true;
2634 
2635       continue;
2636     }
2637 
2638     if (TemplateTemplateParmDecl *InnerTTP
2639                                         = dyn_cast<TemplateTemplateParmDecl>(P))
2640       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2641         return true;
2642   }
2643 
2644   return false;
2645 }
2646 
2647 /// Checks the validity of a template parameter list, possibly
2648 /// considering the template parameter list from a previous
2649 /// declaration.
2650 ///
2651 /// If an "old" template parameter list is provided, it must be
2652 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2653 /// template parameter list.
2654 ///
2655 /// \param NewParams Template parameter list for a new template
2656 /// declaration. This template parameter list will be updated with any
2657 /// default arguments that are carried through from the previous
2658 /// template parameter list.
2659 ///
2660 /// \param OldParams If provided, template parameter list from a
2661 /// previous declaration of the same template. Default template
2662 /// arguments will be merged from the old template parameter list to
2663 /// the new template parameter list.
2664 ///
2665 /// \param TPC Describes the context in which we are checking the given
2666 /// template parameter list.
2667 ///
2668 /// \param SkipBody If we might have already made a prior merged definition
2669 /// of this template visible, the corresponding body-skipping information.
2670 /// Default argument redefinition is not an error when skipping such a body,
2671 /// because (under the ODR) we can assume the default arguments are the same
2672 /// as the prior merged definition.
2673 ///
2674 /// \returns true if an error occurred, false otherwise.
2675 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2676                                       TemplateParameterList *OldParams,
2677                                       TemplateParamListContext TPC,
2678                                       SkipBodyInfo *SkipBody) {
2679   bool Invalid = false;
2680 
2681   // C++ [temp.param]p10:
2682   //   The set of default template-arguments available for use with a
2683   //   template declaration or definition is obtained by merging the
2684   //   default arguments from the definition (if in scope) and all
2685   //   declarations in scope in the same way default function
2686   //   arguments are (8.3.6).
2687   bool SawDefaultArgument = false;
2688   SourceLocation PreviousDefaultArgLoc;
2689 
2690   // Dummy initialization to avoid warnings.
2691   TemplateParameterList::iterator OldParam = NewParams->end();
2692   if (OldParams)
2693     OldParam = OldParams->begin();
2694 
2695   bool RemoveDefaultArguments = false;
2696   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2697                                     NewParamEnd = NewParams->end();
2698        NewParam != NewParamEnd; ++NewParam) {
2699     // Whether we've seen a duplicate default argument in the same translation
2700     // unit.
2701     bool RedundantDefaultArg = false;
2702     // Whether we've found inconsis inconsitent default arguments in different
2703     // translation unit.
2704     bool InconsistentDefaultArg = false;
2705     // The name of the module which contains the inconsistent default argument.
2706     std::string PrevModuleName;
2707 
2708     SourceLocation OldDefaultLoc;
2709     SourceLocation NewDefaultLoc;
2710 
2711     // Variable used to diagnose missing default arguments
2712     bool MissingDefaultArg = false;
2713 
2714     // Variable used to diagnose non-final parameter packs
2715     bool SawParameterPack = false;
2716 
2717     if (TemplateTypeParmDecl *NewTypeParm
2718           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2719       // Check the presence of a default argument here.
2720       if (NewTypeParm->hasDefaultArgument() &&
2721           DiagnoseDefaultTemplateArgument(*this, TPC,
2722                                           NewTypeParm->getLocation(),
2723                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2724                                                        .getSourceRange()))
2725         NewTypeParm->removeDefaultArgument();
2726 
2727       // Merge default arguments for template type parameters.
2728       TemplateTypeParmDecl *OldTypeParm
2729           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2730       if (NewTypeParm->isParameterPack()) {
2731         assert(!NewTypeParm->hasDefaultArgument() &&
2732                "Parameter packs can't have a default argument!");
2733         SawParameterPack = true;
2734       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2735                  NewTypeParm->hasDefaultArgument() &&
2736                  (!SkipBody || !SkipBody->ShouldSkip)) {
2737         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2738         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2739         SawDefaultArgument = true;
2740 
2741         if (!OldTypeParm->getOwningModule() ||
2742             isModuleUnitOfCurrentTU(OldTypeParm->getOwningModule()))
2743           RedundantDefaultArg = true;
2744         else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2745                                                                 NewTypeParm)) {
2746           InconsistentDefaultArg = true;
2747           PrevModuleName =
2748               OldTypeParm->getImportedOwningModule()->getFullModuleName();
2749         }
2750         PreviousDefaultArgLoc = NewDefaultLoc;
2751       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2752         // Merge the default argument from the old declaration to the
2753         // new declaration.
2754         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2755         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2756       } else if (NewTypeParm->hasDefaultArgument()) {
2757         SawDefaultArgument = true;
2758         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2759       } else if (SawDefaultArgument)
2760         MissingDefaultArg = true;
2761     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2762                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2763       // Check for unexpanded parameter packs.
2764       if (!NewNonTypeParm->isParameterPack() &&
2765           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2766                                           NewNonTypeParm->getTypeSourceInfo(),
2767                                           UPPC_NonTypeTemplateParameterType)) {
2768         Invalid = true;
2769         continue;
2770       }
2771 
2772       // Check the presence of a default argument here.
2773       if (NewNonTypeParm->hasDefaultArgument() &&
2774           DiagnoseDefaultTemplateArgument(*this, TPC,
2775                                           NewNonTypeParm->getLocation(),
2776                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2777         NewNonTypeParm->removeDefaultArgument();
2778       }
2779 
2780       // Merge default arguments for non-type template parameters
2781       NonTypeTemplateParmDecl *OldNonTypeParm
2782         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2783       if (NewNonTypeParm->isParameterPack()) {
2784         assert(!NewNonTypeParm->hasDefaultArgument() &&
2785                "Parameter packs can't have a default argument!");
2786         if (!NewNonTypeParm->isPackExpansion())
2787           SawParameterPack = true;
2788       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2789                  NewNonTypeParm->hasDefaultArgument() &&
2790                  (!SkipBody || !SkipBody->ShouldSkip)) {
2791         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2792         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2793         SawDefaultArgument = true;
2794         if (!OldNonTypeParm->getOwningModule() ||
2795             isModuleUnitOfCurrentTU(OldNonTypeParm->getOwningModule()))
2796           RedundantDefaultArg = true;
2797         else if (!getASTContext().isSameDefaultTemplateArgument(
2798                      OldNonTypeParm, NewNonTypeParm)) {
2799           InconsistentDefaultArg = true;
2800           PrevModuleName =
2801               OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
2802         }
2803         PreviousDefaultArgLoc = NewDefaultLoc;
2804       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2805         // Merge the default argument from the old declaration to the
2806         // new declaration.
2807         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2808         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2809       } else if (NewNonTypeParm->hasDefaultArgument()) {
2810         SawDefaultArgument = true;
2811         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2812       } else if (SawDefaultArgument)
2813         MissingDefaultArg = true;
2814     } else {
2815       TemplateTemplateParmDecl *NewTemplateParm
2816         = cast<TemplateTemplateParmDecl>(*NewParam);
2817 
2818       // Check for unexpanded parameter packs, recursively.
2819       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2820         Invalid = true;
2821         continue;
2822       }
2823 
2824       // Check the presence of a default argument here.
2825       if (NewTemplateParm->hasDefaultArgument() &&
2826           DiagnoseDefaultTemplateArgument(*this, TPC,
2827                                           NewTemplateParm->getLocation(),
2828                      NewTemplateParm->getDefaultArgument().getSourceRange()))
2829         NewTemplateParm->removeDefaultArgument();
2830 
2831       // Merge default arguments for template template parameters
2832       TemplateTemplateParmDecl *OldTemplateParm
2833         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2834       if (NewTemplateParm->isParameterPack()) {
2835         assert(!NewTemplateParm->hasDefaultArgument() &&
2836                "Parameter packs can't have a default argument!");
2837         if (!NewTemplateParm->isPackExpansion())
2838           SawParameterPack = true;
2839       } else if (OldTemplateParm &&
2840                  hasVisibleDefaultArgument(OldTemplateParm) &&
2841                  NewTemplateParm->hasDefaultArgument() &&
2842                  (!SkipBody || !SkipBody->ShouldSkip)) {
2843         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2844         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2845         SawDefaultArgument = true;
2846         if (!OldTemplateParm->getOwningModule() ||
2847             isModuleUnitOfCurrentTU(OldTemplateParm->getOwningModule()))
2848           RedundantDefaultArg = true;
2849         else if (!getASTContext().isSameDefaultTemplateArgument(
2850                      OldTemplateParm, NewTemplateParm)) {
2851           InconsistentDefaultArg = true;
2852           PrevModuleName =
2853               OldTemplateParm->getImportedOwningModule()->getFullModuleName();
2854         }
2855         PreviousDefaultArgLoc = NewDefaultLoc;
2856       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2857         // Merge the default argument from the old declaration to the
2858         // new declaration.
2859         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2860         PreviousDefaultArgLoc
2861           = OldTemplateParm->getDefaultArgument().getLocation();
2862       } else if (NewTemplateParm->hasDefaultArgument()) {
2863         SawDefaultArgument = true;
2864         PreviousDefaultArgLoc
2865           = NewTemplateParm->getDefaultArgument().getLocation();
2866       } else if (SawDefaultArgument)
2867         MissingDefaultArg = true;
2868     }
2869 
2870     // C++11 [temp.param]p11:
2871     //   If a template parameter of a primary class template or alias template
2872     //   is a template parameter pack, it shall be the last template parameter.
2873     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2874         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2875          TPC == TPC_TypeAliasTemplate)) {
2876       Diag((*NewParam)->getLocation(),
2877            diag::err_template_param_pack_must_be_last_template_parameter);
2878       Invalid = true;
2879     }
2880 
2881     // [basic.def.odr]/13:
2882     //     There can be more than one definition of a
2883     //     ...
2884     //     default template argument
2885     //     ...
2886     //     in a program provided that each definition appears in a different
2887     //     translation unit and the definitions satisfy the [same-meaning
2888     //     criteria of the ODR].
2889     //
2890     // Simply, the design of modules allows the definition of template default
2891     // argument to be repeated across translation unit. Note that the ODR is
2892     // checked elsewhere. But it is still not allowed to repeat template default
2893     // argument in the same translation unit.
2894     if (RedundantDefaultArg) {
2895       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2896       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2897       Invalid = true;
2898     } else if (InconsistentDefaultArg) {
2899       // We could only diagnose about the case that the OldParam is imported.
2900       // The case NewParam is imported should be handled in ASTReader.
2901       Diag(NewDefaultLoc,
2902            diag::err_template_param_default_arg_inconsistent_redefinition);
2903       Diag(OldDefaultLoc,
2904            diag::note_template_param_prev_default_arg_in_other_module)
2905           << PrevModuleName;
2906       Invalid = true;
2907     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2908       // C++ [temp.param]p11:
2909       //   If a template-parameter of a class template has a default
2910       //   template-argument, each subsequent template-parameter shall either
2911       //   have a default template-argument supplied or be a template parameter
2912       //   pack.
2913       Diag((*NewParam)->getLocation(),
2914            diag::err_template_param_default_arg_missing);
2915       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2916       Invalid = true;
2917       RemoveDefaultArguments = true;
2918     }
2919 
2920     // If we have an old template parameter list that we're merging
2921     // in, move on to the next parameter.
2922     if (OldParams)
2923       ++OldParam;
2924   }
2925 
2926   // We were missing some default arguments at the end of the list, so remove
2927   // all of the default arguments.
2928   if (RemoveDefaultArguments) {
2929     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2930                                       NewParamEnd = NewParams->end();
2931          NewParam != NewParamEnd; ++NewParam) {
2932       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2933         TTP->removeDefaultArgument();
2934       else if (NonTypeTemplateParmDecl *NTTP
2935                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2936         NTTP->removeDefaultArgument();
2937       else
2938         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2939     }
2940   }
2941 
2942   return Invalid;
2943 }
2944 
2945 namespace {
2946 
2947 /// A class which looks for a use of a certain level of template
2948 /// parameter.
2949 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2950   typedef RecursiveASTVisitor<DependencyChecker> super;
2951 
2952   unsigned Depth;
2953 
2954   // Whether we're looking for a use of a template parameter that makes the
2955   // overall construct type-dependent / a dependent type. This is strictly
2956   // best-effort for now; we may fail to match at all for a dependent type
2957   // in some cases if this is set.
2958   bool IgnoreNonTypeDependent;
2959 
2960   bool Match;
2961   SourceLocation MatchLoc;
2962 
2963   DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2964       : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2965         Match(false) {}
2966 
2967   DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2968       : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2969     NamedDecl *ND = Params->getParam(0);
2970     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2971       Depth = PD->getDepth();
2972     } else if (NonTypeTemplateParmDecl *PD =
2973                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2974       Depth = PD->getDepth();
2975     } else {
2976       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2977     }
2978   }
2979 
2980   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2981     if (ParmDepth >= Depth) {
2982       Match = true;
2983       MatchLoc = Loc;
2984       return true;
2985     }
2986     return false;
2987   }
2988 
2989   bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2990     // Prune out non-type-dependent expressions if requested. This can
2991     // sometimes result in us failing to find a template parameter reference
2992     // (if a value-dependent expression creates a dependent type), but this
2993     // mode is best-effort only.
2994     if (auto *E = dyn_cast_or_null<Expr>(S))
2995       if (IgnoreNonTypeDependent && !E->isTypeDependent())
2996         return true;
2997     return super::TraverseStmt(S, Q);
2998   }
2999 
3000   bool TraverseTypeLoc(TypeLoc TL) {
3001     if (IgnoreNonTypeDependent && !TL.isNull() &&
3002         !TL.getType()->isDependentType())
3003       return true;
3004     return super::TraverseTypeLoc(TL);
3005   }
3006 
3007   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3008     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
3009   }
3010 
3011   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3012     // For a best-effort search, keep looking until we find a location.
3013     return IgnoreNonTypeDependent || !Matches(T->getDepth());
3014   }
3015 
3016   bool TraverseTemplateName(TemplateName N) {
3017     if (TemplateTemplateParmDecl *PD =
3018           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
3019       if (Matches(PD->getDepth()))
3020         return false;
3021     return super::TraverseTemplateName(N);
3022   }
3023 
3024   bool VisitDeclRefExpr(DeclRefExpr *E) {
3025     if (NonTypeTemplateParmDecl *PD =
3026           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
3027       if (Matches(PD->getDepth(), E->getExprLoc()))
3028         return false;
3029     return super::VisitDeclRefExpr(E);
3030   }
3031 
3032   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3033     return TraverseType(T->getReplacementType());
3034   }
3035 
3036   bool
3037   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3038     return TraverseTemplateArgument(T->getArgumentPack());
3039   }
3040 
3041   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3042     return TraverseType(T->getInjectedSpecializationType());
3043   }
3044 };
3045 } // end anonymous namespace
3046 
3047 /// Determines whether a given type depends on the given parameter
3048 /// list.
3049 static bool
3050 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3051   if (!Params->size())
3052     return false;
3053 
3054   DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3055   Checker.TraverseType(T);
3056   return Checker.Match;
3057 }
3058 
3059 // Find the source range corresponding to the named type in the given
3060 // nested-name-specifier, if any.
3061 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3062                                                        QualType T,
3063                                                        const CXXScopeSpec &SS) {
3064   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3065   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3066     if (const Type *CurType = NNS->getAsType()) {
3067       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3068         return NNSLoc.getTypeLoc().getSourceRange();
3069     } else
3070       break;
3071 
3072     NNSLoc = NNSLoc.getPrefix();
3073   }
3074 
3075   return SourceRange();
3076 }
3077 
3078 /// Match the given template parameter lists to the given scope
3079 /// specifier, returning the template parameter list that applies to the
3080 /// name.
3081 ///
3082 /// \param DeclStartLoc the start of the declaration that has a scope
3083 /// specifier or a template parameter list.
3084 ///
3085 /// \param DeclLoc The location of the declaration itself.
3086 ///
3087 /// \param SS the scope specifier that will be matched to the given template
3088 /// parameter lists. This scope specifier precedes a qualified name that is
3089 /// being declared.
3090 ///
3091 /// \param TemplateId The template-id following the scope specifier, if there
3092 /// is one. Used to check for a missing 'template<>'.
3093 ///
3094 /// \param ParamLists the template parameter lists, from the outermost to the
3095 /// innermost template parameter lists.
3096 ///
3097 /// \param IsFriend Whether to apply the slightly different rules for
3098 /// matching template parameters to scope specifiers in friend
3099 /// declarations.
3100 ///
3101 /// \param IsMemberSpecialization will be set true if the scope specifier
3102 /// denotes a fully-specialized type, and therefore this is a declaration of
3103 /// a member specialization.
3104 ///
3105 /// \returns the template parameter list, if any, that corresponds to the
3106 /// name that is preceded by the scope specifier @p SS. This template
3107 /// parameter list may have template parameters (if we're declaring a
3108 /// template) or may have no template parameters (if we're declaring a
3109 /// template specialization), or may be NULL (if what we're declaring isn't
3110 /// itself a template).
3111 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3112     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3113     TemplateIdAnnotation *TemplateId,
3114     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3115     bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3116   IsMemberSpecialization = false;
3117   Invalid = false;
3118 
3119   // The sequence of nested types to which we will match up the template
3120   // parameter lists. We first build this list by starting with the type named
3121   // by the nested-name-specifier and walking out until we run out of types.
3122   SmallVector<QualType, 4> NestedTypes;
3123   QualType T;
3124   if (SS.getScopeRep()) {
3125     if (CXXRecordDecl *Record
3126               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3127       T = Context.getTypeDeclType(Record);
3128     else
3129       T = QualType(SS.getScopeRep()->getAsType(), 0);
3130   }
3131 
3132   // If we found an explicit specialization that prevents us from needing
3133   // 'template<>' headers, this will be set to the location of that
3134   // explicit specialization.
3135   SourceLocation ExplicitSpecLoc;
3136 
3137   while (!T.isNull()) {
3138     NestedTypes.push_back(T);
3139 
3140     // Retrieve the parent of a record type.
3141     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3142       // If this type is an explicit specialization, we're done.
3143       if (ClassTemplateSpecializationDecl *Spec
3144           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3145         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3146             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3147           ExplicitSpecLoc = Spec->getLocation();
3148           break;
3149         }
3150       } else if (Record->getTemplateSpecializationKind()
3151                                                 == TSK_ExplicitSpecialization) {
3152         ExplicitSpecLoc = Record->getLocation();
3153         break;
3154       }
3155 
3156       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3157         T = Context.getTypeDeclType(Parent);
3158       else
3159         T = QualType();
3160       continue;
3161     }
3162 
3163     if (const TemplateSpecializationType *TST
3164                                      = T->getAs<TemplateSpecializationType>()) {
3165       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3166         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3167           T = Context.getTypeDeclType(Parent);
3168         else
3169           T = QualType();
3170         continue;
3171       }
3172     }
3173 
3174     // Look one step prior in a dependent template specialization type.
3175     if (const DependentTemplateSpecializationType *DependentTST
3176                           = T->getAs<DependentTemplateSpecializationType>()) {
3177       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3178         T = QualType(NNS->getAsType(), 0);
3179       else
3180         T = QualType();
3181       continue;
3182     }
3183 
3184     // Look one step prior in a dependent name type.
3185     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3186       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3187         T = QualType(NNS->getAsType(), 0);
3188       else
3189         T = QualType();
3190       continue;
3191     }
3192 
3193     // Retrieve the parent of an enumeration type.
3194     if (const EnumType *EnumT = T->getAs<EnumType>()) {
3195       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3196       // check here.
3197       EnumDecl *Enum = EnumT->getDecl();
3198 
3199       // Get to the parent type.
3200       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3201         T = Context.getTypeDeclType(Parent);
3202       else
3203         T = QualType();
3204       continue;
3205     }
3206 
3207     T = QualType();
3208   }
3209   // Reverse the nested types list, since we want to traverse from the outermost
3210   // to the innermost while checking template-parameter-lists.
3211   std::reverse(NestedTypes.begin(), NestedTypes.end());
3212 
3213   // C++0x [temp.expl.spec]p17:
3214   //   A member or a member template may be nested within many
3215   //   enclosing class templates. In an explicit specialization for
3216   //   such a member, the member declaration shall be preceded by a
3217   //   template<> for each enclosing class template that is
3218   //   explicitly specialized.
3219   bool SawNonEmptyTemplateParameterList = false;
3220 
3221   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3222     if (SawNonEmptyTemplateParameterList) {
3223       if (!SuppressDiagnostic)
3224         Diag(DeclLoc, diag::err_specialize_member_of_template)
3225           << !Recovery << Range;
3226       Invalid = true;
3227       IsMemberSpecialization = false;
3228       return true;
3229     }
3230 
3231     return false;
3232   };
3233 
3234   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3235     // Check that we can have an explicit specialization here.
3236     if (CheckExplicitSpecialization(Range, true))
3237       return true;
3238 
3239     // We don't have a template header, but we should.
3240     SourceLocation ExpectedTemplateLoc;
3241     if (!ParamLists.empty())
3242       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3243     else
3244       ExpectedTemplateLoc = DeclStartLoc;
3245 
3246     if (!SuppressDiagnostic)
3247       Diag(DeclLoc, diag::err_template_spec_needs_header)
3248         << Range
3249         << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3250     return false;
3251   };
3252 
3253   unsigned ParamIdx = 0;
3254   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3255        ++TypeIdx) {
3256     T = NestedTypes[TypeIdx];
3257 
3258     // Whether we expect a 'template<>' header.
3259     bool NeedEmptyTemplateHeader = false;
3260 
3261     // Whether we expect a template header with parameters.
3262     bool NeedNonemptyTemplateHeader = false;
3263 
3264     // For a dependent type, the set of template parameters that we
3265     // expect to see.
3266     TemplateParameterList *ExpectedTemplateParams = nullptr;
3267 
3268     // C++0x [temp.expl.spec]p15:
3269     //   A member or a member template may be nested within many enclosing
3270     //   class templates. In an explicit specialization for such a member, the
3271     //   member declaration shall be preceded by a template<> for each
3272     //   enclosing class template that is explicitly specialized.
3273     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3274       if (ClassTemplatePartialSpecializationDecl *Partial
3275             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3276         ExpectedTemplateParams = Partial->getTemplateParameters();
3277         NeedNonemptyTemplateHeader = true;
3278       } else if (Record->isDependentType()) {
3279         if (Record->getDescribedClassTemplate()) {
3280           ExpectedTemplateParams = Record->getDescribedClassTemplate()
3281                                                       ->getTemplateParameters();
3282           NeedNonemptyTemplateHeader = true;
3283         }
3284       } else if (ClassTemplateSpecializationDecl *Spec
3285                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3286         // C++0x [temp.expl.spec]p4:
3287         //   Members of an explicitly specialized class template are defined
3288         //   in the same manner as members of normal classes, and not using
3289         //   the template<> syntax.
3290         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3291           NeedEmptyTemplateHeader = true;
3292         else
3293           continue;
3294       } else if (Record->getTemplateSpecializationKind()) {
3295         if (Record->getTemplateSpecializationKind()
3296                                                 != TSK_ExplicitSpecialization &&
3297             TypeIdx == NumTypes - 1)
3298           IsMemberSpecialization = true;
3299 
3300         continue;
3301       }
3302     } else if (const TemplateSpecializationType *TST
3303                                      = T->getAs<TemplateSpecializationType>()) {
3304       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3305         ExpectedTemplateParams = Template->getTemplateParameters();
3306         NeedNonemptyTemplateHeader = true;
3307       }
3308     } else if (T->getAs<DependentTemplateSpecializationType>()) {
3309       // FIXME:  We actually could/should check the template arguments here
3310       // against the corresponding template parameter list.
3311       NeedNonemptyTemplateHeader = false;
3312     }
3313 
3314     // C++ [temp.expl.spec]p16:
3315     //   In an explicit specialization declaration for a member of a class
3316     //   template or a member template that ap- pears in namespace scope, the
3317     //   member template and some of its enclosing class templates may remain
3318     //   unspecialized, except that the declaration shall not explicitly
3319     //   specialize a class member template if its en- closing class templates
3320     //   are not explicitly specialized as well.
3321     if (ParamIdx < ParamLists.size()) {
3322       if (ParamLists[ParamIdx]->size() == 0) {
3323         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3324                                         false))
3325           return nullptr;
3326       } else
3327         SawNonEmptyTemplateParameterList = true;
3328     }
3329 
3330     if (NeedEmptyTemplateHeader) {
3331       // If we're on the last of the types, and we need a 'template<>' header
3332       // here, then it's a member specialization.
3333       if (TypeIdx == NumTypes - 1)
3334         IsMemberSpecialization = true;
3335 
3336       if (ParamIdx < ParamLists.size()) {
3337         if (ParamLists[ParamIdx]->size() > 0) {
3338           // The header has template parameters when it shouldn't. Complain.
3339           if (!SuppressDiagnostic)
3340             Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3341                  diag::err_template_param_list_matches_nontemplate)
3342               << T
3343               << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3344                              ParamLists[ParamIdx]->getRAngleLoc())
3345               << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3346           Invalid = true;
3347           return nullptr;
3348         }
3349 
3350         // Consume this template header.
3351         ++ParamIdx;
3352         continue;
3353       }
3354 
3355       if (!IsFriend)
3356         if (DiagnoseMissingExplicitSpecialization(
3357                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3358           return nullptr;
3359 
3360       continue;
3361     }
3362 
3363     if (NeedNonemptyTemplateHeader) {
3364       // In friend declarations we can have template-ids which don't
3365       // depend on the corresponding template parameter lists.  But
3366       // assume that empty parameter lists are supposed to match this
3367       // template-id.
3368       if (IsFriend && T->isDependentType()) {
3369         if (ParamIdx < ParamLists.size() &&
3370             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3371           ExpectedTemplateParams = nullptr;
3372         else
3373           continue;
3374       }
3375 
3376       if (ParamIdx < ParamLists.size()) {
3377         // Check the template parameter list, if we can.
3378         if (ExpectedTemplateParams &&
3379             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3380                                             ExpectedTemplateParams,
3381                                             !SuppressDiagnostic, TPL_TemplateMatch))
3382           Invalid = true;
3383 
3384         if (!Invalid &&
3385             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3386                                        TPC_ClassTemplateMember))
3387           Invalid = true;
3388 
3389         ++ParamIdx;
3390         continue;
3391       }
3392 
3393       if (!SuppressDiagnostic)
3394         Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3395           << T
3396           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3397       Invalid = true;
3398       continue;
3399     }
3400   }
3401 
3402   // If there were at least as many template-ids as there were template
3403   // parameter lists, then there are no template parameter lists remaining for
3404   // the declaration itself.
3405   if (ParamIdx >= ParamLists.size()) {
3406     if (TemplateId && !IsFriend) {
3407       // We don't have a template header for the declaration itself, but we
3408       // should.
3409       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3410                                                         TemplateId->RAngleLoc));
3411 
3412       // Fabricate an empty template parameter list for the invented header.
3413       return TemplateParameterList::Create(Context, SourceLocation(),
3414                                            SourceLocation(), None,
3415                                            SourceLocation(), nullptr);
3416     }
3417 
3418     return nullptr;
3419   }
3420 
3421   // If there were too many template parameter lists, complain about that now.
3422   if (ParamIdx < ParamLists.size() - 1) {
3423     bool HasAnyExplicitSpecHeader = false;
3424     bool AllExplicitSpecHeaders = true;
3425     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3426       if (ParamLists[I]->size() == 0)
3427         HasAnyExplicitSpecHeader = true;
3428       else
3429         AllExplicitSpecHeaders = false;
3430     }
3431 
3432     if (!SuppressDiagnostic)
3433       Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3434            AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3435                                   : diag::err_template_spec_extra_headers)
3436           << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3437                          ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3438 
3439     // If there was a specialization somewhere, such that 'template<>' is
3440     // not required, and there were any 'template<>' headers, note where the
3441     // specialization occurred.
3442     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3443         !SuppressDiagnostic)
3444       Diag(ExplicitSpecLoc,
3445            diag::note_explicit_template_spec_does_not_need_header)
3446         << NestedTypes.back();
3447 
3448     // We have a template parameter list with no corresponding scope, which
3449     // means that the resulting template declaration can't be instantiated
3450     // properly (we'll end up with dependent nodes when we shouldn't).
3451     if (!AllExplicitSpecHeaders)
3452       Invalid = true;
3453   }
3454 
3455   // C++ [temp.expl.spec]p16:
3456   //   In an explicit specialization declaration for a member of a class
3457   //   template or a member template that ap- pears in namespace scope, the
3458   //   member template and some of its enclosing class templates may remain
3459   //   unspecialized, except that the declaration shall not explicitly
3460   //   specialize a class member template if its en- closing class templates
3461   //   are not explicitly specialized as well.
3462   if (ParamLists.back()->size() == 0 &&
3463       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3464                                   false))
3465     return nullptr;
3466 
3467   // Return the last template parameter list, which corresponds to the
3468   // entity being declared.
3469   return ParamLists.back();
3470 }
3471 
3472 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3473   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3474     Diag(Template->getLocation(), diag::note_template_declared_here)
3475         << (isa<FunctionTemplateDecl>(Template)
3476                 ? 0
3477                 : isa<ClassTemplateDecl>(Template)
3478                       ? 1
3479                       : isa<VarTemplateDecl>(Template)
3480                             ? 2
3481                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3482         << Template->getDeclName();
3483     return;
3484   }
3485 
3486   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3487     for (OverloadedTemplateStorage::iterator I = OST->begin(),
3488                                           IEnd = OST->end();
3489          I != IEnd; ++I)
3490       Diag((*I)->getLocation(), diag::note_template_declared_here)
3491         << 0 << (*I)->getDeclName();
3492 
3493     return;
3494   }
3495 }
3496 
3497 static QualType
3498 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3499                            const SmallVectorImpl<TemplateArgument> &Converted,
3500                            SourceLocation TemplateLoc,
3501                            TemplateArgumentListInfo &TemplateArgs) {
3502   ASTContext &Context = SemaRef.getASTContext();
3503   switch (BTD->getBuiltinTemplateKind()) {
3504   case BTK__make_integer_seq: {
3505     // Specializations of __make_integer_seq<S, T, N> are treated like
3506     // S<T, 0, ..., N-1>.
3507 
3508     // C++14 [inteseq.intseq]p1:
3509     //   T shall be an integer type.
3510     if (!Converted[1].getAsType()->isIntegralType(Context)) {
3511       SemaRef.Diag(TemplateArgs[1].getLocation(),
3512                    diag::err_integer_sequence_integral_element_type);
3513       return QualType();
3514     }
3515 
3516     // C++14 [inteseq.make]p1:
3517     //   If N is negative the program is ill-formed.
3518     TemplateArgument NumArgsArg = Converted[2];
3519     llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3520     if (NumArgs < 0) {
3521       SemaRef.Diag(TemplateArgs[2].getLocation(),
3522                    diag::err_integer_sequence_negative_length);
3523       return QualType();
3524     }
3525 
3526     QualType ArgTy = NumArgsArg.getIntegralType();
3527     TemplateArgumentListInfo SyntheticTemplateArgs;
3528     // The type argument gets reused as the first template argument in the
3529     // synthetic template argument list.
3530     SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3531     // Expand N into 0 ... N-1.
3532     for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3533          I < NumArgs; ++I) {
3534       TemplateArgument TA(Context, I, ArgTy);
3535       SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3536           TA, ArgTy, TemplateArgs[2].getLocation()));
3537     }
3538     // The first template argument will be reused as the template decl that
3539     // our synthetic template arguments will be applied to.
3540     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3541                                        TemplateLoc, SyntheticTemplateArgs);
3542   }
3543 
3544   case BTK__type_pack_element:
3545     // Specializations of
3546     //    __type_pack_element<Index, T_1, ..., T_N>
3547     // are treated like T_Index.
3548     assert(Converted.size() == 2 &&
3549       "__type_pack_element should be given an index and a parameter pack");
3550 
3551     // If the Index is out of bounds, the program is ill-formed.
3552     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3553     llvm::APSInt Index = IndexArg.getAsIntegral();
3554     assert(Index >= 0 && "the index used with __type_pack_element should be of "
3555                          "type std::size_t, and hence be non-negative");
3556     if (Index >= Ts.pack_size()) {
3557       SemaRef.Diag(TemplateArgs[0].getLocation(),
3558                    diag::err_type_pack_element_out_of_bounds);
3559       return QualType();
3560     }
3561 
3562     // We simply return the type at index `Index`.
3563     auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3564     return Nth->getAsType();
3565   }
3566   llvm_unreachable("unexpected BuiltinTemplateDecl!");
3567 }
3568 
3569 /// Determine whether this alias template is "enable_if_t".
3570 /// libc++ >=14 uses "__enable_if_t" in C++11 mode.
3571 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3572   return AliasTemplate->getName().equals("enable_if_t") ||
3573          AliasTemplate->getName().equals("__enable_if_t");
3574 }
3575 
3576 /// Collect all of the separable terms in the given condition, which
3577 /// might be a conjunction.
3578 ///
3579 /// FIXME: The right answer is to convert the logical expression into
3580 /// disjunctive normal form, so we can find the first failed term
3581 /// within each possible clause.
3582 static void collectConjunctionTerms(Expr *Clause,
3583                                     SmallVectorImpl<Expr *> &Terms) {
3584   if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3585     if (BinOp->getOpcode() == BO_LAnd) {
3586       collectConjunctionTerms(BinOp->getLHS(), Terms);
3587       collectConjunctionTerms(BinOp->getRHS(), Terms);
3588     }
3589 
3590     return;
3591   }
3592 
3593   Terms.push_back(Clause);
3594 }
3595 
3596 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3597 // a left-hand side that is value-dependent but never true. Identify
3598 // the idiom and ignore that term.
3599 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3600   // Top-level '||'.
3601   auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3602   if (!BinOp) return Cond;
3603 
3604   if (BinOp->getOpcode() != BO_LOr) return Cond;
3605 
3606   // With an inner '==' that has a literal on the right-hand side.
3607   Expr *LHS = BinOp->getLHS();
3608   auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3609   if (!InnerBinOp) return Cond;
3610 
3611   if (InnerBinOp->getOpcode() != BO_EQ ||
3612       !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3613     return Cond;
3614 
3615   // If the inner binary operation came from a macro expansion named
3616   // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3617   // of the '||', which is the real, user-provided condition.
3618   SourceLocation Loc = InnerBinOp->getExprLoc();
3619   if (!Loc.isMacroID()) return Cond;
3620 
3621   StringRef MacroName = PP.getImmediateMacroName(Loc);
3622   if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3623     return BinOp->getRHS();
3624 
3625   return Cond;
3626 }
3627 
3628 namespace {
3629 
3630 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3631 // within failing boolean expression, such as substituting template parameters
3632 // for actual types.
3633 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3634 public:
3635   explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3636       : Policy(P) {}
3637 
3638   bool handledStmt(Stmt *E, raw_ostream &OS) override {
3639     const auto *DR = dyn_cast<DeclRefExpr>(E);
3640     if (DR && DR->getQualifier()) {
3641       // If this is a qualified name, expand the template arguments in nested
3642       // qualifiers.
3643       DR->getQualifier()->print(OS, Policy, true);
3644       // Then print the decl itself.
3645       const ValueDecl *VD = DR->getDecl();
3646       OS << VD->getName();
3647       if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3648         // This is a template variable, print the expanded template arguments.
3649         printTemplateArgumentList(
3650             OS, IV->getTemplateArgs().asArray(), Policy,
3651             IV->getSpecializedTemplate()->getTemplateParameters());
3652       }
3653       return true;
3654     }
3655     return false;
3656   }
3657 
3658 private:
3659   const PrintingPolicy Policy;
3660 };
3661 
3662 } // end anonymous namespace
3663 
3664 std::pair<Expr *, std::string>
3665 Sema::findFailedBooleanCondition(Expr *Cond) {
3666   Cond = lookThroughRangesV3Condition(PP, Cond);
3667 
3668   // Separate out all of the terms in a conjunction.
3669   SmallVector<Expr *, 4> Terms;
3670   collectConjunctionTerms(Cond, Terms);
3671 
3672   // Determine which term failed.
3673   Expr *FailedCond = nullptr;
3674   for (Expr *Term : Terms) {
3675     Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3676 
3677     // Literals are uninteresting.
3678     if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3679         isa<IntegerLiteral>(TermAsWritten))
3680       continue;
3681 
3682     // The initialization of the parameter from the argument is
3683     // a constant-evaluated context.
