1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a variety of memory management related checkers, such as
10 // leak, double free, and use-after-free.
11 //
12 // The following checkers are defined here:
13 //
14 //   * MallocChecker
15 //       Despite its name, it models all sorts of memory allocations and
16 //       de- or reallocation, including but not limited to malloc, free,
17 //       relloc, new, delete. It also reports on a variety of memory misuse
18 //       errors.
19 //       Many other checkers interact very closely with this checker, in fact,
20 //       most are merely options to this one. Other checkers may register
21 //       MallocChecker, but do not enable MallocChecker's reports (more details
22 //       to follow around its field, ChecksEnabled).
23 //       It also has a boolean "Optimistic" checker option, which if set to true
24 //       will cause the checker to model user defined memory management related
25 //       functions annotated via the attribute ownership_takes, ownership_holds
26 //       and ownership_returns.
27 //
28 //   * NewDeleteChecker
29 //       Enables the modeling of new, new[], delete, delete[] in MallocChecker,
30 //       and checks for related double-free and use-after-free errors.
31 //
32 //   * NewDeleteLeaksChecker
33 //       Checks for leaks related to new, new[], delete, delete[].
34 //       Depends on NewDeleteChecker.
35 //
36 //   * MismatchedDeallocatorChecker
37 //       Enables checking whether memory is deallocated with the correspending
38 //       allocation function in MallocChecker, such as malloc() allocated
39 //       regions are only freed by free(), new by delete, new[] by delete[].
40 //
41 //  InnerPointerChecker interacts very closely with MallocChecker, but unlike
42 //  the above checkers, it has it's own file, hence the many InnerPointerChecker
43 //  related headers and non-static functions.
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "AllocationState.h"
48 #include "InterCheckerAPI.h"
49 #include "clang/AST/Attr.h"
50 #include "clang/AST/DeclCXX.h"
51 #include "clang/AST/DeclTemplate.h"
52 #include "clang/AST/Expr.h"
53 #include "clang/AST/ExprCXX.h"
54 #include "clang/AST/ParentMap.h"
55 #include "clang/ASTMatchers/ASTMatchFinder.h"
56 #include "clang/ASTMatchers/ASTMatchers.h"
57 #include "clang/Analysis/ProgramPoint.h"
58 #include "clang/Basic/LLVM.h"
59 #include "clang/Basic/SourceManager.h"
60 #include "clang/Basic/TargetInfo.h"
61 #include "clang/Lex/Lexer.h"
62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
65 #include "clang/StaticAnalyzer/Core/Checker.h"
66 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
79 #include "llvm/ADT/STLExtras.h"
80 #include "llvm/ADT/SetOperations.h"
81 #include "llvm/ADT/SmallString.h"
82 #include "llvm/ADT/StringExtras.h"
83 #include "llvm/Support/Casting.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include <climits>
88 #include <functional>
89 #include <optional>
90 #include <utility>
91 
92 using namespace clang;
93 using namespace ento;
94 using namespace std::placeholders;
95 
96 //===----------------------------------------------------------------------===//
97 // The types of allocation we're modeling. This is used to check whether a
98 // dynamically allocated object is deallocated with the correct function, like
99 // not using operator delete on an object created by malloc(), or alloca regions
100 // aren't ever deallocated manually.
101 //===----------------------------------------------------------------------===//
102 
103 namespace {
104 
105 // Used to check correspondence between allocators and deallocators.
106 enum AllocationFamily {
107   AF_None,
108   AF_Malloc,
109   AF_CXXNew,
110   AF_CXXNewArray,
111   AF_IfNameIndex,
112   AF_Alloca,
113   AF_InnerBuffer
114 };
115 
116 } // end of anonymous namespace
117 
118 /// Print names of allocators and deallocators.
119 ///
120 /// \returns true on success.
121 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E);
122 
123 /// Print expected name of an allocator based on the deallocator's family
124 /// derived from the DeallocExpr.
125 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family);
126 
127 /// Print expected name of a deallocator based on the allocator's
128 /// family.
129 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family);
130 
131 //===----------------------------------------------------------------------===//
132 // The state of a symbol, in terms of memory management.
133 //===----------------------------------------------------------------------===//
134 
135 namespace {
136 
137 class RefState {
138   enum Kind {
139     // Reference to allocated memory.
140     Allocated,
141     // Reference to zero-allocated memory.
142     AllocatedOfSizeZero,
143     // Reference to released/freed memory.
144     Released,
145     // The responsibility for freeing resources has transferred from
146     // this reference. A relinquished symbol should not be freed.
147     Relinquished,
148     // We are no longer guaranteed to have observed all manipulations
149     // of this pointer/memory. For example, it could have been
150     // passed as a parameter to an opaque function.
151     Escaped
152   };
153 
154   const Stmt *S;
155 
156   Kind K;
157   AllocationFamily Family;
158 
159   RefState(Kind k, const Stmt *s, AllocationFamily family)
160       : S(s), K(k), Family(family) {
161     assert(family != AF_None);
162   }
163 
164 public:
165   bool isAllocated() const { return K == Allocated; }
166   bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
167   bool isReleased() const { return K == Released; }
168   bool isRelinquished() const { return K == Relinquished; }
169   bool isEscaped() const { return K == Escaped; }
170   AllocationFamily getAllocationFamily() const { return Family; }
171   const Stmt *getStmt() const { return S; }
172 
173   bool operator==(const RefState &X) const {
174     return K == X.K && S == X.S && Family == X.Family;
175   }
176 
177   static RefState getAllocated(AllocationFamily family, const Stmt *s) {
178     return RefState(Allocated, s, family);
179   }
180   static RefState getAllocatedOfSizeZero(const RefState *RS) {
181     return RefState(AllocatedOfSizeZero, RS->getStmt(),
182                     RS->getAllocationFamily());
183   }
184   static RefState getReleased(AllocationFamily family, const Stmt *s) {
185     return RefState(Released, s, family);
186   }
187   static RefState getRelinquished(AllocationFamily family, const Stmt *s) {
188     return RefState(Relinquished, s, family);
189   }
190   static RefState getEscaped(const RefState *RS) {
191     return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
192   }
193 
194   void Profile(llvm::FoldingSetNodeID &ID) const {
195     ID.AddInteger(K);
196     ID.AddPointer(S);
197     ID.AddInteger(Family);
198   }
199 
200   LLVM_DUMP_METHOD void dump(raw_ostream &OS) const {
201     switch (K) {
202 #define CASE(ID) case ID: OS << #ID; break;
203     CASE(Allocated)
204     CASE(AllocatedOfSizeZero)
205     CASE(Released)
206     CASE(Relinquished)
207     CASE(Escaped)
208     }
209   }
210 
211   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
212 };
213 
214 } // end of anonymous namespace
215 
216 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
217 
218 /// Check if the memory associated with this symbol was released.
219 static bool isReleased(SymbolRef Sym, CheckerContext &C);
220 
221 /// Update the RefState to reflect the new memory allocation.
222 /// The optional \p RetVal parameter specifies the newly allocated pointer
223 /// value; if unspecified, the value of expression \p E is used.
224 static ProgramStateRef
225 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
226                      AllocationFamily Family,
227                      std::optional<SVal> RetVal = std::nullopt);
228 
229 //===----------------------------------------------------------------------===//
230 // The modeling of memory reallocation.
231 //
232 // The terminology 'toPtr' and 'fromPtr' will be used:
233 //   toPtr = realloc(fromPtr, 20);
234 //===----------------------------------------------------------------------===//
235 
236 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
237 
238 namespace {
239 
240 /// The state of 'fromPtr' after reallocation is known to have failed.
241 enum OwnershipAfterReallocKind {
242   // The symbol needs to be freed (e.g.: realloc)
243   OAR_ToBeFreedAfterFailure,
244   // The symbol has been freed (e.g.: reallocf)
245   OAR_FreeOnFailure,
246   // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where
247   // 'fromPtr' was allocated:
248   //    void Haha(int *ptr) {
249   //      ptr = realloc(ptr, 67);
250   //      // ...
251   //    }
252   // ).
253   OAR_DoNotTrackAfterFailure
254 };
255 
256 /// Stores information about the 'fromPtr' symbol after reallocation.
257 ///
258 /// This is important because realloc may fail, and that needs special modeling.
259 /// Whether reallocation failed or not will not be known until later, so we'll
260 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed
261 /// later, etc.
262 struct ReallocPair {
263 
264   // The 'fromPtr'.
265   SymbolRef ReallocatedSym;
266   OwnershipAfterReallocKind Kind;
267 
268   ReallocPair(SymbolRef S, OwnershipAfterReallocKind K)
269       : ReallocatedSym(S), Kind(K) {}
270   void Profile(llvm::FoldingSetNodeID &ID) const {
271     ID.AddInteger(Kind);
272     ID.AddPointer(ReallocatedSym);
273   }
274   bool operator==(const ReallocPair &X) const {
275     return ReallocatedSym == X.ReallocatedSym &&
276            Kind == X.Kind;
277   }
278 };
279 
280 } // end of anonymous namespace
281 
282 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
283 
284 /// Tells if the callee is one of the builtin new/delete operators, including
285 /// placement operators and other standard overloads.
286 static bool isStandardNewDelete(const FunctionDecl *FD);
287 static bool isStandardNewDelete(const CallEvent &Call) {
288   if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl()))
289     return false;
290   return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl()));
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Definition of the MallocChecker class.
295 //===----------------------------------------------------------------------===//
296 
297 namespace {
298 
299 class MallocChecker
300     : public Checker<check::DeadSymbols, check::PointerEscape,
301                      check::ConstPointerEscape, check::PreStmt<ReturnStmt>,
302                      check::EndFunction, check::PreCall, check::PostCall,
303                      check::NewAllocator, check::PostStmt<BlockExpr>,
304                      check::PostObjCMessage, check::Location, eval::Assume> {
305 public:
306   /// In pessimistic mode, the checker assumes that it does not know which
307   /// functions might free the memory.
308   /// In optimistic mode, the checker assumes that all user-defined functions
309   /// which might free a pointer are annotated.
310   bool ShouldIncludeOwnershipAnnotatedFunctions = false;
311 
312   bool ShouldRegisterNoOwnershipChangeVisitor = false;
313 
314   /// Many checkers are essentially built into this one, so enabling them will
315   /// make MallocChecker perform additional modeling and reporting.
316   enum CheckKind {
317     /// When a subchecker is enabled but MallocChecker isn't, model memory
318     /// management but do not emit warnings emitted with MallocChecker only
319     /// enabled.
320     CK_MallocChecker,
321     CK_NewDeleteChecker,
322     CK_NewDeleteLeaksChecker,
323     CK_MismatchedDeallocatorChecker,
324     CK_InnerPointerChecker,
325     CK_NumCheckKinds
326   };
327 
328   using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>;
329 
330   bool ChecksEnabled[CK_NumCheckKinds] = {false};
331   CheckerNameRef CheckNames[CK_NumCheckKinds];
332 
333   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
334   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
335   void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const;
336   void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
337   void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
338   void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
339   void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
340   void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const;
341   ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
342                             bool Assumption) const;
343   void checkLocation(SVal l, bool isLoad, const Stmt *S,
344                      CheckerContext &C) const;
345 
346   ProgramStateRef checkPointerEscape(ProgramStateRef State,
347                                     const InvalidatedSymbols &Escaped,
348                                     const CallEvent *Call,
349                                     PointerEscapeKind Kind) const;
350   ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
351                                           const InvalidatedSymbols &Escaped,
352                                           const CallEvent *Call,
353                                           PointerEscapeKind Kind) const;
354 
355   void printState(raw_ostream &Out, ProgramStateRef State,
356                   const char *NL, const char *Sep) const override;
357 
358 private:
359   mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
360   mutable std::unique_ptr<BugType> BT_DoubleDelete;
361   mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
362   mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
363   mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
364   mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
365   mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
366   mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
367   mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
368 
369 #define CHECK_FN(NAME)                                                         \
370   void NAME(const CallEvent &Call, CheckerContext &C) const;
371 
372   CHECK_FN(checkFree)
373   CHECK_FN(checkIfNameIndex)
374   CHECK_FN(checkBasicAlloc)
375   CHECK_FN(checkKernelMalloc)
376   CHECK_FN(checkCalloc)
377   CHECK_FN(checkAlloca)
378   CHECK_FN(checkStrdup)
379   CHECK_FN(checkIfFreeNameIndex)
380   CHECK_FN(checkCXXNewOrCXXDelete)
381   CHECK_FN(checkGMalloc0)
382   CHECK_FN(checkGMemdup)
383   CHECK_FN(checkGMallocN)
384   CHECK_FN(checkGMallocN0)
385   CHECK_FN(checkReallocN)
386   CHECK_FN(checkOwnershipAttr)
387 
388   void checkRealloc(const CallEvent &Call, CheckerContext &C,
389                     bool ShouldFreeOnFail) const;
390 
391   using CheckFn = std::function<void(const MallocChecker *,
392                                      const CallEvent &Call, CheckerContext &C)>;
393 
394   const CallDescriptionMap<CheckFn> FreeingMemFnMap{
395       {{{"free"}, 1}, &MallocChecker::checkFree},
396       {{{"if_freenameindex"}, 1}, &MallocChecker::checkIfFreeNameIndex},
397       {{{"kfree"}, 1}, &MallocChecker::checkFree},
398       {{{"g_free"}, 1}, &MallocChecker::checkFree},
399   };
400 
401   bool isFreeingCall(const CallEvent &Call) const;
402   static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func);
403 
404   friend class NoOwnershipChangeVisitor;
405 
406   CallDescriptionMap<CheckFn> AllocatingMemFnMap{
407       {{{"alloca"}, 1}, &MallocChecker::checkAlloca},
408       {{{"_alloca"}, 1}, &MallocChecker::checkAlloca},
409       {{{"malloc"}, 1}, &MallocChecker::checkBasicAlloc},
410       {{{"malloc"}, 3}, &MallocChecker::checkKernelMalloc},
411       {{{"calloc"}, 2}, &MallocChecker::checkCalloc},
412       {{{"valloc"}, 1}, &MallocChecker::checkBasicAlloc},
413       {{CDF_MaybeBuiltin, {"strndup"}, 2}, &MallocChecker::checkStrdup},
414       {{CDF_MaybeBuiltin, {"strdup"}, 1}, &MallocChecker::checkStrdup},
415       {{{"_strdup"}, 1}, &MallocChecker::checkStrdup},
416       {{{"kmalloc"}, 2}, &MallocChecker::checkKernelMalloc},
417       {{{"if_nameindex"}, 1}, &MallocChecker::checkIfNameIndex},
418       {{CDF_MaybeBuiltin, {"wcsdup"}, 1}, &MallocChecker::checkStrdup},
419       {{CDF_MaybeBuiltin, {"_wcsdup"}, 1}, &MallocChecker::checkStrdup},
420       {{{"g_malloc"}, 1}, &MallocChecker::checkBasicAlloc},
421       {{{"g_malloc0"}, 1}, &MallocChecker::checkGMalloc0},
422       {{{"g_try_malloc"}, 1}, &MallocChecker::checkBasicAlloc},
423       {{{"g_try_malloc0"}, 1}, &MallocChecker::checkGMalloc0},
424       {{{"g_memdup"}, 2}, &MallocChecker::checkGMemdup},
425       {{{"g_malloc_n"}, 2}, &MallocChecker::checkGMallocN},
426       {{{"g_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0},
427       {{{"g_try_malloc_n"}, 2}, &MallocChecker::checkGMallocN},
428       {{{"g_try_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0},
429   };
430 
431   CallDescriptionMap<CheckFn> ReallocatingMemFnMap{
432       {{{"realloc"}, 2},
433        std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
434       {{{"reallocf"}, 2},
435        std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)},
436       {{{"g_realloc"}, 2},
437        std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
438       {{{"g_try_realloc"}, 2},
439        std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
440       {{{"g_realloc_n"}, 3}, &MallocChecker::checkReallocN},
441       {{{"g_try_realloc_n"}, 3}, &MallocChecker::checkReallocN},
442   };
443 
444   bool isMemCall(const CallEvent &Call) const;
445 
446   // TODO: Remove mutable by moving the initializtaion to the registry function.
