1 //===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains two checkers. One helps the static analyzer core to track
10 // types, the other does type inference on Obj-C generics and report type
11 // errors.
12 //
13 // Dynamic Type Propagation:
14 // This checker defines the rules for dynamic type gathering and propagation.
15 //
16 // Generics Checker for Objective-C:
17 // This checker tries to find type errors that the compiler is not able to catch
18 // due to the implicit conversions that were introduced for backward
19 // compatibility.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "clang/AST/ParentMap.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28 #include "clang/StaticAnalyzer/Core/Checker.h"
29 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
34 
35 using namespace clang;
36 using namespace ento;
37 
38 // ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
39 // an auxiliary map that tracks more information about generic types, because in
40 // some cases the most derived type is not the most informative one about the
41 // type parameters. This types that are stored for each symbol in this map must
42 // be specialized.
43 // TODO: In some case the type stored in this map is exactly the same that is
44 // stored in DynamicTypeMap. We should no store duplicated information in those
45 // cases.
46 REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
47                                const ObjCObjectPointerType *)
48 
49 namespace {
50 class DynamicTypePropagation:
51     public Checker< check::PreCall,
52                     check::PostCall,
53                     check::DeadSymbols,
54                     check::PostStmt<CastExpr>,
55                     check::PostStmt<CXXNewExpr>,
56                     check::PreObjCMessage,
57                     check::PostObjCMessage > {
58 
59   /// Return a better dynamic type if one can be derived from the cast.
60   const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
61                                                  CheckerContext &C) const;
62 
63   ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
64                                               ProgramStateRef &State,
65                                               CheckerContext &C) const;
66 
67   mutable std::unique_ptr<BugType> ObjCGenericsBugType;
68   void initBugType() const {
69     if (!ObjCGenericsBugType)
70       ObjCGenericsBugType.reset(new BugType(
71           GenericCheckName, "Generics", categories::CoreFoundationObjectiveC));
72   }
73 
74   class GenericsBugVisitor : public BugReporterVisitor {
75   public:
76     GenericsBugVisitor(SymbolRef S) : Sym(S) {}
77 
78     void Profile(llvm::FoldingSetNodeID &ID) const override {
79       static int X = 0;
80       ID.AddPointer(&X);
81       ID.AddPointer(Sym);
82     }
83 
84     PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
85                                      BugReporterContext &BRC,
86                                      PathSensitiveBugReport &BR) override;
87 
88   private:
89     // The tracked symbol.
90     SymbolRef Sym;
91   };
92 
93   void reportGenericsBug(const ObjCObjectPointerType *From,
94                          const ObjCObjectPointerType *To, ExplodedNode *N,
95                          SymbolRef Sym, CheckerContext &C,
96                          const Stmt *ReportedNode = nullptr) const;
97 
98 public:
99   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
100   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
101   void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
102   void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
103   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
104   void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
105   void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
106 
107   /// This value is set to true, when the Generics checker is turned on.
108   bool CheckGenerics = false;
109   CheckerNameRef GenericCheckName;
110 };
111 
112 bool isObjCClassType(QualType Type) {
113   if (const auto *PointerType = dyn_cast<ObjCObjectPointerType>(Type)) {
114     return PointerType->getObjectType()->isObjCClass();
115   }
116   return false;
117 }
118 
119 struct RuntimeType {
120   const ObjCObjectType *Type = nullptr;
121   bool Precise = false;
122 
123   operator bool() const { return Type != nullptr; }
124 };
125 
126 RuntimeType inferReceiverType(const ObjCMethodCall &Message,
127                               CheckerContext &C) {
128   const ObjCMessageExpr *MessageExpr = Message.getOriginExpr();
129 
130   // Check if we can statically infer the actual type precisely.
131   //
132   // 1. Class is written directly in the message:
133   // \code
134   //   [ActualClass classMethod];
135   // \endcode
136   if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
137     return {MessageExpr->getClassReceiver()->getAs<ObjCObjectType>(),
138             /*Precise=*/true};
139   }
140 
141   // 2. Receiver is 'super' from a class method (a.k.a 'super' is a
142   //    class object).
143   // \code
144   //   [super classMethod];
145   // \endcode
146   if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperClass) {
147     return {MessageExpr->getSuperType()->getAs<ObjCObjectType>(),
148             /*Precise=*/true};
149   }
150 
151   // 3. Receiver is 'super' from an instance method (a.k.a 'super' is an
152   //    instance of a super class).
153   // \code
154   //   [super instanceMethod];
155   // \encode
156   if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
157     if (const auto *ObjTy =
158             MessageExpr->getSuperType()->getAs<ObjCObjectPointerType>())
159       return {ObjTy->getObjectType(), /*Precise=*/true};
160   }
161 
162   const Expr *RecE = MessageExpr->getInstanceReceiver();
163 
164   if (!RecE)
165     return {};
166 
167   // Otherwise, let's try to get type information from our estimations of
168   // runtime types.
