1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines BugReporter, a utility class for generating
10 //  PathDiagnostics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/Stmt.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/CFGStmtMap.h"
27 #include "clang/Analysis/PathDiagnostic.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
35 #include "clang/StaticAnalyzer/Core/Checker.h"
36 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
37 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/DenseSet.h"
46 #include "llvm/ADT/FoldingSet.h"
47 #include "llvm/ADT/None.h"
48 #include "llvm/ADT/Optional.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/ADT/StringRef.h"
55 #include "llvm/ADT/iterator_range.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/MemoryBuffer.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstddef>
64 #include <iterator>
65 #include <memory>
66 #include <queue>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
71 
72 using namespace clang;
73 using namespace ento;
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "BugReporter"
77 
78 STATISTIC(MaxBugClassSize,
79           "The maximum number of bug reports in the same equivalence class");
80 STATISTIC(MaxValidBugClassSize,
81           "The maximum number of bug reports in the same equivalence class "
82           "where at least one report is valid (not suppressed)");
83 
84 BugReporterVisitor::~BugReporterVisitor() = default;
85 
86 void BugReporterContext::anchor() {}
87 
88 //===----------------------------------------------------------------------===//
89 // PathDiagnosticBuilder and its associated routines and helper objects.
90 //===----------------------------------------------------------------------===//
91 
92 namespace {
93 
94 /// A (CallPiece, node assiciated with its CallEnter) pair.
95 using CallWithEntry =
96     std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
97 using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
98 
99 /// Map from each node to the diagnostic pieces visitors emit for them.
100 using VisitorsDiagnosticsTy =
101     llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
102 
103 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
104 /// function call it represents.
105 using LocationContextMap =
106     llvm::DenseMap<const PathPieces *, const LocationContext *>;
107 
108 /// A helper class that contains everything needed to construct a
109 /// PathDiagnostic object. It does no much more then providing convenient
110 /// getters and some well placed asserts for extra security.
111 class PathDiagnosticConstruct {
112   /// The consumer we're constructing the bug report for.
113   const PathDiagnosticConsumer *Consumer;
114   /// Our current position in the bug path, which is owned by
115   /// PathDiagnosticBuilder.
116   const ExplodedNode *CurrentNode;
117   /// A mapping from parts of the bug path (for example, a function call, which
118   /// would span backwards from a CallExit to a CallEnter with the nodes in
119   /// between them) with the location contexts it is associated with.
120   LocationContextMap LCM;
121   const SourceManager &SM;
122 
123 public:
124   /// We keep stack of calls to functions as we're ascending the bug path.
125   /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
126   /// that instead?
127   CallWithEntryStack CallStack;
128   /// The bug report we're constructing. For ease of use, this field is kept
129   /// public, though some "shortcut" getters are provided for commonly used
130   /// methods of PathDiagnostic.
131   std::unique_ptr<PathDiagnostic> PD;
132 
133 public:
134   PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
135                           const ExplodedNode *ErrorNode,
136                           const PathSensitiveBugReport *R);
137 
138   /// \returns the location context associated with the current position in the
139   /// bug path.
140   const LocationContext *getCurrLocationContext() const {
141     assert(CurrentNode && "Already reached the root!");
142     return CurrentNode->getLocationContext();
143   }
144 
145   /// Same as getCurrLocationContext (they should always return the same
146   /// location context), but works after reaching the root of the bug path as
147   /// well.
148   const LocationContext *getLocationContextForActivePath() const {
149     return LCM.find(&PD->getActivePath())->getSecond();
150   }
151 
152   const ExplodedNode *getCurrentNode() const { return CurrentNode; }
153 
154   /// Steps the current node to its predecessor.
155   /// \returns whether we reached the root of the bug path.
156   bool ascendToPrevNode() {
157     CurrentNode = CurrentNode->getFirstPred();
158     return static_cast<bool>(CurrentNode);
159   }
160 
161   const ParentMap &getParentMap() const {
162     return getCurrLocationContext()->getParentMap();
163   }
164 
165   const SourceManager &getSourceManager() const { return SM; }
166 
167   const Stmt *getParent(const Stmt *S) const {
168     return getParentMap().getParent(S);
169   }
170 
171   void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
172     assert(Path && LC);
173     LCM[Path] = LC;
174   }
175 
176   const LocationContext *getLocationContextFor(const PathPieces *Path) const {
177     assert(LCM.count(Path) &&
178            "Failed to find the context associated with these pieces!");
179     return LCM.find(Path)->getSecond();
180   }
181 
182   bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
183 
184   PathPieces &getActivePath() { return PD->getActivePath(); }
185   PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
186 
187   bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
188   bool shouldGenerateDiagnostics() const {
189     return Consumer->shouldGenerateDiagnostics();
190   }
191   bool supportsLogicalOpControlFlow() const {
192     return Consumer->supportsLogicalOpControlFlow();
193   }
194 };
195 
196 /// Contains every contextual information needed for constructing a
197 /// PathDiagnostic object for a given bug report. This class and its fields are
198 /// immutable, and passes a BugReportConstruct object around during the
199 /// construction.
200 class PathDiagnosticBuilder : public BugReporterContext {
201   /// A linear path from the error node to the root.
202   std::unique_ptr<const ExplodedGraph> BugPath;
203   /// The bug report we're describing. Visitors create their diagnostics with
204   /// them being the last entities being able to modify it (for example,
205   /// changing interestingness here would cause inconsistencies as to how this
206   /// file and visitors construct diagnostics), hence its const.
207   const PathSensitiveBugReport *R;
208   /// The leaf of the bug path. This isn't the same as the bug reports error
209   /// node, which refers to the *original* graph, not the bug path.
210   const ExplodedNode *const ErrorNode;
211   /// The diagnostic pieces visitors emitted, which is expected to be collected
212   /// by the time this builder is constructed.
213   std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
214 
215 public:
216   /// Find a non-invalidated report for a given equivalence class,  and returns
217   /// a PathDiagnosticBuilder able to construct bug reports for different
218   /// consumers. Returns None if no valid report is found.
219   static Optional<PathDiagnosticBuilder>
220   findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
221                   PathSensitiveBugReporter &Reporter);
222 
223   PathDiagnosticBuilder(
224       BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
225       PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
226       std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
227 
228   /// This function is responsible for generating diagnostic pieces that are
229   /// *not* provided by bug report visitors.
230   /// These diagnostics may differ depending on the consumer's settings,
231   /// and are therefore constructed separately for each consumer.
232   ///
233   /// There are two path diagnostics generation modes: with adding edges (used
234   /// for plists) and without  (used for HTML and text). When edges are added,
235   /// the path is modified to insert artificially generated edges.
236   /// Otherwise, more detailed diagnostics is emitted for block edges,
237   /// explaining the transitions in words.
238   std::unique_ptr<PathDiagnostic>
239   generate(const PathDiagnosticConsumer *PDC) const;
240 
241 private:
242   void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
243                                     const CallWithEntryStack &CallStack) const;
244   void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
245                                       PathDiagnosticLocation &PrevLoc) const;
246 
247   void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
248                                        BlockEdge BE) const;
249 
250   PathDiagnosticPieceRef
251   generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
252                         PathDiagnosticLocation &Start) const;
253 
254   PathDiagnosticPieceRef
255   generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
256                           PathDiagnosticLocation &Start) const;
257 
258   PathDiagnosticPieceRef
259   generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
260                           const CFGBlock *Src, const CFGBlock *DstC) const;
261 
262   PathDiagnosticLocation
263   ExecutionContinues(const PathDiagnosticConstruct &C) const;
264 
265   PathDiagnosticLocation
266   ExecutionContinues(llvm::raw_string_ostream &os,
267                      const PathDiagnosticConstruct &C) const;
268 
269   const PathSensitiveBugReport *getBugReport() const { return R; }
270 };
271 
272 } // namespace
273 
274 //===----------------------------------------------------------------------===//
275 // Base implementation of stack hint generators.
276 //===----------------------------------------------------------------------===//
277 
278 StackHintGenerator::~StackHintGenerator() = default;
279 
280 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
281   if (!N)
282     return getMessageForSymbolNotFound();
283 
284   ProgramPoint P = N->getLocation();
285   CallExitEnd CExit = P.castAs<CallExitEnd>();
286 
287   // FIXME: Use CallEvent to abstract this over all calls.
288   const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
289   const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
290   if (!CE)
291     return {};
292 
293   // Check if one of the parameters are set to the interesting symbol.
294   unsigned ArgIndex = 0;
295   for (CallExpr::const_arg_iterator I = CE->arg_begin(),
296                                     E = CE->arg_end(); I != E; ++I, ++ArgIndex){
297     SVal SV = N->getSVal(*I);
298 
299     // Check if the variable corresponding to the symbol is passed by value.
300     SymbolRef AS = SV.getAsLocSymbol();
301     if (AS == Sym) {
302       return getMessageForArg(*I, ArgIndex);
303     }
304 
305     // Check if the parameter is a pointer to the symbol.
306     if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
307       // Do not attempt to dereference void*.
308       if ((*I)->getType()->isVoidPointerType())
309         continue;
310       SVal PSV = N->getState()->getSVal(Reg->getRegion());
311       SymbolRef AS = PSV.getAsLocSymbol();
312       if (AS == Sym) {
313         return getMessageForArg(*I, ArgIndex);
314       }
315     }
316   }
317 
318   // Check if we are returning the interesting symbol.
319   SVal SV = N->getSVal(CE);
320   SymbolRef RetSym = SV.getAsLocSymbol();
321   if (RetSym == Sym) {
322     return getMessageForReturn(CE);
323   }
324 
325   return getMessageForSymbolNotFound();
326 }
327 
328 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
329                                                           unsigned ArgIndex) {
330   // Printed parameters start at 1, not 0.
331   ++ArgIndex;
332 
333   return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
334           llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
335 }
336 
337 //===----------------------------------------------------------------------===//
338 // Diagnostic cleanup.
339 //===----------------------------------------------------------------------===//
340 
341 static PathDiagnosticEventPiece *
342 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
343                             PathDiagnosticEventPiece *Y) {
344   // Prefer diagnostics that come from ConditionBRVisitor over
345   // those that came from TrackConstraintBRVisitor,
346   // unless the one from ConditionBRVisitor is
347   // its generic fallback diagnostic.
348   const void *tagPreferred = ConditionBRVisitor::getTag();
349   const void *tagLesser = TrackConstraintBRVisitor::getTag();
350 
351   if (X->getLocation() != Y->getLocation())
352     return nullptr;
353 
354   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
355     return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
356 
357   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
358     return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
359 
360   return nullptr;
361 }
362 
363 /// An optimization pass over PathPieces that removes redundant diagnostics
364 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
365 /// BugReporterVisitors use different methods to generate diagnostics, with
366 /// one capable of emitting diagnostics in some cases but not in others.  This
367 /// can lead to redundant diagnostic pieces at the same point in a path.
368 static void removeRedundantMsgs(PathPieces &path) {
369   unsigned N = path.size();
370   if (N < 2)
371     return;
372   // NOTE: this loop intentionally is not using an iterator.  Instead, we
373   // are streaming the path and modifying it in place.  This is done by
374   // grabbing the front, processing it, and if we decide to keep it append
375   // it to the end of the path.  The entire path is processed in this way.
376   for (unsigned i = 0; i < N; ++i) {
377     auto piece = std::move(path.front());
378     path.pop_front();
379 
380     switch (piece->getKind()) {
381       case PathDiagnosticPiece::Call:
382         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
383         break;
384       case PathDiagnosticPiece::Macro:
385         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
386         break;
387       case PathDiagnosticPiece::Event: {
388         if (i == N-1)
389           break;
390 
391         if (auto *nextEvent =
392             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
393           auto *event = cast<PathDiagnosticEventPiece>(piece.get());
394           // Check to see if we should keep one of the two pieces.  If we
395           // come up with a preference, record which piece to keep, and consume
396           // another piece from the path.
397           if (auto *pieceToKeep =
398                   eventsDescribeSameCondition(event, nextEvent)) {
399             piece = std::move(pieceToKeep == event ? piece : path.front());
400             path.pop_front();
401             ++i;
402           }
403         }
404         break;
405       }
406       case PathDiagnosticPiece::ControlFlow:
407       case PathDiagnosticPiece::Note:
408       case PathDiagnosticPiece::PopUp:
409         break;
410     }
411     path.push_back(std::move(piece));
412   }
413 }
414 
415 /// Recursively scan through a path and prune out calls and macros pieces
416 /// that aren't needed.  Return true if afterwards the path contains
417 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
418 static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
419                                 PathPieces &pieces,
420                                 const PathSensitiveBugReport *R,
421                                 bool IsInteresting = false) {
422   bool containsSomethingInteresting = IsInteresting;
423   const unsigned N = pieces.size();
424 
425   for (unsigned i = 0 ; i < N ; ++i) {
426     // Remove the front piece from the path.  If it is still something we
427     // want to keep once we are done, we will push it back on the end.