447   mutable std::optional<uint64_t> KernelZeroFlagVal;
448 
449   using KernelZeroSizePtrValueTy = std::optional<int>;
450   /// Store the value of macro called `ZERO_SIZE_PTR`.
451   /// The value is initialized at first use, before first use the outer
452   /// Optional is empty, afterwards it contains another Optional that indicates
453   /// if the macro value could be determined, and if yes the value itself.
454   mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue;
455 
456   /// Process C++ operator new()'s allocation, which is the part of C++
457   /// new-expression that goes before the constructor.
458   [[nodiscard]] ProgramStateRef
459   processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C,
460                        AllocationFamily Family) const;
461 
462   /// Perform a zero-allocation check.
463   ///
464   /// \param [in] Call The expression that allocates memory.
465   /// \param [in] IndexOfSizeArg Index of the argument that specifies the size
466   ///   of the memory that needs to be allocated. E.g. for malloc, this would be
467   ///   0.
468   /// \param [in] RetVal Specifies the newly allocated pointer value;
469   ///   if unspecified, the value of expression \p E is used.
470   [[nodiscard]] static ProgramStateRef
471   ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg,
472                         ProgramStateRef State,
473                         std::optional<SVal> RetVal = std::nullopt);
474 
475   /// Model functions with the ownership_returns attribute.
476   ///
477   /// User-defined function may have the ownership_returns attribute, which
478   /// annotates that the function returns with an object that was allocated on
479   /// the heap, and passes the ownertship to the callee.
480   ///
481   ///   void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t);
482   ///
483   /// It has two parameters:
484   ///   - first: name of the resource (e.g. 'malloc')
485   ///   - (OPTIONAL) second: size of the allocated region
486   ///
487   /// \param [in] Call The expression that allocates memory.
488   /// \param [in] Att The ownership_returns attribute.
489   /// \param [in] State The \c ProgramState right before allocation.
490   /// \returns The ProgramState right after allocation.
491   [[nodiscard]] ProgramStateRef
492   MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
493                        const OwnershipAttr *Att, ProgramStateRef State) const;
494 
495   /// Models memory allocation.
496   ///
497   /// \param [in] Call The expression that allocates memory.
498   /// \param [in] SizeEx Size of the memory that needs to be allocated.
499   /// \param [in] Init The value the allocated memory needs to be initialized.
500   /// with. For example, \c calloc initializes the allocated memory to 0,
501   /// malloc leaves it undefined.
502   /// \param [in] State The \c ProgramState right before allocation.
503   /// \returns The ProgramState right after allocation.
504   [[nodiscard]] static ProgramStateRef
505   MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx,
506                SVal Init, ProgramStateRef State, AllocationFamily Family);
507 
508   /// Models memory allocation.
509   ///
510   /// \param [in] Call The expression that allocates memory.
511   /// \param [in] Size Size of the memory that needs to be allocated.
512   /// \param [in] Init The value the allocated memory needs to be initialized.
513   /// with. For example, \c calloc initializes the allocated memory to 0,
514   /// malloc leaves it undefined.
515   /// \param [in] State The \c ProgramState right before allocation.
516   /// \returns The ProgramState right after allocation.
517   [[nodiscard]] static ProgramStateRef
518   MallocMemAux(CheckerContext &C, const CallEvent &Call, SVal Size, SVal Init,
519                ProgramStateRef State, AllocationFamily Family);
520 
521   // Check if this malloc() for special flags. At present that means M_ZERO or
522   // __GFP_ZERO (in which case, treat it like calloc).
523   [[nodiscard]] std::optional<ProgramStateRef>
524   performKernelMalloc(const CallEvent &Call, CheckerContext &C,
525                       const ProgramStateRef &State) const;
526 
527   /// Model functions with the ownership_takes and ownership_holds attributes.
528   ///
529   /// User-defined function may have the ownership_takes and/or ownership_holds
530   /// attributes, which annotates that the function frees the memory passed as a
531   /// parameter.
532   ///
533   ///   void __attribute((ownership_takes(malloc, 1))) my_free(void *);
534   ///   void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
535   ///
536   /// They have two parameters:
537   ///   - first: name of the resource (e.g. 'malloc')
538   ///   - second: index of the parameter the attribute applies to
539   ///
540   /// \param [in] Call The expression that frees memory.
541   /// \param [in] Att The ownership_takes or ownership_holds attribute.
542   /// \param [in] State The \c ProgramState right before allocation.
543   /// \returns The ProgramState right after deallocation.
544   [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C,
545                                             const CallEvent &Call,
546                                             const OwnershipAttr *Att,
547                                             ProgramStateRef State) const;
548 
549   /// Models memory deallocation.
550   ///
551   /// \param [in] Call The expression that frees memory.
552   /// \param [in] State The \c ProgramState right before allocation.
553   /// \param [in] Num Index of the argument that needs to be freed. This is
554   ///   normally 0, but for custom free functions it may be different.
555   /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
556   ///   attribute.
557   /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
558   ///   to have been allocated, or in other words, the symbol to be freed was
559   ///   registered as allocated by this checker. In the following case, \c ptr
560   ///   isn't known to be allocated.
561   ///      void Haha(int *ptr) {
562   ///        ptr = realloc(ptr, 67);
563   ///        // ...
564   ///      }
565   /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
566   ///   we're modeling returns with Null on failure.
567   /// \returns The ProgramState right after deallocation.
568   [[nodiscard]] ProgramStateRef
569   FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State,
570              unsigned Num, bool Hold, bool &IsKnownToBeAllocated,
571              AllocationFamily Family, bool ReturnsNullOnFailure = false) const;
572 
573   /// Models memory deallocation.
574   ///
575   /// \param [in] ArgExpr The variable who's pointee needs to be freed.
576   /// \param [in] Call The expression that frees the memory.
577   /// \param [in] State The \c ProgramState right before allocation.
578   ///   normally 0, but for custom free functions it may be different.
579   /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
580   ///   attribute.
581   /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
582   ///   to have been allocated, or in other words, the symbol to be freed was
583   ///   registered as allocated by this checker. In the following case, \c ptr
584   ///   isn't known to be allocated.
585   ///      void Haha(int *ptr) {
586   ///        ptr = realloc(ptr, 67);
587   ///        // ...
588   ///      }
589   /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
590   ///   we're modeling returns with Null on failure.
591   /// \returns The ProgramState right after deallocation.
592   [[nodiscard]] ProgramStateRef
593   FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call,
594              ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated,
595              AllocationFamily Family, bool ReturnsNullOnFailure = false) const;
596 
597   // TODO: Needs some refactoring, as all other deallocation modeling
598   // functions are suffering from out parameters and messy code due to how
599   // realloc is handled.
600   //
601   /// Models memory reallocation.
602   ///
603   /// \param [in] Call The expression that reallocated memory
604   /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied
605   ///   memory should be freed.
606   /// \param [in] State The \c ProgramState right before reallocation.
607   /// \param [in] SuffixWithN Whether the reallocation function we're modeling
608   ///   has an '_n' suffix, such as g_realloc_n.
609   /// \returns The ProgramState right after reallocation.
610   [[nodiscard]] ProgramStateRef
611   ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail,
612                 ProgramStateRef State, AllocationFamily Family,
613                 bool SuffixWithN = false) const;
614 
615   /// Evaluates the buffer size that needs to be allocated.
616   ///
617   /// \param [in] Blocks The amount of blocks that needs to be allocated.
618   /// \param [in] BlockBytes The size of a block.
619   /// \returns The symbolic value of \p Blocks * \p BlockBytes.
620   [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C,
621                                                  const Expr *Blocks,
622                                                  const Expr *BlockBytes);
623 
624   /// Models zero initialized array allocation.
625   ///
626   /// \param [in] Call The expression that reallocated memory
627   /// \param [in] State The \c ProgramState right before reallocation.
628   /// \returns The ProgramState right after allocation.
629   [[nodiscard]] static ProgramStateRef
630   CallocMem(CheckerContext &C, const CallEvent &Call, ProgramStateRef State);
631 
632   /// See if deallocation happens in a suspicious context. If so, escape the
633   /// pointers that otherwise would have been deallocated and return true.
634   bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call,
635                                                  CheckerContext &C) const;
636 
637   /// If in \p S  \p Sym is used, check whether \p Sym was already freed.
638   bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
639 
640   /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero
641   /// sized memory region.
642   void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
643                              const Stmt *S) const;
644 
645   /// If in \p S \p Sym is being freed, check whether \p Sym was already freed.
646   bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
647 
648   /// Check if the function is known to free memory, or if it is
649   /// "interesting" and should be modeled explicitly.
650   ///
651   /// \param [out] EscapingSymbol A function might not free memory in general,
652   ///   but could be known to free a particular symbol. In this case, false is
653   ///   returned and the single escaping symbol is returned through the out
654   ///   parameter.
655   ///
656   /// We assume that pointers do not escape through calls to system functions
657   /// not handled by this checker.
658   bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
659                                    ProgramStateRef State,
660                                    SymbolRef &EscapingSymbol) const;
661 
662   /// Implementation of the checkPointerEscape callbacks.
663   [[nodiscard]] ProgramStateRef
664   checkPointerEscapeAux(ProgramStateRef State,
665                         const InvalidatedSymbols &Escaped,
666                         const CallEvent *Call, PointerEscapeKind Kind,
667                         bool IsConstPointerEscape) const;
668 
669   // Implementation of the checkPreStmt and checkEndFunction callbacks.
670   void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const;
671 
672   ///@{
673   /// Tells if a given family/call/symbol is tracked by the current checker.
674   /// Sets CheckKind to the kind of the checker responsible for this
675   /// family/call/symbol.
676   std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
677                                              bool IsALeakCheck = false) const;
678 
679   std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
680                                              bool IsALeakCheck = false) const;
681   ///@}
682   static bool SummarizeValue(raw_ostream &os, SVal V);
683   static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
684 
685   void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range,
686                             const Expr *DeallocExpr,
687                             AllocationFamily Family) const;
688 
689   void HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
690                         SourceRange Range) const;
691 
692   void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range,
693                                const Expr *DeallocExpr, const RefState *RS,
694                                SymbolRef Sym, bool OwnershipTransferred) const;
695 
696   void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
697                         const Expr *DeallocExpr, AllocationFamily Family,
698                         const Expr *AllocExpr = nullptr) const;
699 
700   void HandleUseAfterFree(CheckerContext &C, SourceRange Range,
701                           SymbolRef Sym) const;
702 
703   void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
704                         SymbolRef Sym, SymbolRef PrevSym) const;
705 
706   void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
707 
708   void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
709                           SymbolRef Sym) const;
710 
711   void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
712                              const Expr *FreeExpr,
713                              AllocationFamily Family) const;
714 
715   /// Find the location of the allocation for Sym on the path leading to the
716   /// exploded node N.
717   static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
718                                     CheckerContext &C);
719 
720   void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
721 
722   /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`.
723   bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
724                           SVal ArgVal) const;
725 };
726 } // end anonymous namespace
727 
728 //===----------------------------------------------------------------------===//
729 // Definition of NoOwnershipChangeVisitor.
730 //===----------------------------------------------------------------------===//
731 
732 namespace {
733 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor {
734   // The symbol whose (lack of) ownership change we are interested in.
735   SymbolRef Sym;
736   const MallocChecker &Checker;
737   using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>;
738 
739   // Collect which entities point to the allocated memory, and could be
740   // responsible for deallocating it.
741   class OwnershipBindingsHandler : public StoreManager::BindingsHandler {
742     SymbolRef Sym;
743     OwnerSet &Owners;
744 
745   public:
746     OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners)
747         : Sym(Sym), Owners(Owners) {}
748 
749     bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region,
750                        SVal Val) override {
751       if (Val.getAsSymbol() == Sym)
752         Owners.insert(Region);
753       return true;
754     }
755 
756     LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); }
757     LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const {
758       out << "Owners: {\n";
759       for (const MemRegion *Owner : Owners) {
760         out << "  ";
761         Owner->dumpToStream(out);
762         out << ",\n";
763       }
764       out << "}\n";
765     }
766   };
767 
768 protected:
769   OwnerSet getOwnersAtNode(const ExplodedNode *N) {
770     OwnerSet Ret;
771 
772     ProgramStateRef State = N->getState();
773     OwnershipBindingsHandler Handler{Sym, Ret};
774     State->getStateManager().getStoreManager().iterBindings(State->getStore(),
775                                                             Handler);
776     return Ret;
777   }
778 
779   LLVM_DUMP_METHOD static std::string
780   getFunctionName(const ExplodedNode *CallEnterN) {
781     if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>(
782             CallEnterN->getLocationAs<CallEnter>()->getCallExpr()))
783       if (const FunctionDecl *FD = CE->getDirectCallee())
784         return FD->getQualifiedNameAsString();
785     return "";
786   }
787 
788   /// Syntactically checks whether the callee is a deallocating function. Since
789   /// we have no path-sensitive information on this call (we would need a
790   /// CallEvent instead of a CallExpr for that), its possible that a
791   /// deallocation function was called indirectly through a function pointer,
792   /// but we are not able to tell, so this is a best effort analysis.
793   /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in
794   /// clang/test/Analysis/NewDeleteLeaks.cpp.
795   bool isFreeingCallAsWritten(const CallExpr &Call) const {
796     if (Checker.FreeingMemFnMap.lookupAsWritten(Call) ||
797         Checker.ReallocatingMemFnMap.lookupAsWritten(Call))
798       return true;
799 
800     if (const auto *Func =
801             llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl()))
802       return MallocChecker::isFreeingOwnershipAttrCall(Func);
803 
804     return false;
805   }
806 
807   /// Heuristically guess whether the callee intended to free memory. This is
808   /// done syntactically, because we are trying to argue about alternative
809   /// paths of execution, and as a consequence we don't have path-sensitive
810   /// information.
811   bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) {
812     using namespace clang::ast_matchers;
813     const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee);
814 
815     // Given that the stack frame was entered, the body should always be
816     // theoretically obtainable. In case of body farms, the synthesized body
817     // is not attached to declaration, thus triggering the '!FD->hasBody()'
818     // branch. That said, would a synthesized body ever intend to handle
819     // ownership? As of today they don't. And if they did, how would we
820     // put notes inside it, given that it doesn't match any source locations?
821     if (!FD || !FD->hasBody())
822       return false;
823 
824     auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"),
825                                             callExpr().bind("call")))),
826                          *FD->getBody(), ACtx);
827     for (BoundNodes Match : Matches) {
828       if (Match.getNodeAs<CXXDeleteExpr>("delete"))
829         return true;
830 
831       if (const auto *Call = Match.getNodeAs<CallExpr>("call"))
832         if (isFreeingCallAsWritten(*Call))
833           return true;
834     }
835     // TODO: Ownership might change with an attempt to store the allocated
836     // memory, not only through deallocation. Check for attempted stores as
837     // well.
838     return false;
839   }
840 
841   bool wasModifiedInFunction(const ExplodedNode *CallEnterN,
842                              const ExplodedNode *CallExitEndN) override {
843     if (!doesFnIntendToHandleOwnership(
844             CallExitEndN->getFirstPred()->getLocationContext()->getDecl(),
845             CallExitEndN->getState()->getAnalysisManager().getASTContext()))
846       return true;
847 
848     if (CallEnterN->getState()->get<RegionState>(Sym) !=
849         CallExitEndN->getState()->get<RegionState>(Sym))
850       return true;
851 
852     OwnerSet CurrOwners = getOwnersAtNode(CallEnterN);
853     OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN);
854 
855     // Owners in the current set may be purged from the analyzer later on.
