1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 //  This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10 
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclFriend.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/TypeVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/Stack.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/SemaInternal.h"
32 #include "clang/Sema/Template.h"
33 #include "clang/Sema/TemplateDeduction.h"
34 #include "llvm/ADT/SmallBitVector.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/ADT/StringExtras.h"
37 
38 #include <iterator>
39 using namespace clang;
40 using namespace sema;
41 
42 // Exported for use by Parser.
43 SourceRange
44 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
45                               unsigned N) {
46   if (!N) return SourceRange();
47   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
48 }
49 
50 unsigned Sema::getTemplateDepth(Scope *S) const {
51   unsigned Depth = 0;
52 
53   // Each template parameter scope represents one level of template parameter
54   // depth.
55   for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
56        TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
57     ++Depth;
58   }
59 
60   // Note that there are template parameters with the given depth.
61   auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
62 
63   // Look for parameters of an enclosing generic lambda. We don't create a
64   // template parameter scope for these.
65   for (FunctionScopeInfo *FSI : getFunctionScopes()) {
66     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
67       if (!LSI->TemplateParams.empty()) {
68         ParamsAtDepth(LSI->AutoTemplateParameterDepth);
69         break;
70       }
71       if (LSI->GLTemplateParameterList) {
72         ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
73         break;
74       }
75     }
76   }
77 
78   // Look for parameters of an enclosing terse function template. We don't
79   // create a template parameter scope for these either.
80   for (const InventedTemplateParameterInfo &Info :
81        getInventedParameterInfos()) {
82     if (!Info.TemplateParams.empty()) {
83       ParamsAtDepth(Info.AutoTemplateParameterDepth);
84       break;
85     }
86   }
87 
88   return Depth;
89 }
90 
91 /// \brief Determine whether the declaration found is acceptable as the name
92 /// of a template and, if so, return that template declaration. Otherwise,
93 /// returns null.
94 ///
95 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
96 /// is true. In all other cases it will return a TemplateDecl (or null).
97 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
98                                        bool AllowFunctionTemplates,
99                                        bool AllowDependent) {
100   D = D->getUnderlyingDecl();
101 
102   if (isa<TemplateDecl>(D)) {
103     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
104       return nullptr;
105 
106     return D;
107   }
108 
109   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
110     // C++ [temp.local]p1:
111     //   Like normal (non-template) classes, class templates have an
112     //   injected-class-name (Clause 9). The injected-class-name
113     //   can be used with or without a template-argument-list. When
114     //   it is used without a template-argument-list, it is
115     //   equivalent to the injected-class-name followed by the
116     //   template-parameters of the class template enclosed in
117     //   <>. When it is used with a template-argument-list, it
118     //   refers to the specified class template specialization,
119     //   which could be the current specialization or another
120     //   specialization.
121     if (Record->isInjectedClassName()) {
122       Record = cast<CXXRecordDecl>(Record->getDeclContext());
123       if (Record->getDescribedClassTemplate())
124         return Record->getDescribedClassTemplate();
125 
126       if (ClassTemplateSpecializationDecl *Spec
127             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
128         return Spec->getSpecializedTemplate();
129     }
130 
131     return nullptr;
132   }
133 
134   // 'using Dependent::foo;' can resolve to a template name.
135   // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
136   // injected-class-name).
137   if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
138     return D;
139 
140   return nullptr;
141 }
142 
143 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
144                                          bool AllowFunctionTemplates,
145                                          bool AllowDependent) {
146   LookupResult::Filter filter = R.makeFilter();
147   while (filter.hasNext()) {
148     NamedDecl *Orig = filter.next();
149     if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
150       filter.erase();
151   }
152   filter.done();
153 }
154 
155 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
156                                          bool AllowFunctionTemplates,
157                                          bool AllowDependent,
158                                          bool AllowNonTemplateFunctions) {
159   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
160     if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
161       return true;
162     if (AllowNonTemplateFunctions &&
163         isa<FunctionDecl>((*I)->getUnderlyingDecl()))
164       return true;
165   }
166 
167   return false;
168 }
169 
170 TemplateNameKind Sema::isTemplateName(Scope *S,
171                                       CXXScopeSpec &SS,
172                                       bool hasTemplateKeyword,
173                                       const UnqualifiedId &Name,
174                                       ParsedType ObjectTypePtr,
175                                       bool EnteringContext,
176                                       TemplateTy &TemplateResult,
177                                       bool &MemberOfUnknownSpecialization,
178                                       bool Disambiguation) {
179   assert(getLangOpts().CPlusPlus && "No template names in C!");
180 
181   DeclarationName TName;
182   MemberOfUnknownSpecialization = false;
183 
184   switch (Name.getKind()) {
185   case UnqualifiedIdKind::IK_Identifier:
186     TName = DeclarationName(Name.Identifier);
187     break;
188 
189   case UnqualifiedIdKind::IK_OperatorFunctionId:
190     TName = Context.DeclarationNames.getCXXOperatorName(
191                                               Name.OperatorFunctionId.Operator);
192     break;
193 
194   case UnqualifiedIdKind::IK_LiteralOperatorId:
195     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
196     break;
197 
198   default:
199     return TNK_Non_template;
200   }
201 
202   QualType ObjectType = ObjectTypePtr.get();
203 
204   AssumedTemplateKind AssumedTemplate;
205   LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
206   if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
207                          MemberOfUnknownSpecialization, SourceLocation(),
208                          &AssumedTemplate,
209                          /*AllowTypoCorrection=*/!Disambiguation))
210     return TNK_Non_template;
211 
212   if (AssumedTemplate != AssumedTemplateKind::None) {
213     TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
214     // Let the parser know whether we found nothing or found functions; if we
215     // found nothing, we want to more carefully check whether this is actually
216     // a function template name versus some other kind of undeclared identifier.
217     return AssumedTemplate == AssumedTemplateKind::FoundNothing
218                ? TNK_Undeclared_template
219                : TNK_Function_template;
220   }
221 
222   if (R.empty())
223     return TNK_Non_template;
224 
225   NamedDecl *D = nullptr;
226   if (R.isAmbiguous()) {
227     // If we got an ambiguity involving a non-function template, treat this
228     // as a template name, and pick an arbitrary template for error recovery.
229     bool AnyFunctionTemplates = false;
230     for (NamedDecl *FoundD : R) {
231       if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
232         if (isa<FunctionTemplateDecl>(FoundTemplate))
233           AnyFunctionTemplates = true;
234         else {
235           D = FoundTemplate;
236           break;
237         }
238       }
239     }
240 
241     // If we didn't find any templates at all, this isn't a template name.
242     // Leave the ambiguity for a later lookup to diagnose.
243     if (!D && !AnyFunctionTemplates) {
244       R.suppressDiagnostics();
245       return TNK_Non_template;
246     }
247 
248     // If the only templates were function templates, filter out the rest.
249     // We'll diagnose the ambiguity later.
250     if (!D)
251       FilterAcceptableTemplateNames(R);
252   }
253 
254   // At this point, we have either picked a single template name declaration D
255   // or we have a non-empty set of results R containing either one template name
256   // declaration or a set of function templates.
257 
258   TemplateName Template;
259   TemplateNameKind TemplateKind;
260 
261   unsigned ResultCount = R.end() - R.begin();
262   if (!D && ResultCount > 1) {
263     // We assume that we'll preserve the qualifier from a function
264     // template name in other ways.
265     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
266     TemplateKind = TNK_Function_template;
267 
268     // We'll do this lookup again later.
269     R.suppressDiagnostics();
270   } else {
271     if (!D) {
272       D = getAsTemplateNameDecl(*R.begin());
273       assert(D && "unambiguous result is not a template name");
274     }
275 
276     if (isa<UnresolvedUsingValueDecl>(D)) {
277       // We don't yet know whether this is a template-name or not.
278       MemberOfUnknownSpecialization = true;
279       return TNK_Non_template;
280     }
281 
282     TemplateDecl *TD = cast<TemplateDecl>(D);
283 
284     if (SS.isSet() && !SS.isInvalid()) {
285       NestedNameSpecifier *Qualifier = SS.getScopeRep();
286       Template = Context.getQualifiedTemplateName(Qualifier,
287                                                   hasTemplateKeyword, TD);
288     } else {
289       Template = TemplateName(TD);
290     }
291 
292     if (isa<FunctionTemplateDecl>(TD)) {
293       TemplateKind = TNK_Function_template;
294 
295       // We'll do this lookup again later.
296       R.suppressDiagnostics();
297     } else {
298       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
299              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
300              isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
301       TemplateKind =
302           isa<VarTemplateDecl>(TD) ? TNK_Var_template :
303           isa<ConceptDecl>(TD) ? TNK_Concept_template :
304           TNK_Type_template;
305     }
306   }
307 
308   TemplateResult = TemplateTy::make(Template);
309   return TemplateKind;
310 }
311 
312 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
313                                 SourceLocation NameLoc,
314                                 ParsedTemplateTy *Template) {
315   CXXScopeSpec SS;
316   bool MemberOfUnknownSpecialization = false;
317 
318   // We could use redeclaration lookup here, but we don't need to: the
319   // syntactic form of a deduction guide is enough to identify it even
320   // if we can't look up the template name at all.
321   LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
322   if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
323                          /*EnteringContext*/ false,
324                          MemberOfUnknownSpecialization))
325     return false;
326 
327   if (R.empty()) return false;
328   if (R.isAmbiguous()) {
329     // FIXME: Diagnose an ambiguity if we find at least one template.
330     R.suppressDiagnostics();
331     return false;
332   }
333 
334   // We only treat template-names that name type templates as valid deduction
335   // guide names.
336   TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
337   if (!TD || !getAsTypeTemplateDecl(TD))
338     return false;
339 
340   if (Template)
341     *Template = TemplateTy::make(TemplateName(TD));
342   return true;
343 }
344 
345 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
346                                        SourceLocation IILoc,
347                                        Scope *S,
348                                        const CXXScopeSpec *SS,
349                                        TemplateTy &SuggestedTemplate,
350                                        TemplateNameKind &SuggestedKind) {
351   // We can't recover unless there's a dependent scope specifier preceding the
352   // template name.
353   // FIXME: Typo correction?
354   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
355       computeDeclContext(*SS))
356     return false;
357 
358   // The code is missing a 'template' keyword prior to the dependent template
359   // name.
360   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
361   Diag(IILoc, diag::err_template_kw_missing)
362     << Qualifier << II.getName()
363     << FixItHint::CreateInsertion(IILoc, "template ");
364   SuggestedTemplate
365     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
366   SuggestedKind = TNK_Dependent_template_name;
367   return true;
368 }
369 
370 bool Sema::LookupTemplateName(LookupResult &Found,
371                               Scope *S, CXXScopeSpec &SS,
372                               QualType ObjectType,
373                               bool EnteringContext,
374                               bool &MemberOfUnknownSpecialization,
375                               RequiredTemplateKind RequiredTemplate,
376                               AssumedTemplateKind *ATK,
377                               bool AllowTypoCorrection) {
378   if (ATK)
379     *ATK = AssumedTemplateKind::None;
380 
381   if (SS.isInvalid())
382     return true;
383 
384   Found.setTemplateNameLookup(true);
385 
386   // Determine where to perform name lookup
387   MemberOfUnknownSpecialization = false;
388   DeclContext *LookupCtx = nullptr;
389   bool IsDependent = false;
390   if (!ObjectType.isNull()) {
391     // This nested-name-specifier occurs in a member access expression, e.g.,
392     // x->B::f, and we are looking into the type of the object.
393     assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
394     LookupCtx = computeDeclContext(ObjectType);
395     IsDependent = !LookupCtx && ObjectType->isDependentType();
396     assert((IsDependent || !ObjectType->isIncompleteType() ||
397             ObjectType->castAs<TagType>()->isBeingDefined()) &&
398            "Caller should have completed object type");
399 
400     // Template names cannot appear inside an Objective-C class or object type
401     // or a vector type.
402     //
403     // FIXME: This is wrong. For example:
404     //
405     //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
406     //   Vec<int> vi;
407     //   vi.Vec<int>::~Vec<int>();
408     //
409     // ... should be accepted but we will not treat 'Vec' as a template name
410     // here. The right thing to do would be to check if the name is a valid
411     // vector component name, and look up a template name if not. And similarly
412     // for lookups into Objective-C class and object types, where the same
413     // problem can arise.
414     if (ObjectType->isObjCObjectOrInterfaceType() ||
415         ObjectType->isVectorType()) {
416       Found.clear();
417       return false;
418     }
419   } else if (SS.isNotEmpty()) {
420     // This nested-name-specifier occurs after another nested-name-specifier,
421     // so long into the context associated with the prior nested-name-specifier.
422     LookupCtx = computeDeclContext(SS, EnteringContext);
423     IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
424 
425     // The declaration context must be complete.
426     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
427       return true;
428   }
429 
430   bool ObjectTypeSearchedInScope = false;
431   bool AllowFunctionTemplatesInLookup = true;
432   if (LookupCtx) {
433     // Perform "qualified" name lookup into the declaration context we
434     // computed, which is either the type of the base of a member access
435     // expression or the declaration context associated with a prior
436     // nested-name-specifier.
437     LookupQualifiedName(Found, LookupCtx);
438 
439     // FIXME: The C++ standard does not clearly specify what happens in the
440     // case where the object type is dependent, and implementations vary. In
441     // Clang, we treat a name after a . or -> as a template-name if lookup
442     // finds a non-dependent member or member of the current instantiation that
443     // is a type template, or finds no such members and lookup in the context
444     // of the postfix-expression finds a type template. In the latter case, the
445     // name is nonetheless dependent, and we may resolve it to a member of an
446     // unknown specialization when we come to instantiate the template.
447     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
448   }
449 
450   if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
451     // C++ [basic.lookup.classref]p1:
452     //   In a class member access expression (5.2.5), if the . or -> token is
453     //   immediately followed by an identifier followed by a <, the
454     //   identifier must be looked up to determine whether the < is the
455     //   beginning of a template argument list (14.2) or a less-than operator.
456     //   The identifier is first looked up in the class of the object
457     //   expression. If the identifier is not found, it is then looked up in
458     //   the context of the entire postfix-expression and shall name a class
459     //   template.
460     if (S)
461       LookupName(Found, S);
462 
463     if (!ObjectType.isNull()) {
464       //  FIXME: We should filter out all non-type templates here, particularly
465       //  variable templates and concepts. But the exclusion of alias templates
466       //  and template template parameters is a wording defect.
467       AllowFunctionTemplatesInLookup = false;
468       ObjectTypeSearchedInScope = true;
469     }
470 
471     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
472   }
473 
474   if (Found.isAmbiguous())
475     return false;
476 
477   if (ATK && SS.isEmpty() && ObjectType.isNull() &&
478       !RequiredTemplate.hasTemplateKeyword()) {
479     // C++2a [temp.names]p2:
480     //   A name is also considered to refer to a template if it is an
481     //   unqualified-id followed by a < and name lookup finds either one or more
482     //   functions or finds nothing.
483     //
484     // To keep our behavior consistent, we apply the "finds nothing" part in
485     // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
486     // successfully form a call to an undeclared template-id.
487     bool AllFunctions =
488         getLangOpts().CPlusPlus20 &&
489         std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) {
490           return isa<FunctionDecl>(ND->getUnderlyingDecl());
491         });
492     if (AllFunctions || (Found.empty() && !IsDependent)) {
493       // If lookup found any functions, or if this is a name that can only be
494       // used for a function, then strongly assume this is a function
495       // template-id.
496       *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
497                  ? AssumedTemplateKind::FoundNothing
498                  : AssumedTemplateKind::FoundFunctions;
499       Found.clear();
500       return false;
501     }
502   }
503 
504   if (Found.empty() && !IsDependent && AllowTypoCorrection) {
505     // If we did not find any names, and this is not a disambiguation, attempt
506     // to correct any typos.
507     DeclarationName Name = Found.getLookupName();
508     Found.clear();
509     // Simple filter callback that, for keywords, only accepts the C++ *_cast
510     DefaultFilterCCC FilterCCC{};
511     FilterCCC.WantTypeSpecifiers = false;
512     FilterCCC.WantExpressionKeywords = false;
513     FilterCCC.WantRemainingKeywords = false;
514     FilterCCC.WantCXXNamedCasts = true;
515     if (TypoCorrection Corrected =
516             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
517                         &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
518       if (auto *ND = Corrected.getFoundDecl())
519         Found.addDecl(ND);
520       FilterAcceptableTemplateNames(Found);
521       if (Found.isAmbiguous()) {
522         Found.clear();
523       } else if (!Found.empty()) {
524         Found.setLookupName(Corrected.getCorrection());
525         if (LookupCtx) {
526           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
527           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
528                                   Name.getAsString() == CorrectedStr;
529           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
530                                     << Name << LookupCtx << DroppedSpecifier
531                                     << SS.getRange());
532         } else {
533           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
534         }
535       }
536     }
537   }
538 
539   NamedDecl *ExampleLookupResult =
540       Found.empty() ? nullptr : Found.getRepresentativeDecl();
541   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
542   if (Found.empty()) {
543     if (IsDependent) {
544       MemberOfUnknownSpecialization = true;
545       return false;
546     }
547 
548     // If a 'template' keyword was used, a lookup that finds only non-template
549     // names is an error.
550     if (ExampleLookupResult && RequiredTemplate) {
551       Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
552           << Found.getLookupName() << SS.getRange()
553           << RequiredTemplate.hasTemplateKeyword()
554           << RequiredTemplate.getTemplateKeywordLoc();
555       Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
556            diag::note_template_kw_refers_to_non_template)
557           << Found.getLookupName();
558       return true;
559     }
560 
561     return false;
562   }
563 
564   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
565       !getLangOpts().CPlusPlus11) {
566     // C++03 [basic.lookup.classref]p1:
567     //   [...] If the lookup in the class of the object expression finds a
568     //   template, the name is also looked up in the context of the entire
569     //   postfix-expression and [...]
570     //
571     // Note: C++11 does not perform this second lookup.
572     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
573                             LookupOrdinaryName);
574     FoundOuter.setTemplateNameLookup(true);
575     LookupName(FoundOuter, S);
576     // FIXME: We silently accept an ambiguous lookup here, in violation of
577     // [basic.lookup]/1.
578     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
579 
580     NamedDecl *OuterTemplate;
581     if (FoundOuter.empty()) {
582       //   - if the name is not found, the name found in the class of the
583       //     object expression is used, otherwise
584     } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
585                !(OuterTemplate =
586                      getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
587       //   - if the name is found in the context of the entire
588       //     postfix-expression and does not name a class template, the name
589       //     found in the class of the object expression is used, otherwise
590       FoundOuter.clear();
591     } else if (!Found.isSuppressingDiagnostics()) {
592       //   - if the name found is a class template, it must refer to the same
593       //     entity as the one found in the class of the object expression,
594       //     otherwise the program is ill-formed.
595       if (!Found.isSingleResult() ||
596           getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
597               OuterTemplate->getCanonicalDecl()) {
598         Diag(Found.getNameLoc(),
599              diag::ext_nested_name_member_ref_lookup_ambiguous)
600           << Found.getLookupName()
601           << ObjectType;
602         Diag(Found.getRepresentativeDecl()->getLocation(),
603              diag::note_ambig_member_ref_object_type)
604           << ObjectType;
605         Diag(FoundOuter.getFoundDecl()->getLocation(),
606              diag::note_ambig_member_ref_scope);
607 
608         // Recover by taking the template that we found in the object
609         // expression's type.
610       }
611     }
612   }
613 
614   return false;
615 }
616 
617 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
618                                               SourceLocation Less,
619                                               SourceLocation Greater) {
620   if (TemplateName.isInvalid())
621     return;
622 
623   DeclarationNameInfo NameInfo;
624   CXXScopeSpec SS;
625   LookupNameKind LookupKind;
626 
627   DeclContext *LookupCtx = nullptr;
628   NamedDecl *Found = nullptr;
629   bool MissingTemplateKeyword = false;
630 
631   // Figure out what name we looked up.
632   if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
633     NameInfo = DRE->getNameInfo();
634     SS.Adopt(DRE->getQualifierLoc());
635     LookupKind = LookupOrdinaryName;
636     Found = DRE->getFoundDecl();
637   } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
638     NameInfo = ME->getMemberNameInfo();
639     SS.Adopt(ME->getQualifierLoc());
640     LookupKind = LookupMemberName;
641     LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
642     Found = ME->getMemberDecl();
643   } else if (auto *DSDRE =
644                  dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
645     NameInfo = DSDRE->getNameInfo();
646     SS.Adopt(DSDRE->getQualifierLoc());
647     MissingTemplateKeyword = true;
648   } else if (auto *DSME =
649                  dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
650     NameInfo = DSME->getMemberNameInfo();
651     SS.Adopt(DSME->getQualifierLoc());
652     MissingTemplateKeyword = true;
653   } else {
654     llvm_unreachable("unexpected kind of potential template name");
655   }
656 
657   // If this is a dependent-scope lookup, diagnose that the 'template' keyword
658   // was missing.
659   if (MissingTemplateKeyword) {
660     Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
661         << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
662     return;
663   }
664 
665   // Try to correct the name by looking for templates and C++ named casts.
666   struct TemplateCandidateFilter : CorrectionCandidateCallback {
667     Sema &S;
668     TemplateCandidateFilter(Sema &S) : S(S) {
669       WantTypeSpecifiers = false;
670       WantExpressionKeywords = false;
671       WantRemainingKeywords = false;
672       WantCXXNamedCasts = true;
673     };
674     bool ValidateCandidate(const TypoCorrection &Candidate) override {
675       if (auto *ND = Candidate.getCorrectionDecl())
676         return S.getAsTemplateNameDecl(ND);
677       return Candidate.isKeyword();
678     }
679 
680     std::unique_ptr<CorrectionCandidateCallback> clone() override {
681       return std::make_unique<TemplateCandidateFilter>(*this);
682     }
683   };
684 
685   DeclarationName Name = NameInfo.getName();
686   TemplateCandidateFilter CCC(*this);
687   if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
688                                              CTK_ErrorRecovery, LookupCtx)) {
689     auto *ND = Corrected.getFoundDecl();
690     if (ND)
691       ND = getAsTemplateNameDecl(ND);
692     if (ND || Corrected.isKeyword()) {
693       if (LookupCtx) {
694         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
695         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
696                                 Name.getAsString() == CorrectedStr;
697         diagnoseTypo(Corrected,
698                      PDiag(diag::err_non_template_in_member_template_id_suggest)
699                          << Name << LookupCtx << DroppedSpecifier
700                          << SS.getRange(), false);
701       } else {
702         diagnoseTypo(Corrected,
703                      PDiag(diag::err_non_template_in_template_id_suggest)
704                          << Name, false);
705       }
706       if (Found)
707         Diag(Found->getLocation(),
708              diag::note_non_template_in_template_id_found);
709       return;
710     }
711   }
712 
713   Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
714     << Name << SourceRange(Less, Greater);
715   if (Found)
716     Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
717 }
718 
719 /// ActOnDependentIdExpression - Handle a dependent id-expression that
720 /// was just parsed.  This is only possible with an explicit scope
721 /// specifier naming a dependent type.
722 ExprResult
723 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
724                                  SourceLocation TemplateKWLoc,
725                                  const DeclarationNameInfo &NameInfo,
726                                  bool isAddressOfOperand,
727                            const TemplateArgumentListInfo *TemplateArgs) {
728   DeclContext *DC = getFunctionLevelDeclContext();
729 
730   // C++11 [expr.prim.general]p12:
731   //   An id-expression that denotes a non-static data member or non-static
732   //   member function of a class can only be used:
733   //   (...)
734   //   - if that id-expression denotes a non-static data member and it
735   //     appears in an unevaluated operand.
736   //
737   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
738   // CXXDependentScopeMemberExpr. The former can instantiate to either
739   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
740   // always a MemberExpr.
741   bool MightBeCxx11UnevalField =
742       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
743 
744   // Check if the nested name specifier is an enum type.
745   bool IsEnum = false;
746   if (NestedNameSpecifier *NNS = SS.getScopeRep())
747     IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
748 
749   if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
750       isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
751     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
752 
753     // Since the 'this' expression is synthesized, we don't need to
754     // perform the double-lookup check.
755     NamedDecl *FirstQualifierInScope = nullptr;
756 
757     return CXXDependentScopeMemberExpr::Create(
758         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
759         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
760         FirstQualifierInScope, NameInfo, TemplateArgs);
761   }
762 
763   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
764 }
765 
766 ExprResult
767 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
768                                 SourceLocation TemplateKWLoc,
769                                 const DeclarationNameInfo &NameInfo,
770                                 const TemplateArgumentListInfo *TemplateArgs) {
771   // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
772   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
773   if (!QualifierLoc)
774     return ExprError();
775 
776   return DependentScopeDeclRefExpr::Create(
777       Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
778 }
779 
780 
781 /// Determine whether we would be unable to instantiate this template (because
782 /// it either has no definition, or is in the process of being instantiated).
783 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
784                                           NamedDecl *Instantiation,
785                                           bool InstantiatedFromMember,
786                                           const NamedDecl *Pattern,
787                                           const NamedDecl *PatternDef,
788                                           TemplateSpecializationKind TSK,
789                                           bool Complain /*= true*/) {
790   assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
791          isa<VarDecl>(Instantiation));
792 
793   bool IsEntityBeingDefined = false;
794   if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
795     IsEntityBeingDefined = TD->isBeingDefined();
796 
797   if (PatternDef && !IsEntityBeingDefined) {
798     NamedDecl *SuggestedDef = nullptr;
799     if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
800                               /*OnlyNeedComplete*/false)) {
801       // If we're allowed to diagnose this and recover, do so.
802       bool Recover = Complain && !isSFINAEContext();
803       if (Complain)
804         diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
805                               Sema::MissingImportKind::Definition, Recover);
806       return !Recover;
807     }
808     return false;
809   }
810 
811   if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
812     return true;
813 
814   llvm::Optional<unsigned> Note;
815   QualType InstantiationTy;
816   if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
817     InstantiationTy = Context.getTypeDeclType(TD);
818   if (PatternDef) {
819     Diag(PointOfInstantiation,
820          diag::err_template_instantiate_within_definition)
821       << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
822       << InstantiationTy;
823     // Not much point in noting the template declaration here, since
824     // we're lexically inside it.
825     Instantiation->setInvalidDecl();
826   } else if (InstantiatedFromMember) {
827     if (isa<FunctionDecl>(Instantiation)) {
828       Diag(PointOfInstantiation,
829            diag::err_explicit_instantiation_undefined_member)
830         << /*member function*/ 1 << Instantiation->getDeclName()
831         << Instantiation->getDeclContext();
832       Note = diag::note_explicit_instantiation_here;
833     } else {
834       assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
835       Diag(PointOfInstantiation,
836            diag::err_implicit_instantiate_member_undefined)
837         << InstantiationTy;
838       Note = diag::note_member_declared_at;
839     }
840   } else {
841     if (isa<FunctionDecl>(Instantiation)) {
842       Diag(PointOfInstantiation,
843            diag::err_explicit_instantiation_undefined_func_template)
844         << Pattern;
845       Note = diag::note_explicit_instantiation_here;
846     } else if (isa<TagDecl>(Instantiation)) {
847       Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
848         << (TSK != TSK_ImplicitInstantiation)
849         << InstantiationTy;
850       Note = diag::note_template_decl_here;
851     } else {
852       assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
853       if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
854         Diag(PointOfInstantiation,
855              diag::err_explicit_instantiation_undefined_var_template)
856           << Instantiation;
857         Instantiation->setInvalidDecl();
858       } else
859         Diag(PointOfInstantiation,
860              diag::err_explicit_instantiation_undefined_member)
861           << /*static data member*/ 2 << Instantiation->getDeclName()
862           << Instantiation->getDeclContext();
863       Note = diag::note_explicit_instantiation_here;
864     }
865   }
866   if (Note) // Diagnostics were emitted.
867     Diag(Pattern->getLocation(), Note.getValue());
868 
869   // In general, Instantiation isn't marked invalid to get more than one
870   // error for multiple undefined instantiations. But the code that does
871   // explicit declaration -> explicit definition conversion can't handle
872   // invalid declarations, so mark as invalid in that case.
873   if (TSK == TSK_ExplicitInstantiationDeclaration)
874     Instantiation->setInvalidDecl();
875   return true;
876 }
877 
878 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
879 /// that the template parameter 'PrevDecl' is being shadowed by a new
880 /// declaration at location Loc. Returns true to indicate that this is
881 /// an error, and false otherwise.
882 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
883   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
884 
885   // C++ [temp.local]p4:
886   //   A template-parameter shall not be redeclared within its
887   //   scope (including nested scopes).
888   //
889   // Make this a warning when MSVC compatibility is requested.
890   unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
891                                              : diag::err_template_param_shadow;
892   Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
893   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
894 }
895 
896 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
897 /// the parameter D to reference the templated declaration and return a pointer
898 /// to the template declaration. Otherwise, do nothing to D and return null.
899 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
900   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
901     D = Temp->getTemplatedDecl();
902     return Temp;
903   }
904   return nullptr;
905 }
906 
907 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
908                                              SourceLocation EllipsisLoc) const {
909   assert(Kind == Template &&
910          "Only template template arguments can be pack expansions here");
911   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
912          "Template template argument pack expansion without packs");
913   ParsedTemplateArgument Result(*this);
914   Result.EllipsisLoc = EllipsisLoc;
915   return Result;
916 }
917 
918 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
919                                             const ParsedTemplateArgument &Arg) {
920 
921   switch (Arg.getKind()) {
922   case ParsedTemplateArgument::Type: {
923     TypeSourceInfo *DI;
924     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
925     if (!DI)
926       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
927     return TemplateArgumentLoc(TemplateArgument(T), DI);
928   }
929 
930   case ParsedTemplateArgument::NonType: {
931     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
932     return TemplateArgumentLoc(TemplateArgument(E), E);
933   }
934 
935   case ParsedTemplateArgument::Template: {
936     TemplateName Template = Arg.getAsTemplate().get();
937     TemplateArgument TArg;
938     if (Arg.getEllipsisLoc().isValid())
939       TArg = TemplateArgument(Template, Optional<unsigned int>());
940     else
941       TArg = Template;
942     return TemplateArgumentLoc(
943         SemaRef.Context, TArg,
944         Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
945         Arg.getLocation(), Arg.getEllipsisLoc());
946   }
947   }
948 
949   llvm_unreachable("Unhandled parsed template argument");
950 }
951 
952 /// Translates template arguments as provided by the parser
953 /// into template arguments used by semantic analysis.
954 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
955                                       TemplateArgumentListInfo &TemplateArgs) {
956  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
957    TemplateArgs.addArgument(translateTemplateArgument(*this,
958                                                       TemplateArgsIn[I]));
959 }
960 
961 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
962                                                  SourceLocation Loc,
963                                                  IdentifierInfo *Name) {
964   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
965       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
966   if (PrevDecl && PrevDecl->isTemplateParameter())
967     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
968 }
969 
970 /// Convert a parsed type into a parsed template argument. This is mostly
971 /// trivial, except that we may have parsed a C++17 deduced class template
972 /// specialization type, in which case we should form a template template
973 /// argument instead of a type template argument.
974 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
975   TypeSourceInfo *TInfo;
976   QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
977   if (T.isNull())
978     return ParsedTemplateArgument();
979   assert(TInfo && "template argument with no location");
980 
981   // If we might have formed a deduced template specialization type, convert
982   // it to a template template argument.
983   if (getLangOpts().CPlusPlus17) {
984     TypeLoc TL = TInfo->getTypeLoc();
985     SourceLocation EllipsisLoc;
986     if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
987       EllipsisLoc = PET.getEllipsisLoc();
988       TL = PET.getPatternLoc();
989     }
990 
991     CXXScopeSpec SS;
992     if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
993       SS.Adopt(ET.getQualifierLoc());
994       TL = ET.getNamedTypeLoc();
995     }
996 
997     if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
998       TemplateName Name = DTST.getTypePtr()->getTemplateName();
999       if (SS.isSet())
1000         Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1001                                                 /*HasTemplateKeyword*/ false,
1002                                                 Name.getAsTemplateDecl());
1003       ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1004                                     DTST.getTemplateNameLoc());
1005       if (EllipsisLoc.isValid())
1006         Result = Result.getTemplatePackExpansion(EllipsisLoc);
1007       return Result;
1008     }
1009   }
1010 
1011   // This is a normal type template argument. Note, if the type template
1012   // argument is an injected-class-name for a template, it has a dual nature
1013   // and can be used as either a type or a template. We handle that in
1014   // convertTypeTemplateArgumentToTemplate.
1015   return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1016                                 ParsedType.get().getAsOpaquePtr(),
1017                                 TInfo->getTypeLoc().getBeginLoc());
1018 }
1019 
1020 /// ActOnTypeParameter - Called when a C++ template type parameter
1021 /// (e.g., "typename T") has been parsed. Typename specifies whether
1022 /// the keyword "typename" was used to declare the type parameter
1023 /// (otherwise, "class" was used), and KeyLoc is the location of the
1024 /// "class" or "typename" keyword. ParamName is the name of the
1025 /// parameter (NULL indicates an unnamed template parameter) and
1026 /// ParamNameLoc is the location of the parameter name (if any).
1027 /// If the type parameter has a default argument, it will be added
1028 /// later via ActOnTypeParameterDefault.
1029 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1030                                     SourceLocation EllipsisLoc,
1031                                     SourceLocation KeyLoc,
1032                                     IdentifierInfo *ParamName,
1033                                     SourceLocation ParamNameLoc,
1034                                     unsigned Depth, unsigned Position,
1035                                     SourceLocation EqualLoc,
1036                                     ParsedType DefaultArg,
1037                                     bool HasTypeConstraint) {
1038   assert(S->isTemplateParamScope() &&
1039          "Template type parameter not in template parameter scope!");
1040 
1041   bool IsParameterPack = EllipsisLoc.isValid();
1042   TemplateTypeParmDecl *Param
1043     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1044                                    KeyLoc, ParamNameLoc, Depth, Position,
1045                                    ParamName, Typename, IsParameterPack,
1046                                    HasTypeConstraint);
1047   Param->setAccess(AS_public);
1048 
1049   if (Param->isParameterPack())
1050     if (auto *LSI = getEnclosingLambda())
1051       LSI->LocalPacks.push_back(Param);
1052 
1053   if (ParamName) {
1054     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1055 
1056     // Add the template parameter into the current scope.
1057     S->AddDecl(Param);
1058     IdResolver.AddDecl(Param);
1059   }
1060 
1061   // C++0x [temp.param]p9:
1062   //   A default template-argument may be specified for any kind of
1063   //   template-parameter that is not a template parameter pack.
1064   if (DefaultArg && IsParameterPack) {
1065     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1066     DefaultArg = nullptr;
1067   }
1068 
1069   // Handle the default argument, if provided.
1070   if (DefaultArg) {
1071     TypeSourceInfo *DefaultTInfo;
1072     GetTypeFromParser(DefaultArg, &DefaultTInfo);
1073 
1074     assert(DefaultTInfo && "expected source information for type");
1075 
1076     // Check for unexpanded parameter packs.
1077     if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1078                                         UPPC_DefaultArgument))
1079       return Param;
1080 
1081     // Check the template argument itself.
1082     if (CheckTemplateArgument(Param, DefaultTInfo)) {
1083       Param->setInvalidDecl();
1084       return Param;
1085     }
1086 
1087     Param->setDefaultArgument(DefaultTInfo);
1088   }
1089 
1090   return Param;
1091 }
1092 
1093 /// Convert the parser's template argument list representation into our form.
1094 static TemplateArgumentListInfo
1095 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1096   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1097                                         TemplateId.RAngleLoc);
1098   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1099                                      TemplateId.NumArgs);
1100   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1101   return TemplateArgs;
1102 }
1103 
1104 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1105                                TemplateIdAnnotation *TypeConstr,
1106                                TemplateTypeParmDecl *ConstrainedParameter,
1107                                SourceLocation EllipsisLoc) {
1108   ConceptDecl *CD =
1109       cast<ConceptDecl>(TypeConstr->Template.get().getAsTemplateDecl());
1110 
1111   // C++2a [temp.param]p4:
1112   //     [...] The concept designated by a type-constraint shall be a type
1113   //     concept ([temp.concept]).
1114   if (!CD->isTypeConcept()) {
1115     Diag(TypeConstr->TemplateNameLoc,
1116          diag::err_type_constraint_non_type_concept);
1117     return true;
1118   }
1119 
1120   bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1121 
1122   if (!WereArgsSpecified &&
1123       CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1124     Diag(TypeConstr->TemplateNameLoc,
1125          diag::err_type_constraint_missing_arguments) << CD;
1126     return true;
1127   }
1128 
1129   TemplateArgumentListInfo TemplateArgs;
1130   if (TypeConstr->LAngleLoc.isValid()) {
1131     TemplateArgs =
1132         makeTemplateArgumentListInfo(*this, *TypeConstr);
1133   }
1134   return AttachTypeConstraint(
1135       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1136       DeclarationNameInfo(DeclarationName(TypeConstr->Name),
1137                           TypeConstr->TemplateNameLoc), CD,
1138       TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1139       ConstrainedParameter, EllipsisLoc);
1140 }
1141 
1142 template<typename ArgumentLocAppender>
1143 static ExprResult formImmediatelyDeclaredConstraint(
1144     Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1145     ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1146     SourceLocation RAngleLoc, QualType ConstrainedType,
1147     SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1148     SourceLocation EllipsisLoc) {
1149 
1150   TemplateArgumentListInfo ConstraintArgs;
1151   ConstraintArgs.addArgument(
1152     S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1153                                     /*NTTPType=*/QualType(), ParamNameLoc));
1154 
1155   ConstraintArgs.setRAngleLoc(RAngleLoc);
1156   ConstraintArgs.setLAngleLoc(LAngleLoc);
1157   Appender(ConstraintArgs);
1158 
1159   // C++2a [temp.param]p4:
1160   //     [...] This constraint-expression E is called the immediately-declared
1161   //     constraint of T. [...]
1162   CXXScopeSpec SS;
1163   SS.Adopt(NS);
1164   ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1165       SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1166       /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1167   if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1168     return ImmediatelyDeclaredConstraint;
1169 
1170   // C++2a [temp.param]p4:
1171   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1172   //
1173   // We have the following case:
1174   //
1175   // template<typename T> concept C1 = true;
1176   // template<C1... T> struct s1;
1177   //
1178   // The constraint: (C1<T> && ...)
1179   //
1180   // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1181   // any unqualified lookups for 'operator&&' here.
1182   return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1183                             /*LParenLoc=*/SourceLocation(),
1184                             ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1185                             EllipsisLoc, /*RHS=*/nullptr,
1186                             /*RParenLoc=*/SourceLocation(),
1187                             /*NumExpansions=*/None);
1188 }
1189 
1190 /// Attach a type-constraint to a template parameter.
1191 /// \returns true if an error occured. This can happen if the
1192 /// immediately-declared constraint could not be formed (e.g. incorrect number
1193 /// of arguments for the named concept).
1194 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1195                                 DeclarationNameInfo NameInfo,
1196                                 ConceptDecl *NamedConcept,
1197                                 const TemplateArgumentListInfo *TemplateArgs,
1198                                 TemplateTypeParmDecl *ConstrainedParameter,
1199                                 SourceLocation EllipsisLoc) {
1200   // C++2a [temp.param]p4:
1201   //     [...] If Q is of the form C<A1, ..., An>, then let E' be
1202   //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1203   const ASTTemplateArgumentListInfo *ArgsAsWritten =
1204     TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1205                                                        *TemplateArgs) : nullptr;
1206 
1207   QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1208 
1209   ExprResult ImmediatelyDeclaredConstraint =
1210       formImmediatelyDeclaredConstraint(
1211           *this, NS, NameInfo, NamedConcept,
1212           TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1213           TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1214           ParamAsArgument, ConstrainedParameter->getLocation(),
1215           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1216             if (TemplateArgs)
1217               for (const auto &ArgLoc : TemplateArgs->arguments())
1218                 ConstraintArgs.addArgument(ArgLoc);
1219           }, EllipsisLoc);
1220   if (ImmediatelyDeclaredConstraint.isInvalid())
1221     return true;
1222 
1223   ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1224                                           /*FoundDecl=*/NamedConcept,
1225                                           NamedConcept, ArgsAsWritten,
1226                                           ImmediatelyDeclaredConstraint.get());
1227   return false;
1228 }
1229 
1230 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
1231                                 SourceLocation EllipsisLoc) {
1232   if (NTTP->getType() != TL.getType() ||
1233       TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1234     Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1235          diag::err_unsupported_placeholder_constraint)
1236        << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
1237     return true;
1238   }
1239   // FIXME: Concepts: This should be the type of the placeholder, but this is
1240   // unclear in the wording right now.
1241   DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue,
1242                                       NTTP->getLocation());
1243   if (!Ref)
1244     return true;
1245   ExprResult ImmediatelyDeclaredConstraint =
1246       formImmediatelyDeclaredConstraint(
1247           *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1248           TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1249           BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(),
1250           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1251             for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1252               ConstraintArgs.addArgument(TL.getArgLoc(I));
1253           }, EllipsisLoc);
1254   if (ImmediatelyDeclaredConstraint.isInvalid() ||
1255      !ImmediatelyDeclaredConstraint.isUsable())
1256     return true;
1257 
1258   NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
1259   return false;
1260 }
1261 
1262 /// Check that the type of a non-type template parameter is
1263 /// well-formed.
1264 ///
1265 /// \returns the (possibly-promoted) parameter type if valid;
1266 /// otherwise, produces a diagnostic and returns a NULL type.
1267 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1268                                                  SourceLocation Loc) {
1269   if (TSI->getType()->isUndeducedType()) {
1270     // C++17 [temp.dep.expr]p3:
1271     //   An id-expression is type-dependent if it contains
1272     //    - an identifier associated by name lookup with a non-type
1273     //      template-parameter declared with a type that contains a
1274     //      placeholder type (7.1.7.4),
1275     TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
1276   }
1277 
1278   return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1279 }
1280 
1281 /// Require the given type to be a structural type, and diagnose if it is not.
1282 ///
1283 /// \return \c true if an error was produced.
1284 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1285   if (T->isDependentType())
1286     return false;
1287 
1288   if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1289     return true;
1290 
1291   if (T->isStructuralType())
1292     return false;
1293 
1294   // Structural types are required to be object types or lvalue references.
1295   if (T->isRValueReferenceType()) {
1296     Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1297     return true;
1298   }
1299 
1300   // Don't mention structural types in our diagnostic prior to C++20. Also,
1301   // there's not much more we can say about non-scalar non-class types --
1302   // because we can't see functions or arrays here, those can only be language
1303   // extensions.
1304   if (!getLangOpts().CPlusPlus20 ||
1305       (!T->isScalarType() && !T->isRecordType())) {
1306     Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1307     return true;
1308   }
1309 
1310   // Structural types are required to be literal types.
1311   if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1312     return true;
1313 
1314   Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1315 
1316   // Drill down into the reason why the class is non-structural.
1317   while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1318     // All members are required to be public and non-mutable, and can't be of
1319     // rvalue reference type. Check these conditions first to prefer a "local"
1320     // reason over a more distant one.
1321     for (const FieldDecl *FD : RD->fields()) {
1322       if (FD->getAccess() != AS_public) {
1323         Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1324         return true;
1325       }
1326       if (FD->isMutable()) {
1327         Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1328         return true;
1329       }
1330       if (FD->getType()->isRValueReferenceType()) {
1331         Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1332             << T;
1333         return true;
1334       }
1335     }
1336 
1337     // All bases are required to be public.
1338     for (const auto &BaseSpec : RD->bases()) {
1339       if (BaseSpec.getAccessSpecifier() != AS_public) {
1340         Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1341             << T << 1;
1342         return true;
1343       }
1344     }
1345 
1346     // All subobjects are required to be of structural types.
1347     SourceLocation SubLoc;
1348     QualType SubType;
1349     int Kind = -1;
1350 
1351     for (const FieldDecl *FD : RD->fields()) {
1352       QualType T = Context.getBaseElementType(FD->getType());
1353       if (!T->isStructuralType()) {
1354         SubLoc = FD->getLocation();
1355         SubType = T;
1356         Kind = 0;
1357         break;
1358       }
1359     }
1360 
1361     if (Kind == -1) {
1362       for (const auto &BaseSpec : RD->bases()) {
1363         QualType T = BaseSpec.getType();
1364         if (!T->isStructuralType()) {
1365           SubLoc = BaseSpec.getBaseTypeLoc();
1366           SubType = T;
1367           Kind = 1;
1368           break;
1369         }
1370       }
1371     }
1372 
1373     assert(Kind != -1 && "couldn't find reason why type is not structural");
1374     Diag(SubLoc, diag::note_not_structural_subobject)
1375         << T << Kind << SubType;
1376     T = SubType;
1377     RD = T->getAsCXXRecordDecl();
1378   }
1379 
1380   return true;
1381 }
1382 
1383 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1384                                                  SourceLocation Loc) {
1385   // We don't allow variably-modified types as the type of non-type template
1386   // parameters.
1387   if (T->isVariablyModifiedType()) {
1388     Diag(Loc, diag::err_variably_modified_nontype_template_param)
1389       << T;
1390     return QualType();
1391   }
1392 
1393   // C++ [temp.param]p4:
1394   //
1395   // A non-type template-parameter shall have one of the following
1396   // (optionally cv-qualified) types:
1397   //
1398   //       -- integral or enumeration type,
1399   if (T->isIntegralOrEnumerationType() ||
1400       //   -- pointer to object or pointer to function,
1401       T->isPointerType() ||
1402       //   -- lvalue reference to object or lvalue reference to function,
1403       T->isLValueReferenceType() ||
1404       //   -- pointer to member,
1405       T->isMemberPointerType() ||
1406       //   -- std::nullptr_t, or
1407       T->isNullPtrType() ||
1408       //   -- a type that contains a placeholder type.
1409       T->isUndeducedType()) {
1410     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1411     // are ignored when determining its type.
1412     return T.getUnqualifiedType();
1413   }
1414 
1415   // C++ [temp.param]p8:
1416   //
1417   //   A non-type template-parameter of type "array of T" or
1418   //   "function returning T" is adjusted to be of type "pointer to
1419   //   T" or "pointer to function returning T", respectively.
1420   if (T->isArrayType() || T->isFunctionType())
1421     return Context.getDecayedType(T);
1422 
1423   // If T is a dependent type, we can't do the check now, so we
1424   // assume that it is well-formed. Note that stripping off the
1425   // qualifiers here is not really correct if T turns out to be
1426   // an array type, but we'll recompute the type everywhere it's
1427   // used during instantiation, so that should be OK. (Using the
1428   // qualified type is equally wrong.)
1429   if (T->isDependentType())
1430     return T.getUnqualifiedType();
1431 
1432   // C++20 [temp.param]p6:
1433   //   -- a structural type
1434   if (RequireStructuralType(T, Loc))
1435     return QualType();
1436 
1437   if (!getLangOpts().CPlusPlus20) {
1438     // FIXME: Consider allowing structural types as an extension in C++17. (In
1439     // earlier language modes, the template argument evaluation rules are too
1440     // inflexible.)