428     auto piece = std::move(pieces.front());
429     pieces.pop_front();
430 
431     switch (piece->getKind()) {
432       case PathDiagnosticPiece::Call: {
433         auto &call = cast<PathDiagnosticCallPiece>(*piece);
434         // Check if the location context is interesting.
435         if (!removeUnneededCalls(
436                 C, call.path, R,
437                 R->isInteresting(C.getLocationContextFor(&call.path))))
438           continue;
439 
440         containsSomethingInteresting = true;
441         break;
442       }
443       case PathDiagnosticPiece::Macro: {
444         auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
445         if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
446           continue;
447         containsSomethingInteresting = true;
448         break;
449       }
450       case PathDiagnosticPiece::Event: {
451         auto &event = cast<PathDiagnosticEventPiece>(*piece);
452 
453         // We never throw away an event, but we do throw it away wholesale
454         // as part of a path if we throw the entire path away.
455         containsSomethingInteresting |= !event.isPrunable();
456         break;
457       }
458       case PathDiagnosticPiece::ControlFlow:
459       case PathDiagnosticPiece::Note:
460       case PathDiagnosticPiece::PopUp:
461         break;
462     }
463 
464     pieces.push_back(std::move(piece));
465   }
466 
467   return containsSomethingInteresting;
468 }
469 
470 /// Same logic as above to remove extra pieces.
471 static void removePopUpNotes(PathPieces &Path) {
472   for (unsigned int i = 0; i < Path.size(); ++i) {
473     auto Piece = std::move(Path.front());
474     Path.pop_front();
475     if (!isa<PathDiagnosticPopUpPiece>(*Piece))
476       Path.push_back(std::move(Piece));
477   }
478 }
479 
480 /// Returns true if the given decl has been implicitly given a body, either by
481 /// the analyzer or by the compiler proper.
482 static bool hasImplicitBody(const Decl *D) {
483   assert(D);
484   return D->isImplicit() || !D->hasBody();
485 }
486 
487 /// Recursively scan through a path and make sure that all call pieces have
488 /// valid locations.
489 static void
490 adjustCallLocations(PathPieces &Pieces,
491                     PathDiagnosticLocation *LastCallLocation = nullptr) {
492   for (const auto &I : Pieces) {
493     auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
494 
495     if (!Call)
496       continue;
497 
498     if (LastCallLocation) {
499       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
500       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
501         Call->callEnter = *LastCallLocation;
502       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
503         Call->callReturn = *LastCallLocation;
504     }
505 
506     // Recursively clean out the subclass.  Keep this call around if
507     // it contains any informative diagnostics.
508     PathDiagnosticLocation *ThisCallLocation;
509     if (Call->callEnterWithin.asLocation().isValid() &&
510         !hasImplicitBody(Call->getCallee()))
511       ThisCallLocation = &Call->callEnterWithin;
512     else
513       ThisCallLocation = &Call->callEnter;
514 
515     assert(ThisCallLocation && "Outermost call has an invalid location");
516     adjustCallLocations(Call->path, ThisCallLocation);
517   }
518 }
519 
520 /// Remove edges in and out of C++ default initializer expressions. These are
521 /// for fields that have in-class initializers, as opposed to being initialized
522 /// explicitly in a constructor or braced list.
523 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
524   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
525     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
526       removeEdgesToDefaultInitializers(C->path);
527 
528     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
529       removeEdgesToDefaultInitializers(M->subPieces);
530 
531     if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
532       const Stmt *Start = CF->getStartLocation().asStmt();
533       const Stmt *End = CF->getEndLocation().asStmt();
534       if (Start && isa<CXXDefaultInitExpr>(Start)) {
535         I = Pieces.erase(I);
536         continue;
537       } else if (End && isa<CXXDefaultInitExpr>(End)) {
538         PathPieces::iterator Next = std::next(I);
539         if (Next != E) {
540           if (auto *NextCF =
541                   dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
542             NextCF->setStartLocation(CF->getStartLocation());
543           }
544         }
545         I = Pieces.erase(I);
546         continue;
547       }
548     }
549 
550     I++;
551   }
552 }
553 
554 /// Remove all pieces with invalid locations as these cannot be serialized.
555 /// We might have pieces with invalid locations as a result of inlining Body
556 /// Farm generated functions.
557 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
558   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
559     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
560       removePiecesWithInvalidLocations(C->path);
561 
562     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
563       removePiecesWithInvalidLocations(M->subPieces);
564 
565     if (!(*I)->getLocation().isValid() ||
566         !(*I)->getLocation().asLocation().isValid()) {
567       I = Pieces.erase(I);
568       continue;
569     }
570     I++;
571   }
572 }
573 
574 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
575     const PathDiagnosticConstruct &C) const {
576   if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
577     return PathDiagnosticLocation(S, getSourceManager(),
578                                   C.getCurrLocationContext());
579 
580   return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
581                                                getSourceManager());
582 }
583 
584 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
585     llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
586   // Slow, but probably doesn't matter.
587   if (os.str().empty())
588     os << ' ';
589 
590   const PathDiagnosticLocation &Loc = ExecutionContinues(C);
591 
592   if (Loc.asStmt())
593     os << "Execution continues on line "
594        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
595        << '.';
596   else {
597     os << "Execution jumps to the end of the ";
598     const Decl *D = C.getCurrLocationContext()->getDecl();
599     if (isa<ObjCMethodDecl>(D))
600       os << "method";
601     else if (isa<FunctionDecl>(D))
602       os << "function";
603     else {
604       assert(isa<BlockDecl>(D));
605       os << "anonymous block";
606     }
607     os << '.';
608   }
609 
610   return Loc;
611 }
612 
613 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
614   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
615     return PM.getParentIgnoreParens(S);
616 
617   const Stmt *Parent = PM.getParentIgnoreParens(S);
618   if (!Parent)
619     return nullptr;
620 
621   switch (Parent->getStmtClass()) {
622   case Stmt::ForStmtClass:
623   case Stmt::DoStmtClass:
624   case Stmt::WhileStmtClass:
625   case Stmt::ObjCForCollectionStmtClass:
626   case Stmt::CXXForRangeStmtClass:
627     return Parent;
628   default:
629     break;
630   }
631 
632   return nullptr;
633 }
634 
635 static PathDiagnosticLocation
636 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
637                          bool allowNestedContexts = false) {
638   if (!S)
639     return {};
640 
641   const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
642 
643   while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
644     switch (Parent->getStmtClass()) {
645       case Stmt::BinaryOperatorClass: {
646         const auto *B = cast<BinaryOperator>(Parent);
647         if (B->isLogicalOp())
648           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
649         break;
650       }
651       case Stmt::CompoundStmtClass:
652       case Stmt::StmtExprClass:
653         return PathDiagnosticLocation(S, SMgr, LC);
654       case Stmt::ChooseExprClass:
655         // Similar to '?' if we are referring to condition, just have the edge
656         // point to the entire choose expression.
657         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
658           return PathDiagnosticLocation(Parent, SMgr, LC);
659         else
660           return PathDiagnosticLocation(S, SMgr, LC);
661       case Stmt::BinaryConditionalOperatorClass:
662       case Stmt::ConditionalOperatorClass:
663         // For '?', if we are referring to condition, just have the edge point
664         // to the entire '?' expression.
665         if (allowNestedContexts ||
666             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
667           return PathDiagnosticLocation(Parent, SMgr, LC);
668         else
669           return PathDiagnosticLocation(S, SMgr, LC);
670       case Stmt::CXXForRangeStmtClass:
671         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
672           return PathDiagnosticLocation(S, SMgr, LC);
673         break;
674       case Stmt::DoStmtClass:
675           return PathDiagnosticLocation(S, SMgr, LC);
676       case Stmt::ForStmtClass:
677         if (cast<ForStmt>(Parent)->getBody() == S)
678           return PathDiagnosticLocation(S, SMgr, LC);
679         break;
680       case Stmt::IfStmtClass:
681         if (cast<IfStmt>(Parent)->getCond() != S)
682           return PathDiagnosticLocation(S, SMgr, LC);
683         break;
684       case Stmt::ObjCForCollectionStmtClass:
685         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
686           return PathDiagnosticLocation(S, SMgr, LC);
687         break;
688       case Stmt::WhileStmtClass:
689         if (cast<WhileStmt>(Parent)->getCond() != S)
690           return PathDiagnosticLocation(S, SMgr, LC);
691         break;
692       default:
693         break;
694     }
695 
696     S = Parent;
697   }
698 
699   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
700 
701   return PathDiagnosticLocation(S, SMgr, LC);
702 }
703 
704 //===----------------------------------------------------------------------===//
705 // "Minimal" path diagnostic generation algorithm.
706 //===----------------------------------------------------------------------===//
707 
708 /// If the piece contains a special message, add it to all the call pieces on
709 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
710 /// will construct an event at the call to malloc(), and add a stack hint that
711 /// an allocated memory was returned. We'll use this hint to construct a message
712 /// when returning from the call to my_malloc
713 ///
714 ///   void *my_malloc() { return malloc(sizeof(int)); }
715 ///   void fishy() {
716 ///     void *ptr = my_malloc(); // returned allocated memory
717 ///   } // leak
718 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
719     PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
720   if (R->hasCallStackHint(P))
721     for (const auto &I : CallStack) {
722       PathDiagnosticCallPiece *CP = I.first;
723       const ExplodedNode *N = I.second;
724       std::string stackMsg = R->getCallStackMessage(P, N);
725 
726       // The last message on the path to final bug is the most important
727       // one. Since we traverse the path backwards, do not add the message
728       // if one has been previously added.
729       if (!CP->hasCallStackMessage())
730         CP->setCallStackMessage(stackMsg);
731     }
732 }
733 
734 static void CompactMacroExpandedPieces(PathPieces &path,
735                                        const SourceManager& SM);
736 
737 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
738     const PathDiagnosticConstruct &C, const CFGBlock *Dst,
739     PathDiagnosticLocation &Start) const {
740 
741   const SourceManager &SM = getSourceManager();
742   // Figure out what case arm we took.
743   std::string sbuf;
744   llvm::raw_string_ostream os(sbuf);
745   PathDiagnosticLocation End;
746 
747   if (const Stmt *S = Dst->getLabel()) {
748     End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
749 
750     switch (S->getStmtClass()) {
751     default:
752       os << "No cases match in the switch statement. "
753         "Control jumps to line "
754         << End.asLocation().getExpansionLineNumber();
755       break;
756     case Stmt::DefaultStmtClass:
757       os << "Control jumps to the 'default' case at line "
758         << End.asLocation().getExpansionLineNumber();
759       break;
760 
761     case Stmt::CaseStmtClass: {
762       os << "Control jumps to 'case ";
763       const auto *Case = cast<CaseStmt>(S);
764       const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
765 
766       // Determine if it is an enum.
767       bool GetRawInt = true;
768 
769       if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
770         // FIXME: Maybe this should be an assertion.  Are there cases
771         // were it is not an EnumConstantDecl?
772         const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
773 
774         if (D) {
775           GetRawInt = false;
776           os << *D;
777         }
778       }
779 
780       if (GetRawInt)
781         os << LHS->EvaluateKnownConstInt(getASTContext());
782 
783       os << ":'  at line " << End.asLocation().getExpansionLineNumber();
784       break;
785     }
786     }
787   } else {
788     os << "'Default' branch taken. ";
789     End = ExecutionContinues(os, C);
790   }
791   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
792                                                        os.str());
793 }
794 
795 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
796     const PathDiagnosticConstruct &C, const Stmt *S,
797     PathDiagnosticLocation &Start) const {
798   std::string sbuf;
799   llvm::raw_string_ostream os(sbuf);
800   const PathDiagnosticLocation &End =
801       getEnclosingStmtLocation(S, C.getCurrLocationContext());
802   os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
803   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
804 }
805 
806 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
807     const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
808     const CFGBlock *Dst) const {
809 
810   const SourceManager &SM = getSourceManager();
811 
812   const auto *B = cast<BinaryOperator>(T);
813   std::string sbuf;
814   llvm::raw_string_ostream os(sbuf);
815   os << "Left side of '";
816   PathDiagnosticLocation Start, End;
817 
818   if (B->getOpcode() == BO_LAnd) {
819     os << "&&"
820       << "' is ";
821 
822     if (*(Src->succ_begin() + 1) == Dst) {
823       os << "false";
824       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
825       Start =
826         PathDiagnosticLocation::createOperatorLoc(B, SM);
827     } else {
828       os << "true";
829       Start =
830           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
831       End = ExecutionContinues(C);
832     }
833   } else {
834     assert(B->getOpcode() == BO_LOr);
835     os << "||"
836       << "' is ";
837 
838     if (*(Src->succ_begin() + 1) == Dst) {
839       os << "false";
840       Start =
841           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
842       End = ExecutionContinues(C);
843     } else {
844       os << "true";
845       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
846       Start =
847         PathDiagnosticLocation::createOperatorLoc(B, SM);
848     }
849   }
850   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
851                                                          os.str());
852 }
853 
854 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
855     PathDiagnosticConstruct &C, BlockEdge BE) const {
856   const SourceManager &SM = getSourceManager();
857   const LocationContext *LC = C.getCurrLocationContext();
858   const CFGBlock *Src = BE.getSrc();
859   const CFGBlock *Dst = BE.getDst();
860   const Stmt *T = Src->getTerminatorStmt();
861   if (!T)
862     return;
863 
864   auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
865   switch (T->getStmtClass()) {
866   default:
867     break;
868 
869   case Stmt::GotoStmtClass:
870   case Stmt::IndirectGotoStmtClass: {
871     if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
872       C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
873     break;
874   }
875 
876   case Stmt::SwitchStmtClass: {
877     C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
878     break;
879   }
880 
881   case Stmt::BreakStmtClass:
882   case Stmt::ContinueStmtClass: {
883     std::string sbuf;
884     llvm::raw_string_ostream os(sbuf);
885     PathDiagnosticLocation End = ExecutionContinues(os, C);
886     C.getActivePath().push_front(
887         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
888     break;
889   }
890 
891   // Determine control-flow for ternary '?'.