856     // If a variable is dead (is not referenced directly or indirectly after
857     // some point), it will be removed from the Store before the end of its
858     // actual lifetime.
859     // This means that if the ownership status didn't change, CurrOwners
860     // must be a superset of, but not necessarily equal to ExitOwners.
861     return !llvm::set_is_subset(ExitOwners, CurrOwners);
862   }
863 
864   static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) {
865     PathDiagnosticLocation L = PathDiagnosticLocation::create(
866         N->getLocation(),
867         N->getState()->getStateManager().getContext().getSourceManager());
868     return std::make_shared<PathDiagnosticEventPiece>(
869         L, "Returning without deallocating memory or storing the pointer for "
870            "later deallocation");
871   }
872 
873   PathDiagnosticPieceRef
874   maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
875                            const ObjCMethodCall &Call,
876                            const ExplodedNode *N) override {
877     // TODO: Implement.
878     return nullptr;
879   }
880 
881   PathDiagnosticPieceRef
882   maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
883                           const CXXConstructorCall &Call,
884                           const ExplodedNode *N) override {
885     // TODO: Implement.
886     return nullptr;
887   }
888 
889   PathDiagnosticPieceRef
890   maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call,
891                              const ExplodedNode *N) override {
892     // TODO: Factor the logic of "what constitutes as an entity being passed
893     // into a function call" out by reusing the code in
894     // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating
895     // the printing technology in UninitializedObject's FieldChainInfo.
896     ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
897     for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
898       SVal V = Call.getArgSVal(I);
899       if (V.getAsSymbol() == Sym)
900         return emitNote(N);
901     }
902     return nullptr;
903   }
904 
905 public:
906   NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker)
907       : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym),
908         Checker(*Checker) {}
909 
910   void Profile(llvm::FoldingSetNodeID &ID) const override {
911     static int Tag = 0;
912     ID.AddPointer(&Tag);
913     ID.AddPointer(Sym);
914   }
915 };
916 
917 } // end anonymous namespace
918 
919 //===----------------------------------------------------------------------===//
920 // Definition of MallocBugVisitor.
921 //===----------------------------------------------------------------------===//
922 
923 namespace {
924 /// The bug visitor which allows us to print extra diagnostics along the
925 /// BugReport path. For example, showing the allocation site of the leaked
926 /// region.
927 class MallocBugVisitor final : public BugReporterVisitor {
928 protected:
929   enum NotificationMode { Normal, ReallocationFailed };
930 
931   // The allocated region symbol tracked by the main analysis.
932   SymbolRef Sym;
933 
934   // The mode we are in, i.e. what kind of diagnostics will be emitted.
935   NotificationMode Mode;
936 
937   // A symbol from when the primary region should have been reallocated.
938   SymbolRef FailedReallocSymbol;
939 
940   // A C++ destructor stack frame in which memory was released. Used for
941   // miscellaneous false positive suppression.
942   const StackFrameContext *ReleaseDestructorLC;
943 
944   bool IsLeak;
945 
946 public:
947   MallocBugVisitor(SymbolRef S, bool isLeak = false)
948       : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr),
949         ReleaseDestructorLC(nullptr), IsLeak(isLeak) {}
950 
951   static void *getTag() {
952     static int Tag = 0;
953     return &Tag;
954   }
955 
956   void Profile(llvm::FoldingSetNodeID &ID) const override {
957     ID.AddPointer(getTag());
958     ID.AddPointer(Sym);
959   }
960 
961   /// Did not track -> allocated. Other state (released) -> allocated.
962   static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev,
963                                  const Stmt *Stmt) {
964     return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) &&
965             (RSCurr &&
966              (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
967             (!RSPrev ||
968              !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
969   }
970 
971   /// Did not track -> released. Other state (allocated) -> released.
972   /// The statement associated with the release might be missing.
973   static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev,
974                                 const Stmt *Stmt) {
975     bool IsReleased =
976         (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased());
977     assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) ||
978            (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer));
979     return IsReleased;
980   }
981 
982   /// Did not track -> relinquished. Other state (allocated) -> relinquished.
983   static inline bool isRelinquished(const RefState *RSCurr,
984                                     const RefState *RSPrev, const Stmt *Stmt) {
985     return (
986         isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) &&
987         (RSCurr && RSCurr->isRelinquished()) &&
988         (!RSPrev || !RSPrev->isRelinquished()));
989   }
990 
991   /// If the expression is not a call, and the state change is
992   /// released -> allocated, it must be the realloc return value
993   /// check. If we have to handle more cases here, it might be cleaner just
994   /// to track this extra bit in the state itself.
995   static inline bool hasReallocFailed(const RefState *RSCurr,
996                                       const RefState *RSPrev,
997                                       const Stmt *Stmt) {
998     return ((!isa_and_nonnull<CallExpr>(Stmt)) &&
999             (RSCurr &&
1000              (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
1001             (RSPrev &&
1002              !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
1003   }
1004 
1005   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1006                                    BugReporterContext &BRC,
1007                                    PathSensitiveBugReport &BR) override;
1008 
1009   PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC,
1010                                     const ExplodedNode *EndPathNode,
1011                                     PathSensitiveBugReport &BR) override {
1012     if (!IsLeak)
1013       return nullptr;
1014 
1015     PathDiagnosticLocation L = BR.getLocation();
1016     // Do not add the statement itself as a range in case of leak.
1017     return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(),
1018                                                       false);
1019   }
1020 
1021 private:
1022   class StackHintGeneratorForReallocationFailed
1023       : public StackHintGeneratorForSymbol {
1024   public:
1025     StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
1026         : StackHintGeneratorForSymbol(S, M) {}
1027 
1028     std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override {
1029       // Printed parameters start at 1, not 0.
1030       ++ArgIndex;
1031 
1032       SmallString<200> buf;
1033       llvm::raw_svector_ostream os(buf);
1034 
1035       os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
1036          << " parameter failed";
1037 
1038       return std::string(os.str());
1039     }
1040 
1041     std::string getMessageForReturn(const CallExpr *CallExpr) override {
1042       return "Reallocation of returned value failed";
1043     }
1044   };
1045 };
1046 } // end anonymous namespace
1047 
1048 // A map from the freed symbol to the symbol representing the return value of
1049 // the free function.
1050 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
1051 
1052 namespace {
1053 class StopTrackingCallback final : public SymbolVisitor {
1054   ProgramStateRef state;
1055 
1056 public:
1057   StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
1058   ProgramStateRef getState() const { return state; }
1059 
1060   bool VisitSymbol(SymbolRef sym) override {
1061     state = state->remove<RegionState>(sym);
1062     return true;
1063   }
1064 };
1065 } // end anonymous namespace
1066 
1067 static bool isStandardNewDelete(const FunctionDecl *FD) {
1068   if (!FD)
1069     return false;
1070 
1071   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
1072   if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete &&
1073       Kind != OO_Array_Delete)
1074     return false;
1075 
1076   // This is standard if and only if it's not defined in a user file.
1077   SourceLocation L = FD->getLocation();
1078   // If the header for operator delete is not included, it's still defined
1079   // in an invalid source location. Check to make sure we don't crash.
1080   return !L.isValid() ||
1081          FD->getASTContext().getSourceManager().isInSystemHeader(L);
1082 }
1083 
1084 //===----------------------------------------------------------------------===//
1085 // Methods of MallocChecker and MallocBugVisitor.
1086 //===----------------------------------------------------------------------===//
1087 
1088 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) {
1089   if (Func->hasAttrs()) {
1090     for (const auto *I : Func->specific_attrs<OwnershipAttr>()) {
1091       OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
1092       if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds)
1093         return true;
1094     }
1095   }
1096   return false;
1097 }
1098 
1099 bool MallocChecker::isFreeingCall(const CallEvent &Call) const {
1100   if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call))
1101     return true;
1102 
1103   if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl()))
1104     return isFreeingOwnershipAttrCall(Func);
1105 
1106   return false;
1107 }
1108 
1109 bool MallocChecker::isMemCall(const CallEvent &Call) const {
1110   if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) ||
1111       ReallocatingMemFnMap.lookup(Call))
1112     return true;
1113 
1114   if (!ShouldIncludeOwnershipAnnotatedFunctions)
1115     return false;
1116 
1117   const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl());
1118   return Func && Func->hasAttr<OwnershipAttr>();
1119 }
1120 
1121 std::optional<ProgramStateRef>
1122 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C,
1123                                    const ProgramStateRef &State) const {
1124   // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
1125   //
1126   // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
1127   //
1128   // One of the possible flags is M_ZERO, which means 'give me back an
1129   // allocation which is already zeroed', like calloc.
1130 
1131   // 2-argument kmalloc(), as used in the Linux kernel:
1132   //
1133   // void *kmalloc(size_t size, gfp_t flags);
1134   //
1135   // Has the similar flag value __GFP_ZERO.
1136 
1137   // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
1138   // code could be shared.
1139 
1140   ASTContext &Ctx = C.getASTContext();
1141   llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
1142 
1143   if (!KernelZeroFlagVal) {
1144     if (OS == llvm::Triple::FreeBSD)
1145       KernelZeroFlagVal = 0x0100;
1146     else if (OS == llvm::Triple::NetBSD)
1147       KernelZeroFlagVal = 0x0002;
1148     else if (OS == llvm::Triple::OpenBSD)
1149       KernelZeroFlagVal = 0x0008;
1150     else if (OS == llvm::Triple::Linux)
1151       // __GFP_ZERO
1152       KernelZeroFlagVal = 0x8000;
1153     else
1154       // FIXME: We need a more general way of getting the M_ZERO value.
1155       // See also: O_CREAT in UnixAPIChecker.cpp.
1156 
1157       // Fall back to normal malloc behavior on platforms where we don't
1158       // know M_ZERO.
1159       return std::nullopt;
1160   }
1161 
1162   // We treat the last argument as the flags argument, and callers fall-back to
1163   // normal malloc on a None return. This works for the FreeBSD kernel malloc
1164   // as well as Linux kmalloc.
1165   if (Call.getNumArgs() < 2)
1166     return std::nullopt;
1167 
1168   const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1);
1169   const SVal V = C.getSVal(FlagsEx);
1170   if (!isa<NonLoc>(V)) {
1171     // The case where 'V' can be a location can only be due to a bad header,
1172     // so in this case bail out.
1173     return std::nullopt;
1174   }
1175 
1176   NonLoc Flags = V.castAs<NonLoc>();
1177   NonLoc ZeroFlag = C.getSValBuilder()
1178                         .makeIntVal(*KernelZeroFlagVal, FlagsEx->getType())
1179                         .castAs<NonLoc>();
1180   SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
1181                                                       Flags, ZeroFlag,
1182                                                       FlagsEx->getType());
1183   if (MaskedFlagsUC.isUnknownOrUndef())
1184     return std::nullopt;
1185   DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
1186 
1187   // Check if maskedFlags is non-zero.
1188   ProgramStateRef TrueState, FalseState;
1189   std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
1190 
1191   // If M_ZERO is set, treat this like calloc (initialized).
1192   if (TrueState && !FalseState) {
1193     SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
1194     return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState,
1195                         AF_Malloc);
1196   }
1197 
1198   return std::nullopt;
1199 }
1200 
1201 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
1202                                          const Expr *BlockBytes) {
1203   SValBuilder &SB = C.getSValBuilder();
1204   SVal BlocksVal = C.getSVal(Blocks);
1205   SVal BlockBytesVal = C.getSVal(BlockBytes);
1206   ProgramStateRef State = C.getState();
1207   SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal,
1208                                 SB.getContext().getSizeType());
1209   return TotalSize;
1210 }
1211 
1212 void MallocChecker::checkBasicAlloc(const CallEvent &Call,
1213                                     CheckerContext &C) const {
1214   ProgramStateRef State = C.getState();
1215   State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
1216                        AF_Malloc);
1217   State = ProcessZeroAllocCheck(Call, 0, State);
1218   C.addTransition(State);
1219 }
1220 
1221 void MallocChecker::checkKernelMalloc(const CallEvent &Call,
1222                                       CheckerContext &C) const {
1223   ProgramStateRef State = C.getState();
1224   std::optional<ProgramStateRef> MaybeState =
1225       performKernelMalloc(Call, C, State);
1226   if (MaybeState)
1227     State = *MaybeState;
1228   else
1229     State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
1230                          AF_Malloc);
1231   C.addTransition(State);
1232 }
1233 
1234 static bool isStandardRealloc(const CallEvent &Call) {
1235   const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
1236   assert(FD);
1237   ASTContext &AC = FD->getASTContext();
1238 
1239   if (isa<CXXMethodDecl>(FD))
1240     return false;
1241 
1242   return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
1243          FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
1244          FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
1245              AC.getSizeType();
1246 }
1247 
1248 static bool isGRealloc(const CallEvent &Call) {
1249   const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
1250   assert(FD);
1251   ASTContext &AC = FD->getASTContext();
1252 
1253   if (isa<CXXMethodDecl>(FD))
1254     return false;
1255 
1256   return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
1257          FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
1258          FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
1259              AC.UnsignedLongTy;
1260 }
1261 
1262 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C,
1263                                  bool ShouldFreeOnFail) const {
1264   // HACK: CallDescription currently recognizes non-standard realloc functions
1265   // as standard because it doesn't check the type, or wether its a non-method
1266   // function. This should be solved by making CallDescription smarter.
1267   // Mind that this came from a bug report, and all other functions suffer from
1268   // this.
1269   // https://bugs.llvm.org/show_bug.cgi?id=46253
1270   if (!isStandardRealloc(Call) && !isGRealloc(Call))
1271     return;
1272   ProgramStateRef State = C.getState();
1273   State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc);
1274   State = ProcessZeroAllocCheck(Call, 1, State);
1275   C.addTransition(State);
1276 }
1277 
1278 void MallocChecker::checkCalloc(const CallEvent &Call,
1279                                 CheckerContext &C) const {
1280   ProgramStateRef State = C.getState();
1281   State = CallocMem(C, Call, State);
1282   State = ProcessZeroAllocCheck(Call, 0, State);
1283   State = ProcessZeroAllocCheck(Call, 1, State);
1284   C.addTransition(State);
1285 }
1286 
1287 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const {
1288   ProgramStateRef State = C.getState();
1289   bool IsKnownToBeAllocatedMemory = false;
1290   if (suppressDeallocationsInSuspiciousContexts(Call, C))
1291     return;
1292   State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
1293                      AF_Malloc);
1294   C.addTransition(State);
1295 }
1296 
1297 void MallocChecker::checkAlloca(const CallEvent &Call,
1298                                 CheckerContext &C) const {
1299   ProgramStateRef State = C.getState();
1300   State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
1301                        AF_Alloca);
1302   State = ProcessZeroAllocCheck(Call, 0, State);
1303   C.addTransition(State);
1304 }
1305 
1306 void MallocChecker::checkStrdup(const CallEvent &Call,
1307                                 CheckerContext &C) const {
1308   ProgramStateRef State = C.getState();
1309   const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
1310   if (!CE)
1311     return;
1312   State = MallocUpdateRefState(C, CE, State, AF_Malloc);
1313 
1314   C.addTransition(State);
1315 }
1316 
1317 void MallocChecker::checkIfNameIndex(const CallEvent &Call,
1318                                      CheckerContext &C) const {
1319   ProgramStateRef State = C.getState();
1320   // Should we model this differently? We can allocate a fixed number of
1321   // elements with zeros in the last one.
