1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines BugReporter, a utility class for generating
10 //  PathDiagnostics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/Stmt.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/CFGStmtMap.h"
27 #include "clang/Analysis/PathDiagnostic.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
35 #include "clang/StaticAnalyzer/Core/Checker.h"
36 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
37 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/ADT/iterator_range.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MemoryBuffer.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <iterator>
66 #include <memory>
67 #include <optional>
68 #include <queue>
69 #include <string>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
73 
74 using namespace clang;
75 using namespace ento;
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "BugReporter"
79 
80 STATISTIC(MaxBugClassSize,
81           "The maximum number of bug reports in the same equivalence class");
82 STATISTIC(MaxValidBugClassSize,
83           "The maximum number of bug reports in the same equivalence class "
84           "where at least one report is valid (not suppressed)");
85 
86 BugReporterVisitor::~BugReporterVisitor() = default;
87 
88 void BugReporterContext::anchor() {}
89 
90 //===----------------------------------------------------------------------===//
91 // PathDiagnosticBuilder and its associated routines and helper objects.
92 //===----------------------------------------------------------------------===//
93 
94 namespace {
95 
96 /// A (CallPiece, node assiciated with its CallEnter) pair.
97 using CallWithEntry =
98     std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
99 using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
100 
101 /// Map from each node to the diagnostic pieces visitors emit for them.
102 using VisitorsDiagnosticsTy =
103     llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
104 
105 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
106 /// function call it represents.
107 using LocationContextMap =
108     llvm::DenseMap<const PathPieces *, const LocationContext *>;
109 
110 /// A helper class that contains everything needed to construct a
111 /// PathDiagnostic object. It does no much more then providing convenient
112 /// getters and some well placed asserts for extra security.
113 class PathDiagnosticConstruct {
114   /// The consumer we're constructing the bug report for.
115   const PathDiagnosticConsumer *Consumer;
116   /// Our current position in the bug path, which is owned by
117   /// PathDiagnosticBuilder.
118   const ExplodedNode *CurrentNode;
119   /// A mapping from parts of the bug path (for example, a function call, which
120   /// would span backwards from a CallExit to a CallEnter with the nodes in
121   /// between them) with the location contexts it is associated with.
122   LocationContextMap LCM;
123   const SourceManager &SM;
124 
125 public:
126   /// We keep stack of calls to functions as we're ascending the bug path.
127   /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
128   /// that instead?
129   CallWithEntryStack CallStack;
130   /// The bug report we're constructing. For ease of use, this field is kept
131   /// public, though some "shortcut" getters are provided for commonly used
132   /// methods of PathDiagnostic.
133   std::unique_ptr<PathDiagnostic> PD;
134 
135 public:
136   PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
137                           const ExplodedNode *ErrorNode,
138                           const PathSensitiveBugReport *R);
139 
140   /// \returns the location context associated with the current position in the
141   /// bug path.
142   const LocationContext *getCurrLocationContext() const {
143     assert(CurrentNode && "Already reached the root!");
144     return CurrentNode->getLocationContext();
145   }
146 
147   /// Same as getCurrLocationContext (they should always return the same
148   /// location context), but works after reaching the root of the bug path as
149   /// well.
150   const LocationContext *getLocationContextForActivePath() const {
151     return LCM.find(&PD->getActivePath())->getSecond();
152   }
153 
154   const ExplodedNode *getCurrentNode() const { return CurrentNode; }
155 
156   /// Steps the current node to its predecessor.
157   /// \returns whether we reached the root of the bug path.
158   bool ascendToPrevNode() {
159     CurrentNode = CurrentNode->getFirstPred();
160     return static_cast<bool>(CurrentNode);
161   }
162 
163   const ParentMap &getParentMap() const {
164     return getCurrLocationContext()->getParentMap();
165   }
166 
167   const SourceManager &getSourceManager() const { return SM; }
168 
169   const Stmt *getParent(const Stmt *S) const {
170     return getParentMap().getParent(S);
171   }
172 
173   void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
174     assert(Path && LC);
175     LCM[Path] = LC;
176   }
177 
178   const LocationContext *getLocationContextFor(const PathPieces *Path) const {
179     assert(LCM.count(Path) &&
180            "Failed to find the context associated with these pieces!");
181     return LCM.find(Path)->getSecond();
182   }
183 
184   bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
185 
186   PathPieces &getActivePath() { return PD->getActivePath(); }
187   PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
188 
189   bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
190   bool shouldAddControlNotes() const {
191     return Consumer->shouldAddControlNotes();
192   }
193   bool shouldGenerateDiagnostics() const {
194     return Consumer->shouldGenerateDiagnostics();
195   }
196   bool supportsLogicalOpControlFlow() const {
197     return Consumer->supportsLogicalOpControlFlow();
198   }
199 };
200 
201 /// Contains every contextual information needed for constructing a
202 /// PathDiagnostic object for a given bug report. This class and its fields are
203 /// immutable, and passes a BugReportConstruct object around during the
204 /// construction.
205 class PathDiagnosticBuilder : public BugReporterContext {
206   /// A linear path from the error node to the root.
207   std::unique_ptr<const ExplodedGraph> BugPath;
208   /// The bug report we're describing. Visitors create their diagnostics with
209   /// them being the last entities being able to modify it (for example,
210   /// changing interestingness here would cause inconsistencies as to how this
211   /// file and visitors construct diagnostics), hence its const.
212   const PathSensitiveBugReport *R;
213   /// The leaf of the bug path. This isn't the same as the bug reports error
214   /// node, which refers to the *original* graph, not the bug path.
215   const ExplodedNode *const ErrorNode;
216   /// The diagnostic pieces visitors emitted, which is expected to be collected
217   /// by the time this builder is constructed.
218   std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
219 
220 public:
221   /// Find a non-invalidated report for a given equivalence class,  and returns
222   /// a PathDiagnosticBuilder able to construct bug reports for different
223   /// consumers. Returns std::nullopt if no valid report is found.
224   static std::optional<PathDiagnosticBuilder>
225   findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
226                   PathSensitiveBugReporter &Reporter);
227 
228   PathDiagnosticBuilder(
229       BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
230       PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
231       std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
232 
233   /// This function is responsible for generating diagnostic pieces that are
234   /// *not* provided by bug report visitors.
235   /// These diagnostics may differ depending on the consumer's settings,
236   /// and are therefore constructed separately for each consumer.
237   ///
238   /// There are two path diagnostics generation modes: with adding edges (used
239   /// for plists) and without  (used for HTML and text). When edges are added,
240   /// the path is modified to insert artificially generated edges.
241   /// Otherwise, more detailed diagnostics is emitted for block edges,
242   /// explaining the transitions in words.
243   std::unique_ptr<PathDiagnostic>
244   generate(const PathDiagnosticConsumer *PDC) const;
245 
246 private:
247   void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
248                                     const CallWithEntryStack &CallStack) const;
249   void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
250                                       PathDiagnosticLocation &PrevLoc) const;
251 
252   void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
253                                        BlockEdge BE) const;
254 
255   PathDiagnosticPieceRef
256   generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
257                         PathDiagnosticLocation &Start) const;
258 
259   PathDiagnosticPieceRef
260   generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
261                           PathDiagnosticLocation &Start) const;
262 
263   PathDiagnosticPieceRef
264   generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
265                           const CFGBlock *Src, const CFGBlock *DstC) const;
266 
267   PathDiagnosticLocation
268   ExecutionContinues(const PathDiagnosticConstruct &C) const;
269 
270   PathDiagnosticLocation
271   ExecutionContinues(llvm::raw_string_ostream &os,
272                      const PathDiagnosticConstruct &C) const;
273 
274   const PathSensitiveBugReport *getBugReport() const { return R; }
275 };
276 
277 } // namespace
278 
279 //===----------------------------------------------------------------------===//
280 // Base implementation of stack hint generators.
281 //===----------------------------------------------------------------------===//
282 
283 StackHintGenerator::~StackHintGenerator() = default;
284 
285 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
286   if (!N)
287     return getMessageForSymbolNotFound();
288 
289   ProgramPoint P = N->getLocation();
290   CallExitEnd CExit = P.castAs<CallExitEnd>();
291 
292   // FIXME: Use CallEvent to abstract this over all calls.
293   const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
294   const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
295   if (!CE)
296     return {};
297 
298   // Check if one of the parameters are set to the interesting symbol.
299   unsigned ArgIndex = 0;
300   for (CallExpr::const_arg_iterator I = CE->arg_begin(),
301                                     E = CE->arg_end(); I != E; ++I, ++ArgIndex){
302     SVal SV = N->getSVal(*I);
303 
304     // Check if the variable corresponding to the symbol is passed by value.
305     SymbolRef AS = SV.getAsLocSymbol();
306     if (AS == Sym) {
307       return getMessageForArg(*I, ArgIndex);
308     }
309 
310     // Check if the parameter is a pointer to the symbol.
311     if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
312       // Do not attempt to dereference void*.
313       if ((*I)->getType()->isVoidPointerType())
314         continue;
315       SVal PSV = N->getState()->getSVal(Reg->getRegion());
316       SymbolRef AS = PSV.getAsLocSymbol();
317       if (AS == Sym) {
318         return getMessageForArg(*I, ArgIndex);
319       }
320     }
321   }
322 
323   // Check if we are returning the interesting symbol.
324   SVal SV = N->getSVal(CE);
325   SymbolRef RetSym = SV.getAsLocSymbol();
326   if (RetSym == Sym) {
327     return getMessageForReturn(CE);
328   }
329 
330   return getMessageForSymbolNotFound();
331 }
332 
333 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
334                                                           unsigned ArgIndex) {
335   // Printed parameters start at 1, not 0.
336   ++ArgIndex;
337 
338   return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
339           llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
340 }
341 
342 //===----------------------------------------------------------------------===//
343 // Diagnostic cleanup.
344 //===----------------------------------------------------------------------===//
345 
346 static PathDiagnosticEventPiece *
347 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
348                             PathDiagnosticEventPiece *Y) {
349   // Prefer diagnostics that come from ConditionBRVisitor over
350   // those that came from TrackConstraintBRVisitor,
351   // unless the one from ConditionBRVisitor is
352   // its generic fallback diagnostic.
353   const void *tagPreferred = ConditionBRVisitor::getTag();
354   const void *tagLesser = TrackConstraintBRVisitor::getTag();
355 
356   if (X->getLocation() != Y->getLocation())
357     return nullptr;
358 
359   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
360     return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
361 
362   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
363     return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
364 
365   return nullptr;
366 }
367 
368 /// An optimization pass over PathPieces that removes redundant diagnostics
369 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
370 /// BugReporterVisitors use different methods to generate diagnostics, with
371 /// one capable of emitting diagnostics in some cases but not in others.  This
372 /// can lead to redundant diagnostic pieces at the same point in a path.
373 static void removeRedundantMsgs(PathPieces &path) {
374   unsigned N = path.size();
375   if (N < 2)
376     return;
377   // NOTE: this loop intentionally is not using an iterator.  Instead, we
378   // are streaming the path and modifying it in place.  This is done by
379   // grabbing the front, processing it, and if we decide to keep it append
380   // it to the end of the path.  The entire path is processed in this way.
381   for (unsigned i = 0; i < N; ++i) {
382     auto piece = std::move(path.front());
383     path.pop_front();
384 
385     switch (piece->getKind()) {
386       case PathDiagnosticPiece::Call:
387         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
388         break;
389       case PathDiagnosticPiece::Macro:
390         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
391         break;
392       case PathDiagnosticPiece::Event: {
393         if (i == N-1)
394           break;
395 
396         if (auto *nextEvent =
397             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
398           auto *event = cast<PathDiagnosticEventPiece>(piece.get());
399           // Check to see if we should keep one of the two pieces.  If we
400           // come up with a preference, record which piece to keep, and consume
401           // another piece from the path.
402           if (auto *pieceToKeep =
403                   eventsDescribeSameCondition(event, nextEvent)) {
404             piece = std::move(pieceToKeep == event ? piece : path.front());
405             path.pop_front();
406             ++i;
407           }
408         }
409         break;
410       }
411       case PathDiagnosticPiece::ControlFlow:
412       case PathDiagnosticPiece::Note:
413       case PathDiagnosticPiece::PopUp:
414         break;
415     }
416     path.push_back(std::move(piece));
417   }
418 }
419 
420 /// Recursively scan through a path and prune out calls and macros pieces
421 /// that aren't needed.  Return true if afterwards the path contains
422 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
423 static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
424                                 PathPieces &pieces,
425                                 const PathSensitiveBugReport *R,
426                                 bool IsInteresting = false) {
427   bool containsSomethingInteresting = IsInteresting;
428   const unsigned N = pieces.size();
429 
430   for (unsigned i = 0 ; i < N ; ++i) {
431     // Remove the front piece from the path.  If it is still something we
432     // want to keep once we are done, we will push it back on the end.
433     auto piece = std::move(pieces.front());
434     pieces.pop_front();
435 
436     switch (piece->getKind()) {
437       case PathDiagnosticPiece::Call: {
438         auto &call = cast<PathDiagnosticCallPiece>(*piece);
439         // Check if the location context is interesting.
