1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 //  This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10 
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TemplateName.h"
21 #include "clang/AST/TypeVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/Stack.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Overload.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/Template.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/SmallBitVector.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/StringExtras.h"
42 
43 #include <iterator>
44 #include <optional>
45 using namespace clang;
46 using namespace sema;
47 
48 // Exported for use by Parser.
49 SourceRange
50 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
51                               unsigned N) {
52   if (!N) return SourceRange();
53   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
54 }
55 
56 unsigned Sema::getTemplateDepth(Scope *S) const {
57   unsigned Depth = 0;
58 
59   // Each template parameter scope represents one level of template parameter
60   // depth.
61   for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
62        TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
63     ++Depth;
64   }
65 
66   // Note that there are template parameters with the given depth.
67   auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
68 
69   // Look for parameters of an enclosing generic lambda. We don't create a
70   // template parameter scope for these.
71   for (FunctionScopeInfo *FSI : getFunctionScopes()) {
72     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
73       if (!LSI->TemplateParams.empty()) {
74         ParamsAtDepth(LSI->AutoTemplateParameterDepth);
75         break;
76       }
77       if (LSI->GLTemplateParameterList) {
78         ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
79         break;
80       }
81     }
82   }
83 
84   // Look for parameters of an enclosing terse function template. We don't
85   // create a template parameter scope for these either.
86   for (const InventedTemplateParameterInfo &Info :
87        getInventedParameterInfos()) {
88     if (!Info.TemplateParams.empty()) {
89       ParamsAtDepth(Info.AutoTemplateParameterDepth);
90       break;
91     }
92   }
93 
94   return Depth;
95 }
96 
97 /// \brief Determine whether the declaration found is acceptable as the name
98 /// of a template and, if so, return that template declaration. Otherwise,
99 /// returns null.
100 ///
101 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
102 /// is true. In all other cases it will return a TemplateDecl (or null).
103 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
104                                        bool AllowFunctionTemplates,
105                                        bool AllowDependent) {
106   D = D->getUnderlyingDecl();
107 
108   if (isa<TemplateDecl>(D)) {
109     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
110       return nullptr;
111 
112     return D;
113   }
114 
115   if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) {
116     // C++ [temp.local]p1:
117     //   Like normal (non-template) classes, class templates have an
118     //   injected-class-name (Clause 9). The injected-class-name
119     //   can be used with or without a template-argument-list. When
120     //   it is used without a template-argument-list, it is
121     //   equivalent to the injected-class-name followed by the
122     //   template-parameters of the class template enclosed in
123     //   <>. When it is used with a template-argument-list, it
124     //   refers to the specified class template specialization,
125     //   which could be the current specialization or another
126     //   specialization.
127     if (Record->isInjectedClassName()) {
128       Record = cast<CXXRecordDecl>(Record->getDeclContext());
129       if (Record->getDescribedClassTemplate())
130         return Record->getDescribedClassTemplate();
131 
132       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record))
133         return Spec->getSpecializedTemplate();
134     }
135 
136     return nullptr;
137   }
138 
139   // 'using Dependent::foo;' can resolve to a template name.
140   // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
141   // injected-class-name).
142   if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
143     return D;
144 
145   return nullptr;
146 }
147 
148 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
149                                          bool AllowFunctionTemplates,
150                                          bool AllowDependent) {
151   LookupResult::Filter filter = R.makeFilter();
152   while (filter.hasNext()) {
153     NamedDecl *Orig = filter.next();
154     if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
155       filter.erase();
156   }
157   filter.done();
158 }
159 
160 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
161                                          bool AllowFunctionTemplates,
162                                          bool AllowDependent,
163                                          bool AllowNonTemplateFunctions) {
164   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
165     if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
166       return true;
167     if (AllowNonTemplateFunctions &&
168         isa<FunctionDecl>((*I)->getUnderlyingDecl()))
169       return true;
170   }
171 
172   return false;
173 }
174 
175 TemplateNameKind Sema::isTemplateName(Scope *S,
176                                       CXXScopeSpec &SS,
177                                       bool hasTemplateKeyword,
178                                       const UnqualifiedId &Name,
179                                       ParsedType ObjectTypePtr,
180                                       bool EnteringContext,
181                                       TemplateTy &TemplateResult,
182                                       bool &MemberOfUnknownSpecialization,
183                                       bool Disambiguation) {
184   assert(getLangOpts().CPlusPlus && "No template names in C!");
185 
186   DeclarationName TName;
187   MemberOfUnknownSpecialization = false;
188 
189   switch (Name.getKind()) {
190   case UnqualifiedIdKind::IK_Identifier:
191     TName = DeclarationName(Name.Identifier);
192     break;
193 
194   case UnqualifiedIdKind::IK_OperatorFunctionId:
195     TName = Context.DeclarationNames.getCXXOperatorName(
196                                               Name.OperatorFunctionId.Operator);
197     break;
198 
199   case UnqualifiedIdKind::IK_LiteralOperatorId:
200     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
201     break;
202 
203   default:
204     return TNK_Non_template;
205   }
206 
207   QualType ObjectType = ObjectTypePtr.get();
208 
209   AssumedTemplateKind AssumedTemplate;
210   LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
211   if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
212                          MemberOfUnknownSpecialization, SourceLocation(),
213                          &AssumedTemplate,
214                          /*AllowTypoCorrection=*/!Disambiguation))
215     return TNK_Non_template;
216 
217   if (AssumedTemplate != AssumedTemplateKind::None) {
218     TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
219     // Let the parser know whether we found nothing or found functions; if we
220     // found nothing, we want to more carefully check whether this is actually
221     // a function template name versus some other kind of undeclared identifier.
222     return AssumedTemplate == AssumedTemplateKind::FoundNothing
223                ? TNK_Undeclared_template
224                : TNK_Function_template;
225   }
226 
227   if (R.empty())
228     return TNK_Non_template;
229 
230   NamedDecl *D = nullptr;
231   UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
232   if (R.isAmbiguous()) {
233     // If we got an ambiguity involving a non-function template, treat this
234     // as a template name, and pick an arbitrary template for error recovery.
235     bool AnyFunctionTemplates = false;
236     for (NamedDecl *FoundD : R) {
237       if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
238         if (isa<FunctionTemplateDecl>(FoundTemplate))
239           AnyFunctionTemplates = true;
240         else {
241           D = FoundTemplate;
242           FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
243           break;
244         }
245       }
246     }
247 
248     // If we didn't find any templates at all, this isn't a template name.
249     // Leave the ambiguity for a later lookup to diagnose.
250     if (!D && !AnyFunctionTemplates) {
251       R.suppressDiagnostics();
252       return TNK_Non_template;
253     }
254 
255     // If the only templates were function templates, filter out the rest.
256     // We'll diagnose the ambiguity later.
257     if (!D)
258       FilterAcceptableTemplateNames(R);
259   }
260 
261   // At this point, we have either picked a single template name declaration D
262   // or we have a non-empty set of results R containing either one template name
263   // declaration or a set of function templates.
264 
265   TemplateName Template;
266   TemplateNameKind TemplateKind;
267 
268   unsigned ResultCount = R.end() - R.begin();
269   if (!D && ResultCount > 1) {
270     // We assume that we'll preserve the qualifier from a function
271     // template name in other ways.
272     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
273     TemplateKind = TNK_Function_template;
274 
275     // We'll do this lookup again later.
276     R.suppressDiagnostics();
277   } else {
278     if (!D) {
279       D = getAsTemplateNameDecl(*R.begin());
280       assert(D && "unambiguous result is not a template name");
281     }
282 
283     if (isa<UnresolvedUsingValueDecl>(D)) {
284       // We don't yet know whether this is a template-name or not.
285       MemberOfUnknownSpecialization = true;
286       return TNK_Non_template;
287     }
288 
289     TemplateDecl *TD = cast<TemplateDecl>(D);
290     Template =
291         FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
292     assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
293     if (SS.isSet() && !SS.isInvalid()) {
294       NestedNameSpecifier *Qualifier = SS.getScopeRep();
295       Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
296                                                   Template);
297     }
298 
299     if (isa<FunctionTemplateDecl>(TD)) {
300       TemplateKind = TNK_Function_template;
301 
302       // We'll do this lookup again later.
303       R.suppressDiagnostics();
304     } else {
305       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
306              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
307              isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
308       TemplateKind =
309           isa<VarTemplateDecl>(TD) ? TNK_Var_template :
310           isa<ConceptDecl>(TD) ? TNK_Concept_template :
311           TNK_Type_template;
312     }
313   }
314 
315   TemplateResult = TemplateTy::make(Template);
316   return TemplateKind;
317 }
318 
319 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
320                                 SourceLocation NameLoc, CXXScopeSpec &SS,
321                                 ParsedTemplateTy *Template /*=nullptr*/) {
322   bool MemberOfUnknownSpecialization = false;
323 
324   // We could use redeclaration lookup here, but we don't need to: the
325   // syntactic form of a deduction guide is enough to identify it even
326   // if we can't look up the template name at all.
327   LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
328   if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
329                          /*EnteringContext*/ false,
330                          MemberOfUnknownSpecialization))
331     return false;
332 
333   if (R.empty()) return false;
334   if (R.isAmbiguous()) {
335     // FIXME: Diagnose an ambiguity if we find at least one template.
336     R.suppressDiagnostics();
337     return false;
338   }
339 
340   // We only treat template-names that name type templates as valid deduction
341   // guide names.
342   TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
343   if (!TD || !getAsTypeTemplateDecl(TD))
344     return false;
345 
346   if (Template)
347     *Template = TemplateTy::make(TemplateName(TD));
348   return true;
349 }
350 
351 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
352                                        SourceLocation IILoc,
353                                        Scope *S,
354                                        const CXXScopeSpec *SS,
355                                        TemplateTy &SuggestedTemplate,
356                                        TemplateNameKind &SuggestedKind) {
357   // We can't recover unless there's a dependent scope specifier preceding the
358   // template name.
359   // FIXME: Typo correction?
360   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
361       computeDeclContext(*SS))
362     return false;
363 
364   // The code is missing a 'template' keyword prior to the dependent template
365   // name.
366   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
367   Diag(IILoc, diag::err_template_kw_missing)
368     << Qualifier << II.getName()
369     << FixItHint::CreateInsertion(IILoc, "template ");
370   SuggestedTemplate
371     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
372   SuggestedKind = TNK_Dependent_template_name;
373   return true;
374 }
375 
376 bool Sema::LookupTemplateName(LookupResult &Found,
377                               Scope *S, CXXScopeSpec &SS,
378                               QualType ObjectType,
379                               bool EnteringContext,
380                               bool &MemberOfUnknownSpecialization,
381                               RequiredTemplateKind RequiredTemplate,
382                               AssumedTemplateKind *ATK,
383                               bool AllowTypoCorrection) {
384   if (ATK)
385     *ATK = AssumedTemplateKind::None;
386 
387   if (SS.isInvalid())
388     return true;
389 
390   Found.setTemplateNameLookup(true);
391 
392   // Determine where to perform name lookup
393   MemberOfUnknownSpecialization = false;
394   DeclContext *LookupCtx = nullptr;
395   bool IsDependent = false;
396   if (!ObjectType.isNull()) {
397     // This nested-name-specifier occurs in a member access expression, e.g.,
398     // x->B::f, and we are looking into the type of the object.
399     assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
400     LookupCtx = computeDeclContext(ObjectType);
401     IsDependent = !LookupCtx && ObjectType->isDependentType();
402     assert((IsDependent || !ObjectType->isIncompleteType() ||
403             !ObjectType->getAs<TagType>() ||
404             ObjectType->castAs<TagType>()->isBeingDefined()) &&
405            "Caller should have completed object type");
406 
407     // Template names cannot appear inside an Objective-C class or object type
408     // or a vector type.
409     //
410     // FIXME: This is wrong. For example:
411     //
412     //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
413     //   Vec<int> vi;
414     //   vi.Vec<int>::~Vec<int>();
415     //
416     // ... should be accepted but we will not treat 'Vec' as a template name
417     // here. The right thing to do would be to check if the name is a valid
418     // vector component name, and look up a template name if not. And similarly
419     // for lookups into Objective-C class and object types, where the same
420     // problem can arise.
421     if (ObjectType->isObjCObjectOrInterfaceType() ||
422         ObjectType->isVectorType()) {
423       Found.clear();
424       return false;
425     }
426   } else if (SS.isNotEmpty()) {
427     // This nested-name-specifier occurs after another nested-name-specifier,
428     // so long into the context associated with the prior nested-name-specifier.
429     LookupCtx = computeDeclContext(SS, EnteringContext);
430     IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
431 
432     // The declaration context must be complete.
433     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
434       return true;
435   }
436 
437   bool ObjectTypeSearchedInScope = false;
438   bool AllowFunctionTemplatesInLookup = true;
439   if (LookupCtx) {
440     // Perform "qualified" name lookup into the declaration context we
441     // computed, which is either the type of the base of a member access
442     // expression or the declaration context associated with a prior
443     // nested-name-specifier.
444     LookupQualifiedName(Found, LookupCtx);
445 
446     // FIXME: The C++ standard does not clearly specify what happens in the
447     // case where the object type is dependent, and implementations vary. In
448     // Clang, we treat a name after a . or -> as a template-name if lookup
449     // finds a non-dependent member or member of the current instantiation that
450     // is a type template, or finds no such members and lookup in the context
451     // of the postfix-expression finds a type template. In the latter case, the
452     // name is nonetheless dependent, and we may resolve it to a member of an
453     // unknown specialization when we come to instantiate the template.
454     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
455   }
456 
457   if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
458     // C++ [basic.lookup.classref]p1:
459     //   In a class member access expression (5.2.5), if the . or -> token is
460     //   immediately followed by an identifier followed by a <, the
461     //   identifier must be looked up to determine whether the < is the
462     //   beginning of a template argument list (14.2) or a less-than operator.
463     //   The identifier is first looked up in the class of the object
464     //   expression. If the identifier is not found, it is then looked up in
465     //   the context of the entire postfix-expression and shall name a class
466     //   template.
467     if (S)
468       LookupName(Found, S);
469 
470     if (!ObjectType.isNull()) {
471       //  FIXME: We should filter out all non-type templates here, particularly
472       //  variable templates and concepts. But the exclusion of alias templates
473       //  and template template parameters is a wording defect.
474       AllowFunctionTemplatesInLookup = false;
475       ObjectTypeSearchedInScope = true;
476     }
477 
478     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
479   }
480 
481   if (Found.isAmbiguous())
482     return false;
483 
484   if (ATK && SS.isEmpty() && ObjectType.isNull() &&
485       !RequiredTemplate.hasTemplateKeyword()) {
486     // C++2a [temp.names]p2:
487     //   A name is also considered to refer to a template if it is an
488     //   unqualified-id followed by a < and name lookup finds either one or more
489     //   functions or finds nothing.
490     //
491     // To keep our behavior consistent, we apply the "finds nothing" part in
492     // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
493     // successfully form a call to an undeclared template-id.
494     bool AllFunctions =
495         getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
496           return isa<FunctionDecl>(ND->getUnderlyingDecl());
497         });
498     if (AllFunctions || (Found.empty() && !IsDependent)) {
499       // If lookup found any functions, or if this is a name that can only be
500       // used for a function, then strongly assume this is a function
501       // template-id.
502       *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
503                  ? AssumedTemplateKind::FoundNothing
504                  : AssumedTemplateKind::FoundFunctions;
505       Found.clear();
506       return false;
507     }
508   }
509 
510   if (Found.empty() && !IsDependent && AllowTypoCorrection) {
511     // If we did not find any names, and this is not a disambiguation, attempt
512     // to correct any typos.
513     DeclarationName Name = Found.getLookupName();
514     Found.clear();
515     // Simple filter callback that, for keywords, only accepts the C++ *_cast
516     DefaultFilterCCC FilterCCC{};
517     FilterCCC.WantTypeSpecifiers = false;
518     FilterCCC.WantExpressionKeywords = false;
519     FilterCCC.WantRemainingKeywords = false;
520     FilterCCC.WantCXXNamedCasts = true;
521     if (TypoCorrection Corrected =
522             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
523                         &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
524       if (auto *ND = Corrected.getFoundDecl())
525         Found.addDecl(ND);
526       FilterAcceptableTemplateNames(Found);
527       if (Found.isAmbiguous()) {
528         Found.clear();
529       } else if (!Found.empty()) {
530         Found.setLookupName(Corrected.getCorrection());
531         if (LookupCtx) {
532           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
533           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
534                                   Name.getAsString() == CorrectedStr;
535           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
536                                     << Name << LookupCtx << DroppedSpecifier
537                                     << SS.getRange());
538         } else {
539           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
540         }
541       }
542     }
543   }
544 
545   NamedDecl *ExampleLookupResult =
546       Found.empty() ? nullptr : Found.getRepresentativeDecl();
547   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
548   if (Found.empty()) {
549     if (IsDependent) {
550       MemberOfUnknownSpecialization = true;
551       return false;
552     }
553 
554     // If a 'template' keyword was used, a lookup that finds only non-template
555     // names is an error.
556     if (ExampleLookupResult && RequiredTemplate) {
557       Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
558           << Found.getLookupName() << SS.getRange()
559           << RequiredTemplate.hasTemplateKeyword()
560           << RequiredTemplate.getTemplateKeywordLoc();
561       Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
562            diag::note_template_kw_refers_to_non_template)
563           << Found.getLookupName();
564       return true;
565     }
566 
567     return false;
568   }
569 
570   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
571       !getLangOpts().CPlusPlus11) {
572     // C++03 [basic.lookup.classref]p1:
573     //   [...] If the lookup in the class of the object expression finds a
574     //   template, the name is also looked up in the context of the entire
575     //   postfix-expression and [...]
576     //
577     // Note: C++11 does not perform this second lookup.
578     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
579                             LookupOrdinaryName);
580     FoundOuter.setTemplateNameLookup(true);
581     LookupName(FoundOuter, S);
582     // FIXME: We silently accept an ambiguous lookup here, in violation of
583     // [basic.lookup]/1.
584     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
585 
586     NamedDecl *OuterTemplate;
587     if (FoundOuter.empty()) {
588       //   - if the name is not found, the name found in the class of the
589       //     object expression is used, otherwise
590     } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
591                !(OuterTemplate =
592                      getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
593       //   - if the name is found in the context of the entire
594       //     postfix-expression and does not name a class template, the name
595       //     found in the class of the object expression is used, otherwise
596       FoundOuter.clear();
597     } else if (!Found.isSuppressingAmbiguousDiagnostics()) {
598       //   - if the name found is a class template, it must refer to the same
599       //     entity as the one found in the class of the object expression,
600       //     otherwise the program is ill-formed.
601       if (!Found.isSingleResult() ||
602           getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
603               OuterTemplate->getCanonicalDecl()) {
604         Diag(Found.getNameLoc(),
605              diag::ext_nested_name_member_ref_lookup_ambiguous)
606           << Found.getLookupName()
607           << ObjectType;
608         Diag(Found.getRepresentativeDecl()->getLocation(),
609              diag::note_ambig_member_ref_object_type)
610           << ObjectType;
611         Diag(FoundOuter.getFoundDecl()->getLocation(),
612              diag::note_ambig_member_ref_scope);
613 
614         // Recover by taking the template that we found in the object
615         // expression's type.
616       }
617     }
618   }
619 
620   return false;
621 }
622 
623 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
624                                               SourceLocation Less,
625                                               SourceLocation Greater) {
626   if (TemplateName.isInvalid())
627     return;
628 
629   DeclarationNameInfo NameInfo;
630   CXXScopeSpec SS;
631   LookupNameKind LookupKind;
632 
633   DeclContext *LookupCtx = nullptr;
634   NamedDecl *Found = nullptr;
635   bool MissingTemplateKeyword = false;
636 
637   // Figure out what name we looked up.
638   if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
639     NameInfo = DRE->getNameInfo();
640     SS.Adopt(DRE->getQualifierLoc());
641     LookupKind = LookupOrdinaryName;
642     Found = DRE->getFoundDecl();
643   } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
644     NameInfo = ME->getMemberNameInfo();
645     SS.Adopt(ME->getQualifierLoc());
646     LookupKind = LookupMemberName;
647     LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
648     Found = ME->getMemberDecl();
649   } else if (auto *DSDRE =
650                  dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
651     NameInfo = DSDRE->getNameInfo();
652     SS.Adopt(DSDRE->getQualifierLoc());
653     MissingTemplateKeyword = true;
654   } else if (auto *DSME =
655                  dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
656     NameInfo = DSME->getMemberNameInfo();
657     SS.Adopt(DSME->getQualifierLoc());
658     MissingTemplateKeyword = true;
659   } else {
660     llvm_unreachable("unexpected kind of potential template name");
661   }
662 
663   // If this is a dependent-scope lookup, diagnose that the 'template' keyword
664   // was missing.
665   if (MissingTemplateKeyword) {
666     Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
667         << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
668     return;
669   }
670 
671   // Try to correct the name by looking for templates and C++ named casts.
672   struct TemplateCandidateFilter : CorrectionCandidateCallback {
673     Sema &S;
674     TemplateCandidateFilter(Sema &S) : S(S) {
675       WantTypeSpecifiers = false;
676       WantExpressionKeywords = false;
677       WantRemainingKeywords = false;
678       WantCXXNamedCasts = true;
679     };
680     bool ValidateCandidate(const TypoCorrection &Candidate) override {
681       if (auto *ND = Candidate.getCorrectionDecl())
682         return S.getAsTemplateNameDecl(ND);
683       return Candidate.isKeyword();
684     }
685 
686     std::unique_ptr<CorrectionCandidateCallback> clone() override {
687       return std::make_unique<TemplateCandidateFilter>(*this);
688     }
689   };
690 
691   DeclarationName Name = NameInfo.getName();
692   TemplateCandidateFilter CCC(*this);
693   if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
694                                              CTK_ErrorRecovery, LookupCtx)) {
695     auto *ND = Corrected.getFoundDecl();
696     if (ND)
697       ND = getAsTemplateNameDecl(ND);
698     if (ND || Corrected.isKeyword()) {
699       if (LookupCtx) {
700         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
701         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
702                                 Name.getAsString() == CorrectedStr;
703         diagnoseTypo(Corrected,
704                      PDiag(diag::err_non_template_in_member_template_id_suggest)
705                          << Name << LookupCtx << DroppedSpecifier
706                          << SS.getRange(), false);
707       } else {
708         diagnoseTypo(Corrected,
709                      PDiag(diag::err_non_template_in_template_id_suggest)
710                          << Name, false);
711       }
712       if (Found)
713         Diag(Found->getLocation(),
714              diag::note_non_template_in_template_id_found);
715       return;
716     }
717   }
718 
719   Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
720     << Name << SourceRange(Less, Greater);
721   if (Found)
722     Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
723 }
724 
725 /// ActOnDependentIdExpression - Handle a dependent id-expression that
726 /// was just parsed.  This is only possible with an explicit scope
727 /// specifier naming a dependent type.
728 ExprResult
729 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
730                                  SourceLocation TemplateKWLoc,
731                                  const DeclarationNameInfo &NameInfo,
732                                  bool isAddressOfOperand,
733                            const TemplateArgumentListInfo *TemplateArgs) {
734   DeclContext *DC = getFunctionLevelDeclContext();
735 
736   // C++11 [expr.prim.general]p12:
737   //   An id-expression that denotes a non-static data member or non-static
738   //   member function of a class can only be used:
739   //   (...)
740   //   - if that id-expression denotes a non-static data member and it
741   //     appears in an unevaluated operand.
742   //
743   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
744   // CXXDependentScopeMemberExpr. The former can instantiate to either
745   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
746   // always a MemberExpr.
747   bool MightBeCxx11UnevalField =
748       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
749 
750   // Check if the nested name specifier is an enum type.
751   bool IsEnum = false;
752   if (NestedNameSpecifier *NNS = SS.getScopeRep())
753     IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
754 
755   if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
756       isa<CXXMethodDecl>(DC) &&
757       cast<CXXMethodDecl>(DC)->isImplicitObjectMemberFunction()) {
758     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType().getNonReferenceType();
759 
760     // Since the 'this' expression is synthesized, we don't need to
761     // perform the double-lookup check.
762     NamedDecl *FirstQualifierInScope = nullptr;
763 
764     return CXXDependentScopeMemberExpr::Create(
765         Context, /*This=*/nullptr, ThisType,
766         /*IsArrow=*/!Context.getLangOpts().HLSL,
767         /*Op=*/SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
768         FirstQualifierInScope, NameInfo, TemplateArgs);
769   }
770 
771   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
772 }
773 
774 ExprResult
775 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
776                                 SourceLocation TemplateKWLoc,
777                                 const DeclarationNameInfo &NameInfo,
778                                 const TemplateArgumentListInfo *TemplateArgs) {
779   // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
780   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
781   if (!QualifierLoc)
782     return ExprError();
783 
784   return DependentScopeDeclRefExpr::Create(
785       Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
786 }
787 
788 
789 /// Determine whether we would be unable to instantiate this template (because
790 /// it either has no definition, or is in the process of being instantiated).
791 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
792                                           NamedDecl *Instantiation,
793                                           bool InstantiatedFromMember,
794                                           const NamedDecl *Pattern,
795                                           const NamedDecl *PatternDef,
796                                           TemplateSpecializationKind TSK,
797                                           bool Complain /*= true*/) {
798   assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
799          isa<VarDecl>(Instantiation));
800 
801   bool IsEntityBeingDefined = false;
802   if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
803     IsEntityBeingDefined = TD->isBeingDefined();
804 
805   if (PatternDef && !IsEntityBeingDefined) {
806     NamedDecl *SuggestedDef = nullptr;
807     if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
808                                 &SuggestedDef,
809                                 /*OnlyNeedComplete*/ false)) {
810       // If we're allowed to diagnose this and recover, do so.
811       bool Recover = Complain && !isSFINAEContext();
812       if (Complain)
813         diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
814                               Sema::MissingImportKind::Definition, Recover);
815       return !Recover;
816     }
817     return false;
818   }
819 
820   if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
821     return true;
822 
823   QualType InstantiationTy;
824   if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
825     InstantiationTy = Context.getTypeDeclType(TD);
826   if (PatternDef) {
827     Diag(PointOfInstantiation,
828          diag::err_template_instantiate_within_definition)
829       << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
830       << InstantiationTy;
831     // Not much point in noting the template declaration here, since
832     // we're lexically inside it.
833     Instantiation->setInvalidDecl();
834   } else if (InstantiatedFromMember) {
835     if (isa<FunctionDecl>(Instantiation)) {
836       Diag(PointOfInstantiation,
837            diag::err_explicit_instantiation_undefined_member)
838         << /*member function*/ 1 << Instantiation->getDeclName()
839         << Instantiation->getDeclContext();
840       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
841     } else {
842       assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
843       Diag(PointOfInstantiation,
844            diag::err_implicit_instantiate_member_undefined)
845         << InstantiationTy;
846       Diag(Pattern->getLocation(), diag::note_member_declared_at);
847     }
848   } else {
849     if (isa<FunctionDecl>(Instantiation)) {
850       Diag(PointOfInstantiation,
851            diag::err_explicit_instantiation_undefined_func_template)
852         << Pattern;
853       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
854     } else if (isa<TagDecl>(Instantiation)) {
855       Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
856         << (TSK != TSK_ImplicitInstantiation)
857         << InstantiationTy;
858       NoteTemplateLocation(*Pattern);
859     } else {
860       assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
861       if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
862         Diag(PointOfInstantiation,
863              diag::err_explicit_instantiation_undefined_var_template)
864           << Instantiation;
865         Instantiation->setInvalidDecl();
866       } else
867         Diag(PointOfInstantiation,
868              diag::err_explicit_instantiation_undefined_member)
869           << /*static data member*/ 2 << Instantiation->getDeclName()
870           << Instantiation->getDeclContext();
871       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
872     }
873   }
874 
875   // In general, Instantiation isn't marked invalid to get more than one
876   // error for multiple undefined instantiations. But the code that does
877   // explicit declaration -> explicit definition conversion can't handle
878   // invalid declarations, so mark as invalid in that case.
879   if (TSK == TSK_ExplicitInstantiationDeclaration)
880     Instantiation->setInvalidDecl();
881   return true;
882 }
883 
884 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
885 /// that the template parameter 'PrevDecl' is being shadowed by a new
886 /// declaration at location Loc. Returns true to indicate that this is
887 /// an error, and false otherwise.
888 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
889   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
890 
891   // C++ [temp.local]p4:
892   //   A template-parameter shall not be redeclared within its
893   //   scope (including nested scopes).
894   //
895   // Make this a warning when MSVC compatibility is requested.
896   unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
897                                              : diag::err_template_param_shadow;
898   const auto *ND = cast<NamedDecl>(PrevDecl);
899   Diag(Loc, DiagId) << ND->getDeclName();
900   NoteTemplateParameterLocation(*ND);
901 }
902 
903 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
904 /// the parameter D to reference the templated declaration and return a pointer
905 /// to the template declaration. Otherwise, do nothing to D and return null.
906 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
907   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
908     D = Temp->getTemplatedDecl();
909     return Temp;
910   }
911   return nullptr;
912 }
913 
914 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
915                                              SourceLocation EllipsisLoc) const {
916   assert(Kind == Template &&
917          "Only template template arguments can be pack expansions here");
918   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
919          "Template template argument pack expansion without packs");
920   ParsedTemplateArgument Result(*this);
921   Result.EllipsisLoc = EllipsisLoc;
922   return Result;
923 }
924 
925 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
926                                             const ParsedTemplateArgument &Arg) {
927 
928   switch (Arg.getKind()) {
929   case ParsedTemplateArgument::Type: {
930     TypeSourceInfo *DI;
931     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
932     if (!DI)
933       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
934     return TemplateArgumentLoc(TemplateArgument(T), DI);
935   }
936 
937   case ParsedTemplateArgument::NonType: {
938     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
939     return TemplateArgumentLoc(TemplateArgument(E), E);
940   }
941 
942   case ParsedTemplateArgument::Template: {
943     TemplateName Template = Arg.getAsTemplate().get();
944     TemplateArgument TArg;
945     if (Arg.getEllipsisLoc().isValid())
946       TArg = TemplateArgument(Template, std::optional<unsigned int>());
947     else
948       TArg = Template;
949     return TemplateArgumentLoc(
950         SemaRef.Context, TArg,
951         Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
952         Arg.getLocation(), Arg.getEllipsisLoc());
953   }
954   }
955 
956   llvm_unreachable("Unhandled parsed template argument");
957 }
958 
959 /// Translates template arguments as provided by the parser
960 /// into template arguments used by semantic analysis.
961 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
962                                       TemplateArgumentListInfo &TemplateArgs) {
963  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
964    TemplateArgs.addArgument(translateTemplateArgument(*this,
965                                                       TemplateArgsIn[I]));
966 }
967 
968 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
969                                                  SourceLocation Loc,
970                                                  IdentifierInfo *Name) {
971   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
972       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
973   if (PrevDecl && PrevDecl->isTemplateParameter())
974     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
975 }
976 
977 /// Convert a parsed type into a parsed template argument. This is mostly
978 /// trivial, except that we may have parsed a C++17 deduced class template
979 /// specialization type, in which case we should form a template template
980 /// argument instead of a type template argument.
981 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
982   TypeSourceInfo *TInfo;
983   QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
984   if (T.isNull())
985     return ParsedTemplateArgument();
986   assert(TInfo && "template argument with no location");
987 
988   // If we might have formed a deduced template specialization type, convert
989   // it to a template template argument.
990   if (getLangOpts().CPlusPlus17) {
991     TypeLoc TL = TInfo->getTypeLoc();
992     SourceLocation EllipsisLoc;
993     if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
994       EllipsisLoc = PET.getEllipsisLoc();
995       TL = PET.getPatternLoc();
996     }
997 
998     CXXScopeSpec SS;
999     if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
1000       SS.Adopt(ET.getQualifierLoc());
1001       TL = ET.getNamedTypeLoc();
1002     }
1003 
1004     if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1005       TemplateName Name = DTST.getTypePtr()->getTemplateName();
1006       if (SS.isSet())
1007         Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1008                                                 /*HasTemplateKeyword=*/false,
1009                                                 Name);
1010       ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1011                                     DTST.getTemplateNameLoc());
1012       if (EllipsisLoc.isValid())
1013         Result = Result.getTemplatePackExpansion(EllipsisLoc);
1014       return Result;
1015     }
1016   }
1017 
1018   // This is a normal type template argument. Note, if the type template
1019   // argument is an injected-class-name for a template, it has a dual nature
1020   // and can be used as either a type or a template. We handle that in
1021   // convertTypeTemplateArgumentToTemplate.
1022   return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1023                                 ParsedType.get().getAsOpaquePtr(),
1024                                 TInfo->getTypeLoc().getBeginLoc());
1025 }
1026 
1027 /// ActOnTypeParameter - Called when a C++ template type parameter
1028 /// (e.g., "typename T") has been parsed. Typename specifies whether
1029 /// the keyword "typename" was used to declare the type parameter
1030 /// (otherwise, "class" was used), and KeyLoc is the location of the
1031 /// "class" or "typename" keyword. ParamName is the name of the
1032 /// parameter (NULL indicates an unnamed template parameter) and
1033 /// ParamNameLoc is the location of the parameter name (if any).
1034 /// If the type parameter has a default argument, it will be added
1035 /// later via ActOnTypeParameterDefault.
1036 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1037                                     SourceLocation EllipsisLoc,
1038                                     SourceLocation KeyLoc,
1039                                     IdentifierInfo *ParamName,
1040                                     SourceLocation ParamNameLoc,
1041                                     unsigned Depth, unsigned Position,
1042                                     SourceLocation EqualLoc,
1043                                     ParsedType DefaultArg,
1044                                     bool HasTypeConstraint) {
1045   assert(S->isTemplateParamScope() &&
1046          "Template type parameter not in template parameter scope!");
1047 
1048   bool IsParameterPack = EllipsisLoc.isValid();
1049   TemplateTypeParmDecl *Param
1050     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1051                                    KeyLoc, ParamNameLoc, Depth, Position,
1052                                    ParamName, Typename, IsParameterPack,
1053                                    HasTypeConstraint);
1054   Param->setAccess(AS_public);
1055 
1056   if (Param->isParameterPack())
1057     if (auto *LSI = getEnclosingLambda())
1058       LSI->LocalPacks.push_back(Param);
1059 
1060   if (ParamName) {
1061     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1062 
1063     // Add the template parameter into the current scope.
1064     S->AddDecl(Param);
1065     IdResolver.AddDecl(Param);
1066   }
1067 
1068   // C++0x [temp.param]p9:
1069   //   A default template-argument may be specified for any kind of
1070   //   template-parameter that is not a template parameter pack.
1071   if (DefaultArg && IsParameterPack) {
1072     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1073     DefaultArg = nullptr;
1074   }
1075 
1076   // Handle the default argument, if provided.
1077   if (DefaultArg) {
1078     TypeSourceInfo *DefaultTInfo;
1079     GetTypeFromParser(DefaultArg, &DefaultTInfo);
1080 
1081     assert(DefaultTInfo && "expected source information for type");
1082 
1083     // Check for unexpanded parameter packs.
1084     if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1085                                         UPPC_DefaultArgument))
1086       return Param;
1087 
1088     // Check the template argument itself.
1089     if (CheckTemplateArgument(DefaultTInfo)) {
1090       Param->setInvalidDecl();
1091       return Param;
1092     }
1093 
1094     Param->setDefaultArgument(DefaultTInfo);
1095   }
1096 
1097   return Param;
1098 }
1099 
1100 /// Convert the parser's template argument list representation into our form.
1101 static TemplateArgumentListInfo
1102 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1103   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1104                                         TemplateId.RAngleLoc);
1105   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1106                                      TemplateId.NumArgs);
1107   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1108   return TemplateArgs;
1109 }
1110 
1111 bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) {
1112 
1113   TemplateName TN = TypeConstr->Template.get();
1114   ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1115 
1116   // C++2a [temp.param]p4:
1117   //     [...] The concept designated by a type-constraint shall be a type
1118   //     concept ([temp.concept]).
1119   if (!CD->isTypeConcept()) {
1120     Diag(TypeConstr->TemplateNameLoc,
1121          diag::err_type_constraint_non_type_concept);
1122     return true;
1123   }
1124 
1125   bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1126 
1127   if (!WereArgsSpecified &&
1128       CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1129     Diag(TypeConstr->TemplateNameLoc,
1130          diag::err_type_constraint_missing_arguments)
1131         << CD;
1132     return true;
1133   }
1134   return false;
1135 }
1136 
1137 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1138                                TemplateIdAnnotation *TypeConstr,
1139                                TemplateTypeParmDecl *ConstrainedParameter,
1140                                SourceLocation EllipsisLoc) {
1141   return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1142                              false);
1143 }
1144 
1145 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1146                                TemplateIdAnnotation *TypeConstr,
1147                                TemplateTypeParmDecl *ConstrainedParameter,
1148                                SourceLocation EllipsisLoc,
1149                                bool AllowUnexpandedPack) {
1150 
1151   if (CheckTypeConstraint(TypeConstr))
1152     return true;
1153 
1154   TemplateName TN = TypeConstr->Template.get();
1155   ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1156 
1157   DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1158                                   TypeConstr->TemplateNameLoc);
1159 
1160   TemplateArgumentListInfo TemplateArgs;
1161   if (TypeConstr->LAngleLoc.isValid()) {
1162     TemplateArgs =
1163         makeTemplateArgumentListInfo(*this, *TypeConstr);
1164 
1165     if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1166       for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1167         if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1168           return true;
1169       }
1170     }
1171   }
1172   return AttachTypeConstraint(
1173       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1174       ConceptName, CD,
1175       TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1176       ConstrainedParameter, EllipsisLoc);
1177 }
1178 
1179 template<typename ArgumentLocAppender>
1180 static ExprResult formImmediatelyDeclaredConstraint(
1181     Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1182     ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1183     SourceLocation RAngleLoc, QualType ConstrainedType,
1184     SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1185     SourceLocation EllipsisLoc) {
1186 
1187   TemplateArgumentListInfo ConstraintArgs;
1188   ConstraintArgs.addArgument(
1189     S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1190                                     /*NTTPType=*/QualType(), ParamNameLoc));
1191 
1192   ConstraintArgs.setRAngleLoc(RAngleLoc);
1193   ConstraintArgs.setLAngleLoc(LAngleLoc);
1194   Appender(ConstraintArgs);
1195 
1196   // C++2a [temp.param]p4:
1197   //     [...] This constraint-expression E is called the immediately-declared
1198   //     constraint of T. [...]
1199   CXXScopeSpec SS;
1200   SS.Adopt(NS);
1201   ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1202       SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1203       /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1204   if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1205     return ImmediatelyDeclaredConstraint;
1206 
1207   // C++2a [temp.param]p4:
1208   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1209   //
1210   // We have the following case:
1211   //
1212   // template<typename T> concept C1 = true;
1213   // template<C1... T> struct s1;
1214   //
1215   // The constraint: (C1<T> && ...)
1216   //
1217   // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1218   // any unqualified lookups for 'operator&&' here.
1219   return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1220                             /*LParenLoc=*/SourceLocation(),
1221                             ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1222                             EllipsisLoc, /*RHS=*/nullptr,
1223                             /*RParenLoc=*/SourceLocation(),
1224                             /*NumExpansions=*/std::nullopt);
1225 }
1226 
1227 /// Attach a type-constraint to a template parameter.
1228 /// \returns true if an error occurred. This can happen if the
1229 /// immediately-declared constraint could not be formed (e.g. incorrect number
1230 /// of arguments for the named concept).
1231 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1232                                 DeclarationNameInfo NameInfo,
1233                                 ConceptDecl *NamedConcept,
1234                                 const TemplateArgumentListInfo *TemplateArgs,
1235                                 TemplateTypeParmDecl *ConstrainedParameter,
1236                                 SourceLocation EllipsisLoc) {
1237   // C++2a [temp.param]p4:
1238   //     [...] If Q is of the form C<A1, ..., An>, then let E' be
1239   //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1240   const ASTTemplateArgumentListInfo *ArgsAsWritten =
1241     TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1242                                                        *TemplateArgs) : nullptr;
1243 
1244   QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1245 
1246   ExprResult ImmediatelyDeclaredConstraint =
1247       formImmediatelyDeclaredConstraint(
1248           *this, NS, NameInfo, NamedConcept,
1249           TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1250           TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1251           ParamAsArgument, ConstrainedParameter->getLocation(),
1252           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1253             if (TemplateArgs)
1254               for (const auto &ArgLoc : TemplateArgs->arguments())
1255                 ConstraintArgs.addArgument(ArgLoc);
1256           }, EllipsisLoc);
1257   if (ImmediatelyDeclaredConstraint.isInvalid())
1258     return true;
1259 
1260   auto *CL = ConceptReference::Create(Context, /*NNS=*/NS,
1261                                       /*TemplateKWLoc=*/SourceLocation{},
1262                                       /*ConceptNameInfo=*/NameInfo,
1263                                       /*FoundDecl=*/NamedConcept,
1264                                       /*NamedConcept=*/NamedConcept,
1265                                       /*ArgsWritten=*/ArgsAsWritten);
1266   ConstrainedParameter->setTypeConstraint(CL,
1267                                           ImmediatelyDeclaredConstraint.get());
1268   return false;
1269 }
1270 
1271 bool Sema::AttachTypeConstraint(AutoTypeLoc TL,
1272                                 NonTypeTemplateParmDecl *NewConstrainedParm,
1273                                 NonTypeTemplateParmDecl *OrigConstrainedParm,
1274                                 SourceLocation EllipsisLoc) {
1275   if (NewConstrainedParm->getType() != TL.getType() ||
1276       TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1277     Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1278          diag::err_unsupported_placeholder_constraint)
1279         << NewConstrainedParm->getTypeSourceInfo()
1280                ->getTypeLoc()
1281                .getSourceRange();
1282     return true;
1283   }
1284   // FIXME: Concepts: This should be the type of the placeholder, but this is
1285   // unclear in the wording right now.
1286   DeclRefExpr *Ref =
1287       BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(),
1288                        VK_PRValue, OrigConstrainedParm->getLocation());
1289   if (!Ref)
1290     return true;
1291   ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1292       *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1293       TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1294       BuildDecltypeType(Ref), OrigConstrainedParm->getLocation(),
1295       [&](TemplateArgumentListInfo &ConstraintArgs) {
1296         for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1297           ConstraintArgs.addArgument(TL.getArgLoc(I));
1298       },
1299       EllipsisLoc);
1300   if (ImmediatelyDeclaredConstraint.isInvalid() ||
1301       !ImmediatelyDeclaredConstraint.isUsable())
1302     return true;
1303 
1304   NewConstrainedParm->setPlaceholderTypeConstraint(
1305       ImmediatelyDeclaredConstraint.get());
1306   return false;
1307 }
1308 
1309 /// Check that the type of a non-type template parameter is
1310 /// well-formed.
1311 ///
1312 /// \returns the (possibly-promoted) parameter type if valid;
1313 /// otherwise, produces a diagnostic and returns a NULL type.
1314 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1315                                                  SourceLocation Loc) {
1316   if (TSI->getType()->isUndeducedType()) {
1317     // C++17 [temp.dep.expr]p3:
1318     //   An id-expression is type-dependent if it contains
1319     //    - an identifier associated by name lookup with a non-type
1320     //      template-parameter declared with a type that contains a
1321     //      placeholder type (7.1.7.4),
1322     TSI = SubstAutoTypeSourceInfoDependent(TSI);
1323   }
1324 
1325   return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1326 }
1327 
1328 /// Require the given type to be a structural type, and diagnose if it is not.
1329 ///
1330 /// \return \c true if an error was produced.
1331 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1332   if (T->isDependentType())
1333     return false;
1334 
1335   if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1336     return true;
1337 
1338   if (T->isStructuralType())
1339     return false;
1340 
1341   // Structural types are required to be object types or lvalue references.
1342   if (T->isRValueReferenceType()) {
1343     Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1344     return true;
1345   }
1346 
1347   // Don't mention structural types in our diagnostic prior to C++20. Also,
1348   // there's not much more we can say about non-scalar non-class types --
1349   // because we can't see functions or arrays here, those can only be language
1350   // extensions.
1351   if (!getLangOpts().CPlusPlus20 ||
1352       (!T->isScalarType() && !T->isRecordType())) {
1353     Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1354     return true;
1355   }
1356 
1357   // Structural types are required to be literal types.
1358   if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1359     return true;
1360 
1361   Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1362 
1363   // Drill down into the reason why the class is non-structural.
1364   while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1365     // All members are required to be public and non-mutable, and can't be of
1366     // rvalue reference type. Check these conditions first to prefer a "local"
1367     // reason over a more distant one.
1368     for (const FieldDecl *FD : RD->fields()) {
1369       if (FD->getAccess() != AS_public) {
1370         Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1371         return true;
1372       }
1373       if (FD->isMutable()) {
1374         Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1375         return true;
1376       }
1377       if (FD->getType()->isRValueReferenceType()) {
1378         Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1379             << T;
1380         return true;
1381       }
1382     }
1383 
1384     // All bases are required to be public.
1385     for (const auto &BaseSpec : RD->bases()) {
1386       if (BaseSpec.getAccessSpecifier() != AS_public) {
1387         Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1388             << T << 1;
1389         return true;
1390       }
1391     }
1392 
1393     // All subobjects are required to be of structural types.
1394     SourceLocation SubLoc;
1395     QualType SubType;
1396     int Kind = -1;
1397 
1398     for (const FieldDecl *FD : RD->fields()) {
1399       QualType T = Context.getBaseElementType(FD->getType());
1400       if (!T->isStructuralType()) {
1401         SubLoc = FD->getLocation();
1402         SubType = T;
1403         Kind = 0;
1404         break;
1405       }
1406     }
1407 
1408     if (Kind == -1) {
1409       for (const auto &BaseSpec : RD->bases()) {
1410         QualType T = BaseSpec.getType();
1411         if (!T->isStructuralType()) {
1412           SubLoc = BaseSpec.getBaseTypeLoc();
1413           SubType = T;
1414           Kind = 1;
1415           break;
1416         }
1417       }
1418     }
1419 
1420     assert(Kind != -1 && "couldn't find reason why type is not structural");
1421     Diag(SubLoc, diag::note_not_structural_subobject)
1422         << T << Kind << SubType;
1423     T = SubType;
1424     RD = T->getAsCXXRecordDecl();
1425   }
1426 
1427   return true;
1428 }
1429 
1430 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1431                                                  SourceLocation Loc) {
1432   // We don't allow variably-modified types as the type of non-type template
1433   // parameters.
1434   if (T->isVariablyModifiedType()) {
1435     Diag(Loc, diag::err_variably_modified_nontype_template_param)
1436       << T;
1437     return QualType();
1438   }
1439 
1440   // C++ [temp.param]p4:
1441   //
1442   // A non-type template-parameter shall have one of the following
1443   // (optionally cv-qualified) types:
1444   //
1445   //       -- integral or enumeration type,
1446   if (T->isIntegralOrEnumerationType() ||
1447       //   -- pointer to object or pointer to function,
1448       T->isPointerType() ||
1449       //   -- lvalue reference to object or lvalue reference to function,
1450       T->isLValueReferenceType() ||
1451       //   -- pointer to member,
1452       T->isMemberPointerType() ||
1453       //   -- std::nullptr_t, or
1454       T->isNullPtrType() ||
1455       //   -- a type that contains a placeholder type.
1456       T->isUndeducedType()) {
1457     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1458     // are ignored when determining its type.
1459     return T.getUnqualifiedType();
1460   }
1461 
1462   // C++ [temp.param]p8:
1463   //
1464   //   A non-type template-parameter of type "array of T" or
1465   //   "function returning T" is adjusted to be of type "pointer to
1466   //   T" or "pointer to function returning T", respectively.
1467   if (T->isArrayType() || T->isFunctionType())
1468     return Context.getDecayedType(T);
1469 
1470   // If T is a dependent type, we can't do the check now, so we
1471   // assume that it is well-formed. Note that stripping off the
1472   // qualifiers here is not really correct if T turns out to be
1473   // an array type, but we'll recompute the type everywhere it's
1474   // used during instantiation, so that should be OK. (Using the
1475   // qualified type is equally wrong.)
1476   if (T->isDependentType())
1477     return T.getUnqualifiedType();
1478 
1479   // C++20 [temp.param]p6:
1480   //   -- a structural type
1481   if (RequireStructuralType(T, Loc))
1482     return QualType();
1483 
1484   if (!getLangOpts().CPlusPlus20) {
1485     // FIXME: Consider allowing structural types as an extension in C++17. (In
1486     // earlier language modes, the template argument evaluation rules are too
1487     // inflexible.)
1488     Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1489     return QualType();
1490   }
1491 
1492   Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1493   return T.getUnqualifiedType();
1494 }
1495 
1496 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1497                                           unsigned Depth,
1498                                           unsigned Position,
1499                                           SourceLocation EqualLoc,
1500                                           Expr *Default) {
1501   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1502 
1503   // Check that we have valid decl-specifiers specified.
1504   auto CheckValidDeclSpecifiers = [this, &D] {
1505     // C++ [temp.param]
1506     // p1
1507     //   template-parameter:
1508     //     ...
1509     //     parameter-declaration
1510     // p2
1511     //   ... A storage class shall not be specified in a template-parameter
1512     //   declaration.
1513     // [dcl.typedef]p1:
1514     //   The typedef specifier [...] shall not be used in the decl-specifier-seq
1515     //   of a parameter-declaration
1516     const DeclSpec &DS = D.getDeclSpec();
1517     auto EmitDiag = [this](SourceLocation Loc) {
1518       Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1519           << FixItHint::CreateRemoval(Loc);
1520     };
1521     if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1522       EmitDiag(DS.getStorageClassSpecLoc());
1523 
1524     if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1525       EmitDiag(DS.getThreadStorageClassSpecLoc());
1526 
1527     // [dcl.inline]p1:
1528     //   The inline specifier can be applied only to the declaration or
1529     //   definition of a variable or function.
1530 
1531     if (DS.isInlineSpecified())
1532       EmitDiag(DS.getInlineSpecLoc());
1533 
1534     // [dcl.constexpr]p1:
1535     //   The constexpr specifier shall be applied only to the definition of a
1536     //   variable or variable template or the declaration of a function or
1537     //   function template.
1538 
1539     if (DS.hasConstexprSpecifier())
1540       EmitDiag(DS.getConstexprSpecLoc());
1541 
1542     // [dcl.fct.spec]p1:
1543     //   Function-specifiers can be used only in function declarations.