1441     Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1442     return QualType();
1443   }
1444 
1445   Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1446   return T.getUnqualifiedType();
1447 }
1448 
1449 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1450                                           unsigned Depth,
1451                                           unsigned Position,
1452                                           SourceLocation EqualLoc,
1453                                           Expr *Default) {
1454   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1455 
1456   // Check that we have valid decl-specifiers specified.
1457   auto CheckValidDeclSpecifiers = [this, &D] {
1458     // C++ [temp.param]
1459     // p1
1460     //   template-parameter:
1461     //     ...
1462     //     parameter-declaration
1463     // p2
1464     //   ... A storage class shall not be specified in a template-parameter
1465     //   declaration.
1466     // [dcl.typedef]p1:
1467     //   The typedef specifier [...] shall not be used in the decl-specifier-seq
1468     //   of a parameter-declaration
1469     const DeclSpec &DS = D.getDeclSpec();
1470     auto EmitDiag = [this](SourceLocation Loc) {
1471       Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1472           << FixItHint::CreateRemoval(Loc);
1473     };
1474     if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1475       EmitDiag(DS.getStorageClassSpecLoc());
1476 
1477     if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1478       EmitDiag(DS.getThreadStorageClassSpecLoc());
1479 
1480     // [dcl.inline]p1:
1481     //   The inline specifier can be applied only to the declaration or
1482     //   definition of a variable or function.
1483 
1484     if (DS.isInlineSpecified())
1485       EmitDiag(DS.getInlineSpecLoc());
1486 
1487     // [dcl.constexpr]p1:
1488     //   The constexpr specifier shall be applied only to the definition of a
1489     //   variable or variable template or the declaration of a function or
1490     //   function template.
1491 
1492     if (DS.hasConstexprSpecifier())
1493       EmitDiag(DS.getConstexprSpecLoc());
1494 
1495     // [dcl.fct.spec]p1:
1496     //   Function-specifiers can be used only in function declarations.
1497 
1498     if (DS.isVirtualSpecified())
1499       EmitDiag(DS.getVirtualSpecLoc());
1500 
1501     if (DS.hasExplicitSpecifier())
1502       EmitDiag(DS.getExplicitSpecLoc());
1503 
1504     if (DS.isNoreturnSpecified())
1505       EmitDiag(DS.getNoreturnSpecLoc());
1506   };
1507 
1508   CheckValidDeclSpecifiers();
1509 
1510   if (TInfo->getType()->isUndeducedType()) {
1511     Diag(D.getIdentifierLoc(),
1512          diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1513       << QualType(TInfo->getType()->getContainedAutoType(), 0);
1514   }
1515 
1516   assert(S->isTemplateParamScope() &&
1517          "Non-type template parameter not in template parameter scope!");
1518   bool Invalid = false;
1519 
1520   QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1521   if (T.isNull()) {
1522     T = Context.IntTy; // Recover with an 'int' type.
1523     Invalid = true;
1524   }
1525 
1526   CheckFunctionOrTemplateParamDeclarator(S, D);
1527 
1528   IdentifierInfo *ParamName = D.getIdentifier();
1529   bool IsParameterPack = D.hasEllipsis();
1530   NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1531       Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1532       D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1533       TInfo);
1534   Param->setAccess(AS_public);
1535 
1536   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1537     if (TL.isConstrained())
1538       if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
1539         Invalid = true;
1540 
1541   if (Invalid)
1542     Param->setInvalidDecl();
1543 
1544   if (Param->isParameterPack())
1545     if (auto *LSI = getEnclosingLambda())
1546       LSI->LocalPacks.push_back(Param);
1547 
1548   if (ParamName) {
1549     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1550                                          ParamName);
1551 
1552     // Add the template parameter into the current scope.
1553     S->AddDecl(Param);
1554     IdResolver.AddDecl(Param);
1555   }
1556 
1557   // C++0x [temp.param]p9:
1558   //   A default template-argument may be specified for any kind of
1559   //   template-parameter that is not a template parameter pack.
1560   if (Default && IsParameterPack) {
1561     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1562     Default = nullptr;
1563   }
1564 
1565   // Check the well-formedness of the default template argument, if provided.
1566   if (Default) {
1567     // Check for unexpanded parameter packs.
1568     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1569       return Param;
1570 
1571     TemplateArgument Converted;
1572     ExprResult DefaultRes =
1573         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1574     if (DefaultRes.isInvalid()) {
1575       Param->setInvalidDecl();
1576       return Param;
1577     }
1578     Default = DefaultRes.get();
1579 
1580     Param->setDefaultArgument(Default);
1581   }
1582 
1583   return Param;
1584 }
1585 
1586 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1587 /// parameter (e.g. T in template <template \<typename> class T> class array)
1588 /// has been parsed. S is the current scope.
1589 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1590                                            SourceLocation TmpLoc,
1591                                            TemplateParameterList *Params,
1592                                            SourceLocation EllipsisLoc,
1593                                            IdentifierInfo *Name,
1594                                            SourceLocation NameLoc,
1595                                            unsigned Depth,
1596                                            unsigned Position,
1597                                            SourceLocation EqualLoc,
1598                                            ParsedTemplateArgument Default) {
1599   assert(S->isTemplateParamScope() &&
1600          "Template template parameter not in template parameter scope!");
1601 
1602   // Construct the parameter object.
1603   bool IsParameterPack = EllipsisLoc.isValid();
1604   TemplateTemplateParmDecl *Param =
1605     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1606                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
1607                                      Depth, Position, IsParameterPack,
1608                                      Name, Params);
1609   Param->setAccess(AS_public);
1610 
1611   if (Param->isParameterPack())
1612     if (auto *LSI = getEnclosingLambda())
1613       LSI->LocalPacks.push_back(Param);
1614 
1615   // If the template template parameter has a name, then link the identifier
1616   // into the scope and lookup mechanisms.
1617   if (Name) {
1618     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1619 
1620     S->AddDecl(Param);
1621     IdResolver.AddDecl(Param);
1622   }
1623 
1624   if (Params->size() == 0) {
1625     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1626     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1627     Param->setInvalidDecl();
1628   }
1629 
1630   // C++0x [temp.param]p9:
1631   //   A default template-argument may be specified for any kind of
1632   //   template-parameter that is not a template parameter pack.
1633   if (IsParameterPack && !Default.isInvalid()) {
1634     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1635     Default = ParsedTemplateArgument();
1636   }
1637 
1638   if (!Default.isInvalid()) {
1639     // Check only that we have a template template argument. We don't want to
1640     // try to check well-formedness now, because our template template parameter
1641     // might have dependent types in its template parameters, which we wouldn't
1642     // be able to match now.
1643     //
1644     // If none of the template template parameter's template arguments mention
1645     // other template parameters, we could actually perform more checking here.
1646     // However, it isn't worth doing.
1647     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1648     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1649       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1650         << DefaultArg.getSourceRange();
1651       return Param;
1652     }
1653 
1654     // Check for unexpanded parameter packs.
1655     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1656                                         DefaultArg.getArgument().getAsTemplate(),
1657                                         UPPC_DefaultArgument))
1658       return Param;
1659 
1660     Param->setDefaultArgument(Context, DefaultArg);
1661   }
1662 
1663   return Param;
1664 }
1665 
1666 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1667 /// constrained by RequiresClause, that contains the template parameters in
1668 /// Params.
1669 TemplateParameterList *
1670 Sema::ActOnTemplateParameterList(unsigned Depth,
1671                                  SourceLocation ExportLoc,
1672                                  SourceLocation TemplateLoc,
1673                                  SourceLocation LAngleLoc,
1674                                  ArrayRef<NamedDecl *> Params,
1675                                  SourceLocation RAngleLoc,
1676                                  Expr *RequiresClause) {
1677   if (ExportLoc.isValid())
1678     Diag(ExportLoc, diag::warn_template_export_unsupported);
1679 
1680   return TemplateParameterList::Create(
1681       Context, TemplateLoc, LAngleLoc,
1682       llvm::makeArrayRef(Params.data(), Params.size()),
1683       RAngleLoc, RequiresClause);
1684 }
1685 
1686 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1687                                    const CXXScopeSpec &SS) {
1688   if (SS.isSet())
1689     T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1690 }
1691 
1692 DeclResult Sema::CheckClassTemplate(
1693     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1694     CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1695     const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1696     AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1697     SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1698     TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1699   assert(TemplateParams && TemplateParams->size() > 0 &&
1700          "No template parameters");
1701   assert(TUK != TUK_Reference && "Can only declare or define class templates");
1702   bool Invalid = false;
1703 
1704   // Check that we can declare a template here.
1705   if (CheckTemplateDeclScope(S, TemplateParams))
1706     return true;
1707 
1708   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1709   assert(Kind != TTK_Enum && "can't build template of enumerated type");
1710 
1711   // There is no such thing as an unnamed class template.
1712   if (!Name) {
1713     Diag(KWLoc, diag::err_template_unnamed_class);
1714     return true;
1715   }
1716 
1717   // Find any previous declaration with this name. For a friend with no
1718   // scope explicitly specified, we only look for tag declarations (per
1719   // C++11 [basic.lookup.elab]p2).
1720   DeclContext *SemanticContext;
1721   LookupResult Previous(*this, Name, NameLoc,
1722                         (SS.isEmpty() && TUK == TUK_Friend)
1723                           ? LookupTagName : LookupOrdinaryName,
1724                         forRedeclarationInCurContext());
1725   if (SS.isNotEmpty() && !SS.isInvalid()) {
1726     SemanticContext = computeDeclContext(SS, true);
1727     if (!SemanticContext) {
1728       // FIXME: Horrible, horrible hack! We can't currently represent this
1729       // in the AST, and historically we have just ignored such friend
1730       // class templates, so don't complain here.
1731       Diag(NameLoc, TUK == TUK_Friend
1732                         ? diag::warn_template_qualified_friend_ignored
1733                         : diag::err_template_qualified_declarator_no_match)
1734           << SS.getScopeRep() << SS.getRange();
1735       return TUK != TUK_Friend;
1736     }
1737 
1738     if (RequireCompleteDeclContext(SS, SemanticContext))
1739       return true;
1740 
1741     // If we're adding a template to a dependent context, we may need to
1742     // rebuilding some of the types used within the template parameter list,
1743     // now that we know what the current instantiation is.
1744     if (SemanticContext->isDependentContext()) {
1745       ContextRAII SavedContext(*this, SemanticContext);
1746       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1747         Invalid = true;
1748     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1749       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1750 
1751     LookupQualifiedName(Previous, SemanticContext);
1752   } else {
1753     SemanticContext = CurContext;
1754 
1755     // C++14 [class.mem]p14:
1756     //   If T is the name of a class, then each of the following shall have a
1757     //   name different from T:
1758     //    -- every member template of class T
1759     if (TUK != TUK_Friend &&
1760         DiagnoseClassNameShadow(SemanticContext,
1761                                 DeclarationNameInfo(Name, NameLoc)))
1762       return true;
1763 
1764     LookupName(Previous, S);
1765   }
1766 
1767   if (Previous.isAmbiguous())
1768     return true;
1769 
1770   NamedDecl *PrevDecl = nullptr;
1771   if (Previous.begin() != Previous.end())
1772     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1773 
1774   if (PrevDecl && PrevDecl->isTemplateParameter()) {
1775     // Maybe we will complain about the shadowed template parameter.
1776     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1777     // Just pretend that we didn't see the previous declaration.
1778     PrevDecl = nullptr;
1779   }
1780 
1781   // If there is a previous declaration with the same name, check
1782   // whether this is a valid redeclaration.
1783   ClassTemplateDecl *PrevClassTemplate =
1784       dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1785 
1786   // We may have found the injected-class-name of a class template,
1787   // class template partial specialization, or class template specialization.
1788   // In these cases, grab the template that is being defined or specialized.
1789   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1790       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1791     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1792     PrevClassTemplate
1793       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1794     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1795       PrevClassTemplate
1796         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1797             ->getSpecializedTemplate();
1798     }
1799   }
1800 
1801   if (TUK == TUK_Friend) {
1802     // C++ [namespace.memdef]p3:
1803     //   [...] When looking for a prior declaration of a class or a function
1804     //   declared as a friend, and when the name of the friend class or
1805     //   function is neither a qualified name nor a template-id, scopes outside
1806     //   the innermost enclosing namespace scope are not considered.
1807     if (!SS.isSet()) {
1808       DeclContext *OutermostContext = CurContext;
1809       while (!OutermostContext->isFileContext())
1810         OutermostContext = OutermostContext->getLookupParent();
1811 
1812       if (PrevDecl &&
1813           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1814            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1815         SemanticContext = PrevDecl->getDeclContext();
1816       } else {
1817         // Declarations in outer scopes don't matter. However, the outermost
1818         // context we computed is the semantic context for our new
1819         // declaration.
1820         PrevDecl = PrevClassTemplate = nullptr;
1821         SemanticContext = OutermostContext;
1822 
1823         // Check that the chosen semantic context doesn't already contain a
1824         // declaration of this name as a non-tag type.
1825         Previous.clear(LookupOrdinaryName);
1826         DeclContext *LookupContext = SemanticContext;
1827         while (LookupContext->isTransparentContext())
1828           LookupContext = LookupContext->getLookupParent();
1829         LookupQualifiedName(Previous, LookupContext);
1830 
1831         if (Previous.isAmbiguous())
1832           return true;
1833 
1834         if (Previous.begin() != Previous.end())
1835           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1836       }
1837     }
1838   } else if (PrevDecl &&
1839              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1840                             S, SS.isValid()))
1841     PrevDecl = PrevClassTemplate = nullptr;
1842 
1843   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1844           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1845     if (SS.isEmpty() &&
1846         !(PrevClassTemplate &&
1847           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1848               SemanticContext->getRedeclContext()))) {
1849       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1850       Diag(Shadow->getTargetDecl()->getLocation(),
1851            diag::note_using_decl_target);
1852       Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1853       // Recover by ignoring the old declaration.
1854       PrevDecl = PrevClassTemplate = nullptr;
1855     }
1856   }
1857 
1858   if (PrevClassTemplate) {
1859     // Ensure that the template parameter lists are compatible. Skip this check
1860     // for a friend in a dependent context: the template parameter list itself
1861     // could be dependent.
1862     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1863         !TemplateParameterListsAreEqual(TemplateParams,
1864                                    PrevClassTemplate->getTemplateParameters(),
1865                                         /*Complain=*/true,
1866                                         TPL_TemplateMatch))
1867       return true;
1868 
1869     // C++ [temp.class]p4:
1870     //   In a redeclaration, partial specialization, explicit
1871     //   specialization or explicit instantiation of a class template,
1872     //   the class-key shall agree in kind with the original class
1873     //   template declaration (7.1.5.3).
1874     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1875     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1876                                       TUK == TUK_Definition,  KWLoc, Name)) {
1877       Diag(KWLoc, diag::err_use_with_wrong_tag)
1878         << Name
1879         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1880       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1881       Kind = PrevRecordDecl->getTagKind();
1882     }
1883 
1884     // Check for redefinition of this class template.
1885     if (TUK == TUK_Definition) {
1886       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1887         // If we have a prior definition that is not visible, treat this as
1888         // simply making that previous definition visible.
1889         NamedDecl *Hidden = nullptr;
1890         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1891           SkipBody->ShouldSkip = true;
1892           SkipBody->Previous = Def;
1893           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1894           assert(Tmpl && "original definition of a class template is not a "
1895                          "class template?");
1896           makeMergedDefinitionVisible(Hidden);
1897           makeMergedDefinitionVisible(Tmpl);
1898         } else {
1899           Diag(NameLoc, diag::err_redefinition) << Name;
1900           Diag(Def->getLocation(), diag::note_previous_definition);
1901           // FIXME: Would it make sense to try to "forget" the previous
1902           // definition, as part of error recovery?
1903           return true;
1904         }
1905       }
1906     }
1907   } else if (PrevDecl) {
1908     // C++ [temp]p5:
1909     //   A class template shall not have the same name as any other
1910     //   template, class, function, object, enumeration, enumerator,
1911     //   namespace, or type in the same scope (3.3), except as specified
1912     //   in (14.5.4).
1913     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1914     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1915     return true;
1916   }
1917 
1918   // Check the template parameter list of this declaration, possibly
1919   // merging in the template parameter list from the previous class
1920   // template declaration. Skip this check for a friend in a dependent
1921   // context, because the template parameter list might be dependent.
1922   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1923       CheckTemplateParameterList(
1924           TemplateParams,
1925           PrevClassTemplate
1926               ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1927               : nullptr,
1928           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1929            SemanticContext->isDependentContext())
1930               ? TPC_ClassTemplateMember
1931               : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1932           SkipBody))
1933     Invalid = true;
1934 
1935   if (SS.isSet()) {
1936     // If the name of the template was qualified, we must be defining the
1937     // template out-of-line.
1938     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1939       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1940                                       : diag::err_member_decl_does_not_match)
1941         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1942       Invalid = true;
1943     }
1944   }
1945 
1946   // If this is a templated friend in a dependent context we should not put it
1947   // on the redecl chain. In some cases, the templated friend can be the most
1948   // recent declaration tricking the template instantiator to make substitutions
1949   // there.
1950   // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1951   bool ShouldAddRedecl
1952     = !(TUK == TUK_Friend && CurContext->isDependentContext());
1953 
1954   CXXRecordDecl *NewClass =
1955     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1956                           PrevClassTemplate && ShouldAddRedecl ?
1957                             PrevClassTemplate->getTemplatedDecl() : nullptr,
1958                           /*DelayTypeCreation=*/true);
1959   SetNestedNameSpecifier(*this, NewClass, SS);
1960   if (NumOuterTemplateParamLists > 0)
1961     NewClass->setTemplateParameterListsInfo(
1962         Context, llvm::makeArrayRef(OuterTemplateParamLists,
1963                                     NumOuterTemplateParamLists));
1964 
1965   // Add alignment attributes if necessary; these attributes are checked when
1966   // the ASTContext lays out the structure.
1967   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1968     AddAlignmentAttributesForRecord(NewClass);
1969     AddMsStructLayoutForRecord(NewClass);
1970   }
1971 
1972   ClassTemplateDecl *NewTemplate
1973     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1974                                 DeclarationName(Name), TemplateParams,
1975                                 NewClass);
1976 
1977   if (ShouldAddRedecl)
1978     NewTemplate->setPreviousDecl(PrevClassTemplate);
1979 
1980   NewClass->setDescribedClassTemplate(NewTemplate);
1981 
1982   if (ModulePrivateLoc.isValid())
1983     NewTemplate->setModulePrivate();
1984 
1985   // Build the type for the class template declaration now.
1986   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1987   T = Context.getInjectedClassNameType(NewClass, T);
1988   assert(T->isDependentType() && "Class template type is not dependent?");
1989   (void)T;
1990 
1991   // If we are providing an explicit specialization of a member that is a
1992   // class template, make a note of that.
1993   if (PrevClassTemplate &&
1994       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1995     PrevClassTemplate->setMemberSpecialization();
1996 
1997   // Set the access specifier.
1998   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1999     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2000 
2001   // Set the lexical context of these templates
2002   NewClass->setLexicalDeclContext(CurContext);
2003   NewTemplate->setLexicalDeclContext(CurContext);
2004 
2005   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2006     NewClass->startDefinition();
2007 
2008   ProcessDeclAttributeList(S, NewClass, Attr);
2009 
2010   if (PrevClassTemplate)
2011     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2012 
2013   AddPushedVisibilityAttribute(NewClass);
2014   inferGslOwnerPointerAttribute(NewClass);
2015 
2016   if (TUK != TUK_Friend) {
2017     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2018     Scope *Outer = S;
2019     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2020       Outer = Outer->getParent();
2021     PushOnScopeChains(NewTemplate, Outer);
2022   } else {
2023     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2024       NewTemplate->setAccess(PrevClassTemplate->getAccess());
2025       NewClass->setAccess(PrevClassTemplate->getAccess());
2026     }
2027 
2028     NewTemplate->setObjectOfFriendDecl();
2029 
2030     // Friend templates are visible in fairly strange ways.
2031     if (!CurContext->isDependentContext()) {
2032       DeclContext *DC = SemanticContext->getRedeclContext();
2033       DC->makeDeclVisibleInContext(NewTemplate);
2034       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2035         PushOnScopeChains(NewTemplate, EnclosingScope,
2036                           /* AddToContext = */ false);
2037     }
2038 
2039     FriendDecl *Friend = FriendDecl::Create(
2040         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2041     Friend->setAccess(AS_public);
2042     CurContext->addDecl(Friend);
2043   }
2044 
2045   if (PrevClassTemplate)
2046     CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
2047 
2048   if (Invalid) {
2049     NewTemplate->setInvalidDecl();
2050     NewClass->setInvalidDecl();
2051   }
2052 
2053   ActOnDocumentableDecl(NewTemplate);
2054 
2055   if (SkipBody && SkipBody->ShouldSkip)
2056     return SkipBody->Previous;
2057 
2058   return NewTemplate;
2059 }
2060 
2061 namespace {
2062 /// Tree transform to "extract" a transformed type from a class template's
2063 /// constructor to a deduction guide.
2064 class ExtractTypeForDeductionGuide
2065   : public TreeTransform<ExtractTypeForDeductionGuide> {
2066   llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2067 
2068 public:
2069   typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2070   ExtractTypeForDeductionGuide(
2071       Sema &SemaRef,
2072       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2073       : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2074 
2075   TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2076 
2077   QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2078     ASTContext &Context = SemaRef.getASTContext();
2079     TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2080     TypedefNameDecl *Decl = OrigDecl;
2081     // Transform the underlying type of the typedef and clone the Decl only if
2082     // the typedef has a dependent context.
2083     if (OrigDecl->getDeclContext()->isDependentContext()) {
2084       TypeLocBuilder InnerTLB;
2085       QualType Transformed =
2086           TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2087       TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2088       if (isa<TypeAliasDecl>(OrigDecl))
2089         Decl = TypeAliasDecl::Create(
2090             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2091             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2092       else {
2093         assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2094         Decl = TypedefDecl::Create(
2095             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2096             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2097       }
2098       MaterializedTypedefs.push_back(Decl);
2099     }
2100 
2101     QualType TDTy = Context.getTypedefType(Decl);
2102     TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2103     TypedefTL.setNameLoc(TL.getNameLoc());
2104 
2105     return TDTy;
2106   }
2107 };
2108 
2109 /// Transform to convert portions of a constructor declaration into the
2110 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2111 struct ConvertConstructorToDeductionGuideTransform {
2112   ConvertConstructorToDeductionGuideTransform(Sema &S,
2113                                               ClassTemplateDecl *Template)
2114       : SemaRef(S), Template(Template) {}
2115 
2116   Sema &SemaRef;
2117   ClassTemplateDecl *Template;
2118 
2119   DeclContext *DC = Template->getDeclContext();
2120   CXXRecordDecl *Primary = Template->getTemplatedDecl();
2121   DeclarationName DeductionGuideName =
2122       SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2123 
2124   QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2125 
2126   // Index adjustment to apply to convert depth-1 template parameters into
2127   // depth-0 template parameters.
2128   unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2129 
2130   /// Transform a constructor declaration into a deduction guide.
2131   NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2132                                   CXXConstructorDecl *CD) {
2133     SmallVector<TemplateArgument, 16> SubstArgs;
2134 
2135     LocalInstantiationScope Scope(SemaRef);
2136 
2137     // C++ [over.match.class.deduct]p1:
2138     // -- For each constructor of the class template designated by the
2139     //    template-name, a function template with the following properties:
2140 
2141     //    -- The template parameters are the template parameters of the class
2142     //       template followed by the template parameters (including default
2143     //       template arguments) of the constructor, if any.
2144     TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2145     if (FTD) {
2146       TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2147       SmallVector<NamedDecl *, 16> AllParams;
2148       AllParams.reserve(TemplateParams->size() + InnerParams->size());
2149       AllParams.insert(AllParams.begin(),
2150                        TemplateParams->begin(), TemplateParams->end());
2151       SubstArgs.reserve(InnerParams->size());
2152 
2153       // Later template parameters could refer to earlier ones, so build up
2154       // a list of substituted template arguments as we go.
2155       for (NamedDecl *Param : *InnerParams) {
2156         MultiLevelTemplateArgumentList Args;
2157         Args.setKind(TemplateSubstitutionKind::Rewrite);
2158         Args.addOuterTemplateArguments(SubstArgs);
2159         Args.addOuterRetainedLevel();
2160         NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2161         if (!NewParam)
2162           return nullptr;
2163         AllParams.push_back(NewParam);
2164         SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2165             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2166       }
2167       TemplateParams = TemplateParameterList::Create(
2168           SemaRef.Context, InnerParams->getTemplateLoc(),
2169           InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2170           /*FIXME: RequiresClause*/ nullptr);
2171     }
2172 
2173     // If we built a new template-parameter-list, track that we need to
2174     // substitute references to the old parameters into references to the
2175     // new ones.
2176     MultiLevelTemplateArgumentList Args;
2177     Args.setKind(TemplateSubstitutionKind::Rewrite);
2178     if (FTD) {
2179       Args.addOuterTemplateArguments(SubstArgs);
2180       Args.addOuterRetainedLevel();
2181     }
2182 
2183     FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2184                                    .getAsAdjusted<FunctionProtoTypeLoc>();
2185     assert(FPTL && "no prototype for constructor declaration");
2186 
2187     // Transform the type of the function, adjusting the return type and
2188     // replacing references to the old parameters with references to the
2189     // new ones.
2190     TypeLocBuilder TLB;
2191     SmallVector<ParmVarDecl*, 8> Params;
2192     SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2193     QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2194                                                   MaterializedTypedefs);
2195     if (NewType.isNull())
2196       return nullptr;
2197     TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2198 
2199     return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(),
2200                                NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2201                                CD->getEndLoc(), MaterializedTypedefs);
2202   }
2203 
2204   /// Build a deduction guide with the specified parameter types.
2205   NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2206     SourceLocation Loc = Template->getLocation();
2207 
2208     // Build the requested type.
2209     FunctionProtoType::ExtProtoInfo EPI;
2210     EPI.HasTrailingReturn = true;
2211     QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2212                                                 DeductionGuideName, EPI);
2213     TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2214 
2215     FunctionProtoTypeLoc FPTL =
2216         TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2217 
2218     // Build the parameters, needed during deduction / substitution.
2219     SmallVector<ParmVarDecl*, 4> Params;
2220     for (auto T : ParamTypes) {
2221       ParmVarDecl *NewParam = ParmVarDecl::Create(
2222           SemaRef.Context, DC, Loc, Loc, nullptr, T,
2223           SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2224       NewParam->setScopeInfo(0, Params.size());
2225       FPTL.setParam(Params.size(), NewParam);
2226       Params.push_back(NewParam);
2227     }
2228 
2229     return buildDeductionGuide(Template->getTemplateParameters(),
2230                                ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2231   }
2232 
2233 private:
2234   /// Transform a constructor template parameter into a deduction guide template
2235   /// parameter, rebuilding any internal references to earlier parameters and
2236   /// renumbering as we go.
2237   NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2238                                         MultiLevelTemplateArgumentList &Args) {
2239     if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2240       // TemplateTypeParmDecl's index cannot be changed after creation, so
2241       // substitute it directly.
2242       auto *NewTTP = TemplateTypeParmDecl::Create(
2243           SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2244           /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2245           TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2246           TTP->isParameterPack(), TTP->hasTypeConstraint(),
2247           TTP->isExpandedParameterPack() ?
2248           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
2249       if (const auto *TC = TTP->getTypeConstraint()) {
2250         TemplateArgumentListInfo TransformedArgs;
2251         const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten();
2252         if (!ArgsAsWritten ||
2253             SemaRef.Subst(ArgsAsWritten->getTemplateArgs(),
2254                           ArgsAsWritten->NumTemplateArgs, TransformedArgs,
2255                           Args))
2256           SemaRef.AttachTypeConstraint(
2257               TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
2258               TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr,
2259               NewTTP,
2260               NewTTP->isParameterPack()
2261                  ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2262                      ->getEllipsisLoc()
2263                  : SourceLocation());
2264       }
2265       if (TTP->hasDefaultArgument()) {
2266         TypeSourceInfo *InstantiatedDefaultArg =
2267             SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2268                               TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2269         if (InstantiatedDefaultArg)
2270           NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2271       }
2272       SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2273                                                            NewTTP);
2274       return NewTTP;
2275     }
2276 
2277     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2278       return transformTemplateParameterImpl(TTP, Args);
2279 
2280     return transformTemplateParameterImpl(
2281         cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2282   }
2283   template<typename TemplateParmDecl>
2284   TemplateParmDecl *
2285   transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2286                                  MultiLevelTemplateArgumentList &Args) {
2287     // Ask the template instantiator to do the heavy lifting for us, then adjust
2288     // the index of the parameter once it's done.
2289     auto *NewParam =
2290         cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2291     assert(NewParam->getDepth() == 0 && "unexpected template param depth");
2292     NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2293     return NewParam;
2294   }
2295 
2296   QualType transformFunctionProtoType(
2297       TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2298       SmallVectorImpl<ParmVarDecl *> &Params,
2299       MultiLevelTemplateArgumentList &Args,
2300       SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2301     SmallVector<QualType, 4> ParamTypes;
2302     const FunctionProtoType *T = TL.getTypePtr();
2303 
2304     //    -- The types of the function parameters are those of the constructor.
2305     for (auto *OldParam : TL.getParams()) {
2306       ParmVarDecl *NewParam =
2307           transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2308       if (!NewParam)
2309         return QualType();
2310       ParamTypes.push_back(NewParam->getType());
2311       Params.push_back(NewParam);
2312     }
2313 
2314     //    -- The return type is the class template specialization designated by
2315     //       the template-name and template arguments corresponding to the
2316     //       template parameters obtained from the class template.
2317     //
2318     // We use the injected-class-name type of the primary template instead.
2319     // This has the convenient property that it is different from any type that
2320     // the user can write in a deduction-guide (because they cannot enter the
2321     // context of the template), so implicit deduction guides can never collide
2322     // with explicit ones.
2323     QualType ReturnType = DeducedType;
2324     TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2325 
2326     // Resolving a wording defect, we also inherit the variadicness of the
2327     // constructor.
2328     FunctionProtoType::ExtProtoInfo EPI;
2329     EPI.Variadic = T->isVariadic();
2330     EPI.HasTrailingReturn = true;
2331 
2332     QualType Result = SemaRef.BuildFunctionType(
2333         ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2334     if (Result.isNull())
2335       return QualType();
2336 
2337     FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2338     NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2339     NewTL.setLParenLoc(TL.getLParenLoc());
2340     NewTL.setRParenLoc(TL.getRParenLoc());
2341     NewTL.setExceptionSpecRange(SourceRange());
2342     NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2343     for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2344       NewTL.setParam(I, Params[I]);
2345 
2346     return Result;
2347   }
2348 
2349   ParmVarDecl *transformFunctionTypeParam(
2350       ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2351       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2352     TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2353     TypeSourceInfo *NewDI;
2354     if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2355       // Expand out the one and only element in each inner pack.
2356       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2357       NewDI =
2358           SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2359                             OldParam->getLocation(), OldParam->getDeclName());
2360       if (!NewDI) return nullptr;
2361       NewDI =
2362           SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2363                                      PackTL.getTypePtr()->getNumExpansions());
2364     } else
2365       NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2366                                 OldParam->getDeclName());
2367     if (!NewDI)
2368       return nullptr;
2369 
2370     // Extract the type. This (for instance) replaces references to typedef
2371     // members of the current instantiations with the definitions of those
2372     // typedefs, avoiding triggering instantiation of the deduced type during
2373     // deduction.
2374     NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2375                 .transform(NewDI);
2376 
2377     // Resolving a wording defect, we also inherit default arguments from the
2378     // constructor.
2379     ExprResult NewDefArg;
2380     if (OldParam->hasDefaultArg()) {
2381       // We don't care what the value is (we won't use it); just create a
2382       // placeholder to indicate there is a default argument.
2383       QualType ParamTy = NewDI->getType();
2384       NewDefArg = new (SemaRef.Context)
2385           OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2386                           ParamTy.getNonLValueExprType(SemaRef.Context),
2387                           ParamTy->isLValueReferenceType() ? VK_LValue :
2388                           ParamTy->isRValueReferenceType() ? VK_XValue :
2389                           VK_RValue);
2390     }
2391 
2392     ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2393                                                 OldParam->getInnerLocStart(),
2394                                                 OldParam->getLocation(),
2395                                                 OldParam->getIdentifier(),
2396                                                 NewDI->getType(),
2397                                                 NewDI,
2398                                                 OldParam->getStorageClass(),
2399                                                 NewDefArg.get());
2400     NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2401                            OldParam->getFunctionScopeIndex());
2402     SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2403     return NewParam;
2404   }
2405 
2406   FunctionTemplateDecl *buildDeductionGuide(
2407       TemplateParameterList *TemplateParams, ExplicitSpecifier ES,
2408       TypeSourceInfo *TInfo, SourceLocation LocStart, SourceLocation Loc,
2409       SourceLocation LocEnd,
2410       llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2411     DeclarationNameInfo Name(DeductionGuideName, Loc);
2412     ArrayRef<ParmVarDecl *> Params =
2413         TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2414 
2415     // Build the implicit deduction guide template.
2416     auto *Guide =
2417         CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2418                                       TInfo->getType(), TInfo, LocEnd);
2419     Guide->setImplicit();
2420     Guide->setParams(Params);
2421 
2422     for (auto *Param : Params)
2423       Param->setDeclContext(Guide);
2424     for (auto *TD : MaterializedTypedefs)
2425       TD->setDeclContext(Guide);
2426 
2427     auto *GuideTemplate = FunctionTemplateDecl::Create(
2428         SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2429     GuideTemplate->setImplicit();
2430     Guide->setDescribedFunctionTemplate(GuideTemplate);
2431 
2432     if (isa<CXXRecordDecl>(DC)) {
2433       Guide->setAccess(AS_public);
2434       GuideTemplate->setAccess(AS_public);
2435     }
2436 
2437     DC->addDecl(GuideTemplate);
2438     return GuideTemplate;
2439   }
2440 };
2441 }
2442 
2443 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2444                                           SourceLocation Loc) {
2445   if (CXXRecordDecl *DefRecord =
2446           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2447     TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2448     Template = DescribedTemplate ? DescribedTemplate : Template;
2449   }
2450 
2451   DeclContext *DC = Template->getDeclContext();
2452   if (DC->isDependentContext())
2453     return;
2454 
2455   ConvertConstructorToDeductionGuideTransform Transform(
2456       *this, cast<ClassTemplateDecl>(Template));
2457   if (!isCompleteType(Loc, Transform.DeducedType))
2458     return;
2459 
2460   // Check whether we've already declared deduction guides for this template.
2461   // FIXME: Consider storing a flag on the template to indicate this.
2462   auto Existing = DC->lookup(Transform.DeductionGuideName);
2463   for (auto *D : Existing)
2464     if (D->isImplicit())
2465       return;
2466 
2467   // In case we were expanding a pack when we attempted to declare deduction
2468   // guides, turn off pack expansion for everything we're about to do.
2469   ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2470   // Create a template instantiation record to track the "instantiation" of
2471   // constructors into deduction guides.
2472   // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2473   // this substitution process actually fail?
2474   InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2475   if (BuildingDeductionGuides.isInvalid())
2476     return;
2477 
2478   // Convert declared constructors into deduction guide templates.
2479   // FIXME: Skip constructors for which deduction must necessarily fail (those
2480   // for which some class template parameter without a default argument never
2481   // appears in a deduced context).
2482   bool AddedAny = false;
2483   for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2484     D = D->getUnderlyingDecl();
2485     if (D->isInvalidDecl() || D->isImplicit())
2486       continue;
2487     D = cast<NamedDecl>(D->getCanonicalDecl());
2488 
2489     auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2490     auto *CD =
2491         dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2492     // Class-scope explicit specializations (MS extension) do not result in
2493     // deduction guides.
2494     if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2495       continue;
2496 
2497     Transform.transformConstructor(FTD, CD);
2498     AddedAny = true;
2499   }
2500 
2501   // C++17 [over.match.class.deduct]
2502   //    --  If C is not defined or does not declare any constructors, an
2503   //    additional function template derived as above from a hypothetical
2504   //    constructor C().
2505   if (!AddedAny)
2506     Transform.buildSimpleDeductionGuide(None);
2507 
2508   //    -- An additional function template derived as above from a hypothetical
2509   //    constructor C(C), called the copy deduction candidate.
2510   cast<CXXDeductionGuideDecl>(
2511       cast<FunctionTemplateDecl>(
2512           Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2513           ->getTemplatedDecl())
2514       ->setIsCopyDeductionCandidate();
2515 }
2516 
2517 /// Diagnose the presence of a default template argument on a
2518 /// template parameter, which is ill-formed in certain contexts.
2519 ///
2520 /// \returns true if the default template argument should be dropped.
2521 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2522                                             Sema::TemplateParamListContext TPC,
2523                                             SourceLocation ParamLoc,
2524                                             SourceRange DefArgRange) {
2525   switch (TPC) {
2526   case Sema::TPC_ClassTemplate:
2527   case Sema::TPC_VarTemplate:
2528   case Sema::TPC_TypeAliasTemplate:
2529     return false;
2530 
2531   case Sema::TPC_FunctionTemplate:
2532   case Sema::TPC_FriendFunctionTemplateDefinition:
2533     // C++ [temp.param]p9:
2534     //   A default template-argument shall not be specified in a
2535     //   function template declaration or a function template
2536     //   definition [...]
2537     //   If a friend function template declaration specifies a default
2538     //   template-argument, that declaration shall be a definition and shall be
2539     //   the only declaration of the function template in the translation unit.
2540     // (C++98/03 doesn't have this wording; see DR226).
2541     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2542          diag::warn_cxx98_compat_template_parameter_default_in_function_template
2543            : diag::ext_template_parameter_default_in_function_template)
2544       << DefArgRange;
2545     return false;
2546 
2547   case Sema::TPC_ClassTemplateMember:
2548     // C++0x [temp.param]p9:
2549     //   A default template-argument shall not be specified in the
2550     //   template-parameter-lists of the definition of a member of a
2551     //   class template that appears outside of the member's class.
2552     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2553       << DefArgRange;
2554     return true;
2555 
2556   case Sema::TPC_FriendClassTemplate:
2557   case Sema::TPC_FriendFunctionTemplate:
2558     // C++ [temp.param]p9:
2559     //   A default template-argument shall not be specified in a
2560     //   friend template declaration.
2561     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2562       << DefArgRange;
2563     return true;
2564 
2565     // FIXME: C++0x [temp.param]p9 allows default template-arguments
2566     // for friend function templates if there is only a single
2567     // declaration (and it is a definition). Strange!
2568   }
2569 
2570   llvm_unreachable("Invalid TemplateParamListContext!");
2571 }
2572 
2573 /// Check for unexpanded parameter packs within the template parameters
2574 /// of a template template parameter, recursively.
2575 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2576                                              TemplateTemplateParmDecl *TTP) {
2577   // A template template parameter which is a parameter pack is also a pack
2578   // expansion.
2579   if (TTP->isParameterPack())
2580     return false;
2581 
2582   TemplateParameterList *Params = TTP->getTemplateParameters();
2583   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2584     NamedDecl *P = Params->getParam(I);
2585     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2586       if (!TTP->isParameterPack())
2587         if (const TypeConstraint *TC = TTP->getTypeConstraint())
2588           if (TC->hasExplicitTemplateArgs())
2589             for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2590               if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2591                                                     Sema::UPPC_TypeConstraint))
2592                 return true;
2593       continue;
2594     }
2595 
2596     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2597       if (!NTTP->isParameterPack() &&
2598           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2599                                             NTTP->getTypeSourceInfo(),
2600                                       Sema::UPPC_NonTypeTemplateParameterType))
2601         return true;
2602 
2603       continue;
2604     }
2605 
2606     if (TemplateTemplateParmDecl *InnerTTP
2607                                         = dyn_cast<TemplateTemplateParmDecl>(P))
2608       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2609         return true;
2610   }
2611 
2612   return false;
2613 }
2614 
2615 /// Checks the validity of a template parameter list, possibly
2616 /// considering the template parameter list from a previous
2617 /// declaration.
2618 ///
2619 /// If an "old" template parameter list is provided, it must be
2620 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2621 /// template parameter list.
2622 ///
2623 /// \param NewParams Template parameter list for a new template
2624 /// declaration. This template parameter list will be updated with any
2625 /// default arguments that are carried through from the previous
2626 /// template parameter list.
2627 ///
2628 /// \param OldParams If provided, template parameter list from a
2629 /// previous declaration of the same template. Default template
2630 /// arguments will be merged from the old template parameter list to
2631 /// the new template parameter list.
2632 ///
2633 /// \param TPC Describes the context in which we are checking the given
2634 /// template parameter list.
2635 ///
2636 /// \param SkipBody If we might have already made a prior merged definition
2637 /// of this template visible, the corresponding body-skipping information.
2638 /// Default argument redefinition is not an error when skipping such a body,
2639 /// because (under the ODR) we can assume the default arguments are the same
2640 /// as the prior merged definition.
2641 ///
2642 /// \returns true if an error occurred, false otherwise.
2643 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2644                                       TemplateParameterList *OldParams,
2645                                       TemplateParamListContext TPC,
2646                                       SkipBodyInfo *SkipBody) {
2647   bool Invalid = false;
2648 
2649   // C++ [temp.param]p10:
2650   //   The set of default template-arguments available for use with a
2651   //   template declaration or definition is obtained by merging the
2652   //   default arguments from the definition (if in scope) and all
2653   //   declarations in scope in the same way default function
2654   //   arguments are (8.3.6).
2655   bool SawDefaultArgument = false;
2656   SourceLocation PreviousDefaultArgLoc;
2657 
2658   // Dummy initialization to avoid warnings.
2659   TemplateParameterList::iterator OldParam = NewParams->end();
2660   if (OldParams)
2661     OldParam = OldParams->begin();
2662 
2663   bool RemoveDefaultArguments = false;
2664   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2665                                     NewParamEnd = NewParams->end();
2666        NewParam != NewParamEnd; ++NewParam) {
2667     // Variables used to diagnose redundant default arguments
2668     bool RedundantDefaultArg = false;
2669     SourceLocation OldDefaultLoc;
2670     SourceLocation NewDefaultLoc;
2671 
2672     // Variable used to diagnose missing default arguments
2673     bool MissingDefaultArg = false;
2674 
2675     // Variable used to diagnose non-final parameter packs
2676     bool SawParameterPack = false;
2677 
2678     if (TemplateTypeParmDecl *NewTypeParm
2679           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2680       // Check the presence of a default argument here.
2681       if (NewTypeParm->hasDefaultArgument() &&
2682           DiagnoseDefaultTemplateArgument(*this, TPC,
2683                                           NewTypeParm->getLocation(),
2684                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2685                                                        .getSourceRange()))
2686         NewTypeParm->removeDefaultArgument();
2687 
2688       // Merge default arguments for template type parameters.
2689       TemplateTypeParmDecl *OldTypeParm
2690           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2691       if (NewTypeParm->isParameterPack()) {
2692         assert(!NewTypeParm->hasDefaultArgument() &&
2693                "Parameter packs can't have a default argument!");
2694         SawParameterPack = true;
2695       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2696                  NewTypeParm->hasDefaultArgument() &&
2697                  (!SkipBody || !SkipBody->ShouldSkip)) {
2698         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2699         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2700         SawDefaultArgument = true;
2701         RedundantDefaultArg = true;
2702         PreviousDefaultArgLoc = NewDefaultLoc;
2703       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2704         // Merge the default argument from the old declaration to the
2705         // new declaration.
2706         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2707         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2708       } else if (NewTypeParm->hasDefaultArgument()) {
2709         SawDefaultArgument = true;
2710         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2711       } else if (SawDefaultArgument)
2712         MissingDefaultArg = true;
2713     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2714                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2715       // Check for unexpanded parameter packs.
2716       if (!NewNonTypeParm->isParameterPack() &&
2717           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2718                                           NewNonTypeParm->getTypeSourceInfo(),
2719                                           UPPC_NonTypeTemplateParameterType)) {
2720         Invalid = true;
2721         continue;
2722       }
2723 
2724       // Check the presence of a default argument here.
2725       if (NewNonTypeParm->hasDefaultArgument() &&
2726           DiagnoseDefaultTemplateArgument(*this, TPC,
2727                                           NewNonTypeParm->getLocation(),
2728                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2729         NewNonTypeParm->removeDefaultArgument();
2730       }
2731 
2732       // Merge default arguments for non-type template parameters
2733       NonTypeTemplateParmDecl *OldNonTypeParm
2734         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2735       if (NewNonTypeParm->isParameterPack()) {
2736         assert(!NewNonTypeParm->hasDefaultArgument() &&
2737                "Parameter packs can't have a default argument!");
2738         if (!NewNonTypeParm->isPackExpansion())
2739           SawParameterPack = true;
2740       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2741                  NewNonTypeParm->hasDefaultArgument() &&
2742                  (!SkipBody || !SkipBody->ShouldSkip)) {
2743         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2744         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2745         SawDefaultArgument = true;
2746         RedundantDefaultArg = true;
2747         PreviousDefaultArgLoc = NewDefaultLoc;
2748       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2749         // Merge the default argument from the old declaration to the
2750         // new declaration.
2751         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2752         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2753       } else if (NewNonTypeParm->hasDefaultArgument()) {
2754         SawDefaultArgument = true;
2755         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2756       } else if (SawDefaultArgument)
2757         MissingDefaultArg = true;
2758     } else {
2759       TemplateTemplateParmDecl *NewTemplateParm
2760         = cast<TemplateTemplateParmDecl>(*NewParam);
2761 
2762       // Check for unexpanded parameter packs, recursively.
2763       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2764         Invalid = true;
2765         continue;
2766       }
2767 
2768       // Check the presence of a default argument here.
2769       if (NewTemplateParm->hasDefaultArgument() &&
2770           DiagnoseDefaultTemplateArgument(*this, TPC,
2771                                           NewTemplateParm->getLocation(),
2772                      NewTemplateParm->getDefaultArgument().getSourceRange()))
2773         NewTemplateParm->removeDefaultArgument();
2774 
2775       // Merge default arguments for template template parameters
2776       TemplateTemplateParmDecl *OldTemplateParm
2777         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2778       if (NewTemplateParm->isParameterPack()) {
2779         assert(!NewTemplateParm->hasDefaultArgument() &&
2780                "Parameter packs can't have a default argument!");
2781         if (!NewTemplateParm->isPackExpansion())
2782           SawParameterPack = true;
2783       } else if (OldTemplateParm &&
2784                  hasVisibleDefaultArgument(OldTemplateParm) &&
2785                  NewTemplateParm->hasDefaultArgument() &&
2786                  (!SkipBody || !SkipBody->ShouldSkip)) {
2787         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2788         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2789         SawDefaultArgument = true;
2790         RedundantDefaultArg = true;
2791         PreviousDefaultArgLoc = NewDefaultLoc;
2792       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2793         // Merge the default argument from the old declaration to the
2794         // new declaration.
