1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclAccessPair.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/RecursiveASTVisitor.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/AST/UnresolvedSet.h"
33 #include "clang/Basic/AddressSpaces.h"
34 #include "clang/Basic/ExceptionSpecificationType.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/PartialDiagnostic.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "clang/Sema/Ownership.h"
41 #include "clang/Sema/Sema.h"
42 #include "clang/Sema/Template.h"
43 #include "llvm/ADT/APInt.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/FoldingSet.h"
48 #include "llvm/ADT/Optional.h"
49 #include "llvm/ADT/SmallBitVector.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <tuple>
58 #include <utility>
59 
60 namespace clang {
61 
62   /// Various flags that control template argument deduction.
63   ///
64   /// These flags can be bitwise-OR'd together.
65   enum TemplateDeductionFlags {
66     /// No template argument deduction flags, which indicates the
67     /// strictest results for template argument deduction (as used for, e.g.,
68     /// matching class template partial specializations).
69     TDF_None = 0,
70 
71     /// Within template argument deduction from a function call, we are
72     /// matching with a parameter type for which the original parameter was
73     /// a reference.
74     TDF_ParamWithReferenceType = 0x1,
75 
76     /// Within template argument deduction from a function call, we
77     /// are matching in a case where we ignore cv-qualifiers.
78     TDF_IgnoreQualifiers = 0x02,
79 
80     /// Within template argument deduction from a function call,
81     /// we are matching in a case where we can perform template argument
82     /// deduction from a template-id of a derived class of the argument type.
83     TDF_DerivedClass = 0x04,
84 
85     /// Allow non-dependent types to differ, e.g., when performing
86     /// template argument deduction from a function call where conversions
87     /// may apply.
88     TDF_SkipNonDependent = 0x08,
89 
90     /// Whether we are performing template argument deduction for
91     /// parameters and arguments in a top-level template argument
92     TDF_TopLevelParameterTypeList = 0x10,
93 
94     /// Within template argument deduction from overload resolution per
95     /// C++ [over.over] allow matching function types that are compatible in
96     /// terms of noreturn and default calling convention adjustments, or
97     /// similarly matching a declared template specialization against a
98     /// possible template, per C++ [temp.deduct.decl]. In either case, permit
99     /// deduction where the parameter is a function type that can be converted
100     /// to the argument type.
101     TDF_AllowCompatibleFunctionType = 0x20,
102 
103     /// Within template argument deduction for a conversion function, we are
104     /// matching with an argument type for which the original argument was
105     /// a reference.
106     TDF_ArgWithReferenceType = 0x40,
107   };
108 }
109 
110 using namespace clang;
111 using namespace sema;
112 
113 /// Compare two APSInts, extending and switching the sign as
114 /// necessary to compare their values regardless of underlying type.
115 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
116   if (Y.getBitWidth() > X.getBitWidth())
117     X = X.extend(Y.getBitWidth());
118   else if (Y.getBitWidth() < X.getBitWidth())
119     Y = Y.extend(X.getBitWidth());
120 
121   // If there is a signedness mismatch, correct it.
122   if (X.isSigned() != Y.isSigned()) {
123     // If the signed value is negative, then the values cannot be the same.
124     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
125       return false;
126 
127     Y.setIsSigned(true);
128     X.setIsSigned(true);
129   }
130 
131   return X == Y;
132 }
133 
134 static Sema::TemplateDeductionResult
135 DeduceTemplateArguments(Sema &S,
136                         TemplateParameterList *TemplateParams,
137                         const TemplateArgument &Param,
138                         TemplateArgument Arg,
139                         TemplateDeductionInfo &Info,
140                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
141 
142 static Sema::TemplateDeductionResult
143 DeduceTemplateArgumentsByTypeMatch(Sema &S,
144                                    TemplateParameterList *TemplateParams,
145                                    QualType Param,
146                                    QualType Arg,
147                                    TemplateDeductionInfo &Info,
148                                    SmallVectorImpl<DeducedTemplateArgument> &
149                                                       Deduced,
150                                    unsigned TDF,
151                                    bool PartialOrdering = false,
152                                    bool DeducedFromArrayBound = false);
153 
154 static Sema::TemplateDeductionResult
155 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
156                         ArrayRef<TemplateArgument> Params,
157                         ArrayRef<TemplateArgument> Args,
158                         TemplateDeductionInfo &Info,
159                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
160                         bool NumberOfArgumentsMustMatch);
161 
162 static void MarkUsedTemplateParameters(ASTContext &Ctx,
163                                        const TemplateArgument &TemplateArg,
164                                        bool OnlyDeduced, unsigned Depth,
165                                        llvm::SmallBitVector &Used);
166 
167 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
168                                        bool OnlyDeduced, unsigned Level,
169                                        llvm::SmallBitVector &Deduced);
170 
171 /// If the given expression is of a form that permits the deduction
172 /// of a non-type template parameter, return the declaration of that
173 /// non-type template parameter.
174 static NonTypeTemplateParmDecl *
175 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
176   // If we are within an alias template, the expression may have undergone
177   // any number of parameter substitutions already.
178   while (true) {
179     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
180       E = IC->getSubExpr();
181     else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
182       E = CE->getSubExpr();
183     else if (SubstNonTypeTemplateParmExpr *Subst =
184                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
185       E = Subst->getReplacement();
186     else
187       break;
188   }
189 
190   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
191     if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
192       if (NTTP->getDepth() == Info.getDeducedDepth())
193         return NTTP;
194 
195   return nullptr;
196 }
197 
198 /// Determine whether two declaration pointers refer to the same
199 /// declaration.
200 static bool isSameDeclaration(Decl *X, Decl *Y) {
201   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
202     X = NX->getUnderlyingDecl();
203   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
204     Y = NY->getUnderlyingDecl();
205 
206   return X->getCanonicalDecl() == Y->getCanonicalDecl();
207 }
208 
209 /// Verify that the given, deduced template arguments are compatible.
210 ///
211 /// \returns The deduced template argument, or a NULL template argument if
212 /// the deduced template arguments were incompatible.
213 static DeducedTemplateArgument
214 checkDeducedTemplateArguments(ASTContext &Context,
215                               const DeducedTemplateArgument &X,
216                               const DeducedTemplateArgument &Y) {
217   // We have no deduction for one or both of the arguments; they're compatible.
218   if (X.isNull())
219     return Y;
220   if (Y.isNull())
221     return X;
222 
223   // If we have two non-type template argument values deduced for the same
224   // parameter, they must both match the type of the parameter, and thus must
225   // match each other's type. As we're only keeping one of them, we must check
226   // for that now. The exception is that if either was deduced from an array
227   // bound, the type is permitted to differ.
228   if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
229     QualType XType = X.getNonTypeTemplateArgumentType();
230     if (!XType.isNull()) {
231       QualType YType = Y.getNonTypeTemplateArgumentType();
232       if (YType.isNull() || !Context.hasSameType(XType, YType))
233         return DeducedTemplateArgument();
234     }
235   }
236 
237   switch (X.getKind()) {
238   case TemplateArgument::Null:
239     llvm_unreachable("Non-deduced template arguments handled above");
240 
241   case TemplateArgument::Type:
242     // If two template type arguments have the same type, they're compatible.
243     if (Y.getKind() == TemplateArgument::Type &&
244         Context.hasSameType(X.getAsType(), Y.getAsType()))
245       return X;
246 
247     // If one of the two arguments was deduced from an array bound, the other
248     // supersedes it.
249     if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
250       return X.wasDeducedFromArrayBound() ? Y : X;
251 
252     // The arguments are not compatible.
253     return DeducedTemplateArgument();
254 
255   case TemplateArgument::Integral:
256     // If we deduced a constant in one case and either a dependent expression or
257     // declaration in another case, keep the integral constant.
258     // If both are integral constants with the same value, keep that value.
259     if (Y.getKind() == TemplateArgument::Expression ||
260         Y.getKind() == TemplateArgument::Declaration ||
261         (Y.getKind() == TemplateArgument::Integral &&
262          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
263       return X.wasDeducedFromArrayBound() ? Y : X;
264 
265     // All other combinations are incompatible.
266     return DeducedTemplateArgument();
267 
268   case TemplateArgument::Template:
269     if (Y.getKind() == TemplateArgument::Template &&
270         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
271       return X;
272 
273     // All other combinations are incompatible.
274     return DeducedTemplateArgument();
275 
276   case TemplateArgument::TemplateExpansion:
277     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
278         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
279                                     Y.getAsTemplateOrTemplatePattern()))
280       return X;
281 
282     // All other combinations are incompatible.
283     return DeducedTemplateArgument();
284 
285   case TemplateArgument::Expression: {
286     if (Y.getKind() != TemplateArgument::Expression)
287       return checkDeducedTemplateArguments(Context, Y, X);
288 
289     // Compare the expressions for equality
290     llvm::FoldingSetNodeID ID1, ID2;
291     X.getAsExpr()->Profile(ID1, Context, true);
292     Y.getAsExpr()->Profile(ID2, Context, true);
293     if (ID1 == ID2)
294       return X.wasDeducedFromArrayBound() ? Y : X;
295 
296     // Differing dependent expressions are incompatible.
297     return DeducedTemplateArgument();
298   }
299 
300   case TemplateArgument::Declaration:
301     assert(!X.wasDeducedFromArrayBound());
302 
303     // If we deduced a declaration and a dependent expression, keep the
304     // declaration.
305     if (Y.getKind() == TemplateArgument::Expression)
306       return X;
307 
308     // If we deduced a declaration and an integral constant, keep the
309     // integral constant and whichever type did not come from an array
310     // bound.
311     if (Y.getKind() == TemplateArgument::Integral) {
312       if (Y.wasDeducedFromArrayBound())
313         return TemplateArgument(Context, Y.getAsIntegral(),
314                                 X.getParamTypeForDecl());
315       return Y;
316     }
317 
318     // If we deduced two declarations, make sure that they refer to the
319     // same declaration.
320     if (Y.getKind() == TemplateArgument::Declaration &&
321         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
322       return X;
323 
324     // All other combinations are incompatible.
325     return DeducedTemplateArgument();
326 
327   case TemplateArgument::NullPtr:
328     // If we deduced a null pointer and a dependent expression, keep the
329     // null pointer.
330     if (Y.getKind() == TemplateArgument::Expression)
331       return X;
332 
333     // If we deduced a null pointer and an integral constant, keep the
334     // integral constant.
335     if (Y.getKind() == TemplateArgument::Integral)
336       return Y;
337 
338     // If we deduced two null pointers, they are the same.
339     if (Y.getKind() == TemplateArgument::NullPtr)
340       return X;
341 
342     // All other combinations are incompatible.
343     return DeducedTemplateArgument();
344 
345   case TemplateArgument::Pack: {
346     if (Y.getKind() != TemplateArgument::Pack ||
347         X.pack_size() != Y.pack_size())
348       return DeducedTemplateArgument();
349 
350     llvm::SmallVector<TemplateArgument, 8> NewPack;
351     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
352                                       XAEnd = X.pack_end(),
353                                          YA = Y.pack_begin();
354          XA != XAEnd; ++XA, ++YA) {
355       TemplateArgument Merged = checkDeducedTemplateArguments(
356           Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
357           DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
358       if (Merged.isNull())
359         return DeducedTemplateArgument();
360       NewPack.push_back(Merged);
361     }
362 
363     return DeducedTemplateArgument(
364         TemplateArgument::CreatePackCopy(Context, NewPack),
365         X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
366   }
367   }
368 
369   llvm_unreachable("Invalid TemplateArgument Kind!");
370 }
371 
372 /// Deduce the value of the given non-type template parameter
373 /// as the given deduced template argument. All non-type template parameter
374 /// deduction is funneled through here.
375 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
376     Sema &S, TemplateParameterList *TemplateParams,
377     NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced,
378     QualType ValueType, TemplateDeductionInfo &Info,
379     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
380   assert(NTTP->getDepth() == Info.getDeducedDepth() &&
381          "deducing non-type template argument with wrong depth");
382 
383   DeducedTemplateArgument Result = checkDeducedTemplateArguments(
384       S.Context, Deduced[NTTP->getIndex()], NewDeduced);
385   if (Result.isNull()) {
386     Info.Param = NTTP;
387     Info.FirstArg = Deduced[NTTP->getIndex()];
388     Info.SecondArg = NewDeduced;
389     return Sema::TDK_Inconsistent;
390   }
391 
392   Deduced[NTTP->getIndex()] = Result;
393   if (!S.getLangOpts().CPlusPlus17)
394     return Sema::TDK_Success;
395 
396   if (NTTP->isExpandedParameterPack())
397     // FIXME: We may still need to deduce parts of the type here! But we
398     // don't have any way to find which slice of the type to use, and the
399     // type stored on the NTTP itself is nonsense. Perhaps the type of an
400     // expanded NTTP should be a pack expansion type?
401     return Sema::TDK_Success;
402 
403   // Get the type of the parameter for deduction. If it's a (dependent) array
404   // or function type, we will not have decayed it yet, so do that now.
405   QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
406   if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
407     ParamType = Expansion->getPattern();
408 
409   // FIXME: It's not clear how deduction of a parameter of reference
410   // type from an argument (of non-reference type) should be performed.
411   // For now, we just remove reference types from both sides and let
412   // the final check for matching types sort out the mess.
413   return DeduceTemplateArgumentsByTypeMatch(
414       S, TemplateParams, ParamType.getNonReferenceType(),
415       ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent,
416       /*PartialOrdering=*/false,
417       /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound());
418 }
419 
420 /// Deduce the value of the given non-type template parameter
421 /// from the given integral constant.
422 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
423     Sema &S, TemplateParameterList *TemplateParams,
424     NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
425     QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
426     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
427   return DeduceNonTypeTemplateArgument(
428       S, TemplateParams, NTTP,
429       DeducedTemplateArgument(S.Context, Value, ValueType,
430                               DeducedFromArrayBound),
431       ValueType, Info, Deduced);
432 }
433 
434 /// Deduce the value of the given non-type template parameter
435 /// from the given null pointer template argument type.
436 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument(
437     Sema &S, TemplateParameterList *TemplateParams,
438     NonTypeTemplateParmDecl *NTTP, QualType NullPtrType,
439     TemplateDeductionInfo &Info,
440     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
441   Expr *Value =
442       S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr(
443                               S.Context.NullPtrTy, NTTP->getLocation()),
444                           NullPtrType, CK_NullToPointer)
445           .get();
446   return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
447                                        DeducedTemplateArgument(Value),
448                                        Value->getType(), Info, Deduced);
449 }
450 
451 /// Deduce the value of the given non-type template parameter
452 /// from the given type- or value-dependent expression.
453 ///
454 /// \returns true if deduction succeeded, false otherwise.
455 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
456     Sema &S, TemplateParameterList *TemplateParams,
457     NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info,
458     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
459   return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
460                                        DeducedTemplateArgument(Value),
461                                        Value->getType(), Info, Deduced);
462 }
463 
464 /// Deduce the value of the given non-type template parameter
465 /// from the given declaration.
466 ///
467 /// \returns true if deduction succeeded, false otherwise.
468 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
469     Sema &S, TemplateParameterList *TemplateParams,
470     NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T,
471     TemplateDeductionInfo &Info,
472     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
473   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
474   TemplateArgument New(D, T);
475   return DeduceNonTypeTemplateArgument(
476       S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced);
477 }
478 
479 static Sema::TemplateDeductionResult
480 DeduceTemplateArguments(Sema &S,
481                         TemplateParameterList *TemplateParams,
482                         TemplateName Param,
483                         TemplateName Arg,
484                         TemplateDeductionInfo &Info,
485                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
486   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
487   if (!ParamDecl) {
488     // The parameter type is dependent and is not a template template parameter,
489     // so there is nothing that we can deduce.
490     return Sema::TDK_Success;
491   }
492 
493   if (TemplateTemplateParmDecl *TempParam
494         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
495     // If we're not deducing at this depth, there's nothing to deduce.
496     if (TempParam->getDepth() != Info.getDeducedDepth())
497       return Sema::TDK_Success;
498 
499     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
500     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
501                                                  Deduced[TempParam->getIndex()],
502                                                                    NewDeduced);
503     if (Result.isNull()) {
504       Info.Param = TempParam;
505       Info.FirstArg = Deduced[TempParam->getIndex()];
506       Info.SecondArg = NewDeduced;
507       return Sema::TDK_Inconsistent;
508     }
509 
510     Deduced[TempParam->getIndex()] = Result;
511     return Sema::TDK_Success;
512   }
513 
514   // Verify that the two template names are equivalent.
515   if (S.Context.hasSameTemplateName(Param, Arg))
516     return Sema::TDK_Success;
517 
518   // Mismatch of non-dependent template parameter to argument.
519   Info.FirstArg = TemplateArgument(Param);
520   Info.SecondArg = TemplateArgument(Arg);
521   return Sema::TDK_NonDeducedMismatch;
522 }
523 
524 /// Deduce the template arguments by comparing the template parameter
525 /// type (which is a template-id) with the template argument type.
526 ///
527 /// \param S the Sema
528 ///
529 /// \param TemplateParams the template parameters that we are deducing
530 ///
531 /// \param Param the parameter type
532 ///
533 /// \param Arg the argument type
534 ///
535 /// \param Info information about the template argument deduction itself
536 ///
537 /// \param Deduced the deduced template arguments
538 ///
539 /// \returns the result of template argument deduction so far. Note that a
540 /// "success" result means that template argument deduction has not yet failed,
541 /// but it may still fail, later, for other reasons.
542 static Sema::TemplateDeductionResult
543 DeduceTemplateArguments(Sema &S,
544                         TemplateParameterList *TemplateParams,
545                         const TemplateSpecializationType *Param,
546                         QualType Arg,
547                         TemplateDeductionInfo &Info,
548                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
549   assert(Arg.isCanonical() && "Argument type must be canonical");
550 
551   // Treat an injected-class-name as its underlying template-id.
552   if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg))
553     Arg = Injected->getInjectedSpecializationType();
554 
555   // Check whether the template argument is a dependent template-id.
556   if (const TemplateSpecializationType *SpecArg
557         = dyn_cast<TemplateSpecializationType>(Arg)) {
558     // Perform template argument deduction for the template name.
559     if (Sema::TemplateDeductionResult Result
560           = DeduceTemplateArguments(S, TemplateParams,
561                                     Param->getTemplateName(),
562                                     SpecArg->getTemplateName(),
563                                     Info, Deduced))
564       return Result;
565 
566 
567     // Perform template argument deduction on each template
568     // argument. Ignore any missing/extra arguments, since they could be
569     // filled in by default arguments.
570     return DeduceTemplateArguments(S, TemplateParams,
571                                    Param->template_arguments(),
572                                    SpecArg->template_arguments(), Info, Deduced,
573                                    /*NumberOfArgumentsMustMatch=*/false);
574   }
575 
576   // If the argument type is a class template specialization, we
577   // perform template argument deduction using its template
578   // arguments.
579   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
580   if (!RecordArg) {
581     Info.FirstArg = TemplateArgument(QualType(Param, 0));
582     Info.SecondArg = TemplateArgument(Arg);
583     return Sema::TDK_NonDeducedMismatch;
584   }
585 
586   ClassTemplateSpecializationDecl *SpecArg
587     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
588   if (!SpecArg) {
589     Info.FirstArg = TemplateArgument(QualType(Param, 0));
590     Info.SecondArg = TemplateArgument(Arg);
591     return Sema::TDK_NonDeducedMismatch;
592   }
593 
594   // Perform template argument deduction for the template name.
595   if (Sema::TemplateDeductionResult Result
596         = DeduceTemplateArguments(S,
597                                   TemplateParams,
598                                   Param->getTemplateName(),
599                                TemplateName(SpecArg->getSpecializedTemplate()),
600                                   Info, Deduced))
601     return Result;
602 
603   // Perform template argument deduction for the template arguments.
604   return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(),
605                                  SpecArg->getTemplateArgs().asArray(), Info,
606                                  Deduced, /*NumberOfArgumentsMustMatch=*/true);
607 }
608 
609 /// Determines whether the given type is an opaque type that
610 /// might be more qualified when instantiated.
611 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
612   switch (T->getTypeClass()) {
613   case Type::TypeOfExpr:
614   case Type::TypeOf:
615   case Type::DependentName:
616   case Type::Decltype:
617   case Type::UnresolvedUsing:
618   case Type::TemplateTypeParm:
619     return true;
620 
621   case Type::ConstantArray:
622   case Type::IncompleteArray:
623   case Type::VariableArray:
624   case Type::DependentSizedArray:
625     return IsPossiblyOpaquelyQualifiedType(
626                                       cast<ArrayType>(T)->getElementType());
627 
628   default:
629     return false;
630   }
631 }
632 
633 /// Helper function to build a TemplateParameter when we don't
634 /// know its type statically.
635 static TemplateParameter makeTemplateParameter(Decl *D) {
636   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
637     return TemplateParameter(TTP);
638   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
639     return TemplateParameter(NTTP);
640 
641   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
642 }
643 
644 /// If \p Param is an expanded parameter pack, get the number of expansions.
645 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
646   if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
647     if (TTP->isExpandedParameterPack())
648       return TTP->getNumExpansionParameters();
649 
650   if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
651     if (NTTP->isExpandedParameterPack())
652       return NTTP->getNumExpansionTypes();
653 
654   if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param))
655     if (TTP->isExpandedParameterPack())
656       return TTP->getNumExpansionTemplateParameters();
657 
658   return None;
659 }
660 
661 /// A pack that we're currently deducing.
662 struct clang::DeducedPack {
663   // The index of the pack.
664   unsigned Index;
665 
666   // The old value of the pack before we started deducing it.
667   DeducedTemplateArgument Saved;
668 
669   // A deferred value of this pack from an inner deduction, that couldn't be
670   // deduced because this deduction hadn't happened yet.
671   DeducedTemplateArgument DeferredDeduction;
672 
673   // The new value of the pack.
674   SmallVector<DeducedTemplateArgument, 4> New;
675 
676   // The outer deduction for this pack, if any.
677   DeducedPack *Outer = nullptr;
678 
679   DeducedPack(unsigned Index) : Index(Index) {}
680 };
681 
682 namespace {
683 
684 /// A scope in which we're performing pack deduction.
685 class PackDeductionScope {
686 public:
687   /// Prepare to deduce the packs named within Pattern.
688   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
689                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
690                      TemplateDeductionInfo &Info, TemplateArgument Pattern)
691       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
692     unsigned NumNamedPacks = addPacks(Pattern);
693     finishConstruction(NumNamedPacks);
694   }
695 
696   /// Prepare to directly deduce arguments of the parameter with index \p Index.
697   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
698                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
699                      TemplateDeductionInfo &Info, unsigned Index)
700       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
701     addPack(Index);
702     finishConstruction(1);
703   }
704 
705 private:
706   void addPack(unsigned Index) {
707     // Save the deduced template argument for the parameter pack expanded
708     // by this pack expansion, then clear out the deduction.
709     DeducedPack Pack(Index);
710     Pack.Saved = Deduced[Index];
711     Deduced[Index] = TemplateArgument();
712 
713     // FIXME: What if we encounter multiple packs with different numbers of
714     // pre-expanded expansions? (This should already have been diagnosed
715     // during substitution.)
716     if (Optional<unsigned> ExpandedPackExpansions =
717             getExpandedPackSize(TemplateParams->getParam(Index)))
718       FixedNumExpansions = ExpandedPackExpansions;
719 
720     Packs.push_back(Pack);
721   }
722 
723   unsigned addPacks(TemplateArgument Pattern) {
724     // Compute the set of template parameter indices that correspond to
725     // parameter packs expanded by the pack expansion.
726     llvm::SmallBitVector SawIndices(TemplateParams->size());
727     llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
728 
729     auto AddPack = [&](unsigned Index) {
730       if (SawIndices[Index])
731         return;
732       SawIndices[Index] = true;
733       addPack(Index);
734 
735       // Deducing a parameter pack that is a pack expansion also constrains the
736       // packs appearing in that parameter to have the same deduced arity. Also,
737       // in C++17 onwards, deducing a non-type template parameter deduces its
738       // type, so we need to collect the pending deduced values for those packs.
739       if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
740               TemplateParams->getParam(Index))) {
741         if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType()))
742           ExtraDeductions.push_back(Expansion->getPattern());
743       }
744       // FIXME: Also collect the unexpanded packs in any type and template
745       // parameter packs that are pack expansions.
746     };
747 
748     auto Collect = [&](TemplateArgument Pattern) {
749       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
750       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
751       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
752         unsigned Depth, Index;
753         std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
754         if (Depth == Info.getDeducedDepth())
755           AddPack(Index);
756       }
757     };
758 
759     // Look for unexpanded packs in the pattern.
760     Collect(Pattern);
761     assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
762 
763     unsigned NumNamedPacks = Packs.size();
764 
765     // Also look for unexpanded packs that are indirectly deduced by deducing
766     // the sizes of the packs in this pattern.
767     while (!ExtraDeductions.empty())
768       Collect(ExtraDeductions.pop_back_val());
769 
770     return NumNamedPacks;
771   }
772 
773   void finishConstruction(unsigned NumNamedPacks) {
774     // Dig out the partially-substituted pack, if there is one.
775     const TemplateArgument *PartialPackArgs = nullptr;
776     unsigned NumPartialPackArgs = 0;
777     std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
778     if (auto *Scope = S.CurrentInstantiationScope)
779       if (auto *Partial = Scope->getPartiallySubstitutedPack(
780               &PartialPackArgs, &NumPartialPackArgs))
781         PartialPackDepthIndex = getDepthAndIndex(Partial);
782 
783     // This pack expansion will have been partially or fully expanded if
784     // it only names explicitly-specified parameter packs (including the
785     // partially-substituted one, if any).
786     bool IsExpanded = true;
787     for (unsigned I = 0; I != NumNamedPacks; ++I) {
788       if (Packs[I].Index >= Info.getNumExplicitArgs()) {
789         IsExpanded = false;
790         IsPartiallyExpanded = false;
791         break;
792       }
793       if (PartialPackDepthIndex ==
794             std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
795         IsPartiallyExpanded = true;
796       }
797     }
798 
799     // Skip over the pack elements that were expanded into separate arguments.
800     // If we partially expanded, this is the number of partial arguments.
801     if (IsPartiallyExpanded)
802       PackElements += NumPartialPackArgs;
803     else if (IsExpanded)
804       PackElements += *FixedNumExpansions;
805 
806     for (auto &Pack : Packs) {
807       if (Info.PendingDeducedPacks.size() > Pack.Index)
808         Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
809       else
810         Info.PendingDeducedPacks.resize(Pack.Index + 1);
811       Info.PendingDeducedPacks[Pack.Index] = &Pack;
812 
813       if (PartialPackDepthIndex ==
814             std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
815         Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
816         // We pre-populate the deduced value of the partially-substituted
817         // pack with the specified value. This is not entirely correct: the
818         // value is supposed to have been substituted, not deduced, but the
819         // cases where this is observable require an exact type match anyway.