1322   State =
1323       MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex);
1324 
1325   C.addTransition(State);
1326 }
1327 
1328 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call,
1329                                          CheckerContext &C) const {
1330   ProgramStateRef State = C.getState();
1331   bool IsKnownToBeAllocatedMemory = false;
1332   State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
1333                      AF_IfNameIndex);
1334   C.addTransition(State);
1335 }
1336 
1337 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call,
1338                                            CheckerContext &C) const {
1339   ProgramStateRef State = C.getState();
1340   bool IsKnownToBeAllocatedMemory = false;
1341   const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
1342   if (!CE)
1343     return;
1344 
1345   assert(isStandardNewDelete(Call));
1346 
1347   // Process direct calls to operator new/new[]/delete/delete[] functions
1348   // as distinct from new/new[]/delete/delete[] expressions that are
1349   // processed by the checkPostStmt callbacks for CXXNewExpr and
1350   // CXXDeleteExpr.
1351   const FunctionDecl *FD = C.getCalleeDecl(CE);
1352   switch (FD->getOverloadedOperator()) {
1353   case OO_New:
1354     State =
1355         MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew);
1356     State = ProcessZeroAllocCheck(Call, 0, State);
1357     break;
1358   case OO_Array_New:
1359     State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State,
1360                          AF_CXXNewArray);
1361     State = ProcessZeroAllocCheck(Call, 0, State);
1362     break;
1363   case OO_Delete:
1364     State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
1365                        AF_CXXNew);
1366     break;
1367   case OO_Array_Delete:
1368     State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
1369                        AF_CXXNewArray);
1370     break;
1371   default:
1372     llvm_unreachable("not a new/delete operator");
1373   }
1374 
1375   C.addTransition(State);
1376 }
1377 
1378 void MallocChecker::checkGMalloc0(const CallEvent &Call,
1379                                   CheckerContext &C) const {
1380   ProgramStateRef State = C.getState();
1381   SValBuilder &svalBuilder = C.getSValBuilder();
1382   SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
1383   State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc);
1384   State = ProcessZeroAllocCheck(Call, 0, State);
1385   C.addTransition(State);
1386 }
1387 
1388 void MallocChecker::checkGMemdup(const CallEvent &Call,
1389                                  CheckerContext &C) const {
1390   ProgramStateRef State = C.getState();
1391   State =
1392       MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc);
1393   State = ProcessZeroAllocCheck(Call, 1, State);
1394   C.addTransition(State);
1395 }
1396 
1397 void MallocChecker::checkGMallocN(const CallEvent &Call,
1398                                   CheckerContext &C) const {
1399   ProgramStateRef State = C.getState();
1400   SVal Init = UndefinedVal();
1401   SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
1402   State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
1403   State = ProcessZeroAllocCheck(Call, 0, State);
1404   State = ProcessZeroAllocCheck(Call, 1, State);
1405   C.addTransition(State);
1406 }
1407 
1408 void MallocChecker::checkGMallocN0(const CallEvent &Call,
1409                                    CheckerContext &C) const {
1410   ProgramStateRef State = C.getState();
1411   SValBuilder &SB = C.getSValBuilder();
1412   SVal Init = SB.makeZeroVal(SB.getContext().CharTy);
1413   SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
1414   State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
1415   State = ProcessZeroAllocCheck(Call, 0, State);
1416   State = ProcessZeroAllocCheck(Call, 1, State);
1417   C.addTransition(State);
1418 }
1419 
1420 void MallocChecker::checkReallocN(const CallEvent &Call,
1421                                   CheckerContext &C) const {
1422   ProgramStateRef State = C.getState();
1423   State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc,
1424                         /*SuffixWithN=*/true);
1425   State = ProcessZeroAllocCheck(Call, 1, State);
1426   State = ProcessZeroAllocCheck(Call, 2, State);
1427   C.addTransition(State);
1428 }
1429 
1430 void MallocChecker::checkOwnershipAttr(const CallEvent &Call,
1431                                        CheckerContext &C) const {
1432   ProgramStateRef State = C.getState();
1433   const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
1434   if (!CE)
1435     return;
1436   const FunctionDecl *FD = C.getCalleeDecl(CE);
1437   if (!FD)
1438     return;
1439   if (ShouldIncludeOwnershipAnnotatedFunctions ||
1440       ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
1441     // Check all the attributes, if there are any.
1442     // There can be multiple of these attributes.
1443     if (FD->hasAttrs())
1444       for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
1445         switch (I->getOwnKind()) {
1446         case OwnershipAttr::Returns:
1447           State = MallocMemReturnsAttr(C, Call, I, State);
1448           break;
1449         case OwnershipAttr::Takes:
1450         case OwnershipAttr::Holds:
1451           State = FreeMemAttr(C, Call, I, State);
1452           break;
1453         }
1454       }
1455   }
1456   C.addTransition(State);
1457 }
1458 
1459 void MallocChecker::checkPostCall(const CallEvent &Call,
1460                                   CheckerContext &C) const {
1461   if (C.wasInlined)
1462     return;
1463   if (!Call.getOriginExpr())
1464     return;
1465 
1466   ProgramStateRef State = C.getState();
1467 
1468   if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) {
1469     (*Callback)(this, Call, C);
1470     return;
1471   }
1472 
1473   if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) {
1474     (*Callback)(this, Call, C);
1475     return;
1476   }
1477 
1478   if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) {
1479     (*Callback)(this, Call, C);
1480     return;
1481   }
1482 
1483   if (isStandardNewDelete(Call)) {
1484     checkCXXNewOrCXXDelete(Call, C);
1485     return;
1486   }
1487 
1488   checkOwnershipAttr(Call, C);
1489 }
1490 
1491 // Performs a 0-sized allocations check.
1492 ProgramStateRef MallocChecker::ProcessZeroAllocCheck(
1493     const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State,
1494     std::optional<SVal> RetVal) {
1495   if (!State)
1496     return nullptr;
1497 
1498   if (!RetVal)
1499     RetVal = Call.getReturnValue();
1500 
1501   const Expr *Arg = nullptr;
1502 
1503   if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) {
1504     Arg = CE->getArg(IndexOfSizeArg);
1505   } else if (const CXXNewExpr *NE =
1506                  dyn_cast<CXXNewExpr>(Call.getOriginExpr())) {
1507     if (NE->isArray()) {
1508       Arg = *NE->getArraySize();
1509     } else {
1510       return State;
1511     }
1512   } else
1513     llvm_unreachable("not a CallExpr or CXXNewExpr");
1514 
1515   assert(Arg);
1516 
1517   auto DefArgVal =
1518       State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>();
1519 
1520   if (!DefArgVal)
1521     return State;
1522 
1523   // Check if the allocation size is 0.
1524   ProgramStateRef TrueState, FalseState;
1525   SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder();
1526   DefinedSVal Zero =
1527       SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
1528 
1529   std::tie(TrueState, FalseState) =
1530       State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
1531 
1532   if (TrueState && !FalseState) {
1533     SymbolRef Sym = RetVal->getAsLocSymbol();
1534     if (!Sym)
1535       return State;
1536 
1537     const RefState *RS = State->get<RegionState>(Sym);
1538     if (RS) {
1539       if (RS->isAllocated())
1540         return TrueState->set<RegionState>(Sym,
1541                                           RefState::getAllocatedOfSizeZero(RS));
1542       else
1543         return State;
1544     } else {
1545       // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
1546       // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
1547       // tracked. Add zero-reallocated Sym to the state to catch references
1548       // to zero-allocated memory.
1549       return TrueState->add<ReallocSizeZeroSymbols>(Sym);
1550     }
1551   }
1552 
1553   // Assume the value is non-zero going forward.
1554   assert(FalseState);
1555   return FalseState;
1556 }
1557 
1558 static QualType getDeepPointeeType(QualType T) {
1559   QualType Result = T, PointeeType = T->getPointeeType();
1560   while (!PointeeType.isNull()) {
1561     Result = PointeeType;
1562     PointeeType = PointeeType->getPointeeType();
1563   }
1564   return Result;
1565 }
1566 
1567 /// \returns true if the constructor invoked by \p NE has an argument of a
1568 /// pointer/reference to a record type.
1569 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) {
1570 
1571   const CXXConstructExpr *ConstructE = NE->getConstructExpr();
1572   if (!ConstructE)
1573     return false;
1574 
1575   if (!NE->getAllocatedType()->getAsCXXRecordDecl())
1576     return false;
1577 
1578   const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
1579 
1580   // Iterate over the constructor parameters.
1581   for (const auto *CtorParam : CtorD->parameters()) {
1582 
1583     QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
1584     if (CtorParamPointeeT.isNull())
1585       continue;
1586 
1587     CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
1588 
1589     if (CtorParamPointeeT->getAsCXXRecordDecl())
1590       return true;
1591   }
1592 
1593   return false;
1594 }
1595 
1596 ProgramStateRef
1597 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call,
1598                                     CheckerContext &C,
1599                                     AllocationFamily Family) const {
1600   if (!isStandardNewDelete(Call))
1601     return nullptr;
1602 
1603   const CXXNewExpr *NE = Call.getOriginExpr();
1604   const ParentMap &PM = C.getLocationContext()->getParentMap();
1605   ProgramStateRef State = C.getState();
1606 
1607   // Non-trivial constructors have a chance to escape 'this', but marking all
1608   // invocations of trivial constructors as escaped would cause too great of
1609   // reduction of true positives, so let's just do that for constructors that
1610   // have an argument of a pointer-to-record type.
1611   if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE))
1612     return State;
1613 
1614   // The return value from operator new is bound to a specified initialization
1615   // value (if any) and we don't want to loose this value. So we call
1616   // MallocUpdateRefState() instead of MallocMemAux() which breaks the
1617   // existing binding.
1618   SVal Target = Call.getObjectUnderConstruction();
1619   State = MallocUpdateRefState(C, NE, State, Family, Target);
1620   State = ProcessZeroAllocCheck(Call, 0, State, Target);
1621   return State;
1622 }
1623 
1624 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call,
1625                                       CheckerContext &C) const {
1626   if (!C.wasInlined) {
1627     ProgramStateRef State = processNewAllocation(
1628         Call, C,
1629         (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew));
1630     C.addTransition(State);
1631   }
1632 }
1633 
1634 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
1635   // If the first selector piece is one of the names below, assume that the
1636   // object takes ownership of the memory, promising to eventually deallocate it
1637   // with free().
1638   // Ex:  [NSData dataWithBytesNoCopy:bytes length:10];
1639   // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
1640   StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
1641   return FirstSlot == "dataWithBytesNoCopy" ||
1642          FirstSlot == "initWithBytesNoCopy" ||
1643          FirstSlot == "initWithCharactersNoCopy";
1644 }
1645 
1646 static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
1647   Selector S = Call.getSelector();
1648 
1649   // FIXME: We should not rely on fully-constrained symbols being folded.
1650   for (unsigned i = 1; i < S.getNumArgs(); ++i)
1651     if (S.getNameForSlot(i).equals("freeWhenDone"))
1652       return !Call.getArgSVal(i).isZeroConstant();
1653 
1654   return std::nullopt;
1655 }
1656 
1657 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
1658                                          CheckerContext &C) const {
1659   if (C.wasInlined)
1660     return;
1661 
1662   if (!isKnownDeallocObjCMethodName(Call))
1663     return;
1664 
1665   if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
1666     if (!*FreeWhenDone)
1667       return;
1668 
1669   if (Call.hasNonZeroCallbackArg())
1670     return;
1671 
1672   bool IsKnownToBeAllocatedMemory;
1673   ProgramStateRef State =
1674       FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(),
1675                  /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc,
1676                  /*ReturnsNullOnFailure=*/true);
1677 
1678   C.addTransition(State);
1679 }
1680 
1681 ProgramStateRef
1682 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
1683                                     const OwnershipAttr *Att,
1684                                     ProgramStateRef State) const {
1685   if (!State)
1686     return nullptr;
1687 
1688   if (Att->getModule()->getName() != "malloc")
1689     return nullptr;
1690 
1691   if (!Att->args().empty()) {
1692     return MallocMemAux(C, Call,
1693                         Call.getArgExpr(Att->args_begin()->getASTIndex()),
1694                         UndefinedVal(), State, AF_Malloc);
1695   }
1696   return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc);
1697 }
1698 
1699 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1700                                             const CallEvent &Call,
1701                                             const Expr *SizeEx, SVal Init,
1702                                             ProgramStateRef State,
1703                                             AllocationFamily Family) {
1704   if (!State)
1705     return nullptr;
1706 
1707   assert(SizeEx);
1708   return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family);
1709 }
1710 
1711 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1712                                             const CallEvent &Call, SVal Size,
1713                                             SVal Init, ProgramStateRef State,
1714                                             AllocationFamily Family) {
1715   if (!State)
1716     return nullptr;
1717 
1718   const Expr *CE = Call.getOriginExpr();
1719 
1720   // We expect the malloc functions to return a pointer.
1721   if (!Loc::isLocType(CE->getType()))
1722     return nullptr;
1723 
1724   // Bind the return value to the symbolic value from the heap region.
1725   // TODO: We could rewrite post visit to eval call; 'malloc' does not have
1726   // side effects other than what we model here.
1727   unsigned Count = C.blockCount();
1728   SValBuilder &svalBuilder = C.getSValBuilder();
1729   const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1730   DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
1731       .castAs<DefinedSVal>();
1732   State = State->BindExpr(CE, C.getLocationContext(), RetVal);
1733 
1734   // Fill the region with the initialization value.
1735   State = State->bindDefaultInitial(RetVal, Init, LCtx);
1736 
1737   // If Size is somehow undefined at this point, this line prevents a crash.
1738   if (Size.isUndef())
1739     Size = UnknownVal();
1740 
1741   // Set the region's extent.
1742   State = setDynamicExtent(State, RetVal.getAsRegion(),
1743                            Size.castAs<DefinedOrUnknownSVal>(), svalBuilder);
1744 
1745   return MallocUpdateRefState(C, CE, State, Family);
1746 }
1747 
1748 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
1749                                             ProgramStateRef State,
1750                                             AllocationFamily Family,
1751                                             std::optional<SVal> RetVal) {
1752   if (!State)
1753     return nullptr;
1754 
1755   // Get the return value.
1756   if (!RetVal)
1757     RetVal = C.getSVal(E);
1758 
1759   // We expect the malloc functions to return a pointer.
1760   if (!RetVal->getAs<Loc>())
1761     return nullptr;
1762 
1763   SymbolRef Sym = RetVal->getAsLocSymbol();
1764   // This is a return value of a function that was not inlined, such as malloc()
1765   // or new(). We've checked that in the caller. Therefore, it must be a symbol.
1766   assert(Sym);
1767 
1768   // Set the symbol's state to Allocated.
1769   return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
1770 }
1771 
1772 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
1773                                            const CallEvent &Call,
1774                                            const OwnershipAttr *Att,
1775                                            ProgramStateRef State) const {
1776   if (!State)
1777     return nullptr;
1778 
1779   if (Att->getModule()->getName() != "malloc")
1780     return nullptr;
1781 
1782   bool IsKnownToBeAllocated = false;
1783 
1784   for (const auto &Arg : Att->args()) {
1785     ProgramStateRef StateI =
1786         FreeMemAux(C, Call, State, Arg.getASTIndex(),
1787                    Att->getOwnKind() == OwnershipAttr::Holds,
1788                    IsKnownToBeAllocated, AF_Malloc);
1789     if (StateI)
1790       State = StateI;
1791   }
1792   return State;
1793 }
1794 
1795 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1796                                           const CallEvent &Call,
1797                                           ProgramStateRef State, unsigned Num,
1798                                           bool Hold, bool &IsKnownToBeAllocated,
1799                                           AllocationFamily Family,
1800                                           bool ReturnsNullOnFailure) const {
1801   if (!State)
1802     return nullptr;
1803 
1804   if (Call.getNumArgs() < (Num + 1))
1805     return nullptr;
1806 
1807   return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold,
1808                     IsKnownToBeAllocated, Family, ReturnsNullOnFailure);
1809 }
1810 
1811 /// Checks if the previous call to free on the given symbol failed - if free
1812 /// failed, returns true. Also, returns the corresponding return value symbol.
