1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines BugReporter, a utility class for generating
10 //  PathDiagnostics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/Stmt.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/CFGStmtMap.h"
27 #include "clang/Analysis/PathDiagnostic.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
35 #include "clang/StaticAnalyzer/Core/Checker.h"
36 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
37 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/SmallPtrSet.h"
53 #include "llvm/ADT/SmallString.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/iterator_range.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MemoryBuffer.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <iterator>
68 #include <memory>
69 #include <queue>
70 #include <string>
71 #include <tuple>
72 #include <utility>
73 #include <vector>
74 
75 using namespace clang;
76 using namespace ento;
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "BugReporter"
80 
81 STATISTIC(MaxBugClassSize,
82           "The maximum number of bug reports in the same equivalence class");
83 STATISTIC(MaxValidBugClassSize,
84           "The maximum number of bug reports in the same equivalence class "
85           "where at least one report is valid (not suppressed)");
86 
87 BugReporterVisitor::~BugReporterVisitor() = default;
88 
89 void BugReporterContext::anchor() {}
90 
91 //===----------------------------------------------------------------------===//
92 // PathDiagnosticBuilder and its associated routines and helper objects.
93 //===----------------------------------------------------------------------===//
94 
95 namespace {
96 
97 /// A (CallPiece, node assiciated with its CallEnter) pair.
98 using CallWithEntry =
99     std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
100 using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
101 
102 /// Map from each node to the diagnostic pieces visitors emit for them.
103 using VisitorsDiagnosticsTy =
104     llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
105 
106 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
107 /// function call it represents.
108 using LocationContextMap =
109     llvm::DenseMap<const PathPieces *, const LocationContext *>;
110 
111 /// A helper class that contains everything needed to construct a
112 /// PathDiagnostic object. It does no much more then providing convenient
113 /// getters and some well placed asserts for extra security.
114 class PathDiagnosticConstruct {
115   /// The consumer we're constructing the bug report for.
116   const PathDiagnosticConsumer *Consumer;
117   /// Our current position in the bug path, which is owned by
118   /// PathDiagnosticBuilder.
119   const ExplodedNode *CurrentNode;
120   /// A mapping from parts of the bug path (for example, a function call, which
121   /// would span backwards from a CallExit to a CallEnter with the nodes in
122   /// between them) with the location contexts it is associated with.
123   LocationContextMap LCM;
124   const SourceManager &SM;
125 
126 public:
127   /// We keep stack of calls to functions as we're ascending the bug path.
128   /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
129   /// that instead?
130   CallWithEntryStack CallStack;
131   /// The bug report we're constructing. For ease of use, this field is kept
132   /// public, though some "shortcut" getters are provided for commonly used
133   /// methods of PathDiagnostic.
134   std::unique_ptr<PathDiagnostic> PD;
135 
136 public:
137   PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
138                           const ExplodedNode *ErrorNode,
139                           const PathSensitiveBugReport *R);
140 
141   /// \returns the location context associated with the current position in the
142   /// bug path.
143   const LocationContext *getCurrLocationContext() const {
144     assert(CurrentNode && "Already reached the root!");
145     return CurrentNode->getLocationContext();
146   }
147 
148   /// Same as getCurrLocationContext (they should always return the same
149   /// location context), but works after reaching the root of the bug path as
150   /// well.
151   const LocationContext *getLocationContextForActivePath() const {
152     return LCM.find(&PD->getActivePath())->getSecond();
153   }
154 
155   const ExplodedNode *getCurrentNode() const { return CurrentNode; }
156 
157   /// Steps the current node to its predecessor.
158   /// \returns whether we reached the root of the bug path.
159   bool ascendToPrevNode() {
160     CurrentNode = CurrentNode->getFirstPred();
161     return static_cast<bool>(CurrentNode);
162   }
163 
164   const ParentMap &getParentMap() const {
165     return getCurrLocationContext()->getParentMap();
166   }
167 
168   const SourceManager &getSourceManager() const { return SM; }
169 
170   const Stmt *getParent(const Stmt *S) const {
171     return getParentMap().getParent(S);
172   }
173 
174   void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
175     assert(Path && LC);
176     LCM[Path] = LC;
177   }
178 
179   const LocationContext *getLocationContextFor(const PathPieces *Path) const {
180     assert(LCM.count(Path) &&
181            "Failed to find the context associated with these pieces!");
182     return LCM.find(Path)->getSecond();
183   }
184 
185   bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
186 
187   PathPieces &getActivePath() { return PD->getActivePath(); }
188   PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
189 
190   bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
191   bool shouldGenerateDiagnostics() const {
192     return Consumer->shouldGenerateDiagnostics();
193   }
194   bool supportsLogicalOpControlFlow() const {
195     return Consumer->supportsLogicalOpControlFlow();
196   }
197 };
198 
199 /// Contains every contextual information needed for constructing a
200 /// PathDiagnostic object for a given bug report. This class and its fields are
201 /// immutable, and passes a BugReportConstruct object around during the
202 /// construction.
203 class PathDiagnosticBuilder : public BugReporterContext {
204   /// A linear path from the error node to the root.
205   std::unique_ptr<const ExplodedGraph> BugPath;
206   /// The bug report we're describing. Visitors create their diagnostics with
207   /// them being the last entities being able to modify it (for example,
208   /// changing interestingness here would cause inconsistencies as to how this
209   /// file and visitors construct diagnostics), hence its const.
210   const PathSensitiveBugReport *R;
211   /// The leaf of the bug path. This isn't the same as the bug reports error
212   /// node, which refers to the *original* graph, not the bug path.
213   const ExplodedNode *const ErrorNode;
214   /// The diagnostic pieces visitors emitted, which is expected to be collected
215   /// by the time this builder is constructed.
216   std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
217 
218 public:
219   /// Find a non-invalidated report for a given equivalence class,  and returns
220   /// a PathDiagnosticBuilder able to construct bug reports for different
221   /// consumers. Returns None if no valid report is found.
222   static Optional<PathDiagnosticBuilder>
223   findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
224                   PathSensitiveBugReporter &Reporter);
225 
226   PathDiagnosticBuilder(
227       BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
228       PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
229       std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
230 
231   /// This function is responsible for generating diagnostic pieces that are
232   /// *not* provided by bug report visitors.
233   /// These diagnostics may differ depending on the consumer's settings,
234   /// and are therefore constructed separately for each consumer.
235   ///
236   /// There are two path diagnostics generation modes: with adding edges (used
237   /// for plists) and without  (used for HTML and text). When edges are added,
238   /// the path is modified to insert artificially generated edges.
239   /// Otherwise, more detailed diagnostics is emitted for block edges,
240   /// explaining the transitions in words.
241   std::unique_ptr<PathDiagnostic>
242   generate(const PathDiagnosticConsumer *PDC) const;
243 
244 private:
245   void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
246                                     const CallWithEntryStack &CallStack) const;
247   void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
248                                       PathDiagnosticLocation &PrevLoc) const;
249 
250   void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
251                                        BlockEdge BE) const;
252 
253   PathDiagnosticPieceRef
254   generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
255                         PathDiagnosticLocation &Start) const;
256 
257   PathDiagnosticPieceRef
258   generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
259                           PathDiagnosticLocation &Start) const;
260 
261   PathDiagnosticPieceRef
262   generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
263                           const CFGBlock *Src, const CFGBlock *DstC) const;
264 
265   PathDiagnosticLocation
266   ExecutionContinues(const PathDiagnosticConstruct &C) const;
267 
268   PathDiagnosticLocation
269   ExecutionContinues(llvm::raw_string_ostream &os,
270                      const PathDiagnosticConstruct &C) const;
271 
272   const PathSensitiveBugReport *getBugReport() const { return R; }
273 };
274 
275 } // namespace
276 
277 //===----------------------------------------------------------------------===//
278 // Base implementation of stack hint generators.
279 //===----------------------------------------------------------------------===//
280 
281 StackHintGenerator::~StackHintGenerator() = default;
282 
283 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
284   if (!N)
285     return getMessageForSymbolNotFound();
286 
287   ProgramPoint P = N->getLocation();
288   CallExitEnd CExit = P.castAs<CallExitEnd>();
289 
290   // FIXME: Use CallEvent to abstract this over all calls.
291   const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
292   const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
293   if (!CE)
294     return {};
295 
296   // Check if one of the parameters are set to the interesting symbol.
297   unsigned ArgIndex = 0;
298   for (CallExpr::const_arg_iterator I = CE->arg_begin(),
299                                     E = CE->arg_end(); I != E; ++I, ++ArgIndex){
300     SVal SV = N->getSVal(*I);
301 
302     // Check if the variable corresponding to the symbol is passed by value.
303     SymbolRef AS = SV.getAsLocSymbol();
304     if (AS == Sym) {
305       return getMessageForArg(*I, ArgIndex);
306     }
307 
308     // Check if the parameter is a pointer to the symbol.
309     if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
310       // Do not attempt to dereference void*.
311       if ((*I)->getType()->isVoidPointerType())
312         continue;
313       SVal PSV = N->getState()->getSVal(Reg->getRegion());
314       SymbolRef AS = PSV.getAsLocSymbol();
315       if (AS == Sym) {
316         return getMessageForArg(*I, ArgIndex);
317       }
318     }
319   }
320 
321   // Check if we are returning the interesting symbol.
322   SVal SV = N->getSVal(CE);
323   SymbolRef RetSym = SV.getAsLocSymbol();
324   if (RetSym == Sym) {
325     return getMessageForReturn(CE);
326   }
327 
328   return getMessageForSymbolNotFound();
329 }
330 
331 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
332                                                           unsigned ArgIndex) {
333   // Printed parameters start at 1, not 0.
334   ++ArgIndex;
335 
336   return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
337           llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
338 }
339 
340 //===----------------------------------------------------------------------===//
341 // Diagnostic cleanup.
342 //===----------------------------------------------------------------------===//
343 
344 static PathDiagnosticEventPiece *
345 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
346                             PathDiagnosticEventPiece *Y) {
347   // Prefer diagnostics that come from ConditionBRVisitor over
348   // those that came from TrackConstraintBRVisitor,
349   // unless the one from ConditionBRVisitor is
350   // its generic fallback diagnostic.
351   const void *tagPreferred = ConditionBRVisitor::getTag();
352   const void *tagLesser = TrackConstraintBRVisitor::getTag();
353 
354   if (X->getLocation() != Y->getLocation())
355     return nullptr;
356 
357   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
358     return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
359 
360   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
361     return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
362 
363   return nullptr;
364 }
365 
366 /// An optimization pass over PathPieces that removes redundant diagnostics
367 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
368 /// BugReporterVisitors use different methods to generate diagnostics, with
369 /// one capable of emitting diagnostics in some cases but not in others.  This
370 /// can lead to redundant diagnostic pieces at the same point in a path.
371 static void removeRedundantMsgs(PathPieces &path) {
372   unsigned N = path.size();
373   if (N < 2)
374     return;
375   // NOTE: this loop intentionally is not using an iterator.  Instead, we
376   // are streaming the path and modifying it in place.  This is done by
377   // grabbing the front, processing it, and if we decide to keep it append
378   // it to the end of the path.  The entire path is processed in this way.
379   for (unsigned i = 0; i < N; ++i) {
380     auto piece = std::move(path.front());
381     path.pop_front();
382 
383     switch (piece->getKind()) {
384       case PathDiagnosticPiece::Call:
385         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
386         break;
387       case PathDiagnosticPiece::Macro:
388         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
389         break;
390       case PathDiagnosticPiece::Event: {
391         if (i == N-1)
392           break;
393 
394         if (auto *nextEvent =
395             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
396           auto *event = cast<PathDiagnosticEventPiece>(piece.get());
397           // Check to see if we should keep one of the two pieces.  If we
398           // come up with a preference, record which piece to keep, and consume
399           // another piece from the path.
400           if (auto *pieceToKeep =
401                   eventsDescribeSameCondition(event, nextEvent)) {
402             piece = std::move(pieceToKeep == event ? piece : path.front());
403             path.pop_front();
404             ++i;
405           }
406         }
407         break;
408       }
409       case PathDiagnosticPiece::ControlFlow:
410       case PathDiagnosticPiece::Note:
411       case PathDiagnosticPiece::PopUp:
412         break;
413     }
414     path.push_back(std::move(piece));
415   }
416 }
417 
418 /// Recursively scan through a path and prune out calls and macros pieces
419 /// that aren't needed.  Return true if afterwards the path contains
420 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
421 static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
422                                 PathPieces &pieces,
423                                 const PathSensitiveBugReport *R,
424                                 bool IsInteresting = false) {
425   bool containsSomethingInteresting = IsInteresting;
426   const unsigned N = pieces.size();
427 
428   for (unsigned i = 0 ; i < N ; ++i) {
429     // Remove the front piece from the path.  If it is still something we
430     // want to keep once we are done, we will push it back on the end.
431     auto piece = std::move(pieces.front());
432     pieces.pop_front();
433 
434     switch (piece->getKind()) {
435       case PathDiagnosticPiece::Call: {
436         auto &call = cast<PathDiagnosticCallPiece>(*piece);
437         // Check if the location context is interesting.