169   QualType InferredType;
170   SVal ReceiverSVal = C.getSVal(RecE);
171   ProgramStateRef State = C.getState();
172 
173   if (const MemRegion *ReceiverRegion = ReceiverSVal.getAsRegion()) {
174     if (DynamicTypeInfo DTI = getDynamicTypeInfo(State, ReceiverRegion)) {
175       InferredType = DTI.getType().getCanonicalType();
176     }
177   }
178 
179   if (SymbolRef ReceiverSymbol = ReceiverSVal.getAsSymbol()) {
180     if (InferredType.isNull()) {
181       InferredType = ReceiverSymbol->getType();
182     }
183 
184     // If receiver is a Class object, we want to figure out the type it
185     // represents.
186     if (isObjCClassType(InferredType)) {
187       // We actually might have some info on what type is contained in there.
188       if (DynamicTypeInfo DTI =
189               getClassObjectDynamicTypeInfo(State, ReceiverSymbol)) {
190 
191         // Types in Class objects can be ONLY Objective-C types
192         return {cast<ObjCObjectType>(DTI.getType()), !DTI.canBeASubClass()};
193       }
194 
195       SVal SelfSVal = State->getSelfSVal(C.getLocationContext());
196 
197       // Another way we can guess what is in Class object, is when it is a
198       // 'self' variable of the current class method.
199       if (ReceiverSVal == SelfSVal) {
200         // In this case, we should return the type of the enclosing class
201         // declaration.
202         if (const ObjCMethodDecl *MD =
203                 dyn_cast<ObjCMethodDecl>(C.getStackFrame()->getDecl()))
204           if (const ObjCObjectType *ObjTy = dyn_cast<ObjCObjectType>(
205                   MD->getClassInterface()->getTypeForDecl()))
206             return {ObjTy};
207       }
208     }
209   }
210 
211   // Unfortunately, it seems like we have no idea what that type is.
212   if (InferredType.isNull()) {
213     return {};
214   }
215 
216   // We can end up here if we got some dynamic type info and the
217   // receiver is not one of the known Class objects.
218   if (const auto *ReceiverInferredType =
219           dyn_cast<ObjCObjectPointerType>(InferredType)) {
220     return {ReceiverInferredType->getObjectType()};
221   }
222 
223   // Any other type (like 'Class') is not really useful at this point.
224   return {};
225 }
226 } // end anonymous namespace
227 
228 void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
229                                               CheckerContext &C) const {
230   ProgramStateRef State = removeDeadTypes(C.getState(), SR);
231   State = removeDeadClassObjectTypes(State, SR);
232 
233   MostSpecializedTypeArgsMapTy TyArgMap =
234       State->get<MostSpecializedTypeArgsMap>();
235   for (MostSpecializedTypeArgsMapTy::iterator I = TyArgMap.begin(),
236                                               E = TyArgMap.end();
237        I != E; ++I) {
238     if (SR.isDead(I->first)) {
239       State = State->remove<MostSpecializedTypeArgsMap>(I->first);
240     }
241   }
242 
243   C.addTransition(State);
244 }
245 
246 static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
247                             CheckerContext &C) {
248   assert(Region);
249   assert(MD);
250 
251   ASTContext &Ctx = C.getASTContext();
252   QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
253 
254   ProgramStateRef State = C.getState();
255   State = setDynamicTypeInfo(State, Region, Ty, /*CanBeSubClassed=*/false);
256   C.addTransition(State);
257 }
258 
259 void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
260                                           CheckerContext &C) const {
261   if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
262     // C++11 [class.cdtor]p4: When a virtual function is called directly or
263     //   indirectly from a constructor or from a destructor, including during
264     //   the construction or destruction of the class's non-static data members,
265     //   and the object to which the call applies is the object under
266     //   construction or destruction, the function called is the final overrider
267     //   in the constructor's or destructor's class and not one overriding it in
268     //   a more-derived class.
269 
270     switch (Ctor->getOriginExpr()->getConstructionKind()) {
271     case CXXConstructExpr::CK_Complete:
272     case CXXConstructExpr::CK_Delegating:
273       // No additional type info necessary.
274       return;
275     case CXXConstructExpr::CK_NonVirtualBase:
276     case CXXConstructExpr::CK_VirtualBase:
277       if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
278         recordFixedType(Target, Ctor->getDecl(), C);
279       return;
280     }
281 
282     return;
283   }
284 
285   if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
286     // C++11 [class.cdtor]p4 (see above)
287     if (!Dtor->isBaseDestructor())
288       return;
289 
290     const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
291     if (!Target)
292       return;
293 
294     const Decl *D = Dtor->getDecl();
295     if (!D)
296       return;
297 
298     recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
299     return;
300   }
301 }
302 
303 void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
304                                            CheckerContext &C) const {
305   // We can obtain perfect type info for return values from some calls.