3684     EnterExpressionEvaluationContext ConstantEvaluated(
3685       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3686 
3687     bool Succeeded;
3688     if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3689         !Succeeded) {
3690       FailedCond = TermAsWritten;
3691       break;
3692     }
3693   }
3694   if (!FailedCond)
3695     FailedCond = Cond->IgnoreParenImpCasts();
3696 
3697   std::string Description;
3698   {
3699     llvm::raw_string_ostream Out(Description);
3700     PrintingPolicy Policy = getPrintingPolicy();
3701     Policy.PrintCanonicalTypes = true;
3702     FailedBooleanConditionPrinterHelper Helper(Policy);
3703     FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3704   }
3705   return { FailedCond, Description };
3706 }
3707 
3708 QualType Sema::CheckTemplateIdType(TemplateName Name,
3709                                    SourceLocation TemplateLoc,
3710                                    TemplateArgumentListInfo &TemplateArgs) {
3711   DependentTemplateName *DTN
3712     = Name.getUnderlying().getAsDependentTemplateName();
3713   if (DTN && DTN->isIdentifier())
3714     // When building a template-id where the template-name is dependent,
3715     // assume the template is a type template. Either our assumption is
3716     // correct, or the code is ill-formed and will be diagnosed when the
3717     // dependent name is substituted.
3718     return Context.getDependentTemplateSpecializationType(ETK_None,
3719                                                           DTN->getQualifier(),
3720                                                           DTN->getIdentifier(),
3721                                                           TemplateArgs);
3722 
3723   if (Name.getAsAssumedTemplateName() &&
3724       resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3725     return QualType();
3726 
3727   TemplateDecl *Template = Name.getAsTemplateDecl();
3728   if (!Template || isa<FunctionTemplateDecl>(Template) ||
3729       isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3730     // We might have a substituted template template parameter pack. If so,
3731     // build a template specialization type for it.
3732     if (Name.getAsSubstTemplateTemplateParmPack())
3733       return Context.getTemplateSpecializationType(Name, TemplateArgs);
3734 
3735     Diag(TemplateLoc, diag::err_template_id_not_a_type)
3736       << Name;
3737     NoteAllFoundTemplates(Name);
3738     return QualType();
3739   }
3740 
3741   // Check that the template argument list is well-formed for this
3742   // template.
3743   SmallVector<TemplateArgument, 4> Converted;
3744   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3745                                 false, Converted,
3746                                 /*UpdateArgsWithConversions=*/true))
3747     return QualType();
3748 
3749   QualType CanonType;
3750 
3751   if (TypeAliasTemplateDecl *AliasTemplate =
3752           dyn_cast<TypeAliasTemplateDecl>(Template)) {
3753 
3754     // Find the canonical type for this type alias template specialization.
3755     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3756     if (Pattern->isInvalidDecl())
3757       return QualType();
3758 
3759     TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3760                                            Converted);
3761 
3762     // Only substitute for the innermost template argument list.
3763     MultiLevelTemplateArgumentList TemplateArgLists;
3764     TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3765     TemplateArgLists.addOuterRetainedLevels(
3766         AliasTemplate->getTemplateParameters()->getDepth());
3767 
3768     LocalInstantiationScope Scope(*this);
3769     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3770     if (Inst.isInvalid())
3771       return QualType();
3772 
3773     CanonType = SubstType(Pattern->getUnderlyingType(),
3774                           TemplateArgLists, AliasTemplate->getLocation(),
3775                           AliasTemplate->getDeclName());
3776     if (CanonType.isNull()) {
3777       // If this was enable_if and we failed to find the nested type
3778       // within enable_if in a SFINAE context, dig out the specific
3779       // enable_if condition that failed and present that instead.
3780       if (isEnableIfAliasTemplate(AliasTemplate)) {
3781         if (auto DeductionInfo = isSFINAEContext()) {
3782           if (*DeductionInfo &&
3783               (*DeductionInfo)->hasSFINAEDiagnostic() &&
3784               (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3785                 diag::err_typename_nested_not_found_enable_if &&
3786               TemplateArgs[0].getArgument().getKind()
3787                 == TemplateArgument::Expression) {
3788             Expr *FailedCond;
3789             std::string FailedDescription;
3790             std::tie(FailedCond, FailedDescription) =
3791               findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3792 
3793             // Remove the old SFINAE diagnostic.
3794             PartialDiagnosticAt OldDiag =
3795               {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3796             (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3797 
3798             // Add a new SFINAE diagnostic specifying which condition
3799             // failed.
3800             (*DeductionInfo)->addSFINAEDiagnostic(
3801               OldDiag.first,
3802               PDiag(diag::err_typename_nested_not_found_requirement)
3803                 << FailedDescription
3804                 << FailedCond->getSourceRange());
3805           }
3806         }
3807       }
3808 
3809       return QualType();
3810     }
3811   } else if (Name.isDependent() ||
3812              TemplateSpecializationType::anyDependentTemplateArguments(
3813                  TemplateArgs, Converted)) {
3814     // This class template specialization is a dependent
3815     // type. Therefore, its canonical type is another class template
3816     // specialization type that contains all of the converted
3817     // arguments in canonical form. This ensures that, e.g., A<T> and
3818     // A<T, T> have identical types when A is declared as:
3819     //
3820     //   template<typename T, typename U = T> struct A;
3821     CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3822 
3823     // This might work out to be a current instantiation, in which
3824     // case the canonical type needs to be the InjectedClassNameType.
3825     //
3826     // TODO: in theory this could be a simple hashtable lookup; most
3827     // changes to CurContext don't change the set of current
3828     // instantiations.
3829     if (isa<ClassTemplateDecl>(Template)) {
3830       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3831         // If we get out to a namespace, we're done.
3832         if (Ctx->isFileContext()) break;
3833 
3834         // If this isn't a record, keep looking.
3835         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3836         if (!Record) continue;
3837 
3838         // Look for one of the two cases with InjectedClassNameTypes
3839         // and check whether it's the same template.
3840         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3841             !Record->getDescribedClassTemplate())
3842           continue;
3843 
3844         // Fetch the injected class name type and check whether its
3845         // injected type is equal to the type we just built.
3846         QualType ICNT = Context.getTypeDeclType(Record);
3847         QualType Injected = cast<InjectedClassNameType>(ICNT)
3848           ->getInjectedSpecializationType();
3849 
3850         if (CanonType != Injected->getCanonicalTypeInternal())
3851           continue;
3852 
3853         // If so, the canonical type of this TST is the injected
3854         // class name type of the record we just found.
3855         assert(ICNT.isCanonical());
3856         CanonType = ICNT;
3857         break;
3858       }
3859     }
3860   } else if (ClassTemplateDecl *ClassTemplate
3861                = dyn_cast<ClassTemplateDecl>(Template)) {
3862     // Find the class template specialization declaration that
3863     // corresponds to these arguments.
3864     void *InsertPos = nullptr;
3865     ClassTemplateSpecializationDecl *Decl
3866       = ClassTemplate->findSpecialization(Converted, InsertPos);
3867     if (!Decl) {
3868       // This is the first time we have referenced this class template
3869       // specialization. Create the canonical declaration and add it to
3870       // the set of specializations.
3871       Decl = ClassTemplateSpecializationDecl::Create(
3872           Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3873           ClassTemplate->getDeclContext(),
3874           ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3875           ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3876       ClassTemplate->AddSpecialization(Decl, InsertPos);
3877       if (ClassTemplate->isOutOfLine())
3878         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3879     }
3880 
3881     if (Decl->getSpecializationKind() == TSK_Undeclared &&
3882         ClassTemplate->getTemplatedDecl()->hasAttrs()) {
3883       InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
3884       if (!Inst.isInvalid()) {
3885         MultiLevelTemplateArgumentList TemplateArgLists;
3886         TemplateArgLists.addOuterTemplateArguments(Converted);
3887         InstantiateAttrsForDecl(TemplateArgLists,
3888                                 ClassTemplate->getTemplatedDecl(), Decl);
3889       }
3890     }
3891 
3892     // Diagnose uses of this specialization.
3893     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3894 
3895     CanonType = Context.getTypeDeclType(Decl);
3896     assert(isa<RecordType>(CanonType) &&
3897            "type of non-dependent specialization is not a RecordType");
3898   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3899     CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3900                                            TemplateArgs);
3901   }
3902 
3903   // Build the fully-sugared type for this class template
3904   // specialization, which refers back to the class template
3905   // specialization we created or found.
3906   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3907 }
3908 
3909 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3910                                            TemplateNameKind &TNK,
3911                                            SourceLocation NameLoc,
3912                                            IdentifierInfo *&II) {
3913   assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
3914 
3915   TemplateName Name = ParsedName.get();
3916   auto *ATN = Name.getAsAssumedTemplateName();
3917   assert(ATN && "not an assumed template name");
3918   II = ATN->getDeclName().getAsIdentifierInfo();
3919 
3920   if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3921     // Resolved to a type template name.
3922     ParsedName = TemplateTy::make(Name);
3923     TNK = TNK_Type_template;
3924   }
3925 }
3926 
3927 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3928                                             SourceLocation NameLoc,
3929                                             bool Diagnose) {
3930   // We assumed this undeclared identifier to be an (ADL-only) function
3931   // template name, but it was used in a context where a type was required.
3932   // Try to typo-correct it now.
3933   AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3934   assert(ATN && "not an assumed template name");
3935 
3936   LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3937   struct CandidateCallback : CorrectionCandidateCallback {
3938     bool ValidateCandidate(const TypoCorrection &TC) override {
3939       return TC.getCorrectionDecl() &&
3940              getAsTypeTemplateDecl(TC.getCorrectionDecl());
3941     }
3942     std::unique_ptr<CorrectionCandidateCallback> clone() override {
3943       return std::make_unique<CandidateCallback>(*this);
3944     }
3945   } FilterCCC;
3946 
3947   TypoCorrection Corrected =
3948       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3949                   FilterCCC, CTK_ErrorRecovery);
3950   if (Corrected && Corrected.getFoundDecl()) {
3951     diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3952                                 << ATN->getDeclName());
3953     Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3954     return false;
3955   }
3956 
3957   if (Diagnose)
3958     Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3959   return true;
3960 }
3961 
3962 TypeResult Sema::ActOnTemplateIdType(
3963     Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3964     TemplateTy TemplateD, IdentifierInfo *TemplateII,
3965     SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3966     ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3967     bool IsCtorOrDtorName, bool IsClassName) {
3968   if (SS.isInvalid())
3969     return true;
3970 
3971   if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3972     DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3973 
3974     // C++ [temp.res]p3:
3975     //   A qualified-id that refers to a type and in which the
3976     //   nested-name-specifier depends on a template-parameter (14.6.2)
3977     //   shall be prefixed by the keyword typename to indicate that the
3978     //   qualified-id denotes a type, forming an
3979     //   elaborated-type-specifier (7.1.5.3).
3980     if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3981       Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3982         << SS.getScopeRep() << TemplateII->getName();
3983       // Recover as if 'typename' were specified.
3984       // FIXME: This is not quite correct recovery as we don't transform SS
3985       // into the corresponding dependent form (and we don't diagnose missing
3986       // 'template' keywords within SS as a result).
3987       return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3988                                TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3989                                TemplateArgsIn, RAngleLoc);
3990     }
3991 
3992     // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3993     // it's not actually allowed to be used as a type in most cases. Because
3994     // we annotate it before we know whether it's valid, we have to check for
3995     // this case here.
3996     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3997     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3998       Diag(TemplateIILoc,
3999            TemplateKWLoc.isInvalid()
4000                ? diag::err_out_of_line_qualified_id_type_names_constructor
4001                : diag::ext_out_of_line_qualified_id_type_names_constructor)
4002         << TemplateII << 0 /*injected-class-name used as template name*/
4003         << 1 /*if any keyword was present, it was 'template'*/;
4004     }
4005   }
4006 
4007   TemplateName Template = TemplateD.get();
4008   if (Template.getAsAssumedTemplateName() &&
4009       resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
4010     return true;
4011 
4012   // Translate the parser's template argument list in our AST format.
4013   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4014   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4015 
4016   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4017     QualType T
4018       = Context.getDependentTemplateSpecializationType(ETK_None,
4019                                                        DTN->getQualifier(),
4020                                                        DTN->getIdentifier(),
4021                                                        TemplateArgs);
4022     // Build type-source information.
4023     TypeLocBuilder TLB;
4024     DependentTemplateSpecializationTypeLoc SpecTL
4025       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4026     SpecTL.setElaboratedKeywordLoc(SourceLocation());
4027     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4028     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4029     SpecTL.setTemplateNameLoc(TemplateIILoc);
4030     SpecTL.setLAngleLoc(LAngleLoc);
4031     SpecTL.setRAngleLoc(RAngleLoc);
4032     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4033       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4034     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4035   }
4036 
4037   QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
4038   if (Result.isNull())
4039     return true;
4040 
4041   // Build type-source information.
4042   TypeLocBuilder TLB;
4043   TemplateSpecializationTypeLoc SpecTL
4044     = TLB.push<TemplateSpecializationTypeLoc>(Result);
4045   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4046   SpecTL.setTemplateNameLoc(TemplateIILoc);
4047   SpecTL.setLAngleLoc(LAngleLoc);
4048   SpecTL.setRAngleLoc(RAngleLoc);
4049   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4050     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4051 
4052   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
4053   // constructor or destructor name (in such a case, the scope specifier
4054   // will be attached to the enclosing Decl or Expr node).
4055   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
4056     // Create an elaborated-type-specifier containing the nested-name-specifier.
4057     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
4058     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4059     ElabTL.setElaboratedKeywordLoc(SourceLocation());
4060     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4061   }
4062 
4063   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4064 }
4065 
4066 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4067                                         TypeSpecifierType TagSpec,
4068                                         SourceLocation TagLoc,
4069                                         CXXScopeSpec &SS,
4070                                         SourceLocation TemplateKWLoc,
4071                                         TemplateTy TemplateD,
4072                                         SourceLocation TemplateLoc,
4073                                         SourceLocation LAngleLoc,
4074                                         ASTTemplateArgsPtr TemplateArgsIn,
4075                                         SourceLocation RAngleLoc) {
4076   if (SS.isInvalid())
4077     return TypeResult(true);
4078 
4079   TemplateName Template = TemplateD.get();
4080 
4081   // Translate the parser's template argument list in our AST format.
4082   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4083   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4084 
4085   // Determine the tag kind
4086   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4087   ElaboratedTypeKeyword Keyword
4088     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4089 
4090   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4091     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
4092                                                           DTN->getQualifier(),
4093                                                           DTN->getIdentifier(),
4094                                                                 TemplateArgs);
4095 
4096     // Build type-source information.
4097     TypeLocBuilder TLB;
4098     DependentTemplateSpecializationTypeLoc SpecTL
4099       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4100     SpecTL.setElaboratedKeywordLoc(TagLoc);
4101     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4102     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4103     SpecTL.setTemplateNameLoc(TemplateLoc);
4104     SpecTL.setLAngleLoc(LAngleLoc);
4105     SpecTL.setRAngleLoc(RAngleLoc);
4106     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4107       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4108     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4109   }
4110 
4111   if (TypeAliasTemplateDecl *TAT =
4112         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4113     // C++0x [dcl.type.elab]p2:
4114     //   If the identifier resolves to a typedef-name or the simple-template-id
4115     //   resolves to an alias template specialization, the
4116     //   elaborated-type-specifier is ill-formed.
4117     Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4118         << TAT << NTK_TypeAliasTemplate << TagKind;
4119     Diag(TAT->getLocation(), diag::note_declared_at);
4120   }
4121 
4122   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4123   if (Result.isNull())
4124     return TypeResult(true);
4125 
4126   // Check the tag kind
4127   if (const RecordType *RT = Result->getAs<RecordType>()) {
4128     RecordDecl *D = RT->getDecl();
4129 
4130     IdentifierInfo *Id = D->getIdentifier();
4131     assert(Id && "templated class must have an identifier");
4132 
4133     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4134                                       TagLoc, Id)) {
4135       Diag(TagLoc, diag::err_use_with_wrong_tag)
4136         << Result
4137         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4138       Diag(D->getLocation(), diag::note_previous_use);
4139     }
4140   }
4141 
4142   // Provide source-location information for the template specialization.
4143   TypeLocBuilder TLB;
4144   TemplateSpecializationTypeLoc SpecTL
4145     = TLB.push<TemplateSpecializationTypeLoc>(Result);
4146   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4147   SpecTL.setTemplateNameLoc(TemplateLoc);
4148   SpecTL.setLAngleLoc(LAngleLoc);
4149   SpecTL.setRAngleLoc(RAngleLoc);
4150   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4151     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4152 
4153   // Construct an elaborated type containing the nested-name-specifier (if any)
4154   // and tag keyword.
4155   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4156   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4157   ElabTL.setElaboratedKeywordLoc(TagLoc);
4158   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4159   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4160 }
4161 
4162 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4163                                              NamedDecl *PrevDecl,
4164                                              SourceLocation Loc,
4165                                              bool IsPartialSpecialization);
4166 
4167 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4168 
4169 static bool isTemplateArgumentTemplateParameter(
4170     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4171   switch (Arg.getKind()) {
4172   case TemplateArgument::Null:
4173   case TemplateArgument::NullPtr:
4174   case TemplateArgument::Integral:
4175   case TemplateArgument::Declaration:
4176   case TemplateArgument::Pack:
4177   case TemplateArgument::TemplateExpansion:
4178     return false;
4179 
4180   case TemplateArgument::Type: {
4181     QualType Type = Arg.getAsType();
4182     const TemplateTypeParmType *TPT =
4183         Arg.getAsType()->getAs<TemplateTypeParmType>();
4184     return TPT && !Type.hasQualifiers() &&
4185            TPT->getDepth() == Depth && TPT->getIndex() == Index;
4186   }
4187 
4188   case TemplateArgument::Expression: {
4189     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4190     if (!DRE || !DRE->getDecl())
4191       return false;
4192     const NonTypeTemplateParmDecl *NTTP =
4193         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4194     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4195   }
4196 
4197   case TemplateArgument::Template:
4198     const TemplateTemplateParmDecl *TTP =
4199         dyn_cast_or_null<TemplateTemplateParmDecl>(
4200             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4201     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4202   }
4203   llvm_unreachable("unexpected kind of template argument");
4204 }
4205 
4206 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4207                                     ArrayRef<TemplateArgument> Args) {
4208   if (Params->size() != Args.size())
4209     return false;
4210 
4211   unsigned Depth = Params->getDepth();
4212 
4213   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4214     TemplateArgument Arg = Args[I];
4215 
4216     // If the parameter is a pack expansion, the argument must be a pack
4217     // whose only element is a pack expansion.
4218     if (Params->getParam(I)->isParameterPack()) {
4219       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4220           !Arg.pack_begin()->isPackExpansion())
4221         return false;
4222       Arg = Arg.pack_begin()->getPackExpansionPattern();
4223     }
4224 
4225     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4226       return false;
4227   }
4228 
4229   return true;
4230 }
4231 
4232 template<typename PartialSpecDecl>
4233 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4234   if (Partial->getDeclContext()->isDependentContext())
4235     return;
4236 
4237   // FIXME: Get the TDK from deduction in order to provide better diagnostics
4238   // for non-substitution-failure issues?
4239   TemplateDeductionInfo Info(Partial->getLocation());
4240   if (S.isMoreSpecializedThanPrimary(Partial, Info))
4241     return;
4242 
4243   auto *Template = Partial->getSpecializedTemplate();
4244   S.Diag(Partial->getLocation(),
4245          diag::ext_partial_spec_not_more_specialized_than_primary)
4246       << isa<VarTemplateDecl>(Template);
4247 
4248   if (Info.hasSFINAEDiagnostic()) {
4249     PartialDiagnosticAt Diag = {SourceLocation(),
4250                                 PartialDiagnostic::NullDiagnostic()};
4251     Info.takeSFINAEDiagnostic(Diag);
4252     SmallString<128> SFINAEArgString;
4253     Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4254     S.Diag(Diag.first,
4255            diag::note_partial_spec_not_more_specialized_than_primary)
4256       << SFINAEArgString;
4257   }
4258 
4259   S.Diag(Template->getLocation(), diag::note_template_decl_here);
4260   SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4261   Template->getAssociatedConstraints(TemplateAC);
4262   Partial->getAssociatedConstraints(PartialAC);
4263   S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4264                                                   TemplateAC);
4265 }
4266 
4267 static void
4268 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4269                            const llvm::SmallBitVector &DeducibleParams) {
4270   for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4271     if (!DeducibleParams[I]) {
4272       NamedDecl *Param = TemplateParams->getParam(I);
4273       if (Param->getDeclName())
4274         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4275             << Param->getDeclName();
4276       else
4277         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4278             << "(anonymous)";
4279     }
4280   }
4281 }
4282 
4283 
4284 template<typename PartialSpecDecl>
4285 static void checkTemplatePartialSpecialization(Sema &S,
4286                                                PartialSpecDecl *Partial) {
4287   // C++1z [temp.class.spec]p8: (DR1495)
4288   //   - The specialization shall be more specialized than the primary
4289   //     template (14.5.5.2).
4290   checkMoreSpecializedThanPrimary(S, Partial);
4291 
4292   // C++ [temp.class.spec]p8: (DR1315)
4293   //   - Each template-parameter shall appear at least once in the
4294   //     template-id outside a non-deduced context.
4295   // C++1z [temp.class.spec.match]p3 (P0127R2)
4296   //   If the template arguments of a partial specialization cannot be
4297   //   deduced because of the structure of its template-parameter-list
4298   //   and the template-id, the program is ill-formed.
4299   auto *TemplateParams = Partial->getTemplateParameters();
4300   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4301   S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4302                                TemplateParams->getDepth(), DeducibleParams);
4303 
4304   if (!DeducibleParams.all()) {
4305     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4306     S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4307       << isa<VarTemplatePartialSpecializationDecl>(Partial)
4308       << (NumNonDeducible > 1)
4309       << SourceRange(Partial->getLocation(),
4310                      Partial->getTemplateArgsAsWritten()->RAngleLoc);
4311     noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4312   }
4313 }
4314 
4315 void Sema::CheckTemplatePartialSpecialization(
4316     ClassTemplatePartialSpecializationDecl *Partial) {
4317   checkTemplatePartialSpecialization(*this, Partial);
4318 }
4319 
4320 void Sema::CheckTemplatePartialSpecialization(
4321     VarTemplatePartialSpecializationDecl *Partial) {
4322   checkTemplatePartialSpecialization(*this, Partial);
4323 }
4324 
4325 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4326   // C++1z [temp.param]p11:
4327   //   A template parameter of a deduction guide template that does not have a
4328   //   default-argument shall be deducible from the parameter-type-list of the
4329   //   deduction guide template.
4330   auto *TemplateParams = TD->getTemplateParameters();
4331   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4332   MarkDeducedTemplateParameters(TD, DeducibleParams);
4333   for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4334     // A parameter pack is deducible (to an empty pack).
4335     auto *Param = TemplateParams->getParam(I);
4336     if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4337       DeducibleParams[I] = true;
4338   }
4339 
4340   if (!DeducibleParams.all()) {
4341     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4342     Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4343       << (NumNonDeducible > 1);
4344     noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4345   }
4346 }
4347 
4348 DeclResult Sema::ActOnVarTemplateSpecialization(
4349     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4350     TemplateParameterList *TemplateParams, StorageClass SC,
4351     bool IsPartialSpecialization) {
4352   // D must be variable template id.
4353   assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4354          "Variable template specialization is declared with a template id.");
4355 
4356   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4357   TemplateArgumentListInfo TemplateArgs =
4358       makeTemplateArgumentListInfo(*this, *TemplateId);
4359   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4360   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4361   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4362 
4363   TemplateName Name = TemplateId->Template.get();
4364 
4365   // The template-id must name a variable template.
4366   VarTemplateDecl *VarTemplate =
4367       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4368   if (!VarTemplate) {
4369     NamedDecl *FnTemplate;
4370     if (auto *OTS = Name.getAsOverloadedTemplate())
4371       FnTemplate = *OTS->begin();
4372     else
4373       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4374     if (FnTemplate)
4375       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4376                << FnTemplate->getDeclName();
4377     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4378              << IsPartialSpecialization;
4379   }
4380 
4381   // Check for unexpanded parameter packs in any of the template arguments.
4382   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4383     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4384                                         UPPC_PartialSpecialization))
4385       return true;
4386 
4387   // Check that the template argument list is well-formed for this
4388   // template.
4389   SmallVector<TemplateArgument, 4> Converted;
4390   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4391                                 false, Converted,
4392                                 /*UpdateArgsWithConversions=*/true))
4393     return true;
4394 
4395   // Find the variable template (partial) specialization declaration that
4396   // corresponds to these arguments.
4397   if (IsPartialSpecialization) {
4398     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4399                                                TemplateArgs.size(), Converted))
4400       return true;
4401 
4402     // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4403     // also do them during instantiation.
4404     if (!Name.isDependent() &&
4405         !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
4406                                                                    Converted)) {
4407       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4408           << VarTemplate->getDeclName();
4409       IsPartialSpecialization = false;
4410     }
4411 
4412     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4413                                 Converted) &&
4414         (!Context.getLangOpts().CPlusPlus20 ||
4415          !TemplateParams->hasAssociatedConstraints())) {
4416       // C++ [temp.class.spec]p9b3:
4417       //
4418       //   -- The argument list of the specialization shall not be identical
4419       //      to the implicit argument list of the primary template.
4420       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4421         << /*variable template*/ 1
4422         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4423         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4424       // FIXME: Recover from this by treating the declaration as a redeclaration
4425       // of the primary template.
4426       return true;
4427     }
4428   }
4429 
4430   void *InsertPos = nullptr;
4431   VarTemplateSpecializationDecl *PrevDecl = nullptr;
4432 
4433   if (IsPartialSpecialization)
4434     PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
4435                                                       InsertPos);
4436   else
4437     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
4438 
4439   VarTemplateSpecializationDecl *Specialization = nullptr;
4440 
4441   // Check whether we can declare a variable template specialization in
4442   // the current scope.
4443   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4444                                        TemplateNameLoc,
4445                                        IsPartialSpecialization))
4446     return true;
4447 
4448   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4449     // Since the only prior variable template specialization with these
4450     // arguments was referenced but not declared,  reuse that
4451     // declaration node as our own, updating its source location and
4452     // the list of outer template parameters to reflect our new declaration.
4453     Specialization = PrevDecl;
4454     Specialization->setLocation(TemplateNameLoc);
4455     PrevDecl = nullptr;
4456   } else if (IsPartialSpecialization) {
4457     // Create a new class template partial specialization declaration node.
4458     VarTemplatePartialSpecializationDecl *PrevPartial =
4459         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4460     VarTemplatePartialSpecializationDecl *Partial =
4461         VarTemplatePartialSpecializationDecl::Create(
4462             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4463             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4464             Converted, TemplateArgs);
4465 
4466     if (!PrevPartial)
4467       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4468     Specialization = Partial;
4469 
4470     // If we are providing an explicit specialization of a member variable
4471     // template specialization, make a note of that.
4472     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4473       PrevPartial->setMemberSpecialization();
4474 
4475     CheckTemplatePartialSpecialization(Partial);
4476   } else {
4477     // Create a new class template specialization declaration node for
4478     // this explicit specialization or friend declaration.
4479     Specialization = VarTemplateSpecializationDecl::Create(
4480         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4481         VarTemplate, DI->getType(), DI, SC, Converted);
4482     Specialization->setTemplateArgsInfo(TemplateArgs);
4483 
4484     if (!PrevDecl)
4485       VarTemplate->AddSpecialization(Specialization, InsertPos);
4486   }
4487 
4488   // C++ [temp.expl.spec]p6:
4489   //   If a template, a member template or the member of a class template is
4490   //   explicitly specialized then that specialization shall be declared
4491   //   before the first use of that specialization that would cause an implicit
4492   //   instantiation to take place, in every translation unit in which such a
4493   //   use occurs; no diagnostic is required.
4494   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4495     bool Okay = false;
4496     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4497       // Is there any previous explicit specialization declaration?
4498       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4499         Okay = true;
4500         break;
4501       }
4502     }
4503 
4504     if (!Okay) {
4505       SourceRange Range(TemplateNameLoc, RAngleLoc);
4506       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4507           << Name << Range;
4508 
4509       Diag(PrevDecl->getPointOfInstantiation(),
4510            diag::note_instantiation_required_here)
4511           << (PrevDecl->getTemplateSpecializationKind() !=
4512               TSK_ImplicitInstantiation);
4513       return true;
4514     }
4515   }
4516 
4517   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4518   Specialization->setLexicalDeclContext(CurContext);
4519 
4520   // Add the specialization into its lexical context, so that it can
4521   // be seen when iterating through the list of declarations in that
4522   // context. However, specializations are not found by name lookup.
4523   CurContext->addDecl(Specialization);
4524 
4525   // Note that this is an explicit specialization.
4526   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4527 
4528   if (PrevDecl) {
4529     // Check that this isn't a redefinition of this specialization,
4530     // merging with previous declarations.
4531     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4532                           forRedeclarationInCurContext());
4533     PrevSpec.addDecl(PrevDecl);
4534     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4535   } else if (Specialization->isStaticDataMember() &&
4536              Specialization->isOutOfLine()) {
4537     Specialization->setAccess(VarTemplate->getAccess());
4538   }
4539 
4540   return Specialization;
4541 }
4542 
4543 namespace {
4544 /// A partial specialization whose template arguments have matched
4545 /// a given template-id.
4546 struct PartialSpecMatchResult {
4547   VarTemplatePartialSpecializationDecl *Partial;
4548   TemplateArgumentList *Args;
4549 };
4550 } // end anonymous namespace
4551 
4552 DeclResult
4553 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4554                          SourceLocation TemplateNameLoc,
4555                          const TemplateArgumentListInfo &TemplateArgs) {
4556   assert(Template && "A variable template id without template?");
4557 
4558   // Check that the template argument list is well-formed for this template.
4559   SmallVector<TemplateArgument, 4> Converted;
4560   if (CheckTemplateArgumentList(
4561           Template, TemplateNameLoc,
4562           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4563           Converted, /*UpdateArgsWithConversions=*/true))
4564     return true;
4565 
4566   // Produce a placeholder value if the specialization is dependent.
4567   if (Template->getDeclContext()->isDependentContext() ||
4568       TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
4569                                                                 Converted))
4570     return DeclResult();
4571 
4572   // Find the variable template specialization declaration that
4573   // corresponds to these arguments.
4574   void *InsertPos = nullptr;
4575   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
4576           Converted, InsertPos)) {
4577     checkSpecializationReachability(TemplateNameLoc, Spec);
4578     // If we already have a variable template specialization, return it.
4579     return Spec;
4580   }
4581 
4582   // This is the first time we have referenced this variable template
4583   // specialization. Create the canonical declaration and add it to
4584   // the set of specializations, based on the closest partial specialization
4585   // that it represents. That is,
4586   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4587   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4588                                        Converted);
4589   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4590   bool AmbiguousPartialSpec = false;
4591   typedef PartialSpecMatchResult MatchResult;
4592   SmallVector<MatchResult, 4> Matched;
4593   SourceLocation PointOfInstantiation = TemplateNameLoc;
4594   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4595                                             /*ForTakingAddress=*/false);
4596 
4597   // 1. Attempt to find the closest partial specialization that this
4598   // specializes, if any.
4599   // TODO: Unify with InstantiateClassTemplateSpecialization()?
4600   //       Perhaps better after unification of DeduceTemplateArguments() and
4601   //       getMoreSpecializedPartialSpecialization().
4602   SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4603   Template->getPartialSpecializations(PartialSpecs);
4604 
4605   for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4606     VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4607     TemplateDeductionInfo Info(FailedCandidates.getLocation());
4608 
4609     if (TemplateDeductionResult Result =
4610             DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4611       // Store the failed-deduction information for use in diagnostics, later.
4612       // TODO: Actually use the failed-deduction info?
4613       FailedCandidates.addCandidate().set(
4614           DeclAccessPair::make(Template, AS_public), Partial,
4615           MakeDeductionFailureInfo(Context, Result, Info));
4616       (void)Result;
4617     } else {
4618       Matched.push_back(PartialSpecMatchResult());
4619       Matched.back().Partial = Partial;
4620       Matched.back().Args = Info.take();
4621     }
4622   }
4623 
4624   if (Matched.size() >= 1) {
4625     SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4626     if (Matched.size() == 1) {
4627       //   -- If exactly one matching specialization is found, the
4628       //      instantiation is generated from that specialization.
4629       // We don't need to do anything for this.
4630     } else {
4631       //   -- If more than one matching specialization is found, the
4632       //      partial order rules (14.5.4.2) are used to determine
4633       //      whether one of the specializations is more specialized
4634       //      than the others. If none of the specializations is more
4635       //      specialized than all of the other matching
4636       //      specializations, then the use of the variable template is
4637       //      ambiguous and the program is ill-formed.
4638       for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4639                                                  PEnd = Matched.end();
4640            P != PEnd; ++P) {
4641         if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4642                                                     PointOfInstantiation) ==
4643             P->Partial)
4644           Best = P;
4645       }
4646 
4647       // Determine if the best partial specialization is more specialized than
4648       // the others.
4649       for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4650                                                  PEnd = Matched.end();
4651            P != PEnd; ++P) {
4652         if (P != Best && getMoreSpecializedPartialSpecialization(
4653                              P->Partial, Best->Partial,
4654                              PointOfInstantiation) != Best->Partial) {
4655           AmbiguousPartialSpec = true;
4656           break;
4657         }
4658       }
4659     }
4660 
4661     // Instantiate using the best variable template partial specialization.
4662     InstantiationPattern = Best->Partial;
4663     InstantiationArgs = Best->Args;
4664   } else {
4665     //   -- If no match is found, the instantiation is generated
4666     //      from the primary template.
4667     // InstantiationPattern = Template->getTemplatedDecl();
4668   }
4669 
4670   // 2. Create the canonical declaration.
4671   // Note that we do not instantiate a definition until we see an odr-use
4672   // in DoMarkVarDeclReferenced().
4673   // FIXME: LateAttrs et al.?
4674   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4675       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4676       Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4677   if (!Decl)
4678     return true;
4679 
4680   if (AmbiguousPartialSpec) {
4681     // Partial ordering did not produce a clear winner. Complain.
4682     Decl->setInvalidDecl();
4683     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4684         << Decl;
4685 
4686     // Print the matching partial specializations.
4687     for (MatchResult P : Matched)
4688       Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4689           << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4690                                              *P.Args);
4691     return true;
4692   }
4693 
4694   if (VarTemplatePartialSpecializationDecl *D =
4695           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4696     Decl->setInstantiationOf(D, InstantiationArgs);
4697 
4698   checkSpecializationReachability(TemplateNameLoc, Decl);
4699 
4700   assert(Decl && "No variable template specialization?");
4701   return Decl;
4702 }
4703 
4704 ExprResult
4705 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4706                          const DeclarationNameInfo &NameInfo,
4707                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
4708                          const TemplateArgumentListInfo *TemplateArgs) {
4709 
4710   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4711                                        *TemplateArgs);
4712   if (Decl.isInvalid())
4713     return ExprError();
4714 
4715   if (!Decl.get())
4716     return ExprResult();
4717 
4718   VarDecl *Var = cast<VarDecl>(Decl.get());
4719   if (!Var->getTemplateSpecializationKind())
4720     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4721                                        NameInfo.getLoc());
4722 
4723   // Build an ordinary singleton decl ref.
4724   return BuildDeclarationNameExpr(SS, NameInfo, Var,
4725                                   /*FoundD=*/nullptr, TemplateArgs);
4726 }
4727 
4728 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4729                                             SourceLocation Loc) {
4730   Diag(Loc, diag::err_template_missing_args)
4731     << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4732   if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4733     Diag(TD->getLocation(), diag::note_template_decl_here)
4734       << TD->getTemplateParameters()->getSourceRange();
4735   }
4736 }
4737 
4738 ExprResult
4739 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4740                              SourceLocation TemplateKWLoc,
4741                              const DeclarationNameInfo &ConceptNameInfo,
4742                              NamedDecl *FoundDecl,
4743                              ConceptDecl *NamedConcept,
4744                              const TemplateArgumentListInfo *TemplateArgs) {
4745   assert(NamedConcept && "A concept template id without a template?");
4746 
4747   llvm::SmallVector<TemplateArgument, 4> Converted;
4748   if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
4749                            const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
4750                                 /*PartialTemplateArgs=*/false, Converted,
4751                                 /*UpdateArgsWithConversions=*/false))
4752     return ExprError();
4753 
4754   ConstraintSatisfaction Satisfaction;
4755   bool AreArgsDependent =
4756       TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs,
4757                                                                 Converted);
4758   if (!AreArgsDependent &&
4759       CheckConstraintSatisfaction(
4760           NamedConcept, {NamedConcept->getConstraintExpr()}, Converted,
4761           SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
4762                       TemplateArgs->getRAngleLoc()),
4763           Satisfaction))
4764     return ExprError();
4765 
4766   return ConceptSpecializationExpr::Create(Context,
4767       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4768       TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4769       ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
4770       AreArgsDependent ? nullptr : &Satisfaction);
4771 }
4772 
4773 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4774                                      SourceLocation TemplateKWLoc,
4775                                      LookupResult &R,
4776                                      bool RequiresADL,
4777                                  const TemplateArgumentListInfo *TemplateArgs) {
4778   // FIXME: Can we do any checking at this point? I guess we could check the
4779   // template arguments that we have against the template name, if the template
4780   // name refers to a single template. That's not a terribly common case,
4781   // though.