438         if (!removeUnneededCalls(
439                 C, call.path, R,
440                 R->isInteresting(C.getLocationContextFor(&call.path))))
441           continue;
442 
443         containsSomethingInteresting = true;
444         break;
445       }
446       case PathDiagnosticPiece::Macro: {
447         auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
448         if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
449           continue;
450         containsSomethingInteresting = true;
451         break;
452       }
453       case PathDiagnosticPiece::Event: {
454         auto &event = cast<PathDiagnosticEventPiece>(*piece);
455 
456         // We never throw away an event, but we do throw it away wholesale
457         // as part of a path if we throw the entire path away.
458         containsSomethingInteresting |= !event.isPrunable();
459         break;
460       }
461       case PathDiagnosticPiece::ControlFlow:
462       case PathDiagnosticPiece::Note:
463       case PathDiagnosticPiece::PopUp:
464         break;
465     }
466 
467     pieces.push_back(std::move(piece));
468   }
469 
470   return containsSomethingInteresting;
471 }
472 
473 /// Same logic as above to remove extra pieces.
474 static void removePopUpNotes(PathPieces &Path) {
475   for (unsigned int i = 0; i < Path.size(); ++i) {
476     auto Piece = std::move(Path.front());
477     Path.pop_front();
478     if (!isa<PathDiagnosticPopUpPiece>(*Piece))
479       Path.push_back(std::move(Piece));
480   }
481 }
482 
483 /// Returns true if the given decl has been implicitly given a body, either by
484 /// the analyzer or by the compiler proper.
485 static bool hasImplicitBody(const Decl *D) {
486   assert(D);
487   return D->isImplicit() || !D->hasBody();
488 }
489 
490 /// Recursively scan through a path and make sure that all call pieces have
491 /// valid locations.
492 static void
493 adjustCallLocations(PathPieces &Pieces,
494                     PathDiagnosticLocation *LastCallLocation = nullptr) {
495   for (const auto &I : Pieces) {
496     auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
497 
498     if (!Call)
499       continue;
500 
501     if (LastCallLocation) {
502       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
503       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
504         Call->callEnter = *LastCallLocation;
505       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
506         Call->callReturn = *LastCallLocation;
507     }
508 
509     // Recursively clean out the subclass.  Keep this call around if
510     // it contains any informative diagnostics.
511     PathDiagnosticLocation *ThisCallLocation;
512     if (Call->callEnterWithin.asLocation().isValid() &&
513         !hasImplicitBody(Call->getCallee()))
514       ThisCallLocation = &Call->callEnterWithin;
515     else
516       ThisCallLocation = &Call->callEnter;
517 
518     assert(ThisCallLocation && "Outermost call has an invalid location");
519     adjustCallLocations(Call->path, ThisCallLocation);
520   }
521 }
522 
523 /// Remove edges in and out of C++ default initializer expressions. These are
524 /// for fields that have in-class initializers, as opposed to being initialized
525 /// explicitly in a constructor or braced list.
526 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
527   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
528     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
529       removeEdgesToDefaultInitializers(C->path);
530 
531     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
532       removeEdgesToDefaultInitializers(M->subPieces);
533 
534     if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
535       const Stmt *Start = CF->getStartLocation().asStmt();
536       const Stmt *End = CF->getEndLocation().asStmt();
537       if (Start && isa<CXXDefaultInitExpr>(Start)) {
538         I = Pieces.erase(I);
539         continue;
540       } else if (End && isa<CXXDefaultInitExpr>(End)) {
541         PathPieces::iterator Next = std::next(I);
542         if (Next != E) {
543           if (auto *NextCF =
544                   dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
545             NextCF->setStartLocation(CF->getStartLocation());
546           }
547         }
548         I = Pieces.erase(I);
549         continue;
550       }
551     }
552 
553     I++;
554   }
555 }
556 
557 /// Remove all pieces with invalid locations as these cannot be serialized.
558 /// We might have pieces with invalid locations as a result of inlining Body
559 /// Farm generated functions.
560 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
561   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
562     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
563       removePiecesWithInvalidLocations(C->path);
564 
565     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
566       removePiecesWithInvalidLocations(M->subPieces);
567 
568     if (!(*I)->getLocation().isValid() ||
569         !(*I)->getLocation().asLocation().isValid()) {
570       I = Pieces.erase(I);
571       continue;
572     }
573     I++;
574   }
575 }
576 
577 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
578     const PathDiagnosticConstruct &C) const {
579   if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
580     return PathDiagnosticLocation(S, getSourceManager(),
581                                   C.getCurrLocationContext());
582 
583   return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
584                                                getSourceManager());
585 }
586 
587 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
588     llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
589   // Slow, but probably doesn't matter.
590   if (os.str().empty())
591     os << ' ';
592 
593   const PathDiagnosticLocation &Loc = ExecutionContinues(C);
594 
595   if (Loc.asStmt())
596     os << "Execution continues on line "
597        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
598        << '.';
599   else {
600     os << "Execution jumps to the end of the ";
601     const Decl *D = C.getCurrLocationContext()->getDecl();
602     if (isa<ObjCMethodDecl>(D))
603       os << "method";
604     else if (isa<FunctionDecl>(D))
605       os << "function";
606     else {
607       assert(isa<BlockDecl>(D));
608       os << "anonymous block";
609     }
610     os << '.';
611   }
612 
613   return Loc;
614 }
615 
616 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
617   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
618     return PM.getParentIgnoreParens(S);
619 
620   const Stmt *Parent = PM.getParentIgnoreParens(S);
621   if (!Parent)
622     return nullptr;
623 
624   switch (Parent->getStmtClass()) {
625   case Stmt::ForStmtClass:
626   case Stmt::DoStmtClass:
627   case Stmt::WhileStmtClass:
628   case Stmt::ObjCForCollectionStmtClass:
629   case Stmt::CXXForRangeStmtClass:
630     return Parent;
631   default:
632     break;
633   }
634 
635   return nullptr;
636 }
637 
638 static PathDiagnosticLocation
639 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
640                          bool allowNestedContexts = false) {
641   if (!S)
642     return {};
643 
644   const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
645 
646   while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
647     switch (Parent->getStmtClass()) {
648       case Stmt::BinaryOperatorClass: {
649         const auto *B = cast<BinaryOperator>(Parent);
650         if (B->isLogicalOp())
651           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
652         break;
653       }
654       case Stmt::CompoundStmtClass:
655       case Stmt::StmtExprClass:
656         return PathDiagnosticLocation(S, SMgr, LC);
657       case Stmt::ChooseExprClass:
658         // Similar to '?' if we are referring to condition, just have the edge
659         // point to the entire choose expression.
660         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
661           return PathDiagnosticLocation(Parent, SMgr, LC);
662         else
663           return PathDiagnosticLocation(S, SMgr, LC);
664       case Stmt::BinaryConditionalOperatorClass:
665       case Stmt::ConditionalOperatorClass:
666         // For '?', if we are referring to condition, just have the edge point
667         // to the entire '?' expression.
668         if (allowNestedContexts ||
669             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
670           return PathDiagnosticLocation(Parent, SMgr, LC);
671         else
672           return PathDiagnosticLocation(S, SMgr, LC);
673       case Stmt::CXXForRangeStmtClass:
674         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
675           return PathDiagnosticLocation(S, SMgr, LC);
676         break;
677       case Stmt::DoStmtClass:
678           return PathDiagnosticLocation(S, SMgr, LC);
679       case Stmt::ForStmtClass:
680         if (cast<ForStmt>(Parent)->getBody() == S)
681           return PathDiagnosticLocation(S, SMgr, LC);
682         break;
683       case Stmt::IfStmtClass:
684         if (cast<IfStmt>(Parent)->getCond() != S)
685           return PathDiagnosticLocation(S, SMgr, LC);
686         break;
687       case Stmt::ObjCForCollectionStmtClass:
688         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
689           return PathDiagnosticLocation(S, SMgr, LC);
690         break;
691       case Stmt::WhileStmtClass:
692         if (cast<WhileStmt>(Parent)->getCond() != S)
693           return PathDiagnosticLocation(S, SMgr, LC);
694         break;
695       default:
696         break;
697     }
698 
699     S = Parent;
700   }
701 
702   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
703 
704   return PathDiagnosticLocation(S, SMgr, LC);
705 }
706 
707 //===----------------------------------------------------------------------===//
708 // "Minimal" path diagnostic generation algorithm.
709 //===----------------------------------------------------------------------===//
710 
711 /// If the piece contains a special message, add it to all the call pieces on
712 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
713 /// will construct an event at the call to malloc(), and add a stack hint that
714 /// an allocated memory was returned. We'll use this hint to construct a message
715 /// when returning from the call to my_malloc
716 ///
717 ///   void *my_malloc() { return malloc(sizeof(int)); }
718 ///   void fishy() {
719 ///     void *ptr = my_malloc(); // returned allocated memory
720 ///   } // leak
721 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
722     PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
723   if (R->hasCallStackHint(P))
724     for (const auto &I : CallStack) {
725       PathDiagnosticCallPiece *CP = I.first;
726       const ExplodedNode *N = I.second;
727       std::string stackMsg = R->getCallStackMessage(P, N);
728 
729       // The last message on the path to final bug is the most important
730       // one. Since we traverse the path backwards, do not add the message
731       // if one has been previously added.
732       if (!CP->hasCallStackMessage())
733         CP->setCallStackMessage(stackMsg);
734     }
735 }
736 
737 static void CompactMacroExpandedPieces(PathPieces &path,
738                                        const SourceManager& SM);
739 
740 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
741     const PathDiagnosticConstruct &C, const CFGBlock *Dst,
742     PathDiagnosticLocation &Start) const {
743 
744   const SourceManager &SM = getSourceManager();
745   // Figure out what case arm we took.
746   std::string sbuf;
747   llvm::raw_string_ostream os(sbuf);
748   PathDiagnosticLocation End;
749 
750   if (const Stmt *S = Dst->getLabel()) {
751     End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
752 
753     switch (S->getStmtClass()) {
754     default:
755       os << "No cases match in the switch statement. "
756         "Control jumps to line "
757         << End.asLocation().getExpansionLineNumber();
758       break;
759     case Stmt::DefaultStmtClass:
760       os << "Control jumps to the 'default' case at line "
761         << End.asLocation().getExpansionLineNumber();
762       break;
763 
764     case Stmt::CaseStmtClass: {
765       os << "Control jumps to 'case ";
766       const auto *Case = cast<CaseStmt>(S);
767       const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
768 
769       // Determine if it is an enum.
770       bool GetRawInt = true;
771 
772       if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
773         // FIXME: Maybe this should be an assertion.  Are there cases
774         // were it is not an EnumConstantDecl?
775         const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
776 
777         if (D) {
778           GetRawInt = false;
779           os << *D;
780         }
781       }
782 
783       if (GetRawInt)
784         os << LHS->EvaluateKnownConstInt(getASTContext());
785 
786       os << ":'  at line " << End.asLocation().getExpansionLineNumber();
787       break;
788     }
789     }
790   } else {
791     os << "'Default' branch taken. ";
792     End = ExecutionContinues(os, C);
793   }
794   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
795                                                        os.str());
796 }
797 
798 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
799     const PathDiagnosticConstruct &C, const Stmt *S,
800     PathDiagnosticLocation &Start) const {
801   std::string sbuf;
802   llvm::raw_string_ostream os(sbuf);
803   const PathDiagnosticLocation &End =
804       getEnclosingStmtLocation(S, C.getCurrLocationContext());
805   os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
806   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
807 }
808 
809 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
810     const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
811     const CFGBlock *Dst) const {
812 
813   const SourceManager &SM = getSourceManager();
814 
815   const auto *B = cast<BinaryOperator>(T);
816   std::string sbuf;
817   llvm::raw_string_ostream os(sbuf);
818   os << "Left side of '";
819   PathDiagnosticLocation Start, End;
820 
821   if (B->getOpcode() == BO_LAnd) {
822     os << "&&"
823       << "' is ";
824 
825     if (*(Src->succ_begin() + 1) == Dst) {
826       os << "false";
827       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
828       Start =
829         PathDiagnosticLocation::createOperatorLoc(B, SM);
830     } else {
831       os << "true";
832       Start =
833           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
834       End = ExecutionContinues(C);
835     }
836   } else {
837     assert(B->getOpcode() == BO_LOr);
838     os << "||"
839       << "' is ";
840 
841     if (*(Src->succ_begin() + 1) == Dst) {
842       os << "false";
843       Start =
844           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
845       End = ExecutionContinues(C);
846     } else {
847       os << "true";
848       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
849       Start =
850         PathDiagnosticLocation::createOperatorLoc(B, SM);
851     }
852   }
853   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
854                                                          os.str());
855 }
856 
857 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
858     PathDiagnosticConstruct &C, BlockEdge BE) const {
859   const SourceManager &SM = getSourceManager();
860   const LocationContext *LC = C.getCurrLocationContext();
861   const CFGBlock *Src = BE.getSrc();
862   const CFGBlock *Dst = BE.getDst();
863   const Stmt *T = Src->getTerminatorStmt();
864   if (!T)
865     return;
866 
867   auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
868   switch (T->getStmtClass()) {
869   default:
870     break;
871 
872   case Stmt::GotoStmtClass:
873   case Stmt::IndirectGotoStmtClass: {
874     if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
875       C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
876     break;
877   }
878 
879   case Stmt::SwitchStmtClass: {
880     C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
881     break;
882   }
883 
884   case Stmt::BreakStmtClass:
885   case Stmt::ContinueStmtClass: {
886     std::string sbuf;
887     llvm::raw_string_ostream os(sbuf);
888     PathDiagnosticLocation End = ExecutionContinues(os, C);
889     C.getActivePath().push_front(
890         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
891     break;
892   }
893 
894   // Determine control-flow for ternary '?'.