820         //
821         // FIXME: If we could represent a "depth i, index j, pack elem k"
822         // parameter, we could substitute the partially-substituted pack
823         // everywhere and avoid this.
824         if (!IsPartiallyExpanded)
825           Deduced[Pack.Index] = Pack.New[PackElements];
826       }
827     }
828   }
829 
830 public:
831   ~PackDeductionScope() {
832     for (auto &Pack : Packs)
833       Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
834   }
835 
836   /// Determine whether this pack has already been partially expanded into a
837   /// sequence of (prior) function parameters / template arguments.
838   bool isPartiallyExpanded() { return IsPartiallyExpanded; }
839 
840   /// Determine whether this pack expansion scope has a known, fixed arity.
841   /// This happens if it involves a pack from an outer template that has
842   /// (notionally) already been expanded.
843   bool hasFixedArity() { return FixedNumExpansions.hasValue(); }
844 
845   /// Determine whether the next element of the argument is still part of this
846   /// pack. This is the case unless the pack is already expanded to a fixed
847   /// length.
848   bool hasNextElement() {
849     return !FixedNumExpansions || *FixedNumExpansions > PackElements;
850   }
851 
852   /// Move to deducing the next element in each pack that is being deduced.
853   void nextPackElement() {
854     // Capture the deduced template arguments for each parameter pack expanded
855     // by this pack expansion, add them to the list of arguments we've deduced
856     // for that pack, then clear out the deduced argument.
857     for (auto &Pack : Packs) {
858       DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
859       if (!Pack.New.empty() || !DeducedArg.isNull()) {
860         while (Pack.New.size() < PackElements)
861           Pack.New.push_back(DeducedTemplateArgument());
862         if (Pack.New.size() == PackElements)
863           Pack.New.push_back(DeducedArg);
864         else
865           Pack.New[PackElements] = DeducedArg;
866         DeducedArg = Pack.New.size() > PackElements + 1
867                          ? Pack.New[PackElements + 1]
868                          : DeducedTemplateArgument();
869       }
870     }
871     ++PackElements;
872   }
873 
874   /// Finish template argument deduction for a set of argument packs,
875   /// producing the argument packs and checking for consistency with prior
876   /// deductions.
877   Sema::TemplateDeductionResult finish() {
878     // Build argument packs for each of the parameter packs expanded by this
879     // pack expansion.
880     for (auto &Pack : Packs) {
881       // Put back the old value for this pack.
882       Deduced[Pack.Index] = Pack.Saved;
883 
884       // Always make sure the size of this pack is correct, even if we didn't
885       // deduce any values for it.
886       //
887       // FIXME: This isn't required by the normative wording, but substitution
888       // and post-substitution checking will always fail if the arity of any
889       // pack is not equal to the number of elements we processed. (Either that
890       // or something else has gone *very* wrong.) We're permitted to skip any
891       // hard errors from those follow-on steps by the intent (but not the
892       // wording) of C++ [temp.inst]p8:
893       //
894       //   If the function selected by overload resolution can be determined
895       //   without instantiating a class template definition, it is unspecified
896       //   whether that instantiation actually takes place
897       Pack.New.resize(PackElements);
898 
899       // Build or find a new value for this pack.
900       DeducedTemplateArgument NewPack;
901       if (Pack.New.empty()) {
902         // If we deduced an empty argument pack, create it now.
903         NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
904       } else {
905         TemplateArgument *ArgumentPack =
906             new (S.Context) TemplateArgument[Pack.New.size()];
907         std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
908         NewPack = DeducedTemplateArgument(
909             TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
910             // FIXME: This is wrong, it's possible that some pack elements are
911             // deduced from an array bound and others are not:
912             //   template<typename ...T, T ...V> void g(const T (&...p)[V]);
913             //   g({1, 2, 3}, {{}, {}});
914             // ... should deduce T = {int, size_t (from array bound)}.
915             Pack.New[0].wasDeducedFromArrayBound());
916       }
917 
918       // Pick where we're going to put the merged pack.
919       DeducedTemplateArgument *Loc;
920       if (Pack.Outer) {
921         if (Pack.Outer->DeferredDeduction.isNull()) {
922           // Defer checking this pack until we have a complete pack to compare
923           // it against.
924           Pack.Outer->DeferredDeduction = NewPack;
925           continue;
926         }
927         Loc = &Pack.Outer->DeferredDeduction;
928       } else {
929         Loc = &Deduced[Pack.Index];
930       }
931 
932       // Check the new pack matches any previous value.
933       DeducedTemplateArgument OldPack = *Loc;
934       DeducedTemplateArgument Result =
935           checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
936 
937       // If we deferred a deduction of this pack, check that one now too.
938       if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
939         OldPack = Result;
940         NewPack = Pack.DeferredDeduction;
941         Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
942       }
943 
944       NamedDecl *Param = TemplateParams->getParam(Pack.Index);
945       if (Result.isNull()) {
946         Info.Param = makeTemplateParameter(Param);
947         Info.FirstArg = OldPack;
948         Info.SecondArg = NewPack;
949         return Sema::TDK_Inconsistent;
950       }
951 
952       // If we have a pre-expanded pack and we didn't deduce enough elements
953       // for it, fail deduction.
954       if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) {
955         if (*Expansions != PackElements) {
956           Info.Param = makeTemplateParameter(Param);
957           Info.FirstArg = Result;
958           return Sema::TDK_IncompletePack;
959         }
960       }
961 
962       *Loc = Result;
963     }
964 
965     return Sema::TDK_Success;
966   }
967 
968 private:
969   Sema &S;
970   TemplateParameterList *TemplateParams;
971   SmallVectorImpl<DeducedTemplateArgument> &Deduced;
972   TemplateDeductionInfo &Info;
973   unsigned PackElements = 0;
974   bool IsPartiallyExpanded = false;
975   /// The number of expansions, if we have a fully-expanded pack in this scope.
976   Optional<unsigned> FixedNumExpansions;
977 
978   SmallVector<DeducedPack, 2> Packs;
979 };
980 
981 } // namespace
982 
983 /// Deduce the template arguments by comparing the list of parameter
984 /// types to the list of argument types, as in the parameter-type-lists of
985 /// function types (C++ [temp.deduct.type]p10).
986 ///
987 /// \param S The semantic analysis object within which we are deducing
988 ///
989 /// \param TemplateParams The template parameters that we are deducing
990 ///
991 /// \param Params The list of parameter types
992 ///
993 /// \param NumParams The number of types in \c Params
994 ///
995 /// \param Args The list of argument types
996 ///
997 /// \param NumArgs The number of types in \c Args
998 ///
999 /// \param Info information about the template argument deduction itself
1000 ///
1001 /// \param Deduced the deduced template arguments
1002 ///
1003 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1004 /// how template argument deduction is performed.
1005 ///
1006 /// \param PartialOrdering If true, we are performing template argument
1007 /// deduction for during partial ordering for a call
1008 /// (C++0x [temp.deduct.partial]).
1009 ///
1010 /// \returns the result of template argument deduction so far. Note that a
1011 /// "success" result means that template argument deduction has not yet failed,
1012 /// but it may still fail, later, for other reasons.
1013 static Sema::TemplateDeductionResult
1014 DeduceTemplateArguments(Sema &S,
1015                         TemplateParameterList *TemplateParams,
1016                         const QualType *Params, unsigned NumParams,
1017                         const QualType *Args, unsigned NumArgs,
1018                         TemplateDeductionInfo &Info,
1019                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1020                         unsigned TDF,
1021                         bool PartialOrdering = false) {
1022   // C++0x [temp.deduct.type]p10:
1023   //   Similarly, if P has a form that contains (T), then each parameter type
1024   //   Pi of the respective parameter-type- list of P is compared with the
1025   //   corresponding parameter type Ai of the corresponding parameter-type-list
1026   //   of A. [...]
1027   unsigned ArgIdx = 0, ParamIdx = 0;
1028   for (; ParamIdx != NumParams; ++ParamIdx) {
1029     // Check argument types.
1030     const PackExpansionType *Expansion
1031                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
1032     if (!Expansion) {
1033       // Simple case: compare the parameter and argument types at this point.
1034 
1035       // Make sure we have an argument.
1036       if (ArgIdx >= NumArgs)
1037         return Sema::TDK_MiscellaneousDeductionFailure;
1038 
1039       if (isa<PackExpansionType>(Args[ArgIdx])) {
1040         // C++0x [temp.deduct.type]p22:
1041         //   If the original function parameter associated with A is a function
1042         //   parameter pack and the function parameter associated with P is not
1043         //   a function parameter pack, then template argument deduction fails.
1044         return Sema::TDK_MiscellaneousDeductionFailure;
1045       }
1046 
1047       if (Sema::TemplateDeductionResult Result
1048             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1049                                                  Params[ParamIdx], Args[ArgIdx],
1050                                                  Info, Deduced, TDF,
1051                                                  PartialOrdering))
1052         return Result;
1053 
1054       ++ArgIdx;
1055       continue;
1056     }
1057 
1058     // C++0x [temp.deduct.type]p10:
1059     //   If the parameter-declaration corresponding to Pi is a function
1060     //   parameter pack, then the type of its declarator- id is compared with
1061     //   each remaining parameter type in the parameter-type-list of A. Each
1062     //   comparison deduces template arguments for subsequent positions in the
1063     //   template parameter packs expanded by the function parameter pack.
1064 
1065     QualType Pattern = Expansion->getPattern();
1066     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1067 
1068     // A pack scope with fixed arity is not really a pack any more, so is not
1069     // a non-deduced context.
1070     if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) {
1071       for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) {
1072         // Deduce template arguments from the pattern.
1073         if (Sema::TemplateDeductionResult Result
1074               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
1075                                                    Args[ArgIdx], Info, Deduced,
1076                                                    TDF, PartialOrdering))
1077           return Result;
1078 
1079         PackScope.nextPackElement();
1080       }
1081     } else {
1082       // C++0x [temp.deduct.type]p5:
1083       //   The non-deduced contexts are:
1084       //     - A function parameter pack that does not occur at the end of the
1085       //       parameter-declaration-clause.
1086       //
1087       // FIXME: There is no wording to say what we should do in this case. We
1088       // choose to resolve this by applying the same rule that is applied for a
1089       // function call: that is, deduce all contained packs to their
1090       // explicitly-specified values (or to <> if there is no such value).
1091       //
1092       // This is seemingly-arbitrarily different from the case of a template-id
1093       // with a non-trailing pack-expansion in its arguments, which renders the
1094       // entire template-argument-list a non-deduced context.
1095 
1096       // If the parameter type contains an explicitly-specified pack that we
1097       // could not expand, skip the number of parameters notionally created
1098       // by the expansion.
1099       Optional<unsigned> NumExpansions = Expansion->getNumExpansions();
1100       if (NumExpansions && !PackScope.isPartiallyExpanded()) {
1101         for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs;
1102              ++I, ++ArgIdx)
1103           PackScope.nextPackElement();
1104       }
1105     }
1106 
1107     // Build argument packs for each of the parameter packs expanded by this
1108     // pack expansion.
1109     if (auto Result = PackScope.finish())
1110       return Result;
1111   }
1112 
1113   // Make sure we don't have any extra arguments.
1114   if (ArgIdx < NumArgs)
1115     return Sema::TDK_MiscellaneousDeductionFailure;
1116 
1117   return Sema::TDK_Success;
1118 }
1119 
1120 /// Determine whether the parameter has qualifiers that the argument
1121 /// lacks. Put another way, determine whether there is no way to add
1122 /// a deduced set of qualifiers to the ParamType that would result in
1123 /// its qualifiers matching those of the ArgType.
1124 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
1125                                                   QualType ArgType) {
1126   Qualifiers ParamQs = ParamType.getQualifiers();
1127   Qualifiers ArgQs = ArgType.getQualifiers();
1128 
1129   if (ParamQs == ArgQs)
1130     return false;
1131 
1132   // Mismatched (but not missing) Objective-C GC attributes.
1133   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
1134       ParamQs.hasObjCGCAttr())
1135     return true;
1136 
1137   // Mismatched (but not missing) address spaces.
1138   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
1139       ParamQs.hasAddressSpace())
1140     return true;
1141 
1142   // Mismatched (but not missing) Objective-C lifetime qualifiers.
1143   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
1144       ParamQs.hasObjCLifetime())
1145     return true;
1146 
1147   // CVR qualifiers inconsistent or a superset.
1148   return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
1149 }
1150 
1151 /// Compare types for equality with respect to possibly compatible
1152 /// function types (noreturn adjustment, implicit calling conventions). If any
1153 /// of parameter and argument is not a function, just perform type comparison.
1154 ///
1155 /// \param Param the template parameter type.
1156 ///
1157 /// \param Arg the argument type.
1158 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
1159                                           CanQualType Arg) {
1160   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
1161                      *ArgFunction   = Arg->getAs<FunctionType>();
1162 
1163   // Just compare if not functions.
1164   if (!ParamFunction || !ArgFunction)
1165     return Param == Arg;
1166 
1167   // Noreturn and noexcept adjustment.
1168   QualType AdjustedParam;
1169   if (IsFunctionConversion(Param, Arg, AdjustedParam))
1170     return Arg == Context.getCanonicalType(AdjustedParam);
1171 
1172   // FIXME: Compatible calling conventions.
1173 
1174   return Param == Arg;
1175 }
1176 
1177 /// Get the index of the first template parameter that was originally from the
1178 /// innermost template-parameter-list. This is 0 except when we concatenate
1179 /// the template parameter lists of a class template and a constructor template
1180 /// when forming an implicit deduction guide.
1181 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
1182   auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
1183   if (!Guide || !Guide->isImplicit())
1184     return 0;
1185   return Guide->getDeducedTemplate()->getTemplateParameters()->size();
1186 }
1187 
1188 /// Determine whether a type denotes a forwarding reference.
1189 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
1190   // C++1z [temp.deduct.call]p3:
1191   //   A forwarding reference is an rvalue reference to a cv-unqualified
1192   //   template parameter that does not represent a template parameter of a
1193   //   class template.
1194   if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
1195     if (ParamRef->getPointeeType().getQualifiers())
1196       return false;
1197     auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
1198     return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
1199   }
1200   return false;
1201 }
1202 
1203 /// Deduce the template arguments by comparing the parameter type and
1204 /// the argument type (C++ [temp.deduct.type]).
1205 ///
1206 /// \param S the semantic analysis object within which we are deducing
1207 ///
1208 /// \param TemplateParams the template parameters that we are deducing
1209 ///
1210 /// \param ParamIn the parameter type
1211 ///
1212 /// \param ArgIn the argument type
1213 ///
1214 /// \param Info information about the template argument deduction itself
1215 ///
1216 /// \param Deduced the deduced template arguments
1217 ///
1218 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1219 /// how template argument deduction is performed.
1220 ///
1221 /// \param PartialOrdering Whether we're performing template argument deduction
1222 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
1223 ///
1224 /// \returns the result of template argument deduction so far. Note that a
1225 /// "success" result means that template argument deduction has not yet failed,
1226 /// but it may still fail, later, for other reasons.
1227 static Sema::TemplateDeductionResult
1228 DeduceTemplateArgumentsByTypeMatch(Sema &S,
1229                                    TemplateParameterList *TemplateParams,
1230                                    QualType ParamIn, QualType ArgIn,
1231                                    TemplateDeductionInfo &Info,
1232                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1233                                    unsigned TDF,
1234                                    bool PartialOrdering,
1235                                    bool DeducedFromArrayBound) {
1236   // We only want to look at the canonical types, since typedefs and
1237   // sugar are not part of template argument deduction.
1238   QualType Param = S.Context.getCanonicalType(ParamIn);
1239   QualType Arg = S.Context.getCanonicalType(ArgIn);
1240 
1241   // If the argument type is a pack expansion, look at its pattern.
1242   // This isn't explicitly called out
1243   if (const PackExpansionType *ArgExpansion
1244                                             = dyn_cast<PackExpansionType>(Arg))
1245     Arg = ArgExpansion->getPattern();
1246 
1247   if (PartialOrdering) {
1248     // C++11 [temp.deduct.partial]p5:
1249     //   Before the partial ordering is done, certain transformations are
1250     //   performed on the types used for partial ordering:
1251     //     - If P is a reference type, P is replaced by the type referred to.
1252     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
1253     if (ParamRef)
1254       Param = ParamRef->getPointeeType();
1255 
1256     //     - If A is a reference type, A is replaced by the type referred to.
1257     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
1258     if (ArgRef)
1259       Arg = ArgRef->getPointeeType();
1260 
1261     if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
1262       // C++11 [temp.deduct.partial]p9:
1263       //   If, for a given type, deduction succeeds in both directions (i.e.,
1264       //   the types are identical after the transformations above) and both
1265       //   P and A were reference types [...]:
1266       //     - if [one type] was an lvalue reference and [the other type] was
1267       //       not, [the other type] is not considered to be at least as
1268       //       specialized as [the first type]
1269       //     - if [one type] is more cv-qualified than [the other type],
1270       //       [the other type] is not considered to be at least as specialized
1271       //       as [the first type]
1272       // Objective-C ARC adds:
1273       //     - [one type] has non-trivial lifetime, [the other type] has
1274       //       __unsafe_unretained lifetime, and the types are otherwise
1275       //       identical
1276       //
1277       // A is "considered to be at least as specialized" as P iff deduction
1278       // succeeds, so we model this as a deduction failure. Note that
1279       // [the first type] is P and [the other type] is A here; the standard
1280       // gets this backwards.
1281       Qualifiers ParamQuals = Param.getQualifiers();
1282       Qualifiers ArgQuals = Arg.getQualifiers();
1283       if ((ParamRef->isLValueReferenceType() &&
1284            !ArgRef->isLValueReferenceType()) ||
1285           ParamQuals.isStrictSupersetOf(ArgQuals) ||
1286           (ParamQuals.hasNonTrivialObjCLifetime() &&
1287            ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1288            ParamQuals.withoutObjCLifetime() ==
1289                ArgQuals.withoutObjCLifetime())) {
1290         Info.FirstArg = TemplateArgument(ParamIn);
1291         Info.SecondArg = TemplateArgument(ArgIn);
1292         return Sema::TDK_NonDeducedMismatch;
1293       }
1294     }
1295 
1296     // C++11 [temp.deduct.partial]p7:
1297     //   Remove any top-level cv-qualifiers:
1298     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
1299     //       version of P.
1300     Param = Param.getUnqualifiedType();
1301     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
1302     //       version of A.
1303     Arg = Arg.getUnqualifiedType();
1304   } else {
1305     // C++0x [temp.deduct.call]p4 bullet 1:
1306     //   - If the original P is a reference type, the deduced A (i.e., the type
1307     //     referred to by the reference) can be more cv-qualified than the
1308     //     transformed A.
1309     if (TDF & TDF_ParamWithReferenceType) {
1310       Qualifiers Quals;
1311       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1312       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1313                              Arg.getCVRQualifiers());
1314       Param = S.Context.getQualifiedType(UnqualParam, Quals);
1315     }
1316 
1317     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1318       // C++0x [temp.deduct.type]p10:
1319       //   If P and A are function types that originated from deduction when
1320       //   taking the address of a function template (14.8.2.2) or when deducing
1321       //   template arguments from a function declaration (14.8.2.6) and Pi and
1322       //   Ai are parameters of the top-level parameter-type-list of P and A,
1323       //   respectively, Pi is adjusted if it is a forwarding reference and Ai
1324       //   is an lvalue reference, in
1325       //   which case the type of Pi is changed to be the template parameter
1326       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1327       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1328       //   deduced as X&. - end note ]
1329       TDF &= ~TDF_TopLevelParameterTypeList;
1330       if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType())
1331         Param = Param->getPointeeType();
1332     }
1333   }
1334 
1335   // C++ [temp.deduct.type]p9:
1336   //   A template type argument T, a template template argument TT or a
1337   //   template non-type argument i can be deduced if P and A have one of
1338   //   the following forms:
1339   //
1340   //     T
1341   //     cv-list T
1342   if (const TemplateTypeParmType *TemplateTypeParm
1343         = Param->getAs<TemplateTypeParmType>()) {
1344     // Just skip any attempts to deduce from a placeholder type or a parameter
1345     // at a different depth.
1346     if (Arg->isPlaceholderType() ||
1347         Info.getDeducedDepth() != TemplateTypeParm->getDepth())
1348       return Sema::TDK_Success;
1349 
1350     unsigned Index = TemplateTypeParm->getIndex();
1351     bool RecanonicalizeArg = false;
1352 
1353     // If the argument type is an array type, move the qualifiers up to the
1354     // top level, so they can be matched with the qualifiers on the parameter.
1355     if (isa<ArrayType>(Arg)) {
1356       Qualifiers Quals;
1357       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1358       if (Quals) {
1359         Arg = S.Context.getQualifiedType(Arg, Quals);
1360         RecanonicalizeArg = true;
1361       }
1362     }
1363 
1364     // The argument type can not be less qualified than the parameter
1365     // type.
1366     if (!(TDF & TDF_IgnoreQualifiers) &&
1367         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1368       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1369       Info.FirstArg = TemplateArgument(Param);
1370       Info.SecondArg = TemplateArgument(Arg);
1371       return Sema::TDK_Underqualified;
1372     }
1373 
1374     // Do not match a function type with a cv-qualified type.
1375     // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
1376     if (Arg->isFunctionType() && Param.hasQualifiers()) {
1377       return Sema::TDK_NonDeducedMismatch;
1378     }
1379 
1380     assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() &&
1381            "saw template type parameter with wrong depth");
1382     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1383     QualType DeducedType = Arg;
1384 
1385     // Remove any qualifiers on the parameter from the deduced type.
1386     // We checked the qualifiers for consistency above.
1387     Qualifiers DeducedQs = DeducedType.getQualifiers();
1388     Qualifiers ParamQs = Param.getQualifiers();
1389     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1390     if (ParamQs.hasObjCGCAttr())
1391       DeducedQs.removeObjCGCAttr();
1392     if (ParamQs.hasAddressSpace())
1393       DeducedQs.removeAddressSpace();
1394     if (ParamQs.hasObjCLifetime())
1395       DeducedQs.removeObjCLifetime();
1396 
1397     // Objective-C ARC:
1398     //   If template deduction would produce a lifetime qualifier on a type
1399     //   that is not a lifetime type, template argument deduction fails.
1400     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1401         !DeducedType->isDependentType()) {
1402       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1403       Info.FirstArg = TemplateArgument(Param);
1404       Info.SecondArg = TemplateArgument(Arg);
1405       return Sema::TDK_Underqualified;
1406     }
1407 
1408     // Objective-C ARC:
1409     //   If template deduction would produce an argument type with lifetime type
1410     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1411     if (S.getLangOpts().ObjCAutoRefCount &&
1412         DeducedType->isObjCLifetimeType() &&
1413         !DeducedQs.hasObjCLifetime())
1414       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1415 
1416     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1417                                              DeducedQs);
1418 
1419     if (RecanonicalizeArg)
1420       DeducedType = S.Context.getCanonicalType(DeducedType);
1421 
1422     DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
1423     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1424                                                                  Deduced[Index],
1425                                                                    NewDeduced);
1426     if (Result.isNull()) {
1427       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1428       Info.FirstArg = Deduced[Index];
1429       Info.SecondArg = NewDeduced;
1430       return Sema::TDK_Inconsistent;
1431     }
1432 
1433     Deduced[Index] = Result;
1434     return Sema::TDK_Success;
1435   }
1436 
1437   // Set up the template argument deduction information for a failure.
1438   Info.FirstArg = TemplateArgument(ParamIn);
1439   Info.SecondArg = TemplateArgument(ArgIn);
1440 
1441   // If the parameter is an already-substituted template parameter
1442   // pack, do nothing: we don't know which of its arguments to look
1443   // at, so we have to wait until all of the parameter packs in this
1444   // expansion have arguments.
1445   if (isa<SubstTemplateTypeParmPackType>(Param))
1446     return Sema::TDK_Success;
1447 
1448   // Check the cv-qualifiers on the parameter and argument types.
1449   CanQualType CanParam = S.Context.getCanonicalType(Param);
1450   CanQualType CanArg = S.Context.getCanonicalType(Arg);
1451   if (!(TDF & TDF_IgnoreQualifiers)) {
1452     if (TDF & TDF_ParamWithReferenceType) {
1453       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1454         return Sema::TDK_NonDeducedMismatch;
1455     } else if (TDF & TDF_ArgWithReferenceType) {
1456       // C++ [temp.deduct.conv]p4:
1457       //   If the original A is a reference type, A can be more cv-qualified
1458       //   than the deduced A
1459       if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers()))
1460         return Sema::TDK_NonDeducedMismatch;
1461 
1462       // Strip out all extra qualifiers from the argument to figure out the
1463       // type we're converting to, prior to the qualification conversion.
1464       Qualifiers Quals;
1465       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1466       Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers());
1467     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1468       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1469         return Sema::TDK_NonDeducedMismatch;
1470     }
1471 
1472     // If the parameter type is not dependent, there is nothing to deduce.
1473     if (!Param->isDependentType()) {
1474       if (!(TDF & TDF_SkipNonDependent)) {
1475         bool NonDeduced =
1476             (TDF & TDF_AllowCompatibleFunctionType)
1477                 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg)
1478                 : Param != Arg;
1479         if (NonDeduced) {
1480           return Sema::TDK_NonDeducedMismatch;
1481         }
1482       }
1483       return Sema::TDK_Success;
1484     }
1485   } else if (!Param->isDependentType()) {
1486     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1487                 ArgUnqualType = CanArg.getUnqualifiedType();
1488     bool Success =
1489         (TDF & TDF_AllowCompatibleFunctionType)
1490             ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType)
1491             : ParamUnqualType == ArgUnqualType;
1492     if (Success)
1493       return Sema::TDK_Success;
1494   }
1495 
1496   switch (Param->getTypeClass()) {
1497     // Non-canonical types cannot appear here.
1498 #define NON_CANONICAL_TYPE(Class, Base) \
1499   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1500 #define TYPE(Class, Base)
1501 #include "clang/AST/TypeNodes.inc"
1502 
1503     case Type::TemplateTypeParm:
1504     case Type::SubstTemplateTypeParmPack:
1505       llvm_unreachable("Type nodes handled above");
1506 
1507     // These types cannot be dependent, so simply check whether the types are
1508     // the same.