4782   // foo<int> could identify a single function unambiguously
4783   // This approach does NOT work, since f<int>(1);
4784   // gets resolved prior to resorting to overload resolution
4785   // i.e., template<class T> void f(double);
4786   //       vs template<class T, class U> void f(U);
4787 
4788   // These should be filtered out by our callers.
4789   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
4790 
4791   // Non-function templates require a template argument list.
4792   if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4793     if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4794       diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4795       return ExprError();
4796     }
4797   }
4798 
4799   // In C++1y, check variable template ids.
4800   if (R.getAsSingle<VarTemplateDecl>()) {
4801     ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
4802                                         R.getAsSingle<VarTemplateDecl>(),
4803                                         TemplateKWLoc, TemplateArgs);
4804     if (Res.isInvalid() || Res.isUsable())
4805       return Res;
4806     // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
4807   }
4808 
4809   if (R.getAsSingle<ConceptDecl>()) {
4810     return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4811                                   R.getFoundDecl(),
4812                                   R.getAsSingle<ConceptDecl>(), TemplateArgs);
4813   }
4814 
4815   // We don't want lookup warnings at this point.
4816   R.suppressDiagnostics();
4817 
4818   UnresolvedLookupExpr *ULE
4819     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4820                                    SS.getWithLocInContext(Context),
4821                                    TemplateKWLoc,
4822                                    R.getLookupNameInfo(),
4823                                    RequiresADL, TemplateArgs,
4824                                    R.begin(), R.end());
4825 
4826   return ULE;
4827 }
4828 
4829 // We actually only call this from template instantiation.
4830 ExprResult
4831 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4832                                    SourceLocation TemplateKWLoc,
4833                                    const DeclarationNameInfo &NameInfo,
4834                              const TemplateArgumentListInfo *TemplateArgs) {
4835 
4836   assert(TemplateArgs || TemplateKWLoc.isValid());
4837   DeclContext *DC;
4838   if (!(DC = computeDeclContext(SS, false)) ||
4839       DC->isDependentContext() ||
4840       RequireCompleteDeclContext(SS, DC))
4841     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4842 
4843   bool MemberOfUnknownSpecialization;
4844   LookupResult R(*this, NameInfo, LookupOrdinaryName);
4845   if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4846                          /*Entering*/false, MemberOfUnknownSpecialization,
4847                          TemplateKWLoc))
4848     return ExprError();
4849 
4850   if (R.isAmbiguous())
4851     return ExprError();
4852 
4853   if (R.empty()) {
4854     Diag(NameInfo.getLoc(), diag::err_no_member)
4855       << NameInfo.getName() << DC << SS.getRange();
4856     return ExprError();
4857   }
4858 
4859   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4860     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4861       << SS.getScopeRep()
4862       << NameInfo.getName().getAsString() << SS.getRange();
4863     Diag(Temp->getLocation(), diag::note_referenced_class_template);
4864     return ExprError();
4865   }
4866 
4867   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4868 }
4869 
4870 /// Form a template name from a name that is syntactically required to name a
4871 /// template, either due to use of the 'template' keyword or because a name in
4872 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
4873 ///
4874 /// This action forms a template name given the name of the template and its
4875 /// optional scope specifier. This is used when the 'template' keyword is used
4876 /// or when the parsing context unambiguously treats a following '<' as
4877 /// introducing a template argument list. Note that this may produce a
4878 /// non-dependent template name if we can perform the lookup now and identify
4879 /// the named template.
4880 ///
4881 /// For example, given "x.MetaFun::template apply", the scope specifier
4882 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
4883 /// of the "template" keyword, and "apply" is the \p Name.
4884 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
4885                                          CXXScopeSpec &SS,
4886                                          SourceLocation TemplateKWLoc,
4887                                          const UnqualifiedId &Name,
4888                                          ParsedType ObjectType,
4889                                          bool EnteringContext,
4890                                          TemplateTy &Result,
4891                                          bool AllowInjectedClassName) {
4892   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4893     Diag(TemplateKWLoc,
4894          getLangOpts().CPlusPlus11 ?
4895            diag::warn_cxx98_compat_template_outside_of_template :
4896            diag::ext_template_outside_of_template)
4897       << FixItHint::CreateRemoval(TemplateKWLoc);
4898 
4899   if (SS.isInvalid())
4900     return TNK_Non_template;
4901 
4902   // Figure out where isTemplateName is going to look.
4903   DeclContext *LookupCtx = nullptr;
4904   if (SS.isNotEmpty())
4905     LookupCtx = computeDeclContext(SS, EnteringContext);
4906   else if (ObjectType)
4907     LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
4908 
4909   // C++0x [temp.names]p5:
4910   //   If a name prefixed by the keyword template is not the name of
4911   //   a template, the program is ill-formed. [Note: the keyword
4912   //   template may not be applied to non-template members of class
4913   //   templates. -end note ] [ Note: as is the case with the
4914   //   typename prefix, the template prefix is allowed in cases
4915   //   where it is not strictly necessary; i.e., when the
4916   //   nested-name-specifier or the expression on the left of the ->
4917   //   or . is not dependent on a template-parameter, or the use
4918   //   does not appear in the scope of a template. -end note]
4919   //
4920   // Note: C++03 was more strict here, because it banned the use of
4921   // the "template" keyword prior to a template-name that was not a
4922   // dependent name. C++ DR468 relaxed this requirement (the
4923   // "template" keyword is now permitted). We follow the C++0x
4924   // rules, even in C++03 mode with a warning, retroactively applying the DR.
4925   bool MemberOfUnknownSpecialization;
4926   TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4927                                         ObjectType, EnteringContext, Result,
4928                                         MemberOfUnknownSpecialization);
4929   if (TNK != TNK_Non_template) {
4930     // We resolved this to a (non-dependent) template name. Return it.
4931     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4932     if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
4933         Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4934         Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4935       // C++14 [class.qual]p2:
4936       //   In a lookup in which function names are not ignored and the
4937       //   nested-name-specifier nominates a class C, if the name specified
4938       //   [...] is the injected-class-name of C, [...] the name is instead
4939       //   considered to name the constructor
4940       //
4941       // We don't get here if naming the constructor would be valid, so we
4942       // just reject immediately and recover by treating the
4943       // injected-class-name as naming the template.
4944       Diag(Name.getBeginLoc(),
4945            diag::ext_out_of_line_qualified_id_type_names_constructor)
4946           << Name.Identifier
4947           << 0 /*injected-class-name used as template name*/
4948           << TemplateKWLoc.isValid();
4949     }
4950     return TNK;
4951   }
4952 
4953   if (!MemberOfUnknownSpecialization) {
4954     // Didn't find a template name, and the lookup wasn't dependent.
4955     // Do the lookup again to determine if this is a "nothing found" case or
4956     // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4957     // need to do this.
4958     DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4959     LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4960                    LookupOrdinaryName);
4961     bool MOUS;
4962     // Tell LookupTemplateName that we require a template so that it diagnoses
4963     // cases where it finds a non-template.
4964     RequiredTemplateKind RTK = TemplateKWLoc.isValid()
4965                                    ? RequiredTemplateKind(TemplateKWLoc)
4966                                    : TemplateNameIsRequired;
4967     if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
4968                             RTK, nullptr, /*AllowTypoCorrection=*/false) &&
4969         !R.isAmbiguous()) {
4970       if (LookupCtx)
4971         Diag(Name.getBeginLoc(), diag::err_no_member)
4972             << DNI.getName() << LookupCtx << SS.getRange();
4973       else
4974         Diag(Name.getBeginLoc(), diag::err_undeclared_use)
4975             << DNI.getName() << SS.getRange();
4976     }
4977     return TNK_Non_template;
4978   }
4979 
4980   NestedNameSpecifier *Qualifier = SS.getScopeRep();
4981 
4982   switch (Name.getKind()) {
4983   case UnqualifiedIdKind::IK_Identifier:
4984     Result = TemplateTy::make(
4985         Context.getDependentTemplateName(Qualifier, Name.Identifier));
4986     return TNK_Dependent_template_name;
4987 
4988   case UnqualifiedIdKind::IK_OperatorFunctionId:
4989     Result = TemplateTy::make(Context.getDependentTemplateName(
4990         Qualifier, Name.OperatorFunctionId.Operator));
4991     return TNK_Function_template;
4992 
4993   case UnqualifiedIdKind::IK_LiteralOperatorId:
4994     // This is a kind of template name, but can never occur in a dependent
4995     // scope (literal operators can only be declared at namespace scope).
4996     break;
4997 
4998   default:
4999     break;
5000   }
5001 
5002   // This name cannot possibly name a dependent template. Diagnose this now
5003   // rather than building a dependent template name that can never be valid.
5004   Diag(Name.getBeginLoc(),
5005        diag::err_template_kw_refers_to_dependent_non_template)
5006       << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5007       << TemplateKWLoc.isValid() << TemplateKWLoc;
5008   return TNK_Non_template;
5009 }
5010 
5011 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
5012                                      TemplateArgumentLoc &AL,
5013                           SmallVectorImpl<TemplateArgument> &Converted) {
5014   const TemplateArgument &Arg = AL.getArgument();
5015   QualType ArgType;
5016   TypeSourceInfo *TSI = nullptr;
5017 
5018   // Check template type parameter.
5019   switch(Arg.getKind()) {
5020   case TemplateArgument::Type:
5021     // C++ [temp.arg.type]p1:
5022     //   A template-argument for a template-parameter which is a
5023     //   type shall be a type-id.
5024     ArgType = Arg.getAsType();
5025     TSI = AL.getTypeSourceInfo();
5026     break;
5027   case TemplateArgument::Template:
5028   case TemplateArgument::TemplateExpansion: {
5029     // We have a template type parameter but the template argument
5030     // is a template without any arguments.
5031     SourceRange SR = AL.getSourceRange();
5032     TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5033     diagnoseMissingTemplateArguments(Name, SR.getEnd());
5034     return true;
5035   }
5036   case TemplateArgument::Expression: {
5037     // We have a template type parameter but the template argument is an
5038     // expression; see if maybe it is missing the "typename" keyword.
5039     CXXScopeSpec SS;
5040     DeclarationNameInfo NameInfo;
5041 
5042    if (DependentScopeDeclRefExpr *ArgExpr =
5043                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
5044       SS.Adopt(ArgExpr->getQualifierLoc());
5045       NameInfo = ArgExpr->getNameInfo();
5046     } else if (CXXDependentScopeMemberExpr *ArgExpr =
5047                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
5048       if (ArgExpr->isImplicitAccess()) {
5049         SS.Adopt(ArgExpr->getQualifierLoc());
5050         NameInfo = ArgExpr->getMemberNameInfo();
5051       }
5052     }
5053 
5054     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5055       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5056       LookupParsedName(Result, CurScope, &SS);
5057 
5058       if (Result.getAsSingle<TypeDecl>() ||
5059           Result.getResultKind() ==
5060               LookupResult::NotFoundInCurrentInstantiation) {
5061         assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
5062         // Suggest that the user add 'typename' before the NNS.
5063         SourceLocation Loc = AL.getSourceRange().getBegin();
5064         Diag(Loc, getLangOpts().MSVCCompat
5065                       ? diag::ext_ms_template_type_arg_missing_typename
5066                       : diag::err_template_arg_must_be_type_suggest)
5067             << FixItHint::CreateInsertion(Loc, "typename ");
5068         Diag(Param->getLocation(), diag::note_template_param_here);
5069 
5070         // Recover by synthesizing a type using the location information that we
5071         // already have.
5072         ArgType =
5073             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
5074         TypeLocBuilder TLB;
5075         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5076         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5077         TL.setQualifierLoc(SS.getWithLocInContext(Context));
5078         TL.setNameLoc(NameInfo.getLoc());
5079         TSI = TLB.getTypeSourceInfo(Context, ArgType);
5080 
5081         // Overwrite our input TemplateArgumentLoc so that we can recover
5082         // properly.
5083         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5084                                  TemplateArgumentLocInfo(TSI));
5085 
5086         break;
5087       }
5088     }
5089     // fallthrough
5090     LLVM_FALLTHROUGH;
5091   }
5092   default: {
5093     // We have a template type parameter but the template argument
5094     // is not a type.
5095     SourceRange SR = AL.getSourceRange();
5096     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5097     Diag(Param->getLocation(), diag::note_template_param_here);
5098 
5099     return true;
5100   }
5101   }
5102 
5103   if (CheckTemplateArgument(TSI))
5104     return true;
5105 
5106   // Add the converted template type argument.
5107   ArgType = Context.getCanonicalType(ArgType);
5108 
5109   // Objective-C ARC:
5110   //   If an explicitly-specified template argument type is a lifetime type
5111   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5112   if (getLangOpts().ObjCAutoRefCount &&
5113       ArgType->isObjCLifetimeType() &&
5114       !ArgType.getObjCLifetime()) {
5115     Qualifiers Qs;
5116     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5117     ArgType = Context.getQualifiedType(ArgType, Qs);
5118   }
5119 
5120   Converted.push_back(TemplateArgument(ArgType));
5121   return false;
5122 }
5123 
5124 /// Substitute template arguments into the default template argument for
5125 /// the given template type parameter.
5126 ///
5127 /// \param SemaRef the semantic analysis object for which we are performing
5128 /// the substitution.
5129 ///
5130 /// \param Template the template that we are synthesizing template arguments
5131 /// for.
5132 ///
5133 /// \param TemplateLoc the location of the template name that started the
5134 /// template-id we are checking.
5135 ///
5136 /// \param RAngleLoc the location of the right angle bracket ('>') that
5137 /// terminates the template-id.
5138 ///
5139 /// \param Param the template template parameter whose default we are
5140 /// substituting into.
5141 ///
5142 /// \param Converted the list of template arguments provided for template
5143 /// parameters that precede \p Param in the template parameter list.
5144 /// \returns the substituted template argument, or NULL if an error occurred.
5145 static TypeSourceInfo *
5146 SubstDefaultTemplateArgument(Sema &SemaRef,
5147                              TemplateDecl *Template,
5148                              SourceLocation TemplateLoc,
5149                              SourceLocation RAngleLoc,
5150                              TemplateTypeParmDecl *Param,
5151                              SmallVectorImpl<TemplateArgument> &Converted) {
5152   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5153 
5154   // If the argument type is dependent, instantiate it now based
5155   // on the previously-computed template arguments.
5156   if (ArgType->getType()->isInstantiationDependentType()) {
5157     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5158                                      Param, Template, Converted,
5159                                      SourceRange(TemplateLoc, RAngleLoc));
5160     if (Inst.isInvalid())
5161       return nullptr;
5162 
5163     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5164 
5165     // Only substitute for the innermost template argument list.
5166     MultiLevelTemplateArgumentList TemplateArgLists;
5167     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5168     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5169       TemplateArgLists.addOuterTemplateArguments(None);
5170 
5171     bool ForLambdaCallOperator = false;
5172     if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5173       ForLambdaCallOperator = Rec->isLambda();
5174     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5175                                    !ForLambdaCallOperator);
5176     ArgType =
5177         SemaRef.SubstType(ArgType, TemplateArgLists,
5178                           Param->getDefaultArgumentLoc(), Param->getDeclName());
5179   }
5180 
5181   return ArgType;
5182 }
5183 
5184 /// Substitute template arguments into the default template argument for
5185 /// the given non-type template parameter.
5186 ///
5187 /// \param SemaRef the semantic analysis object for which we are performing
5188 /// the substitution.
5189 ///
5190 /// \param Template the template that we are synthesizing template arguments
5191 /// for.
5192 ///
5193 /// \param TemplateLoc the location of the template name that started the
5194 /// template-id we are checking.
5195 ///
5196 /// \param RAngleLoc the location of the right angle bracket ('>') that
5197 /// terminates the template-id.
5198 ///
5199 /// \param Param the non-type template parameter whose default we are
5200 /// substituting into.
5201 ///
5202 /// \param Converted the list of template arguments provided for template
5203 /// parameters that precede \p Param in the template parameter list.
5204 ///
5205 /// \returns the substituted template argument, or NULL if an error occurred.
5206 static ExprResult
5207 SubstDefaultTemplateArgument(Sema &SemaRef,
5208                              TemplateDecl *Template,
5209                              SourceLocation TemplateLoc,
5210                              SourceLocation RAngleLoc,
5211                              NonTypeTemplateParmDecl *Param,
5212                         SmallVectorImpl<TemplateArgument> &Converted) {
5213   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5214                                    Param, Template, Converted,
5215                                    SourceRange(TemplateLoc, RAngleLoc));
5216   if (Inst.isInvalid())
5217     return ExprError();
5218 
5219   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5220 
5221   // Only substitute for the innermost template argument list.
5222   MultiLevelTemplateArgumentList TemplateArgLists;
5223   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5224   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5225     TemplateArgLists.addOuterTemplateArguments(None);
5226 
5227   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5228   EnterExpressionEvaluationContext ConstantEvaluated(
5229       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5230   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5231 }
5232 
5233 /// Substitute template arguments into the default template argument for
5234 /// the given template template parameter.
5235 ///
5236 /// \param SemaRef the semantic analysis object for which we are performing
5237 /// the substitution.
5238 ///
5239 /// \param Template the template that we are synthesizing template arguments
5240 /// for.
5241 ///
5242 /// \param TemplateLoc the location of the template name that started the
5243 /// template-id we are checking.
5244 ///
5245 /// \param RAngleLoc the location of the right angle bracket ('>') that
5246 /// terminates the template-id.
5247 ///
5248 /// \param Param the template template parameter whose default we are
5249 /// substituting into.
5250 ///
5251 /// \param Converted the list of template arguments provided for template
5252 /// parameters that precede \p Param in the template parameter list.
5253 ///
5254 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5255 /// source-location information) that precedes the template name.
5256 ///
5257 /// \returns the substituted template argument, or NULL if an error occurred.
5258 static TemplateName
5259 SubstDefaultTemplateArgument(Sema &SemaRef,
5260                              TemplateDecl *Template,
5261                              SourceLocation TemplateLoc,
5262                              SourceLocation RAngleLoc,
5263                              TemplateTemplateParmDecl *Param,
5264                        SmallVectorImpl<TemplateArgument> &Converted,
5265                              NestedNameSpecifierLoc &QualifierLoc) {
5266   Sema::InstantiatingTemplate Inst(
5267       SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
5268       SourceRange(TemplateLoc, RAngleLoc));
5269   if (Inst.isInvalid())
5270     return TemplateName();
5271 
5272   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5273 
5274   // Only substitute for the innermost template argument list.
5275   MultiLevelTemplateArgumentList TemplateArgLists;
5276   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5277   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5278     TemplateArgLists.addOuterTemplateArguments(None);
5279 
5280   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5281   // Substitute into the nested-name-specifier first,
5282   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5283   if (QualifierLoc) {
5284     QualifierLoc =
5285         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5286     if (!QualifierLoc)
5287       return TemplateName();
5288   }
5289 
5290   return SemaRef.SubstTemplateName(
5291              QualifierLoc,
5292              Param->getDefaultArgument().getArgument().getAsTemplate(),
5293              Param->getDefaultArgument().getTemplateNameLoc(),
5294              TemplateArgLists);
5295 }
5296 
5297 /// If the given template parameter has a default template
5298 /// argument, substitute into that default template argument and
5299 /// return the corresponding template argument.
5300 TemplateArgumentLoc
5301 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
5302                                               SourceLocation TemplateLoc,
5303                                               SourceLocation RAngleLoc,
5304                                               Decl *Param,
5305                                               SmallVectorImpl<TemplateArgument>
5306                                                 &Converted,
5307                                               bool &HasDefaultArg) {
5308   HasDefaultArg = false;
5309 
5310   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5311     if (!hasReachableDefaultArgument(TypeParm))
5312       return TemplateArgumentLoc();
5313 
5314     HasDefaultArg = true;
5315     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
5316                                                       TemplateLoc,
5317                                                       RAngleLoc,
5318                                                       TypeParm,
5319                                                       Converted);
5320     if (DI)
5321       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5322 
5323     return TemplateArgumentLoc();
5324   }
5325 
5326   if (NonTypeTemplateParmDecl *NonTypeParm
5327         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5328     if (!hasReachableDefaultArgument(NonTypeParm))
5329       return TemplateArgumentLoc();
5330 
5331     HasDefaultArg = true;
5332     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
5333                                                   TemplateLoc,
5334                                                   RAngleLoc,
5335                                                   NonTypeParm,
5336                                                   Converted);
5337     if (Arg.isInvalid())
5338       return TemplateArgumentLoc();
5339 
5340     Expr *ArgE = Arg.getAs<Expr>();
5341     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5342   }
5343 
5344   TemplateTemplateParmDecl *TempTempParm
5345     = cast<TemplateTemplateParmDecl>(Param);
5346   if (!hasReachableDefaultArgument(TempTempParm))
5347     return TemplateArgumentLoc();
5348 
5349   HasDefaultArg = true;
5350   NestedNameSpecifierLoc QualifierLoc;
5351   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
5352                                                     TemplateLoc,
5353                                                     RAngleLoc,
5354                                                     TempTempParm,
5355                                                     Converted,
5356                                                     QualifierLoc);
5357   if (TName.isNull())
5358     return TemplateArgumentLoc();
5359 
5360   return TemplateArgumentLoc(
5361       Context, TemplateArgument(TName),
5362       TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5363       TempTempParm->getDefaultArgument().getTemplateNameLoc());
5364 }
5365 
5366 /// Convert a template-argument that we parsed as a type into a template, if
5367 /// possible. C++ permits injected-class-names to perform dual service as
5368 /// template template arguments and as template type arguments.
5369 static TemplateArgumentLoc
5370 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5371   // Extract and step over any surrounding nested-name-specifier.
5372   NestedNameSpecifierLoc QualLoc;
5373   if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5374     if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5375       return TemplateArgumentLoc();
5376 
5377     QualLoc = ETLoc.getQualifierLoc();
5378     TLoc = ETLoc.getNamedTypeLoc();
5379   }
5380   // If this type was written as an injected-class-name, it can be used as a
5381   // template template argument.
5382   if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5383     return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5384                                QualLoc, InjLoc.getNameLoc());
5385 
5386   // If this type was written as an injected-class-name, it may have been
5387   // converted to a RecordType during instantiation. If the RecordType is
5388   // *not* wrapped in a TemplateSpecializationType and denotes a class
5389   // template specialization, it must have come from an injected-class-name.
5390   if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5391     if (auto *CTSD =
5392             dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5393       return TemplateArgumentLoc(Context,
5394                                  TemplateName(CTSD->getSpecializedTemplate()),
5395                                  QualLoc, RecLoc.getNameLoc());
5396 
5397   return TemplateArgumentLoc();
5398 }
5399 
5400 /// Check that the given template argument corresponds to the given
5401 /// template parameter.
5402 ///
5403 /// \param Param The template parameter against which the argument will be
5404 /// checked.
5405 ///
5406 /// \param Arg The template argument, which may be updated due to conversions.
5407 ///
5408 /// \param Template The template in which the template argument resides.
5409 ///
5410 /// \param TemplateLoc The location of the template name for the template
5411 /// whose argument list we're matching.
5412 ///
5413 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5414 /// the template argument list.
5415 ///
5416 /// \param ArgumentPackIndex The index into the argument pack where this
5417 /// argument will be placed. Only valid if the parameter is a parameter pack.
5418 ///
5419 /// \param Converted The checked, converted argument will be added to the
5420 /// end of this small vector.
5421 ///
5422 /// \param CTAK Describes how we arrived at this particular template argument:
5423 /// explicitly written, deduced, etc.
5424 ///
5425 /// \returns true on error, false otherwise.
5426 bool Sema::CheckTemplateArgument(NamedDecl *Param,
5427                                  TemplateArgumentLoc &Arg,
5428                                  NamedDecl *Template,
5429                                  SourceLocation TemplateLoc,
5430                                  SourceLocation RAngleLoc,
5431                                  unsigned ArgumentPackIndex,
5432                             SmallVectorImpl<TemplateArgument> &Converted,
5433                                  CheckTemplateArgumentKind CTAK) {
5434   // Check template type parameters.
5435   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5436     return CheckTemplateTypeArgument(TTP, Arg, Converted);
5437 
5438   // Check non-type template parameters.
5439   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5440     // Do substitution on the type of the non-type template parameter
5441     // with the template arguments we've seen thus far.  But if the
5442     // template has a dependent context then we cannot substitute yet.
5443     QualType NTTPType = NTTP->getType();
5444     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5445       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5446 
5447     if (NTTPType->isInstantiationDependentType() &&
5448         !isa<TemplateTemplateParmDecl>(Template) &&
5449         !Template->getDeclContext()->isDependentContext()) {
5450       // Do substitution on the type of the non-type template parameter.
5451       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5452                                  NTTP, Converted,
5453                                  SourceRange(TemplateLoc, RAngleLoc));
5454       if (Inst.isInvalid())
5455         return true;
5456 
5457       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
5458                                         Converted);
5459 
5460       // If the parameter is a pack expansion, expand this slice of the pack.
5461       if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5462         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5463                                                            ArgumentPackIndex);
5464         NTTPType = SubstType(PET->getPattern(),
5465                              MultiLevelTemplateArgumentList(TemplateArgs),
5466                              NTTP->getLocation(),
5467                              NTTP->getDeclName());
5468       } else {
5469         NTTPType = SubstType(NTTPType,
5470                              MultiLevelTemplateArgumentList(TemplateArgs),
5471                              NTTP->getLocation(),
5472                              NTTP->getDeclName());
5473       }
5474 
5475       // If that worked, check the non-type template parameter type
5476       // for validity.
5477       if (!NTTPType.isNull())
5478         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5479                                                      NTTP->getLocation());
5480       if (NTTPType.isNull())
5481         return true;
5482     }
5483 
5484     switch (Arg.getArgument().getKind()) {
5485     case TemplateArgument::Null:
5486       llvm_unreachable("Should never see a NULL template argument here");
5487 
5488     case TemplateArgument::Expression: {
5489       TemplateArgument Result;
5490       unsigned CurSFINAEErrors = NumSFINAEErrors;
5491       ExprResult Res =
5492         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
5493                               Result, CTAK);
5494       if (Res.isInvalid())
5495         return true;
5496       // If the current template argument causes an error, give up now.
5497       if (CurSFINAEErrors < NumSFINAEErrors)
5498         return true;
5499 
5500       // If the resulting expression is new, then use it in place of the
5501       // old expression in the template argument.
5502       if (Res.get() != Arg.getArgument().getAsExpr()) {
5503         TemplateArgument TA(Res.get());
5504         Arg = TemplateArgumentLoc(TA, Res.get());
5505       }
5506 
5507       Converted.push_back(Result);
5508       break;
5509     }
5510 
5511     case TemplateArgument::Declaration:
5512     case TemplateArgument::Integral:
5513     case TemplateArgument::NullPtr:
5514       // We've already checked this template argument, so just copy
5515       // it to the list of converted arguments.
5516       Converted.push_back(Arg.getArgument());
5517       break;
5518 
5519     case TemplateArgument::Template:
5520     case TemplateArgument::TemplateExpansion:
5521       // We were given a template template argument. It may not be ill-formed;
5522       // see below.
5523       if (DependentTemplateName *DTN
5524             = Arg.getArgument().getAsTemplateOrTemplatePattern()
5525                                               .getAsDependentTemplateName()) {
5526         // We have a template argument such as \c T::template X, which we
5527         // parsed as a template template argument. However, since we now
5528         // know that we need a non-type template argument, convert this
5529         // template name into an expression.
5530 
5531         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5532                                      Arg.getTemplateNameLoc());
5533 
5534         CXXScopeSpec SS;
5535         SS.Adopt(Arg.getTemplateQualifierLoc());
5536         // FIXME: the template-template arg was a DependentTemplateName,
5537         // so it was provided with a template keyword. However, its source
5538         // location is not stored in the template argument structure.
5539         SourceLocation TemplateKWLoc;
5540         ExprResult E = DependentScopeDeclRefExpr::Create(
5541             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5542             nullptr);
5543 
5544         // If we parsed the template argument as a pack expansion, create a
5545         // pack expansion expression.
5546         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5547           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5548           if (E.isInvalid())
5549             return true;
5550         }
5551 
5552         TemplateArgument Result;
5553         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
5554         if (E.isInvalid())
5555           return true;
5556 
5557         Converted.push_back(Result);
5558         break;
5559       }
5560 
5561       // We have a template argument that actually does refer to a class
5562       // template, alias template, or template template parameter, and
5563       // therefore cannot be a non-type template argument.
5564       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5565         << Arg.getSourceRange();
5566 
5567       Diag(Param->getLocation(), diag::note_template_param_here);
5568       return true;
5569 
5570     case TemplateArgument::Type: {
5571       // We have a non-type template parameter but the template
5572       // argument is a type.
5573 
5574       // C++ [temp.arg]p2:
5575       //   In a template-argument, an ambiguity between a type-id and
5576       //   an expression is resolved to a type-id, regardless of the
5577       //   form of the corresponding template-parameter.
5578       //
5579       // We warn specifically about this case, since it can be rather
5580       // confusing for users.
5581       QualType T = Arg.getArgument().getAsType();
5582       SourceRange SR = Arg.getSourceRange();
5583       if (T->isFunctionType())
5584         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5585       else
5586         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5587       Diag(Param->getLocation(), diag::note_template_param_here);
5588       return true;
5589     }
5590 
5591     case TemplateArgument::Pack:
5592       llvm_unreachable("Caller must expand template argument packs");
5593     }
5594 
5595     return false;
5596   }
5597 
5598 
5599   // Check template template parameters.
5600   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5601 
5602   TemplateParameterList *Params = TempParm->getTemplateParameters();
5603   if (TempParm->isExpandedParameterPack())
5604     Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5605 
5606   // Substitute into the template parameter list of the template
5607   // template parameter, since previously-supplied template arguments
5608   // may appear within the template template parameter.
5609   //
5610   // FIXME: Skip this if the parameters aren't instantiation-dependent.
5611   {
5612     // Set up a template instantiation context.
5613     LocalInstantiationScope Scope(*this);
5614     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5615                                TempParm, Converted,
5616                                SourceRange(TemplateLoc, RAngleLoc));
5617     if (Inst.isInvalid())
5618       return true;
5619 
5620     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5621     Params = SubstTemplateParams(Params, CurContext,
5622                                  MultiLevelTemplateArgumentList(TemplateArgs));
5623     if (!Params)
5624       return true;
5625   }
5626 
5627   // C++1z [temp.local]p1: (DR1004)
5628   //   When [the injected-class-name] is used [...] as a template-argument for
5629   //   a template template-parameter [...] it refers to the class template
5630   //   itself.
5631   if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5632     TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5633         Context, Arg.getTypeSourceInfo()->getTypeLoc());
5634     if (!ConvertedArg.getArgument().isNull())
5635       Arg = ConvertedArg;
5636   }
5637 
5638   switch (Arg.getArgument().getKind()) {
5639   case TemplateArgument::Null:
5640     llvm_unreachable("Should never see a NULL template argument here");
5641 
5642   case TemplateArgument::Template:
5643   case TemplateArgument::TemplateExpansion:
5644     if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5645       return true;
5646 
5647     Converted.push_back(Arg.getArgument());
5648     break;
5649 
5650   case TemplateArgument::Expression:
5651   case TemplateArgument::Type:
5652     // We have a template template parameter but the template
5653     // argument does not refer to a template.
5654     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5655       << getLangOpts().CPlusPlus11;
5656     return true;
5657 
5658   case TemplateArgument::Declaration:
5659     llvm_unreachable("Declaration argument with template template parameter");
5660   case TemplateArgument::Integral:
5661     llvm_unreachable("Integral argument with template template parameter");
5662   case TemplateArgument::NullPtr:
5663     llvm_unreachable("Null pointer argument with template template parameter");
5664 
5665   case TemplateArgument::Pack:
5666     llvm_unreachable("Caller must expand template argument packs");
5667   }
5668 
5669   return false;
5670 }
5671 
5672 /// Diagnose a missing template argument.
5673 template<typename TemplateParmDecl>
5674 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5675                                     TemplateDecl *TD,
5676                                     const TemplateParmDecl *D,
5677                                     TemplateArgumentListInfo &Args) {
5678   // Dig out the most recent declaration of the template parameter; there may be
5679   // declarations of the template that are more recent than TD.
5680   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5681                                  ->getTemplateParameters()
5682                                  ->getParam(D->getIndex()));
5683 
5684   // If there's a default argument that's not reachable, diagnose that we're
5685   // missing a module import.
5686   llvm::SmallVector<Module*, 8> Modules;
5687   if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5688     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5689                             D->getDefaultArgumentLoc(), Modules,
5690                             Sema::MissingImportKind::DefaultArgument,
5691                             /*Recover*/true);
5692     return true;
5693   }
5694 
5695   // FIXME: If there's a more recent default argument that *is* visible,
5696   // diagnose that it was declared too late.
5697 
5698   TemplateParameterList *Params = TD->getTemplateParameters();
5699 
5700   S.Diag(Loc, diag::err_template_arg_list_different_arity)
5701     << /*not enough args*/0
5702     << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5703     << TD;
5704   S.Diag(TD->getLocation(), diag::note_template_decl_here)
5705     << Params->getSourceRange();
5706   return true;
5707 }
5708 
5709 /// Check that the given template argument list is well-formed
5710 /// for specializing the given template.
5711 bool Sema::CheckTemplateArgumentList(
5712     TemplateDecl *Template, SourceLocation TemplateLoc,
5713     TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5714     SmallVectorImpl<TemplateArgument> &Converted,
5715     bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5716 
5717   if (ConstraintsNotSatisfied)
5718     *ConstraintsNotSatisfied = false;
5719 
5720   // Make a copy of the template arguments for processing.  Only make the
5721   // changes at the end when successful in matching the arguments to the
5722   // template.
5723   TemplateArgumentListInfo NewArgs = TemplateArgs;
5724 
5725   // Make sure we get the template parameter list from the most
5726   // recent declaration, since that is the only one that is guaranteed to
5727   // have all the default template argument information.
5728   TemplateParameterList *Params =
5729       cast<TemplateDecl>(Template->getMostRecentDecl())
5730           ->getTemplateParameters();
5731 
5732   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5733 
5734   // C++ [temp.arg]p1:
5735   //   [...] The type and form of each template-argument specified in
5736   //   a template-id shall match the type and form specified for the
5737   //   corresponding parameter declared by the template in its
5738   //   template-parameter-list.
5739   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5740   SmallVector<TemplateArgument, 2> ArgumentPack;
5741   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5742   LocalInstantiationScope InstScope(*this, true);
5743   for (TemplateParameterList::iterator Param = Params->begin(),
5744                                        ParamEnd = Params->end();
5745        Param != ParamEnd; /* increment in loop */) {
5746     // If we have an expanded parameter pack, make sure we don't have too
5747     // many arguments.
5748     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5749       if (*Expansions == ArgumentPack.size()) {
5750         // We're done with this parameter pack. Pack up its arguments and add
5751         // them to the list.
5752         Converted.push_back(
5753             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5754         ArgumentPack.clear();
5755 
5756         // This argument is assigned to the next parameter.
5757         ++Param;
5758         continue;
5759       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5760         // Not enough arguments for this parameter pack.
5761         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5762           << /*not enough args*/0
5763           << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5764           << Template;
5765         Diag(Template->getLocation(), diag::note_template_decl_here)
5766           << Params->getSourceRange();
5767         return true;
5768       }
5769     }
5770 
5771     if (ArgIdx < NumArgs) {
5772       // Check the template argument we were given.
5773       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5774                                 TemplateLoc, RAngleLoc,
5775                                 ArgumentPack.size(), Converted))
5776         return true;
5777 
5778       bool PackExpansionIntoNonPack =
5779           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5780           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5781       if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5782                                        isa<ConceptDecl>(Template))) {
5783         // Core issue 1430: we have a pack expansion as an argument to an
5784         // alias template, and it's not part of a parameter pack. This
5785         // can't be canonicalized, so reject it now.
5786         // As for concepts - we cannot normalize constraints where this
5787         // situation exists.
5788         Diag(NewArgs[ArgIdx].getLocation(),
5789              diag::err_template_expansion_into_fixed_list)
5790           << (isa<ConceptDecl>(Template) ? 1 : 0)
5791           << NewArgs[ArgIdx].getSourceRange();
5792         Diag((*Param)->getLocation(), diag::note_template_param_here);
5793         return true;
5794       }
5795 
5796       // We're now done with this argument.
5797       ++ArgIdx;
5798 
5799       if ((*Param)->isTemplateParameterPack()) {
5800         // The template parameter was a template parameter pack, so take the
5801         // deduced argument and place it on the argument pack. Note that we
5802         // stay on the same template parameter so that we can deduce more
5803         // arguments.
5804         ArgumentPack.push_back(Converted.pop_back_val());
5805       } else {
5806         // Move to the next template parameter.