895   case Stmt::BinaryConditionalOperatorClass:
896   case Stmt::ConditionalOperatorClass: {
897     std::string sbuf;
898     llvm::raw_string_ostream os(sbuf);
899     os << "'?' condition is ";
900 
901     if (*(Src->succ_begin() + 1) == Dst)
902       os << "false";
903     else
904       os << "true";
905 
906     PathDiagnosticLocation End = ExecutionContinues(C);
907 
908     if (const Stmt *S = End.asStmt())
909       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
910 
911     C.getActivePath().push_front(
912         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
913     break;
914   }
915 
916   // Determine control-flow for short-circuited '&&' and '||'.
917   case Stmt::BinaryOperatorClass: {
918     if (!C.supportsLogicalOpControlFlow())
919       break;
920 
921     C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
922     break;
923   }
924 
925   case Stmt::DoStmtClass:
926     if (*(Src->succ_begin()) == Dst) {
927       std::string sbuf;
928       llvm::raw_string_ostream os(sbuf);
929 
930       os << "Loop condition is true. ";
931       PathDiagnosticLocation End = ExecutionContinues(os, C);
932 
933       if (const Stmt *S = End.asStmt())
934         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
935 
936       C.getActivePath().push_front(
937           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
938                                                            os.str()));
939     } else {
940       PathDiagnosticLocation End = ExecutionContinues(C);
941 
942       if (const Stmt *S = End.asStmt())
943         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
944 
945       C.getActivePath().push_front(
946           std::make_shared<PathDiagnosticControlFlowPiece>(
947               Start, End, "Loop condition is false.  Exiting loop"));
948     }
949     break;
950 
951   case Stmt::WhileStmtClass:
952   case Stmt::ForStmtClass:
953     if (*(Src->succ_begin() + 1) == Dst) {
954       std::string sbuf;
955       llvm::raw_string_ostream os(sbuf);
956 
957       os << "Loop condition is false. ";
958       PathDiagnosticLocation End = ExecutionContinues(os, C);
959       if (const Stmt *S = End.asStmt())
960         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
961 
962       C.getActivePath().push_front(
963           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
964                                                            os.str()));
965     } else {
966       PathDiagnosticLocation End = ExecutionContinues(C);
967       if (const Stmt *S = End.asStmt())
968         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
969 
970       C.getActivePath().push_front(
971           std::make_shared<PathDiagnosticControlFlowPiece>(
972               Start, End, "Loop condition is true.  Entering loop body"));
973     }
974 
975     break;
976 
977   case Stmt::IfStmtClass: {
978     PathDiagnosticLocation End = ExecutionContinues(C);
979 
980     if (const Stmt *S = End.asStmt())
981       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
982 
983     if (*(Src->succ_begin() + 1) == Dst)
984       C.getActivePath().push_front(
985           std::make_shared<PathDiagnosticControlFlowPiece>(
986               Start, End, "Taking false branch"));
987     else
988       C.getActivePath().push_front(
989           std::make_shared<PathDiagnosticControlFlowPiece>(
990               Start, End, "Taking true branch"));
991 
992     break;
993   }
994   }
995 }
996 
997 //===----------------------------------------------------------------------===//
998 // Functions for determining if a loop was executed 0 times.
999 //===----------------------------------------------------------------------===//
1000 
1001 static bool isLoop(const Stmt *Term) {
1002   switch (Term->getStmtClass()) {
1003     case Stmt::ForStmtClass:
1004     case Stmt::WhileStmtClass:
1005     case Stmt::ObjCForCollectionStmtClass:
1006     case Stmt::CXXForRangeStmtClass:
1007       return true;
1008     default:
1009       // Note that we intentionally do not include do..while here.
1010       return false;
1011   }
1012 }
1013 
1014 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1015   const CFGBlock *Src = BE->getSrc();
1016   assert(Src->succ_size() == 2);
1017   return (*(Src->succ_begin()+1) == BE->getDst());
1018 }
1019 
1020 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1021                               const Stmt *SubS) {
1022   while (SubS) {
1023     if (SubS == S)
1024       return true;
1025     SubS = PM.getParent(SubS);
1026   }
1027   return false;
1028 }
1029 
1030 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1031                                      const ExplodedNode *N) {
1032   while (N) {
1033     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1034     if (SP) {
1035       const Stmt *S = SP->getStmt();
1036       if (!isContainedByStmt(PM, Term, S))
1037         return S;
1038     }
1039     N = N->getFirstPred();
1040   }
1041   return nullptr;
1042 }
1043 
1044 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1045   const Stmt *LoopBody = nullptr;
1046   switch (Term->getStmtClass()) {
1047     case Stmt::CXXForRangeStmtClass: {
1048       const auto *FR = cast<CXXForRangeStmt>(Term);
1049       if (isContainedByStmt(PM, FR->getInc(), S))
1050         return true;
1051       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1052         return true;
1053       LoopBody = FR->getBody();
1054       break;
1055     }
1056     case Stmt::ForStmtClass: {
1057       const auto *FS = cast<ForStmt>(Term);
1058       if (isContainedByStmt(PM, FS->getInc(), S))
1059         return true;
1060       LoopBody = FS->getBody();
1061       break;
1062     }
1063     case Stmt::ObjCForCollectionStmtClass: {
1064       const auto *FC = cast<ObjCForCollectionStmt>(Term);
1065       LoopBody = FC->getBody();
1066       break;
1067     }
1068     case Stmt::WhileStmtClass:
1069       LoopBody = cast<WhileStmt>(Term)->getBody();
1070       break;
1071     default:
1072       return false;
1073   }
1074   return isContainedByStmt(PM, LoopBody, S);
1075 }
1076 
1077 /// Adds a sanitized control-flow diagnostic edge to a path.
1078 static void addEdgeToPath(PathPieces &path,
1079                           PathDiagnosticLocation &PrevLoc,
1080                           PathDiagnosticLocation NewLoc) {
1081   if (!NewLoc.isValid())
1082     return;
1083 
1084   SourceLocation NewLocL = NewLoc.asLocation();
1085   if (NewLocL.isInvalid())
1086     return;
1087 
1088   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1089     PrevLoc = NewLoc;
1090     return;
1091   }
1092 
1093   // Ignore self-edges, which occur when there are multiple nodes at the same
1094   // statement.
1095   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1096     return;
1097 
1098   path.push_front(
1099       std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1100   PrevLoc = NewLoc;
1101 }
1102 
1103 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1104 /// which returns the element for ObjCForCollectionStmts.
1105 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1106   const Stmt *S = B->getTerminatorCondition();
1107   if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1108     return FS->getElement();
1109   return S;
1110 }
1111 
1112 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1113 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1114 constexpr llvm::StringLiteral StrLoopRangeEmpty =
1115     "Loop body skipped when range is empty";
1116 constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1117     "Loop body skipped when collection is empty";
1118 
1119 static std::unique_ptr<FilesToLineNumsMap>
1120 findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1121 
1122 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1123     PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1124   ProgramPoint P = C.getCurrentNode()->getLocation();
1125   const SourceManager &SM = getSourceManager();
1126 
1127   // Have we encountered an entrance to a call?  It may be
1128   // the case that we have not encountered a matching
1129   // call exit before this point.  This means that the path
1130   // terminated within the call itself.
1131   if (auto CE = P.getAs<CallEnter>()) {
1132 
1133     if (C.shouldAddPathEdges()) {
1134       // Add an edge to the start of the function.
1135       const StackFrameContext *CalleeLC = CE->getCalleeContext();
1136       const Decl *D = CalleeLC->getDecl();
1137       // Add the edge only when the callee has body. We jump to the beginning
1138       // of the *declaration*, however we expect it to be followed by the
1139       // body. This isn't the case for autosynthesized property accessors in
1140       // Objective-C. No need for a similar extra check for CallExit points
1141       // because the exit edge comes from a statement (i.e. return),
1142       // not from declaration.
1143       if (D->hasBody())
1144         addEdgeToPath(C.getActivePath(), PrevLoc,
1145                       PathDiagnosticLocation::createBegin(D, SM));
1146     }
1147 
1148     // Did we visit an entire call?
1149     bool VisitedEntireCall = C.PD->isWithinCall();
1150     C.PD->popActivePath();
1151 
1152     PathDiagnosticCallPiece *Call;
1153     if (VisitedEntireCall) {
1154       Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1155     } else {
1156       // The path terminated within a nested location context, create a new
1157       // call piece to encapsulate the rest of the path pieces.
1158       const Decl *Caller = CE->getLocationContext()->getDecl();
1159       Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1160       assert(C.getActivePath().size() == 1 &&
1161              C.getActivePath().front().get() == Call);
1162 
1163       // Since we just transferred the path over to the call piece, reset the
1164       // mapping of the active path to the current location context.
1165       assert(C.isInLocCtxMap(&C.getActivePath()) &&
1166              "When we ascend to a previously unvisited call, the active path's "
1167              "address shouldn't change, but rather should be compacted into "
1168              "a single CallEvent!");
1169       C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1170 
1171       // Record the location context mapping for the path within the call.
1172       assert(!C.isInLocCtxMap(&Call->path) &&
1173              "When we ascend to a previously unvisited call, this must be the "
1174              "first time we encounter the caller context!");
1175       C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1176     }
1177     Call->setCallee(*CE, SM);
1178 
1179     // Update the previous location in the active path.
1180     PrevLoc = Call->getLocation();
1181 
1182     if (!C.CallStack.empty()) {
1183       assert(C.CallStack.back().first == Call);
1184       C.CallStack.pop_back();
1185     }
1186     return;
1187   }
1188 
1189   assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1190          "The current position in the bug path is out of sync with the "
1191          "location context associated with the active path!");
1192 
1193   // Have we encountered an exit from a function call?
1194   if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1195 
1196     // We are descending into a call (backwards).  Construct
1197     // a new call piece to contain the path pieces for that call.
1198     auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
1199     // Record the mapping from call piece to LocationContext.
1200     assert(!C.isInLocCtxMap(&Call->path) &&
1201            "We just entered a call, this must've been the first time we "
1202            "encounter its context!");
1203     C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1204 
1205     if (C.shouldAddPathEdges()) {
1206       // Add the edge to the return site.
1207       addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1208       PrevLoc.invalidate();
1209     }
1210 
1211     auto *P = Call.get();
1212     C.getActivePath().push_front(std::move(Call));
1213 
1214     // Make the contents of the call the active path for now.
1215     C.PD->pushActivePath(&P->path);
1216     C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1217     return;
1218   }
1219 
1220   if (auto PS = P.getAs<PostStmt>()) {
1221     if (!C.shouldAddPathEdges())
1222       return;
1223 
1224     // Add an edge.  If this is an ObjCForCollectionStmt do
1225     // not add an edge here as it appears in the CFG both
1226     // as a terminator and as a terminator condition.
1227     if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1228       PathDiagnosticLocation L =
1229           PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1230       addEdgeToPath(C.getActivePath(), PrevLoc, L);
1231     }
1232 
1233   } else if (auto BE = P.getAs<BlockEdge>()) {
1234 
1235     if (!C.shouldAddPathEdges()) {
1236       generateMinimalDiagForBlockEdge(C, *BE);
1237       return;
1238     }
1239 
1240     // Are we jumping to the head of a loop?  Add a special diagnostic.
1241     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1242       PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1243       const Stmt *Body = nullptr;
1244 
1245       if (const auto *FS = dyn_cast<ForStmt>(Loop))
1246         Body = FS->getBody();
1247       else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1248         Body = WS->getBody();
1249       else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1250         Body = OFS->getBody();
1251       } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1252         Body = FRS->getBody();
1253       }
1254       // do-while statements are explicitly excluded here
1255 
1256       auto p = std::make_shared<PathDiagnosticEventPiece>(
1257           L, "Looping back to the head "
1258           "of the loop");
1259       p->setPrunable(true);
1260 
1261       addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1262       C.getActivePath().push_front(std::move(p));
1263 
1264       if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1265         addEdgeToPath(C.getActivePath(), PrevLoc,
1266                       PathDiagnosticLocation::createEndBrace(CS, SM));
1267       }
1268     }
1269 
1270     const CFGBlock *BSrc = BE->getSrc();
1271     const ParentMap &PM = C.getParentMap();
1272 
1273     if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1274       // Are we jumping past the loop body without ever executing the
1275       // loop (because the condition was false)?