892   case Stmt::BinaryConditionalOperatorClass:
893   case Stmt::ConditionalOperatorClass: {
894     std::string sbuf;
895     llvm::raw_string_ostream os(sbuf);
896     os << "'?' condition is ";
897 
898     if (*(Src->succ_begin() + 1) == Dst)
899       os << "false";
900     else
901       os << "true";
902 
903     PathDiagnosticLocation End = ExecutionContinues(C);
904 
905     if (const Stmt *S = End.asStmt())
906       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
907 
908     C.getActivePath().push_front(
909         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
910     break;
911   }
912 
913   // Determine control-flow for short-circuited '&&' and '||'.
914   case Stmt::BinaryOperatorClass: {
915     if (!C.supportsLogicalOpControlFlow())
916       break;
917 
918     C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
919     break;
920   }
921 
922   case Stmt::DoStmtClass:
923     if (*(Src->succ_begin()) == Dst) {
924       std::string sbuf;
925       llvm::raw_string_ostream os(sbuf);
926 
927       os << "Loop condition is true. ";
928       PathDiagnosticLocation End = ExecutionContinues(os, C);
929 
930       if (const Stmt *S = End.asStmt())
931         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
932 
933       C.getActivePath().push_front(
934           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
935                                                            os.str()));
936     } else {
937       PathDiagnosticLocation End = ExecutionContinues(C);
938 
939       if (const Stmt *S = End.asStmt())
940         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
941 
942       C.getActivePath().push_front(
943           std::make_shared<PathDiagnosticControlFlowPiece>(
944               Start, End, "Loop condition is false.  Exiting loop"));
945     }
946     break;
947 
948   case Stmt::WhileStmtClass:
949   case Stmt::ForStmtClass:
950     if (*(Src->succ_begin() + 1) == Dst) {
951       std::string sbuf;
952       llvm::raw_string_ostream os(sbuf);
953 
954       os << "Loop condition is false. ";
955       PathDiagnosticLocation End = ExecutionContinues(os, C);
956       if (const Stmt *S = End.asStmt())
957         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
958 
959       C.getActivePath().push_front(
960           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
961                                                            os.str()));
962     } else {
963       PathDiagnosticLocation End = ExecutionContinues(C);
964       if (const Stmt *S = End.asStmt())
965         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
966 
967       C.getActivePath().push_front(
968           std::make_shared<PathDiagnosticControlFlowPiece>(
969               Start, End, "Loop condition is true.  Entering loop body"));
970     }
971 
972     break;
973 
974   case Stmt::IfStmtClass: {
975     PathDiagnosticLocation End = ExecutionContinues(C);
976 
977     if (const Stmt *S = End.asStmt())
978       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
979 
980     if (*(Src->succ_begin() + 1) == Dst)
981       C.getActivePath().push_front(
982           std::make_shared<PathDiagnosticControlFlowPiece>(
983               Start, End, "Taking false branch"));
984     else
985       C.getActivePath().push_front(
986           std::make_shared<PathDiagnosticControlFlowPiece>(
987               Start, End, "Taking true branch"));
988 
989     break;
990   }
991   }
992 }
993 
994 //===----------------------------------------------------------------------===//
995 // Functions for determining if a loop was executed 0 times.
996 //===----------------------------------------------------------------------===//
997 
998 static bool isLoop(const Stmt *Term) {
999   switch (Term->getStmtClass()) {
1000     case Stmt::ForStmtClass:
1001     case Stmt::WhileStmtClass:
1002     case Stmt::ObjCForCollectionStmtClass:
1003     case Stmt::CXXForRangeStmtClass:
1004       return true;
1005     default:
1006       // Note that we intentionally do not include do..while here.
1007       return false;
1008   }
1009 }
1010 
1011 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1012   const CFGBlock *Src = BE->getSrc();
1013   assert(Src->succ_size() == 2);
1014   return (*(Src->succ_begin()+1) == BE->getDst());
1015 }
1016 
1017 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1018                               const Stmt *SubS) {
1019   while (SubS) {
1020     if (SubS == S)
1021       return true;
1022     SubS = PM.getParent(SubS);
1023   }
1024   return false;
1025 }
1026 
1027 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1028                                      const ExplodedNode *N) {
1029   while (N) {
1030     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1031     if (SP) {
1032       const Stmt *S = SP->getStmt();
1033       if (!isContainedByStmt(PM, Term, S))
1034         return S;
1035     }
1036     N = N->getFirstPred();
1037   }
1038   return nullptr;
1039 }
1040 
1041 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1042   const Stmt *LoopBody = nullptr;
1043   switch (Term->getStmtClass()) {
1044     case Stmt::CXXForRangeStmtClass: {
1045       const auto *FR = cast<CXXForRangeStmt>(Term);
1046       if (isContainedByStmt(PM, FR->getInc(), S))
1047         return true;
1048       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1049         return true;
1050       LoopBody = FR->getBody();
1051       break;
1052     }
1053     case Stmt::ForStmtClass: {
1054       const auto *FS = cast<ForStmt>(Term);
1055       if (isContainedByStmt(PM, FS->getInc(), S))
1056         return true;
1057       LoopBody = FS->getBody();
1058       break;
1059     }
1060     case Stmt::ObjCForCollectionStmtClass: {
1061       const auto *FC = cast<ObjCForCollectionStmt>(Term);
1062       LoopBody = FC->getBody();
1063       break;
1064     }
1065     case Stmt::WhileStmtClass:
1066       LoopBody = cast<WhileStmt>(Term)->getBody();
1067       break;
1068     default:
1069       return false;
1070   }
1071   return isContainedByStmt(PM, LoopBody, S);
1072 }
1073 
1074 /// Adds a sanitized control-flow diagnostic edge to a path.
1075 static void addEdgeToPath(PathPieces &path,
1076                           PathDiagnosticLocation &PrevLoc,
1077                           PathDiagnosticLocation NewLoc) {
1078   if (!NewLoc.isValid())
1079     return;
1080 
1081   SourceLocation NewLocL = NewLoc.asLocation();
1082   if (NewLocL.isInvalid())
1083     return;
1084 
1085   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1086     PrevLoc = NewLoc;
1087     return;
1088   }
1089 
1090   // Ignore self-edges, which occur when there are multiple nodes at the same
1091   // statement.
1092   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1093     return;
1094 
1095   path.push_front(
1096       std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1097   PrevLoc = NewLoc;
1098 }
1099 
1100 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1101 /// which returns the element for ObjCForCollectionStmts.
1102 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1103   const Stmt *S = B->getTerminatorCondition();
1104   if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1105     return FS->getElement();
1106   return S;
1107 }
1108 
1109 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1110 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1111 constexpr llvm::StringLiteral StrLoopRangeEmpty =
1112     "Loop body skipped when range is empty";
1113 constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1114     "Loop body skipped when collection is empty";
1115 
1116 static std::unique_ptr<FilesToLineNumsMap>
1117 findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1118 
1119 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1120     PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1121   ProgramPoint P = C.getCurrentNode()->getLocation();
1122   const SourceManager &SM = getSourceManager();
1123 
1124   // Have we encountered an entrance to a call?  It may be
1125   // the case that we have not encountered a matching
1126   // call exit before this point.  This means that the path
1127   // terminated within the call itself.
1128   if (auto CE = P.getAs<CallEnter>()) {
1129 
1130     if (C.shouldAddPathEdges()) {
1131       // Add an edge to the start of the function.
1132       const StackFrameContext *CalleeLC = CE->getCalleeContext();
1133       const Decl *D = CalleeLC->getDecl();
1134       // Add the edge only when the callee has body. We jump to the beginning
1135       // of the *declaration*, however we expect it to be followed by the
1136       // body. This isn't the case for autosynthesized property accessors in
1137       // Objective-C. No need for a similar extra check for CallExit points
1138       // because the exit edge comes from a statement (i.e. return),
1139       // not from declaration.
1140       if (D->hasBody())
1141         addEdgeToPath(C.getActivePath(), PrevLoc,
1142                       PathDiagnosticLocation::createBegin(D, SM));
1143     }
1144 
1145     // Did we visit an entire call?
1146     bool VisitedEntireCall = C.PD->isWithinCall();
1147     C.PD->popActivePath();
1148 
1149     PathDiagnosticCallPiece *Call;
1150     if (VisitedEntireCall) {
1151       Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1152     } else {
1153       // The path terminated within a nested location context, create a new
1154       // call piece to encapsulate the rest of the path pieces.
1155       const Decl *Caller = CE->getLocationContext()->getDecl();
1156       Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1157       assert(C.getActivePath().size() == 1 &&
1158              C.getActivePath().front().get() == Call);
1159 
1160       // Since we just transferred the path over to the call piece, reset the
1161       // mapping of the active path to the current location context.
1162       assert(C.isInLocCtxMap(&C.getActivePath()) &&
1163              "When we ascend to a previously unvisited call, the active path's "
1164              "address shouldn't change, but rather should be compacted into "
1165              "a single CallEvent!");
1166       C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1167 
1168       // Record the location context mapping for the path within the call.
1169       assert(!C.isInLocCtxMap(&Call->path) &&
1170              "When we ascend to a previously unvisited call, this must be the "
1171              "first time we encounter the caller context!");
1172       C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1173     }
1174     Call->setCallee(*CE, SM);
1175 
1176     // Update the previous location in the active path.
1177     PrevLoc = Call->getLocation();
1178 
1179     if (!C.CallStack.empty()) {
1180       assert(C.CallStack.back().first == Call);
1181       C.CallStack.pop_back();
1182     }
1183     return;
1184   }
1185 
1186   assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1187          "The current position in the bug path is out of sync with the "
1188          "location context associated with the active path!");
1189 
1190   // Have we encountered an exit from a function call?
1191   if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1192 
1193     // We are descending into a call (backwards).  Construct
1194     // a new call piece to contain the path pieces for that call.
1195     auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
1196     // Record the mapping from call piece to LocationContext.
1197     assert(!C.isInLocCtxMap(&Call->path) &&
1198            "We just entered a call, this must've been the first time we "
1199            "encounter its context!");
1200     C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1201 
1202     if (C.shouldAddPathEdges()) {
1203       // Add the edge to the return site.
1204       addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1205       PrevLoc.invalidate();
1206     }
1207 
1208     auto *P = Call.get();
1209     C.getActivePath().push_front(std::move(Call));
1210 
1211     // Make the contents of the call the active path for now.
1212     C.PD->pushActivePath(&P->path);
1213     C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1214     return;
1215   }
1216 
1217   if (auto PS = P.getAs<PostStmt>()) {
1218     if (!C.shouldAddPathEdges())
1219       return;
1220 
1221     // Add an edge.  If this is an ObjCForCollectionStmt do
1222     // not add an edge here as it appears in the CFG both
1223     // as a terminator and as a terminator condition.
1224     if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1225       PathDiagnosticLocation L =
1226           PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1227       addEdgeToPath(C.getActivePath(), PrevLoc, L);
1228     }
1229 
1230   } else if (auto BE = P.getAs<BlockEdge>()) {
1231 
1232     if (!C.shouldAddPathEdges()) {
1233       generateMinimalDiagForBlockEdge(C, *BE);
1234       return;
1235     }
1236 
1237     // Are we jumping to the head of a loop?  Add a special diagnostic.