1544 
1545     if (DS.isVirtualSpecified())
1546       EmitDiag(DS.getVirtualSpecLoc());
1547 
1548     if (DS.hasExplicitSpecifier())
1549       EmitDiag(DS.getExplicitSpecLoc());
1550 
1551     if (DS.isNoreturnSpecified())
1552       EmitDiag(DS.getNoreturnSpecLoc());
1553   };
1554 
1555   CheckValidDeclSpecifiers();
1556 
1557   if (const auto *T = TInfo->getType()->getContainedDeducedType())
1558     if (isa<AutoType>(T))
1559       Diag(D.getIdentifierLoc(),
1560            diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1561           << QualType(TInfo->getType()->getContainedAutoType(), 0);
1562 
1563   assert(S->isTemplateParamScope() &&
1564          "Non-type template parameter not in template parameter scope!");
1565   bool Invalid = false;
1566 
1567   QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1568   if (T.isNull()) {
1569     T = Context.IntTy; // Recover with an 'int' type.
1570     Invalid = true;
1571   }
1572 
1573   CheckFunctionOrTemplateParamDeclarator(S, D);
1574 
1575   IdentifierInfo *ParamName = D.getIdentifier();
1576   bool IsParameterPack = D.hasEllipsis();
1577   NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1578       Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1579       D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1580       TInfo);
1581   Param->setAccess(AS_public);
1582 
1583   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1584     if (TL.isConstrained())
1585       if (AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc()))
1586         Invalid = true;
1587 
1588   if (Invalid)
1589     Param->setInvalidDecl();
1590 
1591   if (Param->isParameterPack())
1592     if (auto *LSI = getEnclosingLambda())
1593       LSI->LocalPacks.push_back(Param);
1594 
1595   if (ParamName) {
1596     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1597                                          ParamName);
1598 
1599     // Add the template parameter into the current scope.
1600     S->AddDecl(Param);
1601     IdResolver.AddDecl(Param);
1602   }
1603 
1604   // C++0x [temp.param]p9:
1605   //   A default template-argument may be specified for any kind of
1606   //   template-parameter that is not a template parameter pack.
1607   if (Default && IsParameterPack) {
1608     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1609     Default = nullptr;
1610   }
1611 
1612   // Check the well-formedness of the default template argument, if provided.
1613   if (Default) {
1614     // Check for unexpanded parameter packs.
1615     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1616       return Param;
1617 
1618     Param->setDefaultArgument(Default);
1619   }
1620 
1621   return Param;
1622 }
1623 
1624 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1625 /// parameter (e.g. T in template <template \<typename> class T> class array)
1626 /// has been parsed. S is the current scope.
1627 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1628                                            SourceLocation TmpLoc,
1629                                            TemplateParameterList *Params,
1630                                            SourceLocation EllipsisLoc,
1631                                            IdentifierInfo *Name,
1632                                            SourceLocation NameLoc,
1633                                            unsigned Depth,
1634                                            unsigned Position,
1635                                            SourceLocation EqualLoc,
1636                                            ParsedTemplateArgument Default) {
1637   assert(S->isTemplateParamScope() &&
1638          "Template template parameter not in template parameter scope!");
1639 
1640   // Construct the parameter object.
1641   bool IsParameterPack = EllipsisLoc.isValid();
1642   TemplateTemplateParmDecl *Param =
1643     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1644                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
1645                                      Depth, Position, IsParameterPack,
1646                                      Name, Params);
1647   Param->setAccess(AS_public);
1648 
1649   if (Param->isParameterPack())
1650     if (auto *LSI = getEnclosingLambda())
1651       LSI->LocalPacks.push_back(Param);
1652 
1653   // If the template template parameter has a name, then link the identifier
1654   // into the scope and lookup mechanisms.
1655   if (Name) {
1656     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1657 
1658     S->AddDecl(Param);
1659     IdResolver.AddDecl(Param);
1660   }
1661 
1662   if (Params->size() == 0) {
1663     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1664     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1665     Param->setInvalidDecl();
1666   }
1667 
1668   // C++0x [temp.param]p9:
1669   //   A default template-argument may be specified for any kind of
1670   //   template-parameter that is not a template parameter pack.
1671   if (IsParameterPack && !Default.isInvalid()) {
1672     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1673     Default = ParsedTemplateArgument();
1674   }
1675 
1676   if (!Default.isInvalid()) {
1677     // Check only that we have a template template argument. We don't want to
1678     // try to check well-formedness now, because our template template parameter
1679     // might have dependent types in its template parameters, which we wouldn't
1680     // be able to match now.
1681     //
1682     // If none of the template template parameter's template arguments mention
1683     // other template parameters, we could actually perform more checking here.
1684     // However, it isn't worth doing.
1685     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1686     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1687       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1688         << DefaultArg.getSourceRange();
1689       return Param;
1690     }
1691 
1692     // Check for unexpanded parameter packs.
1693     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1694                                         DefaultArg.getArgument().getAsTemplate(),
1695                                         UPPC_DefaultArgument))
1696       return Param;
1697 
1698     Param->setDefaultArgument(Context, DefaultArg);
1699   }
1700 
1701   return Param;
1702 }
1703 
1704 namespace {
1705 class ConstraintRefersToContainingTemplateChecker
1706     : public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
1707   bool Result = false;
1708   const FunctionDecl *Friend = nullptr;
1709   unsigned TemplateDepth = 0;
1710 
1711   // Check a record-decl that we've seen to see if it is a lexical parent of the
1712   // Friend, likely because it was referred to without its template arguments.
1713   void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
1714     CheckingRD = CheckingRD->getMostRecentDecl();
1715     if (!CheckingRD->isTemplated())
1716       return;
1717 
1718     for (const DeclContext *DC = Friend->getLexicalDeclContext();
1719          DC && !DC->isFileContext(); DC = DC->getParent())
1720       if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
1721         if (CheckingRD == RD->getMostRecentDecl())
1722           Result = true;
1723   }
1724 
1725   void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
1726     assert(D->getDepth() <= TemplateDepth &&
1727            "Nothing should reference a value below the actual template depth, "
1728            "depth is likely wrong");
1729     if (D->getDepth() != TemplateDepth)
1730       Result = true;
1731 
1732     // Necessary because the type of the NTTP might be what refers to the parent
1733     // constriant.
1734     TransformType(D->getType());
1735   }
1736 
1737 public:
1738   using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
1739 
1740   ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
1741                                               const FunctionDecl *Friend,
1742                                               unsigned TemplateDepth)
1743       : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
1744   bool getResult() const { return Result; }
1745 
1746   // This should be the only template parm type that we have to deal with.
1747   // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
1748   // FunctionParmPackExpr are all partially substituted, which cannot happen
1749   // with concepts at this point in translation.
1750   using inherited::TransformTemplateTypeParmType;
1751   QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1752                                          TemplateTypeParmTypeLoc TL, bool) {
1753     assert(TL.getDecl()->getDepth() <= TemplateDepth &&
1754            "Nothing should reference a value below the actual template depth, "
1755            "depth is likely wrong");
1756     if (TL.getDecl()->getDepth() != TemplateDepth)
1757       Result = true;
1758     return inherited::TransformTemplateTypeParmType(
1759         TLB, TL,
1760         /*SuppressObjCLifetime=*/false);
1761   }
1762 
1763   Decl *TransformDecl(SourceLocation Loc, Decl *D) {
1764     if (!D)
1765       return D;
1766     // FIXME : This is possibly an incomplete list, but it is unclear what other
1767     // Decl kinds could be used to refer to the template parameters.  This is a
1768     // best guess so far based on examples currently available, but the
1769     // unreachable should catch future instances/cases.
1770     if (auto *TD = dyn_cast<TypedefNameDecl>(D))
1771       TransformType(TD->getUnderlyingType());
1772     else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D))
1773       CheckNonTypeTemplateParmDecl(NTTPD);
1774     else if (auto *VD = dyn_cast<ValueDecl>(D))
1775       TransformType(VD->getType());
1776     else if (auto *TD = dyn_cast<TemplateDecl>(D))
1777       TransformTemplateParameterList(TD->getTemplateParameters());
1778     else if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1779       CheckIfContainingRecord(RD);
1780     else if (isa<NamedDecl>(D)) {
1781       // No direct types to visit here I believe.
1782     } else
1783       llvm_unreachable("Don't know how to handle this declaration type yet");
1784     return D;
1785   }
1786 };
1787 } // namespace
1788 
1789 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
1790     const FunctionDecl *Friend, unsigned TemplateDepth,
1791     const Expr *Constraint) {
1792   assert(Friend->getFriendObjectKind() && "Only works on a friend");
1793   ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
1794                                                       TemplateDepth);
1795   Checker.TransformExpr(const_cast<Expr *>(Constraint));
1796   return Checker.getResult();
1797 }
1798 
1799 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1800 /// constrained by RequiresClause, that contains the template parameters in
1801 /// Params.
1802 TemplateParameterList *
1803 Sema::ActOnTemplateParameterList(unsigned Depth,
1804                                  SourceLocation ExportLoc,
1805                                  SourceLocation TemplateLoc,
1806                                  SourceLocation LAngleLoc,
1807                                  ArrayRef<NamedDecl *> Params,
1808                                  SourceLocation RAngleLoc,
1809                                  Expr *RequiresClause) {
1810   if (ExportLoc.isValid())
1811     Diag(ExportLoc, diag::warn_template_export_unsupported);
1812 
1813   for (NamedDecl *P : Params)
1814     warnOnReservedIdentifier(P);
1815 
1816   return TemplateParameterList::Create(
1817       Context, TemplateLoc, LAngleLoc,
1818       llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
1819 }
1820 
1821 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1822                                    const CXXScopeSpec &SS) {
1823   if (SS.isSet())
1824     T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1825 }
1826 
1827 DeclResult Sema::CheckClassTemplate(
1828     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1829     CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1830     const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1831     AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1832     SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1833     TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1834   assert(TemplateParams && TemplateParams->size() > 0 &&
1835          "No template parameters");
1836   assert(TUK != TUK_Reference && "Can only declare or define class templates");
1837   bool Invalid = false;
1838 
1839   // Check that we can declare a template here.
1840   if (CheckTemplateDeclScope(S, TemplateParams))
1841     return true;
1842 
1843   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1844   assert(Kind != TagTypeKind::Enum &&
1845          "can't build template of enumerated type");
1846 
1847   // There is no such thing as an unnamed class template.
1848   if (!Name) {
1849     Diag(KWLoc, diag::err_template_unnamed_class);
1850     return true;
1851   }
1852 
1853   // Find any previous declaration with this name. For a friend with no
1854   // scope explicitly specified, we only look for tag declarations (per
1855   // C++11 [basic.lookup.elab]p2).
1856   DeclContext *SemanticContext;
1857   LookupResult Previous(*this, Name, NameLoc,
1858                         (SS.isEmpty() && TUK == TUK_Friend)
1859                           ? LookupTagName : LookupOrdinaryName,
1860                         forRedeclarationInCurContext());
1861   if (SS.isNotEmpty() && !SS.isInvalid()) {
1862     SemanticContext = computeDeclContext(SS, true);
1863     if (!SemanticContext) {
1864       // FIXME: Horrible, horrible hack! We can't currently represent this
1865       // in the AST, and historically we have just ignored such friend
1866       // class templates, so don't complain here.
1867       Diag(NameLoc, TUK == TUK_Friend
1868                         ? diag::warn_template_qualified_friend_ignored
1869                         : diag::err_template_qualified_declarator_no_match)
1870           << SS.getScopeRep() << SS.getRange();
1871       return TUK != TUK_Friend;
1872     }
1873 
1874     if (RequireCompleteDeclContext(SS, SemanticContext))
1875       return true;
1876 
1877     // If we're adding a template to a dependent context, we may need to
1878     // rebuilding some of the types used within the template parameter list,
1879     // now that we know what the current instantiation is.
1880     if (SemanticContext->isDependentContext()) {
1881       ContextRAII SavedContext(*this, SemanticContext);
1882       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1883         Invalid = true;
1884     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1885       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1886 
1887     LookupQualifiedName(Previous, SemanticContext);
1888   } else {
1889     SemanticContext = CurContext;
1890 
1891     // C++14 [class.mem]p14:
1892     //   If T is the name of a class, then each of the following shall have a
1893     //   name different from T:
1894     //    -- every member template of class T
1895     if (TUK != TUK_Friend &&
1896         DiagnoseClassNameShadow(SemanticContext,
1897                                 DeclarationNameInfo(Name, NameLoc)))
1898       return true;
1899 
1900     LookupName(Previous, S);
1901   }
1902 
1903   if (Previous.isAmbiguous())
1904     return true;
1905 
1906   NamedDecl *PrevDecl = nullptr;
1907   if (Previous.begin() != Previous.end())
1908     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1909 
1910   if (PrevDecl && PrevDecl->isTemplateParameter()) {
1911     // Maybe we will complain about the shadowed template parameter.
1912     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1913     // Just pretend that we didn't see the previous declaration.
1914     PrevDecl = nullptr;
1915   }
1916 
1917   // If there is a previous declaration with the same name, check
1918   // whether this is a valid redeclaration.
1919   ClassTemplateDecl *PrevClassTemplate =
1920       dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1921 
1922   // We may have found the injected-class-name of a class template,
1923   // class template partial specialization, or class template specialization.
1924   // In these cases, grab the template that is being defined or specialized.
1925   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1926       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1927     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1928     PrevClassTemplate
1929       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1930     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1931       PrevClassTemplate
1932         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1933             ->getSpecializedTemplate();
1934     }
1935   }
1936 
1937   if (TUK == TUK_Friend) {
1938     // C++ [namespace.memdef]p3:
1939     //   [...] When looking for a prior declaration of a class or a function
1940     //   declared as a friend, and when the name of the friend class or
1941     //   function is neither a qualified name nor a template-id, scopes outside
1942     //   the innermost enclosing namespace scope are not considered.
1943     if (!SS.isSet()) {
1944       DeclContext *OutermostContext = CurContext;
1945       while (!OutermostContext->isFileContext())
1946         OutermostContext = OutermostContext->getLookupParent();
1947 
1948       if (PrevDecl &&
1949           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1950            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1951         SemanticContext = PrevDecl->getDeclContext();
1952       } else {
1953         // Declarations in outer scopes don't matter. However, the outermost
1954         // context we computed is the semantic context for our new
1955         // declaration.
1956         PrevDecl = PrevClassTemplate = nullptr;
1957         SemanticContext = OutermostContext;
1958 
1959         // Check that the chosen semantic context doesn't already contain a
1960         // declaration of this name as a non-tag type.
1961         Previous.clear(LookupOrdinaryName);
1962         DeclContext *LookupContext = SemanticContext;
1963         while (LookupContext->isTransparentContext())
1964           LookupContext = LookupContext->getLookupParent();
1965         LookupQualifiedName(Previous, LookupContext);
1966 
1967         if (Previous.isAmbiguous())
1968           return true;
1969 
1970         if (Previous.begin() != Previous.end())
1971           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1972       }
1973     }
1974   } else if (PrevDecl &&
1975              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1976                             S, SS.isValid()))
1977     PrevDecl = PrevClassTemplate = nullptr;
1978 
1979   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1980           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1981     if (SS.isEmpty() &&
1982         !(PrevClassTemplate &&
1983           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1984               SemanticContext->getRedeclContext()))) {
1985       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1986       Diag(Shadow->getTargetDecl()->getLocation(),
1987            diag::note_using_decl_target);
1988       Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1989       // Recover by ignoring the old declaration.
1990       PrevDecl = PrevClassTemplate = nullptr;
1991     }
1992   }
1993 
1994   if (PrevClassTemplate) {
1995     // Ensure that the template parameter lists are compatible. Skip this check
1996     // for a friend in a dependent context: the template parameter list itself
1997     // could be dependent.
1998     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1999         !TemplateParameterListsAreEqual(
2000             TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext
2001                                                        : CurContext,
2002                                        CurContext, KWLoc),
2003             TemplateParams, PrevClassTemplate,
2004             PrevClassTemplate->getTemplateParameters(), /*Complain=*/true,
2005             TPL_TemplateMatch))
2006       return true;
2007 
2008     // C++ [temp.class]p4:
2009     //   In a redeclaration, partial specialization, explicit
2010     //   specialization or explicit instantiation of a class template,
2011     //   the class-key shall agree in kind with the original class
2012     //   template declaration (7.1.5.3).
2013     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
2014     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
2015                                       TUK == TUK_Definition,  KWLoc, Name)) {
2016       Diag(KWLoc, diag::err_use_with_wrong_tag)
2017         << Name
2018         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
2019       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
2020       Kind = PrevRecordDecl->getTagKind();
2021     }
2022 
2023     // Check for redefinition of this class template.
2024     if (TUK == TUK_Definition) {
2025       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
2026         // If we have a prior definition that is not visible, treat this as
2027         // simply making that previous definition visible.
2028         NamedDecl *Hidden = nullptr;
2029         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
2030           SkipBody->ShouldSkip = true;
2031           SkipBody->Previous = Def;
2032           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
2033           assert(Tmpl && "original definition of a class template is not a "
2034                          "class template?");
2035           makeMergedDefinitionVisible(Hidden);
2036           makeMergedDefinitionVisible(Tmpl);
2037         } else {
2038           Diag(NameLoc, diag::err_redefinition) << Name;
2039           Diag(Def->getLocation(), diag::note_previous_definition);
2040           // FIXME: Would it make sense to try to "forget" the previous
2041           // definition, as part of error recovery?
2042           return true;
2043         }
2044       }
2045     }
2046   } else if (PrevDecl) {
2047     // C++ [temp]p5:
2048     //   A class template shall not have the same name as any other
2049     //   template, class, function, object, enumeration, enumerator,
2050     //   namespace, or type in the same scope (3.3), except as specified
2051     //   in (14.5.4).
2052     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2053     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2054     return true;
2055   }
2056 
2057   // Check the template parameter list of this declaration, possibly
2058   // merging in the template parameter list from the previous class
2059   // template declaration. Skip this check for a friend in a dependent
2060   // context, because the template parameter list might be dependent.
2061   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2062       CheckTemplateParameterList(
2063           TemplateParams,
2064           PrevClassTemplate
2065               ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
2066               : nullptr,
2067           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
2068            SemanticContext->isDependentContext())
2069               ? TPC_ClassTemplateMember
2070               : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
2071           SkipBody))
2072     Invalid = true;
2073 
2074   if (SS.isSet()) {
2075     // If the name of the template was qualified, we must be defining the
2076     // template out-of-line.
2077     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
2078       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
2079                                       : diag::err_member_decl_does_not_match)
2080         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
2081       Invalid = true;
2082     }
2083   }
2084 
2085   // If this is a templated friend in a dependent context we should not put it
2086   // on the redecl chain. In some cases, the templated friend can be the most
2087   // recent declaration tricking the template instantiator to make substitutions
2088   // there.
2089   // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
2090   bool ShouldAddRedecl
2091     = !(TUK == TUK_Friend && CurContext->isDependentContext());
2092 
2093   CXXRecordDecl *NewClass =
2094     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
2095                           PrevClassTemplate && ShouldAddRedecl ?
2096                             PrevClassTemplate->getTemplatedDecl() : nullptr,
2097                           /*DelayTypeCreation=*/true);
2098   SetNestedNameSpecifier(*this, NewClass, SS);
2099   if (NumOuterTemplateParamLists > 0)
2100     NewClass->setTemplateParameterListsInfo(
2101         Context,
2102         llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
2103 
2104   // Add alignment attributes if necessary; these attributes are checked when
2105   // the ASTContext lays out the structure.
2106   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
2107     AddAlignmentAttributesForRecord(NewClass);
2108     AddMsStructLayoutForRecord(NewClass);
2109   }
2110 
2111   ClassTemplateDecl *NewTemplate
2112     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2113                                 DeclarationName(Name), TemplateParams,
2114                                 NewClass);
2115 
2116   if (ShouldAddRedecl)
2117     NewTemplate->setPreviousDecl(PrevClassTemplate);
2118 
2119   NewClass->setDescribedClassTemplate(NewTemplate);
2120 
2121   if (ModulePrivateLoc.isValid())
2122     NewTemplate->setModulePrivate();
2123 
2124   // Build the type for the class template declaration now.
2125   QualType T = NewTemplate->getInjectedClassNameSpecialization();
2126   T = Context.getInjectedClassNameType(NewClass, T);
2127   assert(T->isDependentType() && "Class template type is not dependent?");
2128   (void)T;
2129 
2130   // If we are providing an explicit specialization of a member that is a
2131   // class template, make a note of that.
2132   if (PrevClassTemplate &&
2133       PrevClassTemplate->getInstantiatedFromMemberTemplate())
2134     PrevClassTemplate->setMemberSpecialization();
2135 
2136   // Set the access specifier.
2137   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2138     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2139 
2140   // Set the lexical context of these templates
2141   NewClass->setLexicalDeclContext(CurContext);
2142   NewTemplate->setLexicalDeclContext(CurContext);
2143 
2144   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2145     NewClass->startDefinition();
2146 
2147   ProcessDeclAttributeList(S, NewClass, Attr);
2148 
2149   if (PrevClassTemplate)
2150     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2151 
2152   AddPushedVisibilityAttribute(NewClass);
2153   inferGslOwnerPointerAttribute(NewClass);
2154 
2155   if (TUK != TUK_Friend) {
2156     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2157     Scope *Outer = S;
2158     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2159       Outer = Outer->getParent();
2160     PushOnScopeChains(NewTemplate, Outer);
2161   } else {
2162     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2163       NewTemplate->setAccess(PrevClassTemplate->getAccess());
2164       NewClass->setAccess(PrevClassTemplate->getAccess());
2165     }
2166 
2167     NewTemplate->setObjectOfFriendDecl();
2168 
2169     // Friend templates are visible in fairly strange ways.
2170     if (!CurContext->isDependentContext()) {
2171       DeclContext *DC = SemanticContext->getRedeclContext();
2172       DC->makeDeclVisibleInContext(NewTemplate);
2173       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2174         PushOnScopeChains(NewTemplate, EnclosingScope,
2175                           /* AddToContext = */ false);
2176     }
2177 
2178     FriendDecl *Friend = FriendDecl::Create(
2179         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2180     Friend->setAccess(AS_public);
2181     CurContext->addDecl(Friend);
2182   }
2183 
2184   if (PrevClassTemplate)
2185     CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2186 
2187   if (Invalid) {
2188     NewTemplate->setInvalidDecl();
2189     NewClass->setInvalidDecl();
2190   }
2191 
2192   ActOnDocumentableDecl(NewTemplate);
2193 
2194   if (SkipBody && SkipBody->ShouldSkip)
2195     return SkipBody->Previous;
2196 
2197   return NewTemplate;
2198 }
2199 
2200 namespace {
2201 /// Tree transform to "extract" a transformed type from a class template's
2202 /// constructor to a deduction guide.
2203 class ExtractTypeForDeductionGuide
2204   : public TreeTransform<ExtractTypeForDeductionGuide> {
2205   llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2206 
2207 public:
2208   typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2209   ExtractTypeForDeductionGuide(
2210       Sema &SemaRef,
2211       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2212       : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2213 
2214   TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2215 
2216   QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2217     ASTContext &Context = SemaRef.getASTContext();
2218     TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2219     TypedefNameDecl *Decl = OrigDecl;
2220     // Transform the underlying type of the typedef and clone the Decl only if
2221     // the typedef has a dependent context.
2222     if (OrigDecl->getDeclContext()->isDependentContext()) {
2223       TypeLocBuilder InnerTLB;
2224       QualType Transformed =
2225           TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2226       TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2227       if (isa<TypeAliasDecl>(OrigDecl))
2228         Decl = TypeAliasDecl::Create(
2229             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2230             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2231       else {
2232         assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2233         Decl = TypedefDecl::Create(
2234             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2235             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2236       }
2237       MaterializedTypedefs.push_back(Decl);
2238     }
2239 
2240     QualType TDTy = Context.getTypedefType(Decl);
2241     TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2242     TypedefTL.setNameLoc(TL.getNameLoc());
2243 
2244     return TDTy;
2245   }
2246 };
2247 
2248 /// Transform to convert portions of a constructor declaration into the
2249 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2250 struct ConvertConstructorToDeductionGuideTransform {
2251   ConvertConstructorToDeductionGuideTransform(Sema &S,
2252                                               ClassTemplateDecl *Template)
2253       : SemaRef(S), Template(Template) {
2254     // If the template is nested, then we need to use the original
2255     // pattern to iterate over the constructors.
2256     ClassTemplateDecl *Pattern = Template;
2257     while (Pattern->getInstantiatedFromMemberTemplate()) {
2258       if (Pattern->isMemberSpecialization())
2259         break;
2260       Pattern = Pattern->getInstantiatedFromMemberTemplate();
2261       NestedPattern = Pattern;
2262     }
2263 
2264     if (NestedPattern)
2265       OuterInstantiationArgs = SemaRef.getTemplateInstantiationArgs(Template);
2266   }
2267 
2268   Sema &SemaRef;
2269   ClassTemplateDecl *Template;
2270   ClassTemplateDecl *NestedPattern = nullptr;
2271 
2272   DeclContext *DC = Template->getDeclContext();
2273   CXXRecordDecl *Primary = Template->getTemplatedDecl();
2274   DeclarationName DeductionGuideName =
2275       SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2276 
2277   QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2278 
2279   // Index adjustment to apply to convert depth-1 template parameters into
2280   // depth-0 template parameters.
2281   unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2282 
2283   // Instantiation arguments for the outermost depth-1 templates
2284   // when the template is nested
2285   MultiLevelTemplateArgumentList OuterInstantiationArgs;
2286 
2287   /// Transform a constructor declaration into a deduction guide.
2288   NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2289                                   CXXConstructorDecl *CD) {
2290     SmallVector<TemplateArgument, 16> SubstArgs;
2291 
2292     LocalInstantiationScope Scope(SemaRef);
2293 
2294     // C++ [over.match.class.deduct]p1:
2295     // -- For each constructor of the class template designated by the
2296     //    template-name, a function template with the following properties:
2297 
2298     //    -- The template parameters are the template parameters of the class
2299     //       template followed by the template parameters (including default
2300     //       template arguments) of the constructor, if any.
2301     TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2302     if (FTD) {
2303       TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2304       SmallVector<NamedDecl *, 16> AllParams;
2305       SmallVector<TemplateArgument, 16> Depth1Args;
2306       AllParams.reserve(TemplateParams->size() + InnerParams->size());
2307       AllParams.insert(AllParams.begin(),
2308                        TemplateParams->begin(), TemplateParams->end());
2309       SubstArgs.reserve(InnerParams->size());
2310       Depth1Args.reserve(InnerParams->size());
2311 
2312       // Later template parameters could refer to earlier ones, so build up
2313       // a list of substituted template arguments as we go.
2314       for (NamedDecl *Param : *InnerParams) {
2315         MultiLevelTemplateArgumentList Args;
2316         Args.setKind(TemplateSubstitutionKind::Rewrite);
2317         Args.addOuterTemplateArguments(Depth1Args);
2318         Args.addOuterRetainedLevel();
2319         if (NestedPattern)
2320           Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2321         NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2322         if (!NewParam)
2323           return nullptr;
2324 
2325         // Constraints require that we substitute depth-1 arguments
2326         // to match depths when substituted for evaluation later
2327         Depth1Args.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2328             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2329 
2330         if (NestedPattern) {
2331           TemplateDeclInstantiator Instantiator(SemaRef, DC,
2332                                                 OuterInstantiationArgs);
2333           Instantiator.setEvaluateConstraints(false);
2334           SemaRef.runWithSufficientStackSpace(NewParam->getLocation(), [&] {
2335             NewParam = cast<NamedDecl>(Instantiator.Visit(NewParam));
2336           });
2337         }
2338 
2339         assert(NewParam->getTemplateDepth() == 0 &&
2340                "Unexpected template parameter depth");
2341 
2342         AllParams.push_back(NewParam);
2343         SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2344             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2345       }
2346 
2347       // Substitute new template parameters into requires-clause if present.
2348       Expr *RequiresClause = nullptr;
2349       if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2350         MultiLevelTemplateArgumentList Args;
2351         Args.setKind(TemplateSubstitutionKind::Rewrite);
2352         Args.addOuterTemplateArguments(Depth1Args);
2353         Args.addOuterRetainedLevel();
2354         if (NestedPattern)
2355           Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2356         ExprResult E = SemaRef.SubstExpr(InnerRC, Args);
2357         if (E.isInvalid())
2358           return nullptr;
2359         RequiresClause = E.getAs<Expr>();
2360       }
2361 
2362       TemplateParams = TemplateParameterList::Create(
2363           SemaRef.Context, InnerParams->getTemplateLoc(),
2364           InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2365           RequiresClause);
2366     }
2367 
2368     // If we built a new template-parameter-list, track that we need to
2369     // substitute references to the old parameters into references to the
2370     // new ones.
2371     MultiLevelTemplateArgumentList Args;
2372     Args.setKind(TemplateSubstitutionKind::Rewrite);
2373     if (FTD) {
2374       Args.addOuterTemplateArguments(SubstArgs);
2375       Args.addOuterRetainedLevel();
2376     }
2377 
2378     if (NestedPattern)
2379       Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2380 
2381     FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2382                                    .getAsAdjusted<FunctionProtoTypeLoc>();
2383     assert(FPTL && "no prototype for constructor declaration");
2384 
2385     // Transform the type of the function, adjusting the return type and
2386     // replacing references to the old parameters with references to the
2387     // new ones.
2388     TypeLocBuilder TLB;
2389     SmallVector<ParmVarDecl*, 8> Params;
2390     SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2391     QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2392                                                   MaterializedTypedefs);
2393     if (NewType.isNull())
2394       return nullptr;
2395     TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2396 
2397     return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2398                                NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2399                                CD->getEndLoc(), MaterializedTypedefs);
2400   }
2401 
2402   /// Build a deduction guide with the specified parameter types.
2403   NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2404     SourceLocation Loc = Template->getLocation();
2405 
2406     // Build the requested type.
2407     FunctionProtoType::ExtProtoInfo EPI;
2408     EPI.HasTrailingReturn = true;
2409     QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2410                                                 DeductionGuideName, EPI);
2411     TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2412 
2413     FunctionProtoTypeLoc FPTL =
2414         TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2415 
2416     // Build the parameters, needed during deduction / substitution.
2417     SmallVector<ParmVarDecl*, 4> Params;
2418     for (auto T : ParamTypes) {
2419       ParmVarDecl *NewParam = ParmVarDecl::Create(
2420           SemaRef.Context, DC, Loc, Loc, nullptr, T,
2421           SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2422       NewParam->setScopeInfo(0, Params.size());
2423       FPTL.setParam(Params.size(), NewParam);
2424       Params.push_back(NewParam);
2425     }
2426 
2427     return buildDeductionGuide(Template->getTemplateParameters(), nullptr,
2428                                ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2429   }
2430 
2431 private:
2432   /// Transform a constructor template parameter into a deduction guide template
2433   /// parameter, rebuilding any internal references to earlier parameters and
2434   /// renumbering as we go.
2435   NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2436                                         MultiLevelTemplateArgumentList &Args) {
2437     if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2438       // TemplateTypeParmDecl's index cannot be changed after creation, so
2439       // substitute it directly.
2440       auto *NewTTP = TemplateTypeParmDecl::Create(
2441           SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2442           TTP->getDepth() - 1, Depth1IndexAdjustment + TTP->getIndex(),
2443           TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2444           TTP->isParameterPack(), TTP->hasTypeConstraint(),
2445           TTP->isExpandedParameterPack()
2446               ? std::optional<unsigned>(TTP->getNumExpansionParameters())
2447               : std::nullopt);
2448       if (const auto *TC = TTP->getTypeConstraint())
2449         SemaRef.SubstTypeConstraint(NewTTP, TC, Args,
2450                                     /*EvaluateConstraint*/ true);
2451       if (TTP->hasDefaultArgument()) {
2452         TypeSourceInfo *InstantiatedDefaultArg =
2453             SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2454                               TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2455         if (InstantiatedDefaultArg)
2456           NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2457       }
2458       SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2459                                                            NewTTP);
2460       return NewTTP;
2461     }
2462 
2463     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2464       return transformTemplateParameterImpl(TTP, Args);
2465 
2466     return transformTemplateParameterImpl(
2467         cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2468   }
2469   template<typename TemplateParmDecl>
2470   TemplateParmDecl *
2471   transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2472                                  MultiLevelTemplateArgumentList &Args) {
2473     // Ask the template instantiator to do the heavy lifting for us, then adjust
2474     // the index of the parameter once it's done.
2475     auto *NewParam =
2476         cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2477     assert(NewParam->getDepth() == OldParam->getDepth() - 1 &&
2478            "unexpected template param depth");
2479     NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2480     return NewParam;
2481   }
2482 
2483   QualType transformFunctionProtoType(
2484       TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2485       SmallVectorImpl<ParmVarDecl *> &Params,
2486       MultiLevelTemplateArgumentList &Args,
2487       SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2488     SmallVector<QualType, 4> ParamTypes;
2489     const FunctionProtoType *T = TL.getTypePtr();
2490 
2491     //    -- The types of the function parameters are those of the constructor.
2492     for (auto *OldParam : TL.getParams()) {
2493       ParmVarDecl *NewParam =
2494           transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2495       if (NestedPattern && NewParam)
2496         NewParam = transformFunctionTypeParam(NewParam, OuterInstantiationArgs,
2497                                               MaterializedTypedefs);
2498       if (!NewParam)
2499         return QualType();
2500       ParamTypes.push_back(NewParam->getType());
2501       Params.push_back(NewParam);
2502     }
2503 
2504     //    -- The return type is the class template specialization designated by
2505     //       the template-name and template arguments corresponding to the
2506     //       template parameters obtained from the class template.
2507     //
2508     // We use the injected-class-name type of the primary template instead.
2509     // This has the convenient property that it is different from any type that
2510     // the user can write in a deduction-guide (because they cannot enter the
2511     // context of the template), so implicit deduction guides can never collide
2512     // with explicit ones.
2513     QualType ReturnType = DeducedType;
2514     TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2515 
2516     // Resolving a wording defect, we also inherit the variadicness of the
2517     // constructor.
2518     FunctionProtoType::ExtProtoInfo EPI;
2519     EPI.Variadic = T->isVariadic();
2520     EPI.HasTrailingReturn = true;
2521 
2522     QualType Result = SemaRef.BuildFunctionType(
2523         ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2524     if (Result.isNull())
2525       return QualType();
2526 
2527     FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2528     NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2529     NewTL.setLParenLoc(TL.getLParenLoc());
2530     NewTL.setRParenLoc(TL.getRParenLoc());
2531     NewTL.setExceptionSpecRange(SourceRange());
2532     NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2533     for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2534       NewTL.setParam(I, Params[I]);
2535 
2536     return Result;
2537   }
2538 
2539   ParmVarDecl *transformFunctionTypeParam(
2540       ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2541       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2542     TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2543     TypeSourceInfo *NewDI;
2544     if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2545       // Expand out the one and only element in each inner pack.
2546       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2547       NewDI =
2548           SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2549                             OldParam->getLocation(), OldParam->getDeclName());
2550       if (!NewDI) return nullptr;
2551       NewDI =
2552           SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2553                                      PackTL.getTypePtr()->getNumExpansions());
2554     } else
2555       NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2556                                 OldParam->getDeclName());
2557     if (!NewDI)
2558       return nullptr;
2559 
2560     // Extract the type. This (for instance) replaces references to typedef
2561     // members of the current instantiations with the definitions of those
2562     // typedefs, avoiding triggering instantiation of the deduced type during
2563     // deduction.
2564     NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2565                 .transform(NewDI);
2566 
2567     // Resolving a wording defect, we also inherit default arguments from the
2568     // constructor.
2569     ExprResult NewDefArg;
2570     if (OldParam->hasDefaultArg()) {
2571       // We don't care what the value is (we won't use it); just create a
2572       // placeholder to indicate there is a default argument.
2573       QualType ParamTy = NewDI->getType();
2574       NewDefArg = new (SemaRef.Context)
2575           OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2576                           ParamTy.getNonLValueExprType(SemaRef.Context),
2577                           ParamTy->isLValueReferenceType()   ? VK_LValue
2578                           : ParamTy->isRValueReferenceType() ? VK_XValue
2579                                                              : VK_PRValue);
2580     }
2581 
2582     ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2583                                                 OldParam->getInnerLocStart(),
2584                                                 OldParam->getLocation(),
2585                                                 OldParam->getIdentifier(),
2586                                                 NewDI->getType(),
2587                                                 NewDI,
2588                                                 OldParam->getStorageClass(),
2589                                                 NewDefArg.get());
2590     NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2591                            OldParam->getFunctionScopeIndex());
2592     SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2593     return NewParam;
2594   }
2595 
2596   FunctionTemplateDecl *buildDeductionGuide(
2597       TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2598       ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2599       SourceLocation Loc, SourceLocation LocEnd,
2600       llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2601     DeclarationNameInfo Name(DeductionGuideName, Loc);
2602     ArrayRef<ParmVarDecl *> Params =
2603         TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2604 
2605     // Build the implicit deduction guide template.
2606     auto *Guide =
2607         CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2608                                       TInfo->getType(), TInfo, LocEnd, Ctor);
2609     Guide->setImplicit();
2610     Guide->setParams(Params);
2611 
2612     for (auto *Param : Params)
2613       Param->setDeclContext(Guide);
2614     for (auto *TD : MaterializedTypedefs)
2615       TD->setDeclContext(Guide);
2616 
2617     auto *GuideTemplate = FunctionTemplateDecl::Create(
2618         SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2619     GuideTemplate->setImplicit();
2620     Guide->setDescribedFunctionTemplate(GuideTemplate);
2621 
2622     if (isa<CXXRecordDecl>(DC)) {
2623       Guide->setAccess(AS_public);
2624       GuideTemplate->setAccess(AS_public);
2625     }
2626 
2627     DC->addDecl(GuideTemplate);
2628     return GuideTemplate;
2629   }
2630 };
2631 }
2632 
2633 FunctionTemplateDecl *Sema::DeclareImplicitDeductionGuideFromInitList(
2634     TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes,
2635     SourceLocation Loc) {
2636   if (CXXRecordDecl *DefRecord =
2637           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2638     if (TemplateDecl *DescribedTemplate =
2639             DefRecord->getDescribedClassTemplate())
2640       Template = DescribedTemplate;
2641   }
2642 
2643   DeclContext *DC = Template->getDeclContext();
2644   if (DC->isDependentContext())
2645     return nullptr;
2646 
2647   ConvertConstructorToDeductionGuideTransform Transform(
2648       *this, cast<ClassTemplateDecl>(Template));
2649   if (!isCompleteType(Loc, Transform.DeducedType))
2650     return nullptr;
2651 
2652   // In case we were expanding a pack when we attempted to declare deduction
2653   // guides, turn off pack expansion for everything we're about to do.
2654   ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
2655                                                /*NewSubstitutionIndex=*/-1);
2656   // Create a template instantiation record to track the "instantiation" of
2657   // constructors into deduction guides.
2658   InstantiatingTemplate BuildingDeductionGuides(
2659       *this, Loc, Template,
2660       Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2661   if (BuildingDeductionGuides.isInvalid())
2662     return nullptr;
2663 
2664   return cast<FunctionTemplateDecl>(
2665       Transform.buildSimpleDeductionGuide(ParamTypes));
2666 }
2667 
2668 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2669                                           SourceLocation Loc) {
2670   if (CXXRecordDecl *DefRecord =
2671           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2672     if (TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate())
2673       Template = DescribedTemplate;
2674   }
2675 
2676   DeclContext *DC = Template->getDeclContext();
2677   if (DC->isDependentContext())
2678     return;
2679 
2680   ConvertConstructorToDeductionGuideTransform Transform(
2681       *this, cast<ClassTemplateDecl>(Template));
2682   if (!isCompleteType(Loc, Transform.DeducedType))
2683     return;
2684 
2685   // Check whether we've already declared deduction guides for this template.
2686   // FIXME: Consider storing a flag on the template to indicate this.
2687   auto Existing = DC->lookup(Transform.DeductionGuideName);
2688   for (auto *D : Existing)
2689     if (D->isImplicit())
2690       return;
2691 
2692   // In case we were expanding a pack when we attempted to declare deduction
2693   // guides, turn off pack expansion for everything we're about to do.
2694   ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2695   // Create a template instantiation record to track the "instantiation" of
2696   // constructors into deduction guides.
2697   InstantiatingTemplate BuildingDeductionGuides(
2698       *this, Loc, Template,
2699       Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2700   if (BuildingDeductionGuides.isInvalid())
2701     return;
2702 
2703   // Convert declared constructors into deduction guide templates.
2704   // FIXME: Skip constructors for which deduction must necessarily fail (those
2705   // for which some class template parameter without a default argument never
2706   // appears in a deduced context).
2707   ClassTemplateDecl *Pattern =
2708       Transform.NestedPattern ? Transform.NestedPattern : Transform.Template;
2709   ContextRAII SavedContext(*this, Pattern->getTemplatedDecl());
2710   llvm::SmallPtrSet<NamedDecl *, 8> ProcessedCtors;
2711   bool AddedAny = false;
2712   for (NamedDecl *D : LookupConstructors(Pattern->getTemplatedDecl())) {
2713     D = D->getUnderlyingDecl();
2714     if (D->isInvalidDecl() || D->isImplicit())
2715       continue;
2716 
2717     D = cast<NamedDecl>(D->getCanonicalDecl());
2718 
2719     // Within C++20 modules, we may have multiple same constructors in
2720     // multiple same RecordDecls. And it doesn't make sense to create
2721     // duplicated deduction guides for the duplicated constructors.
2722     if (ProcessedCtors.count(D))
2723       continue;
2724 
2725     auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2726     auto *CD =
2727         dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2728     // Class-scope explicit specializations (MS extension) do not result in
2729     // deduction guides.
2730     if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2731       continue;
2732 
2733     // Cannot make a deduction guide when unparsed arguments are present.
2734     if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2735           return !P || P->hasUnparsedDefaultArg();
2736         }))
2737       continue;
2738 
2739     ProcessedCtors.insert(D);
2740     Transform.transformConstructor(FTD, CD);
2741     AddedAny = true;
2742   }
2743 
2744   // C++17 [over.match.class.deduct]
2745   //    --  If C is not defined or does not declare any constructors, an
2746   //    additional function template derived as above from a hypothetical
2747   //    constructor C().
2748   if (!AddedAny)
2749     Transform.buildSimpleDeductionGuide(std::nullopt);
2750 
2751   //    -- An additional function template derived as above from a hypothetical
2752   //    constructor C(C), called the copy deduction candidate.
2753   cast<CXXDeductionGuideDecl>(
2754       cast<FunctionTemplateDecl>(
2755           Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2756           ->getTemplatedDecl())
2757       ->setDeductionCandidateKind(DeductionCandidate::Copy);
2758 
2759   SavedContext.pop();
2760 }
2761 
2762 /// Diagnose the presence of a default template argument on a
2763 /// template parameter, which is ill-formed in certain contexts.
2764 ///
2765 /// \returns true if the default template argument should be dropped.
2766 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2767                                             Sema::TemplateParamListContext TPC,
2768                                             SourceLocation ParamLoc,
2769                                             SourceRange DefArgRange) {
2770   switch (TPC) {
2771   case Sema::TPC_ClassTemplate:
2772   case Sema::TPC_VarTemplate:
2773   case Sema::TPC_TypeAliasTemplate:
2774     return false;
2775 
2776   case Sema::TPC_FunctionTemplate:
2777   case Sema::TPC_FriendFunctionTemplateDefinition:
2778     // C++ [temp.param]p9:
2779     //   A default template-argument shall not be specified in a
2780     //   function template declaration or a function template
2781     //   definition [...]
2782     //   If a friend function template declaration specifies a default
2783     //   template-argument, that declaration shall be a definition and shall be
2784     //   the only declaration of the function template in the translation unit.
2785     // (C++98/03 doesn't have this wording; see DR226).
2786     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2787          diag::warn_cxx98_compat_template_parameter_default_in_function_template
2788            : diag::ext_template_parameter_default_in_function_template)
2789       << DefArgRange;
2790     return false;
2791 
2792   case Sema::TPC_ClassTemplateMember:
2793     // C++0x [temp.param]p9:
2794     //   A default template-argument shall not be specified in the
2795     //   template-parameter-lists of the definition of a member of a
2796     //   class template that appears outside of the member's class.
2797     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2798       << DefArgRange;
2799     return true;
2800 
2801   case Sema::TPC_FriendClassTemplate:
2802   case Sema::TPC_FriendFunctionTemplate:
2803     // C++ [temp.param]p9:
2804     //   A default template-argument shall not be specified in a
2805     //   friend template declaration.
2806     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2807       << DefArgRange;
2808     return true;
2809 
2810     // FIXME: C++0x [temp.param]p9 allows default template-arguments
2811     // for friend function templates if there is only a single
2812     // declaration (and it is a definition). Strange!
2813   }
2814 
2815   llvm_unreachable("Invalid TemplateParamListContext!");
2816 }
2817 
2818 /// Check for unexpanded parameter packs within the template parameters
2819 /// of a template template parameter, recursively.
2820 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2821                                              TemplateTemplateParmDecl *TTP) {
2822   // A template template parameter which is a parameter pack is also a pack
2823   // expansion.
2824   if (TTP->isParameterPack())
2825     return false;
2826 
2827   TemplateParameterList *Params = TTP->getTemplateParameters();
2828   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2829     NamedDecl *P = Params->getParam(I);
2830     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2831       if (!TTP->isParameterPack())
2832         if (const TypeConstraint *TC = TTP->getTypeConstraint())
2833           if (TC->hasExplicitTemplateArgs())
2834             for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2835               if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2836                                                     Sema::UPPC_TypeConstraint))
2837                 return true;
2838       continue;
2839     }
2840 
2841     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2842       if (!NTTP->isParameterPack() &&
2843           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2844                                             NTTP->getTypeSourceInfo(),
2845                                       Sema::UPPC_NonTypeTemplateParameterType))
2846         return true;
2847 
2848       continue;
2849     }
2850 
2851     if (TemplateTemplateParmDecl *InnerTTP
2852                                         = dyn_cast<TemplateTemplateParmDecl>(P))
2853       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2854         return true;
2855   }
2856 
2857   return false;
2858 }
2859 
2860 /// Checks the validity of a template parameter list, possibly
2861 /// considering the template parameter list from a previous
2862 /// declaration.
2863 ///
2864 /// If an "old" template parameter list is provided, it must be
2865 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2866 /// template parameter list.
2867 ///
2868 /// \param NewParams Template parameter list for a new template
2869 /// declaration. This template parameter list will be updated with any
2870 /// default arguments that are carried through from the previous
2871 /// template parameter list.
2872 ///
2873 /// \param OldParams If provided, template parameter list from a
2874 /// previous declaration of the same template. Default template
2875 /// arguments will be merged from the old template parameter list to
2876 /// the new template parameter list.
2877 ///
2878 /// \param TPC Describes the context in which we are checking the given
2879 /// template parameter list.
2880 ///
2881 /// \param SkipBody If we might have already made a prior merged definition
2882 /// of this template visible, the corresponding body-skipping information.
2883 /// Default argument redefinition is not an error when skipping such a body,
2884 /// because (under the ODR) we can assume the default arguments are the same
2885 /// as the prior merged definition.
2886 ///
2887 /// \returns true if an error occurred, false otherwise.
2888 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2889                                       TemplateParameterList *OldParams,
2890                                       TemplateParamListContext TPC,
2891                                       SkipBodyInfo *SkipBody) {
2892   bool Invalid = false;
2893 
2894   // C++ [temp.param]p10:
2895   //   The set of default template-arguments available for use with a
2896   //   template declaration or definition is obtained by merging the
2897   //   default arguments from the definition (if in scope) and all
2898   //   declarations in scope in the same way default function
2899   //   arguments are (8.3.6).
2900   bool SawDefaultArgument = false;
2901   SourceLocation PreviousDefaultArgLoc;
2902 
2903   // Dummy initialization to avoid warnings.
2904   TemplateParameterList::iterator OldParam = NewParams->end();
2905   if (OldParams)
2906     OldParam = OldParams->begin();
2907 
2908   bool RemoveDefaultArguments = false;
2909   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2910                                     NewParamEnd = NewParams->end();
2911        NewParam != NewParamEnd; ++NewParam) {
2912     // Whether we've seen a duplicate default argument in the same translation
2913     // unit.
2914     bool RedundantDefaultArg = false;
2915     // Whether we've found inconsis inconsitent default arguments in different
2916     // translation unit.
2917     bool InconsistentDefaultArg = false;
2918     // The name of the module which contains the inconsistent default argument.
2919     std::string PrevModuleName;
2920 
2921     SourceLocation OldDefaultLoc;
2922     SourceLocation NewDefaultLoc;
2923 
2924     // Variable used to diagnose missing default arguments
2925     bool MissingDefaultArg = false;
2926 
2927     // Variable used to diagnose non-final parameter packs
2928     bool SawParameterPack = false;
2929 
2930     if (TemplateTypeParmDecl *NewTypeParm
2931           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2932       // Check the presence of a default argument here.
2933       if (NewTypeParm->hasDefaultArgument() &&
2934           DiagnoseDefaultTemplateArgument(*this, TPC,
2935                                           NewTypeParm->getLocation(),
2936                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2937                                                        .getSourceRange()))
2938         NewTypeParm->removeDefaultArgument();
2939 
2940       // Merge default arguments for template type parameters.
2941       TemplateTypeParmDecl *OldTypeParm
2942           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2943       if (NewTypeParm->isParameterPack()) {
2944         assert(!NewTypeParm->hasDefaultArgument() &&
2945                "Parameter packs can't have a default argument!");
2946         SawParameterPack = true;
2947       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2948                  NewTypeParm->hasDefaultArgument() &&
2949                  (!SkipBody || !SkipBody->ShouldSkip)) {
2950         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2951         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2952         SawDefaultArgument = true;
2953 
2954         if (!OldTypeParm->getOwningModule())
2955           RedundantDefaultArg = true;
2956         else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2957                                                                 NewTypeParm)) {
2958           InconsistentDefaultArg = true;
2959           PrevModuleName =
2960               OldTypeParm->getImportedOwningModule()->getFullModuleName();
2961         }
2962         PreviousDefaultArgLoc = NewDefaultLoc;
2963       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2964         // Merge the default argument from the old declaration to the
2965         // new declaration.
2966         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2967         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2968       } else if (NewTypeParm->hasDefaultArgument()) {
2969         SawDefaultArgument = true;
2970         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2971       } else if (SawDefaultArgument)
2972         MissingDefaultArg = true;
2973     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2974                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2975       // Check for unexpanded parameter packs.
2976       if (!NewNonTypeParm->isParameterPack() &&
2977           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2978                                           NewNonTypeParm->getTypeSourceInfo(),
2979                                           UPPC_NonTypeTemplateParameterType)) {
2980         Invalid = true;
2981         continue;
2982       }
2983 
2984       // Check the presence of a default argument here.