5807         ++Param;
5808       }
5809 
5810       // If we just saw a pack expansion into a non-pack, then directly convert
5811       // the remaining arguments, because we don't know what parameters they'll
5812       // match up with.
5813       if (PackExpansionIntoNonPack) {
5814         if (!ArgumentPack.empty()) {
5815           // If we were part way through filling in an expanded parameter pack,
5816           // fall back to just producing individual arguments.
5817           Converted.insert(Converted.end(),
5818                            ArgumentPack.begin(), ArgumentPack.end());
5819           ArgumentPack.clear();
5820         }
5821 
5822         while (ArgIdx < NumArgs) {
5823           Converted.push_back(NewArgs[ArgIdx].getArgument());
5824           ++ArgIdx;
5825         }
5826 
5827         return false;
5828       }
5829 
5830       continue;
5831     }
5832 
5833     // If we're checking a partial template argument list, we're done.
5834     if (PartialTemplateArgs) {
5835       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5836         Converted.push_back(
5837             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5838       return false;
5839     }
5840 
5841     // If we have a template parameter pack with no more corresponding
5842     // arguments, just break out now and we'll fill in the argument pack below.
5843     if ((*Param)->isTemplateParameterPack()) {
5844       assert(!getExpandedPackSize(*Param) &&
5845              "Should have dealt with this already");
5846 
5847       // A non-expanded parameter pack before the end of the parameter list
5848       // only occurs for an ill-formed template parameter list, unless we've
5849       // got a partial argument list for a function template, so just bail out.
5850       if (Param + 1 != ParamEnd)
5851         return true;
5852 
5853       Converted.push_back(
5854           TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5855       ArgumentPack.clear();
5856 
5857       ++Param;
5858       continue;
5859     }
5860 
5861     // Check whether we have a default argument.
5862     TemplateArgumentLoc Arg;
5863 
5864     // Retrieve the default template argument from the template
5865     // parameter. For each kind of template parameter, we substitute the
5866     // template arguments provided thus far and any "outer" template arguments
5867     // (when the template parameter was part of a nested template) into
5868     // the default argument.
5869     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5870       if (!hasReachableDefaultArgument(TTP))
5871         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5872                                        NewArgs);
5873 
5874       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5875                                                              Template,
5876                                                              TemplateLoc,
5877                                                              RAngleLoc,
5878                                                              TTP,
5879                                                              Converted);
5880       if (!ArgType)
5881         return true;
5882 
5883       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5884                                 ArgType);
5885     } else if (NonTypeTemplateParmDecl *NTTP
5886                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5887       if (!hasReachableDefaultArgument(NTTP))
5888         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5889                                        NewArgs);
5890 
5891       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5892                                                               TemplateLoc,
5893                                                               RAngleLoc,
5894                                                               NTTP,
5895                                                               Converted);
5896       if (E.isInvalid())
5897         return true;
5898 
5899       Expr *Ex = E.getAs<Expr>();
5900       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5901     } else {
5902       TemplateTemplateParmDecl *TempParm
5903         = cast<TemplateTemplateParmDecl>(*Param);
5904 
5905       if (!hasReachableDefaultArgument(TempParm))
5906         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5907                                        NewArgs);
5908 
5909       NestedNameSpecifierLoc QualifierLoc;
5910       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5911                                                        TemplateLoc,
5912                                                        RAngleLoc,
5913                                                        TempParm,
5914                                                        Converted,
5915                                                        QualifierLoc);
5916       if (Name.isNull())
5917         return true;
5918 
5919       Arg = TemplateArgumentLoc(
5920           Context, TemplateArgument(Name), QualifierLoc,
5921           TempParm->getDefaultArgument().getTemplateNameLoc());
5922     }
5923 
5924     // Introduce an instantiation record that describes where we are using
5925     // the default template argument. We're not actually instantiating a
5926     // template here, we just create this object to put a note into the
5927     // context stack.
5928     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5929                                SourceRange(TemplateLoc, RAngleLoc));
5930     if (Inst.isInvalid())
5931       return true;
5932 
5933     // Check the default template argument.
5934     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5935                               RAngleLoc, 0, Converted))
5936       return true;
5937 
5938     // Core issue 150 (assumed resolution): if this is a template template
5939     // parameter, keep track of the default template arguments from the
5940     // template definition.
5941     if (isTemplateTemplateParameter)
5942       NewArgs.addArgument(Arg);
5943 
5944     // Move to the next template parameter and argument.
5945     ++Param;
5946     ++ArgIdx;
5947   }
5948 
5949   // If we're performing a partial argument substitution, allow any trailing
5950   // pack expansions; they might be empty. This can happen even if
5951   // PartialTemplateArgs is false (the list of arguments is complete but
5952   // still dependent).
5953   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5954       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5955     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5956       Converted.push_back(NewArgs[ArgIdx++].getArgument());
5957   }
5958 
5959   // If we have any leftover arguments, then there were too many arguments.
5960   // Complain and fail.
5961   if (ArgIdx < NumArgs) {
5962     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5963         << /*too many args*/1
5964         << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5965         << Template
5966         << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5967     Diag(Template->getLocation(), diag::note_template_decl_here)
5968         << Params->getSourceRange();
5969     return true;
5970   }
5971 
5972   // No problems found with the new argument list, propagate changes back
5973   // to caller.
5974   if (UpdateArgsWithConversions)
5975     TemplateArgs = std::move(NewArgs);
5976 
5977   if (!PartialTemplateArgs &&
5978       EnsureTemplateArgumentListConstraints(
5979         Template, Converted, SourceRange(TemplateLoc,
5980                                          TemplateArgs.getRAngleLoc()))) {
5981     if (ConstraintsNotSatisfied)
5982       *ConstraintsNotSatisfied = true;
5983     return true;
5984   }
5985 
5986   return false;
5987 }
5988 
5989 namespace {
5990   class UnnamedLocalNoLinkageFinder
5991     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5992   {
5993     Sema &S;
5994     SourceRange SR;
5995 
5996     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5997 
5998   public:
5999     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
6000 
6001     bool Visit(QualType T) {
6002       return T.isNull() ? false : inherited::Visit(T.getTypePtr());
6003     }
6004 
6005 #define TYPE(Class, Parent) \
6006     bool Visit##Class##Type(const Class##Type *);
6007 #define ABSTRACT_TYPE(Class, Parent) \
6008     bool Visit##Class##Type(const Class##Type *) { return false; }
6009 #define NON_CANONICAL_TYPE(Class, Parent) \
6010     bool Visit##Class##Type(const Class##Type *) { return false; }
6011 #include "clang/AST/TypeNodes.inc"
6012 
6013     bool VisitTagDecl(const TagDecl *Tag);
6014     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
6015   };
6016 } // end anonymous namespace
6017 
6018 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
6019   return false;
6020 }
6021 
6022 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
6023   return Visit(T->getElementType());
6024 }
6025 
6026 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
6027   return Visit(T->getPointeeType());
6028 }
6029 
6030 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
6031                                                     const BlockPointerType* T) {
6032   return Visit(T->getPointeeType());
6033 }
6034 
6035 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
6036                                                 const LValueReferenceType* T) {
6037   return Visit(T->getPointeeType());
6038 }
6039 
6040 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
6041                                                 const RValueReferenceType* T) {
6042   return Visit(T->getPointeeType());
6043 }
6044 
6045 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
6046                                                   const MemberPointerType* T) {
6047   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
6048 }
6049 
6050 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
6051                                                   const ConstantArrayType* T) {
6052   return Visit(T->getElementType());
6053 }
6054 
6055 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6056                                                  const IncompleteArrayType* T) {
6057   return Visit(T->getElementType());
6058 }
6059 
6060 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6061                                                    const VariableArrayType* T) {
6062   return Visit(T->getElementType());
6063 }
6064 
6065 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6066                                             const DependentSizedArrayType* T) {
6067   return Visit(T->getElementType());
6068 }
6069 
6070 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6071                                          const DependentSizedExtVectorType* T) {
6072   return Visit(T->getElementType());
6073 }
6074 
6075 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6076     const DependentSizedMatrixType *T) {
6077   return Visit(T->getElementType());
6078 }
6079 
6080 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6081     const DependentAddressSpaceType *T) {
6082   return Visit(T->getPointeeType());
6083 }
6084 
6085 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6086   return Visit(T->getElementType());
6087 }
6088 
6089 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6090     const DependentVectorType *T) {
6091   return Visit(T->getElementType());
6092 }
6093 
6094 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6095   return Visit(T->getElementType());
6096 }
6097 
6098 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6099     const ConstantMatrixType *T) {
6100   return Visit(T->getElementType());
6101 }
6102 
6103 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6104                                                   const FunctionProtoType* T) {
6105   for (const auto &A : T->param_types()) {
6106     if (Visit(A))
6107       return true;
6108   }
6109 
6110   return Visit(T->getReturnType());
6111 }
6112 
6113 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6114                                                const FunctionNoProtoType* T) {
6115   return Visit(T->getReturnType());
6116 }
6117 
6118 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6119                                                   const UnresolvedUsingType*) {
6120   return false;
6121 }
6122 
6123 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6124   return false;
6125 }
6126 
6127 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6128   return Visit(T->getUnderlyingType());
6129 }
6130 
6131 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6132   return false;
6133 }
6134 
6135 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6136                                                     const UnaryTransformType*) {
6137   return false;
6138 }
6139 
6140 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6141   return Visit(T->getDeducedType());
6142 }
6143 
6144 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6145     const DeducedTemplateSpecializationType *T) {
6146   return Visit(T->getDeducedType());
6147 }
6148 
6149 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6150   return VisitTagDecl(T->getDecl());
6151 }
6152 
6153 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6154   return VisitTagDecl(T->getDecl());
6155 }
6156 
6157 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6158                                                  const TemplateTypeParmType*) {
6159   return false;
6160 }
6161 
6162 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6163                                         const SubstTemplateTypeParmPackType *) {
6164   return false;
6165 }
6166 
6167 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6168                                             const TemplateSpecializationType*) {
6169   return false;
6170 }
6171 
6172 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6173                                               const InjectedClassNameType* T) {
6174   return VisitTagDecl(T->getDecl());
6175 }
6176 
6177 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6178                                                    const DependentNameType* T) {
6179   return VisitNestedNameSpecifier(T->getQualifier());
6180 }
6181 
6182 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6183                                  const DependentTemplateSpecializationType* T) {
6184   if (auto *Q = T->getQualifier())
6185     return VisitNestedNameSpecifier(Q);
6186   return false;
6187 }
6188 
6189 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6190                                                    const PackExpansionType* T) {
6191   return Visit(T->getPattern());
6192 }
6193 
6194 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6195   return false;
6196 }
6197 
6198 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6199                                                    const ObjCInterfaceType *) {
6200   return false;
6201 }
6202 
6203 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6204                                                 const ObjCObjectPointerType *) {
6205   return false;
6206 }
6207 
6208 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6209   return Visit(T->getValueType());
6210 }
6211 
6212 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6213   return false;
6214 }
6215 
6216 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
6217   return false;
6218 }
6219 
6220 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
6221     const DependentBitIntType *T) {
6222   return false;
6223 }
6224 
6225 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6226   if (Tag->getDeclContext()->isFunctionOrMethod()) {
6227     S.Diag(SR.getBegin(),
6228            S.getLangOpts().CPlusPlus11 ?
6229              diag::warn_cxx98_compat_template_arg_local_type :
6230              diag::ext_template_arg_local_type)
6231       << S.Context.getTypeDeclType(Tag) << SR;
6232     return true;
6233   }
6234 
6235   if (!Tag->hasNameForLinkage()) {
6236     S.Diag(SR.getBegin(),
6237            S.getLangOpts().CPlusPlus11 ?
6238              diag::warn_cxx98_compat_template_arg_unnamed_type :
6239              diag::ext_template_arg_unnamed_type) << SR;
6240     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6241     return true;
6242   }
6243 
6244   return false;
6245 }
6246 
6247 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6248                                                     NestedNameSpecifier *NNS) {
6249   assert(NNS);
6250   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6251     return true;
6252 
6253   switch (NNS->getKind()) {
6254   case NestedNameSpecifier::Identifier:
6255   case NestedNameSpecifier::Namespace:
6256   case NestedNameSpecifier::NamespaceAlias:
6257   case NestedNameSpecifier::Global:
6258   case NestedNameSpecifier::Super:
6259     return false;
6260 
6261   case NestedNameSpecifier::TypeSpec:
6262   case NestedNameSpecifier::TypeSpecWithTemplate:
6263     return Visit(QualType(NNS->getAsType(), 0));
6264   }
6265   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6266 }
6267 
6268 /// Check a template argument against its corresponding
6269 /// template type parameter.
6270 ///
6271 /// This routine implements the semantics of C++ [temp.arg.type]. It
6272 /// returns true if an error occurred, and false otherwise.
6273 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6274   assert(ArgInfo && "invalid TypeSourceInfo");
6275   QualType Arg = ArgInfo->getType();
6276   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6277 
6278   if (Arg->isVariablyModifiedType()) {
6279     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6280   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6281     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6282   }
6283 
6284   // C++03 [temp.arg.type]p2:
6285   //   A local type, a type with no linkage, an unnamed type or a type
6286   //   compounded from any of these types shall not be used as a
6287   //   template-argument for a template type-parameter.
6288   //
6289   // C++11 allows these, and even in C++03 we allow them as an extension with
6290   // a warning.
6291   if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
6292     UnnamedLocalNoLinkageFinder Finder(*this, SR);
6293     (void)Finder.Visit(Context.getCanonicalType(Arg));
6294   }
6295 
6296   return false;
6297 }
6298 
6299 enum NullPointerValueKind {
6300   NPV_NotNullPointer,
6301   NPV_NullPointer,
6302   NPV_Error
6303 };
6304 
6305 /// Determine whether the given template argument is a null pointer
6306 /// value of the appropriate type.
6307 static NullPointerValueKind
6308 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6309                                    QualType ParamType, Expr *Arg,
6310                                    Decl *Entity = nullptr) {
6311   if (Arg->isValueDependent() || Arg->isTypeDependent())
6312     return NPV_NotNullPointer;
6313 
6314   // dllimport'd entities aren't constant but are available inside of template
6315   // arguments.
6316   if (Entity && Entity->hasAttr<DLLImportAttr>())
6317     return NPV_NotNullPointer;
6318 
6319   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6320     llvm_unreachable(
6321         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6322 
6323   if (!S.getLangOpts().CPlusPlus11)
6324     return NPV_NotNullPointer;
6325 
6326   // Determine whether we have a constant expression.
6327   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6328   if (ArgRV.isInvalid())
6329     return NPV_Error;
6330   Arg = ArgRV.get();
6331 
6332   Expr::EvalResult EvalResult;
6333   SmallVector<PartialDiagnosticAt, 8> Notes;
6334   EvalResult.Diag = &Notes;
6335   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6336       EvalResult.HasSideEffects) {
6337     SourceLocation DiagLoc = Arg->getExprLoc();
6338 
6339     // If our only note is the usual "invalid subexpression" note, just point
6340     // the caret at its location rather than producing an essentially
6341     // redundant note.
6342     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6343         diag::note_invalid_subexpr_in_const_expr) {
6344       DiagLoc = Notes[0].first;
6345       Notes.clear();
6346     }
6347 
6348     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6349       << Arg->getType() << Arg->getSourceRange();
6350     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6351       S.Diag(Notes[I].first, Notes[I].second);
6352 
6353     S.Diag(Param->getLocation(), diag::note_template_param_here);
6354     return NPV_Error;
6355   }
6356 
6357   // C++11 [temp.arg.nontype]p1:
6358   //   - an address constant expression of type std::nullptr_t
6359   if (Arg->getType()->isNullPtrType())
6360     return NPV_NullPointer;
6361 
6362   //   - a constant expression that evaluates to a null pointer value (4.10); or
6363   //   - a constant expression that evaluates to a null member pointer value
6364   //     (4.11); or
6365   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
6366       (EvalResult.Val.isMemberPointer() &&
6367        !EvalResult.Val.getMemberPointerDecl())) {
6368     // If our expression has an appropriate type, we've succeeded.
6369     bool ObjCLifetimeConversion;
6370     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6371         S.IsQualificationConversion(Arg->getType(), ParamType, false,
6372                                      ObjCLifetimeConversion))
6373       return NPV_NullPointer;
6374 
6375     // The types didn't match, but we know we got a null pointer; complain,
6376     // then recover as if the types were correct.
6377     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6378       << Arg->getType() << ParamType << Arg->getSourceRange();
6379     S.Diag(Param->getLocation(), diag::note_template_param_here);
6380     return NPV_NullPointer;
6381   }
6382 
6383   // If we don't have a null pointer value, but we do have a NULL pointer
6384   // constant, suggest a cast to the appropriate type.
6385   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6386     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6387     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6388         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6389         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6390                                       ")");
6391     S.Diag(Param->getLocation(), diag::note_template_param_here);
6392     return NPV_NullPointer;
6393   }
6394 
6395   // FIXME: If we ever want to support general, address-constant expressions
6396   // as non-type template arguments, we should return the ExprResult here to
6397   // be interpreted by the caller.
6398   return NPV_NotNullPointer;
6399 }
6400 
6401 /// Checks whether the given template argument is compatible with its
6402 /// template parameter.
6403 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6404     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6405     Expr *Arg, QualType ArgType) {
6406   bool ObjCLifetimeConversion;
6407   if (ParamType->isPointerType() &&
6408       !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6409       S.IsQualificationConversion(ArgType, ParamType, false,
6410                                   ObjCLifetimeConversion)) {
6411     // For pointer-to-object types, qualification conversions are
6412     // permitted.
6413   } else {
6414     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6415       if (!ParamRef->getPointeeType()->isFunctionType()) {
6416         // C++ [temp.arg.nontype]p5b3:
6417         //   For a non-type template-parameter of type reference to
6418         //   object, no conversions apply. The type referred to by the
6419         //   reference may be more cv-qualified than the (otherwise
6420         //   identical) type of the template- argument. The
6421         //   template-parameter is bound directly to the
6422         //   template-argument, which shall be an lvalue.
6423 
6424         // FIXME: Other qualifiers?
6425         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6426         unsigned ArgQuals = ArgType.getCVRQualifiers();
6427 
6428         if ((ParamQuals | ArgQuals) != ParamQuals) {
6429           S.Diag(Arg->getBeginLoc(),
6430                  diag::err_template_arg_ref_bind_ignores_quals)
6431               << ParamType << Arg->getType() << Arg->getSourceRange();
6432           S.Diag(Param->getLocation(), diag::note_template_param_here);
6433           return true;
6434         }
6435       }
6436     }
6437 
6438     // At this point, the template argument refers to an object or
6439     // function with external linkage. We now need to check whether the
6440     // argument and parameter types are compatible.
6441     if (!S.Context.hasSameUnqualifiedType(ArgType,
6442                                           ParamType.getNonReferenceType())) {
6443       // We can't perform this conversion or binding.
6444       if (ParamType->isReferenceType())
6445         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6446             << ParamType << ArgIn->getType() << Arg->getSourceRange();
6447       else
6448         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6449             << ArgIn->getType() << ParamType << Arg->getSourceRange();
6450       S.Diag(Param->getLocation(), diag::note_template_param_here);
6451       return true;
6452     }
6453   }
6454 
6455   return false;
6456 }
6457 
6458 /// Checks whether the given template argument is the address
6459 /// of an object or function according to C++ [temp.arg.nontype]p1.
6460 static bool
6461 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
6462                                                NonTypeTemplateParmDecl *Param,
6463                                                QualType ParamType,
6464                                                Expr *ArgIn,
6465                                                TemplateArgument &Converted) {
6466   bool Invalid = false;
6467   Expr *Arg = ArgIn;
6468   QualType ArgType = Arg->getType();
6469 
6470   bool AddressTaken = false;
6471   SourceLocation AddrOpLoc;
6472   if (S.getLangOpts().MicrosoftExt) {
6473     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6474     // dereference and address-of operators.
6475     Arg = Arg->IgnoreParenCasts();
6476 
6477     bool ExtWarnMSTemplateArg = false;
6478     UnaryOperatorKind FirstOpKind;
6479     SourceLocation FirstOpLoc;
6480     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6481       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6482       if (UnOpKind == UO_Deref)
6483         ExtWarnMSTemplateArg = true;
6484       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6485         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6486         if (!AddrOpLoc.isValid()) {
6487           FirstOpKind = UnOpKind;
6488           FirstOpLoc = UnOp->getOperatorLoc();
6489         }
6490       } else
6491         break;
6492     }
6493     if (FirstOpLoc.isValid()) {
6494       if (ExtWarnMSTemplateArg)
6495         S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6496             << ArgIn->getSourceRange();
6497 
6498       if (FirstOpKind == UO_AddrOf)
6499         AddressTaken = true;
6500       else if (Arg->getType()->isPointerType()) {
6501         // We cannot let pointers get dereferenced here, that is obviously not a
6502         // constant expression.
6503         assert(FirstOpKind == UO_Deref);
6504         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6505             << Arg->getSourceRange();
6506       }
6507     }
6508   } else {
6509     // See through any implicit casts we added to fix the type.
6510     Arg = Arg->IgnoreImpCasts();
6511 
6512     // C++ [temp.arg.nontype]p1:
6513     //
6514     //   A template-argument for a non-type, non-template
6515     //   template-parameter shall be one of: [...]
6516     //
6517     //     -- the address of an object or function with external
6518     //        linkage, including function templates and function
6519     //        template-ids but excluding non-static class members,
6520     //        expressed as & id-expression where the & is optional if
6521     //        the name refers to a function or array, or if the
6522     //        corresponding template-parameter is a reference; or
6523 
6524     // In C++98/03 mode, give an extension warning on any extra parentheses.
6525     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6526     bool ExtraParens = false;
6527     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6528       if (!Invalid && !ExtraParens) {
6529         S.Diag(Arg->getBeginLoc(),
6530                S.getLangOpts().CPlusPlus11
6531                    ? diag::warn_cxx98_compat_template_arg_extra_parens
6532                    : diag::ext_template_arg_extra_parens)
6533             << Arg->getSourceRange();
6534         ExtraParens = true;
6535       }
6536 
6537       Arg = Parens->getSubExpr();
6538     }
6539 
6540     while (SubstNonTypeTemplateParmExpr *subst =
6541                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6542       Arg = subst->getReplacement()->IgnoreImpCasts();
6543 
6544     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6545       if (UnOp->getOpcode() == UO_AddrOf) {
6546         Arg = UnOp->getSubExpr();
6547         AddressTaken = true;
6548         AddrOpLoc = UnOp->getOperatorLoc();
6549       }
6550     }
6551 
6552     while (SubstNonTypeTemplateParmExpr *subst =
6553                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6554       Arg = subst->getReplacement()->IgnoreImpCasts();
6555   }
6556 
6557   ValueDecl *Entity = nullptr;
6558   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6559     Entity = DRE->getDecl();
6560   else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6561     Entity = CUE->getGuidDecl();
6562 
6563   // If our parameter has pointer type, check for a null template value.
6564   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6565     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6566                                                Entity)) {
6567     case NPV_NullPointer:
6568       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6569       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6570                                    /*isNullPtr=*/true);
6571       return false;
6572 
6573     case NPV_Error:
6574       return true;
6575 
6576     case NPV_NotNullPointer:
6577       break;
6578     }
6579   }
6580 
6581   // Stop checking the precise nature of the argument if it is value dependent,
6582   // it should be checked when instantiated.
6583   if (Arg->isValueDependent()) {
6584     Converted = TemplateArgument(ArgIn);
6585     return false;
6586   }
6587 
6588   if (!Entity) {
6589     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6590         << Arg->getSourceRange();
6591     S.Diag(Param->getLocation(), diag::note_template_param_here);
6592     return true;
6593   }
6594 
6595   // Cannot refer to non-static data members
6596   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6597     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6598         << Entity << Arg->getSourceRange();
6599     S.Diag(Param->getLocation(), diag::note_template_param_here);
6600     return true;
6601   }
6602 
6603   // Cannot refer to non-static member functions
6604   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6605     if (!Method->isStatic()) {
6606       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6607           << Method << Arg->getSourceRange();
6608       S.Diag(Param->getLocation(), diag::note_template_param_here);
6609       return true;
6610     }
6611   }
6612 
6613   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6614   VarDecl *Var = dyn_cast<VarDecl>(Entity);
6615   MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6616 
6617   // A non-type template argument must refer to an object or function.
6618   if (!Func && !Var && !Guid) {
6619     // We found something, but we don't know specifically what it is.
6620     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6621         << Arg->getSourceRange();
6622     S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6623     return true;
6624   }
6625 
6626   // Address / reference template args must have external linkage in C++98.
6627   if (Entity->getFormalLinkage() == InternalLinkage) {
6628     S.Diag(Arg->getBeginLoc(),
6629            S.getLangOpts().CPlusPlus11
6630                ? diag::warn_cxx98_compat_template_arg_object_internal
6631                : diag::ext_template_arg_object_internal)
6632         << !Func << Entity << Arg->getSourceRange();
6633     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6634       << !Func;
6635   } else if (!Entity->hasLinkage()) {
6636     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6637         << !Func << Entity << Arg->getSourceRange();
6638     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6639       << !Func;
6640     return true;
6641   }
6642 
6643   if (Var) {
6644     // A value of reference type is not an object.
6645     if (Var->getType()->isReferenceType()) {
6646       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6647           << Var->getType() << Arg->getSourceRange();
6648       S.Diag(Param->getLocation(), diag::note_template_param_here);
6649       return true;
6650     }
6651 
6652     // A template argument must have static storage duration.
6653     if (Var->getTLSKind()) {
6654       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6655           << Arg->getSourceRange();
6656       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6657       return true;
6658     }
6659   }
6660 
6661   if (AddressTaken && ParamType->isReferenceType()) {
6662     // If we originally had an address-of operator, but the
6663     // parameter has reference type, complain and (if things look
6664     // like they will work) drop the address-of operator.
6665     if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6666                                           ParamType.getNonReferenceType())) {
6667       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6668         << ParamType;
6669       S.Diag(Param->getLocation(), diag::note_template_param_here);
6670       return true;
6671     }
6672 
6673     S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6674       << ParamType
6675       << FixItHint::CreateRemoval(AddrOpLoc);
6676     S.Diag(Param->getLocation(), diag::note_template_param_here);
6677 
6678     ArgType = Entity->getType();
6679   }
6680 
6681   // If the template parameter has pointer type, either we must have taken the
6682   // address or the argument must decay to a pointer.
6683   if (!AddressTaken && ParamType->isPointerType()) {
6684     if (Func) {
6685       // Function-to-pointer decay.
6686       ArgType = S.Context.getPointerType(Func->getType());
6687     } else if (Entity->getType()->isArrayType()) {
6688       // Array-to-pointer decay.
6689       ArgType = S.Context.getArrayDecayedType(Entity->getType());
6690     } else {
6691       // If the template parameter has pointer type but the address of
6692       // this object was not taken, complain and (possibly) recover by
6693       // taking the address of the entity.
6694       ArgType = S.Context.getPointerType(Entity->getType());
6695       if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6696         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6697           << ParamType;
6698         S.Diag(Param->getLocation(), diag::note_template_param_here);
6699         return true;
6700       }
6701 
6702       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6703         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6704 
6705       S.Diag(Param->getLocation(), diag::note_template_param_here);
6706     }
6707   }
6708 
6709   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6710                                                      Arg, ArgType))
6711     return true;
6712 
6713   // Create the template argument.
6714   Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
6715                                S.Context.getCanonicalType(ParamType));
6716   S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6717   return false;
6718 }
6719 
6720 /// Checks whether the given template argument is a pointer to
6721 /// member constant according to C++ [temp.arg.nontype]p1.
6722 static bool CheckTemplateArgumentPointerToMember(Sema &S,
6723                                                  NonTypeTemplateParmDecl *Param,
6724                                                  QualType ParamType,
6725                                                  Expr *&ResultArg,
6726                                                  TemplateArgument &Converted) {
6727   bool Invalid = false;
6728 
6729   Expr *Arg = ResultArg;
6730   bool ObjCLifetimeConversion;
6731 
6732   // C++ [temp.arg.nontype]p1:
6733   //
6734   //   A template-argument for a non-type, non-template
6735   //   template-parameter shall be one of: [...]
6736   //
6737   //     -- a pointer to member expressed as described in 5.3.1.
6738   DeclRefExpr *DRE = nullptr;
6739 
6740   // In C++98/03 mode, give an extension warning on any extra parentheses.
6741   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6742   bool ExtraParens = false;
6743   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6744     if (!Invalid && !ExtraParens) {
6745       S.Diag(Arg->getBeginLoc(),
6746              S.getLangOpts().CPlusPlus11
6747                  ? diag::warn_cxx98_compat_template_arg_extra_parens
6748                  : diag::ext_template_arg_extra_parens)
6749           << Arg->getSourceRange();
6750       ExtraParens = true;
6751     }
6752 
6753     Arg = Parens->getSubExpr();
6754   }
6755 
6756   while (SubstNonTypeTemplateParmExpr *subst =
6757            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6758     Arg = subst->getReplacement()->IgnoreImpCasts();
6759 
6760   // A pointer-to-member constant written &Class::member.
6761   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6762     if (UnOp->getOpcode() == UO_AddrOf) {
6763       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6764       if (DRE && !DRE->getQualifier())
6765         DRE = nullptr;
6766     }
6767   }
6768   // A constant of pointer-to-member type.
6769   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6770     ValueDecl *VD = DRE->getDecl();
6771     if (VD->getType()->isMemberPointerType()) {
6772       if (isa<NonTypeTemplateParmDecl>(VD)) {
6773         if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6774           Converted = TemplateArgument(Arg);
6775         } else {
6776           VD = cast<ValueDecl>(VD->getCanonicalDecl());
6777           Converted = TemplateArgument(VD, ParamType);
6778         }
6779         return Invalid;
6780       }
6781     }
6782 
6783     DRE = nullptr;
6784   }
6785 
6786   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6787 
6788   // Check for a null pointer value.
6789   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6790                                              Entity)) {
6791   case NPV_Error:
6792     return true;
6793   case NPV_NullPointer:
6794     S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6795     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6796                                  /*isNullPtr*/true);
6797     return false;
6798   case NPV_NotNullPointer:
6799     break;
6800   }
6801 
6802   if (S.IsQualificationConversion(ResultArg->getType(),
6803                                   ParamType.getNonReferenceType(), false,
6804                                   ObjCLifetimeConversion)) {
6805     ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6806                                     ResultArg->getValueKind())
6807                     .get();
6808   } else if (!S.Context.hasSameUnqualifiedType(
6809                  ResultArg->getType(), ParamType.getNonReferenceType())) {
6810     // We can't perform this conversion.
6811     S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6812         << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6813     S.Diag(Param->getLocation(), diag::note_template_param_here);
6814     return true;
6815   }
6816 
6817   if (!DRE)
6818     return S.Diag(Arg->getBeginLoc(),
6819                   diag::err_template_arg_not_pointer_to_member_form)
6820            << Arg->getSourceRange();
6821 
6822   if (isa<FieldDecl>(DRE->getDecl()) ||
6823       isa<IndirectFieldDecl>(DRE->getDecl()) ||
6824       isa<CXXMethodDecl>(DRE->getDecl())) {
6825     assert((isa<FieldDecl>(DRE->getDecl()) ||
6826             isa<IndirectFieldDecl>(DRE->getDecl()) ||
6827             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
6828            "Only non-static member pointers can make it here");
6829 
6830     // Okay: this is the address of a non-static member, and therefore
6831     // a member pointer constant.
6832     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6833       Converted = TemplateArgument(Arg);
6834     } else {
6835       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6836       Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType));
6837     }
6838     return Invalid;
6839   }
6840 
6841   // We found something else, but we don't know specifically what it is.
6842   S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6843       << Arg->getSourceRange();
6844   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6845   return true;
6846 }
6847 
6848 /// Check a template argument against its corresponding
6849 /// non-type template parameter.
6850 ///
6851 /// This routine implements the semantics of C++ [temp.arg.nontype].
6852 /// If an error occurred, it returns ExprError(); otherwise, it
6853 /// returns the converted template argument. \p ParamType is the
6854 /// type of the non-type template parameter after it has been instantiated.
6855 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6856                                        QualType ParamType, Expr *Arg,
6857                                        TemplateArgument &Converted,
6858                                        CheckTemplateArgumentKind CTAK) {
6859   SourceLocation StartLoc = Arg->getBeginLoc();
6860 
6861   // If the parameter type somehow involves auto, deduce the type now.
6862   DeducedType *DeducedT = ParamType->getContainedDeducedType();
6863   if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
6864     // During template argument deduction, we allow 'decltype(auto)' to
6865     // match an arbitrary dependent argument.
6866     // FIXME: The language rules don't say what happens in this case.
6867     // FIXME: We get an opaque dependent type out of decltype(auto) if the
6868     // expression is merely instantiation-dependent; is this enough?
6869     if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6870       auto *AT = dyn_cast<AutoType>(DeducedT);
6871       if (AT && AT->isDecltypeAuto()) {
6872         Converted = TemplateArgument(Arg);
6873         return Arg;
6874       }
6875     }
6876 
6877     // When checking a deduced template argument, deduce from its type even if
6878     // the type is dependent, in order to check the types of non-type template
6879     // arguments line up properly in partial ordering.
6880     Optional<unsigned> Depth = Param->getDepth() + 1;
6881     Expr *DeductionArg = Arg;
6882     if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6883       DeductionArg = PE->getPattern();
6884     TypeSourceInfo *TSI =
6885         Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
6886     if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
6887       InitializedEntity Entity =
6888           InitializedEntity::InitializeTemplateParameter(ParamType, Param);
6889       InitializationKind Kind = InitializationKind::CreateForInit(
6890           DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
6891       Expr *Inits[1] = {DeductionArg};
6892       ParamType =
6893           DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
6894       if (ParamType.isNull())
6895         return ExprError();
6896     } else if (DeduceAutoType(
6897                    TSI, DeductionArg, ParamType, Depth,
6898                    // We do not check constraints right now because the
6899                    // immediately-declared constraint of the auto type is also
6900                    // an associated constraint, and will be checked along with
6901                    // the other associated constraints after checking the
6902                    // template argument list.
6903                    /*IgnoreConstraints=*/true) == DAR_Failed) {
6904       Diag(Arg->getExprLoc(),
6905            diag::err_non_type_template_parm_type_deduction_failure)
6906         << Param->getDeclName() << Param->getType() << Arg->getType()
6907         << Arg->getSourceRange();
6908       Diag(Param->getLocation(), diag::note_template_param_here);
6909       return ExprError();
6910     }
6911     // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6912     // an error. The error message normally references the parameter
6913     // declaration, but here we'll pass the argument location because that's
6914     // where the parameter type is deduced.
6915     ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6916     if (ParamType.isNull()) {
6917       Diag(Param->getLocation(), diag::note_template_param_here);
6918       return ExprError();
6919     }
6920   }
6921 
6922   // We should have already dropped all cv-qualifiers by now.
6923   assert(!ParamType.hasQualifiers() &&
6924          "non-type template parameter type cannot be qualified");
6925 
6926   // FIXME: When Param is a reference, should we check that Arg is an lvalue?
6927   if (CTAK == CTAK_Deduced &&
6928       (ParamType->isReferenceType()
6929            ? !Context.hasSameType(ParamType.getNonReferenceType(),
6930                                   Arg->getType())
6931            : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
6932     // FIXME: If either type is dependent, we skip the check. This isn't
6933     // correct, since during deduction we're supposed to have replaced each
6934     // template parameter with some unique (non-dependent) placeholder.
6935     // FIXME: If the argument type contains 'auto', we carry on and fail the
6936     // type check in order to force specific types to be more specialized than
6937     // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6938     // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
6939     if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6940         !Arg->getType()->getContainedDeducedType()) {
6941       Converted = TemplateArgument(Arg);
6942       return Arg;
6943     }
6944     // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6945     // we should actually be checking the type of the template argument in P,
6946     // not the type of the template argument deduced from A, against the
6947     // template parameter type.
6948     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6949       << Arg->getType()
6950       << ParamType.getUnqualifiedType();
6951     Diag(Param->getLocation(), diag::note_template_param_here);
6952     return ExprError();
6953   }
6954 
6955   // If either the parameter has a dependent type or the argument is
6956   // type-dependent, there's nothing we can check now. The argument only
6957   // contains an unexpanded pack during partial ordering, and there's
6958   // nothing more we can check in that case.
6959   if (ParamType->isDependentType() || Arg->isTypeDependent() ||
6960       Arg->containsUnexpandedParameterPack()) {
6961     // Force the argument to the type of the parameter to maintain invariants.
6962     auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6963     if (PE)
6964       Arg = PE->getPattern();
6965     ExprResult E = ImpCastExprToType(
6966         Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6967         ParamType->isLValueReferenceType()   ? VK_LValue
6968         : ParamType->isRValueReferenceType() ? VK_XValue
6969                                              : VK_PRValue);
6970     if (E.isInvalid())
6971       return ExprError();
6972     if (PE) {
6973       // Recreate a pack expansion if we unwrapped one.