1509     case Type::Builtin:
1510     case Type::VariableArray:
1511     case Type::Vector:
1512     case Type::FunctionNoProto:
1513     case Type::Record:
1514     case Type::Enum:
1515     case Type::ObjCObject:
1516     case Type::ObjCInterface:
1517     case Type::ObjCObjectPointer:
1518       if (TDF & TDF_SkipNonDependent)
1519         return Sema::TDK_Success;
1520 
1521       if (TDF & TDF_IgnoreQualifiers) {
1522         Param = Param.getUnqualifiedType();
1523         Arg = Arg.getUnqualifiedType();
1524       }
1525 
1526       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1527 
1528     //     _Complex T   [placeholder extension]
1529     case Type::Complex:
1530       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1531         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1532                                     cast<ComplexType>(Param)->getElementType(),
1533                                     ComplexArg->getElementType(),
1534                                     Info, Deduced, TDF);
1535 
1536       return Sema::TDK_NonDeducedMismatch;
1537 
1538     //     _Atomic T   [extension]
1539     case Type::Atomic:
1540       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1541         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1542                                        cast<AtomicType>(Param)->getValueType(),
1543                                        AtomicArg->getValueType(),
1544                                        Info, Deduced, TDF);
1545 
1546       return Sema::TDK_NonDeducedMismatch;
1547 
1548     //     T *
1549     case Type::Pointer: {
1550       QualType PointeeType;
1551       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1552         PointeeType = PointerArg->getPointeeType();
1553       } else if (const ObjCObjectPointerType *PointerArg
1554                    = Arg->getAs<ObjCObjectPointerType>()) {
1555         PointeeType = PointerArg->getPointeeType();
1556       } else {
1557         return Sema::TDK_NonDeducedMismatch;
1558       }
1559 
1560       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1561       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1562                                      cast<PointerType>(Param)->getPointeeType(),
1563                                      PointeeType,
1564                                      Info, Deduced, SubTDF);
1565     }
1566 
1567     //     T &
1568     case Type::LValueReference: {
1569       const LValueReferenceType *ReferenceArg =
1570           Arg->getAs<LValueReferenceType>();
1571       if (!ReferenceArg)
1572         return Sema::TDK_NonDeducedMismatch;
1573 
1574       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1575                            cast<LValueReferenceType>(Param)->getPointeeType(),
1576                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
1577     }
1578 
1579     //     T && [C++0x]
1580     case Type::RValueReference: {
1581       const RValueReferenceType *ReferenceArg =
1582           Arg->getAs<RValueReferenceType>();
1583       if (!ReferenceArg)
1584         return Sema::TDK_NonDeducedMismatch;
1585 
1586       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1587                              cast<RValueReferenceType>(Param)->getPointeeType(),
1588                              ReferenceArg->getPointeeType(),
1589                              Info, Deduced, 0);
1590     }
1591 
1592     //     T [] (implied, but not stated explicitly)
1593     case Type::IncompleteArray: {
1594       const IncompleteArrayType *IncompleteArrayArg =
1595         S.Context.getAsIncompleteArrayType(Arg);
1596       if (!IncompleteArrayArg)
1597         return Sema::TDK_NonDeducedMismatch;
1598 
1599       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1600       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1601                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1602                     IncompleteArrayArg->getElementType(),
1603                     Info, Deduced, SubTDF);
1604     }
1605 
1606     //     T [integer-constant]
1607     case Type::ConstantArray: {
1608       const ConstantArrayType *ConstantArrayArg =
1609         S.Context.getAsConstantArrayType(Arg);
1610       if (!ConstantArrayArg)
1611         return Sema::TDK_NonDeducedMismatch;
1612 
1613       const ConstantArrayType *ConstantArrayParm =
1614         S.Context.getAsConstantArrayType(Param);
1615       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1616         return Sema::TDK_NonDeducedMismatch;
1617 
1618       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1619       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1620                                            ConstantArrayParm->getElementType(),
1621                                            ConstantArrayArg->getElementType(),
1622                                            Info, Deduced, SubTDF);
1623     }
1624 
1625     //     type [i]
1626     case Type::DependentSizedArray: {
1627       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1628       if (!ArrayArg)
1629         return Sema::TDK_NonDeducedMismatch;
1630 
1631       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1632 
1633       // Check the element type of the arrays
1634       const DependentSizedArrayType *DependentArrayParm
1635         = S.Context.getAsDependentSizedArrayType(Param);
1636       if (Sema::TemplateDeductionResult Result
1637             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1638                                           DependentArrayParm->getElementType(),
1639                                           ArrayArg->getElementType(),
1640                                           Info, Deduced, SubTDF))
1641         return Result;
1642 
1643       // Determine the array bound is something we can deduce.
1644       NonTypeTemplateParmDecl *NTTP
1645         = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr());
1646       if (!NTTP)
1647         return Sema::TDK_Success;
1648 
1649       // We can perform template argument deduction for the given non-type
1650       // template parameter.
1651       assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1652              "saw non-type template parameter with wrong depth");
1653       if (const ConstantArrayType *ConstantArrayArg
1654             = dyn_cast<ConstantArrayType>(ArrayArg)) {
1655         llvm::APSInt Size(ConstantArrayArg->getSize());
1656         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size,
1657                                              S.Context.getSizeType(),
1658                                              /*ArrayBound=*/true,
1659                                              Info, Deduced);
1660       }
1661       if (const DependentSizedArrayType *DependentArrayArg
1662             = dyn_cast<DependentSizedArrayType>(ArrayArg))
1663         if (DependentArrayArg->getSizeExpr())
1664           return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
1665                                                DependentArrayArg->getSizeExpr(),
1666                                                Info, Deduced);
1667 
1668       // Incomplete type does not match a dependently-sized array type
1669       return Sema::TDK_NonDeducedMismatch;
1670     }
1671 
1672     //     type(*)(T)
1673     //     T(*)()
1674     //     T(*)(T)
1675     case Type::FunctionProto: {
1676       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1677       const FunctionProtoType *FunctionProtoArg =
1678         dyn_cast<FunctionProtoType>(Arg);
1679       if (!FunctionProtoArg)
1680         return Sema::TDK_NonDeducedMismatch;
1681 
1682       const FunctionProtoType *FunctionProtoParam =
1683         cast<FunctionProtoType>(Param);
1684 
1685       if (FunctionProtoParam->getMethodQuals()
1686             != FunctionProtoArg->getMethodQuals() ||
1687           FunctionProtoParam->getRefQualifier()
1688             != FunctionProtoArg->getRefQualifier() ||
1689           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1690         return Sema::TDK_NonDeducedMismatch;
1691 
1692       // Check return types.
1693       if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1694               S, TemplateParams, FunctionProtoParam->getReturnType(),
1695               FunctionProtoArg->getReturnType(), Info, Deduced, 0))
1696         return Result;
1697 
1698       // Check parameter types.
1699       if (auto Result = DeduceTemplateArguments(
1700               S, TemplateParams, FunctionProtoParam->param_type_begin(),
1701               FunctionProtoParam->getNumParams(),
1702               FunctionProtoArg->param_type_begin(),
1703               FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF))
1704         return Result;
1705 
1706       if (TDF & TDF_AllowCompatibleFunctionType)
1707         return Sema::TDK_Success;
1708 
1709       // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
1710       // deducing through the noexcept-specifier if it's part of the canonical
1711       // type. libstdc++ relies on this.
1712       Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr();
1713       if (NonTypeTemplateParmDecl *NTTP =
1714           NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
1715                        : nullptr) {
1716         assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1717                "saw non-type template parameter with wrong depth");
1718 
1719         llvm::APSInt Noexcept(1);
1720         switch (FunctionProtoArg->canThrow()) {
1721         case CT_Cannot:
1722           Noexcept = 1;
1723           LLVM_FALLTHROUGH;
1724 
1725         case CT_Can:
1726           // We give E in noexcept(E) the "deduced from array bound" treatment.
1727           // FIXME: Should we?
1728           return DeduceNonTypeTemplateArgument(
1729               S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
1730               /*ArrayBound*/true, Info, Deduced);
1731 
1732         case CT_Dependent:
1733           if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr())
1734             return DeduceNonTypeTemplateArgument(
1735                 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced);
1736           // Can't deduce anything from throw(T...).
1737           break;
1738         }
1739       }
1740       // FIXME: Detect non-deduced exception specification mismatches?
1741       //
1742       // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
1743       // top-level differences in noexcept-specifications.
1744 
1745       return Sema::TDK_Success;
1746     }
1747 
1748     case Type::InjectedClassName:
1749       // Treat a template's injected-class-name as if the template
1750       // specialization type had been used.
1751       Param = cast<InjectedClassNameType>(Param)
1752         ->getInjectedSpecializationType();
1753       assert(isa<TemplateSpecializationType>(Param) &&
1754              "injected class name is not a template specialization type");
1755       LLVM_FALLTHROUGH;
1756 
1757     //     template-name<T> (where template-name refers to a class template)
1758     //     template-name<i>
1759     //     TT<T>
1760     //     TT<i>
1761     //     TT<>
1762     case Type::TemplateSpecialization: {
1763       const TemplateSpecializationType *SpecParam =
1764           cast<TemplateSpecializationType>(Param);
1765 
1766       // When Arg cannot be a derived class, we can just try to deduce template
1767       // arguments from the template-id.
1768       const RecordType *RecordT = Arg->getAs<RecordType>();
1769       if (!(TDF & TDF_DerivedClass) || !RecordT)
1770         return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info,
1771                                        Deduced);
1772 
1773       SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1774                                                           Deduced.end());
1775 
1776       Sema::TemplateDeductionResult Result = DeduceTemplateArguments(
1777           S, TemplateParams, SpecParam, Arg, Info, Deduced);
1778 
1779       if (Result == Sema::TDK_Success)
1780         return Result;
1781 
1782       // We cannot inspect base classes as part of deduction when the type
1783       // is incomplete, so either instantiate any templates necessary to
1784       // complete the type, or skip over it if it cannot be completed.
1785       if (!S.isCompleteType(Info.getLocation(), Arg))
1786         return Result;
1787 
1788       // C++14 [temp.deduct.call] p4b3:
1789       //   If P is a class and P has the form simple-template-id, then the
1790       //   transformed A can be a derived class of the deduced A. Likewise if
1791       //   P is a pointer to a class of the form simple-template-id, the
1792       //   transformed A can be a pointer to a derived class pointed to by the
1793       //   deduced A.
1794       //
1795       //   These alternatives are considered only if type deduction would
1796       //   otherwise fail. If they yield more than one possible deduced A, the
1797       //   type deduction fails.
1798 
1799       // Reset the incorrectly deduced argument from above.
1800       Deduced = DeducedOrig;
1801 
1802       // Use data recursion to crawl through the list of base classes.
1803       // Visited contains the set of nodes we have already visited, while
1804       // ToVisit is our stack of records that we still need to visit.
1805       llvm::SmallPtrSet<const RecordType *, 8> Visited;
1806       SmallVector<const RecordType *, 8> ToVisit;
1807       ToVisit.push_back(RecordT);
1808       bool Successful = false;
1809       SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced;
1810       while (!ToVisit.empty()) {
1811         // Retrieve the next class in the inheritance hierarchy.
1812         const RecordType *NextT = ToVisit.pop_back_val();
1813 
1814         // If we have already seen this type, skip it.
1815         if (!Visited.insert(NextT).second)
1816           continue;
1817 
1818         // If this is a base class, try to perform template argument
1819         // deduction from it.
1820         if (NextT != RecordT) {
1821           TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info);
1822           Sema::TemplateDeductionResult BaseResult =
1823               DeduceTemplateArguments(S, TemplateParams, SpecParam,
1824                                       QualType(NextT, 0), BaseInfo, Deduced);
1825 
1826           // If template argument deduction for this base was successful,
1827           // note that we had some success. Otherwise, ignore any deductions
1828           // from this base class.
1829           if (BaseResult == Sema::TDK_Success) {
1830             // If we've already seen some success, then deduction fails due to
1831             // an ambiguity (temp.deduct.call p5).
1832             if (Successful)
1833               return Sema::TDK_MiscellaneousDeductionFailure;
1834 
1835             Successful = true;
1836             std::swap(SuccessfulDeduced, Deduced);
1837 
1838             Info.Param = BaseInfo.Param;
1839             Info.FirstArg = BaseInfo.FirstArg;
1840             Info.SecondArg = BaseInfo.SecondArg;
1841           }
1842 
1843           Deduced = DeducedOrig;
1844         }
1845 
1846         // Visit base classes
1847         CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1848         for (const auto &Base : Next->bases()) {
1849           assert(Base.getType()->isRecordType() &&
1850                  "Base class that isn't a record?");
1851           ToVisit.push_back(Base.getType()->getAs<RecordType>());
1852         }
1853       }
1854 
1855       if (Successful) {
1856         std::swap(SuccessfulDeduced, Deduced);
1857         return Sema::TDK_Success;
1858       }
1859 
1860       return Result;
1861     }
1862 
1863     //     T type::*
1864     //     T T::*
1865     //     T (type::*)()
1866     //     type (T::*)()
1867     //     type (type::*)(T)
1868     //     type (T::*)(T)
1869     //     T (type::*)(T)
1870     //     T (T::*)()
1871     //     T (T::*)(T)
1872     case Type::MemberPointer: {
1873       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1874       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1875       if (!MemPtrArg)
1876         return Sema::TDK_NonDeducedMismatch;
1877 
1878       QualType ParamPointeeType = MemPtrParam->getPointeeType();
1879       if (ParamPointeeType->isFunctionType())
1880         S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
1881                                  /*IsCtorOrDtor=*/false, Info.getLocation());
1882       QualType ArgPointeeType = MemPtrArg->getPointeeType();
1883       if (ArgPointeeType->isFunctionType())
1884         S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
1885                                  /*IsCtorOrDtor=*/false, Info.getLocation());
1886 
1887       if (Sema::TemplateDeductionResult Result
1888             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1889                                                  ParamPointeeType,
1890                                                  ArgPointeeType,
1891                                                  Info, Deduced,
1892                                                  TDF & TDF_IgnoreQualifiers))
1893         return Result;
1894 
1895       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1896                                            QualType(MemPtrParam->getClass(), 0),
1897                                            QualType(MemPtrArg->getClass(), 0),
1898                                            Info, Deduced,
1899                                            TDF & TDF_IgnoreQualifiers);
1900     }
1901 
1902     //     (clang extension)
1903     //
1904     //     type(^)(T)
1905     //     T(^)()
1906     //     T(^)(T)
1907     case Type::BlockPointer: {
1908       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1909       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1910 
1911       if (!BlockPtrArg)
1912         return Sema::TDK_NonDeducedMismatch;
1913 
1914       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1915                                                 BlockPtrParam->getPointeeType(),
1916                                                 BlockPtrArg->getPointeeType(),
1917                                                 Info, Deduced, 0);
1918     }
1919 
1920     //     (clang extension)
1921     //
1922     //     T __attribute__(((ext_vector_type(<integral constant>))))
1923     case Type::ExtVector: {
1924       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1925       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1926         // Make sure that the vectors have the same number of elements.
1927         if (VectorParam->getNumElements() != VectorArg->getNumElements())
1928           return Sema::TDK_NonDeducedMismatch;
1929 
1930         // Perform deduction on the element types.
1931         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1932                                                   VectorParam->getElementType(),
1933                                                   VectorArg->getElementType(),
1934                                                   Info, Deduced, TDF);
1935       }
1936 
1937       if (const DependentSizedExtVectorType *VectorArg
1938                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1939         // We can't check the number of elements, since the argument has a
1940         // dependent number of elements. This can only occur during partial
1941         // ordering.
1942 
1943         // Perform deduction on the element types.
1944         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1945                                                   VectorParam->getElementType(),
1946                                                   VectorArg->getElementType(),
1947                                                   Info, Deduced, TDF);
1948       }
1949 
1950       return Sema::TDK_NonDeducedMismatch;
1951     }
1952 
1953     case Type::DependentVector: {
1954       const auto *VectorParam = cast<DependentVectorType>(Param);
1955 
1956       if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) {
1957         // Perform deduction on the element types.
1958         if (Sema::TemplateDeductionResult Result =
1959                 DeduceTemplateArgumentsByTypeMatch(
1960                     S, TemplateParams, VectorParam->getElementType(),
1961                     VectorArg->getElementType(), Info, Deduced, TDF))
1962           return Result;
1963 
1964         // Perform deduction on the vector size, if we can.
1965         NonTypeTemplateParmDecl *NTTP =
1966             getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
1967         if (!NTTP)
1968           return Sema::TDK_Success;
1969 
1970         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1971         ArgSize = VectorArg->getNumElements();
1972         // Note that we use the "array bound" rules here; just like in that
1973         // case, we don't have any particular type for the vector size, but
1974         // we can provide one if necessary.
1975         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
1976                                              S.Context.UnsignedIntTy, true,
1977                                              Info, Deduced);
1978       }
1979 
1980       if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) {
1981         // Perform deduction on the element types.
1982         if (Sema::TemplateDeductionResult Result =
1983                 DeduceTemplateArgumentsByTypeMatch(
1984                     S, TemplateParams, VectorParam->getElementType(),
1985                     VectorArg->getElementType(), Info, Deduced, TDF))
1986           return Result;
1987 
1988         // Perform deduction on the vector size, if we can.
1989         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
1990             Info, VectorParam->getSizeExpr());
1991         if (!NTTP)
1992           return Sema::TDK_Success;
1993 
1994         return DeduceNonTypeTemplateArgument(
1995             S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced);
1996       }
1997 
1998       return Sema::TDK_NonDeducedMismatch;
1999     }
2000 
2001     //     (clang extension)
2002     //
2003     //     T __attribute__(((ext_vector_type(N))))
2004     case Type::DependentSizedExtVector: {
2005       const DependentSizedExtVectorType *VectorParam
2006         = cast<DependentSizedExtVectorType>(Param);
2007 
2008       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
2009         // Perform deduction on the element types.
2010         if (Sema::TemplateDeductionResult Result
2011               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2012                                                   VectorParam->getElementType(),
2013                                                    VectorArg->getElementType(),
2014                                                    Info, Deduced, TDF))
2015           return Result;
2016 
2017         // Perform deduction on the vector size, if we can.
2018         NonTypeTemplateParmDecl *NTTP
2019           = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2020         if (!NTTP)
2021           return Sema::TDK_Success;
2022 
2023         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2024         ArgSize = VectorArg->getNumElements();
2025         // Note that we use the "array bound" rules here; just like in that
2026         // case, we don't have any particular type for the vector size, but
2027         // we can provide one if necessary.
2028         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2029                                              S.Context.IntTy, true, Info,
2030                                              Deduced);
2031       }
2032 
2033       if (const DependentSizedExtVectorType *VectorArg
2034                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
2035         // Perform deduction on the element types.
2036         if (Sema::TemplateDeductionResult Result
2037             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2038                                                  VectorParam->getElementType(),
2039                                                  VectorArg->getElementType(),
2040                                                  Info, Deduced, TDF))
2041           return Result;
2042 
2043         // Perform deduction on the vector size, if we can.
2044         NonTypeTemplateParmDecl *NTTP
2045           = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2046         if (!NTTP)
2047           return Sema::TDK_Success;
2048 
2049         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2050                                              VectorArg->getSizeExpr(),
2051                                              Info, Deduced);
2052       }
2053 
2054       return Sema::TDK_NonDeducedMismatch;
2055     }
2056 
2057     //     (clang extension)
2058     //
2059     //     T __attribute__(((address_space(N))))
2060     case Type::DependentAddressSpace: {
2061       const DependentAddressSpaceType *AddressSpaceParam =
2062           cast<DependentAddressSpaceType>(Param);
2063 
2064       if (const DependentAddressSpaceType *AddressSpaceArg =
2065               dyn_cast<DependentAddressSpaceType>(Arg)) {
2066         // Perform deduction on the pointer type.
2067         if (Sema::TemplateDeductionResult Result =
2068                 DeduceTemplateArgumentsByTypeMatch(
2069                     S, TemplateParams, AddressSpaceParam->getPointeeType(),
2070                     AddressSpaceArg->getPointeeType(), Info, Deduced, TDF))
2071           return Result;
2072 
2073         // Perform deduction on the address space, if we can.
2074         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2075             Info, AddressSpaceParam->getAddrSpaceExpr());
2076         if (!NTTP)
2077           return Sema::TDK_Success;
2078 
2079         return DeduceNonTypeTemplateArgument(
2080             S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info,
2081             Deduced);
2082       }
2083 
2084       if (isTargetAddressSpace(Arg.getAddressSpace())) {
2085         llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
2086                                      false);
2087         ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace());
2088 
2089         // Perform deduction on the pointer types.
2090         if (Sema::TemplateDeductionResult Result =
2091                 DeduceTemplateArgumentsByTypeMatch(
2092                     S, TemplateParams, AddressSpaceParam->getPointeeType(),
2093                     S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF))
2094           return Result;
2095 
2096         // Perform deduction on the address space, if we can.
2097         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2098             Info, AddressSpaceParam->getAddrSpaceExpr());
2099         if (!NTTP)
2100           return Sema::TDK_Success;
2101 
2102         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2103                                              ArgAddressSpace, S.Context.IntTy,
2104                                              true, Info, Deduced);
2105       }
2106 
2107       return Sema::TDK_NonDeducedMismatch;
2108     }
2109 
2110     case Type::TypeOfExpr:
2111     case Type::TypeOf:
2112     case Type::DependentName:
2113     case Type::UnresolvedUsing:
2114     case Type::Decltype:
2115     case Type::UnaryTransform:
2116     case Type::Auto:
2117     case Type::DeducedTemplateSpecialization:
2118     case Type::DependentTemplateSpecialization:
2119     case Type::PackExpansion:
2120     case Type::Pipe:
2121       // No template argument deduction for these types
2122       return Sema::TDK_Success;
2123   }
2124 
2125   llvm_unreachable("Invalid Type Class!");
2126 }
2127 
2128 static Sema::TemplateDeductionResult
2129 DeduceTemplateArguments(Sema &S,
2130                         TemplateParameterList *TemplateParams,
2131                         const TemplateArgument &Param,
2132                         TemplateArgument Arg,
2133                         TemplateDeductionInfo &Info,
2134                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2135   // If the template argument is a pack expansion, perform template argument
2136   // deduction against the pattern of that expansion. This only occurs during
2137   // partial ordering.
2138   if (Arg.isPackExpansion())
2139     Arg = Arg.getPackExpansionPattern();
2140 
2141   switch (Param.getKind()) {
2142   case TemplateArgument::Null:
2143     llvm_unreachable("Null template argument in parameter list");
2144 
2145   case TemplateArgument::Type:
2146     if (Arg.getKind() == TemplateArgument::Type)
2147       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2148                                                 Param.getAsType(),
2149                                                 Arg.getAsType(),
2150                                                 Info, Deduced, 0);
2151     Info.FirstArg = Param;
2152     Info.SecondArg = Arg;
2153     return Sema::TDK_NonDeducedMismatch;
2154 
2155   case TemplateArgument::Template:
2156     if (Arg.getKind() == TemplateArgument::Template)
2157       return DeduceTemplateArguments(S, TemplateParams,
2158                                      Param.getAsTemplate(),
2159                                      Arg.getAsTemplate(), Info, Deduced);
2160     Info.FirstArg = Param;
2161     Info.SecondArg = Arg;
2162     return Sema::TDK_NonDeducedMismatch;
2163 
2164   case TemplateArgument::TemplateExpansion:
2165     llvm_unreachable("caller should handle pack expansions");
2166 
2167   case TemplateArgument::Declaration:
2168     if (Arg.getKind() == TemplateArgument::Declaration &&
2169         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
2170       return Sema::TDK_Success;
2171 
2172     Info.FirstArg = Param;
2173     Info.SecondArg = Arg;
2174     return Sema::TDK_NonDeducedMismatch;
2175 
2176   case TemplateArgument::NullPtr:
2177     if (Arg.getKind() == TemplateArgument::NullPtr &&
2178         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
2179       return Sema::TDK_Success;
2180 
2181     Info.FirstArg = Param;
2182     Info.SecondArg = Arg;
2183     return Sema::TDK_NonDeducedMismatch;
2184 
2185   case TemplateArgument::Integral:
2186     if (Arg.getKind() == TemplateArgument::Integral) {
2187       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
2188         return Sema::TDK_Success;
2189 
2190       Info.FirstArg = Param;
2191       Info.SecondArg = Arg;
2192       return Sema::TDK_NonDeducedMismatch;
2193     }
2194 
2195     if (Arg.getKind() == TemplateArgument::Expression) {
2196       Info.FirstArg = Param;
2197       Info.SecondArg = Arg;
2198       return Sema::TDK_NonDeducedMismatch;
2199     }
2200 
2201     Info.FirstArg = Param;
2202     Info.SecondArg = Arg;
2203     return Sema::TDK_NonDeducedMismatch;
2204 
2205   case TemplateArgument::Expression:
2206     if (NonTypeTemplateParmDecl *NTTP
2207           = getDeducedParameterFromExpr(Info, Param.getAsExpr())) {
2208       if (Arg.getKind() == TemplateArgument::Integral)
2209         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2210                                              Arg.getAsIntegral(),
2211                                              Arg.getIntegralType(),
2212                                              /*ArrayBound=*/false,
2213                                              Info, Deduced);
2214       if (Arg.getKind() == TemplateArgument::NullPtr)
2215         return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP,
2216                                              Arg.getNullPtrType(),
2217                                              Info, Deduced);
2218       if (Arg.getKind() == TemplateArgument::Expression)
2219         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2220                                              Arg.getAsExpr(), Info, Deduced);
2221       if (Arg.getKind() == TemplateArgument::Declaration)
2222         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2223                                              Arg.getAsDecl(),
2224                                              Arg.getParamTypeForDecl(),
2225                                              Info, Deduced);
2226 
2227       Info.FirstArg = Param;
2228       Info.SecondArg = Arg;
2229       return Sema::TDK_NonDeducedMismatch;
2230     }
2231 
2232     // Can't deduce anything, but that's okay.
2233     return Sema::TDK_Success;
2234 
2235   case TemplateArgument::Pack:
2236     llvm_unreachable("Argument packs should be expanded by the caller!");
2237   }
2238 
2239   llvm_unreachable("Invalid TemplateArgument Kind!");
2240 }
2241 
2242 /// Determine whether there is a template argument to be used for
2243 /// deduction.
2244 ///
2245 /// This routine "expands" argument packs in-place, overriding its input
2246 /// parameters so that \c Args[ArgIdx] will be the available template argument.
2247 ///
2248 /// \returns true if there is another template argument (which will be at
2249 /// \c Args[ArgIdx]), false otherwise.
2250 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
2251                                             unsigned &ArgIdx) {
2252   if (ArgIdx == Args.size())
2253     return false;
2254 
2255   const TemplateArgument &Arg = Args[ArgIdx];
2256   if (Arg.getKind() != TemplateArgument::Pack)
2257     return true;
2258 
2259   assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
2260   Args = Arg.pack_elements();
2261   ArgIdx = 0;
2262   return ArgIdx < Args.size();
2263 }
2264 
2265 /// Determine whether the given set of template arguments has a pack
2266 /// expansion that is not the last template argument.