1276       if (isLoop(Term)) {
1277         const Stmt *TermCond = getTerminatorCondition(BSrc);
1278         bool IsInLoopBody = isInLoopBody(
1279             PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1280 
1281         StringRef str;
1282 
1283         if (isJumpToFalseBranch(&*BE)) {
1284           if (!IsInLoopBody) {
1285             if (isa<ObjCForCollectionStmt>(Term)) {
1286               str = StrLoopCollectionEmpty;
1287             } else if (isa<CXXForRangeStmt>(Term)) {
1288               str = StrLoopRangeEmpty;
1289             } else {
1290               str = StrLoopBodyZero;
1291             }
1292           }
1293         } else {
1294           str = StrEnteringLoop;
1295         }
1296 
1297         if (!str.empty()) {
1298           PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1299                                    C.getCurrLocationContext());
1300           auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1301           PE->setPrunable(true);
1302           addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1303           C.getActivePath().push_front(std::move(PE));
1304         }
1305       } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1306           isa<GotoStmt>(Term)) {
1307         PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1308         addEdgeToPath(C.getActivePath(), PrevLoc, L);
1309       }
1310     }
1311   }
1312 }
1313 
1314 static std::unique_ptr<PathDiagnostic>
1315 generateDiagnosticForBasicReport(const BasicBugReport *R) {
1316   const BugType &BT = R->getBugType();
1317   return std::make_unique<PathDiagnostic>(
1318       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1319       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1320       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1321       std::make_unique<FilesToLineNumsMap>());
1322 }
1323 
1324 static std::unique_ptr<PathDiagnostic>
1325 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1326                                  const SourceManager &SM) {
1327   const BugType &BT = R->getBugType();
1328   return std::make_unique<PathDiagnostic>(
1329       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1330       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1331       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1332       findExecutedLines(SM, R->getErrorNode()));
1333 }
1334 
1335 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1336   if (!S)
1337     return nullptr;
1338 
1339   while (true) {
1340     S = PM.getParentIgnoreParens(S);
1341 
1342     if (!S)
1343       break;
1344 
1345     if (isa<FullExpr>(S) ||
1346         isa<CXXBindTemporaryExpr>(S) ||
1347         isa<SubstNonTypeTemplateParmExpr>(S))
1348       continue;
1349 
1350     break;
1351   }
1352 
1353   return S;
1354 }
1355 
1356 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1357   switch (S->getStmtClass()) {
1358     case Stmt::BinaryOperatorClass: {
1359       const auto *BO = cast<BinaryOperator>(S);
1360       if (!BO->isLogicalOp())
1361         return false;
1362       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1363     }
1364     case Stmt::IfStmtClass:
1365       return cast<IfStmt>(S)->getCond() == Cond;
1366     case Stmt::ForStmtClass:
1367       return cast<ForStmt>(S)->getCond() == Cond;
1368     case Stmt::WhileStmtClass:
1369       return cast<WhileStmt>(S)->getCond() == Cond;
1370     case Stmt::DoStmtClass:
1371       return cast<DoStmt>(S)->getCond() == Cond;
1372     case Stmt::ChooseExprClass:
1373       return cast<ChooseExpr>(S)->getCond() == Cond;
1374     case Stmt::IndirectGotoStmtClass:
1375       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1376     case Stmt::SwitchStmtClass:
1377       return cast<SwitchStmt>(S)->getCond() == Cond;
1378     case Stmt::BinaryConditionalOperatorClass:
1379       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1380     case Stmt::ConditionalOperatorClass: {
1381       const auto *CO = cast<ConditionalOperator>(S);
1382       return CO->getCond() == Cond ||
1383              CO->getLHS() == Cond ||
1384              CO->getRHS() == Cond;
1385     }
1386     case Stmt::ObjCForCollectionStmtClass:
1387       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1388     case Stmt::CXXForRangeStmtClass: {
1389       const auto *FRS = cast<CXXForRangeStmt>(S);
1390       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1391     }
1392     default:
1393       return false;
1394   }
1395 }
1396 
1397 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1398   if (const auto *FS = dyn_cast<ForStmt>(FL))
1399     return FS->getInc() == S || FS->getInit() == S;
1400   if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1401     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1402            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1403   return false;
1404 }
1405 
1406 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1407 
1408 /// Adds synthetic edges from top-level statements to their subexpressions.
1409 ///
1410 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1411 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1412 /// we'd like to see an edge from A to B, then another one from B to B.1.
1413 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1414   const ParentMap &PM = LC->getParentMap();
1415   PathPieces::iterator Prev = pieces.end();
1416   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1417        Prev = I, ++I) {
1418     auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1419 
1420     if (!Piece)
1421       continue;
1422 
1423     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1424     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1425 
1426     PathDiagnosticLocation NextSrcContext = SrcLoc;
1427     const Stmt *InnerStmt = nullptr;
1428     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1429       SrcContexts.push_back(NextSrcContext);
1430       InnerStmt = NextSrcContext.asStmt();
1431       NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1432                                                 /*allowNested=*/true);
1433     }
1434 
1435     // Repeatedly split the edge as necessary.
1436     // This is important for nested logical expressions (||, &&, ?:) where we
1437     // want to show all the levels of context.
1438     while (true) {
1439       const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1440 
1441       // We are looking at an edge. Is the destination within a larger
1442       // expression?
1443       PathDiagnosticLocation DstContext =
1444           getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1445       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1446         break;
1447 
1448       // If the source is in the same context, we're already good.
1449       if (llvm::find(SrcContexts, DstContext) != SrcContexts.end())
1450         break;
1451 
1452       // Update the subexpression node to point to the context edge.
1453       Piece->setStartLocation(DstContext);
1454 
1455       // Try to extend the previous edge if it's at the same level as the source
1456       // context.
1457       if (Prev != E) {
1458         auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1459 
1460         if (PrevPiece) {
1461           if (const Stmt *PrevSrc =
1462                   PrevPiece->getStartLocation().getStmtOrNull()) {
1463             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1464             if (PrevSrcParent ==
1465                 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1466               PrevPiece->setEndLocation(DstContext);
1467               break;
1468             }
1469           }
1470         }
1471       }
1472 
1473       // Otherwise, split the current edge into a context edge and a
1474       // subexpression edge. Note that the context statement may itself have
1475       // context.
1476       auto P =
1477           std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1478       Piece = P.get();
1479       I = pieces.insert(I, std::move(P));
1480     }
1481   }
1482 }
1483 
1484 /// Move edges from a branch condition to a branch target
1485 ///        when the condition is simple.
1486 ///
1487 /// This restructures some of the work of addContextEdges.  That function
1488 /// creates edges this may destroy, but they work together to create a more
1489 /// aesthetically set of edges around branches.  After the call to
1490 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1491 /// the branch to the branch condition, and (3) an edge from the branch
1492 /// condition to the branch target.  We keep (1), but may wish to remove (2)
1493 /// and move the source of (3) to the branch if the branch condition is simple.
1494 static void simplifySimpleBranches(PathPieces &pieces) {
1495   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1496     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1497 
1498     if (!PieceI)
1499       continue;
1500 
1501     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1502     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1503 
1504     if (!s1Start || !s1End)
1505       continue;
1506 
1507     PathPieces::iterator NextI = I; ++NextI;
1508     if (NextI == E)
1509       break;
1510 
1511     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1512 
1513     while (true) {
1514       if (NextI == E)
1515         break;
1516 
1517       const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1518       if (EV) {
1519         StringRef S = EV->getString();
1520         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1521             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1522           ++NextI;
1523           continue;
1524         }
1525         break;
1526       }
1527 
1528       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1529       break;
1530     }
1531 
1532     if (!PieceNextI)
1533       continue;
1534 
1535     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1536     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1537 
1538     if (!s2Start || !s2End || s1End != s2Start)
1539       continue;
1540 
1541     // We only perform this transformation for specific branch kinds.
1542     // We don't want to do this for do..while, for example.
1543     if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
1544           isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
1545           isa<CXXForRangeStmt>(s1Start)))
1546       continue;
1547 
1548     // Is s1End the branch condition?
1549     if (!isConditionForTerminator(s1Start, s1End))
1550       continue;
1551 
1552     // Perform the hoisting by eliminating (2) and changing the start
1553     // location of (3).
1554     PieceNextI->setStartLocation(PieceI->getStartLocation());
1555     I = pieces.erase(I);
1556   }
1557 }
1558 
1559 /// Returns the number of bytes in the given (character-based) SourceRange.
1560 ///
1561 /// If the locations in the range are not on the same line, returns None.
1562 ///
1563 /// Note that this does not do a precise user-visible character or column count.
1564 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1565                                               SourceRange Range) {
1566   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1567                              SM.getExpansionRange(Range.getEnd()).getEnd());
1568 
1569   FileID FID = SM.getFileID(ExpansionRange.getBegin());
1570   if (FID != SM.getFileID(ExpansionRange.getEnd()))
1571     return None;
1572 
1573   bool Invalid;
1574   const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
1575   if (Invalid)
1576     return None;
1577 
1578   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1579   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1580   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1581 
1582   // We're searching the raw bytes of the buffer here, which might include
1583   // escaped newlines and such. That's okay; we're trying to decide whether the
1584   // SourceRange is covering a large or small amount of space in the user's
1585   // editor.
1586   if (Snippet.find_first_of("\r\n") != StringRef::npos)
1587     return None;
1588 
1589   // This isn't Unicode-aware, but it doesn't need to be.
1590   return Snippet.size();
1591 }
1592 
1593 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1594 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1595                                               const Stmt *S) {
1596   return getLengthOnSingleLine(SM, S->getSourceRange());
1597 }
1598 
1599 /// Eliminate two-edge cycles created by addContextEdges().
1600 ///
1601 /// Once all the context edges are in place, there are plenty of cases where
1602 /// there's a single edge from a top-level statement to a subexpression,
1603 /// followed by a single path note, and then a reverse edge to get back out to
1604 /// the top level. If the statement is simple enough, the subexpression edges
1605 /// just add noise and make it harder to understand what's going on.
1606 ///
1607 /// This function only removes edges in pairs, because removing only one edge
1608 /// might leave other edges dangling.
1609 ///
1610 /// This will not remove edges in more complicated situations:
1611 /// - if there is more than one "hop" leading to or from a subexpression.
1612 /// - if there is an inlined call between the edges instead of a single event.
1613 /// - if the whole statement is large enough that having subexpression arrows
1614 ///   might be helpful.
1615 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1616   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1617     // Pattern match the current piece and its successor.
1618     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1619 
1620     if (!PieceI) {
1621       ++I;
1622       continue;
1623     }
1624 
1625     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1626     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1627 
1628     PathPieces::iterator NextI = I; ++NextI;
1629     if (NextI == E)
1630       break;
1631 
1632     const auto *PieceNextI =
1633         dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1634 
1635     if (!PieceNextI) {
1636       if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1637         ++NextI;
1638         if (NextI == E)
1639           break;
1640         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1641       }
1642 
1643       if (!PieceNextI) {
1644         ++I;
1645         continue;
1646       }
1647     }
1648 
1649     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1650     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1651 
1652     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1653       const size_t MAX_SHORT_LINE_LENGTH = 80;
1654       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1655       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1656         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1657         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1658           Path.erase(I);
1659           I = Path.erase(NextI);
1660           continue;
1661         }
1662       }
1663     }
1664 
1665     ++I;
1666   }
1667 }
1668 
1669 /// Return true if X is contained by Y.
1670 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1671   while (X) {
1672     if (X == Y)
1673       return true;
1674     X = PM.getParent(X);
1675   }
1676   return false;
1677 }
1678 
1679 // Remove short edges on the same line less than 3 columns in difference.
1680 static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1681                             const ParentMap &PM) {
1682   bool erased = false;
1683 
1684   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1685        erased ? I : ++I) {
1686     erased = false;
1687 
1688     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1689 
1690     if (!PieceI)
1691       continue;
1692 
1693     const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1694     const Stmt *end   = PieceI->getEndLocation().getStmtOrNull();
1695 
1696     if (!start || !end)
1697       continue;
1698 
1699     const Stmt *endParent = PM.getParent(end);
1700     if (!endParent)
1701       continue;
1702 
1703     if (isConditionForTerminator(end, endParent))
1704       continue;
1705 
1706     SourceLocation FirstLoc = start->getBeginLoc();
1707     SourceLocation SecondLoc = end->getBeginLoc();
1708 
1709     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1710       continue;
1711     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1712       std::swap(SecondLoc, FirstLoc);
1713 
1714     SourceRange EdgeRange(FirstLoc, SecondLoc);
1715     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1716 
1717     // If the statements are on different lines, continue.
1718     if (!ByteWidth)
1719       continue;
1720 
1721     const size_t MAX_PUNY_EDGE_LENGTH = 2;
1722     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1723       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1724       // there might not be enough /columns/. A proper user-visible column count
1725       // is probably too expensive, though.
1726       I = path.erase(I);
1727       erased = true;
1728       continue;
1729     }
1730   }
1731 }
1732 
1733 static void removeIdenticalEvents(PathPieces &path) {
1734   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1735     const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1736 
1737     if (!PieceI)
1738       continue;
1739 
1740     PathPieces::iterator NextI = I; ++NextI;
1741     if (NextI == E)
1742       return;
1743 
1744     const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1745 
1746     if (!PieceNextI)
1747       continue;
1748 
1749     // Erase the second piece if it has the same exact message text.