440         if (!removeUnneededCalls(
441                 C, call.path, R,
442                 R->isInteresting(C.getLocationContextFor(&call.path))))
443           continue;
444 
445         containsSomethingInteresting = true;
446         break;
447       }
448       case PathDiagnosticPiece::Macro: {
449         auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
450         if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
451           continue;
452         containsSomethingInteresting = true;
453         break;
454       }
455       case PathDiagnosticPiece::Event: {
456         auto &event = cast<PathDiagnosticEventPiece>(*piece);
457 
458         // We never throw away an event, but we do throw it away wholesale
459         // as part of a path if we throw the entire path away.
460         containsSomethingInteresting |= !event.isPrunable();
461         break;
462       }
463       case PathDiagnosticPiece::ControlFlow:
464       case PathDiagnosticPiece::Note:
465       case PathDiagnosticPiece::PopUp:
466         break;
467     }
468 
469     pieces.push_back(std::move(piece));
470   }
471 
472   return containsSomethingInteresting;
473 }
474 
475 /// Same logic as above to remove extra pieces.
476 static void removePopUpNotes(PathPieces &Path) {
477   for (unsigned int i = 0; i < Path.size(); ++i) {
478     auto Piece = std::move(Path.front());
479     Path.pop_front();
480     if (!isa<PathDiagnosticPopUpPiece>(*Piece))
481       Path.push_back(std::move(Piece));
482   }
483 }
484 
485 /// Returns true if the given decl has been implicitly given a body, either by
486 /// the analyzer or by the compiler proper.
487 static bool hasImplicitBody(const Decl *D) {
488   assert(D);
489   return D->isImplicit() || !D->hasBody();
490 }
491 
492 /// Recursively scan through a path and make sure that all call pieces have
493 /// valid locations.
494 static void
495 adjustCallLocations(PathPieces &Pieces,
496                     PathDiagnosticLocation *LastCallLocation = nullptr) {
497   for (const auto &I : Pieces) {
498     auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
499 
500     if (!Call)
501       continue;
502 
503     if (LastCallLocation) {
504       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
505       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
506         Call->callEnter = *LastCallLocation;
507       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
508         Call->callReturn = *LastCallLocation;
509     }
510 
511     // Recursively clean out the subclass.  Keep this call around if
512     // it contains any informative diagnostics.
513     PathDiagnosticLocation *ThisCallLocation;
514     if (Call->callEnterWithin.asLocation().isValid() &&
515         !hasImplicitBody(Call->getCallee()))
516       ThisCallLocation = &Call->callEnterWithin;
517     else
518       ThisCallLocation = &Call->callEnter;
519 
520     assert(ThisCallLocation && "Outermost call has an invalid location");
521     adjustCallLocations(Call->path, ThisCallLocation);
522   }
523 }
524 
525 /// Remove edges in and out of C++ default initializer expressions. These are
526 /// for fields that have in-class initializers, as opposed to being initialized
527 /// explicitly in a constructor or braced list.
528 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
529   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
530     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
531       removeEdgesToDefaultInitializers(C->path);
532 
533     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
534       removeEdgesToDefaultInitializers(M->subPieces);
535 
536     if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
537       const Stmt *Start = CF->getStartLocation().asStmt();
538       const Stmt *End = CF->getEndLocation().asStmt();
539       if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) {
540         I = Pieces.erase(I);
541         continue;
542       } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) {
543         PathPieces::iterator Next = std::next(I);
544         if (Next != E) {
545           if (auto *NextCF =
546                   dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
547             NextCF->setStartLocation(CF->getStartLocation());
548           }
549         }
550         I = Pieces.erase(I);
551         continue;
552       }
553     }
554 
555     I++;
556   }
557 }
558 
559 /// Remove all pieces with invalid locations as these cannot be serialized.
560 /// We might have pieces with invalid locations as a result of inlining Body
561 /// Farm generated functions.
562 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
563   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
564     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
565       removePiecesWithInvalidLocations(C->path);
566 
567     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
568       removePiecesWithInvalidLocations(M->subPieces);
569 
570     if (!(*I)->getLocation().isValid() ||
571         !(*I)->getLocation().asLocation().isValid()) {
572       I = Pieces.erase(I);
573       continue;
574     }
575     I++;
576   }
577 }
578 
579 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
580     const PathDiagnosticConstruct &C) const {
581   if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
582     return PathDiagnosticLocation(S, getSourceManager(),
583                                   C.getCurrLocationContext());
584 
585   return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
586                                                getSourceManager());
587 }
588 
589 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
590     llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
591   // Slow, but probably doesn't matter.
592   if (os.str().empty())
593     os << ' ';
594 
595   const PathDiagnosticLocation &Loc = ExecutionContinues(C);
596 
597   if (Loc.asStmt())
598     os << "Execution continues on line "
599        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
600        << '.';
601   else {
602     os << "Execution jumps to the end of the ";
603     const Decl *D = C.getCurrLocationContext()->getDecl();
604     if (isa<ObjCMethodDecl>(D))
605       os << "method";
606     else if (isa<FunctionDecl>(D))
607       os << "function";
608     else {
609       assert(isa<BlockDecl>(D));
610       os << "anonymous block";
611     }
612     os << '.';
613   }
614 
615   return Loc;
616 }
617 
618 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
619   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
620     return PM.getParentIgnoreParens(S);
621 
622   const Stmt *Parent = PM.getParentIgnoreParens(S);
623   if (!Parent)
624     return nullptr;
625 
626   switch (Parent->getStmtClass()) {
627   case Stmt::ForStmtClass:
628   case Stmt::DoStmtClass:
629   case Stmt::WhileStmtClass:
630   case Stmt::ObjCForCollectionStmtClass:
631   case Stmt::CXXForRangeStmtClass:
632     return Parent;
633   default:
634     break;
635   }
636 
637   return nullptr;
638 }
639 
640 static PathDiagnosticLocation
641 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
642                          bool allowNestedContexts = false) {
643   if (!S)
644     return {};
645 
646   const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
647 
648   while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
649     switch (Parent->getStmtClass()) {
650       case Stmt::BinaryOperatorClass: {
651         const auto *B = cast<BinaryOperator>(Parent);
652         if (B->isLogicalOp())
653           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
654         break;
655       }
656       case Stmt::CompoundStmtClass:
657       case Stmt::StmtExprClass:
658         return PathDiagnosticLocation(S, SMgr, LC);
659       case Stmt::ChooseExprClass:
660         // Similar to '?' if we are referring to condition, just have the edge
661         // point to the entire choose expression.
662         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
663           return PathDiagnosticLocation(Parent, SMgr, LC);
664         else
665           return PathDiagnosticLocation(S, SMgr, LC);
666       case Stmt::BinaryConditionalOperatorClass:
667       case Stmt::ConditionalOperatorClass:
668         // For '?', if we are referring to condition, just have the edge point
669         // to the entire '?' expression.
670         if (allowNestedContexts ||
671             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
672           return PathDiagnosticLocation(Parent, SMgr, LC);
673         else
674           return PathDiagnosticLocation(S, SMgr, LC);
675       case Stmt::CXXForRangeStmtClass:
676         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
677           return PathDiagnosticLocation(S, SMgr, LC);
678         break;
679       case Stmt::DoStmtClass:
680           return PathDiagnosticLocation(S, SMgr, LC);
681       case Stmt::ForStmtClass:
682         if (cast<ForStmt>(Parent)->getBody() == S)
683           return PathDiagnosticLocation(S, SMgr, LC);
684         break;
685       case Stmt::IfStmtClass:
686         if (cast<IfStmt>(Parent)->getCond() != S)
687           return PathDiagnosticLocation(S, SMgr, LC);
688         break;
689       case Stmt::ObjCForCollectionStmtClass:
690         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
691           return PathDiagnosticLocation(S, SMgr, LC);
692         break;
693       case Stmt::WhileStmtClass:
694         if (cast<WhileStmt>(Parent)->getCond() != S)
695           return PathDiagnosticLocation(S, SMgr, LC);
696         break;
697       default:
698         break;
699     }
700 
701     S = Parent;
702   }
703 
704   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
705 
706   return PathDiagnosticLocation(S, SMgr, LC);
707 }
708 
709 //===----------------------------------------------------------------------===//
710 // "Minimal" path diagnostic generation algorithm.
711 //===----------------------------------------------------------------------===//
712 
713 /// If the piece contains a special message, add it to all the call pieces on
714 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
715 /// will construct an event at the call to malloc(), and add a stack hint that
716 /// an allocated memory was returned. We'll use this hint to construct a message
717 /// when returning from the call to my_malloc
718 ///
719 ///   void *my_malloc() { return malloc(sizeof(int)); }
720 ///   void fishy() {
721 ///     void *ptr = my_malloc(); // returned allocated memory
722 ///   } // leak
723 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
724     PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
725   if (R->hasCallStackHint(P))
726     for (const auto &I : CallStack) {
727       PathDiagnosticCallPiece *CP = I.first;
728       const ExplodedNode *N = I.second;
729       std::string stackMsg = R->getCallStackMessage(P, N);
730 
731       // The last message on the path to final bug is the most important
732       // one. Since we traverse the path backwards, do not add the message
733       // if one has been previously added.
734       if (!CP->hasCallStackMessage())
735         CP->setCallStackMessage(stackMsg);
736     }
737 }
738 
739 static void CompactMacroExpandedPieces(PathPieces &path,
740                                        const SourceManager& SM);
741 
742 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
743     const PathDiagnosticConstruct &C, const CFGBlock *Dst,
744     PathDiagnosticLocation &Start) const {
745 
746   const SourceManager &SM = getSourceManager();
747   // Figure out what case arm we took.
748   std::string sbuf;
749   llvm::raw_string_ostream os(sbuf);
750   PathDiagnosticLocation End;
751 
752   if (const Stmt *S = Dst->getLabel()) {
753     End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
754 
755     switch (S->getStmtClass()) {
756     default:
757       os << "No cases match in the switch statement. "
758         "Control jumps to line "
759         << End.asLocation().getExpansionLineNumber();
760       break;
761     case Stmt::DefaultStmtClass:
762       os << "Control jumps to the 'default' case at line "
763         << End.asLocation().getExpansionLineNumber();
764       break;
765 
766     case Stmt::CaseStmtClass: {
767       os << "Control jumps to 'case ";
768       const auto *Case = cast<CaseStmt>(S);
769       const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts();
770 
771       // Determine if it is an enum.
772       bool GetRawInt = true;
773 
774       if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
775         // FIXME: Maybe this should be an assertion.  Are there cases
776         // were it is not an EnumConstantDecl?
777         const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
778 
779         if (D) {
780           GetRawInt = false;
781           os << *D;
782         }
783       }
784 
785       if (GetRawInt)
786         os << LHS->EvaluateKnownConstInt(getASTContext());
787 
788       os << ":'  at line " << End.asLocation().getExpansionLineNumber();
789       break;
790     }
791     }
792   } else {
793     os << "'Default' branch taken. ";
794     End = ExecutionContinues(os, C);
795   }
796   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
797                                                        os.str());
798 }
799 
800 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
801     const PathDiagnosticConstruct &C, const Stmt *S,
802     PathDiagnosticLocation &Start) const {
803   std::string sbuf;
804   llvm::raw_string_ostream os(sbuf);
805   const PathDiagnosticLocation &End =
806       getEnclosingStmtLocation(S, C.getCurrLocationContext());
807   os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
808   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
809 }
810 
811 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
812     const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
813     const CFGBlock *Dst) const {
814 
815   const SourceManager &SM = getSourceManager();
816 
817   const auto *B = cast<BinaryOperator>(T);
818   std::string sbuf;
819   llvm::raw_string_ostream os(sbuf);
820   os << "Left side of '";
821   PathDiagnosticLocation Start, End;
822 
823   if (B->getOpcode() == BO_LAnd) {
824     os << "&&"
825       << "' is ";
826 
827     if (*(Src->succ_begin() + 1) == Dst) {
828       os << "false";
829       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
830       Start =
831         PathDiagnosticLocation::createOperatorLoc(B, SM);
832     } else {
833       os << "true";
834       Start =
835           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
836       End = ExecutionContinues(C);
837     }
838   } else {
839     assert(B->getOpcode() == BO_LOr);
840     os << "||"
841       << "' is ";
842 
843     if (*(Src->succ_begin() + 1) == Dst) {
844       os << "false";
845       Start =
846           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
847       End = ExecutionContinues(C);
848     } else {
849       os << "true";
850       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
851       Start =
852         PathDiagnosticLocation::createOperatorLoc(B, SM);
853     }
854   }
855   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
856                                                          os.str());
857 }
858 
859 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
860     PathDiagnosticConstruct &C, BlockEdge BE) const {
861   const SourceManager &SM = getSourceManager();
862   const LocationContext *LC = C.getCurrLocationContext();
863   const CFGBlock *Src = BE.getSrc();
864   const CFGBlock *Dst = BE.getDst();
865   const Stmt *T = Src->getTerminatorStmt();
866   if (!T)
867     return;
868 
869   auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
870   switch (T->getStmtClass()) {
871   default:
872     break;
873 
874   case Stmt::GotoStmtClass:
875   case Stmt::IndirectGotoStmtClass: {
876     if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
877       C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
878     break;
879   }
880 
881   case Stmt::SwitchStmtClass: {
882     C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
883     break;
884   }
885 
886   case Stmt::BreakStmtClass:
887   case Stmt::ContinueStmtClass: {
888     std::string sbuf;
889     llvm::raw_string_ostream os(sbuf);
890     PathDiagnosticLocation End = ExecutionContinues(os, C);
891     C.getActivePath().push_front(
892         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
893     break;
894   }
895 
896   // Determine control-flow for ternary '?'.