306   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
307 
308     // Get the returned value if it's a region.
309     const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
310     if (!RetReg)
311       return;
312 
313     ProgramStateRef State = C.getState();
314     const ObjCMethodDecl *D = Msg->getDecl();
315 
316     if (D && D->hasRelatedResultType()) {
317       switch (Msg->getMethodFamily()) {
318       default:
319         break;
320 
321       // We assume that the type of the object returned by alloc and new are the
322       // pointer to the object of the class specified in the receiver of the
323       // message.
324       case OMF_alloc:
325       case OMF_new: {
326         // Get the type of object that will get created.
327         RuntimeType ObjTy = inferReceiverType(*Msg, C);
328 
329         if (!ObjTy)
330           return;
331 
332         QualType DynResTy =
333             C.getASTContext().getObjCObjectPointerType(QualType(ObjTy.Type, 0));
334         // We used to assume that whatever type we got from inferring the
335         // type is actually precise (and it is not exactly correct).
336         // A big portion of the existing behavior depends on that assumption
337         // (e.g. certain inlining won't take place). For this reason, we don't
338         // use ObjTy.Precise flag here.
339         //
340         // TODO: We should mitigate this problem some time in the future
341         // and replace hardcoded 'false' with '!ObjTy.Precise'.
342         C.addTransition(setDynamicTypeInfo(State, RetReg, DynResTy, false));
343         break;
344       }
345       case OMF_init: {
346         // Assume, the result of the init method has the same dynamic type as
347         // the receiver and propagate the dynamic type info.
348         const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
349         if (!RecReg)
350           return;
351         DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, RecReg);
352         C.addTransition(setDynamicTypeInfo(State, RetReg, RecDynType));
353         break;
354       }
355       }
356     }
357     return;
358   }
359 
360   if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
361     // We may need to undo the effects of our pre-call check.
362     switch (Ctor->getOriginExpr()->getConstructionKind()) {
363     case CXXConstructExpr::CK_Complete:
364     case CXXConstructExpr::CK_Delegating:
365       // No additional work necessary.
366       // Note: This will leave behind the actual type of the object for
367       // complete constructors, but arguably that's a good thing, since it
368       // means the dynamic type info will be correct even for objects
369       // constructed with operator new.
370       return;
371     case CXXConstructExpr::CK_NonVirtualBase:
372     case CXXConstructExpr::CK_VirtualBase:
373       if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
374         // We just finished a base constructor. Now we can use the subclass's
375         // type when resolving virtual calls.
376         const LocationContext *LCtx = C.getLocationContext();
377 
378         // FIXME: In C++17 classes with non-virtual bases may be treated as
379         // aggregates, and in such case no top-frame constructor will be called.
380         // Figure out if we need to do anything in this case.
381         // FIXME: Instead of relying on the ParentMap, we should have the
382         // trigger-statement (InitListExpr in this case) available in this
383         // callback, ideally as part of CallEvent.
384         if (isa_and_nonnull<InitListExpr>(
385                 LCtx->getParentMap().getParent(Ctor->getOriginExpr())))
386           return;
387 
388         recordFixedType(Target, cast<CXXConstructorDecl>(LCtx->getDecl()), C);
389       }
390       return;
391     }
392   }
393 }
394 
395 /// TODO: Handle explicit casts.
396 ///       Handle C++ casts.
397 ///
398 /// Precondition: the cast is between ObjCObjectPointers.
399 ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
400     const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
401   // We only track type info for regions.
402   const MemRegion *ToR = C.getSVal(CE).getAsRegion();
403   if (!ToR)
404     return C.getPredecessor();
405 
406   if (isa<ExplicitCastExpr>(CE))
407     return C.getPredecessor();
408 
409   if (const Type *NewTy = getBetterObjCType(CE, C)) {
410     State = setDynamicTypeInfo(State, ToR, QualType(NewTy, 0));
411     return C.addTransition(State);
412   }
413   return C.getPredecessor();
414 }
415 
416 void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
417                                            CheckerContext &C) const {
418   if (NewE->isArray())
419     return;
420 
421   // We only track dynamic type info for regions.
422   const MemRegion *MR = C.getSVal(NewE).getAsRegion();
423   if (!MR)
424     return;
425 
426   C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
427                                      /*CanBeSubClassed=*/false));
428 }
429 
430 // Return a better dynamic type if one can be derived from the cast.
431 // Compare the current dynamic type of the region and the new type to which we
432 // are casting. If the new type is lower in the inheritance hierarchy, pick it.
433 const ObjCObjectPointerType *
434 DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
435                                           CheckerContext &C) const {
436   const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
437   assert(ToR);
438 
439   // Get the old and new types.