2267 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
2268   bool FoundPackExpansion = false;
2269   for (const auto &A : Args) {
2270     if (FoundPackExpansion)
2271       return true;
2272 
2273     if (A.getKind() == TemplateArgument::Pack)
2274       return hasPackExpansionBeforeEnd(A.pack_elements());
2275 
2276     // FIXME: If this is a fixed-arity pack expansion from an outer level of
2277     // templates, it should not be treated as a pack expansion.
2278     if (A.isPackExpansion())
2279       FoundPackExpansion = true;
2280   }
2281 
2282   return false;
2283 }
2284 
2285 static Sema::TemplateDeductionResult
2286 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
2287                         ArrayRef<TemplateArgument> Params,
2288                         ArrayRef<TemplateArgument> Args,
2289                         TemplateDeductionInfo &Info,
2290                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2291                         bool NumberOfArgumentsMustMatch) {
2292   // C++0x [temp.deduct.type]p9:
2293   //   If the template argument list of P contains a pack expansion that is not
2294   //   the last template argument, the entire template argument list is a
2295   //   non-deduced context.
2296   if (hasPackExpansionBeforeEnd(Params))
2297     return Sema::TDK_Success;
2298 
2299   // C++0x [temp.deduct.type]p9:
2300   //   If P has a form that contains <T> or <i>, then each argument Pi of the
2301   //   respective template argument list P is compared with the corresponding
2302   //   argument Ai of the corresponding template argument list of A.
2303   unsigned ArgIdx = 0, ParamIdx = 0;
2304   for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) {
2305     if (!Params[ParamIdx].isPackExpansion()) {
2306       // The simple case: deduce template arguments by matching Pi and Ai.
2307 
2308       // Check whether we have enough arguments.
2309       if (!hasTemplateArgumentForDeduction(Args, ArgIdx))
2310         return NumberOfArgumentsMustMatch
2311                    ? Sema::TDK_MiscellaneousDeductionFailure
2312                    : Sema::TDK_Success;
2313 
2314       // C++1z [temp.deduct.type]p9:
2315       //   During partial ordering, if Ai was originally a pack expansion [and]
2316       //   Pi is not a pack expansion, template argument deduction fails.
2317       if (Args[ArgIdx].isPackExpansion())
2318         return Sema::TDK_MiscellaneousDeductionFailure;
2319 
2320       // Perform deduction for this Pi/Ai pair.
2321       if (Sema::TemplateDeductionResult Result
2322             = DeduceTemplateArguments(S, TemplateParams,
2323                                       Params[ParamIdx], Args[ArgIdx],
2324                                       Info, Deduced))
2325         return Result;
2326 
2327       // Move to the next argument.
2328       ++ArgIdx;
2329       continue;
2330     }
2331 
2332     // The parameter is a pack expansion.
2333 
2334     // C++0x [temp.deduct.type]p9:
2335     //   If Pi is a pack expansion, then the pattern of Pi is compared with
2336     //   each remaining argument in the template argument list of A. Each
2337     //   comparison deduces template arguments for subsequent positions in the
2338     //   template parameter packs expanded by Pi.
2339     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
2340 
2341     // Prepare to deduce the packs within the pattern.
2342     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
2343 
2344     // Keep track of the deduced template arguments for each parameter pack
2345     // expanded by this pack expansion (the outer index) and for each
2346     // template argument (the inner SmallVectors).
2347     for (; hasTemplateArgumentForDeduction(Args, ArgIdx) &&
2348            PackScope.hasNextElement();
2349          ++ArgIdx) {
2350       // Deduce template arguments from the pattern.
2351       if (Sema::TemplateDeductionResult Result
2352             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
2353                                       Info, Deduced))
2354         return Result;
2355 
2356       PackScope.nextPackElement();
2357     }
2358 
2359     // Build argument packs for each of the parameter packs expanded by this
2360     // pack expansion.
2361     if (auto Result = PackScope.finish())
2362       return Result;
2363   }
2364 
2365   return Sema::TDK_Success;
2366 }
2367 
2368 static Sema::TemplateDeductionResult
2369 DeduceTemplateArguments(Sema &S,
2370                         TemplateParameterList *TemplateParams,
2371                         const TemplateArgumentList &ParamList,
2372                         const TemplateArgumentList &ArgList,
2373                         TemplateDeductionInfo &Info,
2374                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2375   return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(),
2376                                  ArgList.asArray(), Info, Deduced,
2377                                  /*NumberOfArgumentsMustMatch*/false);
2378 }
2379 
2380 /// Determine whether two template arguments are the same.
2381 static bool isSameTemplateArg(ASTContext &Context,
2382                               TemplateArgument X,
2383                               const TemplateArgument &Y,
2384                               bool PackExpansionMatchesPack = false) {
2385   // If we're checking deduced arguments (X) against original arguments (Y),
2386   // we will have flattened packs to non-expansions in X.
2387   if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
2388     X = X.getPackExpansionPattern();
2389 
2390   if (X.getKind() != Y.getKind())
2391     return false;
2392 
2393   switch (X.getKind()) {
2394     case TemplateArgument::Null:
2395       llvm_unreachable("Comparing NULL template argument");
2396 
2397     case TemplateArgument::Type:
2398       return Context.getCanonicalType(X.getAsType()) ==
2399              Context.getCanonicalType(Y.getAsType());
2400 
2401     case TemplateArgument::Declaration:
2402       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
2403 
2404     case TemplateArgument::NullPtr:
2405       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
2406 
2407     case TemplateArgument::Template:
2408     case TemplateArgument::TemplateExpansion:
2409       return Context.getCanonicalTemplateName(
2410                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
2411              Context.getCanonicalTemplateName(
2412                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
2413 
2414     case TemplateArgument::Integral:
2415       return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
2416 
2417     case TemplateArgument::Expression: {
2418       llvm::FoldingSetNodeID XID, YID;
2419       X.getAsExpr()->Profile(XID, Context, true);
2420       Y.getAsExpr()->Profile(YID, Context, true);
2421       return XID == YID;
2422     }
2423 
2424     case TemplateArgument::Pack:
2425       if (X.pack_size() != Y.pack_size())
2426         return false;
2427 
2428       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
2429                                         XPEnd = X.pack_end(),
2430                                            YP = Y.pack_begin();
2431            XP != XPEnd; ++XP, ++YP)
2432         if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack))
2433           return false;
2434 
2435       return true;
2436   }
2437 
2438   llvm_unreachable("Invalid TemplateArgument Kind!");
2439 }
2440 
2441 /// Allocate a TemplateArgumentLoc where all locations have
2442 /// been initialized to the given location.
2443 ///
2444 /// \param Arg The template argument we are producing template argument
2445 /// location information for.
2446 ///
2447 /// \param NTTPType For a declaration template argument, the type of
2448 /// the non-type template parameter that corresponds to this template
2449 /// argument. Can be null if no type sugar is available to add to the
2450 /// type from the template argument.
2451 ///
2452 /// \param Loc The source location to use for the resulting template
2453 /// argument.
2454 TemplateArgumentLoc
2455 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
2456                                     QualType NTTPType, SourceLocation Loc) {
2457   switch (Arg.getKind()) {
2458   case TemplateArgument::Null:
2459     llvm_unreachable("Can't get a NULL template argument here");
2460 
2461   case TemplateArgument::Type:
2462     return TemplateArgumentLoc(
2463         Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2464 
2465   case TemplateArgument::Declaration: {
2466     if (NTTPType.isNull())
2467       NTTPType = Arg.getParamTypeForDecl();
2468     Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2469                   .getAs<Expr>();
2470     return TemplateArgumentLoc(TemplateArgument(E), E);
2471   }
2472 
2473   case TemplateArgument::NullPtr: {
2474     if (NTTPType.isNull())
2475       NTTPType = Arg.getNullPtrType();
2476     Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2477                   .getAs<Expr>();
2478     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2479                                E);
2480   }
2481 
2482   case TemplateArgument::Integral: {
2483     Expr *E =
2484         BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2485     return TemplateArgumentLoc(TemplateArgument(E), E);
2486   }
2487 
2488     case TemplateArgument::Template:
2489     case TemplateArgument::TemplateExpansion: {
2490       NestedNameSpecifierLocBuilder Builder;
2491       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2492       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2493         Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
2494       else if (QualifiedTemplateName *QTN =
2495                    Template.getAsQualifiedTemplateName())
2496         Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
2497 
2498       if (Arg.getKind() == TemplateArgument::Template)
2499         return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
2500                                    Loc);
2501 
2502       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
2503                                  Loc, Loc);
2504     }
2505 
2506   case TemplateArgument::Expression:
2507     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2508 
2509   case TemplateArgument::Pack:
2510     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2511   }
2512 
2513   llvm_unreachable("Invalid TemplateArgument Kind!");
2514 }
2515 
2516 TemplateArgumentLoc
2517 Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm,
2518                                      SourceLocation Location) {
2519   return getTrivialTemplateArgumentLoc(
2520       Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
2521 }
2522 
2523 /// Convert the given deduced template argument and add it to the set of
2524 /// fully-converted template arguments.
2525 static bool
2526 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2527                                DeducedTemplateArgument Arg,
2528                                NamedDecl *Template,
2529                                TemplateDeductionInfo &Info,
2530                                bool IsDeduced,
2531                                SmallVectorImpl<TemplateArgument> &Output) {
2532   auto ConvertArg = [&](DeducedTemplateArgument Arg,
2533                         unsigned ArgumentPackIndex) {
2534     // Convert the deduced template argument into a template
2535     // argument that we can check, almost as if the user had written
2536     // the template argument explicitly.
2537     TemplateArgumentLoc ArgLoc =
2538         S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation());
2539 
2540     // Check the template argument, converting it as necessary.
2541     return S.CheckTemplateArgument(
2542         Param, ArgLoc, Template, Template->getLocation(),
2543         Template->getSourceRange().getEnd(), ArgumentPackIndex, Output,
2544         IsDeduced
2545             ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
2546                                               : Sema::CTAK_Deduced)
2547             : Sema::CTAK_Specified);
2548   };
2549 
2550   if (Arg.getKind() == TemplateArgument::Pack) {
2551     // This is a template argument pack, so check each of its arguments against
2552     // the template parameter.
2553     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2554     for (const auto &P : Arg.pack_elements()) {
2555       // When converting the deduced template argument, append it to the
2556       // general output list. We need to do this so that the template argument
2557       // checking logic has all of the prior template arguments available.
2558       DeducedTemplateArgument InnerArg(P);
2559       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2560       assert(InnerArg.getKind() != TemplateArgument::Pack &&
2561              "deduced nested pack");
2562       if (P.isNull()) {
2563         // We deduced arguments for some elements of this pack, but not for
2564         // all of them. This happens if we get a conditionally-non-deduced
2565         // context in a pack expansion (such as an overload set in one of the
2566         // arguments).
2567         S.Diag(Param->getLocation(),
2568                diag::err_template_arg_deduced_incomplete_pack)
2569           << Arg << Param;
2570         return true;
2571       }
2572       if (ConvertArg(InnerArg, PackedArgsBuilder.size()))
2573         return true;
2574 
2575       // Move the converted template argument into our argument pack.
2576       PackedArgsBuilder.push_back(Output.pop_back_val());
2577     }
2578 
2579     // If the pack is empty, we still need to substitute into the parameter
2580     // itself, in case that substitution fails.
2581     if (PackedArgsBuilder.empty()) {
2582       LocalInstantiationScope Scope(S);
2583       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output);
2584       MultiLevelTemplateArgumentList Args(TemplateArgs);
2585 
2586       if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2587         Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2588                                          NTTP, Output,
2589                                          Template->getSourceRange());
2590         if (Inst.isInvalid() ||
2591             S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
2592                         NTTP->getDeclName()).isNull())
2593           return true;
2594       } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
2595         Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2596                                          TTP, Output,
2597                                          Template->getSourceRange());
2598         if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
2599           return true;
2600       }
2601       // For type parameters, no substitution is ever required.
2602     }
2603 
2604     // Create the resulting argument pack.
2605     Output.push_back(
2606         TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
2607     return false;
2608   }
2609 
2610   return ConvertArg(Arg, 0);
2611 }
2612 
2613 // FIXME: This should not be a template, but
2614 // ClassTemplatePartialSpecializationDecl sadly does not derive from
2615 // TemplateDecl.
2616 template<typename TemplateDeclT>
2617 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments(
2618     Sema &S, TemplateDeclT *Template, bool IsDeduced,
2619     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2620     TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder,
2621     LocalInstantiationScope *CurrentInstantiationScope = nullptr,
2622     unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) {
2623   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2624 
2625   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2626     NamedDecl *Param = TemplateParams->getParam(I);
2627 
2628     // C++0x [temp.arg.explicit]p3:
2629     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2630     //    be deduced to an empty sequence of template arguments.
2631     // FIXME: Where did the word "trailing" come from?
2632     if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
2633       if (auto Result =
2634               PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish())
2635         return Result;
2636     }
2637 
2638     if (!Deduced[I].isNull()) {
2639       if (I < NumAlreadyConverted) {
2640         // We may have had explicitly-specified template arguments for a
2641         // template parameter pack (that may or may not have been extended
2642         // via additional deduced arguments).
2643         if (Param->isParameterPack() && CurrentInstantiationScope &&
2644             CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
2645           // Forget the partially-substituted pack; its substitution is now
2646           // complete.
2647           CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2648           // We still need to check the argument in case it was extended by
2649           // deduction.
2650         } else {
2651           // We have already fully type-checked and converted this
2652           // argument, because it was explicitly-specified. Just record the
2653           // presence of this argument.
2654           Builder.push_back(Deduced[I]);
2655           continue;
2656         }
2657       }
2658 
2659       // We may have deduced this argument, so it still needs to be
2660       // checked and converted.
2661       if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
2662                                          IsDeduced, Builder)) {
2663         Info.Param = makeTemplateParameter(Param);
2664         // FIXME: These template arguments are temporary. Free them!
2665         Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2666         return Sema::TDK_SubstitutionFailure;
2667       }
2668 
2669       continue;
2670     }
2671 
2672     // Substitute into the default template argument, if available.
2673     bool HasDefaultArg = false;
2674     TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
2675     if (!TD) {
2676       assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
2677              isa<VarTemplatePartialSpecializationDecl>(Template));
2678       return Sema::TDK_Incomplete;
2679     }
2680 
2681     TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
2682         TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder,
2683         HasDefaultArg);
2684 
2685     // If there was no default argument, deduction is incomplete.
2686     if (DefArg.getArgument().isNull()) {
2687       Info.Param = makeTemplateParameter(
2688           const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2689       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2690       if (PartialOverloading) break;
2691 
2692       return HasDefaultArg ? Sema::TDK_SubstitutionFailure
2693                            : Sema::TDK_Incomplete;
2694     }
2695 
2696     // Check whether we can actually use the default argument.
2697     if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(),
2698                                 TD->getSourceRange().getEnd(), 0, Builder,
2699                                 Sema::CTAK_Specified)) {
2700       Info.Param = makeTemplateParameter(
2701                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2702       // FIXME: These template arguments are temporary. Free them!
2703       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2704       return Sema::TDK_SubstitutionFailure;
2705     }
2706 
2707     // If we get here, we successfully used the default template argument.
2708   }
2709 
2710   return Sema::TDK_Success;
2711 }
2712 
2713 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
2714   if (auto *DC = dyn_cast<DeclContext>(D))
2715     return DC;
2716   return D->getDeclContext();
2717 }
2718 
2719 template<typename T> struct IsPartialSpecialization {
2720   static constexpr bool value = false;
2721 };
2722 template<>
2723 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
2724   static constexpr bool value = true;
2725 };
2726 template<>
2727 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
2728   static constexpr bool value = true;
2729 };
2730 
2731 template<typename TemplateDeclT>
2732 static Sema::TemplateDeductionResult
2733 CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template,
2734                                 ArrayRef<TemplateArgument> DeducedArgs,
2735                                 TemplateDeductionInfo& Info) {
2736   llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
2737   Template->getAssociatedConstraints(AssociatedConstraints);
2738   if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints,
2739                                     DeducedArgs, Info.getLocation(),
2740                                     Info.AssociatedConstraintsSatisfaction) ||
2741       !Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
2742     Info.reset(TemplateArgumentList::CreateCopy(S.Context, DeducedArgs));
2743     return Sema::TDK_ConstraintsNotSatisfied;
2744   }
2745   return Sema::TDK_Success;
2746 }
2747 
2748 /// Complete template argument deduction for a partial specialization.
2749 template <typename T>
2750 static typename std::enable_if<IsPartialSpecialization<T>::value,
2751                                Sema::TemplateDeductionResult>::type
2752 FinishTemplateArgumentDeduction(
2753     Sema &S, T *Partial, bool IsPartialOrdering,
2754     const TemplateArgumentList &TemplateArgs,
2755     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2756     TemplateDeductionInfo &Info) {
2757   // Unevaluated SFINAE context.
2758   EnterExpressionEvaluationContext Unevaluated(
2759       S, Sema::ExpressionEvaluationContext::Unevaluated);
2760   Sema::SFINAETrap Trap(S);
2761 
2762   Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));
2763 
2764   // C++ [temp.deduct.type]p2:
2765   //   [...] or if any template argument remains neither deduced nor
2766   //   explicitly specified, template argument deduction fails.
2767   SmallVector<TemplateArgument, 4> Builder;
2768   if (auto Result = ConvertDeducedTemplateArguments(
2769           S, Partial, IsPartialOrdering, Deduced, Info, Builder))
2770     return Result;
2771 
2772   // Form the template argument list from the deduced template arguments.
2773   TemplateArgumentList *DeducedArgumentList
2774     = TemplateArgumentList::CreateCopy(S.Context, Builder);
2775 
2776   Info.reset(DeducedArgumentList);
2777 
2778   // Substitute the deduced template arguments into the template
2779   // arguments of the class template partial specialization, and
2780   // verify that the instantiated template arguments are both valid
2781   // and are equivalent to the template arguments originally provided
2782   // to the class template.
2783   LocalInstantiationScope InstScope(S);
2784   auto *Template = Partial->getSpecializedTemplate();
2785   const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
2786       Partial->getTemplateArgsAsWritten();
2787   const TemplateArgumentLoc *PartialTemplateArgs =
2788       PartialTemplArgInfo->getTemplateArgs();
2789 
2790   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2791                                     PartialTemplArgInfo->RAngleLoc);
2792 
2793   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2794               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2795     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2796     if (ParamIdx >= Partial->getTemplateParameters()->size())
2797       ParamIdx = Partial->getTemplateParameters()->size() - 1;
2798 
2799     Decl *Param = const_cast<NamedDecl *>(
2800         Partial->getTemplateParameters()->getParam(ParamIdx));
2801     Info.Param = makeTemplateParameter(Param);
2802     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2803     return Sema::TDK_SubstitutionFailure;
2804   }
2805 
2806   bool ConstraintsNotSatisfied;
2807   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2808   if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs,
2809                                   false, ConvertedInstArgs,
2810                                   /*UpdateArgsWithConversions=*/true,
2811                                   &ConstraintsNotSatisfied))
2812     return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied :
2813                                      Sema::TDK_SubstitutionFailure;
2814 
2815   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2816   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2817     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2818     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2819       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2820       Info.FirstArg = TemplateArgs[I];
2821       Info.SecondArg = InstArg;
2822       return Sema::TDK_NonDeducedMismatch;
2823     }
2824   }
2825 
2826   if (Trap.hasErrorOccurred())
2827     return Sema::TDK_SubstitutionFailure;
2828 
2829   if (auto Result = CheckDeducedArgumentConstraints(S, Partial, Builder, Info))
2830     return Result;
2831 
2832   return Sema::TDK_Success;
2833 }
2834 
2835 /// Complete template argument deduction for a class or variable template,
2836 /// when partial ordering against a partial specialization.
2837 // FIXME: Factor out duplication with partial specialization version above.
2838 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2839     Sema &S, TemplateDecl *Template, bool PartialOrdering,
2840     const TemplateArgumentList &TemplateArgs,
2841     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2842     TemplateDeductionInfo &Info) {
2843   // Unevaluated SFINAE context.
2844   EnterExpressionEvaluationContext Unevaluated(
2845       S, Sema::ExpressionEvaluationContext::Unevaluated);
2846   Sema::SFINAETrap Trap(S);
2847 
2848   Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));
2849 
2850   // C++ [temp.deduct.type]p2:
2851   //   [...] or if any template argument remains neither deduced nor
2852   //   explicitly specified, template argument deduction fails.
2853   SmallVector<TemplateArgument, 4> Builder;
2854   if (auto Result = ConvertDeducedTemplateArguments(
2855           S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder))
2856     return Result;
2857 
2858   // Check that we produced the correct argument list.
2859   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2860   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2861     TemplateArgument InstArg = Builder[I];
2862     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
2863                            /*PackExpansionMatchesPack*/true)) {
2864       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2865       Info.FirstArg = TemplateArgs[I];
2866       Info.SecondArg = InstArg;
2867       return Sema::TDK_NonDeducedMismatch;
2868     }
2869   }
2870 
2871   if (Trap.hasErrorOccurred())
2872     return Sema::TDK_SubstitutionFailure;
2873 
2874   if (auto Result = CheckDeducedArgumentConstraints(S, Template, Builder,
2875                                                     Info))
2876     return Result;
2877 
2878   return Sema::TDK_Success;
2879 }
2880 
2881 /// Perform template argument deduction to determine whether
2882 /// the given template arguments match the given class template
2883 /// partial specialization per C++ [temp.class.spec.match].
2884 Sema::TemplateDeductionResult
2885 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2886                               const TemplateArgumentList &TemplateArgs,
2887                               TemplateDeductionInfo &Info) {
2888   if (Partial->isInvalidDecl())
2889     return TDK_Invalid;
2890 
2891   // C++ [temp.class.spec.match]p2:
2892   //   A partial specialization matches a given actual template
2893   //   argument list if the template arguments of the partial
2894   //   specialization can be deduced from the actual template argument
2895   //   list (14.8.2).
2896 
2897   // Unevaluated SFINAE context.
2898   EnterExpressionEvaluationContext Unevaluated(
2899       *this, Sema::ExpressionEvaluationContext::Unevaluated);
2900   SFINAETrap Trap(*this);
2901 
2902   SmallVector<DeducedTemplateArgument, 4> Deduced;
2903   Deduced.resize(Partial->getTemplateParameters()->size());
2904   if (TemplateDeductionResult Result
2905         = ::DeduceTemplateArguments(*this,
2906                                     Partial->getTemplateParameters(),
2907                                     Partial->getTemplateArgs(),
2908                                     TemplateArgs, Info, Deduced))
2909     return Result;
2910 
2911   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2912   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2913                              Info);
2914   if (Inst.isInvalid())
2915     return TDK_InstantiationDepth;
2916 
2917   if (Trap.hasErrorOccurred())
2918     return Sema::TDK_SubstitutionFailure;
2919 
2920   return ::FinishTemplateArgumentDeduction(
2921       *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
2922 }
2923 
2924 /// Perform template argument deduction to determine whether
2925 /// the given template arguments match the given variable template
2926 /// partial specialization per C++ [temp.class.spec.match].
2927 Sema::TemplateDeductionResult
2928 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2929                               const TemplateArgumentList &TemplateArgs,
2930                               TemplateDeductionInfo &Info) {
2931   if (Partial->isInvalidDecl())
2932     return TDK_Invalid;
2933 
2934   // C++ [temp.class.spec.match]p2:
2935   //   A partial specialization matches a given actual template
2936   //   argument list if the template arguments of the partial
2937   //   specialization can be deduced from the actual template argument
2938   //   list (14.8.2).
2939 
2940   // Unevaluated SFINAE context.
2941   EnterExpressionEvaluationContext Unevaluated(
2942       *this, Sema::ExpressionEvaluationContext::Unevaluated);
2943   SFINAETrap Trap(*this);
2944 
2945   SmallVector<DeducedTemplateArgument, 4> Deduced;
2946   Deduced.resize(Partial->getTemplateParameters()->size());
2947   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2948           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2949           TemplateArgs, Info, Deduced))
2950     return Result;
2951 
2952   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2953   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2954                              Info);
2955   if (Inst.isInvalid())
2956     return TDK_InstantiationDepth;
2957 
2958   if (Trap.hasErrorOccurred())
2959     return Sema::TDK_SubstitutionFailure;
2960 
2961   return ::FinishTemplateArgumentDeduction(
2962       *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
2963 }
2964 
2965 /// Determine whether the given type T is a simple-template-id type.
2966 static bool isSimpleTemplateIdType(QualType T) {
2967   if (const TemplateSpecializationType *Spec
2968         = T->getAs<TemplateSpecializationType>())
2969     return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
2970 
2971   // C++17 [temp.local]p2:
2972   //   the injected-class-name [...] is equivalent to the template-name followed
2973   //   by the template-arguments of the class template specialization or partial
2974   //   specialization enclosed in <>
2975   // ... which means it's equivalent to a simple-template-id.
2976   //
2977   // This only arises during class template argument deduction for a copy
2978   // deduction candidate, where it permits slicing.
2979   if (T->getAs<InjectedClassNameType>())
2980     return true;
2981 
2982   return false;
2983 }
2984 
2985 /// Substitute the explicitly-provided template arguments into the
2986 /// given function template according to C++ [temp.arg.explicit].
2987 ///
2988 /// \param FunctionTemplate the function template into which the explicit
2989 /// template arguments will be substituted.
2990 ///
2991 /// \param ExplicitTemplateArgs the explicitly-specified template
2992 /// arguments.
2993 ///
2994 /// \param Deduced the deduced template arguments, which will be populated
2995 /// with the converted and checked explicit template arguments.
2996 ///
2997 /// \param ParamTypes will be populated with the instantiated function
2998 /// parameters.
2999 ///
3000 /// \param FunctionType if non-NULL, the result type of the function template
3001 /// will also be instantiated and the pointed-to value will be updated with
3002 /// the instantiated function type.
3003 ///
3004 /// \param Info if substitution fails for any reason, this object will be
3005 /// populated with more information about the failure.
3006 ///
3007 /// \returns TDK_Success if substitution was successful, or some failure
3008 /// condition.
3009 Sema::TemplateDeductionResult
3010 Sema::SubstituteExplicitTemplateArguments(
3011                                       FunctionTemplateDecl *FunctionTemplate,
3012                                TemplateArgumentListInfo &ExplicitTemplateArgs,
3013                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3014                                  SmallVectorImpl<QualType> &ParamTypes,
3015                                           QualType *FunctionType,
3016                                           TemplateDeductionInfo &Info) {
3017   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3018   TemplateParameterList *TemplateParams
3019     = FunctionTemplate->getTemplateParameters();
3020 
3021   if (ExplicitTemplateArgs.size() == 0) {
3022     // No arguments to substitute; just copy over the parameter types and
3023     // fill in the function type.
3024     for (auto P : Function->parameters())
3025       ParamTypes.push_back(P->getType());
3026 
3027     if (FunctionType)
3028       *FunctionType = Function->getType();
3029     return TDK_Success;
3030   }
3031 
3032   // Unevaluated SFINAE context.