897   case Stmt::BinaryConditionalOperatorClass:
898   case Stmt::ConditionalOperatorClass: {
899     std::string sbuf;
900     llvm::raw_string_ostream os(sbuf);
901     os << "'?' condition is ";
902 
903     if (*(Src->succ_begin() + 1) == Dst)
904       os << "false";
905     else
906       os << "true";
907 
908     PathDiagnosticLocation End = ExecutionContinues(C);
909 
910     if (const Stmt *S = End.asStmt())
911       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
912 
913     C.getActivePath().push_front(
914         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
915     break;
916   }
917 
918   // Determine control-flow for short-circuited '&&' and '||'.
919   case Stmt::BinaryOperatorClass: {
920     if (!C.supportsLogicalOpControlFlow())
921       break;
922 
923     C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
924     break;
925   }
926 
927   case Stmt::DoStmtClass:
928     if (*(Src->succ_begin()) == Dst) {
929       std::string sbuf;
930       llvm::raw_string_ostream os(sbuf);
931 
932       os << "Loop condition is true. ";
933       PathDiagnosticLocation End = ExecutionContinues(os, C);
934 
935       if (const Stmt *S = End.asStmt())
936         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
937 
938       C.getActivePath().push_front(
939           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
940                                                            os.str()));
941     } else {
942       PathDiagnosticLocation End = ExecutionContinues(C);
943 
944       if (const Stmt *S = End.asStmt())
945         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
946 
947       C.getActivePath().push_front(
948           std::make_shared<PathDiagnosticControlFlowPiece>(
949               Start, End, "Loop condition is false.  Exiting loop"));
950     }
951     break;
952 
953   case Stmt::WhileStmtClass:
954   case Stmt::ForStmtClass:
955     if (*(Src->succ_begin() + 1) == Dst) {
956       std::string sbuf;
957       llvm::raw_string_ostream os(sbuf);
958 
959       os << "Loop condition is false. ";
960       PathDiagnosticLocation End = ExecutionContinues(os, C);
961       if (const Stmt *S = End.asStmt())
962         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
963 
964       C.getActivePath().push_front(
965           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
966                                                            os.str()));
967     } else {
968       PathDiagnosticLocation End = ExecutionContinues(C);
969       if (const Stmt *S = End.asStmt())
970         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
971 
972       C.getActivePath().push_front(
973           std::make_shared<PathDiagnosticControlFlowPiece>(
974               Start, End, "Loop condition is true.  Entering loop body"));
975     }
976 
977     break;
978 
979   case Stmt::IfStmtClass: {
980     PathDiagnosticLocation End = ExecutionContinues(C);
981 
982     if (const Stmt *S = End.asStmt())
983       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
984 
985     if (*(Src->succ_begin() + 1) == Dst)
986       C.getActivePath().push_front(
987           std::make_shared<PathDiagnosticControlFlowPiece>(
988               Start, End, "Taking false branch"));
989     else
990       C.getActivePath().push_front(
991           std::make_shared<PathDiagnosticControlFlowPiece>(
992               Start, End, "Taking true branch"));
993 
994     break;
995   }
996   }
997 }
998 
999 //===----------------------------------------------------------------------===//
1000 // Functions for determining if a loop was executed 0 times.
1001 //===----------------------------------------------------------------------===//
1002 
1003 static bool isLoop(const Stmt *Term) {
1004   switch (Term->getStmtClass()) {
1005     case Stmt::ForStmtClass:
1006     case Stmt::WhileStmtClass:
1007     case Stmt::ObjCForCollectionStmtClass:
1008     case Stmt::CXXForRangeStmtClass:
1009       return true;
1010     default:
1011       // Note that we intentionally do not include do..while here.
1012       return false;
1013   }
1014 }
1015 
1016 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1017   const CFGBlock *Src = BE->getSrc();
1018   assert(Src->succ_size() == 2);
1019   return (*(Src->succ_begin()+1) == BE->getDst());
1020 }
1021 
1022 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1023                               const Stmt *SubS) {
1024   while (SubS) {
1025     if (SubS == S)
1026       return true;
1027     SubS = PM.getParent(SubS);
1028   }
1029   return false;
1030 }
1031 
1032 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1033                                      const ExplodedNode *N) {
1034   while (N) {
1035     std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1036     if (SP) {
1037       const Stmt *S = SP->getStmt();
1038       if (!isContainedByStmt(PM, Term, S))
1039         return S;
1040     }
1041     N = N->getFirstPred();
1042   }
1043   return nullptr;
1044 }
1045 
1046 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1047   const Stmt *LoopBody = nullptr;
1048   switch (Term->getStmtClass()) {
1049     case Stmt::CXXForRangeStmtClass: {
1050       const auto *FR = cast<CXXForRangeStmt>(Term);
1051       if (isContainedByStmt(PM, FR->getInc(), S))
1052         return true;
1053       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1054         return true;
1055       LoopBody = FR->getBody();
1056       break;
1057     }
1058     case Stmt::ForStmtClass: {
1059       const auto *FS = cast<ForStmt>(Term);
1060       if (isContainedByStmt(PM, FS->getInc(), S))
1061         return true;
1062       LoopBody = FS->getBody();
1063       break;
1064     }
1065     case Stmt::ObjCForCollectionStmtClass: {
1066       const auto *FC = cast<ObjCForCollectionStmt>(Term);
1067       LoopBody = FC->getBody();
1068       break;
1069     }
1070     case Stmt::WhileStmtClass:
1071       LoopBody = cast<WhileStmt>(Term)->getBody();
1072       break;
1073     default:
1074       return false;
1075   }
1076   return isContainedByStmt(PM, LoopBody, S);
1077 }
1078 
1079 /// Adds a sanitized control-flow diagnostic edge to a path.
1080 static void addEdgeToPath(PathPieces &path,
1081                           PathDiagnosticLocation &PrevLoc,
1082                           PathDiagnosticLocation NewLoc) {
1083   if (!NewLoc.isValid())
1084     return;
1085 
1086   SourceLocation NewLocL = NewLoc.asLocation();
1087   if (NewLocL.isInvalid())
1088     return;
1089 
1090   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1091     PrevLoc = NewLoc;
1092     return;
1093   }
1094 
1095   // Ignore self-edges, which occur when there are multiple nodes at the same
1096   // statement.
1097   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1098     return;
1099 
1100   path.push_front(
1101       std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1102   PrevLoc = NewLoc;
1103 }
1104 
1105 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1106 /// which returns the element for ObjCForCollectionStmts.
1107 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1108   const Stmt *S = B->getTerminatorCondition();
1109   if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1110     return FS->getElement();
1111   return S;
1112 }
1113 
1114 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1115 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1116 constexpr llvm::StringLiteral StrLoopRangeEmpty =
1117     "Loop body skipped when range is empty";
1118 constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1119     "Loop body skipped when collection is empty";
1120 
1121 static std::unique_ptr<FilesToLineNumsMap>
1122 findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1123 
1124 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1125     PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1126   ProgramPoint P = C.getCurrentNode()->getLocation();
1127   const SourceManager &SM = getSourceManager();
1128 
1129   // Have we encountered an entrance to a call?  It may be
1130   // the case that we have not encountered a matching
1131   // call exit before this point.  This means that the path
1132   // terminated within the call itself.
1133   if (auto CE = P.getAs<CallEnter>()) {
1134 
1135     if (C.shouldAddPathEdges()) {
1136       // Add an edge to the start of the function.
1137       const StackFrameContext *CalleeLC = CE->getCalleeContext();
1138       const Decl *D = CalleeLC->getDecl();
1139       // Add the edge only when the callee has body. We jump to the beginning
1140       // of the *declaration*, however we expect it to be followed by the
1141       // body. This isn't the case for autosynthesized property accessors in
1142       // Objective-C. No need for a similar extra check for CallExit points
1143       // because the exit edge comes from a statement (i.e. return),
1144       // not from declaration.
1145       if (D->hasBody())
1146         addEdgeToPath(C.getActivePath(), PrevLoc,
1147                       PathDiagnosticLocation::createBegin(D, SM));
1148     }
1149 
1150     // Did we visit an entire call?
1151     bool VisitedEntireCall = C.PD->isWithinCall();
1152     C.PD->popActivePath();
1153 
1154     PathDiagnosticCallPiece *Call;
1155     if (VisitedEntireCall) {
1156       Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1157     } else {
1158       // The path terminated within a nested location context, create a new
1159       // call piece to encapsulate the rest of the path pieces.
1160       const Decl *Caller = CE->getLocationContext()->getDecl();
1161       Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1162       assert(C.getActivePath().size() == 1 &&
1163              C.getActivePath().front().get() == Call);
1164 
1165       // Since we just transferred the path over to the call piece, reset the
1166       // mapping of the active path to the current location context.
1167       assert(C.isInLocCtxMap(&C.getActivePath()) &&
1168              "When we ascend to a previously unvisited call, the active path's "
1169              "address shouldn't change, but rather should be compacted into "
1170              "a single CallEvent!");
1171       C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1172 
1173       // Record the location context mapping for the path within the call.
1174       assert(!C.isInLocCtxMap(&Call->path) &&
1175              "When we ascend to a previously unvisited call, this must be the "
1176              "first time we encounter the caller context!");
1177       C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1178     }
1179     Call->setCallee(*CE, SM);
1180 
1181     // Update the previous location in the active path.
1182     PrevLoc = Call->getLocation();
1183 
1184     if (!C.CallStack.empty()) {
1185       assert(C.CallStack.back().first == Call);
1186       C.CallStack.pop_back();
1187     }
1188     return;
1189   }
1190 
1191   assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1192          "The current position in the bug path is out of sync with the "
1193          "location context associated with the active path!");
1194 
1195   // Have we encountered an exit from a function call?
1196   if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1197 
1198     // We are descending into a call (backwards).  Construct
1199     // a new call piece to contain the path pieces for that call.
1200     auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
1201     // Record the mapping from call piece to LocationContext.
1202     assert(!C.isInLocCtxMap(&Call->path) &&
1203            "We just entered a call, this must've been the first time we "
1204            "encounter its context!");
1205     C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1206 
1207     if (C.shouldAddPathEdges()) {
1208       // Add the edge to the return site.
1209       addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1210       PrevLoc.invalidate();
1211     }
1212 
1213     auto *P = Call.get();
1214     C.getActivePath().push_front(std::move(Call));
1215 
1216     // Make the contents of the call the active path for now.
1217     C.PD->pushActivePath(&P->path);
1218     C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1219     return;
1220   }
1221 
1222   if (auto PS = P.getAs<PostStmt>()) {
1223     if (!C.shouldAddPathEdges())
1224       return;
1225 
1226     // Add an edge.  If this is an ObjCForCollectionStmt do
1227     // not add an edge here as it appears in the CFG both
1228     // as a terminator and as a terminator condition.
1229     if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1230       PathDiagnosticLocation L =
1231           PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1232       addEdgeToPath(C.getActivePath(), PrevLoc, L);
1233     }
1234 
1235   } else if (auto BE = P.getAs<BlockEdge>()) {
1236 
1237     if (C.shouldAddControlNotes()) {
1238       generateMinimalDiagForBlockEdge(C, *BE);
1239     }
1240 
1241     if (!C.shouldAddPathEdges()) {
1242       return;
1243     }
1244 
1245     // Are we jumping to the head of a loop?  Add a special diagnostic.
1246     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1247       PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1248       const Stmt *Body = nullptr;
1249 
1250       if (const auto *FS = dyn_cast<ForStmt>(Loop))
1251         Body = FS->getBody();
1252       else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1253         Body = WS->getBody();
1254       else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1255         Body = OFS->getBody();
1256       } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1257         Body = FRS->getBody();
1258       }
1259       // do-while statements are explicitly excluded here
1260 
1261       auto p = std::make_shared<PathDiagnosticEventPiece>(
1262           L, "Looping back to the head of the loop");
1263       p->setPrunable(true);
1264 
1265       addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1266       // We might've added a very similar control node already
1267       if (!C.shouldAddControlNotes()) {
1268         C.getActivePath().push_front(std::move(p));
1269       }
1270 
1271       if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1272         addEdgeToPath(C.getActivePath(), PrevLoc,
1273                       PathDiagnosticLocation::createEndBrace(CS, SM));
1274       }
1275     }
1276 
1277     const CFGBlock *BSrc = BE->getSrc();
1278     const ParentMap &PM = C.getParentMap();
1279 
1280     if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1281       // Are we jumping past the loop body without ever executing the
1282       // loop (because the condition was false)?