440   const ObjCObjectPointerType *NewTy =
441       CastE->getType()->getAs<ObjCObjectPointerType>();
442   if (!NewTy)
443     return nullptr;
444   QualType OldDTy = getDynamicTypeInfo(C.getState(), ToR).getType();
445   if (OldDTy.isNull()) {
446     return NewTy;
447   }
448   const ObjCObjectPointerType *OldTy =
449     OldDTy->getAs<ObjCObjectPointerType>();
450   if (!OldTy)
451     return nullptr;
452 
453   // Id the old type is 'id', the new one is more precise.
454   if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
455     return NewTy;
456 
457   // Return new if it's a subclass of old.
458   const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
459   const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
460   if (ToI && FromI && FromI->isSuperClassOf(ToI))
461     return NewTy;
462 
463   return nullptr;
464 }
465 
466 static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
467     const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
468     const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
469   // Checking if from and to are the same classes modulo specialization.
470   if (From->getInterfaceDecl()->getCanonicalDecl() ==
471       To->getInterfaceDecl()->getCanonicalDecl()) {
472     if (To->isSpecialized()) {
473       assert(MostInformativeCandidate->isSpecialized());
474       return MostInformativeCandidate;
475     }
476     return From;
477   }
478 
479   if (To->getObjectType()->getSuperClassType().isNull()) {
480     // If To has no super class and From and To aren't the same then
481     // To was not actually a descendent of From. In this case the best we can
482     // do is 'From'.
483     return From;
484   }
485 
486   const auto *SuperOfTo =
487       To->getObjectType()->getSuperClassType()->castAs<ObjCObjectType>();
488   assert(SuperOfTo);
489   QualType SuperPtrOfToQual =
490       C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
491   const auto *SuperPtrOfTo = SuperPtrOfToQual->castAs<ObjCObjectPointerType>();
492   if (To->isUnspecialized())
493     return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
494                                               C);
495   else
496     return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
497                                               MostInformativeCandidate, C);
498 }
499 
500 /// A downcast may loose specialization information. E. g.:
501 ///   MutableMap<T, U> : Map
502 /// The downcast to MutableMap looses the information about the types of the
503 /// Map (due to the type parameters are not being forwarded to Map), and in
504 /// general there is no way to recover that information from the
505 /// declaration. In order to have to most information, lets find the most
506 /// derived type that has all the type parameters forwarded.
507 ///
508 /// Get the a subclass of \p From (which has a lower bound \p To) that do not
509 /// loose information about type parameters. \p To has to be a subclass of
510 /// \p From. From has to be specialized.
511 static const ObjCObjectPointerType *
512 getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
513                                const ObjCObjectPointerType *To, ASTContext &C) {
514   return getMostInformativeDerivedClassImpl(From, To, To, C);
515 }
516 
517 /// Inputs:
518 ///   \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
519 ///   bound might be the subclass of this type.
520 ///   \param StaticUpperBound A static upper bound for a symbol.
521 ///   \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
522 ///   \param Current The type that was inferred for a symbol in a previous
523 ///   context. Might be null when this is the first time that inference happens.
524 /// Precondition:
525 ///   \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
526 ///   is not null, it is specialized.
527 /// Possible cases:
528 ///   (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
529 ///   (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
530 ///   (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
531 ///   (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
532 /// Effect:
533 ///   Use getMostInformativeDerivedClass with the upper and lower bound of the
534 ///   set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
535 ///   lower bound must be specialized. If the result differs from \p Current or
536 ///   \p Current is null, store the result.
537 static bool
538 storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
539                          const ObjCObjectPointerType *const *Current,
540                          const ObjCObjectPointerType *StaticLowerBound,
541                          const ObjCObjectPointerType *StaticUpperBound,
542                          ASTContext &C) {
543   // TODO: The above 4 cases are not exhaustive. In particular, it is possible
544   // for Current to be incomparable with StaticLowerBound, StaticUpperBound,
545   // or both.
546   //
547   // For example, suppose Foo<T> and Bar<T> are unrelated types.
548   //
549   //  Foo<T> *f = ...
550   //  Bar<T> *b = ...
551   //
552   //  id t1 = b;
553   //  f = t1;
554   //  id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
555   //
556   // We should either constrain the callers of this function so that the stated
557   // preconditions hold (and assert it) or rewrite the function to expicitly
558   // handle the additional cases.
559 
560   // Precondition
561   assert(StaticUpperBound->isSpecialized() ||
562          StaticLowerBound->isSpecialized());
563   assert(!Current || (*Current)->isSpecialized());
564 
565   // Case (1)
566   if (!Current) {
567     if (StaticUpperBound->isUnspecialized()) {
568       State = State->set<MostSpecializedTypeArgsMap>(Sym, StaticLowerBound);
569       return true;
570     }
571     // Upper bound is specialized.