2795         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2796         PreviousDefaultArgLoc
2797           = OldTemplateParm->getDefaultArgument().getLocation();
2798       } else if (NewTemplateParm->hasDefaultArgument()) {
2799         SawDefaultArgument = true;
2800         PreviousDefaultArgLoc
2801           = NewTemplateParm->getDefaultArgument().getLocation();
2802       } else if (SawDefaultArgument)
2803         MissingDefaultArg = true;
2804     }
2805 
2806     // C++11 [temp.param]p11:
2807     //   If a template parameter of a primary class template or alias template
2808     //   is a template parameter pack, it shall be the last template parameter.
2809     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2810         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2811          TPC == TPC_TypeAliasTemplate)) {
2812       Diag((*NewParam)->getLocation(),
2813            diag::err_template_param_pack_must_be_last_template_parameter);
2814       Invalid = true;
2815     }
2816 
2817     if (RedundantDefaultArg) {
2818       // C++ [temp.param]p12:
2819       //   A template-parameter shall not be given default arguments
2820       //   by two different declarations in the same scope.
2821       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2822       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2823       Invalid = true;
2824     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2825       // C++ [temp.param]p11:
2826       //   If a template-parameter of a class template has a default
2827       //   template-argument, each subsequent template-parameter shall either
2828       //   have a default template-argument supplied or be a template parameter
2829       //   pack.
2830       Diag((*NewParam)->getLocation(),
2831            diag::err_template_param_default_arg_missing);
2832       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2833       Invalid = true;
2834       RemoveDefaultArguments = true;
2835     }
2836 
2837     // If we have an old template parameter list that we're merging
2838     // in, move on to the next parameter.
2839     if (OldParams)
2840       ++OldParam;
2841   }
2842 
2843   // We were missing some default arguments at the end of the list, so remove
2844   // all of the default arguments.
2845   if (RemoveDefaultArguments) {
2846     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2847                                       NewParamEnd = NewParams->end();
2848          NewParam != NewParamEnd; ++NewParam) {
2849       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2850         TTP->removeDefaultArgument();
2851       else if (NonTypeTemplateParmDecl *NTTP
2852                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2853         NTTP->removeDefaultArgument();
2854       else
2855         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2856     }
2857   }
2858 
2859   return Invalid;
2860 }
2861 
2862 namespace {
2863 
2864 /// A class which looks for a use of a certain level of template
2865 /// parameter.
2866 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2867   typedef RecursiveASTVisitor<DependencyChecker> super;
2868 
2869   unsigned Depth;
2870 
2871   // Whether we're looking for a use of a template parameter that makes the
2872   // overall construct type-dependent / a dependent type. This is strictly
2873   // best-effort for now; we may fail to match at all for a dependent type
2874   // in some cases if this is set.
2875   bool IgnoreNonTypeDependent;
2876 
2877   bool Match;
2878   SourceLocation MatchLoc;
2879 
2880   DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2881       : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2882         Match(false) {}
2883 
2884   DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2885       : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2886     NamedDecl *ND = Params->getParam(0);
2887     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2888       Depth = PD->getDepth();
2889     } else if (NonTypeTemplateParmDecl *PD =
2890                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2891       Depth = PD->getDepth();
2892     } else {
2893       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2894     }
2895   }
2896 
2897   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2898     if (ParmDepth >= Depth) {
2899       Match = true;
2900       MatchLoc = Loc;
2901       return true;
2902     }
2903     return false;
2904   }
2905 
2906   bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2907     // Prune out non-type-dependent expressions if requested. This can
2908     // sometimes result in us failing to find a template parameter reference
2909     // (if a value-dependent expression creates a dependent type), but this
2910     // mode is best-effort only.
2911     if (auto *E = dyn_cast_or_null<Expr>(S))
2912       if (IgnoreNonTypeDependent && !E->isTypeDependent())
2913         return true;
2914     return super::TraverseStmt(S, Q);
2915   }
2916 
2917   bool TraverseTypeLoc(TypeLoc TL) {
2918     if (IgnoreNonTypeDependent && !TL.isNull() &&
2919         !TL.getType()->isDependentType())
2920       return true;
2921     return super::TraverseTypeLoc(TL);
2922   }
2923 
2924   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2925     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2926   }
2927 
2928   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2929     // For a best-effort search, keep looking until we find a location.
2930     return IgnoreNonTypeDependent || !Matches(T->getDepth());
2931   }
2932 
2933   bool TraverseTemplateName(TemplateName N) {
2934     if (TemplateTemplateParmDecl *PD =
2935           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2936       if (Matches(PD->getDepth()))
2937         return false;
2938     return super::TraverseTemplateName(N);
2939   }
2940 
2941   bool VisitDeclRefExpr(DeclRefExpr *E) {
2942     if (NonTypeTemplateParmDecl *PD =
2943           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2944       if (Matches(PD->getDepth(), E->getExprLoc()))
2945         return false;
2946     return super::VisitDeclRefExpr(E);
2947   }
2948 
2949   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2950     return TraverseType(T->getReplacementType());
2951   }
2952 
2953   bool
2954   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2955     return TraverseTemplateArgument(T->getArgumentPack());
2956   }
2957 
2958   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2959     return TraverseType(T->getInjectedSpecializationType());
2960   }
2961 };
2962 } // end anonymous namespace
2963 
2964 /// Determines whether a given type depends on the given parameter
2965 /// list.
2966 static bool
2967 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2968   if (!Params->size())
2969     return false;
2970 
2971   DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2972   Checker.TraverseType(T);
2973   return Checker.Match;
2974 }
2975 
2976 // Find the source range corresponding to the named type in the given
2977 // nested-name-specifier, if any.
2978 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2979                                                        QualType T,
2980                                                        const CXXScopeSpec &SS) {
2981   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2982   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2983     if (const Type *CurType = NNS->getAsType()) {
2984       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2985         return NNSLoc.getTypeLoc().getSourceRange();
2986     } else
2987       break;
2988 
2989     NNSLoc = NNSLoc.getPrefix();
2990   }
2991 
2992   return SourceRange();
2993 }
2994 
2995 /// Match the given template parameter lists to the given scope
2996 /// specifier, returning the template parameter list that applies to the
2997 /// name.
2998 ///
2999 /// \param DeclStartLoc the start of the declaration that has a scope
3000 /// specifier or a template parameter list.
3001 ///
3002 /// \param DeclLoc The location of the declaration itself.
3003 ///
3004 /// \param SS the scope specifier that will be matched to the given template
3005 /// parameter lists. This scope specifier precedes a qualified name that is
3006 /// being declared.
3007 ///
3008 /// \param TemplateId The template-id following the scope specifier, if there
3009 /// is one. Used to check for a missing 'template<>'.
3010 ///
3011 /// \param ParamLists the template parameter lists, from the outermost to the
3012 /// innermost template parameter lists.
3013 ///
3014 /// \param IsFriend Whether to apply the slightly different rules for
3015 /// matching template parameters to scope specifiers in friend
3016 /// declarations.
3017 ///
3018 /// \param IsMemberSpecialization will be set true if the scope specifier
3019 /// denotes a fully-specialized type, and therefore this is a declaration of
3020 /// a member specialization.
3021 ///
3022 /// \returns the template parameter list, if any, that corresponds to the
3023 /// name that is preceded by the scope specifier @p SS. This template
3024 /// parameter list may have template parameters (if we're declaring a
3025 /// template) or may have no template parameters (if we're declaring a
3026 /// template specialization), or may be NULL (if what we're declaring isn't
3027 /// itself a template).
3028 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3029     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3030     TemplateIdAnnotation *TemplateId,
3031     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3032     bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3033   IsMemberSpecialization = false;
3034   Invalid = false;
3035 
3036   // The sequence of nested types to which we will match up the template
3037   // parameter lists. We first build this list by starting with the type named
3038   // by the nested-name-specifier and walking out until we run out of types.
3039   SmallVector<QualType, 4> NestedTypes;
3040   QualType T;
3041   if (SS.getScopeRep()) {
3042     if (CXXRecordDecl *Record
3043               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3044       T = Context.getTypeDeclType(Record);
3045     else
3046       T = QualType(SS.getScopeRep()->getAsType(), 0);
3047   }
3048 
3049   // If we found an explicit specialization that prevents us from needing
3050   // 'template<>' headers, this will be set to the location of that
3051   // explicit specialization.
3052   SourceLocation ExplicitSpecLoc;
3053 
3054   while (!T.isNull()) {
3055     NestedTypes.push_back(T);
3056 
3057     // Retrieve the parent of a record type.
3058     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3059       // If this type is an explicit specialization, we're done.
3060       if (ClassTemplateSpecializationDecl *Spec
3061           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3062         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3063             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3064           ExplicitSpecLoc = Spec->getLocation();
3065           break;
3066         }
3067       } else if (Record->getTemplateSpecializationKind()
3068                                                 == TSK_ExplicitSpecialization) {
3069         ExplicitSpecLoc = Record->getLocation();
3070         break;
3071       }
3072 
3073       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3074         T = Context.getTypeDeclType(Parent);
3075       else
3076         T = QualType();
3077       continue;
3078     }
3079 
3080     if (const TemplateSpecializationType *TST
3081                                      = T->getAs<TemplateSpecializationType>()) {
3082       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3083         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3084           T = Context.getTypeDeclType(Parent);
3085         else
3086           T = QualType();
3087         continue;
3088       }
3089     }
3090 
3091     // Look one step prior in a dependent template specialization type.
3092     if (const DependentTemplateSpecializationType *DependentTST
3093                           = T->getAs<DependentTemplateSpecializationType>()) {
3094       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3095         T = QualType(NNS->getAsType(), 0);
3096       else
3097         T = QualType();
3098       continue;
3099     }
3100 
3101     // Look one step prior in a dependent name type.
3102     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3103       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3104         T = QualType(NNS->getAsType(), 0);
3105       else
3106         T = QualType();
3107       continue;
3108     }
3109 
3110     // Retrieve the parent of an enumeration type.
3111     if (const EnumType *EnumT = T->getAs<EnumType>()) {
3112       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3113       // check here.
3114       EnumDecl *Enum = EnumT->getDecl();
3115 
3116       // Get to the parent type.
3117       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3118         T = Context.getTypeDeclType(Parent);
3119       else
3120         T = QualType();
3121       continue;
3122     }
3123 
3124     T = QualType();
3125   }
3126   // Reverse the nested types list, since we want to traverse from the outermost
3127   // to the innermost while checking template-parameter-lists.
3128   std::reverse(NestedTypes.begin(), NestedTypes.end());
3129 
3130   // C++0x [temp.expl.spec]p17:
3131   //   A member or a member template may be nested within many
3132   //   enclosing class templates. In an explicit specialization for
3133   //   such a member, the member declaration shall be preceded by a
3134   //   template<> for each enclosing class template that is
3135   //   explicitly specialized.
3136   bool SawNonEmptyTemplateParameterList = false;
3137 
3138   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3139     if (SawNonEmptyTemplateParameterList) {
3140       if (!SuppressDiagnostic)
3141         Diag(DeclLoc, diag::err_specialize_member_of_template)
3142           << !Recovery << Range;
3143       Invalid = true;
3144       IsMemberSpecialization = false;
3145       return true;
3146     }
3147 
3148     return false;
3149   };
3150 
3151   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3152     // Check that we can have an explicit specialization here.
3153     if (CheckExplicitSpecialization(Range, true))
3154       return true;
3155 
3156     // We don't have a template header, but we should.
3157     SourceLocation ExpectedTemplateLoc;
3158     if (!ParamLists.empty())
3159       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3160     else
3161       ExpectedTemplateLoc = DeclStartLoc;
3162 
3163     if (!SuppressDiagnostic)
3164       Diag(DeclLoc, diag::err_template_spec_needs_header)
3165         << Range
3166         << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3167     return false;
3168   };
3169 
3170   unsigned ParamIdx = 0;
3171   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3172        ++TypeIdx) {
3173     T = NestedTypes[TypeIdx];
3174 
3175     // Whether we expect a 'template<>' header.
3176     bool NeedEmptyTemplateHeader = false;
3177 
3178     // Whether we expect a template header with parameters.
3179     bool NeedNonemptyTemplateHeader = false;
3180 
3181     // For a dependent type, the set of template parameters that we
3182     // expect to see.
3183     TemplateParameterList *ExpectedTemplateParams = nullptr;
3184 
3185     // C++0x [temp.expl.spec]p15:
3186     //   A member or a member template may be nested within many enclosing
3187     //   class templates. In an explicit specialization for such a member, the
3188     //   member declaration shall be preceded by a template<> for each
3189     //   enclosing class template that is explicitly specialized.
3190     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3191       if (ClassTemplatePartialSpecializationDecl *Partial
3192             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3193         ExpectedTemplateParams = Partial->getTemplateParameters();
3194         NeedNonemptyTemplateHeader = true;
3195       } else if (Record->isDependentType()) {
3196         if (Record->getDescribedClassTemplate()) {
3197           ExpectedTemplateParams = Record->getDescribedClassTemplate()
3198                                                       ->getTemplateParameters();
3199           NeedNonemptyTemplateHeader = true;
3200         }
3201       } else if (ClassTemplateSpecializationDecl *Spec
3202                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3203         // C++0x [temp.expl.spec]p4:
3204         //   Members of an explicitly specialized class template are defined
3205         //   in the same manner as members of normal classes, and not using
3206         //   the template<> syntax.
3207         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3208           NeedEmptyTemplateHeader = true;
3209         else
3210           continue;
3211       } else if (Record->getTemplateSpecializationKind()) {
3212         if (Record->getTemplateSpecializationKind()
3213                                                 != TSK_ExplicitSpecialization &&
3214             TypeIdx == NumTypes - 1)
3215           IsMemberSpecialization = true;
3216 
3217         continue;
3218       }
3219     } else if (const TemplateSpecializationType *TST
3220                                      = T->getAs<TemplateSpecializationType>()) {
3221       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3222         ExpectedTemplateParams = Template->getTemplateParameters();
3223         NeedNonemptyTemplateHeader = true;
3224       }
3225     } else if (T->getAs<DependentTemplateSpecializationType>()) {
3226       // FIXME:  We actually could/should check the template arguments here
3227       // against the corresponding template parameter list.
3228       NeedNonemptyTemplateHeader = false;
3229     }
3230 
3231     // C++ [temp.expl.spec]p16:
3232     //   In an explicit specialization declaration for a member of a class
3233     //   template or a member template that ap- pears in namespace scope, the
3234     //   member template and some of its enclosing class templates may remain
3235     //   unspecialized, except that the declaration shall not explicitly
3236     //   specialize a class member template if its en- closing class templates
3237     //   are not explicitly specialized as well.
3238     if (ParamIdx < ParamLists.size()) {
3239       if (ParamLists[ParamIdx]->size() == 0) {
3240         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3241                                         false))
3242           return nullptr;
3243       } else
3244         SawNonEmptyTemplateParameterList = true;
3245     }
3246 
3247     if (NeedEmptyTemplateHeader) {
3248       // If we're on the last of the types, and we need a 'template<>' header
3249       // here, then it's a member specialization.
3250       if (TypeIdx == NumTypes - 1)
3251         IsMemberSpecialization = true;
3252 
3253       if (ParamIdx < ParamLists.size()) {
3254         if (ParamLists[ParamIdx]->size() > 0) {
3255           // The header has template parameters when it shouldn't. Complain.
3256           if (!SuppressDiagnostic)
3257             Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3258                  diag::err_template_param_list_matches_nontemplate)
3259               << T
3260               << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3261                              ParamLists[ParamIdx]->getRAngleLoc())
3262               << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3263           Invalid = true;
3264           return nullptr;
3265         }
3266 
3267         // Consume this template header.
3268         ++ParamIdx;
3269         continue;
3270       }
3271 
3272       if (!IsFriend)
3273         if (DiagnoseMissingExplicitSpecialization(
3274                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3275           return nullptr;
3276 
3277       continue;
3278     }
3279 
3280     if (NeedNonemptyTemplateHeader) {
3281       // In friend declarations we can have template-ids which don't
3282       // depend on the corresponding template parameter lists.  But
3283       // assume that empty parameter lists are supposed to match this
3284       // template-id.
3285       if (IsFriend && T->isDependentType()) {
3286         if (ParamIdx < ParamLists.size() &&
3287             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3288           ExpectedTemplateParams = nullptr;
3289         else
3290           continue;
3291       }
3292 
3293       if (ParamIdx < ParamLists.size()) {
3294         // Check the template parameter list, if we can.
3295         if (ExpectedTemplateParams &&
3296             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3297                                             ExpectedTemplateParams,
3298                                             !SuppressDiagnostic, TPL_TemplateMatch))
3299           Invalid = true;
3300 
3301         if (!Invalid &&
3302             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3303                                        TPC_ClassTemplateMember))
3304           Invalid = true;
3305 
3306         ++ParamIdx;
3307         continue;
3308       }
3309 
3310       if (!SuppressDiagnostic)
3311         Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3312           << T
3313           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3314       Invalid = true;
3315       continue;
3316     }
3317   }
3318 
3319   // If there were at least as many template-ids as there were template
3320   // parameter lists, then there are no template parameter lists remaining for
3321   // the declaration itself.
3322   if (ParamIdx >= ParamLists.size()) {
3323     if (TemplateId && !IsFriend) {
3324       // We don't have a template header for the declaration itself, but we
3325       // should.
3326       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3327                                                         TemplateId->RAngleLoc));
3328 
3329       // Fabricate an empty template parameter list for the invented header.
3330       return TemplateParameterList::Create(Context, SourceLocation(),
3331                                            SourceLocation(), None,
3332                                            SourceLocation(), nullptr);
3333     }
3334 
3335     return nullptr;
3336   }
3337 
3338   // If there were too many template parameter lists, complain about that now.
3339   if (ParamIdx < ParamLists.size() - 1) {
3340     bool HasAnyExplicitSpecHeader = false;
3341     bool AllExplicitSpecHeaders = true;
3342     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3343       if (ParamLists[I]->size() == 0)
3344         HasAnyExplicitSpecHeader = true;
3345       else
3346         AllExplicitSpecHeaders = false;
3347     }
3348 
3349     if (!SuppressDiagnostic)
3350       Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3351            AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3352                                   : diag::err_template_spec_extra_headers)
3353           << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3354                          ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3355 
3356     // If there was a specialization somewhere, such that 'template<>' is
3357     // not required, and there were any 'template<>' headers, note where the
3358     // specialization occurred.
3359     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3360         !SuppressDiagnostic)
3361       Diag(ExplicitSpecLoc,
3362            diag::note_explicit_template_spec_does_not_need_header)
3363         << NestedTypes.back();
3364 
3365     // We have a template parameter list with no corresponding scope, which
3366     // means that the resulting template declaration can't be instantiated
3367     // properly (we'll end up with dependent nodes when we shouldn't).
3368     if (!AllExplicitSpecHeaders)
3369       Invalid = true;
3370   }
3371 
3372   // C++ [temp.expl.spec]p16:
3373   //   In an explicit specialization declaration for a member of a class
3374   //   template or a member template that ap- pears in namespace scope, the
3375   //   member template and some of its enclosing class templates may remain
3376   //   unspecialized, except that the declaration shall not explicitly
3377   //   specialize a class member template if its en- closing class templates
3378   //   are not explicitly specialized as well.
3379   if (ParamLists.back()->size() == 0 &&
3380       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3381                                   false))
3382     return nullptr;
3383 
3384   // Return the last template parameter list, which corresponds to the
3385   // entity being declared.
3386   return ParamLists.back();
3387 }
3388 
3389 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3390   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3391     Diag(Template->getLocation(), diag::note_template_declared_here)
3392         << (isa<FunctionTemplateDecl>(Template)
3393                 ? 0
3394                 : isa<ClassTemplateDecl>(Template)
3395                       ? 1
3396                       : isa<VarTemplateDecl>(Template)
3397                             ? 2
3398                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3399         << Template->getDeclName();
3400     return;
3401   }
3402 
3403   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3404     for (OverloadedTemplateStorage::iterator I = OST->begin(),
3405                                           IEnd = OST->end();
3406          I != IEnd; ++I)
3407       Diag((*I)->getLocation(), diag::note_template_declared_here)
3408         << 0 << (*I)->getDeclName();
3409 
3410     return;
3411   }
3412 }
3413 
3414 static QualType
3415 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3416                            const SmallVectorImpl<TemplateArgument> &Converted,
3417                            SourceLocation TemplateLoc,
3418                            TemplateArgumentListInfo &TemplateArgs) {
3419   ASTContext &Context = SemaRef.getASTContext();
3420   switch (BTD->getBuiltinTemplateKind()) {
3421   case BTK__make_integer_seq: {
3422     // Specializations of __make_integer_seq<S, T, N> are treated like
3423     // S<T, 0, ..., N-1>.
3424 
3425     // C++14 [inteseq.intseq]p1:
3426     //   T shall be an integer type.
3427     if (!Converted[1].getAsType()->isIntegralType(Context)) {
3428       SemaRef.Diag(TemplateArgs[1].getLocation(),
3429                    diag::err_integer_sequence_integral_element_type);
3430       return QualType();
3431     }
3432 
3433     // C++14 [inteseq.make]p1:
3434     //   If N is negative the program is ill-formed.
3435     TemplateArgument NumArgsArg = Converted[2];
3436     llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3437     if (NumArgs < 0) {
3438       SemaRef.Diag(TemplateArgs[2].getLocation(),
3439                    diag::err_integer_sequence_negative_length);
3440       return QualType();
3441     }
3442 
3443     QualType ArgTy = NumArgsArg.getIntegralType();
3444     TemplateArgumentListInfo SyntheticTemplateArgs;
3445     // The type argument gets reused as the first template argument in the
3446     // synthetic template argument list.
3447     SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3448     // Expand N into 0 ... N-1.
3449     for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3450          I < NumArgs; ++I) {
3451       TemplateArgument TA(Context, I, ArgTy);
3452       SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3453           TA, ArgTy, TemplateArgs[2].getLocation()));
3454     }
3455     // The first template argument will be reused as the template decl that
3456     // our synthetic template arguments will be applied to.
3457     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3458                                        TemplateLoc, SyntheticTemplateArgs);
3459   }
3460 
3461   case BTK__type_pack_element:
3462     // Specializations of
3463     //    __type_pack_element<Index, T_1, ..., T_N>
3464     // are treated like T_Index.
3465     assert(Converted.size() == 2 &&
3466       "__type_pack_element should be given an index and a parameter pack");
3467 
3468     // If the Index is out of bounds, the program is ill-formed.
3469     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3470     llvm::APSInt Index = IndexArg.getAsIntegral();
3471     assert(Index >= 0 && "the index used with __type_pack_element should be of "
3472                          "type std::size_t, and hence be non-negative");
3473     if (Index >= Ts.pack_size()) {
3474       SemaRef.Diag(TemplateArgs[0].getLocation(),
3475                    diag::err_type_pack_element_out_of_bounds);
3476       return QualType();
3477     }
3478 
3479     // We simply return the type at index `Index`.
3480     auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3481     return Nth->getAsType();
3482   }
3483   llvm_unreachable("unexpected BuiltinTemplateDecl!");
3484 }
3485 
3486 /// Determine whether this alias template is "enable_if_t".
3487 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3488   return AliasTemplate->getName().equals("enable_if_t");
3489 }
3490 
3491 /// Collect all of the separable terms in the given condition, which
3492 /// might be a conjunction.
3493 ///
3494 /// FIXME: The right answer is to convert the logical expression into
3495 /// disjunctive normal form, so we can find the first failed term
3496 /// within each possible clause.
3497 static void collectConjunctionTerms(Expr *Clause,
3498                                     SmallVectorImpl<Expr *> &Terms) {
3499   if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3500     if (BinOp->getOpcode() == BO_LAnd) {
3501       collectConjunctionTerms(BinOp->getLHS(), Terms);
3502       collectConjunctionTerms(BinOp->getRHS(), Terms);
3503     }
3504 
3505     return;
3506   }
3507 
3508   Terms.push_back(Clause);
3509 }
3510 
3511 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3512 // a left-hand side that is value-dependent but never true. Identify
3513 // the idiom and ignore that term.
3514 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3515   // Top-level '||'.
3516   auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3517   if (!BinOp) return Cond;
3518 
3519   if (BinOp->getOpcode() != BO_LOr) return Cond;
3520 
3521   // With an inner '==' that has a literal on the right-hand side.
3522   Expr *LHS = BinOp->getLHS();
3523   auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3524   if (!InnerBinOp) return Cond;
3525 
3526   if (InnerBinOp->getOpcode() != BO_EQ ||
3527       !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3528     return Cond;
3529 
3530   // If the inner binary operation came from a macro expansion named
3531   // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3532   // of the '||', which is the real, user-provided condition.
3533   SourceLocation Loc = InnerBinOp->getExprLoc();
3534   if (!Loc.isMacroID()) return Cond;
3535 
3536   StringRef MacroName = PP.getImmediateMacroName(Loc);
3537   if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3538     return BinOp->getRHS();
3539 
3540   return Cond;
3541 }
3542 
3543 namespace {
3544 
3545 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3546 // within failing boolean expression, such as substituting template parameters
3547 // for actual types.
3548 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3549 public:
3550   explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3551       : Policy(P) {}
3552 
3553   bool handledStmt(Stmt *E, raw_ostream &OS) override {
3554     const auto *DR = dyn_cast<DeclRefExpr>(E);
3555     if (DR && DR->getQualifier()) {
3556       // If this is a qualified name, expand the template arguments in nested
3557       // qualifiers.
3558       DR->getQualifier()->print(OS, Policy, true);
3559       // Then print the decl itself.
3560       const ValueDecl *VD = DR->getDecl();
3561       OS << VD->getName();
3562       if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3563         // This is a template variable, print the expanded template arguments.
3564         printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy);
3565       }
3566       return true;
3567     }
3568     return false;
3569   }
3570 
3571 private:
3572   const PrintingPolicy Policy;
3573 };
3574 
3575 } // end anonymous namespace
3576 
3577 std::pair<Expr *, std::string>
3578 Sema::findFailedBooleanCondition(Expr *Cond) {
3579   Cond = lookThroughRangesV3Condition(PP, Cond);
3580 
3581   // Separate out all of the terms in a conjunction.
3582   SmallVector<Expr *, 4> Terms;
3583   collectConjunctionTerms(Cond, Terms);
3584 
3585   // Determine which term failed.
3586   Expr *FailedCond = nullptr;
3587   for (Expr *Term : Terms) {
3588     Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3589 
3590     // Literals are uninteresting.
3591     if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3592         isa<IntegerLiteral>(TermAsWritten))
3593       continue;
3594 
3595     // The initialization of the parameter from the argument is
3596     // a constant-evaluated context.
3597     EnterExpressionEvaluationContext ConstantEvaluated(
3598       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3599 
3600     bool Succeeded;
3601     if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3602         !Succeeded) {
3603       FailedCond = TermAsWritten;
3604       break;
3605     }
3606   }
3607   if (!FailedCond)
3608     FailedCond = Cond->IgnoreParenImpCasts();
3609 
3610   std::string Description;
3611   {
3612     llvm::raw_string_ostream Out(Description);
3613     PrintingPolicy Policy = getPrintingPolicy();
3614     Policy.PrintCanonicalTypes = true;
3615     FailedBooleanConditionPrinterHelper Helper(Policy);
3616     FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3617   }
3618   return { FailedCond, Description };
3619 }
3620 
3621 QualType Sema::CheckTemplateIdType(TemplateName Name,
3622                                    SourceLocation TemplateLoc,
3623                                    TemplateArgumentListInfo &TemplateArgs) {
3624   DependentTemplateName *DTN
3625     = Name.getUnderlying().getAsDependentTemplateName();
3626   if (DTN && DTN->isIdentifier())
3627     // When building a template-id where the template-name is dependent,
3628     // assume the template is a type template. Either our assumption is
3629     // correct, or the code is ill-formed and will be diagnosed when the
3630     // dependent name is substituted.
3631     return Context.getDependentTemplateSpecializationType(ETK_None,
3632                                                           DTN->getQualifier(),
3633                                                           DTN->getIdentifier(),
3634                                                           TemplateArgs);
3635 
3636   if (Name.getAsAssumedTemplateName() &&
3637       resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3638     return QualType();
3639 
3640   TemplateDecl *Template = Name.getAsTemplateDecl();
3641   if (!Template || isa<FunctionTemplateDecl>(Template) ||
3642       isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3643     // We might have a substituted template template parameter pack. If so,
3644     // build a template specialization type for it.
3645     if (Name.getAsSubstTemplateTemplateParmPack())
3646       return Context.getTemplateSpecializationType(Name, TemplateArgs);
3647 
3648     Diag(TemplateLoc, diag::err_template_id_not_a_type)
3649       << Name;
3650     NoteAllFoundTemplates(Name);
3651     return QualType();
3652   }
3653 
3654   // Check that the template argument list is well-formed for this
3655   // template.
3656   SmallVector<TemplateArgument, 4> Converted;
3657   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3658                                 false, Converted,
3659                                 /*UpdateArgsWithConversion=*/true))
3660     return QualType();
3661 
3662   QualType CanonType;
3663 
3664   if (TypeAliasTemplateDecl *AliasTemplate =
3665           dyn_cast<TypeAliasTemplateDecl>(Template)) {
3666 
3667     // Find the canonical type for this type alias template specialization.
3668     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3669     if (Pattern->isInvalidDecl())
3670       return QualType();
3671 
3672     TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3673                                            Converted);
3674 
3675     // Only substitute for the innermost template argument list.
3676     MultiLevelTemplateArgumentList TemplateArgLists;
3677     TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3678     TemplateArgLists.addOuterRetainedLevels(
3679         AliasTemplate->getTemplateParameters()->getDepth());
3680 
3681     LocalInstantiationScope Scope(*this);
3682     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3683     if (Inst.isInvalid())
3684       return QualType();
3685 
3686     CanonType = SubstType(Pattern->getUnderlyingType(),
3687                           TemplateArgLists, AliasTemplate->getLocation(),
3688                           AliasTemplate->getDeclName());
3689     if (CanonType.isNull()) {
3690       // If this was enable_if and we failed to find the nested type
3691       // within enable_if in a SFINAE context, dig out the specific
3692       // enable_if condition that failed and present that instead.
3693       if (isEnableIfAliasTemplate(AliasTemplate)) {
3694         if (auto DeductionInfo = isSFINAEContext()) {
3695           if (*DeductionInfo &&
3696               (*DeductionInfo)->hasSFINAEDiagnostic() &&
3697               (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3698                 diag::err_typename_nested_not_found_enable_if &&
3699               TemplateArgs[0].getArgument().getKind()
3700                 == TemplateArgument::Expression) {
3701             Expr *FailedCond;
3702             std::string FailedDescription;
3703             std::tie(FailedCond, FailedDescription) =
3704               findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3705 
3706             // Remove the old SFINAE diagnostic.
3707             PartialDiagnosticAt OldDiag =
3708               {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3709             (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3710 
3711             // Add a new SFINAE diagnostic specifying which condition
3712             // failed.
3713             (*DeductionInfo)->addSFINAEDiagnostic(
3714               OldDiag.first,
3715               PDiag(diag::err_typename_nested_not_found_requirement)
3716                 << FailedDescription
3717                 << FailedCond->getSourceRange());
3718           }
3719         }
3720       }
3721 
3722       return QualType();
3723     }
3724   } else if (Name.isDependent() ||
3725              TemplateSpecializationType::anyDependentTemplateArguments(
3726                  TemplateArgs, Converted)) {
3727     // This class template specialization is a dependent
3728     // type. Therefore, its canonical type is another class template
3729     // specialization type that contains all of the converted
3730     // arguments in canonical form. This ensures that, e.g., A<T> and
3731     // A<T, T> have identical types when A is declared as:
3732     //
3733     //   template<typename T, typename U = T> struct A;
3734     CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3735 
3736     // This might work out to be a current instantiation, in which
3737     // case the canonical type needs to be the InjectedClassNameType.
3738     //
3739     // TODO: in theory this could be a simple hashtable lookup; most
3740     // changes to CurContext don't change the set of current
3741     // instantiations.
3742     if (isa<ClassTemplateDecl>(Template)) {
3743       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3744         // If we get out to a namespace, we're done.
3745         if (Ctx->isFileContext()) break;
3746 
3747         // If this isn't a record, keep looking.
3748         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3749         if (!Record) continue;
3750 
3751         // Look for one of the two cases with InjectedClassNameTypes
3752         // and check whether it's the same template.
3753         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3754             !Record->getDescribedClassTemplate())
3755           continue;
3756 
3757         // Fetch the injected class name type and check whether its
3758         // injected type is equal to the type we just built.
3759         QualType ICNT = Context.getTypeDeclType(Record);
3760         QualType Injected = cast<InjectedClassNameType>(ICNT)
3761           ->getInjectedSpecializationType();
3762 
3763         if (CanonType != Injected->getCanonicalTypeInternal())
3764           continue;
3765 
3766         // If so, the canonical type of this TST is the injected
3767         // class name type of the record we just found.
3768         assert(ICNT.isCanonical());
3769         CanonType = ICNT;
3770         break;
3771       }
3772     }
3773   } else if (ClassTemplateDecl *ClassTemplate
3774                = dyn_cast<ClassTemplateDecl>(Template)) {
3775     // Find the class template specialization declaration that
3776     // corresponds to these arguments.
3777     void *InsertPos = nullptr;
3778     ClassTemplateSpecializationDecl *Decl
3779       = ClassTemplate->findSpecialization(Converted, InsertPos);
3780     if (!Decl) {
3781       // This is the first time we have referenced this class template
3782       // specialization. Create the canonical declaration and add it to
3783       // the set of specializations.
3784       Decl = ClassTemplateSpecializationDecl::Create(
3785           Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3786           ClassTemplate->getDeclContext(),
3787           ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3788           ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3789       ClassTemplate->AddSpecialization(Decl, InsertPos);
3790       if (ClassTemplate->isOutOfLine())
3791         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3792     }
3793 
3794     if (Decl->getSpecializationKind() == TSK_Undeclared &&
3795         ClassTemplate->getTemplatedDecl()->hasAttrs()) {
3796       InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
3797       if (!Inst.isInvalid()) {
3798         MultiLevelTemplateArgumentList TemplateArgLists;
3799         TemplateArgLists.addOuterTemplateArguments(Converted);
3800         InstantiateAttrsForDecl(TemplateArgLists,
3801                                 ClassTemplate->getTemplatedDecl(), Decl);
3802       }
3803     }
3804 
3805     // Diagnose uses of this specialization.
3806     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3807 
3808     CanonType = Context.getTypeDeclType(Decl);
3809     assert(isa<RecordType>(CanonType) &&
3810            "type of non-dependent specialization is not a RecordType");
3811   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3812     CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3813                                            TemplateArgs);
3814   }
3815 
3816   // Build the fully-sugared type for this class template
3817   // specialization, which refers back to the class template
3818   // specialization we created or found.
3819   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3820 }
3821 
3822 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3823                                            TemplateNameKind &TNK,
3824                                            SourceLocation NameLoc,
3825                                            IdentifierInfo *&II) {
3826   assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
3827 
3828   TemplateName Name = ParsedName.get();
3829   auto *ATN = Name.getAsAssumedTemplateName();
3830   assert(ATN && "not an assumed template name");
3831   II = ATN->getDeclName().getAsIdentifierInfo();
3832 
3833   if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3834     // Resolved to a type template name.
3835     ParsedName = TemplateTy::make(Name);
3836     TNK = TNK_Type_template;
3837   }
3838 }
3839 
3840 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3841                                             SourceLocation NameLoc,
3842                                             bool Diagnose) {
3843   // We assumed this undeclared identifier to be an (ADL-only) function
3844   // template name, but it was used in a context where a type was required.
3845   // Try to typo-correct it now.
3846   AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3847   assert(ATN && "not an assumed template name");
3848 
3849   LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3850   struct CandidateCallback : CorrectionCandidateCallback {
3851     bool ValidateCandidate(const TypoCorrection &TC) override {
3852       return TC.getCorrectionDecl() &&
3853              getAsTypeTemplateDecl(TC.getCorrectionDecl());
3854     }
3855     std::unique_ptr<CorrectionCandidateCallback> clone() override {
3856       return std::make_unique<CandidateCallback>(*this);
3857     }
3858   } FilterCCC;
3859 
3860   TypoCorrection Corrected =
3861       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3862                   FilterCCC, CTK_ErrorRecovery);
3863   if (Corrected && Corrected.getFoundDecl()) {
3864     diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3865                                 << ATN->getDeclName());
3866     Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3867     return false;
3868   }
3869 
3870   if (Diagnose)
3871     Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3872   return true;
3873 }
3874 
3875 TypeResult Sema::ActOnTemplateIdType(
3876     Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3877     TemplateTy TemplateD, IdentifierInfo *TemplateII,
3878     SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3879     ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3880     bool IsCtorOrDtorName, bool IsClassName) {
3881   if (SS.isInvalid())
3882     return true;
3883 
3884   if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3885     DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3886 
3887     // C++ [temp.res]p3:
3888     //   A qualified-id that refers to a type and in which the
3889     //   nested-name-specifier depends on a template-parameter (14.6.2)
3890     //   shall be prefixed by the keyword typename to indicate that the
3891     //   qualified-id denotes a type, forming an
3892     //   elaborated-type-specifier (7.1.5.3).
3893     if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3894       Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3895         << SS.getScopeRep() << TemplateII->getName();
3896       // Recover as if 'typename' were specified.
3897       // FIXME: This is not quite correct recovery as we don't transform SS
3898       // into the corresponding dependent form (and we don't diagnose missing
3899       // 'template' keywords within SS as a result).
3900       return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3901                                TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3902                                TemplateArgsIn, RAngleLoc);
3903     }
3904 
3905     // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3906     // it's not actually allowed to be used as a type in most cases. Because
3907     // we annotate it before we know whether it's valid, we have to check for
3908     // this case here.
3909     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3910     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3911       Diag(TemplateIILoc,
3912            TemplateKWLoc.isInvalid()
3913                ? diag::err_out_of_line_qualified_id_type_names_constructor
3914                : diag::ext_out_of_line_qualified_id_type_names_constructor)
3915         << TemplateII << 0 /*injected-class-name used as template name*/
3916         << 1 /*if any keyword was present, it was 'template'*/;
3917     }
3918   }
3919 
3920   TemplateName Template = TemplateD.get();
3921   if (Template.getAsAssumedTemplateName() &&
3922       resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
3923     return true;
3924 
3925   // Translate the parser's template argument list in our AST format.
3926   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3927   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3928 
3929   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3930     QualType T
3931       = Context.getDependentTemplateSpecializationType(ETK_None,
3932                                                        DTN->getQualifier(),
3933                                                        DTN->getIdentifier(),
3934                                                        TemplateArgs);
3935     // Build type-source information.
3936     TypeLocBuilder TLB;
3937     DependentTemplateSpecializationTypeLoc SpecTL
3938       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3939     SpecTL.setElaboratedKeywordLoc(SourceLocation());
3940     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3941     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3942     SpecTL.setTemplateNameLoc(TemplateIILoc);
3943     SpecTL.setLAngleLoc(LAngleLoc);
3944     SpecTL.setRAngleLoc(RAngleLoc);
3945     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3946       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3947     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3948   }
3949 
3950   QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3951   if (Result.isNull())
3952     return true;
3953 
3954   // Build type-source information.
3955   TypeLocBuilder TLB;
3956   TemplateSpecializationTypeLoc SpecTL
3957     = TLB.push<TemplateSpecializationTypeLoc>(Result);
3958   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3959   SpecTL.setTemplateNameLoc(TemplateIILoc);
3960   SpecTL.setLAngleLoc(LAngleLoc);
3961   SpecTL.setRAngleLoc(RAngleLoc);
3962   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3963     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3964 
3965   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3966   // constructor or destructor name (in such a case, the scope specifier
3967   // will be attached to the enclosing Decl or Expr node).
3968   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3969     // Create an elaborated-type-specifier containing the nested-name-specifier.
3970     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
3971     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3972     ElabTL.setElaboratedKeywordLoc(SourceLocation());
3973     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3974   }
3975 
3976   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3977 }
3978 
3979 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3980                                         TypeSpecifierType TagSpec,
3981                                         SourceLocation TagLoc,
3982                                         CXXScopeSpec &SS,
3983                                         SourceLocation TemplateKWLoc,
3984                                         TemplateTy TemplateD,
3985                                         SourceLocation TemplateLoc,
3986                                         SourceLocation LAngleLoc,
3987                                         ASTTemplateArgsPtr TemplateArgsIn,
3988                                         SourceLocation RAngleLoc) {
3989   if (SS.isInvalid())
3990     return TypeResult(true);
3991 
3992   TemplateName Template = TemplateD.get();
3993 
3994   // Translate the parser's template argument list in our AST format.
3995   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3996   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3997 
3998   // Determine the tag kind
3999   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4000   ElaboratedTypeKeyword Keyword
4001     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4002 
4003   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4004     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
4005                                                           DTN->getQualifier(),
4006                                                           DTN->getIdentifier(),
4007                                                                 TemplateArgs);
4008 
4009     // Build type-source information.
4010     TypeLocBuilder TLB;
4011     DependentTemplateSpecializationTypeLoc SpecTL
4012       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4013     SpecTL.setElaboratedKeywordLoc(TagLoc);
4014     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4015     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4016     SpecTL.setTemplateNameLoc(TemplateLoc);
4017     SpecTL.setLAngleLoc(LAngleLoc);
4018     SpecTL.setRAngleLoc(RAngleLoc);
4019     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4020       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4021     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4022   }
4023 
4024   if (TypeAliasTemplateDecl *TAT =
4025         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4026     // C++0x [dcl.type.elab]p2:
4027     //   If the identifier resolves to a typedef-name or the simple-template-id
4028     //   resolves to an alias template specialization, the
4029     //   elaborated-type-specifier is ill-formed.
4030     Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4031         << TAT << NTK_TypeAliasTemplate << TagKind;
4032     Diag(TAT->getLocation(), diag::note_declared_at);
4033   }
4034 
4035   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4036   if (Result.isNull())
4037     return TypeResult(true);
4038 
4039   // Check the tag kind
4040   if (const RecordType *RT = Result->getAs<RecordType>()) {
4041     RecordDecl *D = RT->getDecl();
4042 
4043     IdentifierInfo *Id = D->getIdentifier();
4044     assert(Id && "templated class must have an identifier");
4045 
4046     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4047                                       TagLoc, Id)) {
4048       Diag(TagLoc, diag::err_use_with_wrong_tag)
4049         << Result
4050         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4051       Diag(D->getLocation(), diag::note_previous_use);
4052     }
4053   }
4054 
4055   // Provide source-location information for the template specialization.
4056   TypeLocBuilder TLB;
4057   TemplateSpecializationTypeLoc SpecTL
4058     = TLB.push<TemplateSpecializationTypeLoc>(Result);
4059   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4060   SpecTL.setTemplateNameLoc(TemplateLoc);
4061   SpecTL.setLAngleLoc(LAngleLoc);
4062   SpecTL.setRAngleLoc(RAngleLoc);
4063   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4064     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4065 
4066   // Construct an elaborated type containing the nested-name-specifier (if any)
4067   // and tag keyword.
4068   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4069   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4070   ElabTL.setElaboratedKeywordLoc(TagLoc);
4071   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4072   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4073 }
4074 
4075 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4076                                              NamedDecl *PrevDecl,
4077                                              SourceLocation Loc,
4078                                              bool IsPartialSpecialization);
4079 
4080 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4081 
4082 static bool isTemplateArgumentTemplateParameter(
4083     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4084   switch (Arg.getKind()) {
4085   case TemplateArgument::Null:
4086   case TemplateArgument::NullPtr:
4087   case TemplateArgument::Integral:
4088   case TemplateArgument::Declaration:
4089   case TemplateArgument::Pack:
4090   case TemplateArgument::TemplateExpansion:
4091     return false;
4092 
4093   case TemplateArgument::Type: {
4094     QualType Type = Arg.getAsType();
4095     const TemplateTypeParmType *TPT =
4096         Arg.getAsType()->getAs<TemplateTypeParmType>();
4097     return TPT && !Type.hasQualifiers() &&
4098            TPT->getDepth() == Depth && TPT->getIndex() == Index;
4099   }
4100 
4101   case TemplateArgument::Expression: {
4102     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4103     if (!DRE || !DRE->getDecl())
4104       return false;
4105     const NonTypeTemplateParmDecl *NTTP =
4106         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4107     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4108   }
4109 
4110   case TemplateArgument::Template:
4111     const TemplateTemplateParmDecl *TTP =
4112         dyn_cast_or_null<TemplateTemplateParmDecl>(
4113             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4114     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4115   }
4116   llvm_unreachable("unexpected kind of template argument");
4117 }
4118 
4119 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4120                                     ArrayRef<TemplateArgument> Args) {
4121   if (Params->size() != Args.size())
4122     return false;
4123 
4124   unsigned Depth = Params->getDepth();
4125 
4126   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4127     TemplateArgument Arg = Args[I];
4128 
4129     // If the parameter is a pack expansion, the argument must be a pack
4130     // whose only element is a pack expansion.
4131     if (Params->getParam(I)->isParameterPack()) {
4132       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4133           !Arg.pack_begin()->isPackExpansion())
4134         return false;
4135       Arg = Arg.pack_begin()->getPackExpansionPattern();
4136     }
4137 
4138     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4139       return false;
4140   }
4141 
4142   return true;
4143 }
4144 
4145 template<typename PartialSpecDecl>
4146 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4147   if (Partial->getDeclContext()->isDependentContext())
4148     return;
4149 
4150   // FIXME: Get the TDK from deduction in order to provide better diagnostics
4151   // for non-substitution-failure issues?
4152   TemplateDeductionInfo Info(Partial->getLocation());
4153   if (S.isMoreSpecializedThanPrimary(Partial, Info))
4154     return;
4155 
4156   auto *Template = Partial->getSpecializedTemplate();
4157   S.Diag(Partial->getLocation(),
4158          diag::ext_partial_spec_not_more_specialized_than_primary)
4159       << isa<VarTemplateDecl>(Template);
4160 
4161   if (Info.hasSFINAEDiagnostic()) {
4162     PartialDiagnosticAt Diag = {SourceLocation(),
4163                                 PartialDiagnostic::NullDiagnostic()};
4164     Info.takeSFINAEDiagnostic(Diag);
4165     SmallString<128> SFINAEArgString;
4166     Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4167     S.Diag(Diag.first,
4168            diag::note_partial_spec_not_more_specialized_than_primary)
4169       << SFINAEArgString;
4170   }
4171 
4172   S.Diag(Template->getLocation(), diag::note_template_decl_here);
4173   SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4174   Template->getAssociatedConstraints(TemplateAC);
4175   Partial->getAssociatedConstraints(PartialAC);
4176   S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4177                                                   TemplateAC);
4178 }
4179 
4180 static void
4181 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4182                            const llvm::SmallBitVector &DeducibleParams) {
4183   for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4184     if (!DeducibleParams[I]) {
4185       NamedDecl *Param = TemplateParams->getParam(I);
4186       if (Param->getDeclName())
4187         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4188             << Param->getDeclName();
4189       else
4190         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4191             << "(anonymous)";
4192     }
4193   }
4194 }
4195 
4196 
4197 template<typename PartialSpecDecl>
4198 static void checkTemplatePartialSpecialization(Sema &S,
4199                                                PartialSpecDecl *Partial) {
4200   // C++1z [temp.class.spec]p8: (DR1495)
4201   //   - The specialization shall be more specialized than the primary
4202   //     template (14.5.5.2).