1283       if (isLoop(Term)) {
1284         const Stmt *TermCond = getTerminatorCondition(BSrc);
1285         bool IsInLoopBody = isInLoopBody(
1286             PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1287 
1288         StringRef str;
1289 
1290         if (isJumpToFalseBranch(&*BE)) {
1291           if (!IsInLoopBody) {
1292             if (isa<ObjCForCollectionStmt>(Term)) {
1293               str = StrLoopCollectionEmpty;
1294             } else if (isa<CXXForRangeStmt>(Term)) {
1295               str = StrLoopRangeEmpty;
1296             } else {
1297               str = StrLoopBodyZero;
1298             }
1299           }
1300         } else {
1301           str = StrEnteringLoop;
1302         }
1303 
1304         if (!str.empty()) {
1305           PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1306                                    C.getCurrLocationContext());
1307           auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1308           PE->setPrunable(true);
1309           addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1310 
1311           // We might've added a very similar control node already
1312           if (!C.shouldAddControlNotes()) {
1313             C.getActivePath().push_front(std::move(PE));
1314           }
1315         }
1316       } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) {
1317         PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1318         addEdgeToPath(C.getActivePath(), PrevLoc, L);
1319       }
1320     }
1321   }
1322 }
1323 
1324 static std::unique_ptr<PathDiagnostic>
1325 generateDiagnosticForBasicReport(const BasicBugReport *R) {
1326   const BugType &BT = R->getBugType();
1327   return std::make_unique<PathDiagnostic>(
1328       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1329       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1330       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1331       std::make_unique<FilesToLineNumsMap>());
1332 }
1333 
1334 static std::unique_ptr<PathDiagnostic>
1335 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1336                                  const SourceManager &SM) {
1337   const BugType &BT = R->getBugType();
1338   return std::make_unique<PathDiagnostic>(
1339       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1340       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1341       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1342       findExecutedLines(SM, R->getErrorNode()));
1343 }
1344 
1345 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1346   if (!S)
1347     return nullptr;
1348 
1349   while (true) {
1350     S = PM.getParentIgnoreParens(S);
1351 
1352     if (!S)
1353       break;
1354 
1355     if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S))
1356       continue;
1357 
1358     break;
1359   }
1360 
1361   return S;
1362 }
1363 
1364 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1365   switch (S->getStmtClass()) {
1366     case Stmt::BinaryOperatorClass: {
1367       const auto *BO = cast<BinaryOperator>(S);
1368       if (!BO->isLogicalOp())
1369         return false;
1370       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1371     }
1372     case Stmt::IfStmtClass:
1373       return cast<IfStmt>(S)->getCond() == Cond;
1374     case Stmt::ForStmtClass:
1375       return cast<ForStmt>(S)->getCond() == Cond;
1376     case Stmt::WhileStmtClass:
1377       return cast<WhileStmt>(S)->getCond() == Cond;
1378     case Stmt::DoStmtClass:
1379       return cast<DoStmt>(S)->getCond() == Cond;
1380     case Stmt::ChooseExprClass:
1381       return cast<ChooseExpr>(S)->getCond() == Cond;
1382     case Stmt::IndirectGotoStmtClass:
1383       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1384     case Stmt::SwitchStmtClass:
1385       return cast<SwitchStmt>(S)->getCond() == Cond;
1386     case Stmt::BinaryConditionalOperatorClass:
1387       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1388     case Stmt::ConditionalOperatorClass: {
1389       const auto *CO = cast<ConditionalOperator>(S);
1390       return CO->getCond() == Cond ||
1391              CO->getLHS() == Cond ||
1392              CO->getRHS() == Cond;
1393     }
1394     case Stmt::ObjCForCollectionStmtClass:
1395       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1396     case Stmt::CXXForRangeStmtClass: {
1397       const auto *FRS = cast<CXXForRangeStmt>(S);
1398       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1399     }
1400     default:
1401       return false;
1402   }
1403 }
1404 
1405 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1406   if (const auto *FS = dyn_cast<ForStmt>(FL))
1407     return FS->getInc() == S || FS->getInit() == S;
1408   if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1409     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1410            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1411   return false;
1412 }
1413 
1414 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1415 
1416 /// Adds synthetic edges from top-level statements to their subexpressions.
1417 ///
1418 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1419 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1420 /// we'd like to see an edge from A to B, then another one from B to B.1.
1421 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1422   const ParentMap &PM = LC->getParentMap();
1423   PathPieces::iterator Prev = pieces.end();
1424   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1425        Prev = I, ++I) {
1426     auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1427 
1428     if (!Piece)
1429       continue;
1430 
1431     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1432     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1433 
1434     PathDiagnosticLocation NextSrcContext = SrcLoc;
1435     const Stmt *InnerStmt = nullptr;
1436     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1437       SrcContexts.push_back(NextSrcContext);
1438       InnerStmt = NextSrcContext.asStmt();
1439       NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1440                                                 /*allowNested=*/true);
1441     }
1442 
1443     // Repeatedly split the edge as necessary.
1444     // This is important for nested logical expressions (||, &&, ?:) where we
1445     // want to show all the levels of context.
1446     while (true) {
1447       const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1448 
1449       // We are looking at an edge. Is the destination within a larger
1450       // expression?
1451       PathDiagnosticLocation DstContext =
1452           getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1453       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1454         break;
1455 
1456       // If the source is in the same context, we're already good.
1457       if (llvm::is_contained(SrcContexts, DstContext))
1458         break;
1459 
1460       // Update the subexpression node to point to the context edge.
1461       Piece->setStartLocation(DstContext);
1462 
1463       // Try to extend the previous edge if it's at the same level as the source
1464       // context.
1465       if (Prev != E) {
1466         auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1467 
1468         if (PrevPiece) {
1469           if (const Stmt *PrevSrc =
1470                   PrevPiece->getStartLocation().getStmtOrNull()) {
1471             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1472             if (PrevSrcParent ==
1473                 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1474               PrevPiece->setEndLocation(DstContext);
1475               break;
1476             }
1477           }
1478         }
1479       }
1480 
1481       // Otherwise, split the current edge into a context edge and a
1482       // subexpression edge. Note that the context statement may itself have
1483       // context.
1484       auto P =
1485           std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1486       Piece = P.get();
1487       I = pieces.insert(I, std::move(P));
1488     }
1489   }
1490 }
1491 
1492 /// Move edges from a branch condition to a branch target
1493 ///        when the condition is simple.
1494 ///
1495 /// This restructures some of the work of addContextEdges.  That function
1496 /// creates edges this may destroy, but they work together to create a more
1497 /// aesthetically set of edges around branches.  After the call to
1498 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1499 /// the branch to the branch condition, and (3) an edge from the branch
1500 /// condition to the branch target.  We keep (1), but may wish to remove (2)
1501 /// and move the source of (3) to the branch if the branch condition is simple.
1502 static void simplifySimpleBranches(PathPieces &pieces) {
1503   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1504     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1505 
1506     if (!PieceI)
1507       continue;
1508 
1509     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1510     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1511 
1512     if (!s1Start || !s1End)
1513       continue;
1514 
1515     PathPieces::iterator NextI = I; ++NextI;
1516     if (NextI == E)
1517       break;
1518 
1519     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1520 
1521     while (true) {
1522       if (NextI == E)
1523         break;
1524 
1525       const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1526       if (EV) {
1527         StringRef S = EV->getString();
1528         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1529             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1530           ++NextI;
1531           continue;
1532         }
1533         break;
1534       }
1535 
1536       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1537       break;
1538     }
1539 
1540     if (!PieceNextI)
1541       continue;
1542 
1543     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1544     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1545 
1546     if (!s2Start || !s2End || s1End != s2Start)
1547       continue;
1548 
1549     // We only perform this transformation for specific branch kinds.
1550     // We don't want to do this for do..while, for example.
1551     if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt,
1552              CXXForRangeStmt>(s1Start))
1553       continue;
1554 
1555     // Is s1End the branch condition?
1556     if (!isConditionForTerminator(s1Start, s1End))
1557       continue;
1558 
1559     // Perform the hoisting by eliminating (2) and changing the start
1560     // location of (3).
1561     PieceNextI->setStartLocation(PieceI->getStartLocation());
1562     I = pieces.erase(I);
1563   }
1564 }
1565 
1566 /// Returns the number of bytes in the given (character-based) SourceRange.
1567 ///
1568 /// If the locations in the range are not on the same line, returns
1569 /// std::nullopt.
1570 ///
1571 /// Note that this does not do a precise user-visible character or column count.
1572 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1573                                                    SourceRange Range) {
1574   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1575                              SM.getExpansionRange(Range.getEnd()).getEnd());
1576 
1577   FileID FID = SM.getFileID(ExpansionRange.getBegin());
1578   if (FID != SM.getFileID(ExpansionRange.getEnd()))
1579     return std::nullopt;
1580 
1581   std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1582   if (!Buffer)
1583     return std::nullopt;
1584 
1585   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1586   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1587   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1588 
1589   // We're searching the raw bytes of the buffer here, which might include
1590   // escaped newlines and such. That's okay; we're trying to decide whether the
1591   // SourceRange is covering a large or small amount of space in the user's
1592   // editor.
1593   if (Snippet.find_first_of("\r\n") != StringRef::npos)
1594     return std::nullopt;
1595 
1596   // This isn't Unicode-aware, but it doesn't need to be.
1597   return Snippet.size();
1598 }
1599 
1600 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1601 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1602                                                    const Stmt *S) {
1603   return getLengthOnSingleLine(SM, S->getSourceRange());
1604 }
1605 
1606 /// Eliminate two-edge cycles created by addContextEdges().
1607 ///
1608 /// Once all the context edges are in place, there are plenty of cases where
1609 /// there's a single edge from a top-level statement to a subexpression,
1610 /// followed by a single path note, and then a reverse edge to get back out to
1611 /// the top level. If the statement is simple enough, the subexpression edges
1612 /// just add noise and make it harder to understand what's going on.
1613 ///
1614 /// This function only removes edges in pairs, because removing only one edge
1615 /// might leave other edges dangling.
1616 ///
1617 /// This will not remove edges in more complicated situations:
1618 /// - if there is more than one "hop" leading to or from a subexpression.
1619 /// - if there is an inlined call between the edges instead of a single event.
1620 /// - if the whole statement is large enough that having subexpression arrows
1621 ///   might be helpful.
1622 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1623   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1624     // Pattern match the current piece and its successor.
1625     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1626 
1627     if (!PieceI) {
1628       ++I;
1629       continue;
1630     }
1631 
1632     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1633     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1634 
1635     PathPieces::iterator NextI = I; ++NextI;
1636     if (NextI == E)
1637       break;
1638 
1639     const auto *PieceNextI =
1640         dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1641 
1642     if (!PieceNextI) {
1643       if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1644         ++NextI;
1645         if (NextI == E)
1646           break;
1647         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1648       }
1649 
1650       if (!PieceNextI) {
1651         ++I;
1652         continue;
1653       }
1654     }
1655 
1656     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1657     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1658 
1659     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1660       const size_t MAX_SHORT_LINE_LENGTH = 80;
1661       std::optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1662       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1663         std::optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1664         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1665           Path.erase(I);
1666           I = Path.erase(NextI);
1667           continue;
1668         }
1669       }
1670     }
1671 
1672     ++I;
1673   }
1674 }
1675 
1676 /// Return true if X is contained by Y.
1677 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1678   while (X) {
1679     if (X == Y)
1680       return true;
1681     X = PM.getParent(X);
1682   }
1683   return false;
1684 }
1685 
1686 // Remove short edges on the same line less than 3 columns in difference.
1687 static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1688                             const ParentMap &PM) {
1689   bool erased = false;
1690 
1691   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1692        erased ? I : ++I) {
1693     erased = false;
1694 
1695     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1696 
1697     if (!PieceI)
1698       continue;
1699 
1700     const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1701     const Stmt *end   = PieceI->getEndLocation().getStmtOrNull();
1702 
1703     if (!start || !end)
1704       continue;
1705 
1706     const Stmt *endParent = PM.getParent(end);
1707     if (!endParent)
1708       continue;
1709 
1710     if (isConditionForTerminator(end, endParent))
1711       continue;
1712 
1713     SourceLocation FirstLoc = start->getBeginLoc();
1714     SourceLocation SecondLoc = end->getBeginLoc();
1715 
1716     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1717       continue;
1718     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1719       std::swap(SecondLoc, FirstLoc);
1720 
1721     SourceRange EdgeRange(FirstLoc, SecondLoc);
1722     std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1723 
1724     // If the statements are on different lines, continue.
1725     if (!ByteWidth)
1726       continue;
1727 
1728     const size_t MAX_PUNY_EDGE_LENGTH = 2;
1729     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1730       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1731       // there might not be enough /columns/. A proper user-visible column count
1732       // is probably too expensive, though.
1733       I = path.erase(I);
1734       erased = true;
1735       continue;
1736     }
1737   }
1738 }
1739 
1740 static void removeIdenticalEvents(PathPieces &path) {
1741   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1742     const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1743 
1744     if (!PieceI)
1745       continue;
1746 
1747     PathPieces::iterator NextI = I; ++NextI;
1748     if (NextI == E)
1749       return;
1750 
1751     const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1752 
1753     if (!PieceNextI)
1754       continue;
1755 
1756     // Erase the second piece if it has the same exact message text.