572     const ObjCObjectPointerType *WithMostInfo =
573         getMostInformativeDerivedClass(StaticUpperBound, StaticLowerBound, C);
574     State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
575     return true;
576   }
577 
578   // Case (3)
579   if (C.canAssignObjCInterfaces(StaticLowerBound, *Current)) {
580     return false;
581   }
582 
583   // Case (4)
584   if (C.canAssignObjCInterfaces(*Current, StaticUpperBound)) {
585     // The type arguments might not be forwarded at any point of inheritance.
586     const ObjCObjectPointerType *WithMostInfo =
587         getMostInformativeDerivedClass(*Current, StaticUpperBound, C);
588     WithMostInfo =
589         getMostInformativeDerivedClass(WithMostInfo, StaticLowerBound, C);
590     if (WithMostInfo == *Current)
591       return false;
592     State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
593     return true;
594   }
595 
596   // Case (2)
597   const ObjCObjectPointerType *WithMostInfo =
598       getMostInformativeDerivedClass(*Current, StaticLowerBound, C);
599   if (WithMostInfo != *Current) {
600     State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
601     return true;
602   }
603 
604   return false;
605 }
606 
607 /// Type inference based on static type information that is available for the
608 /// cast and the tracked type information for the given symbol. When the tracked
609 /// symbol and the destination type of the cast are unrelated, report an error.
610 void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
611                                            CheckerContext &C) const {
612   if (CE->getCastKind() != CK_BitCast)
613     return;
614 
615   QualType OriginType = CE->getSubExpr()->getType();
616   QualType DestType = CE->getType();
617 
618   const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
619   const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
620 
621   if (!OrigObjectPtrType || !DestObjectPtrType)
622     return;
623 
624   ProgramStateRef State = C.getState();
625   ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);
626 
627   ASTContext &ASTCtxt = C.getASTContext();
628 
629   // This checker detects the subtyping relationships using the assignment
630   // rules. In order to be able to do this the kindofness must be stripped
631   // first. The checker treats every type as kindof type anyways: when the
632   // tracked type is the subtype of the static type it tries to look up the
633   // methods in the tracked type first.
634   OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
635   DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
636 
637   if (OrigObjectPtrType->isUnspecialized() &&
638       DestObjectPtrType->isUnspecialized())
639     return;
640 
641   SymbolRef Sym = C.getSVal(CE).getAsSymbol();
642   if (!Sym)
643     return;
644 
645   const ObjCObjectPointerType *const *TrackedType =
646       State->get<MostSpecializedTypeArgsMap>(Sym);
647 
648   if (isa<ExplicitCastExpr>(CE)) {
649     // Treat explicit casts as an indication from the programmer that the
650     // Objective-C type system is not rich enough to express the needed
651     // invariant. In such cases, forget any existing information inferred
652     // about the type arguments. We don't assume the casted-to specialized
653     // type here because the invariant the programmer specifies in the cast
654     // may only hold at this particular program point and not later ones.
655     // We don't want a suppressing cast to require a cascade of casts down the
656     // line.
657     if (TrackedType) {
658       State = State->remove<MostSpecializedTypeArgsMap>(Sym);
659       C.addTransition(State, AfterTypeProp);
660     }
661     return;
662   }
663 
664   // Check which assignments are legal.
665   bool OrigToDest =
666       ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
667   bool DestToOrig =
668       ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
669 
670   // The tracked type should be the sub or super class of the static destination
671   // type. When an (implicit) upcast or a downcast happens according to static
672   // types, and there is no subtyping relationship between the tracked and the
673   // static destination types, it indicates an error.
674   if (TrackedType &&
675       !ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
676       !ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
677     static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
678     ExplodedNode *N = C.addTransition(State, AfterTypeProp, &IllegalConv);
679     reportGenericsBug(*TrackedType, DestObjectPtrType, N, Sym, C);
680     return;
681   }
682 
683   // Handle downcasts and upcasts.
684 
685   const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
686   const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
687   if (OrigToDest && !DestToOrig)
688     std::swap(LowerBound, UpperBound);
689 
690   // The id type is not a real bound. Eliminate it.
691   LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
692   UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;
693 
694   if (storeWhenMoreInformative(State, Sym, TrackedType, LowerBound, UpperBound,
695                                ASTCtxt)) {
696     C.addTransition(State, AfterTypeProp);
697   }
698 }
699 
700 static const Expr *stripCastsAndSugar(const Expr *E) {
701   E = E->IgnoreParenImpCasts();
702   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
703     E = POE->getSyntacticForm()->IgnoreParenImpCasts();
704   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
705     E = OVE->getSourceExpr()->IgnoreParenImpCasts();
706   return E;
707 }
708 
709 static bool isObjCTypeParamDependent(QualType Type) {
710   // It is illegal to typedef parameterized types inside an interface. Therefore
711   // an Objective-C type can only be dependent on a type parameter when the type
712   // parameter structurally present in the type itself.