2985       if (NewNonTypeParm->hasDefaultArgument() &&
2986           DiagnoseDefaultTemplateArgument(*this, TPC,
2987                                           NewNonTypeParm->getLocation(),
2988                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2989         NewNonTypeParm->removeDefaultArgument();
2990       }
2991 
2992       // Merge default arguments for non-type template parameters
2993       NonTypeTemplateParmDecl *OldNonTypeParm
2994         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2995       if (NewNonTypeParm->isParameterPack()) {
2996         assert(!NewNonTypeParm->hasDefaultArgument() &&
2997                "Parameter packs can't have a default argument!");
2998         if (!NewNonTypeParm->isPackExpansion())
2999           SawParameterPack = true;
3000       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
3001                  NewNonTypeParm->hasDefaultArgument() &&
3002                  (!SkipBody || !SkipBody->ShouldSkip)) {
3003         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
3004         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
3005         SawDefaultArgument = true;
3006         if (!OldNonTypeParm->getOwningModule())
3007           RedundantDefaultArg = true;
3008         else if (!getASTContext().isSameDefaultTemplateArgument(
3009                      OldNonTypeParm, NewNonTypeParm)) {
3010           InconsistentDefaultArg = true;
3011           PrevModuleName =
3012               OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
3013         }
3014         PreviousDefaultArgLoc = NewDefaultLoc;
3015       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
3016         // Merge the default argument from the old declaration to the
3017         // new declaration.
3018         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
3019         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
3020       } else if (NewNonTypeParm->hasDefaultArgument()) {
3021         SawDefaultArgument = true;
3022         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
3023       } else if (SawDefaultArgument)
3024         MissingDefaultArg = true;
3025     } else {
3026       TemplateTemplateParmDecl *NewTemplateParm
3027         = cast<TemplateTemplateParmDecl>(*NewParam);
3028 
3029       // Check for unexpanded parameter packs, recursively.
3030       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
3031         Invalid = true;
3032         continue;
3033       }
3034 
3035       // Check the presence of a default argument here.
3036       if (NewTemplateParm->hasDefaultArgument() &&
3037           DiagnoseDefaultTemplateArgument(*this, TPC,
3038                                           NewTemplateParm->getLocation(),
3039                      NewTemplateParm->getDefaultArgument().getSourceRange()))
3040         NewTemplateParm->removeDefaultArgument();
3041 
3042       // Merge default arguments for template template parameters
3043       TemplateTemplateParmDecl *OldTemplateParm
3044         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
3045       if (NewTemplateParm->isParameterPack()) {
3046         assert(!NewTemplateParm->hasDefaultArgument() &&
3047                "Parameter packs can't have a default argument!");
3048         if (!NewTemplateParm->isPackExpansion())
3049           SawParameterPack = true;
3050       } else if (OldTemplateParm &&
3051                  hasVisibleDefaultArgument(OldTemplateParm) &&
3052                  NewTemplateParm->hasDefaultArgument() &&
3053                  (!SkipBody || !SkipBody->ShouldSkip)) {
3054         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
3055         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
3056         SawDefaultArgument = true;
3057         if (!OldTemplateParm->getOwningModule())
3058           RedundantDefaultArg = true;
3059         else if (!getASTContext().isSameDefaultTemplateArgument(
3060                      OldTemplateParm, NewTemplateParm)) {
3061           InconsistentDefaultArg = true;
3062           PrevModuleName =
3063               OldTemplateParm->getImportedOwningModule()->getFullModuleName();
3064         }
3065         PreviousDefaultArgLoc = NewDefaultLoc;
3066       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
3067         // Merge the default argument from the old declaration to the
3068         // new declaration.
3069         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
3070         PreviousDefaultArgLoc
3071           = OldTemplateParm->getDefaultArgument().getLocation();
3072       } else if (NewTemplateParm->hasDefaultArgument()) {
3073         SawDefaultArgument = true;
3074         PreviousDefaultArgLoc
3075           = NewTemplateParm->getDefaultArgument().getLocation();
3076       } else if (SawDefaultArgument)
3077         MissingDefaultArg = true;
3078     }
3079 
3080     // C++11 [temp.param]p11:
3081     //   If a template parameter of a primary class template or alias template
3082     //   is a template parameter pack, it shall be the last template parameter.
3083     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
3084         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
3085          TPC == TPC_TypeAliasTemplate)) {
3086       Diag((*NewParam)->getLocation(),
3087            diag::err_template_param_pack_must_be_last_template_parameter);
3088       Invalid = true;
3089     }
3090 
3091     // [basic.def.odr]/13:
3092     //     There can be more than one definition of a
3093     //     ...
3094     //     default template argument
3095     //     ...
3096     //     in a program provided that each definition appears in a different
3097     //     translation unit and the definitions satisfy the [same-meaning
3098     //     criteria of the ODR].
3099     //
3100     // Simply, the design of modules allows the definition of template default
3101     // argument to be repeated across translation unit. Note that the ODR is
3102     // checked elsewhere. But it is still not allowed to repeat template default
3103     // argument in the same translation unit.
3104     if (RedundantDefaultArg) {
3105       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
3106       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
3107       Invalid = true;
3108     } else if (InconsistentDefaultArg) {
3109       // We could only diagnose about the case that the OldParam is imported.
3110       // The case NewParam is imported should be handled in ASTReader.
3111       Diag(NewDefaultLoc,
3112            diag::err_template_param_default_arg_inconsistent_redefinition);
3113       Diag(OldDefaultLoc,
3114            diag::note_template_param_prev_default_arg_in_other_module)
3115           << PrevModuleName;
3116       Invalid = true;
3117     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
3118       // C++ [temp.param]p11:
3119       //   If a template-parameter of a class template has a default
3120       //   template-argument, each subsequent template-parameter shall either
3121       //   have a default template-argument supplied or be a template parameter
3122       //   pack.
3123       Diag((*NewParam)->getLocation(),
3124            diag::err_template_param_default_arg_missing);
3125       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
3126       Invalid = true;
3127       RemoveDefaultArguments = true;
3128     }
3129 
3130     // If we have an old template parameter list that we're merging
3131     // in, move on to the next parameter.
3132     if (OldParams)
3133       ++OldParam;
3134   }
3135 
3136   // We were missing some default arguments at the end of the list, so remove
3137   // all of the default arguments.
3138   if (RemoveDefaultArguments) {
3139     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
3140                                       NewParamEnd = NewParams->end();
3141          NewParam != NewParamEnd; ++NewParam) {
3142       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
3143         TTP->removeDefaultArgument();
3144       else if (NonTypeTemplateParmDecl *NTTP
3145                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
3146         NTTP->removeDefaultArgument();
3147       else
3148         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
3149     }
3150   }
3151 
3152   return Invalid;
3153 }
3154 
3155 namespace {
3156 
3157 /// A class which looks for a use of a certain level of template
3158 /// parameter.
3159 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
3160   typedef RecursiveASTVisitor<DependencyChecker> super;
3161 
3162   unsigned Depth;
3163 
3164   // Whether we're looking for a use of a template parameter that makes the
3165   // overall construct type-dependent / a dependent type. This is strictly
3166   // best-effort for now; we may fail to match at all for a dependent type
3167   // in some cases if this is set.
3168   bool IgnoreNonTypeDependent;
3169 
3170   bool Match;
3171   SourceLocation MatchLoc;
3172 
3173   DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
3174       : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
3175         Match(false) {}
3176 
3177   DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
3178       : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
3179     NamedDecl *ND = Params->getParam(0);
3180     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
3181       Depth = PD->getDepth();
3182     } else if (NonTypeTemplateParmDecl *PD =
3183                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
3184       Depth = PD->getDepth();
3185     } else {
3186       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
3187     }
3188   }
3189 
3190   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
3191     if (ParmDepth >= Depth) {
3192       Match = true;
3193       MatchLoc = Loc;
3194       return true;
3195     }
3196     return false;
3197   }
3198 
3199   bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
3200     // Prune out non-type-dependent expressions if requested. This can
3201     // sometimes result in us failing to find a template parameter reference
3202     // (if a value-dependent expression creates a dependent type), but this
3203     // mode is best-effort only.
3204     if (auto *E = dyn_cast_or_null<Expr>(S))
3205       if (IgnoreNonTypeDependent && !E->isTypeDependent())
3206         return true;
3207     return super::TraverseStmt(S, Q);
3208   }
3209 
3210   bool TraverseTypeLoc(TypeLoc TL) {
3211     if (IgnoreNonTypeDependent && !TL.isNull() &&
3212         !TL.getType()->isDependentType())
3213       return true;
3214     return super::TraverseTypeLoc(TL);
3215   }
3216 
3217   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3218     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
3219   }
3220 
3221   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3222     // For a best-effort search, keep looking until we find a location.
3223     return IgnoreNonTypeDependent || !Matches(T->getDepth());
3224   }
3225 
3226   bool TraverseTemplateName(TemplateName N) {
3227     if (TemplateTemplateParmDecl *PD =
3228           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
3229       if (Matches(PD->getDepth()))
3230         return false;
3231     return super::TraverseTemplateName(N);
3232   }
3233 
3234   bool VisitDeclRefExpr(DeclRefExpr *E) {
3235     if (NonTypeTemplateParmDecl *PD =
3236           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
3237       if (Matches(PD->getDepth(), E->getExprLoc()))
3238         return false;
3239     return super::VisitDeclRefExpr(E);
3240   }
3241 
3242   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3243     return TraverseType(T->getReplacementType());
3244   }
3245 
3246   bool
3247   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3248     return TraverseTemplateArgument(T->getArgumentPack());
3249   }
3250 
3251   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3252     return TraverseType(T->getInjectedSpecializationType());
3253   }
3254 };
3255 } // end anonymous namespace
3256 
3257 /// Determines whether a given type depends on the given parameter
3258 /// list.
3259 static bool
3260 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3261   if (!Params->size())
3262     return false;
3263 
3264   DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3265   Checker.TraverseType(T);
3266   return Checker.Match;
3267 }
3268 
3269 // Find the source range corresponding to the named type in the given
3270 // nested-name-specifier, if any.
3271 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3272                                                        QualType T,
3273                                                        const CXXScopeSpec &SS) {
3274   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3275   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3276     if (const Type *CurType = NNS->getAsType()) {
3277       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3278         return NNSLoc.getTypeLoc().getSourceRange();
3279     } else
3280       break;
3281 
3282     NNSLoc = NNSLoc.getPrefix();
3283   }
3284 
3285   return SourceRange();
3286 }
3287 
3288 /// Match the given template parameter lists to the given scope
3289 /// specifier, returning the template parameter list that applies to the
3290 /// name.
3291 ///
3292 /// \param DeclStartLoc the start of the declaration that has a scope
3293 /// specifier or a template parameter list.
3294 ///
3295 /// \param DeclLoc The location of the declaration itself.
3296 ///
3297 /// \param SS the scope specifier that will be matched to the given template
3298 /// parameter lists. This scope specifier precedes a qualified name that is
3299 /// being declared.
3300 ///
3301 /// \param TemplateId The template-id following the scope specifier, if there
3302 /// is one. Used to check for a missing 'template<>'.
3303 ///
3304 /// \param ParamLists the template parameter lists, from the outermost to the
3305 /// innermost template parameter lists.
3306 ///
3307 /// \param IsFriend Whether to apply the slightly different rules for
3308 /// matching template parameters to scope specifiers in friend
3309 /// declarations.
3310 ///
3311 /// \param IsMemberSpecialization will be set true if the scope specifier
3312 /// denotes a fully-specialized type, and therefore this is a declaration of
3313 /// a member specialization.
3314 ///
3315 /// \returns the template parameter list, if any, that corresponds to the
3316 /// name that is preceded by the scope specifier @p SS. This template
3317 /// parameter list may have template parameters (if we're declaring a
3318 /// template) or may have no template parameters (if we're declaring a
3319 /// template specialization), or may be NULL (if what we're declaring isn't
3320 /// itself a template).
3321 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3322     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3323     TemplateIdAnnotation *TemplateId,
3324     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3325     bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3326   IsMemberSpecialization = false;
3327   Invalid = false;
3328 
3329   // The sequence of nested types to which we will match up the template
3330   // parameter lists. We first build this list by starting with the type named
3331   // by the nested-name-specifier and walking out until we run out of types.
3332   SmallVector<QualType, 4> NestedTypes;
3333   QualType T;
3334   if (SS.getScopeRep()) {
3335     if (CXXRecordDecl *Record
3336               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3337       T = Context.getTypeDeclType(Record);
3338     else
3339       T = QualType(SS.getScopeRep()->getAsType(), 0);
3340   }
3341 
3342   // If we found an explicit specialization that prevents us from needing
3343   // 'template<>' headers, this will be set to the location of that
3344   // explicit specialization.
3345   SourceLocation ExplicitSpecLoc;
3346 
3347   while (!T.isNull()) {
3348     NestedTypes.push_back(T);
3349 
3350     // Retrieve the parent of a record type.
3351     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3352       // If this type is an explicit specialization, we're done.
3353       if (ClassTemplateSpecializationDecl *Spec
3354           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3355         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3356             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3357           ExplicitSpecLoc = Spec->getLocation();
3358           break;
3359         }
3360       } else if (Record->getTemplateSpecializationKind()
3361                                                 == TSK_ExplicitSpecialization) {
3362         ExplicitSpecLoc = Record->getLocation();
3363         break;
3364       }
3365 
3366       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3367         T = Context.getTypeDeclType(Parent);
3368       else
3369         T = QualType();
3370       continue;
3371     }
3372 
3373     if (const TemplateSpecializationType *TST
3374                                      = T->getAs<TemplateSpecializationType>()) {
3375       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3376         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3377           T = Context.getTypeDeclType(Parent);
3378         else
3379           T = QualType();
3380         continue;
3381       }
3382     }
3383 
3384     // Look one step prior in a dependent template specialization type.
3385     if (const DependentTemplateSpecializationType *DependentTST
3386                           = T->getAs<DependentTemplateSpecializationType>()) {
3387       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3388         T = QualType(NNS->getAsType(), 0);
3389       else
3390         T = QualType();
3391       continue;
3392     }
3393 
3394     // Look one step prior in a dependent name type.
3395     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3396       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3397         T = QualType(NNS->getAsType(), 0);
3398       else
3399         T = QualType();
3400       continue;
3401     }
3402 
3403     // Retrieve the parent of an enumeration type.
3404     if (const EnumType *EnumT = T->getAs<EnumType>()) {
3405       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3406       // check here.
3407       EnumDecl *Enum = EnumT->getDecl();
3408 
3409       // Get to the parent type.
3410       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3411         T = Context.getTypeDeclType(Parent);
3412       else
3413         T = QualType();
3414       continue;
3415     }
3416 
3417     T = QualType();
3418   }
3419   // Reverse the nested types list, since we want to traverse from the outermost
3420   // to the innermost while checking template-parameter-lists.
3421   std::reverse(NestedTypes.begin(), NestedTypes.end());
3422 
3423   // C++0x [temp.expl.spec]p17:
3424   //   A member or a member template may be nested within many
3425   //   enclosing class templates. In an explicit specialization for
3426   //   such a member, the member declaration shall be preceded by a
3427   //   template<> for each enclosing class template that is
3428   //   explicitly specialized.
3429   bool SawNonEmptyTemplateParameterList = false;
3430 
3431   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3432     if (SawNonEmptyTemplateParameterList) {
3433       if (!SuppressDiagnostic)
3434         Diag(DeclLoc, diag::err_specialize_member_of_template)
3435           << !Recovery << Range;
3436       Invalid = true;
3437       IsMemberSpecialization = false;
3438       return true;
3439     }
3440 
3441     return false;
3442   };
3443 
3444   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3445     // Check that we can have an explicit specialization here.
3446     if (CheckExplicitSpecialization(Range, true))
3447       return true;
3448 
3449     // We don't have a template header, but we should.
3450     SourceLocation ExpectedTemplateLoc;
3451     if (!ParamLists.empty())
3452       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3453     else
3454       ExpectedTemplateLoc = DeclStartLoc;
3455 
3456     if (!SuppressDiagnostic)
3457       Diag(DeclLoc, diag::err_template_spec_needs_header)
3458         << Range
3459         << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3460     return false;
3461   };
3462 
3463   unsigned ParamIdx = 0;
3464   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3465        ++TypeIdx) {
3466     T = NestedTypes[TypeIdx];
3467 
3468     // Whether we expect a 'template<>' header.
3469     bool NeedEmptyTemplateHeader = false;
3470 
3471     // Whether we expect a template header with parameters.
3472     bool NeedNonemptyTemplateHeader = false;
3473 
3474     // For a dependent type, the set of template parameters that we
3475     // expect to see.
3476     TemplateParameterList *ExpectedTemplateParams = nullptr;
3477 
3478     // C++0x [temp.expl.spec]p15:
3479     //   A member or a member template may be nested within many enclosing
3480     //   class templates. In an explicit specialization for such a member, the
3481     //   member declaration shall be preceded by a template<> for each
3482     //   enclosing class template that is explicitly specialized.
3483     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3484       if (ClassTemplatePartialSpecializationDecl *Partial
3485             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3486         ExpectedTemplateParams = Partial->getTemplateParameters();
3487         NeedNonemptyTemplateHeader = true;
3488       } else if (Record->isDependentType()) {
3489         if (Record->getDescribedClassTemplate()) {
3490           ExpectedTemplateParams = Record->getDescribedClassTemplate()
3491                                                       ->getTemplateParameters();
3492           NeedNonemptyTemplateHeader = true;
3493         }
3494       } else if (ClassTemplateSpecializationDecl *Spec
3495                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3496         // C++0x [temp.expl.spec]p4:
3497         //   Members of an explicitly specialized class template are defined
3498         //   in the same manner as members of normal classes, and not using
3499         //   the template<> syntax.
3500         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3501           NeedEmptyTemplateHeader = true;
3502         else
3503           continue;
3504       } else if (Record->getTemplateSpecializationKind()) {
3505         if (Record->getTemplateSpecializationKind()
3506                                                 != TSK_ExplicitSpecialization &&
3507             TypeIdx == NumTypes - 1)
3508           IsMemberSpecialization = true;
3509 
3510         continue;
3511       }
3512     } else if (const TemplateSpecializationType *TST
3513                                      = T->getAs<TemplateSpecializationType>()) {
3514       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3515         ExpectedTemplateParams = Template->getTemplateParameters();
3516         NeedNonemptyTemplateHeader = true;
3517       }
3518     } else if (T->getAs<DependentTemplateSpecializationType>()) {
3519       // FIXME:  We actually could/should check the template arguments here
3520       // against the corresponding template parameter list.
3521       NeedNonemptyTemplateHeader = false;
3522     }
3523 
3524     // C++ [temp.expl.spec]p16:
3525     //   In an explicit specialization declaration for a member of a class
3526     //   template or a member template that ap- pears in namespace scope, the
3527     //   member template and some of its enclosing class templates may remain
3528     //   unspecialized, except that the declaration shall not explicitly
3529     //   specialize a class member template if its en- closing class templates
3530     //   are not explicitly specialized as well.
3531     if (ParamIdx < ParamLists.size()) {
3532       if (ParamLists[ParamIdx]->size() == 0) {
3533         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3534                                         false))
3535           return nullptr;
3536       } else
3537         SawNonEmptyTemplateParameterList = true;
3538     }
3539 
3540     if (NeedEmptyTemplateHeader) {
3541       // If we're on the last of the types, and we need a 'template<>' header
3542       // here, then it's a member specialization.
3543       if (TypeIdx == NumTypes - 1)
3544         IsMemberSpecialization = true;
3545 
3546       if (ParamIdx < ParamLists.size()) {
3547         if (ParamLists[ParamIdx]->size() > 0) {
3548           // The header has template parameters when it shouldn't. Complain.
3549           if (!SuppressDiagnostic)
3550             Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3551                  diag::err_template_param_list_matches_nontemplate)
3552               << T
3553               << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3554                              ParamLists[ParamIdx]->getRAngleLoc())
3555               << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3556           Invalid = true;
3557           return nullptr;
3558         }
3559 
3560         // Consume this template header.
3561         ++ParamIdx;
3562         continue;
3563       }
3564 
3565       if (!IsFriend)
3566         if (DiagnoseMissingExplicitSpecialization(
3567                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3568           return nullptr;
3569 
3570       continue;
3571     }
3572 
3573     if (NeedNonemptyTemplateHeader) {
3574       // In friend declarations we can have template-ids which don't
3575       // depend on the corresponding template parameter lists.  But
3576       // assume that empty parameter lists are supposed to match this
3577       // template-id.
3578       if (IsFriend && T->isDependentType()) {
3579         if (ParamIdx < ParamLists.size() &&
3580             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3581           ExpectedTemplateParams = nullptr;
3582         else
3583           continue;
3584       }
3585 
3586       if (ParamIdx < ParamLists.size()) {
3587         // Check the template parameter list, if we can.
3588         if (ExpectedTemplateParams &&
3589             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3590                                             ExpectedTemplateParams,
3591                                             !SuppressDiagnostic, TPL_TemplateMatch))
3592           Invalid = true;
3593 
3594         if (!Invalid &&
3595             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3596                                        TPC_ClassTemplateMember))
3597           Invalid = true;
3598 
3599         ++ParamIdx;
3600         continue;
3601       }
3602 
3603       if (!SuppressDiagnostic)
3604         Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3605           << T
3606           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3607       Invalid = true;
3608       continue;
3609     }
3610   }
3611 
3612   // If there were at least as many template-ids as there were template
3613   // parameter lists, then there are no template parameter lists remaining for
3614   // the declaration itself.
3615   if (ParamIdx >= ParamLists.size()) {
3616     if (TemplateId && !IsFriend) {
3617       // We don't have a template header for the declaration itself, but we
3618       // should.
3619       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3620                                                         TemplateId->RAngleLoc));
3621 
3622       // Fabricate an empty template parameter list for the invented header.
3623       return TemplateParameterList::Create(Context, SourceLocation(),
3624                                            SourceLocation(), std::nullopt,
3625                                            SourceLocation(), nullptr);
3626     }
3627 
3628     return nullptr;
3629   }
3630 
3631   // If there were too many template parameter lists, complain about that now.
3632   if (ParamIdx < ParamLists.size() - 1) {
3633     bool HasAnyExplicitSpecHeader = false;
3634     bool AllExplicitSpecHeaders = true;
3635     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3636       if (ParamLists[I]->size() == 0)
3637         HasAnyExplicitSpecHeader = true;
3638       else
3639         AllExplicitSpecHeaders = false;
3640     }
3641 
3642     if (!SuppressDiagnostic)
3643       Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3644            AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3645                                   : diag::err_template_spec_extra_headers)
3646           << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3647                          ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3648 
3649     // If there was a specialization somewhere, such that 'template<>' is
3650     // not required, and there were any 'template<>' headers, note where the
3651     // specialization occurred.
3652     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3653         !SuppressDiagnostic)
3654       Diag(ExplicitSpecLoc,
3655            diag::note_explicit_template_spec_does_not_need_header)
3656         << NestedTypes.back();
3657 
3658     // We have a template parameter list with no corresponding scope, which
3659     // means that the resulting template declaration can't be instantiated
3660     // properly (we'll end up with dependent nodes when we shouldn't).
3661     if (!AllExplicitSpecHeaders)
3662       Invalid = true;
3663   }
3664 
3665   // C++ [temp.expl.spec]p16:
3666   //   In an explicit specialization declaration for a member of a class
3667   //   template or a member template that ap- pears in namespace scope, the
3668   //   member template and some of its enclosing class templates may remain
3669   //   unspecialized, except that the declaration shall not explicitly
3670   //   specialize a class member template if its en- closing class templates
3671   //   are not explicitly specialized as well.
3672   if (ParamLists.back()->size() == 0 &&
3673       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3674                                   false))
3675     return nullptr;
3676 
3677   // Return the last template parameter list, which corresponds to the
3678   // entity being declared.
3679   return ParamLists.back();
3680 }
3681 
3682 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3683   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3684     Diag(Template->getLocation(), diag::note_template_declared_here)
3685         << (isa<FunctionTemplateDecl>(Template)
3686                 ? 0
3687                 : isa<ClassTemplateDecl>(Template)
3688                       ? 1
3689                       : isa<VarTemplateDecl>(Template)
3690                             ? 2
3691                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3692         << Template->getDeclName();
3693     return;
3694   }
3695 
3696   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3697     for (OverloadedTemplateStorage::iterator I = OST->begin(),
3698                                           IEnd = OST->end();
3699          I != IEnd; ++I)
3700       Diag((*I)->getLocation(), diag::note_template_declared_here)
3701         << 0 << (*I)->getDeclName();
3702 
3703     return;
3704   }
3705 }
3706 
3707 static QualType
3708 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3709                            ArrayRef<TemplateArgument> Converted,
3710                            SourceLocation TemplateLoc,
3711                            TemplateArgumentListInfo &TemplateArgs) {
3712   ASTContext &Context = SemaRef.getASTContext();
3713 
3714   switch (BTD->getBuiltinTemplateKind()) {
3715   case BTK__make_integer_seq: {
3716     // Specializations of __make_integer_seq<S, T, N> are treated like
3717     // S<T, 0, ..., N-1>.
3718 
3719     QualType OrigType = Converted[1].getAsType();
3720     // C++14 [inteseq.intseq]p1:
3721     //   T shall be an integer type.
3722     if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) {
3723       SemaRef.Diag(TemplateArgs[1].getLocation(),
3724                    diag::err_integer_sequence_integral_element_type);
3725       return QualType();
3726     }
3727 
3728     TemplateArgument NumArgsArg = Converted[2];
3729     if (NumArgsArg.isDependent())
3730       return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3731                                                             Converted);
3732 
3733     TemplateArgumentListInfo SyntheticTemplateArgs;
3734     // The type argument, wrapped in substitution sugar, gets reused as the
3735     // first template argument in the synthetic template argument list.
3736     SyntheticTemplateArgs.addArgument(
3737         TemplateArgumentLoc(TemplateArgument(OrigType),
3738                             SemaRef.Context.getTrivialTypeSourceInfo(
3739                                 OrigType, TemplateArgs[1].getLocation())));
3740 
3741     if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
3742       // Expand N into 0 ... N-1.
3743       for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3744            I < NumArgs; ++I) {
3745         TemplateArgument TA(Context, I, OrigType);
3746         SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3747             TA, OrigType, TemplateArgs[2].getLocation()));
3748       }
3749     } else {
3750       // C++14 [inteseq.make]p1:
3751       //   If N is negative the program is ill-formed.
3752       SemaRef.Diag(TemplateArgs[2].getLocation(),
3753                    diag::err_integer_sequence_negative_length);
3754       return QualType();
3755     }
3756 
3757     // The first template argument will be reused as the template decl that
3758     // our synthetic template arguments will be applied to.
3759     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3760                                        TemplateLoc, SyntheticTemplateArgs);
3761   }
3762 
3763   case BTK__type_pack_element:
3764     // Specializations of
3765     //    __type_pack_element<Index, T_1, ..., T_N>
3766     // are treated like T_Index.
3767     assert(Converted.size() == 2 &&
3768       "__type_pack_element should be given an index and a parameter pack");
3769 
3770     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3771     if (IndexArg.isDependent() || Ts.isDependent())
3772       return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3773                                                             Converted);
3774 
3775     llvm::APSInt Index = IndexArg.getAsIntegral();
3776     assert(Index >= 0 && "the index used with __type_pack_element should be of "
3777                          "type std::size_t, and hence be non-negative");
3778     // If the Index is out of bounds, the program is ill-formed.
3779     if (Index >= Ts.pack_size()) {
3780       SemaRef.Diag(TemplateArgs[0].getLocation(),
3781                    diag::err_type_pack_element_out_of_bounds);
3782       return QualType();
3783     }
3784 
3785     // We simply return the type at index `Index`.
3786     int64_t N = Index.getExtValue();
3787     return Ts.getPackAsArray()[N].getAsType();
3788   }
3789   llvm_unreachable("unexpected BuiltinTemplateDecl!");
3790 }
3791 
3792 /// Determine whether this alias template is "enable_if_t".
3793 /// libc++ >=14 uses "__enable_if_t" in C++11 mode.
3794 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3795   return AliasTemplate->getName().equals("enable_if_t") ||
3796          AliasTemplate->getName().equals("__enable_if_t");
3797 }
3798 
3799 /// Collect all of the separable terms in the given condition, which
3800 /// might be a conjunction.
3801 ///
3802 /// FIXME: The right answer is to convert the logical expression into
3803 /// disjunctive normal form, so we can find the first failed term
3804 /// within each possible clause.
3805 static void collectConjunctionTerms(Expr *Clause,
3806                                     SmallVectorImpl<Expr *> &Terms) {
3807   if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3808     if (BinOp->getOpcode() == BO_LAnd) {
3809       collectConjunctionTerms(BinOp->getLHS(), Terms);
3810       collectConjunctionTerms(BinOp->getRHS(), Terms);
3811       return;
3812     }
3813   }
3814 
3815   Terms.push_back(Clause);
3816 }
3817 
3818 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3819 // a left-hand side that is value-dependent but never true. Identify
3820 // the idiom and ignore that term.
3821 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3822   // Top-level '||'.
3823   auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3824   if (!BinOp) return Cond;
3825 
3826   if (BinOp->getOpcode() != BO_LOr) return Cond;
3827 
3828   // With an inner '==' that has a literal on the right-hand side.
3829   Expr *LHS = BinOp->getLHS();
3830   auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3831   if (!InnerBinOp) return Cond;
3832 
3833   if (InnerBinOp->getOpcode() != BO_EQ ||
3834       !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3835     return Cond;
3836 
3837   // If the inner binary operation came from a macro expansion named
3838   // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3839   // of the '||', which is the real, user-provided condition.
3840   SourceLocation Loc = InnerBinOp->getExprLoc();
3841   if (!Loc.isMacroID()) return Cond;
3842 
3843   StringRef MacroName = PP.getImmediateMacroName(Loc);
3844   if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3845     return BinOp->getRHS();
3846 
3847   return Cond;
3848 }
3849 
3850 namespace {
3851 
3852 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3853 // within failing boolean expression, such as substituting template parameters
3854 // for actual types.
3855 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3856 public:
3857   explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3858       : Policy(P) {}
3859 
3860   bool handledStmt(Stmt *E, raw_ostream &OS) override {
3861     const auto *DR = dyn_cast<DeclRefExpr>(E);
3862     if (DR && DR->getQualifier()) {
3863       // If this is a qualified name, expand the template arguments in nested
3864       // qualifiers.
3865       DR->getQualifier()->print(OS, Policy, true);
3866       // Then print the decl itself.
3867       const ValueDecl *VD = DR->getDecl();
3868       OS << VD->getName();
3869       if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3870         // This is a template variable, print the expanded template arguments.
3871         printTemplateArgumentList(
3872             OS, IV->getTemplateArgs().asArray(), Policy,
3873             IV->getSpecializedTemplate()->getTemplateParameters());
3874       }
3875       return true;
3876     }
3877     return false;
3878   }
3879 
3880 private:
3881   const PrintingPolicy Policy;
3882 };
3883 
3884 } // end anonymous namespace
3885 
3886 std::pair<Expr *, std::string>
3887 Sema::findFailedBooleanCondition(Expr *Cond) {
3888   Cond = lookThroughRangesV3Condition(PP, Cond);
3889 
3890   // Separate out all of the terms in a conjunction.
3891   SmallVector<Expr *, 4> Terms;
3892   collectConjunctionTerms(Cond, Terms);
3893 
3894   // Determine which term failed.
3895   Expr *FailedCond = nullptr;
3896   for (Expr *Term : Terms) {
3897     Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3898 
3899     // Literals are uninteresting.
3900     if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3901         isa<IntegerLiteral>(TermAsWritten))
3902       continue;
3903 
3904     // The initialization of the parameter from the argument is
3905     // a constant-evaluated context.
3906     EnterExpressionEvaluationContext ConstantEvaluated(
3907       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3908 
3909     bool Succeeded;
3910     if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3911         !Succeeded) {
3912       FailedCond = TermAsWritten;
3913       break;
3914     }
3915   }
3916   if (!FailedCond)
3917     FailedCond = Cond->IgnoreParenImpCasts();
3918 
3919   std::string Description;
3920   {
3921     llvm::raw_string_ostream Out(Description);
3922     PrintingPolicy Policy = getPrintingPolicy();
3923     Policy.PrintCanonicalTypes = true;
3924     FailedBooleanConditionPrinterHelper Helper(Policy);
3925     FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3926   }
3927   return { FailedCond, Description };
3928 }
3929 
3930 QualType Sema::CheckTemplateIdType(TemplateName Name,
3931                                    SourceLocation TemplateLoc,
3932                                    TemplateArgumentListInfo &TemplateArgs) {
3933   DependentTemplateName *DTN
3934     = Name.getUnderlying().getAsDependentTemplateName();
3935   if (DTN && DTN->isIdentifier())
3936     // When building a template-id where the template-name is dependent,
3937     // assume the template is a type template. Either our assumption is
3938     // correct, or the code is ill-formed and will be diagnosed when the
3939     // dependent name is substituted.
3940     return Context.getDependentTemplateSpecializationType(
3941         ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
3942         TemplateArgs.arguments());
3943 
3944   if (Name.getAsAssumedTemplateName() &&
3945       resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3946     return QualType();
3947 
3948   TemplateDecl *Template = Name.getAsTemplateDecl();
3949   if (!Template || isa<FunctionTemplateDecl>(Template) ||
3950       isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3951     // We might have a substituted template template parameter pack. If so,
3952     // build a template specialization type for it.
3953     if (Name.getAsSubstTemplateTemplateParmPack())
3954       return Context.getTemplateSpecializationType(Name,
3955                                                    TemplateArgs.arguments());
3956 
3957     Diag(TemplateLoc, diag::err_template_id_not_a_type)
3958       << Name;
3959     NoteAllFoundTemplates(Name);
3960     return QualType();
3961   }
3962 
3963   // Check that the template argument list is well-formed for this
3964   // template.
3965   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3966   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false,
3967                                 SugaredConverted, CanonicalConverted,
3968                                 /*UpdateArgsWithConversions=*/true))
3969     return QualType();
3970 
3971   QualType CanonType;
3972 
3973   if (TypeAliasTemplateDecl *AliasTemplate =
3974           dyn_cast<TypeAliasTemplateDecl>(Template)) {
3975 
3976     // Find the canonical type for this type alias template specialization.
3977     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3978     if (Pattern->isInvalidDecl())
3979       return QualType();
3980 
3981     // Only substitute for the innermost template argument list.
3982     MultiLevelTemplateArgumentList TemplateArgLists;
3983     TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted,
3984                                                /*Final=*/false);
3985     TemplateArgLists.addOuterRetainedLevels(
3986         AliasTemplate->getTemplateParameters()->getDepth());
3987 
3988     LocalInstantiationScope Scope(*this);
3989     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3990     if (Inst.isInvalid())
3991       return QualType();
3992 
3993     CanonType = SubstType(Pattern->getUnderlyingType(),
3994                           TemplateArgLists, AliasTemplate->getLocation(),
3995                           AliasTemplate->getDeclName());
3996     if (CanonType.isNull()) {
3997       // If this was enable_if and we failed to find the nested type
3998       // within enable_if in a SFINAE context, dig out the specific
3999       // enable_if condition that failed and present that instead.
4000       if (isEnableIfAliasTemplate(AliasTemplate)) {
4001         if (auto DeductionInfo = isSFINAEContext()) {
4002           if (*DeductionInfo &&
4003               (*DeductionInfo)->hasSFINAEDiagnostic() &&
4004               (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
4005                 diag::err_typename_nested_not_found_enable_if &&
4006               TemplateArgs[0].getArgument().getKind()
4007                 == TemplateArgument::Expression) {
4008             Expr *FailedCond;
4009             std::string FailedDescription;
4010             std::tie(FailedCond, FailedDescription) =
4011               findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
4012 
4013             // Remove the old SFINAE diagnostic.
4014             PartialDiagnosticAt OldDiag =
4015               {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
4016             (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
4017 
4018             // Add a new SFINAE diagnostic specifying which condition
4019             // failed.
4020             (*DeductionInfo)->addSFINAEDiagnostic(
4021               OldDiag.first,
4022               PDiag(diag::err_typename_nested_not_found_requirement)
4023                 << FailedDescription
4024                 << FailedCond->getSourceRange());
4025           }
4026         }
4027       }
4028 
4029       return QualType();
4030     }
4031   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
4032     CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted,
4033                                            TemplateLoc, TemplateArgs);
4034   } else if (Name.isDependent() ||
4035              TemplateSpecializationType::anyDependentTemplateArguments(
4036                  TemplateArgs, CanonicalConverted)) {
4037     // This class template specialization is a dependent
4038     // type. Therefore, its canonical type is another class template
4039     // specialization type that contains all of the converted
4040     // arguments in canonical form. This ensures that, e.g., A<T> and
4041     // A<T, T> have identical types when A is declared as:
4042     //
4043     //   template<typename T, typename U = T> struct A;
4044     CanonType = Context.getCanonicalTemplateSpecializationType(
4045         Name, CanonicalConverted);
4046 
4047     // This might work out to be a current instantiation, in which
4048     // case the canonical type needs to be the InjectedClassNameType.
4049     //
4050     // TODO: in theory this could be a simple hashtable lookup; most
4051     // changes to CurContext don't change the set of current
4052     // instantiations.
4053     if (isa<ClassTemplateDecl>(Template)) {
4054       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
4055         // If we get out to a namespace, we're done.
4056         if (Ctx->isFileContext()) break;
4057 
4058         // If this isn't a record, keep looking.
4059         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
4060         if (!Record) continue;
4061 
4062         // Look for one of the two cases with InjectedClassNameTypes
4063         // and check whether it's the same template.
4064         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
4065             !Record->getDescribedClassTemplate())
4066           continue;
4067 
4068         // Fetch the injected class name type and check whether its
4069         // injected type is equal to the type we just built.
4070         QualType ICNT = Context.getTypeDeclType(Record);
4071         QualType Injected = cast<InjectedClassNameType>(ICNT)
4072           ->getInjectedSpecializationType();
4073 
4074         if (CanonType != Injected->getCanonicalTypeInternal())
4075           continue;
4076 
4077         // If so, the canonical type of this TST is the injected
4078         // class name type of the record we just found.
4079         assert(ICNT.isCanonical());
4080         CanonType = ICNT;
4081         break;
4082       }
4083     }
4084   } else if (ClassTemplateDecl *ClassTemplate =
4085                  dyn_cast<ClassTemplateDecl>(Template)) {
4086     // Find the class template specialization declaration that
4087     // corresponds to these arguments.
4088     void *InsertPos = nullptr;
4089     ClassTemplateSpecializationDecl *Decl =
4090         ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
4091     if (!Decl) {
4092       // This is the first time we have referenced this class template
4093       // specialization. Create the canonical declaration and add it to
4094       // the set of specializations.
4095       Decl = ClassTemplateSpecializationDecl::Create(
4096           Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
4097           ClassTemplate->getDeclContext(),
4098           ClassTemplate->getTemplatedDecl()->getBeginLoc(),
4099           ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted,
4100           nullptr);
4101       ClassTemplate->AddSpecialization(Decl, InsertPos);
4102       if (ClassTemplate->isOutOfLine())
4103         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
4104     }
4105 
4106     if (Decl->getSpecializationKind() == TSK_Undeclared &&
4107         ClassTemplate->getTemplatedDecl()->hasAttrs()) {
4108       InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
4109       if (!Inst.isInvalid()) {
4110         MultiLevelTemplateArgumentList TemplateArgLists(Template,
4111                                                         CanonicalConverted,
4112                                                         /*Final=*/false);
4113         InstantiateAttrsForDecl(TemplateArgLists,
4114                                 ClassTemplate->getTemplatedDecl(), Decl);
4115       }
4116     }
4117 
4118     // Diagnose uses of this specialization.
4119     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
4120 
4121     CanonType = Context.getTypeDeclType(Decl);
4122     assert(isa<RecordType>(CanonType) &&
4123            "type of non-dependent specialization is not a RecordType");
4124   } else {
4125     llvm_unreachable("Unhandled template kind");
4126   }
4127 
4128   // Build the fully-sugared type for this class template
4129   // specialization, which refers back to the class template
4130   // specialization we created or found.
4131   return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(),
4132                                                CanonType);
4133 }
4134 
4135 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
4136                                            TemplateNameKind &TNK,
4137                                            SourceLocation NameLoc,
4138                                            IdentifierInfo *&II) {
4139   assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
4140 
4141   TemplateName Name = ParsedName.get();
4142   auto *ATN = Name.getAsAssumedTemplateName();
4143   assert(ATN && "not an assumed template name");
4144   II = ATN->getDeclName().getAsIdentifierInfo();
4145 
4146   if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
4147     // Resolved to a type template name.
4148     ParsedName = TemplateTy::make(Name);
4149     TNK = TNK_Type_template;
4150   }
4151 }
4152 
4153 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
4154                                             SourceLocation NameLoc,
4155                                             bool Diagnose) {
4156   // We assumed this undeclared identifier to be an (ADL-only) function
4157   // template name, but it was used in a context where a type was required.
4158   // Try to typo-correct it now.
4159   AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
4160   assert(ATN && "not an assumed template name");
4161 
4162   LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
4163   struct CandidateCallback : CorrectionCandidateCallback {
4164     bool ValidateCandidate(const TypoCorrection &TC) override {
4165       return TC.getCorrectionDecl() &&
4166              getAsTypeTemplateDecl(TC.getCorrectionDecl());
4167     }
4168     std::unique_ptr<CorrectionCandidateCallback> clone() override {
4169       return std::make_unique<CandidateCallback>(*this);
4170     }
4171   } FilterCCC;
4172 
4173   TypoCorrection Corrected =
4174       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
4175                   FilterCCC, CTK_ErrorRecovery);
4176   if (Corrected && Corrected.getFoundDecl()) {
4177     diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
4178                                 << ATN->getDeclName());
4179     Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
4180     return false;
4181   }
4182 
4183   if (Diagnose)
4184     Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
4185   return true;
4186 }
4187 
4188 TypeResult Sema::ActOnTemplateIdType(
4189     Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
4190     TemplateTy TemplateD, IdentifierInfo *TemplateII,
4191     SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
4192     ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
4193     bool IsCtorOrDtorName, bool IsClassName,
4194     ImplicitTypenameContext AllowImplicitTypename) {
4195   if (SS.isInvalid())
4196     return true;
4197 
4198   if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
4199     DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
4200 
4201     // C++ [temp.res]p3:
4202     //   A qualified-id that refers to a type and in which the
4203     //   nested-name-specifier depends on a template-parameter (14.6.2)
4204     //   shall be prefixed by the keyword typename to indicate that the
4205     //   qualified-id denotes a type, forming an
4206     //   elaborated-type-specifier (7.1.5.3).
4207     if (!LookupCtx && isDependentScopeSpecifier(SS)) {
4208       // C++2a relaxes some of those restrictions in [temp.res]p5.
4209       if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
4210         if (getLangOpts().CPlusPlus20)
4211           Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
4212         else
4213           Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
4214               << SS.getScopeRep() << TemplateII->getName()
4215               << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
4216       } else
4217         Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
4218             << SS.getScopeRep() << TemplateII->getName();
4219 
4220       // FIXME: This is not quite correct recovery as we don't transform SS
4221       // into the corresponding dependent form (and we don't diagnose missing
4222       // 'template' keywords within SS as a result).
4223       return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
4224                                TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
4225                                TemplateArgsIn, RAngleLoc);
4226     }
4227 
4228     // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
4229     // it's not actually allowed to be used as a type in most cases. Because
4230     // we annotate it before we know whether it's valid, we have to check for
4231     // this case here.
4232     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4233     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
4234       Diag(TemplateIILoc,
4235            TemplateKWLoc.isInvalid()
4236                ? diag::err_out_of_line_qualified_id_type_names_constructor
4237                : diag::ext_out_of_line_qualified_id_type_names_constructor)
4238         << TemplateII << 0 /*injected-class-name used as template name*/
4239         << 1 /*if any keyword was present, it was 'template'*/;
4240     }
4241   }
4242 
4243   TemplateName Template = TemplateD.get();
4244   if (Template.getAsAssumedTemplateName() &&
4245       resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
4246     return true;
4247 
4248   // Translate the parser's template argument list in our AST format.
4249   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4250   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4251 
4252   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4253     assert(SS.getScopeRep() == DTN->getQualifier());
4254     QualType T = Context.getDependentTemplateSpecializationType(
4255         ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
4256         TemplateArgs.arguments());
4257     // Build type-source information.
4258     TypeLocBuilder TLB;
4259     DependentTemplateSpecializationTypeLoc SpecTL
4260       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4261     SpecTL.setElaboratedKeywordLoc(SourceLocation());
4262     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4263     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4264     SpecTL.setTemplateNameLoc(TemplateIILoc);
4265     SpecTL.setLAngleLoc(LAngleLoc);
4266     SpecTL.setRAngleLoc(RAngleLoc);
4267     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4268       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4269     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4270   }
4271 
4272   QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
4273   if (SpecTy.isNull())
4274     return true;
4275 
4276   // Build type-source information.
4277   TypeLocBuilder TLB;
4278   TemplateSpecializationTypeLoc SpecTL =
4279       TLB.push<TemplateSpecializationTypeLoc>(SpecTy);
4280   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4281   SpecTL.setTemplateNameLoc(TemplateIILoc);
4282   SpecTL.setLAngleLoc(LAngleLoc);
4283   SpecTL.setRAngleLoc(RAngleLoc);
4284   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4285     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4286 
4287   // Create an elaborated-type-specifier containing the nested-name-specifier.
4288   QualType ElTy =
4289       getElaboratedType(ElaboratedTypeKeyword::None,
4290                         !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy);
4291   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy);
4292   ElabTL.setElaboratedKeywordLoc(SourceLocation());
4293   if (!ElabTL.isEmpty())
4294     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4295   return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy));
4296 }
4297 
4298 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4299                                         TypeSpecifierType TagSpec,
4300                                         SourceLocation TagLoc,
4301                                         CXXScopeSpec &SS,
4302                                         SourceLocation TemplateKWLoc,
4303                                         TemplateTy TemplateD,
4304                                         SourceLocation TemplateLoc,
4305                                         SourceLocation LAngleLoc,
4306                                         ASTTemplateArgsPtr TemplateArgsIn,
4307                                         SourceLocation RAngleLoc) {
4308   if (SS.isInvalid())
4309     return TypeResult(true);
4310 
4311   TemplateName Template = TemplateD.get();
4312 
4313   // Translate the parser's template argument list in our AST format.
4314   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4315   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4316 
4317   // Determine the tag kind
4318   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4319   ElaboratedTypeKeyword Keyword
4320     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4321 
4322   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4323     assert(SS.getScopeRep() == DTN->getQualifier());
4324     QualType T = Context.getDependentTemplateSpecializationType(
4325         Keyword, DTN->getQualifier(), DTN->getIdentifier(),
4326         TemplateArgs.arguments());
4327 
4328     // Build type-source information.
4329     TypeLocBuilder TLB;
4330     DependentTemplateSpecializationTypeLoc SpecTL
4331       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4332     SpecTL.setElaboratedKeywordLoc(TagLoc);
4333     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4334     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4335     SpecTL.setTemplateNameLoc(TemplateLoc);
4336     SpecTL.setLAngleLoc(LAngleLoc);
4337     SpecTL.setRAngleLoc(RAngleLoc);
4338     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4339       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4340     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4341   }
4342 
4343   if (TypeAliasTemplateDecl *TAT =
4344         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4345     // C++0x [dcl.type.elab]p2:
4346     //   If the identifier resolves to a typedef-name or the simple-template-id
4347     //   resolves to an alias template specialization, the
4348     //   elaborated-type-specifier is ill-formed.
4349     Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4350         << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind);
4351     Diag(TAT->getLocation(), diag::note_declared_at);
4352   }
4353 
4354   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4355   if (Result.isNull())
4356     return TypeResult(true);
4357 
4358   // Check the tag kind
4359   if (const RecordType *RT = Result->getAs<RecordType>()) {
4360     RecordDecl *D = RT->getDecl();
4361 
4362     IdentifierInfo *Id = D->getIdentifier();
4363     assert(Id && "templated class must have an identifier");
4364 
4365     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4366                                       TagLoc, Id)) {
4367       Diag(TagLoc, diag::err_use_with_wrong_tag)
4368         << Result
4369         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4370       Diag(D->getLocation(), diag::note_previous_use);
4371     }
4372   }
4373 
4374   // Provide source-location information for the template specialization.
4375   TypeLocBuilder TLB;
4376   TemplateSpecializationTypeLoc SpecTL
4377     = TLB.push<TemplateSpecializationTypeLoc>(Result);
4378   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4379   SpecTL.setTemplateNameLoc(TemplateLoc);
4380   SpecTL.setLAngleLoc(LAngleLoc);
4381   SpecTL.setRAngleLoc(RAngleLoc);
4382   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4383     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4384 
4385   // Construct an elaborated type containing the nested-name-specifier (if any)
4386   // and tag keyword.
4387   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4388   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4389   ElabTL.setElaboratedKeywordLoc(TagLoc);
4390   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4391   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4392 }
4393 
4394 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4395                                              NamedDecl *PrevDecl,
4396                                              SourceLocation Loc,
4397                                              bool IsPartialSpecialization);
4398 
4399 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4400 
4401 static bool isTemplateArgumentTemplateParameter(
4402     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4403   switch (Arg.getKind()) {
4404   case TemplateArgument::Null:
4405   case TemplateArgument::NullPtr:
4406   case TemplateArgument::Integral:
4407   case TemplateArgument::Declaration:
4408   case TemplateArgument::Pack:
4409   case TemplateArgument::TemplateExpansion:
4410     return false;
4411 
4412   case TemplateArgument::Type: {
4413     QualType Type = Arg.getAsType();
4414     const TemplateTypeParmType *TPT =
4415         Arg.getAsType()->getAs<TemplateTypeParmType>();
4416     return TPT && !Type.hasQualifiers() &&
4417            TPT->getDepth() == Depth && TPT->getIndex() == Index;
4418   }
4419 
4420   case TemplateArgument::Expression: {
4421     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4422     if (!DRE || !DRE->getDecl())
4423       return false;
4424     const NonTypeTemplateParmDecl *NTTP =
4425         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4426     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4427   }
4428 
4429   case TemplateArgument::Template:
4430     const TemplateTemplateParmDecl *TTP =
4431         dyn_cast_or_null<TemplateTemplateParmDecl>(
4432             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4433     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4434   }
4435   llvm_unreachable("unexpected kind of template argument");
4436 }
4437 
4438 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4439                                     ArrayRef<TemplateArgument> Args) {
4440   if (Params->size() != Args.size())
4441     return false;
4442 
4443   unsigned Depth = Params->getDepth();
4444 
4445   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4446     TemplateArgument Arg = Args[I];
4447 
4448     // If the parameter is a pack expansion, the argument must be a pack
4449     // whose only element is a pack expansion.