1238     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1239       PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1240       const Stmt *Body = nullptr;
1241 
1242       if (const auto *FS = dyn_cast<ForStmt>(Loop))
1243         Body = FS->getBody();
1244       else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1245         Body = WS->getBody();
1246       else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1247         Body = OFS->getBody();
1248       } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1249         Body = FRS->getBody();
1250       }
1251       // do-while statements are explicitly excluded here
1252 
1253       auto p = std::make_shared<PathDiagnosticEventPiece>(
1254           L, "Looping back to the head "
1255           "of the loop");
1256       p->setPrunable(true);
1257 
1258       addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1259       C.getActivePath().push_front(std::move(p));
1260 
1261       if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1262         addEdgeToPath(C.getActivePath(), PrevLoc,
1263                       PathDiagnosticLocation::createEndBrace(CS, SM));
1264       }
1265     }
1266 
1267     const CFGBlock *BSrc = BE->getSrc();
1268     const ParentMap &PM = C.getParentMap();
1269 
1270     if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1271       // Are we jumping past the loop body without ever executing the
1272       // loop (because the condition was false)?
1273       if (isLoop(Term)) {
1274         const Stmt *TermCond = getTerminatorCondition(BSrc);
1275         bool IsInLoopBody = isInLoopBody(
1276             PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1277 
1278         StringRef str;
1279 
1280         if (isJumpToFalseBranch(&*BE)) {
1281           if (!IsInLoopBody) {
1282             if (isa<ObjCForCollectionStmt>(Term)) {
1283               str = StrLoopCollectionEmpty;
1284             } else if (isa<CXXForRangeStmt>(Term)) {
1285               str = StrLoopRangeEmpty;
1286             } else {
1287               str = StrLoopBodyZero;
1288             }
1289           }
1290         } else {
1291           str = StrEnteringLoop;
1292         }
1293 
1294         if (!str.empty()) {
1295           PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1296                                    C.getCurrLocationContext());
1297           auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1298           PE->setPrunable(true);
1299           addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1300           C.getActivePath().push_front(std::move(PE));
1301         }
1302       } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1303           isa<GotoStmt>(Term)) {
1304         PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1305         addEdgeToPath(C.getActivePath(), PrevLoc, L);
1306       }
1307     }
1308   }
1309 }
1310 
1311 static std::unique_ptr<PathDiagnostic>
1312 generateDiagnosticForBasicReport(const BasicBugReport *R) {
1313   const BugType &BT = R->getBugType();
1314   return std::make_unique<PathDiagnostic>(
1315       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1316       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1317       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1318       std::make_unique<FilesToLineNumsMap>());
1319 }
1320 
1321 static std::unique_ptr<PathDiagnostic>
1322 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1323                                  const SourceManager &SM) {
1324   const BugType &BT = R->getBugType();
1325   return std::make_unique<PathDiagnostic>(
1326       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1327       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1328       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1329       findExecutedLines(SM, R->getErrorNode()));
1330 }
1331 
1332 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1333   if (!S)
1334     return nullptr;
1335 
1336   while (true) {
1337     S = PM.getParentIgnoreParens(S);
1338 
1339     if (!S)
1340       break;
1341 
1342     if (isa<FullExpr>(S) ||
1343         isa<CXXBindTemporaryExpr>(S) ||
1344         isa<SubstNonTypeTemplateParmExpr>(S))
1345       continue;
1346 
1347     break;
1348   }
1349 
1350   return S;
1351 }
1352 
1353 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1354   switch (S->getStmtClass()) {
1355     case Stmt::BinaryOperatorClass: {
1356       const auto *BO = cast<BinaryOperator>(S);
1357       if (!BO->isLogicalOp())
1358         return false;
1359       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1360     }
1361     case Stmt::IfStmtClass:
1362       return cast<IfStmt>(S)->getCond() == Cond;
1363     case Stmt::ForStmtClass:
1364       return cast<ForStmt>(S)->getCond() == Cond;
1365     case Stmt::WhileStmtClass:
1366       return cast<WhileStmt>(S)->getCond() == Cond;
1367     case Stmt::DoStmtClass:
1368       return cast<DoStmt>(S)->getCond() == Cond;
1369     case Stmt::ChooseExprClass:
1370       return cast<ChooseExpr>(S)->getCond() == Cond;
1371     case Stmt::IndirectGotoStmtClass:
1372       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1373     case Stmt::SwitchStmtClass:
1374       return cast<SwitchStmt>(S)->getCond() == Cond;
1375     case Stmt::BinaryConditionalOperatorClass:
1376       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1377     case Stmt::ConditionalOperatorClass: {
1378       const auto *CO = cast<ConditionalOperator>(S);
1379       return CO->getCond() == Cond ||
1380              CO->getLHS() == Cond ||
1381              CO->getRHS() == Cond;
1382     }
1383     case Stmt::ObjCForCollectionStmtClass:
1384       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1385     case Stmt::CXXForRangeStmtClass: {
1386       const auto *FRS = cast<CXXForRangeStmt>(S);
1387       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1388     }
1389     default:
1390       return false;
1391   }
1392 }
1393 
1394 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1395   if (const auto *FS = dyn_cast<ForStmt>(FL))
1396     return FS->getInc() == S || FS->getInit() == S;
1397   if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1398     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1399            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1400   return false;
1401 }
1402 
1403 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1404 
1405 /// Adds synthetic edges from top-level statements to their subexpressions.
1406 ///
1407 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1408 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1409 /// we'd like to see an edge from A to B, then another one from B to B.1.
1410 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1411   const ParentMap &PM = LC->getParentMap();
1412   PathPieces::iterator Prev = pieces.end();
1413   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1414        Prev = I, ++I) {
1415     auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1416 
1417     if (!Piece)
1418       continue;
1419 
1420     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1421     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1422 
1423     PathDiagnosticLocation NextSrcContext = SrcLoc;
1424     const Stmt *InnerStmt = nullptr;
1425     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1426       SrcContexts.push_back(NextSrcContext);
1427       InnerStmt = NextSrcContext.asStmt();
1428       NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1429                                                 /*allowNested=*/true);
1430     }
1431 
1432     // Repeatedly split the edge as necessary.
1433     // This is important for nested logical expressions (||, &&, ?:) where we
1434     // want to show all the levels of context.
1435     while (true) {
1436       const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1437 
1438       // We are looking at an edge. Is the destination within a larger
1439       // expression?
1440       PathDiagnosticLocation DstContext =
1441           getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1442       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1443         break;
1444 
1445       // If the source is in the same context, we're already good.
1446       if (llvm::find(SrcContexts, DstContext) != SrcContexts.end())
1447         break;
1448 
1449       // Update the subexpression node to point to the context edge.
1450       Piece->setStartLocation(DstContext);
1451 
1452       // Try to extend the previous edge if it's at the same level as the source
1453       // context.
1454       if (Prev != E) {
1455         auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1456 
1457         if (PrevPiece) {
1458           if (const Stmt *PrevSrc =
1459                   PrevPiece->getStartLocation().getStmtOrNull()) {
1460             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1461             if (PrevSrcParent ==
1462                 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1463               PrevPiece->setEndLocation(DstContext);
1464               break;
1465             }
1466           }
1467         }
1468       }
1469 
1470       // Otherwise, split the current edge into a context edge and a
1471       // subexpression edge. Note that the context statement may itself have
1472       // context.
1473       auto P =
1474           std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1475       Piece = P.get();
1476       I = pieces.insert(I, std::move(P));
1477     }
1478   }
1479 }
1480 
1481 /// Move edges from a branch condition to a branch target
1482 ///        when the condition is simple.
1483 ///
1484 /// This restructures some of the work of addContextEdges.  That function
1485 /// creates edges this may destroy, but they work together to create a more
1486 /// aesthetically set of edges around branches.  After the call to
1487 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1488 /// the branch to the branch condition, and (3) an edge from the branch
1489 /// condition to the branch target.  We keep (1), but may wish to remove (2)
1490 /// and move the source of (3) to the branch if the branch condition is simple.
1491 static void simplifySimpleBranches(PathPieces &pieces) {
1492   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1493     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1494 
1495     if (!PieceI)
1496       continue;
1497 
1498     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1499     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1500 
1501     if (!s1Start || !s1End)
1502       continue;
1503 
1504     PathPieces::iterator NextI = I; ++NextI;
1505     if (NextI == E)
1506       break;
1507 
1508     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1509 
1510     while (true) {
1511       if (NextI == E)
1512         break;
1513 
1514       const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1515       if (EV) {
1516         StringRef S = EV->getString();
1517         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1518             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1519           ++NextI;
1520           continue;
1521         }
1522         break;
1523       }
1524 
1525       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1526       break;
1527     }
1528 
1529     if (!PieceNextI)
1530       continue;
1531 
1532     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1533     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1534 
1535     if (!s2Start || !s2End || s1End != s2Start)
1536       continue;
1537 
1538     // We only perform this transformation for specific branch kinds.
1539     // We don't want to do this for do..while, for example.
1540     if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
1541           isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
1542           isa<CXXForRangeStmt>(s1Start)))
1543       continue;
1544 
1545     // Is s1End the branch condition?
1546     if (!isConditionForTerminator(s1Start, s1End))
1547       continue;
1548 
1549     // Perform the hoisting by eliminating (2) and changing the start
1550     // location of (3).
1551     PieceNextI->setStartLocation(PieceI->getStartLocation());
1552     I = pieces.erase(I);
1553   }
1554 }
1555 
1556 /// Returns the number of bytes in the given (character-based) SourceRange.
1557 ///
1558 /// If the locations in the range are not on the same line, returns None.
1559 ///
1560 /// Note that this does not do a precise user-visible character or column count.
1561 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1562                                               SourceRange Range) {
1563   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1564                              SM.getExpansionRange(Range.getEnd()).getEnd());
1565 
1566   FileID FID = SM.getFileID(ExpansionRange.getBegin());
1567   if (FID != SM.getFileID(ExpansionRange.getEnd()))
1568     return None;
1569 
1570   bool Invalid;
1571   const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
1572   if (Invalid)
1573     return None;
1574 
1575   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1576   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1577   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1578 
1579   // We're searching the raw bytes of the buffer here, which might include
1580   // escaped newlines and such. That's okay; we're trying to decide whether the
1581   // SourceRange is covering a large or small amount of space in the user's
1582   // editor.
1583   if (Snippet.find_first_of("\r\n") != StringRef::npos)
1584     return None;
1585 
1586   // This isn't Unicode-aware, but it doesn't need to be.
1587   return Snippet.size();
1588 }
1589 
1590 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1591 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1592                                               const Stmt *S) {
1593   return getLengthOnSingleLine(SM, S->getSourceRange());
1594 }
1595 
1596 /// Eliminate two-edge cycles created by addContextEdges().
1597 ///
1598 /// Once all the context edges are in place, there are plenty of cases where
1599 /// there's a single edge from a top-level statement to a subexpression,
1600 /// followed by a single path note, and then a reverse edge to get back out to
1601 /// the top level. If the statement is simple enough, the subexpression edges
1602 /// just add noise and make it harder to understand what's going on.
1603 ///
1604 /// This function only removes edges in pairs, because removing only one edge
1605 /// might leave other edges dangling.
1606 ///
1607 /// This will not remove edges in more complicated situations:
1608 /// - if there is more than one "hop" leading to or from a subexpression.
1609 /// - if there is an inlined call between the edges instead of a single event.
1610 /// - if the whole statement is large enough that having subexpression arrows
1611 ///   might be helpful.
1612 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1613   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1614     // Pattern match the current piece and its successor.
1615     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1616 
1617     if (!PieceI) {
1618       ++I;
1619       continue;
1620     }
1621 
1622     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1623     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1624 
1625     PathPieces::iterator NextI = I; ++NextI;
1626     if (NextI == E)
1627       break;
1628 
1629     const auto *PieceNextI =
1630         dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1631 
1632     if (!PieceNextI) {
1633       if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1634         ++NextI;
1635         if (NextI == E)
1636           break;
1637         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1638       }
1639 
1640       if (!PieceNextI) {
1641         ++I;
1642         continue;
1643       }
1644     }
1645 
1646     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1647     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1648 
1649     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1650       const size_t MAX_SHORT_LINE_LENGTH = 80;
1651       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1652       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1653         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1654         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1655           Path.erase(I);
1656           I = Path.erase(NextI);
1657           continue;
1658         }
1659       }
1660     }
1661 
1662     ++I;
1663   }
1664 }
1665 
1666 /// Return true if X is contained by Y.
1667 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1668   while (X) {
1669     if (X == Y)
1670       return true;
1671     X = PM.getParent(X);
1672   }
1673   return false;
1674 }
1675 
1676 // Remove short edges on the same line less than 3 columns in difference.
1677 static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1678                             const ParentMap &PM) {
1679   bool erased = false;
1680 
1681   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1682        erased ? I : ++I) {
1683     erased = false;
1684 
1685     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1686 
1687     if (!PieceI)
1688       continue;
1689 
1690     const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1691     const Stmt *end   = PieceI->getEndLocation().getStmtOrNull();
1692 
1693     if (!start || !end)
1694       continue;
1695 
1696     const Stmt *endParent = PM.getParent(end);
1697     if (!endParent)
1698       continue;
1699 
1700     if (isConditionForTerminator(end, endParent))
1701       continue;
1702 
1703     SourceLocation FirstLoc = start->getBeginLoc();
1704     SourceLocation SecondLoc = end->getBeginLoc();
1705 
1706     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1707       continue;
1708     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1709       std::swap(SecondLoc, FirstLoc);
1710 
1711     SourceRange EdgeRange(FirstLoc, SecondLoc);
1712     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1713 
1714     // If the statements are on different lines, continue.