3033   EnterExpressionEvaluationContext Unevaluated(
3034       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3035   SFINAETrap Trap(*this);
3036 
3037   // C++ [temp.arg.explicit]p3:
3038   //   Template arguments that are present shall be specified in the
3039   //   declaration order of their corresponding template-parameters. The
3040   //   template argument list shall not specify more template-arguments than
3041   //   there are corresponding template-parameters.
3042   SmallVector<TemplateArgument, 4> Builder;
3043 
3044   // Enter a new template instantiation context where we check the
3045   // explicitly-specified template arguments against this function template,
3046   // and then substitute them into the function parameter types.
3047   SmallVector<TemplateArgument, 4> DeducedArgs;
3048   InstantiatingTemplate Inst(
3049       *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3050       CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
3051   if (Inst.isInvalid())
3052     return TDK_InstantiationDepth;
3053 
3054   if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
3055                                 ExplicitTemplateArgs, true, Builder, false) ||
3056       Trap.hasErrorOccurred()) {
3057     unsigned Index = Builder.size();
3058     if (Index >= TemplateParams->size())
3059       return TDK_SubstitutionFailure;
3060     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
3061     return TDK_InvalidExplicitArguments;
3062   }
3063 
3064   // Form the template argument list from the explicitly-specified
3065   // template arguments.
3066   TemplateArgumentList *ExplicitArgumentList
3067     = TemplateArgumentList::CreateCopy(Context, Builder);
3068   Info.setExplicitArgs(ExplicitArgumentList);
3069 
3070   // Template argument deduction and the final substitution should be
3071   // done in the context of the templated declaration.  Explicit
3072   // argument substitution, on the other hand, needs to happen in the
3073   // calling context.
3074   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3075 
3076   // If we deduced template arguments for a template parameter pack,
3077   // note that the template argument pack is partially substituted and record
3078   // the explicit template arguments. They'll be used as part of deduction
3079   // for this template parameter pack.
3080   unsigned PartiallySubstitutedPackIndex = -1u;
3081   if (!Builder.empty()) {
3082     const TemplateArgument &Arg = Builder.back();
3083     if (Arg.getKind() == TemplateArgument::Pack) {
3084       auto *Param = TemplateParams->getParam(Builder.size() - 1);
3085       // If this is a fully-saturated fixed-size pack, it should be
3086       // fully-substituted, not partially-substituted.
3087       Optional<unsigned> Expansions = getExpandedPackSize(Param);
3088       if (!Expansions || Arg.pack_size() < *Expansions) {
3089         PartiallySubstitutedPackIndex = Builder.size() - 1;
3090         CurrentInstantiationScope->SetPartiallySubstitutedPack(
3091             Param, Arg.pack_begin(), Arg.pack_size());
3092       }
3093     }
3094   }
3095 
3096   const FunctionProtoType *Proto
3097     = Function->getType()->getAs<FunctionProtoType>();
3098   assert(Proto && "Function template does not have a prototype?");
3099 
3100   // Isolate our substituted parameters from our caller.
3101   LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
3102 
3103   ExtParameterInfoBuilder ExtParamInfos;
3104 
3105   // Instantiate the types of each of the function parameters given the
3106   // explicitly-specified template arguments. If the function has a trailing
3107   // return type, substitute it after the arguments to ensure we substitute
3108   // in lexical order.
3109   if (Proto->hasTrailingReturn()) {
3110     if (SubstParmTypes(Function->getLocation(), Function->parameters(),
3111                        Proto->getExtParameterInfosOrNull(),
3112                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3113                        ParamTypes, /*params*/ nullptr, ExtParamInfos))
3114       return TDK_SubstitutionFailure;
3115   }
3116 
3117   // Instantiate the return type.
3118   QualType ResultType;
3119   {
3120     // C++11 [expr.prim.general]p3:
3121     //   If a declaration declares a member function or member function
3122     //   template of a class X, the expression this is a prvalue of type
3123     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
3124     //   and the end of the function-definition, member-declarator, or
3125     //   declarator.
3126     Qualifiers ThisTypeQuals;
3127     CXXRecordDecl *ThisContext = nullptr;
3128     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3129       ThisContext = Method->getParent();
3130       ThisTypeQuals = Method->getMethodQualifiers();
3131     }
3132 
3133     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
3134                                getLangOpts().CPlusPlus11);
3135 
3136     ResultType =
3137         SubstType(Proto->getReturnType(),
3138                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3139                   Function->getTypeSpecStartLoc(), Function->getDeclName());
3140     if (ResultType.isNull() || Trap.hasErrorOccurred())
3141       return TDK_SubstitutionFailure;
3142     // CUDA: Kernel function must have 'void' return type.
3143     if (getLangOpts().CUDA)
3144       if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
3145         Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
3146             << Function->getType() << Function->getSourceRange();
3147         return TDK_SubstitutionFailure;
3148       }
3149   }
3150 
3151   // Instantiate the types of each of the function parameters given the
3152   // explicitly-specified template arguments if we didn't do so earlier.
3153   if (!Proto->hasTrailingReturn() &&
3154       SubstParmTypes(Function->getLocation(), Function->parameters(),
3155                      Proto->getExtParameterInfosOrNull(),
3156                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3157                      ParamTypes, /*params*/ nullptr, ExtParamInfos))
3158     return TDK_SubstitutionFailure;
3159 
3160   if (FunctionType) {
3161     auto EPI = Proto->getExtProtoInfo();
3162     EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
3163 
3164     // In C++1z onwards, exception specifications are part of the function type,
3165     // so substitution into the type must also substitute into the exception
3166     // specification.
3167     SmallVector<QualType, 4> ExceptionStorage;
3168     if (getLangOpts().CPlusPlus17 &&
3169         SubstExceptionSpec(
3170             Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage,
3171             MultiLevelTemplateArgumentList(*ExplicitArgumentList)))
3172       return TDK_SubstitutionFailure;
3173 
3174     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
3175                                       Function->getLocation(),
3176                                       Function->getDeclName(),
3177                                       EPI);
3178     if (FunctionType->isNull() || Trap.hasErrorOccurred())
3179       return TDK_SubstitutionFailure;
3180   }
3181 
3182   // C++ [temp.arg.explicit]p2:
3183   //   Trailing template arguments that can be deduced (14.8.2) may be
3184   //   omitted from the list of explicit template-arguments. If all of the
3185   //   template arguments can be deduced, they may all be omitted; in this
3186   //   case, the empty template argument list <> itself may also be omitted.
3187   //
3188   // Take all of the explicitly-specified arguments and put them into
3189   // the set of deduced template arguments. The partially-substituted
3190   // parameter pack, however, will be set to NULL since the deduction
3191   // mechanism handles the partially-substituted argument pack directly.
3192   Deduced.reserve(TemplateParams->size());
3193   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
3194     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
3195     if (I == PartiallySubstitutedPackIndex)
3196       Deduced.push_back(DeducedTemplateArgument());
3197     else
3198       Deduced.push_back(Arg);
3199   }
3200 
3201   return TDK_Success;
3202 }
3203 
3204 /// Check whether the deduced argument type for a call to a function
3205 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
3206 static Sema::TemplateDeductionResult
3207 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
3208                               Sema::OriginalCallArg OriginalArg,
3209                               QualType DeducedA) {
3210   ASTContext &Context = S.Context;
3211 
3212   auto Failed = [&]() -> Sema::TemplateDeductionResult {
3213     Info.FirstArg = TemplateArgument(DeducedA);
3214     Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
3215     Info.CallArgIndex = OriginalArg.ArgIdx;
3216     return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested
3217                                        : Sema::TDK_DeducedMismatch;
3218   };
3219 
3220   QualType A = OriginalArg.OriginalArgType;
3221   QualType OriginalParamType = OriginalArg.OriginalParamType;
3222 
3223   // Check for type equality (top-level cv-qualifiers are ignored).
3224   if (Context.hasSameUnqualifiedType(A, DeducedA))
3225     return Sema::TDK_Success;
3226 
3227   // Strip off references on the argument types; they aren't needed for
3228   // the following checks.
3229   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
3230     DeducedA = DeducedARef->getPointeeType();
3231   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3232     A = ARef->getPointeeType();
3233 
3234   // C++ [temp.deduct.call]p4:
3235   //   [...] However, there are three cases that allow a difference:
3236   //     - If the original P is a reference type, the deduced A (i.e., the
3237   //       type referred to by the reference) can be more cv-qualified than
3238   //       the transformed A.
3239   if (const ReferenceType *OriginalParamRef
3240       = OriginalParamType->getAs<ReferenceType>()) {
3241     // We don't want to keep the reference around any more.
3242     OriginalParamType = OriginalParamRef->getPointeeType();
3243 
3244     // FIXME: Resolve core issue (no number yet): if the original P is a
3245     // reference type and the transformed A is function type "noexcept F",
3246     // the deduced A can be F.
3247     QualType Tmp;
3248     if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
3249       return Sema::TDK_Success;
3250 
3251     Qualifiers AQuals = A.getQualifiers();
3252     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
3253 
3254     // Under Objective-C++ ARC, the deduced type may have implicitly
3255     // been given strong or (when dealing with a const reference)
3256     // unsafe_unretained lifetime. If so, update the original
3257     // qualifiers to include this lifetime.
3258     if (S.getLangOpts().ObjCAutoRefCount &&
3259         ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
3260           AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
3261          (DeducedAQuals.hasConst() &&
3262           DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
3263       AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
3264     }
3265 
3266     if (AQuals == DeducedAQuals) {
3267       // Qualifiers match; there's nothing to do.
3268     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
3269       return Failed();
3270     } else {
3271       // Qualifiers are compatible, so have the argument type adopt the
3272       // deduced argument type's qualifiers as if we had performed the
3273       // qualification conversion.
3274       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
3275     }
3276   }
3277 
3278   //    - The transformed A can be another pointer or pointer to member
3279   //      type that can be converted to the deduced A via a function pointer
3280   //      conversion and/or a qualification conversion.
3281   //
3282   // Also allow conversions which merely strip __attribute__((noreturn)) from
3283   // function types (recursively).
3284   bool ObjCLifetimeConversion = false;
3285   QualType ResultTy;
3286   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
3287       (S.IsQualificationConversion(A, DeducedA, false,
3288                                    ObjCLifetimeConversion) ||
3289        S.IsFunctionConversion(A, DeducedA, ResultTy)))
3290     return Sema::TDK_Success;
3291 
3292   //    - If P is a class and P has the form simple-template-id, then the
3293   //      transformed A can be a derived class of the deduced A. [...]
3294   //     [...] Likewise, if P is a pointer to a class of the form
3295   //      simple-template-id, the transformed A can be a pointer to a
3296   //      derived class pointed to by the deduced A.
3297   if (const PointerType *OriginalParamPtr
3298       = OriginalParamType->getAs<PointerType>()) {
3299     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
3300       if (const PointerType *APtr = A->getAs<PointerType>()) {
3301         if (A->getPointeeType()->isRecordType()) {
3302           OriginalParamType = OriginalParamPtr->getPointeeType();
3303           DeducedA = DeducedAPtr->getPointeeType();
3304           A = APtr->getPointeeType();
3305         }
3306       }
3307     }
3308   }
3309 
3310   if (Context.hasSameUnqualifiedType(A, DeducedA))
3311     return Sema::TDK_Success;
3312 
3313   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
3314       S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
3315     return Sema::TDK_Success;
3316 
3317   return Failed();
3318 }
3319 
3320 /// Find the pack index for a particular parameter index in an instantiation of
3321 /// a function template with specific arguments.
3322 ///
3323 /// \return The pack index for whichever pack produced this parameter, or -1
3324 ///         if this was not produced by a parameter. Intended to be used as the
3325 ///         ArgumentPackSubstitutionIndex for further substitutions.
3326 // FIXME: We should track this in OriginalCallArgs so we don't need to
3327 // reconstruct it here.
3328 static unsigned getPackIndexForParam(Sema &S,
3329                                      FunctionTemplateDecl *FunctionTemplate,
3330                                      const MultiLevelTemplateArgumentList &Args,
3331                                      unsigned ParamIdx) {
3332   unsigned Idx = 0;
3333   for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
3334     if (PD->isParameterPack()) {
3335       unsigned NumExpansions =
3336           S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1);
3337       if (Idx + NumExpansions > ParamIdx)
3338         return ParamIdx - Idx;
3339       Idx += NumExpansions;
3340     } else {
3341       if (Idx == ParamIdx)
3342         return -1; // Not a pack expansion
3343       ++Idx;
3344     }
3345   }
3346 
3347   llvm_unreachable("parameter index would not be produced from template");
3348 }
3349 
3350 /// Finish template argument deduction for a function template,
3351 /// checking the deduced template arguments for completeness and forming
3352 /// the function template specialization.
3353 ///
3354 /// \param OriginalCallArgs If non-NULL, the original call arguments against
3355 /// which the deduced argument types should be compared.
3356 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
3357     FunctionTemplateDecl *FunctionTemplate,
3358     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3359     unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
3360     TemplateDeductionInfo &Info,
3361     SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
3362     bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) {
3363   // Unevaluated SFINAE context.
3364   EnterExpressionEvaluationContext Unevaluated(
3365       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3366   SFINAETrap Trap(*this);
3367 
3368   // Enter a new template instantiation context while we instantiate the
3369   // actual function declaration.
3370   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3371   InstantiatingTemplate Inst(
3372       *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3373       CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
3374   if (Inst.isInvalid())
3375     return TDK_InstantiationDepth;
3376 
3377   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3378 
3379   // C++ [temp.deduct.type]p2:
3380   //   [...] or if any template argument remains neither deduced nor
3381   //   explicitly specified, template argument deduction fails.
3382   SmallVector<TemplateArgument, 4> Builder;
3383   if (auto Result = ConvertDeducedTemplateArguments(
3384           *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder,
3385           CurrentInstantiationScope, NumExplicitlySpecified,
3386           PartialOverloading))
3387     return Result;
3388 
3389   // C++ [temp.deduct.call]p10: [DR1391]
3390   //   If deduction succeeds for all parameters that contain
3391   //   template-parameters that participate in template argument deduction,
3392   //   and all template arguments are explicitly specified, deduced, or
3393   //   obtained from default template arguments, remaining parameters are then
3394   //   compared with the corresponding arguments. For each remaining parameter
3395   //   P with a type that was non-dependent before substitution of any
3396   //   explicitly-specified template arguments, if the corresponding argument
3397   //   A cannot be implicitly converted to P, deduction fails.
3398   if (CheckNonDependent())
3399     return TDK_NonDependentConversionFailure;
3400 
3401   // Form the template argument list from the deduced template arguments.
3402   TemplateArgumentList *DeducedArgumentList
3403     = TemplateArgumentList::CreateCopy(Context, Builder);
3404   Info.reset(DeducedArgumentList);
3405 
3406   // Substitute the deduced template arguments into the function template
3407   // declaration to produce the function template specialization.
3408   DeclContext *Owner = FunctionTemplate->getDeclContext();
3409   if (FunctionTemplate->getFriendObjectKind())
3410     Owner = FunctionTemplate->getLexicalDeclContext();
3411   MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList);
3412   Specialization = cast_or_null<FunctionDecl>(
3413       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs));
3414   if (!Specialization || Specialization->isInvalidDecl())
3415     return TDK_SubstitutionFailure;
3416 
3417   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
3418          FunctionTemplate->getCanonicalDecl());
3419 
3420   // If the template argument list is owned by the function template
3421   // specialization, release it.
3422   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
3423       !Trap.hasErrorOccurred())
3424     Info.take();
3425 
3426   // There may have been an error that did not prevent us from constructing a
3427   // declaration. Mark the declaration invalid and return with a substitution
3428   // failure.
3429   if (Trap.hasErrorOccurred()) {
3430     Specialization->setInvalidDecl(true);
3431     return TDK_SubstitutionFailure;
3432   }
3433 
3434   // C++2a [temp.deduct]p5
3435   //   [...] When all template arguments have been deduced [...] all uses of
3436   //   template parameters [...] are replaced with the corresponding deduced
3437   //   or default argument values.
3438   //   [...] If the function template has associated constraints
3439   //   ([temp.constr.decl]), those constraints are checked for satisfaction
3440   //   ([temp.constr.constr]). If the constraints are not satisfied, type
3441   //   deduction fails.
3442   if (!PartialOverloading ||
3443       (Builder.size() == FunctionTemplate->getTemplateParameters()->size())) {
3444     if (CheckInstantiatedFunctionTemplateConstraints(Info.getLocation(),
3445             Specialization, Builder, Info.AssociatedConstraintsSatisfaction))
3446       return TDK_MiscellaneousDeductionFailure;
3447 
3448     if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
3449       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder));
3450       return TDK_ConstraintsNotSatisfied;
3451     }
3452   }
3453 
3454   if (OriginalCallArgs) {
3455     // C++ [temp.deduct.call]p4:
3456     //   In general, the deduction process attempts to find template argument
3457     //   values that will make the deduced A identical to A (after the type A
3458     //   is transformed as described above). [...]
3459     llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
3460     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
3461       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
3462 
3463       auto ParamIdx = OriginalArg.ArgIdx;
3464       if (ParamIdx >= Specialization->getNumParams())
3465         // FIXME: This presumably means a pack ended up smaller than we
3466         // expected while deducing. Should this not result in deduction
3467         // failure? Can it even happen?
3468         continue;
3469 
3470       QualType DeducedA;
3471       if (!OriginalArg.DecomposedParam) {
3472         // P is one of the function parameters, just look up its substituted
3473         // type.
3474         DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
3475       } else {
3476         // P is a decomposed element of a parameter corresponding to a
3477         // braced-init-list argument. Substitute back into P to find the
3478         // deduced A.
3479         QualType &CacheEntry =
3480             DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
3481         if (CacheEntry.isNull()) {
3482           ArgumentPackSubstitutionIndexRAII PackIndex(
3483               *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
3484                                           ParamIdx));
3485           CacheEntry =
3486               SubstType(OriginalArg.OriginalParamType, SubstArgs,
3487                         Specialization->getTypeSpecStartLoc(),
3488                         Specialization->getDeclName());
3489         }
3490         DeducedA = CacheEntry;
3491       }
3492 
3493       if (auto TDK =
3494               CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA))
3495         return TDK;
3496     }
3497   }
3498 
3499   // If we suppressed any diagnostics while performing template argument
3500   // deduction, and if we haven't already instantiated this declaration,
3501   // keep track of these diagnostics. They'll be emitted if this specialization
3502   // is actually used.
3503   if (Info.diag_begin() != Info.diag_end()) {
3504     SuppressedDiagnosticsMap::iterator
3505       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
3506     if (Pos == SuppressedDiagnostics.end())
3507         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
3508           .append(Info.diag_begin(), Info.diag_end());
3509   }
3510 
3511   return TDK_Success;
3512 }
3513 
3514 /// Gets the type of a function for template-argument-deducton
3515 /// purposes when it's considered as part of an overload set.
3516 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
3517                                   FunctionDecl *Fn) {
3518   // We may need to deduce the return type of the function now.
3519   if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
3520       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
3521     return {};
3522 
3523   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
3524     if (Method->isInstance()) {
3525       // An instance method that's referenced in a form that doesn't
3526       // look like a member pointer is just invalid.
3527       if (!R.HasFormOfMemberPointer)
3528         return {};
3529 
3530       return S.Context.getMemberPointerType(Fn->getType(),
3531                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
3532     }
3533 
3534   if (!R.IsAddressOfOperand) return Fn->getType();
3535   return S.Context.getPointerType(Fn->getType());
3536 }
3537 
3538 /// Apply the deduction rules for overload sets.
3539 ///
3540 /// \return the null type if this argument should be treated as an
3541 /// undeduced context
3542 static QualType
3543 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
3544                             Expr *Arg, QualType ParamType,
3545                             bool ParamWasReference) {
3546 
3547   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3548 
3549   OverloadExpr *Ovl = R.Expression;
3550 
3551   // C++0x [temp.deduct.call]p4
3552   unsigned TDF = 0;
3553   if (ParamWasReference)
3554     TDF |= TDF_ParamWithReferenceType;
3555   if (R.IsAddressOfOperand)
3556     TDF |= TDF_IgnoreQualifiers;
3557 
3558   // C++0x [temp.deduct.call]p6:
3559   //   When P is a function type, pointer to function type, or pointer
3560   //   to member function type:
3561 
3562   if (!ParamType->isFunctionType() &&
3563       !ParamType->isFunctionPointerType() &&
3564       !ParamType->isMemberFunctionPointerType()) {
3565     if (Ovl->hasExplicitTemplateArgs()) {
3566       // But we can still look for an explicit specialization.
3567       if (FunctionDecl *ExplicitSpec
3568             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3569         return GetTypeOfFunction(S, R, ExplicitSpec);
3570     }
3571 
3572     DeclAccessPair DAP;
3573     if (FunctionDecl *Viable =
3574             S.resolveAddressOfSingleOverloadCandidate(Arg, DAP))
3575       return GetTypeOfFunction(S, R, Viable);
3576 
3577     return {};
3578   }
3579 
3580   // Gather the explicit template arguments, if any.
3581   TemplateArgumentListInfo ExplicitTemplateArgs;
3582   if (Ovl->hasExplicitTemplateArgs())
3583     Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
3584   QualType Match;
3585   for (UnresolvedSetIterator I = Ovl->decls_begin(),
3586          E = Ovl->decls_end(); I != E; ++I) {
3587     NamedDecl *D = (*I)->getUnderlyingDecl();
3588 
3589     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3590       //   - If the argument is an overload set containing one or more
3591       //     function templates, the parameter is treated as a
3592       //     non-deduced context.
3593       if (!Ovl->hasExplicitTemplateArgs())
3594         return {};
3595 
3596       // Otherwise, see if we can resolve a function type
3597       FunctionDecl *Specialization = nullptr;
3598       TemplateDeductionInfo Info(Ovl->getNameLoc());
3599       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3600                                     Specialization, Info))
3601         continue;
3602 
3603       D = Specialization;
3604     }
3605 
3606     FunctionDecl *Fn = cast<FunctionDecl>(D);
3607     QualType ArgType = GetTypeOfFunction(S, R, Fn);
3608     if (ArgType.isNull()) continue;
3609 
3610     // Function-to-pointer conversion.
3611     if (!ParamWasReference && ParamType->isPointerType() &&
3612         ArgType->isFunctionType())
3613       ArgType = S.Context.getPointerType(ArgType);
3614 
3615     //   - If the argument is an overload set (not containing function
3616     //     templates), trial argument deduction is attempted using each
3617     //     of the members of the set. If deduction succeeds for only one
3618     //     of the overload set members, that member is used as the
3619     //     argument value for the deduction. If deduction succeeds for
3620     //     more than one member of the overload set the parameter is
3621     //     treated as a non-deduced context.
3622 
3623     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3624     //   Type deduction is done independently for each P/A pair, and
3625     //   the deduced template argument values are then combined.
3626     // So we do not reject deductions which were made elsewhere.
3627     SmallVector<DeducedTemplateArgument, 8>
3628       Deduced(TemplateParams->size());
3629     TemplateDeductionInfo Info(Ovl->getNameLoc());
3630     Sema::TemplateDeductionResult Result
3631       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3632                                            ArgType, Info, Deduced, TDF);
3633     if (Result) continue;
3634     if (!Match.isNull())
3635       return {};
3636     Match = ArgType;
3637   }
3638 
3639   return Match;
3640 }
3641 
3642 /// Perform the adjustments to the parameter and argument types
3643 /// described in C++ [temp.deduct.call].
3644 ///
3645 /// \returns true if the caller should not attempt to perform any template
3646 /// argument deduction based on this P/A pair because the argument is an
3647 /// overloaded function set that could not be resolved.
3648 static bool AdjustFunctionParmAndArgTypesForDeduction(
3649     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3650     QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) {
3651   // C++0x [temp.deduct.call]p3:
3652   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
3653   //   are ignored for type deduction.
3654   if (ParamType.hasQualifiers())
3655     ParamType = ParamType.getUnqualifiedType();
3656 
3657   //   [...] If P is a reference type, the type referred to by P is
3658   //   used for type deduction.
3659   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3660   if (ParamRefType)
3661     ParamType = ParamRefType->getPointeeType();
3662 
3663   // Overload sets usually make this parameter an undeduced context,
3664   // but there are sometimes special circumstances.  Typically
3665   // involving a template-id-expr.
3666   if (ArgType == S.Context.OverloadTy) {
3667     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3668                                           Arg, ParamType,
3669                                           ParamRefType != nullptr);
3670     if (ArgType.isNull())
3671       return true;
3672   }
3673 
3674   if (ParamRefType) {
3675     // If the argument has incomplete array type, try to complete its type.
3676     if (ArgType->isIncompleteArrayType()) {
3677       S.completeExprArrayBound(Arg);
3678       ArgType = Arg->getType();
3679     }
3680 
3681     // C++1z [temp.deduct.call]p3:
3682     //   If P is a forwarding reference and the argument is an lvalue, the type
3683     //   "lvalue reference to A" is used in place of A for type deduction.
3684     if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
3685         Arg->isLValue())
3686       ArgType = S.Context.getLValueReferenceType(ArgType);
3687   } else {
3688     // C++ [temp.deduct.call]p2:
3689     //   If P is not a reference type:
3690     //   - If A is an array type, the pointer type produced by the
3691     //     array-to-pointer standard conversion (4.2) is used in place of
3692     //     A for type deduction; otherwise,
3693     if (ArgType->isArrayType())
3694       ArgType = S.Context.getArrayDecayedType(ArgType);
3695     //   - If A is a function type, the pointer type produced by the
3696     //     function-to-pointer standard conversion (4.3) is used in place
3697     //     of A for type deduction; otherwise,
3698     else if (ArgType->isFunctionType())
3699       ArgType = S.Context.getPointerType(ArgType);
3700     else {
3701       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3702       //   type are ignored for type deduction.
3703       ArgType = ArgType.getUnqualifiedType();
3704     }
3705   }
3706 
3707   // C++0x [temp.deduct.call]p4:
3708   //   In general, the deduction process attempts to find template argument
3709   //   values that will make the deduced A identical to A (after the type A
3710   //   is transformed as described above). [...]
3711   TDF = TDF_SkipNonDependent;
3712 
3713   //     - If the original P is a reference type, the deduced A (i.e., the
3714   //       type referred to by the reference) can be more cv-qualified than
3715   //       the transformed A.
3716   if (ParamRefType)
3717     TDF |= TDF_ParamWithReferenceType;
3718   //     - The transformed A can be another pointer or pointer to member
3719   //       type that can be converted to the deduced A via a qualification
3720   //       conversion (4.4).
3721   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3722       ArgType->isObjCObjectPointerType())
3723     TDF |= TDF_IgnoreQualifiers;
3724   //     - If P is a class and P has the form simple-template-id, then the
3725   //       transformed A can be a derived class of the deduced A. Likewise,
3726   //       if P is a pointer to a class of the form simple-template-id, the
3727   //       transformed A can be a pointer to a derived class pointed to by
3728   //       the deduced A.