4450     if (Params->getParam(I)->isParameterPack()) {
4451       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4452           !Arg.pack_begin()->isPackExpansion())
4453         return false;
4454       Arg = Arg.pack_begin()->getPackExpansionPattern();
4455     }
4456 
4457     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4458       return false;
4459   }
4460 
4461   return true;
4462 }
4463 
4464 template<typename PartialSpecDecl>
4465 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4466   if (Partial->getDeclContext()->isDependentContext())
4467     return;
4468 
4469   // FIXME: Get the TDK from deduction in order to provide better diagnostics
4470   // for non-substitution-failure issues?
4471   TemplateDeductionInfo Info(Partial->getLocation());
4472   if (S.isMoreSpecializedThanPrimary(Partial, Info))
4473     return;
4474 
4475   auto *Template = Partial->getSpecializedTemplate();
4476   S.Diag(Partial->getLocation(),
4477          diag::ext_partial_spec_not_more_specialized_than_primary)
4478       << isa<VarTemplateDecl>(Template);
4479 
4480   if (Info.hasSFINAEDiagnostic()) {
4481     PartialDiagnosticAt Diag = {SourceLocation(),
4482                                 PartialDiagnostic::NullDiagnostic()};
4483     Info.takeSFINAEDiagnostic(Diag);
4484     SmallString<128> SFINAEArgString;
4485     Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4486     S.Diag(Diag.first,
4487            diag::note_partial_spec_not_more_specialized_than_primary)
4488       << SFINAEArgString;
4489   }
4490 
4491   S.NoteTemplateLocation(*Template);
4492   SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4493   Template->getAssociatedConstraints(TemplateAC);
4494   Partial->getAssociatedConstraints(PartialAC);
4495   S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4496                                                   TemplateAC);
4497 }
4498 
4499 static void
4500 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4501                            const llvm::SmallBitVector &DeducibleParams) {
4502   for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4503     if (!DeducibleParams[I]) {
4504       NamedDecl *Param = TemplateParams->getParam(I);
4505       if (Param->getDeclName())
4506         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4507             << Param->getDeclName();
4508       else
4509         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4510             << "(anonymous)";
4511     }
4512   }
4513 }
4514 
4515 
4516 template<typename PartialSpecDecl>
4517 static void checkTemplatePartialSpecialization(Sema &S,
4518                                                PartialSpecDecl *Partial) {
4519   // C++1z [temp.class.spec]p8: (DR1495)
4520   //   - The specialization shall be more specialized than the primary
4521   //     template (14.5.5.2).
4522   checkMoreSpecializedThanPrimary(S, Partial);
4523 
4524   // C++ [temp.class.spec]p8: (DR1315)
4525   //   - Each template-parameter shall appear at least once in the
4526   //     template-id outside a non-deduced context.
4527   // C++1z [temp.class.spec.match]p3 (P0127R2)
4528   //   If the template arguments of a partial specialization cannot be
4529   //   deduced because of the structure of its template-parameter-list
4530   //   and the template-id, the program is ill-formed.
4531   auto *TemplateParams = Partial->getTemplateParameters();
4532   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4533   S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4534                                TemplateParams->getDepth(), DeducibleParams);
4535 
4536   if (!DeducibleParams.all()) {
4537     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4538     S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4539       << isa<VarTemplatePartialSpecializationDecl>(Partial)
4540       << (NumNonDeducible > 1)
4541       << SourceRange(Partial->getLocation(),
4542                      Partial->getTemplateArgsAsWritten()->RAngleLoc);
4543     noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4544   }
4545 }
4546 
4547 void Sema::CheckTemplatePartialSpecialization(
4548     ClassTemplatePartialSpecializationDecl *Partial) {
4549   checkTemplatePartialSpecialization(*this, Partial);
4550 }
4551 
4552 void Sema::CheckTemplatePartialSpecialization(
4553     VarTemplatePartialSpecializationDecl *Partial) {
4554   checkTemplatePartialSpecialization(*this, Partial);
4555 }
4556 
4557 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4558   // C++1z [temp.param]p11:
4559   //   A template parameter of a deduction guide template that does not have a
4560   //   default-argument shall be deducible from the parameter-type-list of the
4561   //   deduction guide template.
4562   auto *TemplateParams = TD->getTemplateParameters();
4563   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4564   MarkDeducedTemplateParameters(TD, DeducibleParams);
4565   for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4566     // A parameter pack is deducible (to an empty pack).
4567     auto *Param = TemplateParams->getParam(I);
4568     if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4569       DeducibleParams[I] = true;
4570   }
4571 
4572   if (!DeducibleParams.all()) {
4573     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4574     Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4575       << (NumNonDeducible > 1);
4576     noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4577   }
4578 }
4579 
4580 DeclResult Sema::ActOnVarTemplateSpecialization(
4581     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4582     TemplateParameterList *TemplateParams, StorageClass SC,
4583     bool IsPartialSpecialization) {
4584   // D must be variable template id.
4585   assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4586          "Variable template specialization is declared with a template id.");
4587 
4588   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4589   TemplateArgumentListInfo TemplateArgs =
4590       makeTemplateArgumentListInfo(*this, *TemplateId);
4591   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4592   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4593   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4594 
4595   TemplateName Name = TemplateId->Template.get();
4596 
4597   // The template-id must name a variable template.
4598   VarTemplateDecl *VarTemplate =
4599       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4600   if (!VarTemplate) {
4601     NamedDecl *FnTemplate;
4602     if (auto *OTS = Name.getAsOverloadedTemplate())
4603       FnTemplate = *OTS->begin();
4604     else
4605       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4606     if (FnTemplate)
4607       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4608                << FnTemplate->getDeclName();
4609     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4610              << IsPartialSpecialization;
4611   }
4612 
4613   // Check for unexpanded parameter packs in any of the template arguments.
4614   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4615     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4616                                         IsPartialSpecialization
4617                                             ? UPPC_PartialSpecialization
4618                                             : UPPC_ExplicitSpecialization))
4619       return true;
4620 
4621   // Check that the template argument list is well-formed for this
4622   // template.
4623   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4624   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4625                                 false, SugaredConverted, CanonicalConverted,
4626                                 /*UpdateArgsWithConversions=*/true))
4627     return true;
4628 
4629   // Find the variable template (partial) specialization declaration that
4630   // corresponds to these arguments.
4631   if (IsPartialSpecialization) {
4632     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4633                                                TemplateArgs.size(),
4634                                                CanonicalConverted))
4635       return true;
4636 
4637     // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4638     // also do them during instantiation.
4639     if (!Name.isDependent() &&
4640         !TemplateSpecializationType::anyDependentTemplateArguments(
4641             TemplateArgs, CanonicalConverted)) {
4642       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4643           << VarTemplate->getDeclName();
4644       IsPartialSpecialization = false;
4645     }
4646 
4647     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4648                                 CanonicalConverted) &&
4649         (!Context.getLangOpts().CPlusPlus20 ||
4650          !TemplateParams->hasAssociatedConstraints())) {
4651       // C++ [temp.class.spec]p9b3:
4652       //
4653       //   -- The argument list of the specialization shall not be identical
4654       //      to the implicit argument list of the primary template.
4655       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4656         << /*variable template*/ 1
4657         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4658         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4659       // FIXME: Recover from this by treating the declaration as a redeclaration
4660       // of the primary template.
4661       return true;
4662     }
4663   }
4664 
4665   void *InsertPos = nullptr;
4666   VarTemplateSpecializationDecl *PrevDecl = nullptr;
4667 
4668   if (IsPartialSpecialization)
4669     PrevDecl = VarTemplate->findPartialSpecialization(
4670         CanonicalConverted, TemplateParams, InsertPos);
4671   else
4672     PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos);
4673 
4674   VarTemplateSpecializationDecl *Specialization = nullptr;
4675 
4676   // Check whether we can declare a variable template specialization in
4677   // the current scope.
4678   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4679                                        TemplateNameLoc,
4680                                        IsPartialSpecialization))
4681     return true;
4682 
4683   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4684     // Since the only prior variable template specialization with these
4685     // arguments was referenced but not declared,  reuse that
4686     // declaration node as our own, updating its source location and
4687     // the list of outer template parameters to reflect our new declaration.
4688     Specialization = PrevDecl;
4689     Specialization->setLocation(TemplateNameLoc);
4690     PrevDecl = nullptr;
4691   } else if (IsPartialSpecialization) {
4692     // Create a new class template partial specialization declaration node.
4693     VarTemplatePartialSpecializationDecl *PrevPartial =
4694         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4695     VarTemplatePartialSpecializationDecl *Partial =
4696         VarTemplatePartialSpecializationDecl::Create(
4697             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4698             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4699             CanonicalConverted, TemplateArgs);
4700 
4701     if (!PrevPartial)
4702       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4703     Specialization = Partial;
4704 
4705     // If we are providing an explicit specialization of a member variable
4706     // template specialization, make a note of that.
4707     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4708       PrevPartial->setMemberSpecialization();
4709 
4710     CheckTemplatePartialSpecialization(Partial);
4711   } else {
4712     // Create a new class template specialization declaration node for
4713     // this explicit specialization or friend declaration.
4714     Specialization = VarTemplateSpecializationDecl::Create(
4715         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4716         VarTemplate, DI->getType(), DI, SC, CanonicalConverted);
4717     Specialization->setTemplateArgsInfo(TemplateArgs);
4718 
4719     if (!PrevDecl)
4720       VarTemplate->AddSpecialization(Specialization, InsertPos);
4721   }
4722 
4723   // C++ [temp.expl.spec]p6:
4724   //   If a template, a member template or the member of a class template is
4725   //   explicitly specialized then that specialization shall be declared
4726   //   before the first use of that specialization that would cause an implicit
4727   //   instantiation to take place, in every translation unit in which such a
4728   //   use occurs; no diagnostic is required.
4729   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4730     bool Okay = false;
4731     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4732       // Is there any previous explicit specialization declaration?
4733       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4734         Okay = true;
4735         break;
4736       }
4737     }
4738 
4739     if (!Okay) {
4740       SourceRange Range(TemplateNameLoc, RAngleLoc);
4741       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4742           << Name << Range;
4743 
4744       Diag(PrevDecl->getPointOfInstantiation(),
4745            diag::note_instantiation_required_here)
4746           << (PrevDecl->getTemplateSpecializationKind() !=
4747               TSK_ImplicitInstantiation);
4748       return true;
4749     }
4750   }
4751 
4752   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4753   Specialization->setLexicalDeclContext(CurContext);
4754 
4755   // Add the specialization into its lexical context, so that it can
4756   // be seen when iterating through the list of declarations in that
4757   // context. However, specializations are not found by name lookup.
4758   CurContext->addDecl(Specialization);
4759 
4760   // Note that this is an explicit specialization.
4761   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4762 
4763   if (PrevDecl) {
4764     // Check that this isn't a redefinition of this specialization,
4765     // merging with previous declarations.
4766     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4767                           forRedeclarationInCurContext());
4768     PrevSpec.addDecl(PrevDecl);
4769     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4770   } else if (Specialization->isStaticDataMember() &&
4771              Specialization->isOutOfLine()) {
4772     Specialization->setAccess(VarTemplate->getAccess());
4773   }
4774 
4775   return Specialization;
4776 }
4777 
4778 namespace {
4779 /// A partial specialization whose template arguments have matched
4780 /// a given template-id.
4781 struct PartialSpecMatchResult {
4782   VarTemplatePartialSpecializationDecl *Partial;
4783   TemplateArgumentList *Args;
4784 };
4785 } // end anonymous namespace
4786 
4787 DeclResult
4788 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4789                          SourceLocation TemplateNameLoc,
4790                          const TemplateArgumentListInfo &TemplateArgs) {
4791   assert(Template && "A variable template id without template?");
4792 
4793   // Check that the template argument list is well-formed for this template.
4794   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4795   if (CheckTemplateArgumentList(
4796           Template, TemplateNameLoc,
4797           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4798           SugaredConverted, CanonicalConverted,
4799           /*UpdateArgsWithConversions=*/true))
4800     return true;
4801 
4802   // Produce a placeholder value if the specialization is dependent.
4803   if (Template->getDeclContext()->isDependentContext() ||
4804       TemplateSpecializationType::anyDependentTemplateArguments(
4805           TemplateArgs, CanonicalConverted))
4806     return DeclResult();
4807 
4808   // Find the variable template specialization declaration that
4809   // corresponds to these arguments.
4810   void *InsertPos = nullptr;
4811   if (VarTemplateSpecializationDecl *Spec =
4812           Template->findSpecialization(CanonicalConverted, InsertPos)) {
4813     checkSpecializationReachability(TemplateNameLoc, Spec);
4814     // If we already have a variable template specialization, return it.
4815     return Spec;
4816   }
4817 
4818   // This is the first time we have referenced this variable template
4819   // specialization. Create the canonical declaration and add it to
4820   // the set of specializations, based on the closest partial specialization
4821   // that it represents. That is,
4822   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4823   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4824                                        CanonicalConverted);
4825   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4826   bool AmbiguousPartialSpec = false;
4827   typedef PartialSpecMatchResult MatchResult;
4828   SmallVector<MatchResult, 4> Matched;
4829   SourceLocation PointOfInstantiation = TemplateNameLoc;
4830   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4831                                             /*ForTakingAddress=*/false);
4832 
4833   // 1. Attempt to find the closest partial specialization that this
4834   // specializes, if any.
4835   // TODO: Unify with InstantiateClassTemplateSpecialization()?
4836   //       Perhaps better after unification of DeduceTemplateArguments() and
4837   //       getMoreSpecializedPartialSpecialization().
4838   SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4839   Template->getPartialSpecializations(PartialSpecs);
4840 
4841   for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4842     VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4843     TemplateDeductionInfo Info(FailedCandidates.getLocation());
4844 
4845     if (TemplateDeductionResult Result =
4846             DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4847       // Store the failed-deduction information for use in diagnostics, later.
4848       // TODO: Actually use the failed-deduction info?
4849       FailedCandidates.addCandidate().set(
4850           DeclAccessPair::make(Template, AS_public), Partial,
4851           MakeDeductionFailureInfo(Context, Result, Info));
4852       (void)Result;
4853     } else {
4854       Matched.push_back(PartialSpecMatchResult());
4855       Matched.back().Partial = Partial;
4856       Matched.back().Args = Info.takeCanonical();
4857     }
4858   }
4859 
4860   if (Matched.size() >= 1) {
4861     SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4862     if (Matched.size() == 1) {
4863       //   -- If exactly one matching specialization is found, the
4864       //      instantiation is generated from that specialization.
4865       // We don't need to do anything for this.
4866     } else {
4867       //   -- If more than one matching specialization is found, the
4868       //      partial order rules (14.5.4.2) are used to determine
4869       //      whether one of the specializations is more specialized
4870       //      than the others. If none of the specializations is more
4871       //      specialized than all of the other matching
4872       //      specializations, then the use of the variable template is
4873       //      ambiguous and the program is ill-formed.
4874       for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4875                                                  PEnd = Matched.end();
4876            P != PEnd; ++P) {
4877         if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4878                                                     PointOfInstantiation) ==
4879             P->Partial)
4880           Best = P;
4881       }
4882 
4883       // Determine if the best partial specialization is more specialized than
4884       // the others.
4885       for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4886                                                  PEnd = Matched.end();
4887            P != PEnd; ++P) {
4888         if (P != Best && getMoreSpecializedPartialSpecialization(
4889                              P->Partial, Best->Partial,
4890                              PointOfInstantiation) != Best->Partial) {
4891           AmbiguousPartialSpec = true;
4892           break;
4893         }
4894       }
4895     }
4896 
4897     // Instantiate using the best variable template partial specialization.
4898     InstantiationPattern = Best->Partial;
4899     InstantiationArgs = Best->Args;
4900   } else {
4901     //   -- If no match is found, the instantiation is generated
4902     //      from the primary template.
4903     // InstantiationPattern = Template->getTemplatedDecl();
4904   }
4905 
4906   // 2. Create the canonical declaration.
4907   // Note that we do not instantiate a definition until we see an odr-use
4908   // in DoMarkVarDeclReferenced().
4909   // FIXME: LateAttrs et al.?
4910   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4911       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4912       CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4913   if (!Decl)
4914     return true;
4915 
4916   if (AmbiguousPartialSpec) {
4917     // Partial ordering did not produce a clear winner. Complain.
4918     Decl->setInvalidDecl();
4919     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4920         << Decl;
4921 
4922     // Print the matching partial specializations.
4923     for (MatchResult P : Matched)
4924       Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4925           << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4926                                              *P.Args);
4927     return true;
4928   }
4929 
4930   if (VarTemplatePartialSpecializationDecl *D =
4931           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4932     Decl->setInstantiationOf(D, InstantiationArgs);
4933 
4934   checkSpecializationReachability(TemplateNameLoc, Decl);
4935 
4936   assert(Decl && "No variable template specialization?");
4937   return Decl;
4938 }
4939 
4940 ExprResult
4941 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4942                          const DeclarationNameInfo &NameInfo,
4943                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
4944                          const TemplateArgumentListInfo *TemplateArgs) {
4945 
4946   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4947                                        *TemplateArgs);
4948   if (Decl.isInvalid())
4949     return ExprError();
4950 
4951   if (!Decl.get())
4952     return ExprResult();
4953 
4954   VarDecl *Var = cast<VarDecl>(Decl.get());
4955   if (!Var->getTemplateSpecializationKind())
4956     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4957                                        NameInfo.getLoc());
4958 
4959   // Build an ordinary singleton decl ref.
4960   return BuildDeclarationNameExpr(SS, NameInfo, Var,
4961                                   /*FoundD=*/nullptr, TemplateArgs);
4962 }
4963 
4964 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4965                                             SourceLocation Loc) {
4966   Diag(Loc, diag::err_template_missing_args)
4967     << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4968   if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4969     NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange());
4970   }
4971 }
4972 
4973 ExprResult
4974 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4975                              SourceLocation TemplateKWLoc,
4976                              const DeclarationNameInfo &ConceptNameInfo,
4977                              NamedDecl *FoundDecl,
4978                              ConceptDecl *NamedConcept,
4979                              const TemplateArgumentListInfo *TemplateArgs) {
4980   assert(NamedConcept && "A concept template id without a template?");
4981 
4982   llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4983   if (CheckTemplateArgumentList(
4984           NamedConcept, ConceptNameInfo.getLoc(),
4985           const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
4986           /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted,
4987           /*UpdateArgsWithConversions=*/false))
4988     return ExprError();
4989 
4990   auto *CSD = ImplicitConceptSpecializationDecl::Create(
4991       Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(),
4992       CanonicalConverted);
4993   ConstraintSatisfaction Satisfaction;
4994   bool AreArgsDependent =
4995       TemplateSpecializationType::anyDependentTemplateArguments(
4996           *TemplateArgs, CanonicalConverted);
4997   MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted,
4998                                        /*Final=*/false);
4999   LocalInstantiationScope Scope(*this);
5000 
5001   EnterExpressionEvaluationContext EECtx{
5002       *this, ExpressionEvaluationContext::ConstantEvaluated, CSD};
5003 
5004   if (!AreArgsDependent &&
5005       CheckConstraintSatisfaction(
5006           NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL,
5007           SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
5008                       TemplateArgs->getRAngleLoc()),
5009           Satisfaction))
5010     return ExprError();
5011   auto *CL = ConceptReference::Create(
5012       Context,
5013       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
5014       TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
5015       ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs));
5016   return ConceptSpecializationExpr::Create(
5017       Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction);
5018 }
5019 
5020 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
5021                                      SourceLocation TemplateKWLoc,
5022                                      LookupResult &R,
5023                                      bool RequiresADL,
5024                                  const TemplateArgumentListInfo *TemplateArgs) {
5025   // FIXME: Can we do any checking at this point? I guess we could check the
5026   // template arguments that we have against the template name, if the template
5027   // name refers to a single template. That's not a terribly common case,
5028   // though.
5029   // foo<int> could identify a single function unambiguously
5030   // This approach does NOT work, since f<int>(1);
5031   // gets resolved prior to resorting to overload resolution
5032   // i.e., template<class T> void f(double);
5033   //       vs template<class T, class U> void f(U);
5034 
5035   // These should be filtered out by our callers.
5036   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
5037 
5038   // Non-function templates require a template argument list.
5039   if (auto *TD = R.getAsSingle<TemplateDecl>()) {
5040     if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
5041       diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
5042       return ExprError();
5043     }
5044   }
5045   bool KnownDependent = false;
5046   // In C++1y, check variable template ids.
5047   if (R.getAsSingle<VarTemplateDecl>()) {
5048     ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
5049                                         R.getAsSingle<VarTemplateDecl>(),
5050                                         TemplateKWLoc, TemplateArgs);
5051     if (Res.isInvalid() || Res.isUsable())
5052       return Res;
5053     // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
5054     KnownDependent = true;
5055   }
5056 
5057   if (R.getAsSingle<ConceptDecl>()) {
5058     return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
5059                                   R.getFoundDecl(),
5060                                   R.getAsSingle<ConceptDecl>(), TemplateArgs);
5061   }
5062 
5063   // We don't want lookup warnings at this point.
5064   R.suppressDiagnostics();
5065 
5066   UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
5067       Context, R.getNamingClass(), SS.getWithLocInContext(Context),
5068       TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs,
5069       R.begin(), R.end(), KnownDependent);
5070 
5071   return ULE;
5072 }
5073 
5074 // We actually only call this from template instantiation.
5075 ExprResult
5076 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
5077                                    SourceLocation TemplateKWLoc,
5078                                    const DeclarationNameInfo &NameInfo,
5079                              const TemplateArgumentListInfo *TemplateArgs) {
5080 
5081   assert(TemplateArgs || TemplateKWLoc.isValid());
5082   DeclContext *DC;
5083   if (!(DC = computeDeclContext(SS, false)) ||
5084       DC->isDependentContext() ||
5085       RequireCompleteDeclContext(SS, DC))
5086     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
5087 
5088   bool MemberOfUnknownSpecialization;
5089   LookupResult R(*this, NameInfo, LookupOrdinaryName);
5090   if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
5091                          /*Entering*/false, MemberOfUnknownSpecialization,
5092                          TemplateKWLoc))
5093     return ExprError();
5094 
5095   if (R.isAmbiguous())
5096     return ExprError();
5097 
5098   if (R.empty()) {
5099     Diag(NameInfo.getLoc(), diag::err_no_member)
5100       << NameInfo.getName() << DC << SS.getRange();
5101     return ExprError();
5102   }
5103 
5104   auto DiagnoseTypeTemplateDecl = [&](TemplateDecl *Temp,
5105                                       bool isTypeAliasTemplateDecl) {
5106     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
5107         << SS.getScopeRep() << NameInfo.getName().getAsString() << SS.getRange()
5108         << isTypeAliasTemplateDecl;
5109     Diag(Temp->getLocation(), diag::note_referenced_type_template) << 0;
5110     return ExprError();
5111   };
5112 
5113   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>())
5114     return DiagnoseTypeTemplateDecl(Temp, false);
5115 
5116   if (TypeAliasTemplateDecl *Temp = R.getAsSingle<TypeAliasTemplateDecl>())
5117     return DiagnoseTypeTemplateDecl(Temp, true);
5118 
5119   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
5120 }
5121 
5122 /// Form a template name from a name that is syntactically required to name a
5123 /// template, either due to use of the 'template' keyword or because a name in
5124 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
5125 ///
5126 /// This action forms a template name given the name of the template and its
5127 /// optional scope specifier. This is used when the 'template' keyword is used
5128 /// or when the parsing context unambiguously treats a following '<' as
5129 /// introducing a template argument list. Note that this may produce a
5130 /// non-dependent template name if we can perform the lookup now and identify
5131 /// the named template.
5132 ///
5133 /// For example, given "x.MetaFun::template apply", the scope specifier
5134 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
5135 /// of the "template" keyword, and "apply" is the \p Name.
5136 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
5137                                          CXXScopeSpec &SS,
5138                                          SourceLocation TemplateKWLoc,
5139                                          const UnqualifiedId &Name,
5140                                          ParsedType ObjectType,
5141                                          bool EnteringContext,
5142                                          TemplateTy &Result,
5143                                          bool AllowInjectedClassName) {
5144   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
5145     Diag(TemplateKWLoc,
5146          getLangOpts().CPlusPlus11 ?
5147            diag::warn_cxx98_compat_template_outside_of_template :
5148            diag::ext_template_outside_of_template)
5149       << FixItHint::CreateRemoval(TemplateKWLoc);
5150 
5151   if (SS.isInvalid())
5152     return TNK_Non_template;
5153 
5154   // Figure out where isTemplateName is going to look.
5155   DeclContext *LookupCtx = nullptr;
5156   if (SS.isNotEmpty())
5157     LookupCtx = computeDeclContext(SS, EnteringContext);
5158   else if (ObjectType)
5159     LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
5160 
5161   // C++0x [temp.names]p5:
5162   //   If a name prefixed by the keyword template is not the name of
5163   //   a template, the program is ill-formed. [Note: the keyword
5164   //   template may not be applied to non-template members of class
5165   //   templates. -end note ] [ Note: as is the case with the
5166   //   typename prefix, the template prefix is allowed in cases
5167   //   where it is not strictly necessary; i.e., when the
5168   //   nested-name-specifier or the expression on the left of the ->
5169   //   or . is not dependent on a template-parameter, or the use
5170   //   does not appear in the scope of a template. -end note]
5171   //
5172   // Note: C++03 was more strict here, because it banned the use of
5173   // the "template" keyword prior to a template-name that was not a
5174   // dependent name. C++ DR468 relaxed this requirement (the
5175   // "template" keyword is now permitted). We follow the C++0x
5176   // rules, even in C++03 mode with a warning, retroactively applying the DR.
5177   bool MemberOfUnknownSpecialization;
5178   TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
5179                                         ObjectType, EnteringContext, Result,
5180                                         MemberOfUnknownSpecialization);
5181   if (TNK != TNK_Non_template) {
5182     // We resolved this to a (non-dependent) template name. Return it.
5183     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
5184     if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
5185         Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
5186         Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
5187       // C++14 [class.qual]p2:
5188       //   In a lookup in which function names are not ignored and the
5189       //   nested-name-specifier nominates a class C, if the name specified
5190       //   [...] is the injected-class-name of C, [...] the name is instead
5191       //   considered to name the constructor
5192       //
5193       // We don't get here if naming the constructor would be valid, so we
5194       // just reject immediately and recover by treating the
5195       // injected-class-name as naming the template.
5196       Diag(Name.getBeginLoc(),
5197            diag::ext_out_of_line_qualified_id_type_names_constructor)
5198           << Name.Identifier
5199           << 0 /*injected-class-name used as template name*/
5200           << TemplateKWLoc.isValid();
5201     }
5202     return TNK;
5203   }
5204 
5205   if (!MemberOfUnknownSpecialization) {
5206     // Didn't find a template name, and the lookup wasn't dependent.
5207     // Do the lookup again to determine if this is a "nothing found" case or
5208     // a "not a template" case. FIXME: Refactor isTemplateName so we don't
5209     // need to do this.
5210     DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
5211     LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
5212                    LookupOrdinaryName);
5213     bool MOUS;
5214     // Tell LookupTemplateName that we require a template so that it diagnoses
5215     // cases where it finds a non-template.
5216     RequiredTemplateKind RTK = TemplateKWLoc.isValid()
5217                                    ? RequiredTemplateKind(TemplateKWLoc)
5218                                    : TemplateNameIsRequired;
5219     if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
5220                             RTK, nullptr, /*AllowTypoCorrection=*/false) &&
5221         !R.isAmbiguous()) {
5222       if (LookupCtx)
5223         Diag(Name.getBeginLoc(), diag::err_no_member)
5224             << DNI.getName() << LookupCtx << SS.getRange();
5225       else
5226         Diag(Name.getBeginLoc(), diag::err_undeclared_use)
5227             << DNI.getName() << SS.getRange();
5228     }
5229     return TNK_Non_template;
5230   }
5231 
5232   NestedNameSpecifier *Qualifier = SS.getScopeRep();
5233 
5234   switch (Name.getKind()) {
5235   case UnqualifiedIdKind::IK_Identifier:
5236     Result = TemplateTy::make(
5237         Context.getDependentTemplateName(Qualifier, Name.Identifier));
5238     return TNK_Dependent_template_name;
5239 
5240   case UnqualifiedIdKind::IK_OperatorFunctionId:
5241     Result = TemplateTy::make(Context.getDependentTemplateName(
5242         Qualifier, Name.OperatorFunctionId.Operator));
5243     return TNK_Function_template;
5244 
5245   case UnqualifiedIdKind::IK_LiteralOperatorId:
5246     // This is a kind of template name, but can never occur in a dependent
5247     // scope (literal operators can only be declared at namespace scope).
5248     break;
5249 
5250   default:
5251     break;
5252   }
5253 
5254   // This name cannot possibly name a dependent template. Diagnose this now
5255   // rather than building a dependent template name that can never be valid.
5256   Diag(Name.getBeginLoc(),
5257        diag::err_template_kw_refers_to_dependent_non_template)
5258       << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5259       << TemplateKWLoc.isValid() << TemplateKWLoc;
5260   return TNK_Non_template;
5261 }
5262 
5263 bool Sema::CheckTemplateTypeArgument(
5264     TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
5265     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5266     SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
5267   const TemplateArgument &Arg = AL.getArgument();
5268   QualType ArgType;
5269   TypeSourceInfo *TSI = nullptr;
5270 
5271   // Check template type parameter.
5272   switch(Arg.getKind()) {
5273   case TemplateArgument::Type:
5274     // C++ [temp.arg.type]p1:
5275     //   A template-argument for a template-parameter which is a
5276     //   type shall be a type-id.
5277     ArgType = Arg.getAsType();
5278     TSI = AL.getTypeSourceInfo();
5279     break;
5280   case TemplateArgument::Template:
5281   case TemplateArgument::TemplateExpansion: {
5282     // We have a template type parameter but the template argument
5283     // is a template without any arguments.
5284     SourceRange SR = AL.getSourceRange();
5285     TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5286     diagnoseMissingTemplateArguments(Name, SR.getEnd());
5287     return true;
5288   }
5289   case TemplateArgument::Expression: {
5290     // We have a template type parameter but the template argument is an
5291     // expression; see if maybe it is missing the "typename" keyword.
5292     CXXScopeSpec SS;
5293     DeclarationNameInfo NameInfo;
5294 
5295    if (DependentScopeDeclRefExpr *ArgExpr =
5296                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
5297       SS.Adopt(ArgExpr->getQualifierLoc());
5298       NameInfo = ArgExpr->getNameInfo();
5299     } else if (CXXDependentScopeMemberExpr *ArgExpr =
5300                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
5301       if (ArgExpr->isImplicitAccess()) {
5302         SS.Adopt(ArgExpr->getQualifierLoc());
5303         NameInfo = ArgExpr->getMemberNameInfo();
5304       }
5305     }
5306 
5307     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5308       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5309       LookupParsedName(Result, CurScope, &SS);
5310 
5311       if (Result.getAsSingle<TypeDecl>() ||
5312           Result.getResultKind() ==
5313               LookupResult::NotFoundInCurrentInstantiation) {
5314         assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
5315         // Suggest that the user add 'typename' before the NNS.
5316         SourceLocation Loc = AL.getSourceRange().getBegin();
5317         Diag(Loc, getLangOpts().MSVCCompat
5318                       ? diag::ext_ms_template_type_arg_missing_typename
5319                       : diag::err_template_arg_must_be_type_suggest)
5320             << FixItHint::CreateInsertion(Loc, "typename ");
5321         NoteTemplateParameterLocation(*Param);
5322 
5323         // Recover by synthesizing a type using the location information that we
5324         // already have.
5325         ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename,
5326                                                SS.getScopeRep(), II);
5327         TypeLocBuilder TLB;
5328         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5329         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5330         TL.setQualifierLoc(SS.getWithLocInContext(Context));
5331         TL.setNameLoc(NameInfo.getLoc());
5332         TSI = TLB.getTypeSourceInfo(Context, ArgType);
5333 
5334         // Overwrite our input TemplateArgumentLoc so that we can recover
5335         // properly.
5336         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5337                                  TemplateArgumentLocInfo(TSI));
5338 
5339         break;
5340       }
5341     }
5342     // fallthrough
5343     [[fallthrough]];
5344   }
5345   default: {
5346     // We have a template type parameter but the template argument
5347     // is not a type.
5348     SourceRange SR = AL.getSourceRange();
5349     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5350     NoteTemplateParameterLocation(*Param);
5351 
5352     return true;
5353   }
5354   }
5355 
5356   if (CheckTemplateArgument(TSI))
5357     return true;
5358 
5359   // Objective-C ARC:
5360   //   If an explicitly-specified template argument type is a lifetime type
5361   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5362   if (getLangOpts().ObjCAutoRefCount &&
5363       ArgType->isObjCLifetimeType() &&
5364       !ArgType.getObjCLifetime()) {
5365     Qualifiers Qs;
5366     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5367     ArgType = Context.getQualifiedType(ArgType, Qs);
5368   }
5369 
5370   SugaredConverted.push_back(TemplateArgument(ArgType));
5371   CanonicalConverted.push_back(
5372       TemplateArgument(Context.getCanonicalType(ArgType)));
5373   return false;
5374 }
5375 
5376 /// Substitute template arguments into the default template argument for
5377 /// the given template type parameter.
5378 ///
5379 /// \param SemaRef the semantic analysis object for which we are performing
5380 /// the substitution.
5381 ///
5382 /// \param Template the template that we are synthesizing template arguments
5383 /// for.
5384 ///
5385 /// \param TemplateLoc the location of the template name that started the
5386 /// template-id we are checking.
5387 ///
5388 /// \param RAngleLoc the location of the right angle bracket ('>') that
5389 /// terminates the template-id.
5390 ///
5391 /// \param Param the template template parameter whose default we are
5392 /// substituting into.
5393 ///
5394 /// \param Converted the list of template arguments provided for template
5395 /// parameters that precede \p Param in the template parameter list.
5396 /// \returns the substituted template argument, or NULL if an error occurred.
5397 static TypeSourceInfo *SubstDefaultTemplateArgument(
5398     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5399     SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
5400     ArrayRef<TemplateArgument> SugaredConverted,
5401     ArrayRef<TemplateArgument> CanonicalConverted) {
5402   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5403 
5404   // If the argument type is dependent, instantiate it now based
5405   // on the previously-computed template arguments.
5406   if (ArgType->getType()->isInstantiationDependentType()) {
5407     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5408                                      SugaredConverted,
5409                                      SourceRange(TemplateLoc, RAngleLoc));
5410     if (Inst.isInvalid())
5411       return nullptr;
5412 
5413     // Only substitute for the innermost template argument list.
5414     MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5415                                                     /*Final=*/true);
5416     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5417       TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5418 
5419     bool ForLambdaCallOperator = false;
5420     if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5421       ForLambdaCallOperator = Rec->isLambda();
5422     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5423                                    !ForLambdaCallOperator);
5424     ArgType =
5425         SemaRef.SubstType(ArgType, TemplateArgLists,
5426                           Param->getDefaultArgumentLoc(), Param->getDeclName());
5427   }
5428 
5429   return ArgType;
5430 }
5431 
5432 /// Substitute template arguments into the default template argument for
5433 /// the given non-type template parameter.
5434 ///
5435 /// \param SemaRef the semantic analysis object for which we are performing
5436 /// the substitution.
5437 ///
5438 /// \param Template the template that we are synthesizing template arguments
5439 /// for.
5440 ///
5441 /// \param TemplateLoc the location of the template name that started the
5442 /// template-id we are checking.
5443 ///
5444 /// \param RAngleLoc the location of the right angle bracket ('>') that
5445 /// terminates the template-id.
5446 ///
5447 /// \param Param the non-type template parameter whose default we are
5448 /// substituting into.
5449 ///
5450 /// \param Converted the list of template arguments provided for template
5451 /// parameters that precede \p Param in the template parameter list.
5452 ///
5453 /// \returns the substituted template argument, or NULL if an error occurred.
5454 static ExprResult SubstDefaultTemplateArgument(
5455     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5456     SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
5457     ArrayRef<TemplateArgument> SugaredConverted,
5458     ArrayRef<TemplateArgument> CanonicalConverted) {
5459   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5460                                    SugaredConverted,
5461                                    SourceRange(TemplateLoc, RAngleLoc));
5462   if (Inst.isInvalid())
5463     return ExprError();
5464 
5465   // Only substitute for the innermost template argument list.
5466   MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5467                                                   /*Final=*/true);
5468   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5469     TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5470 
5471   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5472   EnterExpressionEvaluationContext ConstantEvaluated(
5473       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5474   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5475 }
5476 
5477 /// Substitute template arguments into the default template argument for
5478 /// the given template template parameter.
5479 ///
5480 /// \param SemaRef the semantic analysis object for which we are performing
5481 /// the substitution.
5482 ///
5483 /// \param Template the template that we are synthesizing template arguments
5484 /// for.
5485 ///
5486 /// \param TemplateLoc the location of the template name that started the
5487 /// template-id we are checking.
5488 ///
5489 /// \param RAngleLoc the location of the right angle bracket ('>') that
5490 /// terminates the template-id.
5491 ///
5492 /// \param Param the template template parameter whose default we are
5493 /// substituting into.
5494 ///
5495 /// \param Converted the list of template arguments provided for template
5496 /// parameters that precede \p Param in the template parameter list.
5497 ///
5498 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5499 /// source-location information) that precedes the template name.
5500 ///
5501 /// \returns the substituted template argument, or NULL if an error occurred.
5502 static TemplateName SubstDefaultTemplateArgument(
5503     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5504     SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
5505     ArrayRef<TemplateArgument> SugaredConverted,
5506     ArrayRef<TemplateArgument> CanonicalConverted,
5507     NestedNameSpecifierLoc &QualifierLoc) {
5508   Sema::InstantiatingTemplate Inst(
5509       SemaRef, TemplateLoc, TemplateParameter(Param), Template,
5510       SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
5511   if (Inst.isInvalid())
5512     return TemplateName();
5513 
5514   // Only substitute for the innermost template argument list.
5515   MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5516                                                   /*Final=*/true);
5517   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5518     TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5519 
5520   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5521   // Substitute into the nested-name-specifier first,
5522   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5523   if (QualifierLoc) {
5524     QualifierLoc =
5525         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5526     if (!QualifierLoc)
5527       return TemplateName();
5528   }
5529 
5530   return SemaRef.SubstTemplateName(
5531              QualifierLoc,
5532              Param->getDefaultArgument().getArgument().getAsTemplate(),
5533              Param->getDefaultArgument().getTemplateNameLoc(),
5534              TemplateArgLists);
5535 }
5536 
5537 /// If the given template parameter has a default template
5538 /// argument, substitute into that default template argument and
5539 /// return the corresponding template argument.
5540 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
5541     TemplateDecl *Template, SourceLocation TemplateLoc,
5542     SourceLocation RAngleLoc, Decl *Param,
5543     ArrayRef<TemplateArgument> SugaredConverted,
5544     ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
5545   HasDefaultArg = false;
5546 
5547   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5548     if (!hasReachableDefaultArgument(TypeParm))
5549       return TemplateArgumentLoc();
5550 
5551     HasDefaultArg = true;
5552     TypeSourceInfo *DI = SubstDefaultTemplateArgument(
5553         *this, Template, TemplateLoc, RAngleLoc, TypeParm, SugaredConverted,
5554         CanonicalConverted);
5555     if (DI)
5556       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5557 
5558     return TemplateArgumentLoc();
5559   }
5560 
5561   if (NonTypeTemplateParmDecl *NonTypeParm
5562         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5563     if (!hasReachableDefaultArgument(NonTypeParm))
5564       return TemplateArgumentLoc();
5565 
5566     HasDefaultArg = true;
5567     ExprResult Arg = SubstDefaultTemplateArgument(
5568         *this, Template, TemplateLoc, RAngleLoc, NonTypeParm, SugaredConverted,
5569         CanonicalConverted);
5570     if (Arg.isInvalid())
5571       return TemplateArgumentLoc();
5572 
5573     Expr *ArgE = Arg.getAs<Expr>();
5574     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5575   }
5576 
5577   TemplateTemplateParmDecl *TempTempParm
5578     = cast<TemplateTemplateParmDecl>(Param);
5579   if (!hasReachableDefaultArgument(TempTempParm))
5580     return TemplateArgumentLoc();
5581 
5582   HasDefaultArg = true;
5583   NestedNameSpecifierLoc QualifierLoc;
5584   TemplateName TName = SubstDefaultTemplateArgument(
5585       *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted,
5586       CanonicalConverted, QualifierLoc);
5587   if (TName.isNull())
5588     return TemplateArgumentLoc();
5589 
5590   return TemplateArgumentLoc(
5591       Context, TemplateArgument(TName),
5592       TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5593       TempTempParm->getDefaultArgument().getTemplateNameLoc());
5594 }
5595 
5596 /// Convert a template-argument that we parsed as a type into a template, if
5597 /// possible. C++ permits injected-class-names to perform dual service as
5598 /// template template arguments and as template type arguments.
5599 static TemplateArgumentLoc
5600 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5601   // Extract and step over any surrounding nested-name-specifier.
5602   NestedNameSpecifierLoc QualLoc;
5603   if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5604     if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None)
5605       return TemplateArgumentLoc();
5606 
5607     QualLoc = ETLoc.getQualifierLoc();
5608     TLoc = ETLoc.getNamedTypeLoc();
5609   }
5610   // If this type was written as an injected-class-name, it can be used as a
5611   // template template argument.
5612   if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5613     return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5614                                QualLoc, InjLoc.getNameLoc());
5615 
5616   // If this type was written as an injected-class-name, it may have been
5617   // converted to a RecordType during instantiation. If the RecordType is
5618   // *not* wrapped in a TemplateSpecializationType and denotes a class
5619   // template specialization, it must have come from an injected-class-name.
5620   if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5621     if (auto *CTSD =
5622             dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5623       return TemplateArgumentLoc(Context,
5624                                  TemplateName(CTSD->getSpecializedTemplate()),
5625                                  QualLoc, RecLoc.getNameLoc());
5626 
5627   return TemplateArgumentLoc();
5628 }
5629 
5630 /// Check that the given template argument corresponds to the given
5631 /// template parameter.
5632 ///
5633 /// \param Param The template parameter against which the argument will be
5634 /// checked.
5635 ///
5636 /// \param Arg The template argument, which may be updated due to conversions.
5637 ///
5638 /// \param Template The template in which the template argument resides.
5639 ///
5640 /// \param TemplateLoc The location of the template name for the template
5641 /// whose argument list we're matching.
5642 ///
5643 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5644 /// the template argument list.
5645 ///
5646 /// \param ArgumentPackIndex The index into the argument pack where this
5647 /// argument will be placed. Only valid if the parameter is a parameter pack.
5648 ///
5649 /// \param Converted The checked, converted argument will be added to the
5650 /// end of this small vector.
5651 ///
5652 /// \param CTAK Describes how we arrived at this particular template argument:
5653 /// explicitly written, deduced, etc.
5654 ///
5655 /// \returns true on error, false otherwise.
5656 bool Sema::CheckTemplateArgument(
5657     NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template,
5658     SourceLocation TemplateLoc, SourceLocation RAngleLoc,
5659     unsigned ArgumentPackIndex,
5660     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5661     SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5662     CheckTemplateArgumentKind CTAK) {
5663   // Check template type parameters.
5664   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5665     return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted,
5666                                      CanonicalConverted);
5667 
5668   // Check non-type template parameters.
5669   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5670     // Do substitution on the type of the non-type template parameter
5671     // with the template arguments we've seen thus far.  But if the
5672     // template has a dependent context then we cannot substitute yet.
5673     QualType NTTPType = NTTP->getType();
5674     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5675       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5676 
5677     if (NTTPType->isInstantiationDependentType() &&
5678         !isa<TemplateTemplateParmDecl>(Template) &&
5679         !Template->getDeclContext()->isDependentContext()) {
5680       // Do substitution on the type of the non-type template parameter.
5681       InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
5682                                  SugaredConverted,
5683                                  SourceRange(TemplateLoc, RAngleLoc));
5684       if (Inst.isInvalid())
5685         return true;
5686 
5687       MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted,
5688                                            /*Final=*/true);
5689       // If the parameter is a pack expansion, expand this slice of the pack.
5690       if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5691         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5692                                                            ArgumentPackIndex);
5693         NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
5694                              NTTP->getDeclName());
5695       } else {
5696         NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
5697                              NTTP->getDeclName());
5698       }
5699 
5700       // If that worked, check the non-type template parameter type
5701       // for validity.
5702       if (!NTTPType.isNull())
5703         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5704                                                      NTTP->getLocation());
5705       if (NTTPType.isNull())
5706         return true;
5707     }
5708 
5709     switch (Arg.getArgument().getKind()) {
5710     case TemplateArgument::Null:
5711       llvm_unreachable("Should never see a NULL template argument here");
5712 
5713     case TemplateArgument::Expression: {
5714       Expr *E = Arg.getArgument().getAsExpr();
5715       TemplateArgument SugaredResult, CanonicalResult;
5716       unsigned CurSFINAEErrors = NumSFINAEErrors;
5717       ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult,
5718                                              CanonicalResult, CTAK);
5719       if (Res.isInvalid())
5720         return true;
5721       // If the current template argument causes an error, give up now.
5722       if (CurSFINAEErrors < NumSFINAEErrors)
5723         return true;
5724 
5725       // If the resulting expression is new, then use it in place of the
5726       // old expression in the template argument.
5727       if (Res.get() != E) {
5728         TemplateArgument TA(Res.get());
5729         Arg = TemplateArgumentLoc(TA, Res.get());
5730       }
5731 
5732       SugaredConverted.push_back(SugaredResult);
5733       CanonicalConverted.push_back(CanonicalResult);
5734       break;
5735     }
5736 
5737     case TemplateArgument::Declaration:
5738     case TemplateArgument::Integral:
5739     case TemplateArgument::NullPtr:
5740       // We've already checked this template argument, so just copy
5741       // it to the list of converted arguments.
5742       SugaredConverted.push_back(Arg.getArgument());
5743       CanonicalConverted.push_back(
5744           Context.getCanonicalTemplateArgument(Arg.getArgument()));
5745       break;
5746 
5747     case TemplateArgument::Template:
5748     case TemplateArgument::TemplateExpansion:
5749       // We were given a template template argument. It may not be ill-formed;
5750       // see below.
5751       if (DependentTemplateName *DTN
5752             = Arg.getArgument().getAsTemplateOrTemplatePattern()
5753                                               .getAsDependentTemplateName()) {
5754         // We have a template argument such as \c T::template X, which we
5755         // parsed as a template template argument. However, since we now
5756         // know that we need a non-type template argument, convert this
5757         // template name into an expression.
5758 
5759         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5760                                      Arg.getTemplateNameLoc());
5761 
5762         CXXScopeSpec SS;
5763         SS.Adopt(Arg.getTemplateQualifierLoc());
5764         // FIXME: the template-template arg was a DependentTemplateName,
5765         // so it was provided with a template keyword. However, its source
5766         // location is not stored in the template argument structure.
5767         SourceLocation TemplateKWLoc;
5768         ExprResult E = DependentScopeDeclRefExpr::Create(
5769             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5770             nullptr);
5771 
5772         // If we parsed the template argument as a pack expansion, create a
5773         // pack expansion expression.
5774         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5775           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5776           if (E.isInvalid())
5777             return true;
5778         }
5779 
5780         TemplateArgument SugaredResult, CanonicalResult;
5781         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult,
5782                                   CanonicalResult, CTAK_Specified);
5783         if (E.isInvalid())
5784           return true;
5785 
5786         SugaredConverted.push_back(SugaredResult);
5787         CanonicalConverted.push_back(CanonicalResult);
5788         break;
5789       }
5790 
5791       // We have a template argument that actually does refer to a class
5792       // template, alias template, or template template parameter, and
5793       // therefore cannot be a non-type template argument.
5794       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5795         << Arg.getSourceRange();
5796       NoteTemplateParameterLocation(*Param);
5797 
5798       return true;
5799 
5800     case TemplateArgument::Type: {
5801       // We have a non-type template parameter but the template
5802       // argument is a type.
5803 
5804       // C++ [temp.arg]p2:
5805       //   In a template-argument, an ambiguity between a type-id and
5806       //   an expression is resolved to a type-id, regardless of the
5807       //   form of the corresponding template-parameter.
5808       //
5809       // We warn specifically about this case, since it can be rather
5810       // confusing for users.
5811       QualType T = Arg.getArgument().getAsType();
5812       SourceRange SR = Arg.getSourceRange();
5813       if (T->isFunctionType())
5814         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5815       else
5816         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5817       NoteTemplateParameterLocation(*Param);
5818       return true;
5819     }
5820 
5821     case TemplateArgument::Pack:
5822       llvm_unreachable("Caller must expand template argument packs");
5823     }
5824 
5825     return false;
5826   }
5827 
5828 
5829   // Check template template parameters.
5830   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5831 
5832   TemplateParameterList *Params = TempParm->getTemplateParameters();
5833   if (TempParm->isExpandedParameterPack())
5834     Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5835 
5836   // Substitute into the template parameter list of the template
5837   // template parameter, since previously-supplied template arguments
5838   // may appear within the template template parameter.
5839   //
5840   // FIXME: Skip this if the parameters aren't instantiation-dependent.
5841   {
5842     // Set up a template instantiation context.
5843     LocalInstantiationScope Scope(*this);
5844     InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
5845                                SugaredConverted,
5846                                SourceRange(TemplateLoc, RAngleLoc));
5847     if (Inst.isInvalid())
5848       return true;
5849 
5850     Params =
5851         SubstTemplateParams(Params, CurContext,
5852                             MultiLevelTemplateArgumentList(
5853                                 Template, SugaredConverted, /*Final=*/true),
5854                             /*EvaluateConstraints=*/false);
5855     if (!Params)
5856       return true;
5857   }
5858 
5859   // C++1z [temp.local]p1: (DR1004)
5860   //   When [the injected-class-name] is used [...] as a template-argument for
5861   //   a template template-parameter [...] it refers to the class template
5862   //   itself.
5863   if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5864     TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5865         Context, Arg.getTypeSourceInfo()->getTypeLoc());
5866     if (!ConvertedArg.getArgument().isNull())
5867       Arg = ConvertedArg;
5868   }
5869 
5870   switch (Arg.getArgument().getKind()) {
5871   case TemplateArgument::Null:
5872     llvm_unreachable("Should never see a NULL template argument here");
5873 
5874   case TemplateArgument::Template:
5875   case TemplateArgument::TemplateExpansion:
5876     if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5877       return true;
5878 
5879     SugaredConverted.push_back(Arg.getArgument());
5880     CanonicalConverted.push_back(
5881         Context.getCanonicalTemplateArgument(Arg.getArgument()));
5882     break;
5883 
5884   case TemplateArgument::Expression:
5885   case TemplateArgument::Type:
5886     // We have a template template parameter but the template
5887     // argument does not refer to a template.