4203   checkMoreSpecializedThanPrimary(S, Partial);
4204 
4205   // C++ [temp.class.spec]p8: (DR1315)
4206   //   - Each template-parameter shall appear at least once in the
4207   //     template-id outside a non-deduced context.
4208   // C++1z [temp.class.spec.match]p3 (P0127R2)
4209   //   If the template arguments of a partial specialization cannot be
4210   //   deduced because of the structure of its template-parameter-list
4211   //   and the template-id, the program is ill-formed.
4212   auto *TemplateParams = Partial->getTemplateParameters();
4213   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4214   S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4215                                TemplateParams->getDepth(), DeducibleParams);
4216 
4217   if (!DeducibleParams.all()) {
4218     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4219     S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4220       << isa<VarTemplatePartialSpecializationDecl>(Partial)
4221       << (NumNonDeducible > 1)
4222       << SourceRange(Partial->getLocation(),
4223                      Partial->getTemplateArgsAsWritten()->RAngleLoc);
4224     noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4225   }
4226 }
4227 
4228 void Sema::CheckTemplatePartialSpecialization(
4229     ClassTemplatePartialSpecializationDecl *Partial) {
4230   checkTemplatePartialSpecialization(*this, Partial);
4231 }
4232 
4233 void Sema::CheckTemplatePartialSpecialization(
4234     VarTemplatePartialSpecializationDecl *Partial) {
4235   checkTemplatePartialSpecialization(*this, Partial);
4236 }
4237 
4238 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4239   // C++1z [temp.param]p11:
4240   //   A template parameter of a deduction guide template that does not have a
4241   //   default-argument shall be deducible from the parameter-type-list of the
4242   //   deduction guide template.
4243   auto *TemplateParams = TD->getTemplateParameters();
4244   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4245   MarkDeducedTemplateParameters(TD, DeducibleParams);
4246   for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4247     // A parameter pack is deducible (to an empty pack).
4248     auto *Param = TemplateParams->getParam(I);
4249     if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4250       DeducibleParams[I] = true;
4251   }
4252 
4253   if (!DeducibleParams.all()) {
4254     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4255     Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4256       << (NumNonDeducible > 1);
4257     noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4258   }
4259 }
4260 
4261 DeclResult Sema::ActOnVarTemplateSpecialization(
4262     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4263     TemplateParameterList *TemplateParams, StorageClass SC,
4264     bool IsPartialSpecialization) {
4265   // D must be variable template id.
4266   assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4267          "Variable template specialization is declared with a template it.");
4268 
4269   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4270   TemplateArgumentListInfo TemplateArgs =
4271       makeTemplateArgumentListInfo(*this, *TemplateId);
4272   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4273   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4274   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4275 
4276   TemplateName Name = TemplateId->Template.get();
4277 
4278   // The template-id must name a variable template.
4279   VarTemplateDecl *VarTemplate =
4280       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4281   if (!VarTemplate) {
4282     NamedDecl *FnTemplate;
4283     if (auto *OTS = Name.getAsOverloadedTemplate())
4284       FnTemplate = *OTS->begin();
4285     else
4286       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4287     if (FnTemplate)
4288       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4289                << FnTemplate->getDeclName();
4290     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4291              << IsPartialSpecialization;
4292   }
4293 
4294   // Check for unexpanded parameter packs in any of the template arguments.
4295   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4296     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4297                                         UPPC_PartialSpecialization))
4298       return true;
4299 
4300   // Check that the template argument list is well-formed for this
4301   // template.
4302   SmallVector<TemplateArgument, 4> Converted;
4303   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4304                                 false, Converted,
4305                                 /*UpdateArgsWithConversion=*/true))
4306     return true;
4307 
4308   // Find the variable template (partial) specialization declaration that
4309   // corresponds to these arguments.
4310   if (IsPartialSpecialization) {
4311     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4312                                                TemplateArgs.size(), Converted))
4313       return true;
4314 
4315     // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4316     // also do them during instantiation.
4317     if (!Name.isDependent() &&
4318         !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
4319                                                                    Converted)) {
4320       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4321           << VarTemplate->getDeclName();
4322       IsPartialSpecialization = false;
4323     }
4324 
4325     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4326                                 Converted) &&
4327         (!Context.getLangOpts().CPlusPlus20 ||
4328          !TemplateParams->hasAssociatedConstraints())) {
4329       // C++ [temp.class.spec]p9b3:
4330       //
4331       //   -- The argument list of the specialization shall not be identical
4332       //      to the implicit argument list of the primary template.
4333       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4334         << /*variable template*/ 1
4335         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4336         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4337       // FIXME: Recover from this by treating the declaration as a redeclaration
4338       // of the primary template.
4339       return true;
4340     }
4341   }
4342 
4343   void *InsertPos = nullptr;
4344   VarTemplateSpecializationDecl *PrevDecl = nullptr;
4345 
4346   if (IsPartialSpecialization)
4347     PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
4348                                                       InsertPos);
4349   else
4350     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
4351 
4352   VarTemplateSpecializationDecl *Specialization = nullptr;
4353 
4354   // Check whether we can declare a variable template specialization in
4355   // the current scope.
4356   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4357                                        TemplateNameLoc,
4358                                        IsPartialSpecialization))
4359     return true;
4360 
4361   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4362     // Since the only prior variable template specialization with these
4363     // arguments was referenced but not declared,  reuse that
4364     // declaration node as our own, updating its source location and
4365     // the list of outer template parameters to reflect our new declaration.
4366     Specialization = PrevDecl;
4367     Specialization->setLocation(TemplateNameLoc);
4368     PrevDecl = nullptr;
4369   } else if (IsPartialSpecialization) {
4370     // Create a new class template partial specialization declaration node.
4371     VarTemplatePartialSpecializationDecl *PrevPartial =
4372         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4373     VarTemplatePartialSpecializationDecl *Partial =
4374         VarTemplatePartialSpecializationDecl::Create(
4375             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4376             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4377             Converted, TemplateArgs);
4378 
4379     if (!PrevPartial)
4380       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4381     Specialization = Partial;
4382 
4383     // If we are providing an explicit specialization of a member variable
4384     // template specialization, make a note of that.
4385     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4386       PrevPartial->setMemberSpecialization();
4387 
4388     CheckTemplatePartialSpecialization(Partial);
4389   } else {
4390     // Create a new class template specialization declaration node for
4391     // this explicit specialization or friend declaration.
4392     Specialization = VarTemplateSpecializationDecl::Create(
4393         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4394         VarTemplate, DI->getType(), DI, SC, Converted);
4395     Specialization->setTemplateArgsInfo(TemplateArgs);
4396 
4397     if (!PrevDecl)
4398       VarTemplate->AddSpecialization(Specialization, InsertPos);
4399   }
4400 
4401   // C++ [temp.expl.spec]p6:
4402   //   If a template, a member template or the member of a class template is
4403   //   explicitly specialized then that specialization shall be declared
4404   //   before the first use of that specialization that would cause an implicit
4405   //   instantiation to take place, in every translation unit in which such a
4406   //   use occurs; no diagnostic is required.
4407   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4408     bool Okay = false;
4409     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4410       // Is there any previous explicit specialization declaration?
4411       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4412         Okay = true;
4413         break;
4414       }
4415     }
4416 
4417     if (!Okay) {
4418       SourceRange Range(TemplateNameLoc, RAngleLoc);
4419       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4420           << Name << Range;
4421 
4422       Diag(PrevDecl->getPointOfInstantiation(),
4423            diag::note_instantiation_required_here)
4424           << (PrevDecl->getTemplateSpecializationKind() !=
4425               TSK_ImplicitInstantiation);
4426       return true;
4427     }
4428   }
4429 
4430   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4431   Specialization->setLexicalDeclContext(CurContext);
4432 
4433   // Add the specialization into its lexical context, so that it can
4434   // be seen when iterating through the list of declarations in that
4435   // context. However, specializations are not found by name lookup.
4436   CurContext->addDecl(Specialization);
4437 
4438   // Note that this is an explicit specialization.
4439   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4440 
4441   if (PrevDecl) {
4442     // Check that this isn't a redefinition of this specialization,
4443     // merging with previous declarations.
4444     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4445                           forRedeclarationInCurContext());
4446     PrevSpec.addDecl(PrevDecl);
4447     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4448   } else if (Specialization->isStaticDataMember() &&
4449              Specialization->isOutOfLine()) {
4450     Specialization->setAccess(VarTemplate->getAccess());
4451   }
4452 
4453   return Specialization;
4454 }
4455 
4456 namespace {
4457 /// A partial specialization whose template arguments have matched
4458 /// a given template-id.
4459 struct PartialSpecMatchResult {
4460   VarTemplatePartialSpecializationDecl *Partial;
4461   TemplateArgumentList *Args;
4462 };
4463 } // end anonymous namespace
4464 
4465 DeclResult
4466 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4467                          SourceLocation TemplateNameLoc,
4468                          const TemplateArgumentListInfo &TemplateArgs) {
4469   assert(Template && "A variable template id without template?");
4470 
4471   // Check that the template argument list is well-formed for this template.
4472   SmallVector<TemplateArgument, 4> Converted;
4473   if (CheckTemplateArgumentList(
4474           Template, TemplateNameLoc,
4475           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4476           Converted, /*UpdateArgsWithConversion=*/true))
4477     return true;
4478 
4479   // Produce a placeholder value if the specialization is dependent.
4480   if (Template->getDeclContext()->isDependentContext() ||
4481       TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
4482                                                                 Converted))
4483     return DeclResult();
4484 
4485   // Find the variable template specialization declaration that
4486   // corresponds to these arguments.
4487   void *InsertPos = nullptr;
4488   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
4489           Converted, InsertPos)) {
4490     checkSpecializationVisibility(TemplateNameLoc, Spec);
4491     // If we already have a variable template specialization, return it.
4492     return Spec;
4493   }
4494 
4495   // This is the first time we have referenced this variable template
4496   // specialization. Create the canonical declaration and add it to
4497   // the set of specializations, based on the closest partial specialization
4498   // that it represents. That is,
4499   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4500   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4501                                        Converted);
4502   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4503   bool AmbiguousPartialSpec = false;
4504   typedef PartialSpecMatchResult MatchResult;
4505   SmallVector<MatchResult, 4> Matched;
4506   SourceLocation PointOfInstantiation = TemplateNameLoc;
4507   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4508                                             /*ForTakingAddress=*/false);
4509 
4510   // 1. Attempt to find the closest partial specialization that this
4511   // specializes, if any.
4512   // TODO: Unify with InstantiateClassTemplateSpecialization()?
4513   //       Perhaps better after unification of DeduceTemplateArguments() and
4514   //       getMoreSpecializedPartialSpecialization().
4515   SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4516   Template->getPartialSpecializations(PartialSpecs);
4517 
4518   for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4519     VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4520     TemplateDeductionInfo Info(FailedCandidates.getLocation());
4521 
4522     if (TemplateDeductionResult Result =
4523             DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4524       // Store the failed-deduction information for use in diagnostics, later.
4525       // TODO: Actually use the failed-deduction info?
4526       FailedCandidates.addCandidate().set(
4527           DeclAccessPair::make(Template, AS_public), Partial,
4528           MakeDeductionFailureInfo(Context, Result, Info));
4529       (void)Result;
4530     } else {
4531       Matched.push_back(PartialSpecMatchResult());
4532       Matched.back().Partial = Partial;
4533       Matched.back().Args = Info.take();
4534     }
4535   }
4536 
4537   if (Matched.size() >= 1) {
4538     SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4539     if (Matched.size() == 1) {
4540       //   -- If exactly one matching specialization is found, the
4541       //      instantiation is generated from that specialization.
4542       // We don't need to do anything for this.
4543     } else {
4544       //   -- If more than one matching specialization is found, the
4545       //      partial order rules (14.5.4.2) are used to determine
4546       //      whether one of the specializations is more specialized
4547       //      than the others. If none of the specializations is more
4548       //      specialized than all of the other matching
4549       //      specializations, then the use of the variable template is
4550       //      ambiguous and the program is ill-formed.
4551       for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4552                                                  PEnd = Matched.end();
4553            P != PEnd; ++P) {
4554         if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4555                                                     PointOfInstantiation) ==
4556             P->Partial)
4557           Best = P;
4558       }
4559 
4560       // Determine if the best partial specialization is more specialized than
4561       // the others.
4562       for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4563                                                  PEnd = Matched.end();
4564            P != PEnd; ++P) {
4565         if (P != Best && getMoreSpecializedPartialSpecialization(
4566                              P->Partial, Best->Partial,
4567                              PointOfInstantiation) != Best->Partial) {
4568           AmbiguousPartialSpec = true;
4569           break;
4570         }
4571       }
4572     }
4573 
4574     // Instantiate using the best variable template partial specialization.
4575     InstantiationPattern = Best->Partial;
4576     InstantiationArgs = Best->Args;
4577   } else {
4578     //   -- If no match is found, the instantiation is generated
4579     //      from the primary template.
4580     // InstantiationPattern = Template->getTemplatedDecl();
4581   }
4582 
4583   // 2. Create the canonical declaration.
4584   // Note that we do not instantiate a definition until we see an odr-use
4585   // in DoMarkVarDeclReferenced().
4586   // FIXME: LateAttrs et al.?
4587   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4588       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4589       Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4590   if (!Decl)
4591     return true;
4592 
4593   if (AmbiguousPartialSpec) {
4594     // Partial ordering did not produce a clear winner. Complain.
4595     Decl->setInvalidDecl();
4596     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4597         << Decl;
4598 
4599     // Print the matching partial specializations.
4600     for (MatchResult P : Matched)
4601       Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4602           << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4603                                              *P.Args);
4604     return true;
4605   }
4606 
4607   if (VarTemplatePartialSpecializationDecl *D =
4608           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4609     Decl->setInstantiationOf(D, InstantiationArgs);
4610 
4611   checkSpecializationVisibility(TemplateNameLoc, Decl);
4612 
4613   assert(Decl && "No variable template specialization?");
4614   return Decl;
4615 }
4616 
4617 ExprResult
4618 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4619                          const DeclarationNameInfo &NameInfo,
4620                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
4621                          const TemplateArgumentListInfo *TemplateArgs) {
4622 
4623   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4624                                        *TemplateArgs);
4625   if (Decl.isInvalid())
4626     return ExprError();
4627 
4628   if (!Decl.get())
4629     return ExprResult();
4630 
4631   VarDecl *Var = cast<VarDecl>(Decl.get());
4632   if (!Var->getTemplateSpecializationKind())
4633     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4634                                        NameInfo.getLoc());
4635 
4636   // Build an ordinary singleton decl ref.
4637   return BuildDeclarationNameExpr(SS, NameInfo, Var,
4638                                   /*FoundD=*/nullptr, TemplateArgs);
4639 }
4640 
4641 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4642                                             SourceLocation Loc) {
4643   Diag(Loc, diag::err_template_missing_args)
4644     << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4645   if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4646     Diag(TD->getLocation(), diag::note_template_decl_here)
4647       << TD->getTemplateParameters()->getSourceRange();
4648   }
4649 }
4650 
4651 ExprResult
4652 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4653                              SourceLocation TemplateKWLoc,
4654                              const DeclarationNameInfo &ConceptNameInfo,
4655                              NamedDecl *FoundDecl,
4656                              ConceptDecl *NamedConcept,
4657                              const TemplateArgumentListInfo *TemplateArgs) {
4658   assert(NamedConcept && "A concept template id without a template?");
4659 
4660   llvm::SmallVector<TemplateArgument, 4> Converted;
4661   if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
4662                            const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
4663                                 /*PartialTemplateArgs=*/false, Converted,
4664                                 /*UpdateArgsWithConversion=*/false))
4665     return ExprError();
4666 
4667   ConstraintSatisfaction Satisfaction;
4668   bool AreArgsDependent =
4669       TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs,
4670                                                                 Converted);
4671   if (!AreArgsDependent &&
4672       CheckConstraintSatisfaction(
4673           NamedConcept, {NamedConcept->getConstraintExpr()}, Converted,
4674           SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
4675                       TemplateArgs->getRAngleLoc()),
4676           Satisfaction))
4677     return ExprError();
4678 
4679   return ConceptSpecializationExpr::Create(Context,
4680       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4681       TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4682       ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
4683       AreArgsDependent ? nullptr : &Satisfaction);
4684 }
4685 
4686 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4687                                      SourceLocation TemplateKWLoc,
4688                                      LookupResult &R,
4689                                      bool RequiresADL,
4690                                  const TemplateArgumentListInfo *TemplateArgs) {
4691   // FIXME: Can we do any checking at this point? I guess we could check the
4692   // template arguments that we have against the template name, if the template
4693   // name refers to a single template. That's not a terribly common case,
4694   // though.
4695   // foo<int> could identify a single function unambiguously
4696   // This approach does NOT work, since f<int>(1);
4697   // gets resolved prior to resorting to overload resolution
4698   // i.e., template<class T> void f(double);
4699   //       vs template<class T, class U> void f(U);
4700 
4701   // These should be filtered out by our callers.
4702   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
4703 
4704   // Non-function templates require a template argument list.
4705   if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4706     if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4707       diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4708       return ExprError();
4709     }
4710   }
4711 
4712   // In C++1y, check variable template ids.
4713   if (R.getAsSingle<VarTemplateDecl>()) {
4714     ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
4715                                         R.getAsSingle<VarTemplateDecl>(),
4716                                         TemplateKWLoc, TemplateArgs);
4717     if (Res.isInvalid() || Res.isUsable())
4718       return Res;
4719     // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
4720   }
4721 
4722   if (R.getAsSingle<ConceptDecl>()) {
4723     return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4724                                   R.getFoundDecl(),
4725                                   R.getAsSingle<ConceptDecl>(), TemplateArgs);
4726   }
4727 
4728   // We don't want lookup warnings at this point.
4729   R.suppressDiagnostics();
4730 
4731   UnresolvedLookupExpr *ULE
4732     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4733                                    SS.getWithLocInContext(Context),
4734                                    TemplateKWLoc,
4735                                    R.getLookupNameInfo(),
4736                                    RequiresADL, TemplateArgs,
4737                                    R.begin(), R.end());
4738 
4739   return ULE;
4740 }
4741 
4742 // We actually only call this from template instantiation.
4743 ExprResult
4744 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4745                                    SourceLocation TemplateKWLoc,
4746                                    const DeclarationNameInfo &NameInfo,
4747                              const TemplateArgumentListInfo *TemplateArgs) {
4748 
4749   assert(TemplateArgs || TemplateKWLoc.isValid());
4750   DeclContext *DC;
4751   if (!(DC = computeDeclContext(SS, false)) ||
4752       DC->isDependentContext() ||
4753       RequireCompleteDeclContext(SS, DC))
4754     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4755 
4756   bool MemberOfUnknownSpecialization;
4757   LookupResult R(*this, NameInfo, LookupOrdinaryName);
4758   if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4759                          /*Entering*/false, MemberOfUnknownSpecialization,
4760                          TemplateKWLoc))
4761     return ExprError();
4762 
4763   if (R.isAmbiguous())
4764     return ExprError();
4765 
4766   if (R.empty()) {
4767     Diag(NameInfo.getLoc(), diag::err_no_member)
4768       << NameInfo.getName() << DC << SS.getRange();
4769     return ExprError();
4770   }
4771 
4772   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4773     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4774       << SS.getScopeRep()
4775       << NameInfo.getName().getAsString() << SS.getRange();
4776     Diag(Temp->getLocation(), diag::note_referenced_class_template);
4777     return ExprError();
4778   }
4779 
4780   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4781 }
4782 
4783 /// Form a template name from a name that is syntactically required to name a
4784 /// template, either due to use of the 'template' keyword or because a name in
4785 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
4786 ///
4787 /// This action forms a template name given the name of the template and its
4788 /// optional scope specifier. This is used when the 'template' keyword is used
4789 /// or when the parsing context unambiguously treats a following '<' as
4790 /// introducing a template argument list. Note that this may produce a
4791 /// non-dependent template name if we can perform the lookup now and identify
4792 /// the named template.
4793 ///
4794 /// For example, given "x.MetaFun::template apply", the scope specifier
4795 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
4796 /// of the "template" keyword, and "apply" is the \p Name.
4797 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
4798                                          CXXScopeSpec &SS,
4799                                          SourceLocation TemplateKWLoc,
4800                                          const UnqualifiedId &Name,
4801                                          ParsedType ObjectType,
4802                                          bool EnteringContext,
4803                                          TemplateTy &Result,
4804                                          bool AllowInjectedClassName) {
4805   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4806     Diag(TemplateKWLoc,
4807          getLangOpts().CPlusPlus11 ?
4808            diag::warn_cxx98_compat_template_outside_of_template :
4809            diag::ext_template_outside_of_template)
4810       << FixItHint::CreateRemoval(TemplateKWLoc);
4811 
4812   if (SS.isInvalid())
4813     return TNK_Non_template;
4814 
4815   // Figure out where isTemplateName is going to look.
4816   DeclContext *LookupCtx = nullptr;
4817   if (SS.isNotEmpty())
4818     LookupCtx = computeDeclContext(SS, EnteringContext);
4819   else if (ObjectType)
4820     LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
4821 
4822   // C++0x [temp.names]p5:
4823   //   If a name prefixed by the keyword template is not the name of
4824   //   a template, the program is ill-formed. [Note: the keyword
4825   //   template may not be applied to non-template members of class
4826   //   templates. -end note ] [ Note: as is the case with the
4827   //   typename prefix, the template prefix is allowed in cases
4828   //   where it is not strictly necessary; i.e., when the
4829   //   nested-name-specifier or the expression on the left of the ->
4830   //   or . is not dependent on a template-parameter, or the use
4831   //   does not appear in the scope of a template. -end note]
4832   //
4833   // Note: C++03 was more strict here, because it banned the use of
4834   // the "template" keyword prior to a template-name that was not a
4835   // dependent name. C++ DR468 relaxed this requirement (the
4836   // "template" keyword is now permitted). We follow the C++0x
4837   // rules, even in C++03 mode with a warning, retroactively applying the DR.
4838   bool MemberOfUnknownSpecialization;
4839   TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4840                                         ObjectType, EnteringContext, Result,
4841                                         MemberOfUnknownSpecialization);
4842   if (TNK != TNK_Non_template) {
4843     // We resolved this to a (non-dependent) template name. Return it.
4844     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4845     if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
4846         Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4847         Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4848       // C++14 [class.qual]p2:
4849       //   In a lookup in which function names are not ignored and the
4850       //   nested-name-specifier nominates a class C, if the name specified
4851       //   [...] is the injected-class-name of C, [...] the name is instead
4852       //   considered to name the constructor
4853       //
4854       // We don't get here if naming the constructor would be valid, so we
4855       // just reject immediately and recover by treating the
4856       // injected-class-name as naming the template.
4857       Diag(Name.getBeginLoc(),
4858            diag::ext_out_of_line_qualified_id_type_names_constructor)
4859           << Name.Identifier
4860           << 0 /*injected-class-name used as template name*/
4861           << TemplateKWLoc.isValid();
4862     }
4863     return TNK;
4864   }
4865 
4866   if (!MemberOfUnknownSpecialization) {
4867     // Didn't find a template name, and the lookup wasn't dependent.
4868     // Do the lookup again to determine if this is a "nothing found" case or
4869     // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4870     // need to do this.
4871     DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4872     LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4873                    LookupOrdinaryName);
4874     bool MOUS;
4875     // Tell LookupTemplateName that we require a template so that it diagnoses
4876     // cases where it finds a non-template.
4877     RequiredTemplateKind RTK = TemplateKWLoc.isValid()
4878                                    ? RequiredTemplateKind(TemplateKWLoc)
4879                                    : TemplateNameIsRequired;
4880     if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
4881                             RTK, nullptr, /*AllowTypoCorrection=*/false) &&
4882         !R.isAmbiguous()) {
4883       if (LookupCtx)
4884         Diag(Name.getBeginLoc(), diag::err_no_member)
4885             << DNI.getName() << LookupCtx << SS.getRange();
4886       else
4887         Diag(Name.getBeginLoc(), diag::err_undeclared_use)
4888             << DNI.getName() << SS.getRange();
4889     }
4890     return TNK_Non_template;
4891   }
4892 
4893   NestedNameSpecifier *Qualifier = SS.getScopeRep();
4894 
4895   switch (Name.getKind()) {
4896   case UnqualifiedIdKind::IK_Identifier:
4897     Result = TemplateTy::make(
4898         Context.getDependentTemplateName(Qualifier, Name.Identifier));
4899     return TNK_Dependent_template_name;
4900 
4901   case UnqualifiedIdKind::IK_OperatorFunctionId:
4902     Result = TemplateTy::make(Context.getDependentTemplateName(
4903         Qualifier, Name.OperatorFunctionId.Operator));
4904     return TNK_Function_template;
4905 
4906   case UnqualifiedIdKind::IK_LiteralOperatorId:
4907     // This is a kind of template name, but can never occur in a dependent
4908     // scope (literal operators can only be declared at namespace scope).
4909     break;
4910 
4911   default:
4912     break;
4913   }
4914 
4915   // This name cannot possibly name a dependent template. Diagnose this now
4916   // rather than building a dependent template name that can never be valid.
4917   Diag(Name.getBeginLoc(),
4918        diag::err_template_kw_refers_to_dependent_non_template)
4919       << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
4920       << TemplateKWLoc.isValid() << TemplateKWLoc;
4921   return TNK_Non_template;
4922 }
4923 
4924 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4925                                      TemplateArgumentLoc &AL,
4926                           SmallVectorImpl<TemplateArgument> &Converted) {
4927   const TemplateArgument &Arg = AL.getArgument();
4928   QualType ArgType;
4929   TypeSourceInfo *TSI = nullptr;
4930 
4931   // Check template type parameter.
4932   switch(Arg.getKind()) {
4933   case TemplateArgument::Type:
4934     // C++ [temp.arg.type]p1:
4935     //   A template-argument for a template-parameter which is a
4936     //   type shall be a type-id.
4937     ArgType = Arg.getAsType();
4938     TSI = AL.getTypeSourceInfo();
4939     break;
4940   case TemplateArgument::Template:
4941   case TemplateArgument::TemplateExpansion: {
4942     // We have a template type parameter but the template argument
4943     // is a template without any arguments.
4944     SourceRange SR = AL.getSourceRange();
4945     TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4946     diagnoseMissingTemplateArguments(Name, SR.getEnd());
4947     return true;
4948   }
4949   case TemplateArgument::Expression: {
4950     // We have a template type parameter but the template argument is an
4951     // expression; see if maybe it is missing the "typename" keyword.
4952     CXXScopeSpec SS;
4953     DeclarationNameInfo NameInfo;
4954 
4955    if (DependentScopeDeclRefExpr *ArgExpr =
4956                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4957       SS.Adopt(ArgExpr->getQualifierLoc());
4958       NameInfo = ArgExpr->getNameInfo();
4959     } else if (CXXDependentScopeMemberExpr *ArgExpr =
4960                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4961       if (ArgExpr->isImplicitAccess()) {
4962         SS.Adopt(ArgExpr->getQualifierLoc());
4963         NameInfo = ArgExpr->getMemberNameInfo();
4964       }
4965     }
4966 
4967     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4968       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4969       LookupParsedName(Result, CurScope, &SS);
4970 
4971       if (Result.getAsSingle<TypeDecl>() ||
4972           Result.getResultKind() ==
4973               LookupResult::NotFoundInCurrentInstantiation) {
4974         assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
4975         // Suggest that the user add 'typename' before the NNS.
4976         SourceLocation Loc = AL.getSourceRange().getBegin();
4977         Diag(Loc, getLangOpts().MSVCCompat
4978                       ? diag::ext_ms_template_type_arg_missing_typename
4979                       : diag::err_template_arg_must_be_type_suggest)
4980             << FixItHint::CreateInsertion(Loc, "typename ");
4981         Diag(Param->getLocation(), diag::note_template_param_here);
4982 
4983         // Recover by synthesizing a type using the location information that we
4984         // already have.
4985         ArgType =
4986             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
4987         TypeLocBuilder TLB;
4988         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4989         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4990         TL.setQualifierLoc(SS.getWithLocInContext(Context));
4991         TL.setNameLoc(NameInfo.getLoc());
4992         TSI = TLB.getTypeSourceInfo(Context, ArgType);
4993 
4994         // Overwrite our input TemplateArgumentLoc so that we can recover
4995         // properly.
4996         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
4997                                  TemplateArgumentLocInfo(TSI));
4998 
4999         break;
5000       }
5001     }
5002     // fallthrough
5003     LLVM_FALLTHROUGH;
5004   }
5005   default: {
5006     // We have a template type parameter but the template argument
5007     // is not a type.
5008     SourceRange SR = AL.getSourceRange();
5009     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5010     Diag(Param->getLocation(), diag::note_template_param_here);
5011 
5012     return true;
5013   }
5014   }
5015 
5016   if (CheckTemplateArgument(Param, TSI))
5017     return true;
5018 
5019   // Add the converted template type argument.
5020   ArgType = Context.getCanonicalType(ArgType);
5021 
5022   // Objective-C ARC:
5023   //   If an explicitly-specified template argument type is a lifetime type
5024   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5025   if (getLangOpts().ObjCAutoRefCount &&
5026       ArgType->isObjCLifetimeType() &&
5027       !ArgType.getObjCLifetime()) {
5028     Qualifiers Qs;
5029     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5030     ArgType = Context.getQualifiedType(ArgType, Qs);
5031   }
5032 
5033   Converted.push_back(TemplateArgument(ArgType));
5034   return false;
5035 }
5036 
5037 /// Substitute template arguments into the default template argument for
5038 /// the given template type parameter.
5039 ///
5040 /// \param SemaRef the semantic analysis object for which we are performing
5041 /// the substitution.
5042 ///
5043 /// \param Template the template that we are synthesizing template arguments
5044 /// for.
5045 ///
5046 /// \param TemplateLoc the location of the template name that started the
5047 /// template-id we are checking.
5048 ///
5049 /// \param RAngleLoc the location of the right angle bracket ('>') that
5050 /// terminates the template-id.
5051 ///
5052 /// \param Param the template template parameter whose default we are
5053 /// substituting into.
5054 ///
5055 /// \param Converted the list of template arguments provided for template
5056 /// parameters that precede \p Param in the template parameter list.
5057 /// \returns the substituted template argument, or NULL if an error occurred.
5058 static TypeSourceInfo *
5059 SubstDefaultTemplateArgument(Sema &SemaRef,
5060                              TemplateDecl *Template,
5061                              SourceLocation TemplateLoc,
5062                              SourceLocation RAngleLoc,
5063                              TemplateTypeParmDecl *Param,
5064                              SmallVectorImpl<TemplateArgument> &Converted) {
5065   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5066 
5067   // If the argument type is dependent, instantiate it now based
5068   // on the previously-computed template arguments.
5069   if (ArgType->getType()->isInstantiationDependentType()) {
5070     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5071                                      Param, Template, Converted,
5072                                      SourceRange(TemplateLoc, RAngleLoc));
5073     if (Inst.isInvalid())
5074       return nullptr;
5075 
5076     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5077 
5078     // Only substitute for the innermost template argument list.
5079     MultiLevelTemplateArgumentList TemplateArgLists;
5080     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5081     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5082       TemplateArgLists.addOuterTemplateArguments(None);
5083 
5084     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5085     ArgType =
5086         SemaRef.SubstType(ArgType, TemplateArgLists,
5087                           Param->getDefaultArgumentLoc(), Param->getDeclName());
5088   }
5089 
5090   return ArgType;
5091 }
5092 
5093 /// Substitute template arguments into the default template argument for
5094 /// the given non-type template parameter.
5095 ///
5096 /// \param SemaRef the semantic analysis object for which we are performing
5097 /// the substitution.
5098 ///
5099 /// \param Template the template that we are synthesizing template arguments
5100 /// for.
5101 ///
5102 /// \param TemplateLoc the location of the template name that started the
5103 /// template-id we are checking.
5104 ///
5105 /// \param RAngleLoc the location of the right angle bracket ('>') that
5106 /// terminates the template-id.
5107 ///
5108 /// \param Param the non-type template parameter whose default we are
5109 /// substituting into.
5110 ///
5111 /// \param Converted the list of template arguments provided for template
5112 /// parameters that precede \p Param in the template parameter list.
5113 ///
5114 /// \returns the substituted template argument, or NULL if an error occurred.
5115 static ExprResult
5116 SubstDefaultTemplateArgument(Sema &SemaRef,
5117                              TemplateDecl *Template,
5118                              SourceLocation TemplateLoc,
5119                              SourceLocation RAngleLoc,
5120                              NonTypeTemplateParmDecl *Param,
5121                         SmallVectorImpl<TemplateArgument> &Converted) {
5122   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5123                                    Param, Template, Converted,
5124                                    SourceRange(TemplateLoc, RAngleLoc));
5125   if (Inst.isInvalid())
5126     return ExprError();
5127 
5128   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5129 
5130   // Only substitute for the innermost template argument list.
5131   MultiLevelTemplateArgumentList TemplateArgLists;
5132   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5133   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5134     TemplateArgLists.addOuterTemplateArguments(None);
5135 
5136   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5137   EnterExpressionEvaluationContext ConstantEvaluated(
5138       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5139   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5140 }
5141 
5142 /// Substitute template arguments into the default template argument for
5143 /// the given template template parameter.
5144 ///
5145 /// \param SemaRef the semantic analysis object for which we are performing
5146 /// the substitution.
5147 ///
5148 /// \param Template the template that we are synthesizing template arguments
5149 /// for.
5150 ///
5151 /// \param TemplateLoc the location of the template name that started the
5152 /// template-id we are checking.
5153 ///
5154 /// \param RAngleLoc the location of the right angle bracket ('>') that
5155 /// terminates the template-id.
5156 ///
5157 /// \param Param the template template parameter whose default we are
5158 /// substituting into.
5159 ///
5160 /// \param Converted the list of template arguments provided for template
5161 /// parameters that precede \p Param in the template parameter list.
5162 ///
5163 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5164 /// source-location information) that precedes the template name.
5165 ///
5166 /// \returns the substituted template argument, or NULL if an error occurred.
5167 static TemplateName
5168 SubstDefaultTemplateArgument(Sema &SemaRef,
5169                              TemplateDecl *Template,
5170                              SourceLocation TemplateLoc,
5171                              SourceLocation RAngleLoc,
5172                              TemplateTemplateParmDecl *Param,
5173                        SmallVectorImpl<TemplateArgument> &Converted,
5174                              NestedNameSpecifierLoc &QualifierLoc) {
5175   Sema::InstantiatingTemplate Inst(
5176       SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
5177       SourceRange(TemplateLoc, RAngleLoc));
5178   if (Inst.isInvalid())
5179     return TemplateName();
5180 
5181   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5182 
5183   // Only substitute for the innermost template argument list.
5184   MultiLevelTemplateArgumentList TemplateArgLists;
5185   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5186   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5187     TemplateArgLists.addOuterTemplateArguments(None);
5188 
5189   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5190   // Substitute into the nested-name-specifier first,
5191   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5192   if (QualifierLoc) {
5193     QualifierLoc =
5194         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5195     if (!QualifierLoc)
5196       return TemplateName();
5197   }
5198 
5199   return SemaRef.SubstTemplateName(
5200              QualifierLoc,
5201              Param->getDefaultArgument().getArgument().getAsTemplate(),
5202              Param->getDefaultArgument().getTemplateNameLoc(),
5203              TemplateArgLists);
5204 }
5205 
5206 /// If the given template parameter has a default template
5207 /// argument, substitute into that default template argument and
5208 /// return the corresponding template argument.
5209 TemplateArgumentLoc
5210 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
5211                                               SourceLocation TemplateLoc,
5212                                               SourceLocation RAngleLoc,
5213                                               Decl *Param,
5214                                               SmallVectorImpl<TemplateArgument>
5215                                                 &Converted,
5216                                               bool &HasDefaultArg) {
5217   HasDefaultArg = false;
5218 
5219   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5220     if (!hasVisibleDefaultArgument(TypeParm))
5221       return TemplateArgumentLoc();
5222 
5223     HasDefaultArg = true;
5224     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
5225                                                       TemplateLoc,
5226                                                       RAngleLoc,
5227                                                       TypeParm,
5228                                                       Converted);
5229     if (DI)
5230       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5231 
5232     return TemplateArgumentLoc();
5233   }
5234 
5235   if (NonTypeTemplateParmDecl *NonTypeParm
5236         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5237     if (!hasVisibleDefaultArgument(NonTypeParm))
5238       return TemplateArgumentLoc();
5239 
5240     HasDefaultArg = true;
5241     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
5242                                                   TemplateLoc,
5243                                                   RAngleLoc,
5244                                                   NonTypeParm,
5245                                                   Converted);
5246     if (Arg.isInvalid())
5247       return TemplateArgumentLoc();
5248 
5249     Expr *ArgE = Arg.getAs<Expr>();
5250     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5251   }
5252 
5253   TemplateTemplateParmDecl *TempTempParm
5254     = cast<TemplateTemplateParmDecl>(Param);
5255   if (!hasVisibleDefaultArgument(TempTempParm))
5256     return TemplateArgumentLoc();
5257 
5258   HasDefaultArg = true;
5259   NestedNameSpecifierLoc QualifierLoc;
5260   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
5261                                                     TemplateLoc,
5262                                                     RAngleLoc,
5263                                                     TempTempParm,
5264                                                     Converted,
5265                                                     QualifierLoc);
5266   if (TName.isNull())
5267     return TemplateArgumentLoc();
5268 
5269   return TemplateArgumentLoc(
5270       Context, TemplateArgument(TName),
5271       TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5272       TempTempParm->getDefaultArgument().getTemplateNameLoc());
5273 }
5274 
5275 /// Convert a template-argument that we parsed as a type into a template, if
5276 /// possible. C++ permits injected-class-names to perform dual service as
5277 /// template template arguments and as template type arguments.
5278 static TemplateArgumentLoc
5279 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5280   // Extract and step over any surrounding nested-name-specifier.
5281   NestedNameSpecifierLoc QualLoc;
5282   if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5283     if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5284       return TemplateArgumentLoc();
5285 
5286     QualLoc = ETLoc.getQualifierLoc();
5287     TLoc = ETLoc.getNamedTypeLoc();
5288   }
5289   // If this type was written as an injected-class-name, it can be used as a
5290   // template template argument.
5291   if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5292     return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5293                                QualLoc, InjLoc.getNameLoc());
5294 
5295   // If this type was written as an injected-class-name, it may have been
5296   // converted to a RecordType during instantiation. If the RecordType is
5297   // *not* wrapped in a TemplateSpecializationType and denotes a class
5298   // template specialization, it must have come from an injected-class-name.
5299   if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5300     if (auto *CTSD =
5301             dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5302       return TemplateArgumentLoc(Context,
5303                                  TemplateName(CTSD->getSpecializedTemplate()),
5304                                  QualLoc, RecLoc.getNameLoc());
5305 
5306   return TemplateArgumentLoc();
5307 }
5308 
5309 /// Check that the given template argument corresponds to the given
5310 /// template parameter.
5311 ///
5312 /// \param Param The template parameter against which the argument will be
5313 /// checked.
5314 ///
5315 /// \param Arg The template argument, which may be updated due to conversions.
5316 ///
5317 /// \param Template The template in which the template argument resides.
5318 ///
5319 /// \param TemplateLoc The location of the template name for the template
5320 /// whose argument list we're matching.
5321 ///
5322 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5323 /// the template argument list.
5324 ///
5325 /// \param ArgumentPackIndex The index into the argument pack where this
5326 /// argument will be placed. Only valid if the parameter is a parameter pack.
5327 ///
5328 /// \param Converted The checked, converted argument will be added to the
5329 /// end of this small vector.
5330 ///
5331 /// \param CTAK Describes how we arrived at this particular template argument:
5332 /// explicitly written, deduced, etc.
5333 ///
5334 /// \returns true on error, false otherwise.
5335 bool Sema::CheckTemplateArgument(NamedDecl *Param,
5336                                  TemplateArgumentLoc &Arg,
5337                                  NamedDecl *Template,
5338                                  SourceLocation TemplateLoc,
5339                                  SourceLocation RAngleLoc,
5340                                  unsigned ArgumentPackIndex,
5341                             SmallVectorImpl<TemplateArgument> &Converted,
5342                                  CheckTemplateArgumentKind CTAK) {
5343   // Check template type parameters.
5344   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5345     return CheckTemplateTypeArgument(TTP, Arg, Converted);
5346 
5347   // Check non-type template parameters.
5348   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5349     // Do substitution on the type of the non-type template parameter
5350     // with the template arguments we've seen thus far.  But if the
5351     // template has a dependent context then we cannot substitute yet.
5352     QualType NTTPType = NTTP->getType();
5353     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5354       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5355 
5356     if (NTTPType->isInstantiationDependentType() &&
5357         !isa<TemplateTemplateParmDecl>(Template) &&
5358         !Template->getDeclContext()->isDependentContext()) {
5359       // Do substitution on the type of the non-type template parameter.
5360       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5361                                  NTTP, Converted,
5362                                  SourceRange(TemplateLoc, RAngleLoc));
5363       if (Inst.isInvalid())
5364         return true;
5365 
5366       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
5367                                         Converted);
5368 
5369       // If the parameter is a pack expansion, expand this slice of the pack.
5370       if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5371         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5372                                                            ArgumentPackIndex);
5373         NTTPType = SubstType(PET->getPattern(),
5374                              MultiLevelTemplateArgumentList(TemplateArgs),
5375                              NTTP->getLocation(),
5376                              NTTP->getDeclName());
5377       } else {
5378         NTTPType = SubstType(NTTPType,
5379                              MultiLevelTemplateArgumentList(TemplateArgs),
5380                              NTTP->getLocation(),
5381                              NTTP->getDeclName());
5382       }
5383 
5384       // If that worked, check the non-type template parameter type
5385       // for validity.
5386       if (!NTTPType.isNull())
5387         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5388                                                      NTTP->getLocation());
5389       if (NTTPType.isNull())
5390         return true;
5391     }
5392 
5393     switch (Arg.getArgument().getKind()) {
5394     case TemplateArgument::Null:
5395       llvm_unreachable("Should never see a NULL template argument here");
5396 
5397     case TemplateArgument::Expression: {
5398       TemplateArgument Result;
5399       unsigned CurSFINAEErrors = NumSFINAEErrors;
5400       ExprResult Res =
5401         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
5402                               Result, CTAK);
5403       if (Res.isInvalid())
5404         return true;
5405       // If the current template argument causes an error, give up now.
5406       if (CurSFINAEErrors < NumSFINAEErrors)
5407         return true;
5408 
5409       // If the resulting expression is new, then use it in place of the
5410       // old expression in the template argument.
5411       if (Res.get() != Arg.getArgument().getAsExpr()) {
5412         TemplateArgument TA(Res.get());
5413         Arg = TemplateArgumentLoc(TA, Res.get());
5414       }
5415 
5416       Converted.push_back(Result);
5417       break;
5418     }
5419 
5420     case TemplateArgument::Declaration:
5421     case TemplateArgument::Integral:
5422     case TemplateArgument::NullPtr:
5423       // We've already checked this template argument, so just copy
5424       // it to the list of converted arguments.
5425       Converted.push_back(Arg.getArgument());
5426       break;
5427 
5428     case TemplateArgument::Template:
5429     case TemplateArgument::TemplateExpansion:
5430       // We were given a template template argument. It may not be ill-formed;
5431       // see below.
5432       if (DependentTemplateName *DTN
5433             = Arg.getArgument().getAsTemplateOrTemplatePattern()
5434                                               .getAsDependentTemplateName()) {
5435         // We have a template argument such as \c T::template X, which we
5436         // parsed as a template template argument. However, since we now
5437         // know that we need a non-type template argument, convert this
5438         // template name into an expression.
5439 
5440         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5441                                      Arg.getTemplateNameLoc());
5442 
5443         CXXScopeSpec SS;
5444         SS.Adopt(Arg.getTemplateQualifierLoc());
5445         // FIXME: the template-template arg was a DependentTemplateName,
5446         // so it was provided with a template keyword. However, its source
5447         // location is not stored in the template argument structure.
5448         SourceLocation TemplateKWLoc;
5449         ExprResult E = DependentScopeDeclRefExpr::Create(
5450             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5451             nullptr);
5452 
5453         // If we parsed the template argument as a pack expansion, create a
5454         // pack expansion expression.
5455         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5456           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5457           if (E.isInvalid())
5458             return true;
5459         }
5460 
5461         TemplateArgument Result;
5462         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
5463         if (E.isInvalid())
5464           return true;
5465 
5466         Converted.push_back(Result);
5467         break;
5468       }
5469 
5470       // We have a template argument that actually does refer to a class
5471       // template, alias template, or template template parameter, and
5472       // therefore cannot be a non-type template argument.
5473       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5474         << Arg.getSourceRange();
5475 
5476       Diag(Param->getLocation(), diag::note_template_param_here);
5477       return true;
5478 
5479     case TemplateArgument::Type: {
5480       // We have a non-type template parameter but the template
5481       // argument is a type.
5482 
5483       // C++ [temp.arg]p2:
5484       //   In a template-argument, an ambiguity between a type-id and
5485       //   an expression is resolved to a type-id, regardless of the
5486       //   form of the corresponding template-parameter.
5487       //
5488       // We warn specifically about this case, since it can be rather
5489       // confusing for users.
5490       QualType T = Arg.getArgument().getAsType();
5491       SourceRange SR = Arg.getSourceRange();
5492       if (T->isFunctionType())
5493         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5494       else
5495         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5496       Diag(Param->getLocation(), diag::note_template_param_here);
5497       return true;
5498     }
5499 
5500     case TemplateArgument::Pack:
5501       llvm_unreachable("Caller must expand template argument packs");
5502     }
5503 
5504     return false;
5505   }
5506 
5507 
5508   // Check template template parameters.
5509   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5510 
5511   TemplateParameterList *Params = TempParm->getTemplateParameters();
5512   if (TempParm->isExpandedParameterPack())
5513     Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5514 
5515   // Substitute into the template parameter list of the template
5516   // template parameter, since previously-supplied template arguments
5517   // may appear within the template template parameter.
5518   //
5519   // FIXME: Skip this if the parameters aren't instantiation-dependent.
5520   {
5521     // Set up a template instantiation context.
5522     LocalInstantiationScope Scope(*this);
5523     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5524                                TempParm, Converted,
5525                                SourceRange(TemplateLoc, RAngleLoc));
5526     if (Inst.isInvalid())
5527       return true;
5528 
5529     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5530     Params = SubstTemplateParams(Params, CurContext,
5531                                  MultiLevelTemplateArgumentList(TemplateArgs));
5532     if (!Params)
5533       return true;
5534   }
5535 
5536   // C++1z [temp.local]p1: (DR1004)
5537   //   When [the injected-class-name] is used [...] as a template-argument for
5538   //   a template template-parameter [...] it refers to the class template
5539   //   itself.