1750     if (PieceI->getString() == PieceNextI->getString()) {
1751       path.erase(NextI);
1752     }
1753   }
1754 }
1755 
1756 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1757                           OptimizedCallsSet &OCS) {
1758   bool hasChanges = false;
1759   const LocationContext *LC = C.getLocationContextFor(&path);
1760   assert(LC);
1761   const ParentMap &PM = LC->getParentMap();
1762   const SourceManager &SM = C.getSourceManager();
1763 
1764   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1765     // Optimize subpaths.
1766     if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1767       // Record the fact that a call has been optimized so we only do the
1768       // effort once.
1769       if (!OCS.count(CallI)) {
1770         while (optimizeEdges(C, CallI->path, OCS)) {
1771         }
1772         OCS.insert(CallI);
1773       }
1774       ++I;
1775       continue;
1776     }
1777 
1778     // Pattern match the current piece and its successor.
1779     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1780 
1781     if (!PieceI) {
1782       ++I;
1783       continue;
1784     }
1785 
1786     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1787     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1788     const Stmt *level1 = getStmtParent(s1Start, PM);
1789     const Stmt *level2 = getStmtParent(s1End, PM);
1790 
1791     PathPieces::iterator NextI = I; ++NextI;
1792     if (NextI == E)
1793       break;
1794 
1795     const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1796 
1797     if (!PieceNextI) {
1798       ++I;
1799       continue;
1800     }
1801 
1802     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1803     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1804     const Stmt *level3 = getStmtParent(s2Start, PM);
1805     const Stmt *level4 = getStmtParent(s2End, PM);
1806 
1807     // Rule I.
1808     //
1809     // If we have two consecutive control edges whose end/begin locations
1810     // are at the same level (e.g. statements or top-level expressions within
1811     // a compound statement, or siblings share a single ancestor expression),
1812     // then merge them if they have no interesting intermediate event.
1813     //
1814     // For example:
1815     //
1816     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1817     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1818     //
1819     // NOTE: this will be limited later in cases where we add barriers
1820     // to prevent this optimization.
1821     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1822       PieceI->setEndLocation(PieceNextI->getEndLocation());
1823       path.erase(NextI);
1824       hasChanges = true;
1825       continue;
1826     }
1827 
1828     // Rule II.
1829     //
1830     // Eliminate edges between subexpressions and parent expressions
1831     // when the subexpression is consumed.
1832     //
1833     // NOTE: this will be limited later in cases where we add barriers
1834     // to prevent this optimization.
1835     if (s1End && s1End == s2Start && level2) {
1836       bool removeEdge = false;
1837       // Remove edges into the increment or initialization of a
1838       // loop that have no interleaving event.  This means that
1839       // they aren't interesting.
1840       if (isIncrementOrInitInForLoop(s1End, level2))
1841         removeEdge = true;
1842       // Next only consider edges that are not anchored on
1843       // the condition of a terminator.  This are intermediate edges
1844       // that we might want to trim.
1845       else if (!isConditionForTerminator(level2, s1End)) {
1846         // Trim edges on expressions that are consumed by
1847         // the parent expression.
1848         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1849           removeEdge = true;
1850         }
1851         // Trim edges where a lexical containment doesn't exist.
1852         // For example:
1853         //
1854         //  X -> Y -> Z
1855         //
1856         // If 'Z' lexically contains Y (it is an ancestor) and
1857         // 'X' does not lexically contain Y (it is a descendant OR
1858         // it has no lexical relationship at all) then trim.
1859         //
1860         // This can eliminate edges where we dive into a subexpression
1861         // and then pop back out, etc.
1862         else if (s1Start && s2End &&
1863                  lexicalContains(PM, s2Start, s2End) &&
1864                  !lexicalContains(PM, s1End, s1Start)) {
1865           removeEdge = true;
1866         }
1867         // Trim edges from a subexpression back to the top level if the
1868         // subexpression is on a different line.
1869         //
1870         // A.1 -> A -> B
1871         // becomes
1872         // A.1 -> B
1873         //
1874         // These edges just look ugly and don't usually add anything.
1875         else if (s1Start && s2End &&
1876                  lexicalContains(PM, s1Start, s1End)) {
1877           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1878                                 PieceI->getStartLocation().asLocation());
1879           if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
1880             removeEdge = true;
1881         }
1882       }
1883 
1884       if (removeEdge) {
1885         PieceI->setEndLocation(PieceNextI->getEndLocation());
1886         path.erase(NextI);
1887         hasChanges = true;
1888         continue;
1889       }
1890     }
1891 
1892     // Optimize edges for ObjC fast-enumeration loops.
1893     //
1894     // (X -> collection) -> (collection -> element)
1895     //
1896     // becomes:
1897     //
1898     // (X -> element)
1899     if (s1End == s2Start) {
1900       const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1901       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1902           s2End == FS->getElement()) {
1903         PieceI->setEndLocation(PieceNextI->getEndLocation());
1904         path.erase(NextI);
1905         hasChanges = true;
1906         continue;
1907       }
1908     }
1909 
1910     // No changes at this index?  Move to the next one.
1911     ++I;
1912   }
1913 
1914   if (!hasChanges) {
1915     // Adjust edges into subexpressions to make them more uniform
1916     // and aesthetically pleasing.
1917     addContextEdges(path, LC);
1918     // Remove "cyclical" edges that include one or more context edges.
1919     removeContextCycles(path, SM);
1920     // Hoist edges originating from branch conditions to branches
1921     // for simple branches.
1922     simplifySimpleBranches(path);
1923     // Remove any puny edges left over after primary optimization pass.
1924     removePunyEdges(path, SM, PM);
1925     // Remove identical events.
1926     removeIdenticalEvents(path);
1927   }
1928 
1929   return hasChanges;
1930 }
1931 
1932 /// Drop the very first edge in a path, which should be a function entry edge.
1933 ///
1934 /// If the first edge is not a function entry edge (say, because the first
1935 /// statement had an invalid source location), this function does nothing.
1936 // FIXME: We should just generate invalid edges anyway and have the optimizer
1937 // deal with them.
1938 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1939                                   PathPieces &Path) {
1940   const auto *FirstEdge =
1941       dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1942   if (!FirstEdge)
1943     return;
1944 
1945   const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1946   PathDiagnosticLocation EntryLoc =
1947       PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1948   if (FirstEdge->getStartLocation() != EntryLoc)
1949     return;
1950 
1951   Path.pop_front();
1952 }
1953 
1954 /// Populate executes lines with lines containing at least one diagnostics.
1955 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1956 
1957   PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1958   FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1959 
1960   for (const auto &P : path) {
1961     FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1962     FileID FID = Loc.getFileID();
1963     unsigned LineNo = Loc.getLineNumber();
1964     assert(FID.isValid());
1965     ExecutedLines[FID].insert(LineNo);
1966   }
1967 }
1968 
1969 PathDiagnosticConstruct::PathDiagnosticConstruct(
1970     const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1971     const PathSensitiveBugReport *R)
1972     : Consumer(PDC), CurrentNode(ErrorNode),
1973       SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1974       PD(generateEmptyDiagnosticForReport(R, getSourceManager())) {
1975   LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1976 }
1977 
1978 PathDiagnosticBuilder::PathDiagnosticBuilder(
1979     BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1980     PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1981     std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1982     : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1983       ErrorNode(ErrorNode),
1984       VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1985 
1986 std::unique_ptr<PathDiagnostic>
1987 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
1988   PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
1989 
1990   const SourceManager &SM = getSourceManager();
1991   const AnalyzerOptions &Opts = getAnalyzerOptions();
1992   StringRef ErrorTag = ErrorNode->getLocation().getTag()->getTagDescription();
1993 
1994   // See whether we need to silence the checker/package.
1995   // FIXME: This will not work if the report was emitted with an incorrect tag.
1996   for (const std::string &CheckerOrPackage : Opts.SilencedCheckersAndPackages) {
1997     if (ErrorTag.startswith(CheckerOrPackage))
1998       return nullptr;
1999   }
2000 
2001   if (!PDC->shouldGenerateDiagnostics())
2002     return generateEmptyDiagnosticForReport(R, getSourceManager());
2003 
2004   // Construct the final (warning) event for the bug report.
2005   auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2006   PathDiagnosticPieceRef LastPiece;
2007   if (EndNotes != VisitorsDiagnostics->end()) {
2008     assert(!EndNotes->second.empty());
2009     LastPiece = EndNotes->second[0];
2010   } else {
2011     LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2012                                                       *getBugReport());
2013   }
2014   Construct.PD->setEndOfPath(LastPiece);
2015 
2016   PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2017   // From the error node to the root, ascend the bug path and construct the bug
2018   // report.
2019   while (Construct.ascendToPrevNode()) {
2020     generatePathDiagnosticsForNode(Construct, PrevLoc);
2021 
2022     auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2023     if (VisitorNotes == VisitorsDiagnostics->end())
2024       continue;
2025 
2026     // This is a workaround due to inability to put shared PathDiagnosticPiece
2027     // into a FoldingSet.
2028     std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2029 
2030     // Add pieces from custom visitors.
2031     for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2032       llvm::FoldingSetNodeID ID;
2033       Note->Profile(ID);
2034       if (!DeduplicationSet.insert(ID).second)
2035         continue;
2036 
2037       if (PDC->shouldAddPathEdges())
2038         addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2039       updateStackPiecesWithMessage(Note, Construct.CallStack);
2040       Construct.getActivePath().push_front(Note);
2041     }
2042   }
2043 
2044   if (PDC->shouldAddPathEdges()) {
2045     // Add an edge to the start of the function.
2046     // We'll prune it out later, but it helps make diagnostics more uniform.
2047     const StackFrameContext *CalleeLC =
2048         Construct.getLocationContextForActivePath()->getStackFrame();
2049     const Decl *D = CalleeLC->getDecl();
2050     addEdgeToPath(Construct.getActivePath(), PrevLoc,
2051                   PathDiagnosticLocation::createBegin(D, SM));
2052   }
2053 
2054 
2055   // Finally, prune the diagnostic path of uninteresting stuff.
2056   if (!Construct.PD->path.empty()) {
2057     if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2058       bool stillHasNotes =
2059           removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2060       assert(stillHasNotes);
2061       (void)stillHasNotes;
2062     }
2063 
2064     // Remove pop-up notes if needed.
2065     if (!Opts.ShouldAddPopUpNotes)
2066       removePopUpNotes(Construct.getMutablePieces());
2067 
2068     // Redirect all call pieces to have valid locations.
2069     adjustCallLocations(Construct.getMutablePieces());
2070     removePiecesWithInvalidLocations(Construct.getMutablePieces());
2071 
2072     if (PDC->shouldAddPathEdges()) {
2073 
2074       // Reduce the number of edges from a very conservative set
2075       // to an aesthetically pleasing subset that conveys the
2076       // necessary information.
2077       OptimizedCallsSet OCS;
2078       while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2079       }
2080 
2081       // Drop the very first function-entry edge. It's not really necessary
2082       // for top-level functions.
2083       dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2084     }
2085 
2086     // Remove messages that are basically the same, and edges that may not
2087     // make sense.
2088     // We have to do this after edge optimization in the Extensive mode.
2089     removeRedundantMsgs(Construct.getMutablePieces());
2090     removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2091   }
2092 
2093   if (Opts.ShouldDisplayMacroExpansions)
2094     CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2095 
2096   return std::move(Construct.PD);
2097 }
2098 
2099 //===----------------------------------------------------------------------===//
2100 // Methods for BugType and subclasses.
2101 //===----------------------------------------------------------------------===//
2102 
2103 void BugType::anchor() {}
2104 
2105 void BuiltinBug::anchor() {}
2106 
2107 //===----------------------------------------------------------------------===//
2108 // Methods for BugReport and subclasses.