1715     if (!ByteWidth)
1716       continue;
1717 
1718     const size_t MAX_PUNY_EDGE_LENGTH = 2;
1719     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1720       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1721       // there might not be enough /columns/. A proper user-visible column count
1722       // is probably too expensive, though.
1723       I = path.erase(I);
1724       erased = true;
1725       continue;
1726     }
1727   }
1728 }
1729 
1730 static void removeIdenticalEvents(PathPieces &path) {
1731   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1732     const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1733 
1734     if (!PieceI)
1735       continue;
1736 
1737     PathPieces::iterator NextI = I; ++NextI;
1738     if (NextI == E)
1739       return;
1740 
1741     const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1742 
1743     if (!PieceNextI)
1744       continue;
1745 
1746     // Erase the second piece if it has the same exact message text.
1747     if (PieceI->getString() == PieceNextI->getString()) {
1748       path.erase(NextI);
1749     }
1750   }
1751 }
1752 
1753 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1754                           OptimizedCallsSet &OCS) {
1755   bool hasChanges = false;
1756   const LocationContext *LC = C.getLocationContextFor(&path);
1757   assert(LC);
1758   const ParentMap &PM = LC->getParentMap();
1759   const SourceManager &SM = C.getSourceManager();
1760 
1761   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1762     // Optimize subpaths.
1763     if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1764       // Record the fact that a call has been optimized so we only do the
1765       // effort once.
1766       if (!OCS.count(CallI)) {
1767         while (optimizeEdges(C, CallI->path, OCS)) {
1768         }
1769         OCS.insert(CallI);
1770       }
1771       ++I;
1772       continue;
1773     }
1774 
1775     // Pattern match the current piece and its successor.
1776     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1777 
1778     if (!PieceI) {
1779       ++I;
1780       continue;
1781     }
1782 
1783     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1784     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1785     const Stmt *level1 = getStmtParent(s1Start, PM);
1786     const Stmt *level2 = getStmtParent(s1End, PM);
1787 
1788     PathPieces::iterator NextI = I; ++NextI;
1789     if (NextI == E)
1790       break;
1791 
1792     const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1793 
1794     if (!PieceNextI) {
1795       ++I;
1796       continue;
1797     }
1798 
1799     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1800     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1801     const Stmt *level3 = getStmtParent(s2Start, PM);
1802     const Stmt *level4 = getStmtParent(s2End, PM);
1803 
1804     // Rule I.
1805     //
1806     // If we have two consecutive control edges whose end/begin locations
1807     // are at the same level (e.g. statements or top-level expressions within
1808     // a compound statement, or siblings share a single ancestor expression),
1809     // then merge them if they have no interesting intermediate event.
1810     //
1811     // For example:
1812     //
1813     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1814     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1815     //
1816     // NOTE: this will be limited later in cases where we add barriers
1817     // to prevent this optimization.
1818     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1819       PieceI->setEndLocation(PieceNextI->getEndLocation());
1820       path.erase(NextI);
1821       hasChanges = true;
1822       continue;
1823     }
1824 
1825     // Rule II.
1826     //
1827     // Eliminate edges between subexpressions and parent expressions
1828     // when the subexpression is consumed.
1829     //
1830     // NOTE: this will be limited later in cases where we add barriers
1831     // to prevent this optimization.
1832     if (s1End && s1End == s2Start && level2) {
1833       bool removeEdge = false;
1834       // Remove edges into the increment or initialization of a
1835       // loop that have no interleaving event.  This means that
1836       // they aren't interesting.
1837       if (isIncrementOrInitInForLoop(s1End, level2))
1838         removeEdge = true;
1839       // Next only consider edges that are not anchored on
1840       // the condition of a terminator.  This are intermediate edges
1841       // that we might want to trim.
1842       else if (!isConditionForTerminator(level2, s1End)) {
1843         // Trim edges on expressions that are consumed by
1844         // the parent expression.
1845         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1846           removeEdge = true;
1847         }
1848         // Trim edges where a lexical containment doesn't exist.
1849         // For example:
1850         //
1851         //  X -> Y -> Z
1852         //
1853         // If 'Z' lexically contains Y (it is an ancestor) and
1854         // 'X' does not lexically contain Y (it is a descendant OR
1855         // it has no lexical relationship at all) then trim.
1856         //
1857         // This can eliminate edges where we dive into a subexpression
1858         // and then pop back out, etc.
1859         else if (s1Start && s2End &&
1860                  lexicalContains(PM, s2Start, s2End) &&
1861                  !lexicalContains(PM, s1End, s1Start)) {
1862           removeEdge = true;
1863         }
1864         // Trim edges from a subexpression back to the top level if the
1865         // subexpression is on a different line.
1866         //
1867         // A.1 -> A -> B
1868         // becomes
1869         // A.1 -> B
1870         //
1871         // These edges just look ugly and don't usually add anything.
1872         else if (s1Start && s2End &&
1873                  lexicalContains(PM, s1Start, s1End)) {
1874           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1875                                 PieceI->getStartLocation().asLocation());
1876           if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
1877             removeEdge = true;
1878         }
1879       }
1880 
1881       if (removeEdge) {
1882         PieceI->setEndLocation(PieceNextI->getEndLocation());
1883         path.erase(NextI);
1884         hasChanges = true;
1885         continue;
1886       }
1887     }
1888 
1889     // Optimize edges for ObjC fast-enumeration loops.
1890     //
1891     // (X -> collection) -> (collection -> element)
1892     //
1893     // becomes:
1894     //
1895     // (X -> element)
1896     if (s1End == s2Start) {
1897       const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1898       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1899           s2End == FS->getElement()) {
1900         PieceI->setEndLocation(PieceNextI->getEndLocation());
1901         path.erase(NextI);
1902         hasChanges = true;
1903         continue;
1904       }
1905     }
1906 
1907     // No changes at this index?  Move to the next one.
1908     ++I;
1909   }
1910 
1911   if (!hasChanges) {
1912     // Adjust edges into subexpressions to make them more uniform
1913     // and aesthetically pleasing.
1914     addContextEdges(path, LC);
1915     // Remove "cyclical" edges that include one or more context edges.
1916     removeContextCycles(path, SM);
1917     // Hoist edges originating from branch conditions to branches
1918     // for simple branches.
1919     simplifySimpleBranches(path);
1920     // Remove any puny edges left over after primary optimization pass.
1921     removePunyEdges(path, SM, PM);
1922     // Remove identical events.
1923     removeIdenticalEvents(path);
1924   }
1925 
1926   return hasChanges;
1927 }
1928 
1929 /// Drop the very first edge in a path, which should be a function entry edge.
1930 ///
1931 /// If the first edge is not a function entry edge (say, because the first
1932 /// statement had an invalid source location), this function does nothing.
1933 // FIXME: We should just generate invalid edges anyway and have the optimizer
1934 // deal with them.
1935 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1936                                   PathPieces &Path) {
1937   const auto *FirstEdge =
1938       dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1939   if (!FirstEdge)
1940     return;
1941 
1942   const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1943   PathDiagnosticLocation EntryLoc =
1944       PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1945   if (FirstEdge->getStartLocation() != EntryLoc)
1946     return;
1947 
1948   Path.pop_front();
1949 }
1950 
1951 /// Populate executes lines with lines containing at least one diagnostics.
1952 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1953 
1954   PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1955   FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1956 
1957   for (const auto &P : path) {
1958     FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1959     FileID FID = Loc.getFileID();
1960     unsigned LineNo = Loc.getLineNumber();
1961     assert(FID.isValid());
1962     ExecutedLines[FID].insert(LineNo);
1963   }
1964 }
1965 
1966 PathDiagnosticConstruct::PathDiagnosticConstruct(
1967     const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1968     const PathSensitiveBugReport *R)
1969     : Consumer(PDC), CurrentNode(ErrorNode),
1970       SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1971       PD(generateEmptyDiagnosticForReport(R, getSourceManager())) {
1972   LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1973 }
1974 
1975 PathDiagnosticBuilder::PathDiagnosticBuilder(
1976     BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1977     PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1978     std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1979     : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1980       ErrorNode(ErrorNode),
1981       VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1982 
1983 std::unique_ptr<PathDiagnostic>
1984 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
1985   PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
1986 
1987   const SourceManager &SM = getSourceManager();
1988   const AnalyzerOptions &Opts = getAnalyzerOptions();
1989   StringRef ErrorTag = ErrorNode->getLocation().getTag()->getTagDescription();
1990 
1991   // See whether we need to silence the checker/package.
1992   // FIXME: This will not work if the report was emitted with an incorrect tag.
1993   for (const std::string &CheckerOrPackage : Opts.SilencedCheckersAndPackages) {
1994     if (ErrorTag.startswith(CheckerOrPackage))
1995       return nullptr;
1996   }
1997 
1998   if (!PDC->shouldGenerateDiagnostics())
1999     return generateEmptyDiagnosticForReport(R, getSourceManager());
2000 
2001   // Construct the final (warning) event for the bug report.
2002   auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2003   PathDiagnosticPieceRef LastPiece;
2004   if (EndNotes != VisitorsDiagnostics->end()) {
2005     assert(!EndNotes->second.empty());
2006     LastPiece = EndNotes->second[0];
2007   } else {
2008     LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2009                                                       *getBugReport());
2010   }
2011   Construct.PD->setEndOfPath(LastPiece);
2012 
2013   PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2014   // From the error node to the root, ascend the bug path and construct the bug
2015   // report.
2016   while (Construct.ascendToPrevNode()) {
2017     generatePathDiagnosticsForNode(Construct, PrevLoc);
2018 
2019     auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2020     if (VisitorNotes == VisitorsDiagnostics->end())
2021       continue;
2022 
2023     // This is a workaround due to inability to put shared PathDiagnosticPiece
2024     // into a FoldingSet.
2025     std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2026 
2027     // Add pieces from custom visitors.
2028     for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2029       llvm::FoldingSetNodeID ID;
2030       Note->Profile(ID);
2031       if (!DeduplicationSet.insert(ID).second)
2032         continue;
2033 
2034       if (PDC->shouldAddPathEdges())
2035         addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2036       updateStackPiecesWithMessage(Note, Construct.CallStack);
2037       Construct.getActivePath().push_front(Note);
2038     }
2039   }
2040 
2041   if (PDC->shouldAddPathEdges()) {
2042     // Add an edge to the start of the function.
2043     // We'll prune it out later, but it helps make diagnostics more uniform.
2044     const StackFrameContext *CalleeLC =
2045         Construct.getLocationContextForActivePath()->getStackFrame();
2046     const Decl *D = CalleeLC->getDecl();
2047     addEdgeToPath(Construct.getActivePath(), PrevLoc,
2048                   PathDiagnosticLocation::createBegin(D, SM));
2049   }
2050 
2051 
2052   // Finally, prune the diagnostic path of uninteresting stuff.
2053   if (!Construct.PD->path.empty()) {
2054     if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2055       bool stillHasNotes =
2056           removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2057       assert(stillHasNotes);
2058       (void)stillHasNotes;
2059     }
2060 
2061     // Remove pop-up notes if needed.
2062     if (!Opts.ShouldAddPopUpNotes)
2063       removePopUpNotes(Construct.getMutablePieces());
2064 
2065     // Redirect all call pieces to have valid locations.
2066     adjustCallLocations(Construct.getMutablePieces());
2067     removePiecesWithInvalidLocations(Construct.getMutablePieces());
2068 
2069     if (PDC->shouldAddPathEdges()) {
2070 
2071       // Reduce the number of edges from a very conservative set
2072       // to an aesthetically pleasing subset that conveys the
2073       // necessary information.
2074       OptimizedCallsSet OCS;
2075       while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2076       }
2077 
2078       // Drop the very first function-entry edge. It's not really necessary
2079       // for top-level functions.
2080       dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2081     }
2082 
2083     // Remove messages that are basically the same, and edges that may not
2084     // make sense.
2085     // We have to do this after edge optimization in the Extensive mode.
2086     removeRedundantMsgs(Construct.getMutablePieces());
2087     removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2088   }
2089 
2090   if (Opts.ShouldDisplayMacroExpansions)
2091     CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2092 
2093   return std::move(Construct.PD);
2094 }
2095 
2096 //===----------------------------------------------------------------------===//
2097 // Methods for BugType and subclasses.
2098 //===----------------------------------------------------------------------===//
2099 
2100 void BugType::anchor() {}
2101 
2102 void BuiltinBug::anchor() {}
2103 
2104 //===----------------------------------------------------------------------===//
2105 // Methods for BugReport and subclasses.