5888     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5889       << getLangOpts().CPlusPlus11;
5890     return true;
5891 
5892   case TemplateArgument::Declaration:
5893     llvm_unreachable("Declaration argument with template template parameter");
5894   case TemplateArgument::Integral:
5895     llvm_unreachable("Integral argument with template template parameter");
5896   case TemplateArgument::NullPtr:
5897     llvm_unreachable("Null pointer argument with template template parameter");
5898 
5899   case TemplateArgument::Pack:
5900     llvm_unreachable("Caller must expand template argument packs");
5901   }
5902 
5903   return false;
5904 }
5905 
5906 /// Diagnose a missing template argument.
5907 template<typename TemplateParmDecl>
5908 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5909                                     TemplateDecl *TD,
5910                                     const TemplateParmDecl *D,
5911                                     TemplateArgumentListInfo &Args) {
5912   // Dig out the most recent declaration of the template parameter; there may be
5913   // declarations of the template that are more recent than TD.
5914   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5915                                  ->getTemplateParameters()
5916                                  ->getParam(D->getIndex()));
5917 
5918   // If there's a default argument that's not reachable, diagnose that we're
5919   // missing a module import.
5920   llvm::SmallVector<Module*, 8> Modules;
5921   if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5922     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5923                             D->getDefaultArgumentLoc(), Modules,
5924                             Sema::MissingImportKind::DefaultArgument,
5925                             /*Recover*/true);
5926     return true;
5927   }
5928 
5929   // FIXME: If there's a more recent default argument that *is* visible,
5930   // diagnose that it was declared too late.
5931 
5932   TemplateParameterList *Params = TD->getTemplateParameters();
5933 
5934   S.Diag(Loc, diag::err_template_arg_list_different_arity)
5935     << /*not enough args*/0
5936     << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5937     << TD;
5938   S.NoteTemplateLocation(*TD, Params->getSourceRange());
5939   return true;
5940 }
5941 
5942 /// Check that the given template argument list is well-formed
5943 /// for specializing the given template.
5944 bool Sema::CheckTemplateArgumentList(
5945     TemplateDecl *Template, SourceLocation TemplateLoc,
5946     TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5947     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5948     SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5949     bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5950 
5951   if (ConstraintsNotSatisfied)
5952     *ConstraintsNotSatisfied = false;
5953 
5954   // Make a copy of the template arguments for processing.  Only make the
5955   // changes at the end when successful in matching the arguments to the
5956   // template.
5957   TemplateArgumentListInfo NewArgs = TemplateArgs;
5958 
5959   // Make sure we get the template parameter list from the most
5960   // recent declaration, since that is the only one that is guaranteed to
5961   // have all the default template argument information.
5962   TemplateParameterList *Params =
5963       cast<TemplateDecl>(Template->getMostRecentDecl())
5964           ->getTemplateParameters();
5965 
5966   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5967 
5968   // C++ [temp.arg]p1:
5969   //   [...] The type and form of each template-argument specified in
5970   //   a template-id shall match the type and form specified for the
5971   //   corresponding parameter declared by the template in its
5972   //   template-parameter-list.
5973   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5974   SmallVector<TemplateArgument, 2> SugaredArgumentPack;
5975   SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
5976   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5977   LocalInstantiationScope InstScope(*this, true);
5978   for (TemplateParameterList::iterator Param = Params->begin(),
5979                                        ParamEnd = Params->end();
5980        Param != ParamEnd; /* increment in loop */) {
5981     // If we have an expanded parameter pack, make sure we don't have too
5982     // many arguments.
5983     if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5984       if (*Expansions == SugaredArgumentPack.size()) {
5985         // We're done with this parameter pack. Pack up its arguments and add
5986         // them to the list.
5987         SugaredConverted.push_back(
5988             TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5989         SugaredArgumentPack.clear();
5990 
5991         CanonicalConverted.push_back(
5992             TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5993         CanonicalArgumentPack.clear();
5994 
5995         // This argument is assigned to the next parameter.
5996         ++Param;
5997         continue;
5998       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5999         // Not enough arguments for this parameter pack.
6000         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6001           << /*not enough args*/0
6002           << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6003           << Template;
6004         NoteTemplateLocation(*Template, Params->getSourceRange());
6005         return true;
6006       }
6007     }
6008 
6009     if (ArgIdx < NumArgs) {
6010       // Check the template argument we were given.
6011       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc,
6012                                 RAngleLoc, SugaredArgumentPack.size(),
6013                                 SugaredConverted, CanonicalConverted,
6014                                 CTAK_Specified))
6015         return true;
6016 
6017       CanonicalConverted.back().setIsDefaulted(
6018           clang::isSubstitutedDefaultArgument(
6019               Context, NewArgs[ArgIdx].getArgument(), *Param,
6020               CanonicalConverted, Params->getDepth()));
6021 
6022       bool PackExpansionIntoNonPack =
6023           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
6024           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
6025       if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
6026                                        isa<ConceptDecl>(Template))) {
6027         // Core issue 1430: we have a pack expansion as an argument to an
6028         // alias template, and it's not part of a parameter pack. This
6029         // can't be canonicalized, so reject it now.
6030         // As for concepts - we cannot normalize constraints where this
6031         // situation exists.
6032         Diag(NewArgs[ArgIdx].getLocation(),
6033              diag::err_template_expansion_into_fixed_list)
6034           << (isa<ConceptDecl>(Template) ? 1 : 0)
6035           << NewArgs[ArgIdx].getSourceRange();
6036         NoteTemplateParameterLocation(**Param);
6037         return true;
6038       }
6039 
6040       // We're now done with this argument.
6041       ++ArgIdx;
6042 
6043       if ((*Param)->isTemplateParameterPack()) {
6044         // The template parameter was a template parameter pack, so take the
6045         // deduced argument and place it on the argument pack. Note that we
6046         // stay on the same template parameter so that we can deduce more
6047         // arguments.
6048         SugaredArgumentPack.push_back(SugaredConverted.pop_back_val());
6049         CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val());
6050       } else {
6051         // Move to the next template parameter.
6052         ++Param;
6053       }
6054 
6055       // If we just saw a pack expansion into a non-pack, then directly convert
6056       // the remaining arguments, because we don't know what parameters they'll
6057       // match up with.
6058       if (PackExpansionIntoNonPack) {
6059         if (!SugaredArgumentPack.empty()) {
6060           // If we were part way through filling in an expanded parameter pack,
6061           // fall back to just producing individual arguments.
6062           SugaredConverted.insert(SugaredConverted.end(),
6063                                   SugaredArgumentPack.begin(),
6064                                   SugaredArgumentPack.end());
6065           SugaredArgumentPack.clear();
6066 
6067           CanonicalConverted.insert(CanonicalConverted.end(),
6068                                     CanonicalArgumentPack.begin(),
6069                                     CanonicalArgumentPack.end());
6070           CanonicalArgumentPack.clear();
6071         }
6072 
6073         while (ArgIdx < NumArgs) {
6074           const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument();
6075           SugaredConverted.push_back(Arg);
6076           CanonicalConverted.push_back(
6077               Context.getCanonicalTemplateArgument(Arg));
6078           ++ArgIdx;
6079         }
6080 
6081         return false;
6082       }
6083 
6084       continue;
6085     }
6086 
6087     // If we're checking a partial template argument list, we're done.
6088     if (PartialTemplateArgs) {
6089       if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) {
6090         SugaredConverted.push_back(
6091             TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6092         CanonicalConverted.push_back(
6093             TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6094       }
6095       return false;
6096     }
6097 
6098     // If we have a template parameter pack with no more corresponding
6099     // arguments, just break out now and we'll fill in the argument pack below.
6100     if ((*Param)->isTemplateParameterPack()) {
6101       assert(!getExpandedPackSize(*Param) &&
6102              "Should have dealt with this already");
6103 
6104       // A non-expanded parameter pack before the end of the parameter list
6105       // only occurs for an ill-formed template parameter list, unless we've
6106       // got a partial argument list for a function template, so just bail out.
6107       if (Param + 1 != ParamEnd) {
6108         assert(
6109             (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) &&
6110             "Concept templates must have parameter packs at the end.");
6111         return true;
6112       }
6113 
6114       SugaredConverted.push_back(
6115           TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6116       SugaredArgumentPack.clear();
6117 
6118       CanonicalConverted.push_back(
6119           TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6120       CanonicalArgumentPack.clear();
6121 
6122       ++Param;
6123       continue;
6124     }
6125 
6126     // Check whether we have a default argument.
6127     TemplateArgumentLoc Arg;
6128 
6129     // Retrieve the default template argument from the template
6130     // parameter. For each kind of template parameter, we substitute the
6131     // template arguments provided thus far and any "outer" template arguments
6132     // (when the template parameter was part of a nested template) into
6133     // the default argument.
6134     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
6135       if (!hasReachableDefaultArgument(TTP))
6136         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
6137                                        NewArgs);
6138 
6139       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(
6140           *this, Template, TemplateLoc, RAngleLoc, TTP, SugaredConverted,
6141           CanonicalConverted);
6142       if (!ArgType)
6143         return true;
6144 
6145       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
6146                                 ArgType);
6147     } else if (NonTypeTemplateParmDecl *NTTP
6148                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
6149       if (!hasReachableDefaultArgument(NTTP))
6150         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
6151                                        NewArgs);
6152 
6153       ExprResult E = SubstDefaultTemplateArgument(
6154           *this, Template, TemplateLoc, RAngleLoc, NTTP, SugaredConverted,
6155           CanonicalConverted);
6156       if (E.isInvalid())
6157         return true;
6158 
6159       Expr *Ex = E.getAs<Expr>();
6160       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
6161     } else {
6162       TemplateTemplateParmDecl *TempParm
6163         = cast<TemplateTemplateParmDecl>(*Param);
6164 
6165       if (!hasReachableDefaultArgument(TempParm))
6166         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
6167                                        NewArgs);
6168 
6169       NestedNameSpecifierLoc QualifierLoc;
6170       TemplateName Name = SubstDefaultTemplateArgument(
6171           *this, Template, TemplateLoc, RAngleLoc, TempParm, SugaredConverted,
6172           CanonicalConverted, QualifierLoc);
6173       if (Name.isNull())
6174         return true;
6175 
6176       Arg = TemplateArgumentLoc(
6177           Context, TemplateArgument(Name), QualifierLoc,
6178           TempParm->getDefaultArgument().getTemplateNameLoc());
6179     }
6180 
6181     // Introduce an instantiation record that describes where we are using
6182     // the default template argument. We're not actually instantiating a
6183     // template here, we just create this object to put a note into the
6184     // context stack.
6185     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param,
6186                                SugaredConverted,
6187                                SourceRange(TemplateLoc, RAngleLoc));
6188     if (Inst.isInvalid())
6189       return true;
6190 
6191     // Check the default template argument.
6192     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0,
6193                               SugaredConverted, CanonicalConverted,
6194                               CTAK_Specified))
6195       return true;
6196 
6197     CanonicalConverted.back().setIsDefaulted(true);
6198 
6199     // Core issue 150 (assumed resolution): if this is a template template
6200     // parameter, keep track of the default template arguments from the
6201     // template definition.
6202     if (isTemplateTemplateParameter)
6203       NewArgs.addArgument(Arg);
6204 
6205     // Move to the next template parameter and argument.
6206     ++Param;
6207     ++ArgIdx;
6208   }
6209 
6210   // If we're performing a partial argument substitution, allow any trailing
6211   // pack expansions; they might be empty. This can happen even if
6212   // PartialTemplateArgs is false (the list of arguments is complete but
6213   // still dependent).
6214   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
6215       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
6216     while (ArgIdx < NumArgs &&
6217            NewArgs[ArgIdx].getArgument().isPackExpansion()) {
6218       const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument();
6219       SugaredConverted.push_back(Arg);
6220       CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg));
6221     }
6222   }
6223 
6224   // If we have any leftover arguments, then there were too many arguments.
6225   // Complain and fail.
6226   if (ArgIdx < NumArgs) {
6227     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6228         << /*too many args*/1
6229         << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6230         << Template
6231         << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
6232     NoteTemplateLocation(*Template, Params->getSourceRange());
6233     return true;
6234   }
6235 
6236   // No problems found with the new argument list, propagate changes back
6237   // to caller.
6238   if (UpdateArgsWithConversions)
6239     TemplateArgs = std::move(NewArgs);
6240 
6241   if (!PartialTemplateArgs) {
6242     TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
6243                                            CanonicalConverted);
6244     // Setup the context/ThisScope for the case where we are needing to
6245     // re-instantiate constraints outside of normal instantiation.
6246     DeclContext *NewContext = Template->getDeclContext();
6247 
6248     // If this template is in a template, make sure we extract the templated
6249     // decl.
6250     if (auto *TD = dyn_cast<TemplateDecl>(NewContext))
6251       NewContext = Decl::castToDeclContext(TD->getTemplatedDecl());
6252     auto *RD = dyn_cast<CXXRecordDecl>(NewContext);
6253 
6254     Qualifiers ThisQuals;
6255     if (const auto *Method =
6256             dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl()))
6257       ThisQuals = Method->getMethodQualifiers();
6258 
6259     ContextRAII Context(*this, NewContext);
6260     CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr);
6261 
6262     MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs(
6263         Template, NewContext, /*Final=*/false, &StackTemplateArgs,
6264         /*RelativeToPrimary=*/true,
6265         /*Pattern=*/nullptr,
6266         /*ForConceptInstantiation=*/true);
6267     if (EnsureTemplateArgumentListConstraints(
6268             Template, MLTAL,
6269             SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) {
6270       if (ConstraintsNotSatisfied)
6271         *ConstraintsNotSatisfied = true;
6272       return true;
6273     }
6274   }
6275 
6276   return false;
6277 }
6278 
6279 namespace {
6280   class UnnamedLocalNoLinkageFinder
6281     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
6282   {
6283     Sema &S;
6284     SourceRange SR;
6285 
6286     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
6287 
6288   public:
6289     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
6290 
6291     bool Visit(QualType T) {
6292       return T.isNull() ? false : inherited::Visit(T.getTypePtr());
6293     }
6294 
6295 #define TYPE(Class, Parent) \
6296     bool Visit##Class##Type(const Class##Type *);
6297 #define ABSTRACT_TYPE(Class, Parent) \
6298     bool Visit##Class##Type(const Class##Type *) { return false; }
6299 #define NON_CANONICAL_TYPE(Class, Parent) \
6300     bool Visit##Class##Type(const Class##Type *) { return false; }
6301 #include "clang/AST/TypeNodes.inc"
6302 
6303     bool VisitTagDecl(const TagDecl *Tag);
6304     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
6305   };
6306 } // end anonymous namespace
6307 
6308 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
6309   return false;
6310 }
6311 
6312 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
6313   return Visit(T->getElementType());
6314 }
6315 
6316 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
6317   return Visit(T->getPointeeType());
6318 }
6319 
6320 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
6321                                                     const BlockPointerType* T) {
6322   return Visit(T->getPointeeType());
6323 }
6324 
6325 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
6326                                                 const LValueReferenceType* T) {
6327   return Visit(T->getPointeeType());
6328 }
6329 
6330 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
6331                                                 const RValueReferenceType* T) {
6332   return Visit(T->getPointeeType());
6333 }
6334 
6335 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
6336                                                   const MemberPointerType* T) {
6337   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
6338 }
6339 
6340 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
6341                                                   const ConstantArrayType* T) {
6342   return Visit(T->getElementType());
6343 }
6344 
6345 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6346                                                  const IncompleteArrayType* T) {
6347   return Visit(T->getElementType());
6348 }
6349 
6350 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6351                                                    const VariableArrayType* T) {
6352   return Visit(T->getElementType());
6353 }
6354 
6355 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6356                                             const DependentSizedArrayType* T) {
6357   return Visit(T->getElementType());
6358 }
6359 
6360 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6361                                          const DependentSizedExtVectorType* T) {
6362   return Visit(T->getElementType());
6363 }
6364 
6365 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6366     const DependentSizedMatrixType *T) {
6367   return Visit(T->getElementType());
6368 }
6369 
6370 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6371     const DependentAddressSpaceType *T) {
6372   return Visit(T->getPointeeType());
6373 }
6374 
6375 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6376   return Visit(T->getElementType());
6377 }
6378 
6379 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6380     const DependentVectorType *T) {
6381   return Visit(T->getElementType());
6382 }
6383 
6384 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6385   return Visit(T->getElementType());
6386 }
6387 
6388 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6389     const ConstantMatrixType *T) {
6390   return Visit(T->getElementType());
6391 }
6392 
6393 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6394                                                   const FunctionProtoType* T) {
6395   for (const auto &A : T->param_types()) {
6396     if (Visit(A))
6397       return true;
6398   }
6399 
6400   return Visit(T->getReturnType());
6401 }
6402 
6403 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6404                                                const FunctionNoProtoType* T) {
6405   return Visit(T->getReturnType());
6406 }
6407 
6408 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6409                                                   const UnresolvedUsingType*) {
6410   return false;
6411 }
6412 
6413 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6414   return false;
6415 }
6416 
6417 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6418   return Visit(T->getUnmodifiedType());
6419 }
6420 
6421 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6422   return false;
6423 }
6424 
6425 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6426                                                     const UnaryTransformType*) {
6427   return false;
6428 }
6429 
6430 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6431   return Visit(T->getDeducedType());
6432 }
6433 
6434 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6435     const DeducedTemplateSpecializationType *T) {
6436   return Visit(T->getDeducedType());
6437 }
6438 
6439 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6440   return VisitTagDecl(T->getDecl());
6441 }
6442 
6443 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6444   return VisitTagDecl(T->getDecl());
6445 }
6446 
6447 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6448                                                  const TemplateTypeParmType*) {
6449   return false;
6450 }
6451 
6452 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6453                                         const SubstTemplateTypeParmPackType *) {
6454   return false;
6455 }
6456 
6457 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6458                                             const TemplateSpecializationType*) {
6459   return false;
6460 }
6461 
6462 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6463                                               const InjectedClassNameType* T) {
6464   return VisitTagDecl(T->getDecl());
6465 }
6466 
6467 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6468                                                    const DependentNameType* T) {
6469   return VisitNestedNameSpecifier(T->getQualifier());
6470 }
6471 
6472 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6473                                  const DependentTemplateSpecializationType* T) {
6474   if (auto *Q = T->getQualifier())
6475     return VisitNestedNameSpecifier(Q);
6476   return false;
6477 }
6478 
6479 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6480                                                    const PackExpansionType* T) {
6481   return Visit(T->getPattern());
6482 }
6483 
6484 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6485   return false;
6486 }
6487 
6488 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6489                                                    const ObjCInterfaceType *) {
6490   return false;
6491 }
6492 
6493 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6494                                                 const ObjCObjectPointerType *) {
6495   return false;
6496 }
6497 
6498 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6499   return Visit(T->getValueType());
6500 }
6501 
6502 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6503   return false;
6504 }
6505 
6506 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
6507   return false;
6508 }
6509 
6510 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
6511     const DependentBitIntType *T) {
6512   return false;
6513 }
6514 
6515 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6516   if (Tag->getDeclContext()->isFunctionOrMethod()) {
6517     S.Diag(SR.getBegin(),
6518            S.getLangOpts().CPlusPlus11 ?
6519              diag::warn_cxx98_compat_template_arg_local_type :
6520              diag::ext_template_arg_local_type)
6521       << S.Context.getTypeDeclType(Tag) << SR;
6522     return true;
6523   }
6524 
6525   if (!Tag->hasNameForLinkage()) {
6526     S.Diag(SR.getBegin(),
6527            S.getLangOpts().CPlusPlus11 ?
6528              diag::warn_cxx98_compat_template_arg_unnamed_type :
6529              diag::ext_template_arg_unnamed_type) << SR;
6530     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6531     return true;
6532   }
6533 
6534   return false;
6535 }
6536 
6537 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6538                                                     NestedNameSpecifier *NNS) {
6539   assert(NNS);
6540   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6541     return true;
6542 
6543   switch (NNS->getKind()) {
6544   case NestedNameSpecifier::Identifier:
6545   case NestedNameSpecifier::Namespace:
6546   case NestedNameSpecifier::NamespaceAlias:
6547   case NestedNameSpecifier::Global:
6548   case NestedNameSpecifier::Super:
6549     return false;
6550 
6551   case NestedNameSpecifier::TypeSpec:
6552   case NestedNameSpecifier::TypeSpecWithTemplate:
6553     return Visit(QualType(NNS->getAsType(), 0));
6554   }
6555   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6556 }
6557 
6558 /// Check a template argument against its corresponding
6559 /// template type parameter.
6560 ///
6561 /// This routine implements the semantics of C++ [temp.arg.type]. It
6562 /// returns true if an error occurred, and false otherwise.
6563 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6564   assert(ArgInfo && "invalid TypeSourceInfo");
6565   QualType Arg = ArgInfo->getType();
6566   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6567   QualType CanonArg = Context.getCanonicalType(Arg);
6568 
6569   if (CanonArg->isVariablyModifiedType()) {
6570     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6571   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6572     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6573   }
6574 
6575   // C++03 [temp.arg.type]p2:
6576   //   A local type, a type with no linkage, an unnamed type or a type
6577   //   compounded from any of these types shall not be used as a
6578   //   template-argument for a template type-parameter.
6579   //
6580   // C++11 allows these, and even in C++03 we allow them as an extension with
6581   // a warning.
6582   if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) {
6583     UnnamedLocalNoLinkageFinder Finder(*this, SR);
6584     (void)Finder.Visit(CanonArg);
6585   }
6586 
6587   return false;
6588 }
6589 
6590 enum NullPointerValueKind {
6591   NPV_NotNullPointer,
6592   NPV_NullPointer,
6593   NPV_Error
6594 };
6595 
6596 /// Determine whether the given template argument is a null pointer
6597 /// value of the appropriate type.
6598 static NullPointerValueKind
6599 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6600                                    QualType ParamType, Expr *Arg,
6601                                    Decl *Entity = nullptr) {
6602   if (Arg->isValueDependent() || Arg->isTypeDependent())
6603     return NPV_NotNullPointer;
6604 
6605   // dllimport'd entities aren't constant but are available inside of template
6606   // arguments.
6607   if (Entity && Entity->hasAttr<DLLImportAttr>())
6608     return NPV_NotNullPointer;
6609 
6610   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6611     llvm_unreachable(
6612         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6613 
6614   if (!S.getLangOpts().CPlusPlus11)
6615     return NPV_NotNullPointer;
6616 
6617   // Determine whether we have a constant expression.
6618   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6619   if (ArgRV.isInvalid())
6620     return NPV_Error;
6621   Arg = ArgRV.get();
6622 
6623   Expr::EvalResult EvalResult;
6624   SmallVector<PartialDiagnosticAt, 8> Notes;
6625   EvalResult.Diag = &Notes;
6626   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6627       EvalResult.HasSideEffects) {
6628     SourceLocation DiagLoc = Arg->getExprLoc();
6629 
6630     // If our only note is the usual "invalid subexpression" note, just point
6631     // the caret at its location rather than producing an essentially
6632     // redundant note.
6633     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6634         diag::note_invalid_subexpr_in_const_expr) {
6635       DiagLoc = Notes[0].first;
6636       Notes.clear();
6637     }
6638 
6639     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6640       << Arg->getType() << Arg->getSourceRange();
6641     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6642       S.Diag(Notes[I].first, Notes[I].second);
6643 
6644     S.NoteTemplateParameterLocation(*Param);
6645     return NPV_Error;
6646   }
6647 
6648   // C++11 [temp.arg.nontype]p1:
6649   //   - an address constant expression of type std::nullptr_t
6650   if (Arg->getType()->isNullPtrType())
6651     return NPV_NullPointer;
6652 
6653   //   - a constant expression that evaluates to a null pointer value (4.10); or
6654   //   - a constant expression that evaluates to a null member pointer value
6655   //     (4.11); or
6656   if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) ||
6657       (EvalResult.Val.isMemberPointer() &&
6658        !EvalResult.Val.getMemberPointerDecl())) {
6659     // If our expression has an appropriate type, we've succeeded.
6660     bool ObjCLifetimeConversion;
6661     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6662         S.IsQualificationConversion(Arg->getType(), ParamType, false,
6663                                      ObjCLifetimeConversion))
6664       return NPV_NullPointer;
6665 
6666     // The types didn't match, but we know we got a null pointer; complain,
6667     // then recover as if the types were correct.
6668     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6669       << Arg->getType() << ParamType << Arg->getSourceRange();
6670     S.NoteTemplateParameterLocation(*Param);
6671     return NPV_NullPointer;
6672   }
6673 
6674   if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) {
6675     // We found a pointer that isn't null, but doesn't refer to an object.
6676     // We could just return NPV_NotNullPointer, but we can print a better
6677     // message with the information we have here.
6678     S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid)
6679       << EvalResult.Val.getAsString(S.Context, ParamType);
6680     S.NoteTemplateParameterLocation(*Param);
6681     return NPV_Error;
6682   }
6683 
6684   // If we don't have a null pointer value, but we do have a NULL pointer
6685   // constant, suggest a cast to the appropriate type.
6686   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6687     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6688     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6689         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6690         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6691                                       ")");
6692     S.NoteTemplateParameterLocation(*Param);
6693     return NPV_NullPointer;
6694   }
6695 
6696   // FIXME: If we ever want to support general, address-constant expressions
6697   // as non-type template arguments, we should return the ExprResult here to
6698   // be interpreted by the caller.
6699   return NPV_NotNullPointer;
6700 }
6701 
6702 /// Checks whether the given template argument is compatible with its
6703 /// template parameter.
6704 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6705     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6706     Expr *Arg, QualType ArgType) {
6707   bool ObjCLifetimeConversion;
6708   if (ParamType->isPointerType() &&
6709       !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6710       S.IsQualificationConversion(ArgType, ParamType, false,
6711                                   ObjCLifetimeConversion)) {
6712     // For pointer-to-object types, qualification conversions are
6713     // permitted.
6714   } else {
6715     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6716       if (!ParamRef->getPointeeType()->isFunctionType()) {
6717         // C++ [temp.arg.nontype]p5b3:
6718         //   For a non-type template-parameter of type reference to
6719         //   object, no conversions apply. The type referred to by the
6720         //   reference may be more cv-qualified than the (otherwise
6721         //   identical) type of the template- argument. The
6722         //   template-parameter is bound directly to the
6723         //   template-argument, which shall be an lvalue.
6724 
6725         // FIXME: Other qualifiers?
6726         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6727         unsigned ArgQuals = ArgType.getCVRQualifiers();
6728 
6729         if ((ParamQuals | ArgQuals) != ParamQuals) {
6730           S.Diag(Arg->getBeginLoc(),
6731                  diag::err_template_arg_ref_bind_ignores_quals)
6732               << ParamType << Arg->getType() << Arg->getSourceRange();
6733           S.NoteTemplateParameterLocation(*Param);
6734           return true;
6735         }
6736       }
6737     }
6738 
6739     // At this point, the template argument refers to an object or
6740     // function with external linkage. We now need to check whether the
6741     // argument and parameter types are compatible.
6742     if (!S.Context.hasSameUnqualifiedType(ArgType,
6743                                           ParamType.getNonReferenceType())) {
6744       // We can't perform this conversion or binding.
6745       if (ParamType->isReferenceType())
6746         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6747             << ParamType << ArgIn->getType() << Arg->getSourceRange();
6748       else
6749         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6750             << ArgIn->getType() << ParamType << Arg->getSourceRange();
6751       S.NoteTemplateParameterLocation(*Param);
6752       return true;
6753     }
6754   }
6755 
6756   return false;
6757 }
6758 
6759 /// Checks whether the given template argument is the address
6760 /// of an object or function according to C++ [temp.arg.nontype]p1.
6761 static bool CheckTemplateArgumentAddressOfObjectOrFunction(
6762     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6763     TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) {
6764   bool Invalid = false;
6765   Expr *Arg = ArgIn;
6766   QualType ArgType = Arg->getType();
6767 
6768   bool AddressTaken = false;
6769   SourceLocation AddrOpLoc;
6770   if (S.getLangOpts().MicrosoftExt) {
6771     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6772     // dereference and address-of operators.
6773     Arg = Arg->IgnoreParenCasts();
6774 
6775     bool ExtWarnMSTemplateArg = false;
6776     UnaryOperatorKind FirstOpKind;
6777     SourceLocation FirstOpLoc;
6778     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6779       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6780       if (UnOpKind == UO_Deref)
6781         ExtWarnMSTemplateArg = true;
6782       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6783         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6784         if (!AddrOpLoc.isValid()) {
6785           FirstOpKind = UnOpKind;
6786           FirstOpLoc = UnOp->getOperatorLoc();
6787         }
6788       } else
6789         break;
6790     }
6791     if (FirstOpLoc.isValid()) {
6792       if (ExtWarnMSTemplateArg)
6793         S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6794             << ArgIn->getSourceRange();
6795 
6796       if (FirstOpKind == UO_AddrOf)
6797         AddressTaken = true;
6798       else if (Arg->getType()->isPointerType()) {
6799         // We cannot let pointers get dereferenced here, that is obviously not a
6800         // constant expression.
6801         assert(FirstOpKind == UO_Deref);
6802         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6803             << Arg->getSourceRange();
6804       }
6805     }
6806   } else {
6807     // See through any implicit casts we added to fix the type.
6808     Arg = Arg->IgnoreImpCasts();
6809 
6810     // C++ [temp.arg.nontype]p1:
6811     //
6812     //   A template-argument for a non-type, non-template
6813     //   template-parameter shall be one of: [...]
6814     //
6815     //     -- the address of an object or function with external
6816     //        linkage, including function templates and function
6817     //        template-ids but excluding non-static class members,
6818     //        expressed as & id-expression where the & is optional if
6819     //        the name refers to a function or array, or if the
6820     //        corresponding template-parameter is a reference; or
6821 
6822     // In C++98/03 mode, give an extension warning on any extra parentheses.
6823     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6824     bool ExtraParens = false;
6825     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6826       if (!Invalid && !ExtraParens) {
6827         S.Diag(Arg->getBeginLoc(),
6828                S.getLangOpts().CPlusPlus11
6829                    ? diag::warn_cxx98_compat_template_arg_extra_parens
6830                    : diag::ext_template_arg_extra_parens)
6831             << Arg->getSourceRange();
6832         ExtraParens = true;
6833       }
6834 
6835       Arg = Parens->getSubExpr();
6836     }
6837 
6838     while (SubstNonTypeTemplateParmExpr *subst =
6839                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6840       Arg = subst->getReplacement()->IgnoreImpCasts();
6841 
6842     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6843       if (UnOp->getOpcode() == UO_AddrOf) {
6844         Arg = UnOp->getSubExpr();
6845         AddressTaken = true;
6846         AddrOpLoc = UnOp->getOperatorLoc();
6847       }
6848     }
6849 
6850     while (SubstNonTypeTemplateParmExpr *subst =
6851                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6852       Arg = subst->getReplacement()->IgnoreImpCasts();
6853   }
6854 
6855   ValueDecl *Entity = nullptr;
6856   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6857     Entity = DRE->getDecl();
6858   else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6859     Entity = CUE->getGuidDecl();
6860 
6861   // If our parameter has pointer type, check for a null template value.
6862   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6863     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6864                                                Entity)) {
6865     case NPV_NullPointer:
6866       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6867       SugaredConverted = TemplateArgument(ParamType,
6868                                           /*isNullPtr=*/true);
6869       CanonicalConverted =
6870           TemplateArgument(S.Context.getCanonicalType(ParamType),
6871                            /*isNullPtr=*/true);
6872       return false;
6873 
6874     case NPV_Error:
6875       return true;
6876 
6877     case NPV_NotNullPointer:
6878       break;
6879     }
6880   }
6881 
6882   // Stop checking the precise nature of the argument if it is value dependent,
6883   // it should be checked when instantiated.
6884   if (Arg->isValueDependent()) {
6885     SugaredConverted = TemplateArgument(ArgIn);
6886     CanonicalConverted =
6887         S.Context.getCanonicalTemplateArgument(SugaredConverted);
6888     return false;
6889   }
6890 
6891   if (!Entity) {
6892     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6893         << Arg->getSourceRange();
6894     S.NoteTemplateParameterLocation(*Param);
6895     return true;
6896   }
6897 
6898   // Cannot refer to non-static data members
6899   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6900     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6901         << Entity << Arg->getSourceRange();
6902     S.NoteTemplateParameterLocation(*Param);
6903     return true;
6904   }
6905 
6906   // Cannot refer to non-static member functions
6907   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6908     if (!Method->isStatic()) {
6909       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6910           << Method << Arg->getSourceRange();
6911       S.NoteTemplateParameterLocation(*Param);
6912       return true;
6913     }
6914   }
6915 
6916   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6917   VarDecl *Var = dyn_cast<VarDecl>(Entity);
6918   MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6919 
6920   // A non-type template argument must refer to an object or function.
6921   if (!Func && !Var && !Guid) {
6922     // We found something, but we don't know specifically what it is.
6923     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6924         << Arg->getSourceRange();
6925     S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6926     return true;
6927   }
6928 
6929   // Address / reference template args must have external linkage in C++98.
6930   if (Entity->getFormalLinkage() == Linkage::Internal) {
6931     S.Diag(Arg->getBeginLoc(),
6932            S.getLangOpts().CPlusPlus11
6933                ? diag::warn_cxx98_compat_template_arg_object_internal
6934                : diag::ext_template_arg_object_internal)
6935         << !Func << Entity << Arg->getSourceRange();
6936     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6937       << !Func;
6938   } else if (!Entity->hasLinkage()) {
6939     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6940         << !Func << Entity << Arg->getSourceRange();
6941     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6942       << !Func;
6943     return true;
6944   }
6945 
6946   if (Var) {
6947     // A value of reference type is not an object.
6948     if (Var->getType()->isReferenceType()) {
6949       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6950           << Var->getType() << Arg->getSourceRange();
6951       S.NoteTemplateParameterLocation(*Param);
6952       return true;
6953     }
6954 
6955     // A template argument must have static storage duration.
6956     if (Var->getTLSKind()) {
6957       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6958           << Arg->getSourceRange();
6959       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6960       return true;
6961     }
6962   }
6963 
6964   if (AddressTaken && ParamType->isReferenceType()) {
6965     // If we originally had an address-of operator, but the
6966     // parameter has reference type, complain and (if things look
6967     // like they will work) drop the address-of operator.
6968     if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6969                                           ParamType.getNonReferenceType())) {
6970       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6971         << ParamType;
6972       S.NoteTemplateParameterLocation(*Param);
6973       return true;
6974     }
6975 
6976     S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6977       << ParamType
6978       << FixItHint::CreateRemoval(AddrOpLoc);
6979     S.NoteTemplateParameterLocation(*Param);
6980 
6981     ArgType = Entity->getType();
6982   }
6983 
6984   // If the template parameter has pointer type, either we must have taken the
6985   // address or the argument must decay to a pointer.
6986   if (!AddressTaken && ParamType->isPointerType()) {
6987     if (Func) {
6988       // Function-to-pointer decay.
6989       ArgType = S.Context.getPointerType(Func->getType());
6990     } else if (Entity->getType()->isArrayType()) {
6991       // Array-to-pointer decay.
6992       ArgType = S.Context.getArrayDecayedType(Entity->getType());
6993     } else {
6994       // If the template parameter has pointer type but the address of
6995       // this object was not taken, complain and (possibly) recover by
6996       // taking the address of the entity.
6997       ArgType = S.Context.getPointerType(Entity->getType());
6998       if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6999         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
7000           << ParamType;
7001         S.NoteTemplateParameterLocation(*Param);
7002         return true;
7003       }
7004 
7005       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
7006         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
7007 
7008       S.NoteTemplateParameterLocation(*Param);
7009     }
7010   }
7011 
7012   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
7013                                                      Arg, ArgType))
7014     return true;
7015 
7016   // Create the template argument.
7017   SugaredConverted = TemplateArgument(Entity, ParamType);
7018   CanonicalConverted =
7019       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
7020                        S.Context.getCanonicalType(ParamType));
7021   S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
7022   return false;
7023 }
7024 
7025 /// Checks whether the given template argument is a pointer to
7026 /// member constant according to C++ [temp.arg.nontype]p1.
7027 static bool
7028 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param,
7029                                      QualType ParamType, Expr *&ResultArg,
7030                                      TemplateArgument &SugaredConverted,
7031                                      TemplateArgument &CanonicalConverted) {
7032   bool Invalid = false;
7033 
7034   Expr *Arg = ResultArg;
7035   bool ObjCLifetimeConversion;
7036 
7037   // C++ [temp.arg.nontype]p1:
7038   //
7039   //   A template-argument for a non-type, non-template
7040   //   template-parameter shall be one of: [...]
7041   //
7042   //     -- a pointer to member expressed as described in 5.3.1.
7043   DeclRefExpr *DRE = nullptr;
7044 
7045   // In C++98/03 mode, give an extension warning on any extra parentheses.
7046   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
7047   bool ExtraParens = false;
7048   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
7049     if (!Invalid && !ExtraParens) {
7050       S.Diag(Arg->getBeginLoc(),
7051              S.getLangOpts().CPlusPlus11
7052                  ? diag::warn_cxx98_compat_template_arg_extra_parens
7053                  : diag::ext_template_arg_extra_parens)
7054           << Arg->getSourceRange();
7055       ExtraParens = true;
7056     }
7057 
7058     Arg = Parens->getSubExpr();
7059   }
7060 
7061   while (SubstNonTypeTemplateParmExpr *subst =
7062            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
7063     Arg = subst->getReplacement()->IgnoreImpCasts();
7064 
7065   // A pointer-to-member constant written &Class::member.
7066   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
7067     if (UnOp->getOpcode() == UO_AddrOf) {
7068       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
7069       if (DRE && !DRE->getQualifier())
7070         DRE = nullptr;
7071     }
7072   }
7073   // A constant of pointer-to-member type.
7074   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
7075     ValueDecl *VD = DRE->getDecl();
7076     if (VD->getType()->isMemberPointerType()) {
7077       if (isa<NonTypeTemplateParmDecl>(VD)) {
7078         if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7079           SugaredConverted = TemplateArgument(Arg);
7080           CanonicalConverted =
7081               S.Context.getCanonicalTemplateArgument(SugaredConverted);
7082         } else {
7083           SugaredConverted = TemplateArgument(VD, ParamType);
7084           CanonicalConverted =
7085               TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7086                                S.Context.getCanonicalType(ParamType));
7087         }
7088         return Invalid;
7089       }
7090     }
7091 
7092     DRE = nullptr;
7093   }
7094 
7095   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
7096 
7097   // Check for a null pointer value.
7098   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
7099                                              Entity)) {
7100   case NPV_Error:
7101     return true;
7102   case NPV_NullPointer:
7103     S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7104     SugaredConverted = TemplateArgument(ParamType,
7105                                         /*isNullPtr*/ true);
7106     CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType),
7107                                           /*isNullPtr*/ true);
7108     return false;
7109   case NPV_NotNullPointer:
7110     break;
7111   }
7112 
7113   if (S.IsQualificationConversion(ResultArg->getType(),
7114                                   ParamType.getNonReferenceType(), false,
7115                                   ObjCLifetimeConversion)) {
7116     ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
7117                                     ResultArg->getValueKind())
7118                     .get();
7119   } else if (!S.Context.hasSameUnqualifiedType(
7120                  ResultArg->getType(), ParamType.getNonReferenceType())) {
7121     // We can't perform this conversion.
7122     S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
7123         << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
7124     S.NoteTemplateParameterLocation(*Param);
7125     return true;
7126   }
7127 
7128   if (!DRE)
7129     return S.Diag(Arg->getBeginLoc(),
7130                   diag::err_template_arg_not_pointer_to_member_form)
7131            << Arg->getSourceRange();
7132 
7133   if (isa<FieldDecl>(DRE->getDecl()) ||
7134       isa<IndirectFieldDecl>(DRE->getDecl()) ||
7135       isa<CXXMethodDecl>(DRE->getDecl())) {
7136     assert((isa<FieldDecl>(DRE->getDecl()) ||
7137             isa<IndirectFieldDecl>(DRE->getDecl()) ||
7138             cast<CXXMethodDecl>(DRE->getDecl())
7139                 ->isImplicitObjectMemberFunction()) &&
7140            "Only non-static member pointers can make it here");
7141 
7142     // Okay: this is the address of a non-static member, and therefore
7143     // a member pointer constant.
7144     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7145       SugaredConverted = TemplateArgument(Arg);
7146       CanonicalConverted =
7147           S.Context.getCanonicalTemplateArgument(SugaredConverted);
7148     } else {
7149       ValueDecl *D = DRE->getDecl();
7150       SugaredConverted = TemplateArgument(D, ParamType);
7151       CanonicalConverted =
7152           TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()),
7153                            S.Context.getCanonicalType(ParamType));
7154     }
7155     return Invalid;
7156   }
7157 
7158   // We found something else, but we don't know specifically what it is.
7159   S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
7160       << Arg->getSourceRange();
7161   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
7162   return true;
7163 }
7164 
7165 /// Check a template argument against its corresponding
7166 /// non-type template parameter.
7167 ///
7168 /// This routine implements the semantics of C++ [temp.arg.nontype].
7169 /// If an error occurred, it returns ExprError(); otherwise, it
7170 /// returns the converted template argument. \p ParamType is the
7171 /// type of the non-type template parameter after it has been instantiated.
7172 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7173                                        QualType ParamType, Expr *Arg,
7174                                        TemplateArgument &SugaredConverted,
7175                                        TemplateArgument &CanonicalConverted,
7176                                        CheckTemplateArgumentKind CTAK) {
7177   SourceLocation StartLoc = Arg->getBeginLoc();
7178 
7179   // If the parameter type somehow involves auto, deduce the type now.
7180   DeducedType *DeducedT = ParamType->getContainedDeducedType();
7181   if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
7182     // During template argument deduction, we allow 'decltype(auto)' to
7183     // match an arbitrary dependent argument.
7184     // FIXME: The language rules don't say what happens in this case.
7185     // FIXME: We get an opaque dependent type out of decltype(auto) if the
7186     // expression is merely instantiation-dependent; is this enough?
7187     if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
7188       auto *AT = dyn_cast<AutoType>(DeducedT);
7189       if (AT && AT->isDecltypeAuto()) {
7190         SugaredConverted = TemplateArgument(Arg);
7191         CanonicalConverted = TemplateArgument(
7192             Context.getCanonicalTemplateArgument(SugaredConverted));
7193         return Arg;
7194       }
7195     }
7196 
7197     // When checking a deduced template argument, deduce from its type even if
7198     // the type is dependent, in order to check the types of non-type template
7199     // arguments line up properly in partial ordering.
7200     Expr *DeductionArg = Arg;
7201     if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
7202       DeductionArg = PE->getPattern();
7203     TypeSourceInfo *TSI =
7204         Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
7205     if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
7206       InitializedEntity Entity =
7207           InitializedEntity::InitializeTemplateParameter(ParamType, Param);
7208       InitializationKind Kind = InitializationKind::CreateForInit(
7209           DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
7210       Expr *Inits[1] = {DeductionArg};
7211       ParamType =
7212           DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
7213       if (ParamType.isNull())
7214         return ExprError();
7215     } else {
7216       TemplateDeductionInfo Info(DeductionArg->getExprLoc(),
7217                                  Param->getDepth() + 1);
7218       ParamType = QualType();
7219       TemplateDeductionResult Result =
7220           DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info,
7221                          /*DependentDeduction=*/true,
7222                          // We do not check constraints right now because the
7223                          // immediately-declared constraint of the auto type is
7224                          // also an associated constraint, and will be checked
7225                          // along with the other associated constraints after
7226                          // checking the template argument list.
7227                          /*IgnoreConstraints=*/true);
7228       if (Result == TDK_AlreadyDiagnosed) {
7229         if (ParamType.isNull())
7230           return ExprError();
7231       } else if (Result != TDK_Success) {
7232         Diag(Arg->getExprLoc(),
7233              diag::err_non_type_template_parm_type_deduction_failure)
7234             << Param->getDeclName() << Param->getType() << Arg->getType()
7235             << Arg->getSourceRange();
7236         NoteTemplateParameterLocation(*Param);
7237         return ExprError();
7238       }
7239     }
7240     // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
7241     // an error. The error message normally references the parameter
7242     // declaration, but here we'll pass the argument location because that's
7243     // where the parameter type is deduced.
7244     ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
7245     if (ParamType.isNull()) {
7246       NoteTemplateParameterLocation(*Param);
7247       return ExprError();
7248     }
7249   }
7250 
7251   // We should have already dropped all cv-qualifiers by now.
7252   assert(!ParamType.hasQualifiers() &&
7253          "non-type template parameter type cannot be qualified");
7254 
7255   // FIXME: When Param is a reference, should we check that Arg is an lvalue?
7256   if (CTAK == CTAK_Deduced &&
7257       (ParamType->isReferenceType()
7258            ? !Context.hasSameType(ParamType.getNonReferenceType(),
7259                                   Arg->getType())
7260            : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
7261     // FIXME: If either type is dependent, we skip the check. This isn't
7262     // correct, since during deduction we're supposed to have replaced each
7263     // template parameter with some unique (non-dependent) placeholder.
7264     // FIXME: If the argument type contains 'auto', we carry on and fail the
7265     // type check in order to force specific types to be more specialized than
7266     // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
7267     // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
7268     if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
7269         !Arg->getType()->getContainedDeducedType()) {
7270       SugaredConverted = TemplateArgument(Arg);
7271       CanonicalConverted = TemplateArgument(
7272           Context.getCanonicalTemplateArgument(SugaredConverted));
7273       return Arg;
7274     }
7275     // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
7276     // we should actually be checking the type of the template argument in P,
7277     // not the type of the template argument deduced from A, against the
7278     // template parameter type.
7279     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
7280       << Arg->getType()
7281       << ParamType.getUnqualifiedType();
7282     NoteTemplateParameterLocation(*Param);
7283     return ExprError();
7284   }
7285 
7286   // If either the parameter has a dependent type or the argument is
7287   // type-dependent, there's nothing we can check now.
7288   if (ParamType->isDependentType() || Arg->isTypeDependent()) {
7289     // Force the argument to the type of the parameter to maintain invariants.
7290     auto *PE = dyn_cast<PackExpansionExpr>(Arg);
7291     if (PE)
7292       Arg = PE->getPattern();
7293     ExprResult E = ImpCastExprToType(
7294         Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
7295         ParamType->isLValueReferenceType()   ? VK_LValue
7296         : ParamType->isRValueReferenceType() ? VK_XValue
7297                                              : VK_PRValue);
7298     if (E.isInvalid())
7299       return ExprError();
7300     if (PE) {
7301       // Recreate a pack expansion if we unwrapped one.
7302       E = new (Context)
7303           PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
7304                             PE->getNumExpansions());
7305     }
7306     SugaredConverted = TemplateArgument(E.get());
7307     CanonicalConverted = TemplateArgument(
7308         Context.getCanonicalTemplateArgument(SugaredConverted));
7309     return E;
7310   }
7311 
7312   QualType CanonParamType = Context.getCanonicalType(ParamType);
7313   // Avoid making a copy when initializing a template parameter of class type
7314   // from a template parameter object of the same type. This is going beyond
7315   // the standard, but is required for soundness: in
7316   //   template<A a> struct X { X *p; X<a> *q; };
7317   // ... we need p and q to have the same type.
7318   //
7319   // Similarly, don't inject a call to a copy constructor when initializing
7320   // from a template parameter of the same type.
7321   Expr *InnerArg = Arg->IgnoreParenImpCasts();
7322   if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
7323       Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
7324     NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
7325     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
7326 
7327       SugaredConverted = TemplateArgument(TPO, ParamType);
7328       CanonicalConverted =
7329           TemplateArgument(TPO->getCanonicalDecl(), CanonParamType);
7330       return Arg;
7331     }
7332     if (isa<NonTypeTemplateParmDecl>(ND)) {
7333       SugaredConverted = TemplateArgument(Arg);
7334       CanonicalConverted =
7335           Context.getCanonicalTemplateArgument(SugaredConverted);
7336       return Arg;
7337     }
7338   }
7339 
7340   // The initialization of the parameter from the argument is
7341   // a constant-evaluated context.
7342   EnterExpressionEvaluationContext ConstantEvaluated(
7343       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7344 
7345   bool IsConvertedConstantExpression = true;
7346   if (isa<InitListExpr>(Arg) || ParamType->isRecordType()) {
7347     InitializationKind Kind = InitializationKind::CreateForInit(
7348         Arg->getBeginLoc(), /*DirectInit=*/false, Arg);
7349     Expr *Inits[1] = {Arg};
7350     InitializedEntity Entity =
7351         InitializedEntity::InitializeTemplateParameter(ParamType, Param);
7352     InitializationSequence InitSeq(*this, Entity, Kind, Inits);
7353     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Inits);
7354     if (Result.isInvalid() || !Result.get())
7355       return ExprError();
7356     Result = ActOnConstantExpression(Result.get());
7357     if (Result.isInvalid() || !Result.get())
7358       return ExprError();
7359     Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(),
7360                               /*DiscardedValue=*/false,
7361                               /*IsConstexpr=*/true, /*IsTemplateArgument=*/true)
7362               .get();
7363     IsConvertedConstantExpression = false;
7364   }
7365 
7366   if (getLangOpts().CPlusPlus17) {
7367     // C++17 [temp.arg.nontype]p1:
7368     //   A template-argument for a non-type template parameter shall be
7369     //   a converted constant expression of the type of the template-parameter.
7370     APValue Value;
7371     ExprResult ArgResult;
7372     if (IsConvertedConstantExpression) {
7373       ArgResult = BuildConvertedConstantExpression(Arg, ParamType,
7374                                                    CCEK_TemplateArg, Param);
7375       if (ArgResult.isInvalid())
7376         return ExprError();
7377     } else {
7378       ArgResult = Arg;
7379     }
7380 
7381     // For a value-dependent argument, CheckConvertedConstantExpression is
7382     // permitted (and expected) to be unable to determine a value.
7383     if (ArgResult.get()->isValueDependent()) {
7384       SugaredConverted = TemplateArgument(ArgResult.get());
7385       CanonicalConverted =
7386           Context.getCanonicalTemplateArgument(SugaredConverted);
7387       return ArgResult;
7388     }
7389 
7390     APValue PreNarrowingValue;
7391     ArgResult = EvaluateConvertedConstantExpression(
7392         ArgResult.get(), ParamType, Value, CCEK_TemplateArg, /*RequireInt=*/
7393         false, PreNarrowingValue);
7394     if (ArgResult.isInvalid())
7395       return ExprError();
7396 
7397     // Convert the APValue to a TemplateArgument.