3729   if (isSimpleTemplateIdType(ParamType) ||
3730       (isa<PointerType>(ParamType) &&
3731        isSimpleTemplateIdType(
3732                               ParamType->getAs<PointerType>()->getPointeeType())))
3733     TDF |= TDF_DerivedClass;
3734 
3735   return false;
3736 }
3737 
3738 static bool
3739 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
3740                                QualType T);
3741 
3742 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3743     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3744     QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3745     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3746     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3747     bool DecomposedParam, unsigned ArgIdx, unsigned TDF);
3748 
3749 /// Attempt template argument deduction from an initializer list
3750 ///        deemed to be an argument in a function call.
3751 static Sema::TemplateDeductionResult DeduceFromInitializerList(
3752     Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
3753     InitListExpr *ILE, TemplateDeductionInfo &Info,
3754     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3755     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
3756     unsigned TDF) {
3757   // C++ [temp.deduct.call]p1: (CWG 1591)
3758   //   If removing references and cv-qualifiers from P gives
3759   //   std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
3760   //   a non-empty initializer list, then deduction is performed instead for
3761   //   each element of the initializer list, taking P0 as a function template
3762   //   parameter type and the initializer element as its argument
3763   //
3764   // We've already removed references and cv-qualifiers here.
3765   if (!ILE->getNumInits())
3766     return Sema::TDK_Success;
3767 
3768   QualType ElTy;
3769   auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
3770   if (ArrTy)
3771     ElTy = ArrTy->getElementType();
3772   else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
3773     //   Otherwise, an initializer list argument causes the parameter to be
3774     //   considered a non-deduced context
3775     return Sema::TDK_Success;
3776   }
3777 
3778   // Resolving a core issue: a braced-init-list containing any designators is
3779   // a non-deduced context.
3780   for (Expr *E : ILE->inits())
3781     if (isa<DesignatedInitExpr>(E))
3782       return Sema::TDK_Success;
3783 
3784   // Deduction only needs to be done for dependent types.
3785   if (ElTy->isDependentType()) {
3786     for (Expr *E : ILE->inits()) {
3787       if (auto Result = DeduceTemplateArgumentsFromCallArgument(
3788               S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true,
3789               ArgIdx, TDF))
3790         return Result;
3791     }
3792   }
3793 
3794   //   in the P0[N] case, if N is a non-type template parameter, N is deduced
3795   //   from the length of the initializer list.
3796   if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
3797     // Determine the array bound is something we can deduce.
3798     if (NonTypeTemplateParmDecl *NTTP =
3799             getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
3800       // We can perform template argument deduction for the given non-type
3801       // template parameter.
3802       // C++ [temp.deduct.type]p13:
3803       //   The type of N in the type T[N] is std::size_t.
3804       QualType T = S.Context.getSizeType();
3805       llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits());
3806       if (auto Result = DeduceNonTypeTemplateArgument(
3807               S, TemplateParams, NTTP, llvm::APSInt(Size), T,
3808               /*ArrayBound=*/true, Info, Deduced))
3809         return Result;
3810     }
3811   }
3812 
3813   return Sema::TDK_Success;
3814 }
3815 
3816 /// Perform template argument deduction per [temp.deduct.call] for a
3817 ///        single parameter / argument pair.
3818 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3819     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3820     QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3821     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3822     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3823     bool DecomposedParam, unsigned ArgIdx, unsigned TDF) {
3824   QualType ArgType = Arg->getType();
3825   QualType OrigParamType = ParamType;
3826 
3827   //   If P is a reference type [...]
3828   //   If P is a cv-qualified type [...]
3829   if (AdjustFunctionParmAndArgTypesForDeduction(
3830           S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF))
3831     return Sema::TDK_Success;
3832 
3833   //   If [...] the argument is a non-empty initializer list [...]
3834   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg))
3835     return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
3836                                      Deduced, OriginalCallArgs, ArgIdx, TDF);
3837 
3838   //   [...] the deduction process attempts to find template argument values
3839   //   that will make the deduced A identical to A
3840   //
3841   // Keep track of the argument type and corresponding parameter index,
3842   // so we can check for compatibility between the deduced A and A.
3843   OriginalCallArgs.push_back(
3844       Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
3845   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3846                                             ArgType, Info, Deduced, TDF);
3847 }
3848 
3849 /// Perform template argument deduction from a function call
3850 /// (C++ [temp.deduct.call]).
3851 ///
3852 /// \param FunctionTemplate the function template for which we are performing
3853 /// template argument deduction.
3854 ///
3855 /// \param ExplicitTemplateArgs the explicit template arguments provided
3856 /// for this call.
3857 ///
3858 /// \param Args the function call arguments
3859 ///
3860 /// \param Specialization if template argument deduction was successful,
3861 /// this will be set to the function template specialization produced by
3862 /// template argument deduction.
3863 ///
3864 /// \param Info the argument will be updated to provide additional information
3865 /// about template argument deduction.
3866 ///
3867 /// \param CheckNonDependent A callback to invoke to check conversions for
3868 /// non-dependent parameters, between deduction and substitution, per DR1391.
3869 /// If this returns true, substitution will be skipped and we return
3870 /// TDK_NonDependentConversionFailure. The callback is passed the parameter
3871 /// types (after substituting explicit template arguments).
3872 ///
3873 /// \returns the result of template argument deduction.
3874 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
3875     FunctionTemplateDecl *FunctionTemplate,
3876     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3877     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
3878     bool PartialOverloading,
3879     llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
3880   if (FunctionTemplate->isInvalidDecl())
3881     return TDK_Invalid;
3882 
3883   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3884   unsigned NumParams = Function->getNumParams();
3885 
3886   unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
3887 
3888   // C++ [temp.deduct.call]p1:
3889   //   Template argument deduction is done by comparing each function template
3890   //   parameter type (call it P) with the type of the corresponding argument
3891   //   of the call (call it A) as described below.
3892   if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
3893     return TDK_TooFewArguments;
3894   else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
3895     const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
3896     if (Proto->isTemplateVariadic())
3897       /* Do nothing */;
3898     else if (!Proto->isVariadic())
3899       return TDK_TooManyArguments;
3900   }
3901 
3902   // The types of the parameters from which we will perform template argument
3903   // deduction.
3904   LocalInstantiationScope InstScope(*this);
3905   TemplateParameterList *TemplateParams
3906     = FunctionTemplate->getTemplateParameters();
3907   SmallVector<DeducedTemplateArgument, 4> Deduced;
3908   SmallVector<QualType, 8> ParamTypes;
3909   unsigned NumExplicitlySpecified = 0;
3910   if (ExplicitTemplateArgs) {
3911     TemplateDeductionResult Result =
3912       SubstituteExplicitTemplateArguments(FunctionTemplate,
3913                                           *ExplicitTemplateArgs,
3914                                           Deduced,
3915                                           ParamTypes,
3916                                           nullptr,
3917                                           Info);
3918     if (Result)
3919       return Result;
3920 
3921     NumExplicitlySpecified = Deduced.size();
3922   } else {
3923     // Just fill in the parameter types from the function declaration.
3924     for (unsigned I = 0; I != NumParams; ++I)
3925       ParamTypes.push_back(Function->getParamDecl(I)->getType());
3926   }
3927 
3928   SmallVector<OriginalCallArg, 8> OriginalCallArgs;
3929 
3930   // Deduce an argument of type ParamType from an expression with index ArgIdx.
3931   auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) {
3932     // C++ [demp.deduct.call]p1: (DR1391)
3933     //   Template argument deduction is done by comparing each function template
3934     //   parameter that contains template-parameters that participate in
3935     //   template argument deduction ...
3936     if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3937       return Sema::TDK_Success;
3938 
3939     //   ... with the type of the corresponding argument
3940     return DeduceTemplateArgumentsFromCallArgument(
3941         *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced,
3942         OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0);
3943   };
3944 
3945   // Deduce template arguments from the function parameters.
3946   Deduced.resize(TemplateParams->size());
3947   SmallVector<QualType, 8> ParamTypesForArgChecking;
3948   for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
3949        ParamIdx != NumParamTypes; ++ParamIdx) {
3950     QualType ParamType = ParamTypes[ParamIdx];
3951 
3952     const PackExpansionType *ParamExpansion =
3953         dyn_cast<PackExpansionType>(ParamType);
3954     if (!ParamExpansion) {
3955       // Simple case: matching a function parameter to a function argument.
3956       if (ArgIdx >= Args.size())
3957         break;
3958 
3959       ParamTypesForArgChecking.push_back(ParamType);
3960       if (auto Result = DeduceCallArgument(ParamType, ArgIdx++))
3961         return Result;
3962 
3963       continue;
3964     }
3965 
3966     QualType ParamPattern = ParamExpansion->getPattern();
3967     PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
3968                                  ParamPattern);
3969 
3970     // C++0x [temp.deduct.call]p1:
3971     //   For a function parameter pack that occurs at the end of the
3972     //   parameter-declaration-list, the type A of each remaining argument of
3973     //   the call is compared with the type P of the declarator-id of the
3974     //   function parameter pack. Each comparison deduces template arguments
3975     //   for subsequent positions in the template parameter packs expanded by
3976     //   the function parameter pack. When a function parameter pack appears
3977     //   in a non-deduced context [not at the end of the list], the type of
3978     //   that parameter pack is never deduced.
3979     //
3980     // FIXME: The above rule allows the size of the parameter pack to change
3981     // after we skip it (in the non-deduced case). That makes no sense, so
3982     // we instead notionally deduce the pack against N arguments, where N is
3983     // the length of the explicitly-specified pack if it's expanded by the
3984     // parameter pack and 0 otherwise, and we treat each deduction as a
3985     // non-deduced context.
3986     if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) {
3987       for (; ArgIdx < Args.size() && PackScope.hasNextElement();
3988            PackScope.nextPackElement(), ++ArgIdx) {
3989         ParamTypesForArgChecking.push_back(ParamPattern);
3990         if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx))
3991           return Result;
3992       }
3993     } else {
3994       // If the parameter type contains an explicitly-specified pack that we
3995       // could not expand, skip the number of parameters notionally created
3996       // by the expansion.
3997       Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions();
3998       if (NumExpansions && !PackScope.isPartiallyExpanded()) {
3999         for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
4000              ++I, ++ArgIdx) {
4001           ParamTypesForArgChecking.push_back(ParamPattern);
4002           // FIXME: Should we add OriginalCallArgs for these? What if the
4003           // corresponding argument is a list?
4004           PackScope.nextPackElement();
4005         }
4006       }
4007     }
4008 
4009     // Build argument packs for each of the parameter packs expanded by this
4010     // pack expansion.
4011     if (auto Result = PackScope.finish())
4012       return Result;
4013   }
4014 
4015   // Capture the context in which the function call is made. This is the context
4016   // that is needed when the accessibility of template arguments is checked.
4017   DeclContext *CallingCtx = CurContext;
4018 
4019   return FinishTemplateArgumentDeduction(
4020       FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4021       &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() {
4022         ContextRAII SavedContext(*this, CallingCtx);
4023         return CheckNonDependent(ParamTypesForArgChecking);
4024       });
4025 }
4026 
4027 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
4028                                    QualType FunctionType,
4029                                    bool AdjustExceptionSpec) {
4030   if (ArgFunctionType.isNull())
4031     return ArgFunctionType;
4032 
4033   const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
4034   const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
4035   FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
4036   bool Rebuild = false;
4037 
4038   CallingConv CC = FunctionTypeP->getCallConv();
4039   if (EPI.ExtInfo.getCC() != CC) {
4040     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
4041     Rebuild = true;
4042   }
4043 
4044   bool NoReturn = FunctionTypeP->getNoReturnAttr();
4045   if (EPI.ExtInfo.getNoReturn() != NoReturn) {
4046     EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
4047     Rebuild = true;
4048   }
4049 
4050   if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
4051                               ArgFunctionTypeP->hasExceptionSpec())) {
4052     EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
4053     Rebuild = true;
4054   }
4055 
4056   if (!Rebuild)
4057     return ArgFunctionType;
4058 
4059   return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
4060                                  ArgFunctionTypeP->getParamTypes(), EPI);
4061 }
4062 
4063 /// Deduce template arguments when taking the address of a function
4064 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
4065 /// a template.
4066 ///
4067 /// \param FunctionTemplate the function template for which we are performing
4068 /// template argument deduction.
4069 ///
4070 /// \param ExplicitTemplateArgs the explicitly-specified template
4071 /// arguments.
4072 ///
4073 /// \param ArgFunctionType the function type that will be used as the
4074 /// "argument" type (A) when performing template argument deduction from the
4075 /// function template's function type. This type may be NULL, if there is no
4076 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
4077 ///
4078 /// \param Specialization if template argument deduction was successful,
4079 /// this will be set to the function template specialization produced by
4080 /// template argument deduction.
4081 ///
4082 /// \param Info the argument will be updated to provide additional information
4083 /// about template argument deduction.
4084 ///
4085 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4086 /// the address of a function template per [temp.deduct.funcaddr] and
4087 /// [over.over]. If \c false, we are looking up a function template
4088 /// specialization based on its signature, per [temp.deduct.decl].
4089 ///
4090 /// \returns the result of template argument deduction.
4091 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4092     FunctionTemplateDecl *FunctionTemplate,
4093     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
4094     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4095     bool IsAddressOfFunction) {
4096   if (FunctionTemplate->isInvalidDecl())
4097     return TDK_Invalid;
4098 
4099   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4100   TemplateParameterList *TemplateParams
4101     = FunctionTemplate->getTemplateParameters();
4102   QualType FunctionType = Function->getType();
4103 
4104   // Substitute any explicit template arguments.
4105   LocalInstantiationScope InstScope(*this);
4106   SmallVector<DeducedTemplateArgument, 4> Deduced;
4107   unsigned NumExplicitlySpecified = 0;
4108   SmallVector<QualType, 4> ParamTypes;
4109   if (ExplicitTemplateArgs) {
4110     if (TemplateDeductionResult Result
4111           = SubstituteExplicitTemplateArguments(FunctionTemplate,
4112                                                 *ExplicitTemplateArgs,
4113                                                 Deduced, ParamTypes,
4114                                                 &FunctionType, Info))
4115       return Result;
4116 
4117     NumExplicitlySpecified = Deduced.size();
4118   }
4119 
4120   // When taking the address of a function, we require convertibility of
4121   // the resulting function type. Otherwise, we allow arbitrary mismatches
4122   // of calling convention and noreturn.
4123   if (!IsAddressOfFunction)
4124     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
4125                                           /*AdjustExceptionSpec*/false);
4126 
4127   // Unevaluated SFINAE context.
4128   EnterExpressionEvaluationContext Unevaluated(
4129       *this, Sema::ExpressionEvaluationContext::Unevaluated);
4130   SFINAETrap Trap(*this);
4131 
4132   Deduced.resize(TemplateParams->size());
4133 
4134   // If the function has a deduced return type, substitute it for a dependent
4135   // type so that we treat it as a non-deduced context in what follows. If we
4136   // are looking up by signature, the signature type should also have a deduced
4137   // return type, which we instead expect to exactly match.
4138   bool HasDeducedReturnType = false;
4139   if (getLangOpts().CPlusPlus14 && IsAddressOfFunction &&
4140       Function->getReturnType()->getContainedAutoType()) {
4141     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
4142     HasDeducedReturnType = true;
4143   }
4144 
4145   if (!ArgFunctionType.isNull()) {
4146     unsigned TDF =
4147         TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
4148     // Deduce template arguments from the function type.
4149     if (TemplateDeductionResult Result
4150           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4151                                                FunctionType, ArgFunctionType,
4152                                                Info, Deduced, TDF))
4153       return Result;
4154   }
4155 
4156   if (TemplateDeductionResult Result
4157         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
4158                                           NumExplicitlySpecified,
4159                                           Specialization, Info))
4160     return Result;
4161 
4162   // If the function has a deduced return type, deduce it now, so we can check
4163   // that the deduced function type matches the requested type.
4164   if (HasDeducedReturnType &&
4165       Specialization->getReturnType()->isUndeducedType() &&
4166       DeduceReturnType(Specialization, Info.getLocation(), false))
4167     return TDK_MiscellaneousDeductionFailure;
4168 
4169   // If the function has a dependent exception specification, resolve it now,
4170   // so we can check that the exception specification matches.
4171   auto *SpecializationFPT =
4172       Specialization->getType()->castAs<FunctionProtoType>();
4173   if (getLangOpts().CPlusPlus17 &&
4174       isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
4175       !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT))
4176     return TDK_MiscellaneousDeductionFailure;
4177 
4178   // Adjust the exception specification of the argument to match the
4179   // substituted and resolved type we just formed. (Calling convention and
4180   // noreturn can't be dependent, so we don't actually need this for them
4181   // right now.)
4182   QualType SpecializationType = Specialization->getType();
4183   if (!IsAddressOfFunction)
4184     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
4185                                           /*AdjustExceptionSpec*/true);
4186 
4187   // If the requested function type does not match the actual type of the
4188   // specialization with respect to arguments of compatible pointer to function
4189   // types, template argument deduction fails.
4190   if (!ArgFunctionType.isNull()) {
4191     if (IsAddressOfFunction &&
4192         !isSameOrCompatibleFunctionType(
4193             Context.getCanonicalType(SpecializationType),
4194             Context.getCanonicalType(ArgFunctionType)))
4195       return TDK_MiscellaneousDeductionFailure;
4196 
4197     if (!IsAddressOfFunction &&
4198         !Context.hasSameType(SpecializationType, ArgFunctionType))
4199       return TDK_MiscellaneousDeductionFailure;
4200   }
4201 
4202   return TDK_Success;
4203 }
4204 
4205 /// Deduce template arguments for a templated conversion
4206 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
4207 /// conversion function template specialization.
4208 Sema::TemplateDeductionResult
4209 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
4210                               QualType ToType,
4211                               CXXConversionDecl *&Specialization,
4212                               TemplateDeductionInfo &Info) {
4213   if (ConversionTemplate->isInvalidDecl())
4214     return TDK_Invalid;
4215 
4216   CXXConversionDecl *ConversionGeneric
4217     = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
4218 
4219   QualType FromType = ConversionGeneric->getConversionType();
4220 
4221   // Canonicalize the types for deduction.
4222   QualType P = Context.getCanonicalType(FromType);
4223   QualType A = Context.getCanonicalType(ToType);
4224 
4225   // C++0x [temp.deduct.conv]p2:
4226   //   If P is a reference type, the type referred to by P is used for
4227   //   type deduction.
4228   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
4229     P = PRef->getPointeeType();
4230 
4231   // C++0x [temp.deduct.conv]p4:
4232   //   [...] If A is a reference type, the type referred to by A is used
4233   //   for type deduction.
4234   if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
4235     A = ARef->getPointeeType();
4236     // We work around a defect in the standard here: cv-qualifiers are also
4237     // removed from P and A in this case, unless P was a reference type. This
4238     // seems to mostly match what other compilers are doing.
4239     if (!FromType->getAs<ReferenceType>()) {
4240       A = A.getUnqualifiedType();
4241       P = P.getUnqualifiedType();
4242     }
4243 
4244   // C++ [temp.deduct.conv]p3:
4245   //
4246   //   If A is not a reference type:
4247   } else {
4248     assert(!A->isReferenceType() && "Reference types were handled above");
4249 
4250     //   - If P is an array type, the pointer type produced by the
4251     //     array-to-pointer standard conversion (4.2) is used in place
4252     //     of P for type deduction; otherwise,
4253     if (P->isArrayType())
4254       P = Context.getArrayDecayedType(P);
4255     //   - If P is a function type, the pointer type produced by the
4256     //     function-to-pointer standard conversion (4.3) is used in
4257     //     place of P for type deduction; otherwise,
4258     else if (P->isFunctionType())
4259       P = Context.getPointerType(P);
4260     //   - If P is a cv-qualified type, the top level cv-qualifiers of
4261     //     P's type are ignored for type deduction.
4262     else
4263       P = P.getUnqualifiedType();
4264 
4265     // C++0x [temp.deduct.conv]p4:
4266     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
4267     //   type are ignored for type deduction. If A is a reference type, the type
4268     //   referred to by A is used for type deduction.
4269     A = A.getUnqualifiedType();
4270   }
4271 
4272   // Unevaluated SFINAE context.
4273   EnterExpressionEvaluationContext Unevaluated(
4274       *this, Sema::ExpressionEvaluationContext::Unevaluated);
4275   SFINAETrap Trap(*this);
4276 
4277   // C++ [temp.deduct.conv]p1:
4278   //   Template argument deduction is done by comparing the return
4279   //   type of the template conversion function (call it P) with the
4280   //   type that is required as the result of the conversion (call it
4281   //   A) as described in 14.8.2.4.
4282   TemplateParameterList *TemplateParams
4283     = ConversionTemplate->getTemplateParameters();
4284   SmallVector<DeducedTemplateArgument, 4> Deduced;
4285   Deduced.resize(TemplateParams->size());
4286 
4287   // C++0x [temp.deduct.conv]p4:
4288   //   In general, the deduction process attempts to find template
4289   //   argument values that will make the deduced A identical to
4290   //   A. However, there are two cases that allow a difference:
4291   unsigned TDF = 0;
4292   //     - If the original A is a reference type, A can be more
4293   //       cv-qualified than the deduced A (i.e., the type referred to
4294   //       by the reference)
4295   if (ToType->isReferenceType())
4296     TDF |= TDF_ArgWithReferenceType;
4297   //     - The deduced A can be another pointer or pointer to member
4298   //       type that can be converted to A via a qualification
4299   //       conversion.
4300   //
4301   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
4302   // both P and A are pointers or member pointers. In this case, we
4303   // just ignore cv-qualifiers completely).
4304   if ((P->isPointerType() && A->isPointerType()) ||
4305       (P->isMemberPointerType() && A->isMemberPointerType()))
4306     TDF |= TDF_IgnoreQualifiers;
4307   if (TemplateDeductionResult Result
4308         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4309                                              P, A, Info, Deduced, TDF))
4310     return Result;
4311 
4312   // Create an Instantiation Scope for finalizing the operator.
4313   LocalInstantiationScope InstScope(*this);
4314   // Finish template argument deduction.
4315   FunctionDecl *ConversionSpecialized = nullptr;
4316   TemplateDeductionResult Result
4317       = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
4318                                         ConversionSpecialized, Info);
4319   Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
4320   return Result;
4321 }
4322 
4323 /// Deduce template arguments for a function template when there is
4324 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
4325 ///
4326 /// \param FunctionTemplate the function template for which we are performing
4327 /// template argument deduction.
4328 ///
4329 /// \param ExplicitTemplateArgs the explicitly-specified template
4330 /// arguments.
4331 ///
4332 /// \param Specialization if template argument deduction was successful,
4333 /// this will be set to the function template specialization produced by
4334 /// template argument deduction.
4335 ///
4336 /// \param Info the argument will be updated to provide additional information
4337 /// about template argument deduction.
4338 ///
4339 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4340 /// the address of a function template in a context where we do not have a
4341 /// target type, per [over.over]. If \c false, we are looking up a function
4342 /// template specialization based on its signature, which only happens when
4343 /// deducing a function parameter type from an argument that is a template-id
4344 /// naming a function template specialization.
4345 ///
4346 /// \returns the result of template argument deduction.
4347 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4348     FunctionTemplateDecl *FunctionTemplate,
4349     TemplateArgumentListInfo *ExplicitTemplateArgs,
4350     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4351     bool IsAddressOfFunction) {
4352   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4353                                  QualType(), Specialization, Info,
4354                                  IsAddressOfFunction);
4355 }
4356 
4357 namespace {
4358   struct DependentAuto { bool IsPack; };
4359 
4360   /// Substitute the 'auto' specifier or deduced template specialization type
4361   /// specifier within a type for a given replacement type.
4362   class SubstituteDeducedTypeTransform :
4363       public TreeTransform<SubstituteDeducedTypeTransform> {
4364     QualType Replacement;
4365     bool ReplacementIsPack;
4366     bool UseTypeSugar;
4367 
4368   public:
4369     SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
4370         : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(),
4371           ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
4372 
4373     SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
4374                                    bool UseTypeSugar = true)
4375         : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
4376           Replacement(Replacement), ReplacementIsPack(false),
4377           UseTypeSugar(UseTypeSugar) {}
4378 
4379     QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
4380       assert(isa<TemplateTypeParmType>(Replacement) &&
4381              "unexpected unsugared replacement kind");
4382       QualType Result = Replacement;
4383       TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
4384       NewTL.setNameLoc(TL.getNameLoc());
4385       return Result;
4386     }
4387 
4388     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
4389       // If we're building the type pattern to deduce against, don't wrap the
4390       // substituted type in an AutoType. Certain template deduction rules
4391       // apply only when a template type parameter appears directly (and not if
4392       // the parameter is found through desugaring). For instance:
4393       //   auto &&lref = lvalue;
4394       // must transform into "rvalue reference to T" not "rvalue reference to
4395       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
4396       //
4397       // FIXME: Is this still necessary?
4398       if (!UseTypeSugar)
4399         return TransformDesugared(TLB, TL);
4400 
4401       QualType Result = SemaRef.Context.getAutoType(
4402           Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
4403           ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
4404           TL.getTypePtr()->getTypeConstraintArguments());
4405       auto NewTL = TLB.push<AutoTypeLoc>(Result);
4406       NewTL.copy(TL);
4407       return Result;
4408     }
4409 
4410     QualType TransformDeducedTemplateSpecializationType(
4411         TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
4412       if (!UseTypeSugar)
4413         return TransformDesugared(TLB, TL);
4414 
4415       QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
4416           TL.getTypePtr()->getTemplateName(),
4417           Replacement, Replacement.isNull());
4418       auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
4419       NewTL.setNameLoc(TL.getNameLoc());
4420       return Result;
4421     }
4422 
4423     ExprResult TransformLambdaExpr(LambdaExpr *E) {
4424       // Lambdas never need to be transformed.
4425       return E;
4426     }
4427 
4428     QualType Apply(TypeLoc TL) {
4429       // Create some scratch storage for the transformed type locations.
4430       // FIXME: We're just going to throw this information away. Don't build it.
4431       TypeLocBuilder TLB;
4432       TLB.reserve(TL.getFullDataSize());
4433       return TransformType(TLB, TL);
4434     }
4435   };
4436 
4437 } // namespace
4438 
4439 Sema::DeduceAutoResult
4440 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result,
4441                      Optional<unsigned> DependentDeductionDepth,
4442                      bool IgnoreConstraints) {
4443   return DeduceAutoType(Type->getTypeLoc(), Init, Result,
4444                         DependentDeductionDepth, IgnoreConstraints);
4445 }
4446 
4447 /// Attempt to produce an informative diagostic explaining why auto deduction
4448 /// failed.
4449 /// \return \c true if diagnosed, \c false if not.