5540   if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5541     TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5542         Context, Arg.getTypeSourceInfo()->getTypeLoc());
5543     if (!ConvertedArg.getArgument().isNull())
5544       Arg = ConvertedArg;
5545   }
5546 
5547   switch (Arg.getArgument().getKind()) {
5548   case TemplateArgument::Null:
5549     llvm_unreachable("Should never see a NULL template argument here");
5550 
5551   case TemplateArgument::Template:
5552   case TemplateArgument::TemplateExpansion:
5553     if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5554       return true;
5555 
5556     Converted.push_back(Arg.getArgument());
5557     break;
5558 
5559   case TemplateArgument::Expression:
5560   case TemplateArgument::Type:
5561     // We have a template template parameter but the template
5562     // argument does not refer to a template.
5563     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5564       << getLangOpts().CPlusPlus11;
5565     return true;
5566 
5567   case TemplateArgument::Declaration:
5568     llvm_unreachable("Declaration argument with template template parameter");
5569   case TemplateArgument::Integral:
5570     llvm_unreachable("Integral argument with template template parameter");
5571   case TemplateArgument::NullPtr:
5572     llvm_unreachable("Null pointer argument with template template parameter");
5573 
5574   case TemplateArgument::Pack:
5575     llvm_unreachable("Caller must expand template argument packs");
5576   }
5577 
5578   return false;
5579 }
5580 
5581 /// Diagnose a missing template argument.
5582 template<typename TemplateParmDecl>
5583 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5584                                     TemplateDecl *TD,
5585                                     const TemplateParmDecl *D,
5586                                     TemplateArgumentListInfo &Args) {
5587   // Dig out the most recent declaration of the template parameter; there may be
5588   // declarations of the template that are more recent than TD.
5589   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5590                                  ->getTemplateParameters()
5591                                  ->getParam(D->getIndex()));
5592 
5593   // If there's a default argument that's not visible, diagnose that we're
5594   // missing a module import.
5595   llvm::SmallVector<Module*, 8> Modules;
5596   if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
5597     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5598                             D->getDefaultArgumentLoc(), Modules,
5599                             Sema::MissingImportKind::DefaultArgument,
5600                             /*Recover*/true);
5601     return true;
5602   }
5603 
5604   // FIXME: If there's a more recent default argument that *is* visible,
5605   // diagnose that it was declared too late.
5606 
5607   TemplateParameterList *Params = TD->getTemplateParameters();
5608 
5609   S.Diag(Loc, diag::err_template_arg_list_different_arity)
5610     << /*not enough args*/0
5611     << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5612     << TD;
5613   S.Diag(TD->getLocation(), diag::note_template_decl_here)
5614     << Params->getSourceRange();
5615   return true;
5616 }
5617 
5618 /// Check that the given template argument list is well-formed
5619 /// for specializing the given template.
5620 bool Sema::CheckTemplateArgumentList(
5621     TemplateDecl *Template, SourceLocation TemplateLoc,
5622     TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5623     SmallVectorImpl<TemplateArgument> &Converted,
5624     bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5625 
5626   if (ConstraintsNotSatisfied)
5627     *ConstraintsNotSatisfied = false;
5628 
5629   // Make a copy of the template arguments for processing.  Only make the
5630   // changes at the end when successful in matching the arguments to the
5631   // template.
5632   TemplateArgumentListInfo NewArgs = TemplateArgs;
5633 
5634   // Make sure we get the template parameter list from the most
5635   // recentdeclaration, since that is the only one that has is guaranteed to
5636   // have all the default template argument information.
5637   TemplateParameterList *Params =
5638       cast<TemplateDecl>(Template->getMostRecentDecl())
5639           ->getTemplateParameters();
5640 
5641   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5642 
5643   // C++ [temp.arg]p1:
5644   //   [...] The type and form of each template-argument specified in
5645   //   a template-id shall match the type and form specified for the
5646   //   corresponding parameter declared by the template in its
5647   //   template-parameter-list.
5648   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5649   SmallVector<TemplateArgument, 2> ArgumentPack;
5650   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5651   LocalInstantiationScope InstScope(*this, true);
5652   for (TemplateParameterList::iterator Param = Params->begin(),
5653                                        ParamEnd = Params->end();
5654        Param != ParamEnd; /* increment in loop */) {
5655     // If we have an expanded parameter pack, make sure we don't have too
5656     // many arguments.
5657     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5658       if (*Expansions == ArgumentPack.size()) {
5659         // We're done with this parameter pack. Pack up its arguments and add
5660         // them to the list.
5661         Converted.push_back(
5662             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5663         ArgumentPack.clear();
5664 
5665         // This argument is assigned to the next parameter.
5666         ++Param;
5667         continue;
5668       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5669         // Not enough arguments for this parameter pack.
5670         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5671           << /*not enough args*/0
5672           << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5673           << Template;
5674         Diag(Template->getLocation(), diag::note_template_decl_here)
5675           << Params->getSourceRange();
5676         return true;
5677       }
5678     }
5679 
5680     if (ArgIdx < NumArgs) {
5681       // Check the template argument we were given.
5682       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5683                                 TemplateLoc, RAngleLoc,
5684                                 ArgumentPack.size(), Converted))
5685         return true;
5686 
5687       bool PackExpansionIntoNonPack =
5688           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5689           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5690       if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5691                                        isa<ConceptDecl>(Template))) {
5692         // Core issue 1430: we have a pack expansion as an argument to an
5693         // alias template, and it's not part of a parameter pack. This
5694         // can't be canonicalized, so reject it now.
5695         // As for concepts - we cannot normalize constraints where this
5696         // situation exists.
5697         Diag(NewArgs[ArgIdx].getLocation(),
5698              diag::err_template_expansion_into_fixed_list)
5699           << (isa<ConceptDecl>(Template) ? 1 : 0)
5700           << NewArgs[ArgIdx].getSourceRange();
5701         Diag((*Param)->getLocation(), diag::note_template_param_here);
5702         return true;
5703       }
5704 
5705       // We're now done with this argument.
5706       ++ArgIdx;
5707 
5708       if ((*Param)->isTemplateParameterPack()) {
5709         // The template parameter was a template parameter pack, so take the
5710         // deduced argument and place it on the argument pack. Note that we
5711         // stay on the same template parameter so that we can deduce more
5712         // arguments.
5713         ArgumentPack.push_back(Converted.pop_back_val());
5714       } else {
5715         // Move to the next template parameter.
5716         ++Param;
5717       }
5718 
5719       // If we just saw a pack expansion into a non-pack, then directly convert
5720       // the remaining arguments, because we don't know what parameters they'll
5721       // match up with.
5722       if (PackExpansionIntoNonPack) {
5723         if (!ArgumentPack.empty()) {
5724           // If we were part way through filling in an expanded parameter pack,
5725           // fall back to just producing individual arguments.
5726           Converted.insert(Converted.end(),
5727                            ArgumentPack.begin(), ArgumentPack.end());
5728           ArgumentPack.clear();
5729         }
5730 
5731         while (ArgIdx < NumArgs) {
5732           Converted.push_back(NewArgs[ArgIdx].getArgument());
5733           ++ArgIdx;
5734         }
5735 
5736         return false;
5737       }
5738 
5739       continue;
5740     }
5741 
5742     // If we're checking a partial template argument list, we're done.
5743     if (PartialTemplateArgs) {
5744       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5745         Converted.push_back(
5746             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5747       return false;
5748     }
5749 
5750     // If we have a template parameter pack with no more corresponding
5751     // arguments, just break out now and we'll fill in the argument pack below.
5752     if ((*Param)->isTemplateParameterPack()) {
5753       assert(!getExpandedPackSize(*Param) &&
5754              "Should have dealt with this already");
5755 
5756       // A non-expanded parameter pack before the end of the parameter list
5757       // only occurs for an ill-formed template parameter list, unless we've
5758       // got a partial argument list for a function template, so just bail out.
5759       if (Param + 1 != ParamEnd)
5760         return true;
5761 
5762       Converted.push_back(
5763           TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5764       ArgumentPack.clear();
5765 
5766       ++Param;
5767       continue;
5768     }
5769 
5770     // Check whether we have a default argument.
5771     TemplateArgumentLoc Arg;
5772 
5773     // Retrieve the default template argument from the template
5774     // parameter. For each kind of template parameter, we substitute the
5775     // template arguments provided thus far and any "outer" template arguments
5776     // (when the template parameter was part of a nested template) into
5777     // the default argument.
5778     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5779       if (!hasVisibleDefaultArgument(TTP))
5780         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5781                                        NewArgs);
5782 
5783       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5784                                                              Template,
5785                                                              TemplateLoc,
5786                                                              RAngleLoc,
5787                                                              TTP,
5788                                                              Converted);
5789       if (!ArgType)
5790         return true;
5791 
5792       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5793                                 ArgType);
5794     } else if (NonTypeTemplateParmDecl *NTTP
5795                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5796       if (!hasVisibleDefaultArgument(NTTP))
5797         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5798                                        NewArgs);
5799 
5800       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5801                                                               TemplateLoc,
5802                                                               RAngleLoc,
5803                                                               NTTP,
5804                                                               Converted);
5805       if (E.isInvalid())
5806         return true;
5807 
5808       Expr *Ex = E.getAs<Expr>();
5809       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5810     } else {
5811       TemplateTemplateParmDecl *TempParm
5812         = cast<TemplateTemplateParmDecl>(*Param);
5813 
5814       if (!hasVisibleDefaultArgument(TempParm))
5815         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5816                                        NewArgs);
5817 
5818       NestedNameSpecifierLoc QualifierLoc;
5819       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5820                                                        TemplateLoc,
5821                                                        RAngleLoc,
5822                                                        TempParm,
5823                                                        Converted,
5824                                                        QualifierLoc);
5825       if (Name.isNull())
5826         return true;
5827 
5828       Arg = TemplateArgumentLoc(
5829           Context, TemplateArgument(Name), QualifierLoc,
5830           TempParm->getDefaultArgument().getTemplateNameLoc());
5831     }
5832 
5833     // Introduce an instantiation record that describes where we are using
5834     // the default template argument. We're not actually instantiating a
5835     // template here, we just create this object to put a note into the
5836     // context stack.
5837     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5838                                SourceRange(TemplateLoc, RAngleLoc));
5839     if (Inst.isInvalid())
5840       return true;
5841 
5842     // Check the default template argument.
5843     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5844                               RAngleLoc, 0, Converted))
5845       return true;
5846 
5847     // Core issue 150 (assumed resolution): if this is a template template
5848     // parameter, keep track of the default template arguments from the
5849     // template definition.
5850     if (isTemplateTemplateParameter)
5851       NewArgs.addArgument(Arg);
5852 
5853     // Move to the next template parameter and argument.
5854     ++Param;
5855     ++ArgIdx;
5856   }
5857 
5858   // If we're performing a partial argument substitution, allow any trailing
5859   // pack expansions; they might be empty. This can happen even if
5860   // PartialTemplateArgs is false (the list of arguments is complete but
5861   // still dependent).
5862   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5863       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5864     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5865       Converted.push_back(NewArgs[ArgIdx++].getArgument());
5866   }
5867 
5868   // If we have any leftover arguments, then there were too many arguments.
5869   // Complain and fail.
5870   if (ArgIdx < NumArgs) {
5871     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5872         << /*too many args*/1
5873         << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5874         << Template
5875         << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5876     Diag(Template->getLocation(), diag::note_template_decl_here)
5877         << Params->getSourceRange();
5878     return true;
5879   }
5880 
5881   // No problems found with the new argument list, propagate changes back
5882   // to caller.
5883   if (UpdateArgsWithConversions)
5884     TemplateArgs = std::move(NewArgs);
5885 
5886   if (!PartialTemplateArgs &&
5887       EnsureTemplateArgumentListConstraints(
5888         Template, Converted, SourceRange(TemplateLoc,
5889                                          TemplateArgs.getRAngleLoc()))) {
5890     if (ConstraintsNotSatisfied)
5891       *ConstraintsNotSatisfied = true;
5892     return true;
5893   }
5894 
5895   return false;
5896 }
5897 
5898 namespace {
5899   class UnnamedLocalNoLinkageFinder
5900     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5901   {
5902     Sema &S;
5903     SourceRange SR;
5904 
5905     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5906 
5907   public:
5908     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5909 
5910     bool Visit(QualType T) {
5911       return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5912     }
5913 
5914 #define TYPE(Class, Parent) \
5915     bool Visit##Class##Type(const Class##Type *);
5916 #define ABSTRACT_TYPE(Class, Parent) \
5917     bool Visit##Class##Type(const Class##Type *) { return false; }
5918 #define NON_CANONICAL_TYPE(Class, Parent) \
5919     bool Visit##Class##Type(const Class##Type *) { return false; }
5920 #include "clang/AST/TypeNodes.inc"
5921 
5922     bool VisitTagDecl(const TagDecl *Tag);
5923     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5924   };
5925 } // end anonymous namespace
5926 
5927 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5928   return false;
5929 }
5930 
5931 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5932   return Visit(T->getElementType());
5933 }
5934 
5935 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5936   return Visit(T->getPointeeType());
5937 }
5938 
5939 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5940                                                     const BlockPointerType* T) {
5941   return Visit(T->getPointeeType());
5942 }
5943 
5944 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5945                                                 const LValueReferenceType* T) {
5946   return Visit(T->getPointeeType());
5947 }
5948 
5949 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5950                                                 const RValueReferenceType* T) {
5951   return Visit(T->getPointeeType());
5952 }
5953 
5954 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5955                                                   const MemberPointerType* T) {
5956   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5957 }
5958 
5959 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5960                                                   const ConstantArrayType* T) {
5961   return Visit(T->getElementType());
5962 }
5963 
5964 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5965                                                  const IncompleteArrayType* T) {
5966   return Visit(T->getElementType());
5967 }
5968 
5969 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5970                                                    const VariableArrayType* T) {
5971   return Visit(T->getElementType());
5972 }
5973 
5974 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
5975                                             const DependentSizedArrayType* T) {
5976   return Visit(T->getElementType());
5977 }
5978 
5979 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
5980                                          const DependentSizedExtVectorType* T) {
5981   return Visit(T->getElementType());
5982 }
5983 
5984 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
5985     const DependentSizedMatrixType *T) {
5986   return Visit(T->getElementType());
5987 }
5988 
5989 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
5990     const DependentAddressSpaceType *T) {
5991   return Visit(T->getPointeeType());
5992 }
5993 
5994 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
5995   return Visit(T->getElementType());
5996 }
5997 
5998 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
5999     const DependentVectorType *T) {
6000   return Visit(T->getElementType());
6001 }
6002 
6003 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6004   return Visit(T->getElementType());
6005 }
6006 
6007 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6008     const ConstantMatrixType *T) {
6009   return Visit(T->getElementType());
6010 }
6011 
6012 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6013                                                   const FunctionProtoType* T) {
6014   for (const auto &A : T->param_types()) {
6015     if (Visit(A))
6016       return true;
6017   }
6018 
6019   return Visit(T->getReturnType());
6020 }
6021 
6022 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6023                                                const FunctionNoProtoType* T) {
6024   return Visit(T->getReturnType());
6025 }
6026 
6027 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6028                                                   const UnresolvedUsingType*) {
6029   return false;
6030 }
6031 
6032 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6033   return false;
6034 }
6035 
6036 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6037   return Visit(T->getUnderlyingType());
6038 }
6039 
6040 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6041   return false;
6042 }
6043 
6044 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6045                                                     const UnaryTransformType*) {
6046   return false;
6047 }
6048 
6049 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6050   return Visit(T->getDeducedType());
6051 }
6052 
6053 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6054     const DeducedTemplateSpecializationType *T) {
6055   return Visit(T->getDeducedType());
6056 }
6057 
6058 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6059   return VisitTagDecl(T->getDecl());
6060 }
6061 
6062 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6063   return VisitTagDecl(T->getDecl());
6064 }
6065 
6066 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6067                                                  const TemplateTypeParmType*) {
6068   return false;
6069 }
6070 
6071 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6072                                         const SubstTemplateTypeParmPackType *) {
6073   return false;
6074 }
6075 
6076 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6077                                             const TemplateSpecializationType*) {
6078   return false;
6079 }
6080 
6081 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6082                                               const InjectedClassNameType* T) {
6083   return VisitTagDecl(T->getDecl());
6084 }
6085 
6086 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6087                                                    const DependentNameType* T) {
6088   return VisitNestedNameSpecifier(T->getQualifier());
6089 }
6090 
6091 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6092                                  const DependentTemplateSpecializationType* T) {
6093   if (auto *Q = T->getQualifier())
6094     return VisitNestedNameSpecifier(Q);
6095   return false;
6096 }
6097 
6098 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6099                                                    const PackExpansionType* T) {
6100   return Visit(T->getPattern());
6101 }
6102 
6103 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6104   return false;
6105 }
6106 
6107 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6108                                                    const ObjCInterfaceType *) {
6109   return false;
6110 }
6111 
6112 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6113                                                 const ObjCObjectPointerType *) {
6114   return false;
6115 }
6116 
6117 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6118   return Visit(T->getValueType());
6119 }
6120 
6121 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6122   return false;
6123 }
6124 
6125 bool UnnamedLocalNoLinkageFinder::VisitExtIntType(const ExtIntType *T) {
6126   return false;
6127 }
6128 
6129 bool UnnamedLocalNoLinkageFinder::VisitDependentExtIntType(
6130     const DependentExtIntType *T) {
6131   return false;
6132 }
6133 
6134 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6135   if (Tag->getDeclContext()->isFunctionOrMethod()) {
6136     S.Diag(SR.getBegin(),
6137            S.getLangOpts().CPlusPlus11 ?
6138              diag::warn_cxx98_compat_template_arg_local_type :
6139              diag::ext_template_arg_local_type)
6140       << S.Context.getTypeDeclType(Tag) << SR;
6141     return true;
6142   }
6143 
6144   if (!Tag->hasNameForLinkage()) {
6145     S.Diag(SR.getBegin(),
6146            S.getLangOpts().CPlusPlus11 ?
6147              diag::warn_cxx98_compat_template_arg_unnamed_type :
6148              diag::ext_template_arg_unnamed_type) << SR;
6149     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6150     return true;
6151   }
6152 
6153   return false;
6154 }
6155 
6156 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6157                                                     NestedNameSpecifier *NNS) {
6158   assert(NNS);
6159   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6160     return true;
6161 
6162   switch (NNS->getKind()) {
6163   case NestedNameSpecifier::Identifier:
6164   case NestedNameSpecifier::Namespace:
6165   case NestedNameSpecifier::NamespaceAlias:
6166   case NestedNameSpecifier::Global:
6167   case NestedNameSpecifier::Super:
6168     return false;
6169 
6170   case NestedNameSpecifier::TypeSpec:
6171   case NestedNameSpecifier::TypeSpecWithTemplate:
6172     return Visit(QualType(NNS->getAsType(), 0));
6173   }
6174   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6175 }
6176 
6177 /// Check a template argument against its corresponding
6178 /// template type parameter.
6179 ///
6180 /// This routine implements the semantics of C++ [temp.arg.type]. It
6181 /// returns true if an error occurred, and false otherwise.
6182 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
6183                                  TypeSourceInfo *ArgInfo) {
6184   assert(ArgInfo && "invalid TypeSourceInfo");
6185   QualType Arg = ArgInfo->getType();
6186   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6187 
6188   if (Arg->isVariablyModifiedType()) {
6189     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6190   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6191     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6192   }
6193 
6194   // C++03 [temp.arg.type]p2:
6195   //   A local type, a type with no linkage, an unnamed type or a type
6196   //   compounded from any of these types shall not be used as a
6197   //   template-argument for a template type-parameter.
6198   //
6199   // C++11 allows these, and even in C++03 we allow them as an extension with
6200   // a warning.
6201   if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
6202     UnnamedLocalNoLinkageFinder Finder(*this, SR);
6203     (void)Finder.Visit(Context.getCanonicalType(Arg));
6204   }
6205 
6206   return false;
6207 }
6208 
6209 enum NullPointerValueKind {
6210   NPV_NotNullPointer,
6211   NPV_NullPointer,
6212   NPV_Error
6213 };
6214 
6215 /// Determine whether the given template argument is a null pointer
6216 /// value of the appropriate type.
6217 static NullPointerValueKind
6218 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6219                                    QualType ParamType, Expr *Arg,
6220                                    Decl *Entity = nullptr) {
6221   if (Arg->isValueDependent() || Arg->isTypeDependent())
6222     return NPV_NotNullPointer;
6223 
6224   // dllimport'd entities aren't constant but are available inside of template
6225   // arguments.
6226   if (Entity && Entity->hasAttr<DLLImportAttr>())
6227     return NPV_NotNullPointer;
6228 
6229   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6230     llvm_unreachable(
6231         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6232 
6233   if (!S.getLangOpts().CPlusPlus11)
6234     return NPV_NotNullPointer;
6235 
6236   // Determine whether we have a constant expression.
6237   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6238   if (ArgRV.isInvalid())
6239     return NPV_Error;
6240   Arg = ArgRV.get();
6241 
6242   Expr::EvalResult EvalResult;
6243   SmallVector<PartialDiagnosticAt, 8> Notes;
6244   EvalResult.Diag = &Notes;
6245   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6246       EvalResult.HasSideEffects) {
6247     SourceLocation DiagLoc = Arg->getExprLoc();
6248 
6249     // If our only note is the usual "invalid subexpression" note, just point
6250     // the caret at its location rather than producing an essentially
6251     // redundant note.
6252     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6253         diag::note_invalid_subexpr_in_const_expr) {
6254       DiagLoc = Notes[0].first;
6255       Notes.clear();
6256     }
6257 
6258     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6259       << Arg->getType() << Arg->getSourceRange();
6260     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6261       S.Diag(Notes[I].first, Notes[I].second);
6262 
6263     S.Diag(Param->getLocation(), diag::note_template_param_here);
6264     return NPV_Error;
6265   }
6266 
6267   // C++11 [temp.arg.nontype]p1:
6268   //   - an address constant expression of type std::nullptr_t
6269   if (Arg->getType()->isNullPtrType())
6270     return NPV_NullPointer;
6271 
6272   //   - a constant expression that evaluates to a null pointer value (4.10); or
6273   //   - a constant expression that evaluates to a null member pointer value
6274   //     (4.11); or
6275   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
6276       (EvalResult.Val.isMemberPointer() &&
6277        !EvalResult.Val.getMemberPointerDecl())) {
6278     // If our expression has an appropriate type, we've succeeded.
6279     bool ObjCLifetimeConversion;
6280     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6281         S.IsQualificationConversion(Arg->getType(), ParamType, false,
6282                                      ObjCLifetimeConversion))
6283       return NPV_NullPointer;
6284 
6285     // The types didn't match, but we know we got a null pointer; complain,
6286     // then recover as if the types were correct.
6287     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6288       << Arg->getType() << ParamType << Arg->getSourceRange();
6289     S.Diag(Param->getLocation(), diag::note_template_param_here);
6290     return NPV_NullPointer;
6291   }
6292 
6293   // If we don't have a null pointer value, but we do have a NULL pointer
6294   // constant, suggest a cast to the appropriate type.
6295   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6296     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6297     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6298         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6299         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6300                                       ")");
6301     S.Diag(Param->getLocation(), diag::note_template_param_here);
6302     return NPV_NullPointer;
6303   }
6304 
6305   // FIXME: If we ever want to support general, address-constant expressions
6306   // as non-type template arguments, we should return the ExprResult here to
6307   // be interpreted by the caller.
6308   return NPV_NotNullPointer;
6309 }
6310 
6311 /// Checks whether the given template argument is compatible with its
6312 /// template parameter.
6313 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6314     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6315     Expr *Arg, QualType ArgType) {
6316   bool ObjCLifetimeConversion;
6317   if (ParamType->isPointerType() &&
6318       !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6319       S.IsQualificationConversion(ArgType, ParamType, false,
6320                                   ObjCLifetimeConversion)) {
6321     // For pointer-to-object types, qualification conversions are
6322     // permitted.
6323   } else {
6324     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6325       if (!ParamRef->getPointeeType()->isFunctionType()) {
6326         // C++ [temp.arg.nontype]p5b3:
6327         //   For a non-type template-parameter of type reference to
6328         //   object, no conversions apply. The type referred to by the
6329         //   reference may be more cv-qualified than the (otherwise
6330         //   identical) type of the template- argument. The
6331         //   template-parameter is bound directly to the
6332         //   template-argument, which shall be an lvalue.
6333 
6334         // FIXME: Other qualifiers?
6335         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6336         unsigned ArgQuals = ArgType.getCVRQualifiers();
6337 
6338         if ((ParamQuals | ArgQuals) != ParamQuals) {
6339           S.Diag(Arg->getBeginLoc(),
6340                  diag::err_template_arg_ref_bind_ignores_quals)
6341               << ParamType << Arg->getType() << Arg->getSourceRange();
6342           S.Diag(Param->getLocation(), diag::note_template_param_here);
6343           return true;
6344         }
6345       }
6346     }
6347 
6348     // At this point, the template argument refers to an object or
6349     // function with external linkage. We now need to check whether the
6350     // argument and parameter types are compatible.
6351     if (!S.Context.hasSameUnqualifiedType(ArgType,
6352                                           ParamType.getNonReferenceType())) {
6353       // We can't perform this conversion or binding.
6354       if (ParamType->isReferenceType())
6355         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6356             << ParamType << ArgIn->getType() << Arg->getSourceRange();
6357       else
6358         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6359             << ArgIn->getType() << ParamType << Arg->getSourceRange();
6360       S.Diag(Param->getLocation(), diag::note_template_param_here);
6361       return true;
6362     }
6363   }
6364 
6365   return false;
6366 }
6367 
6368 /// Checks whether the given template argument is the address
6369 /// of an object or function according to C++ [temp.arg.nontype]p1.
6370 static bool
6371 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
6372                                                NonTypeTemplateParmDecl *Param,
6373                                                QualType ParamType,
6374                                                Expr *ArgIn,
6375                                                TemplateArgument &Converted) {
6376   bool Invalid = false;
6377   Expr *Arg = ArgIn;
6378   QualType ArgType = Arg->getType();
6379 
6380   bool AddressTaken = false;
6381   SourceLocation AddrOpLoc;
6382   if (S.getLangOpts().MicrosoftExt) {
6383     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6384     // dereference and address-of operators.
6385     Arg = Arg->IgnoreParenCasts();
6386 
6387     bool ExtWarnMSTemplateArg = false;
6388     UnaryOperatorKind FirstOpKind;
6389     SourceLocation FirstOpLoc;
6390     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6391       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6392       if (UnOpKind == UO_Deref)
6393         ExtWarnMSTemplateArg = true;
6394       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6395         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6396         if (!AddrOpLoc.isValid()) {
6397           FirstOpKind = UnOpKind;
6398           FirstOpLoc = UnOp->getOperatorLoc();
6399         }
6400       } else
6401         break;
6402     }
6403     if (FirstOpLoc.isValid()) {
6404       if (ExtWarnMSTemplateArg)
6405         S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6406             << ArgIn->getSourceRange();
6407 
6408       if (FirstOpKind == UO_AddrOf)
6409         AddressTaken = true;
6410       else if (Arg->getType()->isPointerType()) {
6411         // We cannot let pointers get dereferenced here, that is obviously not a
6412         // constant expression.
6413         assert(FirstOpKind == UO_Deref);
6414         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6415             << Arg->getSourceRange();
6416       }
6417     }
6418   } else {
6419     // See through any implicit casts we added to fix the type.
6420     Arg = Arg->IgnoreImpCasts();
6421 
6422     // C++ [temp.arg.nontype]p1:
6423     //
6424     //   A template-argument for a non-type, non-template
6425     //   template-parameter shall be one of: [...]
6426     //
6427     //     -- the address of an object or function with external
6428     //        linkage, including function templates and function
6429     //        template-ids but excluding non-static class members,
6430     //        expressed as & id-expression where the & is optional if
6431     //        the name refers to a function or array, or if the
6432     //        corresponding template-parameter is a reference; or
6433 
6434     // In C++98/03 mode, give an extension warning on any extra parentheses.
6435     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6436     bool ExtraParens = false;
6437     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6438       if (!Invalid && !ExtraParens) {
6439         S.Diag(Arg->getBeginLoc(),
6440                S.getLangOpts().CPlusPlus11
6441                    ? diag::warn_cxx98_compat_template_arg_extra_parens
6442                    : diag::ext_template_arg_extra_parens)
6443             << Arg->getSourceRange();
6444         ExtraParens = true;
6445       }
6446 
6447       Arg = Parens->getSubExpr();
6448     }
6449 
6450     while (SubstNonTypeTemplateParmExpr *subst =
6451                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6452       Arg = subst->getReplacement()->IgnoreImpCasts();
6453 
6454     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6455       if (UnOp->getOpcode() == UO_AddrOf) {
6456         Arg = UnOp->getSubExpr();
6457         AddressTaken = true;
6458         AddrOpLoc = UnOp->getOperatorLoc();
6459       }
6460     }
6461 
6462     while (SubstNonTypeTemplateParmExpr *subst =
6463                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6464       Arg = subst->getReplacement()->IgnoreImpCasts();
6465   }
6466 
6467   ValueDecl *Entity = nullptr;
6468   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6469     Entity = DRE->getDecl();
6470   else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6471     Entity = CUE->getGuidDecl();
6472 
6473   // If our parameter has pointer type, check for a null template value.
6474   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6475     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6476                                                Entity)) {
6477     case NPV_NullPointer:
6478       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6479       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6480                                    /*isNullPtr=*/true);
6481       return false;
6482 
6483     case NPV_Error:
6484       return true;
6485 
6486     case NPV_NotNullPointer:
6487       break;
6488     }
6489   }
6490 
6491   // Stop checking the precise nature of the argument if it is value dependent,
6492   // it should be checked when instantiated.
6493   if (Arg->isValueDependent()) {
6494     Converted = TemplateArgument(ArgIn);
6495     return false;
6496   }
6497 
6498   if (!Entity) {
6499     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6500         << Arg->getSourceRange();
6501     S.Diag(Param->getLocation(), diag::note_template_param_here);
6502     return true;
6503   }
6504 
6505   // Cannot refer to non-static data members
6506   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6507     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6508         << Entity << Arg->getSourceRange();
6509     S.Diag(Param->getLocation(), diag::note_template_param_here);
6510     return true;
6511   }
6512 
6513   // Cannot refer to non-static member functions
6514   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6515     if (!Method->isStatic()) {
6516       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6517           << Method << Arg->getSourceRange();
6518       S.Diag(Param->getLocation(), diag::note_template_param_here);
6519       return true;
6520     }
6521   }
6522 
6523   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6524   VarDecl *Var = dyn_cast<VarDecl>(Entity);
6525   MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6526 
6527   // A non-type template argument must refer to an object or function.
6528   if (!Func && !Var && !Guid) {
6529     // We found something, but we don't know specifically what it is.
6530     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6531         << Arg->getSourceRange();
6532     S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6533     return true;
6534   }
6535 
6536   // Address / reference template args must have external linkage in C++98.
6537   if (Entity->getFormalLinkage() == InternalLinkage) {
6538     S.Diag(Arg->getBeginLoc(),
6539            S.getLangOpts().CPlusPlus11
6540                ? diag::warn_cxx98_compat_template_arg_object_internal
6541                : diag::ext_template_arg_object_internal)
6542         << !Func << Entity << Arg->getSourceRange();
6543     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6544       << !Func;
6545   } else if (!Entity->hasLinkage()) {
6546     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6547         << !Func << Entity << Arg->getSourceRange();
6548     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6549       << !Func;
6550     return true;
6551   }
6552 
6553   if (Var) {
6554     // A value of reference type is not an object.
6555     if (Var->getType()->isReferenceType()) {
6556       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6557           << Var->getType() << Arg->getSourceRange();
6558       S.Diag(Param->getLocation(), diag::note_template_param_here);
6559       return true;
6560     }
6561 
6562     // A template argument must have static storage duration.
6563     if (Var->getTLSKind()) {
6564       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6565           << Arg->getSourceRange();
6566       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6567       return true;
6568     }
6569   }
6570 
6571   if (AddressTaken && ParamType->isReferenceType()) {
6572     // If we originally had an address-of operator, but the
6573     // parameter has reference type, complain and (if things look
6574     // like they will work) drop the address-of operator.
6575     if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6576                                           ParamType.getNonReferenceType())) {
6577       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6578         << ParamType;
6579       S.Diag(Param->getLocation(), diag::note_template_param_here);
6580       return true;
6581     }
6582 
6583     S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6584       << ParamType
6585       << FixItHint::CreateRemoval(AddrOpLoc);
6586     S.Diag(Param->getLocation(), diag::note_template_param_here);
6587 
6588     ArgType = Entity->getType();
6589   }
6590 
6591   // If the template parameter has pointer type, either we must have taken the
6592   // address or the argument must decay to a pointer.
6593   if (!AddressTaken && ParamType->isPointerType()) {
6594     if (Func) {
6595       // Function-to-pointer decay.
6596       ArgType = S.Context.getPointerType(Func->getType());
6597     } else if (Entity->getType()->isArrayType()) {
6598       // Array-to-pointer decay.
6599       ArgType = S.Context.getArrayDecayedType(Entity->getType());
6600     } else {
6601       // If the template parameter has pointer type but the address of
6602       // this object was not taken, complain and (possibly) recover by
6603       // taking the address of the entity.
6604       ArgType = S.Context.getPointerType(Entity->getType());
6605       if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6606         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6607           << ParamType;
6608         S.Diag(Param->getLocation(), diag::note_template_param_here);
6609         return true;
6610       }
6611 
6612       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6613         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6614 
6615       S.Diag(Param->getLocation(), diag::note_template_param_here);
6616     }
6617   }
6618 
6619   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6620                                                      Arg, ArgType))
6621     return true;
6622 
6623   // Create the template argument.
6624   Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
6625                                S.Context.getCanonicalType(ParamType));
6626   S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6627   return false;
6628 }
6629 
6630 /// Checks whether the given template argument is a pointer to
6631 /// member constant according to C++ [temp.arg.nontype]p1.
6632 static bool CheckTemplateArgumentPointerToMember(Sema &S,
6633                                                  NonTypeTemplateParmDecl *Param,
6634                                                  QualType ParamType,
6635                                                  Expr *&ResultArg,
6636                                                  TemplateArgument &Converted) {
6637   bool Invalid = false;
6638 
6639   Expr *Arg = ResultArg;
6640   bool ObjCLifetimeConversion;
6641 
6642   // C++ [temp.arg.nontype]p1:
6643   //
6644   //   A template-argument for a non-type, non-template
6645   //   template-parameter shall be one of: [...]
6646   //
6647   //     -- a pointer to member expressed as described in 5.3.1.
6648   DeclRefExpr *DRE = nullptr;
6649 
6650   // In C++98/03 mode, give an extension warning on any extra parentheses.
6651   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6652   bool ExtraParens = false;
6653   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6654     if (!Invalid && !ExtraParens) {
6655       S.Diag(Arg->getBeginLoc(),
6656              S.getLangOpts().CPlusPlus11
6657                  ? diag::warn_cxx98_compat_template_arg_extra_parens
6658                  : diag::ext_template_arg_extra_parens)
6659           << Arg->getSourceRange();
6660       ExtraParens = true;
6661     }
6662 
6663     Arg = Parens->getSubExpr();
6664   }
6665 
6666   while (SubstNonTypeTemplateParmExpr *subst =
6667            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6668     Arg = subst->getReplacement()->IgnoreImpCasts();
6669 
6670   // A pointer-to-member constant written &Class::member.
6671   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6672     if (UnOp->getOpcode() == UO_AddrOf) {
6673       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6674       if (DRE && !DRE->getQualifier())
6675         DRE = nullptr;
6676     }
6677   }
6678   // A constant of pointer-to-member type.
6679   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6680     ValueDecl *VD = DRE->getDecl();
6681     if (VD->getType()->isMemberPointerType()) {
6682       if (isa<NonTypeTemplateParmDecl>(VD)) {
6683         if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6684           Converted = TemplateArgument(Arg);
6685         } else {
6686           VD = cast<ValueDecl>(VD->getCanonicalDecl());
6687           Converted = TemplateArgument(VD, ParamType);
6688         }
6689         return Invalid;
6690       }
6691     }
6692 
6693     DRE = nullptr;
6694   }
6695 
6696   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6697 
6698   // Check for a null pointer value.
6699   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6700                                              Entity)) {
6701   case NPV_Error:
6702     return true;
6703   case NPV_NullPointer:
6704     S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6705     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6706                                  /*isNullPtr*/true);
6707     return false;
6708   case NPV_NotNullPointer:
6709     break;
6710   }
6711 
6712   if (S.IsQualificationConversion(ResultArg->getType(),
6713                                   ParamType.getNonReferenceType(), false,
6714                                   ObjCLifetimeConversion)) {
6715     ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6716                                     ResultArg->getValueKind())
6717                     .get();
6718   } else if (!S.Context.hasSameUnqualifiedType(
6719                  ResultArg->getType(), ParamType.getNonReferenceType())) {
6720     // We can't perform this conversion.
6721     S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6722         << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6723     S.Diag(Param->getLocation(), diag::note_template_param_here);
6724     return true;
6725   }
6726 
6727   if (!DRE)
6728     return S.Diag(Arg->getBeginLoc(),
6729                   diag::err_template_arg_not_pointer_to_member_form)
6730            << Arg->getSourceRange();
6731 
6732   if (isa<FieldDecl>(DRE->getDecl()) ||
6733       isa<IndirectFieldDecl>(DRE->getDecl()) ||
6734       isa<CXXMethodDecl>(DRE->getDecl())) {
6735     assert((isa<FieldDecl>(DRE->getDecl()) ||
6736             isa<IndirectFieldDecl>(DRE->getDecl()) ||
6737             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
6738            "Only non-static member pointers can make it here");
6739 
6740     // Okay: this is the address of a non-static member, and therefore
6741     // a member pointer constant.
6742     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6743       Converted = TemplateArgument(Arg);
6744     } else {
6745       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6746       Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType));
6747     }
6748     return Invalid;
6749   }
6750 
6751   // We found something else, but we don't know specifically what it is.
6752   S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6753       << Arg->getSourceRange();
6754   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6755   return true;
6756 }
6757 
6758 /// Check a template argument against its corresponding
6759 /// non-type template parameter.
6760 ///
6761 /// This routine implements the semantics of C++ [temp.arg.nontype].
6762 /// If an error occurred, it returns ExprError(); otherwise, it
6763 /// returns the converted template argument. \p ParamType is the
6764 /// type of the non-type template parameter after it has been instantiated.
6765 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6766                                        QualType ParamType, Expr *Arg,
6767                                        TemplateArgument &Converted,
6768                                        CheckTemplateArgumentKind CTAK) {
6769   SourceLocation StartLoc = Arg->getBeginLoc();
6770 
6771   // If the parameter type somehow involves auto, deduce the type now.
6772   DeducedType *DeducedT = ParamType->getContainedDeducedType();
6773   if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
6774     // During template argument deduction, we allow 'decltype(auto)' to
6775     // match an arbitrary dependent argument.
6776     // FIXME: The language rules don't say what happens in this case.
6777     // FIXME: We get an opaque dependent type out of decltype(auto) if the
6778     // expression is merely instantiation-dependent; is this enough?
6779     if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6780       auto *AT = dyn_cast<AutoType>(DeducedT);
6781       if (AT && AT->isDecltypeAuto()) {
6782         Converted = TemplateArgument(Arg);
6783         return Arg;
6784       }
6785     }
6786 
6787     // When checking a deduced template argument, deduce from its type even if
6788     // the type is dependent, in order to check the types of non-type template
6789     // arguments line up properly in partial ordering.
6790     Optional<unsigned> Depth = Param->getDepth() + 1;
6791     Expr *DeductionArg = Arg;
6792     if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6793       DeductionArg = PE->getPattern();
6794     TypeSourceInfo *TSI =
6795         Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
6796     if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
6797       InitializedEntity Entity =
6798           InitializedEntity::InitializeTemplateParameter(ParamType, Param);
6799       InitializationKind Kind = InitializationKind::CreateForInit(
6800           DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
6801       Expr *Inits[1] = {DeductionArg};
6802       ParamType =
6803           DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
6804       if (ParamType.isNull())
6805         return ExprError();
6806     } else if (DeduceAutoType(
6807                    TSI, DeductionArg, ParamType, Depth,
6808                    // We do not check constraints right now because the
6809                    // immediately-declared constraint of the auto type is also
6810                    // an associated constraint, and will be checked along with
6811                    // the other associated constraints after checking the
6812                    // template argument list.
6813                    /*IgnoreConstraints=*/true) == DAR_Failed) {
6814       Diag(Arg->getExprLoc(),
6815            diag::err_non_type_template_parm_type_deduction_failure)
6816         << Param->getDeclName() << Param->getType() << Arg->getType()
6817         << Arg->getSourceRange();
6818       Diag(Param->getLocation(), diag::note_template_param_here);
6819       return ExprError();
6820     }
6821     // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6822     // an error. The error message normally references the parameter
6823     // declaration, but here we'll pass the argument location because that's
6824     // where the parameter type is deduced.
6825     ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6826     if (ParamType.isNull()) {
6827       Diag(Param->getLocation(), diag::note_template_param_here);
6828       return ExprError();
6829     }
6830   }
6831 
6832   // We should have already dropped all cv-qualifiers by now.
6833   assert(!ParamType.hasQualifiers() &&
6834          "non-type template parameter type cannot be qualified");
6835 
6836   // FIXME: When Param is a reference, should we check that Arg is an lvalue?
6837   if (CTAK == CTAK_Deduced &&
6838       (ParamType->isReferenceType()
6839            ? !Context.hasSameType(ParamType.getNonReferenceType(),
6840                                   Arg->getType())
6841            : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
6842     // FIXME: If either type is dependent, we skip the check. This isn't
6843     // correct, since during deduction we're supposed to have replaced each
6844     // template parameter with some unique (non-dependent) placeholder.
6845     // FIXME: If the argument type contains 'auto', we carry on and fail the
6846     // type check in order to force specific types to be more specialized than
6847     // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6848     // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
6849     if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6850         !Arg->getType()->getContainedDeducedType()) {
6851       Converted = TemplateArgument(Arg);
6852       return Arg;
6853     }
6854     // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6855     // we should actually be checking the type of the template argument in P,
6856     // not the type of the template argument deduced from A, against the
6857     // template parameter type.
6858     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6859       << Arg->getType()
6860       << ParamType.getUnqualifiedType();
6861     Diag(Param->getLocation(), diag::note_template_param_here);
6862     return ExprError();
6863   }
6864 
6865   // If either the parameter has a dependent type or the argument is
6866   // type-dependent, there's nothing we can check now. The argument only
6867   // contains an unexpanded pack during partial ordering, and there's
6868   // nothing more we can check in that case.
6869   if (ParamType->isDependentType() || Arg->isTypeDependent() ||
6870       Arg->containsUnexpandedParameterPack()) {
6871     // Force the argument to the type of the parameter to maintain invariants.
6872     auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6873     if (PE)
6874       Arg = PE->getPattern();
6875     ExprResult E = ImpCastExprToType(
6876         Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6877         ParamType->isLValueReferenceType() ? VK_LValue :
6878         ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue);
6879     if (E.isInvalid())
6880       return ExprError();
6881     if (PE) {
6882       // Recreate a pack expansion if we unwrapped one.
6883       E = new (Context)
6884           PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6885                             PE->getNumExpansions());
6886     }
6887     Converted = TemplateArgument(E.get());
6888     return E;
6889   }
6890 
6891   // The initialization of the parameter from the argument is
6892   // a constant-evaluated context.
6893   EnterExpressionEvaluationContext ConstantEvaluated(
6894       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6895 
6896   if (getLangOpts().CPlusPlus17) {
6897     QualType CanonParamType = Context.getCanonicalType(ParamType);
6898 
6899     // Avoid making a copy when initializing a template parameter of class type
6900     // from a template parameter object of the same type. This is going beyond
6901     // the standard, but is required for soundness: in
6902     //   template<A a> struct X { X *p; X<a> *q; };
6903     // ... we need p and q to have the same type.
6904     //
6905     // Similarly, don't inject a call to a copy constructor when initializing
6906     // from a template parameter of the same type.
6907     Expr *InnerArg = Arg->IgnoreParenImpCasts();
6908     if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
6909         Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
6910       NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
6911       if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
6912         Converted = TemplateArgument(TPO, CanonParamType);
6913         return Arg;
6914       }
6915       if (isa<NonTypeTemplateParmDecl>(ND)) {
6916         Converted = TemplateArgument(Arg);
6917         return Arg;
6918       }
6919     }
6920 
6921     // C++17 [temp.arg.nontype]p1:
6922     //   A template-argument for a non-type template parameter shall be
6923     //   a converted constant expression of the type of the template-parameter.
6924     APValue Value;
6925     ExprResult ArgResult = CheckConvertedConstantExpression(
6926         Arg, ParamType, Value, CCEK_TemplateArg, Param);
6927     if (ArgResult.isInvalid())
6928       return ExprError();
6929 
6930     // For a value-dependent argument, CheckConvertedConstantExpression is
6931     // permitted (and expected) to be unable to determine a value.
6932     if (ArgResult.get()->isValueDependent()) {
6933       Converted = TemplateArgument(ArgResult.get());
6934       return ArgResult;
6935     }
6936 
6937     // Convert the APValue to a TemplateArgument.
6938     switch (Value.getKind()) {
6939     case APValue::None:
6940       assert(ParamType->isNullPtrType());
6941       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6942       break;
6943     case APValue::Indeterminate:
6944       llvm_unreachable("result of constant evaluation should be initialized");
6945       break;
6946     case APValue::Int:
6947       assert(ParamType->isIntegralOrEnumerationType());
6948       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6949       break;
6950     case APValue::MemberPointer: {
6951       assert(ParamType->isMemberPointerType());
6952 
6953       // FIXME: We need TemplateArgument representation and mangling for these.
6954       if (!Value.getMemberPointerPath().empty()) {
6955         Diag(Arg->getBeginLoc(),
6956              diag::err_template_arg_member_ptr_base_derived_not_supported)
6957             << Value.getMemberPointerDecl() << ParamType
6958             << Arg->getSourceRange();
6959         return ExprError();
6960       }
6961 
6962       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
6963       Converted = VD ? TemplateArgument(VD, CanonParamType)
6964                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6965       break;
6966     }
6967     case APValue::LValue: {
6968       //   For a non-type template-parameter of pointer or reference type,
6969       //   the value of the constant expression shall not refer to
6970       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
6971              ParamType->isNullPtrType());
6972       // -- a temporary object
6973       // -- a string literal
6974       // -- the result of a typeid expression, or
6975       // -- a predefined __func__ variable
6976       APValue::LValueBase Base = Value.getLValueBase();
6977       auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
6978       if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) {
6979         Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6980             << Arg->getSourceRange();
6981         return ExprError();
6982       }
6983       // -- a subobject
6984       // FIXME: Until C++20
6985       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
6986           VD && VD->getType()->isArrayType() &&
6987           Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
6988           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
6989         // Per defect report (no number yet):
6990         //   ... other than a pointer to the first element of a complete array
6991         //       object.