7398     switch (Value.getKind()) {
7399     case APValue::None:
7400       assert(ParamType->isNullPtrType());
7401       SugaredConverted = TemplateArgument(ParamType, /*isNullPtr=*/true);
7402       CanonicalConverted = TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7403       break;
7404     case APValue::Indeterminate:
7405       llvm_unreachable("result of constant evaluation should be initialized");
7406       break;
7407     case APValue::Int:
7408       assert(ParamType->isIntegralOrEnumerationType());
7409       SugaredConverted = TemplateArgument(Context, Value.getInt(), ParamType);
7410       CanonicalConverted =
7411           TemplateArgument(Context, Value.getInt(), CanonParamType);
7412       break;
7413     case APValue::MemberPointer: {
7414       assert(ParamType->isMemberPointerType());
7415 
7416       // FIXME: We need TemplateArgument representation and mangling for these.
7417       if (!Value.getMemberPointerPath().empty()) {
7418         Diag(Arg->getBeginLoc(),
7419              diag::err_template_arg_member_ptr_base_derived_not_supported)
7420             << Value.getMemberPointerDecl() << ParamType
7421             << Arg->getSourceRange();
7422         return ExprError();
7423       }
7424 
7425       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
7426       SugaredConverted = VD ? TemplateArgument(VD, ParamType)
7427                             : TemplateArgument(ParamType, /*isNullPtr=*/true);
7428       CanonicalConverted =
7429           VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7430                                 CanonParamType)
7431              : TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7432       break;
7433     }
7434     case APValue::LValue: {
7435       //   For a non-type template-parameter of pointer or reference type,
7436       //   the value of the constant expression shall not refer to
7437       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7438              ParamType->isNullPtrType());
7439       // -- a temporary object
7440       // -- a string literal
7441       // -- the result of a typeid expression, or
7442       // -- a predefined __func__ variable
7443       APValue::LValueBase Base = Value.getLValueBase();
7444       auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7445       if (Base &&
7446           (!VD ||
7447            isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
7448         Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7449             << Arg->getSourceRange();
7450         return ExprError();
7451       }
7452       // -- a subobject
7453       // FIXME: Until C++20
7454       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
7455           VD && VD->getType()->isArrayType() &&
7456           Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7457           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7458         // Per defect report (no number yet):
7459         //   ... other than a pointer to the first element of a complete array
7460         //       object.
7461       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7462                  Value.isLValueOnePastTheEnd()) {
7463         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7464           << Value.getAsString(Context, ParamType);
7465         return ExprError();
7466       }
7467       assert((VD || !ParamType->isReferenceType()) &&
7468              "null reference should not be a constant expression");
7469       assert((!VD || !ParamType->isNullPtrType()) &&
7470              "non-null value of type nullptr_t?");
7471 
7472       SugaredConverted = VD ? TemplateArgument(VD, ParamType)
7473                             : TemplateArgument(ParamType, /*isNullPtr=*/true);
7474       CanonicalConverted =
7475           VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7476                                 CanonParamType)
7477              : TemplateArgument(CanonParamType, /*isNullPtr=*/true);
7478       break;
7479     }
7480     case APValue::Struct:
7481     case APValue::Union: {
7482       // Get or create the corresponding template parameter object.
7483       TemplateParamObjectDecl *D =
7484           Context.getTemplateParamObjectDecl(ParamType, Value);
7485       SugaredConverted = TemplateArgument(D, ParamType);
7486       CanonicalConverted =
7487           TemplateArgument(D->getCanonicalDecl(), CanonParamType);
7488       break;
7489     }
7490     case APValue::AddrLabelDiff:
7491       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7492     case APValue::FixedPoint:
7493     case APValue::Float:
7494     case APValue::ComplexInt:
7495     case APValue::ComplexFloat:
7496     case APValue::Vector:
7497     case APValue::Array:
7498       return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7499              << ParamType;
7500     }
7501 
7502     return ArgResult.get();
7503   }
7504 
7505   // C++ [temp.arg.nontype]p5:
7506   //   The following conversions are performed on each expression used
7507   //   as a non-type template-argument. If a non-type
7508   //   template-argument cannot be converted to the type of the
7509   //   corresponding template-parameter then the program is
7510   //   ill-formed.
7511   if (ParamType->isIntegralOrEnumerationType()) {
7512     // C++11:
7513     //   -- for a non-type template-parameter of integral or
7514     //      enumeration type, conversions permitted in a converted
7515     //      constant expression are applied.
7516     //
7517     // C++98:
7518     //   -- for a non-type template-parameter of integral or
7519     //      enumeration type, integral promotions (4.5) and integral
7520     //      conversions (4.7) are applied.
7521 
7522     if (getLangOpts().CPlusPlus11) {
7523       // C++ [temp.arg.nontype]p1:
7524       //   A template-argument for a non-type, non-template template-parameter
7525       //   shall be one of:
7526       //
7527       //     -- for a non-type template-parameter of integral or enumeration
7528       //        type, a converted constant expression of the type of the
7529       //        template-parameter; or
7530       llvm::APSInt Value;
7531       ExprResult ArgResult =
7532         CheckConvertedConstantExpression(Arg, ParamType, Value,
7533                                          CCEK_TemplateArg);
7534       if (ArgResult.isInvalid())
7535         return ExprError();
7536 
7537       // We can't check arbitrary value-dependent arguments.
7538       if (ArgResult.get()->isValueDependent()) {
7539         SugaredConverted = TemplateArgument(ArgResult.get());
7540         CanonicalConverted =
7541             Context.getCanonicalTemplateArgument(SugaredConverted);
7542         return ArgResult;
7543       }
7544 
7545       // Widen the argument value to sizeof(parameter type). This is almost
7546       // always a no-op, except when the parameter type is bool. In
7547       // that case, this may extend the argument from 1 bit to 8 bits.
7548       QualType IntegerType = ParamType;
7549       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7550         IntegerType = Enum->getDecl()->getIntegerType();
7551       Value = Value.extOrTrunc(IntegerType->isBitIntType()
7552                                    ? Context.getIntWidth(IntegerType)
7553                                    : Context.getTypeSize(IntegerType));
7554 
7555       SugaredConverted = TemplateArgument(Context, Value, ParamType);
7556       CanonicalConverted =
7557           TemplateArgument(Context, Value, Context.getCanonicalType(ParamType));
7558       return ArgResult;
7559     }
7560 
7561     ExprResult ArgResult = DefaultLvalueConversion(Arg);
7562     if (ArgResult.isInvalid())
7563       return ExprError();
7564     Arg = ArgResult.get();
7565 
7566     QualType ArgType = Arg->getType();
7567 
7568     // C++ [temp.arg.nontype]p1:
7569     //   A template-argument for a non-type, non-template
7570     //   template-parameter shall be one of:
7571     //
7572     //     -- an integral constant-expression of integral or enumeration
7573     //        type; or
7574     //     -- the name of a non-type template-parameter; or
7575     llvm::APSInt Value;
7576     if (!ArgType->isIntegralOrEnumerationType()) {
7577       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7578           << ArgType << Arg->getSourceRange();
7579       NoteTemplateParameterLocation(*Param);
7580       return ExprError();
7581     } else if (!Arg->isValueDependent()) {
7582       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7583         QualType T;
7584 
7585       public:
7586         TmplArgICEDiagnoser(QualType T) : T(T) { }
7587 
7588         SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7589                                              SourceLocation Loc) override {
7590           return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7591         }
7592       } Diagnoser(ArgType);
7593 
7594       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7595       if (!Arg)
7596         return ExprError();
7597     }
7598 
7599     // From here on out, all we care about is the unqualified form
7600     // of the argument type.
7601     ArgType = ArgType.getUnqualifiedType();
7602 
7603     // Try to convert the argument to the parameter's type.
7604     if (Context.hasSameType(ParamType, ArgType)) {
7605       // Okay: no conversion necessary
7606     } else if (ParamType->isBooleanType()) {
7607       // This is an integral-to-boolean conversion.
7608       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7609     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7610                !ParamType->isEnumeralType()) {
7611       // This is an integral promotion or conversion.
7612       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7613     } else {
7614       // We can't perform this conversion.
7615       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7616           << Arg->getType() << ParamType << Arg->getSourceRange();
7617       NoteTemplateParameterLocation(*Param);
7618       return ExprError();
7619     }
7620 
7621     // Add the value of this argument to the list of converted
7622     // arguments. We use the bitwidth and signedness of the template
7623     // parameter.
7624     if (Arg->isValueDependent()) {
7625       // The argument is value-dependent. Create a new
7626       // TemplateArgument with the converted expression.
7627       SugaredConverted = TemplateArgument(Arg);
7628       CanonicalConverted =
7629           Context.getCanonicalTemplateArgument(SugaredConverted);
7630       return Arg;
7631     }
7632 
7633     QualType IntegerType = ParamType;
7634     if (const EnumType *Enum = IntegerType->getAs<EnumType>()) {
7635       IntegerType = Enum->getDecl()->getIntegerType();
7636     }
7637 
7638     if (ParamType->isBooleanType()) {
7639       // Value must be zero or one.
7640       Value = Value != 0;
7641       unsigned AllowedBits = Context.getTypeSize(IntegerType);
7642       if (Value.getBitWidth() != AllowedBits)
7643         Value = Value.extOrTrunc(AllowedBits);
7644       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7645     } else {
7646       llvm::APSInt OldValue = Value;
7647 
7648       // Coerce the template argument's value to the value it will have
7649       // based on the template parameter's type.
7650       unsigned AllowedBits = IntegerType->isBitIntType()
7651                                  ? Context.getIntWidth(IntegerType)
7652                                  : Context.getTypeSize(IntegerType);
7653       if (Value.getBitWidth() != AllowedBits)
7654         Value = Value.extOrTrunc(AllowedBits);
7655       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7656 
7657       // Complain if an unsigned parameter received a negative value.
7658       if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7659           (OldValue.isSigned() && OldValue.isNegative())) {
7660         Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7661             << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7662             << Arg->getSourceRange();
7663         NoteTemplateParameterLocation(*Param);
7664       }
7665 
7666       // Complain if we overflowed the template parameter's type.
7667       unsigned RequiredBits;
7668       if (IntegerType->isUnsignedIntegerOrEnumerationType())
7669         RequiredBits = OldValue.getActiveBits();
7670       else if (OldValue.isUnsigned())
7671         RequiredBits = OldValue.getActiveBits() + 1;
7672       else
7673         RequiredBits = OldValue.getSignificantBits();
7674       if (RequiredBits > AllowedBits) {
7675         Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7676             << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7677             << Arg->getSourceRange();
7678         NoteTemplateParameterLocation(*Param);
7679       }
7680     }
7681 
7682     QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType;
7683     SugaredConverted = TemplateArgument(Context, Value, T);
7684     CanonicalConverted =
7685         TemplateArgument(Context, Value, Context.getCanonicalType(T));
7686     return Arg;
7687   }
7688 
7689   QualType ArgType = Arg->getType();
7690   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7691 
7692   // Handle pointer-to-function, reference-to-function, and
7693   // pointer-to-member-function all in (roughly) the same way.
7694   if (// -- For a non-type template-parameter of type pointer to
7695       //    function, only the function-to-pointer conversion (4.3) is
7696       //    applied. If the template-argument represents a set of
7697       //    overloaded functions (or a pointer to such), the matching
7698       //    function is selected from the set (13.4).
7699       (ParamType->isPointerType() &&
7700        ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7701       // -- For a non-type template-parameter of type reference to
7702       //    function, no conversions apply. If the template-argument
7703       //    represents a set of overloaded functions, the matching
7704       //    function is selected from the set (13.4).
7705       (ParamType->isReferenceType() &&
7706        ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7707       // -- For a non-type template-parameter of type pointer to
7708       //    member function, no conversions apply. If the
7709       //    template-argument represents a set of overloaded member
7710       //    functions, the matching member function is selected from
7711       //    the set (13.4).
7712       (ParamType->isMemberPointerType() &&
7713        ParamType->castAs<MemberPointerType>()->getPointeeType()
7714          ->isFunctionType())) {
7715 
7716     if (Arg->getType() == Context.OverloadTy) {
7717       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7718                                                                 true,
7719                                                                 FoundResult)) {
7720         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7721           return ExprError();
7722 
7723         ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7724         if (Res.isInvalid())
7725           return ExprError();
7726         Arg = Res.get();
7727         ArgType = Arg->getType();
7728       } else
7729         return ExprError();
7730     }
7731 
7732     if (!ParamType->isMemberPointerType()) {
7733       if (CheckTemplateArgumentAddressOfObjectOrFunction(
7734               *this, Param, ParamType, Arg, SugaredConverted,
7735               CanonicalConverted))
7736         return ExprError();
7737       return Arg;
7738     }
7739 
7740     if (CheckTemplateArgumentPointerToMember(
7741             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7742       return ExprError();
7743     return Arg;
7744   }
7745 
7746   if (ParamType->isPointerType()) {
7747     //   -- for a non-type template-parameter of type pointer to
7748     //      object, qualification conversions (4.4) and the
7749     //      array-to-pointer conversion (4.2) are applied.
7750     // C++0x also allows a value of std::nullptr_t.
7751     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7752            "Only object pointers allowed here");
7753 
7754     if (CheckTemplateArgumentAddressOfObjectOrFunction(
7755             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7756       return ExprError();
7757     return Arg;
7758   }
7759 
7760   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7761     //   -- For a non-type template-parameter of type reference to
7762     //      object, no conversions apply. The type referred to by the
7763     //      reference may be more cv-qualified than the (otherwise
7764     //      identical) type of the template-argument. The
7765     //      template-parameter is bound directly to the
7766     //      template-argument, which must be an lvalue.
7767     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7768            "Only object references allowed here");
7769 
7770     if (Arg->getType() == Context.OverloadTy) {
7771       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7772                                                  ParamRefType->getPointeeType(),
7773                                                                 true,
7774                                                                 FoundResult)) {
7775         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7776           return ExprError();
7777         ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7778         if (Res.isInvalid())
7779           return ExprError();
7780         Arg = Res.get();
7781         ArgType = Arg->getType();
7782       } else
7783         return ExprError();
7784     }
7785 
7786     if (CheckTemplateArgumentAddressOfObjectOrFunction(
7787             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7788       return ExprError();
7789     return Arg;
7790   }
7791 
7792   // Deal with parameters of type std::nullptr_t.
7793   if (ParamType->isNullPtrType()) {
7794     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7795       SugaredConverted = TemplateArgument(Arg);
7796       CanonicalConverted =
7797           Context.getCanonicalTemplateArgument(SugaredConverted);
7798       return Arg;
7799     }
7800 
7801     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7802     case NPV_NotNullPointer:
7803       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7804         << Arg->getType() << ParamType;
7805       NoteTemplateParameterLocation(*Param);
7806       return ExprError();
7807 
7808     case NPV_Error:
7809       return ExprError();
7810 
7811     case NPV_NullPointer:
7812       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7813       SugaredConverted = TemplateArgument(ParamType,
7814                                           /*isNullPtr=*/true);
7815       CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType),
7816                                             /*isNullPtr=*/true);
7817       return Arg;
7818     }
7819   }
7820 
7821   //     -- For a non-type template-parameter of type pointer to data
7822   //        member, qualification conversions (4.4) are applied.
7823   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7824 
7825   if (CheckTemplateArgumentPointerToMember(
7826           *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7827     return ExprError();
7828   return Arg;
7829 }
7830 
7831 static void DiagnoseTemplateParameterListArityMismatch(
7832     Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7833     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7834 
7835 /// Check a template argument against its corresponding
7836 /// template template parameter.
7837 ///
7838 /// This routine implements the semantics of C++ [temp.arg.template].
7839 /// It returns true if an error occurred, and false otherwise.
7840 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7841                                          TemplateParameterList *Params,
7842                                          TemplateArgumentLoc &Arg) {
7843   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7844   TemplateDecl *Template = Name.getAsTemplateDecl();
7845   if (!Template) {
7846     // Any dependent template name is fine.
7847     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7848     return false;
7849   }
7850 
7851   if (Template->isInvalidDecl())
7852     return true;
7853 
7854   // C++0x [temp.arg.template]p1:
7855   //   A template-argument for a template template-parameter shall be
7856   //   the name of a class template or an alias template, expressed as an
7857   //   id-expression. When the template-argument names a class template, only
7858   //   primary class templates are considered when matching the
7859   //   template template argument with the corresponding parameter;
7860   //   partial specializations are not considered even if their
7861   //   parameter lists match that of the template template parameter.
7862   //
7863   // Note that we also allow template template parameters here, which
7864   // will happen when we are dealing with, e.g., class template
7865   // partial specializations.
7866   if (!isa<ClassTemplateDecl>(Template) &&
7867       !isa<TemplateTemplateParmDecl>(Template) &&
7868       !isa<TypeAliasTemplateDecl>(Template) &&
7869       !isa<BuiltinTemplateDecl>(Template)) {
7870     assert(isa<FunctionTemplateDecl>(Template) &&
7871            "Only function templates are possible here");
7872     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7873     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7874       << Template;
7875   }
7876 
7877   // C++1z [temp.arg.template]p3: (DR 150)
7878   //   A template-argument matches a template template-parameter P when P
7879   //   is at least as specialized as the template-argument A.
7880   // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7881   //  defect report resolution from C++17 and shouldn't be introduced by
7882   //  concepts.
7883   if (getLangOpts().RelaxedTemplateTemplateArgs) {
7884     // Quick check for the common case:
7885     //   If P contains a parameter pack, then A [...] matches P if each of A's
7886     //   template parameters matches the corresponding template parameter in
7887     //   the template-parameter-list of P.
7888     if (TemplateParameterListsAreEqual(
7889             Template->getTemplateParameters(), Params, false,
7890             TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7891         // If the argument has no associated constraints, then the parameter is
7892         // definitely at least as specialized as the argument.
7893         // Otherwise - we need a more thorough check.
7894         !Template->hasAssociatedConstraints())
7895       return false;
7896 
7897     if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7898                                                           Arg.getLocation())) {
7899       // P2113
7900       // C++20[temp.func.order]p2
7901       //   [...] If both deductions succeed, the partial ordering selects the
7902       // more constrained template (if one exists) as determined below.
7903       SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7904       Params->getAssociatedConstraints(ParamsAC);
7905       // C++2a[temp.arg.template]p3
7906       //   [...] In this comparison, if P is unconstrained, the constraints on A
7907       //   are not considered.
7908       if (ParamsAC.empty())
7909         return false;
7910 
7911       Template->getAssociatedConstraints(TemplateAC);
7912 
7913       bool IsParamAtLeastAsConstrained;
7914       if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7915                                  IsParamAtLeastAsConstrained))
7916         return true;
7917       if (!IsParamAtLeastAsConstrained) {
7918         Diag(Arg.getLocation(),
7919              diag::err_template_template_parameter_not_at_least_as_constrained)
7920             << Template << Param << Arg.getSourceRange();
7921         Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7922         Diag(Template->getLocation(), diag::note_entity_declared_at)
7923             << Template;
7924         MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7925                                                       TemplateAC);
7926         return true;
7927       }
7928       return false;
7929     }
7930     // FIXME: Produce better diagnostics for deduction failures.
7931   }
7932 
7933   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7934                                          Params,
7935                                          true,
7936                                          TPL_TemplateTemplateArgumentMatch,
7937                                          Arg.getLocation());
7938 }
7939 
7940 static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl,
7941                                                 unsigned HereDiagID,
7942                                                 unsigned ExternalDiagID) {
7943   if (Decl.getLocation().isValid())
7944     return S.Diag(Decl.getLocation(), HereDiagID);
7945 
7946   SmallString<128> Str;
7947   llvm::raw_svector_ostream Out(Str);
7948   PrintingPolicy PP = S.getPrintingPolicy();
7949   PP.TerseOutput = 1;
7950   Decl.print(Out, PP);
7951   return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str();
7952 }
7953 
7954 void Sema::NoteTemplateLocation(const NamedDecl &Decl,
7955                                 std::optional<SourceRange> ParamRange) {
7956   SemaDiagnosticBuilder DB =
7957       noteLocation(*this, Decl, diag::note_template_decl_here,
7958                    diag::note_template_decl_external);
7959   if (ParamRange && ParamRange->isValid()) {
7960     assert(Decl.getLocation().isValid() &&
7961            "Parameter range has location when Decl does not");
7962     DB << *ParamRange;
7963   }
7964 }
7965 
7966 void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) {
7967   noteLocation(*this, Decl, diag::note_template_param_here,
7968                diag::note_template_param_external);
7969 }
7970 
7971 /// Given a non-type template argument that refers to a
7972 /// declaration and the type of its corresponding non-type template
7973 /// parameter, produce an expression that properly refers to that
7974 /// declaration.
7975 ExprResult
7976 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7977                                               QualType ParamType,
7978                                               SourceLocation Loc) {
7979   // C++ [temp.param]p8:
7980   //
7981   //   A non-type template-parameter of type "array of T" or
7982   //   "function returning T" is adjusted to be of type "pointer to
7983   //   T" or "pointer to function returning T", respectively.
7984   if (ParamType->isArrayType())
7985     ParamType = Context.getArrayDecayedType(ParamType);
7986   else if (ParamType->isFunctionType())
7987     ParamType = Context.getPointerType(ParamType);
7988 
7989   // For a NULL non-type template argument, return nullptr casted to the
7990   // parameter's type.
7991   if (Arg.getKind() == TemplateArgument::NullPtr) {
7992     return ImpCastExprToType(
7993              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7994                              ParamType,
7995                              ParamType->getAs<MemberPointerType>()
7996                                ? CK_NullToMemberPointer
7997                                : CK_NullToPointer);
7998   }
7999   assert(Arg.getKind() == TemplateArgument::Declaration &&
8000          "Only declaration template arguments permitted here");
8001 
8002   ValueDecl *VD = Arg.getAsDecl();
8003 
8004   CXXScopeSpec SS;
8005   if (ParamType->isMemberPointerType()) {
8006     // If this is a pointer to member, we need to use a qualified name to
8007     // form a suitable pointer-to-member constant.
8008     assert(VD->getDeclContext()->isRecord() &&
8009            (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
8010             isa<IndirectFieldDecl>(VD)));
8011     QualType ClassType
8012       = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
8013     NestedNameSpecifier *Qualifier
8014       = NestedNameSpecifier::Create(Context, nullptr, false,
8015                                     ClassType.getTypePtr());
8016     SS.MakeTrivial(Context, Qualifier, Loc);
8017   }
8018 
8019   ExprResult RefExpr = BuildDeclarationNameExpr(
8020       SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8021   if (RefExpr.isInvalid())
8022     return ExprError();
8023 
8024   // For a pointer, the argument declaration is the pointee. Take its address.
8025   QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
8026   if (ParamType->isPointerType() && !ElemT.isNull() &&
8027       Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
8028     // Decay an array argument if we want a pointer to its first element.
8029     RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
8030     if (RefExpr.isInvalid())
8031       return ExprError();
8032   } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
8033     // For any other pointer, take the address (or form a pointer-to-member).
8034     RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
8035     if (RefExpr.isInvalid())
8036       return ExprError();
8037   } else if (ParamType->isRecordType()) {
8038     assert(isa<TemplateParamObjectDecl>(VD) &&
8039            "arg for class template param not a template parameter object");
8040     // No conversions apply in this case.
8041     return RefExpr;
8042   } else {
8043     assert(ParamType->isReferenceType() &&
8044            "unexpected type for decl template argument");
8045   }
8046 
8047   // At this point we should have the right value category.
8048   assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
8049          "value kind mismatch for non-type template argument");
8050 
8051   // The type of the template parameter can differ from the type of the
8052   // argument in various ways; convert it now if necessary.
8053   QualType DestExprType = ParamType.getNonLValueExprType(Context);
8054   if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
8055     CastKind CK;
8056     QualType Ignored;
8057     if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
8058         IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
8059       CK = CK_NoOp;
8060     } else if (ParamType->isVoidPointerType() &&
8061                RefExpr.get()->getType()->isPointerType()) {
8062       CK = CK_BitCast;
8063     } else {
8064       // FIXME: Pointers to members can need conversion derived-to-base or
8065       // base-to-derived conversions. We currently don't retain enough
8066       // information to convert properly (we need to track a cast path or
8067       // subobject number in the template argument).
8068       llvm_unreachable(
8069           "unexpected conversion required for non-type template argument");
8070     }
8071     RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
8072                                 RefExpr.get()->getValueKind());
8073   }
8074 
8075   return RefExpr;
8076 }
8077 
8078 /// Construct a new expression that refers to the given
8079 /// integral template argument with the given source-location
8080 /// information.
8081 ///
8082 /// This routine takes care of the mapping from an integral template
8083 /// argument (which may have any integral type) to the appropriate
8084 /// literal value.
8085 ExprResult
8086 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
8087                                                   SourceLocation Loc) {
8088   assert(Arg.getKind() == TemplateArgument::Integral &&
8089          "Operation is only valid for integral template arguments");
8090   QualType OrigT = Arg.getIntegralType();
8091 
8092   // If this is an enum type that we're instantiating, we need to use an integer
8093   // type the same size as the enumerator.  We don't want to build an
8094   // IntegerLiteral with enum type.  The integer type of an enum type can be of
8095   // any integral type with C++11 enum classes, make sure we create the right
8096   // type of literal for it.
8097   QualType T = OrigT;
8098   if (const EnumType *ET = OrigT->getAs<EnumType>())
8099     T = ET->getDecl()->getIntegerType();
8100 
8101   Expr *E;
8102   if (T->isAnyCharacterType()) {
8103     CharacterLiteralKind Kind;
8104     if (T->isWideCharType())
8105       Kind = CharacterLiteralKind::Wide;
8106     else if (T->isChar8Type() && getLangOpts().Char8)
8107       Kind = CharacterLiteralKind::UTF8;
8108     else if (T->isChar16Type())
8109       Kind = CharacterLiteralKind::UTF16;
8110     else if (T->isChar32Type())
8111       Kind = CharacterLiteralKind::UTF32;
8112     else
8113       Kind = CharacterLiteralKind::Ascii;
8114 
8115     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
8116                                        Kind, T, Loc);
8117   } else if (T->isBooleanType()) {
8118     E = CXXBoolLiteralExpr::Create(Context, Arg.getAsIntegral().getBoolValue(),
8119                                    T, Loc);
8120   } else if (T->isNullPtrType()) {
8121     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
8122   } else {
8123     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
8124   }
8125 
8126   if (OrigT->isEnumeralType()) {
8127     // FIXME: This is a hack. We need a better way to handle substituted
8128     // non-type template parameters.
8129     E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E,
8130                                nullptr, CurFPFeatureOverrides(),
8131                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
8132                                Loc, Loc);
8133   }
8134 
8135   return E;
8136 }
8137 
8138 /// Match two template parameters within template parameter lists.
8139 static bool MatchTemplateParameterKind(
8140     Sema &S, NamedDecl *New,
8141     const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old,
8142     const NamedDecl *OldInstFrom, bool Complain,
8143     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8144   // Check the actual kind (type, non-type, template).
8145   if (Old->getKind() != New->getKind()) {
8146     if (Complain) {
8147       unsigned NextDiag = diag::err_template_param_different_kind;
8148       if (TemplateArgLoc.isValid()) {
8149         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8150         NextDiag = diag::note_template_param_different_kind;
8151       }
8152       S.Diag(New->getLocation(), NextDiag)
8153         << (Kind != Sema::TPL_TemplateMatch);
8154       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
8155         << (Kind != Sema::TPL_TemplateMatch);
8156     }
8157 
8158     return false;
8159   }
8160 
8161   // Check that both are parameter packs or neither are parameter packs.
8162   // However, if we are matching a template template argument to a
8163   // template template parameter, the template template parameter can have
8164   // a parameter pack where the template template argument does not.
8165   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
8166       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
8167         Old->isTemplateParameterPack())) {
8168     if (Complain) {
8169       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
8170       if (TemplateArgLoc.isValid()) {
8171         S.Diag(TemplateArgLoc,
8172              diag::err_template_arg_template_params_mismatch);
8173         NextDiag = diag::note_template_parameter_pack_non_pack;
8174       }
8175 
8176       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
8177                       : isa<NonTypeTemplateParmDecl>(New)? 1
8178                       : 2;
8179       S.Diag(New->getLocation(), NextDiag)
8180         << ParamKind << New->isParameterPack();
8181       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
8182         << ParamKind << Old->isParameterPack();
8183     }
8184 
8185     return false;
8186   }
8187 
8188   // For non-type template parameters, check the type of the parameter.
8189   if (NonTypeTemplateParmDecl *OldNTTP
8190                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
8191     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
8192 
8193     // If we are matching a template template argument to a template
8194     // template parameter and one of the non-type template parameter types
8195     // is dependent, then we must wait until template instantiation time
8196     // to actually compare the arguments.
8197     if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
8198         (!OldNTTP->getType()->isDependentType() &&
8199          !NewNTTP->getType()->isDependentType())) {
8200       // C++20 [temp.over.link]p6:
8201       //   Two [non-type] template-parameters are equivalent [if] they have
8202       //   equivalent types ignoring the use of type-constraints for
8203       //   placeholder types
8204       QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType());
8205       QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType());
8206       if (!S.Context.hasSameType(OldType, NewType)) {
8207         if (Complain) {
8208           unsigned NextDiag = diag::err_template_nontype_parm_different_type;
8209           if (TemplateArgLoc.isValid()) {
8210             S.Diag(TemplateArgLoc,
8211                    diag::err_template_arg_template_params_mismatch);
8212             NextDiag = diag::note_template_nontype_parm_different_type;
8213           }
8214           S.Diag(NewNTTP->getLocation(), NextDiag)
8215             << NewNTTP->getType()
8216             << (Kind != Sema::TPL_TemplateMatch);
8217           S.Diag(OldNTTP->getLocation(),
8218                  diag::note_template_nontype_parm_prev_declaration)
8219             << OldNTTP->getType();
8220         }
8221 
8222         return false;
8223       }
8224     }
8225   }
8226   // For template template parameters, check the template parameter types.
8227   // The template parameter lists of template template
8228   // parameters must agree.
8229   else if (TemplateTemplateParmDecl *OldTTP =
8230                dyn_cast<TemplateTemplateParmDecl>(Old)) {
8231     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
8232     if (!S.TemplateParameterListsAreEqual(
8233             NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom,
8234             OldTTP->getTemplateParameters(), Complain,
8235             (Kind == Sema::TPL_TemplateMatch
8236                  ? Sema::TPL_TemplateTemplateParmMatch
8237                  : Kind),
8238             TemplateArgLoc))
8239       return false;
8240   }
8241 
8242   if (Kind != Sema::TPL_TemplateParamsEquivalent &&
8243       Kind != Sema::TPL_TemplateTemplateArgumentMatch &&
8244       !isa<TemplateTemplateParmDecl>(Old)) {
8245     const Expr *NewC = nullptr, *OldC = nullptr;
8246 
8247     if (isa<TemplateTypeParmDecl>(New)) {
8248       if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
8249         NewC = TC->getImmediatelyDeclaredConstraint();
8250       if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
8251         OldC = TC->getImmediatelyDeclaredConstraint();
8252     } else if (isa<NonTypeTemplateParmDecl>(New)) {
8253       if (const Expr *E = cast<NonTypeTemplateParmDecl>(New)
8254                               ->getPlaceholderTypeConstraint())
8255         NewC = E;
8256       if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old)
8257                               ->getPlaceholderTypeConstraint())
8258         OldC = E;
8259     } else
8260       llvm_unreachable("unexpected template parameter type");
8261 
8262     auto Diagnose = [&] {
8263       S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
8264            diag::err_template_different_type_constraint);
8265       S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
8266            diag::note_template_prev_declaration) << /*declaration*/0;
8267     };
8268 
8269     if (!NewC != !OldC) {
8270       if (Complain)
8271         Diagnose();
8272       return false;
8273     }
8274 
8275     if (NewC) {
8276       if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom,
8277                                            NewC)) {
8278         if (Complain)
8279           Diagnose();
8280         return false;
8281       }
8282     }
8283   }
8284 
8285   return true;
8286 }
8287 
8288 /// Diagnose a known arity mismatch when comparing template argument
8289 /// lists.
8290 static
8291 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
8292                                                 TemplateParameterList *New,
8293                                                 TemplateParameterList *Old,
8294                                       Sema::TemplateParameterListEqualKind Kind,
8295                                                 SourceLocation TemplateArgLoc) {
8296   unsigned NextDiag = diag::err_template_param_list_different_arity;
8297   if (TemplateArgLoc.isValid()) {
8298     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8299     NextDiag = diag::note_template_param_list_different_arity;
8300   }
8301   S.Diag(New->getTemplateLoc(), NextDiag)
8302     << (New->size() > Old->size())
8303     << (Kind != Sema::TPL_TemplateMatch)
8304     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
8305   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
8306     << (Kind != Sema::TPL_TemplateMatch)
8307     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
8308 }
8309 
8310 /// Determine whether the given template parameter lists are
8311 /// equivalent.
8312 ///
8313 /// \param New  The new template parameter list, typically written in the
8314 /// source code as part of a new template declaration.
8315 ///
8316 /// \param Old  The old template parameter list, typically found via
8317 /// name lookup of the template declared with this template parameter
8318 /// list.
8319 ///
8320 /// \param Complain  If true, this routine will produce a diagnostic if
8321 /// the template parameter lists are not equivalent.
8322 ///
8323 /// \param Kind describes how we are to match the template parameter lists.
8324 ///
8325 /// \param TemplateArgLoc If this source location is valid, then we
8326 /// are actually checking the template parameter list of a template
8327 /// argument (New) against the template parameter list of its
8328 /// corresponding template template parameter (Old). We produce
8329 /// slightly different diagnostics in this scenario.
8330 ///
8331 /// \returns True if the template parameter lists are equal, false
8332 /// otherwise.
8333 bool Sema::TemplateParameterListsAreEqual(
8334     const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
8335     const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
8336     TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8337   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
8338     if (Complain)
8339       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8340                                                  TemplateArgLoc);
8341 
8342     return false;
8343   }
8344 
8345   // C++0x [temp.arg.template]p3:
8346   //   A template-argument matches a template template-parameter (call it P)
8347   //   when each of the template parameters in the template-parameter-list of
8348   //   the template-argument's corresponding class template or alias template
8349   //   (call it A) matches the corresponding template parameter in the
8350   //   template-parameter-list of P. [...]
8351   TemplateParameterList::iterator NewParm = New->begin();
8352   TemplateParameterList::iterator NewParmEnd = New->end();
8353   for (TemplateParameterList::iterator OldParm = Old->begin(),
8354                                     OldParmEnd = Old->end();
8355        OldParm != OldParmEnd; ++OldParm) {
8356     if (Kind != TPL_TemplateTemplateArgumentMatch ||
8357         !(*OldParm)->isTemplateParameterPack()) {
8358       if (NewParm == NewParmEnd) {
8359         if (Complain)
8360           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8361                                                      TemplateArgLoc);
8362 
8363         return false;
8364       }
8365 
8366       if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8367                                       OldInstFrom, Complain, Kind,
8368                                       TemplateArgLoc))
8369         return false;
8370 
8371       ++NewParm;
8372       continue;
8373     }
8374 
8375     // C++0x [temp.arg.template]p3:
8376     //   [...] When P's template- parameter-list contains a template parameter
8377     //   pack (14.5.3), the template parameter pack will match zero or more
8378     //   template parameters or template parameter packs in the
8379     //   template-parameter-list of A with the same type and form as the
8380     //   template parameter pack in P (ignoring whether those template
8381     //   parameters are template parameter packs).
8382     for (; NewParm != NewParmEnd; ++NewParm) {
8383       if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8384                                       OldInstFrom, Complain, Kind,
8385                                       TemplateArgLoc))
8386         return false;
8387     }
8388   }
8389 
8390   // Make sure we exhausted all of the arguments.
8391   if (NewParm != NewParmEnd) {
8392     if (Complain)
8393       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8394                                                  TemplateArgLoc);
8395 
8396     return false;
8397   }
8398 
8399   if (Kind != TPL_TemplateTemplateArgumentMatch &&
8400       Kind != TPL_TemplateParamsEquivalent) {
8401     const Expr *NewRC = New->getRequiresClause();
8402     const Expr *OldRC = Old->getRequiresClause();
8403 
8404     auto Diagnose = [&] {
8405       Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
8406            diag::err_template_different_requires_clause);
8407       Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
8408            diag::note_template_prev_declaration) << /*declaration*/0;
8409     };
8410 
8411     if (!NewRC != !OldRC) {
8412       if (Complain)
8413         Diagnose();
8414       return false;
8415     }
8416 
8417     if (NewRC) {
8418       if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom,
8419                                          NewRC)) {
8420         if (Complain)
8421           Diagnose();
8422         return false;
8423       }
8424     }
8425   }
8426 
8427   return true;
8428 }
8429 
8430 /// Check whether a template can be declared within this scope.
8431 ///
8432 /// If the template declaration is valid in this scope, returns
8433 /// false. Otherwise, issues a diagnostic and returns true.
8434 bool
8435 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
8436   if (!S)
8437     return false;
8438 
8439   // Find the nearest enclosing declaration scope.
8440   while ((S->getFlags() & Scope::DeclScope) == 0 ||
8441          (S->getFlags() & Scope::TemplateParamScope) != 0)
8442     S = S->getParent();
8443 
8444   // C++ [temp.pre]p6: [P2096]
8445   //   A template, explicit specialization, or partial specialization shall not
8446   //   have C linkage.
8447   DeclContext *Ctx = S->getEntity();
8448   if (Ctx && Ctx->isExternCContext()) {
8449     Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
8450         << TemplateParams->getSourceRange();
8451     if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
8452       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
8453     return true;
8454   }
8455   Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
8456 
8457   // C++ [temp]p2:
8458   //   A template-declaration can appear only as a namespace scope or
8459   //   class scope declaration.
8460   // C++ [temp.expl.spec]p3:
8461   //   An explicit specialization may be declared in any scope in which the
8462   //   corresponding primary template may be defined.
8463   // C++ [temp.class.spec]p6: [P2096]
8464   //   A partial specialization may be declared in any scope in which the
8465   //   corresponding primary template may be defined.
8466   if (Ctx) {
8467     if (Ctx->isFileContext())
8468       return false;
8469     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
8470       // C++ [temp.mem]p2:
8471       //   A local class shall not have member templates.
8472       if (RD->isLocalClass())
8473         return Diag(TemplateParams->getTemplateLoc(),
8474                     diag::err_template_inside_local_class)
8475           << TemplateParams->getSourceRange();
8476       else
8477         return false;
8478     }
8479   }
8480 
8481   return Diag(TemplateParams->getTemplateLoc(),
8482               diag::err_template_outside_namespace_or_class_scope)
8483     << TemplateParams->getSourceRange();
8484 }
8485 
8486 /// Determine what kind of template specialization the given declaration
8487 /// is.
8488 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
8489   if (!D)
8490     return TSK_Undeclared;
8491 
8492   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
8493     return Record->getTemplateSpecializationKind();
8494   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
8495     return Function->getTemplateSpecializationKind();
8496   if (VarDecl *Var = dyn_cast<VarDecl>(D))
8497     return Var->getTemplateSpecializationKind();
8498 
8499   return TSK_Undeclared;
8500 }
8501 
8502 /// Check whether a specialization is well-formed in the current
8503 /// context.
8504 ///
8505 /// This routine determines whether a template specialization can be declared
8506 /// in the current context (C++ [temp.expl.spec]p2).
8507 ///
8508 /// \param S the semantic analysis object for which this check is being
8509 /// performed.
8510 ///
8511 /// \param Specialized the entity being specialized or instantiated, which
8512 /// may be a kind of template (class template, function template, etc.) or
8513 /// a member of a class template (member function, static data member,
8514 /// member class).
8515 ///
8516 /// \param PrevDecl the previous declaration of this entity, if any.
8517 ///
8518 /// \param Loc the location of the explicit specialization or instantiation of
8519 /// this entity.
8520 ///
8521 /// \param IsPartialSpecialization whether this is a partial specialization of
8522 /// a class template.
8523 ///
8524 /// \returns true if there was an error that we cannot recover from, false
8525 /// otherwise.
8526 static bool CheckTemplateSpecializationScope(Sema &S,
8527                                              NamedDecl *Specialized,
8528                                              NamedDecl *PrevDecl,
8529                                              SourceLocation Loc,
8530                                              bool IsPartialSpecialization) {
8531   // Keep these "kind" numbers in sync with the %select statements in the
8532   // various diagnostics emitted by this routine.
8533   int EntityKind = 0;
8534   if (isa<ClassTemplateDecl>(Specialized))
8535     EntityKind = IsPartialSpecialization? 1 : 0;
8536   else if (isa<VarTemplateDecl>(Specialized))
8537     EntityKind = IsPartialSpecialization ? 3 : 2;
8538   else if (isa<FunctionTemplateDecl>(Specialized))
8539     EntityKind = 4;
8540   else if (isa<CXXMethodDecl>(Specialized))
8541     EntityKind = 5;
8542   else if (isa<VarDecl>(Specialized))
8543     EntityKind = 6;
8544   else if (isa<RecordDecl>(Specialized))
8545     EntityKind = 7;
8546   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8547     EntityKind = 8;
8548   else {
8549     S.Diag(Loc, diag::err_template_spec_unknown_kind)
8550       << S.getLangOpts().CPlusPlus11;
8551     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8552     return true;
8553   }
8554 
8555   // C++ [temp.expl.spec]p2:
8556   //   An explicit specialization may be declared in any scope in which
8557   //   the corresponding primary template may be defined.
8558   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8559     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8560       << Specialized;
8561     return true;
8562   }
8563 
8564   // C++ [temp.class.spec]p6:
8565   //   A class template partial specialization may be declared in any
8566   //   scope in which the primary template may be defined.
8567   DeclContext *SpecializedContext =
8568       Specialized->getDeclContext()->getRedeclContext();
8569   DeclContext *DC = S.CurContext->getRedeclContext();
8570 
8571   // Make sure that this redeclaration (or definition) occurs in the same
8572   // scope or an enclosing namespace.
8573   if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8574                             : DC->Equals(SpecializedContext))) {
8575     if (isa<TranslationUnitDecl>(SpecializedContext))
8576       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8577         << EntityKind << Specialized;
8578     else {
8579       auto *ND = cast<NamedDecl>(SpecializedContext);
8580       int Diag = diag::err_template_spec_redecl_out_of_scope;
8581       if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8582         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8583       S.Diag(Loc, Diag) << EntityKind << Specialized
8584                         << ND << isa<CXXRecordDecl>(ND);
8585     }
8586 
8587     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8588 
8589     // Don't allow specializing in the wrong class during error recovery.
8590     // Otherwise, things can go horribly wrong.
8591     if (DC->isRecord())
8592       return true;
8593   }
8594 
8595   return false;
8596 }
8597 
8598 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8599   if (!E->isTypeDependent())
8600     return SourceLocation();
8601   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8602   Checker.TraverseStmt(E);
8603   if (Checker.MatchLoc.isInvalid())
8604     return E->getSourceRange();
8605   return Checker.MatchLoc;
8606 }
8607 
8608 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8609   if (!TL.getType()->isDependentType())
8610     return SourceLocation();
8611   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8612   Checker.TraverseTypeLoc(TL);
8613   if (Checker.MatchLoc.isInvalid())
8614     return TL.getSourceRange();
8615   return Checker.MatchLoc;
8616 }
8617 
8618 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8619 /// that checks non-type template partial specialization arguments.
8620 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8621     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8622     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8623   for (unsigned I = 0; I != NumArgs; ++I) {
8624     if (Args[I].getKind() == TemplateArgument::Pack) {
8625       if (CheckNonTypeTemplatePartialSpecializationArgs(
8626               S, TemplateNameLoc, Param, Args[I].pack_begin(),
8627               Args[I].pack_size(), IsDefaultArgument))
8628         return true;
8629 
8630       continue;
8631     }
8632 
8633     if (Args[I].getKind() != TemplateArgument::Expression)
8634       continue;
8635 
8636     Expr *ArgExpr = Args[I].getAsExpr();
8637 
8638     // We can have a pack expansion of any of the bullets below.
8639     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8640       ArgExpr = Expansion->getPattern();
8641 
8642     // Strip off any implicit casts we added as part of type checking.
8643     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8644       ArgExpr = ICE->getSubExpr();
8645 
8646     // C++ [temp.class.spec]p8:
8647     //   A non-type argument is non-specialized if it is the name of a
8648     //   non-type parameter. All other non-type arguments are
8649     //   specialized.
8650     //
8651     // Below, we check the two conditions that only apply to
8652     // specialized non-type arguments, so skip any non-specialized
8653     // arguments.
8654     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8655       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8656         continue;
8657 
8658     // C++ [temp.class.spec]p9:
8659     //   Within the argument list of a class template partial
8660     //   specialization, the following restrictions apply:
8661     //     -- A partially specialized non-type argument expression
8662     //        shall not involve a template parameter of the partial
8663     //        specialization except when the argument expression is a
8664     //        simple identifier.
8665     //     -- The type of a template parameter corresponding to a
8666     //        specialized non-type argument shall not be dependent on a
8667     //        parameter of the specialization.
8668     // DR1315 removes the first bullet, leaving an incoherent set of rules.
8669     // We implement a compromise between the original rules and DR1315:
8670     //     --  A specialized non-type template argument shall not be
8671     //         type-dependent and the corresponding template parameter
8672     //         shall have a non-dependent type.
8673     SourceRange ParamUseRange =
8674         findTemplateParameterInType(Param->getDepth(), ArgExpr);
8675     if (ParamUseRange.isValid()) {
8676       if (IsDefaultArgument) {
8677         S.Diag(TemplateNameLoc,
8678                diag::err_dependent_non_type_arg_in_partial_spec);
8679         S.Diag(ParamUseRange.getBegin(),
8680                diag::note_dependent_non_type_default_arg_in_partial_spec)
8681           << ParamUseRange;
8682       } else {
8683         S.Diag(ParamUseRange.getBegin(),
8684                diag::err_dependent_non_type_arg_in_partial_spec)
8685           << ParamUseRange;
8686       }
8687       return true;
8688     }
8689 
8690     ParamUseRange = findTemplateParameter(
8691         Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8692     if (ParamUseRange.isValid()) {
8693       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8694              diag::err_dependent_typed_non_type_arg_in_partial_spec)
8695           << Param->getType();
8696       S.NoteTemplateParameterLocation(*Param);
8697       return true;
8698     }
8699   }
8700 
8701   return false;
8702 }
8703 
8704 /// Check the non-type template arguments of a class template
8705 /// partial specialization according to C++ [temp.class.spec]p9.
8706 ///
8707 /// \param TemplateNameLoc the location of the template name.
8708 /// \param PrimaryTemplate the template parameters of the primary class
8709 ///        template.
8710 /// \param NumExplicit the number of explicitly-specified template arguments.
8711 /// \param TemplateArgs the template arguments of the class template
8712 ///        partial specialization.
8713 ///
8714 /// \returns \c true if there was an error, \c false otherwise.
8715 bool Sema::CheckTemplatePartialSpecializationArgs(
8716     SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8717     unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8718   // We have to be conservative when checking a template in a dependent
8719   // context.
8720   if (PrimaryTemplate->getDeclContext()->isDependentContext())
8721     return false;
8722 
8723   TemplateParameterList *TemplateParams =
8724       PrimaryTemplate->getTemplateParameters();
8725   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8726     NonTypeTemplateParmDecl *Param
8727       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8728     if (!Param)
8729       continue;
8730 
8731     if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8732                                                       Param, &TemplateArgs[I],
8733                                                       1, I >= NumExplicit))
8734       return true;
8735   }
8736 
8737   return false;
8738 }
8739 
8740 DeclResult Sema::ActOnClassTemplateSpecialization(
8741     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8742     SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8743     TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8744     MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8745   assert(TUK != TUK_Reference && "References are not specializations");
8746 
8747   // NOTE: KWLoc is the location of the tag keyword. This will instead
8748   // store the location of the outermost template keyword in the declaration.
8749   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8750     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8751   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8752   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8753   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8754 
8755   // Find the class template we're specializing
8756   TemplateName Name = TemplateId.Template.get();
8757   ClassTemplateDecl *ClassTemplate
8758     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8759 
8760   if (!ClassTemplate) {
8761     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8762       << (Name.getAsTemplateDecl() &&
8763           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8764     return true;
8765   }
8766 
8767   bool isMemberSpecialization = false;
8768   bool isPartialSpecialization = false;
8769 
8770   // Check the validity of the template headers that introduce this
8771   // template.
8772   // FIXME: We probably shouldn't complain about these headers for
8773   // friend declarations.
8774   bool Invalid = false;
8775   TemplateParameterList *TemplateParams =
8776       MatchTemplateParametersToScopeSpecifier(
8777           KWLoc, TemplateNameLoc, SS, &TemplateId,
8778           TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8779           Invalid);
8780   if (Invalid)
8781     return true;
8782 
8783   // Check that we can declare a template specialization here.
8784   if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8785     return true;
8786 
8787   if (TemplateParams && TemplateParams->size() > 0) {
8788     isPartialSpecialization = true;
8789 
8790     if (TUK == TUK_Friend) {
8791       Diag(KWLoc, diag::err_partial_specialization_friend)
8792         << SourceRange(LAngleLoc, RAngleLoc);
8793       return true;
8794     }
8795 
8796     // C++ [temp.class.spec]p10:
8797     //   The template parameter list of a specialization shall not
8798     //   contain default template argument values.
8799     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8800       Decl *Param = TemplateParams->getParam(I);
8801       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8802         if (TTP->hasDefaultArgument()) {
8803           Diag(TTP->getDefaultArgumentLoc(),
8804                diag::err_default_arg_in_partial_spec);
8805           TTP->removeDefaultArgument();
8806         }
8807       } else if (NonTypeTemplateParmDecl *NTTP
8808                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8809         if (Expr *DefArg = NTTP->getDefaultArgument()) {
8810           Diag(NTTP->getDefaultArgumentLoc(),
8811                diag::err_default_arg_in_partial_spec)
8812             << DefArg->getSourceRange();
8813           NTTP->removeDefaultArgument();
8814         }
8815       } else {
8816         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8817         if (TTP->hasDefaultArgument()) {
8818           Diag(TTP->getDefaultArgument().getLocation(),
8819                diag::err_default_arg_in_partial_spec)
8820             << TTP->getDefaultArgument().getSourceRange();
8821           TTP->removeDefaultArgument();
8822         }
8823       }
8824     }
8825   } else if (TemplateParams) {
8826     if (TUK == TUK_Friend)
8827       Diag(KWLoc, diag::err_template_spec_friend)
8828         << FixItHint::CreateRemoval(
8829                                 SourceRange(TemplateParams->getTemplateLoc(),
8830                                             TemplateParams->getRAngleLoc()))
8831         << SourceRange(LAngleLoc, RAngleLoc);
8832   } else {
8833     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8834   }
8835 
8836   // Check that the specialization uses the same tag kind as the
8837   // original template.