1757     if (PieceI->getString() == PieceNextI->getString()) {
1758       path.erase(NextI);
1759     }
1760   }
1761 }
1762 
1763 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1764                           OptimizedCallsSet &OCS) {
1765   bool hasChanges = false;
1766   const LocationContext *LC = C.getLocationContextFor(&path);
1767   assert(LC);
1768   const ParentMap &PM = LC->getParentMap();
1769   const SourceManager &SM = C.getSourceManager();
1770 
1771   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1772     // Optimize subpaths.
1773     if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1774       // Record the fact that a call has been optimized so we only do the
1775       // effort once.
1776       if (!OCS.count(CallI)) {
1777         while (optimizeEdges(C, CallI->path, OCS)) {
1778         }
1779         OCS.insert(CallI);
1780       }
1781       ++I;
1782       continue;
1783     }
1784 
1785     // Pattern match the current piece and its successor.
1786     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1787 
1788     if (!PieceI) {
1789       ++I;
1790       continue;
1791     }
1792 
1793     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1794     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1795     const Stmt *level1 = getStmtParent(s1Start, PM);
1796     const Stmt *level2 = getStmtParent(s1End, PM);
1797 
1798     PathPieces::iterator NextI = I; ++NextI;
1799     if (NextI == E)
1800       break;
1801 
1802     const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1803 
1804     if (!PieceNextI) {
1805       ++I;
1806       continue;
1807     }
1808 
1809     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1810     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1811     const Stmt *level3 = getStmtParent(s2Start, PM);
1812     const Stmt *level4 = getStmtParent(s2End, PM);
1813 
1814     // Rule I.
1815     //
1816     // If we have two consecutive control edges whose end/begin locations
1817     // are at the same level (e.g. statements or top-level expressions within
1818     // a compound statement, or siblings share a single ancestor expression),
1819     // then merge them if they have no interesting intermediate event.
1820     //
1821     // For example:
1822     //
1823     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1824     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1825     //
1826     // NOTE: this will be limited later in cases where we add barriers
1827     // to prevent this optimization.
1828     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1829       PieceI->setEndLocation(PieceNextI->getEndLocation());
1830       path.erase(NextI);
1831       hasChanges = true;
1832       continue;
1833     }
1834 
1835     // Rule II.
1836     //
1837     // Eliminate edges between subexpressions and parent expressions
1838     // when the subexpression is consumed.
1839     //
1840     // NOTE: this will be limited later in cases where we add barriers
1841     // to prevent this optimization.
1842     if (s1End && s1End == s2Start && level2) {
1843       bool removeEdge = false;
1844       // Remove edges into the increment or initialization of a
1845       // loop that have no interleaving event.  This means that
1846       // they aren't interesting.
1847       if (isIncrementOrInitInForLoop(s1End, level2))
1848         removeEdge = true;
1849       // Next only consider edges that are not anchored on
1850       // the condition of a terminator.  This are intermediate edges
1851       // that we might want to trim.
1852       else if (!isConditionForTerminator(level2, s1End)) {
1853         // Trim edges on expressions that are consumed by
1854         // the parent expression.
1855         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1856           removeEdge = true;
1857         }
1858         // Trim edges where a lexical containment doesn't exist.
1859         // For example:
1860         //
1861         //  X -> Y -> Z
1862         //
1863         // If 'Z' lexically contains Y (it is an ancestor) and
1864         // 'X' does not lexically contain Y (it is a descendant OR
1865         // it has no lexical relationship at all) then trim.
1866         //
1867         // This can eliminate edges where we dive into a subexpression
1868         // and then pop back out, etc.
1869         else if (s1Start && s2End &&
1870                  lexicalContains(PM, s2Start, s2End) &&
1871                  !lexicalContains(PM, s1End, s1Start)) {
1872           removeEdge = true;
1873         }
1874         // Trim edges from a subexpression back to the top level if the
1875         // subexpression is on a different line.
1876         //
1877         // A.1 -> A -> B
1878         // becomes
1879         // A.1 -> B
1880         //
1881         // These edges just look ugly and don't usually add anything.
1882         else if (s1Start && s2End &&
1883                  lexicalContains(PM, s1Start, s1End)) {
1884           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1885                                 PieceI->getStartLocation().asLocation());
1886           if (!getLengthOnSingleLine(SM, EdgeRange))
1887             removeEdge = true;
1888         }
1889       }
1890 
1891       if (removeEdge) {
1892         PieceI->setEndLocation(PieceNextI->getEndLocation());
1893         path.erase(NextI);
1894         hasChanges = true;
1895         continue;
1896       }
1897     }
1898 
1899     // Optimize edges for ObjC fast-enumeration loops.
1900     //
1901     // (X -> collection) -> (collection -> element)
1902     //
1903     // becomes:
1904     //
1905     // (X -> element)
1906     if (s1End == s2Start) {
1907       const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1908       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1909           s2End == FS->getElement()) {
1910         PieceI->setEndLocation(PieceNextI->getEndLocation());
1911         path.erase(NextI);
1912         hasChanges = true;
1913         continue;
1914       }
1915     }
1916 
1917     // No changes at this index?  Move to the next one.
1918     ++I;
1919   }
1920 
1921   if (!hasChanges) {
1922     // Adjust edges into subexpressions to make them more uniform
1923     // and aesthetically pleasing.
1924     addContextEdges(path, LC);
1925     // Remove "cyclical" edges that include one or more context edges.
1926     removeContextCycles(path, SM);
1927     // Hoist edges originating from branch conditions to branches
1928     // for simple branches.
1929     simplifySimpleBranches(path);
1930     // Remove any puny edges left over after primary optimization pass.
1931     removePunyEdges(path, SM, PM);
1932     // Remove identical events.
1933     removeIdenticalEvents(path);
1934   }
1935 
1936   return hasChanges;
1937 }
1938 
1939 /// Drop the very first edge in a path, which should be a function entry edge.
1940 ///
1941 /// If the first edge is not a function entry edge (say, because the first
1942 /// statement had an invalid source location), this function does nothing.
1943 // FIXME: We should just generate invalid edges anyway and have the optimizer
1944 // deal with them.
1945 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1946                                   PathPieces &Path) {
1947   const auto *FirstEdge =
1948       dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1949   if (!FirstEdge)
1950     return;
1951 
1952   const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1953   PathDiagnosticLocation EntryLoc =
1954       PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1955   if (FirstEdge->getStartLocation() != EntryLoc)
1956     return;
1957 
1958   Path.pop_front();
1959 }
1960 
1961 /// Populate executes lines with lines containing at least one diagnostics.
1962 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1963 
1964   PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1965   FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1966 
1967   for (const auto &P : path) {
1968     FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1969     FileID FID = Loc.getFileID();
1970     unsigned LineNo = Loc.getLineNumber();
1971     assert(FID.isValid());
1972     ExecutedLines[FID].insert(LineNo);
1973   }
1974 }
1975 
1976 PathDiagnosticConstruct::PathDiagnosticConstruct(
1977     const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1978     const PathSensitiveBugReport *R)
1979     : Consumer(PDC), CurrentNode(ErrorNode),
1980       SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1981       PD(generateEmptyDiagnosticForReport(R, getSourceManager())) {
1982   LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1983 }
1984 
1985 PathDiagnosticBuilder::PathDiagnosticBuilder(
1986     BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1987     PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1988     std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1989     : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1990       ErrorNode(ErrorNode),
1991       VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1992 
1993 std::unique_ptr<PathDiagnostic>
1994 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
1995   PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
1996 
1997   const SourceManager &SM = getSourceManager();
1998   const AnalyzerOptions &Opts = getAnalyzerOptions();
1999 
2000   if (!PDC->shouldGenerateDiagnostics())
2001     return generateEmptyDiagnosticForReport(R, getSourceManager());
2002 
2003   // Construct the final (warning) event for the bug report.
2004   auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2005   PathDiagnosticPieceRef LastPiece;
2006   if (EndNotes != VisitorsDiagnostics->end()) {
2007     assert(!EndNotes->second.empty());
2008     LastPiece = EndNotes->second[0];
2009   } else {
2010     LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2011                                                       *getBugReport());
2012   }
2013   Construct.PD->setEndOfPath(LastPiece);
2014 
2015   PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2016   // From the error node to the root, ascend the bug path and construct the bug
2017   // report.
2018   while (Construct.ascendToPrevNode()) {
2019     generatePathDiagnosticsForNode(Construct, PrevLoc);
2020 
2021     auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2022     if (VisitorNotes == VisitorsDiagnostics->end())
2023       continue;
2024 
2025     // This is a workaround due to inability to put shared PathDiagnosticPiece
2026     // into a FoldingSet.
2027     std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2028 
2029     // Add pieces from custom visitors.
2030     for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2031       llvm::FoldingSetNodeID ID;
2032       Note->Profile(ID);
2033       if (!DeduplicationSet.insert(ID).second)
2034         continue;
2035 
2036       if (PDC->shouldAddPathEdges())
2037         addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2038       updateStackPiecesWithMessage(Note, Construct.CallStack);
2039       Construct.getActivePath().push_front(Note);
2040     }
2041   }
2042 
2043   if (PDC->shouldAddPathEdges()) {
2044     // Add an edge to the start of the function.
2045     // We'll prune it out later, but it helps make diagnostics more uniform.
2046     const StackFrameContext *CalleeLC =
2047         Construct.getLocationContextForActivePath()->getStackFrame();
2048     const Decl *D = CalleeLC->getDecl();
2049     addEdgeToPath(Construct.getActivePath(), PrevLoc,
2050                   PathDiagnosticLocation::createBegin(D, SM));
2051   }
2052 
2053 
2054   // Finally, prune the diagnostic path of uninteresting stuff.
2055   if (!Construct.PD->path.empty()) {
2056     if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2057       bool stillHasNotes =
2058           removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2059       assert(stillHasNotes);
2060       (void)stillHasNotes;
2061     }
2062 
2063     // Remove pop-up notes if needed.
2064     if (!Opts.ShouldAddPopUpNotes)
2065       removePopUpNotes(Construct.getMutablePieces());
2066 
2067     // Redirect all call pieces to have valid locations.
2068     adjustCallLocations(Construct.getMutablePieces());
2069     removePiecesWithInvalidLocations(Construct.getMutablePieces());
2070 
2071     if (PDC->shouldAddPathEdges()) {
2072 
2073       // Reduce the number of edges from a very conservative set
2074       // to an aesthetically pleasing subset that conveys the
2075       // necessary information.
2076       OptimizedCallsSet OCS;
2077       while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2078       }
2079 
2080       // Drop the very first function-entry edge. It's not really necessary
2081       // for top-level functions.
2082       dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2083     }
2084 
2085     // Remove messages that are basically the same, and edges that may not
2086     // make sense.
2087     // We have to do this after edge optimization in the Extensive mode.
2088     removeRedundantMsgs(Construct.getMutablePieces());
2089     removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2090   }
2091 
2092   if (Opts.ShouldDisplayMacroExpansions)
2093     CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2094 
2095   return std::move(Construct.PD);
2096 }
2097 
2098 //===----------------------------------------------------------------------===//
2099 // Methods for BugType and subclasses.
2100 //===----------------------------------------------------------------------===//
2101 
2102 void BugType::anchor() {}
2103 
2104 void BuiltinBug::anchor() {}
2105 
2106 //===----------------------------------------------------------------------===//
2107 // Methods for BugReport and subclasses.