2109 //===----------------------------------------------------------------------===//
2110 
2111 LLVM_ATTRIBUTE_USED static bool
2112 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2113   for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2114     if (Pair.second == CheckerName)
2115       return true;
2116   }
2117   return false;
2118 }
2119 
2120 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2121                                          StringRef CheckerName) {
2122   for (const CheckerInfo &Checker : Registry.Checkers) {
2123     if (Checker.FullName == CheckerName)
2124       return Checker.IsHidden;
2125   }
2126   llvm_unreachable(
2127       "Checker name not found in CheckerRegistry -- did you retrieve it "
2128       "correctly from CheckerManager::getCurrentCheckerName?");
2129 }
2130 
2131 PathSensitiveBugReport::PathSensitiveBugReport(
2132     const BugType &bt, StringRef shortDesc, StringRef desc,
2133     const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2134     const Decl *DeclToUnique)
2135     : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2136       ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2137       UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2138   assert(!isDependency(ErrorNode->getState()
2139                            ->getAnalysisManager()
2140                            .getCheckerManager()
2141                            ->getCheckerRegistryData(),
2142                        bt.getCheckerName()) &&
2143          "Some checkers depend on this one! We don't allow dependency "
2144          "checkers to emit warnings, because checkers should depend on "
2145          "*modeling*, not *diagnostics*.");
2146 
2147   assert(
2148       (bt.getCheckerName().startswith("debug") ||
2149        !isHidden(ErrorNode->getState()
2150                      ->getAnalysisManager()
2151                      .getCheckerManager()
2152                      ->getCheckerRegistryData(),
2153                  bt.getCheckerName())) &&
2154           "Hidden checkers musn't emit diagnostics as they are by definition "
2155           "non-user facing!");
2156 }
2157 
2158 void PathSensitiveBugReport::addVisitor(
2159     std::unique_ptr<BugReporterVisitor> visitor) {
2160   if (!visitor)
2161     return;
2162 
2163   llvm::FoldingSetNodeID ID;
2164   visitor->Profile(ID);
2165 
2166   void *InsertPos = nullptr;
2167   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2168     return;
2169   }
2170 
2171   Callbacks.push_back(std::move(visitor));
2172 }
2173 
2174 void PathSensitiveBugReport::clearVisitors() {
2175   Callbacks.clear();
2176 }
2177 
2178 const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2179   const ExplodedNode *N = getErrorNode();
2180   if (!N)
2181     return nullptr;
2182 
2183   const LocationContext *LC = N->getLocationContext();
2184   return LC->getStackFrame()->getDecl();
2185 }
2186 
2187 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2188   hash.AddInteger(static_cast<int>(getKind()));
2189   hash.AddPointer(&BT);
2190   hash.AddString(Description);
2191   assert(Location.isValid());
2192   Location.Profile(hash);
2193 
2194   for (SourceRange range : Ranges) {
2195     if (!range.isValid())
2196       continue;
2197     hash.AddInteger(range.getBegin().getRawEncoding());
2198     hash.AddInteger(range.getEnd().getRawEncoding());
2199   }
2200 }
2201 
2202 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2203   hash.AddInteger(static_cast<int>(getKind()));
2204   hash.AddPointer(&BT);
2205   hash.AddString(Description);
2206   PathDiagnosticLocation UL = getUniqueingLocation();
2207   if (UL.isValid()) {
2208     UL.Profile(hash);
2209   } else {
2210     // TODO: The statement may be null if the report was emitted before any
2211     // statements were executed. In particular, some checkers by design
2212     // occasionally emit their reports in empty functions (that have no
2213     // statements in their body). Do we profile correctly in this case?
2214     hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2215   }
2216 
2217   for (SourceRange range : Ranges) {
2218     if (!range.isValid())
2219       continue;
2220     hash.AddInteger(range.getBegin().getRawEncoding());
2221     hash.AddInteger(range.getEnd().getRawEncoding());
2222   }
2223 }
2224 
2225 template <class T>
2226 static void insertToInterestingnessMap(
2227     llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2228     bugreporter::TrackingKind TKind) {
2229   auto Result = InterestingnessMap.insert({Val, TKind});
2230 
2231   if (Result.second)
2232     return;
2233 
2234   // Even if this symbol/region was already marked as interesting as a
2235   // condition, if we later mark it as interesting again but with
2236   // thorough tracking, overwrite it. Entities marked with thorough
2237   // interestiness are the most important (or most interesting, if you will),
2238   // and we wouldn't like to downplay their importance.
2239 
2240   switch (TKind) {
2241     case bugreporter::TrackingKind::Thorough:
2242       Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2243       return;
2244     case bugreporter::TrackingKind::Condition:
2245       return;
2246     }
2247 
2248     llvm_unreachable(
2249         "BugReport::markInteresting currently can only handle 2 different "
2250         "tracking kinds! Please define what tracking kind should this entitiy"
2251         "have, if it was already marked as interesting with a different kind!");
2252 }
2253 
2254 void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2255                                              bugreporter::TrackingKind TKind) {
2256   if (!sym)
2257     return;
2258 
2259   insertToInterestingnessMap(InterestingSymbols, sym, TKind);
2260 
2261   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2262     markInteresting(meta->getRegion(), TKind);
2263 }
2264 
2265 void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2266                                              bugreporter::TrackingKind TKind) {
2267   if (!R)
2268     return;
2269 
2270   R = R->getBaseRegion();
2271   insertToInterestingnessMap(InterestingRegions, R, TKind);
2272 
2273   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2274     markInteresting(SR->getSymbol(), TKind);
2275 }
2276 
2277 void PathSensitiveBugReport::markInteresting(SVal V,
2278                                              bugreporter::TrackingKind TKind) {
2279   markInteresting(V.getAsRegion(), TKind);
2280   markInteresting(V.getAsSymbol(), TKind);
2281 }
2282 
2283 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2284   if (!LC)
2285     return;
2286   InterestingLocationContexts.insert(LC);
2287 }
2288 
2289 Optional<bugreporter::TrackingKind>
2290 PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2291   auto RKind = getInterestingnessKind(V.getAsRegion());
2292   auto SKind = getInterestingnessKind(V.getAsSymbol());
2293   if (!RKind)
2294     return SKind;
2295   if (!SKind)
2296     return RKind;
2297 
2298   // If either is marked with throrough tracking, return that, we wouldn't like
2299   // to downplay a note's importance by 'only' mentioning it as a condition.
2300   switch(*RKind) {
2301     case bugreporter::TrackingKind::Thorough:
2302       return RKind;
2303     case bugreporter::TrackingKind::Condition:
2304       return SKind;
2305   }
2306 
2307   llvm_unreachable(
2308       "BugReport::getInterestingnessKind currently can only handle 2 different "
2309       "tracking kinds! Please define what tracking kind should we return here "
2310       "when the kind of getAsRegion() and getAsSymbol() is different!");
2311   return None;
2312 }
2313 
2314 Optional<bugreporter::TrackingKind>
2315 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2316   if (!sym)
2317     return None;
2318   // We don't currently consider metadata symbols to be interesting
2319   // even if we know their region is interesting. Is that correct behavior?
2320   auto It = InterestingSymbols.find(sym);
2321   if (It == InterestingSymbols.end())
2322     return None;
2323   return It->getSecond();
2324 }
2325 
2326 Optional<bugreporter::TrackingKind>
2327 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2328   if (!R)
2329     return None;
2330 
2331   R = R->getBaseRegion();
2332   auto It = InterestingRegions.find(R);
2333   if (It != InterestingRegions.end())
2334     return It->getSecond();
2335 
2336   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2337     return getInterestingnessKind(SR->getSymbol());
2338   return None;
2339 }
2340 
2341 bool PathSensitiveBugReport::isInteresting(SVal V) const {
2342   return getInterestingnessKind(V).hasValue();
2343 }
2344 
2345 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2346   return getInterestingnessKind(sym).hasValue();
2347 }
2348 
2349 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2350   return getInterestingnessKind(R).hasValue();
2351 }
2352 
2353 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC)  const {
2354   if (!LC)
2355     return false;
2356   return InterestingLocationContexts.count(LC);
2357 }
2358 
2359 const Stmt *PathSensitiveBugReport::getStmt() const {
2360   if (!ErrorNode)
2361     return nullptr;
2362 
2363   ProgramPoint ProgP = ErrorNode->getLocation();
2364   const Stmt *S = nullptr;
2365 
2366   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2367     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2368     if (BE->getBlock() == &Exit)
2369       S = ErrorNode->getPreviousStmtForDiagnostics();
2370   }
2371   if (!S)
2372     S = ErrorNode->getStmtForDiagnostics();
2373 
2374   return S;
2375 }
2376 
2377 ArrayRef<SourceRange>
2378 PathSensitiveBugReport::getRanges() const {
2379   // If no custom ranges, add the range of the statement corresponding to
2380   // the error node.
2381   if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2382       return ErrorNodeRange;
2383 
2384   return Ranges;
2385 }
2386 
2387 PathDiagnosticLocation
2388 PathSensitiveBugReport::getLocation() const {
2389   assert(ErrorNode && "Cannot create a location with a null node.");
2390   const Stmt *S = ErrorNode->getStmtForDiagnostics();
2391     ProgramPoint P = ErrorNode->getLocation();
2392   const LocationContext *LC = P.getLocationContext();
2393   SourceManager &SM =
2394       ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2395 
2396   if (!S) {
2397     // If this is an implicit call, return the implicit call point location.
2398     if (Optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2399       return PathDiagnosticLocation(PIE->getLocation(), SM);
2400     if (auto FE = P.getAs<FunctionExitPoint>()) {
2401       if (const ReturnStmt *RS = FE->getStmt())
2402         return PathDiagnosticLocation::createBegin(RS, SM, LC);
2403     }
2404     S = ErrorNode->getNextStmtForDiagnostics();
2405   }
2406 
2407   if (S) {
2408     // For member expressions, return the location of the '.' or '->'.
2409     if (const auto *ME = dyn_cast<MemberExpr>(S))
2410       return PathDiagnosticLocation::createMemberLoc(ME, SM);
2411 
2412     // For binary operators, return the location of the operator.
2413     if (const auto *B = dyn_cast<BinaryOperator>(S))
2414       return PathDiagnosticLocation::createOperatorLoc(B, SM);
2415 
2416     if (P.getAs<PostStmtPurgeDeadSymbols>())
2417       return PathDiagnosticLocation::createEnd(S, SM, LC);
2418 
2419     if (S->getBeginLoc().isValid())
2420       return PathDiagnosticLocation(S, SM, LC);
2421 
2422     return PathDiagnosticLocation(
2423         PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
2424   }
2425 
2426   return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
2427                                                SM);
2428 }
2429 
2430 //===----------------------------------------------------------------------===//
2431 // Methods for BugReporter and subclasses.
2432 //===----------------------------------------------------------------------===//
2433 
2434 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2435   return Eng.getGraph();
2436 }
2437 
2438 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2439   return Eng.getStateManager();
2440 }
2441 
2442 BugReporter::BugReporter(BugReporterData &d) : D(d) {}
2443 BugReporter::~BugReporter() {
2444   // Make sure reports are flushed.
2445   assert(StrBugTypes.empty() &&
2446          "Destroying BugReporter before diagnostics are emitted!");
2447 
2448   // Free the bug reports we are tracking.
2449   for (const auto I : EQClassesVector)
2450     delete I;
2451 }
2452 
2453 void BugReporter::FlushReports() {
2454   // We need to flush reports in deterministic order to ensure the order
2455   // of the reports is consistent between runs.
2456   for (const auto EQ : EQClassesVector)
2457     FlushReport(*EQ);
2458 
2459   // BugReporter owns and deletes only BugTypes created implicitly through
2460   // EmitBasicReport.
2461   // FIXME: There are leaks from checkers that assume that the BugTypes they
2462   // create will be destroyed by the BugReporter.
2463   StrBugTypes.clear();
2464 }
2465 
2466 //===----------------------------------------------------------------------===//
2467 // PathDiagnostics generation.
2468 //===----------------------------------------------------------------------===//
2469 
2470 namespace {
2471 
2472 /// A wrapper around an ExplodedGraph that contains a single path from the root
2473 /// to the error node.
2474 class BugPathInfo {
2475 public:
2476   std::unique_ptr<ExplodedGraph> BugPath;
2477   PathSensitiveBugReport *Report;
2478   const ExplodedNode *ErrorNode;
2479 };
2480 
2481 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2482 /// conveniently retrieve bug paths from a single error node to the root.
2483 class BugPathGetter {
2484   std::unique_ptr<ExplodedGraph> TrimmedGraph;
2485 
2486   using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2487 
2488   /// Assign each node with its distance from the root.
2489   PriorityMapTy PriorityMap;
2490 
2491   /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2492   /// we need to pair it to the error node of the constructed trimmed graph.
2493   using ReportNewNodePair =
2494       std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2495   SmallVector<ReportNewNodePair, 32> ReportNodes;
2496 
2497   BugPathInfo CurrentBugPath;
2498 
2499   /// A helper class for sorting ExplodedNodes by priority.
2500   template <bool Descending>
2501   class PriorityCompare {
2502     const PriorityMapTy &PriorityMap;
2503 
2504   public:
2505     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2506 
2507     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2508       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2509       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2510       PriorityMapTy::const_iterator E = PriorityMap.end();
2511 
2512       if (LI == E)
2513         return Descending;
2514       if (RI == E)
2515         return !Descending;
2516 
2517       return Descending ? LI->second > RI->second
2518                         : LI->second < RI->second;
2519     }
2520 
2521     bool operator()(const ReportNewNodePair &LHS,
2522                     const ReportNewNodePair &RHS) const {
2523       return (*this)(LHS.second, RHS.second);
2524     }
2525   };
2526 
2527 public:
2528   BugPathGetter(const ExplodedGraph *OriginalGraph,
2529                 ArrayRef<PathSensitiveBugReport *> &bugReports);
2530 
2531   BugPathInfo *getNextBugPath();
2532 };
2533 
2534 } // namespace
2535 
2536 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2537                              ArrayRef<PathSensitiveBugReport *> &bugReports) {
2538   SmallVector<const ExplodedNode *, 32> Nodes;
2539   for (const auto I : bugReports) {
2540     assert(I->isValid() &&
2541            "We only allow BugReporterVisitors and BugReporter itself to "
2542            "invalidate reports!");
2543     Nodes.emplace_back(I->getErrorNode());
2544   }
2545 
2546   // The trimmed graph is created in the body of the constructor to ensure
2547   // that the DenseMaps have been initialized already.