6974       E = new (Context)
6975           PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6976                             PE->getNumExpansions());
6977     }
6978     Converted = TemplateArgument(E.get());
6979     return E;
6980   }
6981 
6982   // The initialization of the parameter from the argument is
6983   // a constant-evaluated context.
6984   EnterExpressionEvaluationContext ConstantEvaluated(
6985       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6986 
6987   if (getLangOpts().CPlusPlus17) {
6988     QualType CanonParamType = Context.getCanonicalType(ParamType);
6989 
6990     // Avoid making a copy when initializing a template parameter of class type
6991     // from a template parameter object of the same type. This is going beyond
6992     // the standard, but is required for soundness: in
6993     //   template<A a> struct X { X *p; X<a> *q; };
6994     // ... we need p and q to have the same type.
6995     //
6996     // Similarly, don't inject a call to a copy constructor when initializing
6997     // from a template parameter of the same type.
6998     Expr *InnerArg = Arg->IgnoreParenImpCasts();
6999     if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
7000         Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
7001       NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
7002       if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
7003         Converted = TemplateArgument(TPO, CanonParamType);
7004         return Arg;
7005       }
7006       if (isa<NonTypeTemplateParmDecl>(ND)) {
7007         Converted = TemplateArgument(Arg);
7008         return Arg;
7009       }
7010     }
7011 
7012     // C++17 [temp.arg.nontype]p1:
7013     //   A template-argument for a non-type template parameter shall be
7014     //   a converted constant expression of the type of the template-parameter.
7015     APValue Value;
7016     ExprResult ArgResult = CheckConvertedConstantExpression(
7017         Arg, ParamType, Value, CCEK_TemplateArg, Param);
7018     if (ArgResult.isInvalid())
7019       return ExprError();
7020 
7021     // For a value-dependent argument, CheckConvertedConstantExpression is
7022     // permitted (and expected) to be unable to determine a value.
7023     if (ArgResult.get()->isValueDependent()) {
7024       Converted = TemplateArgument(ArgResult.get());
7025       return ArgResult;
7026     }
7027 
7028     // Convert the APValue to a TemplateArgument.
7029     switch (Value.getKind()) {
7030     case APValue::None:
7031       assert(ParamType->isNullPtrType());
7032       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
7033       break;
7034     case APValue::Indeterminate:
7035       llvm_unreachable("result of constant evaluation should be initialized");
7036       break;
7037     case APValue::Int:
7038       assert(ParamType->isIntegralOrEnumerationType());
7039       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
7040       break;
7041     case APValue::MemberPointer: {
7042       assert(ParamType->isMemberPointerType());
7043 
7044       // FIXME: We need TemplateArgument representation and mangling for these.
7045       if (!Value.getMemberPointerPath().empty()) {
7046         Diag(Arg->getBeginLoc(),
7047              diag::err_template_arg_member_ptr_base_derived_not_supported)
7048             << Value.getMemberPointerDecl() << ParamType
7049             << Arg->getSourceRange();
7050         return ExprError();
7051       }
7052 
7053       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
7054       Converted = VD ? TemplateArgument(VD, CanonParamType)
7055                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
7056       break;
7057     }
7058     case APValue::LValue: {
7059       //   For a non-type template-parameter of pointer or reference type,
7060       //   the value of the constant expression shall not refer to
7061       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7062              ParamType->isNullPtrType());
7063       // -- a temporary object
7064       // -- a string literal
7065       // -- the result of a typeid expression, or
7066       // -- a predefined __func__ variable
7067       APValue::LValueBase Base = Value.getLValueBase();
7068       auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7069       if (Base &&
7070           (!VD ||
7071            isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
7072         Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7073             << Arg->getSourceRange();
7074         return ExprError();
7075       }
7076       // -- a subobject
7077       // FIXME: Until C++20
7078       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
7079           VD && VD->getType()->isArrayType() &&
7080           Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7081           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7082         // Per defect report (no number yet):
7083         //   ... other than a pointer to the first element of a complete array
7084         //       object.
7085       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7086                  Value.isLValueOnePastTheEnd()) {
7087         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7088           << Value.getAsString(Context, ParamType);
7089         return ExprError();
7090       }
7091       assert((VD || !ParamType->isReferenceType()) &&
7092              "null reference should not be a constant expression");
7093       assert((!VD || !ParamType->isNullPtrType()) &&
7094              "non-null value of type nullptr_t?");
7095       Converted = VD ? TemplateArgument(VD, CanonParamType)
7096                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
7097       break;
7098     }
7099     case APValue::Struct:
7100     case APValue::Union:
7101       // Get or create the corresponding template parameter object.
7102       Converted = TemplateArgument(
7103           Context.getTemplateParamObjectDecl(CanonParamType, Value),
7104           CanonParamType);
7105       break;
7106     case APValue::AddrLabelDiff:
7107       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7108     case APValue::FixedPoint:
7109     case APValue::Float:
7110     case APValue::ComplexInt:
7111     case APValue::ComplexFloat:
7112     case APValue::Vector:
7113     case APValue::Array:
7114       return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7115              << ParamType;
7116     }
7117 
7118     return ArgResult.get();
7119   }
7120 
7121   // C++ [temp.arg.nontype]p5:
7122   //   The following conversions are performed on each expression used
7123   //   as a non-type template-argument. If a non-type
7124   //   template-argument cannot be converted to the type of the
7125   //   corresponding template-parameter then the program is
7126   //   ill-formed.
7127   if (ParamType->isIntegralOrEnumerationType()) {
7128     // C++11:
7129     //   -- for a non-type template-parameter of integral or
7130     //      enumeration type, conversions permitted in a converted
7131     //      constant expression are applied.
7132     //
7133     // C++98:
7134     //   -- for a non-type template-parameter of integral or
7135     //      enumeration type, integral promotions (4.5) and integral
7136     //      conversions (4.7) are applied.
7137 
7138     if (getLangOpts().CPlusPlus11) {
7139       // C++ [temp.arg.nontype]p1:
7140       //   A template-argument for a non-type, non-template template-parameter
7141       //   shall be one of:
7142       //
7143       //     -- for a non-type template-parameter of integral or enumeration
7144       //        type, a converted constant expression of the type of the
7145       //        template-parameter; or
7146       llvm::APSInt Value;
7147       ExprResult ArgResult =
7148         CheckConvertedConstantExpression(Arg, ParamType, Value,
7149                                          CCEK_TemplateArg);
7150       if (ArgResult.isInvalid())
7151         return ExprError();
7152 
7153       // We can't check arbitrary value-dependent arguments.
7154       if (ArgResult.get()->isValueDependent()) {
7155         Converted = TemplateArgument(ArgResult.get());
7156         return ArgResult;
7157       }
7158 
7159       // Widen the argument value to sizeof(parameter type). This is almost
7160       // always a no-op, except when the parameter type is bool. In
7161       // that case, this may extend the argument from 1 bit to 8 bits.
7162       QualType IntegerType = ParamType;
7163       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7164         IntegerType = Enum->getDecl()->getIntegerType();
7165       Value = Value.extOrTrunc(IntegerType->isBitIntType()
7166                                    ? Context.getIntWidth(IntegerType)
7167                                    : Context.getTypeSize(IntegerType));
7168 
7169       Converted = TemplateArgument(Context, Value,
7170                                    Context.getCanonicalType(ParamType));
7171       return ArgResult;
7172     }
7173 
7174     ExprResult ArgResult = DefaultLvalueConversion(Arg);
7175     if (ArgResult.isInvalid())
7176       return ExprError();
7177     Arg = ArgResult.get();
7178 
7179     QualType ArgType = Arg->getType();
7180 
7181     // C++ [temp.arg.nontype]p1:
7182     //   A template-argument for a non-type, non-template
7183     //   template-parameter shall be one of:
7184     //
7185     //     -- an integral constant-expression of integral or enumeration
7186     //        type; or
7187     //     -- the name of a non-type template-parameter; or
7188     llvm::APSInt Value;
7189     if (!ArgType->isIntegralOrEnumerationType()) {
7190       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7191           << ArgType << Arg->getSourceRange();
7192       Diag(Param->getLocation(), diag::note_template_param_here);
7193       return ExprError();
7194     } else if (!Arg->isValueDependent()) {
7195       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7196         QualType T;
7197 
7198       public:
7199         TmplArgICEDiagnoser(QualType T) : T(T) { }
7200 
7201         SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7202                                              SourceLocation Loc) override {
7203           return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7204         }
7205       } Diagnoser(ArgType);
7206 
7207       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7208       if (!Arg)
7209         return ExprError();
7210     }
7211 
7212     // From here on out, all we care about is the unqualified form
7213     // of the argument type.
7214     ArgType = ArgType.getUnqualifiedType();
7215 
7216     // Try to convert the argument to the parameter's type.
7217     if (Context.hasSameType(ParamType, ArgType)) {
7218       // Okay: no conversion necessary
7219     } else if (ParamType->isBooleanType()) {
7220       // This is an integral-to-boolean conversion.
7221       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7222     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7223                !ParamType->isEnumeralType()) {
7224       // This is an integral promotion or conversion.
7225       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7226     } else {
7227       // We can't perform this conversion.
7228       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7229           << Arg->getType() << ParamType << Arg->getSourceRange();
7230       Diag(Param->getLocation(), diag::note_template_param_here);
7231       return ExprError();
7232     }
7233 
7234     // Add the value of this argument to the list of converted
7235     // arguments. We use the bitwidth and signedness of the template
7236     // parameter.
7237     if (Arg->isValueDependent()) {
7238       // The argument is value-dependent. Create a new
7239       // TemplateArgument with the converted expression.
7240       Converted = TemplateArgument(Arg);
7241       return Arg;
7242     }
7243 
7244     QualType IntegerType = Context.getCanonicalType(ParamType);
7245     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7246       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
7247 
7248     if (ParamType->isBooleanType()) {
7249       // Value must be zero or one.
7250       Value = Value != 0;
7251       unsigned AllowedBits = Context.getTypeSize(IntegerType);
7252       if (Value.getBitWidth() != AllowedBits)
7253         Value = Value.extOrTrunc(AllowedBits);
7254       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7255     } else {
7256       llvm::APSInt OldValue = Value;
7257 
7258       // Coerce the template argument's value to the value it will have
7259       // based on the template parameter's type.
7260       unsigned AllowedBits = IntegerType->isBitIntType()
7261                                  ? Context.getIntWidth(IntegerType)
7262                                  : Context.getTypeSize(IntegerType);
7263       if (Value.getBitWidth() != AllowedBits)
7264         Value = Value.extOrTrunc(AllowedBits);
7265       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7266 
7267       // Complain if an unsigned parameter received a negative value.
7268       if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7269           (OldValue.isSigned() && OldValue.isNegative())) {
7270         Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7271             << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7272             << Arg->getSourceRange();
7273         Diag(Param->getLocation(), diag::note_template_param_here);
7274       }
7275 
7276       // Complain if we overflowed the template parameter's type.
7277       unsigned RequiredBits;
7278       if (IntegerType->isUnsignedIntegerOrEnumerationType())
7279         RequiredBits = OldValue.getActiveBits();
7280       else if (OldValue.isUnsigned())
7281         RequiredBits = OldValue.getActiveBits() + 1;
7282       else
7283         RequiredBits = OldValue.getMinSignedBits();
7284       if (RequiredBits > AllowedBits) {
7285         Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7286             << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7287             << Arg->getSourceRange();
7288         Diag(Param->getLocation(), diag::note_template_param_here);
7289       }
7290     }
7291 
7292     Converted = TemplateArgument(Context, Value,
7293                                  ParamType->isEnumeralType()
7294                                    ? Context.getCanonicalType(ParamType)
7295                                    : IntegerType);
7296     return Arg;
7297   }
7298 
7299   QualType ArgType = Arg->getType();
7300   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7301 
7302   // Handle pointer-to-function, reference-to-function, and
7303   // pointer-to-member-function all in (roughly) the same way.
7304   if (// -- For a non-type template-parameter of type pointer to
7305       //    function, only the function-to-pointer conversion (4.3) is
7306       //    applied. If the template-argument represents a set of
7307       //    overloaded functions (or a pointer to such), the matching
7308       //    function is selected from the set (13.4).
7309       (ParamType->isPointerType() &&
7310        ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7311       // -- For a non-type template-parameter of type reference to
7312       //    function, no conversions apply. If the template-argument
7313       //    represents a set of overloaded functions, the matching
7314       //    function is selected from the set (13.4).
7315       (ParamType->isReferenceType() &&
7316        ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7317       // -- For a non-type template-parameter of type pointer to
7318       //    member function, no conversions apply. If the
7319       //    template-argument represents a set of overloaded member
7320       //    functions, the matching member function is selected from
7321       //    the set (13.4).
7322       (ParamType->isMemberPointerType() &&
7323        ParamType->castAs<MemberPointerType>()->getPointeeType()
7324          ->isFunctionType())) {
7325 
7326     if (Arg->getType() == Context.OverloadTy) {
7327       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7328                                                                 true,
7329                                                                 FoundResult)) {
7330         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7331           return ExprError();
7332 
7333         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7334         ArgType = Arg->getType();
7335       } else
7336         return ExprError();
7337     }
7338 
7339     if (!ParamType->isMemberPointerType()) {
7340       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7341                                                          ParamType,
7342                                                          Arg, Converted))
7343         return ExprError();
7344       return Arg;
7345     }
7346 
7347     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7348                                              Converted))
7349       return ExprError();
7350     return Arg;
7351   }
7352 
7353   if (ParamType->isPointerType()) {
7354     //   -- for a non-type template-parameter of type pointer to
7355     //      object, qualification conversions (4.4) and the
7356     //      array-to-pointer conversion (4.2) are applied.
7357     // C++0x also allows a value of std::nullptr_t.
7358     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7359            "Only object pointers allowed here");
7360 
7361     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7362                                                        ParamType,
7363                                                        Arg, Converted))
7364       return ExprError();
7365     return Arg;
7366   }
7367 
7368   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7369     //   -- For a non-type template-parameter of type reference to
7370     //      object, no conversions apply. The type referred to by the
7371     //      reference may be more cv-qualified than the (otherwise
7372     //      identical) type of the template-argument. The
7373     //      template-parameter is bound directly to the
7374     //      template-argument, which must be an lvalue.
7375     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7376            "Only object references allowed here");
7377 
7378     if (Arg->getType() == Context.OverloadTy) {
7379       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7380                                                  ParamRefType->getPointeeType(),
7381                                                                 true,
7382                                                                 FoundResult)) {
7383         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7384           return ExprError();
7385 
7386         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7387         ArgType = Arg->getType();
7388       } else
7389         return ExprError();
7390     }
7391 
7392     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7393                                                        ParamType,
7394                                                        Arg, Converted))
7395       return ExprError();
7396     return Arg;
7397   }
7398 
7399   // Deal with parameters of type std::nullptr_t.
7400   if (ParamType->isNullPtrType()) {
7401     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7402       Converted = TemplateArgument(Arg);
7403       return Arg;
7404     }
7405 
7406     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7407     case NPV_NotNullPointer:
7408       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7409         << Arg->getType() << ParamType;
7410       Diag(Param->getLocation(), diag::note_template_param_here);
7411       return ExprError();
7412 
7413     case NPV_Error:
7414       return ExprError();
7415 
7416     case NPV_NullPointer:
7417       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7418       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
7419                                    /*isNullPtr*/true);
7420       return Arg;
7421     }
7422   }
7423 
7424   //     -- For a non-type template-parameter of type pointer to data
7425   //        member, qualification conversions (4.4) are applied.
7426   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7427 
7428   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7429                                            Converted))
7430     return ExprError();
7431   return Arg;
7432 }
7433 
7434 static void DiagnoseTemplateParameterListArityMismatch(
7435     Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7436     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7437 
7438 /// Check a template argument against its corresponding
7439 /// template template parameter.
7440 ///
7441 /// This routine implements the semantics of C++ [temp.arg.template].
7442 /// It returns true if an error occurred, and false otherwise.
7443 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7444                                          TemplateParameterList *Params,
7445                                          TemplateArgumentLoc &Arg) {
7446   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7447   TemplateDecl *Template = Name.getAsTemplateDecl();
7448   if (!Template) {
7449     // Any dependent template name is fine.
7450     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7451     return false;
7452   }
7453 
7454   if (Template->isInvalidDecl())
7455     return true;
7456 
7457   // C++0x [temp.arg.template]p1:
7458   //   A template-argument for a template template-parameter shall be
7459   //   the name of a class template or an alias template, expressed as an
7460   //   id-expression. When the template-argument names a class template, only
7461   //   primary class templates are considered when matching the
7462   //   template template argument with the corresponding parameter;
7463   //   partial specializations are not considered even if their
7464   //   parameter lists match that of the template template parameter.
7465   //
7466   // Note that we also allow template template parameters here, which
7467   // will happen when we are dealing with, e.g., class template
7468   // partial specializations.
7469   if (!isa<ClassTemplateDecl>(Template) &&
7470       !isa<TemplateTemplateParmDecl>(Template) &&
7471       !isa<TypeAliasTemplateDecl>(Template) &&
7472       !isa<BuiltinTemplateDecl>(Template)) {
7473     assert(isa<FunctionTemplateDecl>(Template) &&
7474            "Only function templates are possible here");
7475     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7476     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7477       << Template;
7478   }
7479 
7480   // C++1z [temp.arg.template]p3: (DR 150)
7481   //   A template-argument matches a template template-parameter P when P
7482   //   is at least as specialized as the template-argument A.
7483   // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7484   //  defect report resolution from C++17 and shouldn't be introduced by
7485   //  concepts.
7486   if (getLangOpts().RelaxedTemplateTemplateArgs) {
7487     // Quick check for the common case:
7488     //   If P contains a parameter pack, then A [...] matches P if each of A's
7489     //   template parameters matches the corresponding template parameter in
7490     //   the template-parameter-list of P.
7491     if (TemplateParameterListsAreEqual(
7492             Template->getTemplateParameters(), Params, false,
7493             TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7494         // If the argument has no associated constraints, then the parameter is
7495         // definitely at least as specialized as the argument.
7496         // Otherwise - we need a more thorough check.
7497         !Template->hasAssociatedConstraints())
7498       return false;
7499 
7500     if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7501                                                           Arg.getLocation())) {
7502       // C++2a[temp.func.order]p2
7503       //   [...] If both deductions succeed, the partial ordering selects the
7504       //   more constrained template as described by the rules in
7505       //   [temp.constr.order].
7506       SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7507       Params->getAssociatedConstraints(ParamsAC);
7508       // C++2a[temp.arg.template]p3
7509       //   [...] In this comparison, if P is unconstrained, the constraints on A
7510       //   are not considered.
7511       if (ParamsAC.empty())
7512         return false;
7513       Template->getAssociatedConstraints(TemplateAC);
7514       bool IsParamAtLeastAsConstrained;
7515       if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7516                                  IsParamAtLeastAsConstrained))
7517         return true;
7518       if (!IsParamAtLeastAsConstrained) {
7519         Diag(Arg.getLocation(),
7520              diag::err_template_template_parameter_not_at_least_as_constrained)
7521             << Template << Param << Arg.getSourceRange();
7522         Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7523         Diag(Template->getLocation(), diag::note_entity_declared_at)
7524             << Template;
7525         MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7526                                                       TemplateAC);
7527         return true;
7528       }
7529       return false;
7530     }
7531     // FIXME: Produce better diagnostics for deduction failures.
7532   }
7533 
7534   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7535                                          Params,
7536                                          true,
7537                                          TPL_TemplateTemplateArgumentMatch,
7538                                          Arg.getLocation());
7539 }
7540 
7541 /// Given a non-type template argument that refers to a
7542 /// declaration and the type of its corresponding non-type template
7543 /// parameter, produce an expression that properly refers to that
7544 /// declaration.
7545 ExprResult
7546 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7547                                               QualType ParamType,
7548                                               SourceLocation Loc) {
7549   // C++ [temp.param]p8:
7550   //
7551   //   A non-type template-parameter of type "array of T" or
7552   //   "function returning T" is adjusted to be of type "pointer to
7553   //   T" or "pointer to function returning T", respectively.
7554   if (ParamType->isArrayType())
7555     ParamType = Context.getArrayDecayedType(ParamType);
7556   else if (ParamType->isFunctionType())
7557     ParamType = Context.getPointerType(ParamType);
7558 
7559   // For a NULL non-type template argument, return nullptr casted to the
7560   // parameter's type.
7561   if (Arg.getKind() == TemplateArgument::NullPtr) {
7562     return ImpCastExprToType(
7563              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7564                              ParamType,
7565                              ParamType->getAs<MemberPointerType>()
7566                                ? CK_NullToMemberPointer
7567                                : CK_NullToPointer);
7568   }
7569   assert(Arg.getKind() == TemplateArgument::Declaration &&
7570          "Only declaration template arguments permitted here");
7571 
7572   ValueDecl *VD = Arg.getAsDecl();
7573 
7574   CXXScopeSpec SS;
7575   if (ParamType->isMemberPointerType()) {
7576     // If this is a pointer to member, we need to use a qualified name to
7577     // form a suitable pointer-to-member constant.
7578     assert(VD->getDeclContext()->isRecord() &&
7579            (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7580             isa<IndirectFieldDecl>(VD)));
7581     QualType ClassType
7582       = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7583     NestedNameSpecifier *Qualifier
7584       = NestedNameSpecifier::Create(Context, nullptr, false,
7585                                     ClassType.getTypePtr());
7586     SS.MakeTrivial(Context, Qualifier, Loc);
7587   }
7588 
7589   ExprResult RefExpr = BuildDeclarationNameExpr(
7590       SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7591   if (RefExpr.isInvalid())
7592     return ExprError();
7593 
7594   // For a pointer, the argument declaration is the pointee. Take its address.
7595   QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7596   if (ParamType->isPointerType() && !ElemT.isNull() &&
7597       Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7598     // Decay an array argument if we want a pointer to its first element.
7599     RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7600     if (RefExpr.isInvalid())
7601       return ExprError();
7602   } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7603     // For any other pointer, take the address (or form a pointer-to-member).
7604     RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7605     if (RefExpr.isInvalid())
7606       return ExprError();
7607   } else if (ParamType->isRecordType()) {
7608     assert(isa<TemplateParamObjectDecl>(VD) &&
7609            "arg for class template param not a template parameter object");
7610     // No conversions apply in this case.
7611     return RefExpr;
7612   } else {
7613     assert(ParamType->isReferenceType() &&
7614            "unexpected type for decl template argument");
7615   }
7616 
7617   // At this point we should have the right value category.
7618   assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7619          "value kind mismatch for non-type template argument");
7620 
7621   // The type of the template parameter can differ from the type of the
7622   // argument in various ways; convert it now if necessary.
7623   QualType DestExprType = ParamType.getNonLValueExprType(Context);
7624   if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7625     CastKind CK;
7626     QualType Ignored;
7627     if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7628         IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7629       CK = CK_NoOp;
7630     } else if (ParamType->isVoidPointerType() &&
7631                RefExpr.get()->getType()->isPointerType()) {
7632       CK = CK_BitCast;
7633     } else {
7634       // FIXME: Pointers to members can need conversion derived-to-base or
7635       // base-to-derived conversions. We currently don't retain enough
7636       // information to convert properly (we need to track a cast path or
7637       // subobject number in the template argument).
7638       llvm_unreachable(
7639           "unexpected conversion required for non-type template argument");
7640     }
7641     RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7642                                 RefExpr.get()->getValueKind());
7643   }
7644 
7645   return RefExpr;
7646 }
7647 
7648 /// Construct a new expression that refers to the given
7649 /// integral template argument with the given source-location
7650 /// information.
7651 ///
7652 /// This routine takes care of the mapping from an integral template
7653 /// argument (which may have any integral type) to the appropriate
7654 /// literal value.
7655 ExprResult
7656 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7657                                                   SourceLocation Loc) {
7658   assert(Arg.getKind() == TemplateArgument::Integral &&
7659          "Operation is only valid for integral template arguments");
7660   QualType OrigT = Arg.getIntegralType();
7661 
7662   // If this is an enum type that we're instantiating, we need to use an integer
7663   // type the same size as the enumerator.  We don't want to build an
7664   // IntegerLiteral with enum type.  The integer type of an enum type can be of
7665   // any integral type with C++11 enum classes, make sure we create the right
7666   // type of literal for it.
7667   QualType T = OrigT;
7668   if (const EnumType *ET = OrigT->getAs<EnumType>())
7669     T = ET->getDecl()->getIntegerType();
7670 
7671   Expr *E;
7672   if (T->isAnyCharacterType()) {
7673     CharacterLiteral::CharacterKind Kind;
7674     if (T->isWideCharType())
7675       Kind = CharacterLiteral::Wide;
7676     else if (T->isChar8Type() && getLangOpts().Char8)
7677       Kind = CharacterLiteral::UTF8;
7678     else if (T->isChar16Type())
7679       Kind = CharacterLiteral::UTF16;
7680     else if (T->isChar32Type())
7681       Kind = CharacterLiteral::UTF32;
7682     else
7683       Kind = CharacterLiteral::Ascii;
7684 
7685     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7686                                        Kind, T, Loc);
7687   } else if (T->isBooleanType()) {
7688     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7689                                          T, Loc);
7690   } else if (T->isNullPtrType()) {
7691     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7692   } else {
7693     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7694   }
7695 
7696   if (OrigT->isEnumeralType()) {
7697     // FIXME: This is a hack. We need a better way to handle substituted
7698     // non-type template parameters.
7699     E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E,
7700                                nullptr, CurFPFeatureOverrides(),
7701                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
7702                                Loc, Loc);
7703   }
7704 
7705   return E;
7706 }
7707 
7708 /// Match two template parameters within template parameter lists.
7709 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7710                                        bool Complain,
7711                                      Sema::TemplateParameterListEqualKind Kind,
7712                                        SourceLocation TemplateArgLoc) {
7713   // Check the actual kind (type, non-type, template).
7714   if (Old->getKind() != New->getKind()) {
7715     if (Complain) {
7716       unsigned NextDiag = diag::err_template_param_different_kind;
7717       if (TemplateArgLoc.isValid()) {
7718         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7719         NextDiag = diag::note_template_param_different_kind;
7720       }
7721       S.Diag(New->getLocation(), NextDiag)
7722         << (Kind != Sema::TPL_TemplateMatch);
7723       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7724         << (Kind != Sema::TPL_TemplateMatch);
7725     }
7726 
7727     return false;
7728   }
7729 
7730   // Check that both are parameter packs or neither are parameter packs.
7731   // However, if we are matching a template template argument to a
7732   // template template parameter, the template template parameter can have
7733   // a parameter pack where the template template argument does not.
7734   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7735       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7736         Old->isTemplateParameterPack())) {
7737     if (Complain) {
7738       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7739       if (TemplateArgLoc.isValid()) {
7740         S.Diag(TemplateArgLoc,
7741              diag::err_template_arg_template_params_mismatch);
7742         NextDiag = diag::note_template_parameter_pack_non_pack;
7743       }
7744 
7745       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7746                       : isa<NonTypeTemplateParmDecl>(New)? 1
7747                       : 2;
7748       S.Diag(New->getLocation(), NextDiag)
7749         << ParamKind << New->isParameterPack();
7750       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7751         << ParamKind << Old->isParameterPack();
7752     }
7753 
7754     return false;
7755   }
7756 
7757   // For non-type template parameters, check the type of the parameter.
7758   if (NonTypeTemplateParmDecl *OldNTTP
7759                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7760     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7761 
7762     // If we are matching a template template argument to a template
7763     // template parameter and one of the non-type template parameter types
7764     // is dependent, then we must wait until template instantiation time
7765     // to actually compare the arguments.
7766     if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
7767         (!OldNTTP->getType()->isDependentType() &&
7768          !NewNTTP->getType()->isDependentType()))
7769       if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7770         if (Complain) {
7771           unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7772           if (TemplateArgLoc.isValid()) {
7773             S.Diag(TemplateArgLoc,
7774                    diag::err_template_arg_template_params_mismatch);
7775             NextDiag = diag::note_template_nontype_parm_different_type;
7776           }
7777           S.Diag(NewNTTP->getLocation(), NextDiag)
7778             << NewNTTP->getType()
7779             << (Kind != Sema::TPL_TemplateMatch);
7780           S.Diag(OldNTTP->getLocation(),
7781                  diag::note_template_nontype_parm_prev_declaration)
7782             << OldNTTP->getType();
7783         }
7784 
7785         return false;
7786       }
7787   }
7788   // For template template parameters, check the template parameter types.
7789   // The template parameter lists of template template
7790   // parameters must agree.
7791   else if (TemplateTemplateParmDecl *OldTTP
7792                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7793     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7794     if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7795                                           OldTTP->getTemplateParameters(),
7796                                           Complain,
7797                                         (Kind == Sema::TPL_TemplateMatch
7798                                            ? Sema::TPL_TemplateTemplateParmMatch
7799                                            : Kind),
7800                                           TemplateArgLoc))
7801       return false;
7802   } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
7803     const Expr *NewC = nullptr, *OldC = nullptr;
7804     if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
7805       NewC = TC->getImmediatelyDeclaredConstraint();
7806     if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
7807       OldC = TC->getImmediatelyDeclaredConstraint();
7808 
7809     auto Diagnose = [&] {
7810       S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
7811            diag::err_template_different_type_constraint);
7812       S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
7813            diag::note_template_prev_declaration) << /*declaration*/0;
7814     };
7815 
7816     if (!NewC != !OldC) {
7817       if (Complain)
7818         Diagnose();
7819       return false;
7820     }
7821 
7822     if (NewC) {
7823       llvm::FoldingSetNodeID OldCID, NewCID;
7824       OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
7825       NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
7826       if (OldCID != NewCID) {
7827         if (Complain)
7828           Diagnose();
7829         return false;
7830       }
7831     }
7832   }
7833 
7834   return true;
7835 }
7836 
7837 /// Diagnose a known arity mismatch when comparing template argument
7838 /// lists.
7839 static
7840 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7841                                                 TemplateParameterList *New,
7842                                                 TemplateParameterList *Old,
7843                                       Sema::TemplateParameterListEqualKind Kind,
7844                                                 SourceLocation TemplateArgLoc) {
7845   unsigned NextDiag = diag::err_template_param_list_different_arity;
7846   if (TemplateArgLoc.isValid()) {
7847     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7848     NextDiag = diag::note_template_param_list_different_arity;
7849   }
7850   S.Diag(New->getTemplateLoc(), NextDiag)
7851     << (New->size() > Old->size())
7852     << (Kind != Sema::TPL_TemplateMatch)
7853     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7854   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7855     << (Kind != Sema::TPL_TemplateMatch)
7856     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7857 }
7858 
7859 /// Determine whether the given template parameter lists are
7860 /// equivalent.
7861 ///
7862 /// \param New  The new template parameter list, typically written in the
7863 /// source code as part of a new template declaration.
7864 ///
7865 /// \param Old  The old template parameter list, typically found via
7866 /// name lookup of the template declared with this template parameter
7867 /// list.
7868 ///
7869 /// \param Complain  If true, this routine will produce a diagnostic if
7870 /// the template parameter lists are not equivalent.
7871 ///
7872 /// \param Kind describes how we are to match the template parameter lists.
7873 ///
7874 /// \param TemplateArgLoc If this source location is valid, then we
7875 /// are actually checking the template parameter list of a template
7876 /// argument (New) against the template parameter list of its
7877 /// corresponding template template parameter (Old). We produce
7878 /// slightly different diagnostics in this scenario.
7879 ///
7880 /// \returns True if the template parameter lists are equal, false
7881 /// otherwise.
7882 bool
7883 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7884                                      TemplateParameterList *Old,
7885                                      bool Complain,
7886                                      TemplateParameterListEqualKind Kind,
7887                                      SourceLocation TemplateArgLoc) {
7888   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7889     if (Complain)
7890       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7891                                                  TemplateArgLoc);
7892 
7893     return false;
7894   }
7895 
7896   // C++0x [temp.arg.template]p3:
7897   //   A template-argument matches a template template-parameter (call it P)
7898   //   when each of the template parameters in the template-parameter-list of
7899   //   the template-argument's corresponding class template or alias template
7900   //   (call it A) matches the corresponding template parameter in the
7901   //   template-parameter-list of P. [...]
7902   TemplateParameterList::iterator NewParm = New->begin();
7903   TemplateParameterList::iterator NewParmEnd = New->end();
7904   for (TemplateParameterList::iterator OldParm = Old->begin(),
7905                                     OldParmEnd = Old->end();
7906        OldParm != OldParmEnd; ++OldParm) {
7907     if (Kind != TPL_TemplateTemplateArgumentMatch ||
7908         !(*OldParm)->isTemplateParameterPack()) {
7909       if (NewParm == NewParmEnd) {
7910         if (Complain)
7911           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7912                                                      TemplateArgLoc);
7913 
7914         return false;
7915       }
7916 
7917       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7918                                       Kind, TemplateArgLoc))
7919         return false;
7920 
7921       ++NewParm;
7922       continue;
7923     }
7924 
7925     // C++0x [temp.arg.template]p3:
7926     //   [...] When P's template- parameter-list contains a template parameter
7927     //   pack (14.5.3), the template parameter pack will match zero or more
7928     //   template parameters or template parameter packs in the
7929     //   template-parameter-list of A with the same type and form as the
7930     //   template parameter pack in P (ignoring whether those template
7931     //   parameters are template parameter packs).
7932     for (; NewParm != NewParmEnd; ++NewParm) {
7933       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7934                                       Kind, TemplateArgLoc))
7935         return false;
7936     }
7937   }
7938 
7939   // Make sure we exhausted all of the arguments.
7940   if (NewParm != NewParmEnd) {
7941     if (Complain)
7942       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7943                                                  TemplateArgLoc);
7944 
7945     return false;
7946   }
7947 
7948   if (Kind != TPL_TemplateTemplateArgumentMatch) {
7949     const Expr *NewRC = New->getRequiresClause();
7950     const Expr *OldRC = Old->getRequiresClause();
7951 
7952     auto Diagnose = [&] {
7953       Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
7954            diag::err_template_different_requires_clause);
7955       Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
7956            diag::note_template_prev_declaration) << /*declaration*/0;
7957     };
7958 
7959     if (!NewRC != !OldRC) {
7960       if (Complain)
7961         Diagnose();
7962       return false;
7963     }
7964 
7965     if (NewRC) {
7966       llvm::FoldingSetNodeID OldRCID, NewRCID;
7967       OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
7968       NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
7969       if (OldRCID != NewRCID) {
7970         if (Complain)
7971           Diagnose();
7972         return false;
7973       }
7974     }
7975   }
7976 
7977   return true;
7978 }
7979 
7980 /// Check whether a template can be declared within this scope.
7981 ///
7982 /// If the template declaration is valid in this scope, returns
7983 /// false. Otherwise, issues a diagnostic and returns true.
7984 bool
7985 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7986   if (!S)
7987     return false;
7988 
7989   // Find the nearest enclosing declaration scope.
7990   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7991          (S->getFlags() & Scope::TemplateParamScope) != 0)
7992     S = S->getParent();
7993 
7994   // C++ [temp.pre]p6: [P2096]
7995   //   A template, explicit specialization, or partial specialization shall not
7996   //   have C linkage.
7997   DeclContext *Ctx = S->getEntity();
7998   if (Ctx && Ctx->isExternCContext()) {
7999     Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
8000         << TemplateParams->getSourceRange();
8001     if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
8002       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
8003     return true;
8004   }
8005   Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
8006 
8007   // C++ [temp]p2:
8008   //   A template-declaration can appear only as a namespace scope or
8009   //   class scope declaration.
8010   // C++ [temp.expl.spec]p3:
8011   //   An explicit specialization may be declared in any scope in which the
8012   //   corresponding primary template may be defined.
8013   // C++ [temp.class.spec]p6: [P2096]
8014   //   A partial specialization may be declared in any scope in which the
8015   //   corresponding primary template may be defined.
8016   if (Ctx) {
8017     if (Ctx->isFileContext())
8018       return false;
8019     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
8020       // C++ [temp.mem]p2:
8021       //   A local class shall not have member templates.
8022       if (RD->isLocalClass())
8023         return Diag(TemplateParams->getTemplateLoc(),
8024                     diag::err_template_inside_local_class)
8025           << TemplateParams->getSourceRange();
8026       else
8027         return false;
8028     }
8029   }
8030 
8031   return Diag(TemplateParams->getTemplateLoc(),
8032               diag::err_template_outside_namespace_or_class_scope)
8033     << TemplateParams->getSourceRange();
8034 }
8035 
8036 /// Determine what kind of template specialization the given declaration
8037 /// is.
8038 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
8039   if (!D)
8040     return TSK_Undeclared;
8041 
8042   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
8043     return Record->getTemplateSpecializationKind();
8044   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
8045     return Function->getTemplateSpecializationKind();
8046   if (VarDecl *Var = dyn_cast<VarDecl>(D))
8047     return Var->getTemplateSpecializationKind();
8048 
8049   return TSK_Undeclared;
8050 }
8051 
8052 /// Check whether a specialization is well-formed in the current
8053 /// context.