1813 static bool didPreviousFreeFail(ProgramStateRef State,
1814                                 SymbolRef Sym, SymbolRef &RetStatusSymbol) {
1815   const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
1816   if (Ret) {
1817     assert(*Ret && "We should not store the null return symbol");
1818     ConstraintManager &CMgr = State->getConstraintManager();
1819     ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
1820     RetStatusSymbol = *Ret;
1821     return FreeFailed.isConstrainedTrue();
1822   }
1823   return false;
1824 }
1825 
1826 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) {
1827   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1828     // FIXME: This doesn't handle indirect calls.
1829     const FunctionDecl *FD = CE->getDirectCallee();
1830     if (!FD)
1831       return false;
1832 
1833     os << *FD;
1834     if (!FD->isOverloadedOperator())
1835       os << "()";
1836     return true;
1837   }
1838 
1839   if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
1840     if (Msg->isInstanceMessage())
1841       os << "-";
1842     else
1843       os << "+";
1844     Msg->getSelector().print(os);
1845     return true;
1846   }
1847 
1848   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
1849     os << "'"
1850        << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
1851        << "'";
1852     return true;
1853   }
1854 
1855   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
1856     os << "'"
1857        << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
1858        << "'";
1859     return true;
1860   }
1861 
1862   return false;
1863 }
1864 
1865 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) {
1866 
1867   switch(Family) {
1868     case AF_Malloc: os << "malloc()"; return;
1869     case AF_CXXNew: os << "'new'"; return;
1870     case AF_CXXNewArray: os << "'new[]'"; return;
1871     case AF_IfNameIndex: os << "'if_nameindex()'"; return;
1872     case AF_InnerBuffer: os << "container-specific allocator"; return;
1873     case AF_Alloca:
1874     case AF_None: llvm_unreachable("not a deallocation expression");
1875   }
1876 }
1877 
1878 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) {
1879   switch(Family) {
1880     case AF_Malloc: os << "free()"; return;
1881     case AF_CXXNew: os << "'delete'"; return;
1882     case AF_CXXNewArray: os << "'delete[]'"; return;
1883     case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
1884     case AF_InnerBuffer: os << "container-specific deallocator"; return;
1885     case AF_Alloca:
1886     case AF_None: llvm_unreachable("suspicious argument");
1887   }
1888 }
1889 
1890 ProgramStateRef MallocChecker::FreeMemAux(
1891     CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call,
1892     ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated,
1893     AllocationFamily Family, bool ReturnsNullOnFailure) const {
1894 
1895   if (!State)
1896     return nullptr;
1897 
1898   SVal ArgVal = C.getSVal(ArgExpr);
1899   if (!isa<DefinedOrUnknownSVal>(ArgVal))
1900     return nullptr;
1901   DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
1902 
1903   // Check for null dereferences.
1904   if (!isa<Loc>(location))
1905     return nullptr;
1906 
1907   // The explicit NULL case, no operation is performed.
1908   ProgramStateRef notNullState, nullState;
1909   std::tie(notNullState, nullState) = State->assume(location);
1910   if (nullState && !notNullState)
1911     return nullptr;
1912 
1913   // Unknown values could easily be okay
1914   // Undefined values are handled elsewhere
1915   if (ArgVal.isUnknownOrUndef())
1916     return nullptr;
1917 
1918   const MemRegion *R = ArgVal.getAsRegion();
1919   const Expr *ParentExpr = Call.getOriginExpr();
1920 
1921   // NOTE: We detected a bug, but the checker under whose name we would emit the
1922   // error could be disabled. Generally speaking, the MallocChecker family is an
1923   // integral part of the Static Analyzer, and disabling any part of it should
1924   // only be done under exceptional circumstances, such as frequent false
1925   // positives. If this is the case, we can reasonably believe that there are
1926   // serious faults in our understanding of the source code, and even if we
1927   // don't emit an warning, we should terminate further analysis with a sink
1928   // node.
1929 
1930   // Nonlocs can't be freed, of course.
1931   // Non-region locations (labels and fixed addresses) also shouldn't be freed.
1932   if (!R) {
1933     // Exception:
1934     // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source
1935     // code. In that case, the ZERO_SIZE_PTR defines a special value used for a
1936     // zero-sized memory block which is allowed to be freed, despite not being a
1937     // null pointer.
1938     if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal))
1939       HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1940                            Family);
1941     return nullptr;
1942   }
1943 
1944   R = R->StripCasts();
1945 
1946   // Blocks might show up as heap data, but should not be free()d
1947   if (isa<BlockDataRegion>(R)) {
1948     HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1949                          Family);
1950     return nullptr;
1951   }
1952 
1953   const MemSpaceRegion *MS = R->getMemorySpace();
1954 
1955   // Parameters, locals, statics, globals, and memory returned by
1956   // __builtin_alloca() shouldn't be freed.
1957   if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) {
1958     // FIXME: at the time this code was written, malloc() regions were
1959     // represented by conjured symbols, which are all in UnknownSpaceRegion.
1960     // This means that there isn't actually anything from HeapSpaceRegion
1961     // that should be freed, even though we allow it here.
1962     // Of course, free() can work on memory allocated outside the current
1963     // function, so UnknownSpaceRegion is always a possibility.
1964     // False negatives are better than false positives.
1965 
1966     if (isa<AllocaRegion>(R))
1967       HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1968     else
1969       HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1970                            Family);
1971 
1972     return nullptr;
1973   }
1974 
1975   const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
1976   // Various cases could lead to non-symbol values here.
1977   // For now, ignore them.
1978   if (!SrBase)
1979     return nullptr;
1980 
1981   SymbolRef SymBase = SrBase->getSymbol();
1982   const RefState *RsBase = State->get<RegionState>(SymBase);
1983   SymbolRef PreviousRetStatusSymbol = nullptr;
1984 
1985   IsKnownToBeAllocated =
1986       RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero());
1987 
1988   if (RsBase) {
1989 
1990     // Memory returned by alloca() shouldn't be freed.
1991     if (RsBase->getAllocationFamily() == AF_Alloca) {
1992       HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1993       return nullptr;
1994     }
1995 
1996     // Check for double free first.
1997     if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
1998         !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
1999       HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
2000                        SymBase, PreviousRetStatusSymbol);
2001       return nullptr;
2002 
2003     // If the pointer is allocated or escaped, but we are now trying to free it,
2004     // check that the call to free is proper.
2005     } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
2006                RsBase->isEscaped()) {
2007 
2008       // Check if an expected deallocation function matches the real one.
2009       bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family;
2010       if (!DeallocMatchesAlloc) {
2011         HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr,
2012                                 RsBase, SymBase, Hold);
2013         return nullptr;
2014       }
2015 
2016       // Check if the memory location being freed is the actual location
2017       // allocated, or an offset.
2018       RegionOffset Offset = R->getAsOffset();
2019       if (Offset.isValid() &&
2020           !Offset.hasSymbolicOffset() &&
2021           Offset.getOffset() != 0) {
2022         const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
2023         HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
2024                          Family, AllocExpr);
2025         return nullptr;
2026       }
2027     }
2028   }
2029 
2030   if (SymBase->getType()->isFunctionPointerType()) {
2031     HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
2032                           Family);
2033     return nullptr;
2034   }
2035 
2036   // Clean out the info on previous call to free return info.
2037   State = State->remove<FreeReturnValue>(SymBase);
2038 
2039   // Keep track of the return value. If it is NULL, we will know that free
2040   // failed.
2041   if (ReturnsNullOnFailure) {
2042     SVal RetVal = C.getSVal(ParentExpr);
2043     SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
2044     if (RetStatusSymbol) {
2045       C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
2046       State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
2047     }
2048   }
2049 
2050   // If we don't know anything about this symbol, a free on it may be totally
2051   // valid. If this is the case, lets assume that the allocation family of the
2052   // freeing function is the same as the symbols allocation family, and go with
2053   // that.
2054   assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family));
2055 
2056   // Normal free.
2057   if (Hold)
2058     return State->set<RegionState>(SymBase,
2059                                    RefState::getRelinquished(Family,
2060                                                              ParentExpr));
2061 
2062   return State->set<RegionState>(SymBase,
2063                                  RefState::getReleased(Family, ParentExpr));
2064 }
2065 
2066 std::optional<MallocChecker::CheckKind>
2067 MallocChecker::getCheckIfTracked(AllocationFamily Family,
2068                                  bool IsALeakCheck) const {
2069   switch (Family) {
2070   case AF_Malloc:
2071   case AF_Alloca:
2072   case AF_IfNameIndex: {
2073     if (ChecksEnabled[CK_MallocChecker])
2074       return CK_MallocChecker;
2075     return std::nullopt;
2076   }
2077   case AF_CXXNew:
2078   case AF_CXXNewArray: {
2079     if (IsALeakCheck) {
2080       if (ChecksEnabled[CK_NewDeleteLeaksChecker])
2081         return CK_NewDeleteLeaksChecker;
2082     }
2083     else {
2084       if (ChecksEnabled[CK_NewDeleteChecker])
2085         return CK_NewDeleteChecker;
2086     }
2087     return std::nullopt;
2088   }
2089   case AF_InnerBuffer: {
2090     if (ChecksEnabled[CK_InnerPointerChecker])
2091       return CK_InnerPointerChecker;
2092     return std::nullopt;
2093   }
2094   case AF_None: {
2095     llvm_unreachable("no family");
2096   }
2097   }
2098   llvm_unreachable("unhandled family");
2099 }
2100 
2101 std::optional<MallocChecker::CheckKind>
2102 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
2103                                  bool IsALeakCheck) const {
2104   if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
2105     return CK_MallocChecker;
2106 
2107   const RefState *RS = C.getState()->get<RegionState>(Sym);
2108   assert(RS);
2109   return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
2110 }
2111 
2112 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
2113   if (std::optional<nonloc::ConcreteInt> IntVal =
2114           V.getAs<nonloc::ConcreteInt>())
2115     os << "an integer (" << IntVal->getValue() << ")";
2116   else if (std::optional<loc::ConcreteInt> ConstAddr =
2117                V.getAs<loc::ConcreteInt>())
2118     os << "a constant address (" << ConstAddr->getValue() << ")";
2119   else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
2120     os << "the address of the label '" << Label->getLabel()->getName() << "'";
2121   else
2122     return false;
2123 
2124   return true;
2125 }
2126 
2127 bool MallocChecker::SummarizeRegion(raw_ostream &os,
2128                                     const MemRegion *MR) {
2129   switch (MR->getKind()) {
2130   case MemRegion::FunctionCodeRegionKind: {
2131     const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
2132     if (FD)
2133       os << "the address of the function '" << *FD << '\'';
2134     else
2135       os << "the address of a function";
2136     return true;
2137   }
2138   case MemRegion::BlockCodeRegionKind:
2139     os << "block text";
2140     return true;
2141   case MemRegion::BlockDataRegionKind:
2142     // FIXME: where the block came from?
2143     os << "a block";
2144     return true;
2145   default: {
2146     const MemSpaceRegion *MS = MR->getMemorySpace();
2147 
2148     if (isa<StackLocalsSpaceRegion>(MS)) {
2149       const VarRegion *VR = dyn_cast<VarRegion>(MR);
2150       const VarDecl *VD;
2151       if (VR)
2152         VD = VR->getDecl();
2153       else
2154         VD = nullptr;
2155 
2156       if (VD)
2157         os << "the address of the local variable '" << VD->getName() << "'";
2158       else
2159         os << "the address of a local stack variable";
2160       return true;
2161     }
2162 
2163     if (isa<StackArgumentsSpaceRegion>(MS)) {
2164       const VarRegion *VR = dyn_cast<VarRegion>(MR);
2165       const VarDecl *VD;
2166       if (VR)
2167         VD = VR->getDecl();
2168       else
2169         VD = nullptr;
2170 
2171       if (VD)
2172         os << "the address of the parameter '" << VD->getName() << "'";
2173       else
2174         os << "the address of a parameter";
2175       return true;
2176     }
2177 
2178     if (isa<GlobalsSpaceRegion>(MS)) {
2179       const VarRegion *VR = dyn_cast<VarRegion>(MR);
2180       const VarDecl *VD;
2181       if (VR)
2182         VD = VR->getDecl();
2183       else
2184         VD = nullptr;
2185 
2186       if (VD) {
2187         if (VD->isStaticLocal())
2188           os << "the address of the static variable '" << VD->getName() << "'";
2189         else
2190           os << "the address of the global variable '" << VD->getName() << "'";
2191       } else
2192         os << "the address of a global variable";
2193       return true;
2194     }
2195 
2196     return false;
2197   }
2198   }
2199 }
2200 
2201 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal,
2202                                          SourceRange Range,
2203                                          const Expr *DeallocExpr,
2204                                          AllocationFamily Family) const {
2205 
2206   if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
2207     C.addSink();
2208     return;
2209   }
2210 
2211   std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
2212   if (!CheckKind)
2213     return;
2214 
2215   if (ExplodedNode *N = C.generateErrorNode()) {
2216     if (!BT_BadFree[*CheckKind])
2217       BT_BadFree[*CheckKind].reset(new BugType(
2218           CheckNames[*CheckKind], "Bad free", categories::MemoryError));
2219 
2220     SmallString<100> buf;
2221     llvm::raw_svector_ostream os(buf);
2222 
2223     const MemRegion *MR = ArgVal.getAsRegion();
2224     while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
2225       MR = ER->getSuperRegion();
2226 
2227     os << "Argument to ";
2228     if (!printMemFnName(os, C, DeallocExpr))
2229       os << "deallocator";
2230 
2231     os << " is ";
2232     bool Summarized = MR ? SummarizeRegion(os, MR)
2233                          : SummarizeValue(os, ArgVal);
2234     if (Summarized)
2235       os << ", which is not memory allocated by ";
2236     else
2237       os << "not memory allocated by ";
2238 
2239     printExpectedAllocName(os, Family);
2240 
2241     auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
2242                                                       os.str(), N);
2243     R->markInteresting(MR);
2244     R->addRange(Range);
2245     C.emitReport(std::move(R));
2246   }
2247 }
2248 
2249 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
2250                                      SourceRange Range) const {
2251 
2252   std::optional<MallocChecker::CheckKind> CheckKind;
2253 
2254   if (ChecksEnabled[CK_MallocChecker])
2255     CheckKind = CK_MallocChecker;
2256   else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
2257     CheckKind = CK_MismatchedDeallocatorChecker;
2258   else {
2259     C.addSink();
2260     return;
2261   }
2262 
2263   if (ExplodedNode *N = C.generateErrorNode()) {
2264     if (!BT_FreeAlloca[*CheckKind])
2265       BT_FreeAlloca[*CheckKind].reset(new BugType(
2266           CheckNames[*CheckKind], "Free alloca()", categories::MemoryError));
2267 
2268     auto R = std::make_unique<PathSensitiveBugReport>(
2269         *BT_FreeAlloca[*CheckKind],
2270         "Memory allocated by alloca() should not be deallocated", N);
2271     R->markInteresting(ArgVal.getAsRegion());
2272     R->addRange(Range);
2273     C.emitReport(std::move(R));
2274   }
2275 }
2276 
2277 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C,
2278                                             SourceRange Range,
2279                                             const Expr *DeallocExpr,
2280                                             const RefState *RS, SymbolRef Sym,
2281                                             bool OwnershipTransferred) const {
2282 
2283   if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
2284     C.addSink();
2285     return;
2286   }
2287 
2288   if (ExplodedNode *N = C.generateErrorNode()) {
2289     if (!BT_MismatchedDealloc)
2290       BT_MismatchedDealloc.reset(