2548   InterExplodedGraphMap ForwardMap;
2549   TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2550 
2551   // Find the (first) error node in the trimmed graph.  We just need to consult
2552   // the node map which maps from nodes in the original graph to nodes
2553   // in the new graph.
2554   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2555 
2556   for (PathSensitiveBugReport *Report : bugReports) {
2557     const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2558     assert(NewNode &&
2559            "Failed to construct a trimmed graph that contains this error "
2560            "node!");
2561     ReportNodes.emplace_back(Report, NewNode);
2562     RemainingNodes.insert(NewNode);
2563   }
2564 
2565   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2566 
2567   // Perform a forward BFS to find all the shortest paths.
2568   std::queue<const ExplodedNode *> WS;
2569 
2570   assert(TrimmedGraph->num_roots() == 1);
2571   WS.push(*TrimmedGraph->roots_begin());
2572   unsigned Priority = 0;
2573 
2574   while (!WS.empty()) {
2575     const ExplodedNode *Node = WS.front();
2576     WS.pop();
2577 
2578     PriorityMapTy::iterator PriorityEntry;
2579     bool IsNew;
2580     std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2581     ++Priority;
2582 
2583     if (!IsNew) {
2584       assert(PriorityEntry->second <= Priority);
2585       continue;
2586     }
2587 
2588     if (RemainingNodes.erase(Node))
2589       if (RemainingNodes.empty())
2590         break;
2591 
2592     for (const ExplodedNode *Succ : Node->succs())
2593       WS.push(Succ);
2594   }
2595 
2596   // Sort the error paths from longest to shortest.
2597   llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2598 }
2599 
2600 BugPathInfo *BugPathGetter::getNextBugPath() {
2601   if (ReportNodes.empty())
2602     return nullptr;
2603 
2604   const ExplodedNode *OrigN;
2605   std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2606   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2607          "error node not accessible from root");
2608 
2609   // Create a new graph with a single path. This is the graph that will be
2610   // returned to the caller.
2611   auto GNew = std::make_unique<ExplodedGraph>();
2612 
2613   // Now walk from the error node up the BFS path, always taking the
2614   // predeccessor with the lowest number.
2615   ExplodedNode *Succ = nullptr;
2616   while (true) {
2617     // Create the equivalent node in the new graph with the same state
2618     // and location.
2619     ExplodedNode *NewN = GNew->createUncachedNode(
2620         OrigN->getLocation(), OrigN->getState(),
2621         OrigN->getID(), OrigN->isSink());
2622 
2623     // Link up the new node with the previous node.
2624     if (Succ)
2625       Succ->addPredecessor(NewN, *GNew);
2626     else
2627       CurrentBugPath.ErrorNode = NewN;
2628 
2629     Succ = NewN;
2630 
2631     // Are we at the final node?
2632     if (OrigN->pred_empty()) {
2633       GNew->addRoot(NewN);
2634       break;
2635     }
2636 
2637     // Find the next predeccessor node.  We choose the node that is marked
2638     // with the lowest BFS number.
2639     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2640                               PriorityCompare<false>(PriorityMap));
2641   }
2642 
2643   CurrentBugPath.BugPath = std::move(GNew);
2644 
2645   return &CurrentBugPath;
2646 }
2647 
2648 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2649 /// object and collapses PathDiagosticPieces that are expanded by macros.
2650 static void CompactMacroExpandedPieces(PathPieces &path,
2651                                        const SourceManager& SM) {
2652   using MacroStackTy = std::vector<
2653       std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2654 
2655   using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2656 
2657   MacroStackTy MacroStack;
2658   PiecesTy Pieces;
2659 
2660   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2661        I != E; ++I) {
2662     const auto &piece = *I;
2663 
2664     // Recursively compact calls.
2665     if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2666       CompactMacroExpandedPieces(call->path, SM);
2667     }
2668 
2669     // Get the location of the PathDiagnosticPiece.
2670     const FullSourceLoc Loc = piece->getLocation().asLocation();
2671 
2672     // Determine the instantiation location, which is the location we group
2673     // related PathDiagnosticPieces.
2674     SourceLocation InstantiationLoc = Loc.isMacroID() ?
2675                                       SM.getExpansionLoc(Loc) :
2676                                       SourceLocation();
2677 
2678     if (Loc.isFileID()) {
2679       MacroStack.clear();
2680       Pieces.push_back(piece);
2681       continue;
2682     }
2683 
2684     assert(Loc.isMacroID());
2685 
2686     // Is the PathDiagnosticPiece within the same macro group?
2687     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2688       MacroStack.back().first->subPieces.push_back(piece);
2689       continue;
2690     }
2691 
2692     // We aren't in the same group.  Are we descending into a new macro
2693     // or are part of an old one?
2694     std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2695 
2696     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2697                                           SM.getExpansionLoc(Loc) :
2698                                           SourceLocation();
2699 
2700     // Walk the entire macro stack.
2701     while (!MacroStack.empty()) {
2702       if (InstantiationLoc == MacroStack.back().second) {
2703         MacroGroup = MacroStack.back().first;
2704         break;
2705       }
2706 
2707       if (ParentInstantiationLoc == MacroStack.back().second) {
2708         MacroGroup = MacroStack.back().first;
2709         break;
2710       }
2711 
2712       MacroStack.pop_back();
2713     }
2714 
2715     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2716       // Create a new macro group and add it to the stack.
2717       auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2718           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2719 
2720       if (MacroGroup)
2721         MacroGroup->subPieces.push_back(NewGroup);
2722       else {
2723         assert(InstantiationLoc.isFileID());
2724         Pieces.push_back(NewGroup);
2725       }
2726 
2727       MacroGroup = NewGroup;
2728       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2729     }
2730 
2731     // Finally, add the PathDiagnosticPiece to the group.
2732     MacroGroup->subPieces.push_back(piece);
2733   }
2734 
2735   // Now take the pieces and construct a new PathDiagnostic.
2736   path.clear();
2737 
2738   path.insert(path.end(), Pieces.begin(), Pieces.end());
2739 }
2740 
2741 /// Generate notes from all visitors.
2742 /// Notes associated with {@code ErrorNode} are generated using
2743 /// {@code getEndPath}, and the rest are generated with {@code VisitNode}.
2744 static std::unique_ptr<VisitorsDiagnosticsTy>
2745 generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2746                             const ExplodedNode *ErrorNode,
2747                             BugReporterContext &BRC) {
2748   std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2749       std::make_unique<VisitorsDiagnosticsTy>();
2750   PathSensitiveBugReport::VisitorList visitors;
2751 
2752   // Run visitors on all nodes starting from the node *before* the last one.
2753   // The last node is reserved for notes generated with {@code getEndPath}.
2754   const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2755   while (NextNode) {
2756 
2757     // At each iteration, move all visitors from report to visitor list. This is
2758     // important, because the Profile() functions of the visitors make sure that
2759     // a visitor isn't added multiple times for the same node, but it's fine
2760     // to add the a visitor with Profile() for different nodes (e.g. tracking
2761     // a region at different points of the symbolic execution).
2762     for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2763       visitors.push_back(std::move(Visitor));
2764 
2765     R->clearVisitors();
2766 
2767     const ExplodedNode *Pred = NextNode->getFirstPred();
2768     if (!Pred) {
2769       PathDiagnosticPieceRef LastPiece;
2770       for (auto &V : visitors) {
2771         V->finalizeVisitor(BRC, ErrorNode, *R);
2772 
2773         if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2774           assert(!LastPiece &&
2775                  "There can only be one final piece in a diagnostic.");
2776           assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2777                  "The final piece must contain a message!");
2778           LastPiece = std::move(Piece);
2779           (*Notes)[ErrorNode].push_back(LastPiece);
2780         }
2781       }
2782       break;
2783     }
2784 
2785     for (auto &V : visitors) {
2786       auto P = V->VisitNode(NextNode, BRC, *R);
2787       if (P)
2788         (*Notes)[NextNode].push_back(std::move(P));
2789     }
2790 
2791     if (!R->isValid())
2792       break;
2793 
2794     NextNode = Pred;
2795   }
2796 
2797   return Notes;
2798 }
2799 
2800 Optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2801     ArrayRef<PathSensitiveBugReport *> &bugReports,
2802     PathSensitiveBugReporter &Reporter) {
2803 
2804   BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2805 
2806   while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2807     // Find the BugReport with the original location.
2808     PathSensitiveBugReport *R = BugPath->Report;
2809     assert(R && "No original report found for sliced graph.");
2810     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2811     const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2812 
2813     // Register refutation visitors first, if they mark the bug invalid no
2814     // further analysis is required
2815     R->addVisitor(std::make_unique<LikelyFalsePositiveSuppressionBRVisitor>());
2816 
2817     // Register additional node visitors.
2818     R->addVisitor(std::make_unique<NilReceiverBRVisitor>());
2819     R->addVisitor(std::make_unique<ConditionBRVisitor>());
2820     R->addVisitor(std::make_unique<TagVisitor>());
2821 
2822     BugReporterContext BRC(Reporter);
2823 
2824     // Run all visitors on a given graph, once.
2825     std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2826         generateVisitorsDiagnostics(R, ErrorNode, BRC);
2827 
2828     if (R->isValid()) {
2829       if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2830         // If crosscheck is enabled, remove all visitors, add the refutation
2831         // visitor and check again
2832         R->clearVisitors();
2833         R->addVisitor(std::make_unique<FalsePositiveRefutationBRVisitor>());
2834 
2835         // We don't overwrite the notes inserted by other visitors because the
2836         // refutation manager does not add any new note to the path
2837         generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2838       }
2839 
2840       // Check if the bug is still valid
2841       if (R->isValid())
2842         return PathDiagnosticBuilder(
2843             std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2844             BugPath->ErrorNode, std::move(visitorNotes));
2845     }
2846   }
2847 
2848   return {};
2849 }
2850 
2851 std::unique_ptr<DiagnosticForConsumerMapTy>
2852 PathSensitiveBugReporter::generatePathDiagnostics(
2853     ArrayRef<PathDiagnosticConsumer *> consumers,
2854     ArrayRef<PathSensitiveBugReport *> &bugReports) {
2855   assert(!bugReports.empty());
2856 
2857   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2858 
2859   Optional<PathDiagnosticBuilder> PDB =
2860       PathDiagnosticBuilder::findValidReport(bugReports, *this);
2861 
2862   if (PDB) {
2863     for (PathDiagnosticConsumer *PC : consumers) {
2864       if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2865         (*Out)[PC] = std::move(PD);
2866       }
2867     }
2868   }
2869 
2870   return Out;
2871 }
2872 
2873 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2874   bool ValidSourceLoc = R->getLocation().isValid();
2875   assert(ValidSourceLoc);
2876   // If we mess up in a release build, we'd still prefer to just drop the bug
2877   // instead of trying to go on.
2878   if (!ValidSourceLoc)
2879     return;
2880 
2881   // Compute the bug report's hash to determine its equivalence class.
2882   llvm::FoldingSetNodeID ID;
2883   R->Profile(ID);
2884 
2885   // Lookup the equivance class.  If there isn't one, create it.
2886   void *InsertPos;
2887   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2888 
2889   if (!EQ) {
2890     EQ = new BugReportEquivClass(std::move(R));
2891     EQClasses.InsertNode(EQ, InsertPos);
2892     EQClassesVector.push_back(EQ);
2893   } else
2894     EQ->AddReport(std::move(R));
2895 }
2896 
2897 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2898   if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2899     if (const ExplodedNode *E = PR->getErrorNode()) {
2900       // An error node must either be a sink or have a tag, otherwise
2901       // it could get reclaimed before the path diagnostic is created.
2902       assert((E->isSink() || E->getLocation().getTag()) &&
2903              "Error node must either be a sink or have a tag");
2904 
2905       const AnalysisDeclContext *DeclCtx =
2906           E->getLocationContext()->getAnalysisDeclContext();
2907       // The source of autosynthesized body can be handcrafted AST or a model
2908       // file. The locations from handcrafted ASTs have no valid source
2909       // locations and have to be discarded. Locations from model files should
2910       // be preserved for processing and reporting.
2911       if (DeclCtx->isBodyAutosynthesized() &&
2912           !DeclCtx->isBodyAutosynthesizedFromModelFile())
2913         return;
2914     }
2915 
2916   BugReporter::emitReport(std::move(R));
2917 }
2918 
2919 //===----------------------------------------------------------------------===//
2920 // Emitting reports in equivalence classes.