8054 ///
8055 /// This routine determines whether a template specialization can be declared
8056 /// in the current context (C++ [temp.expl.spec]p2).
8057 ///
8058 /// \param S the semantic analysis object for which this check is being
8059 /// performed.
8060 ///
8061 /// \param Specialized the entity being specialized or instantiated, which
8062 /// may be a kind of template (class template, function template, etc.) or
8063 /// a member of a class template (member function, static data member,
8064 /// member class).
8065 ///
8066 /// \param PrevDecl the previous declaration of this entity, if any.
8067 ///
8068 /// \param Loc the location of the explicit specialization or instantiation of
8069 /// this entity.
8070 ///
8071 /// \param IsPartialSpecialization whether this is a partial specialization of
8072 /// a class template.
8073 ///
8074 /// \returns true if there was an error that we cannot recover from, false
8075 /// otherwise.
8076 static bool CheckTemplateSpecializationScope(Sema &S,
8077                                              NamedDecl *Specialized,
8078                                              NamedDecl *PrevDecl,
8079                                              SourceLocation Loc,
8080                                              bool IsPartialSpecialization) {
8081   // Keep these "kind" numbers in sync with the %select statements in the
8082   // various diagnostics emitted by this routine.
8083   int EntityKind = 0;
8084   if (isa<ClassTemplateDecl>(Specialized))
8085     EntityKind = IsPartialSpecialization? 1 : 0;
8086   else if (isa<VarTemplateDecl>(Specialized))
8087     EntityKind = IsPartialSpecialization ? 3 : 2;
8088   else if (isa<FunctionTemplateDecl>(Specialized))
8089     EntityKind = 4;
8090   else if (isa<CXXMethodDecl>(Specialized))
8091     EntityKind = 5;
8092   else if (isa<VarDecl>(Specialized))
8093     EntityKind = 6;
8094   else if (isa<RecordDecl>(Specialized))
8095     EntityKind = 7;
8096   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8097     EntityKind = 8;
8098   else {
8099     S.Diag(Loc, diag::err_template_spec_unknown_kind)
8100       << S.getLangOpts().CPlusPlus11;
8101     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8102     return true;
8103   }
8104 
8105   // C++ [temp.expl.spec]p2:
8106   //   An explicit specialization may be declared in any scope in which
8107   //   the corresponding primary template may be defined.
8108   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8109     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8110       << Specialized;
8111     return true;
8112   }
8113 
8114   // C++ [temp.class.spec]p6:
8115   //   A class template partial specialization may be declared in any
8116   //   scope in which the primary template may be defined.
8117   DeclContext *SpecializedContext =
8118       Specialized->getDeclContext()->getRedeclContext();
8119   DeclContext *DC = S.CurContext->getRedeclContext();
8120 
8121   // Make sure that this redeclaration (or definition) occurs in the same
8122   // scope or an enclosing namespace.
8123   if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8124                             : DC->Equals(SpecializedContext))) {
8125     if (isa<TranslationUnitDecl>(SpecializedContext))
8126       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8127         << EntityKind << Specialized;
8128     else {
8129       auto *ND = cast<NamedDecl>(SpecializedContext);
8130       int Diag = diag::err_template_spec_redecl_out_of_scope;
8131       if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8132         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8133       S.Diag(Loc, Diag) << EntityKind << Specialized
8134                         << ND << isa<CXXRecordDecl>(ND);
8135     }
8136 
8137     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8138 
8139     // Don't allow specializing in the wrong class during error recovery.
8140     // Otherwise, things can go horribly wrong.
8141     if (DC->isRecord())
8142       return true;
8143   }
8144 
8145   return false;
8146 }
8147 
8148 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8149   if (!E->isTypeDependent())
8150     return SourceLocation();
8151   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8152   Checker.TraverseStmt(E);
8153   if (Checker.MatchLoc.isInvalid())
8154     return E->getSourceRange();
8155   return Checker.MatchLoc;
8156 }
8157 
8158 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8159   if (!TL.getType()->isDependentType())
8160     return SourceLocation();
8161   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8162   Checker.TraverseTypeLoc(TL);
8163   if (Checker.MatchLoc.isInvalid())
8164     return TL.getSourceRange();
8165   return Checker.MatchLoc;
8166 }
8167 
8168 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8169 /// that checks non-type template partial specialization arguments.
8170 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8171     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8172     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8173   for (unsigned I = 0; I != NumArgs; ++I) {
8174     if (Args[I].getKind() == TemplateArgument::Pack) {
8175       if (CheckNonTypeTemplatePartialSpecializationArgs(
8176               S, TemplateNameLoc, Param, Args[I].pack_begin(),
8177               Args[I].pack_size(), IsDefaultArgument))
8178         return true;
8179 
8180       continue;
8181     }
8182 
8183     if (Args[I].getKind() != TemplateArgument::Expression)
8184       continue;
8185 
8186     Expr *ArgExpr = Args[I].getAsExpr();
8187 
8188     // We can have a pack expansion of any of the bullets below.
8189     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8190       ArgExpr = Expansion->getPattern();
8191 
8192     // Strip off any implicit casts we added as part of type checking.
8193     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8194       ArgExpr = ICE->getSubExpr();
8195 
8196     // C++ [temp.class.spec]p8:
8197     //   A non-type argument is non-specialized if it is the name of a
8198     //   non-type parameter. All other non-type arguments are
8199     //   specialized.
8200     //
8201     // Below, we check the two conditions that only apply to
8202     // specialized non-type arguments, so skip any non-specialized
8203     // arguments.
8204     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8205       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8206         continue;
8207 
8208     // C++ [temp.class.spec]p9:
8209     //   Within the argument list of a class template partial
8210     //   specialization, the following restrictions apply:
8211     //     -- A partially specialized non-type argument expression
8212     //        shall not involve a template parameter of the partial
8213     //        specialization except when the argument expression is a
8214     //        simple identifier.
8215     //     -- The type of a template parameter corresponding to a
8216     //        specialized non-type argument shall not be dependent on a
8217     //        parameter of the specialization.
8218     // DR1315 removes the first bullet, leaving an incoherent set of rules.
8219     // We implement a compromise between the original rules and DR1315:
8220     //     --  A specialized non-type template argument shall not be
8221     //         type-dependent and the corresponding template parameter
8222     //         shall have a non-dependent type.
8223     SourceRange ParamUseRange =
8224         findTemplateParameterInType(Param->getDepth(), ArgExpr);
8225     if (ParamUseRange.isValid()) {
8226       if (IsDefaultArgument) {
8227         S.Diag(TemplateNameLoc,
8228                diag::err_dependent_non_type_arg_in_partial_spec);
8229         S.Diag(ParamUseRange.getBegin(),
8230                diag::note_dependent_non_type_default_arg_in_partial_spec)
8231           << ParamUseRange;
8232       } else {
8233         S.Diag(ParamUseRange.getBegin(),
8234                diag::err_dependent_non_type_arg_in_partial_spec)
8235           << ParamUseRange;
8236       }
8237       return true;
8238     }
8239 
8240     ParamUseRange = findTemplateParameter(
8241         Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8242     if (ParamUseRange.isValid()) {
8243       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8244              diag::err_dependent_typed_non_type_arg_in_partial_spec)
8245           << Param->getType();
8246       S.Diag(Param->getLocation(), diag::note_template_param_here)
8247         << (IsDefaultArgument ? ParamUseRange : SourceRange())
8248         << ParamUseRange;
8249       return true;
8250     }
8251   }
8252 
8253   return false;
8254 }
8255 
8256 /// Check the non-type template arguments of a class template
8257 /// partial specialization according to C++ [temp.class.spec]p9.
8258 ///
8259 /// \param TemplateNameLoc the location of the template name.
8260 /// \param PrimaryTemplate the template parameters of the primary class
8261 ///        template.
8262 /// \param NumExplicit the number of explicitly-specified template arguments.
8263 /// \param TemplateArgs the template arguments of the class template
8264 ///        partial specialization.
8265 ///
8266 /// \returns \c true if there was an error, \c false otherwise.
8267 bool Sema::CheckTemplatePartialSpecializationArgs(
8268     SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8269     unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8270   // We have to be conservative when checking a template in a dependent
8271   // context.
8272   if (PrimaryTemplate->getDeclContext()->isDependentContext())
8273     return false;
8274 
8275   TemplateParameterList *TemplateParams =
8276       PrimaryTemplate->getTemplateParameters();
8277   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8278     NonTypeTemplateParmDecl *Param
8279       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8280     if (!Param)
8281       continue;
8282 
8283     if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8284                                                       Param, &TemplateArgs[I],
8285                                                       1, I >= NumExplicit))
8286       return true;
8287   }
8288 
8289   return false;
8290 }
8291 
8292 DeclResult Sema::ActOnClassTemplateSpecialization(
8293     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8294     SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8295     TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8296     MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8297   assert(TUK != TUK_Reference && "References are not specializations");
8298 
8299   // NOTE: KWLoc is the location of the tag keyword. This will instead
8300   // store the location of the outermost template keyword in the declaration.
8301   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8302     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8303   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8304   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8305   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8306 
8307   // Find the class template we're specializing
8308   TemplateName Name = TemplateId.Template.get();
8309   ClassTemplateDecl *ClassTemplate
8310     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8311 
8312   if (!ClassTemplate) {
8313     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8314       << (Name.getAsTemplateDecl() &&
8315           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8316     return true;
8317   }
8318 
8319   bool isMemberSpecialization = false;
8320   bool isPartialSpecialization = false;
8321 
8322   // Check the validity of the template headers that introduce this
8323   // template.
8324   // FIXME: We probably shouldn't complain about these headers for
8325   // friend declarations.
8326   bool Invalid = false;
8327   TemplateParameterList *TemplateParams =
8328       MatchTemplateParametersToScopeSpecifier(
8329           KWLoc, TemplateNameLoc, SS, &TemplateId,
8330           TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8331           Invalid);
8332   if (Invalid)
8333     return true;
8334 
8335   // Check that we can declare a template specialization here.
8336   if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8337     return true;
8338 
8339   if (TemplateParams && TemplateParams->size() > 0) {
8340     isPartialSpecialization = true;
8341 
8342     if (TUK == TUK_Friend) {
8343       Diag(KWLoc, diag::err_partial_specialization_friend)
8344         << SourceRange(LAngleLoc, RAngleLoc);
8345       return true;
8346     }
8347 
8348     // C++ [temp.class.spec]p10:
8349     //   The template parameter list of a specialization shall not
8350     //   contain default template argument values.
8351     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8352       Decl *Param = TemplateParams->getParam(I);
8353       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8354         if (TTP->hasDefaultArgument()) {
8355           Diag(TTP->getDefaultArgumentLoc(),
8356                diag::err_default_arg_in_partial_spec);
8357           TTP->removeDefaultArgument();
8358         }
8359       } else if (NonTypeTemplateParmDecl *NTTP
8360                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8361         if (Expr *DefArg = NTTP->getDefaultArgument()) {
8362           Diag(NTTP->getDefaultArgumentLoc(),
8363                diag::err_default_arg_in_partial_spec)
8364             << DefArg->getSourceRange();
8365           NTTP->removeDefaultArgument();
8366         }
8367       } else {
8368         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8369         if (TTP->hasDefaultArgument()) {
8370           Diag(TTP->getDefaultArgument().getLocation(),
8371                diag::err_default_arg_in_partial_spec)
8372             << TTP->getDefaultArgument().getSourceRange();
8373           TTP->removeDefaultArgument();
8374         }
8375       }
8376     }
8377   } else if (TemplateParams) {
8378     if (TUK == TUK_Friend)
8379       Diag(KWLoc, diag::err_template_spec_friend)
8380         << FixItHint::CreateRemoval(
8381                                 SourceRange(TemplateParams->getTemplateLoc(),
8382                                             TemplateParams->getRAngleLoc()))
8383         << SourceRange(LAngleLoc, RAngleLoc);
8384   } else {
8385     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8386   }
8387 
8388   // Check that the specialization uses the same tag kind as the
8389   // original template.
8390   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8391   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
8392   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8393                                     Kind, TUK == TUK_Definition, KWLoc,
8394                                     ClassTemplate->getIdentifier())) {
8395     Diag(KWLoc, diag::err_use_with_wrong_tag)
8396       << ClassTemplate
8397       << FixItHint::CreateReplacement(KWLoc,
8398                             ClassTemplate->getTemplatedDecl()->getKindName());
8399     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8400          diag::note_previous_use);
8401     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8402   }
8403 
8404   // Translate the parser's template argument list in our AST format.
8405   TemplateArgumentListInfo TemplateArgs =
8406       makeTemplateArgumentListInfo(*this, TemplateId);
8407 
8408   // Check for unexpanded parameter packs in any of the template arguments.
8409   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8410     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8411                                         UPPC_PartialSpecialization))
8412       return true;
8413 
8414   // Check that the template argument list is well-formed for this
8415   // template.
8416   SmallVector<TemplateArgument, 4> Converted;
8417   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8418                                 TemplateArgs, false, Converted,
8419                                 /*UpdateArgsWithConversions=*/true))
8420     return true;
8421 
8422   // Find the class template (partial) specialization declaration that
8423   // corresponds to these arguments.
8424   if (isPartialSpecialization) {
8425     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8426                                                TemplateArgs.size(), Converted))
8427       return true;
8428 
8429     // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8430     // also do it during instantiation.
8431     if (!Name.isDependent() &&
8432         !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
8433                                                                    Converted)) {
8434       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8435         << ClassTemplate->getDeclName();
8436       isPartialSpecialization = false;
8437     }
8438   }
8439 
8440   void *InsertPos = nullptr;
8441   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8442 
8443   if (isPartialSpecialization)
8444     PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
8445                                                         TemplateParams,
8446                                                         InsertPos);
8447   else
8448     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
8449 
8450   ClassTemplateSpecializationDecl *Specialization = nullptr;
8451 
8452   // Check whether we can declare a class template specialization in
8453   // the current scope.
8454   if (TUK != TUK_Friend &&
8455       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8456                                        TemplateNameLoc,
8457                                        isPartialSpecialization))
8458     return true;
8459 
8460   // The canonical type
8461   QualType CanonType;
8462   if (isPartialSpecialization) {
8463     // Build the canonical type that describes the converted template
8464     // arguments of the class template partial specialization.
8465     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8466     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8467                                                       Converted);
8468 
8469     if (Context.hasSameType(CanonType,
8470                         ClassTemplate->getInjectedClassNameSpecialization()) &&
8471         (!Context.getLangOpts().CPlusPlus20 ||
8472          !TemplateParams->hasAssociatedConstraints())) {
8473       // C++ [temp.class.spec]p9b3:
8474       //
8475       //   -- The argument list of the specialization shall not be identical
8476       //      to the implicit argument list of the primary template.
8477       //
8478       // This rule has since been removed, because it's redundant given DR1495,
8479       // but we keep it because it produces better diagnostics and recovery.
8480       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8481         << /*class template*/0 << (TUK == TUK_Definition)
8482         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8483       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8484                                 ClassTemplate->getIdentifier(),
8485                                 TemplateNameLoc,
8486                                 Attr,
8487                                 TemplateParams,
8488                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8489                                 /*FriendLoc*/SourceLocation(),
8490                                 TemplateParameterLists.size() - 1,
8491                                 TemplateParameterLists.data());
8492     }
8493 
8494     // Create a new class template partial specialization declaration node.
8495     ClassTemplatePartialSpecializationDecl *PrevPartial
8496       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8497     ClassTemplatePartialSpecializationDecl *Partial
8498       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
8499                                              ClassTemplate->getDeclContext(),
8500                                                        KWLoc, TemplateNameLoc,
8501                                                        TemplateParams,
8502                                                        ClassTemplate,
8503                                                        Converted,
8504                                                        TemplateArgs,
8505                                                        CanonType,
8506                                                        PrevPartial);
8507     SetNestedNameSpecifier(*this, Partial, SS);
8508     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8509       Partial->setTemplateParameterListsInfo(
8510           Context, TemplateParameterLists.drop_back(1));
8511     }
8512 
8513     if (!PrevPartial)
8514       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8515     Specialization = Partial;
8516 
8517     // If we are providing an explicit specialization of a member class
8518     // template specialization, make a note of that.
8519     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8520       PrevPartial->setMemberSpecialization();
8521 
8522     CheckTemplatePartialSpecialization(Partial);
8523   } else {
8524     // Create a new class template specialization declaration node for
8525     // this explicit specialization or friend declaration.
8526     Specialization
8527       = ClassTemplateSpecializationDecl::Create(Context, Kind,
8528                                              ClassTemplate->getDeclContext(),
8529                                                 KWLoc, TemplateNameLoc,
8530                                                 ClassTemplate,
8531                                                 Converted,
8532                                                 PrevDecl);
8533     SetNestedNameSpecifier(*this, Specialization, SS);
8534     if (TemplateParameterLists.size() > 0) {
8535       Specialization->setTemplateParameterListsInfo(Context,
8536                                                     TemplateParameterLists);
8537     }
8538 
8539     if (!PrevDecl)
8540       ClassTemplate->AddSpecialization(Specialization, InsertPos);
8541 
8542     if (CurContext->isDependentContext()) {
8543       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8544       CanonType = Context.getTemplateSpecializationType(
8545           CanonTemplate, Converted);
8546     } else {
8547       CanonType = Context.getTypeDeclType(Specialization);
8548     }
8549   }
8550 
8551   // C++ [temp.expl.spec]p6:
8552   //   If a template, a member template or the member of a class template is
8553   //   explicitly specialized then that specialization shall be declared
8554   //   before the first use of that specialization that would cause an implicit
8555   //   instantiation to take place, in every translation unit in which such a
8556   //   use occurs; no diagnostic is required.
8557   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8558     bool Okay = false;
8559     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8560       // Is there any previous explicit specialization declaration?
8561       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8562         Okay = true;
8563         break;
8564       }
8565     }
8566 
8567     if (!Okay) {
8568       SourceRange Range(TemplateNameLoc, RAngleLoc);
8569       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8570         << Context.getTypeDeclType(Specialization) << Range;
8571 
8572       Diag(PrevDecl->getPointOfInstantiation(),
8573            diag::note_instantiation_required_here)
8574         << (PrevDecl->getTemplateSpecializationKind()
8575                                                 != TSK_ImplicitInstantiation);
8576       return true;
8577     }
8578   }
8579 
8580   // If this is not a friend, note that this is an explicit specialization.
8581   if (TUK != TUK_Friend)
8582     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8583 
8584   // Check that this isn't a redefinition of this specialization.
8585   if (TUK == TUK_Definition) {
8586     RecordDecl *Def = Specialization->getDefinition();
8587     NamedDecl *Hidden = nullptr;
8588     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8589       SkipBody->ShouldSkip = true;
8590       SkipBody->Previous = Def;
8591       makeMergedDefinitionVisible(Hidden);
8592     } else if (Def) {
8593       SourceRange Range(TemplateNameLoc, RAngleLoc);
8594       Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8595       Diag(Def->getLocation(), diag::note_previous_definition);
8596       Specialization->setInvalidDecl();
8597       return true;
8598     }
8599   }
8600 
8601   ProcessDeclAttributeList(S, Specialization, Attr);
8602 
8603   // Add alignment attributes if necessary; these attributes are checked when
8604   // the ASTContext lays out the structure.
8605   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8606     AddAlignmentAttributesForRecord(Specialization);
8607     AddMsStructLayoutForRecord(Specialization);
8608   }
8609 
8610   if (ModulePrivateLoc.isValid())
8611     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8612       << (isPartialSpecialization? 1 : 0)
8613       << FixItHint::CreateRemoval(ModulePrivateLoc);
8614 
8615   // Build the fully-sugared type for this class template
8616   // specialization as the user wrote in the specialization
8617   // itself. This means that we'll pretty-print the type retrieved
8618   // from the specialization's declaration the way that the user
8619   // actually wrote the specialization, rather than formatting the
8620   // name based on the "canonical" representation used to store the
8621   // template arguments in the specialization.
8622   TypeSourceInfo *WrittenTy
8623     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8624                                                 TemplateArgs, CanonType);
8625   if (TUK != TUK_Friend) {
8626     Specialization->setTypeAsWritten(WrittenTy);
8627     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8628   }
8629 
8630   // C++ [temp.expl.spec]p9:
8631   //   A template explicit specialization is in the scope of the
8632   //   namespace in which the template was defined.
8633   //
8634   // We actually implement this paragraph where we set the semantic
8635   // context (in the creation of the ClassTemplateSpecializationDecl),
8636   // but we also maintain the lexical context where the actual
8637   // definition occurs.
8638   Specialization->setLexicalDeclContext(CurContext);
8639 
8640   // We may be starting the definition of this specialization.
8641   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8642     Specialization->startDefinition();
8643 
8644   if (TUK == TUK_Friend) {
8645     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8646                                             TemplateNameLoc,
8647                                             WrittenTy,
8648                                             /*FIXME:*/KWLoc);
8649     Friend->setAccess(AS_public);
8650     CurContext->addDecl(Friend);
8651   } else {
8652     // Add the specialization into its lexical context, so that it can
8653     // be seen when iterating through the list of declarations in that
8654     // context. However, specializations are not found by name lookup.
8655     CurContext->addDecl(Specialization);
8656   }
8657 
8658   if (SkipBody && SkipBody->ShouldSkip)
8659     return SkipBody->Previous;
8660 
8661   return Specialization;
8662 }
8663 
8664 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8665                               MultiTemplateParamsArg TemplateParameterLists,
8666                                     Declarator &D) {
8667   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8668   ActOnDocumentableDecl(NewDecl);
8669   return NewDecl;
8670 }
8671 
8672 Decl *Sema::ActOnConceptDefinition(Scope *S,
8673                               MultiTemplateParamsArg TemplateParameterLists,
8674                                    IdentifierInfo *Name, SourceLocation NameLoc,
8675                                    Expr *ConstraintExpr) {
8676   DeclContext *DC = CurContext;
8677 
8678   if (!DC->getRedeclContext()->isFileContext()) {
8679     Diag(NameLoc,
8680       diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8681     return nullptr;
8682   }
8683 
8684   if (TemplateParameterLists.size() > 1) {
8685     Diag(NameLoc, diag::err_concept_extra_headers);
8686     return nullptr;
8687   }
8688 
8689   if (TemplateParameterLists.front()->size() == 0) {
8690     Diag(NameLoc, diag::err_concept_no_parameters);
8691     return nullptr;
8692   }
8693 
8694   if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
8695     return nullptr;
8696 
8697   ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
8698                                              TemplateParameterLists.front(),
8699                                              ConstraintExpr);
8700 
8701   if (NewDecl->hasAssociatedConstraints()) {
8702     // C++2a [temp.concept]p4:
8703     // A concept shall not have associated constraints.
8704     Diag(NameLoc, diag::err_concept_no_associated_constraints);
8705     NewDecl->setInvalidDecl();
8706   }
8707 
8708   // Check for conflicting previous declaration.
8709   DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8710   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8711                         forRedeclarationInCurContext());
8712   LookupName(Previous, S);
8713   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8714                        /*AllowInlineNamespace*/false);
8715   bool AddToScope = true;
8716   CheckConceptRedefinition(NewDecl, Previous, AddToScope);
8717 
8718   ActOnDocumentableDecl(NewDecl);
8719   if (AddToScope)
8720     PushOnScopeChains(NewDecl, S);
8721   return NewDecl;
8722 }
8723 
8724 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
8725                                     LookupResult &Previous, bool &AddToScope) {
8726   AddToScope = true;
8727 
8728   if (Previous.empty())
8729     return;
8730 
8731   auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
8732   if (!OldConcept) {
8733     auto *Old = Previous.getRepresentativeDecl();
8734     Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
8735         << NewDecl->getDeclName();
8736     notePreviousDefinition(Old, NewDecl->getLocation());
8737     AddToScope = false;
8738     return;
8739   }
8740   // Check if we can merge with a concept declaration.
8741   bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
8742   if (!IsSame) {
8743     Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
8744         << NewDecl->getDeclName();
8745     notePreviousDefinition(OldConcept, NewDecl->getLocation());
8746     AddToScope = false;
8747     return;
8748   }
8749   if (hasReachableDefinition(OldConcept) &&
8750       IsRedefinitionInModule(NewDecl, OldConcept)) {
8751     Diag(NewDecl->getLocation(), diag::err_redefinition)
8752         << NewDecl->getDeclName();
8753     notePreviousDefinition(OldConcept, NewDecl->getLocation());
8754     AddToScope = false;
8755     return;
8756   }
8757   if (!Previous.isSingleResult()) {
8758     // FIXME: we should produce an error in case of ambig and failed lookups.
8759     //        Other decls (e.g. namespaces) also have this shortcoming.
8760     return;
8761   }
8762   // We unwrap canonical decl late to check for module visibility.
8763   Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
8764 }
8765 
8766 /// \brief Strips various properties off an implicit instantiation
8767 /// that has just been explicitly specialized.
8768 static void StripImplicitInstantiation(NamedDecl *D) {
8769   D->dropAttr<DLLImportAttr>();
8770   D->dropAttr<DLLExportAttr>();
8771 
8772   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8773     FD->setInlineSpecified(false);
8774 }
8775 
8776 /// Compute the diagnostic location for an explicit instantiation
8777 //  declaration or definition.
8778 static SourceLocation DiagLocForExplicitInstantiation(
8779     NamedDecl* D, SourceLocation PointOfInstantiation) {
8780   // Explicit instantiations following a specialization have no effect and
8781   // hence no PointOfInstantiation. In that case, walk decl backwards
8782   // until a valid name loc is found.
8783   SourceLocation PrevDiagLoc = PointOfInstantiation;
8784   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8785        Prev = Prev->getPreviousDecl()) {
8786     PrevDiagLoc = Prev->getLocation();
8787   }
8788   assert(PrevDiagLoc.isValid() &&
8789          "Explicit instantiation without point of instantiation?");
8790   return PrevDiagLoc;
8791 }
8792 
8793 /// Diagnose cases where we have an explicit template specialization
8794 /// before/after an explicit template instantiation, producing diagnostics
8795 /// for those cases where they are required and determining whether the
8796 /// new specialization/instantiation will have any effect.
8797 ///
8798 /// \param NewLoc the location of the new explicit specialization or
8799 /// instantiation.
8800 ///
8801 /// \param NewTSK the kind of the new explicit specialization or instantiation.
8802 ///
8803 /// \param PrevDecl the previous declaration of the entity.
8804 ///
8805 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
8806 ///
8807 /// \param PrevPointOfInstantiation if valid, indicates where the previous
8808 /// declaration was instantiated (either implicitly or explicitly).
8809 ///
8810 /// \param HasNoEffect will be set to true to indicate that the new
8811 /// specialization or instantiation has no effect and should be ignored.
8812 ///
8813 /// \returns true if there was an error that should prevent the introduction of
8814 /// the new declaration into the AST, false otherwise.
8815 bool
8816 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8817                                              TemplateSpecializationKind NewTSK,
8818                                              NamedDecl *PrevDecl,
8819                                              TemplateSpecializationKind PrevTSK,
8820                                         SourceLocation PrevPointOfInstantiation,
8821                                              bool &HasNoEffect) {
8822   HasNoEffect = false;
8823 
8824   switch (NewTSK) {
8825   case TSK_Undeclared:
8826   case TSK_ImplicitInstantiation:
8827     assert(
8828         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
8829         "previous declaration must be implicit!");
8830     return false;
8831 
8832   case TSK_ExplicitSpecialization:
8833     switch (PrevTSK) {
8834     case TSK_Undeclared:
8835     case TSK_ExplicitSpecialization:
8836       // Okay, we're just specializing something that is either already
8837       // explicitly specialized or has merely been mentioned without any
8838       // instantiation.
8839       return false;
8840 
8841     case TSK_ImplicitInstantiation:
8842       if (PrevPointOfInstantiation.isInvalid()) {
8843         // The declaration itself has not actually been instantiated, so it is
8844         // still okay to specialize it.
8845         StripImplicitInstantiation(PrevDecl);
8846         return false;
8847       }
8848       // Fall through
8849       LLVM_FALLTHROUGH;
8850 
8851     case TSK_ExplicitInstantiationDeclaration:
8852     case TSK_ExplicitInstantiationDefinition:
8853       assert((PrevTSK == TSK_ImplicitInstantiation ||
8854               PrevPointOfInstantiation.isValid()) &&
8855              "Explicit instantiation without point of instantiation?");
8856 
8857       // C++ [temp.expl.spec]p6:
8858       //   If a template, a member template or the member of a class template
8859       //   is explicitly specialized then that specialization shall be declared
8860       //   before the first use of that specialization that would cause an
8861       //   implicit instantiation to take place, in every translation unit in
8862       //   which such a use occurs; no diagnostic is required.
8863       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8864         // Is there any previous explicit specialization declaration?
8865         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8866           return false;
8867       }
8868 
8869       Diag(NewLoc, diag::err_specialization_after_instantiation)
8870         << PrevDecl;
8871       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8872         << (PrevTSK != TSK_ImplicitInstantiation);
8873 
8874       return true;
8875     }
8876     llvm_unreachable("The switch over PrevTSK must be exhaustive.");
8877 
8878   case TSK_ExplicitInstantiationDeclaration:
8879     switch (PrevTSK) {
8880     case TSK_ExplicitInstantiationDeclaration:
8881       // This explicit instantiation declaration is redundant (that's okay).
8882       HasNoEffect = true;
8883       return false;
8884 
8885     case TSK_Undeclared:
8886     case TSK_ImplicitInstantiation:
8887       // We're explicitly instantiating something that may have already been
8888       // implicitly instantiated; that's fine.
8889       return false;
8890 
8891     case TSK_ExplicitSpecialization:
8892       // C++0x [temp.explicit]p4:
8893       //   For a given set of template parameters, if an explicit instantiation
8894       //   of a template appears after a declaration of an explicit
8895       //   specialization for that template, the explicit instantiation has no
8896       //   effect.
8897       HasNoEffect = true;
8898       return false;
8899 
8900     case TSK_ExplicitInstantiationDefinition:
8901       // C++0x [temp.explicit]p10:
8902       //   If an entity is the subject of both an explicit instantiation
8903       //   declaration and an explicit instantiation definition in the same
8904       //   translation unit, the definition shall follow the declaration.
8905       Diag(NewLoc,
8906            diag::err_explicit_instantiation_declaration_after_definition);
8907 
8908       // Explicit instantiations following a specialization have no effect and
8909       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8910       // until a valid name loc is found.
8911       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8912            diag::note_explicit_instantiation_definition_here);
8913       HasNoEffect = true;
8914       return false;
8915     }
8916     llvm_unreachable("Unexpected TemplateSpecializationKind!");
8917 
8918   case TSK_ExplicitInstantiationDefinition:
8919     switch (PrevTSK) {
8920     case TSK_Undeclared:
8921     case TSK_ImplicitInstantiation:
8922       // We're explicitly instantiating something that may have already been
8923       // implicitly instantiated; that's fine.
8924       return false;
8925 
8926     case TSK_ExplicitSpecialization:
8927       // C++ DR 259, C++0x [temp.explicit]p4:
8928       //   For a given set of template parameters, if an explicit
8929       //   instantiation of a template appears after a declaration of
8930       //   an explicit specialization for that template, the explicit
8931       //   instantiation has no effect.
8932       Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8933         << PrevDecl;
8934       Diag(PrevDecl->getLocation(),
8935            diag::note_previous_template_specialization);
8936       HasNoEffect = true;
8937       return false;
8938 
8939     case TSK_ExplicitInstantiationDeclaration:
8940       // We're explicitly instantiating a definition for something for which we
8941       // were previously asked to suppress instantiations. That's fine.
8942 
8943       // C++0x [temp.explicit]p4:
8944       //   For a given set of template parameters, if an explicit instantiation
8945       //   of a template appears after a declaration of an explicit
8946       //   specialization for that template, the explicit instantiation has no
8947       //   effect.
8948       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8949         // Is there any previous explicit specialization declaration?
8950         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8951           HasNoEffect = true;
8952           break;
8953         }
8954       }
8955 
8956       return false;
8957 
8958     case TSK_ExplicitInstantiationDefinition:
8959       // C++0x [temp.spec]p5:
8960       //   For a given template and a given set of template-arguments,
8961       //     - an explicit instantiation definition shall appear at most once
8962       //       in a program,
8963 
8964       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8965       Diag(NewLoc, (getLangOpts().MSVCCompat)
8966                        ? diag::ext_explicit_instantiation_duplicate
8967                        : diag::err_explicit_instantiation_duplicate)
8968           << PrevDecl;
8969       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8970            diag::note_previous_explicit_instantiation);
8971       HasNoEffect = true;
8972       return false;
8973     }
8974   }
8975 
8976   llvm_unreachable("Missing specialization/instantiation case?");
8977 }
8978 
8979 /// Perform semantic analysis for the given dependent function
8980 /// template specialization.
8981 ///
8982 /// The only possible way to get a dependent function template specialization
8983 /// is with a friend declaration, like so:
8984 ///
8985 /// \code
8986 ///   template \<class T> void foo(T);
8987 ///   template \<class T> class A {
8988 ///     friend void foo<>(T);
8989 ///   };
8990 /// \endcode
8991 ///
8992 /// There really isn't any useful analysis we can do here, so we
8993 /// just store the information.
8994 bool
8995 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8996                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
8997                                                    LookupResult &Previous) {
8998   // Remove anything from Previous that isn't a function template in
8999   // the correct context.
9000   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9001   LookupResult::Filter F = Previous.makeFilter();
9002   enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
9003   SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
9004   while (F.hasNext()) {
9005     NamedDecl *D = F.next()->getUnderlyingDecl();
9006     if (!isa<FunctionTemplateDecl>(D)) {
9007       F.erase();
9008       DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
9009       continue;
9010     }
9011 
9012     if (!FDLookupContext->InEnclosingNamespaceSetOf(
9013             D->getDeclContext()->getRedeclContext())) {
9014       F.erase();
9015       DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
9016       continue;
9017     }
9018   }
9019   F.done();
9020 
9021   if (Previous.empty()) {
9022     Diag(FD->getLocation(),
9023          diag::err_dependent_function_template_spec_no_match);
9024     for (auto &P : DiscardedCandidates)
9025       Diag(P.second->getLocation(),
9026            diag::note_dependent_function_template_spec_discard_reason)
9027           << P.first;
9028     return true;
9029   }
9030 
9031   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
9032                                          ExplicitTemplateArgs);
9033   return false;
9034 }
9035 
9036 /// Perform semantic analysis for the given function template
9037 /// specialization.
9038 ///
9039 /// This routine performs all of the semantic analysis required for an
9040 /// explicit function template specialization. On successful completion,
9041 /// the function declaration \p FD will become a function template
9042 /// specialization.
9043 ///
9044 /// \param FD the function declaration, which will be updated to become a
9045 /// function template specialization.
9046 ///
9047 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
9048 /// if any. Note that this may be valid info even when 0 arguments are
9049 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
9050 /// as it anyway contains info on the angle brackets locations.
9051 ///
9052 /// \param Previous the set of declarations that may be specialized by
9053 /// this function specialization.
9054 ///
9055 /// \param QualifiedFriend whether this is a lookup for a qualified friend
9056 /// declaration with no explicit template argument list that might be
9057 /// befriending a function template specialization.
9058 bool Sema::CheckFunctionTemplateSpecialization(
9059     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
9060     LookupResult &Previous, bool QualifiedFriend) {
9061   // The set of function template specializations that could match this
9062   // explicit function template specialization.
9063   UnresolvedSet<8> Candidates;
9064   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
9065                                             /*ForTakingAddress=*/false);
9066 
9067   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
9068       ConvertedTemplateArgs;
9069 
9070   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9071   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9072          I != E; ++I) {
9073     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
9074     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
9075       // Only consider templates found within the same semantic lookup scope as
9076       // FD.
9077       if (!FDLookupContext->InEnclosingNamespaceSetOf(
9078                                 Ovl->getDeclContext()->getRedeclContext()))
9079         continue;
9080 
9081       // When matching a constexpr member function template specialization
9082       // against the primary template, we don't yet know whether the
9083       // specialization has an implicit 'const' (because we don't know whether
9084       // it will be a static member function until we know which template it
9085       // specializes), so adjust it now assuming it specializes this template.
9086       QualType FT = FD->getType();
9087       if (FD->isConstexpr()) {
9088         CXXMethodDecl *OldMD =
9089           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
9090         if (OldMD && OldMD->isConst()) {
9091           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9092           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9093           EPI.TypeQuals.addConst();
9094           FT = Context.getFunctionType(FPT->getReturnType(),
9095                                        FPT->getParamTypes(), EPI);
9096         }
9097       }
9098 
9099       TemplateArgumentListInfo Args;
9100       if (ExplicitTemplateArgs)
9101         Args = *ExplicitTemplateArgs;
9102 
9103       // C++ [temp.expl.spec]p11:
9104       //   A trailing template-argument can be left unspecified in the
9105       //   template-id naming an explicit function template specialization
9106       //   provided it can be deduced from the function argument type.