4450 static bool diagnoseAutoDeductionFailure(Sema &S,
4451                                          Sema::TemplateDeductionResult TDK,
4452                                          TemplateDeductionInfo &Info,
4453                                          ArrayRef<SourceRange> Ranges) {
4454   switch (TDK) {
4455   case Sema::TDK_Inconsistent: {
4456     // Inconsistent deduction means we were deducing from an initializer list.
4457     auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction);
4458     D << Info.FirstArg << Info.SecondArg;
4459     for (auto R : Ranges)
4460       D << R;
4461     return true;
4462   }
4463 
4464   // FIXME: Are there other cases for which a custom diagnostic is more useful
4465   // than the basic "types don't match" diagnostic?
4466 
4467   default:
4468     return false;
4469   }
4470 }
4471 
4472 static Sema::DeduceAutoResult
4473 CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
4474                                    AutoTypeLoc TypeLoc, QualType Deduced) {
4475   ConstraintSatisfaction Satisfaction;
4476   ConceptDecl *Concept = Type.getTypeConstraintConcept();
4477   TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
4478                                         TypeLoc.getRAngleLoc());
4479   TemplateArgs.addArgument(
4480       TemplateArgumentLoc(TemplateArgument(Deduced),
4481                           S.Context.getTrivialTypeSourceInfo(
4482                               Deduced, TypeLoc.getNameLoc())));
4483   for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
4484     TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
4485 
4486   llvm::SmallVector<TemplateArgument, 4> Converted;
4487   if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs,
4488                                   /*PartialTemplateArgs=*/false, Converted))
4489     return Sema::DAR_FailedAlreadyDiagnosed;
4490   if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()},
4491                                     Converted, TypeLoc.getLocalSourceRange(),
4492                                     Satisfaction))
4493     return Sema::DAR_FailedAlreadyDiagnosed;
4494   if (!Satisfaction.IsSatisfied) {
4495     std::string Buf;
4496     llvm::raw_string_ostream OS(Buf);
4497     OS << "'" << Concept->getName();
4498     if (TypeLoc.hasExplicitTemplateArgs()) {
4499       OS << "<";
4500       for (const auto &Arg : Type.getTypeConstraintArguments())
4501         Arg.print(S.getPrintingPolicy(), OS);
4502       OS << ">";
4503     }
4504     OS << "'";
4505     OS.flush();
4506     S.Diag(TypeLoc.getConceptNameLoc(),
4507            diag::err_placeholder_constraints_not_satisfied)
4508          << Deduced << Buf << TypeLoc.getLocalSourceRange();
4509     S.DiagnoseUnsatisfiedConstraint(Satisfaction);
4510     return Sema::DAR_FailedAlreadyDiagnosed;
4511   }
4512   return Sema::DAR_Succeeded;
4513 }
4514 
4515 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
4516 ///
4517 /// Note that this is done even if the initializer is dependent. (This is
4518 /// necessary to support partial ordering of templates using 'auto'.)
4519 /// A dependent type will be produced when deducing from a dependent type.
4520 ///
4521 /// \param Type the type pattern using the auto type-specifier.
4522 /// \param Init the initializer for the variable whose type is to be deduced.
4523 /// \param Result if type deduction was successful, this will be set to the
4524 ///        deduced type.
4525 /// \param DependentDeductionDepth Set if we should permit deduction in
4526 ///        dependent cases. This is necessary for template partial ordering with
4527 ///        'auto' template parameters. The value specified is the template
4528 ///        parameter depth at which we should perform 'auto' deduction.
4529 /// \param IgnoreConstraints Set if we should not fail if the deduced type does
4530 ///                          not satisfy the type-constraint in the auto type.
4531 Sema::DeduceAutoResult
4532 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result,
4533                      Optional<unsigned> DependentDeductionDepth,
4534                      bool IgnoreConstraints) {
4535   if (Init->getType()->isNonOverloadPlaceholderType()) {
4536     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
4537     if (NonPlaceholder.isInvalid())
4538       return DAR_FailedAlreadyDiagnosed;
4539     Init = NonPlaceholder.get();
4540   }
4541 
4542   DependentAuto DependentResult = {
4543       /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
4544 
4545   if (!DependentDeductionDepth &&
4546       (Type.getType()->isDependentType() || Init->isTypeDependent() ||
4547        Init->containsUnexpandedParameterPack())) {
4548     Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4549     assert(!Result.isNull() && "substituting DependentTy can't fail");
4550     return DAR_Succeeded;
4551   }
4552 
4553   // Find the depth of template parameter to synthesize.
4554   unsigned Depth = DependentDeductionDepth.getValueOr(0);
4555 
4556   // If this is a 'decltype(auto)' specifier, do the decltype dance.
4557   // Since 'decltype(auto)' can only occur at the top of the type, we
4558   // don't need to go digging for it.
4559   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
4560     if (AT->isDecltypeAuto()) {
4561       if (isa<InitListExpr>(Init)) {
4562         Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
4563         return DAR_FailedAlreadyDiagnosed;
4564       }
4565 
4566       ExprResult ER = CheckPlaceholderExpr(Init);
4567       if (ER.isInvalid())
4568         return DAR_FailedAlreadyDiagnosed;
4569       Init = ER.get();
4570       QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false);
4571       if (Deduced.isNull())
4572         return DAR_FailedAlreadyDiagnosed;
4573       // FIXME: Support a non-canonical deduced type for 'auto'.
4574       Deduced = Context.getCanonicalType(Deduced);
4575       if (AT->isConstrained() && !IgnoreConstraints) {
4576         auto ConstraintsResult =
4577             CheckDeducedPlaceholderConstraints(*this, *AT,
4578                                                Type.getContainedAutoTypeLoc(),
4579                                                Deduced);
4580         if (ConstraintsResult != DAR_Succeeded)
4581           return ConstraintsResult;
4582       }
4583       Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type);
4584       if (Result.isNull())
4585         return DAR_FailedAlreadyDiagnosed;
4586       return DAR_Succeeded;
4587     } else if (!getLangOpts().CPlusPlus) {
4588       if (isa<InitListExpr>(Init)) {
4589         Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c);
4590         return DAR_FailedAlreadyDiagnosed;
4591       }
4592     }
4593   }
4594 
4595   SourceLocation Loc = Init->getExprLoc();
4596 
4597   LocalInstantiationScope InstScope(*this);
4598 
4599   // Build template<class TemplParam> void Func(FuncParam);
4600   TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
4601       Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false,
4602       false);
4603   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
4604   NamedDecl *TemplParamPtr = TemplParam;
4605   FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
4606       Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
4607 
4608   QualType FuncParam =
4609       SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false)
4610           .Apply(Type);
4611   assert(!FuncParam.isNull() &&
4612          "substituting template parameter for 'auto' failed");
4613 
4614   // Deduce type of TemplParam in Func(Init)
4615   SmallVector<DeducedTemplateArgument, 1> Deduced;
4616   Deduced.resize(1);
4617 
4618   TemplateDeductionInfo Info(Loc, Depth);
4619 
4620   // If deduction failed, don't diagnose if the initializer is dependent; it
4621   // might acquire a matching type in the instantiation.
4622   auto DeductionFailed = [&](TemplateDeductionResult TDK,
4623                              ArrayRef<SourceRange> Ranges) -> DeduceAutoResult {
4624     if (Init->isTypeDependent()) {
4625       Result =
4626           SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4627       assert(!Result.isNull() && "substituting DependentTy can't fail");
4628       return DAR_Succeeded;
4629     }
4630     if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges))
4631       return DAR_FailedAlreadyDiagnosed;
4632     return DAR_Failed;
4633   };
4634 
4635   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
4636 
4637   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
4638   if (InitList) {
4639     // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce
4640     // against that. Such deduction only succeeds if removing cv-qualifiers and
4641     // references results in std::initializer_list<T>.
4642     if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
4643       return DAR_Failed;
4644 
4645     // Resolving a core issue: a braced-init-list containing any designators is
4646     // a non-deduced context.
4647     for (Expr *E : InitList->inits())
4648       if (isa<DesignatedInitExpr>(E))
4649         return DAR_Failed;
4650 
4651     SourceRange DeducedFromInitRange;
4652     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
4653       Expr *Init = InitList->getInit(i);
4654 
4655       if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4656               *this, TemplateParamsSt.get(), 0, TemplArg, Init,
4657               Info, Deduced, OriginalCallArgs, /*Decomposed*/ true,
4658               /*ArgIdx*/ 0, /*TDF*/ 0))
4659         return DeductionFailed(TDK, {DeducedFromInitRange,
4660                                      Init->getSourceRange()});
4661 
4662       if (DeducedFromInitRange.isInvalid() &&
4663           Deduced[0].getKind() != TemplateArgument::Null)
4664         DeducedFromInitRange = Init->getSourceRange();
4665     }
4666   } else {
4667     if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
4668       Diag(Loc, diag::err_auto_bitfield);
4669       return DAR_FailedAlreadyDiagnosed;
4670     }
4671 
4672     if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4673             *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced,
4674             OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0))
4675       return DeductionFailed(TDK, {});
4676   }
4677 
4678   // Could be null if somehow 'auto' appears in a non-deduced context.
4679   if (Deduced[0].getKind() != TemplateArgument::Type)
4680     return DeductionFailed(TDK_Incomplete, {});
4681 
4682   QualType DeducedType = Deduced[0].getAsType();
4683 
4684   if (InitList) {
4685     DeducedType = BuildStdInitializerList(DeducedType, Loc);
4686     if (DeducedType.isNull())
4687       return DAR_FailedAlreadyDiagnosed;
4688   }
4689 
4690   if (const auto *AT = Type.getType()->getAs<AutoType>()) {
4691     if (AT->isConstrained() && !IgnoreConstraints) {
4692       auto ConstraintsResult =
4693           CheckDeducedPlaceholderConstraints(*this, *AT,
4694                                              Type.getContainedAutoTypeLoc(),
4695                                              DeducedType);
4696       if (ConstraintsResult != DAR_Succeeded)
4697         return ConstraintsResult;
4698     }
4699   }
4700 
4701   Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
4702   if (Result.isNull())
4703     return DAR_FailedAlreadyDiagnosed;
4704 
4705   // Check that the deduced argument type is compatible with the original
4706   // argument type per C++ [temp.deduct.call]p4.
4707   QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
4708   for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
4709     assert((bool)InitList == OriginalArg.DecomposedParam &&
4710            "decomposed non-init-list in auto deduction?");
4711     if (auto TDK =
4712             CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) {
4713       Result = QualType();
4714       return DeductionFailed(TDK, {});
4715     }
4716   }
4717 
4718   return DAR_Succeeded;
4719 }
4720 
4721 QualType Sema::SubstAutoType(QualType TypeWithAuto,
4722                              QualType TypeToReplaceAuto) {
4723   if (TypeToReplaceAuto->isDependentType())
4724     return SubstituteDeducedTypeTransform(
4725                *this, DependentAuto{
4726                           TypeToReplaceAuto->containsUnexpandedParameterPack()})
4727         .TransformType(TypeWithAuto);
4728   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4729       .TransformType(TypeWithAuto);
4730 }
4731 
4732 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4733                                               QualType TypeToReplaceAuto) {
4734   if (TypeToReplaceAuto->isDependentType())
4735     return SubstituteDeducedTypeTransform(
4736                *this,
4737                DependentAuto{
4738                    TypeToReplaceAuto->containsUnexpandedParameterPack()})
4739         .TransformType(TypeWithAuto);
4740   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4741       .TransformType(TypeWithAuto);
4742 }
4743 
4744 QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
4745                                QualType TypeToReplaceAuto) {
4746   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
4747                                         /*UseTypeSugar*/ false)
4748       .TransformType(TypeWithAuto);
4749 }
4750 
4751 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4752   if (isa<InitListExpr>(Init))
4753     Diag(VDecl->getLocation(),
4754          VDecl->isInitCapture()
4755              ? diag::err_init_capture_deduction_failure_from_init_list
4756              : diag::err_auto_var_deduction_failure_from_init_list)
4757       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4758   else
4759     Diag(VDecl->getLocation(),
4760          VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4761                                 : diag::err_auto_var_deduction_failure)
4762       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4763       << Init->getSourceRange();
4764 }
4765 
4766 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4767                             bool Diagnose) {
4768   assert(FD->getReturnType()->isUndeducedType());
4769 
4770   // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
4771   // within the return type from the call operator's type.
4772   if (isLambdaConversionOperator(FD)) {
4773     CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
4774     FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
4775 
4776     // For a generic lambda, instantiate the call operator if needed.
4777     if (auto *Args = FD->getTemplateSpecializationArgs()) {
4778       CallOp = InstantiateFunctionDeclaration(
4779           CallOp->getDescribedFunctionTemplate(), Args, Loc);
4780       if (!CallOp || CallOp->isInvalidDecl())
4781         return true;
4782 
4783       // We might need to deduce the return type by instantiating the definition
4784       // of the operator() function.
4785       if (CallOp->getReturnType()->isUndeducedType()) {
4786         runWithSufficientStackSpace(Loc, [&] {
4787           InstantiateFunctionDefinition(Loc, CallOp);
4788         });
4789       }
4790     }
4791 
4792     if (CallOp->isInvalidDecl())
4793       return true;
4794     assert(!CallOp->getReturnType()->isUndeducedType() &&
4795            "failed to deduce lambda return type");
4796 
4797     // Build the new return type from scratch.
4798     QualType RetType = getLambdaConversionFunctionResultType(
4799         CallOp->getType()->castAs<FunctionProtoType>());
4800     if (FD->getReturnType()->getAs<PointerType>())
4801       RetType = Context.getPointerType(RetType);
4802     else {
4803       assert(FD->getReturnType()->getAs<BlockPointerType>());
4804       RetType = Context.getBlockPointerType(RetType);
4805     }
4806     Context.adjustDeducedFunctionResultType(FD, RetType);
4807     return false;
4808   }
4809 
4810   if (FD->getTemplateInstantiationPattern()) {
4811     runWithSufficientStackSpace(Loc, [&] {
4812       InstantiateFunctionDefinition(Loc, FD);
4813     });
4814   }
4815 
4816   bool StillUndeduced = FD->getReturnType()->isUndeducedType();
4817   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
4818     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
4819     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
4820   }
4821 
4822   return StillUndeduced;
4823 }
4824 
4825 /// If this is a non-static member function,
4826 static void
4827 AddImplicitObjectParameterType(ASTContext &Context,
4828                                CXXMethodDecl *Method,
4829                                SmallVectorImpl<QualType> &ArgTypes) {
4830   // C++11 [temp.func.order]p3:
4831   //   [...] The new parameter is of type "reference to cv A," where cv are
4832   //   the cv-qualifiers of the function template (if any) and A is
4833   //   the class of which the function template is a member.
4834   //
4835   // The standard doesn't say explicitly, but we pick the appropriate kind of
4836   // reference type based on [over.match.funcs]p4.
4837   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
4838   ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers());
4839   if (Method->getRefQualifier() == RQ_RValue)
4840     ArgTy = Context.getRValueReferenceType(ArgTy);
4841   else
4842     ArgTy = Context.getLValueReferenceType(ArgTy);
4843   ArgTypes.push_back(ArgTy);
4844 }
4845 
4846 /// Determine whether the function template \p FT1 is at least as
4847 /// specialized as \p FT2.
4848 static bool isAtLeastAsSpecializedAs(Sema &S,
4849                                      SourceLocation Loc,
4850                                      FunctionTemplateDecl *FT1,
4851                                      FunctionTemplateDecl *FT2,
4852                                      TemplatePartialOrderingContext TPOC,
4853                                      unsigned NumCallArguments1) {
4854   FunctionDecl *FD1 = FT1->getTemplatedDecl();
4855   FunctionDecl *FD2 = FT2->getTemplatedDecl();
4856   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
4857   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
4858 
4859   assert(Proto1 && Proto2 && "Function templates must have prototypes");
4860   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
4861   SmallVector<DeducedTemplateArgument, 4> Deduced;
4862   Deduced.resize(TemplateParams->size());
4863 
4864   // C++0x [temp.deduct.partial]p3:
4865   //   The types used to determine the ordering depend on the context in which
4866   //   the partial ordering is done:
4867   TemplateDeductionInfo Info(Loc);
4868   SmallVector<QualType, 4> Args2;
4869   switch (TPOC) {
4870   case TPOC_Call: {
4871     //   - In the context of a function call, the function parameter types are
4872     //     used.
4873     CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
4874     CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
4875 
4876     // C++11 [temp.func.order]p3:
4877     //   [...] If only one of the function templates is a non-static
4878     //   member, that function template is considered to have a new
4879     //   first parameter inserted in its function parameter list. The
4880     //   new parameter is of type "reference to cv A," where cv are
4881     //   the cv-qualifiers of the function template (if any) and A is
4882     //   the class of which the function template is a member.
4883     //
4884     // Note that we interpret this to mean "if one of the function
4885     // templates is a non-static member and the other is a non-member";
4886     // otherwise, the ordering rules for static functions against non-static
4887     // functions don't make any sense.
4888     //
4889     // C++98/03 doesn't have this provision but we've extended DR532 to cover
4890     // it as wording was broken prior to it.
4891     SmallVector<QualType, 4> Args1;
4892 
4893     unsigned NumComparedArguments = NumCallArguments1;
4894 
4895     if (!Method2 && Method1 && !Method1->isStatic()) {
4896       // Compare 'this' from Method1 against first parameter from Method2.
4897       AddImplicitObjectParameterType(S.Context, Method1, Args1);
4898       ++NumComparedArguments;
4899     } else if (!Method1 && Method2 && !Method2->isStatic()) {
4900       // Compare 'this' from Method2 against first parameter from Method1.
4901       AddImplicitObjectParameterType(S.Context, Method2, Args2);
4902     }
4903 
4904     Args1.insert(Args1.end(), Proto1->param_type_begin(),
4905                  Proto1->param_type_end());
4906     Args2.insert(Args2.end(), Proto2->param_type_begin(),
4907                  Proto2->param_type_end());
4908 
4909     // C++ [temp.func.order]p5:
4910     //   The presence of unused ellipsis and default arguments has no effect on
4911     //   the partial ordering of function templates.
4912     if (Args1.size() > NumComparedArguments)
4913       Args1.resize(NumComparedArguments);
4914     if (Args2.size() > NumComparedArguments)
4915       Args2.resize(NumComparedArguments);
4916     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4917                                 Args1.data(), Args1.size(), Info, Deduced,
4918                                 TDF_None, /*PartialOrdering=*/true))
4919       return false;
4920 
4921     break;
4922   }
4923 
4924   case TPOC_Conversion:
4925     //   - In the context of a call to a conversion operator, the return types
4926     //     of the conversion function templates are used.
4927     if (DeduceTemplateArgumentsByTypeMatch(
4928             S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
4929             Info, Deduced, TDF_None,
4930             /*PartialOrdering=*/true))
4931       return false;
4932     break;
4933 
4934   case TPOC_Other:
4935     //   - In other contexts (14.6.6.2) the function template's function type
4936     //     is used.
4937     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4938                                            FD2->getType(), FD1->getType(),
4939                                            Info, Deduced, TDF_None,
4940                                            /*PartialOrdering=*/true))
4941       return false;
4942     break;
4943   }
4944 
4945   // C++0x [temp.deduct.partial]p11:
4946   //   In most cases, all template parameters must have values in order for
4947   //   deduction to succeed, but for partial ordering purposes a template
4948   //   parameter may remain without a value provided it is not used in the
4949   //   types being used for partial ordering. [ Note: a template parameter used
4950   //   in a non-deduced context is considered used. -end note]
4951   unsigned ArgIdx = 0, NumArgs = Deduced.size();
4952   for (; ArgIdx != NumArgs; ++ArgIdx)
4953     if (Deduced[ArgIdx].isNull())
4954       break;
4955 
4956   // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need
4957   // to substitute the deduced arguments back into the template and check that
4958   // we get the right type.
4959 
4960   if (ArgIdx == NumArgs) {
4961     // All template arguments were deduced. FT1 is at least as specialized
4962     // as FT2.
4963     return true;
4964   }
4965 
4966   // Figure out which template parameters were used.
4967   llvm::SmallBitVector UsedParameters(TemplateParams->size());
4968   switch (TPOC) {
4969   case TPOC_Call:
4970     for (unsigned I = 0, N = Args2.size(); I != N; ++I)
4971       ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
4972                                    TemplateParams->getDepth(),
4973                                    UsedParameters);
4974     break;
4975 
4976   case TPOC_Conversion:
4977     ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
4978                                  TemplateParams->getDepth(), UsedParameters);
4979     break;
4980 
4981   case TPOC_Other:
4982     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4983                                  TemplateParams->getDepth(),
4984                                  UsedParameters);
4985     break;
4986   }
4987 
4988   for (; ArgIdx != NumArgs; ++ArgIdx)
4989     // If this argument had no value deduced but was used in one of the types
4990     // used for partial ordering, then deduction fails.
4991     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
4992       return false;
4993 
4994   return true;
4995 }
4996 
4997 /// Determine whether this a function template whose parameter-type-list
4998 /// ends with a function parameter pack.
4999 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
5000   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
5001   unsigned NumParams = Function->getNumParams();
5002   if (NumParams == 0)
5003     return false;
5004 
5005   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
5006   if (!Last->isParameterPack())
5007     return false;
5008 
5009   // Make sure that no previous parameter is a parameter pack.
5010   while (--NumParams > 0) {
5011     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
5012       return false;
5013   }
5014 
5015   return true;
5016 }
5017 
5018 /// Returns the more specialized function template according
5019 /// to the rules of function template partial ordering (C++ [temp.func.order]).
5020 ///
5021 /// \param FT1 the first function template
5022 ///
5023 /// \param FT2 the second function template
5024 ///
5025 /// \param TPOC the context in which we are performing partial ordering of
5026 /// function templates.
5027 ///
5028 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
5029 /// only when \c TPOC is \c TPOC_Call.
5030 ///
5031 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
5032 /// only when \c TPOC is \c TPOC_Call.
5033 ///
5034 /// \returns the more specialized function template. If neither
5035 /// template is more specialized, returns NULL.
5036 FunctionTemplateDecl *
5037 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
5038                                  FunctionTemplateDecl *FT2,
5039                                  SourceLocation Loc,
5040                                  TemplatePartialOrderingContext TPOC,
5041                                  unsigned NumCallArguments1,
5042                                  unsigned NumCallArguments2) {
5043 
5044   auto JudgeByConstraints = [&] () -> FunctionTemplateDecl * {
5045     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5046     FT1->getAssociatedConstraints(AC1);
5047     FT2->getAssociatedConstraints(AC2);
5048     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5049     if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
5050       return nullptr;
5051     if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
5052       return nullptr;
5053     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5054       return nullptr;
5055     return AtLeastAsConstrained1 ? FT1 : FT2;
5056   };
5057 
5058   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
5059                                           NumCallArguments1);
5060   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
5061                                           NumCallArguments2);
5062 
5063   if (Better1 != Better2) // We have a clear winner
5064     return Better1 ? FT1 : FT2;
5065 
5066   if (!Better1 && !Better2) // Neither is better than the other
5067     return JudgeByConstraints();
5068 
5069   // FIXME: This mimics what GCC implements, but doesn't match up with the
5070   // proposed resolution for core issue 692. This area needs to be sorted out,
5071   // but for now we attempt to maintain compatibility.
5072   bool Variadic1 = isVariadicFunctionTemplate(FT1);
5073   bool Variadic2 = isVariadicFunctionTemplate(FT2);
5074   if (Variadic1 != Variadic2)
5075     return Variadic1? FT2 : FT1;
5076 
5077   return JudgeByConstraints();
5078 }
5079 
5080 /// Determine if the two templates are equivalent.
5081 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
5082   if (T1 == T2)
5083     return true;
5084 
5085   if (!T1 || !T2)
5086     return false;
5087 
5088   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
5089 }
5090 
5091 /// Retrieve the most specialized of the given function template
5092 /// specializations.
5093 ///
5094 /// \param SpecBegin the start iterator of the function template
5095 /// specializations that we will be comparing.
5096 ///
5097 /// \param SpecEnd the end iterator of the function template
5098 /// specializations, paired with \p SpecBegin.
5099 ///
5100 /// \param Loc the location where the ambiguity or no-specializations
5101 /// diagnostic should occur.
5102 ///
5103 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
5104 /// no matching candidates.
5105 ///
5106 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
5107 /// occurs.
5108 ///
5109 /// \param CandidateDiag partial diagnostic used for each function template
5110 /// specialization that is a candidate in the ambiguous ordering. One parameter
5111 /// in this diagnostic should be unbound, which will correspond to the string
5112 /// describing the template arguments for the function template specialization.
5113 ///
5114 /// \returns the most specialized function template specialization, if
5115 /// found. Otherwise, returns SpecEnd.
5116 UnresolvedSetIterator Sema::getMostSpecialized(
5117     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
5118     TemplateSpecCandidateSet &FailedCandidates,
5119     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
5120     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
5121     bool Complain, QualType TargetType) {
5122   if (SpecBegin == SpecEnd) {
5123     if (Complain) {
5124       Diag(Loc, NoneDiag);
5125       FailedCandidates.NoteCandidates(*this, Loc);
5126     }
5127     return SpecEnd;
5128   }
5129 
5130   if (SpecBegin + 1 == SpecEnd)
5131     return SpecBegin;
5132 
5133   // Find the function template that is better than all of the templates it
5134   // has been compared to.
5135   UnresolvedSetIterator Best = SpecBegin;
5136   FunctionTemplateDecl *BestTemplate
5137     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
5138   assert(BestTemplate && "Not a function template specialization?");
5139   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
5140     FunctionTemplateDecl *Challenger
5141       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5142     assert(Challenger && "Not a function template specialization?");
5143     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5144                                                   Loc, TPOC_Other, 0, 0),
5145                        Challenger)) {
5146       Best = I;
5147       BestTemplate = Challenger;
5148     }
5149   }
5150 
5151   // Make sure that the "best" function template is more specialized than all
5152   // of the others.
5153   bool Ambiguous = false;
5154   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5155     FunctionTemplateDecl *Challenger
5156       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5157     if (I != Best &&
5158         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5159                                                    Loc, TPOC_Other, 0, 0),
5160                         BestTemplate)) {
5161       Ambiguous = true;
5162       break;
5163     }
5164   }
5165 
5166   if (!Ambiguous) {
5167     // We found an answer. Return it.
5168     return Best;
5169   }
5170 
5171   // Diagnose the ambiguity.
5172   if (Complain) {
5173     Diag(Loc, AmbigDiag);
5174 
5175     // FIXME: Can we order the candidates in some sane way?