6992       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
6993                  Value.isLValueOnePastTheEnd()) {
6994         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
6995           << Value.getAsString(Context, ParamType);
6996         return ExprError();
6997       }
6998       assert((VD || !ParamType->isReferenceType()) &&
6999              "null reference should not be a constant expression");
7000       assert((!VD || !ParamType->isNullPtrType()) &&
7001              "non-null value of type nullptr_t?");
7002       Converted = VD ? TemplateArgument(VD, CanonParamType)
7003                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
7004       break;
7005     }
7006     case APValue::Struct:
7007     case APValue::Union:
7008       // Get or create the corresponding template parameter object.
7009       Converted = TemplateArgument(
7010           Context.getTemplateParamObjectDecl(CanonParamType, Value),
7011           CanonParamType);
7012       break;
7013     case APValue::AddrLabelDiff:
7014       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7015     case APValue::FixedPoint:
7016     case APValue::Float:
7017     case APValue::ComplexInt:
7018     case APValue::ComplexFloat:
7019     case APValue::Vector:
7020     case APValue::Array:
7021       return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7022              << ParamType;
7023     }
7024 
7025     return ArgResult.get();
7026   }
7027 
7028   // C++ [temp.arg.nontype]p5:
7029   //   The following conversions are performed on each expression used
7030   //   as a non-type template-argument. If a non-type
7031   //   template-argument cannot be converted to the type of the
7032   //   corresponding template-parameter then the program is
7033   //   ill-formed.
7034   if (ParamType->isIntegralOrEnumerationType()) {
7035     // C++11:
7036     //   -- for a non-type template-parameter of integral or
7037     //      enumeration type, conversions permitted in a converted
7038     //      constant expression are applied.
7039     //
7040     // C++98:
7041     //   -- for a non-type template-parameter of integral or
7042     //      enumeration type, integral promotions (4.5) and integral
7043     //      conversions (4.7) are applied.
7044 
7045     if (getLangOpts().CPlusPlus11) {
7046       // C++ [temp.arg.nontype]p1:
7047       //   A template-argument for a non-type, non-template template-parameter
7048       //   shall be one of:
7049       //
7050       //     -- for a non-type template-parameter of integral or enumeration
7051       //        type, a converted constant expression of the type of the
7052       //        template-parameter; or
7053       llvm::APSInt Value;
7054       ExprResult ArgResult =
7055         CheckConvertedConstantExpression(Arg, ParamType, Value,
7056                                          CCEK_TemplateArg);
7057       if (ArgResult.isInvalid())
7058         return ExprError();
7059 
7060       // We can't check arbitrary value-dependent arguments.
7061       if (ArgResult.get()->isValueDependent()) {
7062         Converted = TemplateArgument(ArgResult.get());
7063         return ArgResult;
7064       }
7065 
7066       // Widen the argument value to sizeof(parameter type). This is almost
7067       // always a no-op, except when the parameter type is bool. In
7068       // that case, this may extend the argument from 1 bit to 8 bits.
7069       QualType IntegerType = ParamType;
7070       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7071         IntegerType = Enum->getDecl()->getIntegerType();
7072       Value = Value.extOrTrunc(IntegerType->isExtIntType()
7073                                    ? Context.getIntWidth(IntegerType)
7074                                    : Context.getTypeSize(IntegerType));
7075 
7076       Converted = TemplateArgument(Context, Value,
7077                                    Context.getCanonicalType(ParamType));
7078       return ArgResult;
7079     }
7080 
7081     ExprResult ArgResult = DefaultLvalueConversion(Arg);
7082     if (ArgResult.isInvalid())
7083       return ExprError();
7084     Arg = ArgResult.get();
7085 
7086     QualType ArgType = Arg->getType();
7087 
7088     // C++ [temp.arg.nontype]p1:
7089     //   A template-argument for a non-type, non-template
7090     //   template-parameter shall be one of:
7091     //
7092     //     -- an integral constant-expression of integral or enumeration
7093     //        type; or
7094     //     -- the name of a non-type template-parameter; or
7095     llvm::APSInt Value;
7096     if (!ArgType->isIntegralOrEnumerationType()) {
7097       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7098           << ArgType << Arg->getSourceRange();
7099       Diag(Param->getLocation(), diag::note_template_param_here);
7100       return ExprError();
7101     } else if (!Arg->isValueDependent()) {
7102       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7103         QualType T;
7104 
7105       public:
7106         TmplArgICEDiagnoser(QualType T) : T(T) { }
7107 
7108         SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7109                                              SourceLocation Loc) override {
7110           return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7111         }
7112       } Diagnoser(ArgType);
7113 
7114       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7115       if (!Arg)
7116         return ExprError();
7117     }
7118 
7119     // From here on out, all we care about is the unqualified form
7120     // of the argument type.
7121     ArgType = ArgType.getUnqualifiedType();
7122 
7123     // Try to convert the argument to the parameter's type.
7124     if (Context.hasSameType(ParamType, ArgType)) {
7125       // Okay: no conversion necessary
7126     } else if (ParamType->isBooleanType()) {
7127       // This is an integral-to-boolean conversion.
7128       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7129     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7130                !ParamType->isEnumeralType()) {
7131       // This is an integral promotion or conversion.
7132       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7133     } else {
7134       // We can't perform this conversion.
7135       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7136           << Arg->getType() << ParamType << Arg->getSourceRange();
7137       Diag(Param->getLocation(), diag::note_template_param_here);
7138       return ExprError();
7139     }
7140 
7141     // Add the value of this argument to the list of converted
7142     // arguments. We use the bitwidth and signedness of the template
7143     // parameter.
7144     if (Arg->isValueDependent()) {
7145       // The argument is value-dependent. Create a new
7146       // TemplateArgument with the converted expression.
7147       Converted = TemplateArgument(Arg);
7148       return Arg;
7149     }
7150 
7151     QualType IntegerType = Context.getCanonicalType(ParamType);
7152     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7153       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
7154 
7155     if (ParamType->isBooleanType()) {
7156       // Value must be zero or one.
7157       Value = Value != 0;
7158       unsigned AllowedBits = Context.getTypeSize(IntegerType);
7159       if (Value.getBitWidth() != AllowedBits)
7160         Value = Value.extOrTrunc(AllowedBits);
7161       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7162     } else {
7163       llvm::APSInt OldValue = Value;
7164 
7165       // Coerce the template argument's value to the value it will have
7166       // based on the template parameter's type.
7167       unsigned AllowedBits = IntegerType->isExtIntType()
7168                                  ? Context.getIntWidth(IntegerType)
7169                                  : Context.getTypeSize(IntegerType);
7170       if (Value.getBitWidth() != AllowedBits)
7171         Value = Value.extOrTrunc(AllowedBits);
7172       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7173 
7174       // Complain if an unsigned parameter received a negative value.
7175       if (IntegerType->isUnsignedIntegerOrEnumerationType()
7176                && (OldValue.isSigned() && OldValue.isNegative())) {
7177         Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7178             << OldValue.toString(10) << Value.toString(10) << Param->getType()
7179             << Arg->getSourceRange();
7180         Diag(Param->getLocation(), diag::note_template_param_here);
7181       }
7182 
7183       // Complain if we overflowed the template parameter's type.
7184       unsigned RequiredBits;
7185       if (IntegerType->isUnsignedIntegerOrEnumerationType())
7186         RequiredBits = OldValue.getActiveBits();
7187       else if (OldValue.isUnsigned())
7188         RequiredBits = OldValue.getActiveBits() + 1;
7189       else
7190         RequiredBits = OldValue.getMinSignedBits();
7191       if (RequiredBits > AllowedBits) {
7192         Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7193             << OldValue.toString(10) << Value.toString(10) << Param->getType()
7194             << Arg->getSourceRange();
7195         Diag(Param->getLocation(), diag::note_template_param_here);
7196       }
7197     }
7198 
7199     Converted = TemplateArgument(Context, Value,
7200                                  ParamType->isEnumeralType()
7201                                    ? Context.getCanonicalType(ParamType)
7202                                    : IntegerType);
7203     return Arg;
7204   }
7205 
7206   QualType ArgType = Arg->getType();
7207   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7208 
7209   // Handle pointer-to-function, reference-to-function, and
7210   // pointer-to-member-function all in (roughly) the same way.
7211   if (// -- For a non-type template-parameter of type pointer to
7212       //    function, only the function-to-pointer conversion (4.3) is
7213       //    applied. If the template-argument represents a set of
7214       //    overloaded functions (or a pointer to such), the matching
7215       //    function is selected from the set (13.4).
7216       (ParamType->isPointerType() &&
7217        ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7218       // -- For a non-type template-parameter of type reference to
7219       //    function, no conversions apply. If the template-argument
7220       //    represents a set of overloaded functions, the matching
7221       //    function is selected from the set (13.4).
7222       (ParamType->isReferenceType() &&
7223        ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7224       // -- For a non-type template-parameter of type pointer to
7225       //    member function, no conversions apply. If the
7226       //    template-argument represents a set of overloaded member
7227       //    functions, the matching member function is selected from
7228       //    the set (13.4).
7229       (ParamType->isMemberPointerType() &&
7230        ParamType->castAs<MemberPointerType>()->getPointeeType()
7231          ->isFunctionType())) {
7232 
7233     if (Arg->getType() == Context.OverloadTy) {
7234       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7235                                                                 true,
7236                                                                 FoundResult)) {
7237         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7238           return ExprError();
7239 
7240         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7241         ArgType = Arg->getType();
7242       } else
7243         return ExprError();
7244     }
7245 
7246     if (!ParamType->isMemberPointerType()) {
7247       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7248                                                          ParamType,
7249                                                          Arg, Converted))
7250         return ExprError();
7251       return Arg;
7252     }
7253 
7254     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7255                                              Converted))
7256       return ExprError();
7257     return Arg;
7258   }
7259 
7260   if (ParamType->isPointerType()) {
7261     //   -- for a non-type template-parameter of type pointer to
7262     //      object, qualification conversions (4.4) and the
7263     //      array-to-pointer conversion (4.2) are applied.
7264     // C++0x also allows a value of std::nullptr_t.
7265     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7266            "Only object pointers allowed here");
7267 
7268     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7269                                                        ParamType,
7270                                                        Arg, Converted))
7271       return ExprError();
7272     return Arg;
7273   }
7274 
7275   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7276     //   -- For a non-type template-parameter of type reference to
7277     //      object, no conversions apply. The type referred to by the
7278     //      reference may be more cv-qualified than the (otherwise
7279     //      identical) type of the template-argument. The
7280     //      template-parameter is bound directly to the
7281     //      template-argument, which must be an lvalue.
7282     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7283            "Only object references allowed here");
7284 
7285     if (Arg->getType() == Context.OverloadTy) {
7286       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7287                                                  ParamRefType->getPointeeType(),
7288                                                                 true,
7289                                                                 FoundResult)) {
7290         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7291           return ExprError();
7292 
7293         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7294         ArgType = Arg->getType();
7295       } else
7296         return ExprError();
7297     }
7298 
7299     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7300                                                        ParamType,
7301                                                        Arg, Converted))
7302       return ExprError();
7303     return Arg;
7304   }
7305 
7306   // Deal with parameters of type std::nullptr_t.
7307   if (ParamType->isNullPtrType()) {
7308     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7309       Converted = TemplateArgument(Arg);
7310       return Arg;
7311     }
7312 
7313     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7314     case NPV_NotNullPointer:
7315       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7316         << Arg->getType() << ParamType;
7317       Diag(Param->getLocation(), diag::note_template_param_here);
7318       return ExprError();
7319 
7320     case NPV_Error:
7321       return ExprError();
7322 
7323     case NPV_NullPointer:
7324       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7325       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
7326                                    /*isNullPtr*/true);
7327       return Arg;
7328     }
7329   }
7330 
7331   //     -- For a non-type template-parameter of type pointer to data
7332   //        member, qualification conversions (4.4) are applied.
7333   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7334 
7335   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7336                                            Converted))
7337     return ExprError();
7338   return Arg;
7339 }
7340 
7341 static void DiagnoseTemplateParameterListArityMismatch(
7342     Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7343     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7344 
7345 /// Check a template argument against its corresponding
7346 /// template template parameter.
7347 ///
7348 /// This routine implements the semantics of C++ [temp.arg.template].
7349 /// It returns true if an error occurred, and false otherwise.
7350 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7351                                          TemplateParameterList *Params,
7352                                          TemplateArgumentLoc &Arg) {
7353   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7354   TemplateDecl *Template = Name.getAsTemplateDecl();
7355   if (!Template) {
7356     // Any dependent template name is fine.
7357     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7358     return false;
7359   }
7360 
7361   if (Template->isInvalidDecl())
7362     return true;
7363 
7364   // C++0x [temp.arg.template]p1:
7365   //   A template-argument for a template template-parameter shall be
7366   //   the name of a class template or an alias template, expressed as an
7367   //   id-expression. When the template-argument names a class template, only
7368   //   primary class templates are considered when matching the
7369   //   template template argument with the corresponding parameter;
7370   //   partial specializations are not considered even if their
7371   //   parameter lists match that of the template template parameter.
7372   //
7373   // Note that we also allow template template parameters here, which
7374   // will happen when we are dealing with, e.g., class template
7375   // partial specializations.
7376   if (!isa<ClassTemplateDecl>(Template) &&
7377       !isa<TemplateTemplateParmDecl>(Template) &&
7378       !isa<TypeAliasTemplateDecl>(Template) &&
7379       !isa<BuiltinTemplateDecl>(Template)) {
7380     assert(isa<FunctionTemplateDecl>(Template) &&
7381            "Only function templates are possible here");
7382     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7383     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7384       << Template;
7385   }
7386 
7387   // C++1z [temp.arg.template]p3: (DR 150)
7388   //   A template-argument matches a template template-parameter P when P
7389   //   is at least as specialized as the template-argument A.
7390   // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7391   //  defect report resolution from C++17 and shouldn't be introduced by
7392   //  concepts.
7393   if (getLangOpts().RelaxedTemplateTemplateArgs) {
7394     // Quick check for the common case:
7395     //   If P contains a parameter pack, then A [...] matches P if each of A's
7396     //   template parameters matches the corresponding template parameter in
7397     //   the template-parameter-list of P.
7398     if (TemplateParameterListsAreEqual(
7399             Template->getTemplateParameters(), Params, false,
7400             TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7401         // If the argument has no associated constraints, then the parameter is
7402         // definitely at least as specialized as the argument.
7403         // Otherwise - we need a more thorough check.
7404         !Template->hasAssociatedConstraints())
7405       return false;
7406 
7407     if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7408                                                           Arg.getLocation())) {
7409       // C++2a[temp.func.order]p2
7410       //   [...] If both deductions succeed, the partial ordering selects the
7411       //   more constrained template as described by the rules in
7412       //   [temp.constr.order].
7413       SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7414       Params->getAssociatedConstraints(ParamsAC);
7415       // C++2a[temp.arg.template]p3
7416       //   [...] In this comparison, if P is unconstrained, the constraints on A
7417       //   are not considered.
7418       if (ParamsAC.empty())
7419         return false;
7420       Template->getAssociatedConstraints(TemplateAC);
7421       bool IsParamAtLeastAsConstrained;
7422       if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7423                                  IsParamAtLeastAsConstrained))
7424         return true;
7425       if (!IsParamAtLeastAsConstrained) {
7426         Diag(Arg.getLocation(),
7427              diag::err_template_template_parameter_not_at_least_as_constrained)
7428             << Template << Param << Arg.getSourceRange();
7429         Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7430         Diag(Template->getLocation(), diag::note_entity_declared_at)
7431             << Template;
7432         MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7433                                                       TemplateAC);
7434         return true;
7435       }
7436       return false;
7437     }
7438     // FIXME: Produce better diagnostics for deduction failures.
7439   }
7440 
7441   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7442                                          Params,
7443                                          true,
7444                                          TPL_TemplateTemplateArgumentMatch,
7445                                          Arg.getLocation());
7446 }
7447 
7448 /// Given a non-type template argument that refers to a
7449 /// declaration and the type of its corresponding non-type template
7450 /// parameter, produce an expression that properly refers to that
7451 /// declaration.
7452 ExprResult
7453 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7454                                               QualType ParamType,
7455                                               SourceLocation Loc) {
7456   // C++ [temp.param]p8:
7457   //
7458   //   A non-type template-parameter of type "array of T" or
7459   //   "function returning T" is adjusted to be of type "pointer to
7460   //   T" or "pointer to function returning T", respectively.
7461   if (ParamType->isArrayType())
7462     ParamType = Context.getArrayDecayedType(ParamType);
7463   else if (ParamType->isFunctionType())
7464     ParamType = Context.getPointerType(ParamType);
7465 
7466   // For a NULL non-type template argument, return nullptr casted to the
7467   // parameter's type.
7468   if (Arg.getKind() == TemplateArgument::NullPtr) {
7469     return ImpCastExprToType(
7470              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7471                              ParamType,
7472                              ParamType->getAs<MemberPointerType>()
7473                                ? CK_NullToMemberPointer
7474                                : CK_NullToPointer);
7475   }
7476   assert(Arg.getKind() == TemplateArgument::Declaration &&
7477          "Only declaration template arguments permitted here");
7478 
7479   ValueDecl *VD = Arg.getAsDecl();
7480 
7481   CXXScopeSpec SS;
7482   if (ParamType->isMemberPointerType()) {
7483     // If this is a pointer to member, we need to use a qualified name to
7484     // form a suitable pointer-to-member constant.
7485     assert(VD->getDeclContext()->isRecord() &&
7486            (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7487             isa<IndirectFieldDecl>(VD)));
7488     QualType ClassType
7489       = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7490     NestedNameSpecifier *Qualifier
7491       = NestedNameSpecifier::Create(Context, nullptr, false,
7492                                     ClassType.getTypePtr());
7493     SS.MakeTrivial(Context, Qualifier, Loc);
7494   }
7495 
7496   ExprResult RefExpr = BuildDeclarationNameExpr(
7497       SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7498   if (RefExpr.isInvalid())
7499     return ExprError();
7500 
7501   // For a pointer, the argument declaration is the pointee. Take its address.
7502   QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7503   if (ParamType->isPointerType() && !ElemT.isNull() &&
7504       Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7505     // Decay an array argument if we want a pointer to its first element.
7506     RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7507     if (RefExpr.isInvalid())
7508       return ExprError();
7509   } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7510     // For any other pointer, take the address (or form a pointer-to-member).
7511     RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7512     if (RefExpr.isInvalid())
7513       return ExprError();
7514   } else if (ParamType->isRecordType()) {
7515     assert(isa<TemplateParamObjectDecl>(VD) &&
7516            "arg for class template param not a template parameter object");
7517     // No conversions apply in this case.
7518     return RefExpr;
7519   } else {
7520     assert(ParamType->isReferenceType() &&
7521            "unexpected type for decl template argument");
7522   }
7523 
7524   // At this point we should have the right value category.
7525   assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7526          "value kind mismatch for non-type template argument");
7527 
7528   // The type of the template parameter can differ from the type of the
7529   // argument in various ways; convert it now if necessary.
7530   QualType DestExprType = ParamType.getNonLValueExprType(Context);
7531   if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7532     CastKind CK;
7533     QualType Ignored;
7534     if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7535         IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7536       CK = CK_NoOp;
7537     } else if (ParamType->isVoidPointerType() &&
7538                RefExpr.get()->getType()->isPointerType()) {
7539       CK = CK_BitCast;
7540     } else {
7541       // FIXME: Pointers to members can need conversion derived-to-base or
7542       // base-to-derived conversions. We currently don't retain enough
7543       // information to convert properly (we need to track a cast path or
7544       // subobject number in the template argument).
7545       llvm_unreachable(
7546           "unexpected conversion required for non-type template argument");
7547     }
7548     RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7549                                 RefExpr.get()->getValueKind());
7550   }
7551 
7552   return RefExpr;
7553 }
7554 
7555 /// Construct a new expression that refers to the given
7556 /// integral template argument with the given source-location
7557 /// information.
7558 ///
7559 /// This routine takes care of the mapping from an integral template
7560 /// argument (which may have any integral type) to the appropriate
7561 /// literal value.
7562 ExprResult
7563 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7564                                                   SourceLocation Loc) {
7565   assert(Arg.getKind() == TemplateArgument::Integral &&
7566          "Operation is only valid for integral template arguments");
7567   QualType OrigT = Arg.getIntegralType();
7568 
7569   // If this is an enum type that we're instantiating, we need to use an integer
7570   // type the same size as the enumerator.  We don't want to build an
7571   // IntegerLiteral with enum type.  The integer type of an enum type can be of
7572   // any integral type with C++11 enum classes, make sure we create the right
7573   // type of literal for it.
7574   QualType T = OrigT;
7575   if (const EnumType *ET = OrigT->getAs<EnumType>())
7576     T = ET->getDecl()->getIntegerType();
7577 
7578   Expr *E;
7579   if (T->isAnyCharacterType()) {
7580     CharacterLiteral::CharacterKind Kind;
7581     if (T->isWideCharType())
7582       Kind = CharacterLiteral::Wide;
7583     else if (T->isChar8Type() && getLangOpts().Char8)
7584       Kind = CharacterLiteral::UTF8;
7585     else if (T->isChar16Type())
7586       Kind = CharacterLiteral::UTF16;
7587     else if (T->isChar32Type())
7588       Kind = CharacterLiteral::UTF32;
7589     else
7590       Kind = CharacterLiteral::Ascii;
7591 
7592     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7593                                        Kind, T, Loc);
7594   } else if (T->isBooleanType()) {
7595     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7596                                          T, Loc);
7597   } else if (T->isNullPtrType()) {
7598     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7599   } else {
7600     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7601   }
7602 
7603   if (OrigT->isEnumeralType()) {
7604     // FIXME: This is a hack. We need a better way to handle substituted
7605     // non-type template parameters.
7606     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
7607                                nullptr, CurFPFeatureOverrides(),
7608                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
7609                                Loc, Loc);
7610   }
7611 
7612   return E;
7613 }
7614 
7615 /// Match two template parameters within template parameter lists.
7616 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7617                                        bool Complain,
7618                                      Sema::TemplateParameterListEqualKind Kind,
7619                                        SourceLocation TemplateArgLoc) {
7620   // Check the actual kind (type, non-type, template).
7621   if (Old->getKind() != New->getKind()) {
7622     if (Complain) {
7623       unsigned NextDiag = diag::err_template_param_different_kind;
7624       if (TemplateArgLoc.isValid()) {
7625         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7626         NextDiag = diag::note_template_param_different_kind;
7627       }
7628       S.Diag(New->getLocation(), NextDiag)
7629         << (Kind != Sema::TPL_TemplateMatch);
7630       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7631         << (Kind != Sema::TPL_TemplateMatch);
7632     }
7633 
7634     return false;
7635   }
7636 
7637   // Check that both are parameter packs or neither are parameter packs.
7638   // However, if we are matching a template template argument to a
7639   // template template parameter, the template template parameter can have
7640   // a parameter pack where the template template argument does not.
7641   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7642       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7643         Old->isTemplateParameterPack())) {
7644     if (Complain) {
7645       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7646       if (TemplateArgLoc.isValid()) {
7647         S.Diag(TemplateArgLoc,
7648              diag::err_template_arg_template_params_mismatch);
7649         NextDiag = diag::note_template_parameter_pack_non_pack;
7650       }
7651 
7652       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7653                       : isa<NonTypeTemplateParmDecl>(New)? 1
7654                       : 2;
7655       S.Diag(New->getLocation(), NextDiag)
7656         << ParamKind << New->isParameterPack();
7657       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7658         << ParamKind << Old->isParameterPack();
7659     }
7660 
7661     return false;
7662   }
7663 
7664   // For non-type template parameters, check the type of the parameter.
7665   if (NonTypeTemplateParmDecl *OldNTTP
7666                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7667     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7668 
7669     // If we are matching a template template argument to a template
7670     // template parameter and one of the non-type template parameter types
7671     // is dependent, then we must wait until template instantiation time
7672     // to actually compare the arguments.
7673     if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
7674         (!OldNTTP->getType()->isDependentType() &&
7675          !NewNTTP->getType()->isDependentType()))
7676       if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7677         if (Complain) {
7678           unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7679           if (TemplateArgLoc.isValid()) {
7680             S.Diag(TemplateArgLoc,
7681                    diag::err_template_arg_template_params_mismatch);
7682             NextDiag = diag::note_template_nontype_parm_different_type;
7683           }
7684           S.Diag(NewNTTP->getLocation(), NextDiag)
7685             << NewNTTP->getType()
7686             << (Kind != Sema::TPL_TemplateMatch);
7687           S.Diag(OldNTTP->getLocation(),
7688                  diag::note_template_nontype_parm_prev_declaration)
7689             << OldNTTP->getType();
7690         }
7691 
7692         return false;
7693       }
7694   }
7695   // For template template parameters, check the template parameter types.
7696   // The template parameter lists of template template
7697   // parameters must agree.
7698   else if (TemplateTemplateParmDecl *OldTTP
7699                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7700     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7701     if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7702                                           OldTTP->getTemplateParameters(),
7703                                           Complain,
7704                                         (Kind == Sema::TPL_TemplateMatch
7705                                            ? Sema::TPL_TemplateTemplateParmMatch
7706                                            : Kind),
7707                                           TemplateArgLoc))
7708       return false;
7709   } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
7710     const Expr *NewC = nullptr, *OldC = nullptr;
7711     if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
7712       NewC = TC->getImmediatelyDeclaredConstraint();
7713     if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
7714       OldC = TC->getImmediatelyDeclaredConstraint();
7715 
7716     auto Diagnose = [&] {
7717       S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
7718            diag::err_template_different_type_constraint);
7719       S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
7720            diag::note_template_prev_declaration) << /*declaration*/0;
7721     };
7722 
7723     if (!NewC != !OldC) {
7724       if (Complain)
7725         Diagnose();
7726       return false;
7727     }
7728 
7729     if (NewC) {
7730       llvm::FoldingSetNodeID OldCID, NewCID;
7731       OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
7732       NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
7733       if (OldCID != NewCID) {
7734         if (Complain)
7735           Diagnose();
7736         return false;
7737       }
7738     }
7739   }
7740 
7741   return true;
7742 }
7743 
7744 /// Diagnose a known arity mismatch when comparing template argument
7745 /// lists.
7746 static
7747 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7748                                                 TemplateParameterList *New,
7749                                                 TemplateParameterList *Old,
7750                                       Sema::TemplateParameterListEqualKind Kind,
7751                                                 SourceLocation TemplateArgLoc) {
7752   unsigned NextDiag = diag::err_template_param_list_different_arity;
7753   if (TemplateArgLoc.isValid()) {
7754     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7755     NextDiag = diag::note_template_param_list_different_arity;
7756   }
7757   S.Diag(New->getTemplateLoc(), NextDiag)
7758     << (New->size() > Old->size())
7759     << (Kind != Sema::TPL_TemplateMatch)
7760     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7761   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7762     << (Kind != Sema::TPL_TemplateMatch)
7763     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7764 }
7765 
7766 /// Determine whether the given template parameter lists are
7767 /// equivalent.
7768 ///
7769 /// \param New  The new template parameter list, typically written in the
7770 /// source code as part of a new template declaration.
7771 ///
7772 /// \param Old  The old template parameter list, typically found via
7773 /// name lookup of the template declared with this template parameter
7774 /// list.
7775 ///
7776 /// \param Complain  If true, this routine will produce a diagnostic if
7777 /// the template parameter lists are not equivalent.
7778 ///
7779 /// \param Kind describes how we are to match the template parameter lists.
7780 ///
7781 /// \param TemplateArgLoc If this source location is valid, then we
7782 /// are actually checking the template parameter list of a template
7783 /// argument (New) against the template parameter list of its
7784 /// corresponding template template parameter (Old). We produce
7785 /// slightly different diagnostics in this scenario.
7786 ///
7787 /// \returns True if the template parameter lists are equal, false
7788 /// otherwise.
7789 bool
7790 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7791                                      TemplateParameterList *Old,
7792                                      bool Complain,
7793                                      TemplateParameterListEqualKind Kind,
7794                                      SourceLocation TemplateArgLoc) {
7795   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7796     if (Complain)
7797       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7798                                                  TemplateArgLoc);
7799 
7800     return false;
7801   }
7802 
7803   // C++0x [temp.arg.template]p3:
7804   //   A template-argument matches a template template-parameter (call it P)
7805   //   when each of the template parameters in the template-parameter-list of
7806   //   the template-argument's corresponding class template or alias template
7807   //   (call it A) matches the corresponding template parameter in the
7808   //   template-parameter-list of P. [...]
7809   TemplateParameterList::iterator NewParm = New->begin();
7810   TemplateParameterList::iterator NewParmEnd = New->end();
7811   for (TemplateParameterList::iterator OldParm = Old->begin(),
7812                                     OldParmEnd = Old->end();
7813        OldParm != OldParmEnd; ++OldParm) {
7814     if (Kind != TPL_TemplateTemplateArgumentMatch ||
7815         !(*OldParm)->isTemplateParameterPack()) {
7816       if (NewParm == NewParmEnd) {
7817         if (Complain)
7818           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7819                                                      TemplateArgLoc);
7820 
7821         return false;
7822       }
7823 
7824       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7825                                       Kind, TemplateArgLoc))
7826         return false;
7827 
7828       ++NewParm;
7829       continue;
7830     }
7831 
7832     // C++0x [temp.arg.template]p3:
7833     //   [...] When P's template- parameter-list contains a template parameter
7834     //   pack (14.5.3), the template parameter pack will match zero or more
7835     //   template parameters or template parameter packs in the
7836     //   template-parameter-list of A with the same type and form as the
7837     //   template parameter pack in P (ignoring whether those template
7838     //   parameters are template parameter packs).
7839     for (; NewParm != NewParmEnd; ++NewParm) {
7840       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7841                                       Kind, TemplateArgLoc))
7842         return false;
7843     }
7844   }
7845 
7846   // Make sure we exhausted all of the arguments.
7847   if (NewParm != NewParmEnd) {
7848     if (Complain)
7849       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7850                                                  TemplateArgLoc);
7851 
7852     return false;
7853   }
7854 
7855   if (Kind != TPL_TemplateTemplateArgumentMatch) {
7856     const Expr *NewRC = New->getRequiresClause();
7857     const Expr *OldRC = Old->getRequiresClause();
7858 
7859     auto Diagnose = [&] {
7860       Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
7861            diag::err_template_different_requires_clause);
7862       Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
7863            diag::note_template_prev_declaration) << /*declaration*/0;
7864     };
7865 
7866     if (!NewRC != !OldRC) {
7867       if (Complain)
7868         Diagnose();
7869       return false;
7870     }
7871 
7872     if (NewRC) {
7873       llvm::FoldingSetNodeID OldRCID, NewRCID;
7874       OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
7875       NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
7876       if (OldRCID != NewRCID) {
7877         if (Complain)
7878           Diagnose();
7879         return false;
7880       }
7881     }
7882   }
7883 
7884   return true;
7885 }
7886 
7887 /// Check whether a template can be declared within this scope.
7888 ///
7889 /// If the template declaration is valid in this scope, returns
7890 /// false. Otherwise, issues a diagnostic and returns true.
7891 bool
7892 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7893   if (!S)
7894     return false;
7895 
7896   // Find the nearest enclosing declaration scope.
7897   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7898          (S->getFlags() & Scope::TemplateParamScope) != 0)
7899     S = S->getParent();
7900 
7901   // C++ [temp.pre]p6: [P2096]
7902   //   A template, explicit specialization, or partial specialization shall not
7903   //   have C linkage.
7904   DeclContext *Ctx = S->getEntity();
7905   if (Ctx && Ctx->isExternCContext()) {
7906     Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7907         << TemplateParams->getSourceRange();
7908     if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7909       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7910     return true;
7911   }
7912   Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
7913 
7914   // C++ [temp]p2:
7915   //   A template-declaration can appear only as a namespace scope or
7916   //   class scope declaration.
7917   // C++ [temp.expl.spec]p3:
7918   //   An explicit specialization may be declared in any scope in which the
7919   //   corresponding primary template may be defined.
7920   // C++ [temp.class.spec]p6: [P2096]
7921   //   A partial specialization may be declared in any scope in which the
7922   //   corresponding primary template may be defined.
7923   if (Ctx) {
7924     if (Ctx->isFileContext())
7925       return false;
7926     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7927       // C++ [temp.mem]p2:
7928       //   A local class shall not have member templates.
7929       if (RD->isLocalClass())
7930         return Diag(TemplateParams->getTemplateLoc(),
7931                     diag::err_template_inside_local_class)
7932           << TemplateParams->getSourceRange();
7933       else
7934         return false;
7935     }
7936   }
7937 
7938   return Diag(TemplateParams->getTemplateLoc(),
7939               diag::err_template_outside_namespace_or_class_scope)
7940     << TemplateParams->getSourceRange();
7941 }
7942 
7943 /// Determine what kind of template specialization the given declaration
7944 /// is.
7945 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7946   if (!D)
7947     return TSK_Undeclared;
7948 
7949   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7950     return Record->getTemplateSpecializationKind();
7951   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7952     return Function->getTemplateSpecializationKind();
7953   if (VarDecl *Var = dyn_cast<VarDecl>(D))
7954     return Var->getTemplateSpecializationKind();
7955 
7956   return TSK_Undeclared;
7957 }
7958 
7959 /// Check whether a specialization is well-formed in the current
7960 /// context.
7961 ///
7962 /// This routine determines whether a template specialization can be declared
7963 /// in the current context (C++ [temp.expl.spec]p2).
7964 ///
7965 /// \param S the semantic analysis object for which this check is being
7966 /// performed.
7967 ///
7968 /// \param Specialized the entity being specialized or instantiated, which
7969 /// may be a kind of template (class template, function template, etc.) or
7970 /// a member of a class template (member function, static data member,
7971 /// member class).
7972 ///
7973 /// \param PrevDecl the previous declaration of this entity, if any.
7974 ///
7975 /// \param Loc the location of the explicit specialization or instantiation of
7976 /// this entity.
7977 ///
7978 /// \param IsPartialSpecialization whether this is a partial specialization of
7979 /// a class template.
7980 ///
7981 /// \returns true if there was an error that we cannot recover from, false
7982 /// otherwise.
7983 static bool CheckTemplateSpecializationScope(Sema &S,
7984                                              NamedDecl *Specialized,
7985                                              NamedDecl *PrevDecl,
7986                                              SourceLocation Loc,
7987                                              bool IsPartialSpecialization) {
7988   // Keep these "kind" numbers in sync with the %select statements in the
7989   // various diagnostics emitted by this routine.
7990   int EntityKind = 0;
7991   if (isa<ClassTemplateDecl>(Specialized))
7992     EntityKind = IsPartialSpecialization? 1 : 0;
7993   else if (isa<VarTemplateDecl>(Specialized))
7994     EntityKind = IsPartialSpecialization ? 3 : 2;
7995   else if (isa<FunctionTemplateDecl>(Specialized))
7996     EntityKind = 4;
7997   else if (isa<CXXMethodDecl>(Specialized))
7998     EntityKind = 5;
7999   else if (isa<VarDecl>(Specialized))
8000     EntityKind = 6;
8001   else if (isa<RecordDecl>(Specialized))
8002     EntityKind = 7;
8003   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8004     EntityKind = 8;
8005   else {
8006     S.Diag(Loc, diag::err_template_spec_unknown_kind)
8007       << S.getLangOpts().CPlusPlus11;
8008     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8009     return true;
8010   }
8011 
8012   // C++ [temp.expl.spec]p2:
8013   //   An explicit specialization may be declared in any scope in which
8014   //   the corresponding primary template may be defined.
8015   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8016     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8017       << Specialized;
8018     return true;
8019   }
8020 
8021   // C++ [temp.class.spec]p6:
8022   //   A class template partial specialization may be declared in any
8023   //   scope in which the primary template may be defined.
8024   DeclContext *SpecializedContext =
8025       Specialized->getDeclContext()->getRedeclContext();
8026   DeclContext *DC = S.CurContext->getRedeclContext();
8027 
8028   // Make sure that this redeclaration (or definition) occurs in the same
8029   // scope or an enclosing namespace.
8030   if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8031                             : DC->Equals(SpecializedContext))) {
8032     if (isa<TranslationUnitDecl>(SpecializedContext))
8033       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8034         << EntityKind << Specialized;
8035     else {
8036       auto *ND = cast<NamedDecl>(SpecializedContext);
8037       int Diag = diag::err_template_spec_redecl_out_of_scope;
8038       if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8039         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8040       S.Diag(Loc, Diag) << EntityKind << Specialized
8041                         << ND << isa<CXXRecordDecl>(ND);
8042     }
8043 
8044     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8045 
8046     // Don't allow specializing in the wrong class during error recovery.
8047     // Otherwise, things can go horribly wrong.
8048     if (DC->isRecord())
8049       return true;
8050   }
8051 
8052   return false;
8053 }
8054 
8055 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8056   if (!E->isTypeDependent())
8057     return SourceLocation();
8058   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8059   Checker.TraverseStmt(E);
8060   if (Checker.MatchLoc.isInvalid())
8061     return E->getSourceRange();
8062   return Checker.MatchLoc;
8063 }
8064 
8065 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8066   if (!TL.getType()->isDependentType())
8067     return SourceLocation();
8068   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8069   Checker.TraverseTypeLoc(TL);
8070   if (Checker.MatchLoc.isInvalid())
8071     return TL.getSourceRange();
8072   return Checker.MatchLoc;
8073 }
8074 
8075 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8076 /// that checks non-type template partial specialization arguments.
8077 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8078     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8079     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8080   for (unsigned I = 0; I != NumArgs; ++I) {
8081     if (Args[I].getKind() == TemplateArgument::Pack) {
8082       if (CheckNonTypeTemplatePartialSpecializationArgs(
8083               S, TemplateNameLoc, Param, Args[I].pack_begin(),
8084               Args[I].pack_size(), IsDefaultArgument))
8085         return true;
8086 
8087       continue;
8088     }
8089 
8090     if (Args[I].getKind() != TemplateArgument::Expression)
8091       continue;
8092 
8093     Expr *ArgExpr = Args[I].getAsExpr();
8094 
8095     // We can have a pack expansion of any of the bullets below.
8096     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8097       ArgExpr = Expansion->getPattern();
8098 
8099     // Strip off any implicit casts we added as part of type checking.
8100     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8101       ArgExpr = ICE->getSubExpr();
8102 
8103     // C++ [temp.class.spec]p8:
8104     //   A non-type argument is non-specialized if it is the name of a
8105     //   non-type parameter. All other non-type arguments are
8106     //   specialized.
8107     //
8108     // Below, we check the two conditions that only apply to
8109     // specialized non-type arguments, so skip any non-specialized
8110     // arguments.
8111     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8112       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8113         continue;
8114 
8115     // C++ [temp.class.spec]p9:
8116     //   Within the argument list of a class template partial
8117     //   specialization, the following restrictions apply:
8118     //     -- A partially specialized non-type argument expression
8119     //        shall not involve a template parameter of the partial
8120     //        specialization except when the argument expression is a
8121     //        simple identifier.
8122     //     -- The type of a template parameter corresponding to a
8123     //        specialized non-type argument shall not be dependent on a
8124     //        parameter of the specialization.
8125     // DR1315 removes the first bullet, leaving an incoherent set of rules.
8126     // We implement a compromise between the original rules and DR1315:
8127     //     --  A specialized non-type template argument shall not be
8128     //         type-dependent and the corresponding template parameter
8129     //         shall have a non-dependent type.
8130     SourceRange ParamUseRange =
8131         findTemplateParameterInType(Param->getDepth(), ArgExpr);
8132     if (ParamUseRange.isValid()) {
8133       if (IsDefaultArgument) {
8134         S.Diag(TemplateNameLoc,
8135                diag::err_dependent_non_type_arg_in_partial_spec);
8136         S.Diag(ParamUseRange.getBegin(),
8137                diag::note_dependent_non_type_default_arg_in_partial_spec)
8138           << ParamUseRange;
8139       } else {
8140         S.Diag(ParamUseRange.getBegin(),
8141                diag::err_dependent_non_type_arg_in_partial_spec)
8142           << ParamUseRange;
8143       }
8144       return true;
8145     }
8146 
8147     ParamUseRange = findTemplateParameter(
8148         Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8149     if (ParamUseRange.isValid()) {
8150       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8151              diag::err_dependent_typed_non_type_arg_in_partial_spec)
8152           << Param->getType();
8153       S.Diag(Param->getLocation(), diag::note_template_param_here)
8154         << (IsDefaultArgument ? ParamUseRange : SourceRange())
8155         << ParamUseRange;
8156       return true;
8157     }
8158   }
8159 
8160   return false;
8161 }
8162 
8163 /// Check the non-type template arguments of a class template
8164 /// partial specialization according to C++ [temp.class.spec]p9.
8165 ///
8166 /// \param TemplateNameLoc the location of the template name.
8167 /// \param PrimaryTemplate the template parameters of the primary class
8168 ///        template.
8169 /// \param NumExplicit the number of explicitly-specified template arguments.
8170 /// \param TemplateArgs the template arguments of the class template
8171 ///        partial specialization.
8172 ///
8173 /// \returns \c true if there was an error, \c false otherwise.
8174 bool Sema::CheckTemplatePartialSpecializationArgs(
8175     SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8176     unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8177   // We have to be conservative when checking a template in a dependent
8178   // context.
8179   if (PrimaryTemplate->getDeclContext()->isDependentContext())
8180     return false;
8181 
8182   TemplateParameterList *TemplateParams =
8183       PrimaryTemplate->getTemplateParameters();
8184   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8185     NonTypeTemplateParmDecl *Param
8186       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8187     if (!Param)
8188       continue;
8189 
8190     if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8191                                                       Param, &TemplateArgs[I],
8192                                                       1, I >= NumExplicit))
8193       return true;
8194   }
8195 
8196   return false;
8197 }
8198 
8199 DeclResult Sema::ActOnClassTemplateSpecialization(
8200     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8201     SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8202     TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8203     MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8204   assert(TUK != TUK_Reference && "References are not specializations");
8205 
8206   // NOTE: KWLoc is the location of the tag keyword. This will instead
8207   // store the location of the outermost template keyword in the declaration.
8208   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8209     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8210   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8211   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8212   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8213 
8214   // Find the class template we're specializing
8215   TemplateName Name = TemplateId.Template.get();
8216   ClassTemplateDecl *ClassTemplate
8217     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8218 
8219   if (!ClassTemplate) {
8220     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8221       << (Name.getAsTemplateDecl() &&
8222           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8223     return true;
8224   }
8225 
8226   bool isMemberSpecialization = false;
8227   bool isPartialSpecialization = false;
8228 
8229   // Check the validity of the template headers that introduce this
8230   // template.
8231   // FIXME: We probably shouldn't complain about these headers for
8232   // friend declarations.
8233   bool Invalid = false;
8234   TemplateParameterList *TemplateParams =
8235       MatchTemplateParametersToScopeSpecifier(
8236           KWLoc, TemplateNameLoc, SS, &TemplateId,
8237           TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8238           Invalid);
8239   if (Invalid)
8240     return true;
8241 
8242   // Check that we can declare a template specialization here.
8243   if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8244     return true;
8245 
8246   if (TemplateParams && TemplateParams->size() > 0) {
8247     isPartialSpecialization = true;
8248 
8249     if (TUK == TUK_Friend) {
8250       Diag(KWLoc, diag::err_partial_specialization_friend)
8251         << SourceRange(LAngleLoc, RAngleLoc);
8252       return true;
8253     }
8254 
8255     // C++ [temp.class.spec]p10:
8256     //   The template parameter list of a specialization shall not
8257     //   contain default template argument values.
8258     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8259       Decl *Param = TemplateParams->getParam(I);
8260       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8261         if (TTP->hasDefaultArgument()) {
8262           Diag(TTP->getDefaultArgumentLoc(),
8263                diag::err_default_arg_in_partial_spec);
8264           TTP->removeDefaultArgument();
8265         }
8266       } else if (NonTypeTemplateParmDecl *NTTP
8267                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8268         if (Expr *DefArg = NTTP->getDefaultArgument()) {
8269           Diag(NTTP->getDefaultArgumentLoc(),
8270                diag::err_default_arg_in_partial_spec)
8271             << DefArg->getSourceRange();
8272           NTTP->removeDefaultArgument();
8273         }
8274       } else {
8275         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8276         if (TTP->hasDefaultArgument()) {
8277           Diag(TTP->getDefaultArgument().getLocation(),
8278                diag::err_default_arg_in_partial_spec)
8279             << TTP->getDefaultArgument().getSourceRange();
8280           TTP->removeDefaultArgument();
8281         }
8282       }
8283     }
8284   } else if (TemplateParams) {
8285     if (TUK == TUK_Friend)
8286       Diag(KWLoc, diag::err_template_spec_friend)
8287         << FixItHint::CreateRemoval(
8288                                 SourceRange(TemplateParams->getTemplateLoc(),
8289                                             TemplateParams->getRAngleLoc()))
8290         << SourceRange(LAngleLoc, RAngleLoc);
8291   } else {
8292     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8293   }
8294 
8295   // Check that the specialization uses the same tag kind as the
8296   // original template.
8297   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8298   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
8299   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8300                                     Kind, TUK == TUK_Definition, KWLoc,
8301                                     ClassTemplate->getIdentifier())) {
8302     Diag(KWLoc, diag::err_use_with_wrong_tag)
8303       << ClassTemplate
8304       << FixItHint::CreateReplacement(KWLoc,
8305                             ClassTemplate->getTemplatedDecl()->getKindName());
8306     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8307          diag::note_previous_use);
8308     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8309   }
8310 
8311   // Translate the parser's template argument list in our AST format.
8312   TemplateArgumentListInfo TemplateArgs =
8313       makeTemplateArgumentListInfo(*this, TemplateId);
8314 
8315   // Check for unexpanded parameter packs in any of the template arguments.
8316   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8317     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8318                                         UPPC_PartialSpecialization))
8319       return true;
8320 
8321   // Check that the template argument list is well-formed for this
8322   // template.
8323   SmallVector<TemplateArgument, 4> Converted;
8324   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8325                                 TemplateArgs, false, Converted,
8326                                 /*UpdateArgsWithConversion=*/true))
8327     return true;
8328 
8329   // Find the class template (partial) specialization declaration that
8330   // corresponds to these arguments.
8331   if (isPartialSpecialization) {
8332     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8333                                                TemplateArgs.size(), Converted))
8334       return true;
8335 
8336     // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8337     // also do it during instantiation.
8338     if (!Name.isDependent() &&
8339         !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
8340                                                                    Converted)) {
8341       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8342         << ClassTemplate->getDeclName();
8343       isPartialSpecialization = false;
8344     }
8345   }
8346 
8347   void *InsertPos = nullptr;
8348   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8349 
8350   if (isPartialSpecialization)
8351     PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
8352                                                         TemplateParams,
8353                                                         InsertPos);
8354   else
8355     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
8356 
8357   ClassTemplateSpecializationDecl *Specialization = nullptr;
8358 
8359   // Check whether we can declare a class template specialization in
8360   // the current scope.