9107       // Perform template argument deduction to determine whether we may be
9108       // specializing this template.
9109       // FIXME: It is somewhat wasteful to build
9110       TemplateDeductionInfo Info(FailedCandidates.getLocation());
9111       FunctionDecl *Specialization = nullptr;
9112       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9113               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9114               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9115               Info)) {
9116         // Template argument deduction failed; record why it failed, so
9117         // that we can provide nifty diagnostics.
9118         FailedCandidates.addCandidate().set(
9119             I.getPair(), FunTmpl->getTemplatedDecl(),
9120             MakeDeductionFailureInfo(Context, TDK, Info));
9121         (void)TDK;
9122         continue;
9123       }
9124 
9125       // Target attributes are part of the cuda function signature, so
9126       // the deduced template's cuda target must match that of the
9127       // specialization.  Given that C++ template deduction does not
9128       // take target attributes into account, we reject candidates
9129       // here that have a different target.
9130       if (LangOpts.CUDA &&
9131           IdentifyCUDATarget(Specialization,
9132                              /* IgnoreImplicitHDAttr = */ true) !=
9133               IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9134         FailedCandidates.addCandidate().set(
9135             I.getPair(), FunTmpl->getTemplatedDecl(),
9136             MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9137         continue;
9138       }
9139 
9140       // Record this candidate.
9141       if (ExplicitTemplateArgs)
9142         ConvertedTemplateArgs[Specialization] = std::move(Args);
9143       Candidates.addDecl(Specialization, I.getAccess());
9144     }
9145   }
9146 
9147   // For a qualified friend declaration (with no explicit marker to indicate
9148   // that a template specialization was intended), note all (template and
9149   // non-template) candidates.
9150   if (QualifiedFriend && Candidates.empty()) {
9151     Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9152         << FD->getDeclName() << FDLookupContext;
9153     // FIXME: We should form a single candidate list and diagnose all
9154     // candidates at once, to get proper sorting and limiting.
9155     for (auto *OldND : Previous) {
9156       if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9157         NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9158     }
9159     FailedCandidates.NoteCandidates(*this, FD->getLocation());
9160     return true;
9161   }
9162 
9163   // Find the most specialized function template.
9164   UnresolvedSetIterator Result = getMostSpecialized(
9165       Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9166       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9167       PDiag(diag::err_function_template_spec_ambiguous)
9168           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9169       PDiag(diag::note_function_template_spec_matched));
9170 
9171   if (Result == Candidates.end())
9172     return true;
9173 
9174   // Ignore access information;  it doesn't figure into redeclaration checking.
9175   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9176 
9177   FunctionTemplateSpecializationInfo *SpecInfo
9178     = Specialization->getTemplateSpecializationInfo();
9179   assert(SpecInfo && "Function template specialization info missing?");
9180 
9181   // Note: do not overwrite location info if previous template
9182   // specialization kind was explicit.
9183   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9184   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9185     Specialization->setLocation(FD->getLocation());
9186     Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9187     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9188     // function can differ from the template declaration with respect to
9189     // the constexpr specifier.
9190     // FIXME: We need an update record for this AST mutation.
9191     // FIXME: What if there are multiple such prior declarations (for instance,
9192     // from different modules)?
9193     Specialization->setConstexprKind(FD->getConstexprKind());
9194   }
9195 
9196   // FIXME: Check if the prior specialization has a point of instantiation.
9197   // If so, we have run afoul of .
9198 
9199   // If this is a friend declaration, then we're not really declaring
9200   // an explicit specialization.
9201   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9202 
9203   // Check the scope of this explicit specialization.
9204   if (!isFriend &&
9205       CheckTemplateSpecializationScope(*this,
9206                                        Specialization->getPrimaryTemplate(),
9207                                        Specialization, FD->getLocation(),
9208                                        false))
9209     return true;
9210 
9211   // C++ [temp.expl.spec]p6:
9212   //   If a template, a member template or the member of a class template is
9213   //   explicitly specialized then that specialization shall be declared
9214   //   before the first use of that specialization that would cause an implicit
9215   //   instantiation to take place, in every translation unit in which such a
9216   //   use occurs; no diagnostic is required.
9217   bool HasNoEffect = false;
9218   if (!isFriend &&
9219       CheckSpecializationInstantiationRedecl(FD->getLocation(),
9220                                              TSK_ExplicitSpecialization,
9221                                              Specialization,
9222                                    SpecInfo->getTemplateSpecializationKind(),
9223                                          SpecInfo->getPointOfInstantiation(),
9224                                              HasNoEffect))
9225     return true;
9226 
9227   // Mark the prior declaration as an explicit specialization, so that later
9228   // clients know that this is an explicit specialization.
9229   if (!isFriend) {
9230     // Since explicit specializations do not inherit '=delete' from their
9231     // primary function template - check if the 'specialization' that was
9232     // implicitly generated (during template argument deduction for partial
9233     // ordering) from the most specialized of all the function templates that
9234     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
9235     // first check that it was implicitly generated during template argument
9236     // deduction by making sure it wasn't referenced, and then reset the deleted
9237     // flag to not-deleted, so that we can inherit that information from 'FD'.
9238     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9239         !Specialization->getCanonicalDecl()->isReferenced()) {
9240       // FIXME: This assert will not hold in the presence of modules.
9241       assert(
9242           Specialization->getCanonicalDecl() == Specialization &&
9243           "This must be the only existing declaration of this specialization");
9244       // FIXME: We need an update record for this AST mutation.
9245       Specialization->setDeletedAsWritten(false);
9246     }
9247     // FIXME: We need an update record for this AST mutation.
9248     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9249     MarkUnusedFileScopedDecl(Specialization);
9250   }
9251 
9252   // Turn the given function declaration into a function template
9253   // specialization, with the template arguments from the previous
9254   // specialization.
9255   // Take copies of (semantic and syntactic) template argument lists.
9256   const TemplateArgumentList* TemplArgs = new (Context)
9257     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9258   FD->setFunctionTemplateSpecialization(
9259       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9260       SpecInfo->getTemplateSpecializationKind(),
9261       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9262 
9263   // A function template specialization inherits the target attributes
9264   // of its template.  (We require the attributes explicitly in the
9265   // code to match, but a template may have implicit attributes by
9266   // virtue e.g. of being constexpr, and it passes these implicit
9267   // attributes on to its specializations.)
9268   if (LangOpts.CUDA)
9269     inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9270 
9271   // The "previous declaration" for this function template specialization is
9272   // the prior function template specialization.
9273   Previous.clear();
9274   Previous.addDecl(Specialization);
9275   return false;
9276 }
9277 
9278 /// Perform semantic analysis for the given non-template member
9279 /// specialization.
9280 ///
9281 /// This routine performs all of the semantic analysis required for an
9282 /// explicit member function specialization. On successful completion,
9283 /// the function declaration \p FD will become a member function
9284 /// specialization.
9285 ///
9286 /// \param Member the member declaration, which will be updated to become a
9287 /// specialization.
9288 ///
9289 /// \param Previous the set of declarations, one of which may be specialized
9290 /// by this function specialization;  the set will be modified to contain the
9291 /// redeclared member.
9292 bool
9293 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9294   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9295 
9296   // Try to find the member we are instantiating.
9297   NamedDecl *FoundInstantiation = nullptr;
9298   NamedDecl *Instantiation = nullptr;
9299   NamedDecl *InstantiatedFrom = nullptr;
9300   MemberSpecializationInfo *MSInfo = nullptr;
9301 
9302   if (Previous.empty()) {
9303     // Nowhere to look anyway.
9304   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9305     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9306            I != E; ++I) {
9307       NamedDecl *D = (*I)->getUnderlyingDecl();
9308       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9309         QualType Adjusted = Function->getType();
9310         if (!hasExplicitCallingConv(Adjusted))
9311           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9312         // This doesn't handle deduced return types, but both function
9313         // declarations should be undeduced at this point.
9314         if (Context.hasSameType(Adjusted, Method->getType())) {
9315           FoundInstantiation = *I;
9316           Instantiation = Method;
9317           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9318           MSInfo = Method->getMemberSpecializationInfo();
9319           break;
9320         }
9321       }
9322     }
9323   } else if (isa<VarDecl>(Member)) {
9324     VarDecl *PrevVar;
9325     if (Previous.isSingleResult() &&
9326         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9327       if (PrevVar->isStaticDataMember()) {
9328         FoundInstantiation = Previous.getRepresentativeDecl();
9329         Instantiation = PrevVar;
9330         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9331         MSInfo = PrevVar->getMemberSpecializationInfo();
9332       }
9333   } else if (isa<RecordDecl>(Member)) {
9334     CXXRecordDecl *PrevRecord;
9335     if (Previous.isSingleResult() &&
9336         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9337       FoundInstantiation = Previous.getRepresentativeDecl();
9338       Instantiation = PrevRecord;
9339       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9340       MSInfo = PrevRecord->getMemberSpecializationInfo();
9341     }
9342   } else if (isa<EnumDecl>(Member)) {
9343     EnumDecl *PrevEnum;
9344     if (Previous.isSingleResult() &&
9345         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9346       FoundInstantiation = Previous.getRepresentativeDecl();
9347       Instantiation = PrevEnum;
9348       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9349       MSInfo = PrevEnum->getMemberSpecializationInfo();
9350     }
9351   }
9352 
9353   if (!Instantiation) {
9354     // There is no previous declaration that matches. Since member
9355     // specializations are always out-of-line, the caller will complain about
9356     // this mismatch later.
9357     return false;
9358   }
9359 
9360   // A member specialization in a friend declaration isn't really declaring
9361   // an explicit specialization, just identifying a specific (possibly implicit)
9362   // specialization. Don't change the template specialization kind.
9363   //
9364   // FIXME: Is this really valid? Other compilers reject.
9365   if (Member->getFriendObjectKind() != Decl::FOK_None) {
9366     // Preserve instantiation information.
9367     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9368       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9369                                       cast<CXXMethodDecl>(InstantiatedFrom),
9370         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9371     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9372       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9373                                       cast<CXXRecordDecl>(InstantiatedFrom),
9374         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9375     }
9376 
9377     Previous.clear();
9378     Previous.addDecl(FoundInstantiation);
9379     return false;
9380   }
9381 
9382   // Make sure that this is a specialization of a member.
9383   if (!InstantiatedFrom) {
9384     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9385       << Member;
9386     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9387     return true;
9388   }
9389 
9390   // C++ [temp.expl.spec]p6:
9391   //   If a template, a member template or the member of a class template is
9392   //   explicitly specialized then that specialization shall be declared
9393   //   before the first use of that specialization that would cause an implicit
9394   //   instantiation to take place, in every translation unit in which such a
9395   //   use occurs; no diagnostic is required.
9396   assert(MSInfo && "Member specialization info missing?");
9397 
9398   bool HasNoEffect = false;
9399   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9400                                              TSK_ExplicitSpecialization,
9401                                              Instantiation,
9402                                      MSInfo->getTemplateSpecializationKind(),
9403                                            MSInfo->getPointOfInstantiation(),
9404                                              HasNoEffect))
9405     return true;
9406 
9407   // Check the scope of this explicit specialization.
9408   if (CheckTemplateSpecializationScope(*this,
9409                                        InstantiatedFrom,
9410                                        Instantiation, Member->getLocation(),
9411                                        false))
9412     return true;
9413 
9414   // Note that this member specialization is an "instantiation of" the
9415   // corresponding member of the original template.
9416   if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9417     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9418     if (InstantiationFunction->getTemplateSpecializationKind() ==
9419           TSK_ImplicitInstantiation) {
9420       // Explicit specializations of member functions of class templates do not
9421       // inherit '=delete' from the member function they are specializing.
9422       if (InstantiationFunction->isDeleted()) {
9423         // FIXME: This assert will not hold in the presence of modules.
9424         assert(InstantiationFunction->getCanonicalDecl() ==
9425                InstantiationFunction);
9426         // FIXME: We need an update record for this AST mutation.
9427         InstantiationFunction->setDeletedAsWritten(false);
9428       }
9429     }
9430 
9431     MemberFunction->setInstantiationOfMemberFunction(
9432         cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9433   } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9434     MemberVar->setInstantiationOfStaticDataMember(
9435         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9436   } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9437     MemberClass->setInstantiationOfMemberClass(
9438         cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9439   } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9440     MemberEnum->setInstantiationOfMemberEnum(
9441         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9442   } else {
9443     llvm_unreachable("unknown member specialization kind");
9444   }
9445 
9446   // Save the caller the trouble of having to figure out which declaration
9447   // this specialization matches.
9448   Previous.clear();
9449   Previous.addDecl(FoundInstantiation);
9450   return false;
9451 }
9452 
9453 /// Complete the explicit specialization of a member of a class template by
9454 /// updating the instantiated member to be marked as an explicit specialization.
9455 ///
9456 /// \param OrigD The member declaration instantiated from the template.
9457 /// \param Loc The location of the explicit specialization of the member.
9458 template<typename DeclT>
9459 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9460                                              SourceLocation Loc) {
9461   if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9462     return;
9463 
9464   // FIXME: Inform AST mutation listeners of this AST mutation.
9465   // FIXME: If there are multiple in-class declarations of the member (from
9466   // multiple modules, or a declaration and later definition of a member type),
9467   // should we update all of them?
9468   OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9469   OrigD->setLocation(Loc);
9470 }
9471 
9472 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9473                                         LookupResult &Previous) {
9474   NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9475   if (Instantiation == Member)
9476     return;
9477 
9478   if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9479     completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9480   else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9481     completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9482   else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9483     completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9484   else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9485     completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9486   else
9487     llvm_unreachable("unknown member specialization kind");
9488 }
9489 
9490 /// Check the scope of an explicit instantiation.
9491 ///
9492 /// \returns true if a serious error occurs, false otherwise.
9493 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9494                                             SourceLocation InstLoc,
9495                                             bool WasQualifiedName) {
9496   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9497   DeclContext *CurContext = S.CurContext->getRedeclContext();
9498 
9499   if (CurContext->isRecord()) {
9500     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9501       << D;
9502     return true;
9503   }
9504 
9505   // C++11 [temp.explicit]p3:
9506   //   An explicit instantiation shall appear in an enclosing namespace of its
9507   //   template. If the name declared in the explicit instantiation is an
9508   //   unqualified name, the explicit instantiation shall appear in the
9509   //   namespace where its template is declared or, if that namespace is inline
9510   //   (7.3.1), any namespace from its enclosing namespace set.
9511   //
9512   // This is DR275, which we do not retroactively apply to C++98/03.
9513   if (WasQualifiedName) {
9514     if (CurContext->Encloses(OrigContext))
9515       return false;
9516   } else {
9517     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9518       return false;
9519   }
9520 
9521   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9522     if (WasQualifiedName)
9523       S.Diag(InstLoc,
9524              S.getLangOpts().CPlusPlus11?
9525                diag::err_explicit_instantiation_out_of_scope :
9526                diag::warn_explicit_instantiation_out_of_scope_0x)
9527         << D << NS;
9528     else
9529       S.Diag(InstLoc,
9530              S.getLangOpts().CPlusPlus11?
9531                diag::err_explicit_instantiation_unqualified_wrong_namespace :
9532                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9533         << D << NS;
9534   } else
9535     S.Diag(InstLoc,
9536            S.getLangOpts().CPlusPlus11?
9537              diag::err_explicit_instantiation_must_be_global :
9538              diag::warn_explicit_instantiation_must_be_global_0x)
9539       << D;
9540   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9541   return false;
9542 }
9543 
9544 /// Common checks for whether an explicit instantiation of \p D is valid.
9545 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9546                                        SourceLocation InstLoc,
9547                                        bool WasQualifiedName,
9548                                        TemplateSpecializationKind TSK) {
9549   // C++ [temp.explicit]p13:
9550   //   An explicit instantiation declaration shall not name a specialization of
9551   //   a template with internal linkage.
9552   if (TSK == TSK_ExplicitInstantiationDeclaration &&
9553       D->getFormalLinkage() == InternalLinkage) {
9554     S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9555     return true;
9556   }
9557 
9558   // C++11 [temp.explicit]p3: [DR 275]
9559   //   An explicit instantiation shall appear in an enclosing namespace of its
9560   //   template.
9561   if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9562     return true;
9563 
9564   return false;
9565 }
9566 
9567 /// Determine whether the given scope specifier has a template-id in it.
9568 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9569   if (!SS.isSet())
9570     return false;
9571 
9572   // C++11 [temp.explicit]p3:
9573   //   If the explicit instantiation is for a member function, a member class
9574   //   or a static data member of a class template specialization, the name of
9575   //   the class template specialization in the qualified-id for the member
9576   //   name shall be a simple-template-id.
9577   //
9578   // C++98 has the same restriction, just worded differently.
9579   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9580        NNS = NNS->getPrefix())
9581     if (const Type *T = NNS->getAsType())
9582       if (isa<TemplateSpecializationType>(T))
9583         return true;
9584 
9585   return false;
9586 }
9587 
9588 /// Make a dllexport or dllimport attr on a class template specialization take
9589 /// effect.
9590 static void dllExportImportClassTemplateSpecialization(
9591     Sema &S, ClassTemplateSpecializationDecl *Def) {
9592   auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9593   assert(A && "dllExportImportClassTemplateSpecialization called "
9594               "on Def without dllexport or dllimport");
9595 
9596   // We reject explicit instantiations in class scope, so there should
9597   // never be any delayed exported classes to worry about.
9598   assert(S.DelayedDllExportClasses.empty() &&
9599          "delayed exports present at explicit instantiation");
9600   S.checkClassLevelDLLAttribute(Def);
9601 
9602   // Propagate attribute to base class templates.
9603   for (auto &B : Def->bases()) {
9604     if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9605             B.getType()->getAsCXXRecordDecl()))
9606       S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9607   }
9608 
9609   S.referenceDLLExportedClassMethods();
9610 }
9611 
9612 // Explicit instantiation of a class template specialization
9613 DeclResult Sema::ActOnExplicitInstantiation(
9614     Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9615     unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9616     TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9617     SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9618     SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9619   // Find the class template we're specializing
9620   TemplateName Name = TemplateD.get();
9621   TemplateDecl *TD = Name.getAsTemplateDecl();
9622   // Check that the specialization uses the same tag kind as the
9623   // original template.
9624   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9625   assert(Kind != TTK_Enum &&
9626          "Invalid enum tag in class template explicit instantiation!");
9627 
9628   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9629 
9630   if (!ClassTemplate) {
9631     NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9632     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
9633     Diag(TD->getLocation(), diag::note_previous_use);
9634     return true;
9635   }
9636 
9637   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9638                                     Kind, /*isDefinition*/false, KWLoc,
9639                                     ClassTemplate->getIdentifier())) {
9640     Diag(KWLoc, diag::err_use_with_wrong_tag)
9641       << ClassTemplate
9642       << FixItHint::CreateReplacement(KWLoc,
9643                             ClassTemplate->getTemplatedDecl()->getKindName());
9644     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9645          diag::note_previous_use);
9646     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9647   }
9648 
9649   // C++0x [temp.explicit]p2:
9650   //   There are two forms of explicit instantiation: an explicit instantiation
9651   //   definition and an explicit instantiation declaration. An explicit
9652   //   instantiation declaration begins with the extern keyword. [...]
9653   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9654                                        ? TSK_ExplicitInstantiationDefinition
9655                                        : TSK_ExplicitInstantiationDeclaration;
9656 
9657   if (TSK == TSK_ExplicitInstantiationDeclaration &&
9658       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9659     // Check for dllexport class template instantiation declarations,
9660     // except for MinGW mode.
9661     for (const ParsedAttr &AL : Attr) {
9662       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9663         Diag(ExternLoc,
9664              diag::warn_attribute_dllexport_explicit_instantiation_decl);
9665         Diag(AL.getLoc(), diag::note_attribute);
9666         break;
9667       }
9668     }
9669 
9670     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9671       Diag(ExternLoc,
9672            diag::warn_attribute_dllexport_explicit_instantiation_decl);
9673       Diag(A->getLocation(), diag::note_attribute);
9674     }
9675   }
9676 
9677   // In MSVC mode, dllimported explicit instantiation definitions are treated as
9678   // instantiation declarations for most purposes.
9679   bool DLLImportExplicitInstantiationDef = false;
9680   if (TSK == TSK_ExplicitInstantiationDefinition &&
9681       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9682     // Check for dllimport class template instantiation definitions.
9683     bool DLLImport =
9684         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9685     for (const ParsedAttr &AL : Attr) {
9686       if (AL.getKind() == ParsedAttr::AT_DLLImport)
9687         DLLImport = true;
9688       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9689         // dllexport trumps dllimport here.
9690         DLLImport = false;
9691         break;
9692       }
9693     }
9694     if (DLLImport) {
9695       TSK = TSK_ExplicitInstantiationDeclaration;
9696       DLLImportExplicitInstantiationDef = true;
9697     }
9698   }
9699 
9700   // Translate the parser's template argument list in our AST format.
9701   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9702   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9703 
9704   // Check that the template argument list is well-formed for this
9705   // template.
9706   SmallVector<TemplateArgument, 4> Converted;
9707   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
9708                                 TemplateArgs, false, Converted,
9709                                 /*UpdateArgsWithConversions=*/true))
9710     return true;
9711 
9712   // Find the class template specialization declaration that
9713   // corresponds to these arguments.
9714   void *InsertPos = nullptr;
9715   ClassTemplateSpecializationDecl *PrevDecl
9716     = ClassTemplate->findSpecialization(Converted, InsertPos);
9717 
9718   TemplateSpecializationKind PrevDecl_TSK
9719     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9720 
9721   if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9722       Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9723     // Check for dllexport class template instantiation definitions in MinGW
9724     // mode, if a previous declaration of the instantiation was seen.
9725     for (const ParsedAttr &AL : Attr) {
9726       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9727         Diag(AL.getLoc(),
9728              diag::warn_attribute_dllexport_explicit_instantiation_def);
9729         break;
9730       }
9731     }
9732   }
9733 
9734   if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9735                                  SS.isSet(), TSK))
9736     return true;
9737 
9738   ClassTemplateSpecializationDecl *Specialization = nullptr;
9739 
9740   bool HasNoEffect = false;
9741   if (PrevDecl) {
9742     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9743                                                PrevDecl, PrevDecl_TSK,
9744                                             PrevDecl->getPointOfInstantiation(),
9745                                                HasNoEffect))
9746       return PrevDecl;
9747 
9748     // Even though HasNoEffect == true means that this explicit instantiation
9749     // has no effect on semantics, we go on to put its syntax in the AST.
9750 
9751     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9752         PrevDecl_TSK == TSK_Undeclared) {
9753       // Since the only prior class template specialization with these
9754       // arguments was referenced but not declared, reuse that
9755       // declaration node as our own, updating the source location
9756       // for the template name to reflect our new declaration.
9757       // (Other source locations will be updated later.)
9758       Specialization = PrevDecl;
9759       Specialization->setLocation(TemplateNameLoc);
9760       PrevDecl = nullptr;
9761     }
9762 
9763     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9764         DLLImportExplicitInstantiationDef) {
9765       // The new specialization might add a dllimport attribute.
9766       HasNoEffect = false;
9767     }
9768   }
9769 
9770   if (!Specialization) {
9771     // Create a new class template specialization declaration node for
9772     // this explicit specialization.
9773     Specialization
9774       = ClassTemplateSpecializationDecl::Create(Context, Kind,
9775                                              ClassTemplate->getDeclContext(),
9776                                                 KWLoc, TemplateNameLoc,
9777                                                 ClassTemplate,
9778                                                 Converted,
9779                                                 PrevDecl);
9780     SetNestedNameSpecifier(*this, Specialization, SS);
9781 
9782     if (!HasNoEffect && !PrevDecl) {
9783       // Insert the new specialization.
9784       ClassTemplate->AddSpecialization(Specialization, InsertPos);
9785     }
9786   }
9787 
9788   // Build the fully-sugared type for this explicit instantiation as
9789   // the user wrote in the explicit instantiation itself. This means
9790   // that we'll pretty-print the type retrieved from the
9791   // specialization's declaration the way that the user actually wrote
9792   // the explicit instantiation, rather than formatting the name based
9793   // on the "canonical" representation used to store the template
9794   // arguments in the specialization.
9795   TypeSourceInfo *WrittenTy
9796     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9797                                                 TemplateArgs,
9798                                   Context.getTypeDeclType(Specialization));
9799   Specialization->setTypeAsWritten(WrittenTy);
9800 
9801   // Set source locations for keywords.
9802   Specialization->setExternLoc(ExternLoc);
9803   Specialization->setTemplateKeywordLoc(TemplateLoc);
9804   Specialization->setBraceRange(SourceRange());
9805 
9806   bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9807   ProcessDeclAttributeList(S, Specialization, Attr);
9808 
9809   // Add the explicit instantiation into its lexical context. However,
9810   // since explicit instantiations are never found by name lookup, we
9811   // just put it into the declaration context directly.
9812   Specialization->setLexicalDeclContext(CurContext);
9813   CurContext->addDecl(Specialization);
9814 
9815   // Syntax is now OK, so return if it has no other effect on semantics.
9816   if (HasNoEffect) {
9817     // Set the template specialization kind.
9818     Specialization->setTemplateSpecializationKind(TSK);
9819     return Specialization;
9820   }
9821 
9822   // C++ [temp.explicit]p3:
9823   //   A definition of a class template or class member template
9824   //   shall be in scope at the point of the explicit instantiation of
9825   //   the class template or class member template.
9826   //
9827   // This check comes when we actually try to perform the
9828   // instantiation.
9829   ClassTemplateSpecializationDecl *Def
9830     = cast_or_null<ClassTemplateSpecializationDecl>(
9831                                               Specialization->getDefinition());
9832   if (!Def)
9833     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9834   else if (TSK == TSK_ExplicitInstantiationDefinition) {
9835     MarkVTableUsed(TemplateNameLoc, Specialization, true);
9836     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9837   }
9838 
9839   // Instantiate the members of this class template specialization.
9840   Def = cast_or_null<ClassTemplateSpecializationDecl>(
9841                                        Specialization->getDefinition());
9842   if (Def) {
9843     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9844     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9845     // TSK_ExplicitInstantiationDefinition
9846     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9847         (TSK == TSK_ExplicitInstantiationDefinition ||
9848          DLLImportExplicitInstantiationDef)) {
9849       // FIXME: Need to notify the ASTMutationListener that we did this.
9850       Def->setTemplateSpecializationKind(TSK);
9851 
9852       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9853           (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9854            !Context.getTargetInfo().getTriple().isPS())) {
9855         // An explicit instantiation definition can add a dll attribute to a
9856         // template with a previous instantiation declaration. MinGW doesn't
9857         // allow this.
9858         auto *A = cast<InheritableAttr>(
9859             getDLLAttr(Specialization)->clone(getASTContext()));
9860         A->setInherited(true);
9861         Def->addAttr(A);
9862         dllExportImportClassTemplateSpecialization(*this, Def);
9863       }
9864     }
9865 
9866     // Fix a TSK_ImplicitInstantiation followed by a
9867     // TSK_ExplicitInstantiationDefinition
9868     bool NewlyDLLExported =
9869         !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9870     if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9871         (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9872          !Context.getTargetInfo().getTriple().isPS())) {
9873       // An explicit instantiation definition can add a dll attribute to a
9874       // template with a previous implicit instantiation. MinGW doesn't allow
9875       // this. We limit clang to only adding dllexport, to avoid potentially
9876       // strange codegen behavior. For example, if we extend this conditional
9877       // to dllimport, and we have a source file calling a method on an
9878       // implicitly instantiated template class instance and then declaring a
9879       // dllimport explicit instantiation definition for the same template
9880       // class, the codegen for the method call will not respect the dllimport,
9881       // while it will with cl. The Def will already have the DLL attribute,
9882       // since the Def and Specialization will be the same in the case of
9883       // Old_TSK == TSK_ImplicitInstantiation, and we already added the
9884       // attribute to the Specialization; we just need to make it take effect.
9885       assert(Def == Specialization &&
9886              "Def and Specialization should match for implicit instantiation");
9887       dllExportImportClassTemplateSpecialization(*this, Def);
9888     }
9889 
9890     // In MinGW mode, export the template instantiation if the declaration
9891     // was marked dllexport.
9892     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9893         Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9894         PrevDecl->hasAttr<DLLExportAttr>()) {
9895       dllExportImportClassTemplateSpecialization(*this, Def);
9896     }
9897 
9898     if (Def->hasAttr<MSInheritanceAttr>()) {
9899       Specialization->addAttr(Def->getAttr<MSInheritanceAttr>());
9900       Consumer.AssignInheritanceModel(Specialization);
9901     }
9902 
9903     // Set the template specialization kind. Make sure it is set before
9904     // instantiating the members which will trigger ASTConsumer callbacks.
9905     Specialization->setTemplateSpecializationKind(TSK);
9906     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9907   } else {
9908 
9909     // Set the template specialization kind.
9910     Specialization->setTemplateSpecializationKind(TSK);
9911   }
9912 
9913   return Specialization;
9914 }
9915 
9916 // Explicit instantiation of a member class of a class template.
9917 DeclResult
9918 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9919                                  SourceLocation TemplateLoc, unsigned TagSpec,
9920                                  SourceLocation KWLoc, CXXScopeSpec &SS,
9921                                  IdentifierInfo *Name, SourceLocation NameLoc,
9922                                  const ParsedAttributesView &Attr) {
9923 
9924   bool Owned = false;
9925   bool IsDependent = false;
9926   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9927                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
9928                         /*ModulePrivateLoc=*/SourceLocation(),
9929                         MultiTemplateParamsArg(), Owned, IsDependent,
9930                         SourceLocation(), false, TypeResult(),
9931                         /*IsTypeSpecifier*/false,
9932                         /*IsTemplateParamOrArg*/false);
9933   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
9934 
9935   if (!TagD)
9936     return true;
9937 
9938   TagDecl *Tag = cast<TagDecl>(TagD);
9939   assert(!Tag->isEnum() && "shouldn't see enumerations here");
9940 
9941   if (Tag->isInvalidDecl())
9942     return true;
9943 
9944   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9945   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9946   if (!Pattern) {
9947     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9948       << Context.getTypeDeclType(Record);
9949     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9950     return true;
9951   }
9952 
9953   // C++0x [temp.explicit]p2:
9954   //   If the explicit instantiation is for a class or member class, the
9955   //   elaborated-type-specifier in the declaration shall include a
9956   //   simple-template-id.
9957   //
9958   // C++98 has the same restriction, just worded differently.
9959   if (!ScopeSpecifierHasTemplateId(SS))
9960     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9961       << Record << SS.getRange();
9962 
9963   // C++0x [temp.explicit]p2:
9964   //   There are two forms of explicit instantiation: an explicit instantiation
9965   //   definition and an explicit instantiation declaration. An explicit
9966   //   instantiation declaration begins with the extern keyword. [...]
9967   TemplateSpecializationKind TSK
9968     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9969                            : TSK_ExplicitInstantiationDeclaration;
9970 
9971   CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9972 
9973   // Verify that it is okay to explicitly instantiate here.
9974   CXXRecordDecl *PrevDecl
9975     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9976   if (!PrevDecl && Record->getDefinition())
9977     PrevDecl = Record;
9978   if (PrevDecl) {
9979     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9980     bool HasNoEffect = false;
9981     assert(MSInfo && "No member specialization information?");
9982     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9983                                                PrevDecl,
9984                                         MSInfo->getTemplateSpecializationKind(),
9985                                              MSInfo->getPointOfInstantiation(),
9986                                                HasNoEffect))
9987       return true;
9988     if (HasNoEffect)
9989       return TagD;
9990   }
9991 
9992   CXXRecordDecl *RecordDef
9993     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9994   if (!RecordDef) {
9995     // C++ [temp.explicit]p3:
9996     //   A definition of a member class of a class template shall be in scope
9997     //   at the point of an explicit instantiation of the member class.
9998     CXXRecordDecl *Def
9999       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
10000     if (!Def) {
10001       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
10002         << 0 << Record->getDeclName() << Record->getDeclContext();
10003       Diag(Pattern->getLocation(), diag::note_forward_declaration)
10004         << Pattern;
10005       return true;
10006     } else {
10007       if (InstantiateClass(NameLoc, Record, Def,
10008                            getTemplateInstantiationArgs(Record),
10009                            TSK))
10010         return true;
10011 
10012       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10013       if (!RecordDef)
10014         return true;
10015     }
10016   }
10017 
10018   // Instantiate all of the members of the class.
10019   InstantiateClassMembers(NameLoc, RecordDef,
10020                           getTemplateInstantiationArgs(Record), TSK);
10021 
10022   if (TSK == TSK_ExplicitInstantiationDefinition)
10023     MarkVTableUsed(NameLoc, RecordDef, true);
10024 
10025   // FIXME: We don't have any representation for explicit instantiations of
10026   // member classes. Such a representation is not needed for compilation, but it
10027   // should be available for clients that want to see all of the declarations in
10028   // the source code.
10029   return TagD;
10030 }
10031 
10032 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
10033                                             SourceLocation ExternLoc,
10034                                             SourceLocation TemplateLoc,
10035                                             Declarator &D) {
10036   // Explicit instantiations always require a name.
10037   // TODO: check if/when DNInfo should replace Name.
10038   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10039   DeclarationName Name = NameInfo.getName();
10040   if (!Name) {
10041     if (!D.isInvalidType())
10042       Diag(D.getDeclSpec().getBeginLoc(),
10043            diag::err_explicit_instantiation_requires_name)
10044           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
10045 
10046     return true;
10047   }
10048 
10049   // The scope passed in may not be a decl scope.  Zip up the scope tree until
10050   // we find one that is.
10051   while ((S->getFlags() & Scope::DeclScope) == 0 ||
10052          (S->getFlags() & Scope::TemplateParamScope) != 0)
10053     S = S->getParent();
10054 
10055   // Determine the type of the declaration.
10056   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
10057   QualType R = T->getType();
10058   if (R.isNull())
10059     return true;
10060 
10061   // C++ [dcl.stc]p1:
10062   //   A storage-class-specifier shall not be specified in [...] an explicit
10063   //   instantiation (14.7.2) directive.
10064   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
10065     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
10066       << Name;
10067     return true;
10068   } else if (D.getDeclSpec().getStorageClassSpec()
10069                                                 != DeclSpec::SCS_unspecified) {
10070     // Complain about then remove the storage class specifier.
10071     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
10072       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10073 
10074     D.getMutableDeclSpec().ClearStorageClassSpecs();
10075   }
10076 
10077   // C++0x [temp.explicit]p1:
10078   //   [...] An explicit instantiation of a function template shall not use the
10079   //   inline or constexpr specifiers.
10080   // Presumably, this also applies to member functions of class templates as
10081   // well.
10082   if (D.getDeclSpec().isInlineSpecified())
10083     Diag(D.getDeclSpec().getInlineSpecLoc(),
10084          getLangOpts().CPlusPlus11 ?
10085            diag::err_explicit_instantiation_inline :
10086            diag::warn_explicit_instantiation_inline_0x)
10087       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10088   if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
10089     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
10090     // not already specified.
10091     Diag(D.getDeclSpec().getConstexprSpecLoc(),
10092          diag::err_explicit_instantiation_constexpr);
10093 
10094   // A deduction guide is not on the list of entities that can be explicitly
10095   // instantiated.
10096   if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10097     Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10098         << /*explicit instantiation*/ 0;
10099     return true;
10100   }
10101 
10102   // C++0x [temp.explicit]p2:
10103   //   There are two forms of explicit instantiation: an explicit instantiation
10104   //   definition and an explicit instantiation declaration. An explicit
10105   //   instantiation declaration begins with the extern keyword. [...]
10106   TemplateSpecializationKind TSK
10107     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10108                            : TSK_ExplicitInstantiationDeclaration;
10109 
10110   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10111   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10112 
10113   if (!R->isFunctionType()) {
10114     // C++ [temp.explicit]p1:
10115     //   A [...] static data member of a class template can be explicitly
10116     //   instantiated from the member definition associated with its class
10117     //   template.
10118     // C++1y [temp.explicit]p1:
10119     //   A [...] variable [...] template specialization can be explicitly
10120     //   instantiated from its template.
10121     if (Previous.isAmbiguous())
10122       return true;
10123 
10124     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10125     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10126 
10127     if (!PrevTemplate) {
10128       if (!Prev || !Prev->isStaticDataMember()) {
10129         // We expect to see a static data member here.
10130         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10131             << Name;
10132         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10133              P != PEnd; ++P)
10134           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10135         return true;
10136       }
10137 
10138       if (!Prev->getInstantiatedFromStaticDataMember()) {
10139         // FIXME: Check for explicit specialization?
10140         Diag(D.getIdentifierLoc(),
10141              diag::err_explicit_instantiation_data_member_not_instantiated)
10142             << Prev;
10143         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10144         // FIXME: Can we provide a note showing where this was declared?
10145         return true;
10146       }
10147     } else {
10148       // Explicitly instantiate a variable template.