713   class IsObjCTypeParamDependentTypeVisitor
714       : public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
715   public:
716     IsObjCTypeParamDependentTypeVisitor() : Result(false) {}
717     bool VisitObjCTypeParamType(const ObjCTypeParamType *Type) {
718       if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
719         Result = true;
720         return false;
721       }
722       return true;
723     }
724 
725     bool Result;
726   };
727 
728   IsObjCTypeParamDependentTypeVisitor Visitor;
729   Visitor.TraverseType(Type);
730   return Visitor.Result;
731 }
732 
733 /// A method might not be available in the interface indicated by the static
734 /// type. However it might be available in the tracked type. In order to
735 /// properly substitute the type parameters we need the declaration context of
736 /// the method. The more specialized the enclosing class of the method is, the
737 /// more likely that the parameter substitution will be successful.
738 static const ObjCMethodDecl *
739 findMethodDecl(const ObjCMessageExpr *MessageExpr,
740                const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
741   const ObjCMethodDecl *Method = nullptr;
742 
743   QualType ReceiverType = MessageExpr->getReceiverType();
744   const auto *ReceiverObjectPtrType =
745       ReceiverType->getAs<ObjCObjectPointerType>();
746 
747   // Do this "devirtualization" on instance and class methods only. Trust the
748   // static type on super and super class calls.
749   if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
750       MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
751     // When the receiver type is id, Class, or some super class of the tracked
752     // type, look up the method in the tracked type, not in the receiver type.
753     // This way we preserve more information.
754     if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
755         ASTCtxt.canAssignObjCInterfaces(ReceiverObjectPtrType, TrackedType)) {
756       const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
757       // The method might not be found.
758       Selector Sel = MessageExpr->getSelector();
759       Method = InterfaceDecl->lookupInstanceMethod(Sel);
760       if (!Method)
761         Method = InterfaceDecl->lookupClassMethod(Sel);
762     }
763   }
764 
765   // Fallback to statick method lookup when the one based on the tracked type
766   // failed.
767   return Method ? Method : MessageExpr->getMethodDecl();
768 }
769 
770 /// Get the returned ObjCObjectPointerType by a method based on the tracked type
771 /// information, or null pointer when the returned type is not an
772 /// ObjCObjectPointerType.
773 static QualType getReturnTypeForMethod(
774     const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
775     const ObjCObjectPointerType *SelfType, ASTContext &C) {
776   QualType StaticResultType = Method->getReturnType();
777 
778   // Is the return type declared as instance type?
779   if (StaticResultType == C.getObjCInstanceType())
780     return QualType(SelfType, 0);
781 
782   // Check whether the result type depends on a type parameter.
783   if (!isObjCTypeParamDependent(StaticResultType))
784     return QualType();
785 
786   QualType ResultType = StaticResultType.substObjCTypeArgs(
787       C, TypeArgs, ObjCSubstitutionContext::Result);
788 
789   return ResultType;
790 }
791 
792 /// When the receiver has a tracked type, use that type to validate the
793 /// argumments of the message expression and the return value.
794 void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
795                                                  CheckerContext &C) const {
796   ProgramStateRef State = C.getState();
797   SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
798   if (!Sym)
799     return;
800 
801   const ObjCObjectPointerType *const *TrackedType =
802       State->get<MostSpecializedTypeArgsMap>(Sym);
803   if (!TrackedType)
804     return;
805 
806   // Get the type arguments from tracked type and substitute type arguments
807   // before do the semantic check.
808 
809   ASTContext &ASTCtxt = C.getASTContext();
810   const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
811   const ObjCMethodDecl *Method =
812       findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
813 
814   // It is possible to call non-existent methods in Obj-C.
815   if (!Method)
816     return;
817 
818   // If the method is declared on a class that has a non-invariant
819   // type parameter, don't warn about parameter mismatches after performing
820   // substitution. This prevents warning when the programmer has purposely
821   // casted the receiver to a super type or unspecialized type but the analyzer
822   // has a more precise tracked type than the programmer intends at the call
823   // site.
824   //
825   // For example, consider NSArray (which has a covariant type parameter)
826   // and NSMutableArray (a subclass of NSArray where the type parameter is
827   // invariant):
828   // NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
829   //
830   // [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
831   // NSArray<NSObject *> *other = [a arrayByAddingObject:number]  // Safe
832   //
833   // [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
834   //
835 
836   const ObjCInterfaceDecl *Interface = Method->getClassInterface();
837   if (!Interface)
838     return;
839 
840   ObjCTypeParamList *TypeParams = Interface->getTypeParamList();
841   if (!TypeParams)
842     return;
843 
844   for (ObjCTypeParamDecl *TypeParam : *TypeParams) {
845     if (TypeParam->getVariance() != ObjCTypeParamVariance::Invariant)
846       return;
847   }
848 
849   Optional<ArrayRef<QualType>> TypeArgs =
850       (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
851   // This case might happen when there is an unspecialized override of a
852   // specialized method.