8361   if (TUK != TUK_Friend &&
8362       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8363                                        TemplateNameLoc,
8364                                        isPartialSpecialization))
8365     return true;
8366 
8367   // The canonical type
8368   QualType CanonType;
8369   if (isPartialSpecialization) {
8370     // Build the canonical type that describes the converted template
8371     // arguments of the class template partial specialization.
8372     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8373     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8374                                                       Converted);
8375 
8376     if (Context.hasSameType(CanonType,
8377                         ClassTemplate->getInjectedClassNameSpecialization()) &&
8378         (!Context.getLangOpts().CPlusPlus20 ||
8379          !TemplateParams->hasAssociatedConstraints())) {
8380       // C++ [temp.class.spec]p9b3:
8381       //
8382       //   -- The argument list of the specialization shall not be identical
8383       //      to the implicit argument list of the primary template.
8384       //
8385       // This rule has since been removed, because it's redundant given DR1495,
8386       // but we keep it because it produces better diagnostics and recovery.
8387       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8388         << /*class template*/0 << (TUK == TUK_Definition)
8389         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8390       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8391                                 ClassTemplate->getIdentifier(),
8392                                 TemplateNameLoc,
8393                                 Attr,
8394                                 TemplateParams,
8395                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8396                                 /*FriendLoc*/SourceLocation(),
8397                                 TemplateParameterLists.size() - 1,
8398                                 TemplateParameterLists.data());
8399     }
8400 
8401     // Create a new class template partial specialization declaration node.
8402     ClassTemplatePartialSpecializationDecl *PrevPartial
8403       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8404     ClassTemplatePartialSpecializationDecl *Partial
8405       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
8406                                              ClassTemplate->getDeclContext(),
8407                                                        KWLoc, TemplateNameLoc,
8408                                                        TemplateParams,
8409                                                        ClassTemplate,
8410                                                        Converted,
8411                                                        TemplateArgs,
8412                                                        CanonType,
8413                                                        PrevPartial);
8414     SetNestedNameSpecifier(*this, Partial, SS);
8415     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8416       Partial->setTemplateParameterListsInfo(
8417           Context, TemplateParameterLists.drop_back(1));
8418     }
8419 
8420     if (!PrevPartial)
8421       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8422     Specialization = Partial;
8423 
8424     // If we are providing an explicit specialization of a member class
8425     // template specialization, make a note of that.
8426     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8427       PrevPartial->setMemberSpecialization();
8428 
8429     CheckTemplatePartialSpecialization(Partial);
8430   } else {
8431     // Create a new class template specialization declaration node for
8432     // this explicit specialization or friend declaration.
8433     Specialization
8434       = ClassTemplateSpecializationDecl::Create(Context, Kind,
8435                                              ClassTemplate->getDeclContext(),
8436                                                 KWLoc, TemplateNameLoc,
8437                                                 ClassTemplate,
8438                                                 Converted,
8439                                                 PrevDecl);
8440     SetNestedNameSpecifier(*this, Specialization, SS);
8441     if (TemplateParameterLists.size() > 0) {
8442       Specialization->setTemplateParameterListsInfo(Context,
8443                                                     TemplateParameterLists);
8444     }
8445 
8446     if (!PrevDecl)
8447       ClassTemplate->AddSpecialization(Specialization, InsertPos);
8448 
8449     if (CurContext->isDependentContext()) {
8450       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8451       CanonType = Context.getTemplateSpecializationType(
8452           CanonTemplate, Converted);
8453     } else {
8454       CanonType = Context.getTypeDeclType(Specialization);
8455     }
8456   }
8457 
8458   // C++ [temp.expl.spec]p6:
8459   //   If a template, a member template or the member of a class template is
8460   //   explicitly specialized then that specialization shall be declared
8461   //   before the first use of that specialization that would cause an implicit
8462   //   instantiation to take place, in every translation unit in which such a
8463   //   use occurs; no diagnostic is required.
8464   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8465     bool Okay = false;
8466     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8467       // Is there any previous explicit specialization declaration?
8468       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8469         Okay = true;
8470         break;
8471       }
8472     }
8473 
8474     if (!Okay) {
8475       SourceRange Range(TemplateNameLoc, RAngleLoc);
8476       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8477         << Context.getTypeDeclType(Specialization) << Range;
8478 
8479       Diag(PrevDecl->getPointOfInstantiation(),
8480            diag::note_instantiation_required_here)
8481         << (PrevDecl->getTemplateSpecializationKind()
8482                                                 != TSK_ImplicitInstantiation);
8483       return true;
8484     }
8485   }
8486 
8487   // If this is not a friend, note that this is an explicit specialization.
8488   if (TUK != TUK_Friend)
8489     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8490 
8491   // Check that this isn't a redefinition of this specialization.
8492   if (TUK == TUK_Definition) {
8493     RecordDecl *Def = Specialization->getDefinition();
8494     NamedDecl *Hidden = nullptr;
8495     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8496       SkipBody->ShouldSkip = true;
8497       SkipBody->Previous = Def;
8498       makeMergedDefinitionVisible(Hidden);
8499     } else if (Def) {
8500       SourceRange Range(TemplateNameLoc, RAngleLoc);
8501       Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8502       Diag(Def->getLocation(), diag::note_previous_definition);
8503       Specialization->setInvalidDecl();
8504       return true;
8505     }
8506   }
8507 
8508   ProcessDeclAttributeList(S, Specialization, Attr);
8509 
8510   // Add alignment attributes if necessary; these attributes are checked when
8511   // the ASTContext lays out the structure.
8512   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8513     AddAlignmentAttributesForRecord(Specialization);
8514     AddMsStructLayoutForRecord(Specialization);
8515   }
8516 
8517   if (ModulePrivateLoc.isValid())
8518     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8519       << (isPartialSpecialization? 1 : 0)
8520       << FixItHint::CreateRemoval(ModulePrivateLoc);
8521 
8522   // Build the fully-sugared type for this class template
8523   // specialization as the user wrote in the specialization
8524   // itself. This means that we'll pretty-print the type retrieved
8525   // from the specialization's declaration the way that the user
8526   // actually wrote the specialization, rather than formatting the
8527   // name based on the "canonical" representation used to store the
8528   // template arguments in the specialization.
8529   TypeSourceInfo *WrittenTy
8530     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8531                                                 TemplateArgs, CanonType);
8532   if (TUK != TUK_Friend) {
8533     Specialization->setTypeAsWritten(WrittenTy);
8534     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8535   }
8536 
8537   // C++ [temp.expl.spec]p9:
8538   //   A template explicit specialization is in the scope of the
8539   //   namespace in which the template was defined.
8540   //
8541   // We actually implement this paragraph where we set the semantic
8542   // context (in the creation of the ClassTemplateSpecializationDecl),
8543   // but we also maintain the lexical context where the actual
8544   // definition occurs.
8545   Specialization->setLexicalDeclContext(CurContext);
8546 
8547   // We may be starting the definition of this specialization.
8548   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8549     Specialization->startDefinition();
8550 
8551   if (TUK == TUK_Friend) {
8552     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8553                                             TemplateNameLoc,
8554                                             WrittenTy,
8555                                             /*FIXME:*/KWLoc);
8556     Friend->setAccess(AS_public);
8557     CurContext->addDecl(Friend);
8558   } else {
8559     // Add the specialization into its lexical context, so that it can
8560     // be seen when iterating through the list of declarations in that
8561     // context. However, specializations are not found by name lookup.
8562     CurContext->addDecl(Specialization);
8563   }
8564 
8565   if (SkipBody && SkipBody->ShouldSkip)
8566     return SkipBody->Previous;
8567 
8568   return Specialization;
8569 }
8570 
8571 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8572                               MultiTemplateParamsArg TemplateParameterLists,
8573                                     Declarator &D) {
8574   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8575   ActOnDocumentableDecl(NewDecl);
8576   return NewDecl;
8577 }
8578 
8579 Decl *Sema::ActOnConceptDefinition(Scope *S,
8580                               MultiTemplateParamsArg TemplateParameterLists,
8581                                    IdentifierInfo *Name, SourceLocation NameLoc,
8582                                    Expr *ConstraintExpr) {
8583   DeclContext *DC = CurContext;
8584 
8585   if (!DC->getRedeclContext()->isFileContext()) {
8586     Diag(NameLoc,
8587       diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8588     return nullptr;
8589   }
8590 
8591   if (TemplateParameterLists.size() > 1) {
8592     Diag(NameLoc, diag::err_concept_extra_headers);
8593     return nullptr;
8594   }
8595 
8596   if (TemplateParameterLists.front()->size() == 0) {
8597     Diag(NameLoc, diag::err_concept_no_parameters);
8598     return nullptr;
8599   }
8600 
8601   if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
8602     return nullptr;
8603 
8604   ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
8605                                              TemplateParameterLists.front(),
8606                                              ConstraintExpr);
8607 
8608   if (NewDecl->hasAssociatedConstraints()) {
8609     // C++2a [temp.concept]p4:
8610     // A concept shall not have associated constraints.
8611     Diag(NameLoc, diag::err_concept_no_associated_constraints);
8612     NewDecl->setInvalidDecl();
8613   }
8614 
8615   // Check for conflicting previous declaration.
8616   DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8617   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8618                         ForVisibleRedeclaration);
8619   LookupName(Previous, S);
8620 
8621   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8622                        /*AllowInlineNamespace*/false);
8623   if (!Previous.empty()) {
8624     auto *Old = Previous.getRepresentativeDecl();
8625     Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition :
8626          diag::err_redefinition_different_kind) << NewDecl->getDeclName();
8627     Diag(Old->getLocation(), diag::note_previous_definition);
8628   }
8629 
8630   ActOnDocumentableDecl(NewDecl);
8631   PushOnScopeChains(NewDecl, S);
8632   return NewDecl;
8633 }
8634 
8635 /// \brief Strips various properties off an implicit instantiation
8636 /// that has just been explicitly specialized.
8637 static void StripImplicitInstantiation(NamedDecl *D) {
8638   D->dropAttr<DLLImportAttr>();
8639   D->dropAttr<DLLExportAttr>();
8640 
8641   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8642     FD->setInlineSpecified(false);
8643 }
8644 
8645 /// Compute the diagnostic location for an explicit instantiation
8646 //  declaration or definition.
8647 static SourceLocation DiagLocForExplicitInstantiation(
8648     NamedDecl* D, SourceLocation PointOfInstantiation) {
8649   // Explicit instantiations following a specialization have no effect and
8650   // hence no PointOfInstantiation. In that case, walk decl backwards
8651   // until a valid name loc is found.
8652   SourceLocation PrevDiagLoc = PointOfInstantiation;
8653   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8654        Prev = Prev->getPreviousDecl()) {
8655     PrevDiagLoc = Prev->getLocation();
8656   }
8657   assert(PrevDiagLoc.isValid() &&
8658          "Explicit instantiation without point of instantiation?");
8659   return PrevDiagLoc;
8660 }
8661 
8662 /// Diagnose cases where we have an explicit template specialization
8663 /// before/after an explicit template instantiation, producing diagnostics
8664 /// for those cases where they are required and determining whether the
8665 /// new specialization/instantiation will have any effect.
8666 ///
8667 /// \param NewLoc the location of the new explicit specialization or
8668 /// instantiation.
8669 ///
8670 /// \param NewTSK the kind of the new explicit specialization or instantiation.
8671 ///
8672 /// \param PrevDecl the previous declaration of the entity.
8673 ///
8674 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
8675 ///
8676 /// \param PrevPointOfInstantiation if valid, indicates where the previus
8677 /// declaration was instantiated (either implicitly or explicitly).
8678 ///
8679 /// \param HasNoEffect will be set to true to indicate that the new
8680 /// specialization or instantiation has no effect and should be ignored.
8681 ///
8682 /// \returns true if there was an error that should prevent the introduction of
8683 /// the new declaration into the AST, false otherwise.
8684 bool
8685 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8686                                              TemplateSpecializationKind NewTSK,
8687                                              NamedDecl *PrevDecl,
8688                                              TemplateSpecializationKind PrevTSK,
8689                                         SourceLocation PrevPointOfInstantiation,
8690                                              bool &HasNoEffect) {
8691   HasNoEffect = false;
8692 
8693   switch (NewTSK) {
8694   case TSK_Undeclared:
8695   case TSK_ImplicitInstantiation:
8696     assert(
8697         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
8698         "previous declaration must be implicit!");
8699     return false;
8700 
8701   case TSK_ExplicitSpecialization:
8702     switch (PrevTSK) {
8703     case TSK_Undeclared:
8704     case TSK_ExplicitSpecialization:
8705       // Okay, we're just specializing something that is either already
8706       // explicitly specialized or has merely been mentioned without any
8707       // instantiation.
8708       return false;
8709 
8710     case TSK_ImplicitInstantiation:
8711       if (PrevPointOfInstantiation.isInvalid()) {
8712         // The declaration itself has not actually been instantiated, so it is
8713         // still okay to specialize it.
8714         StripImplicitInstantiation(PrevDecl);
8715         return false;
8716       }
8717       // Fall through
8718       LLVM_FALLTHROUGH;
8719 
8720     case TSK_ExplicitInstantiationDeclaration:
8721     case TSK_ExplicitInstantiationDefinition:
8722       assert((PrevTSK == TSK_ImplicitInstantiation ||
8723               PrevPointOfInstantiation.isValid()) &&
8724              "Explicit instantiation without point of instantiation?");
8725 
8726       // C++ [temp.expl.spec]p6:
8727       //   If a template, a member template or the member of a class template
8728       //   is explicitly specialized then that specialization shall be declared
8729       //   before the first use of that specialization that would cause an
8730       //   implicit instantiation to take place, in every translation unit in
8731       //   which such a use occurs; no diagnostic is required.
8732       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8733         // Is there any previous explicit specialization declaration?
8734         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8735           return false;
8736       }
8737 
8738       Diag(NewLoc, diag::err_specialization_after_instantiation)
8739         << PrevDecl;
8740       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8741         << (PrevTSK != TSK_ImplicitInstantiation);
8742 
8743       return true;
8744     }
8745     llvm_unreachable("The switch over PrevTSK must be exhaustive.");
8746 
8747   case TSK_ExplicitInstantiationDeclaration:
8748     switch (PrevTSK) {
8749     case TSK_ExplicitInstantiationDeclaration:
8750       // This explicit instantiation declaration is redundant (that's okay).
8751       HasNoEffect = true;
8752       return false;
8753 
8754     case TSK_Undeclared:
8755     case TSK_ImplicitInstantiation:
8756       // We're explicitly instantiating something that may have already been
8757       // implicitly instantiated; that's fine.
8758       return false;
8759 
8760     case TSK_ExplicitSpecialization:
8761       // C++0x [temp.explicit]p4:
8762       //   For a given set of template parameters, if an explicit instantiation
8763       //   of a template appears after a declaration of an explicit
8764       //   specialization for that template, the explicit instantiation has no
8765       //   effect.
8766       HasNoEffect = true;
8767       return false;
8768 
8769     case TSK_ExplicitInstantiationDefinition:
8770       // C++0x [temp.explicit]p10:
8771       //   If an entity is the subject of both an explicit instantiation
8772       //   declaration and an explicit instantiation definition in the same
8773       //   translation unit, the definition shall follow the declaration.
8774       Diag(NewLoc,
8775            diag::err_explicit_instantiation_declaration_after_definition);
8776 
8777       // Explicit instantiations following a specialization have no effect and
8778       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8779       // until a valid name loc is found.
8780       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8781            diag::note_explicit_instantiation_definition_here);
8782       HasNoEffect = true;
8783       return false;
8784     }
8785     llvm_unreachable("Unexpected TemplateSpecializationKind!");
8786 
8787   case TSK_ExplicitInstantiationDefinition:
8788     switch (PrevTSK) {
8789     case TSK_Undeclared:
8790     case TSK_ImplicitInstantiation:
8791       // We're explicitly instantiating something that may have already been
8792       // implicitly instantiated; that's fine.
8793       return false;
8794 
8795     case TSK_ExplicitSpecialization:
8796       // C++ DR 259, C++0x [temp.explicit]p4:
8797       //   For a given set of template parameters, if an explicit
8798       //   instantiation of a template appears after a declaration of
8799       //   an explicit specialization for that template, the explicit
8800       //   instantiation has no effect.
8801       Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8802         << PrevDecl;
8803       Diag(PrevDecl->getLocation(),
8804            diag::note_previous_template_specialization);
8805       HasNoEffect = true;
8806       return false;
8807 
8808     case TSK_ExplicitInstantiationDeclaration:
8809       // We're explicitly instantiating a definition for something for which we
8810       // were previously asked to suppress instantiations. That's fine.
8811 
8812       // C++0x [temp.explicit]p4:
8813       //   For a given set of template parameters, if an explicit instantiation
8814       //   of a template appears after a declaration of an explicit
8815       //   specialization for that template, the explicit instantiation has no
8816       //   effect.
8817       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8818         // Is there any previous explicit specialization declaration?
8819         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8820           HasNoEffect = true;
8821           break;
8822         }
8823       }
8824 
8825       return false;
8826 
8827     case TSK_ExplicitInstantiationDefinition:
8828       // C++0x [temp.spec]p5:
8829       //   For a given template and a given set of template-arguments,
8830       //     - an explicit instantiation definition shall appear at most once
8831       //       in a program,
8832 
8833       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8834       Diag(NewLoc, (getLangOpts().MSVCCompat)
8835                        ? diag::ext_explicit_instantiation_duplicate
8836                        : diag::err_explicit_instantiation_duplicate)
8837           << PrevDecl;
8838       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8839            diag::note_previous_explicit_instantiation);
8840       HasNoEffect = true;
8841       return false;
8842     }
8843   }
8844 
8845   llvm_unreachable("Missing specialization/instantiation case?");
8846 }
8847 
8848 /// Perform semantic analysis for the given dependent function
8849 /// template specialization.
8850 ///
8851 /// The only possible way to get a dependent function template specialization
8852 /// is with a friend declaration, like so:
8853 ///
8854 /// \code
8855 ///   template \<class T> void foo(T);
8856 ///   template \<class T> class A {
8857 ///     friend void foo<>(T);
8858 ///   };
8859 /// \endcode
8860 ///
8861 /// There really isn't any useful analysis we can do here, so we
8862 /// just store the information.
8863 bool
8864 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8865                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
8866                                                    LookupResult &Previous) {
8867   // Remove anything from Previous that isn't a function template in
8868   // the correct context.
8869   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8870   LookupResult::Filter F = Previous.makeFilter();
8871   enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
8872   SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
8873   while (F.hasNext()) {
8874     NamedDecl *D = F.next()->getUnderlyingDecl();
8875     if (!isa<FunctionTemplateDecl>(D)) {
8876       F.erase();
8877       DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
8878       continue;
8879     }
8880 
8881     if (!FDLookupContext->InEnclosingNamespaceSetOf(
8882             D->getDeclContext()->getRedeclContext())) {
8883       F.erase();
8884       DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
8885       continue;
8886     }
8887   }
8888   F.done();
8889 
8890   if (Previous.empty()) {
8891     Diag(FD->getLocation(),
8892          diag::err_dependent_function_template_spec_no_match);
8893     for (auto &P : DiscardedCandidates)
8894       Diag(P.second->getLocation(),
8895            diag::note_dependent_function_template_spec_discard_reason)
8896           << P.first;
8897     return true;
8898   }
8899 
8900   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
8901                                          ExplicitTemplateArgs);
8902   return false;
8903 }
8904 
8905 /// Perform semantic analysis for the given function template
8906 /// specialization.
8907 ///
8908 /// This routine performs all of the semantic analysis required for an
8909 /// explicit function template specialization. On successful completion,
8910 /// the function declaration \p FD will become a function template
8911 /// specialization.
8912 ///
8913 /// \param FD the function declaration, which will be updated to become a
8914 /// function template specialization.
8915 ///
8916 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
8917 /// if any. Note that this may be valid info even when 0 arguments are
8918 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
8919 /// as it anyway contains info on the angle brackets locations.
8920 ///
8921 /// \param Previous the set of declarations that may be specialized by
8922 /// this function specialization.
8923 ///
8924 /// \param QualifiedFriend whether this is a lookup for a qualified friend
8925 /// declaration with no explicit template argument list that might be
8926 /// befriending a function template specialization.
8927 bool Sema::CheckFunctionTemplateSpecialization(
8928     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
8929     LookupResult &Previous, bool QualifiedFriend) {
8930   // The set of function template specializations that could match this
8931   // explicit function template specialization.
8932   UnresolvedSet<8> Candidates;
8933   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
8934                                             /*ForTakingAddress=*/false);
8935 
8936   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
8937       ConvertedTemplateArgs;
8938 
8939   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8940   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8941          I != E; ++I) {
8942     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
8943     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
8944       // Only consider templates found within the same semantic lookup scope as
8945       // FD.
8946       if (!FDLookupContext->InEnclosingNamespaceSetOf(
8947                                 Ovl->getDeclContext()->getRedeclContext()))
8948         continue;
8949 
8950       // When matching a constexpr member function template specialization
8951       // against the primary template, we don't yet know whether the
8952       // specialization has an implicit 'const' (because we don't know whether
8953       // it will be a static member function until we know which template it
8954       // specializes), so adjust it now assuming it specializes this template.
8955       QualType FT = FD->getType();
8956       if (FD->isConstexpr()) {
8957         CXXMethodDecl *OldMD =
8958           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
8959         if (OldMD && OldMD->isConst()) {
8960           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
8961           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8962           EPI.TypeQuals.addConst();
8963           FT = Context.getFunctionType(FPT->getReturnType(),
8964                                        FPT->getParamTypes(), EPI);
8965         }
8966       }
8967 
8968       TemplateArgumentListInfo Args;
8969       if (ExplicitTemplateArgs)
8970         Args = *ExplicitTemplateArgs;
8971 
8972       // C++ [temp.expl.spec]p11:
8973       //   A trailing template-argument can be left unspecified in the
8974       //   template-id naming an explicit function template specialization
8975       //   provided it can be deduced from the function argument type.
8976       // Perform template argument deduction to determine whether we may be
8977       // specializing this template.
8978       // FIXME: It is somewhat wasteful to build
8979       TemplateDeductionInfo Info(FailedCandidates.getLocation());
8980       FunctionDecl *Specialization = nullptr;
8981       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
8982               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
8983               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
8984               Info)) {
8985         // Template argument deduction failed; record why it failed, so
8986         // that we can provide nifty diagnostics.
8987         FailedCandidates.addCandidate().set(
8988             I.getPair(), FunTmpl->getTemplatedDecl(),
8989             MakeDeductionFailureInfo(Context, TDK, Info));
8990         (void)TDK;
8991         continue;
8992       }
8993 
8994       // Target attributes are part of the cuda function signature, so
8995       // the deduced template's cuda target must match that of the
8996       // specialization.  Given that C++ template deduction does not
8997       // take target attributes into account, we reject candidates
8998       // here that have a different target.
8999       if (LangOpts.CUDA &&
9000           IdentifyCUDATarget(Specialization,
9001                              /* IgnoreImplicitHDAttr = */ true) !=
9002               IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9003         FailedCandidates.addCandidate().set(
9004             I.getPair(), FunTmpl->getTemplatedDecl(),
9005             MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9006         continue;
9007       }
9008 
9009       // Record this candidate.
9010       if (ExplicitTemplateArgs)
9011         ConvertedTemplateArgs[Specialization] = std::move(Args);
9012       Candidates.addDecl(Specialization, I.getAccess());
9013     }
9014   }
9015 
9016   // For a qualified friend declaration (with no explicit marker to indicate
9017   // that a template specialization was intended), note all (template and
9018   // non-template) candidates.
9019   if (QualifiedFriend && Candidates.empty()) {
9020     Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9021         << FD->getDeclName() << FDLookupContext;
9022     // FIXME: We should form a single candidate list and diagnose all
9023     // candidates at once, to get proper sorting and limiting.
9024     for (auto *OldND : Previous) {
9025       if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9026         NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9027     }
9028     FailedCandidates.NoteCandidates(*this, FD->getLocation());
9029     return true;
9030   }
9031 
9032   // Find the most specialized function template.
9033   UnresolvedSetIterator Result = getMostSpecialized(
9034       Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9035       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9036       PDiag(diag::err_function_template_spec_ambiguous)
9037           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9038       PDiag(diag::note_function_template_spec_matched));
9039 
9040   if (Result == Candidates.end())
9041     return true;
9042 
9043   // Ignore access information;  it doesn't figure into redeclaration checking.
9044   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9045 
9046   FunctionTemplateSpecializationInfo *SpecInfo
9047     = Specialization->getTemplateSpecializationInfo();
9048   assert(SpecInfo && "Function template specialization info missing?");
9049 
9050   // Note: do not overwrite location info if previous template
9051   // specialization kind was explicit.
9052   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9053   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9054     Specialization->setLocation(FD->getLocation());
9055     Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9056     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9057     // function can differ from the template declaration with respect to
9058     // the constexpr specifier.
9059     // FIXME: We need an update record for this AST mutation.
9060     // FIXME: What if there are multiple such prior declarations (for instance,
9061     // from different modules)?
9062     Specialization->setConstexprKind(FD->getConstexprKind());
9063   }
9064 
9065   // FIXME: Check if the prior specialization has a point of instantiation.
9066   // If so, we have run afoul of .
9067 
9068   // If this is a friend declaration, then we're not really declaring
9069   // an explicit specialization.
9070   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9071 
9072   // Check the scope of this explicit specialization.
9073   if (!isFriend &&
9074       CheckTemplateSpecializationScope(*this,
9075                                        Specialization->getPrimaryTemplate(),
9076                                        Specialization, FD->getLocation(),
9077                                        false))
9078     return true;
9079 
9080   // C++ [temp.expl.spec]p6:
9081   //   If a template, a member template or the member of a class template is
9082   //   explicitly specialized then that specialization shall be declared
9083   //   before the first use of that specialization that would cause an implicit
9084   //   instantiation to take place, in every translation unit in which such a
9085   //   use occurs; no diagnostic is required.
9086   bool HasNoEffect = false;
9087   if (!isFriend &&
9088       CheckSpecializationInstantiationRedecl(FD->getLocation(),
9089                                              TSK_ExplicitSpecialization,
9090                                              Specialization,
9091                                    SpecInfo->getTemplateSpecializationKind(),
9092                                          SpecInfo->getPointOfInstantiation(),
9093                                              HasNoEffect))
9094     return true;
9095 
9096   // Mark the prior declaration as an explicit specialization, so that later
9097   // clients know that this is an explicit specialization.
9098   if (!isFriend) {
9099     // Since explicit specializations do not inherit '=delete' from their
9100     // primary function template - check if the 'specialization' that was
9101     // implicitly generated (during template argument deduction for partial
9102     // ordering) from the most specialized of all the function templates that
9103     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
9104     // first check that it was implicitly generated during template argument
9105     // deduction by making sure it wasn't referenced, and then reset the deleted
9106     // flag to not-deleted, so that we can inherit that information from 'FD'.
9107     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9108         !Specialization->getCanonicalDecl()->isReferenced()) {
9109       // FIXME: This assert will not hold in the presence of modules.
9110       assert(
9111           Specialization->getCanonicalDecl() == Specialization &&
9112           "This must be the only existing declaration of this specialization");
9113       // FIXME: We need an update record for this AST mutation.
9114       Specialization->setDeletedAsWritten(false);
9115     }
9116     // FIXME: We need an update record for this AST mutation.
9117     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9118     MarkUnusedFileScopedDecl(Specialization);
9119   }
9120 
9121   // Turn the given function declaration into a function template
9122   // specialization, with the template arguments from the previous
9123   // specialization.
9124   // Take copies of (semantic and syntactic) template argument lists.
9125   const TemplateArgumentList* TemplArgs = new (Context)
9126     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9127   FD->setFunctionTemplateSpecialization(
9128       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9129       SpecInfo->getTemplateSpecializationKind(),
9130       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9131 
9132   // A function template specialization inherits the target attributes
9133   // of its template.  (We require the attributes explicitly in the
9134   // code to match, but a template may have implicit attributes by
9135   // virtue e.g. of being constexpr, and it passes these implicit
9136   // attributes on to its specializations.)
9137   if (LangOpts.CUDA)
9138     inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9139 
9140   // The "previous declaration" for this function template specialization is
9141   // the prior function template specialization.
9142   Previous.clear();
9143   Previous.addDecl(Specialization);
9144   return false;
9145 }
9146 
9147 /// Perform semantic analysis for the given non-template member
9148 /// specialization.
9149 ///
9150 /// This routine performs all of the semantic analysis required for an
9151 /// explicit member function specialization. On successful completion,
9152 /// the function declaration \p FD will become a member function
9153 /// specialization.
9154 ///
9155 /// \param Member the member declaration, which will be updated to become a
9156 /// specialization.
9157 ///
9158 /// \param Previous the set of declarations, one of which may be specialized
9159 /// by this function specialization;  the set will be modified to contain the
9160 /// redeclared member.
9161 bool
9162 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9163   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9164 
9165   // Try to find the member we are instantiating.
9166   NamedDecl *FoundInstantiation = nullptr;
9167   NamedDecl *Instantiation = nullptr;
9168   NamedDecl *InstantiatedFrom = nullptr;
9169   MemberSpecializationInfo *MSInfo = nullptr;
9170 
9171   if (Previous.empty()) {
9172     // Nowhere to look anyway.
9173   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9174     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9175            I != E; ++I) {
9176       NamedDecl *D = (*I)->getUnderlyingDecl();
9177       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9178         QualType Adjusted = Function->getType();
9179         if (!hasExplicitCallingConv(Adjusted))
9180           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9181         // This doesn't handle deduced return types, but both function
9182         // declarations should be undeduced at this point.
9183         if (Context.hasSameType(Adjusted, Method->getType())) {
9184           FoundInstantiation = *I;
9185           Instantiation = Method;
9186           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9187           MSInfo = Method->getMemberSpecializationInfo();
9188           break;
9189         }
9190       }
9191     }
9192   } else if (isa<VarDecl>(Member)) {
9193     VarDecl *PrevVar;
9194     if (Previous.isSingleResult() &&
9195         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9196       if (PrevVar->isStaticDataMember()) {
9197         FoundInstantiation = Previous.getRepresentativeDecl();
9198         Instantiation = PrevVar;
9199         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9200         MSInfo = PrevVar->getMemberSpecializationInfo();
9201       }
9202   } else if (isa<RecordDecl>(Member)) {
9203     CXXRecordDecl *PrevRecord;
9204     if (Previous.isSingleResult() &&
9205         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9206       FoundInstantiation = Previous.getRepresentativeDecl();
9207       Instantiation = PrevRecord;
9208       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9209       MSInfo = PrevRecord->getMemberSpecializationInfo();
9210     }
9211   } else if (isa<EnumDecl>(Member)) {
9212     EnumDecl *PrevEnum;
9213     if (Previous.isSingleResult() &&
9214         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9215       FoundInstantiation = Previous.getRepresentativeDecl();
9216       Instantiation = PrevEnum;
9217       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9218       MSInfo = PrevEnum->getMemberSpecializationInfo();
9219     }
9220   }
9221 
9222   if (!Instantiation) {
9223     // There is no previous declaration that matches. Since member
9224     // specializations are always out-of-line, the caller will complain about
9225     // this mismatch later.
9226     return false;
9227   }
9228 
9229   // A member specialization in a friend declaration isn't really declaring
9230   // an explicit specialization, just identifying a specific (possibly implicit)
9231   // specialization. Don't change the template specialization kind.
9232   //
9233   // FIXME: Is this really valid? Other compilers reject.
9234   if (Member->getFriendObjectKind() != Decl::FOK_None) {
9235     // Preserve instantiation information.
9236     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9237       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9238                                       cast<CXXMethodDecl>(InstantiatedFrom),
9239         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9240     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9241       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9242                                       cast<CXXRecordDecl>(InstantiatedFrom),
9243         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9244     }
9245 
9246     Previous.clear();
9247     Previous.addDecl(FoundInstantiation);
9248     return false;
9249   }
9250 
9251   // Make sure that this is a specialization of a member.
9252   if (!InstantiatedFrom) {
9253     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9254       << Member;
9255     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9256     return true;
9257   }
9258 
9259   // C++ [temp.expl.spec]p6:
9260   //   If a template, a member template or the member of a class template is
9261   //   explicitly specialized then that specialization shall be declared
9262   //   before the first use of that specialization that would cause an implicit
9263   //   instantiation to take place, in every translation unit in which such a
9264   //   use occurs; no diagnostic is required.
9265   assert(MSInfo && "Member specialization info missing?");
9266 
9267   bool HasNoEffect = false;
9268   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9269                                              TSK_ExplicitSpecialization,
9270                                              Instantiation,
9271                                      MSInfo->getTemplateSpecializationKind(),
9272                                            MSInfo->getPointOfInstantiation(),
9273                                              HasNoEffect))
9274     return true;
9275 
9276   // Check the scope of this explicit specialization.
9277   if (CheckTemplateSpecializationScope(*this,
9278                                        InstantiatedFrom,
9279                                        Instantiation, Member->getLocation(),
9280                                        false))
9281     return true;
9282 
9283   // Note that this member specialization is an "instantiation of" the
9284   // corresponding member of the original template.
9285   if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9286     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9287     if (InstantiationFunction->getTemplateSpecializationKind() ==
9288           TSK_ImplicitInstantiation) {
9289       // Explicit specializations of member functions of class templates do not
9290       // inherit '=delete' from the member function they are specializing.
9291       if (InstantiationFunction->isDeleted()) {
9292         // FIXME: This assert will not hold in the presence of modules.
9293         assert(InstantiationFunction->getCanonicalDecl() ==
9294                InstantiationFunction);
9295         // FIXME: We need an update record for this AST mutation.
9296         InstantiationFunction->setDeletedAsWritten(false);
9297       }
9298     }
9299 
9300     MemberFunction->setInstantiationOfMemberFunction(
9301         cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9302   } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9303     MemberVar->setInstantiationOfStaticDataMember(
9304         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9305   } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9306     MemberClass->setInstantiationOfMemberClass(
9307         cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9308   } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9309     MemberEnum->setInstantiationOfMemberEnum(
9310         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9311   } else {
9312     llvm_unreachable("unknown member specialization kind");
9313   }
9314 
9315   // Save the caller the trouble of having to figure out which declaration
9316   // this specialization matches.
9317   Previous.clear();
9318   Previous.addDecl(FoundInstantiation);
9319   return false;
9320 }
9321 
9322 /// Complete the explicit specialization of a member of a class template by
9323 /// updating the instantiated member to be marked as an explicit specialization.
9324 ///
9325 /// \param OrigD The member declaration instantiated from the template.
9326 /// \param Loc The location of the explicit specialization of the member.
9327 template<typename DeclT>
9328 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9329                                              SourceLocation Loc) {
9330   if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9331     return;
9332 
9333   // FIXME: Inform AST mutation listeners of this AST mutation.
9334   // FIXME: If there are multiple in-class declarations of the member (from
9335   // multiple modules, or a declaration and later definition of a member type),
9336   // should we update all of them?
9337   OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9338   OrigD->setLocation(Loc);
9339 }
9340 
9341 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9342                                         LookupResult &Previous) {
9343   NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9344   if (Instantiation == Member)
9345     return;
9346 
9347   if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9348     completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9349   else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9350     completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9351   else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9352     completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9353   else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9354     completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9355   else
9356     llvm_unreachable("unknown member specialization kind");
9357 }
9358 
9359 /// Check the scope of an explicit instantiation.
9360 ///
9361 /// \returns true if a serious error occurs, false otherwise.
9362 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9363                                             SourceLocation InstLoc,
9364                                             bool WasQualifiedName) {
9365   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9366   DeclContext *CurContext = S.CurContext->getRedeclContext();
9367 
9368   if (CurContext->isRecord()) {
9369     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9370       << D;
9371     return true;
9372   }
9373 
9374   // C++11 [temp.explicit]p3:
9375   //   An explicit instantiation shall appear in an enclosing namespace of its
9376   //   template. If the name declared in the explicit instantiation is an
9377   //   unqualified name, the explicit instantiation shall appear in the
9378   //   namespace where its template is declared or, if that namespace is inline
9379   //   (7.3.1), any namespace from its enclosing namespace set.
9380   //
9381   // This is DR275, which we do not retroactively apply to C++98/03.
9382   if (WasQualifiedName) {
9383     if (CurContext->Encloses(OrigContext))
9384       return false;
9385   } else {
9386     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9387       return false;
9388   }
9389 
9390   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9391     if (WasQualifiedName)
9392       S.Diag(InstLoc,
9393              S.getLangOpts().CPlusPlus11?
9394                diag::err_explicit_instantiation_out_of_scope :
9395                diag::warn_explicit_instantiation_out_of_scope_0x)
9396         << D << NS;
9397     else
9398       S.Diag(InstLoc,
9399              S.getLangOpts().CPlusPlus11?
9400                diag::err_explicit_instantiation_unqualified_wrong_namespace :
9401                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9402         << D << NS;
9403   } else
9404     S.Diag(InstLoc,
9405            S.getLangOpts().CPlusPlus11?
9406              diag::err_explicit_instantiation_must_be_global :
9407              diag::warn_explicit_instantiation_must_be_global_0x)
9408       << D;
9409   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9410   return false;
9411 }
9412 
9413 /// Common checks for whether an explicit instantiation of \p D is valid.
9414 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9415                                        SourceLocation InstLoc,
9416                                        bool WasQualifiedName,
9417                                        TemplateSpecializationKind TSK) {
9418   // C++ [temp.explicit]p13:
9419   //   An explicit instantiation declaration shall not name a specialization of
9420   //   a template with internal linkage.
9421   if (TSK == TSK_ExplicitInstantiationDeclaration &&
9422       D->getFormalLinkage() == InternalLinkage) {
9423     S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9424     return true;
9425   }
9426 
9427   // C++11 [temp.explicit]p3: [DR 275]
9428   //   An explicit instantiation shall appear in an enclosing namespace of its
9429   //   template.
9430   if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9431     return true;
9432 
9433   return false;
9434 }
9435 
9436 /// Determine whether the given scope specifier has a template-id in it.
9437 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9438   if (!SS.isSet())
9439     return false;
9440 
9441   // C++11 [temp.explicit]p3:
9442   //   If the explicit instantiation is for a member function, a member class
9443   //   or a static data member of a class template specialization, the name of
9444   //   the class template specialization in the qualified-id for the member
9445   //   name shall be a simple-template-id.
9446   //
9447   // C++98 has the same restriction, just worded differently.
9448   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9449        NNS = NNS->getPrefix())
9450     if (const Type *T = NNS->getAsType())
9451       if (isa<TemplateSpecializationType>(T))
9452         return true;
9453 
9454   return false;
9455 }
9456 
9457 /// Make a dllexport or dllimport attr on a class template specialization take
9458 /// effect.
9459 static void dllExportImportClassTemplateSpecialization(
9460     Sema &S, ClassTemplateSpecializationDecl *Def) {
9461   auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9462   assert(A && "dllExportImportClassTemplateSpecialization called "
9463               "on Def without dllexport or dllimport");
9464 
9465   // We reject explicit instantiations in class scope, so there should
9466   // never be any delayed exported classes to worry about.
9467   assert(S.DelayedDllExportClasses.empty() &&
9468          "delayed exports present at explicit instantiation");
9469   S.checkClassLevelDLLAttribute(Def);
9470 
9471   // Propagate attribute to base class templates.
9472   for (auto &B : Def->bases()) {
9473     if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9474             B.getType()->getAsCXXRecordDecl()))
9475       S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9476   }
9477 
9478   S.referenceDLLExportedClassMethods();
9479 }
9480 
9481 // Explicit instantiation of a class template specialization
9482 DeclResult Sema::ActOnExplicitInstantiation(
9483     Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9484     unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9485     TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9486     SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9487     SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9488   // Find the class template we're specializing
9489   TemplateName Name = TemplateD.get();
9490   TemplateDecl *TD = Name.getAsTemplateDecl();
9491   // Check that the specialization uses the same tag kind as the
9492   // original template.
9493   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9494   assert(Kind != TTK_Enum &&
9495          "Invalid enum tag in class template explicit instantiation!");
9496 
9497   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9498 
9499   if (!ClassTemplate) {
9500     NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9501     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
9502     Diag(TD->getLocation(), diag::note_previous_use);
9503     return true;
9504   }
9505 
9506   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9507                                     Kind, /*isDefinition*/false, KWLoc,
9508                                     ClassTemplate->getIdentifier())) {
9509     Diag(KWLoc, diag::err_use_with_wrong_tag)
9510       << ClassTemplate
9511       << FixItHint::CreateReplacement(KWLoc,
9512                             ClassTemplate->getTemplatedDecl()->getKindName());
9513     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9514          diag::note_previous_use);
9515     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9516   }
9517 
9518   // C++0x [temp.explicit]p2:
9519   //   There are two forms of explicit instantiation: an explicit instantiation
9520   //   definition and an explicit instantiation declaration. An explicit
9521   //   instantiation declaration begins with the extern keyword. [...]
9522   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9523                                        ? TSK_ExplicitInstantiationDefinition
9524                                        : TSK_ExplicitInstantiationDeclaration;
9525 
9526   if (TSK == TSK_ExplicitInstantiationDeclaration &&
9527       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9528     // Check for dllexport class template instantiation declarations,
9529     // except for MinGW mode.
9530     for (const ParsedAttr &AL : Attr) {
9531       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9532         Diag(ExternLoc,
9533              diag::warn_attribute_dllexport_explicit_instantiation_decl);
9534         Diag(AL.getLoc(), diag::note_attribute);
9535         break;
9536       }
9537     }
9538 
9539     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9540       Diag(ExternLoc,
9541            diag::warn_attribute_dllexport_explicit_instantiation_decl);
9542       Diag(A->getLocation(), diag::note_attribute);
9543     }
9544   }
9545 
9546   // In MSVC mode, dllimported explicit instantiation definitions are treated as
9547   // instantiation declarations for most purposes.
9548   bool DLLImportExplicitInstantiationDef = false;
9549   if (TSK == TSK_ExplicitInstantiationDefinition &&
9550       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9551     // Check for dllimport class template instantiation definitions.
9552     bool DLLImport =
9553         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9554     for (const ParsedAttr &AL : Attr) {
9555       if (AL.getKind() == ParsedAttr::AT_DLLImport)
9556         DLLImport = true;
9557       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9558         // dllexport trumps dllimport here.
9559         DLLImport = false;
9560         break;
9561       }
9562     }
9563     if (DLLImport) {
9564       TSK = TSK_ExplicitInstantiationDeclaration;
9565       DLLImportExplicitInstantiationDef = true;
9566     }
9567   }
9568 
9569   // Translate the parser's template argument list in our AST format.
9570   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9571   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9572 
9573   // Check that the template argument list is well-formed for this
9574   // template.
9575   SmallVector<TemplateArgument, 4> Converted;
9576   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
9577                                 TemplateArgs, false, Converted,
9578                                 /*UpdateArgsWithConversion=*/true))
9579     return true;
9580 
9581   // Find the class template specialization declaration that
9582   // corresponds to these arguments.
9583   void *InsertPos = nullptr;
9584   ClassTemplateSpecializationDecl *PrevDecl
9585     = ClassTemplate->findSpecialization(Converted, InsertPos);
9586 
9587   TemplateSpecializationKind PrevDecl_TSK
9588     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9589 
9590   if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9591       Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9592     // Check for dllexport class template instantiation definitions in MinGW
9593     // mode, if a previous declaration of the instantiation was seen.
9594     for (const ParsedAttr &AL : Attr) {
9595       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9596         Diag(AL.getLoc(),
9597              diag::warn_attribute_dllexport_explicit_instantiation_def);
9598         break;
9599       }
9600     }
9601   }
9602 
9603   if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9604                                  SS.isSet(), TSK))
9605     return true;
9606 
9607   ClassTemplateSpecializationDecl *Specialization = nullptr;
9608 
9609   bool HasNoEffect = false;
9610   if (PrevDecl) {
9611     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9612                                                PrevDecl, PrevDecl_TSK,
9613                                             PrevDecl->getPointOfInstantiation(),
9614                                                HasNoEffect))
9615       return PrevDecl;
9616 
9617     // Even though HasNoEffect == true means that this explicit instantiation
9618     // has no effect on semantics, we go on to put its syntax in the AST.
9619 
9620     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9621         PrevDecl_TSK == TSK_Undeclared) {
9622       // Since the only prior class template specialization with these
9623       // arguments was referenced but not declared, reuse that
9624       // declaration node as our own, updating the source location
9625       // for the template name to reflect our new declaration.
9626       // (Other source locations will be updated later.)
9627       Specialization = PrevDecl;
9628       Specialization->setLocation(TemplateNameLoc);
9629       PrevDecl = nullptr;
9630     }
9631 
9632     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9633         DLLImportExplicitInstantiationDef) {
9634       // The new specialization might add a dllimport attribute.
9635       HasNoEffect = false;
9636     }
9637   }
9638 
9639   if (!Specialization) {
9640     // Create a new class template specialization declaration node for
9641     // this explicit specialization.
9642     Specialization
9643       = ClassTemplateSpecializationDecl::Create(Context, Kind,
9644                                              ClassTemplate->getDeclContext(),
9645                                                 KWLoc, TemplateNameLoc,
9646                                                 ClassTemplate,
9647                                                 Converted,
9648                                                 PrevDecl);
9649     SetNestedNameSpecifier(*this, Specialization, SS);
9650 
9651     if (!HasNoEffect && !PrevDecl) {
9652       // Insert the new specialization.
9653       ClassTemplate->AddSpecialization(Specialization, InsertPos);
9654     }
9655   }
9656 
9657   // Build the fully-sugared type for this explicit instantiation as
9658   // the user wrote in the explicit instantiation itself. This means
9659   // that we'll pretty-print the type retrieved from the
9660   // specialization's declaration the way that the user actually wrote
9661   // the explicit instantiation, rather than formatting the name based
9662   // on the "canonical" representation used to store the template
9663   // arguments in the specialization.
9664   TypeSourceInfo *WrittenTy
9665     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9666                                                 TemplateArgs,
9667                                   Context.getTypeDeclType(Specialization));
9668   Specialization->setTypeAsWritten(WrittenTy);
9669 
9670   // Set source locations for keywords.
9671   Specialization->setExternLoc(ExternLoc);
9672   Specialization->setTemplateKeywordLoc(TemplateLoc);
9673   Specialization->setBraceRange(SourceRange());
9674 
9675   bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9676   ProcessDeclAttributeList(S, Specialization, Attr);
9677 
9678   // Add the explicit instantiation into its lexical context. However,
9679   // since explicit instantiations are never found by name lookup, we
9680   // just put it into the declaration context directly.
9681   Specialization->setLexicalDeclContext(CurContext);
9682   CurContext->addDecl(Specialization);
9683 
9684   // Syntax is now OK, so return if it has no other effect on semantics.
9685   if (HasNoEffect) {
9686     // Set the template specialization kind.
9687     Specialization->setTemplateSpecializationKind(TSK);
9688     return Specialization;
9689   }
9690 
9691   // C++ [temp.explicit]p3:
9692   //   A definition of a class template or class member template
9693   //   shall be in scope at the point of the explicit instantiation of
9694   //   the class template or class member template.