2108 //===----------------------------------------------------------------------===//
2109 
2110 LLVM_ATTRIBUTE_USED static bool
2111 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2112   for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2113     if (Pair.second == CheckerName)
2114       return true;
2115   }
2116   return false;
2117 }
2118 
2119 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2120                                          StringRef CheckerName) {
2121   for (const CheckerInfo &Checker : Registry.Checkers) {
2122     if (Checker.FullName == CheckerName)
2123       return Checker.IsHidden;
2124   }
2125   llvm_unreachable(
2126       "Checker name not found in CheckerRegistry -- did you retrieve it "
2127       "correctly from CheckerManager::getCurrentCheckerName?");
2128 }
2129 
2130 PathSensitiveBugReport::PathSensitiveBugReport(
2131     const BugType &bt, StringRef shortDesc, StringRef desc,
2132     const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2133     const Decl *DeclToUnique)
2134     : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2135       ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2136       UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2137   assert(!isDependency(ErrorNode->getState()
2138                            ->getAnalysisManager()
2139                            .getCheckerManager()
2140                            ->getCheckerRegistryData(),
2141                        bt.getCheckerName()) &&
2142          "Some checkers depend on this one! We don't allow dependency "
2143          "checkers to emit warnings, because checkers should depend on "
2144          "*modeling*, not *diagnostics*.");
2145 
2146   assert(
2147       (bt.getCheckerName().startswith("debug") ||
2148        !isHidden(ErrorNode->getState()
2149                      ->getAnalysisManager()
2150                      .getCheckerManager()
2151                      ->getCheckerRegistryData(),
2152                  bt.getCheckerName())) &&
2153           "Hidden checkers musn't emit diagnostics as they are by definition "
2154           "non-user facing!");
2155 }
2156 
2157 void PathSensitiveBugReport::addVisitor(
2158     std::unique_ptr<BugReporterVisitor> visitor) {
2159   if (!visitor)
2160     return;
2161 
2162   llvm::FoldingSetNodeID ID;
2163   visitor->Profile(ID);
2164 
2165   void *InsertPos = nullptr;
2166   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2167     return;
2168   }
2169 
2170   Callbacks.push_back(std::move(visitor));
2171 }
2172 
2173 void PathSensitiveBugReport::clearVisitors() {
2174   Callbacks.clear();
2175 }
2176 
2177 const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2178   const ExplodedNode *N = getErrorNode();
2179   if (!N)
2180     return nullptr;
2181 
2182   const LocationContext *LC = N->getLocationContext();
2183   return LC->getStackFrame()->getDecl();
2184 }
2185 
2186 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2187   hash.AddInteger(static_cast<int>(getKind()));
2188   hash.AddPointer(&BT);
2189   hash.AddString(Description);
2190   assert(Location.isValid());
2191   Location.Profile(hash);
2192 
2193   for (SourceRange range : Ranges) {
2194     if (!range.isValid())
2195       continue;
2196     hash.Add(range.getBegin());
2197     hash.Add(range.getEnd());
2198   }
2199 }
2200 
2201 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2202   hash.AddInteger(static_cast<int>(getKind()));
2203   hash.AddPointer(&BT);
2204   hash.AddString(Description);
2205   PathDiagnosticLocation UL = getUniqueingLocation();
2206   if (UL.isValid()) {
2207     UL.Profile(hash);
2208   } else {
2209     // TODO: The statement may be null if the report was emitted before any
2210     // statements were executed. In particular, some checkers by design
2211     // occasionally emit their reports in empty functions (that have no
2212     // statements in their body). Do we profile correctly in this case?
2213     hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2214   }
2215 
2216   for (SourceRange range : Ranges) {
2217     if (!range.isValid())
2218       continue;
2219     hash.Add(range.getBegin());
2220     hash.Add(range.getEnd());
2221   }
2222 }
2223 
2224 template <class T>
2225 static void insertToInterestingnessMap(
2226     llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2227     bugreporter::TrackingKind TKind) {
2228   auto Result = InterestingnessMap.insert({Val, TKind});
2229 
2230   if (Result.second)
2231     return;
2232 
2233   // Even if this symbol/region was already marked as interesting as a
2234   // condition, if we later mark it as interesting again but with
2235   // thorough tracking, overwrite it. Entities marked with thorough
2236   // interestiness are the most important (or most interesting, if you will),
2237   // and we wouldn't like to downplay their importance.
2238 
2239   switch (TKind) {
2240     case bugreporter::TrackingKind::Thorough:
2241       Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2242       return;
2243     case bugreporter::TrackingKind::Condition:
2244       return;
2245     }
2246 
2247     llvm_unreachable(
2248         "BugReport::markInteresting currently can only handle 2 different "
2249         "tracking kinds! Please define what tracking kind should this entitiy"
2250         "have, if it was already marked as interesting with a different kind!");
2251 }
2252 
2253 void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2254                                              bugreporter::TrackingKind TKind) {
2255   if (!sym)
2256     return;
2257 
2258   insertToInterestingnessMap(InterestingSymbols, sym, TKind);
2259 
2260   // FIXME: No tests exist for this code and it is questionable:
2261   // How to handle multiple metadata for the same region?
2262   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2263     markInteresting(meta->getRegion(), TKind);
2264 }
2265 
2266 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) {
2267   if (!sym)
2268     return;
2269   InterestingSymbols.erase(sym);
2270 
2271   // The metadata part of markInteresting is not reversed here.
2272   // Just making the same region not interesting is incorrect
2273   // in specific cases.
2274   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2275     markNotInteresting(meta->getRegion());
2276 }
2277 
2278 void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2279                                              bugreporter::TrackingKind TKind) {
2280   if (!R)
2281     return;
2282 
2283   R = R->getBaseRegion();
2284   insertToInterestingnessMap(InterestingRegions, R, TKind);
2285 
2286   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2287     markInteresting(SR->getSymbol(), TKind);
2288 }
2289 
2290 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) {
2291   if (!R)
2292     return;
2293 
2294   R = R->getBaseRegion();
2295   InterestingRegions.erase(R);
2296 
2297   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2298     markNotInteresting(SR->getSymbol());
2299 }
2300 
2301 void PathSensitiveBugReport::markInteresting(SVal V,
2302                                              bugreporter::TrackingKind TKind) {
2303   markInteresting(V.getAsRegion(), TKind);
2304   markInteresting(V.getAsSymbol(), TKind);
2305 }
2306 
2307 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2308   if (!LC)
2309     return;
2310   InterestingLocationContexts.insert(LC);
2311 }
2312 
2313 std::optional<bugreporter::TrackingKind>
2314 PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2315   auto RKind = getInterestingnessKind(V.getAsRegion());
2316   auto SKind = getInterestingnessKind(V.getAsSymbol());
2317   if (!RKind)
2318     return SKind;
2319   if (!SKind)
2320     return RKind;
2321 
2322   // If either is marked with throrough tracking, return that, we wouldn't like
2323   // to downplay a note's importance by 'only' mentioning it as a condition.
2324   switch(*RKind) {
2325     case bugreporter::TrackingKind::Thorough:
2326       return RKind;
2327     case bugreporter::TrackingKind::Condition:
2328       return SKind;
2329   }
2330 
2331   llvm_unreachable(
2332       "BugReport::getInterestingnessKind currently can only handle 2 different "
2333       "tracking kinds! Please define what tracking kind should we return here "
2334       "when the kind of getAsRegion() and getAsSymbol() is different!");
2335   return std::nullopt;
2336 }
2337 
2338 std::optional<bugreporter::TrackingKind>
2339 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2340   if (!sym)
2341     return std::nullopt;
2342   // We don't currently consider metadata symbols to be interesting
2343   // even if we know their region is interesting. Is that correct behavior?
2344   auto It = InterestingSymbols.find(sym);
2345   if (It == InterestingSymbols.end())
2346     return std::nullopt;
2347   return It->getSecond();
2348 }
2349 
2350 std::optional<bugreporter::TrackingKind>
2351 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2352   if (!R)
2353     return std::nullopt;
2354 
2355   R = R->getBaseRegion();
2356   auto It = InterestingRegions.find(R);
2357   if (It != InterestingRegions.end())
2358     return It->getSecond();
2359 
2360   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2361     return getInterestingnessKind(SR->getSymbol());
2362   return std::nullopt;
2363 }
2364 
2365 bool PathSensitiveBugReport::isInteresting(SVal V) const {
2366   return getInterestingnessKind(V).has_value();
2367 }
2368 
2369 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2370   return getInterestingnessKind(sym).has_value();
2371 }
2372 
2373 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2374   return getInterestingnessKind(R).has_value();
2375 }
2376 
2377 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC)  const {
2378   if (!LC)
2379     return false;
2380   return InterestingLocationContexts.count(LC);
2381 }
2382 
2383 const Stmt *PathSensitiveBugReport::getStmt() const {
2384   if (!ErrorNode)
2385     return nullptr;
2386 
2387   ProgramPoint ProgP = ErrorNode->getLocation();
2388   const Stmt *S = nullptr;
2389 
2390   if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2391     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2392     if (BE->getBlock() == &Exit)
2393       S = ErrorNode->getPreviousStmtForDiagnostics();
2394   }
2395   if (!S)
2396     S = ErrorNode->getStmtForDiagnostics();
2397 
2398   return S;
2399 }
2400 
2401 ArrayRef<SourceRange>
2402 PathSensitiveBugReport::getRanges() const {
2403   // If no custom ranges, add the range of the statement corresponding to
2404   // the error node.
2405   if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2406       return ErrorNodeRange;
2407 
2408   return Ranges;
2409 }
2410 
2411 PathDiagnosticLocation
2412 PathSensitiveBugReport::getLocation() const {
2413   assert(ErrorNode && "Cannot create a location with a null node.");
2414   const Stmt *S = ErrorNode->getStmtForDiagnostics();
2415     ProgramPoint P = ErrorNode->getLocation();
2416   const LocationContext *LC = P.getLocationContext();
2417   SourceManager &SM =
2418       ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2419 
2420   if (!S) {
2421     // If this is an implicit call, return the implicit call point location.
2422       if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2423       return PathDiagnosticLocation(PIE->getLocation(), SM);
2424     if (auto FE = P.getAs<FunctionExitPoint>()) {
2425       if (const ReturnStmt *RS = FE->getStmt())
2426         return PathDiagnosticLocation::createBegin(RS, SM, LC);
2427     }
2428     S = ErrorNode->getNextStmtForDiagnostics();
2429   }
2430 
2431   if (S) {
2432     // For member expressions, return the location of the '.' or '->'.
2433     if (const auto *ME = dyn_cast<MemberExpr>(S))
2434       return PathDiagnosticLocation::createMemberLoc(ME, SM);
2435 
2436     // For binary operators, return the location of the operator.
2437     if (const auto *B = dyn_cast<BinaryOperator>(S))
2438       return PathDiagnosticLocation::createOperatorLoc(B, SM);
2439 
2440     if (P.getAs<PostStmtPurgeDeadSymbols>())
2441       return PathDiagnosticLocation::createEnd(S, SM, LC);
2442 
2443     if (S->getBeginLoc().isValid())
2444       return PathDiagnosticLocation(S, SM, LC);
2445 
2446     return PathDiagnosticLocation(
2447         PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
2448   }
2449 
2450   return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
2451                                                SM);
2452 }
2453 
2454 //===----------------------------------------------------------------------===//
2455 // Methods for BugReporter and subclasses.
2456 //===----------------------------------------------------------------------===//
2457 
2458 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2459   return Eng.getGraph();
2460 }
2461 
2462 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2463   return Eng.getStateManager();
2464 }
2465 
2466 BugReporter::BugReporter(BugReporterData &d) : D(d) {}
2467 BugReporter::~BugReporter() {
2468   // Make sure reports are flushed.
2469   assert(StrBugTypes.empty() &&
2470          "Destroying BugReporter before diagnostics are emitted!");
2471 
2472   // Free the bug reports we are tracking.
2473   for (const auto I : EQClassesVector)
2474     delete I;
2475 }
2476 
2477 void BugReporter::FlushReports() {
2478   // We need to flush reports in deterministic order to ensure the order
2479   // of the reports is consistent between runs.
2480   for (const auto EQ : EQClassesVector)
2481     FlushReport(*EQ);
2482 
2483   // BugReporter owns and deletes only BugTypes created implicitly through
2484   // EmitBasicReport.
2485   // FIXME: There are leaks from checkers that assume that the BugTypes they
2486   // create will be destroyed by the BugReporter.
2487   StrBugTypes.clear();
2488 }
2489 
2490 //===----------------------------------------------------------------------===//
2491 // PathDiagnostics generation.
2492 //===----------------------------------------------------------------------===//
2493 
2494 namespace {
2495 
2496 /// A wrapper around an ExplodedGraph that contains a single path from the root
2497 /// to the error node.
2498 class BugPathInfo {
2499 public:
2500   std::unique_ptr<ExplodedGraph> BugPath;
2501   PathSensitiveBugReport *Report;
2502   const ExplodedNode *ErrorNode;
2503 };
2504 
2505 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2506 /// conveniently retrieve bug paths from a single error node to the root.
2507 class BugPathGetter {
2508   std::unique_ptr<ExplodedGraph> TrimmedGraph;
2509 
2510   using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2511 
2512   /// Assign each node with its distance from the root.
2513   PriorityMapTy PriorityMap;
2514 
2515   /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2516   /// we need to pair it to the error node of the constructed trimmed graph.
2517   using ReportNewNodePair =
2518       std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2519   SmallVector<ReportNewNodePair, 32> ReportNodes;
2520 
2521   BugPathInfo CurrentBugPath;
2522 
2523   /// A helper class for sorting ExplodedNodes by priority.
2524   template <bool Descending>
2525   class PriorityCompare {
2526     const PriorityMapTy &PriorityMap;
2527 
2528   public:
2529     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2530 
2531     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2532       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2533       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2534       PriorityMapTy::const_iterator E = PriorityMap.end();
2535 
2536       if (LI == E)
2537         return Descending;
2538       if (RI == E)
2539         return !Descending;
2540 
2541       return Descending ? LI->second > RI->second
2542                         : LI->second < RI->second;
2543     }
2544 
2545     bool operator()(const ReportNewNodePair &LHS,
2546                     const ReportNewNodePair &RHS) const {
2547       return (*this)(LHS.second, RHS.second);
2548     }
2549   };
2550 
2551 public:
2552   BugPathGetter(const ExplodedGraph *OriginalGraph,
2553                 ArrayRef<PathSensitiveBugReport *> &bugReports);
2554 
2555   BugPathInfo *getNextBugPath();
2556 };
2557 
2558 } // namespace
2559 
2560 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2561                              ArrayRef<PathSensitiveBugReport *> &bugReports) {
2562   SmallVector<const ExplodedNode *, 32> Nodes;
2563   for (const auto I : bugReports) {
2564     assert(I->isValid() &&
2565            "We only allow BugReporterVisitors and BugReporter itself to "
2566            "invalidate reports!");
2567     Nodes.emplace_back(I->getErrorNode());
2568   }
2569 
2570   // The trimmed graph is created in the body of the constructor to ensure
2571   // that the DenseMaps have been initialized already.