2106 //===----------------------------------------------------------------------===//
2107 
2108 void PathSensitiveBugReport::addVisitor(
2109     std::unique_ptr<BugReporterVisitor> visitor) {
2110   if (!visitor)
2111     return;
2112 
2113   llvm::FoldingSetNodeID ID;
2114   visitor->Profile(ID);
2115 
2116   void *InsertPos = nullptr;
2117   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2118     return;
2119   }
2120 
2121   Callbacks.push_back(std::move(visitor));
2122 }
2123 
2124 void PathSensitiveBugReport::clearVisitors() {
2125   Callbacks.clear();
2126 }
2127 
2128 const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2129   const ExplodedNode *N = getErrorNode();
2130   if (!N)
2131     return nullptr;
2132 
2133   const LocationContext *LC = N->getLocationContext();
2134   return LC->getStackFrame()->getDecl();
2135 }
2136 
2137 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2138   hash.AddInteger(static_cast<int>(getKind()));
2139   hash.AddPointer(&BT);
2140   hash.AddString(Description);
2141   assert(Location.isValid());
2142   Location.Profile(hash);
2143 
2144   for (SourceRange range : Ranges) {
2145     if (!range.isValid())
2146       continue;
2147     hash.AddInteger(range.getBegin().getRawEncoding());
2148     hash.AddInteger(range.getEnd().getRawEncoding());
2149   }
2150 }
2151 
2152 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2153   hash.AddInteger(static_cast<int>(getKind()));
2154   hash.AddPointer(&BT);
2155   hash.AddString(Description);
2156   PathDiagnosticLocation UL = getUniqueingLocation();
2157   if (UL.isValid()) {
2158     UL.Profile(hash);
2159   } else {
2160     // TODO: The statement may be null if the report was emitted before any
2161     // statements were executed. In particular, some checkers by design
2162     // occasionally emit their reports in empty functions (that have no
2163     // statements in their body). Do we profile correctly in this case?
2164     hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2165   }
2166 
2167   for (SourceRange range : Ranges) {
2168     if (!range.isValid())
2169       continue;
2170     hash.AddInteger(range.getBegin().getRawEncoding());
2171     hash.AddInteger(range.getEnd().getRawEncoding());
2172   }
2173 }
2174 
2175 template <class T>
2176 static void insertToInterestingnessMap(
2177     llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2178     bugreporter::TrackingKind TKind) {
2179   auto Result = InterestingnessMap.insert({Val, TKind});
2180 
2181   if (Result.second)
2182     return;
2183 
2184   // Even if this symbol/region was already marked as interesting as a
2185   // condition, if we later mark it as interesting again but with
2186   // thorough tracking, overwrite it. Entities marked with thorough
2187   // interestiness are the most important (or most interesting, if you will),
2188   // and we wouldn't like to downplay their importance.
2189 
2190   switch (TKind) {
2191     case bugreporter::TrackingKind::Thorough:
2192       Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2193       return;
2194     case bugreporter::TrackingKind::Condition:
2195       return;
2196   }
2197 
2198   llvm_unreachable(
2199       "BugReport::markInteresting currently can only handle 2 different "
2200       "tracking kinds! Please define what tracking kind should this entitiy"
2201       "have, if it was already marked as interesting with a different kind!");
2202 }
2203 
2204 void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2205                                              bugreporter::TrackingKind TKind) {
2206   if (!sym)
2207     return;
2208 
2209   insertToInterestingnessMap(InterestingSymbols, sym, TKind);
2210 
2211   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2212     markInteresting(meta->getRegion(), TKind);
2213 }
2214 
2215 void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2216                                              bugreporter::TrackingKind TKind) {
2217   if (!R)
2218     return;
2219 
2220   R = R->getBaseRegion();
2221   insertToInterestingnessMap(InterestingRegions, R, TKind);
2222 
2223   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2224     markInteresting(SR->getSymbol(), TKind);
2225 }
2226 
2227 void PathSensitiveBugReport::markInteresting(SVal V,
2228                                              bugreporter::TrackingKind TKind) {
2229   markInteresting(V.getAsRegion(), TKind);
2230   markInteresting(V.getAsSymbol(), TKind);
2231 }
2232 
2233 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2234   if (!LC)
2235     return;
2236   InterestingLocationContexts.insert(LC);
2237 }
2238 
2239 Optional<bugreporter::TrackingKind>
2240 PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2241   auto RKind = getInterestingnessKind(V.getAsRegion());
2242   auto SKind = getInterestingnessKind(V.getAsSymbol());
2243   if (!RKind)
2244     return SKind;
2245   if (!SKind)
2246     return RKind;
2247 
2248   // If either is marked with throrough tracking, return that, we wouldn't like
2249   // to downplay a note's importance by 'only' mentioning it as a condition.
2250   switch(*RKind) {
2251     case bugreporter::TrackingKind::Thorough:
2252       return RKind;
2253     case bugreporter::TrackingKind::Condition:
2254       return SKind;
2255   }
2256 
2257   llvm_unreachable(
2258       "BugReport::getInterestingnessKind currently can only handle 2 different "
2259       "tracking kinds! Please define what tracking kind should we return here "
2260       "when the kind of getAsRegion() and getAsSymbol() is different!");
2261   return None;
2262 }
2263 
2264 Optional<bugreporter::TrackingKind>
2265 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2266   if (!sym)
2267     return None;
2268   // We don't currently consider metadata symbols to be interesting
2269   // even if we know their region is interesting. Is that correct behavior?
2270   auto It = InterestingSymbols.find(sym);
2271   if (It == InterestingSymbols.end())
2272     return None;
2273   return It->getSecond();
2274 }
2275 
2276 Optional<bugreporter::TrackingKind>
2277 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2278   if (!R)
2279     return None;
2280 
2281   R = R->getBaseRegion();
2282   auto It = InterestingRegions.find(R);
2283   if (It != InterestingRegions.end())
2284     return It->getSecond();
2285 
2286   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2287     return getInterestingnessKind(SR->getSymbol());
2288   return None;
2289 }
2290 
2291 bool PathSensitiveBugReport::isInteresting(SVal V) const {
2292   return getInterestingnessKind(V).hasValue();
2293 }
2294 
2295 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2296   return getInterestingnessKind(sym).hasValue();
2297 }
2298 
2299 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2300   return getInterestingnessKind(R).hasValue();
2301 }
2302 
2303 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC)  const {
2304   if (!LC)
2305     return false;
2306   return InterestingLocationContexts.count(LC);
2307 }
2308 
2309 const Stmt *PathSensitiveBugReport::getStmt() const {
2310   if (!ErrorNode)
2311     return nullptr;
2312 
2313   ProgramPoint ProgP = ErrorNode->getLocation();
2314   const Stmt *S = nullptr;
2315 
2316   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2317     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2318     if (BE->getBlock() == &Exit)
2319       S = ErrorNode->getPreviousStmtForDiagnostics();
2320   }
2321   if (!S)
2322     S = ErrorNode->getStmtForDiagnostics();
2323 
2324   return S;
2325 }
2326 
2327 ArrayRef<SourceRange>
2328 PathSensitiveBugReport::getRanges() const {
2329   // If no custom ranges, add the range of the statement corresponding to
2330   // the error node.
2331   if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2332       return ErrorNodeRange;
2333 
2334   return Ranges;
2335 }
2336 
2337 PathDiagnosticLocation
2338 PathSensitiveBugReport::getLocation() const {
2339   assert(ErrorNode && "Cannot create a location with a null node.");
2340   const Stmt *S = ErrorNode->getStmtForDiagnostics();
2341     ProgramPoint P = ErrorNode->getLocation();
2342   const LocationContext *LC = P.getLocationContext();
2343   SourceManager &SM =
2344       ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2345 
2346   if (!S) {
2347     // If this is an implicit call, return the implicit call point location.
2348     if (Optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2349       return PathDiagnosticLocation(PIE->getLocation(), SM);
2350     if (auto FE = P.getAs<FunctionExitPoint>()) {
2351       if (const ReturnStmt *RS = FE->getStmt())
2352         return PathDiagnosticLocation::createBegin(RS, SM, LC);
2353     }
2354     S = ErrorNode->getNextStmtForDiagnostics();
2355   }
2356 
2357   if (S) {
2358     // For member expressions, return the location of the '.' or '->'.
2359     if (const auto *ME = dyn_cast<MemberExpr>(S))
2360       return PathDiagnosticLocation::createMemberLoc(ME, SM);
2361 
2362     // For binary operators, return the location of the operator.
2363     if (const auto *B = dyn_cast<BinaryOperator>(S))
2364       return PathDiagnosticLocation::createOperatorLoc(B, SM);
2365 
2366     if (P.getAs<PostStmtPurgeDeadSymbols>())
2367       return PathDiagnosticLocation::createEnd(S, SM, LC);
2368 
2369     if (S->getBeginLoc().isValid())
2370       return PathDiagnosticLocation(S, SM, LC);
2371 
2372     return PathDiagnosticLocation(
2373         PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
2374   }
2375 
2376   return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
2377                                                SM);
2378 }
2379 
2380 //===----------------------------------------------------------------------===//
2381 // Methods for BugReporter and subclasses.
2382 //===----------------------------------------------------------------------===//
2383 
2384 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2385   return Eng.getGraph();
2386 }
2387 
2388 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2389   return Eng.getStateManager();
2390 }
2391 
2392 BugReporter::~BugReporter() {
2393   // Make sure reports are flushed.
2394   assert(StrBugTypes.empty() &&
2395          "Destroying BugReporter before diagnostics are emitted!");
2396 
2397   // Free the bug reports we are tracking.
2398   for (const auto I : EQClassesVector)
2399     delete I;
2400 }
2401 
2402 void BugReporter::FlushReports() {
2403   // We need to flush reports in deterministic order to ensure the order
2404   // of the reports is consistent between runs.
2405   for (const auto EQ : EQClassesVector)
2406     FlushReport(*EQ);
2407 
2408   // BugReporter owns and deletes only BugTypes created implicitly through
2409   // EmitBasicReport.
2410   // FIXME: There are leaks from checkers that assume that the BugTypes they
2411   // create will be destroyed by the BugReporter.
2412   llvm::DeleteContainerSeconds(StrBugTypes);
2413 }
2414 
2415 //===----------------------------------------------------------------------===//
2416 // PathDiagnostics generation.
2417 //===----------------------------------------------------------------------===//
2418 
2419 namespace {
2420 
2421 /// A wrapper around an ExplodedGraph that contains a single path from the root
2422 /// to the error node.
2423 class BugPathInfo {
2424 public:
2425   std::unique_ptr<ExplodedGraph> BugPath;
2426   PathSensitiveBugReport *Report;
2427   const ExplodedNode *ErrorNode;
2428 };
2429 
2430 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2431 /// conveniently retrieve bug paths from a single error node to the root.
2432 class BugPathGetter {
2433   std::unique_ptr<ExplodedGraph> TrimmedGraph;
2434 
2435   using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2436 
2437   /// Assign each node with its distance from the root.
2438   PriorityMapTy PriorityMap;
2439 
2440   /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2441   /// we need to pair it to the error node of the constructed trimmed graph.
2442   using ReportNewNodePair =
2443       std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2444   SmallVector<ReportNewNodePair, 32> ReportNodes;
2445 
2446   BugPathInfo CurrentBugPath;
2447 
2448   /// A helper class for sorting ExplodedNodes by priority.
2449   template <bool Descending>
2450   class PriorityCompare {
2451     const PriorityMapTy &PriorityMap;
2452 
2453   public:
2454     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2455 
2456     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2457       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2458       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2459       PriorityMapTy::const_iterator E = PriorityMap.end();
2460 
2461       if (LI == E)
2462         return Descending;
2463       if (RI == E)
2464         return !Descending;
2465 
2466       return Descending ? LI->second > RI->second
2467                         : LI->second < RI->second;
2468     }
2469 
2470     bool operator()(const ReportNewNodePair &LHS,
2471                     const ReportNewNodePair &RHS) const {
2472       return (*this)(LHS.second, RHS.second);
2473     }
2474   };
2475 
2476 public:
2477   BugPathGetter(const ExplodedGraph *OriginalGraph,
2478                 ArrayRef<PathSensitiveBugReport *> &bugReports);
2479 
2480   BugPathInfo *getNextBugPath();
2481 };
2482 
2483 } // namespace
2484 
2485 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2486                              ArrayRef<PathSensitiveBugReport *> &bugReports) {
2487   SmallVector<const ExplodedNode *, 32> Nodes;
2488   for (const auto I : bugReports) {
2489     assert(I->isValid() &&
2490            "We only allow BugReporterVisitors and BugReporter itself to "
2491            "invalidate reports!");
2492     Nodes.emplace_back(I->getErrorNode());
2493   }
2494 
2495   // The trimmed graph is created in the body of the constructor to ensure
2496   // that the DenseMaps have been initialized already.
2497   InterExplodedGraphMap ForwardMap;
2498   TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2499 
2500   // Find the (first) error node in the trimmed graph.  We just need to consult
2501   // the node map which maps from nodes in the original graph to nodes
2502   // in the new graph.