853   if (!TypeArgs)
854     return;
855 
856   for (unsigned i = 0; i < Method->param_size(); i++) {
857     const Expr *Arg = MessageExpr->getArg(i);
858     const ParmVarDecl *Param = Method->parameters()[i];
859 
860     QualType OrigParamType = Param->getType();
861     if (!isObjCTypeParamDependent(OrigParamType))
862       continue;
863 
864     QualType ParamType = OrigParamType.substObjCTypeArgs(
865         ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
866     // Check if it can be assigned
867     const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
868     const auto *ArgObjectPtrType =
869         stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
870     if (!ParamObjectPtrType || !ArgObjectPtrType)
871       continue;
872 
873     // Check if we have more concrete tracked type that is not a super type of
874     // the static argument type.
875     SVal ArgSVal = M.getArgSVal(i);
876     SymbolRef ArgSym = ArgSVal.getAsSymbol();
877     if (ArgSym) {
878       const ObjCObjectPointerType *const *TrackedArgType =
879           State->get<MostSpecializedTypeArgsMap>(ArgSym);
880       if (TrackedArgType &&
881           ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
882         ArgObjectPtrType = *TrackedArgType;
883       }
884     }
885 
886     // Warn when argument is incompatible with the parameter.
887     if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
888                                          ArgObjectPtrType)) {
889       static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
890       ExplodedNode *N = C.addTransition(State, &Tag);
891       reportGenericsBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
892       return;
893     }
894   }
895 }
896 
897 /// This callback is used to infer the types for Class variables. This info is
898 /// used later to validate messages that sent to classes. Class variables are
899 /// initialized with by invoking the 'class' method on a class.
900 /// This method is also used to infer the type information for the return
901 /// types.
902 // TODO: right now it only tracks generic types. Extend this to track every
903 // type in the DynamicTypeMap and diagnose type errors!
904 void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
905                                                   CheckerContext &C) const {
906   const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
907 
908   SymbolRef RetSym = M.getReturnValue().getAsSymbol();
909   if (!RetSym)
910     return;
911 
912   Selector Sel = MessageExpr->getSelector();
913   ProgramStateRef State = C.getState();
914 
915   // Here we try to propagate information on Class objects.
916   if (Sel.getAsString() == "class") {
917     // We try to figure out the type from the receiver of the 'class' message.
918     if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
919 
920       ReceiverRuntimeType.Type->getSuperClassType();
921       QualType ReceiverClassType(ReceiverRuntimeType.Type, 0);
922 
923       // We want to consider only precise information on generics.
924       if (ReceiverRuntimeType.Type->isSpecialized() &&
925           ReceiverRuntimeType.Precise) {
926         QualType ReceiverClassPointerType =
927             C.getASTContext().getObjCObjectPointerType(ReceiverClassType);
928         const auto *InferredType =
929             ReceiverClassPointerType->castAs<ObjCObjectPointerType>();
930         State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
931       }
932 
933       // Constrain the resulting class object to the inferred type.
934       State = setClassObjectDynamicTypeInfo(State, RetSym, ReceiverClassType,
935                                             !ReceiverRuntimeType.Precise);
936 
937       C.addTransition(State);
938       return;
939     }
940   }
941 
942   if (Sel.getAsString() == "superclass") {
943     // We try to figure out the type from the receiver of the 'superclass'
944     // message.
945     if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
946 
947       // Result type would be a super class of the receiver's type.
948       QualType ReceiversSuperClass =
949           ReceiverRuntimeType.Type->getSuperClassType();
950 
951       // Check if it really had super class.
952       //
953       // TODO: we can probably pay closer attention to cases when the class
954       // object can be 'nil' as the result of such message.
955       if (!ReceiversSuperClass.isNull()) {
956         // Constrain the resulting class object to the inferred type.
957         State = setClassObjectDynamicTypeInfo(
958             State, RetSym, ReceiversSuperClass, !ReceiverRuntimeType.Precise);
959 
960         C.addTransition(State);
961       }
962       return;
963     }
964   }
965 
966   // Tracking for return types.
967   SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
968   if (!RecSym)
969     return;
970 
971   const ObjCObjectPointerType *const *TrackedType =
972       State->get<MostSpecializedTypeArgsMap>(RecSym);
973   if (!TrackedType)
974     return;
975 
976   ASTContext &ASTCtxt = C.getASTContext();
977   const ObjCMethodDecl *Method =
978       findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
979   if (!Method)
980     return;
981 
982   Optional<ArrayRef<QualType>> TypeArgs =
983       (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
984   if (!TypeArgs)
985     return;
986 
987   QualType ResultType =
988       getReturnTypeForMethod(Method, *TypeArgs, *TrackedType, ASTCtxt);
989   // The static type is the same as the deduced type.