10149 
10150       // C++1y [dcl.spec.auto]p6:
10151       //   ... A program that uses auto or decltype(auto) in a context not
10152       //   explicitly allowed in this section is ill-formed.
10153       //
10154       // This includes auto-typed variable template instantiations.
10155       if (R->isUndeducedType()) {
10156         Diag(T->getTypeLoc().getBeginLoc(),
10157              diag::err_auto_not_allowed_var_inst);
10158         return true;
10159       }
10160 
10161       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10162         // C++1y [temp.explicit]p3:
10163         //   If the explicit instantiation is for a variable, the unqualified-id
10164         //   in the declaration shall be a template-id.
10165         Diag(D.getIdentifierLoc(),
10166              diag::err_explicit_instantiation_without_template_id)
10167           << PrevTemplate;
10168         Diag(PrevTemplate->getLocation(),
10169              diag::note_explicit_instantiation_here);
10170         return true;
10171       }
10172 
10173       // Translate the parser's template argument list into our AST format.
10174       TemplateArgumentListInfo TemplateArgs =
10175           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10176 
10177       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10178                                           D.getIdentifierLoc(), TemplateArgs);
10179       if (Res.isInvalid())
10180         return true;
10181 
10182       if (!Res.isUsable()) {
10183         // We somehow specified dependent template arguments in an explicit
10184         // instantiation. This should probably only happen during error
10185         // recovery.
10186         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10187         return true;
10188       }
10189 
10190       // Ignore access control bits, we don't need them for redeclaration
10191       // checking.
10192       Prev = cast<VarDecl>(Res.get());
10193     }
10194 
10195     // C++0x [temp.explicit]p2:
10196     //   If the explicit instantiation is for a member function, a member class
10197     //   or a static data member of a class template specialization, the name of
10198     //   the class template specialization in the qualified-id for the member
10199     //   name shall be a simple-template-id.
10200     //
10201     // C++98 has the same restriction, just worded differently.
10202     //
10203     // This does not apply to variable template specializations, where the
10204     // template-id is in the unqualified-id instead.
10205     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10206       Diag(D.getIdentifierLoc(),
10207            diag::ext_explicit_instantiation_without_qualified_id)
10208         << Prev << D.getCXXScopeSpec().getRange();
10209 
10210     CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10211 
10212     // Verify that it is okay to explicitly instantiate here.
10213     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10214     SourceLocation POI = Prev->getPointOfInstantiation();
10215     bool HasNoEffect = false;
10216     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10217                                                PrevTSK, POI, HasNoEffect))
10218       return true;
10219 
10220     if (!HasNoEffect) {
10221       // Instantiate static data member or variable template.
10222       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10223       // Merge attributes.
10224       ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10225       if (TSK == TSK_ExplicitInstantiationDefinition)
10226         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10227     }
10228 
10229     // Check the new variable specialization against the parsed input.
10230     if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10231       Diag(T->getTypeLoc().getBeginLoc(),
10232            diag::err_invalid_var_template_spec_type)
10233           << 0 << PrevTemplate << R << Prev->getType();
10234       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10235           << 2 << PrevTemplate->getDeclName();
10236       return true;
10237     }
10238 
10239     // FIXME: Create an ExplicitInstantiation node?
10240     return (Decl*) nullptr;
10241   }
10242 
10243   // If the declarator is a template-id, translate the parser's template
10244   // argument list into our AST format.
10245   bool HasExplicitTemplateArgs = false;
10246   TemplateArgumentListInfo TemplateArgs;
10247   if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10248     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10249     HasExplicitTemplateArgs = true;
10250   }
10251 
10252   // C++ [temp.explicit]p1:
10253   //   A [...] function [...] can be explicitly instantiated from its template.
10254   //   A member function [...] of a class template can be explicitly
10255   //  instantiated from the member definition associated with its class
10256   //  template.
10257   UnresolvedSet<8> TemplateMatches;
10258   FunctionDecl *NonTemplateMatch = nullptr;
10259   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10260   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10261        P != PEnd; ++P) {
10262     NamedDecl *Prev = *P;
10263     if (!HasExplicitTemplateArgs) {
10264       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10265         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10266                                                 /*AdjustExceptionSpec*/true);
10267         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10268           if (Method->getPrimaryTemplate()) {
10269             TemplateMatches.addDecl(Method, P.getAccess());
10270           } else {
10271             // FIXME: Can this assert ever happen?  Needs a test.
10272             assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10273             NonTemplateMatch = Method;
10274           }
10275         }
10276       }
10277     }
10278 
10279     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10280     if (!FunTmpl)
10281       continue;
10282 
10283     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10284     FunctionDecl *Specialization = nullptr;
10285     if (TemplateDeductionResult TDK
10286           = DeduceTemplateArguments(FunTmpl,
10287                                (HasExplicitTemplateArgs ? &TemplateArgs
10288                                                         : nullptr),
10289                                     R, Specialization, Info)) {
10290       // Keep track of almost-matches.
10291       FailedCandidates.addCandidate()
10292           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10293                MakeDeductionFailureInfo(Context, TDK, Info));
10294       (void)TDK;
10295       continue;
10296     }
10297 
10298     // Target attributes are part of the cuda function signature, so
10299     // the cuda target of the instantiated function must match that of its
10300     // template.  Given that C++ template deduction does not take
10301     // target attributes into account, we reject candidates here that
10302     // have a different target.
10303     if (LangOpts.CUDA &&
10304         IdentifyCUDATarget(Specialization,
10305                            /* IgnoreImplicitHDAttr = */ true) !=
10306             IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10307       FailedCandidates.addCandidate().set(
10308           P.getPair(), FunTmpl->getTemplatedDecl(),
10309           MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10310       continue;
10311     }
10312 
10313     TemplateMatches.addDecl(Specialization, P.getAccess());
10314   }
10315 
10316   FunctionDecl *Specialization = NonTemplateMatch;
10317   if (!Specialization) {
10318     // Find the most specialized function template specialization.
10319     UnresolvedSetIterator Result = getMostSpecialized(
10320         TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10321         D.getIdentifierLoc(),
10322         PDiag(diag::err_explicit_instantiation_not_known) << Name,
10323         PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10324         PDiag(diag::note_explicit_instantiation_candidate));
10325 
10326     if (Result == TemplateMatches.end())
10327       return true;
10328 
10329     // Ignore access control bits, we don't need them for redeclaration checking.
10330     Specialization = cast<FunctionDecl>(*Result);
10331   }
10332 
10333   // C++11 [except.spec]p4
10334   // In an explicit instantiation an exception-specification may be specified,
10335   // but is not required.
10336   // If an exception-specification is specified in an explicit instantiation
10337   // directive, it shall be compatible with the exception-specifications of
10338   // other declarations of that function.
10339   if (auto *FPT = R->getAs<FunctionProtoType>())
10340     if (FPT->hasExceptionSpec()) {
10341       unsigned DiagID =
10342           diag::err_mismatched_exception_spec_explicit_instantiation;
10343       if (getLangOpts().MicrosoftExt)
10344         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10345       bool Result = CheckEquivalentExceptionSpec(
10346           PDiag(DiagID) << Specialization->getType(),
10347           PDiag(diag::note_explicit_instantiation_here),
10348           Specialization->getType()->getAs<FunctionProtoType>(),
10349           Specialization->getLocation(), FPT, D.getBeginLoc());
10350       // In Microsoft mode, mismatching exception specifications just cause a
10351       // warning.
10352       if (!getLangOpts().MicrosoftExt && Result)
10353         return true;
10354     }
10355 
10356   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10357     Diag(D.getIdentifierLoc(),
10358          diag::err_explicit_instantiation_member_function_not_instantiated)
10359       << Specialization
10360       << (Specialization->getTemplateSpecializationKind() ==
10361           TSK_ExplicitSpecialization);
10362     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10363     return true;
10364   }
10365 
10366   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10367   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10368     PrevDecl = Specialization;
10369 
10370   if (PrevDecl) {
10371     bool HasNoEffect = false;
10372     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10373                                                PrevDecl,
10374                                      PrevDecl->getTemplateSpecializationKind(),
10375                                           PrevDecl->getPointOfInstantiation(),
10376                                                HasNoEffect))
10377       return true;
10378 
10379     // FIXME: We may still want to build some representation of this
10380     // explicit specialization.
10381     if (HasNoEffect)
10382       return (Decl*) nullptr;
10383   }
10384 
10385   // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10386   // functions
10387   //     valarray<size_t>::valarray(size_t) and
10388   //     valarray<size_t>::~valarray()
10389   // that it declared to have internal linkage with the internal_linkage
10390   // attribute. Ignore the explicit instantiation declaration in this case.
10391   if (Specialization->hasAttr<InternalLinkageAttr>() &&
10392       TSK == TSK_ExplicitInstantiationDeclaration) {
10393     if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10394       if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10395           RD->isInStdNamespace())
10396         return (Decl*) nullptr;
10397   }
10398 
10399   ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10400 
10401   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10402   // instantiation declarations.
10403   if (TSK == TSK_ExplicitInstantiationDefinition &&
10404       Specialization->hasAttr<DLLImportAttr>() &&
10405       Context.getTargetInfo().getCXXABI().isMicrosoft())
10406     TSK = TSK_ExplicitInstantiationDeclaration;
10407 
10408   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10409 
10410   if (Specialization->isDefined()) {
10411     // Let the ASTConsumer know that this function has been explicitly
10412     // instantiated now, and its linkage might have changed.
10413     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10414   } else if (TSK == TSK_ExplicitInstantiationDefinition)
10415     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10416 
10417   // C++0x [temp.explicit]p2:
10418   //   If the explicit instantiation is for a member function, a member class
10419   //   or a static data member of a class template specialization, the name of
10420   //   the class template specialization in the qualified-id for the member
10421   //   name shall be a simple-template-id.
10422   //
10423   // C++98 has the same restriction, just worded differently.
10424   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10425   if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10426       D.getCXXScopeSpec().isSet() &&
10427       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10428     Diag(D.getIdentifierLoc(),
10429          diag::ext_explicit_instantiation_without_qualified_id)
10430     << Specialization << D.getCXXScopeSpec().getRange();
10431 
10432   CheckExplicitInstantiation(
10433       *this,
10434       FunTmpl ? (NamedDecl *)FunTmpl
10435               : Specialization->getInstantiatedFromMemberFunction(),
10436       D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10437 
10438   // FIXME: Create some kind of ExplicitInstantiationDecl here.
10439   return (Decl*) nullptr;
10440 }
10441 
10442 TypeResult
10443 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10444                         const CXXScopeSpec &SS, IdentifierInfo *Name,
10445                         SourceLocation TagLoc, SourceLocation NameLoc) {
10446   // This has to hold, because SS is expected to be defined.
10447   assert(Name && "Expected a name in a dependent tag");
10448 
10449   NestedNameSpecifier *NNS = SS.getScopeRep();
10450   if (!NNS)
10451     return true;
10452 
10453   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10454 
10455   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10456     Diag(NameLoc, diag::err_dependent_tag_decl)
10457       << (TUK == TUK_Definition) << Kind << SS.getRange();
10458     return true;
10459   }
10460 
10461   // Create the resulting type.
10462   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10463   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10464 
10465   // Create type-source location information for this type.
10466   TypeLocBuilder TLB;
10467   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10468   TL.setElaboratedKeywordLoc(TagLoc);
10469   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10470   TL.setNameLoc(NameLoc);
10471   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10472 }
10473 
10474 TypeResult
10475 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10476                         const CXXScopeSpec &SS, const IdentifierInfo &II,
10477                         SourceLocation IdLoc) {
10478   if (SS.isInvalid())
10479     return true;
10480 
10481   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10482     Diag(TypenameLoc,
10483          getLangOpts().CPlusPlus11 ?
10484            diag::warn_cxx98_compat_typename_outside_of_template :
10485            diag::ext_typename_outside_of_template)
10486       << FixItHint::CreateRemoval(TypenameLoc);
10487 
10488   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10489   TypeSourceInfo *TSI = nullptr;
10490   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
10491                                  TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10492                                  /*DeducedTSTContext=*/true);
10493   if (T.isNull())
10494     return true;
10495   return CreateParsedType(T, TSI);
10496 }
10497 
10498 TypeResult
10499 Sema::ActOnTypenameType(Scope *S,
10500                         SourceLocation TypenameLoc,
10501                         const CXXScopeSpec &SS,
10502                         SourceLocation TemplateKWLoc,
10503                         TemplateTy TemplateIn,
10504                         IdentifierInfo *TemplateII,
10505                         SourceLocation TemplateIILoc,
10506                         SourceLocation LAngleLoc,
10507                         ASTTemplateArgsPtr TemplateArgsIn,
10508                         SourceLocation RAngleLoc) {
10509   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10510     Diag(TypenameLoc,
10511          getLangOpts().CPlusPlus11 ?
10512            diag::warn_cxx98_compat_typename_outside_of_template :
10513            diag::ext_typename_outside_of_template)
10514       << FixItHint::CreateRemoval(TypenameLoc);
10515 
10516   // Strangely, non-type results are not ignored by this lookup, so the
10517   // program is ill-formed if it finds an injected-class-name.
10518   if (TypenameLoc.isValid()) {
10519     auto *LookupRD =
10520         dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10521     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10522       Diag(TemplateIILoc,
10523            diag::ext_out_of_line_qualified_id_type_names_constructor)
10524         << TemplateII << 0 /*injected-class-name used as template name*/
10525         << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10526     }
10527   }
10528 
10529   // Translate the parser's template argument list in our AST format.
10530   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10531   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10532 
10533   TemplateName Template = TemplateIn.get();
10534   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10535     // Construct a dependent template specialization type.
10536     assert(DTN && "dependent template has non-dependent name?");
10537     assert(DTN->getQualifier() == SS.getScopeRep());
10538     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
10539                                                           DTN->getQualifier(),
10540                                                           DTN->getIdentifier(),
10541                                                                 TemplateArgs);
10542 
10543     // Create source-location information for this type.
10544     TypeLocBuilder Builder;
10545     DependentTemplateSpecializationTypeLoc SpecTL
10546     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10547     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10548     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10549     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10550     SpecTL.setTemplateNameLoc(TemplateIILoc);
10551     SpecTL.setLAngleLoc(LAngleLoc);
10552     SpecTL.setRAngleLoc(RAngleLoc);
10553     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10554       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10555     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10556   }
10557 
10558   QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10559   if (T.isNull())
10560     return true;
10561 
10562   // Provide source-location information for the template specialization type.
10563   TypeLocBuilder Builder;
10564   TemplateSpecializationTypeLoc SpecTL
10565     = Builder.push<TemplateSpecializationTypeLoc>(T);
10566   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10567   SpecTL.setTemplateNameLoc(TemplateIILoc);
10568   SpecTL.setLAngleLoc(LAngleLoc);
10569   SpecTL.setRAngleLoc(RAngleLoc);
10570   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10571     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10572 
10573   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
10574   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10575   TL.setElaboratedKeywordLoc(TypenameLoc);
10576   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10577 
10578   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10579   return CreateParsedType(T, TSI);
10580 }
10581 
10582 
10583 /// Determine whether this failed name lookup should be treated as being
10584 /// disabled by a usage of std::enable_if.
10585 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10586                        SourceRange &CondRange, Expr *&Cond) {
10587   // We must be looking for a ::type...
10588   if (!II.isStr("type"))
10589     return false;
10590 
10591   // ... within an explicitly-written template specialization...
10592   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10593     return false;
10594   TypeLoc EnableIfTy = NNS.getTypeLoc();
10595   TemplateSpecializationTypeLoc EnableIfTSTLoc =
10596       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10597   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10598     return false;
10599   const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10600 
10601   // ... which names a complete class template declaration...
10602   const TemplateDecl *EnableIfDecl =
10603     EnableIfTST->getTemplateName().getAsTemplateDecl();
10604   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10605     return false;
10606 
10607   // ... called "enable_if".
10608   const IdentifierInfo *EnableIfII =
10609     EnableIfDecl->getDeclName().getAsIdentifierInfo();
10610   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10611     return false;
10612 
10613   // Assume the first template argument is the condition.
10614   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10615 
10616   // Dig out the condition.
10617   Cond = nullptr;
10618   if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10619         != TemplateArgument::Expression)
10620     return true;
10621 
10622   Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10623 
10624   // Ignore Boolean literals; they add no value.
10625   if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10626     Cond = nullptr;
10627 
10628   return true;
10629 }
10630 
10631 QualType
10632 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10633                         SourceLocation KeywordLoc,
10634                         NestedNameSpecifierLoc QualifierLoc,
10635                         const IdentifierInfo &II,
10636                         SourceLocation IILoc,
10637                         TypeSourceInfo **TSI,
10638                         bool DeducedTSTContext) {
10639   QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10640                                  DeducedTSTContext);
10641   if (T.isNull())
10642     return QualType();
10643 
10644   *TSI = Context.CreateTypeSourceInfo(T);
10645   if (isa<DependentNameType>(T)) {
10646     DependentNameTypeLoc TL =
10647         (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10648     TL.setElaboratedKeywordLoc(KeywordLoc);
10649     TL.setQualifierLoc(QualifierLoc);
10650     TL.setNameLoc(IILoc);
10651   } else {
10652     ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10653     TL.setElaboratedKeywordLoc(KeywordLoc);
10654     TL.setQualifierLoc(QualifierLoc);
10655     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10656   }
10657   return T;
10658 }
10659 
10660 /// Build the type that describes a C++ typename specifier,
10661 /// e.g., "typename T::type".
10662 QualType
10663 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10664                         SourceLocation KeywordLoc,
10665                         NestedNameSpecifierLoc QualifierLoc,
10666                         const IdentifierInfo &II,
10667                         SourceLocation IILoc, bool DeducedTSTContext) {
10668   CXXScopeSpec SS;
10669   SS.Adopt(QualifierLoc);
10670 
10671   DeclContext *Ctx = nullptr;
10672   if (QualifierLoc) {
10673     Ctx = computeDeclContext(SS);
10674     if (!Ctx) {
10675       // If the nested-name-specifier is dependent and couldn't be
10676       // resolved to a type, build a typename type.
10677       assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
10678       return Context.getDependentNameType(Keyword,
10679                                           QualifierLoc.getNestedNameSpecifier(),
10680                                           &II);
10681     }
10682 
10683     // If the nested-name-specifier refers to the current instantiation,
10684     // the "typename" keyword itself is superfluous. In C++03, the
10685     // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10686     // allows such extraneous "typename" keywords, and we retroactively
10687     // apply this DR to C++03 code with only a warning. In any case we continue.
10688 
10689     if (RequireCompleteDeclContext(SS, Ctx))
10690       return QualType();
10691   }
10692 
10693   DeclarationName Name(&II);
10694   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10695   if (Ctx)
10696     LookupQualifiedName(Result, Ctx, SS);
10697   else
10698     LookupName(Result, CurScope);
10699   unsigned DiagID = 0;
10700   Decl *Referenced = nullptr;
10701   switch (Result.getResultKind()) {
10702   case LookupResult::NotFound: {
10703     // If we're looking up 'type' within a template named 'enable_if', produce
10704     // a more specific diagnostic.
10705     SourceRange CondRange;
10706     Expr *Cond = nullptr;
10707     if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10708       // If we have a condition, narrow it down to the specific failed
10709       // condition.
10710       if (Cond) {
10711         Expr *FailedCond;
10712         std::string FailedDescription;
10713         std::tie(FailedCond, FailedDescription) =
10714           findFailedBooleanCondition(Cond);
10715 
10716         Diag(FailedCond->getExprLoc(),
10717              diag::err_typename_nested_not_found_requirement)
10718           << FailedDescription
10719           << FailedCond->getSourceRange();
10720         return QualType();
10721       }
10722 
10723       Diag(CondRange.getBegin(),
10724            diag::err_typename_nested_not_found_enable_if)
10725           << Ctx << CondRange;
10726       return QualType();
10727     }
10728 
10729     DiagID = Ctx ? diag::err_typename_nested_not_found
10730                  : diag::err_unknown_typename;
10731     break;
10732   }
10733 
10734   case LookupResult::FoundUnresolvedValue: {
10735     // We found a using declaration that is a value. Most likely, the using
10736     // declaration itself is meant to have the 'typename' keyword.
10737     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10738                           IILoc);
10739     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10740       << Name << Ctx << FullRange;
10741     if (UnresolvedUsingValueDecl *Using
10742           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10743       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10744       Diag(Loc, diag::note_using_value_decl_missing_typename)
10745         << FixItHint::CreateInsertion(Loc, "typename ");
10746     }
10747   }
10748   // Fall through to create a dependent typename type, from which we can recover
10749   // better.
10750   LLVM_FALLTHROUGH;
10751 
10752   case LookupResult::NotFoundInCurrentInstantiation:
10753     // Okay, it's a member of an unknown instantiation.
10754     return Context.getDependentNameType(Keyword,
10755                                         QualifierLoc.getNestedNameSpecifier(),
10756                                         &II);
10757 
10758   case LookupResult::Found:
10759     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10760       // C++ [class.qual]p2:
10761       //   In a lookup in which function names are not ignored and the
10762       //   nested-name-specifier nominates a class C, if the name specified
10763       //   after the nested-name-specifier, when looked up in C, is the
10764       //   injected-class-name of C [...] then the name is instead considered
10765       //   to name the constructor of class C.
10766       //
10767       // Unlike in an elaborated-type-specifier, function names are not ignored
10768       // in typename-specifier lookup. However, they are ignored in all the
10769       // contexts where we form a typename type with no keyword (that is, in
10770       // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10771       //
10772       // FIXME: That's not strictly true: mem-initializer-id lookup does not
10773       // ignore functions, but that appears to be an oversight.
10774       auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10775       auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10776       if (Keyword == ETK_Typename && LookupRD && FoundRD &&
10777           FoundRD->isInjectedClassName() &&
10778           declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10779         Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10780             << &II << 1 << 0 /*'typename' keyword used*/;
10781 
10782       // We found a type. Build an ElaboratedType, since the
10783       // typename-specifier was just sugar.
10784       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10785       return Context.getElaboratedType(Keyword,
10786                                        QualifierLoc.getNestedNameSpecifier(),
10787                                        Context.getTypeDeclType(Type));
10788     }
10789 
10790     // C++ [dcl.type.simple]p2:
10791     //   A type-specifier of the form
10792     //     typename[opt] nested-name-specifier[opt] template-name
10793     //   is a placeholder for a deduced class type [...].
10794     if (getLangOpts().CPlusPlus17) {
10795       if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10796         if (!DeducedTSTContext) {
10797           QualType T(QualifierLoc
10798                          ? QualifierLoc.getNestedNameSpecifier()->getAsType()
10799                          : nullptr, 0);
10800           if (!T.isNull())
10801             Diag(IILoc, diag::err_dependent_deduced_tst)
10802               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
10803           else
10804             Diag(IILoc, diag::err_deduced_tst)
10805               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
10806           Diag(TD->getLocation(), diag::note_template_decl_here);
10807           return QualType();
10808         }
10809         return Context.getElaboratedType(
10810             Keyword, QualifierLoc.getNestedNameSpecifier(),
10811             Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10812                                                          QualType(), false));
10813       }
10814     }
10815 
10816     DiagID = Ctx ? diag::err_typename_nested_not_type
10817                  : diag::err_typename_not_type;
10818     Referenced = Result.getFoundDecl();
10819     break;
10820 
10821   case LookupResult::FoundOverloaded:
10822     DiagID = Ctx ? diag::err_typename_nested_not_type
10823                  : diag::err_typename_not_type;
10824     Referenced = *Result.begin();
10825     break;
10826 
10827   case LookupResult::Ambiguous:
10828     return QualType();
10829   }
10830 
10831   // If we get here, it's because name lookup did not find a
10832   // type. Emit an appropriate diagnostic and return an error.
10833   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10834                         IILoc);
10835   if (Ctx)
10836     Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10837   else
10838     Diag(IILoc, DiagID) << FullRange << Name;
10839   if (Referenced)
10840     Diag(Referenced->getLocation(),
10841          Ctx ? diag::note_typename_member_refers_here
10842              : diag::note_typename_refers_here)
10843       << Name;
10844   return QualType();
10845 }
10846 
10847 namespace {
10848   // See Sema::RebuildTypeInCurrentInstantiation
10849   class CurrentInstantiationRebuilder
10850     : public TreeTransform<CurrentInstantiationRebuilder> {
10851     SourceLocation Loc;
10852     DeclarationName Entity;
10853 
10854   public:
10855     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10856 
10857     CurrentInstantiationRebuilder(Sema &SemaRef,
10858                                   SourceLocation Loc,
10859                                   DeclarationName Entity)
10860     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10861       Loc(Loc), Entity(Entity) { }
10862 
10863     /// Determine whether the given type \p T has already been
10864     /// transformed.
10865     ///
10866     /// For the purposes of type reconstruction, a type has already been
10867     /// transformed if it is NULL or if it is not dependent.
10868     bool AlreadyTransformed(QualType T) {
10869       return T.isNull() || !T->isInstantiationDependentType();
10870     }
10871 
10872     /// Returns the location of the entity whose type is being
10873     /// rebuilt.
10874     SourceLocation getBaseLocation() { return Loc; }
10875 
10876     /// Returns the name of the entity whose type is being rebuilt.
10877     DeclarationName getBaseEntity() { return Entity; }
10878 
10879     /// Sets the "base" location and entity when that
10880     /// information is known based on another transformation.
10881     void setBase(SourceLocation Loc, DeclarationName Entity) {
10882       this->Loc = Loc;
10883       this->Entity = Entity;
10884     }
10885 
10886     ExprResult TransformLambdaExpr(LambdaExpr *E) {
10887       // Lambdas never need to be transformed.
10888       return E;
10889     }
10890   };
10891 } // end anonymous namespace
10892 
10893 /// Rebuilds a type within the context of the current instantiation.
10894 ///
10895 /// The type \p T is part of the type of an out-of-line member definition of
10896 /// a class template (or class template partial specialization) that was parsed
10897 /// and constructed before we entered the scope of the class template (or
10898 /// partial specialization thereof). This routine will rebuild that type now
10899 /// that we have entered the declarator's scope, which may produce different
10900 /// canonical types, e.g.,
10901 ///
10902 /// \code
10903 /// template<typename T>
10904 /// struct X {
10905 ///   typedef T* pointer;
10906 ///   pointer data();
10907 /// };
10908 ///
10909 /// template<typename T>
10910 /// typename X<T>::pointer X<T>::data() { ... }
10911 /// \endcode
10912 ///
10913 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10914 /// since we do not know that we can look into X<T> when we parsed the type.
10915 /// This function will rebuild the type, performing the lookup of "pointer"
10916 /// in X<T> and returning an ElaboratedType whose canonical type is the same
10917 /// as the canonical type of T*, allowing the return types of the out-of-line
10918 /// definition and the declaration to match.
10919 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10920                                                         SourceLocation Loc,
10921                                                         DeclarationName Name) {
10922   if (!T || !T->getType()->isInstantiationDependentType())
10923     return T;
10924 
10925   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10926   return Rebuilder.TransformType(T);
10927 }
10928 
10929 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10930   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10931                                           DeclarationName());
10932   return Rebuilder.TransformExpr(E);
10933 }
10934 
10935 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10936   if (SS.isInvalid())
10937     return true;
10938 
10939   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10940   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10941                                           DeclarationName());
10942   NestedNameSpecifierLoc Rebuilt
10943     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10944   if (!Rebuilt)
10945     return true;
10946 
10947   SS.Adopt(Rebuilt);
10948   return false;
10949 }
10950 
10951 /// Rebuild the template parameters now that we know we're in a current
10952 /// instantiation.
10953 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10954                                                TemplateParameterList *Params) {
10955   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10956     Decl *Param = Params->getParam(I);
10957 
10958     // There is nothing to rebuild in a type parameter.
10959     if (isa<TemplateTypeParmDecl>(Param))
10960       continue;
10961 
10962     // Rebuild the template parameter list of a template template parameter.
10963     if (TemplateTemplateParmDecl *TTP
10964         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10965       if (RebuildTemplateParamsInCurrentInstantiation(
10966             TTP->getTemplateParameters()))
10967         return true;
10968 
10969       continue;
10970     }
10971 
10972     // Rebuild the type of a non-type template parameter.
10973     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10974     TypeSourceInfo *NewTSI
10975       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10976                                           NTTP->getLocation(),
10977                                           NTTP->getDeclName());
10978     if (!NewTSI)
10979       return true;
10980 
10981     if (NewTSI->getType()->isUndeducedType()) {
10982       // C++17 [temp.dep.expr]p3:
10983       //   An id-expression is type-dependent if it contains
10984       //    - an identifier associated by name lookup with a non-type
10985       //      template-parameter declared with a type that contains a
10986       //      placeholder type (7.1.7.4),
10987       NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
10988     }
10989 
10990     if (NewTSI != NTTP->getTypeSourceInfo()) {
10991       NTTP->setTypeSourceInfo(NewTSI);
10992       NTTP->setType(NewTSI->getType());
10993     }
10994   }
10995 
10996   return false;
10997 }
10998 
10999 /// Produces a formatted string that describes the binding of
11000 /// template parameters to template arguments.
11001 std::string
11002 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11003                                       const TemplateArgumentList &Args) {
11004   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
11005 }
11006 
11007 std::string
11008 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11009                                       const TemplateArgument *Args,
11010                                       unsigned NumArgs) {
11011   SmallString<128> Str;
11012   llvm::raw_svector_ostream Out(Str);
11013 
11014   if (!Params || Params->size() == 0 || NumArgs == 0)
11015     return std::string();
11016 
11017   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11018     if (I >= NumArgs)
11019       break;
11020 
11021     if (I == 0)
11022       Out << "[with ";
11023     else
11024       Out << ", ";
11025 
11026     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
11027       Out << Id->getName();
11028     } else {
11029       Out << '$' << I;
11030     }
11031 
11032     Out << " = ";
11033     Args[I].print(getPrintingPolicy(), Out,
11034                   TemplateParameterList::shouldIncludeTypeForArgument(
11035                       getPrintingPolicy(), Params, I));
11036   }
11037 
11038   Out << ']';
11039   return std::string(Out.str());
11040 }
11041 
11042 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
11043                                     CachedTokens &Toks) {
11044   if (!FD)
11045     return;
11046 
11047   auto LPT = std::make_unique<LateParsedTemplate>();
11048 
11049   // Take tokens to avoid allocations
11050   LPT->Toks.swap(Toks);
11051   LPT->D = FnD;
11052   LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
11053 
11054   FD->setLateTemplateParsed(true);
11055 }
11056 
11057 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
11058   if (!FD)
11059     return;
11060   FD->setLateTemplateParsed(false);
11061 }
11062 
11063 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
11064   DeclContext *DC = CurContext;
11065 
11066   while (DC) {
11067     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
11068       const FunctionDecl *FD = RD->isLocalClass();
11069       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
11070     } else if (DC->isTranslationUnit() || DC->isNamespace())
11071       return false;
11072 
11073     DC = DC->getParent();
11074   }
11075   return false;
11076 }
11077 
11078 namespace {
11079 /// Walk the path from which a declaration was instantiated, and check
11080 /// that every explicit specialization along that path is visible. This enforces
11081 /// C++ [temp.expl.spec]/6:
11082 ///
11083 ///   If a template, a member template or a member of a class template is
11084 ///   explicitly specialized then that specialization shall be declared before
11085 ///   the first use of that specialization that would cause an implicit
11086 ///   instantiation to take place, in every translation unit in which such a
11087 ///   use occurs; no diagnostic is required.
11088 ///
11089 /// and also C++ [temp.class.spec]/1:
11090 ///
11091 ///   A partial specialization shall be declared before the first use of a
11092 ///   class template specialization that would make use of the partial
11093 ///   specialization as the result of an implicit or explicit instantiation
11094 ///   in every translation unit in which such a use occurs; no diagnostic is
11095 ///   required.
11096 class ExplicitSpecializationVisibilityChecker {
11097   Sema &S;
11098   SourceLocation Loc;
11099   llvm::SmallVector<Module *, 8> Modules;
11100   Sema::AcceptableKind Kind;
11101 
11102 public:
11103   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
11104                                           Sema::AcceptableKind Kind)
11105       : S(S), Loc(Loc), Kind(Kind) {}
11106 
11107   void check(NamedDecl *ND) {
11108     if (auto *FD = dyn_cast<FunctionDecl>(ND))
11109       return checkImpl(FD);
11110     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11111       return checkImpl(RD);
11112     if (auto *VD = dyn_cast<VarDecl>(ND))
11113       return checkImpl(VD);
11114     if (auto *ED = dyn_cast<EnumDecl>(ND))
11115       return checkImpl(ED);
11116   }
11117 
11118 private:
11119   void diagnose(NamedDecl *D, bool IsPartialSpec) {
11120     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11121                               : Sema::MissingImportKind::ExplicitSpecialization;
11122     const bool Recover = true;
11123 
11124     // If we got a custom set of modules (because only a subset of the
11125     // declarations are interesting), use them, otherwise let
11126     // diagnoseMissingImport intelligently pick some.
11127     if (Modules.empty())
11128       S.diagnoseMissingImport(Loc, D, Kind, Recover);
11129     else
11130       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11131   }
11132 
11133   bool CheckMemberSpecialization(const NamedDecl *D) {
11134     return Kind == Sema::AcceptableKind::Visible
11135                ? S.hasVisibleMemberSpecialization(D)
11136                : S.hasReachableMemberSpecialization(D);
11137   }
11138 
11139   bool CheckExplicitSpecialization(const NamedDecl *D) {
11140     return Kind == Sema::AcceptableKind::Visible
11141                ? S.hasVisibleExplicitSpecialization(D)
11142                : S.hasReachableExplicitSpecialization(D);
11143   }
11144 
11145   bool CheckDeclaration(const NamedDecl *D) {
11146     return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
11147                                                  : S.hasReachableDeclaration(D);
11148   }
11149 
11150   // Check a specific declaration. There are three problematic cases:
11151   //
11152   //  1) The declaration is an explicit specialization of a template
11153   //     specialization.
11154   //  2) The declaration is an explicit specialization of a member of an
11155   //     templated class.
11156   //  3) The declaration is an instantiation of a template, and that template
11157   //     is an explicit specialization of a member of a templated class.
11158   //
11159   // We don't need to go any deeper than that, as the instantiation of the
11160   // surrounding class / etc is not triggered by whatever triggered this
11161   // instantiation, and thus should be checked elsewhere.
11162   template<typename SpecDecl>
11163   void checkImpl(SpecDecl *Spec) {
11164     bool IsHiddenExplicitSpecialization = false;
11165     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11166       IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
11167                                            ? !CheckMemberSpecialization(Spec)
11168                                            : !CheckExplicitSpecialization(Spec);
11169     } else {
11170       checkInstantiated(Spec);
11171     }
11172 
11173     if (IsHiddenExplicitSpecialization)
11174       diagnose(Spec->getMostRecentDecl(), false);
11175   }
11176 
11177   void checkInstantiated(FunctionDecl *FD) {
11178     if (auto *TD = FD->getPrimaryTemplate())
11179       checkTemplate(TD);
11180   }
11181 
11182   void checkInstantiated(CXXRecordDecl *RD) {
11183     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11184     if (!SD)
11185       return;
11186 
11187     auto From = SD->getSpecializedTemplateOrPartial();
11188     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11189       checkTemplate(TD);
11190     else if (auto *TD =
11191                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11192       if (!CheckDeclaration(TD))
11193         diagnose(TD, true);
11194       checkTemplate(TD);
11195     }
11196   }
11197 
11198   void checkInstantiated(VarDecl *RD) {
11199     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11200     if (!SD)
11201       return;
11202 
11203     auto From = SD->getSpecializedTemplateOrPartial();
11204     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11205       checkTemplate(TD);
11206     else if (auto *TD =
11207                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11208       if (!CheckDeclaration(TD))
11209         diagnose(TD, true);
11210       checkTemplate(TD);
11211     }
11212   }
11213 
11214   void checkInstantiated(EnumDecl *FD) {}
11215 
11216   template<typename TemplDecl>
11217   void checkTemplate(TemplDecl *TD) {
11218     if (TD->isMemberSpecialization()) {
11219       if (!CheckMemberSpecialization(TD))
11220         diagnose(TD->getMostRecentDecl(), false);
11221     }
11222   }
11223 };
11224 } // end anonymous namespace
11225 
11226 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11227   if (!getLangOpts().Modules)
11228     return;
11229 
11230   ExplicitSpecializationVisibilityChecker(*this, Loc,
11231                                           Sema::AcceptableKind::Visible)
11232       .check(Spec);
11233 }
11234 
11235 void Sema::checkSpecializationReachability(SourceLocation Loc,
11236                                            NamedDecl *Spec) {
11237   if (!getLangOpts().CPlusPlusModules)
11238     return checkSpecializationVisibility(Loc, Spec);
11239 
11240   ExplicitSpecializationVisibilityChecker(*this, Loc,
11241                                           Sema::AcceptableKind::Reachable)
11242       .check(Spec);
11243 }
11244