2572   InterExplodedGraphMap ForwardMap;
2573   TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2574 
2575   // Find the (first) error node in the trimmed graph.  We just need to consult
2576   // the node map which maps from nodes in the original graph to nodes
2577   // in the new graph.
2578   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2579 
2580   for (PathSensitiveBugReport *Report : bugReports) {
2581     const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2582     assert(NewNode &&
2583            "Failed to construct a trimmed graph that contains this error "
2584            "node!");
2585     ReportNodes.emplace_back(Report, NewNode);
2586     RemainingNodes.insert(NewNode);
2587   }
2588 
2589   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2590 
2591   // Perform a forward BFS to find all the shortest paths.
2592   std::queue<const ExplodedNode *> WS;
2593 
2594   assert(TrimmedGraph->num_roots() == 1);
2595   WS.push(*TrimmedGraph->roots_begin());
2596   unsigned Priority = 0;
2597 
2598   while (!WS.empty()) {
2599     const ExplodedNode *Node = WS.front();
2600     WS.pop();
2601 
2602     PriorityMapTy::iterator PriorityEntry;
2603     bool IsNew;
2604     std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2605     ++Priority;
2606 
2607     if (!IsNew) {
2608       assert(PriorityEntry->second <= Priority);
2609       continue;
2610     }
2611 
2612     if (RemainingNodes.erase(Node))
2613       if (RemainingNodes.empty())
2614         break;
2615 
2616     for (const ExplodedNode *Succ : Node->succs())
2617       WS.push(Succ);
2618   }
2619 
2620   // Sort the error paths from longest to shortest.
2621   llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2622 }
2623 
2624 BugPathInfo *BugPathGetter::getNextBugPath() {
2625   if (ReportNodes.empty())
2626     return nullptr;
2627 
2628   const ExplodedNode *OrigN;
2629   std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2630   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2631          "error node not accessible from root");
2632 
2633   // Create a new graph with a single path. This is the graph that will be
2634   // returned to the caller.
2635   auto GNew = std::make_unique<ExplodedGraph>();
2636 
2637   // Now walk from the error node up the BFS path, always taking the
2638   // predeccessor with the lowest number.
2639   ExplodedNode *Succ = nullptr;
2640   while (true) {
2641     // Create the equivalent node in the new graph with the same state
2642     // and location.
2643     ExplodedNode *NewN = GNew->createUncachedNode(
2644         OrigN->getLocation(), OrigN->getState(),
2645         OrigN->getID(), OrigN->isSink());
2646 
2647     // Link up the new node with the previous node.
2648     if (Succ)
2649       Succ->addPredecessor(NewN, *GNew);
2650     else
2651       CurrentBugPath.ErrorNode = NewN;
2652 
2653     Succ = NewN;
2654 
2655     // Are we at the final node?
2656     if (OrigN->pred_empty()) {
2657       GNew->addRoot(NewN);
2658       break;
2659     }
2660 
2661     // Find the next predeccessor node.  We choose the node that is marked
2662     // with the lowest BFS number.
2663     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2664                               PriorityCompare<false>(PriorityMap));
2665   }
2666 
2667   CurrentBugPath.BugPath = std::move(GNew);
2668 
2669   return &CurrentBugPath;
2670 }
2671 
2672 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2673 /// object and collapses PathDiagosticPieces that are expanded by macros.
2674 static void CompactMacroExpandedPieces(PathPieces &path,
2675                                        const SourceManager& SM) {
2676   using MacroStackTy = std::vector<
2677       std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2678 
2679   using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2680 
2681   MacroStackTy MacroStack;
2682   PiecesTy Pieces;
2683 
2684   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2685        I != E; ++I) {
2686     const auto &piece = *I;
2687 
2688     // Recursively compact calls.
2689     if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2690       CompactMacroExpandedPieces(call->path, SM);
2691     }
2692 
2693     // Get the location of the PathDiagnosticPiece.
2694     const FullSourceLoc Loc = piece->getLocation().asLocation();
2695 
2696     // Determine the instantiation location, which is the location we group
2697     // related PathDiagnosticPieces.
2698     SourceLocation InstantiationLoc = Loc.isMacroID() ?
2699                                       SM.getExpansionLoc(Loc) :
2700                                       SourceLocation();
2701 
2702     if (Loc.isFileID()) {
2703       MacroStack.clear();
2704       Pieces.push_back(piece);
2705       continue;
2706     }
2707 
2708     assert(Loc.isMacroID());
2709 
2710     // Is the PathDiagnosticPiece within the same macro group?
2711     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2712       MacroStack.back().first->subPieces.push_back(piece);
2713       continue;
2714     }
2715 
2716     // We aren't in the same group.  Are we descending into a new macro
2717     // or are part of an old one?
2718     std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2719 
2720     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2721                                           SM.getExpansionLoc(Loc) :
2722                                           SourceLocation();
2723 
2724     // Walk the entire macro stack.
2725     while (!MacroStack.empty()) {
2726       if (InstantiationLoc == MacroStack.back().second) {
2727         MacroGroup = MacroStack.back().first;
2728         break;
2729       }
2730 
2731       if (ParentInstantiationLoc == MacroStack.back().second) {
2732         MacroGroup = MacroStack.back().first;
2733         break;
2734       }
2735 
2736       MacroStack.pop_back();
2737     }
2738 
2739     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2740       // Create a new macro group and add it to the stack.
2741       auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2742           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2743 
2744       if (MacroGroup)
2745         MacroGroup->subPieces.push_back(NewGroup);
2746       else {
2747         assert(InstantiationLoc.isFileID());
2748         Pieces.push_back(NewGroup);
2749       }
2750 
2751       MacroGroup = NewGroup;
2752       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2753     }
2754 
2755     // Finally, add the PathDiagnosticPiece to the group.
2756     MacroGroup->subPieces.push_back(piece);
2757   }
2758 
2759   // Now take the pieces and construct a new PathDiagnostic.
2760   path.clear();
2761 
2762   path.insert(path.end(), Pieces.begin(), Pieces.end());
2763 }
2764 
2765 /// Generate notes from all visitors.
2766 /// Notes associated with @c ErrorNode are generated using
2767 /// @c getEndPath, and the rest are generated with @c VisitNode.
2768 static std::unique_ptr<VisitorsDiagnosticsTy>
2769 generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2770                             const ExplodedNode *ErrorNode,
2771                             BugReporterContext &BRC) {
2772   std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2773       std::make_unique<VisitorsDiagnosticsTy>();
2774   PathSensitiveBugReport::VisitorList visitors;
2775 
2776   // Run visitors on all nodes starting from the node *before* the last one.
2777   // The last node is reserved for notes generated with @c getEndPath.
2778   const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2779   while (NextNode) {
2780 
2781     // At each iteration, move all visitors from report to visitor list. This is
2782     // important, because the Profile() functions of the visitors make sure that
2783     // a visitor isn't added multiple times for the same node, but it's fine
2784     // to add the a visitor with Profile() for different nodes (e.g. tracking
2785     // a region at different points of the symbolic execution).
2786     for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2787       visitors.push_back(std::move(Visitor));
2788 
2789     R->clearVisitors();
2790 
2791     const ExplodedNode *Pred = NextNode->getFirstPred();
2792     if (!Pred) {
2793       PathDiagnosticPieceRef LastPiece;
2794       for (auto &V : visitors) {
2795         V->finalizeVisitor(BRC, ErrorNode, *R);
2796 
2797         if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2798           assert(!LastPiece &&
2799                  "There can only be one final piece in a diagnostic.");
2800           assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2801                  "The final piece must contain a message!");
2802           LastPiece = std::move(Piece);
2803           (*Notes)[ErrorNode].push_back(LastPiece);
2804         }
2805       }
2806       break;
2807     }
2808 
2809     for (auto &V : visitors) {
2810       auto P = V->VisitNode(NextNode, BRC, *R);
2811       if (P)
2812         (*Notes)[NextNode].push_back(std::move(P));
2813     }
2814 
2815     if (!R->isValid())
2816       break;
2817 
2818     NextNode = Pred;
2819   }
2820 
2821   return Notes;
2822 }
2823 
2824 std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2825     ArrayRef<PathSensitiveBugReport *> &bugReports,
2826     PathSensitiveBugReporter &Reporter) {
2827 
2828   BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2829 
2830   while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2831     // Find the BugReport with the original location.
2832     PathSensitiveBugReport *R = BugPath->Report;
2833     assert(R && "No original report found for sliced graph.");
2834     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2835     const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2836 
2837     // Register refutation visitors first, if they mark the bug invalid no
2838     // further analysis is required
2839     R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>();
2840 
2841     // Register additional node visitors.
2842     R->addVisitor<NilReceiverBRVisitor>();
2843     R->addVisitor<ConditionBRVisitor>();
2844     R->addVisitor<TagVisitor>();
2845 
2846     BugReporterContext BRC(Reporter);
2847 
2848     // Run all visitors on a given graph, once.
2849     std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2850         generateVisitorsDiagnostics(R, ErrorNode, BRC);
2851 
2852     if (R->isValid()) {
2853       if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2854         // If crosscheck is enabled, remove all visitors, add the refutation
2855         // visitor and check again
2856         R->clearVisitors();
2857         R->addVisitor<FalsePositiveRefutationBRVisitor>();
2858 
2859         // We don't overwrite the notes inserted by other visitors because the
2860         // refutation manager does not add any new note to the path
2861         generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2862       }
2863 
2864       // Check if the bug is still valid
2865       if (R->isValid())
2866         return PathDiagnosticBuilder(
2867             std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2868             BugPath->ErrorNode, std::move(visitorNotes));
2869     }
2870   }
2871 
2872   return {};
2873 }
2874 
2875 std::unique_ptr<DiagnosticForConsumerMapTy>
2876 PathSensitiveBugReporter::generatePathDiagnostics(
2877     ArrayRef<PathDiagnosticConsumer *> consumers,
2878     ArrayRef<PathSensitiveBugReport *> &bugReports) {
2879   assert(!bugReports.empty());
2880 
2881   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2882 
2883   std::optional<PathDiagnosticBuilder> PDB =
2884       PathDiagnosticBuilder::findValidReport(bugReports, *this);
2885 
2886   if (PDB) {
2887     for (PathDiagnosticConsumer *PC : consumers) {
2888       if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2889         (*Out)[PC] = std::move(PD);
2890       }
2891     }
2892   }
2893 
2894   return Out;
2895 }
2896 
2897 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2898   bool ValidSourceLoc = R->getLocation().isValid();
2899   assert(ValidSourceLoc);
2900   // If we mess up in a release build, we'd still prefer to just drop the bug
2901   // instead of trying to go on.
2902   if (!ValidSourceLoc)
2903     return;
2904 
2905   // Compute the bug report's hash to determine its equivalence class.
2906   llvm::FoldingSetNodeID ID;
2907   R->Profile(ID);
2908 
2909   // Lookup the equivance class.  If there isn't one, create it.
2910   void *InsertPos;
2911   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2912 
2913   if (!EQ) {
2914     EQ = new BugReportEquivClass(std::move(R));
2915     EQClasses.InsertNode(EQ, InsertPos);
2916     EQClassesVector.push_back(EQ);
2917   } else
2918     EQ->AddReport(std::move(R));
2919 }
2920 
2921 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2922   if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2923     if (const ExplodedNode *E = PR->getErrorNode()) {
2924       // An error node must either be a sink or have a tag, otherwise
2925       // it could get reclaimed before the path diagnostic is created.
2926       assert((E->isSink() || E->getLocation().getTag()) &&
2927              "Error node must either be a sink or have a tag");
2928 
2929       const AnalysisDeclContext *DeclCtx =
2930           E->getLocationContext()->getAnalysisDeclContext();
2931       // The source of autosynthesized body can be handcrafted AST or a model
2932       // file. The locations from handcrafted ASTs have no valid source
2933       // locations and have to be discarded. Locations from model files should
2934       // be preserved for processing and reporting.
2935       if (DeclCtx->isBodyAutosynthesized() &&
2936           !DeclCtx->isBodyAutosynthesizedFromModelFile())
2937         return;
2938     }
2939 
2940   BugReporter::emitReport(std::move(R));
2941 }
2942 
2943 //===----------------------------------------------------------------------===//
2944 // Emitting reports in equivalence classes.