2503   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2504 
2505   for (PathSensitiveBugReport *Report : bugReports) {
2506     const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2507     assert(NewNode &&
2508            "Failed to construct a trimmed graph that contains this error "
2509            "node!");
2510     ReportNodes.emplace_back(Report, NewNode);
2511     RemainingNodes.insert(NewNode);
2512   }
2513 
2514   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2515 
2516   // Perform a forward BFS to find all the shortest paths.
2517   std::queue<const ExplodedNode *> WS;
2518 
2519   assert(TrimmedGraph->num_roots() == 1);
2520   WS.push(*TrimmedGraph->roots_begin());
2521   unsigned Priority = 0;
2522 
2523   while (!WS.empty()) {
2524     const ExplodedNode *Node = WS.front();
2525     WS.pop();
2526 
2527     PriorityMapTy::iterator PriorityEntry;
2528     bool IsNew;
2529     std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2530     ++Priority;
2531 
2532     if (!IsNew) {
2533       assert(PriorityEntry->second <= Priority);
2534       continue;
2535     }
2536 
2537     if (RemainingNodes.erase(Node))
2538       if (RemainingNodes.empty())
2539         break;
2540 
2541     for (const ExplodedNode *Succ : Node->succs())
2542       WS.push(Succ);
2543   }
2544 
2545   // Sort the error paths from longest to shortest.
2546   llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2547 }
2548 
2549 BugPathInfo *BugPathGetter::getNextBugPath() {
2550   if (ReportNodes.empty())
2551     return nullptr;
2552 
2553   const ExplodedNode *OrigN;
2554   std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2555   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2556          "error node not accessible from root");
2557 
2558   // Create a new graph with a single path. This is the graph that will be
2559   // returned to the caller.
2560   auto GNew = std::make_unique<ExplodedGraph>();
2561 
2562   // Now walk from the error node up the BFS path, always taking the
2563   // predeccessor with the lowest number.
2564   ExplodedNode *Succ = nullptr;
2565   while (true) {
2566     // Create the equivalent node in the new graph with the same state
2567     // and location.
2568     ExplodedNode *NewN = GNew->createUncachedNode(
2569         OrigN->getLocation(), OrigN->getState(),
2570         OrigN->getID(), OrigN->isSink());
2571 
2572     // Link up the new node with the previous node.
2573     if (Succ)
2574       Succ->addPredecessor(NewN, *GNew);
2575     else
2576       CurrentBugPath.ErrorNode = NewN;
2577 
2578     Succ = NewN;
2579 
2580     // Are we at the final node?
2581     if (OrigN->pred_empty()) {
2582       GNew->addRoot(NewN);
2583       break;
2584     }
2585 
2586     // Find the next predeccessor node.  We choose the node that is marked
2587     // with the lowest BFS number.
2588     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2589                               PriorityCompare<false>(PriorityMap));
2590   }
2591 
2592   CurrentBugPath.BugPath = std::move(GNew);
2593 
2594   return &CurrentBugPath;
2595 }
2596 
2597 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2598 /// object and collapses PathDiagosticPieces that are expanded by macros.
2599 static void CompactMacroExpandedPieces(PathPieces &path,
2600                                        const SourceManager& SM) {
2601   using MacroStackTy = std::vector<
2602       std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2603 
2604   using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2605 
2606   MacroStackTy MacroStack;
2607   PiecesTy Pieces;
2608 
2609   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2610        I != E; ++I) {
2611     const auto &piece = *I;
2612 
2613     // Recursively compact calls.
2614     if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2615       CompactMacroExpandedPieces(call->path, SM);
2616     }
2617 
2618     // Get the location of the PathDiagnosticPiece.
2619     const FullSourceLoc Loc = piece->getLocation().asLocation();
2620 
2621     // Determine the instantiation location, which is the location we group
2622     // related PathDiagnosticPieces.
2623     SourceLocation InstantiationLoc = Loc.isMacroID() ?
2624                                       SM.getExpansionLoc(Loc) :
2625                                       SourceLocation();
2626 
2627     if (Loc.isFileID()) {
2628       MacroStack.clear();
2629       Pieces.push_back(piece);
2630       continue;
2631     }
2632 
2633     assert(Loc.isMacroID());
2634 
2635     // Is the PathDiagnosticPiece within the same macro group?
2636     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2637       MacroStack.back().first->subPieces.push_back(piece);
2638       continue;
2639     }
2640 
2641     // We aren't in the same group.  Are we descending into a new macro
2642     // or are part of an old one?
2643     std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2644 
2645     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2646                                           SM.getExpansionLoc(Loc) :
2647                                           SourceLocation();
2648 
2649     // Walk the entire macro stack.
2650     while (!MacroStack.empty()) {
2651       if (InstantiationLoc == MacroStack.back().second) {
2652         MacroGroup = MacroStack.back().first;
2653         break;
2654       }
2655 
2656       if (ParentInstantiationLoc == MacroStack.back().second) {
2657         MacroGroup = MacroStack.back().first;
2658         break;
2659       }
2660 
2661       MacroStack.pop_back();
2662     }
2663 
2664     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2665       // Create a new macro group and add it to the stack.
2666       auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2667           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2668 
2669       if (MacroGroup)
2670         MacroGroup->subPieces.push_back(NewGroup);
2671       else {
2672         assert(InstantiationLoc.isFileID());
2673         Pieces.push_back(NewGroup);
2674       }
2675 
2676       MacroGroup = NewGroup;
2677       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2678     }
2679 
2680     // Finally, add the PathDiagnosticPiece to the group.
2681     MacroGroup->subPieces.push_back(piece);
2682   }
2683 
2684   // Now take the pieces and construct a new PathDiagnostic.
2685   path.clear();
2686 
2687   path.insert(path.end(), Pieces.begin(), Pieces.end());
2688 }
2689 
2690 /// Generate notes from all visitors.
2691 /// Notes associated with {@code ErrorNode} are generated using
2692 /// {@code getEndPath}, and the rest are generated with {@code VisitNode}.
2693 static std::unique_ptr<VisitorsDiagnosticsTy>
2694 generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2695                             const ExplodedNode *ErrorNode,
2696                             BugReporterContext &BRC) {
2697   std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2698       std::make_unique<VisitorsDiagnosticsTy>();
2699   PathSensitiveBugReport::VisitorList visitors;
2700 
2701   // Run visitors on all nodes starting from the node *before* the last one.
2702   // The last node is reserved for notes generated with {@code getEndPath}.
2703   const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2704   while (NextNode) {
2705 
2706     // At each iteration, move all visitors from report to visitor list. This is
2707     // important, because the Profile() functions of the visitors make sure that
2708     // a visitor isn't added multiple times for the same node, but it's fine
2709     // to add the a visitor with Profile() for different nodes (e.g. tracking
2710     // a region at different points of the symbolic execution).
2711     for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2712       visitors.push_back(std::move(Visitor));
2713 
2714     R->clearVisitors();
2715 
2716     const ExplodedNode *Pred = NextNode->getFirstPred();
2717     if (!Pred) {
2718       PathDiagnosticPieceRef LastPiece;
2719       for (auto &V : visitors) {
2720         V->finalizeVisitor(BRC, ErrorNode, *R);
2721 
2722         if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2723           assert(!LastPiece &&
2724                  "There can only be one final piece in a diagnostic.");
2725           assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2726                  "The final piece must contain a message!");
2727           LastPiece = std::move(Piece);
2728           (*Notes)[ErrorNode].push_back(LastPiece);
2729         }
2730       }
2731       break;
2732     }
2733 
2734     for (auto &V : visitors) {
2735       auto P = V->VisitNode(NextNode, BRC, *R);
2736       if (P)
2737         (*Notes)[NextNode].push_back(std::move(P));
2738     }
2739 
2740     if (!R->isValid())
2741       break;
2742 
2743     NextNode = Pred;
2744   }
2745 
2746   return Notes;
2747 }
2748 
2749 Optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2750     ArrayRef<PathSensitiveBugReport *> &bugReports,
2751     PathSensitiveBugReporter &Reporter) {
2752 
2753   BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2754 
2755   while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2756     // Find the BugReport with the original location.
2757     PathSensitiveBugReport *R = BugPath->Report;
2758     assert(R && "No original report found for sliced graph.");
2759     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2760     const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2761 
2762     // Register refutation visitors first, if they mark the bug invalid no
2763     // further analysis is required
2764     R->addVisitor(std::make_unique<LikelyFalsePositiveSuppressionBRVisitor>());
2765 
2766     // Register additional node visitors.
2767     R->addVisitor(std::make_unique<NilReceiverBRVisitor>());
2768     R->addVisitor(std::make_unique<ConditionBRVisitor>());
2769     R->addVisitor(std::make_unique<TagVisitor>());
2770 
2771     BugReporterContext BRC(Reporter);
2772 
2773     // Run all visitors on a given graph, once.
2774     std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2775         generateVisitorsDiagnostics(R, ErrorNode, BRC);
2776 
2777     if (R->isValid()) {
2778       if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2779         // If crosscheck is enabled, remove all visitors, add the refutation
2780         // visitor and check again
2781         R->clearVisitors();
2782         R->addVisitor(std::make_unique<FalsePositiveRefutationBRVisitor>());
2783 
2784         // We don't overrite the notes inserted by other visitors because the
2785         // refutation manager does not add any new note to the path
2786         generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2787       }
2788 
2789       // Check if the bug is still valid
2790       if (R->isValid())
2791         return PathDiagnosticBuilder(
2792             std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2793             BugPath->ErrorNode, std::move(visitorNotes));
2794     }
2795   }
2796 
2797   return {};
2798 }
2799 
2800 std::unique_ptr<DiagnosticForConsumerMapTy>
2801 PathSensitiveBugReporter::generatePathDiagnostics(
2802     ArrayRef<PathDiagnosticConsumer *> consumers,
2803     ArrayRef<PathSensitiveBugReport *> &bugReports) {
2804   assert(!bugReports.empty());
2805 
2806   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2807 
2808   Optional<PathDiagnosticBuilder> PDB =
2809       PathDiagnosticBuilder::findValidReport(bugReports, *this);
2810 
2811   if (PDB) {
2812     for (PathDiagnosticConsumer *PC : consumers) {
2813       if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2814         (*Out)[PC] = std::move(PD);
2815       }
2816     }
2817   }
2818 
2819   return Out;
2820 }
2821 
2822 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2823   bool ValidSourceLoc = R->getLocation().isValid();
2824   assert(ValidSourceLoc);
2825   // If we mess up in a release build, we'd still prefer to just drop the bug
2826   // instead of trying to go on.
2827   if (!ValidSourceLoc)
2828     return;
2829 
2830   // Compute the bug report's hash to determine its equivalence class.
2831   llvm::FoldingSetNodeID ID;
2832   R->Profile(ID);
2833 
2834   // Lookup the equivance class.  If there isn't one, create it.
2835   void *InsertPos;
2836   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2837 
2838   if (!EQ) {
2839     EQ = new BugReportEquivClass(std::move(R));
2840     EQClasses.InsertNode(EQ, InsertPos);
2841     EQClassesVector.push_back(EQ);
2842   } else
2843     EQ->AddReport(std::move(R));
2844 }
2845 
2846 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2847   if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2848     if (const ExplodedNode *E = PR->getErrorNode()) {
2849       // An error node must either be a sink or have a tag, otherwise
2850       // it could get reclaimed before the path diagnostic is created.
2851       assert((E->isSink() || E->getLocation().getTag()) &&
2852              "Error node must either be a sink or have a tag");
2853 
2854       const AnalysisDeclContext *DeclCtx =
2855           E->getLocationContext()->getAnalysisDeclContext();
2856       // The source of autosynthesized body can be handcrafted AST or a model
2857       // file. The locations from handcrafted ASTs have no valid source
2858       // locations and have to be discarded. Locations from model files should
2859       // be preserved for processing and reporting.
2860       if (DeclCtx->isBodyAutosynthesized() &&
2861           !DeclCtx->isBodyAutosynthesizedFromModelFile())
2862         return;
2863     }
2864 
2865   BugReporter::emitReport(std::move(R));
2866 }
2867 
2868 //===----------------------------------------------------------------------===//
2869 // Emitting reports in equivalence classes.