8838   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8839   assert(Kind != TagTypeKind::Enum &&
8840          "Invalid enum tag in class template spec!");
8841   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8842                                     Kind, TUK == TUK_Definition, KWLoc,
8843                                     ClassTemplate->getIdentifier())) {
8844     Diag(KWLoc, diag::err_use_with_wrong_tag)
8845       << ClassTemplate
8846       << FixItHint::CreateReplacement(KWLoc,
8847                             ClassTemplate->getTemplatedDecl()->getKindName());
8848     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8849          diag::note_previous_use);
8850     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8851   }
8852 
8853   // Translate the parser's template argument list in our AST format.
8854   TemplateArgumentListInfo TemplateArgs =
8855       makeTemplateArgumentListInfo(*this, TemplateId);
8856 
8857   // Check for unexpanded parameter packs in any of the template arguments.
8858   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8859     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8860                                         isPartialSpecialization
8861                                             ? UPPC_PartialSpecialization
8862                                             : UPPC_ExplicitSpecialization))
8863       return true;
8864 
8865   // Check that the template argument list is well-formed for this
8866   // template.
8867   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
8868   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
8869                                 false, SugaredConverted, CanonicalConverted,
8870                                 /*UpdateArgsWithConversions=*/true))
8871     return true;
8872 
8873   // Find the class template (partial) specialization declaration that
8874   // corresponds to these arguments.
8875   if (isPartialSpecialization) {
8876     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8877                                                TemplateArgs.size(),
8878                                                CanonicalConverted))
8879       return true;
8880 
8881     // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8882     // also do it during instantiation.
8883     if (!Name.isDependent() &&
8884         !TemplateSpecializationType::anyDependentTemplateArguments(
8885             TemplateArgs, CanonicalConverted)) {
8886       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8887         << ClassTemplate->getDeclName();
8888       isPartialSpecialization = false;
8889     }
8890   }
8891 
8892   void *InsertPos = nullptr;
8893   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8894 
8895   if (isPartialSpecialization)
8896     PrevDecl = ClassTemplate->findPartialSpecialization(
8897         CanonicalConverted, TemplateParams, InsertPos);
8898   else
8899     PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
8900 
8901   ClassTemplateSpecializationDecl *Specialization = nullptr;
8902 
8903   // Check whether we can declare a class template specialization in
8904   // the current scope.
8905   if (TUK != TUK_Friend &&
8906       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8907                                        TemplateNameLoc,
8908                                        isPartialSpecialization))
8909     return true;
8910 
8911   // The canonical type
8912   QualType CanonType;
8913   if (isPartialSpecialization) {
8914     // Build the canonical type that describes the converted template
8915     // arguments of the class template partial specialization.
8916     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8917     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8918                                                       CanonicalConverted);
8919 
8920     if (Context.hasSameType(CanonType,
8921                         ClassTemplate->getInjectedClassNameSpecialization()) &&
8922         (!Context.getLangOpts().CPlusPlus20 ||
8923          !TemplateParams->hasAssociatedConstraints())) {
8924       // C++ [temp.class.spec]p9b3:
8925       //
8926       //   -- The argument list of the specialization shall not be identical
8927       //      to the implicit argument list of the primary template.
8928       //
8929       // This rule has since been removed, because it's redundant given DR1495,
8930       // but we keep it because it produces better diagnostics and recovery.
8931       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8932         << /*class template*/0 << (TUK == TUK_Definition)
8933         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8934       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8935                                 ClassTemplate->getIdentifier(),
8936                                 TemplateNameLoc,
8937                                 Attr,
8938                                 TemplateParams,
8939                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8940                                 /*FriendLoc*/SourceLocation(),
8941                                 TemplateParameterLists.size() - 1,
8942                                 TemplateParameterLists.data());
8943     }
8944 
8945     // Create a new class template partial specialization declaration node.
8946     ClassTemplatePartialSpecializationDecl *PrevPartial
8947       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8948     ClassTemplatePartialSpecializationDecl *Partial =
8949         ClassTemplatePartialSpecializationDecl::Create(
8950             Context, Kind, ClassTemplate->getDeclContext(), KWLoc,
8951             TemplateNameLoc, TemplateParams, ClassTemplate, CanonicalConverted,
8952             TemplateArgs, CanonType, PrevPartial);
8953     SetNestedNameSpecifier(*this, Partial, SS);
8954     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8955       Partial->setTemplateParameterListsInfo(
8956           Context, TemplateParameterLists.drop_back(1));
8957     }
8958 
8959     if (!PrevPartial)
8960       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8961     Specialization = Partial;
8962 
8963     // If we are providing an explicit specialization of a member class
8964     // template specialization, make a note of that.
8965     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8966       PrevPartial->setMemberSpecialization();
8967 
8968     CheckTemplatePartialSpecialization(Partial);
8969   } else {
8970     // Create a new class template specialization declaration node for
8971     // this explicit specialization or friend declaration.
8972     Specialization = ClassTemplateSpecializationDecl::Create(
8973         Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
8974         ClassTemplate, CanonicalConverted, PrevDecl);
8975     SetNestedNameSpecifier(*this, Specialization, SS);
8976     if (TemplateParameterLists.size() > 0) {
8977       Specialization->setTemplateParameterListsInfo(Context,
8978                                                     TemplateParameterLists);
8979     }
8980 
8981     if (!PrevDecl)
8982       ClassTemplate->AddSpecialization(Specialization, InsertPos);
8983 
8984     if (CurContext->isDependentContext()) {
8985       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8986       CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8987                                                         CanonicalConverted);
8988     } else {
8989       CanonType = Context.getTypeDeclType(Specialization);
8990     }
8991   }
8992 
8993   // C++ [temp.expl.spec]p6:
8994   //   If a template, a member template or the member of a class template is
8995   //   explicitly specialized then that specialization shall be declared
8996   //   before the first use of that specialization that would cause an implicit
8997   //   instantiation to take place, in every translation unit in which such a
8998   //   use occurs; no diagnostic is required.
8999   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
9000     bool Okay = false;
9001     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9002       // Is there any previous explicit specialization declaration?
9003       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
9004         Okay = true;
9005         break;
9006       }
9007     }
9008 
9009     if (!Okay) {
9010       SourceRange Range(TemplateNameLoc, RAngleLoc);
9011       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
9012         << Context.getTypeDeclType(Specialization) << Range;
9013 
9014       Diag(PrevDecl->getPointOfInstantiation(),
9015            diag::note_instantiation_required_here)
9016         << (PrevDecl->getTemplateSpecializationKind()
9017                                                 != TSK_ImplicitInstantiation);
9018       return true;
9019     }
9020   }
9021 
9022   // If this is not a friend, note that this is an explicit specialization.
9023   if (TUK != TUK_Friend)
9024     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
9025 
9026   // Check that this isn't a redefinition of this specialization.
9027   if (TUK == TUK_Definition) {
9028     RecordDecl *Def = Specialization->getDefinition();
9029     NamedDecl *Hidden = nullptr;
9030     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
9031       SkipBody->ShouldSkip = true;
9032       SkipBody->Previous = Def;
9033       makeMergedDefinitionVisible(Hidden);
9034     } else if (Def) {
9035       SourceRange Range(TemplateNameLoc, RAngleLoc);
9036       Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
9037       Diag(Def->getLocation(), diag::note_previous_definition);
9038       Specialization->setInvalidDecl();
9039       return true;
9040     }
9041   }
9042 
9043   ProcessDeclAttributeList(S, Specialization, Attr);
9044 
9045   // Add alignment attributes if necessary; these attributes are checked when
9046   // the ASTContext lays out the structure.
9047   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
9048     AddAlignmentAttributesForRecord(Specialization);
9049     AddMsStructLayoutForRecord(Specialization);
9050   }
9051 
9052   if (ModulePrivateLoc.isValid())
9053     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
9054       << (isPartialSpecialization? 1 : 0)
9055       << FixItHint::CreateRemoval(ModulePrivateLoc);
9056 
9057   // Build the fully-sugared type for this class template
9058   // specialization as the user wrote in the specialization
9059   // itself. This means that we'll pretty-print the type retrieved
9060   // from the specialization's declaration the way that the user
9061   // actually wrote the specialization, rather than formatting the
9062   // name based on the "canonical" representation used to store the
9063   // template arguments in the specialization.
9064   TypeSourceInfo *WrittenTy
9065     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9066                                                 TemplateArgs, CanonType);
9067   if (TUK != TUK_Friend) {
9068     Specialization->setTypeAsWritten(WrittenTy);
9069     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
9070   }
9071 
9072   // C++ [temp.expl.spec]p9:
9073   //   A template explicit specialization is in the scope of the
9074   //   namespace in which the template was defined.
9075   //
9076   // We actually implement this paragraph where we set the semantic
9077   // context (in the creation of the ClassTemplateSpecializationDecl),
9078   // but we also maintain the lexical context where the actual
9079   // definition occurs.
9080   Specialization->setLexicalDeclContext(CurContext);
9081 
9082   // We may be starting the definition of this specialization.
9083   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
9084     Specialization->startDefinition();
9085 
9086   if (TUK == TUK_Friend) {
9087     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
9088                                             TemplateNameLoc,
9089                                             WrittenTy,
9090                                             /*FIXME:*/KWLoc);
9091     Friend->setAccess(AS_public);
9092     CurContext->addDecl(Friend);
9093   } else {
9094     // Add the specialization into its lexical context, so that it can
9095     // be seen when iterating through the list of declarations in that
9096     // context. However, specializations are not found by name lookup.
9097     CurContext->addDecl(Specialization);
9098   }
9099 
9100   if (SkipBody && SkipBody->ShouldSkip)
9101     return SkipBody->Previous;
9102 
9103   return Specialization;
9104 }
9105 
9106 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
9107                               MultiTemplateParamsArg TemplateParameterLists,
9108                                     Declarator &D) {
9109   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
9110   ActOnDocumentableDecl(NewDecl);
9111   return NewDecl;
9112 }
9113 
9114 Decl *Sema::ActOnConceptDefinition(Scope *S,
9115                               MultiTemplateParamsArg TemplateParameterLists,
9116                                    IdentifierInfo *Name, SourceLocation NameLoc,
9117                                    Expr *ConstraintExpr) {
9118   DeclContext *DC = CurContext;
9119 
9120   if (!DC->getRedeclContext()->isFileContext()) {
9121     Diag(NameLoc,
9122       diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
9123     return nullptr;
9124   }
9125 
9126   if (TemplateParameterLists.size() > 1) {
9127     Diag(NameLoc, diag::err_concept_extra_headers);
9128     return nullptr;
9129   }
9130 
9131   TemplateParameterList *Params = TemplateParameterLists.front();
9132 
9133   if (Params->size() == 0) {
9134     Diag(NameLoc, diag::err_concept_no_parameters);
9135     return nullptr;
9136   }
9137 
9138   // Ensure that the parameter pack, if present, is the last parameter in the
9139   // template.
9140   for (TemplateParameterList::const_iterator ParamIt = Params->begin(),
9141                                              ParamEnd = Params->end();
9142        ParamIt != ParamEnd; ++ParamIt) {
9143     Decl const *Param = *ParamIt;
9144     if (Param->isParameterPack()) {
9145       if (++ParamIt == ParamEnd)
9146         break;
9147       Diag(Param->getLocation(),
9148            diag::err_template_param_pack_must_be_last_template_parameter);
9149       return nullptr;
9150     }
9151   }
9152 
9153   if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
9154     return nullptr;
9155 
9156   ConceptDecl *NewDecl =
9157       ConceptDecl::Create(Context, DC, NameLoc, Name, Params, ConstraintExpr);
9158 
9159   if (NewDecl->hasAssociatedConstraints()) {
9160     // C++2a [temp.concept]p4:
9161     // A concept shall not have associated constraints.
9162     Diag(NameLoc, diag::err_concept_no_associated_constraints);
9163     NewDecl->setInvalidDecl();
9164   }
9165 
9166   // Check for conflicting previous declaration.
9167   DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
9168   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9169                         forRedeclarationInCurContext());
9170   LookupName(Previous, S);
9171   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
9172                        /*AllowInlineNamespace*/false);
9173   bool AddToScope = true;
9174   CheckConceptRedefinition(NewDecl, Previous, AddToScope);
9175 
9176   ActOnDocumentableDecl(NewDecl);
9177   if (AddToScope)
9178     PushOnScopeChains(NewDecl, S);
9179   return NewDecl;
9180 }
9181 
9182 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
9183                                     LookupResult &Previous, bool &AddToScope) {
9184   AddToScope = true;
9185 
9186   if (Previous.empty())
9187     return;
9188 
9189   auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
9190   if (!OldConcept) {
9191     auto *Old = Previous.getRepresentativeDecl();
9192     Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
9193         << NewDecl->getDeclName();
9194     notePreviousDefinition(Old, NewDecl->getLocation());
9195     AddToScope = false;
9196     return;
9197   }
9198   // Check if we can merge with a concept declaration.
9199   bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
9200   if (!IsSame) {
9201     Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
9202         << NewDecl->getDeclName();
9203     notePreviousDefinition(OldConcept, NewDecl->getLocation());
9204     AddToScope = false;
9205     return;
9206   }
9207   if (hasReachableDefinition(OldConcept) &&
9208       IsRedefinitionInModule(NewDecl, OldConcept)) {
9209     Diag(NewDecl->getLocation(), diag::err_redefinition)
9210         << NewDecl->getDeclName();
9211     notePreviousDefinition(OldConcept, NewDecl->getLocation());
9212     AddToScope = false;
9213     return;
9214   }
9215   if (!Previous.isSingleResult()) {
9216     // FIXME: we should produce an error in case of ambig and failed lookups.
9217     //        Other decls (e.g. namespaces) also have this shortcoming.
9218     return;
9219   }
9220   // We unwrap canonical decl late to check for module visibility.
9221   Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
9222 }
9223 
9224 /// \brief Strips various properties off an implicit instantiation
9225 /// that has just been explicitly specialized.
9226 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) {
9227   if (MinGW || (isa<FunctionDecl>(D) &&
9228                 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) {
9229     D->dropAttr<DLLImportAttr>();
9230     D->dropAttr<DLLExportAttr>();
9231   }
9232 
9233   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
9234     FD->setInlineSpecified(false);
9235 }
9236 
9237 /// Compute the diagnostic location for an explicit instantiation
9238 //  declaration or definition.
9239 static SourceLocation DiagLocForExplicitInstantiation(
9240     NamedDecl* D, SourceLocation PointOfInstantiation) {
9241   // Explicit instantiations following a specialization have no effect and
9242   // hence no PointOfInstantiation. In that case, walk decl backwards
9243   // until a valid name loc is found.
9244   SourceLocation PrevDiagLoc = PointOfInstantiation;
9245   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
9246        Prev = Prev->getPreviousDecl()) {
9247     PrevDiagLoc = Prev->getLocation();
9248   }
9249   assert(PrevDiagLoc.isValid() &&
9250          "Explicit instantiation without point of instantiation?");
9251   return PrevDiagLoc;
9252 }
9253 
9254 /// Diagnose cases where we have an explicit template specialization
9255 /// before/after an explicit template instantiation, producing diagnostics
9256 /// for those cases where they are required and determining whether the
9257 /// new specialization/instantiation will have any effect.
9258 ///
9259 /// \param NewLoc the location of the new explicit specialization or
9260 /// instantiation.
9261 ///
9262 /// \param NewTSK the kind of the new explicit specialization or instantiation.
9263 ///
9264 /// \param PrevDecl the previous declaration of the entity.
9265 ///
9266 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
9267 ///
9268 /// \param PrevPointOfInstantiation if valid, indicates where the previous
9269 /// declaration was instantiated (either implicitly or explicitly).
9270 ///
9271 /// \param HasNoEffect will be set to true to indicate that the new
9272 /// specialization or instantiation has no effect and should be ignored.
9273 ///
9274 /// \returns true if there was an error that should prevent the introduction of
9275 /// the new declaration into the AST, false otherwise.
9276 bool
9277 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
9278                                              TemplateSpecializationKind NewTSK,
9279                                              NamedDecl *PrevDecl,
9280                                              TemplateSpecializationKind PrevTSK,
9281                                         SourceLocation PrevPointOfInstantiation,
9282                                              bool &HasNoEffect) {
9283   HasNoEffect = false;
9284 
9285   switch (NewTSK) {
9286   case TSK_Undeclared:
9287   case TSK_ImplicitInstantiation:
9288     assert(
9289         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
9290         "previous declaration must be implicit!");
9291     return false;
9292 
9293   case TSK_ExplicitSpecialization:
9294     switch (PrevTSK) {
9295     case TSK_Undeclared:
9296     case TSK_ExplicitSpecialization:
9297       // Okay, we're just specializing something that is either already
9298       // explicitly specialized or has merely been mentioned without any
9299       // instantiation.
9300       return false;
9301 
9302     case TSK_ImplicitInstantiation:
9303       if (PrevPointOfInstantiation.isInvalid()) {
9304         // The declaration itself has not actually been instantiated, so it is
9305         // still okay to specialize it.
9306         StripImplicitInstantiation(
9307             PrevDecl,
9308             Context.getTargetInfo().getTriple().isWindowsGNUEnvironment());
9309         return false;
9310       }
9311       // Fall through
9312       [[fallthrough]];
9313 
9314     case TSK_ExplicitInstantiationDeclaration:
9315     case TSK_ExplicitInstantiationDefinition:
9316       assert((PrevTSK == TSK_ImplicitInstantiation ||
9317               PrevPointOfInstantiation.isValid()) &&
9318              "Explicit instantiation without point of instantiation?");
9319 
9320       // C++ [temp.expl.spec]p6:
9321       //   If a template, a member template or the member of a class template
9322       //   is explicitly specialized then that specialization shall be declared
9323       //   before the first use of that specialization that would cause an
9324       //   implicit instantiation to take place, in every translation unit in
9325       //   which such a use occurs; no diagnostic is required.
9326       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9327         // Is there any previous explicit specialization declaration?
9328         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
9329           return false;
9330       }
9331 
9332       Diag(NewLoc, diag::err_specialization_after_instantiation)
9333         << PrevDecl;
9334       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
9335         << (PrevTSK != TSK_ImplicitInstantiation);
9336 
9337       return true;
9338     }
9339     llvm_unreachable("The switch over PrevTSK must be exhaustive.");
9340 
9341   case TSK_ExplicitInstantiationDeclaration:
9342     switch (PrevTSK) {
9343     case TSK_ExplicitInstantiationDeclaration:
9344       // This explicit instantiation declaration is redundant (that's okay).
9345       HasNoEffect = true;
9346       return false;
9347 
9348     case TSK_Undeclared:
9349     case TSK_ImplicitInstantiation:
9350       // We're explicitly instantiating something that may have already been
9351       // implicitly instantiated; that's fine.
9352       return false;
9353 
9354     case TSK_ExplicitSpecialization:
9355       // C++0x [temp.explicit]p4:
9356       //   For a given set of template parameters, if an explicit instantiation
9357       //   of a template appears after a declaration of an explicit
9358       //   specialization for that template, the explicit instantiation has no
9359       //   effect.
9360       HasNoEffect = true;
9361       return false;
9362 
9363     case TSK_ExplicitInstantiationDefinition:
9364       // C++0x [temp.explicit]p10:
9365       //   If an entity is the subject of both an explicit instantiation
9366       //   declaration and an explicit instantiation definition in the same
9367       //   translation unit, the definition shall follow the declaration.
9368       Diag(NewLoc,
9369            diag::err_explicit_instantiation_declaration_after_definition);
9370 
9371       // Explicit instantiations following a specialization have no effect and
9372       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
9373       // until a valid name loc is found.
9374       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9375            diag::note_explicit_instantiation_definition_here);
9376       HasNoEffect = true;
9377       return false;
9378     }
9379     llvm_unreachable("Unexpected TemplateSpecializationKind!");
9380 
9381   case TSK_ExplicitInstantiationDefinition:
9382     switch (PrevTSK) {
9383     case TSK_Undeclared:
9384     case TSK_ImplicitInstantiation:
9385       // We're explicitly instantiating something that may have already been
9386       // implicitly instantiated; that's fine.
9387       return false;
9388 
9389     case TSK_ExplicitSpecialization:
9390       // C++ DR 259, C++0x [temp.explicit]p4:
9391       //   For a given set of template parameters, if an explicit
9392       //   instantiation of a template appears after a declaration of
9393       //   an explicit specialization for that template, the explicit
9394       //   instantiation has no effect.
9395       Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
9396         << PrevDecl;
9397       Diag(PrevDecl->getLocation(),
9398            diag::note_previous_template_specialization);
9399       HasNoEffect = true;
9400       return false;
9401 
9402     case TSK_ExplicitInstantiationDeclaration:
9403       // We're explicitly instantiating a definition for something for which we
9404       // were previously asked to suppress instantiations. That's fine.
9405 
9406       // C++0x [temp.explicit]p4:
9407       //   For a given set of template parameters, if an explicit instantiation
9408       //   of a template appears after a declaration of an explicit
9409       //   specialization for that template, the explicit instantiation has no
9410       //   effect.
9411       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9412         // Is there any previous explicit specialization declaration?
9413         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
9414           HasNoEffect = true;
9415           break;
9416         }
9417       }
9418 
9419       return false;
9420 
9421     case TSK_ExplicitInstantiationDefinition:
9422       // C++0x [temp.spec]p5:
9423       //   For a given template and a given set of template-arguments,
9424       //     - an explicit instantiation definition shall appear at most once
9425       //       in a program,
9426 
9427       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
9428       Diag(NewLoc, (getLangOpts().MSVCCompat)
9429                        ? diag::ext_explicit_instantiation_duplicate
9430                        : diag::err_explicit_instantiation_duplicate)
9431           << PrevDecl;
9432       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9433            diag::note_previous_explicit_instantiation);
9434       HasNoEffect = true;
9435       return false;
9436     }
9437   }
9438 
9439   llvm_unreachable("Missing specialization/instantiation case?");
9440 }
9441 
9442 /// Perform semantic analysis for the given dependent function
9443 /// template specialization.
9444 ///
9445 /// The only possible way to get a dependent function template specialization
9446 /// is with a friend declaration, like so:
9447 ///
9448 /// \code
9449 ///   template \<class T> void foo(T);
9450 ///   template \<class T> class A {
9451 ///     friend void foo<>(T);
9452 ///   };
9453 /// \endcode
9454 ///
9455 /// There really isn't any useful analysis we can do here, so we
9456 /// just store the information.
9457 bool Sema::CheckDependentFunctionTemplateSpecialization(
9458     FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
9459     LookupResult &Previous) {
9460   // Remove anything from Previous that isn't a function template in
9461   // the correct context.
9462   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9463   LookupResult::Filter F = Previous.makeFilter();
9464   enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
9465   SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
9466   while (F.hasNext()) {
9467     NamedDecl *D = F.next()->getUnderlyingDecl();
9468     if (!isa<FunctionTemplateDecl>(D)) {
9469       F.erase();
9470       DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
9471       continue;
9472     }
9473 
9474     if (!FDLookupContext->InEnclosingNamespaceSetOf(
9475             D->getDeclContext()->getRedeclContext())) {
9476       F.erase();
9477       DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
9478       continue;
9479     }
9480   }
9481   F.done();
9482 
9483   bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None;
9484   if (Previous.empty()) {
9485     Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match)
9486         << IsFriend;
9487     for (auto &P : DiscardedCandidates)
9488       Diag(P.second->getLocation(),
9489            diag::note_dependent_function_template_spec_discard_reason)
9490           << P.first << IsFriend;
9491     return true;
9492   }
9493 
9494   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
9495                                          ExplicitTemplateArgs);
9496   return false;
9497 }
9498 
9499 /// Perform semantic analysis for the given function template
9500 /// specialization.
9501 ///
9502 /// This routine performs all of the semantic analysis required for an
9503 /// explicit function template specialization. On successful completion,
9504 /// the function declaration \p FD will become a function template
9505 /// specialization.
9506 ///
9507 /// \param FD the function declaration, which will be updated to become a
9508 /// function template specialization.
9509 ///
9510 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
9511 /// if any. Note that this may be valid info even when 0 arguments are
9512 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
9513 /// as it anyway contains info on the angle brackets locations.
9514 ///
9515 /// \param Previous the set of declarations that may be specialized by
9516 /// this function specialization.
9517 ///
9518 /// \param QualifiedFriend whether this is a lookup for a qualified friend
9519 /// declaration with no explicit template argument list that might be
9520 /// befriending a function template specialization.
9521 bool Sema::CheckFunctionTemplateSpecialization(
9522     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
9523     LookupResult &Previous, bool QualifiedFriend) {
9524   // The set of function template specializations that could match this
9525   // explicit function template specialization.
9526   UnresolvedSet<8> Candidates;
9527   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
9528                                             /*ForTakingAddress=*/false);
9529 
9530   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
9531       ConvertedTemplateArgs;
9532 
9533   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9534   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9535          I != E; ++I) {
9536     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
9537     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
9538       // Only consider templates found within the same semantic lookup scope as
9539       // FD.
9540       if (!FDLookupContext->InEnclosingNamespaceSetOf(
9541                                 Ovl->getDeclContext()->getRedeclContext()))
9542         continue;
9543 
9544       // When matching a constexpr member function template specialization
9545       // against the primary template, we don't yet know whether the
9546       // specialization has an implicit 'const' (because we don't know whether
9547       // it will be a static member function until we know which template it
9548       // specializes), so adjust it now assuming it specializes this template.
9549       QualType FT = FD->getType();
9550       if (FD->isConstexpr()) {
9551         CXXMethodDecl *OldMD =
9552           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
9553         if (OldMD && OldMD->isConst()) {
9554           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9555           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9556           EPI.TypeQuals.addConst();
9557           FT = Context.getFunctionType(FPT->getReturnType(),
9558                                        FPT->getParamTypes(), EPI);
9559         }
9560       }
9561 
9562       TemplateArgumentListInfo Args;
9563       if (ExplicitTemplateArgs)
9564         Args = *ExplicitTemplateArgs;
9565 
9566       // C++ [temp.expl.spec]p11:
9567       //   A trailing template-argument can be left unspecified in the
9568       //   template-id naming an explicit function template specialization
9569       //   provided it can be deduced from the function argument type.
9570       // Perform template argument deduction to determine whether we may be
9571       // specializing this template.
9572       // FIXME: It is somewhat wasteful to build
9573       TemplateDeductionInfo Info(FailedCandidates.getLocation());
9574       FunctionDecl *Specialization = nullptr;
9575       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9576               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9577               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9578               Info)) {
9579         // Template argument deduction failed; record why it failed, so
9580         // that we can provide nifty diagnostics.
9581         FailedCandidates.addCandidate().set(
9582             I.getPair(), FunTmpl->getTemplatedDecl(),
9583             MakeDeductionFailureInfo(Context, TDK, Info));
9584         (void)TDK;
9585         continue;
9586       }
9587 
9588       // Target attributes are part of the cuda function signature, so
9589       // the deduced template's cuda target must match that of the
9590       // specialization.  Given that C++ template deduction does not
9591       // take target attributes into account, we reject candidates
9592       // here that have a different target.
9593       if (LangOpts.CUDA &&
9594           IdentifyCUDATarget(Specialization,
9595                              /* IgnoreImplicitHDAttr = */ true) !=
9596               IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9597         FailedCandidates.addCandidate().set(
9598             I.getPair(), FunTmpl->getTemplatedDecl(),
9599             MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9600         continue;
9601       }
9602 
9603       // Record this candidate.
9604       if (ExplicitTemplateArgs)
9605         ConvertedTemplateArgs[Specialization] = std::move(Args);
9606       Candidates.addDecl(Specialization, I.getAccess());
9607     }
9608   }
9609 
9610   // For a qualified friend declaration (with no explicit marker to indicate
9611   // that a template specialization was intended), note all (template and
9612   // non-template) candidates.
9613   if (QualifiedFriend && Candidates.empty()) {
9614     Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9615         << FD->getDeclName() << FDLookupContext;
9616     // FIXME: We should form a single candidate list and diagnose all
9617     // candidates at once, to get proper sorting and limiting.
9618     for (auto *OldND : Previous) {
9619       if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9620         NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9621     }
9622     FailedCandidates.NoteCandidates(*this, FD->getLocation());
9623     return true;
9624   }
9625 
9626   // Find the most specialized function template.
9627   UnresolvedSetIterator Result = getMostSpecialized(
9628       Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9629       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9630       PDiag(diag::err_function_template_spec_ambiguous)
9631           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9632       PDiag(diag::note_function_template_spec_matched));
9633 
9634   if (Result == Candidates.end())
9635     return true;
9636 
9637   // Ignore access information;  it doesn't figure into redeclaration checking.
9638   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9639 
9640   FunctionTemplateSpecializationInfo *SpecInfo
9641     = Specialization->getTemplateSpecializationInfo();
9642   assert(SpecInfo && "Function template specialization info missing?");
9643 
9644   // Note: do not overwrite location info if previous template
9645   // specialization kind was explicit.
9646   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9647   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9648     Specialization->setLocation(FD->getLocation());
9649     Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9650     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9651     // function can differ from the template declaration with respect to
9652     // the constexpr specifier.
9653     // FIXME: We need an update record for this AST mutation.
9654     // FIXME: What if there are multiple such prior declarations (for instance,
9655     // from different modules)?
9656     Specialization->setConstexprKind(FD->getConstexprKind());
9657   }
9658 
9659   // FIXME: Check if the prior specialization has a point of instantiation.
9660   // If so, we have run afoul of .
9661 
9662   // If this is a friend declaration, then we're not really declaring
9663   // an explicit specialization.
9664   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9665 
9666   // Check the scope of this explicit specialization.
9667   if (!isFriend &&
9668       CheckTemplateSpecializationScope(*this,
9669                                        Specialization->getPrimaryTemplate(),
9670                                        Specialization, FD->getLocation(),
9671                                        false))
9672     return true;
9673 
9674   // C++ [temp.expl.spec]p6:
9675   //   If a template, a member template or the member of a class template is
9676   //   explicitly specialized then that specialization shall be declared
9677   //   before the first use of that specialization that would cause an implicit
9678   //   instantiation to take place, in every translation unit in which such a
9679   //   use occurs; no diagnostic is required.
9680   bool HasNoEffect = false;
9681   if (!isFriend &&
9682       CheckSpecializationInstantiationRedecl(FD->getLocation(),
9683                                              TSK_ExplicitSpecialization,
9684                                              Specialization,
9685                                    SpecInfo->getTemplateSpecializationKind(),
9686                                          SpecInfo->getPointOfInstantiation(),
9687                                              HasNoEffect))
9688     return true;
9689 
9690   // Mark the prior declaration as an explicit specialization, so that later
9691   // clients know that this is an explicit specialization.
9692   if (!isFriend) {
9693     // Since explicit specializations do not inherit '=delete' from their
9694     // primary function template - check if the 'specialization' that was
9695     // implicitly generated (during template argument deduction for partial
9696     // ordering) from the most specialized of all the function templates that
9697     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
9698     // first check that it was implicitly generated during template argument
9699     // deduction by making sure it wasn't referenced, and then reset the deleted
9700     // flag to not-deleted, so that we can inherit that information from 'FD'.
9701     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9702         !Specialization->getCanonicalDecl()->isReferenced()) {
9703       // FIXME: This assert will not hold in the presence of modules.
9704       assert(
9705           Specialization->getCanonicalDecl() == Specialization &&
9706           "This must be the only existing declaration of this specialization");
9707       // FIXME: We need an update record for this AST mutation.
9708       Specialization->setDeletedAsWritten(false);
9709     }
9710     // FIXME: We need an update record for this AST mutation.
9711     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9712     MarkUnusedFileScopedDecl(Specialization);
9713   }
9714 
9715   // Turn the given function declaration into a function template
9716   // specialization, with the template arguments from the previous
9717   // specialization.
9718   // Take copies of (semantic and syntactic) template argument lists.
9719   const TemplateArgumentList* TemplArgs = new (Context)
9720     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9721   FD->setFunctionTemplateSpecialization(
9722       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9723       SpecInfo->getTemplateSpecializationKind(),
9724       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9725 
9726   // A function template specialization inherits the target attributes
9727   // of its template.  (We require the attributes explicitly in the
9728   // code to match, but a template may have implicit attributes by
9729   // virtue e.g. of being constexpr, and it passes these implicit
9730   // attributes on to its specializations.)
9731   if (LangOpts.CUDA)
9732     inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9733 
9734   // The "previous declaration" for this function template specialization is
9735   // the prior function template specialization.
9736   Previous.clear();
9737   Previous.addDecl(Specialization);
9738   return false;
9739 }
9740 
9741 /// Perform semantic analysis for the given non-template member
9742 /// specialization.
9743 ///
9744 /// This routine performs all of the semantic analysis required for an
9745 /// explicit member function specialization. On successful completion,
9746 /// the function declaration \p FD will become a member function
9747 /// specialization.
9748 ///
9749 /// \param Member the member declaration, which will be updated to become a
9750 /// specialization.
9751 ///
9752 /// \param Previous the set of declarations, one of which may be specialized
9753 /// by this function specialization;  the set will be modified to contain the
9754 /// redeclared member.
9755 bool
9756 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9757   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9758 
9759   // Try to find the member we are instantiating.
9760   NamedDecl *FoundInstantiation = nullptr;
9761   NamedDecl *Instantiation = nullptr;
9762   NamedDecl *InstantiatedFrom = nullptr;
9763   MemberSpecializationInfo *MSInfo = nullptr;
9764 
9765   if (Previous.empty()) {
9766     // Nowhere to look anyway.
9767   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9768     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9769            I != E; ++I) {
9770       NamedDecl *D = (*I)->getUnderlyingDecl();
9771       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9772         QualType Adjusted = Function->getType();
9773         if (!hasExplicitCallingConv(Adjusted))
9774           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9775         // This doesn't handle deduced return types, but both function
9776         // declarations should be undeduced at this point.
9777         if (Context.hasSameType(Adjusted, Method->getType())) {
9778           FoundInstantiation = *I;
9779           Instantiation = Method;
9780           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9781           MSInfo = Method->getMemberSpecializationInfo();
9782           break;
9783         }
9784       }
9785     }
9786   } else if (isa<VarDecl>(Member)) {
9787     VarDecl *PrevVar;
9788     if (Previous.isSingleResult() &&
9789         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9790       if (PrevVar->isStaticDataMember()) {
9791         FoundInstantiation = Previous.getRepresentativeDecl();
9792         Instantiation = PrevVar;
9793         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9794         MSInfo = PrevVar->getMemberSpecializationInfo();
9795       }
9796   } else if (isa<RecordDecl>(Member)) {
9797     CXXRecordDecl *PrevRecord;
9798     if (Previous.isSingleResult() &&
9799         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9800       FoundInstantiation = Previous.getRepresentativeDecl();
9801       Instantiation = PrevRecord;
9802       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9803       MSInfo = PrevRecord->getMemberSpecializationInfo();
9804     }
9805   } else if (isa<EnumDecl>(Member)) {
9806     EnumDecl *PrevEnum;
9807     if (Previous.isSingleResult() &&
9808         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9809       FoundInstantiation = Previous.getRepresentativeDecl();
9810       Instantiation = PrevEnum;
9811       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9812       MSInfo = PrevEnum->getMemberSpecializationInfo();
9813     }
9814   }
9815 
9816   if (!Instantiation) {
9817     // There is no previous declaration that matches. Since member
9818     // specializations are always out-of-line, the caller will complain about
9819     // this mismatch later.
9820     return false;
9821   }
9822 
9823   // A member specialization in a friend declaration isn't really declaring
9824   // an explicit specialization, just identifying a specific (possibly implicit)
9825   // specialization. Don't change the template specialization kind.
9826   //
9827   // FIXME: Is this really valid? Other compilers reject.
9828   if (Member->getFriendObjectKind() != Decl::FOK_None) {
9829     // Preserve instantiation information.
9830     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9831       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9832                                       cast<CXXMethodDecl>(InstantiatedFrom),
9833         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9834     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9835       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9836                                       cast<CXXRecordDecl>(InstantiatedFrom),
9837         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9838     }
9839 
9840     Previous.clear();
9841     Previous.addDecl(FoundInstantiation);
9842     return false;
9843   }
9844 
9845   // Make sure that this is a specialization of a member.
9846   if (!InstantiatedFrom) {
9847     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9848       << Member;
9849     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9850     return true;
9851   }
9852 
9853   // C++ [temp.expl.spec]p6:
9854   //   If a template, a member template or the member of a class template is
9855   //   explicitly specialized then that specialization shall be declared
9856   //   before the first use of that specialization that would cause an implicit
9857   //   instantiation to take place, in every translation unit in which such a
9858   //   use occurs; no diagnostic is required.
9859   assert(MSInfo && "Member specialization info missing?");
9860 
9861   bool HasNoEffect = false;
9862   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9863                                              TSK_ExplicitSpecialization,
9864                                              Instantiation,
9865                                      MSInfo->getTemplateSpecializationKind(),
9866                                            MSInfo->getPointOfInstantiation(),
9867                                              HasNoEffect))
9868     return true;
9869 
9870   // Check the scope of this explicit specialization.
9871   if (CheckTemplateSpecializationScope(*this,
9872                                        InstantiatedFrom,
9873                                        Instantiation, Member->getLocation(),
9874                                        false))
9875     return true;
9876 
9877   // Note that this member specialization is an "instantiation of" the
9878   // corresponding member of the original template.
9879   if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9880     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9881     if (InstantiationFunction->getTemplateSpecializationKind() ==
9882           TSK_ImplicitInstantiation) {
9883       // Explicit specializations of member functions of class templates do not
9884       // inherit '=delete' from the member function they are specializing.
9885       if (InstantiationFunction->isDeleted()) {
9886         // FIXME: This assert will not hold in the presence of modules.
9887         assert(InstantiationFunction->getCanonicalDecl() ==
9888                InstantiationFunction);
9889         // FIXME: We need an update record for this AST mutation.
9890         InstantiationFunction->setDeletedAsWritten(false);
9891       }
9892     }
9893 
9894     MemberFunction->setInstantiationOfMemberFunction(
9895         cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9896   } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9897     MemberVar->setInstantiationOfStaticDataMember(
9898         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9899   } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9900     MemberClass->setInstantiationOfMemberClass(
9901         cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9902   } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9903     MemberEnum->setInstantiationOfMemberEnum(
9904         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9905   } else {
9906     llvm_unreachable("unknown member specialization kind");
9907   }
9908 
9909   // Save the caller the trouble of having to figure out which declaration
9910   // this specialization matches.
9911   Previous.clear();
9912   Previous.addDecl(FoundInstantiation);
9913   return false;
9914 }
9915 
9916 /// Complete the explicit specialization of a member of a class template by
9917 /// updating the instantiated member to be marked as an explicit specialization.
9918 ///
9919 /// \param OrigD The member declaration instantiated from the template.
9920 /// \param Loc The location of the explicit specialization of the member.
9921 template<typename DeclT>
9922 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9923                                              SourceLocation Loc) {
9924   if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9925     return;
9926 
9927   // FIXME: Inform AST mutation listeners of this AST mutation.
9928   // FIXME: If there are multiple in-class declarations of the member (from
9929   // multiple modules, or a declaration and later definition of a member type),
9930   // should we update all of them?
9931   OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9932   OrigD->setLocation(Loc);
9933 }
9934 
9935 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9936                                         LookupResult &Previous) {
9937   NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9938   if (Instantiation == Member)
9939     return;
9940 
9941   if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9942     completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9943   else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9944     completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9945   else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9946     completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9947   else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9948     completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9949   else
9950     llvm_unreachable("unknown member specialization kind");
9951 }
9952 
9953 /// Check the scope of an explicit instantiation.
9954 ///
9955 /// \returns true if a serious error occurs, false otherwise.
9956 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9957                                             SourceLocation InstLoc,
9958                                             bool WasQualifiedName) {
9959   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9960   DeclContext *CurContext = S.CurContext->getRedeclContext();
9961 
9962   if (CurContext->isRecord()) {
9963     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9964       << D;
9965     return true;
9966   }
9967 
9968   // C++11 [temp.explicit]p3:
9969   //   An explicit instantiation shall appear in an enclosing namespace of its
9970   //   template. If the name declared in the explicit instantiation is an
9971   //   unqualified name, the explicit instantiation shall appear in the
9972   //   namespace where its template is declared or, if that namespace is inline
9973   //   (7.3.1), any namespace from its enclosing namespace set.
9974   //
9975   // This is DR275, which we do not retroactively apply to C++98/03.
9976   if (WasQualifiedName) {
9977     if (CurContext->Encloses(OrigContext))
9978       return false;
9979   } else {
9980     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9981       return false;
9982   }
9983 
9984   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9985     if (WasQualifiedName)
9986       S.Diag(InstLoc,
9987              S.getLangOpts().CPlusPlus11?
9988                diag::err_explicit_instantiation_out_of_scope :
9989                diag::warn_explicit_instantiation_out_of_scope_0x)
9990         << D << NS;
9991     else
9992       S.Diag(InstLoc,
9993              S.getLangOpts().CPlusPlus11?
9994                diag::err_explicit_instantiation_unqualified_wrong_namespace :
9995                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9996         << D << NS;
9997   } else
9998     S.Diag(InstLoc,
9999            S.getLangOpts().CPlusPlus11?
10000              diag::err_explicit_instantiation_must_be_global :
10001              diag::warn_explicit_instantiation_must_be_global_0x)
10002       << D;
10003   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
10004   return false;
10005 }
10006 
10007 /// Common checks for whether an explicit instantiation of \p D is valid.
10008 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
10009                                        SourceLocation InstLoc,
10010                                        bool WasQualifiedName,
10011                                        TemplateSpecializationKind TSK) {
10012   // C++ [temp.explicit]p13:
10013   //   An explicit instantiation declaration shall not name a specialization of
10014   //   a template with internal linkage.
10015   if (TSK == TSK_ExplicitInstantiationDeclaration &&
10016       D->getFormalLinkage() == Linkage::Internal) {
10017     S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
10018     return true;
10019   }
10020 
10021   // C++11 [temp.explicit]p3: [DR 275]
10022   //   An explicit instantiation shall appear in an enclosing namespace of its
10023   //   template.
10024   if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
10025     return true;
10026 
10027   return false;
10028 }
10029 
10030 /// Determine whether the given scope specifier has a template-id in it.
10031 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
10032   if (!SS.isSet())
10033     return false;
10034 
10035   // C++11 [temp.explicit]p3:
10036   //   If the explicit instantiation is for a member function, a member class
10037   //   or a static data member of a class template specialization, the name of
10038   //   the class template specialization in the qualified-id for the member
10039   //   name shall be a simple-template-id.
10040   //
10041   // C++98 has the same restriction, just worded differently.
10042   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
10043        NNS = NNS->getPrefix())
10044     if (const Type *T = NNS->getAsType())
10045       if (isa<TemplateSpecializationType>(T))
10046         return true;
10047 
10048   return false;
10049 }
10050 
10051 /// Make a dllexport or dllimport attr on a class template specialization take
10052 /// effect.
10053 static void dllExportImportClassTemplateSpecialization(
10054     Sema &S, ClassTemplateSpecializationDecl *Def) {
10055   auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
10056   assert(A && "dllExportImportClassTemplateSpecialization called "
10057               "on Def without dllexport or dllimport");
10058 
10059   // We reject explicit instantiations in class scope, so there should
10060   // never be any delayed exported classes to worry about.
10061   assert(S.DelayedDllExportClasses.empty() &&
10062          "delayed exports present at explicit instantiation");
10063   S.checkClassLevelDLLAttribute(Def);
10064 
10065   // Propagate attribute to base class templates.
10066   for (auto &B : Def->bases()) {
10067     if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
10068             B.getType()->getAsCXXRecordDecl()))
10069       S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
10070   }
10071 
10072   S.referenceDLLExportedClassMethods();
10073 }
10074 
10075 // Explicit instantiation of a class template specialization
10076 DeclResult Sema::ActOnExplicitInstantiation(
10077     Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
10078     unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
10079     TemplateTy TemplateD, SourceLocation TemplateNameLoc,
10080     SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
10081     SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
10082   // Find the class template we're specializing
10083   TemplateName Name = TemplateD.get();
10084   TemplateDecl *TD = Name.getAsTemplateDecl();
10085   // Check that the specialization uses the same tag kind as the
10086   // original template.
10087   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10088   assert(Kind != TagTypeKind::Enum &&
10089          "Invalid enum tag in class template explicit instantiation!");
10090 
10091   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
10092 
10093   if (!ClassTemplate) {
10094     NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
10095     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag)
10096         << TD << NTK << llvm::to_underlying(Kind);
10097     Diag(TD->getLocation(), diag::note_previous_use);
10098     return true;
10099   }
10100 
10101   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
10102                                     Kind, /*isDefinition*/false, KWLoc,
10103                                     ClassTemplate->getIdentifier())) {
10104     Diag(KWLoc, diag::err_use_with_wrong_tag)
10105       << ClassTemplate
10106       << FixItHint::CreateReplacement(KWLoc,
10107                             ClassTemplate->getTemplatedDecl()->getKindName());
10108     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
10109          diag::note_previous_use);
10110     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
10111   }
10112 
10113   // C++0x [temp.explicit]p2:
10114   //   There are two forms of explicit instantiation: an explicit instantiation
10115   //   definition and an explicit instantiation declaration. An explicit
10116   //   instantiation declaration begins with the extern keyword. [...]
10117   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
10118                                        ? TSK_ExplicitInstantiationDefinition
10119                                        : TSK_ExplicitInstantiationDeclaration;
10120 
10121   if (TSK == TSK_ExplicitInstantiationDeclaration &&
10122       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10123     // Check for dllexport class template instantiation declarations,
10124     // except for MinGW mode.
10125     for (const ParsedAttr &AL : Attr) {
10126       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10127         Diag(ExternLoc,
10128              diag::warn_attribute_dllexport_explicit_instantiation_decl);
10129         Diag(AL.getLoc(), diag::note_attribute);
10130         break;
10131       }
10132     }
10133 
10134     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
10135       Diag(ExternLoc,
10136            diag::warn_attribute_dllexport_explicit_instantiation_decl);
10137       Diag(A->getLocation(), diag::note_attribute);
10138     }
10139   }
10140 
10141   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10142   // instantiation declarations for most purposes.
10143   bool DLLImportExplicitInstantiationDef = false;
10144   if (TSK == TSK_ExplicitInstantiationDefinition &&
10145       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
10146     // Check for dllimport class template instantiation definitions.
10147     bool DLLImport =
10148         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
10149     for (const ParsedAttr &AL : Attr) {
10150       if (AL.getKind() == ParsedAttr::AT_DLLImport)
10151         DLLImport = true;
10152       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10153         // dllexport trumps dllimport here.
10154         DLLImport = false;
10155         break;
10156       }
10157     }
10158     if (DLLImport) {
10159       TSK = TSK_ExplicitInstantiationDeclaration;
10160       DLLImportExplicitInstantiationDef = true;
10161     }
10162   }
10163 
10164   // Translate the parser's template argument list in our AST format.
10165   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10166   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10167 
10168   // Check that the template argument list is well-formed for this
10169   // template.
10170   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
10171   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
10172                                 false, SugaredConverted, CanonicalConverted,
10173                                 /*UpdateArgsWithConversions=*/true))
10174     return true;
10175 
10176   // Find the class template specialization declaration that
10177   // corresponds to these arguments.
10178   void *InsertPos = nullptr;
10179   ClassTemplateSpecializationDecl *PrevDecl =
10180       ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
10181 
10182   TemplateSpecializationKind PrevDecl_TSK
10183     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
10184 
10185   if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
10186       Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10187     // Check for dllexport class template instantiation definitions in MinGW
10188     // mode, if a previous declaration of the instantiation was seen.
10189     for (const ParsedAttr &AL : Attr) {
10190       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10191         Diag(AL.getLoc(),
10192              diag::warn_attribute_dllexport_explicit_instantiation_def);
10193         break;
10194       }
10195     }
10196   }
10197 
10198   if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
10199                                  SS.isSet(), TSK))
10200     return true;
10201 
10202   ClassTemplateSpecializationDecl *Specialization = nullptr;
10203 
10204   bool HasNoEffect = false;
10205   if (PrevDecl) {
10206     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
10207                                                PrevDecl, PrevDecl_TSK,
10208                                             PrevDecl->getPointOfInstantiation(),
10209                                                HasNoEffect))
10210       return PrevDecl;
10211 
10212     // Even though HasNoEffect == true means that this explicit instantiation
10213     // has no effect on semantics, we go on to put its syntax in the AST.
10214 
10215     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
10216         PrevDecl_TSK == TSK_Undeclared) {
10217       // Since the only prior class template specialization with these
10218       // arguments was referenced but not declared, reuse that
10219       // declaration node as our own, updating the source location
10220       // for the template name to reflect our new declaration.
10221       // (Other source locations will be updated later.)
10222       Specialization = PrevDecl;
10223       Specialization->setLocation(TemplateNameLoc);
10224       PrevDecl = nullptr;
10225     }
10226 
10227     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10228         DLLImportExplicitInstantiationDef) {
10229       // The new specialization might add a dllimport attribute.
10230       HasNoEffect = false;
10231     }
10232   }
10233 
10234   if (!Specialization) {
10235     // Create a new class template specialization declaration node for
10236     // this explicit specialization.
10237     Specialization = ClassTemplateSpecializationDecl::Create(
10238         Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
10239         ClassTemplate, CanonicalConverted, PrevDecl);
10240     SetNestedNameSpecifier(*this, Specialization, SS);
10241 
10242     // A MSInheritanceAttr attached to the previous declaration must be
10243     // propagated to the new node prior to instantiation.
10244     if (PrevDecl) {
10245       if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) {
10246         auto *Clone = A->clone(getASTContext());
10247         Clone->setInherited(true);
10248         Specialization->addAttr(Clone);
10249         Consumer.AssignInheritanceModel(Specialization);
10250       }
10251     }
10252 
10253     if (!HasNoEffect && !PrevDecl) {
10254       // Insert the new specialization.
10255       ClassTemplate->AddSpecialization(Specialization, InsertPos);
10256     }
10257   }
10258 
10259   // Build the fully-sugared type for this explicit instantiation as
10260   // the user wrote in the explicit instantiation itself. This means
10261   // that we'll pretty-print the type retrieved from the
10262   // specialization's declaration the way that the user actually wrote
10263   // the explicit instantiation, rather than formatting the name based
10264   // on the "canonical" representation used to store the template
10265   // arguments in the specialization.
10266   TypeSourceInfo *WrittenTy
10267     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
10268                                                 TemplateArgs,
10269                                   Context.getTypeDeclType(Specialization));
10270   Specialization->setTypeAsWritten(WrittenTy);
10271 
10272   // Set source locations for keywords.