990   if (ResultType.isNull())
991     return;
992 
993   const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
994   ExplodedNode *Pred = C.getPredecessor();
995   // When there is an entry available for the return symbol in DynamicTypeMap,
996   // the call was inlined, and the information in the DynamicTypeMap is should
997   // be precise.
998   if (RetRegion && !getRawDynamicTypeInfo(State, RetRegion)) {
999     // TODO: we have duplicated information in DynamicTypeMap and
1000     // MostSpecializedTypeArgsMap. We should only store anything in the later if
1001     // the stored data differs from the one stored in the former.
1002     State = setDynamicTypeInfo(State, RetRegion, ResultType,
1003                                /*CanBeSubClassed=*/true);
1004     Pred = C.addTransition(State);
1005   }
1006 
1007   const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
1008 
1009   if (!ResultPtrType || ResultPtrType->isUnspecialized())
1010     return;
1011 
1012   // When the result is a specialized type and it is not tracked yet, track it
1013   // for the result symbol.
1014   if (!State->get<MostSpecializedTypeArgsMap>(RetSym)) {
1015     State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
1016     C.addTransition(State, Pred);
1017   }
1018 }
1019 
1020 void DynamicTypePropagation::reportGenericsBug(
1021     const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
1022     ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
1023     const Stmt *ReportedNode) const {
1024   if (!CheckGenerics)
1025     return;
1026 
1027   initBugType();
1028   SmallString<192> Buf;
1029   llvm::raw_svector_ostream OS(Buf);
1030   OS << "Conversion from value of type '";
1031   QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
1032   OS << "' to incompatible type '";
1033   QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
1034   OS << "'";
1035   auto R = std::make_unique<PathSensitiveBugReport>(*ObjCGenericsBugType,
1036                                                     OS.str(), N);
1037   R->markInteresting(Sym);
1038   R->addVisitor(std::make_unique<GenericsBugVisitor>(Sym));
1039   if (ReportedNode)
1040     R->addRange(ReportedNode->getSourceRange());
1041   C.emitReport(std::move(R));
1042 }
1043 
1044 PathDiagnosticPieceRef DynamicTypePropagation::GenericsBugVisitor::VisitNode(
1045     const ExplodedNode *N, BugReporterContext &BRC,
1046     PathSensitiveBugReport &BR) {
1047   ProgramStateRef state = N->getState();
1048   ProgramStateRef statePrev = N->getFirstPred()->getState();
1049 
1050   const ObjCObjectPointerType *const *TrackedType =
1051       state->get<MostSpecializedTypeArgsMap>(Sym);
1052   const ObjCObjectPointerType *const *TrackedTypePrev =
1053       statePrev->get<MostSpecializedTypeArgsMap>(Sym);
1054   if (!TrackedType)
1055     return nullptr;
1056 
1057   if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
1058     return nullptr;
1059 
1060   // Retrieve the associated statement.
1061   const Stmt *S = N->getStmtForDiagnostics();
1062   if (!S)
1063     return nullptr;
1064 
1065   const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
1066 
1067   SmallString<256> Buf;
1068   llvm::raw_svector_ostream OS(Buf);
1069   OS << "Type '";
1070   QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
1071   OS << "' is inferred from ";
1072 
1073   if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
1074     OS << "explicit cast (from '";
1075     QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
1076                     Qualifiers(), OS, LangOpts, llvm::Twine());
1077     OS << "' to '";
1078     QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
1079                     LangOpts, llvm::Twine());
1080     OS << "')";
1081   } else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
1082     OS << "implicit cast (from '";
1083     QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
1084                     Qualifiers(), OS, LangOpts, llvm::Twine());
1085     OS << "' to '";
1086     QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
1087                     LangOpts, llvm::Twine());
1088     OS << "')";
1089   } else {
1090     OS << "this context";
1091   }
1092 
1093   // Generate the extra diagnostic.
1094   PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
1095                              N->getLocationContext());
1096   return std::make_shared<PathDiagnosticEventPiece>(Pos, OS.str(), true);
1097 }
1098 
1099 /// Register checkers.
1100 void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
1101   DynamicTypePropagation *checker = mgr.getChecker<DynamicTypePropagation>();
1102   checker->CheckGenerics = true;
1103   checker->GenericCheckName = mgr.getCurrentCheckerName();
1104 }
1105 
1106 bool ento::shouldRegisterObjCGenericsChecker(const CheckerManager &mgr) {
1107   return true;
1108 }
1109 
1110 void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
1111   mgr.registerChecker<DynamicTypePropagation>();
1112 }
1113 
1114 bool ento::shouldRegisterDynamicTypePropagation(const CheckerManager &mgr) {
1115   return true;
1116 }
1117