9695   //
9696   // This check comes when we actually try to perform the
9697   // instantiation.
9698   ClassTemplateSpecializationDecl *Def
9699     = cast_or_null<ClassTemplateSpecializationDecl>(
9700                                               Specialization->getDefinition());
9701   if (!Def)
9702     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9703   else if (TSK == TSK_ExplicitInstantiationDefinition) {
9704     MarkVTableUsed(TemplateNameLoc, Specialization, true);
9705     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9706   }
9707 
9708   // Instantiate the members of this class template specialization.
9709   Def = cast_or_null<ClassTemplateSpecializationDecl>(
9710                                        Specialization->getDefinition());
9711   if (Def) {
9712     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9713     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9714     // TSK_ExplicitInstantiationDefinition
9715     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9716         (TSK == TSK_ExplicitInstantiationDefinition ||
9717          DLLImportExplicitInstantiationDef)) {
9718       // FIXME: Need to notify the ASTMutationListener that we did this.
9719       Def->setTemplateSpecializationKind(TSK);
9720 
9721       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9722           (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9723            !Context.getTargetInfo().getTriple().isPS4CPU())) {
9724         // An explicit instantiation definition can add a dll attribute to a
9725         // template with a previous instantiation declaration. MinGW doesn't
9726         // allow this.
9727         auto *A = cast<InheritableAttr>(
9728             getDLLAttr(Specialization)->clone(getASTContext()));
9729         A->setInherited(true);
9730         Def->addAttr(A);
9731         dllExportImportClassTemplateSpecialization(*this, Def);
9732       }
9733     }
9734 
9735     // Fix a TSK_ImplicitInstantiation followed by a
9736     // TSK_ExplicitInstantiationDefinition
9737     bool NewlyDLLExported =
9738         !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9739     if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9740         (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9741          !Context.getTargetInfo().getTriple().isPS4CPU())) {
9742       // An explicit instantiation definition can add a dll attribute to a
9743       // template with a previous implicit instantiation. MinGW doesn't allow
9744       // this. We limit clang to only adding dllexport, to avoid potentially
9745       // strange codegen behavior. For example, if we extend this conditional
9746       // to dllimport, and we have a source file calling a method on an
9747       // implicitly instantiated template class instance and then declaring a
9748       // dllimport explicit instantiation definition for the same template
9749       // class, the codegen for the method call will not respect the dllimport,
9750       // while it will with cl. The Def will already have the DLL attribute,
9751       // since the Def and Specialization will be the same in the case of
9752       // Old_TSK == TSK_ImplicitInstantiation, and we already added the
9753       // attribute to the Specialization; we just need to make it take effect.
9754       assert(Def == Specialization &&
9755              "Def and Specialization should match for implicit instantiation");
9756       dllExportImportClassTemplateSpecialization(*this, Def);
9757     }
9758 
9759     // In MinGW mode, export the template instantiation if the declaration
9760     // was marked dllexport.
9761     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9762         Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9763         PrevDecl->hasAttr<DLLExportAttr>()) {
9764       dllExportImportClassTemplateSpecialization(*this, Def);
9765     }
9766 
9767     if (Def->hasAttr<MSInheritanceAttr>()) {
9768       Specialization->addAttr(Def->getAttr<MSInheritanceAttr>());
9769       Consumer.AssignInheritanceModel(Specialization);
9770     }
9771 
9772     // Set the template specialization kind. Make sure it is set before
9773     // instantiating the members which will trigger ASTConsumer callbacks.
9774     Specialization->setTemplateSpecializationKind(TSK);
9775     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9776   } else {
9777 
9778     // Set the template specialization kind.
9779     Specialization->setTemplateSpecializationKind(TSK);
9780   }
9781 
9782   return Specialization;
9783 }
9784 
9785 // Explicit instantiation of a member class of a class template.
9786 DeclResult
9787 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9788                                  SourceLocation TemplateLoc, unsigned TagSpec,
9789                                  SourceLocation KWLoc, CXXScopeSpec &SS,
9790                                  IdentifierInfo *Name, SourceLocation NameLoc,
9791                                  const ParsedAttributesView &Attr) {
9792 
9793   bool Owned = false;
9794   bool IsDependent = false;
9795   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9796                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
9797                         /*ModulePrivateLoc=*/SourceLocation(),
9798                         MultiTemplateParamsArg(), Owned, IsDependent,
9799                         SourceLocation(), false, TypeResult(),
9800                         /*IsTypeSpecifier*/false,
9801                         /*IsTemplateParamOrArg*/false);
9802   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
9803 
9804   if (!TagD)
9805     return true;
9806 
9807   TagDecl *Tag = cast<TagDecl>(TagD);
9808   assert(!Tag->isEnum() && "shouldn't see enumerations here");
9809 
9810   if (Tag->isInvalidDecl())
9811     return true;
9812 
9813   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9814   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9815   if (!Pattern) {
9816     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9817       << Context.getTypeDeclType(Record);
9818     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9819     return true;
9820   }
9821 
9822   // C++0x [temp.explicit]p2:
9823   //   If the explicit instantiation is for a class or member class, the
9824   //   elaborated-type-specifier in the declaration shall include a
9825   //   simple-template-id.
9826   //
9827   // C++98 has the same restriction, just worded differently.
9828   if (!ScopeSpecifierHasTemplateId(SS))
9829     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9830       << Record << SS.getRange();
9831 
9832   // C++0x [temp.explicit]p2:
9833   //   There are two forms of explicit instantiation: an explicit instantiation
9834   //   definition and an explicit instantiation declaration. An explicit
9835   //   instantiation declaration begins with the extern keyword. [...]
9836   TemplateSpecializationKind TSK
9837     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9838                            : TSK_ExplicitInstantiationDeclaration;
9839 
9840   CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9841 
9842   // Verify that it is okay to explicitly instantiate here.
9843   CXXRecordDecl *PrevDecl
9844     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9845   if (!PrevDecl && Record->getDefinition())
9846     PrevDecl = Record;
9847   if (PrevDecl) {
9848     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9849     bool HasNoEffect = false;
9850     assert(MSInfo && "No member specialization information?");
9851     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9852                                                PrevDecl,
9853                                         MSInfo->getTemplateSpecializationKind(),
9854                                              MSInfo->getPointOfInstantiation(),
9855                                                HasNoEffect))
9856       return true;
9857     if (HasNoEffect)
9858       return TagD;
9859   }
9860 
9861   CXXRecordDecl *RecordDef
9862     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9863   if (!RecordDef) {
9864     // C++ [temp.explicit]p3:
9865     //   A definition of a member class of a class template shall be in scope
9866     //   at the point of an explicit instantiation of the member class.
9867     CXXRecordDecl *Def
9868       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
9869     if (!Def) {
9870       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
9871         << 0 << Record->getDeclName() << Record->getDeclContext();
9872       Diag(Pattern->getLocation(), diag::note_forward_declaration)
9873         << Pattern;
9874       return true;
9875     } else {
9876       if (InstantiateClass(NameLoc, Record, Def,
9877                            getTemplateInstantiationArgs(Record),
9878                            TSK))
9879         return true;
9880 
9881       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9882       if (!RecordDef)
9883         return true;
9884     }
9885   }
9886 
9887   // Instantiate all of the members of the class.
9888   InstantiateClassMembers(NameLoc, RecordDef,
9889                           getTemplateInstantiationArgs(Record), TSK);
9890 
9891   if (TSK == TSK_ExplicitInstantiationDefinition)
9892     MarkVTableUsed(NameLoc, RecordDef, true);
9893 
9894   // FIXME: We don't have any representation for explicit instantiations of
9895   // member classes. Such a representation is not needed for compilation, but it
9896   // should be available for clients that want to see all of the declarations in
9897   // the source code.
9898   return TagD;
9899 }
9900 
9901 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
9902                                             SourceLocation ExternLoc,
9903                                             SourceLocation TemplateLoc,
9904                                             Declarator &D) {
9905   // Explicit instantiations always require a name.
9906   // TODO: check if/when DNInfo should replace Name.
9907   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9908   DeclarationName Name = NameInfo.getName();
9909   if (!Name) {
9910     if (!D.isInvalidType())
9911       Diag(D.getDeclSpec().getBeginLoc(),
9912            diag::err_explicit_instantiation_requires_name)
9913           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
9914 
9915     return true;
9916   }
9917 
9918   // The scope passed in may not be a decl scope.  Zip up the scope tree until
9919   // we find one that is.
9920   while ((S->getFlags() & Scope::DeclScope) == 0 ||
9921          (S->getFlags() & Scope::TemplateParamScope) != 0)
9922     S = S->getParent();
9923 
9924   // Determine the type of the declaration.
9925   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
9926   QualType R = T->getType();
9927   if (R.isNull())
9928     return true;
9929 
9930   // C++ [dcl.stc]p1:
9931   //   A storage-class-specifier shall not be specified in [...] an explicit
9932   //   instantiation (14.7.2) directive.
9933   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
9934     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
9935       << Name;
9936     return true;
9937   } else if (D.getDeclSpec().getStorageClassSpec()
9938                                                 != DeclSpec::SCS_unspecified) {
9939     // Complain about then remove the storage class specifier.
9940     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
9941       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9942 
9943     D.getMutableDeclSpec().ClearStorageClassSpecs();
9944   }
9945 
9946   // C++0x [temp.explicit]p1:
9947   //   [...] An explicit instantiation of a function template shall not use the
9948   //   inline or constexpr specifiers.
9949   // Presumably, this also applies to member functions of class templates as
9950   // well.
9951   if (D.getDeclSpec().isInlineSpecified())
9952     Diag(D.getDeclSpec().getInlineSpecLoc(),
9953          getLangOpts().CPlusPlus11 ?
9954            diag::err_explicit_instantiation_inline :
9955            diag::warn_explicit_instantiation_inline_0x)
9956       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9957   if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
9958     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
9959     // not already specified.
9960     Diag(D.getDeclSpec().getConstexprSpecLoc(),
9961          diag::err_explicit_instantiation_constexpr);
9962 
9963   // A deduction guide is not on the list of entities that can be explicitly
9964   // instantiated.
9965   if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9966     Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
9967         << /*explicit instantiation*/ 0;
9968     return true;
9969   }
9970 
9971   // C++0x [temp.explicit]p2:
9972   //   There are two forms of explicit instantiation: an explicit instantiation
9973   //   definition and an explicit instantiation declaration. An explicit
9974   //   instantiation declaration begins with the extern keyword. [...]
9975   TemplateSpecializationKind TSK
9976     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9977                            : TSK_ExplicitInstantiationDeclaration;
9978 
9979   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
9980   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
9981 
9982   if (!R->isFunctionType()) {
9983     // C++ [temp.explicit]p1:
9984     //   A [...] static data member of a class template can be explicitly
9985     //   instantiated from the member definition associated with its class
9986     //   template.
9987     // C++1y [temp.explicit]p1:
9988     //   A [...] variable [...] template specialization can be explicitly
9989     //   instantiated from its template.
9990     if (Previous.isAmbiguous())
9991       return true;
9992 
9993     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
9994     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
9995 
9996     if (!PrevTemplate) {
9997       if (!Prev || !Prev->isStaticDataMember()) {
9998         // We expect to see a static data member here.
9999         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10000             << Name;
10001         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10002              P != PEnd; ++P)
10003           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10004         return true;
10005       }
10006 
10007       if (!Prev->getInstantiatedFromStaticDataMember()) {
10008         // FIXME: Check for explicit specialization?
10009         Diag(D.getIdentifierLoc(),
10010              diag::err_explicit_instantiation_data_member_not_instantiated)
10011             << Prev;
10012         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10013         // FIXME: Can we provide a note showing where this was declared?
10014         return true;
10015       }
10016     } else {
10017       // Explicitly instantiate a variable template.
10018 
10019       // C++1y [dcl.spec.auto]p6:
10020       //   ... A program that uses auto or decltype(auto) in a context not
10021       //   explicitly allowed in this section is ill-formed.
10022       //
10023       // This includes auto-typed variable template instantiations.
10024       if (R->isUndeducedType()) {
10025         Diag(T->getTypeLoc().getBeginLoc(),
10026              diag::err_auto_not_allowed_var_inst);
10027         return true;
10028       }
10029 
10030       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10031         // C++1y [temp.explicit]p3:
10032         //   If the explicit instantiation is for a variable, the unqualified-id
10033         //   in the declaration shall be a template-id.
10034         Diag(D.getIdentifierLoc(),
10035              diag::err_explicit_instantiation_without_template_id)
10036           << PrevTemplate;
10037         Diag(PrevTemplate->getLocation(),
10038              diag::note_explicit_instantiation_here);
10039         return true;
10040       }
10041 
10042       // Translate the parser's template argument list into our AST format.
10043       TemplateArgumentListInfo TemplateArgs =
10044           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10045 
10046       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10047                                           D.getIdentifierLoc(), TemplateArgs);
10048       if (Res.isInvalid())
10049         return true;
10050 
10051       if (!Res.isUsable()) {
10052         // We somehow specified dependent template arguments in an explicit
10053         // instantiation. This should probably only happen during error
10054         // recovery.
10055         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10056         return true;
10057       }
10058 
10059       // Ignore access control bits, we don't need them for redeclaration
10060       // checking.
10061       Prev = cast<VarDecl>(Res.get());
10062     }
10063 
10064     // C++0x [temp.explicit]p2:
10065     //   If the explicit instantiation is for a member function, a member class
10066     //   or a static data member of a class template specialization, the name of
10067     //   the class template specialization in the qualified-id for the member
10068     //   name shall be a simple-template-id.
10069     //
10070     // C++98 has the same restriction, just worded differently.
10071     //
10072     // This does not apply to variable template specializations, where the
10073     // template-id is in the unqualified-id instead.
10074     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10075       Diag(D.getIdentifierLoc(),
10076            diag::ext_explicit_instantiation_without_qualified_id)
10077         << Prev << D.getCXXScopeSpec().getRange();
10078 
10079     CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10080 
10081     // Verify that it is okay to explicitly instantiate here.
10082     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10083     SourceLocation POI = Prev->getPointOfInstantiation();
10084     bool HasNoEffect = false;
10085     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10086                                                PrevTSK, POI, HasNoEffect))
10087       return true;
10088 
10089     if (!HasNoEffect) {
10090       // Instantiate static data member or variable template.
10091       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10092       // Merge attributes.
10093       ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10094       if (TSK == TSK_ExplicitInstantiationDefinition)
10095         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10096     }
10097 
10098     // Check the new variable specialization against the parsed input.
10099     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
10100       Diag(T->getTypeLoc().getBeginLoc(),
10101            diag::err_invalid_var_template_spec_type)
10102           << 0 << PrevTemplate << R << Prev->getType();
10103       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10104           << 2 << PrevTemplate->getDeclName();
10105       return true;
10106     }
10107 
10108     // FIXME: Create an ExplicitInstantiation node?
10109     return (Decl*) nullptr;
10110   }
10111 
10112   // If the declarator is a template-id, translate the parser's template
10113   // argument list into our AST format.
10114   bool HasExplicitTemplateArgs = false;
10115   TemplateArgumentListInfo TemplateArgs;
10116   if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10117     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10118     HasExplicitTemplateArgs = true;
10119   }
10120 
10121   // C++ [temp.explicit]p1:
10122   //   A [...] function [...] can be explicitly instantiated from its template.
10123   //   A member function [...] of a class template can be explicitly
10124   //  instantiated from the member definition associated with its class
10125   //  template.
10126   UnresolvedSet<8> TemplateMatches;
10127   FunctionDecl *NonTemplateMatch = nullptr;
10128   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10129   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10130        P != PEnd; ++P) {
10131     NamedDecl *Prev = *P;
10132     if (!HasExplicitTemplateArgs) {
10133       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10134         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10135                                                 /*AdjustExceptionSpec*/true);
10136         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10137           if (Method->getPrimaryTemplate()) {
10138             TemplateMatches.addDecl(Method, P.getAccess());
10139           } else {
10140             // FIXME: Can this assert ever happen?  Needs a test.
10141             assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10142             NonTemplateMatch = Method;
10143           }
10144         }
10145       }
10146     }
10147 
10148     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10149     if (!FunTmpl)
10150       continue;
10151 
10152     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10153     FunctionDecl *Specialization = nullptr;
10154     if (TemplateDeductionResult TDK
10155           = DeduceTemplateArguments(FunTmpl,
10156                                (HasExplicitTemplateArgs ? &TemplateArgs
10157                                                         : nullptr),
10158                                     R, Specialization, Info)) {
10159       // Keep track of almost-matches.
10160       FailedCandidates.addCandidate()
10161           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10162                MakeDeductionFailureInfo(Context, TDK, Info));
10163       (void)TDK;
10164       continue;
10165     }
10166 
10167     // Target attributes are part of the cuda function signature, so
10168     // the cuda target of the instantiated function must match that of its
10169     // template.  Given that C++ template deduction does not take
10170     // target attributes into account, we reject candidates here that
10171     // have a different target.
10172     if (LangOpts.CUDA &&
10173         IdentifyCUDATarget(Specialization,
10174                            /* IgnoreImplicitHDAttr = */ true) !=
10175             IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10176       FailedCandidates.addCandidate().set(
10177           P.getPair(), FunTmpl->getTemplatedDecl(),
10178           MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10179       continue;
10180     }
10181 
10182     TemplateMatches.addDecl(Specialization, P.getAccess());
10183   }
10184 
10185   FunctionDecl *Specialization = NonTemplateMatch;
10186   if (!Specialization) {
10187     // Find the most specialized function template specialization.
10188     UnresolvedSetIterator Result = getMostSpecialized(
10189         TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10190         D.getIdentifierLoc(),
10191         PDiag(diag::err_explicit_instantiation_not_known) << Name,
10192         PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10193         PDiag(diag::note_explicit_instantiation_candidate));
10194 
10195     if (Result == TemplateMatches.end())
10196       return true;
10197 
10198     // Ignore access control bits, we don't need them for redeclaration checking.
10199     Specialization = cast<FunctionDecl>(*Result);
10200   }
10201 
10202   // C++11 [except.spec]p4
10203   // In an explicit instantiation an exception-specification may be specified,
10204   // but is not required.
10205   // If an exception-specification is specified in an explicit instantiation
10206   // directive, it shall be compatible with the exception-specifications of
10207   // other declarations of that function.
10208   if (auto *FPT = R->getAs<FunctionProtoType>())
10209     if (FPT->hasExceptionSpec()) {
10210       unsigned DiagID =
10211           diag::err_mismatched_exception_spec_explicit_instantiation;
10212       if (getLangOpts().MicrosoftExt)
10213         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10214       bool Result = CheckEquivalentExceptionSpec(
10215           PDiag(DiagID) << Specialization->getType(),
10216           PDiag(diag::note_explicit_instantiation_here),
10217           Specialization->getType()->getAs<FunctionProtoType>(),
10218           Specialization->getLocation(), FPT, D.getBeginLoc());
10219       // In Microsoft mode, mismatching exception specifications just cause a
10220       // warning.
10221       if (!getLangOpts().MicrosoftExt && Result)
10222         return true;
10223     }
10224 
10225   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10226     Diag(D.getIdentifierLoc(),
10227          diag::err_explicit_instantiation_member_function_not_instantiated)
10228       << Specialization
10229       << (Specialization->getTemplateSpecializationKind() ==
10230           TSK_ExplicitSpecialization);
10231     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10232     return true;
10233   }
10234 
10235   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10236   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10237     PrevDecl = Specialization;
10238 
10239   if (PrevDecl) {
10240     bool HasNoEffect = false;
10241     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10242                                                PrevDecl,
10243                                      PrevDecl->getTemplateSpecializationKind(),
10244                                           PrevDecl->getPointOfInstantiation(),
10245                                                HasNoEffect))
10246       return true;
10247 
10248     // FIXME: We may still want to build some representation of this
10249     // explicit specialization.
10250     if (HasNoEffect)
10251       return (Decl*) nullptr;
10252   }
10253 
10254   // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10255   // functions
10256   //     valarray<size_t>::valarray(size_t) and
10257   //     valarray<size_t>::~valarray()
10258   // that it declared to have internal linkage with the internal_linkage
10259   // attribute. Ignore the explicit instantiation declaration in this case.
10260   if (Specialization->hasAttr<InternalLinkageAttr>() &&
10261       TSK == TSK_ExplicitInstantiationDeclaration) {
10262     if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10263       if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10264           RD->isInStdNamespace())
10265         return (Decl*) nullptr;
10266   }
10267 
10268   ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10269 
10270   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10271   // instantiation declarations.
10272   if (TSK == TSK_ExplicitInstantiationDefinition &&
10273       Specialization->hasAttr<DLLImportAttr>() &&
10274       Context.getTargetInfo().getCXXABI().isMicrosoft())
10275     TSK = TSK_ExplicitInstantiationDeclaration;
10276 
10277   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10278 
10279   if (Specialization->isDefined()) {
10280     // Let the ASTConsumer know that this function has been explicitly
10281     // instantiated now, and its linkage might have changed.
10282     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10283   } else if (TSK == TSK_ExplicitInstantiationDefinition)
10284     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10285 
10286   // C++0x [temp.explicit]p2:
10287   //   If the explicit instantiation is for a member function, a member class
10288   //   or a static data member of a class template specialization, the name of
10289   //   the class template specialization in the qualified-id for the member
10290   //   name shall be a simple-template-id.
10291   //
10292   // C++98 has the same restriction, just worded differently.
10293   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10294   if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10295       D.getCXXScopeSpec().isSet() &&
10296       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10297     Diag(D.getIdentifierLoc(),
10298          diag::ext_explicit_instantiation_without_qualified_id)
10299     << Specialization << D.getCXXScopeSpec().getRange();
10300 
10301   CheckExplicitInstantiation(
10302       *this,
10303       FunTmpl ? (NamedDecl *)FunTmpl
10304               : Specialization->getInstantiatedFromMemberFunction(),
10305       D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10306 
10307   // FIXME: Create some kind of ExplicitInstantiationDecl here.
10308   return (Decl*) nullptr;
10309 }
10310 
10311 TypeResult
10312 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10313                         const CXXScopeSpec &SS, IdentifierInfo *Name,
10314                         SourceLocation TagLoc, SourceLocation NameLoc) {
10315   // This has to hold, because SS is expected to be defined.
10316   assert(Name && "Expected a name in a dependent tag");
10317 
10318   NestedNameSpecifier *NNS = SS.getScopeRep();
10319   if (!NNS)
10320     return true;
10321 
10322   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10323 
10324   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10325     Diag(NameLoc, diag::err_dependent_tag_decl)
10326       << (TUK == TUK_Definition) << Kind << SS.getRange();
10327     return true;
10328   }
10329 
10330   // Create the resulting type.
10331   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10332   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10333 
10334   // Create type-source location information for this type.
10335   TypeLocBuilder TLB;
10336   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10337   TL.setElaboratedKeywordLoc(TagLoc);
10338   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10339   TL.setNameLoc(NameLoc);
10340   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10341 }
10342 
10343 TypeResult
10344 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10345                         const CXXScopeSpec &SS, const IdentifierInfo &II,
10346                         SourceLocation IdLoc) {
10347   if (SS.isInvalid())
10348     return true;
10349 
10350   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10351     Diag(TypenameLoc,
10352          getLangOpts().CPlusPlus11 ?
10353            diag::warn_cxx98_compat_typename_outside_of_template :
10354            diag::ext_typename_outside_of_template)
10355       << FixItHint::CreateRemoval(TypenameLoc);
10356 
10357   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10358   TypeSourceInfo *TSI = nullptr;
10359   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
10360                                  TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10361                                  /*DeducedTSTContext=*/true);
10362   if (T.isNull())
10363     return true;
10364   return CreateParsedType(T, TSI);
10365 }
10366 
10367 TypeResult
10368 Sema::ActOnTypenameType(Scope *S,
10369                         SourceLocation TypenameLoc,
10370                         const CXXScopeSpec &SS,
10371                         SourceLocation TemplateKWLoc,
10372                         TemplateTy TemplateIn,
10373                         IdentifierInfo *TemplateII,
10374                         SourceLocation TemplateIILoc,
10375                         SourceLocation LAngleLoc,
10376                         ASTTemplateArgsPtr TemplateArgsIn,
10377                         SourceLocation RAngleLoc) {
10378   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10379     Diag(TypenameLoc,
10380          getLangOpts().CPlusPlus11 ?
10381            diag::warn_cxx98_compat_typename_outside_of_template :
10382            diag::ext_typename_outside_of_template)
10383       << FixItHint::CreateRemoval(TypenameLoc);
10384 
10385   // Strangely, non-type results are not ignored by this lookup, so the
10386   // program is ill-formed if it finds an injected-class-name.
10387   if (TypenameLoc.isValid()) {
10388     auto *LookupRD =
10389         dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10390     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10391       Diag(TemplateIILoc,
10392            diag::ext_out_of_line_qualified_id_type_names_constructor)
10393         << TemplateII << 0 /*injected-class-name used as template name*/
10394         << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10395     }
10396   }
10397 
10398   // Translate the parser's template argument list in our AST format.
10399   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10400   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10401 
10402   TemplateName Template = TemplateIn.get();
10403   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10404     // Construct a dependent template specialization type.
10405     assert(DTN && "dependent template has non-dependent name?");
10406     assert(DTN->getQualifier() == SS.getScopeRep());
10407     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
10408                                                           DTN->getQualifier(),
10409                                                           DTN->getIdentifier(),
10410                                                                 TemplateArgs);
10411 
10412     // Create source-location information for this type.
10413     TypeLocBuilder Builder;
10414     DependentTemplateSpecializationTypeLoc SpecTL
10415     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10416     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10417     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10418     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10419     SpecTL.setTemplateNameLoc(TemplateIILoc);
10420     SpecTL.setLAngleLoc(LAngleLoc);
10421     SpecTL.setRAngleLoc(RAngleLoc);
10422     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10423       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10424     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10425   }
10426 
10427   QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10428   if (T.isNull())
10429     return true;
10430 
10431   // Provide source-location information for the template specialization type.
10432   TypeLocBuilder Builder;
10433   TemplateSpecializationTypeLoc SpecTL
10434     = Builder.push<TemplateSpecializationTypeLoc>(T);
10435   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10436   SpecTL.setTemplateNameLoc(TemplateIILoc);
10437   SpecTL.setLAngleLoc(LAngleLoc);
10438   SpecTL.setRAngleLoc(RAngleLoc);
10439   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10440     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10441 
10442   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
10443   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10444   TL.setElaboratedKeywordLoc(TypenameLoc);
10445   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10446 
10447   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10448   return CreateParsedType(T, TSI);
10449 }
10450 
10451 
10452 /// Determine whether this failed name lookup should be treated as being
10453 /// disabled by a usage of std::enable_if.
10454 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10455                        SourceRange &CondRange, Expr *&Cond) {
10456   // We must be looking for a ::type...
10457   if (!II.isStr("type"))
10458     return false;
10459 
10460   // ... within an explicitly-written template specialization...
10461   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10462     return false;
10463   TypeLoc EnableIfTy = NNS.getTypeLoc();
10464   TemplateSpecializationTypeLoc EnableIfTSTLoc =
10465       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10466   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10467     return false;
10468   const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10469 
10470   // ... which names a complete class template declaration...
10471   const TemplateDecl *EnableIfDecl =
10472     EnableIfTST->getTemplateName().getAsTemplateDecl();
10473   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10474     return false;
10475 
10476   // ... called "enable_if".
10477   const IdentifierInfo *EnableIfII =
10478     EnableIfDecl->getDeclName().getAsIdentifierInfo();
10479   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10480     return false;
10481 
10482   // Assume the first template argument is the condition.
10483   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10484 
10485   // Dig out the condition.
10486   Cond = nullptr;
10487   if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10488         != TemplateArgument::Expression)
10489     return true;
10490 
10491   Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10492 
10493   // Ignore Boolean literals; they add no value.
10494   if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10495     Cond = nullptr;
10496 
10497   return true;
10498 }
10499 
10500 QualType
10501 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10502                         SourceLocation KeywordLoc,
10503                         NestedNameSpecifierLoc QualifierLoc,
10504                         const IdentifierInfo &II,
10505                         SourceLocation IILoc,
10506                         TypeSourceInfo **TSI,
10507                         bool DeducedTSTContext) {
10508   QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10509                                  DeducedTSTContext);
10510   if (T.isNull())
10511     return QualType();
10512 
10513   *TSI = Context.CreateTypeSourceInfo(T);
10514   if (isa<DependentNameType>(T)) {
10515     DependentNameTypeLoc TL =
10516         (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10517     TL.setElaboratedKeywordLoc(KeywordLoc);
10518     TL.setQualifierLoc(QualifierLoc);
10519     TL.setNameLoc(IILoc);
10520   } else {
10521     ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10522     TL.setElaboratedKeywordLoc(KeywordLoc);
10523     TL.setQualifierLoc(QualifierLoc);
10524     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10525   }
10526   return T;
10527 }
10528 
10529 /// Build the type that describes a C++ typename specifier,
10530 /// e.g., "typename T::type".
10531 QualType
10532 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10533                         SourceLocation KeywordLoc,
10534                         NestedNameSpecifierLoc QualifierLoc,
10535                         const IdentifierInfo &II,
10536                         SourceLocation IILoc, bool DeducedTSTContext) {
10537   CXXScopeSpec SS;
10538   SS.Adopt(QualifierLoc);
10539 
10540   DeclContext *Ctx = nullptr;
10541   if (QualifierLoc) {
10542     Ctx = computeDeclContext(SS);
10543     if (!Ctx) {
10544       // If the nested-name-specifier is dependent and couldn't be
10545       // resolved to a type, build a typename type.
10546       assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
10547       return Context.getDependentNameType(Keyword,
10548                                           QualifierLoc.getNestedNameSpecifier(),
10549                                           &II);
10550     }
10551 
10552     // If the nested-name-specifier refers to the current instantiation,
10553     // the "typename" keyword itself is superfluous. In C++03, the
10554     // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10555     // allows such extraneous "typename" keywords, and we retroactively
10556     // apply this DR to C++03 code with only a warning. In any case we continue.
10557 
10558     if (RequireCompleteDeclContext(SS, Ctx))
10559       return QualType();
10560   }
10561 
10562   DeclarationName Name(&II);
10563   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10564   if (Ctx)
10565     LookupQualifiedName(Result, Ctx, SS);
10566   else
10567     LookupName(Result, CurScope);
10568   unsigned DiagID = 0;
10569   Decl *Referenced = nullptr;
10570   switch (Result.getResultKind()) {
10571   case LookupResult::NotFound: {
10572     // If we're looking up 'type' within a template named 'enable_if', produce
10573     // a more specific diagnostic.
10574     SourceRange CondRange;
10575     Expr *Cond = nullptr;
10576     if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10577       // If we have a condition, narrow it down to the specific failed
10578       // condition.
10579       if (Cond) {
10580         Expr *FailedCond;
10581         std::string FailedDescription;
10582         std::tie(FailedCond, FailedDescription) =
10583           findFailedBooleanCondition(Cond);
10584 
10585         Diag(FailedCond->getExprLoc(),
10586              diag::err_typename_nested_not_found_requirement)
10587           << FailedDescription
10588           << FailedCond->getSourceRange();
10589         return QualType();
10590       }
10591 
10592       Diag(CondRange.getBegin(),
10593            diag::err_typename_nested_not_found_enable_if)
10594           << Ctx << CondRange;
10595       return QualType();
10596     }
10597 
10598     DiagID = Ctx ? diag::err_typename_nested_not_found
10599                  : diag::err_unknown_typename;
10600     break;
10601   }
10602 
10603   case LookupResult::FoundUnresolvedValue: {
10604     // We found a using declaration that is a value. Most likely, the using
10605     // declaration itself is meant to have the 'typename' keyword.
10606     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10607                           IILoc);
10608     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10609       << Name << Ctx << FullRange;
10610     if (UnresolvedUsingValueDecl *Using
10611           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10612       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10613       Diag(Loc, diag::note_using_value_decl_missing_typename)
10614         << FixItHint::CreateInsertion(Loc, "typename ");
10615     }
10616   }
10617   // Fall through to create a dependent typename type, from which we can recover
10618   // better.
10619   LLVM_FALLTHROUGH;
10620 
10621   case LookupResult::NotFoundInCurrentInstantiation:
10622     // Okay, it's a member of an unknown instantiation.
10623     return Context.getDependentNameType(Keyword,
10624                                         QualifierLoc.getNestedNameSpecifier(),
10625                                         &II);
10626 
10627   case LookupResult::Found:
10628     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10629       // C++ [class.qual]p2:
10630       //   In a lookup in which function names are not ignored and the
10631       //   nested-name-specifier nominates a class C, if the name specified
10632       //   after the nested-name-specifier, when looked up in C, is the
10633       //   injected-class-name of C [...] then the name is instead considered
10634       //   to name the constructor of class C.
10635       //
10636       // Unlike in an elaborated-type-specifier, function names are not ignored
10637       // in typename-specifier lookup. However, they are ignored in all the
10638       // contexts where we form a typename type with no keyword (that is, in
10639       // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10640       //
10641       // FIXME: That's not strictly true: mem-initializer-id lookup does not
10642       // ignore functions, but that appears to be an oversight.
10643       auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10644       auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10645       if (Keyword == ETK_Typename && LookupRD && FoundRD &&
10646           FoundRD->isInjectedClassName() &&
10647           declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10648         Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10649             << &II << 1 << 0 /*'typename' keyword used*/;
10650 
10651       // We found a type. Build an ElaboratedType, since the
10652       // typename-specifier was just sugar.
10653       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10654       return Context.getElaboratedType(Keyword,
10655                                        QualifierLoc.getNestedNameSpecifier(),
10656                                        Context.getTypeDeclType(Type));
10657     }
10658 
10659     // C++ [dcl.type.simple]p2:
10660     //   A type-specifier of the form
10661     //     typename[opt] nested-name-specifier[opt] template-name
10662     //   is a placeholder for a deduced class type [...].
10663     if (getLangOpts().CPlusPlus17) {
10664       if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10665         if (!DeducedTSTContext) {
10666           QualType T(QualifierLoc
10667                          ? QualifierLoc.getNestedNameSpecifier()->getAsType()
10668                          : nullptr, 0);
10669           if (!T.isNull())
10670             Diag(IILoc, diag::err_dependent_deduced_tst)
10671               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
10672           else
10673             Diag(IILoc, diag::err_deduced_tst)
10674               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
10675           Diag(TD->getLocation(), diag::note_template_decl_here);
10676           return QualType();
10677         }
10678         return Context.getElaboratedType(
10679             Keyword, QualifierLoc.getNestedNameSpecifier(),
10680             Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10681                                                          QualType(), false));
10682       }
10683     }
10684 
10685     DiagID = Ctx ? diag::err_typename_nested_not_type
10686                  : diag::err_typename_not_type;
10687     Referenced = Result.getFoundDecl();
10688     break;
10689 
10690   case LookupResult::FoundOverloaded:
10691     DiagID = Ctx ? diag::err_typename_nested_not_type
10692                  : diag::err_typename_not_type;
10693     Referenced = *Result.begin();
10694     break;
10695 
10696   case LookupResult::Ambiguous:
10697     return QualType();
10698   }
10699 
10700   // If we get here, it's because name lookup did not find a
10701   // type. Emit an appropriate diagnostic and return an error.
10702   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10703                         IILoc);
10704   if (Ctx)
10705     Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10706   else
10707     Diag(IILoc, DiagID) << FullRange << Name;
10708   if (Referenced)
10709     Diag(Referenced->getLocation(),
10710          Ctx ? diag::note_typename_member_refers_here
10711              : diag::note_typename_refers_here)
10712       << Name;
10713   return QualType();
10714 }
10715 
10716 namespace {
10717   // See Sema::RebuildTypeInCurrentInstantiation
10718   class CurrentInstantiationRebuilder
10719     : public TreeTransform<CurrentInstantiationRebuilder> {
10720     SourceLocation Loc;
10721     DeclarationName Entity;
10722 
10723   public:
10724     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10725 
10726     CurrentInstantiationRebuilder(Sema &SemaRef,
10727                                   SourceLocation Loc,
10728                                   DeclarationName Entity)
10729     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10730       Loc(Loc), Entity(Entity) { }
10731 
10732     /// Determine whether the given type \p T has already been
10733     /// transformed.
10734     ///
10735     /// For the purposes of type reconstruction, a type has already been
10736     /// transformed if it is NULL or if it is not dependent.
10737     bool AlreadyTransformed(QualType T) {
10738       return T.isNull() || !T->isInstantiationDependentType();
10739     }
10740 
10741     /// Returns the location of the entity whose type is being
10742     /// rebuilt.
10743     SourceLocation getBaseLocation() { return Loc; }
10744 
10745     /// Returns the name of the entity whose type is being rebuilt.
10746     DeclarationName getBaseEntity() { return Entity; }
10747 
10748     /// Sets the "base" location and entity when that
10749     /// information is known based on another transformation.
10750     void setBase(SourceLocation Loc, DeclarationName Entity) {
10751       this->Loc = Loc;
10752       this->Entity = Entity;
10753     }
10754 
10755     ExprResult TransformLambdaExpr(LambdaExpr *E) {
10756       // Lambdas never need to be transformed.
10757       return E;
10758     }
10759   };
10760 } // end anonymous namespace
10761 
10762 /// Rebuilds a type within the context of the current instantiation.
10763 ///
10764 /// The type \p T is part of the type of an out-of-line member definition of
10765 /// a class template (or class template partial specialization) that was parsed
10766 /// and constructed before we entered the scope of the class template (or
10767 /// partial specialization thereof). This routine will rebuild that type now
10768 /// that we have entered the declarator's scope, which may produce different
10769 /// canonical types, e.g.,
10770 ///
10771 /// \code
10772 /// template<typename T>
10773 /// struct X {
10774 ///   typedef T* pointer;
10775 ///   pointer data();
10776 /// };
10777 ///
10778 /// template<typename T>
10779 /// typename X<T>::pointer X<T>::data() { ... }
10780 /// \endcode
10781 ///
10782 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10783 /// since we do not know that we can look into X<T> when we parsed the type.
10784 /// This function will rebuild the type, performing the lookup of "pointer"
10785 /// in X<T> and returning an ElaboratedType whose canonical type is the same
10786 /// as the canonical type of T*, allowing the return types of the out-of-line
10787 /// definition and the declaration to match.
10788 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10789                                                         SourceLocation Loc,
10790                                                         DeclarationName Name) {
10791   if (!T || !T->getType()->isInstantiationDependentType())
10792     return T;
10793 
10794   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10795   return Rebuilder.TransformType(T);
10796 }
10797 
10798 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10799   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10800                                           DeclarationName());
10801   return Rebuilder.TransformExpr(E);
10802 }
10803 
10804 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10805   if (SS.isInvalid())
10806     return true;
10807 
10808   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10809   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10810                                           DeclarationName());
10811   NestedNameSpecifierLoc Rebuilt
10812     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10813   if (!Rebuilt)
10814     return true;
10815 
10816   SS.Adopt(Rebuilt);
10817   return false;
10818 }
10819 
10820 /// Rebuild the template parameters now that we know we're in a current
10821 /// instantiation.
10822 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10823                                                TemplateParameterList *Params) {
10824   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10825     Decl *Param = Params->getParam(I);
10826 
10827     // There is nothing to rebuild in a type parameter.
10828     if (isa<TemplateTypeParmDecl>(Param))
10829       continue;
10830 
10831     // Rebuild the template parameter list of a template template parameter.
10832     if (TemplateTemplateParmDecl *TTP
10833         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10834       if (RebuildTemplateParamsInCurrentInstantiation(
10835             TTP->getTemplateParameters()))
10836         return true;
10837 
10838       continue;
10839     }
10840 
10841     // Rebuild the type of a non-type template parameter.
10842     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10843     TypeSourceInfo *NewTSI
10844       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10845                                           NTTP->getLocation(),
10846                                           NTTP->getDeclName());
10847     if (!NewTSI)
10848       return true;
10849 
10850     if (NewTSI->getType()->isUndeducedType()) {
10851       // C++17 [temp.dep.expr]p3:
10852       //   An id-expression is type-dependent if it contains
10853       //    - an identifier associated by name lookup with a non-type
10854       //      template-parameter declared with a type that contains a
10855       //      placeholder type (7.1.7.4),
10856       NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy);
10857     }
10858 
10859     if (NewTSI != NTTP->getTypeSourceInfo()) {
10860       NTTP->setTypeSourceInfo(NewTSI);
10861       NTTP->setType(NewTSI->getType());
10862     }
10863   }
10864 
10865   return false;
10866 }
10867 
10868 /// Produces a formatted string that describes the binding of
10869 /// template parameters to template arguments.
10870 std::string
10871 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10872                                       const TemplateArgumentList &Args) {
10873   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
10874 }
10875 
10876 std::string
10877 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10878                                       const TemplateArgument *Args,
10879                                       unsigned NumArgs) {
10880   SmallString<128> Str;
10881   llvm::raw_svector_ostream Out(Str);
10882 
10883   if (!Params || Params->size() == 0 || NumArgs == 0)
10884     return std::string();
10885 
10886   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10887     if (I >= NumArgs)
10888       break;
10889 
10890     if (I == 0)
10891       Out << "[with ";
10892     else
10893       Out << ", ";
10894 
10895     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
10896       Out << Id->getName();
10897     } else {
10898       Out << '$' << I;
10899     }
10900 
10901     Out << " = ";
10902     Args[I].print(getPrintingPolicy(), Out);
10903   }
10904 
10905   Out << ']';
10906   return std::string(Out.str());
10907 }
10908 
10909 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
10910                                     CachedTokens &Toks) {
10911   if (!FD)
10912     return;
10913 
10914   auto LPT = std::make_unique<LateParsedTemplate>();
10915 
10916   // Take tokens to avoid allocations
10917   LPT->Toks.swap(Toks);
10918   LPT->D = FnD;
10919   LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
10920 
10921   FD->setLateTemplateParsed(true);
10922 }
10923 
10924 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
10925   if (!FD)
10926     return;
10927   FD->setLateTemplateParsed(false);
10928 }
10929 
10930 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
10931   DeclContext *DC = CurContext;
10932 
10933   while (DC) {
10934     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
10935       const FunctionDecl *FD = RD->isLocalClass();
10936       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
10937     } else if (DC->isTranslationUnit() || DC->isNamespace())
10938       return false;
10939 
10940     DC = DC->getParent();
10941   }
10942   return false;
10943 }
10944 
10945 namespace {
10946 /// Walk the path from which a declaration was instantiated, and check
10947 /// that every explicit specialization along that path is visible. This enforces
10948 /// C++ [temp.expl.spec]/6:
10949 ///
10950 ///   If a template, a member template or a member of a class template is
10951 ///   explicitly specialized then that specialization shall be declared before
10952 ///   the first use of that specialization that would cause an implicit
10953 ///   instantiation to take place, in every translation unit in which such a
10954 ///   use occurs; no diagnostic is required.
10955 ///
10956 /// and also C++ [temp.class.spec]/1:
10957 ///
10958 ///   A partial specialization shall be declared before the first use of a
10959 ///   class template specialization that would make use of the partial
10960 ///   specialization as the result of an implicit or explicit instantiation
10961 ///   in every translation unit in which such a use occurs; no diagnostic is
10962 ///   required.
10963 class ExplicitSpecializationVisibilityChecker {
10964   Sema &S;
10965   SourceLocation Loc;
10966   llvm::SmallVector<Module *, 8> Modules;
10967 
10968 public:
10969   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
10970       : S(S), Loc(Loc) {}
10971 
10972   void check(NamedDecl *ND) {
10973     if (auto *FD = dyn_cast<FunctionDecl>(ND))
10974       return checkImpl(FD);
10975     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
10976       return checkImpl(RD);
10977     if (auto *VD = dyn_cast<VarDecl>(ND))
10978       return checkImpl(VD);
10979     if (auto *ED = dyn_cast<EnumDecl>(ND))
10980       return checkImpl(ED);
10981   }
10982 
10983 private:
10984   void diagnose(NamedDecl *D, bool IsPartialSpec) {
10985     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
10986                               : Sema::MissingImportKind::ExplicitSpecialization;
10987     const bool Recover = true;
10988 
10989     // If we got a custom set of modules (because only a subset of the
10990     // declarations are interesting), use them, otherwise let
10991     // diagnoseMissingImport intelligently pick some.
10992     if (Modules.empty())
10993       S.diagnoseMissingImport(Loc, D, Kind, Recover);
10994     else
10995       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
10996   }
10997 
10998   // Check a specific declaration. There are three problematic cases:
10999   //
11000   //  1) The declaration is an explicit specialization of a template
11001   //     specialization.
11002   //  2) The declaration is an explicit specialization of a member of an
11003   //     templated class.
11004   //  3) The declaration is an instantiation of a template, and that template
11005   //     is an explicit specialization of a member of a templated class.
11006   //
11007   // We don't need to go any deeper than that, as the instantiation of the
11008   // surrounding class / etc is not triggered by whatever triggered this
11009   // instantiation, and thus should be checked elsewhere.
11010   template<typename SpecDecl>
11011   void checkImpl(SpecDecl *Spec) {
11012     bool IsHiddenExplicitSpecialization = false;
11013     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11014       IsHiddenExplicitSpecialization =
11015           Spec->getMemberSpecializationInfo()
11016               ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
11017               : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
11018     } else {
11019       checkInstantiated(Spec);
11020     }
11021 
11022     if (IsHiddenExplicitSpecialization)
11023       diagnose(Spec->getMostRecentDecl(), false);
11024   }
11025 
11026   void checkInstantiated(FunctionDecl *FD) {
11027     if (auto *TD = FD->getPrimaryTemplate())
11028       checkTemplate(TD);
11029   }
11030 
11031   void checkInstantiated(CXXRecordDecl *RD) {
11032     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11033     if (!SD)
11034       return;
11035 
11036     auto From = SD->getSpecializedTemplateOrPartial();
11037     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11038       checkTemplate(TD);
11039     else if (auto *TD =
11040                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11041       if (!S.hasVisibleDeclaration(TD))
11042         diagnose(TD, true);
11043       checkTemplate(TD);
11044     }
11045   }
11046 
11047   void checkInstantiated(VarDecl *RD) {
11048     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11049     if (!SD)
11050       return;
11051 
11052     auto From = SD->getSpecializedTemplateOrPartial();
11053     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11054       checkTemplate(TD);
11055     else if (auto *TD =
11056                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11057       if (!S.hasVisibleDeclaration(TD))
11058         diagnose(TD, true);
11059       checkTemplate(TD);
11060     }
11061   }
11062 
11063   void checkInstantiated(EnumDecl *FD) {}
11064 
11065   template<typename TemplDecl>
11066   void checkTemplate(TemplDecl *TD) {
11067     if (TD->isMemberSpecialization()) {
11068       if (!S.hasVisibleMemberSpecialization(TD, &Modules))
11069         diagnose(TD->getMostRecentDecl(), false);
11070     }
11071   }
11072 };
11073 } // end anonymous namespace
11074 
11075 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11076   if (!getLangOpts().Modules)
11077     return;
11078 
11079   ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
11080 }
11081