2921 //===----------------------------------------------------------------------===//
2922 
2923 namespace {
2924 
2925 struct FRIEC_WLItem {
2926   const ExplodedNode *N;
2927   ExplodedNode::const_succ_iterator I, E;
2928 
2929   FRIEC_WLItem(const ExplodedNode *n)
2930       : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2931 };
2932 
2933 } // namespace
2934 
2935 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2936     BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2937   // If we don't need to suppress any of the nodes because they are
2938   // post-dominated by a sink, simply add all the nodes in the equivalence class
2939   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2940   assert(EQ.getReports().size() > 0);
2941   const BugType& BT = EQ.getReports()[0]->getBugType();
2942   if (!BT.isSuppressOnSink()) {
2943     BugReport *R = EQ.getReports()[0].get();
2944     for (auto &J : EQ.getReports()) {
2945       if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
2946         R = PR;
2947         bugReports.push_back(PR);
2948       }
2949     }
2950     return R;
2951   }
2952 
2953   // For bug reports that should be suppressed when all paths are post-dominated
2954   // by a sink node, iterate through the reports in the equivalence class
2955   // until we find one that isn't post-dominated (if one exists).  We use a
2956   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2957   // this as a recursive function, but we don't want to risk blowing out the
2958   // stack for very long paths.
2959   BugReport *exampleReport = nullptr;
2960 
2961   for (const auto &I: EQ.getReports()) {
2962     auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
2963     if (!R)
2964       continue;
2965 
2966     const ExplodedNode *errorNode = R->getErrorNode();
2967     if (errorNode->isSink()) {
2968       llvm_unreachable(
2969            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2970     }
2971     // No successors?  By definition this nodes isn't post-dominated by a sink.
2972     if (errorNode->succ_empty()) {
2973       bugReports.push_back(R);
2974       if (!exampleReport)
2975         exampleReport = R;
2976       continue;
2977     }
2978 
2979     // See if we are in a no-return CFG block. If so, treat this similarly
2980     // to being post-dominated by a sink. This works better when the analysis
2981     // is incomplete and we have never reached the no-return function call(s)
2982     // that we'd inevitably bump into on this path.
2983     if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
2984       if (ErrorB->isInevitablySinking())
2985         continue;
2986 
2987     // At this point we know that 'N' is not a sink and it has at least one
2988     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2989     using WLItem = FRIEC_WLItem;
2990     using DFSWorkList = SmallVector<WLItem, 10>;
2991 
2992     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2993 
2994     DFSWorkList WL;
2995     WL.push_back(errorNode);
2996     Visited[errorNode] = 1;
2997 
2998     while (!WL.empty()) {
2999       WLItem &WI = WL.back();
3000       assert(!WI.N->succ_empty());
3001 
3002       for (; WI.I != WI.E; ++WI.I) {
3003         const ExplodedNode *Succ = *WI.I;
3004         // End-of-path node?
3005         if (Succ->succ_empty()) {
3006           // If we found an end-of-path node that is not a sink.
3007           if (!Succ->isSink()) {
3008             bugReports.push_back(R);
3009             if (!exampleReport)
3010               exampleReport = R;
3011             WL.clear();
3012             break;
3013           }
3014           // Found a sink?  Continue on to the next successor.
3015           continue;
3016         }
3017         // Mark the successor as visited.  If it hasn't been explored,
3018         // enqueue it to the DFS worklist.
3019         unsigned &mark = Visited[Succ];
3020         if (!mark) {
3021           mark = 1;
3022           WL.push_back(Succ);
3023           break;
3024         }
3025       }
3026 
3027       // The worklist may have been cleared at this point.  First
3028       // check if it is empty before checking the last item.
3029       if (!WL.empty() && &WL.back() == &WI)
3030         WL.pop_back();
3031     }
3032   }
3033 
3034   // ExampleReport will be NULL if all the nodes in the equivalence class
3035   // were post-dominated by sinks.
3036   return exampleReport;
3037 }
3038 
3039 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3040   SmallVector<BugReport*, 10> bugReports;
3041   BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
3042   if (!report)
3043     return;
3044 
3045   ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3046   std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3047       generateDiagnosticForConsumerMap(report, Consumers, bugReports);
3048 
3049   for (auto &P : *Diagnostics) {
3050     PathDiagnosticConsumer *Consumer = P.first;
3051     std::unique_ptr<PathDiagnostic> &PD = P.second;
3052 
3053     // If the path is empty, generate a single step path with the location
3054     // of the issue.
3055     if (PD->path.empty()) {
3056       PathDiagnosticLocation L = report->getLocation();
3057       auto piece = std::make_unique<PathDiagnosticEventPiece>(
3058         L, report->getDescription());
3059       for (SourceRange Range : report->getRanges())
3060         piece->addRange(Range);
3061       PD->setEndOfPath(std::move(piece));
3062     }
3063 
3064     PathPieces &Pieces = PD->getMutablePieces();
3065     if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3066       // For path diagnostic consumers that don't support extra notes,
3067       // we may optionally convert those to path notes.
3068       for (auto I = report->getNotes().rbegin(),
3069            E = report->getNotes().rend(); I != E; ++I) {
3070         PathDiagnosticNotePiece *Piece = I->get();
3071         auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3072           Piece->getLocation(), Piece->getString());
3073         for (const auto &R: Piece->getRanges())
3074           ConvertedPiece->addRange(R);
3075 
3076         Pieces.push_front(std::move(ConvertedPiece));
3077       }
3078     } else {
3079       for (auto I = report->getNotes().rbegin(),
3080            E = report->getNotes().rend(); I != E; ++I)
3081         Pieces.push_front(*I);
3082     }
3083 
3084     for (const auto &I : report->getFixits())
3085       Pieces.back()->addFixit(I);
3086 
3087     updateExecutedLinesWithDiagnosticPieces(*PD);
3088     Consumer->HandlePathDiagnostic(std::move(PD));
3089   }
3090 }
3091 
3092 /// Insert all lines participating in the function signature \p Signature
3093 /// into \p ExecutedLines.
3094 static void populateExecutedLinesWithFunctionSignature(
3095     const Decl *Signature, const SourceManager &SM,
3096     FilesToLineNumsMap &ExecutedLines) {
3097   SourceRange SignatureSourceRange;
3098   const Stmt* Body = Signature->getBody();
3099   if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3100     SignatureSourceRange = FD->getSourceRange();
3101   } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3102     SignatureSourceRange = OD->getSourceRange();
3103   } else {
3104     return;
3105   }
3106   SourceLocation Start = SignatureSourceRange.getBegin();
3107   SourceLocation End = Body ? Body->getSourceRange().getBegin()
3108     : SignatureSourceRange.getEnd();
3109   if (!Start.isValid() || !End.isValid())
3110     return;
3111   unsigned StartLine = SM.getExpansionLineNumber(Start);
3112   unsigned EndLine = SM.getExpansionLineNumber(End);
3113 
3114   FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3115   for (unsigned Line = StartLine; Line <= EndLine; Line++)
3116     ExecutedLines[FID].insert(Line);
3117 }
3118 
3119 static void populateExecutedLinesWithStmt(
3120     const Stmt *S, const SourceManager &SM,
3121     FilesToLineNumsMap &ExecutedLines) {
3122   SourceLocation Loc = S->getSourceRange().getBegin();
3123   if (!Loc.isValid())
3124     return;
3125   SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3126   FileID FID = SM.getFileID(ExpansionLoc);
3127   unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3128   ExecutedLines[FID].insert(LineNo);
3129 }
3130 
3131 /// \return all executed lines including function signatures on the path
3132 /// starting from \p N.
3133 static std::unique_ptr<FilesToLineNumsMap>
3134 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3135   auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3136 
3137   while (N) {
3138     if (N->getFirstPred() == nullptr) {
3139       // First node: show signature of the entrance point.
3140       const Decl *D = N->getLocationContext()->getDecl();
3141       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3142     } else if (auto CE = N->getLocationAs<CallEnter>()) {
3143       // Inlined function: show signature.
3144       const Decl* D = CE->getCalleeContext()->getDecl();
3145       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3146     } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3147       populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3148 
3149       // Show extra context for some parent kinds.
3150       const Stmt *P = N->getParentMap().getParent(S);
3151 
3152       // The path exploration can die before the node with the associated
3153       // return statement is generated, but we do want to show the whole
3154       // return.
3155       if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3156         populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3157         P = N->getParentMap().getParent(RS);
3158       }
3159 
3160       if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P)))
3161         populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3162     }
3163 
3164     N = N->getFirstPred();
3165   }
3166   return ExecutedLines;
3167 }
3168 
3169 std::unique_ptr<DiagnosticForConsumerMapTy>
3170 BugReporter::generateDiagnosticForConsumerMap(
3171     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3172     ArrayRef<BugReport *> bugReports) {
3173   auto *basicReport = cast<BasicBugReport>(exampleReport);
3174   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3175   for (auto *Consumer : consumers)
3176     (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport);
3177   return Out;
3178 }
3179 
3180 static PathDiagnosticCallPiece *
3181 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3182                                 const SourceManager &SMgr) {
3183   SourceLocation CallLoc = CP->callEnter.asLocation();
3184 
3185   // If the call is within a macro, don't do anything (for now).
3186   if (CallLoc.isMacroID())
3187     return nullptr;
3188 
3189   assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3190          "The call piece should not be in a header file.");
3191 
3192   // Check if CP represents a path through a function outside of the main file.
3193   if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
3194     return CP;
3195 
3196   const PathPieces &Path = CP->path;
3197   if (Path.empty())
3198     return nullptr;
3199 
3200   // Check if the last piece in the callee path is a call to a function outside
3201   // of the main file.
3202   if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3203     return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3204 
3205   // Otherwise, the last piece is in the main file.
3206   return nullptr;
3207 }
3208 
3209 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3210   if (PD.path.empty())
3211     return;
3212 
3213   PathDiagnosticPiece *LastP = PD.path.back().get();
3214   assert(LastP);
3215   const SourceManager &SMgr = LastP->getLocation().getManager();
3216 
3217   // We only need to check if the report ends inside headers, if the last piece
3218   // is a call piece.
3219   if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3220     CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3221     if (CP) {
3222       // Mark the piece.
3223        CP->setAsLastInMainSourceFile();
3224 
3225       // Update the path diagnostic message.
3226       const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3227       if (ND) {
3228         SmallString<200> buf;
3229         llvm::raw_svector_ostream os(buf);
3230         os << " (within a call to '" << ND->getDeclName() << "')";
3231         PD.appendToDesc(os.str());
3232       }
3233 
3234       // Reset the report containing declaration and location.
3235       PD.setDeclWithIssue(CP->getCaller());
3236       PD.setLocation(CP->getLocation());
3237 
3238       return;
3239     }
3240   }
3241 }
3242 
3243 
3244 
3245 std::unique_ptr<DiagnosticForConsumerMapTy>
3246 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3247     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3248     ArrayRef<BugReport *> bugReports) {
3249   std::vector<BasicBugReport *> BasicBugReports;
3250   std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3251   if (isa<BasicBugReport>(exampleReport))
3252     return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3253                                                          consumers, bugReports);
3254 
3255   // Generate the full path sensitive diagnostic, using the generation scheme
3256   // specified by the PathDiagnosticConsumer. Note that we have to generate
3257   // path diagnostics even for consumers which do not support paths, because
3258   // the BugReporterVisitors may mark this bug as a false positive.
3259   assert(!bugReports.empty());
3260   MaxBugClassSize.updateMax(bugReports.size());
3261 
3262   // Avoid copying the whole array because there may be a lot of reports.
3263   ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3264       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3265       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3266   std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3267       consumers, convertedArrayOfReports);
3268 
3269   if (Out->empty())
3270     return Out;
3271 
3272   MaxValidBugClassSize.updateMax(bugReports.size());
3273 
3274   // Examine the report and see if the last piece is in a header. Reset the
3275   // report location to the last piece in the main source file.
3276   const AnalyzerOptions &Opts = getAnalyzerOptions();
3277   for (auto const &P : *Out)
3278     if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3279       resetDiagnosticLocationToMainFile(*P.second);
3280 
3281   return Out;
3282 }
3283 
3284 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3285                                   const CheckerBase *Checker, StringRef Name,
3286                                   StringRef Category, StringRef Str,
3287                                   PathDiagnosticLocation Loc,
3288                                   ArrayRef<SourceRange> Ranges,
3289                                   ArrayRef<FixItHint> Fixits) {
3290   EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3291                   Loc, Ranges, Fixits);
3292 }
3293 
3294 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3295                                   CheckerNameRef CheckName,
3296                                   StringRef name, StringRef category,
3297                                   StringRef str, PathDiagnosticLocation Loc,
3298                                   ArrayRef<SourceRange> Ranges,
3299                                   ArrayRef<FixItHint> Fixits) {
3300   // 'BT' is owned by BugReporter.
3301   BugType *BT = getBugTypeForName(CheckName, name, category);
3302   auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3303   R->setDeclWithIssue(DeclWithIssue);
3304   for (const auto &SR : Ranges)
3305     R->addRange(SR);
3306   for (const auto &FH : Fixits)
3307     R->addFixItHint(FH);
3308   emitReport(std::move(R));
3309 }
3310 
3311 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3312                                         StringRef name, StringRef category) {
3313   SmallString<136> fullDesc;
3314   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3315                                       << ":" << category;
3316   std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3317   if (!BT)
3318     BT = std::make_unique<BugType>(CheckName, name, category);
3319   return BT.get();
3320 }
3321