10273   Specialization->setExternLoc(ExternLoc);
10274   Specialization->setTemplateKeywordLoc(TemplateLoc);
10275   Specialization->setBraceRange(SourceRange());
10276 
10277   bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
10278   ProcessDeclAttributeList(S, Specialization, Attr);
10279 
10280   // Add the explicit instantiation into its lexical context. However,
10281   // since explicit instantiations are never found by name lookup, we
10282   // just put it into the declaration context directly.
10283   Specialization->setLexicalDeclContext(CurContext);
10284   CurContext->addDecl(Specialization);
10285 
10286   // Syntax is now OK, so return if it has no other effect on semantics.
10287   if (HasNoEffect) {
10288     // Set the template specialization kind.
10289     Specialization->setTemplateSpecializationKind(TSK);
10290     return Specialization;
10291   }
10292 
10293   // C++ [temp.explicit]p3:
10294   //   A definition of a class template or class member template
10295   //   shall be in scope at the point of the explicit instantiation of
10296   //   the class template or class member template.
10297   //
10298   // This check comes when we actually try to perform the
10299   // instantiation.
10300   ClassTemplateSpecializationDecl *Def
10301     = cast_or_null<ClassTemplateSpecializationDecl>(
10302                                               Specialization->getDefinition());
10303   if (!Def)
10304     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
10305   else if (TSK == TSK_ExplicitInstantiationDefinition) {
10306     MarkVTableUsed(TemplateNameLoc, Specialization, true);
10307     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
10308   }
10309 
10310   // Instantiate the members of this class template specialization.
10311   Def = cast_or_null<ClassTemplateSpecializationDecl>(
10312                                        Specialization->getDefinition());
10313   if (Def) {
10314     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
10315     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
10316     // TSK_ExplicitInstantiationDefinition
10317     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
10318         (TSK == TSK_ExplicitInstantiationDefinition ||
10319          DLLImportExplicitInstantiationDef)) {
10320       // FIXME: Need to notify the ASTMutationListener that we did this.
10321       Def->setTemplateSpecializationKind(TSK);
10322 
10323       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
10324           (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10325            !Context.getTargetInfo().getTriple().isPS())) {
10326         // An explicit instantiation definition can add a dll attribute to a
10327         // template with a previous instantiation declaration. MinGW doesn't
10328         // allow this.
10329         auto *A = cast<InheritableAttr>(
10330             getDLLAttr(Specialization)->clone(getASTContext()));
10331         A->setInherited(true);
10332         Def->addAttr(A);
10333         dllExportImportClassTemplateSpecialization(*this, Def);
10334       }
10335     }
10336 
10337     // Fix a TSK_ImplicitInstantiation followed by a
10338     // TSK_ExplicitInstantiationDefinition
10339     bool NewlyDLLExported =
10340         !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
10341     if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
10342         (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10343          !Context.getTargetInfo().getTriple().isPS())) {
10344       // An explicit instantiation definition can add a dll attribute to a
10345       // template with a previous implicit instantiation. MinGW doesn't allow
10346       // this. We limit clang to only adding dllexport, to avoid potentially
10347       // strange codegen behavior. For example, if we extend this conditional
10348       // to dllimport, and we have a source file calling a method on an
10349       // implicitly instantiated template class instance and then declaring a
10350       // dllimport explicit instantiation definition for the same template
10351       // class, the codegen for the method call will not respect the dllimport,
10352       // while it will with cl. The Def will already have the DLL attribute,
10353       // since the Def and Specialization will be the same in the case of
10354       // Old_TSK == TSK_ImplicitInstantiation, and we already added the
10355       // attribute to the Specialization; we just need to make it take effect.
10356       assert(Def == Specialization &&
10357              "Def and Specialization should match for implicit instantiation");
10358       dllExportImportClassTemplateSpecialization(*this, Def);
10359     }
10360 
10361     // In MinGW mode, export the template instantiation if the declaration
10362     // was marked dllexport.
10363     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10364         Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
10365         PrevDecl->hasAttr<DLLExportAttr>()) {
10366       dllExportImportClassTemplateSpecialization(*this, Def);
10367     }
10368 
10369     // Set the template specialization kind. Make sure it is set before
10370     // instantiating the members which will trigger ASTConsumer callbacks.
10371     Specialization->setTemplateSpecializationKind(TSK);
10372     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
10373   } else {
10374 
10375     // Set the template specialization kind.
10376     Specialization->setTemplateSpecializationKind(TSK);
10377   }
10378 
10379   return Specialization;
10380 }
10381 
10382 // Explicit instantiation of a member class of a class template.
10383 DeclResult
10384 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
10385                                  SourceLocation TemplateLoc, unsigned TagSpec,
10386                                  SourceLocation KWLoc, CXXScopeSpec &SS,
10387                                  IdentifierInfo *Name, SourceLocation NameLoc,
10388                                  const ParsedAttributesView &Attr) {
10389 
10390   bool Owned = false;
10391   bool IsDependent = false;
10392   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, KWLoc, SS, Name,
10393                NameLoc, Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(),
10394                MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(),
10395                false, TypeResult(), /*IsTypeSpecifier*/ false,
10396                /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get();
10397   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
10398 
10399   if (!TagD)
10400     return true;
10401 
10402   TagDecl *Tag = cast<TagDecl>(TagD);
10403   assert(!Tag->isEnum() && "shouldn't see enumerations here");
10404 
10405   if (Tag->isInvalidDecl())
10406     return true;
10407 
10408   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
10409   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
10410   if (!Pattern) {
10411     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
10412       << Context.getTypeDeclType(Record);
10413     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
10414     return true;
10415   }
10416 
10417   // C++0x [temp.explicit]p2:
10418   //   If the explicit instantiation is for a class or member class, the
10419   //   elaborated-type-specifier in the declaration shall include a
10420   //   simple-template-id.
10421   //
10422   // C++98 has the same restriction, just worded differently.
10423   if (!ScopeSpecifierHasTemplateId(SS))
10424     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
10425       << Record << SS.getRange();
10426 
10427   // C++0x [temp.explicit]p2:
10428   //   There are two forms of explicit instantiation: an explicit instantiation
10429   //   definition and an explicit instantiation declaration. An explicit
10430   //   instantiation declaration begins with the extern keyword. [...]
10431   TemplateSpecializationKind TSK
10432     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10433                            : TSK_ExplicitInstantiationDeclaration;
10434 
10435   CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
10436 
10437   // Verify that it is okay to explicitly instantiate here.
10438   CXXRecordDecl *PrevDecl
10439     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
10440   if (!PrevDecl && Record->getDefinition())
10441     PrevDecl = Record;
10442   if (PrevDecl) {
10443     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
10444     bool HasNoEffect = false;
10445     assert(MSInfo && "No member specialization information?");
10446     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
10447                                                PrevDecl,
10448                                         MSInfo->getTemplateSpecializationKind(),
10449                                              MSInfo->getPointOfInstantiation(),
10450                                                HasNoEffect))
10451       return true;
10452     if (HasNoEffect)
10453       return TagD;
10454   }
10455 
10456   CXXRecordDecl *RecordDef
10457     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10458   if (!RecordDef) {
10459     // C++ [temp.explicit]p3:
10460     //   A definition of a member class of a class template shall be in scope
10461     //   at the point of an explicit instantiation of the member class.
10462     CXXRecordDecl *Def
10463       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
10464     if (!Def) {
10465       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
10466         << 0 << Record->getDeclName() << Record->getDeclContext();
10467       Diag(Pattern->getLocation(), diag::note_forward_declaration)
10468         << Pattern;
10469       return true;
10470     } else {
10471       if (InstantiateClass(NameLoc, Record, Def,
10472                            getTemplateInstantiationArgs(Record),
10473                            TSK))
10474         return true;
10475 
10476       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10477       if (!RecordDef)
10478         return true;
10479     }
10480   }
10481 
10482   // Instantiate all of the members of the class.
10483   InstantiateClassMembers(NameLoc, RecordDef,
10484                           getTemplateInstantiationArgs(Record), TSK);
10485 
10486   if (TSK == TSK_ExplicitInstantiationDefinition)
10487     MarkVTableUsed(NameLoc, RecordDef, true);
10488 
10489   // FIXME: We don't have any representation for explicit instantiations of
10490   // member classes. Such a representation is not needed for compilation, but it
10491   // should be available for clients that want to see all of the declarations in
10492   // the source code.
10493   return TagD;
10494 }
10495 
10496 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
10497                                             SourceLocation ExternLoc,
10498                                             SourceLocation TemplateLoc,
10499                                             Declarator &D) {
10500   // Explicit instantiations always require a name.
10501   // TODO: check if/when DNInfo should replace Name.
10502   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10503   DeclarationName Name = NameInfo.getName();
10504   if (!Name) {
10505     if (!D.isInvalidType())
10506       Diag(D.getDeclSpec().getBeginLoc(),
10507            diag::err_explicit_instantiation_requires_name)
10508           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
10509 
10510     return true;
10511   }
10512 
10513   // The scope passed in may not be a decl scope.  Zip up the scope tree until
10514   // we find one that is.
10515   while ((S->getFlags() & Scope::DeclScope) == 0 ||
10516          (S->getFlags() & Scope::TemplateParamScope) != 0)
10517     S = S->getParent();
10518 
10519   // Determine the type of the declaration.
10520   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
10521   QualType R = T->getType();
10522   if (R.isNull())
10523     return true;
10524 
10525   // C++ [dcl.stc]p1:
10526   //   A storage-class-specifier shall not be specified in [...] an explicit
10527   //   instantiation (14.7.2) directive.
10528   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
10529     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
10530       << Name;
10531     return true;
10532   } else if (D.getDeclSpec().getStorageClassSpec()
10533                                                 != DeclSpec::SCS_unspecified) {
10534     // Complain about then remove the storage class specifier.
10535     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
10536       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10537 
10538     D.getMutableDeclSpec().ClearStorageClassSpecs();
10539   }
10540 
10541   // C++0x [temp.explicit]p1:
10542   //   [...] An explicit instantiation of a function template shall not use the
10543   //   inline or constexpr specifiers.
10544   // Presumably, this also applies to member functions of class templates as
10545   // well.
10546   if (D.getDeclSpec().isInlineSpecified())
10547     Diag(D.getDeclSpec().getInlineSpecLoc(),
10548          getLangOpts().CPlusPlus11 ?
10549            diag::err_explicit_instantiation_inline :
10550            diag::warn_explicit_instantiation_inline_0x)
10551       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10552   if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
10553     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
10554     // not already specified.
10555     Diag(D.getDeclSpec().getConstexprSpecLoc(),
10556          diag::err_explicit_instantiation_constexpr);
10557 
10558   // A deduction guide is not on the list of entities that can be explicitly
10559   // instantiated.
10560   if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10561     Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10562         << /*explicit instantiation*/ 0;
10563     return true;
10564   }
10565 
10566   // C++0x [temp.explicit]p2:
10567   //   There are two forms of explicit instantiation: an explicit instantiation
10568   //   definition and an explicit instantiation declaration. An explicit
10569   //   instantiation declaration begins with the extern keyword. [...]
10570   TemplateSpecializationKind TSK
10571     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10572                            : TSK_ExplicitInstantiationDeclaration;
10573 
10574   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10575   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10576 
10577   if (!R->isFunctionType()) {
10578     // C++ [temp.explicit]p1:
10579     //   A [...] static data member of a class template can be explicitly
10580     //   instantiated from the member definition associated with its class
10581     //   template.
10582     // C++1y [temp.explicit]p1:
10583     //   A [...] variable [...] template specialization can be explicitly
10584     //   instantiated from its template.
10585     if (Previous.isAmbiguous())
10586       return true;
10587 
10588     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10589     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10590 
10591     if (!PrevTemplate) {
10592       if (!Prev || !Prev->isStaticDataMember()) {
10593         // We expect to see a static data member here.
10594         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10595             << Name;
10596         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10597              P != PEnd; ++P)
10598           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10599         return true;
10600       }
10601 
10602       if (!Prev->getInstantiatedFromStaticDataMember()) {
10603         // FIXME: Check for explicit specialization?
10604         Diag(D.getIdentifierLoc(),
10605              diag::err_explicit_instantiation_data_member_not_instantiated)
10606             << Prev;
10607         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10608         // FIXME: Can we provide a note showing where this was declared?
10609         return true;
10610       }
10611     } else {
10612       // Explicitly instantiate a variable template.
10613 
10614       // C++1y [dcl.spec.auto]p6:
10615       //   ... A program that uses auto or decltype(auto) in a context not
10616       //   explicitly allowed in this section is ill-formed.
10617       //
10618       // This includes auto-typed variable template instantiations.
10619       if (R->isUndeducedType()) {
10620         Diag(T->getTypeLoc().getBeginLoc(),
10621              diag::err_auto_not_allowed_var_inst);
10622         return true;
10623       }
10624 
10625       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10626         // C++1y [temp.explicit]p3:
10627         //   If the explicit instantiation is for a variable, the unqualified-id
10628         //   in the declaration shall be a template-id.
10629         Diag(D.getIdentifierLoc(),
10630              diag::err_explicit_instantiation_without_template_id)
10631           << PrevTemplate;
10632         Diag(PrevTemplate->getLocation(),
10633              diag::note_explicit_instantiation_here);
10634         return true;
10635       }
10636 
10637       // Translate the parser's template argument list into our AST format.
10638       TemplateArgumentListInfo TemplateArgs =
10639           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10640 
10641       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10642                                           D.getIdentifierLoc(), TemplateArgs);
10643       if (Res.isInvalid())
10644         return true;
10645 
10646       if (!Res.isUsable()) {
10647         // We somehow specified dependent template arguments in an explicit
10648         // instantiation. This should probably only happen during error
10649         // recovery.
10650         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10651         return true;
10652       }
10653 
10654       // Ignore access control bits, we don't need them for redeclaration
10655       // checking.
10656       Prev = cast<VarDecl>(Res.get());
10657     }
10658 
10659     // C++0x [temp.explicit]p2:
10660     //   If the explicit instantiation is for a member function, a member class
10661     //   or a static data member of a class template specialization, the name of
10662     //   the class template specialization in the qualified-id for the member
10663     //   name shall be a simple-template-id.
10664     //
10665     // C++98 has the same restriction, just worded differently.
10666     //
10667     // This does not apply to variable template specializations, where the
10668     // template-id is in the unqualified-id instead.
10669     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10670       Diag(D.getIdentifierLoc(),
10671            diag::ext_explicit_instantiation_without_qualified_id)
10672         << Prev << D.getCXXScopeSpec().getRange();
10673 
10674     CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10675 
10676     // Verify that it is okay to explicitly instantiate here.
10677     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10678     SourceLocation POI = Prev->getPointOfInstantiation();
10679     bool HasNoEffect = false;
10680     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10681                                                PrevTSK, POI, HasNoEffect))
10682       return true;
10683 
10684     if (!HasNoEffect) {
10685       // Instantiate static data member or variable template.
10686       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10687       // Merge attributes.
10688       ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10689       if (TSK == TSK_ExplicitInstantiationDefinition)
10690         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10691     }
10692 
10693     // Check the new variable specialization against the parsed input.
10694     if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10695       Diag(T->getTypeLoc().getBeginLoc(),
10696            diag::err_invalid_var_template_spec_type)
10697           << 0 << PrevTemplate << R << Prev->getType();
10698       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10699           << 2 << PrevTemplate->getDeclName();
10700       return true;
10701     }
10702 
10703     // FIXME: Create an ExplicitInstantiation node?
10704     return (Decl*) nullptr;
10705   }
10706 
10707   // If the declarator is a template-id, translate the parser's template
10708   // argument list into our AST format.
10709   bool HasExplicitTemplateArgs = false;
10710   TemplateArgumentListInfo TemplateArgs;
10711   if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10712     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10713     HasExplicitTemplateArgs = true;
10714   }
10715 
10716   // C++ [temp.explicit]p1:
10717   //   A [...] function [...] can be explicitly instantiated from its template.
10718   //   A member function [...] of a class template can be explicitly
10719   //  instantiated from the member definition associated with its class
10720   //  template.
10721   UnresolvedSet<8> TemplateMatches;
10722   FunctionDecl *NonTemplateMatch = nullptr;
10723   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10724   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10725        P != PEnd; ++P) {
10726     NamedDecl *Prev = *P;
10727     if (!HasExplicitTemplateArgs) {
10728       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10729         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10730                                                 /*AdjustExceptionSpec*/true);
10731         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10732           if (Method->getPrimaryTemplate()) {
10733             TemplateMatches.addDecl(Method, P.getAccess());
10734           } else {
10735             // FIXME: Can this assert ever happen?  Needs a test.
10736             assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10737             NonTemplateMatch = Method;
10738           }
10739         }
10740       }
10741     }
10742 
10743     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10744     if (!FunTmpl)
10745       continue;
10746 
10747     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10748     FunctionDecl *Specialization = nullptr;
10749     if (TemplateDeductionResult TDK
10750           = DeduceTemplateArguments(FunTmpl,
10751                                (HasExplicitTemplateArgs ? &TemplateArgs
10752                                                         : nullptr),
10753                                     R, Specialization, Info)) {
10754       // Keep track of almost-matches.
10755       FailedCandidates.addCandidate()
10756           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10757                MakeDeductionFailureInfo(Context, TDK, Info));
10758       (void)TDK;
10759       continue;
10760     }
10761 
10762     // Target attributes are part of the cuda function signature, so
10763     // the cuda target of the instantiated function must match that of its
10764     // template.  Given that C++ template deduction does not take
10765     // target attributes into account, we reject candidates here that
10766     // have a different target.
10767     if (LangOpts.CUDA &&
10768         IdentifyCUDATarget(Specialization,
10769                            /* IgnoreImplicitHDAttr = */ true) !=
10770             IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10771       FailedCandidates.addCandidate().set(
10772           P.getPair(), FunTmpl->getTemplatedDecl(),
10773           MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10774       continue;
10775     }
10776 
10777     TemplateMatches.addDecl(Specialization, P.getAccess());
10778   }
10779 
10780   FunctionDecl *Specialization = NonTemplateMatch;
10781   if (!Specialization) {
10782     // Find the most specialized function template specialization.
10783     UnresolvedSetIterator Result = getMostSpecialized(
10784         TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10785         D.getIdentifierLoc(),
10786         PDiag(diag::err_explicit_instantiation_not_known) << Name,
10787         PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10788         PDiag(diag::note_explicit_instantiation_candidate));
10789 
10790     if (Result == TemplateMatches.end())
10791       return true;
10792 
10793     // Ignore access control bits, we don't need them for redeclaration checking.
10794     Specialization = cast<FunctionDecl>(*Result);
10795   }
10796 
10797   // C++11 [except.spec]p4
10798   // In an explicit instantiation an exception-specification may be specified,
10799   // but is not required.
10800   // If an exception-specification is specified in an explicit instantiation
10801   // directive, it shall be compatible with the exception-specifications of
10802   // other declarations of that function.
10803   if (auto *FPT = R->getAs<FunctionProtoType>())
10804     if (FPT->hasExceptionSpec()) {
10805       unsigned DiagID =
10806           diag::err_mismatched_exception_spec_explicit_instantiation;
10807       if (getLangOpts().MicrosoftExt)
10808         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10809       bool Result = CheckEquivalentExceptionSpec(
10810           PDiag(DiagID) << Specialization->getType(),
10811           PDiag(diag::note_explicit_instantiation_here),
10812           Specialization->getType()->getAs<FunctionProtoType>(),
10813           Specialization->getLocation(), FPT, D.getBeginLoc());
10814       // In Microsoft mode, mismatching exception specifications just cause a
10815       // warning.
10816       if (!getLangOpts().MicrosoftExt && Result)
10817         return true;
10818     }
10819 
10820   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10821     Diag(D.getIdentifierLoc(),
10822          diag::err_explicit_instantiation_member_function_not_instantiated)
10823       << Specialization
10824       << (Specialization->getTemplateSpecializationKind() ==
10825           TSK_ExplicitSpecialization);
10826     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10827     return true;
10828   }
10829 
10830   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10831   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10832     PrevDecl = Specialization;
10833 
10834   if (PrevDecl) {
10835     bool HasNoEffect = false;
10836     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10837                                                PrevDecl,
10838                                      PrevDecl->getTemplateSpecializationKind(),
10839                                           PrevDecl->getPointOfInstantiation(),
10840                                                HasNoEffect))
10841       return true;
10842 
10843     // FIXME: We may still want to build some representation of this
10844     // explicit specialization.
10845     if (HasNoEffect)
10846       return (Decl*) nullptr;
10847   }
10848 
10849   // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10850   // functions
10851   //     valarray<size_t>::valarray(size_t) and
10852   //     valarray<size_t>::~valarray()
10853   // that it declared to have internal linkage with the internal_linkage
10854   // attribute. Ignore the explicit instantiation declaration in this case.
10855   if (Specialization->hasAttr<InternalLinkageAttr>() &&
10856       TSK == TSK_ExplicitInstantiationDeclaration) {
10857     if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10858       if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10859           RD->isInStdNamespace())
10860         return (Decl*) nullptr;
10861   }
10862 
10863   ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10864 
10865   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10866   // instantiation declarations.
10867   if (TSK == TSK_ExplicitInstantiationDefinition &&
10868       Specialization->hasAttr<DLLImportAttr>() &&
10869       Context.getTargetInfo().getCXXABI().isMicrosoft())
10870     TSK = TSK_ExplicitInstantiationDeclaration;
10871 
10872   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10873 
10874   if (Specialization->isDefined()) {
10875     // Let the ASTConsumer know that this function has been explicitly
10876     // instantiated now, and its linkage might have changed.
10877     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10878   } else if (TSK == TSK_ExplicitInstantiationDefinition)
10879     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10880 
10881   // C++0x [temp.explicit]p2:
10882   //   If the explicit instantiation is for a member function, a member class
10883   //   or a static data member of a class template specialization, the name of
10884   //   the class template specialization in the qualified-id for the member
10885   //   name shall be a simple-template-id.
10886   //
10887   // C++98 has the same restriction, just worded differently.
10888   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10889   if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10890       D.getCXXScopeSpec().isSet() &&
10891       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10892     Diag(D.getIdentifierLoc(),
10893          diag::ext_explicit_instantiation_without_qualified_id)
10894     << Specialization << D.getCXXScopeSpec().getRange();
10895 
10896   CheckExplicitInstantiation(
10897       *this,
10898       FunTmpl ? (NamedDecl *)FunTmpl
10899               : Specialization->getInstantiatedFromMemberFunction(),
10900       D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10901 
10902   // FIXME: Create some kind of ExplicitInstantiationDecl here.
10903   return (Decl*) nullptr;
10904 }
10905 
10906 TypeResult
10907 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10908                         const CXXScopeSpec &SS, IdentifierInfo *Name,
10909                         SourceLocation TagLoc, SourceLocation NameLoc) {
10910   // This has to hold, because SS is expected to be defined.
10911   assert(Name && "Expected a name in a dependent tag");
10912 
10913   NestedNameSpecifier *NNS = SS.getScopeRep();
10914   if (!NNS)
10915     return true;
10916 
10917   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10918 
10919   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10920     Diag(NameLoc, diag::err_dependent_tag_decl)
10921         << (TUK == TUK_Definition) << llvm::to_underlying(Kind)
10922         << SS.getRange();
10923     return true;
10924   }
10925 
10926   // Create the resulting type.
10927   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10928   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10929 
10930   // Create type-source location information for this type.
10931   TypeLocBuilder TLB;
10932   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10933   TL.setElaboratedKeywordLoc(TagLoc);
10934   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10935   TL.setNameLoc(NameLoc);
10936   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10937 }
10938 
10939 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10940                                    const CXXScopeSpec &SS,
10941                                    const IdentifierInfo &II,
10942                                    SourceLocation IdLoc,
10943                                    ImplicitTypenameContext IsImplicitTypename) {
10944   if (SS.isInvalid())
10945     return true;
10946 
10947   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10948     Diag(TypenameLoc,
10949          getLangOpts().CPlusPlus11 ?
10950            diag::warn_cxx98_compat_typename_outside_of_template :
10951            diag::ext_typename_outside_of_template)
10952       << FixItHint::CreateRemoval(TypenameLoc);
10953 
10954   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10955   TypeSourceInfo *TSI = nullptr;
10956   QualType T =
10957       CheckTypenameType((TypenameLoc.isValid() ||
10958                          IsImplicitTypename == ImplicitTypenameContext::Yes)
10959                             ? ElaboratedTypeKeyword::Typename
10960                             : ElaboratedTypeKeyword::None,
10961                         TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10962                         /*DeducedTSTContext=*/true);
10963   if (T.isNull())
10964     return true;
10965   return CreateParsedType(T, TSI);
10966 }
10967 
10968 TypeResult
10969 Sema::ActOnTypenameType(Scope *S,
10970                         SourceLocation TypenameLoc,
10971                         const CXXScopeSpec &SS,
10972                         SourceLocation TemplateKWLoc,
10973                         TemplateTy TemplateIn,
10974                         IdentifierInfo *TemplateII,
10975                         SourceLocation TemplateIILoc,
10976                         SourceLocation LAngleLoc,
10977                         ASTTemplateArgsPtr TemplateArgsIn,
10978                         SourceLocation RAngleLoc) {
10979   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10980     Diag(TypenameLoc,
10981          getLangOpts().CPlusPlus11 ?
10982            diag::warn_cxx98_compat_typename_outside_of_template :
10983            diag::ext_typename_outside_of_template)
10984       << FixItHint::CreateRemoval(TypenameLoc);
10985 
10986   // Strangely, non-type results are not ignored by this lookup, so the
10987   // program is ill-formed if it finds an injected-class-name.
10988   if (TypenameLoc.isValid()) {
10989     auto *LookupRD =
10990         dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10991     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10992       Diag(TemplateIILoc,
10993            diag::ext_out_of_line_qualified_id_type_names_constructor)
10994         << TemplateII << 0 /*injected-class-name used as template name*/
10995         << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10996     }
10997   }
10998 
10999   // Translate the parser's template argument list in our AST format.
11000   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
11001   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
11002 
11003   TemplateName Template = TemplateIn.get();
11004   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
11005     // Construct a dependent template specialization type.
11006     assert(DTN && "dependent template has non-dependent name?");
11007     assert(DTN->getQualifier() == SS.getScopeRep());
11008     QualType T = Context.getDependentTemplateSpecializationType(
11009         ElaboratedTypeKeyword::Typename, DTN->getQualifier(),
11010         DTN->getIdentifier(), TemplateArgs.arguments());
11011 
11012     // Create source-location information for this type.
11013     TypeLocBuilder Builder;
11014     DependentTemplateSpecializationTypeLoc SpecTL
11015     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
11016     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
11017     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
11018     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
11019     SpecTL.setTemplateNameLoc(TemplateIILoc);
11020     SpecTL.setLAngleLoc(LAngleLoc);
11021     SpecTL.setRAngleLoc(RAngleLoc);
11022     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
11023       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
11024     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
11025   }
11026 
11027   QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
11028   if (T.isNull())
11029     return true;
11030 
11031   // Provide source-location information for the template specialization type.
11032   TypeLocBuilder Builder;
11033   TemplateSpecializationTypeLoc SpecTL
11034     = Builder.push<TemplateSpecializationTypeLoc>(T);
11035   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
11036   SpecTL.setTemplateNameLoc(TemplateIILoc);
11037   SpecTL.setLAngleLoc(LAngleLoc);
11038   SpecTL.setRAngleLoc(RAngleLoc);
11039   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
11040     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
11041 
11042   T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename,
11043                                 SS.getScopeRep(), T);
11044   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
11045   TL.setElaboratedKeywordLoc(TypenameLoc);
11046   TL.setQualifierLoc(SS.getWithLocInContext(Context));
11047 
11048   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
11049   return CreateParsedType(T, TSI);
11050 }
11051 
11052 
11053 /// Determine whether this failed name lookup should be treated as being
11054 /// disabled by a usage of std::enable_if.
11055 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
11056                        SourceRange &CondRange, Expr *&Cond) {
11057   // We must be looking for a ::type...
11058   if (!II.isStr("type"))
11059     return false;
11060 
11061   // ... within an explicitly-written template specialization...
11062   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
11063     return false;
11064   TypeLoc EnableIfTy = NNS.getTypeLoc();
11065   TemplateSpecializationTypeLoc EnableIfTSTLoc =
11066       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
11067   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
11068     return false;
11069   const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
11070 
11071   // ... which names a complete class template declaration...
11072   const TemplateDecl *EnableIfDecl =
11073     EnableIfTST->getTemplateName().getAsTemplateDecl();
11074   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
11075     return false;
11076 
11077   // ... called "enable_if".
11078   const IdentifierInfo *EnableIfII =
11079     EnableIfDecl->getDeclName().getAsIdentifierInfo();
11080   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
11081     return false;
11082 
11083   // Assume the first template argument is the condition.
11084   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
11085 
11086   // Dig out the condition.
11087   Cond = nullptr;
11088   if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
11089         != TemplateArgument::Expression)
11090     return true;
11091 
11092   Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
11093 
11094   // Ignore Boolean literals; they add no value.
11095   if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
11096     Cond = nullptr;
11097 
11098   return true;
11099 }
11100 
11101 QualType
11102 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11103                         SourceLocation KeywordLoc,
11104                         NestedNameSpecifierLoc QualifierLoc,
11105                         const IdentifierInfo &II,
11106                         SourceLocation IILoc,
11107                         TypeSourceInfo **TSI,
11108                         bool DeducedTSTContext) {
11109   QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
11110                                  DeducedTSTContext);
11111   if (T.isNull())
11112     return QualType();
11113 
11114   *TSI = Context.CreateTypeSourceInfo(T);
11115   if (isa<DependentNameType>(T)) {
11116     DependentNameTypeLoc TL =
11117         (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
11118     TL.setElaboratedKeywordLoc(KeywordLoc);
11119     TL.setQualifierLoc(QualifierLoc);
11120     TL.setNameLoc(IILoc);
11121   } else {
11122     ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
11123     TL.setElaboratedKeywordLoc(KeywordLoc);
11124     TL.setQualifierLoc(QualifierLoc);
11125     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
11126   }
11127   return T;
11128 }
11129 
11130 /// Build the type that describes a C++ typename specifier,
11131 /// e.g., "typename T::type".
11132 QualType
11133 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11134                         SourceLocation KeywordLoc,
11135                         NestedNameSpecifierLoc QualifierLoc,
11136                         const IdentifierInfo &II,
11137                         SourceLocation IILoc, bool DeducedTSTContext) {
11138   CXXScopeSpec SS;
11139   SS.Adopt(QualifierLoc);
11140 
11141   DeclContext *Ctx = nullptr;
11142   if (QualifierLoc) {
11143     Ctx = computeDeclContext(SS);
11144     if (!Ctx) {
11145       // If the nested-name-specifier is dependent and couldn't be
11146       // resolved to a type, build a typename type.
11147       assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
11148       return Context.getDependentNameType(Keyword,
11149                                           QualifierLoc.getNestedNameSpecifier(),
11150                                           &II);
11151     }
11152 
11153     // If the nested-name-specifier refers to the current instantiation,
11154     // the "typename" keyword itself is superfluous. In C++03, the
11155     // program is actually ill-formed. However, DR 382 (in C++0x CD1)
11156     // allows such extraneous "typename" keywords, and we retroactively
11157     // apply this DR to C++03 code with only a warning. In any case we continue.
11158 
11159     if (RequireCompleteDeclContext(SS, Ctx))
11160       return QualType();
11161   }
11162 
11163   DeclarationName Name(&II);
11164   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
11165   if (Ctx)
11166     LookupQualifiedName(Result, Ctx, SS);
11167   else
11168     LookupName(Result, CurScope);
11169   unsigned DiagID = 0;
11170   Decl *Referenced = nullptr;
11171   switch (Result.getResultKind()) {
11172   case LookupResult::NotFound: {
11173     // If we're looking up 'type' within a template named 'enable_if', produce
11174     // a more specific diagnostic.
11175     SourceRange CondRange;
11176     Expr *Cond = nullptr;
11177     if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
11178       // If we have a condition, narrow it down to the specific failed
11179       // condition.
11180       if (Cond) {
11181         Expr *FailedCond;
11182         std::string FailedDescription;
11183         std::tie(FailedCond, FailedDescription) =
11184           findFailedBooleanCondition(Cond);
11185 
11186         Diag(FailedCond->getExprLoc(),
11187              diag::err_typename_nested_not_found_requirement)
11188           << FailedDescription
11189           << FailedCond->getSourceRange();
11190         return QualType();
11191       }
11192 
11193       Diag(CondRange.getBegin(),
11194            diag::err_typename_nested_not_found_enable_if)
11195           << Ctx << CondRange;
11196       return QualType();
11197     }
11198 
11199     DiagID = Ctx ? diag::err_typename_nested_not_found
11200                  : diag::err_unknown_typename;
11201     break;
11202   }
11203 
11204   case LookupResult::FoundUnresolvedValue: {
11205     // We found a using declaration that is a value. Most likely, the using
11206     // declaration itself is meant to have the 'typename' keyword.
11207     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11208                           IILoc);
11209     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
11210       << Name << Ctx << FullRange;
11211     if (UnresolvedUsingValueDecl *Using
11212           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
11213       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
11214       Diag(Loc, diag::note_using_value_decl_missing_typename)
11215         << FixItHint::CreateInsertion(Loc, "typename ");
11216     }
11217   }
11218   // Fall through to create a dependent typename type, from which we can recover
11219   // better.
11220   [[fallthrough]];
11221 
11222   case LookupResult::NotFoundInCurrentInstantiation:
11223     // Okay, it's a member of an unknown instantiation.
11224     return Context.getDependentNameType(Keyword,
11225                                         QualifierLoc.getNestedNameSpecifier(),
11226                                         &II);
11227 
11228   case LookupResult::Found:
11229     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
11230       // C++ [class.qual]p2:
11231       //   In a lookup in which function names are not ignored and the
11232       //   nested-name-specifier nominates a class C, if the name specified
11233       //   after the nested-name-specifier, when looked up in C, is the
11234       //   injected-class-name of C [...] then the name is instead considered
11235       //   to name the constructor of class C.
11236       //
11237       // Unlike in an elaborated-type-specifier, function names are not ignored
11238       // in typename-specifier lookup. However, they are ignored in all the
11239       // contexts where we form a typename type with no keyword (that is, in
11240       // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
11241       //
11242       // FIXME: That's not strictly true: mem-initializer-id lookup does not
11243       // ignore functions, but that appears to be an oversight.
11244       auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
11245       auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
11246       if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD &&
11247           FoundRD->isInjectedClassName() &&
11248           declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
11249         Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
11250             << &II << 1 << 0 /*'typename' keyword used*/;
11251 
11252       // We found a type. Build an ElaboratedType, since the
11253       // typename-specifier was just sugar.
11254       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
11255       return Context.getElaboratedType(Keyword,
11256                                        QualifierLoc.getNestedNameSpecifier(),
11257                                        Context.getTypeDeclType(Type));
11258     }
11259 
11260     // C++ [dcl.type.simple]p2:
11261     //   A type-specifier of the form
11262     //     typename[opt] nested-name-specifier[opt] template-name
11263     //   is a placeholder for a deduced class type [...].
11264     if (getLangOpts().CPlusPlus17) {
11265       if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
11266         if (!DeducedTSTContext) {
11267           QualType T(QualifierLoc
11268                          ? QualifierLoc.getNestedNameSpecifier()->getAsType()
11269                          : nullptr, 0);
11270           if (!T.isNull())
11271             Diag(IILoc, diag::err_dependent_deduced_tst)
11272               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
11273           else
11274             Diag(IILoc, diag::err_deduced_tst)
11275               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
11276           NoteTemplateLocation(*TD);
11277           return QualType();
11278         }
11279         return Context.getElaboratedType(
11280             Keyword, QualifierLoc.getNestedNameSpecifier(),
11281             Context.getDeducedTemplateSpecializationType(TemplateName(TD),
11282                                                          QualType(), false));
11283       }
11284     }
11285 
11286     DiagID = Ctx ? diag::err_typename_nested_not_type
11287                  : diag::err_typename_not_type;
11288     Referenced = Result.getFoundDecl();
11289     break;
11290 
11291   case LookupResult::FoundOverloaded:
11292     DiagID = Ctx ? diag::err_typename_nested_not_type
11293                  : diag::err_typename_not_type;
11294     Referenced = *Result.begin();
11295     break;
11296 
11297   case LookupResult::Ambiguous:
11298     return QualType();
11299   }
11300 
11301   // If we get here, it's because name lookup did not find a
11302   // type. Emit an appropriate diagnostic and return an error.
11303   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11304                         IILoc);
11305   if (Ctx)
11306     Diag(IILoc, DiagID) << FullRange << Name << Ctx;
11307   else
11308     Diag(IILoc, DiagID) << FullRange << Name;
11309   if (Referenced)
11310     Diag(Referenced->getLocation(),
11311          Ctx ? diag::note_typename_member_refers_here
11312              : diag::note_typename_refers_here)
11313       << Name;
11314   return QualType();
11315 }
11316 
11317 namespace {
11318   // See Sema::RebuildTypeInCurrentInstantiation
11319   class CurrentInstantiationRebuilder
11320     : public TreeTransform<CurrentInstantiationRebuilder> {
11321     SourceLocation Loc;
11322     DeclarationName Entity;
11323 
11324   public:
11325     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
11326 
11327     CurrentInstantiationRebuilder(Sema &SemaRef,
11328                                   SourceLocation Loc,
11329                                   DeclarationName Entity)
11330     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
11331       Loc(Loc), Entity(Entity) { }
11332 
11333     /// Determine whether the given type \p T has already been
11334     /// transformed.
11335     ///
11336     /// For the purposes of type reconstruction, a type has already been
11337     /// transformed if it is NULL or if it is not dependent.
11338     bool AlreadyTransformed(QualType T) {
11339       return T.isNull() || !T->isInstantiationDependentType();
11340     }
11341 
11342     /// Returns the location of the entity whose type is being
11343     /// rebuilt.
11344     SourceLocation getBaseLocation() { return Loc; }
11345 
11346     /// Returns the name of the entity whose type is being rebuilt.
11347     DeclarationName getBaseEntity() { return Entity; }
11348 
11349     /// Sets the "base" location and entity when that
11350     /// information is known based on another transformation.
11351     void setBase(SourceLocation Loc, DeclarationName Entity) {
11352       this->Loc = Loc;
11353       this->Entity = Entity;
11354     }
11355 
11356     ExprResult TransformLambdaExpr(LambdaExpr *E) {
11357       // Lambdas never need to be transformed.
11358       return E;
11359     }
11360   };
11361 } // end anonymous namespace
11362 
11363 /// Rebuilds a type within the context of the current instantiation.
11364 ///
11365 /// The type \p T is part of the type of an out-of-line member definition of
11366 /// a class template (or class template partial specialization) that was parsed
11367 /// and constructed before we entered the scope of the class template (or
11368 /// partial specialization thereof). This routine will rebuild that type now
11369 /// that we have entered the declarator's scope, which may produce different
11370 /// canonical types, e.g.,
11371 ///
11372 /// \code
11373 /// template<typename T>
11374 /// struct X {
11375 ///   typedef T* pointer;
11376 ///   pointer data();
11377 /// };
11378 ///
11379 /// template<typename T>
11380 /// typename X<T>::pointer X<T>::data() { ... }
11381 /// \endcode
11382 ///
11383 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
11384 /// since we do not know that we can look into X<T> when we parsed the type.
11385 /// This function will rebuild the type, performing the lookup of "pointer"
11386 /// in X<T> and returning an ElaboratedType whose canonical type is the same
11387 /// as the canonical type of T*, allowing the return types of the out-of-line
11388 /// definition and the declaration to match.
11389 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
11390                                                         SourceLocation Loc,
11391                                                         DeclarationName Name) {
11392   if (!T || !T->getType()->isInstantiationDependentType())
11393     return T;
11394 
11395   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
11396   return Rebuilder.TransformType(T);
11397 }
11398 
11399 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
11400   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
11401                                           DeclarationName());
11402   return Rebuilder.TransformExpr(E);
11403 }
11404 
11405 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
11406   if (SS.isInvalid())
11407     return true;
11408 
11409   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11410   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
11411                                           DeclarationName());
11412   NestedNameSpecifierLoc Rebuilt
11413     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
11414   if (!Rebuilt)
11415     return true;
11416 
11417   SS.Adopt(Rebuilt);
11418   return false;
11419 }
11420 
11421 /// Rebuild the template parameters now that we know we're in a current
11422 /// instantiation.
11423 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
11424                                                TemplateParameterList *Params) {
11425   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11426     Decl *Param = Params->getParam(I);
11427 
11428     // There is nothing to rebuild in a type parameter.
11429     if (isa<TemplateTypeParmDecl>(Param))
11430       continue;
11431 
11432     // Rebuild the template parameter list of a template template parameter.
11433     if (TemplateTemplateParmDecl *TTP
11434         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
11435       if (RebuildTemplateParamsInCurrentInstantiation(
11436             TTP->getTemplateParameters()))
11437         return true;
11438 
11439       continue;
11440     }
11441 
11442     // Rebuild the type of a non-type template parameter.
11443     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
11444     TypeSourceInfo *NewTSI
11445       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
11446                                           NTTP->getLocation(),
11447                                           NTTP->getDeclName());
11448     if (!NewTSI)
11449       return true;
11450 
11451     if (NewTSI->getType()->isUndeducedType()) {
11452       // C++17 [temp.dep.expr]p3:
11453       //   An id-expression is type-dependent if it contains
11454       //    - an identifier associated by name lookup with a non-type
11455       //      template-parameter declared with a type that contains a
11456       //      placeholder type (7.1.7.4),
11457       NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
11458     }
11459 
11460     if (NewTSI != NTTP->getTypeSourceInfo()) {
11461       NTTP->setTypeSourceInfo(NewTSI);
11462       NTTP->setType(NewTSI->getType());
11463     }
11464   }
11465 
11466   return false;
11467 }
11468 
11469 /// Produces a formatted string that describes the binding of
11470 /// template parameters to template arguments.
11471 std::string
11472 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11473                                       const TemplateArgumentList &Args) {
11474   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
11475 }
11476 
11477 std::string
11478 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11479                                       const TemplateArgument *Args,
11480                                       unsigned NumArgs) {
11481   SmallString<128> Str;
11482   llvm::raw_svector_ostream Out(Str);
11483 
11484   if (!Params || Params->size() == 0 || NumArgs == 0)
11485     return std::string();
11486 
11487   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11488     if (I >= NumArgs)
11489       break;
11490 
11491     if (I == 0)
11492       Out << "[with ";
11493     else
11494       Out << ", ";
11495 
11496     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
11497       Out << Id->getName();
11498     } else {
11499       Out << '$' << I;
11500     }
11501 
11502     Out << " = ";
11503     Args[I].print(getPrintingPolicy(), Out,
11504                   TemplateParameterList::shouldIncludeTypeForArgument(
11505                       getPrintingPolicy(), Params, I));
11506   }
11507 
11508   Out << ']';
11509   return std::string(Out.str());
11510 }
11511 
11512 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
11513                                     CachedTokens &Toks) {
11514   if (!FD)
11515     return;
11516 
11517   auto LPT = std::make_unique<LateParsedTemplate>();
11518 
11519   // Take tokens to avoid allocations
11520   LPT->Toks.swap(Toks);
11521   LPT->D = FnD;
11522   LPT->FPO = getCurFPFeatures();
11523   LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
11524 
11525   FD->setLateTemplateParsed(true);
11526 }
11527 
11528 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
11529   if (!FD)
11530     return;
11531   FD->setLateTemplateParsed(false);
11532 }
11533 
11534 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
11535   DeclContext *DC = CurContext;
11536 
11537   while (DC) {
11538     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
11539       const FunctionDecl *FD = RD->isLocalClass();
11540       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
11541     } else if (DC->isTranslationUnit() || DC->isNamespace())
11542       return false;
11543 
11544     DC = DC->getParent();
11545   }
11546   return false;
11547 }
11548 
11549 namespace {
11550 /// Walk the path from which a declaration was instantiated, and check
11551 /// that every explicit specialization along that path is visible. This enforces
11552 /// C++ [temp.expl.spec]/6:
11553 ///
11554 ///   If a template, a member template or a member of a class template is
11555 ///   explicitly specialized then that specialization shall be declared before
11556 ///   the first use of that specialization that would cause an implicit
11557 ///   instantiation to take place, in every translation unit in which such a
11558 ///   use occurs; no diagnostic is required.
11559 ///
11560 /// and also C++ [temp.class.spec]/1:
11561 ///
11562 ///   A partial specialization shall be declared before the first use of a
11563 ///   class template specialization that would make use of the partial
11564 ///   specialization as the result of an implicit or explicit instantiation
11565 ///   in every translation unit in which such a use occurs; no diagnostic is
11566 ///   required.
11567 class ExplicitSpecializationVisibilityChecker {
11568   Sema &S;
11569   SourceLocation Loc;
11570   llvm::SmallVector<Module *, 8> Modules;
11571   Sema::AcceptableKind Kind;
11572 
11573 public:
11574   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
11575                                           Sema::AcceptableKind Kind)
11576       : S(S), Loc(Loc), Kind(Kind) {}
11577 
11578   void check(NamedDecl *ND) {
11579     if (auto *FD = dyn_cast<FunctionDecl>(ND))
11580       return checkImpl(FD);
11581     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11582       return checkImpl(RD);
11583     if (auto *VD = dyn_cast<VarDecl>(ND))
11584       return checkImpl(VD);
11585     if (auto *ED = dyn_cast<EnumDecl>(ND))
11586       return checkImpl(ED);
11587   }
11588 
11589 private:
11590   void diagnose(NamedDecl *D, bool IsPartialSpec) {
11591     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11592                               : Sema::MissingImportKind::ExplicitSpecialization;
11593     const bool Recover = true;
11594 
11595     // If we got a custom set of modules (because only a subset of the
11596     // declarations are interesting), use them, otherwise let
11597     // diagnoseMissingImport intelligently pick some.
11598     if (Modules.empty())
11599       S.diagnoseMissingImport(Loc, D, Kind, Recover);
11600     else
11601       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11602   }
11603 
11604   bool CheckMemberSpecialization(const NamedDecl *D) {
11605     return Kind == Sema::AcceptableKind::Visible
11606                ? S.hasVisibleMemberSpecialization(D)
11607                : S.hasReachableMemberSpecialization(D);
11608   }
11609 
11610   bool CheckExplicitSpecialization(const NamedDecl *D) {
11611     return Kind == Sema::AcceptableKind::Visible
11612                ? S.hasVisibleExplicitSpecialization(D)
11613                : S.hasReachableExplicitSpecialization(D);
11614   }
11615 
11616   bool CheckDeclaration(const NamedDecl *D) {
11617     return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
11618                                                  : S.hasReachableDeclaration(D);
11619   }
11620 
11621   // Check a specific declaration. There are three problematic cases:
11622   //
11623   //  1) The declaration is an explicit specialization of a template
11624   //     specialization.
11625   //  2) The declaration is an explicit specialization of a member of an
11626   //     templated class.
11627   //  3) The declaration is an instantiation of a template, and that template
11628   //     is an explicit specialization of a member of a templated class.
11629   //
11630   // We don't need to go any deeper than that, as the instantiation of the
11631   // surrounding class / etc is not triggered by whatever triggered this
11632   // instantiation, and thus should be checked elsewhere.
11633   template<typename SpecDecl>
11634   void checkImpl(SpecDecl *Spec) {
11635     bool IsHiddenExplicitSpecialization = false;
11636     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11637       IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
11638                                            ? !CheckMemberSpecialization(Spec)
11639                                            : !CheckExplicitSpecialization(Spec);
11640     } else {
11641       checkInstantiated(Spec);
11642     }
11643 
11644     if (IsHiddenExplicitSpecialization)
11645       diagnose(Spec->getMostRecentDecl(), false);
11646   }
11647 
11648   void checkInstantiated(FunctionDecl *FD) {
11649     if (auto *TD = FD->getPrimaryTemplate())
11650       checkTemplate(TD);
11651   }
11652 
11653   void checkInstantiated(CXXRecordDecl *RD) {
11654     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11655     if (!SD)
11656       return;
11657 
11658     auto From = SD->getSpecializedTemplateOrPartial();
11659     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11660       checkTemplate(TD);
11661     else if (auto *TD =
11662                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11663       if (!CheckDeclaration(TD))
11664         diagnose(TD, true);
11665       checkTemplate(TD);
11666     }
11667   }
11668 
11669   void checkInstantiated(VarDecl *RD) {
11670     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11671     if (!SD)
11672       return;
11673 
11674     auto From = SD->getSpecializedTemplateOrPartial();
11675     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11676       checkTemplate(TD);
11677     else if (auto *TD =
11678                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11679       if (!CheckDeclaration(TD))
11680         diagnose(TD, true);
11681       checkTemplate(TD);
11682     }
11683   }
11684 
11685   void checkInstantiated(EnumDecl *FD) {}
11686 
11687   template<typename TemplDecl>
11688   void checkTemplate(TemplDecl *TD) {
11689     if (TD->isMemberSpecialization()) {
11690       if (!CheckMemberSpecialization(TD))
11691         diagnose(TD->getMostRecentDecl(), false);
11692     }
11693   }
11694 };
11695 } // end anonymous namespace
11696 
11697 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11698   if (!getLangOpts().Modules)
11699     return;
11700 
11701   ExplicitSpecializationVisibilityChecker(*this, Loc,
11702                                           Sema::AcceptableKind::Visible)
11703       .check(Spec);
11704 }
11705 
11706 void Sema::checkSpecializationReachability(SourceLocation Loc,
11707                                            NamedDecl *Spec) {
11708   if (!getLangOpts().CPlusPlusModules)
11709     return checkSpecializationVisibility(Loc, Spec);
11710 
11711   ExplicitSpecializationVisibilityChecker(*this, Loc,
11712                                           Sema::AcceptableKind::Reachable)
11713       .check(Spec);
11714 }
11715 
11716 /// Returns the top most location responsible for the definition of \p N.
11717 /// If \p N is a a template specialization, this is the location
11718 /// of the top of the instantiation stack.
11719 /// Otherwise, the location of \p N is returned.
11720 SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const {
11721   if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty())
11722     return N->getLocation();
11723   if (const auto *FD = dyn_cast<FunctionDecl>(N)) {
11724     if (!FD->isFunctionTemplateSpecialization())
11725       return FD->getLocation();
11726   } else if (!isa<ClassTemplateSpecializationDecl,
11727                   VarTemplateSpecializationDecl>(N)) {
11728     return N->getLocation();
11729   }
11730   for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) {
11731     if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid())
11732       continue;
11733     return CSC.PointOfInstantiation;
11734   }
11735   return N->getLocation();
11736 }
11737