2291           new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
2292                       "Bad deallocator", categories::MemoryError));
2293 
2294     SmallString<100> buf;
2295     llvm::raw_svector_ostream os(buf);
2296 
2297     const Expr *AllocExpr = cast<Expr>(RS->getStmt());
2298     SmallString<20> AllocBuf;
2299     llvm::raw_svector_ostream AllocOs(AllocBuf);
2300     SmallString<20> DeallocBuf;
2301     llvm::raw_svector_ostream DeallocOs(DeallocBuf);
2302 
2303     if (OwnershipTransferred) {
2304       if (printMemFnName(DeallocOs, C, DeallocExpr))
2305         os << DeallocOs.str() << " cannot";
2306       else
2307         os << "Cannot";
2308 
2309       os << " take ownership of memory";
2310 
2311       if (printMemFnName(AllocOs, C, AllocExpr))
2312         os << " allocated by " << AllocOs.str();
2313     } else {
2314       os << "Memory";
2315       if (printMemFnName(AllocOs, C, AllocExpr))
2316         os << " allocated by " << AllocOs.str();
2317 
2318       os << " should be deallocated by ";
2319         printExpectedDeallocName(os, RS->getAllocationFamily());
2320 
2321         if (printMemFnName(DeallocOs, C, DeallocExpr))
2322           os << ", not " << DeallocOs.str();
2323     }
2324 
2325     auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc,
2326                                                       os.str(), N);
2327     R->markInteresting(Sym);
2328     R->addRange(Range);
2329     R->addVisitor<MallocBugVisitor>(Sym);
2330     C.emitReport(std::move(R));
2331   }
2332 }
2333 
2334 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal,
2335                                      SourceRange Range, const Expr *DeallocExpr,
2336                                      AllocationFamily Family,
2337                                      const Expr *AllocExpr) const {
2338 
2339   if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
2340     C.addSink();
2341     return;
2342   }
2343 
2344   std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
2345   if (!CheckKind)
2346     return;
2347 
2348   ExplodedNode *N = C.generateErrorNode();
2349   if (!N)
2350     return;
2351 
2352   if (!BT_OffsetFree[*CheckKind])
2353     BT_OffsetFree[*CheckKind].reset(new BugType(
2354         CheckNames[*CheckKind], "Offset free", categories::MemoryError));
2355 
2356   SmallString<100> buf;
2357   llvm::raw_svector_ostream os(buf);
2358   SmallString<20> AllocNameBuf;
2359   llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
2360 
2361   const MemRegion *MR = ArgVal.getAsRegion();
2362   assert(MR && "Only MemRegion based symbols can have offset free errors");
2363 
2364   RegionOffset Offset = MR->getAsOffset();
2365   assert((Offset.isValid() &&
2366           !Offset.hasSymbolicOffset() &&
2367           Offset.getOffset() != 0) &&
2368          "Only symbols with a valid offset can have offset free errors");
2369 
2370   int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
2371 
2372   os << "Argument to ";
2373   if (!printMemFnName(os, C, DeallocExpr))
2374     os << "deallocator";
2375   os << " is offset by "
2376      << offsetBytes
2377      << " "
2378      << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
2379      << " from the start of ";
2380   if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr))
2381     os << "memory allocated by " << AllocNameOs.str();
2382   else
2383     os << "allocated memory";
2384 
2385   auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind],
2386                                                     os.str(), N);
2387   R->markInteresting(MR->getBaseRegion());
2388   R->addRange(Range);
2389   C.emitReport(std::move(R));
2390 }
2391 
2392 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range,
2393                                        SymbolRef Sym) const {
2394 
2395   if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] &&
2396       !ChecksEnabled[CK_InnerPointerChecker]) {
2397     C.addSink();
2398     return;
2399   }
2400 
2401   std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
2402   if (!CheckKind)
2403     return;
2404 
2405   if (ExplodedNode *N = C.generateErrorNode()) {
2406     if (!BT_UseFree[*CheckKind])
2407       BT_UseFree[*CheckKind].reset(new BugType(
2408           CheckNames[*CheckKind], "Use-after-free", categories::MemoryError));
2409 
2410     AllocationFamily AF =
2411         C.getState()->get<RegionState>(Sym)->getAllocationFamily();
2412 
2413     auto R = std::make_unique<PathSensitiveBugReport>(
2414         *BT_UseFree[*CheckKind],
2415         AF == AF_InnerBuffer
2416             ? "Inner pointer of container used after re/deallocation"
2417             : "Use of memory after it is freed",
2418         N);
2419 
2420     R->markInteresting(Sym);
2421     R->addRange(Range);
2422     R->addVisitor<MallocBugVisitor>(Sym);
2423 
2424     if (AF == AF_InnerBuffer)
2425       R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym));
2426 
2427     C.emitReport(std::move(R));
2428   }
2429 }
2430 
2431 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range,
2432                                      bool Released, SymbolRef Sym,
2433                                      SymbolRef PrevSym) const {
2434 
2435   if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
2436     C.addSink();
2437     return;
2438   }
2439 
2440   std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
2441   if (!CheckKind)
2442     return;
2443 
2444   if (ExplodedNode *N = C.generateErrorNode()) {
2445     if (!BT_DoubleFree[*CheckKind])
2446       BT_DoubleFree[*CheckKind].reset(new BugType(
2447           CheckNames[*CheckKind], "Double free", categories::MemoryError));
2448 
2449     auto R = std::make_unique<PathSensitiveBugReport>(
2450         *BT_DoubleFree[*CheckKind],
2451         (Released ? "Attempt to free released memory"
2452                   : "Attempt to free non-owned memory"),
2453         N);
2454     R->addRange(Range);
2455     R->markInteresting(Sym);
2456     if (PrevSym)
2457       R->markInteresting(PrevSym);
2458     R->addVisitor<MallocBugVisitor>(Sym);
2459     C.emitReport(std::move(R));
2460   }
2461 }
2462 
2463 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
2464 
2465   if (!ChecksEnabled[CK_NewDeleteChecker]) {
2466     C.addSink();
2467     return;
2468   }
2469 
2470   std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
2471   if (!CheckKind)
2472     return;
2473 
2474   if (ExplodedNode *N = C.generateErrorNode()) {
2475     if (!BT_DoubleDelete)
2476       BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
2477                                         "Double delete",
2478                                         categories::MemoryError));
2479 
2480     auto R = std::make_unique<PathSensitiveBugReport>(
2481         *BT_DoubleDelete, "Attempt to delete released memory", N);
2482 
2483     R->markInteresting(Sym);
2484     R->addVisitor<MallocBugVisitor>(Sym);
2485     C.emitReport(std::move(R));
2486   }
2487 }
2488 
2489 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
2490                                        SymbolRef Sym) const {
2491 
2492   if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
2493     C.addSink();
2494     return;
2495   }
2496 
2497   std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
2498 
2499   if (!CheckKind)
2500     return;
2501 
2502   if (ExplodedNode *N = C.generateErrorNode()) {
2503     if (!BT_UseZerroAllocated[*CheckKind])
2504       BT_UseZerroAllocated[*CheckKind].reset(
2505           new BugType(CheckNames[*CheckKind], "Use of zero allocated",
2506                       categories::MemoryError));
2507 
2508     auto R = std::make_unique<PathSensitiveBugReport>(
2509         *BT_UseZerroAllocated[*CheckKind],
2510         "Use of memory allocated with size zero", N);
2511 
2512     R->addRange(Range);
2513     if (Sym) {
2514       R->markInteresting(Sym);
2515       R->addVisitor<MallocBugVisitor>(Sym);
2516     }
2517     C.emitReport(std::move(R));
2518   }
2519 }
2520 
2521 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal,
2522                                           SourceRange Range,
2523                                           const Expr *FreeExpr,
2524                                           AllocationFamily Family) const {
2525   if (!ChecksEnabled[CK_MallocChecker]) {
2526     C.addSink();
2527     return;
2528   }
2529 
2530   std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
2531   if (!CheckKind)
2532     return;
2533 
2534   if (ExplodedNode *N = C.generateErrorNode()) {
2535     if (!BT_BadFree[*CheckKind])
2536       BT_BadFree[*CheckKind].reset(new BugType(
2537           CheckNames[*CheckKind], "Bad free", categories::MemoryError));
2538 
2539     SmallString<100> Buf;
2540     llvm::raw_svector_ostream Os(Buf);
2541 
2542     const MemRegion *MR = ArgVal.getAsRegion();
2543     while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
2544       MR = ER->getSuperRegion();
2545 
2546     Os << "Argument to ";
2547     if (!printMemFnName(Os, C, FreeExpr))
2548       Os << "deallocator";
2549 
2550     Os << " is a function pointer";
2551 
2552     auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
2553                                                       Os.str(), N);
2554     R->markInteresting(MR);
2555     R->addRange(Range);
2556     C.emitReport(std::move(R));
2557   }
2558 }
2559 
2560 ProgramStateRef
2561 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call,
2562                              bool ShouldFreeOnFail, ProgramStateRef State,
2563                              AllocationFamily Family, bool SuffixWithN) const {
2564   if (!State)
2565     return nullptr;
2566 
2567   const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr());
2568 
2569   if (SuffixWithN && CE->getNumArgs() < 3)
2570     return nullptr;
2571   else if (CE->getNumArgs() < 2)
2572     return nullptr;
2573 
2574   const Expr *arg0Expr = CE->getArg(0);
2575   SVal Arg0Val = C.getSVal(arg0Expr);
2576   if (!isa<DefinedOrUnknownSVal>(Arg0Val))
2577     return nullptr;
2578   DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
2579 
2580   SValBuilder &svalBuilder = C.getSValBuilder();
2581 
2582   DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ(
2583       State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType()));
2584 
2585   // Get the size argument.
2586   const Expr *Arg1 = CE->getArg(1);
2587 
2588   // Get the value of the size argument.
2589   SVal TotalSize = C.getSVal(Arg1);
2590   if (SuffixWithN)
2591     TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2));
2592   if (!isa<DefinedOrUnknownSVal>(TotalSize))
2593     return nullptr;
2594 
2595   // Compare the size argument to 0.
2596   DefinedOrUnknownSVal SizeZero =
2597       svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(),
2598                          svalBuilder.makeIntValWithWidth(
2599                              svalBuilder.getContext().getSizeType(), 0));
2600 
2601   ProgramStateRef StatePtrIsNull, StatePtrNotNull;
2602   std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
2603   ProgramStateRef StateSizeIsZero, StateSizeNotZero;
2604   std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
2605   // We only assume exceptional states if they are definitely true; if the
2606   // state is under-constrained, assume regular realloc behavior.
2607   bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
2608   bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
2609 
2610   // If the ptr is NULL and the size is not 0, the call is equivalent to
2611   // malloc(size).
2612   if (PrtIsNull && !SizeIsZero) {
2613     ProgramStateRef stateMalloc = MallocMemAux(
2614         C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family);
2615     return stateMalloc;
2616   }
2617 
2618   if (PrtIsNull && SizeIsZero)
2619     return State;
2620 
2621   assert(!PrtIsNull);
2622 
2623   bool IsKnownToBeAllocated = false;
2624 
2625   // If the size is 0, free the memory.
2626   if (SizeIsZero)
2627     // The semantics of the return value are:
2628     // If size was equal to 0, either NULL or a pointer suitable to be passed
2629     // to free() is returned. We just free the input pointer and do not add
2630     // any constrains on the output pointer.
2631     if (ProgramStateRef stateFree = FreeMemAux(
2632             C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family))
2633       return stateFree;
2634 
2635   // Default behavior.
2636   if (ProgramStateRef stateFree =
2637           FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) {
2638 
2639     ProgramStateRef stateRealloc =
2640         MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family);
2641     if (!stateRealloc)
2642       return nullptr;
2643 
2644     OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure;
2645     if (ShouldFreeOnFail)
2646       Kind = OAR_FreeOnFailure;
2647     else if (!IsKnownToBeAllocated)
2648       Kind = OAR_DoNotTrackAfterFailure;
2649 
2650     // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
2651     SymbolRef FromPtr = arg0Val.getLocSymbolInBase();
2652     SVal RetVal = C.getSVal(CE);
2653     SymbolRef ToPtr = RetVal.getAsSymbol();
2654     assert(FromPtr && ToPtr &&
2655            "By this point, FreeMemAux and MallocMemAux should have checked "
2656            "whether the argument or the return value is symbolic!");
2657 
2658     // Record the info about the reallocated symbol so that we could properly
2659     // process failed reallocation.
2660     stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
2661                                                    ReallocPair(FromPtr, Kind));
2662     // The reallocated symbol should stay alive for as long as the new symbol.
2663     C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
2664     return stateRealloc;
2665   }
2666   return nullptr;
2667 }
2668 
2669 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C,
2670                                          const CallEvent &Call,
2671                                          ProgramStateRef State) {
2672   if (!State)
2673     return nullptr;
2674 
2675   if (Call.getNumArgs() < 2)
2676     return nullptr;
2677 
2678   SValBuilder &svalBuilder = C.getSValBuilder();
2679   SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
2680   SVal TotalSize =
2681       evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
2682 
2683   return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc);
2684 }
2685 
2686 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N,
2687                                                          SymbolRef Sym,
2688                                                          CheckerContext &C) {
2689   const LocationContext *LeakContext = N->getLocationContext();
2690   // Walk the ExplodedGraph backwards and find the first node that referred to
2691   // the tracked symbol.
2692   const ExplodedNode *AllocNode = N;
2693   const MemRegion *ReferenceRegion = nullptr;
2694 
2695   while (N) {
2696     ProgramStateRef State = N->getState();
2697     if (!State->get<RegionState>(Sym))
2698       break;
2699 
2700     // Find the most recent expression bound to the symbol in the current
2701     // context.
2702     if (!ReferenceRegion) {
2703       if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
2704         SVal Val = State->getSVal(MR);
2705         if (Val.getAsLocSymbol() == Sym) {
2706           const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>();
2707           // Do not show local variables belonging to a function other than
2708           // where the error is reported.
2709           if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame()))
2710             ReferenceRegion = MR;
2711         }
2712       }
2713     }
2714 
2715     // Allocation node, is the last node in the current or parent context in
2716     // which the symbol was tracked.
2717     const LocationContext *NContext = N->getLocationContext();
2718     if (NContext == LeakContext ||
2719         NContext->isParentOf(LeakContext))
2720       AllocNode = N;
2721     N = N->pred_empty() ? nullptr : *(N->pred_begin());
2722   }
2723 
2724   return LeakInfo(AllocNode, ReferenceRegion);
2725 }
2726 
2727 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N,
2728                                CheckerContext &C) const {
2729 
2730   if (!ChecksEnabled[CK_MallocChecker] &&
2731       !ChecksEnabled[CK_NewDeleteLeaksChecker])
2732     return;
2733 
2734   const RefState *RS = C.getState()->get<RegionState>(Sym);
2735   assert(RS && "cannot leak an untracked symbol");
2736   AllocationFamily Family = RS->getAllocationFamily();
2737 
2738   if (Family == AF_Alloca)
2739     return;
2740 
2741   std::optional<MallocChecker::CheckKind> CheckKind =
2742       getCheckIfTracked(Family, true);
2743 
2744   if (!CheckKind)
2745     return;
2746 
2747   assert(N);
2748   if (!BT_Leak[*CheckKind]) {
2749     // Leaks should not be reported if they are post-dominated by a sink:
2750     // (1) Sinks are higher importance bugs.
2751     // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
2752     //     with __noreturn functions such as assert() or exit(). We choose not
2753     //     to report leaks on such paths.
2754     BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak",
2755                                           categories::MemoryError,
2756                                           /*SuppressOnSink=*/true));
2757   }
2758 
2759   // Most bug reports are cached at the location where they occurred.
2760   // With leaks, we want to unique them by the location where they were
2761   // allocated, and only report a single path.