2870 //===----------------------------------------------------------------------===//
2871 
2872 namespace {
2873 
2874 struct FRIEC_WLItem {
2875   const ExplodedNode *N;
2876   ExplodedNode::const_succ_iterator I, E;
2877 
2878   FRIEC_WLItem(const ExplodedNode *n)
2879       : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2880 };
2881 
2882 } // namespace
2883 
2884 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2885     BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2886   // If we don't need to suppress any of the nodes because they are
2887   // post-dominated by a sink, simply add all the nodes in the equivalence class
2888   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2889   assert(EQ.getReports().size() > 0);
2890   const BugType& BT = EQ.getReports()[0]->getBugType();
2891   if (!BT.isSuppressOnSink()) {
2892     BugReport *R = EQ.getReports()[0].get();
2893     for (auto &J : EQ.getReports()) {
2894       if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
2895         R = PR;
2896         bugReports.push_back(PR);
2897       }
2898     }
2899     return R;
2900   }
2901 
2902   // For bug reports that should be suppressed when all paths are post-dominated
2903   // by a sink node, iterate through the reports in the equivalence class
2904   // until we find one that isn't post-dominated (if one exists).  We use a
2905   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2906   // this as a recursive function, but we don't want to risk blowing out the
2907   // stack for very long paths.
2908   BugReport *exampleReport = nullptr;
2909 
2910   for (const auto &I: EQ.getReports()) {
2911     auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
2912     if (!R)
2913       continue;
2914 
2915     const ExplodedNode *errorNode = R->getErrorNode();
2916     if (errorNode->isSink()) {
2917       llvm_unreachable(
2918            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2919     }
2920     // No successors?  By definition this nodes isn't post-dominated by a sink.
2921     if (errorNode->succ_empty()) {
2922       bugReports.push_back(R);
2923       if (!exampleReport)
2924         exampleReport = R;
2925       continue;
2926     }
2927 
2928     // See if we are in a no-return CFG block. If so, treat this similarly
2929     // to being post-dominated by a sink. This works better when the analysis
2930     // is incomplete and we have never reached the no-return function call(s)
2931     // that we'd inevitably bump into on this path.
2932     if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
2933       if (ErrorB->isInevitablySinking())
2934         continue;
2935 
2936     // At this point we know that 'N' is not a sink and it has at least one
2937     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2938     using WLItem = FRIEC_WLItem;
2939     using DFSWorkList = SmallVector<WLItem, 10>;
2940 
2941     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2942 
2943     DFSWorkList WL;
2944     WL.push_back(errorNode);
2945     Visited[errorNode] = 1;
2946 
2947     while (!WL.empty()) {
2948       WLItem &WI = WL.back();
2949       assert(!WI.N->succ_empty());
2950 
2951       for (; WI.I != WI.E; ++WI.I) {
2952         const ExplodedNode *Succ = *WI.I;
2953         // End-of-path node?
2954         if (Succ->succ_empty()) {
2955           // If we found an end-of-path node that is not a sink.
2956           if (!Succ->isSink()) {
2957             bugReports.push_back(R);
2958             if (!exampleReport)
2959               exampleReport = R;
2960             WL.clear();
2961             break;
2962           }
2963           // Found a sink?  Continue on to the next successor.
2964           continue;
2965         }
2966         // Mark the successor as visited.  If it hasn't been explored,
2967         // enqueue it to the DFS worklist.
2968         unsigned &mark = Visited[Succ];
2969         if (!mark) {
2970           mark = 1;
2971           WL.push_back(Succ);
2972           break;
2973         }
2974       }
2975 
2976       // The worklist may have been cleared at this point.  First
2977       // check if it is empty before checking the last item.
2978       if (!WL.empty() && &WL.back() == &WI)
2979         WL.pop_back();
2980     }
2981   }
2982 
2983   // ExampleReport will be NULL if all the nodes in the equivalence class
2984   // were post-dominated by sinks.
2985   return exampleReport;
2986 }
2987 
2988 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2989   SmallVector<BugReport*, 10> bugReports;
2990   BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
2991   if (!report)
2992     return;
2993 
2994   ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
2995   std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
2996       generateDiagnosticForConsumerMap(report, Consumers, bugReports);
2997 
2998   for (auto &P : *Diagnostics) {
2999     PathDiagnosticConsumer *Consumer = P.first;
3000     std::unique_ptr<PathDiagnostic> &PD = P.second;
3001 
3002     // If the path is empty, generate a single step path with the location
3003     // of the issue.
3004     if (PD->path.empty()) {
3005       PathDiagnosticLocation L = report->getLocation();
3006       auto piece = std::make_unique<PathDiagnosticEventPiece>(
3007         L, report->getDescription());
3008       for (SourceRange Range : report->getRanges())
3009         piece->addRange(Range);
3010       PD->setEndOfPath(std::move(piece));
3011     }
3012 
3013     PathPieces &Pieces = PD->getMutablePieces();
3014     if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3015       // For path diagnostic consumers that don't support extra notes,
3016       // we may optionally convert those to path notes.
3017       for (auto I = report->getNotes().rbegin(),
3018            E = report->getNotes().rend(); I != E; ++I) {
3019         PathDiagnosticNotePiece *Piece = I->get();
3020         auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3021           Piece->getLocation(), Piece->getString());
3022         for (const auto &R: Piece->getRanges())
3023           ConvertedPiece->addRange(R);
3024 
3025         Pieces.push_front(std::move(ConvertedPiece));
3026       }
3027     } else {
3028       for (auto I = report->getNotes().rbegin(),
3029            E = report->getNotes().rend(); I != E; ++I)
3030         Pieces.push_front(*I);
3031     }
3032 
3033     for (const auto &I : report->getFixits())
3034       Pieces.back()->addFixit(I);
3035 
3036     updateExecutedLinesWithDiagnosticPieces(*PD);
3037     Consumer->HandlePathDiagnostic(std::move(PD));
3038   }
3039 }
3040 
3041 /// Insert all lines participating in the function signature \p Signature
3042 /// into \p ExecutedLines.
3043 static void populateExecutedLinesWithFunctionSignature(
3044     const Decl *Signature, const SourceManager &SM,
3045     FilesToLineNumsMap &ExecutedLines) {
3046   SourceRange SignatureSourceRange;
3047   const Stmt* Body = Signature->getBody();
3048   if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3049     SignatureSourceRange = FD->getSourceRange();
3050   } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3051     SignatureSourceRange = OD->getSourceRange();
3052   } else {
3053     return;
3054   }
3055   SourceLocation Start = SignatureSourceRange.getBegin();
3056   SourceLocation End = Body ? Body->getSourceRange().getBegin()
3057     : SignatureSourceRange.getEnd();
3058   if (!Start.isValid() || !End.isValid())
3059     return;
3060   unsigned StartLine = SM.getExpansionLineNumber(Start);
3061   unsigned EndLine = SM.getExpansionLineNumber(End);
3062 
3063   FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3064   for (unsigned Line = StartLine; Line <= EndLine; Line++)
3065     ExecutedLines[FID].insert(Line);
3066 }
3067 
3068 static void populateExecutedLinesWithStmt(
3069     const Stmt *S, const SourceManager &SM,
3070     FilesToLineNumsMap &ExecutedLines) {
3071   SourceLocation Loc = S->getSourceRange().getBegin();
3072   if (!Loc.isValid())
3073     return;
3074   SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3075   FileID FID = SM.getFileID(ExpansionLoc);
3076   unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3077   ExecutedLines[FID].insert(LineNo);
3078 }
3079 
3080 /// \return all executed lines including function signatures on the path
3081 /// starting from \p N.
3082 static std::unique_ptr<FilesToLineNumsMap>
3083 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3084   auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3085 
3086   while (N) {
3087     if (N->getFirstPred() == nullptr) {
3088       // First node: show signature of the entrance point.
3089       const Decl *D = N->getLocationContext()->getDecl();
3090       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3091     } else if (auto CE = N->getLocationAs<CallEnter>()) {
3092       // Inlined function: show signature.
3093       const Decl* D = CE->getCalleeContext()->getDecl();
3094       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3095     } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3096       populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3097 
3098       // Show extra context for some parent kinds.
3099       const Stmt *P = N->getParentMap().getParent(S);
3100 
3101       // The path exploration can die before the node with the associated
3102       // return statement is generated, but we do want to show the whole
3103       // return.
3104       if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3105         populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3106         P = N->getParentMap().getParent(RS);
3107       }
3108 
3109       if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P)))
3110         populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3111     }
3112 
3113     N = N->getFirstPred();
3114   }
3115   return ExecutedLines;
3116 }
3117 
3118 std::unique_ptr<DiagnosticForConsumerMapTy>
3119 BugReporter::generateDiagnosticForConsumerMap(
3120     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3121     ArrayRef<BugReport *> bugReports) {
3122   auto *basicReport = cast<BasicBugReport>(exampleReport);
3123   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3124   for (auto *Consumer : consumers)
3125     (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport);
3126   return Out;
3127 }
3128 
3129 static PathDiagnosticCallPiece *
3130 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3131                                 const SourceManager &SMgr) {
3132   SourceLocation CallLoc = CP->callEnter.asLocation();
3133 
3134   // If the call is within a macro, don't do anything (for now).
3135   if (CallLoc.isMacroID())
3136     return nullptr;
3137 
3138   assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3139          "The call piece should not be in a header file.");
3140 
3141   // Check if CP represents a path through a function outside of the main file.
3142   if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
3143     return CP;
3144 
3145   const PathPieces &Path = CP->path;
3146   if (Path.empty())
3147     return nullptr;
3148 
3149   // Check if the last piece in the callee path is a call to a function outside
3150   // of the main file.
3151   if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3152     return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3153 
3154   // Otherwise, the last piece is in the main file.
3155   return nullptr;
3156 }
3157 
3158 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3159   if (PD.path.empty())
3160     return;
3161 
3162   PathDiagnosticPiece *LastP = PD.path.back().get();
3163   assert(LastP);
3164   const SourceManager &SMgr = LastP->getLocation().getManager();
3165 
3166   // We only need to check if the report ends inside headers, if the last piece
3167   // is a call piece.
3168   if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3169     CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3170     if (CP) {
3171       // Mark the piece.
3172        CP->setAsLastInMainSourceFile();
3173 
3174       // Update the path diagnostic message.
3175       const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3176       if (ND) {
3177         SmallString<200> buf;
3178         llvm::raw_svector_ostream os(buf);
3179         os << " (within a call to '" << ND->getDeclName() << "')";
3180         PD.appendToDesc(os.str());
3181       }
3182 
3183       // Reset the report containing declaration and location.
3184       PD.setDeclWithIssue(CP->getCaller());
3185       PD.setLocation(CP->getLocation());
3186 
3187       return;
3188     }
3189   }
3190 }
3191 
3192 
3193 
3194 std::unique_ptr<DiagnosticForConsumerMapTy>
3195 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3196     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3197     ArrayRef<BugReport *> bugReports) {
3198   std::vector<BasicBugReport *> BasicBugReports;
3199   std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3200   if (isa<BasicBugReport>(exampleReport))
3201     return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3202                                                          consumers, bugReports);
3203 
3204   // Generate the full path sensitive diagnostic, using the generation scheme
3205   // specified by the PathDiagnosticConsumer. Note that we have to generate
3206   // path diagnostics even for consumers which do not support paths, because
3207   // the BugReporterVisitors may mark this bug as a false positive.
3208   assert(!bugReports.empty());
3209   MaxBugClassSize.updateMax(bugReports.size());
3210 
3211   // Avoid copying the whole array because there may be a lot of reports.
3212   ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3213       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3214       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3215   std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3216       consumers, convertedArrayOfReports);
3217 
3218   if (Out->empty())
3219     return Out;
3220 
3221   MaxValidBugClassSize.updateMax(bugReports.size());
3222 
3223   // Examine the report and see if the last piece is in a header. Reset the
3224   // report location to the last piece in the main source file.
3225   const AnalyzerOptions &Opts = getAnalyzerOptions();
3226   for (auto const &P : *Out)
3227     if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3228       resetDiagnosticLocationToMainFile(*P.second);
3229 
3230   return Out;
3231 }
3232 
3233 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3234                                   const CheckerBase *Checker, StringRef Name,
3235                                   StringRef Category, StringRef Str,
3236                                   PathDiagnosticLocation Loc,
3237                                   ArrayRef<SourceRange> Ranges,
3238                                   ArrayRef<FixItHint> Fixits) {
3239   EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3240                   Loc, Ranges, Fixits);
3241 }
3242 
3243 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3244                                   CheckerNameRef CheckName,
3245                                   StringRef name, StringRef category,
3246                                   StringRef str, PathDiagnosticLocation Loc,
3247                                   ArrayRef<SourceRange> Ranges,
3248                                   ArrayRef<FixItHint> Fixits) {
3249   // 'BT' is owned by BugReporter.
3250   BugType *BT = getBugTypeForName(CheckName, name, category);
3251   auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3252   R->setDeclWithIssue(DeclWithIssue);
3253   for (const auto &SR : Ranges)
3254     R->addRange(SR);
3255   for (const auto &FH : Fixits)
3256     R->addFixItHint(FH);
3257   emitReport(std::move(R));
3258 }
3259 
3260 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3261                                         StringRef name, StringRef category) {
3262   SmallString<136> fullDesc;
3263   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3264                                       << ":" << category;
3265   BugType *&BT = StrBugTypes[fullDesc];
3266   if (!BT)
3267     BT = new BugType(CheckName, name, category);
3268   return BT;
3269 }
3270