5176     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5177       PartialDiagnostic PD = CandidateDiag;
5178       const auto *FD = cast<FunctionDecl>(*I);
5179       PD << FD << getTemplateArgumentBindingsText(
5180                       FD->getPrimaryTemplate()->getTemplateParameters(),
5181                       *FD->getTemplateSpecializationArgs());
5182       if (!TargetType.isNull())
5183         HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
5184       Diag((*I)->getLocation(), PD);
5185     }
5186   }
5187 
5188   return SpecEnd;
5189 }
5190 
5191 /// Determine whether one partial specialization, P1, is at least as
5192 /// specialized than another, P2.
5193 ///
5194 /// \tparam TemplateLikeDecl The kind of P2, which must be a
5195 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
5196 /// \param T1 The injected-class-name of P1 (faked for a variable template).
5197 /// \param T2 The injected-class-name of P2 (faked for a variable template).
5198 template<typename TemplateLikeDecl>
5199 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
5200                                      TemplateLikeDecl *P2,
5201                                      TemplateDeductionInfo &Info) {
5202   // C++ [temp.class.order]p1:
5203   //   For two class template partial specializations, the first is at least as
5204   //   specialized as the second if, given the following rewrite to two
5205   //   function templates, the first function template is at least as
5206   //   specialized as the second according to the ordering rules for function
5207   //   templates (14.6.6.2):
5208   //     - the first function template has the same template parameters as the
5209   //       first partial specialization and has a single function parameter
5210   //       whose type is a class template specialization with the template
5211   //       arguments of the first partial specialization, and
5212   //     - the second function template has the same template parameters as the
5213   //       second partial specialization and has a single function parameter
5214   //       whose type is a class template specialization with the template
5215   //       arguments of the second partial specialization.
5216   //
5217   // Rather than synthesize function templates, we merely perform the
5218   // equivalent partial ordering by performing deduction directly on
5219   // the template arguments of the class template partial
5220   // specializations. This computation is slightly simpler than the
5221   // general problem of function template partial ordering, because
5222   // class template partial specializations are more constrained. We
5223   // know that every template parameter is deducible from the class
5224   // template partial specialization's template arguments, for
5225   // example.
5226   SmallVector<DeducedTemplateArgument, 4> Deduced;
5227 
5228   // Determine whether P1 is at least as specialized as P2.
5229   Deduced.resize(P2->getTemplateParameters()->size());
5230   if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(),
5231                                          T2, T1, Info, Deduced, TDF_None,
5232                                          /*PartialOrdering=*/true))
5233     return false;
5234 
5235   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
5236                                                Deduced.end());
5237   Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
5238                                    Info);
5239   auto *TST1 = T1->castAs<TemplateSpecializationType>();
5240   if (FinishTemplateArgumentDeduction(
5241           S, P2, /*IsPartialOrdering=*/true,
5242           TemplateArgumentList(TemplateArgumentList::OnStack,
5243                                TST1->template_arguments()),
5244           Deduced, Info))
5245     return false;
5246 
5247   return true;
5248 }
5249 
5250 /// Returns the more specialized class template partial specialization
5251 /// according to the rules of partial ordering of class template partial
5252 /// specializations (C++ [temp.class.order]).
5253 ///
5254 /// \param PS1 the first class template partial specialization
5255 ///
5256 /// \param PS2 the second class template partial specialization
5257 ///
5258 /// \returns the more specialized class template partial specialization. If
5259 /// neither partial specialization is more specialized, returns NULL.
5260 ClassTemplatePartialSpecializationDecl *
5261 Sema::getMoreSpecializedPartialSpecialization(
5262                                   ClassTemplatePartialSpecializationDecl *PS1,
5263                                   ClassTemplatePartialSpecializationDecl *PS2,
5264                                               SourceLocation Loc) {
5265   QualType PT1 = PS1->getInjectedSpecializationType();
5266   QualType PT2 = PS2->getInjectedSpecializationType();
5267 
5268   TemplateDeductionInfo Info(Loc);
5269   bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5270   bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5271 
5272   if (!Better1 && !Better2)
5273       return nullptr;
5274   if (Better1 && Better2) {
5275     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5276     PS1->getAssociatedConstraints(AC1);
5277     PS2->getAssociatedConstraints(AC2);
5278     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5279     if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
5280       return nullptr;
5281     if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
5282       return nullptr;
5283     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5284       return nullptr;
5285     return AtLeastAsConstrained1 ? PS1 : PS2;
5286   }
5287 
5288   return Better1 ? PS1 : PS2;
5289 }
5290 
5291 bool Sema::isMoreSpecializedThanPrimary(
5292     ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5293   ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
5294   QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
5295   QualType PartialT = Spec->getInjectedSpecializationType();
5296   if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5297     return false;
5298   if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
5299     return true;
5300   Info.clearSFINAEDiagnostic();
5301   llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
5302   Primary->getAssociatedConstraints(PrimaryAC);
5303   Spec->getAssociatedConstraints(SpecAC);
5304   bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
5305   if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
5306                              AtLeastAsConstrainedSpec))
5307     return false;
5308   if (!AtLeastAsConstrainedSpec)
5309     return false;
5310   if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
5311                              AtLeastAsConstrainedPrimary))
5312     return false;
5313   return !AtLeastAsConstrainedPrimary;
5314 }
5315 
5316 VarTemplatePartialSpecializationDecl *
5317 Sema::getMoreSpecializedPartialSpecialization(
5318     VarTemplatePartialSpecializationDecl *PS1,
5319     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
5320   // Pretend the variable template specializations are class template
5321   // specializations and form a fake injected class name type for comparison.
5322   assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
5323          "the partial specializations being compared should specialize"
5324          " the same template.");
5325   TemplateName Name(PS1->getSpecializedTemplate());
5326   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5327   QualType PT1 = Context.getTemplateSpecializationType(
5328       CanonTemplate, PS1->getTemplateArgs().asArray());
5329   QualType PT2 = Context.getTemplateSpecializationType(
5330       CanonTemplate, PS2->getTemplateArgs().asArray());
5331 
5332   TemplateDeductionInfo Info(Loc);
5333   bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5334   bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5335 
5336   if (!Better1 && !Better2)
5337     return nullptr;
5338   if (Better1 && Better2) {
5339     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5340     PS1->getAssociatedConstraints(AC1);
5341     PS2->getAssociatedConstraints(AC2);
5342     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5343     if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
5344       return nullptr;
5345     if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
5346       return nullptr;
5347     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5348       return nullptr;
5349     return AtLeastAsConstrained1 ? PS1 : PS2;
5350   }
5351 
5352   return Better1 ? PS1 : PS2;
5353 }
5354 
5355 bool Sema::isMoreSpecializedThanPrimary(
5356     VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5357   TemplateDecl *Primary = Spec->getSpecializedTemplate();
5358   // FIXME: Cache the injected template arguments rather than recomputing
5359   // them for each partial specialization.
5360   SmallVector<TemplateArgument, 8> PrimaryArgs;
5361   Context.getInjectedTemplateArgs(Primary->getTemplateParameters(),
5362                                   PrimaryArgs);
5363 
5364   TemplateName CanonTemplate =
5365       Context.getCanonicalTemplateName(TemplateName(Primary));
5366   QualType PrimaryT = Context.getTemplateSpecializationType(
5367       CanonTemplate, PrimaryArgs);
5368   QualType PartialT = Context.getTemplateSpecializationType(
5369       CanonTemplate, Spec->getTemplateArgs().asArray());
5370 
5371   if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5372     return false;
5373   if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
5374     return true;
5375   Info.clearSFINAEDiagnostic();
5376   llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
5377   Primary->getAssociatedConstraints(PrimaryAC);
5378   Spec->getAssociatedConstraints(SpecAC);
5379   bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
5380   if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
5381                              AtLeastAsConstrainedSpec))
5382     return false;
5383   if (!AtLeastAsConstrainedSpec)
5384     return false;
5385   if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
5386                              AtLeastAsConstrainedPrimary))
5387     return false;
5388   return !AtLeastAsConstrainedPrimary;
5389 }
5390 
5391 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
5392      TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) {
5393   // C++1z [temp.arg.template]p4: (DR 150)
5394   //   A template template-parameter P is at least as specialized as a
5395   //   template template-argument A if, given the following rewrite to two
5396   //   function templates...
5397 
5398   // Rather than synthesize function templates, we merely perform the
5399   // equivalent partial ordering by performing deduction directly on
5400   // the template parameter lists of the template template parameters.
5401   //
5402   //   Given an invented class template X with the template parameter list of
5403   //   A (including default arguments):
5404   TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg));
5405   TemplateParameterList *A = AArg->getTemplateParameters();
5406 
5407   //    - Each function template has a single function parameter whose type is
5408   //      a specialization of X with template arguments corresponding to the
5409   //      template parameters from the respective function template
5410   SmallVector<TemplateArgument, 8> AArgs;
5411   Context.getInjectedTemplateArgs(A, AArgs);
5412 
5413   // Check P's arguments against A's parameter list. This will fill in default
5414   // template arguments as needed. AArgs are already correct by construction.
5415   // We can't just use CheckTemplateIdType because that will expand alias
5416   // templates.
5417   SmallVector<TemplateArgument, 4> PArgs;
5418   {
5419     SFINAETrap Trap(*this);
5420 
5421     Context.getInjectedTemplateArgs(P, PArgs);
5422     TemplateArgumentListInfo PArgList(P->getLAngleLoc(),
5423                                       P->getRAngleLoc());
5424     for (unsigned I = 0, N = P->size(); I != N; ++I) {
5425       // Unwrap packs that getInjectedTemplateArgs wrapped around pack
5426       // expansions, to form an "as written" argument list.
5427       TemplateArgument Arg = PArgs[I];
5428       if (Arg.getKind() == TemplateArgument::Pack) {
5429         assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
5430         Arg = *Arg.pack_begin();
5431       }
5432       PArgList.addArgument(getTrivialTemplateArgumentLoc(
5433           Arg, QualType(), P->getParam(I)->getLocation()));
5434     }
5435     PArgs.clear();
5436 
5437     // C++1z [temp.arg.template]p3:
5438     //   If the rewrite produces an invalid type, then P is not at least as
5439     //   specialized as A.
5440     if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) ||
5441         Trap.hasErrorOccurred())
5442       return false;
5443   }
5444 
5445   QualType AType = Context.getTemplateSpecializationType(X, AArgs);
5446   QualType PType = Context.getTemplateSpecializationType(X, PArgs);
5447 
5448   //   ... the function template corresponding to P is at least as specialized
5449   //   as the function template corresponding to A according to the partial
5450   //   ordering rules for function templates.
5451   TemplateDeductionInfo Info(Loc, A->getDepth());
5452   return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info);
5453 }
5454 
5455 namespace {
5456 struct MarkUsedTemplateParameterVisitor :
5457     RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> {
5458   llvm::SmallBitVector &Used;
5459   unsigned Depth;
5460 
5461   MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
5462                                    unsigned Depth)
5463       : Used(Used), Depth(Depth) { }
5464 
5465   bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
5466     if (T->getDepth() == Depth)
5467       Used[T->getIndex()] = true;
5468     return true;
5469   }
5470 
5471   bool TraverseTemplateName(TemplateName Template) {
5472     if (auto *TTP =
5473             dyn_cast<TemplateTemplateParmDecl>(Template.getAsTemplateDecl()))
5474       if (TTP->getDepth() == Depth)
5475         Used[TTP->getIndex()] = true;
5476     RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>::
5477         TraverseTemplateName(Template);
5478     return true;
5479   }
5480 
5481   bool VisitDeclRefExpr(DeclRefExpr *E) {
5482     if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
5483       if (NTTP->getDepth() == Depth)
5484         Used[NTTP->getIndex()] = true;
5485     return true;
5486   }
5487 };
5488 }
5489 
5490 /// Mark the template parameters that are used by the given
5491 /// expression.
5492 static void
5493 MarkUsedTemplateParameters(ASTContext &Ctx,
5494                            const Expr *E,
5495                            bool OnlyDeduced,
5496                            unsigned Depth,
5497                            llvm::SmallBitVector &Used) {
5498   if (!OnlyDeduced) {
5499     MarkUsedTemplateParameterVisitor(Used, Depth)
5500         .TraverseStmt(const_cast<Expr *>(E));
5501     return;
5502   }
5503 
5504   // We can deduce from a pack expansion.
5505   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
5506     E = Expansion->getPattern();
5507 
5508   // Skip through any implicit casts we added while type-checking, and any
5509   // substitutions performed by template alias expansion.
5510   while (true) {
5511     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
5512       E = ICE->getSubExpr();
5513     else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
5514       E = CE->getSubExpr();
5515     else if (const SubstNonTypeTemplateParmExpr *Subst =
5516                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
5517       E = Subst->getReplacement();
5518     else
5519       break;
5520   }
5521 
5522   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
5523   if (!DRE)
5524     return;
5525 
5526   const NonTypeTemplateParmDecl *NTTP
5527     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
5528   if (!NTTP)
5529     return;
5530 
5531   if (NTTP->getDepth() == Depth)
5532     Used[NTTP->getIndex()] = true;
5533 
5534   // In C++17 mode, additional arguments may be deduced from the type of a
5535   // non-type argument.
5536   if (Ctx.getLangOpts().CPlusPlus17)
5537     MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
5538 }
5539 
5540 /// Mark the template parameters that are used by the given
5541 /// nested name specifier.
5542 static void
5543 MarkUsedTemplateParameters(ASTContext &Ctx,
5544                            NestedNameSpecifier *NNS,
5545                            bool OnlyDeduced,
5546                            unsigned Depth,
5547                            llvm::SmallBitVector &Used) {
5548   if (!NNS)
5549     return;
5550 
5551   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
5552                              Used);
5553   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
5554                              OnlyDeduced, Depth, Used);
5555 }
5556 
5557 /// Mark the template parameters that are used by the given
5558 /// template name.
5559 static void
5560 MarkUsedTemplateParameters(ASTContext &Ctx,
5561                            TemplateName Name,
5562                            bool OnlyDeduced,
5563                            unsigned Depth,
5564                            llvm::SmallBitVector &Used) {
5565   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
5566     if (TemplateTemplateParmDecl *TTP
5567           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
5568       if (TTP->getDepth() == Depth)
5569         Used[TTP->getIndex()] = true;
5570     }
5571     return;
5572   }
5573 
5574   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
5575     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
5576                                Depth, Used);
5577   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
5578     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
5579                                Depth, Used);
5580 }
5581 
5582 /// Mark the template parameters that are used by the given
5583 /// type.
5584 static void
5585 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
5586                            bool OnlyDeduced,
5587                            unsigned Depth,
5588                            llvm::SmallBitVector &Used) {
5589   if (T.isNull())
5590     return;
5591 
5592   // Non-dependent types have nothing deducible
5593   if (!T->isDependentType())
5594     return;
5595 
5596   T = Ctx.getCanonicalType(T);
5597   switch (T->getTypeClass()) {
5598   case Type::Pointer:
5599     MarkUsedTemplateParameters(Ctx,
5600                                cast<PointerType>(T)->getPointeeType(),
5601                                OnlyDeduced,
5602                                Depth,
5603                                Used);
5604     break;
5605 
5606   case Type::BlockPointer:
5607     MarkUsedTemplateParameters(Ctx,
5608                                cast<BlockPointerType>(T)->getPointeeType(),
5609                                OnlyDeduced,
5610                                Depth,
5611                                Used);
5612     break;
5613 
5614   case Type::LValueReference:
5615   case Type::RValueReference:
5616     MarkUsedTemplateParameters(Ctx,
5617                                cast<ReferenceType>(T)->getPointeeType(),
5618                                OnlyDeduced,
5619                                Depth,
5620                                Used);
5621     break;
5622 
5623   case Type::MemberPointer: {
5624     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
5625     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
5626                                Depth, Used);
5627     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
5628                                OnlyDeduced, Depth, Used);
5629     break;
5630   }
5631 
5632   case Type::DependentSizedArray:
5633     MarkUsedTemplateParameters(Ctx,
5634                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
5635                                OnlyDeduced, Depth, Used);
5636     // Fall through to check the element type
5637     LLVM_FALLTHROUGH;
5638 
5639   case Type::ConstantArray:
5640   case Type::IncompleteArray:
5641     MarkUsedTemplateParameters(Ctx,
5642                                cast<ArrayType>(T)->getElementType(),
5643                                OnlyDeduced, Depth, Used);
5644     break;
5645 
5646   case Type::Vector:
5647   case Type::ExtVector:
5648     MarkUsedTemplateParameters(Ctx,
5649                                cast<VectorType>(T)->getElementType(),
5650                                OnlyDeduced, Depth, Used);
5651     break;
5652 
5653   case Type::DependentVector: {
5654     const auto *VecType = cast<DependentVectorType>(T);
5655     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5656                                Depth, Used);
5657     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
5658                                Used);
5659     break;
5660   }
5661   case Type::DependentSizedExtVector: {
5662     const DependentSizedExtVectorType *VecType
5663       = cast<DependentSizedExtVectorType>(T);
5664     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5665                                Depth, Used);
5666     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
5667                                Depth, Used);
5668     break;
5669   }
5670 
5671   case Type::DependentAddressSpace: {
5672     const DependentAddressSpaceType *DependentASType =
5673         cast<DependentAddressSpaceType>(T);
5674     MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
5675                                OnlyDeduced, Depth, Used);
5676     MarkUsedTemplateParameters(Ctx,
5677                                DependentASType->getAddrSpaceExpr(),
5678                                OnlyDeduced, Depth, Used);
5679     break;
5680   }
5681 
5682   case Type::FunctionProto: {
5683     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
5684     MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
5685                                Used);
5686     for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
5687       // C++17 [temp.deduct.type]p5:
5688       //   The non-deduced contexts are: [...]
5689       //   -- A function parameter pack that does not occur at the end of the
5690       //      parameter-declaration-list.
5691       if (!OnlyDeduced || I + 1 == N ||
5692           !Proto->getParamType(I)->getAs<PackExpansionType>()) {
5693         MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
5694                                    Depth, Used);
5695       } else {
5696         // FIXME: C++17 [temp.deduct.call]p1:
5697         //   When a function parameter pack appears in a non-deduced context,
5698         //   the type of that pack is never deduced.
5699         //
5700         // We should also track a set of "never deduced" parameters, and
5701         // subtract that from the list of deduced parameters after marking.
5702       }
5703     }
5704     if (auto *E = Proto->getNoexceptExpr())
5705       MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
5706     break;
5707   }
5708 
5709   case Type::TemplateTypeParm: {
5710     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
5711     if (TTP->getDepth() == Depth)
5712       Used[TTP->getIndex()] = true;
5713     break;
5714   }
5715 
5716   case Type::SubstTemplateTypeParmPack: {
5717     const SubstTemplateTypeParmPackType *Subst
5718       = cast<SubstTemplateTypeParmPackType>(T);
5719     MarkUsedTemplateParameters(Ctx,
5720                                QualType(Subst->getReplacedParameter(), 0),
5721                                OnlyDeduced, Depth, Used);
5722     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
5723                                OnlyDeduced, Depth, Used);
5724     break;
5725   }
5726 
5727   case Type::InjectedClassName:
5728     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
5729     LLVM_FALLTHROUGH;
5730 
5731   case Type::TemplateSpecialization: {
5732     const TemplateSpecializationType *Spec
5733       = cast<TemplateSpecializationType>(T);
5734     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
5735                                Depth, Used);
5736 
5737     // C++0x [temp.deduct.type]p9:
5738     //   If the template argument list of P contains a pack expansion that is
5739     //   not the last template argument, the entire template argument list is a
5740     //   non-deduced context.
5741     if (OnlyDeduced &&
5742         hasPackExpansionBeforeEnd(Spec->template_arguments()))
5743       break;
5744 
5745     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5746       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5747                                  Used);
5748     break;
5749   }
5750 
5751   case Type::Complex:
5752     if (!OnlyDeduced)
5753       MarkUsedTemplateParameters(Ctx,
5754                                  cast<ComplexType>(T)->getElementType(),
5755                                  OnlyDeduced, Depth, Used);
5756     break;
5757 
5758   case Type::Atomic:
5759     if (!OnlyDeduced)
5760       MarkUsedTemplateParameters(Ctx,
5761                                  cast<AtomicType>(T)->getValueType(),
5762                                  OnlyDeduced, Depth, Used);
5763     break;
5764 
5765   case Type::DependentName:
5766     if (!OnlyDeduced)
5767       MarkUsedTemplateParameters(Ctx,
5768                                  cast<DependentNameType>(T)->getQualifier(),
5769                                  OnlyDeduced, Depth, Used);
5770     break;
5771 
5772   case Type::DependentTemplateSpecialization: {
5773     // C++14 [temp.deduct.type]p5:
5774     //   The non-deduced contexts are:
5775     //     -- The nested-name-specifier of a type that was specified using a
5776     //        qualified-id
5777     //
5778     // C++14 [temp.deduct.type]p6:
5779     //   When a type name is specified in a way that includes a non-deduced
5780     //   context, all of the types that comprise that type name are also
5781     //   non-deduced.
5782     if (OnlyDeduced)
5783       break;
5784 
5785     const DependentTemplateSpecializationType *Spec
5786       = cast<DependentTemplateSpecializationType>(T);
5787 
5788     MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
5789                                OnlyDeduced, Depth, Used);
5790 
5791     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5792       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5793                                  Used);
5794     break;
5795   }
5796 
5797   case Type::TypeOf:
5798     if (!OnlyDeduced)
5799       MarkUsedTemplateParameters(Ctx,
5800                                  cast<TypeOfType>(T)->getUnderlyingType(),
5801                                  OnlyDeduced, Depth, Used);
5802     break;
5803 
5804   case Type::TypeOfExpr:
5805     if (!OnlyDeduced)
5806       MarkUsedTemplateParameters(Ctx,
5807                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
5808                                  OnlyDeduced, Depth, Used);
5809     break;
5810 
5811   case Type::Decltype:
5812     if (!OnlyDeduced)
5813       MarkUsedTemplateParameters(Ctx,
5814                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
5815                                  OnlyDeduced, Depth, Used);
5816     break;
5817 
5818   case Type::UnaryTransform:
5819     if (!OnlyDeduced)
5820       MarkUsedTemplateParameters(Ctx,
5821                                  cast<UnaryTransformType>(T)->getUnderlyingType(),
5822                                  OnlyDeduced, Depth, Used);
5823     break;
5824 
5825   case Type::PackExpansion:
5826     MarkUsedTemplateParameters(Ctx,
5827                                cast<PackExpansionType>(T)->getPattern(),
5828                                OnlyDeduced, Depth, Used);
5829     break;
5830 
5831   case Type::Auto:
5832   case Type::DeducedTemplateSpecialization:
5833     MarkUsedTemplateParameters(Ctx,
5834                                cast<DeducedType>(T)->getDeducedType(),
5835                                OnlyDeduced, Depth, Used);
5836     break;
5837 
5838   // None of these types have any template parameters in them.
5839   case Type::Builtin:
5840   case Type::VariableArray:
5841   case Type::FunctionNoProto:
5842   case Type::Record:
5843   case Type::Enum:
5844   case Type::ObjCInterface:
5845   case Type::ObjCObject:
5846   case Type::ObjCObjectPointer:
5847   case Type::UnresolvedUsing:
5848   case Type::Pipe:
5849 #define TYPE(Class, Base)
5850 #define ABSTRACT_TYPE(Class, Base)
5851 #define DEPENDENT_TYPE(Class, Base)
5852 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5853 #include "clang/AST/TypeNodes.inc"
5854     break;
5855   }
5856 }
5857 
5858 /// Mark the template parameters that are used by this
5859 /// template argument.
5860 static void
5861 MarkUsedTemplateParameters(ASTContext &Ctx,
5862                            const TemplateArgument &TemplateArg,
5863                            bool OnlyDeduced,
5864                            unsigned Depth,
5865                            llvm::SmallBitVector &Used) {
5866   switch (TemplateArg.getKind()) {
5867   case TemplateArgument::Null:
5868   case TemplateArgument::Integral:
5869   case TemplateArgument::Declaration:
5870     break;
5871 
5872   case TemplateArgument::NullPtr:
5873     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
5874                                Depth, Used);
5875     break;
5876 
5877   case TemplateArgument::Type:
5878     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
5879                                Depth, Used);
5880     break;
5881 
5882   case TemplateArgument::Template:
5883   case TemplateArgument::TemplateExpansion:
5884     MarkUsedTemplateParameters(Ctx,
5885                                TemplateArg.getAsTemplateOrTemplatePattern(),
5886                                OnlyDeduced, Depth, Used);
5887     break;
5888 
5889   case TemplateArgument::Expression:
5890     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
5891                                Depth, Used);
5892     break;
5893 
5894   case TemplateArgument::Pack:
5895     for (const auto &P : TemplateArg.pack_elements())
5896       MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
5897     break;
5898   }
5899 }
5900 
5901 /// Mark which template parameters are used in a given expression.
5902 ///
5903 /// \param E the expression from which template parameters will be deduced.
5904 ///
5905 /// \param Used a bit vector whose elements will be set to \c true
5906 /// to indicate when the corresponding template parameter will be
5907 /// deduced.
5908 void
5909 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
5910                                  unsigned Depth,
5911                                  llvm::SmallBitVector &Used) {
5912   ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
5913 }
5914 
5915 /// Mark which template parameters can be deduced from a given
5916 /// template argument list.
5917 ///
5918 /// \param TemplateArgs the template argument list from which template
5919 /// parameters will be deduced.
5920 ///
5921 /// \param Used a bit vector whose elements will be set to \c true
5922 /// to indicate when the corresponding template parameter will be
5923 /// deduced.
5924 void
5925 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
5926                                  bool OnlyDeduced, unsigned Depth,
5927                                  llvm::SmallBitVector &Used) {
5928   // C++0x [temp.deduct.type]p9:
5929   //   If the template argument list of P contains a pack expansion that is not
5930   //   the last template argument, the entire template argument list is a
5931   //   non-deduced context.
5932   if (OnlyDeduced &&
5933       hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
5934     return;
5935 
5936   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5937     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
5938                                  Depth, Used);
5939 }
5940 
5941 /// Marks all of the template parameters that will be deduced by a
5942 /// call to the given function template.
5943 void Sema::MarkDeducedTemplateParameters(
5944     ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
5945     llvm::SmallBitVector &Deduced) {
5946   TemplateParameterList *TemplateParams
5947     = FunctionTemplate->getTemplateParameters();
5948   Deduced.clear();
5949   Deduced.resize(TemplateParams->size());
5950 
5951   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
5952   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
5953     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
5954                                  true, TemplateParams->getDepth(), Deduced);
5955 }
5956 
5957 bool hasDeducibleTemplateParameters(Sema &S,
5958                                     FunctionTemplateDecl *FunctionTemplate,
5959                                     QualType T) {
5960   if (!T->isDependentType())
5961     return false;
5962 
5963   TemplateParameterList *TemplateParams
5964     = FunctionTemplate->getTemplateParameters();
5965   llvm::SmallBitVector Deduced(TemplateParams->size());
5966   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
5967                                Deduced);
5968 
5969   return Deduced.any();
5970 }
5971