2762   PathDiagnosticLocation LocUsedForUniqueing;
2763   const ExplodedNode *AllocNode = nullptr;
2764   const MemRegion *Region = nullptr;
2765   std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
2766 
2767   const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics();
2768   if (AllocationStmt)
2769     LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
2770                                               C.getSourceManager(),
2771                                               AllocNode->getLocationContext());
2772 
2773   SmallString<200> buf;
2774   llvm::raw_svector_ostream os(buf);
2775   if (Region && Region->canPrintPretty()) {
2776     os << "Potential leak of memory pointed to by ";
2777     Region->printPretty(os);
2778   } else {
2779     os << "Potential memory leak";
2780   }
2781 
2782   auto R = std::make_unique<PathSensitiveBugReport>(
2783       *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
2784       AllocNode->getLocationContext()->getDecl());
2785   R->markInteresting(Sym);
2786   R->addVisitor<MallocBugVisitor>(Sym, true);
2787   if (ShouldRegisterNoOwnershipChangeVisitor)
2788     R->addVisitor<NoOwnershipChangeVisitor>(Sym, this);
2789   C.emitReport(std::move(R));
2790 }
2791 
2792 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
2793                                      CheckerContext &C) const
2794 {
2795   ProgramStateRef state = C.getState();
2796   RegionStateTy OldRS = state->get<RegionState>();
2797   RegionStateTy::Factory &F = state->get_context<RegionState>();
2798 
2799   RegionStateTy RS = OldRS;
2800   SmallVector<SymbolRef, 2> Errors;
2801   for (auto [Sym, State] : RS) {
2802     if (SymReaper.isDead(Sym)) {
2803       if (State.isAllocated() || State.isAllocatedOfSizeZero())
2804         Errors.push_back(Sym);
2805       // Remove the dead symbol from the map.
2806       RS = F.remove(RS, Sym);
2807     }
2808   }
2809 
2810   if (RS == OldRS) {
2811     // We shouldn't have touched other maps yet.
2812     assert(state->get<ReallocPairs>() ==
2813            C.getState()->get<ReallocPairs>());
2814     assert(state->get<FreeReturnValue>() ==
2815            C.getState()->get<FreeReturnValue>());
2816     return;
2817   }
2818 
2819   // Cleanup the Realloc Pairs Map.
2820   ReallocPairsTy RP = state->get<ReallocPairs>();
2821   for (auto [Sym, ReallocPair] : RP) {
2822     if (SymReaper.isDead(Sym) || SymReaper.isDead(ReallocPair.ReallocatedSym)) {
2823       state = state->remove<ReallocPairs>(Sym);
2824     }
2825   }
2826 
2827   // Cleanup the FreeReturnValue Map.
2828   FreeReturnValueTy FR = state->get<FreeReturnValue>();
2829   for (auto [Sym, RetSym] : FR) {
2830     if (SymReaper.isDead(Sym) || SymReaper.isDead(RetSym)) {
2831       state = state->remove<FreeReturnValue>(Sym);
2832     }
2833   }
2834 
2835   // Generate leak node.
2836   ExplodedNode *N = C.getPredecessor();
2837   if (!Errors.empty()) {
2838     static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
2839     N = C.generateNonFatalErrorNode(C.getState(), &Tag);
2840     if (N) {
2841       for (SymbolRef Sym : Errors) {
2842         HandleLeak(Sym, N, C);
2843       }
2844     }
2845   }
2846 
2847   C.addTransition(state->set<RegionState>(RS), N);
2848 }
2849 
2850 void MallocChecker::checkPreCall(const CallEvent &Call,
2851                                  CheckerContext &C) const {
2852 
2853   if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) {
2854     const CXXDeleteExpr *DE = DC->getOriginExpr();
2855 
2856     if (!ChecksEnabled[CK_NewDeleteChecker])
2857       if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
2858         checkUseAfterFree(Sym, C, DE->getArgument());
2859 
2860     if (!isStandardNewDelete(DC->getDecl()))
2861       return;
2862 
2863     ProgramStateRef State = C.getState();
2864     bool IsKnownToBeAllocated;
2865     State = FreeMemAux(C, DE->getArgument(), Call, State,
2866                        /*Hold*/ false, IsKnownToBeAllocated,
2867                        (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew));
2868 
2869     C.addTransition(State);
2870     return;
2871   }
2872 
2873   if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) {
2874     SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
2875     if (!Sym || checkDoubleDelete(Sym, C))
2876       return;
2877   }
2878 
2879   // We will check for double free in the post visit.
2880   if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
2881     const FunctionDecl *FD = FC->getDecl();
2882     if (!FD)
2883       return;
2884 
2885     if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call))
2886       return;
2887   }
2888 
2889   // Check if the callee of a method is deleted.
2890   if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
2891     SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
2892     if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
2893       return;
2894   }
2895 
2896   // Check arguments for being used after free.
2897   for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
2898     SVal ArgSVal = Call.getArgSVal(I);
2899     if (isa<Loc>(ArgSVal)) {
2900       SymbolRef Sym = ArgSVal.getAsSymbol();
2901       if (!Sym)
2902         continue;
2903       if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
2904         return;
2905     }
2906   }
2907 }
2908 
2909 void MallocChecker::checkPreStmt(const ReturnStmt *S,
2910                                  CheckerContext &C) const {
2911   checkEscapeOnReturn(S, C);
2912 }
2913 
2914 // In the CFG, automatic destructors come after the return statement.
2915 // This callback checks for returning memory that is freed by automatic
2916 // destructors, as those cannot be reached in checkPreStmt().
2917 void MallocChecker::checkEndFunction(const ReturnStmt *S,
2918                                      CheckerContext &C) const {
2919   checkEscapeOnReturn(S, C);
2920 }
2921 
2922 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S,
2923                                         CheckerContext &C) const {
2924   if (!S)
2925     return;
2926 
2927   const Expr *E = S->getRetValue();
2928   if (!E)
2929     return;
2930 
2931   // Check if we are returning a symbol.
2932   ProgramStateRef State = C.getState();
2933   SVal RetVal = C.getSVal(E);
2934   SymbolRef Sym = RetVal.getAsSymbol();
2935   if (!Sym)
2936     // If we are returning a field of the allocated struct or an array element,
2937     // the callee could still free the memory.
2938     // TODO: This logic should be a part of generic symbol escape callback.
2939     if (const MemRegion *MR = RetVal.getAsRegion())
2940       if (isa<FieldRegion, ElementRegion>(MR))
2941         if (const SymbolicRegion *BMR =
2942               dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
2943           Sym = BMR->getSymbol();
2944 
2945   // Check if we are returning freed memory.
2946   if (Sym)
2947     checkUseAfterFree(Sym, C, E);
2948 }
2949 
2950 // TODO: Blocks should be either inlined or should call invalidate regions
2951 // upon invocation. After that's in place, special casing here will not be
2952 // needed.
2953 void MallocChecker::checkPostStmt(const BlockExpr *BE,
2954                                   CheckerContext &C) const {
2955 
2956   // Scan the BlockDecRefExprs for any object the retain count checker
2957   // may be tracking.
2958   if (!BE->getBlockDecl()->hasCaptures())
2959     return;
2960 
2961   ProgramStateRef state = C.getState();
2962   const BlockDataRegion *R =
2963     cast<BlockDataRegion>(C.getSVal(BE).getAsRegion());
2964 
2965   auto ReferencedVars = R->referenced_vars();
2966   if (ReferencedVars.empty())
2967     return;
2968 
2969   SmallVector<const MemRegion*, 10> Regions;
2970   const LocationContext *LC = C.getLocationContext();
2971   MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
2972 
2973   for (const auto &Var : ReferencedVars) {
2974     const VarRegion *VR = Var.getCapturedRegion();
2975     if (VR->getSuperRegion() == R) {
2976       VR = MemMgr.getVarRegion(VR->getDecl(), LC);
2977     }
2978     Regions.push_back(VR);
2979   }
2980 
2981   state =
2982     state->scanReachableSymbols<StopTrackingCallback>(Regions).getState();
2983   C.addTransition(state);
2984 }
2985 
2986 static bool isReleased(SymbolRef Sym, CheckerContext &C) {
2987   assert(Sym);
2988   const RefState *RS = C.getState()->get<RegionState>(Sym);
2989   return (RS && RS->isReleased());
2990 }
2991 
2992 bool MallocChecker::suppressDeallocationsInSuspiciousContexts(
2993     const CallEvent &Call, CheckerContext &C) const {
2994   if (Call.getNumArgs() == 0)
2995     return false;
2996 
2997   StringRef FunctionStr = "";
2998   if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
2999     if (const Stmt *Body = FD->getBody())
3000       if (Body->getBeginLoc().isValid())
3001         FunctionStr =
3002             Lexer::getSourceText(CharSourceRange::getTokenRange(
3003                                      {FD->getBeginLoc(), Body->getBeginLoc()}),
3004                                  C.getSourceManager(), C.getLangOpts());
3005 
3006   // We do not model the Integer Set Library's retain-count based allocation.
3007   if (!FunctionStr.contains("__isl_"))
3008     return false;
3009 
3010   ProgramStateRef State = C.getState();
3011 
3012   for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments())
3013     if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol())
3014       if (const RefState *RS = State->get<RegionState>(Sym))
3015         State = State->set<RegionState>(Sym, RefState::getEscaped(RS));
3016 
3017   C.addTransition(State);
3018   return true;
3019 }
3020 
3021 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
3022                                       const Stmt *S) const {
3023 
3024   if (isReleased(Sym, C)) {
3025     HandleUseAfterFree(C, S->getSourceRange(), Sym);
3026     return true;
3027   }
3028 
3029   return false;
3030 }
3031 
3032 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
3033                                           const Stmt *S) const {
3034   assert(Sym);
3035 
3036   if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
3037     if (RS->isAllocatedOfSizeZero())
3038       HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym);
3039   }
3040   else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
3041     HandleUseZeroAlloc(C, S->getSourceRange(), Sym);
3042   }
3043 }
3044 
3045 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
3046 
3047   if (isReleased(Sym, C)) {
3048     HandleDoubleDelete(C, Sym);
3049     return true;
3050   }
3051   return false;
3052 }
3053 
3054 // Check if the location is a freed symbolic region.
3055 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
3056                                   CheckerContext &C) const {
3057   SymbolRef Sym = l.getLocSymbolInBase();
3058   if (Sym) {
3059     checkUseAfterFree(Sym, C, S);
3060     checkUseZeroAllocated(Sym, C, S);
3061   }
3062 }
3063 
3064 // If a symbolic region is assumed to NULL (or another constant), stop tracking
3065 // it - assuming that allocation failed on this path.
3066 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
3067                                               SVal Cond,
3068                                               bool Assumption) const {
3069   RegionStateTy RS = state->get<RegionState>();
3070   for (SymbolRef Sym : llvm::make_first_range(RS)) {
3071     // If the symbol is assumed to be NULL, remove it from consideration.
3072     ConstraintManager &CMgr = state->getConstraintManager();
3073     ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym);
3074     if (AllocFailed.isConstrainedTrue())
3075       state = state->remove<RegionState>(Sym);
3076   }
3077 
3078   // Realloc returns 0 when reallocation fails, which means that we should
3079   // restore the state of the pointer being reallocated.
3080   ReallocPairsTy RP = state->get<ReallocPairs>();
3081   for (auto [Sym, ReallocPair] : RP) {
3082     // If the symbol is assumed to be NULL, remove it from consideration.
3083     ConstraintManager &CMgr = state->getConstraintManager();
3084     ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym);
3085     if (!AllocFailed.isConstrainedTrue())
3086       continue;
3087 
3088     SymbolRef ReallocSym = ReallocPair.ReallocatedSym;
3089     if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
3090       if (RS->isReleased()) {
3091         switch (ReallocPair.Kind) {
3092         case OAR_ToBeFreedAfterFailure:
3093           state = state->set<RegionState>(ReallocSym,
3094               RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
3095           break;
3096         case OAR_DoNotTrackAfterFailure:
3097           state = state->remove<RegionState>(ReallocSym);
3098           break;
3099         default:
3100           assert(ReallocPair.Kind == OAR_FreeOnFailure);
3101         }
3102       }
3103     }
3104     state = state->remove<ReallocPairs>(Sym);
3105   }
3106 
3107   return state;
3108 }
3109 
3110 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
3111                                               const CallEvent *Call,
3112                                               ProgramStateRef State,
3113                                               SymbolRef &EscapingSymbol) const {
3114   assert(Call);
3115   EscapingSymbol = nullptr;
3116 
3117   // For now, assume that any C++ or block call can free memory.
3118   // TODO: If we want to be more optimistic here, we'll need to make sure that
3119   // regions escape to C++ containers. They seem to do that even now, but for
3120   // mysterious reasons.
3121   if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call))
3122     return true;
3123 
3124   // Check Objective-C messages by selector name.
3125   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
3126     // If it's not a framework call, or if it takes a callback, assume it
3127     // can free memory.
3128     if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
3129       return true;
3130 
3131     // If it's a method we know about, handle it explicitly post-call.
3132     // This should happen before the "freeWhenDone" check below.
3133     if (isKnownDeallocObjCMethodName(*Msg))
3134       return false;
3135 
3136     // If there's a "freeWhenDone" parameter, but the method isn't one we know
3137     // about, we can't be sure that the object will use free() to deallocate the
3138     // memory, so we can't model it explicitly. The best we can do is use it to
3139     // decide whether the pointer escapes.
3140     if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
3141       return *FreeWhenDone;
3142 
3143     // If the first selector piece ends with "NoCopy", and there is no
3144     // "freeWhenDone" parameter set to zero, we know ownership is being
3145     // transferred. Again, though, we can't be sure that the object will use
3146     // free() to deallocate the memory, so we can't model it explicitly.
3147     StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
3148     if (FirstSlot.endswith("NoCopy"))
3149       return true;
3150 
3151     // If the first selector starts with addPointer, insertPointer,
3152     // or replacePointer, assume we are dealing with NSPointerArray or similar.
3153     // This is similar to C++ containers (vector); we still might want to check
3154     // that the pointers get freed by following the container itself.
3155     if (FirstSlot.startswith("addPointer") ||
3156         FirstSlot.startswith("insertPointer") ||
3157         FirstSlot.startswith("replacePointer") ||
3158         FirstSlot.equals("valueWithPointer")) {
3159       return true;
3160     }
3161 
3162     // We should escape receiver on call to 'init'. This is especially relevant
3163     // to the receiver, as the corresponding symbol is usually not referenced
3164     // after the call.
3165     if (Msg->getMethodFamily() == OMF_init) {
3166       EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
3167       return true;
3168     }
3169 
3170     // Otherwise, assume that the method does not free memory.
3171     // Most framework methods do not free memory.
3172     return false;
3173   }
3174 
3175   // At this point the only thing left to handle is straight function calls.
3176   const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
3177   if (!FD)
3178     return true;
3179 
3180   // If it's one of the allocation functions we can reason about, we model
3181   // its behavior explicitly.
3182   if (isMemCall(*Call))
3183     return false;
3184 
3185   // If it's not a system call, assume it frees memory.
3186   if (!Call->isInSystemHeader())
3187     return true;
3188 
3189   // White list the system functions whose arguments escape.
3190   const IdentifierInfo *II = FD->getIdentifier();
3191   if (!II)
3192     return true;
3193   StringRef FName = II->getName();
3194 
3195   // White list the 'XXXNoCopy' CoreFoundation functions.
3196   // We specifically check these before
3197   if (FName.endswith("NoCopy")) {
3198     // Look for the deallocator argument. We know that the memory ownership
3199     // is not transferred only if the deallocator argument is
3200     // 'kCFAllocatorNull'.
3201     for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
3202       const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
3203       if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
3204         StringRef DeallocatorName = DE->getFoundDecl()->getName();
3205         if (DeallocatorName == "kCFAllocatorNull")
3206           return false;
3207       }
3208     }
3209     return true;
3210   }
3211 
3212   // Associating streams with malloced buffers. The pointer can escape if
3213   // 'closefn' is specified (and if that function does free memory),
3214   // but it will not if closefn is not specified.