2945 //===----------------------------------------------------------------------===//
2946 
2947 namespace {
2948 
2949 struct FRIEC_WLItem {
2950   const ExplodedNode *N;
2951   ExplodedNode::const_succ_iterator I, E;
2952 
2953   FRIEC_WLItem(const ExplodedNode *n)
2954       : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2955 };
2956 
2957 } // namespace
2958 
2959 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2960     BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2961   // If we don't need to suppress any of the nodes because they are
2962   // post-dominated by a sink, simply add all the nodes in the equivalence class
2963   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2964   assert(EQ.getReports().size() > 0);
2965   const BugType& BT = EQ.getReports()[0]->getBugType();
2966   if (!BT.isSuppressOnSink()) {
2967     BugReport *R = EQ.getReports()[0].get();
2968     for (auto &J : EQ.getReports()) {
2969       if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
2970         R = PR;
2971         bugReports.push_back(PR);
2972       }
2973     }
2974     return R;
2975   }
2976 
2977   // For bug reports that should be suppressed when all paths are post-dominated
2978   // by a sink node, iterate through the reports in the equivalence class
2979   // until we find one that isn't post-dominated (if one exists).  We use a
2980   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2981   // this as a recursive function, but we don't want to risk blowing out the
2982   // stack for very long paths.
2983   BugReport *exampleReport = nullptr;
2984 
2985   for (const auto &I: EQ.getReports()) {
2986     auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
2987     if (!R)
2988       continue;
2989 
2990     const ExplodedNode *errorNode = R->getErrorNode();
2991     if (errorNode->isSink()) {
2992       llvm_unreachable(
2993            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2994     }
2995     // No successors?  By definition this nodes isn't post-dominated by a sink.
2996     if (errorNode->succ_empty()) {
2997       bugReports.push_back(R);
2998       if (!exampleReport)
2999         exampleReport = R;
3000       continue;
3001     }
3002 
3003     // See if we are in a no-return CFG block. If so, treat this similarly
3004     // to being post-dominated by a sink. This works better when the analysis
3005     // is incomplete and we have never reached the no-return function call(s)
3006     // that we'd inevitably bump into on this path.
3007     if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3008       if (ErrorB->isInevitablySinking())
3009         continue;
3010 
3011     // At this point we know that 'N' is not a sink and it has at least one
3012     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
3013     using WLItem = FRIEC_WLItem;
3014     using DFSWorkList = SmallVector<WLItem, 10>;
3015 
3016     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3017 
3018     DFSWorkList WL;
3019     WL.push_back(errorNode);
3020     Visited[errorNode] = 1;
3021 
3022     while (!WL.empty()) {
3023       WLItem &WI = WL.back();
3024       assert(!WI.N->succ_empty());
3025 
3026       for (; WI.I != WI.E; ++WI.I) {
3027         const ExplodedNode *Succ = *WI.I;
3028         // End-of-path node?
3029         if (Succ->succ_empty()) {
3030           // If we found an end-of-path node that is not a sink.
3031           if (!Succ->isSink()) {
3032             bugReports.push_back(R);
3033             if (!exampleReport)
3034               exampleReport = R;
3035             WL.clear();
3036             break;
3037           }
3038           // Found a sink?  Continue on to the next successor.
3039           continue;
3040         }
3041         // Mark the successor as visited.  If it hasn't been explored,
3042         // enqueue it to the DFS worklist.
3043         unsigned &mark = Visited[Succ];
3044         if (!mark) {
3045           mark = 1;
3046           WL.push_back(Succ);
3047           break;
3048         }
3049       }
3050 
3051       // The worklist may have been cleared at this point.  First
3052       // check if it is empty before checking the last item.
3053       if (!WL.empty() && &WL.back() == &WI)
3054         WL.pop_back();
3055     }
3056   }
3057 
3058   // ExampleReport will be NULL if all the nodes in the equivalence class
3059   // were post-dominated by sinks.
3060   return exampleReport;
3061 }
3062 
3063 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3064   SmallVector<BugReport*, 10> bugReports;
3065   BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
3066   if (!report)
3067     return;
3068 
3069   // See whether we need to silence the checker/package.
3070   for (const std::string &CheckerOrPackage :
3071        getAnalyzerOptions().SilencedCheckersAndPackages) {
3072     if (report->getBugType().getCheckerName().startswith(
3073             CheckerOrPackage))
3074       return;
3075   }
3076 
3077   ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3078   std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3079       generateDiagnosticForConsumerMap(report, Consumers, bugReports);
3080 
3081   for (auto &P : *Diagnostics) {
3082     PathDiagnosticConsumer *Consumer = P.first;
3083     std::unique_ptr<PathDiagnostic> &PD = P.second;
3084 
3085     // If the path is empty, generate a single step path with the location
3086     // of the issue.
3087     if (PD->path.empty()) {
3088       PathDiagnosticLocation L = report->getLocation();
3089       auto piece = std::make_unique<PathDiagnosticEventPiece>(
3090         L, report->getDescription());
3091       for (SourceRange Range : report->getRanges())
3092         piece->addRange(Range);
3093       PD->setEndOfPath(std::move(piece));
3094     }
3095 
3096     PathPieces &Pieces = PD->getMutablePieces();
3097     if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3098       // For path diagnostic consumers that don't support extra notes,
3099       // we may optionally convert those to path notes.
3100       for (const auto &I : llvm::reverse(report->getNotes())) {
3101         PathDiagnosticNotePiece *Piece = I.get();
3102         auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3103           Piece->getLocation(), Piece->getString());
3104         for (const auto &R: Piece->getRanges())
3105           ConvertedPiece->addRange(R);
3106 
3107         Pieces.push_front(std::move(ConvertedPiece));
3108       }
3109     } else {
3110       for (const auto &I : llvm::reverse(report->getNotes()))
3111         Pieces.push_front(I);
3112     }
3113 
3114     for (const auto &I : report->getFixits())
3115       Pieces.back()->addFixit(I);
3116 
3117     updateExecutedLinesWithDiagnosticPieces(*PD);
3118     Consumer->HandlePathDiagnostic(std::move(PD));
3119   }
3120 }
3121 
3122 /// Insert all lines participating in the function signature \p Signature
3123 /// into \p ExecutedLines.
3124 static void populateExecutedLinesWithFunctionSignature(
3125     const Decl *Signature, const SourceManager &SM,
3126     FilesToLineNumsMap &ExecutedLines) {
3127   SourceRange SignatureSourceRange;
3128   const Stmt* Body = Signature->getBody();
3129   if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3130     SignatureSourceRange = FD->getSourceRange();
3131   } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3132     SignatureSourceRange = OD->getSourceRange();
3133   } else {
3134     return;
3135   }
3136   SourceLocation Start = SignatureSourceRange.getBegin();
3137   SourceLocation End = Body ? Body->getSourceRange().getBegin()
3138     : SignatureSourceRange.getEnd();
3139   if (!Start.isValid() || !End.isValid())
3140     return;
3141   unsigned StartLine = SM.getExpansionLineNumber(Start);
3142   unsigned EndLine = SM.getExpansionLineNumber(End);
3143 
3144   FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3145   for (unsigned Line = StartLine; Line <= EndLine; Line++)
3146     ExecutedLines[FID].insert(Line);
3147 }
3148 
3149 static void populateExecutedLinesWithStmt(
3150     const Stmt *S, const SourceManager &SM,
3151     FilesToLineNumsMap &ExecutedLines) {
3152   SourceLocation Loc = S->getSourceRange().getBegin();
3153   if (!Loc.isValid())
3154     return;
3155   SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3156   FileID FID = SM.getFileID(ExpansionLoc);
3157   unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3158   ExecutedLines[FID].insert(LineNo);
3159 }
3160 
3161 /// \return all executed lines including function signatures on the path
3162 /// starting from \p N.
3163 static std::unique_ptr<FilesToLineNumsMap>
3164 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3165   auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3166 
3167   while (N) {
3168     if (N->getFirstPred() == nullptr) {
3169       // First node: show signature of the entrance point.
3170       const Decl *D = N->getLocationContext()->getDecl();
3171       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3172     } else if (auto CE = N->getLocationAs<CallEnter>()) {
3173       // Inlined function: show signature.
3174       const Decl* D = CE->getCalleeContext()->getDecl();
3175       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3176     } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3177       populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3178 
3179       // Show extra context for some parent kinds.
3180       const Stmt *P = N->getParentMap().getParent(S);
3181 
3182       // The path exploration can die before the node with the associated
3183       // return statement is generated, but we do want to show the whole
3184       // return.
3185       if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3186         populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3187         P = N->getParentMap().getParent(RS);
3188       }
3189 
3190       if (isa_and_nonnull<SwitchCase, LabelStmt>(P))
3191         populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3192     }
3193 
3194     N = N->getFirstPred();
3195   }
3196   return ExecutedLines;
3197 }
3198 
3199 std::unique_ptr<DiagnosticForConsumerMapTy>
3200 BugReporter::generateDiagnosticForConsumerMap(
3201     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3202     ArrayRef<BugReport *> bugReports) {
3203   auto *basicReport = cast<BasicBugReport>(exampleReport);
3204   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3205   for (auto *Consumer : consumers)
3206     (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport);
3207   return Out;
3208 }
3209 
3210 static PathDiagnosticCallPiece *
3211 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3212                                 const SourceManager &SMgr) {
3213   SourceLocation CallLoc = CP->callEnter.asLocation();
3214 
3215   // If the call is within a macro, don't do anything (for now).
3216   if (CallLoc.isMacroID())
3217     return nullptr;
3218 
3219   assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3220          "The call piece should not be in a header file.");
3221 
3222   // Check if CP represents a path through a function outside of the main file.
3223   if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
3224     return CP;
3225 
3226   const PathPieces &Path = CP->path;
3227   if (Path.empty())
3228     return nullptr;
3229 
3230   // Check if the last piece in the callee path is a call to a function outside
3231   // of the main file.
3232   if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3233     return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3234 
3235   // Otherwise, the last piece is in the main file.
3236   return nullptr;
3237 }
3238 
3239 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3240   if (PD.path.empty())
3241     return;
3242 
3243   PathDiagnosticPiece *LastP = PD.path.back().get();
3244   assert(LastP);
3245   const SourceManager &SMgr = LastP->getLocation().getManager();
3246 
3247   // We only need to check if the report ends inside headers, if the last piece
3248   // is a call piece.
3249   if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3250     CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3251     if (CP) {
3252       // Mark the piece.
3253        CP->setAsLastInMainSourceFile();
3254 
3255       // Update the path diagnostic message.
3256       const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3257       if (ND) {
3258         SmallString<200> buf;
3259         llvm::raw_svector_ostream os(buf);
3260         os << " (within a call to '" << ND->getDeclName() << "')";
3261         PD.appendToDesc(os.str());
3262       }
3263 
3264       // Reset the report containing declaration and location.
3265       PD.setDeclWithIssue(CP->getCaller());
3266       PD.setLocation(CP->getLocation());
3267 
3268       return;
3269     }
3270   }
3271 }
3272 
3273 
3274 
3275 std::unique_ptr<DiagnosticForConsumerMapTy>
3276 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3277     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3278     ArrayRef<BugReport *> bugReports) {
3279   std::vector<BasicBugReport *> BasicBugReports;
3280   std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3281   if (isa<BasicBugReport>(exampleReport))
3282     return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3283                                                          consumers, bugReports);
3284 
3285   // Generate the full path sensitive diagnostic, using the generation scheme
3286   // specified by the PathDiagnosticConsumer. Note that we have to generate
3287   // path diagnostics even for consumers which do not support paths, because
3288   // the BugReporterVisitors may mark this bug as a false positive.
3289   assert(!bugReports.empty());
3290   MaxBugClassSize.updateMax(bugReports.size());
3291 
3292   // Avoid copying the whole array because there may be a lot of reports.
3293   ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3294       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3295       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3296   std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3297       consumers, convertedArrayOfReports);
3298 
3299   if (Out->empty())
3300     return Out;
3301 
3302   MaxValidBugClassSize.updateMax(bugReports.size());
3303 
3304   // Examine the report and see if the last piece is in a header. Reset the
3305   // report location to the last piece in the main source file.
3306   const AnalyzerOptions &Opts = getAnalyzerOptions();
3307   for (auto const &P : *Out)
3308     if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3309       resetDiagnosticLocationToMainFile(*P.second);
3310 
3311   return Out;
3312 }
3313 
3314 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3315                                   const CheckerBase *Checker, StringRef Name,
3316                                   StringRef Category, StringRef Str,
3317                                   PathDiagnosticLocation Loc,
3318                                   ArrayRef<SourceRange> Ranges,
3319                                   ArrayRef<FixItHint> Fixits) {
3320   EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3321                   Loc, Ranges, Fixits);
3322 }
3323 
3324 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3325                                   CheckerNameRef CheckName,
3326                                   StringRef name, StringRef category,
3327                                   StringRef str, PathDiagnosticLocation Loc,
3328                                   ArrayRef<SourceRange> Ranges,
3329                                   ArrayRef<FixItHint> Fixits) {
3330   // 'BT' is owned by BugReporter.
3331   BugType *BT = getBugTypeForName(CheckName, name, category);
3332   auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3333   R->setDeclWithIssue(DeclWithIssue);
3334   for (const auto &SR : Ranges)
3335     R->addRange(SR);
3336   for (const auto &FH : Fixits)
3337     R->addFixItHint(FH);
3338   emitReport(std::move(R));
3339 }
3340 
3341 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3342                                         StringRef name, StringRef category) {
3343   SmallString<136> fullDesc;
3344   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3345                                       << ":" << category;
3346   std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3347   if (!BT)
3348     BT = std::make_unique<BugType>(CheckName, name, category);
3349   return BT.get();
3350 }
3351