3215   // Currently, we do not inspect the 'closefn' function (PR12101).
3216   if (FName == "funopen")
3217     if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
3218       return false;
3219 
3220   // Do not warn on pointers passed to 'setbuf' when used with std streams,
3221   // these leaks might be intentional when setting the buffer for stdio.
3222   // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
3223   if (FName == "setbuf" || FName =="setbuffer" ||
3224       FName == "setlinebuf" || FName == "setvbuf") {
3225     if (Call->getNumArgs() >= 1) {
3226       const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
3227       if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
3228         if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
3229           if (D->getCanonicalDecl()->getName().contains("std"))
3230             return true;
3231     }
3232   }
3233 
3234   // A bunch of other functions which either take ownership of a pointer or
3235   // wrap the result up in a struct or object, meaning it can be freed later.
3236   // (See RetainCountChecker.) Not all the parameters here are invalidated,
3237   // but the Malloc checker cannot differentiate between them. The right way
3238   // of doing this would be to implement a pointer escapes callback.
3239   if (FName == "CGBitmapContextCreate" ||
3240       FName == "CGBitmapContextCreateWithData" ||
3241       FName == "CVPixelBufferCreateWithBytes" ||
3242       FName == "CVPixelBufferCreateWithPlanarBytes" ||
3243       FName == "OSAtomicEnqueue") {
3244     return true;
3245   }
3246 
3247   if (FName == "postEvent" &&
3248       FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
3249     return true;
3250   }
3251 
3252   if (FName == "connectImpl" &&
3253       FD->getQualifiedNameAsString() == "QObject::connectImpl") {
3254     return true;
3255   }
3256 
3257   if (FName == "singleShotImpl" &&
3258       FD->getQualifiedNameAsString() == "QTimer::singleShotImpl") {
3259     return true;
3260   }
3261 
3262   // Handle cases where we know a buffer's /address/ can escape.
3263   // Note that the above checks handle some special cases where we know that
3264   // even though the address escapes, it's still our responsibility to free the
3265   // buffer.
3266   if (Call->argumentsMayEscape())
3267     return true;
3268 
3269   // Otherwise, assume that the function does not free memory.
3270   // Most system calls do not free the memory.
3271   return false;
3272 }
3273 
3274 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
3275                                              const InvalidatedSymbols &Escaped,
3276                                              const CallEvent *Call,
3277                                              PointerEscapeKind Kind) const {
3278   return checkPointerEscapeAux(State, Escaped, Call, Kind,
3279                                /*IsConstPointerEscape*/ false);
3280 }
3281 
3282 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
3283                                               const InvalidatedSymbols &Escaped,
3284                                               const CallEvent *Call,
3285                                               PointerEscapeKind Kind) const {
3286   // If a const pointer escapes, it may not be freed(), but it could be deleted.
3287   return checkPointerEscapeAux(State, Escaped, Call, Kind,
3288                                /*IsConstPointerEscape*/ true);
3289 }
3290 
3291 static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
3292   return (RS->getAllocationFamily() == AF_CXXNewArray ||
3293           RS->getAllocationFamily() == AF_CXXNew);
3294 }
3295 
3296 ProgramStateRef MallocChecker::checkPointerEscapeAux(
3297     ProgramStateRef State, const InvalidatedSymbols &Escaped,
3298     const CallEvent *Call, PointerEscapeKind Kind,
3299     bool IsConstPointerEscape) const {
3300   // If we know that the call does not free memory, or we want to process the
3301   // call later, keep tracking the top level arguments.
3302   SymbolRef EscapingSymbol = nullptr;
3303   if (Kind == PSK_DirectEscapeOnCall &&
3304       !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
3305                                                     EscapingSymbol) &&
3306       !EscapingSymbol) {
3307     return State;
3308   }
3309 
3310   for (SymbolRef sym : Escaped) {
3311     if (EscapingSymbol && EscapingSymbol != sym)
3312       continue;
3313 
3314     if (const RefState *RS = State->get<RegionState>(sym))
3315       if (RS->isAllocated() || RS->isAllocatedOfSizeZero())
3316         if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS))
3317           State = State->set<RegionState>(sym, RefState::getEscaped(RS));
3318   }
3319   return State;
3320 }
3321 
3322 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
3323                                        SVal ArgVal) const {
3324   if (!KernelZeroSizePtrValue)
3325     KernelZeroSizePtrValue =
3326         tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor());
3327 
3328   const llvm::APSInt *ArgValKnown =
3329       C.getSValBuilder().getKnownValue(State, ArgVal);
3330   return ArgValKnown && *KernelZeroSizePtrValue &&
3331          ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue;
3332 }
3333 
3334 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
3335                                          ProgramStateRef prevState) {
3336   ReallocPairsTy currMap = currState->get<ReallocPairs>();
3337   ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
3338 
3339   for (const ReallocPairsTy::value_type &Pair : prevMap) {
3340     SymbolRef sym = Pair.first;
3341     if (!currMap.lookup(sym))
3342       return sym;
3343   }
3344 
3345   return nullptr;
3346 }
3347 
3348 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) {
3349   if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) {
3350     StringRef N = II->getName();
3351     if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) {
3352       if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") ||
3353           N.contains_insensitive("intrusive") ||
3354           N.contains_insensitive("shared")) {
3355         return true;
3356       }
3357     }
3358   }
3359   return false;
3360 }
3361 
3362 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N,
3363                                                    BugReporterContext &BRC,
3364                                                    PathSensitiveBugReport &BR) {
3365   ProgramStateRef state = N->getState();
3366   ProgramStateRef statePrev = N->getFirstPred()->getState();
3367 
3368   const RefState *RSCurr = state->get<RegionState>(Sym);
3369   const RefState *RSPrev = statePrev->get<RegionState>(Sym);
3370 
3371   const Stmt *S = N->getStmtForDiagnostics();
3372   // When dealing with containers, we sometimes want to give a note
3373   // even if the statement is missing.
3374   if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer))
3375     return nullptr;
3376 
3377   const LocationContext *CurrentLC = N->getLocationContext();
3378 
3379   // If we find an atomic fetch_add or fetch_sub within the destructor in which
3380   // the pointer was released (before the release), this is likely a destructor
3381   // of a shared pointer.
3382   // Because we don't model atomics, and also because we don't know that the
3383   // original reference count is positive, we should not report use-after-frees
3384   // on objects deleted in such destructors. This can probably be improved
3385   // through better shared pointer modeling.
3386   if (ReleaseDestructorLC) {
3387     if (const auto *AE = dyn_cast<AtomicExpr>(S)) {
3388       AtomicExpr::AtomicOp Op = AE->getOp();
3389       if (Op == AtomicExpr::AO__c11_atomic_fetch_add ||
3390           Op == AtomicExpr::AO__c11_atomic_fetch_sub) {
3391         if (ReleaseDestructorLC == CurrentLC ||
3392             ReleaseDestructorLC->isParentOf(CurrentLC)) {
3393           BR.markInvalid(getTag(), S);
3394         }
3395       }
3396     }
3397   }
3398 
3399   // FIXME: We will eventually need to handle non-statement-based events
3400   // (__attribute__((cleanup))).
3401 
3402   // Find out if this is an interesting point and what is the kind.
3403   StringRef Msg;
3404   std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr;
3405   SmallString<256> Buf;
3406   llvm::raw_svector_ostream OS(Buf);
3407 
3408   if (Mode == Normal) {
3409     if (isAllocated(RSCurr, RSPrev, S)) {
3410       Msg = "Memory is allocated";
3411       StackHint = std::make_unique<StackHintGeneratorForSymbol>(
3412           Sym, "Returned allocated memory");
3413     } else if (isReleased(RSCurr, RSPrev, S)) {
3414       const auto Family = RSCurr->getAllocationFamily();
3415       switch (Family) {
3416         case AF_Alloca:
3417         case AF_Malloc:
3418         case AF_CXXNew:
3419         case AF_CXXNewArray:
3420         case AF_IfNameIndex:
3421           Msg = "Memory is released";
3422           StackHint = std::make_unique<StackHintGeneratorForSymbol>(
3423               Sym, "Returning; memory was released");
3424           break;
3425         case AF_InnerBuffer: {
3426           const MemRegion *ObjRegion =
3427               allocation_state::getContainerObjRegion(statePrev, Sym);
3428           const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion);
3429           QualType ObjTy = TypedRegion->getValueType();
3430           OS << "Inner buffer of '" << ObjTy << "' ";
3431 
3432           if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) {
3433             OS << "deallocated by call to destructor";
3434             StackHint = std::make_unique<StackHintGeneratorForSymbol>(
3435                 Sym, "Returning; inner buffer was deallocated");
3436           } else {
3437             OS << "reallocated by call to '";
3438             const Stmt *S = RSCurr->getStmt();
3439             if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) {
3440               OS << MemCallE->getMethodDecl()->getDeclName();
3441             } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) {
3442               OS << OpCallE->getDirectCallee()->getDeclName();
3443             } else if (const auto *CallE = dyn_cast<CallExpr>(S)) {
3444               auto &CEMgr = BRC.getStateManager().getCallEventManager();
3445               CallEventRef<> Call =
3446                   CEMgr.getSimpleCall(CallE, state, CurrentLC, {nullptr, 0});
3447               if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()))
3448                 OS << D->getDeclName();
3449               else
3450                 OS << "unknown";
3451             }
3452             OS << "'";
3453             StackHint = std::make_unique<StackHintGeneratorForSymbol>(
3454                 Sym, "Returning; inner buffer was reallocated");
3455           }
3456           Msg = OS.str();
3457           break;
3458         }
3459         case AF_None:
3460           llvm_unreachable("Unhandled allocation family!");
3461       }
3462 
3463       // See if we're releasing memory while inlining a destructor
3464       // (or one of its callees). This turns on various common
3465       // false positive suppressions.
3466       bool FoundAnyDestructor = false;
3467       for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) {
3468         if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) {
3469           if (isReferenceCountingPointerDestructor(DD)) {
3470             // This immediately looks like a reference-counting destructor.
3471             // We're bad at guessing the original reference count of the object,
3472             // so suppress the report for now.
3473             BR.markInvalid(getTag(), DD);
3474           } else if (!FoundAnyDestructor) {
3475             assert(!ReleaseDestructorLC &&
3476                    "There can be only one release point!");
3477             // Suspect that it's a reference counting pointer destructor.
3478             // On one of the next nodes might find out that it has atomic
3479             // reference counting operations within it (see the code above),
3480             // and if so, we'd conclude that it likely is a reference counting
3481             // pointer destructor.
3482             ReleaseDestructorLC = LC->getStackFrame();
3483             // It is unlikely that releasing memory is delegated to a destructor
3484             // inside a destructor of a shared pointer, because it's fairly hard
3485             // to pass the information that the pointer indeed needs to be
3486             // released into it. So we're only interested in the innermost
3487             // destructor.
3488             FoundAnyDestructor = true;
3489           }
3490         }
3491       }
3492     } else if (isRelinquished(RSCurr, RSPrev, S)) {
3493       Msg = "Memory ownership is transferred";
3494       StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, "");
3495     } else if (hasReallocFailed(RSCurr, RSPrev, S)) {
3496       Mode = ReallocationFailed;
3497       Msg = "Reallocation failed";
3498       StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>(
3499           Sym, "Reallocation failed");
3500 
3501       if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
3502         // Is it possible to fail two reallocs WITHOUT testing in between?
3503         assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
3504           "We only support one failed realloc at a time.");
3505         BR.markInteresting(sym);
3506         FailedReallocSymbol = sym;
3507       }
3508     }
3509 
3510   // We are in a special mode if a reallocation failed later in the path.
3511   } else if (Mode == ReallocationFailed) {
3512     assert(FailedReallocSymbol && "No symbol to look for.");
3513 
3514     // Is this is the first appearance of the reallocated symbol?
3515     if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
3516       // We're at the reallocation point.
3517       Msg = "Attempt to reallocate memory";
3518       StackHint = std::make_unique<StackHintGeneratorForSymbol>(
3519           Sym, "Returned reallocated memory");
3520       FailedReallocSymbol = nullptr;
3521       Mode = Normal;
3522     }
3523   }
3524 
3525   if (Msg.empty()) {
3526     assert(!StackHint);
3527     return nullptr;
3528   }
3529 
3530   assert(StackHint);
3531 
3532   // Generate the extra diagnostic.
3533   PathDiagnosticLocation Pos;
3534   if (!S) {
3535     assert(RSCurr->getAllocationFamily() == AF_InnerBuffer);
3536     auto PostImplCall = N->getLocation().getAs<PostImplicitCall>();
3537     if (!PostImplCall)
3538       return nullptr;
3539     Pos = PathDiagnosticLocation(PostImplCall->getLocation(),
3540                                  BRC.getSourceManager());
3541   } else {
3542     Pos = PathDiagnosticLocation(S, BRC.getSourceManager(),
3543                                  N->getLocationContext());
3544   }
3545 
3546   auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true);
3547   BR.addCallStackHint(P, std::move(StackHint));
3548   return P;
3549 }
3550 
3551 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
3552                                const char *NL, const char *Sep) const {
3553 
3554   RegionStateTy RS = State->get<RegionState>();
3555 
3556   if (!RS.isEmpty()) {
3557     Out << Sep << "MallocChecker :" << NL;
3558     for (auto [Sym, Data] : RS) {
3559       const RefState *RefS = State->get<RegionState>(Sym);
3560       AllocationFamily Family = RefS->getAllocationFamily();
3561       std::optional<MallocChecker::CheckKind> CheckKind =
3562           getCheckIfTracked(Family);
3563       if (!CheckKind)
3564         CheckKind = getCheckIfTracked(Family, true);
3565 
3566       Sym->dumpToStream(Out);
3567       Out << " : ";
3568       Data.dump(Out);
3569       if (CheckKind)
3570         Out << " (" << CheckNames[*CheckKind].getName() << ")";
3571       Out << NL;
3572     }
3573   }
3574 }
3575 
3576 namespace clang {
3577 namespace ento {
3578 namespace allocation_state {
3579 
3580 ProgramStateRef
3581 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) {
3582   AllocationFamily Family = AF_InnerBuffer;
3583   return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin));
3584 }
3585 
3586 } // end namespace allocation_state
3587 } // end namespace ento
3588 } // end namespace clang
3589 
3590 // Intended to be used in InnerPointerChecker to register the part of
3591 // MallocChecker connected to it.
3592 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) {
3593   MallocChecker *checker = mgr.getChecker<MallocChecker>();
3594   checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true;
3595   checker->CheckNames[MallocChecker::CK_InnerPointerChecker] =
3596       mgr.getCurrentCheckerName();
3597 }
3598 
3599 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) {
3600   auto *checker = mgr.registerChecker<MallocChecker>();
3601   checker->ShouldIncludeOwnershipAnnotatedFunctions =
3602       mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic");
3603   checker->ShouldRegisterNoOwnershipChangeVisitor =
3604       mgr.getAnalyzerOptions().getCheckerBooleanOption(
3605           checker, "AddNoOwnershipChangeNotes");
3606 }
3607 
3608 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) {
3609   return true;
3610 }
3611 
3612 #define REGISTER_CHECKER(name)                                                 \
3613   void ento::register##name(CheckerManager &mgr) {                             \
3614     MallocChecker *checker = mgr.getChecker<MallocChecker>();                  \
3615     checker->ChecksEnabled[MallocChecker::CK_##name] = true;                   \
3616     checker->CheckNames[MallocChecker::CK_##name] =                            \
3617         mgr.getCurrentCheckerName();                                           \
3618   }                                                                            \
3619                                                                                \
3620   bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
3621 
3622 REGISTER_CHECKER(MallocChecker)
3623 REGISTER_CHECKER(NewDeleteChecker)
3624 REGISTER_CHECKER(NewDeleteLeaksChecker)
3625 REGISTER_CHECKER(MismatchedDeallocatorChecker)
3626